
Dissertation submitted to the Graz University of Technology, Faculty of
Computer Science, for the attainment of the degree of

Doctor of Engineering Sciences (Dr. techn.)

Automatic Support for Ontology Evaluation

Review of Entailed Statements and Assertional Effects
for OWL Ontologies

Viktoria Pammer

February 24, 2010

Reviewed and Examined by:

Prof. Dr. Klaus Tochtermann
Knowledge Management Institute
Graz University of Technology

Prof. Dr. Rudi Studer
Institute of Applied Informatics and Formal Description Methods
Karlsruher Institute of Technology

Advised by:

Dr. Stefanie N. Lindstaedt
Luciano Serafini

Acknowledgements

Writing this doctoral thesis and doing all the research that led up to it was a lot of work
and took considerable time. There are also some other people, besides myself, who
have invested time and energy into this PhD. My advisors, Stefanie Lindstaedt and Lu-
ciano Serafini, dedicated both time and patience to me and this work. They encouraged
my ideas and pushed me to go on and work on them, for which I am truly grateful.
Luciano specifically has read some parts of my thesis in many more versions than is
human, and gave me useful feedback every time. I also shared interesting discussions
with colleagues at the Knowledge Management Institute and the Know-Center, as well
as with people at conferences, and I am glad for every input I got over the years from
everyone. Specific honours and thanks in this regard go to my colleague and ‘PhD-
sister’ Barbara Kump, with whom I’ve shared quite a few ups and downs. Speaking of
the Knowledge Management Institute and the Know-Center, the last but not the least
thanks go to Klaus Tochtermann who heads both, and in doing so manages to provide
a research environment which I experienced both as relaxed and motivating.
Throughout all of this I had friends, my mother and sister and the man of my life. Es-
pecially the latter had to suffer through some intense periods, with higher frequency
towards the end of this thesis, and has yet never failed to brighten up my mood. These
people have made up, and still do, the best part of my life after all.

Abstract

The typical goal of representing knowledge formally is to make knowledge accessible
to machines. Hence, knowledge representation formalisms are chosen to accommodate
well to the strengths of machines, often at the expense of being less easy to under-
stand for humans. At the same time, formal representations are most often created or
maintained by humans. This discrepancy provides the motivation for the central idea
of this thesis, namely to facilitate evaluating the conceptual correctness of ontologies
by means of reasoning services. For instance, when a logical axiom is added to an
ontology, this addition may lead to logically consistent but conceptually wrong infer-
ences. In the context of this thesis, specifically description logics with a view on those
underlying the W3C recommended web ontology language OWL are considered as
knowledge representation language in which ontologies are described.
First, it has been investigated both by analysis and in practice how the review of auto-
matically inferred statements can serve the purpose of evaluating an existing ontology.
In a second venture, the usage of instance data to give ontology engineers concrete ex-
amples of the implications of general statements, i.e. terminological and role axioms in
description logic languages, has been studied. Indeed, the effects of terminological and
role axioms on instance data have not been studied in literature so far, although from
a mathematical point of view the question of conservative extensions, i.e. the logical
difference between two sets of terminological and role axioms, is very close. Thus it
was necessary to provide a formal definition for effects that capture the intension of
“knowledge lost or gained about data”, as well as find and prove a decision procedure.
Both research ventures have led to concrete implementations of ontology evaluation
functionalities within MoKi, a wiki-based ontology engineering environment. As a con-
sequence, MoKi is now, to the best of the author’s knowledge, the only state-of-the art
ontology engineering environment that explicitly supports conceptual ontology evalu-
ation rather than ontology debugging in the sense of finding logical contradictions.

Kurzfassung

Die Motivation Wissen formal zu repräsentieren besteht üblicherweise darin es für
Maschinen verarbeitbar zu machen. Daher werden Wissensrepräsentationsformalismen
sinnvollerweise so gewählt, daß sie gut automatisch verarbeitbar sind. Darunter leidet
allerdings häufig die Verständlichkeit der Repräsentation für Menschen. Auf der an-
deren Seite sind es meistens Menschen, die Wissen formalisieren oder formalisiertes
Wissen aktuell halten müssen. Diese Diskrepanz ist die zentrale Motivation der vorlie-
genden Doktorarbeit, Möglichkeiten zu untersuchen wie die Evaluierung der konzep-
tionellen Richtigkeit von Ontologien automatisch unterstützt werden kann. Wenn zum
Beispiel ein logischer Satz zu einer Ontologie, einem formalen Wissensmodell über
Konzepte und Beziehungen zwischen Konzepten, hinzugefügt wird, kann es passie-
ren daß die Ontologie zwar logisch weiterhin widerspruchsfrei ist aber konzeptionell
falsch. Als spezieller Formalismus werden im Rahmen dieser Doktorarbeit Beschrei-
bungslogiken betrachtet.
Zuerst wurde sowohl analytisch als auch anhand einer Benutzerstudie betrachtet, in-
wieweit die systematische Begutachtung von Inferenzen den Ontologieevaluierungs-
prozess unterstützen kann. Als weitere Forschungstätigkeit wurde die Verwendung von
konkreten Daten zur Erstellung von Beispielen für die Bedeutung von logischen Sätzen
über Konzepte und Relationen, terminologische und Rollenaxiome, untersucht. Vor der
vorliegenden Doktorarbeit wurden in der Literatur den Auswirkungen von terminologi-
schen und Rollenaxiomen auf konkrete Daten kaum Bedeutung geschenkt. Es war also
notwendig, zuerst eine formale Definition zu finden die dem Ziel entspricht, “Wissen
über Daten das neu hinzukommt oder verloren geht” auszudrücken. Darauf aufbau-
end werden die Entscheidbarkeit des Problems gezeigt und ein Entscheidungsalgorith-
mus beschrieben. Beide Forschungsarbeiten führten zu einer Erweiterung des MoKi,
eines wiki-basierten Ontologieeditors, um Funktionalitäten die Ontologieevaluierung
unterstützen. MoKi ist somit, nach bestem Wissen der Autorin, zu diesem Zeitpunkt
der einzige State-of-the-Art Ontologieeditor der konzeptionelle Ontologieevaluierung
unterstützt.

Contents

Title . I

Acknowledgements . III

Abstract . V

Kurzfassung . VII

Contents . XI

Figures . XIV

Tables . XV

1 Introduction . 1
1.1 Motivation . 2
1.2 Structure of this Thesis . 4
1.3 Contributions of this Thesis . 5

2 Foundations . 9
2.1 Ontologies . 9
2.2 Description Logics . 17

2.2.1 Description Logic Basics and ALC . 17
2.2.2 SHOIN and SROIQ . 23
2.2.3 Standard Reasoning Problems . 27

2.3 Ontology Engineering . 30
2.3.1 Ontology Engineering Activities . 31
2.3.2 Tool Support for Ontology Engineering . 34

2.4 Ontology Evaluation . 35
2.4.1 Categories in Ontology Evaluation . 36
2.4.2 Ontology Evaluation Methodologies . 39
2.4.3 Tool Support for Ontology Evaluation . 41

X Contents

3 MoKi- A Wiki-based Ontology Engineering Environment 43
3.1 Challenges . 44
3.2 Related Work . 46
3.3 Design and Implementation of MoKi . 48

3.3.1 MoKi as a MediaWiki plugin . 49
3.3.2 Every Model Element Is a Wiki Page . 50
3.3.3 MoKi Functionalities . 58
3.3.4 PHP and Java . 64

3.4 Discussion . 64

4 Ontology Evaluation Through Review of Entailed Statements 67
4.1 Related Work . 67
4.2 Ontology Questionnaire . 68

4.2.1 Walkthrough . 68
4.2.2 Implementation . 69

4.3 Formulation of Relevant Problems in DL . 71
4.3.1 Limitation to Explicitly Mentioned Concepts 71
4.3.2 Justifications in OWL. 72

4.4 Analysis of Benefits and Limitations . 72
4.5 Experimental Study . 77

4.5.1 Application Setting . 77
4.5.2 Evaluation Procedure and Results . 78
4.5.3 Discussion of the Experimental Study . 78

4.6 Discussion . 79

5 Assertional Effects of Ontology Editing Activities . 81
5.1 Motivation . 81
5.2 Assertional Effects of Ontology Editing Activities 83

5.2.1 Deciding the Existence of Assertional Effects 84
5.2.2 Generalisation to DLs with the Connected Model Property . . . 87

5.3 Related work . 88
5.4 Discussion . 90

5.4.1 Informative Effects . 90
5.4.2 Exemplary Effects . 90
5.4.3 Extending the Definitions of Effects . 91

6 Ontology Evaluation in MoKi . 93
6.1 The MoKi Validation Modules . 94

6.1.1 Ontology Questionnaire . 95
6.1.2 Assertional Effects . 96
6.1.3 Models Checklist . 102
6.1.4 Quality Indicator . 104

6.2 Implementation Principles . 107
6.2.1 Extending MediaWiki Through Special Pages and Hooks 107
6.2.2 PHP and Java revisited . 109
6.2.3 Data Storage in MoKi . 110

Contents XI

6.3 Implementation of the MoKi Validation Modules 114
6.3.1 Ontology Questionnaire . 114
6.3.2 Assertional Effects . 116
6.3.3 Models Checklist . 116
6.3.4 Quality Indicator . 117

6.4 Discussion . 120

7 Conclusion . 123

References . 127

Ontology Questionnaire Manual . 137

Software Architecture of the MoKi Validation Modules 143
B.1 Ontology Questionnaire . 143

B.1.1 Functional View . 143
B.1.2 Logical View . 144
B.1.3 Process View . 145

B.2 Assertional Effects . 149
B.2.1 Functional View . 149
B.2.2 Logical View . 149
B.2.3 Process View . 150

List of Figures

1.1 Area of research of this thesis: Evaluating description logic ontologies
during and after (manual) creation using reasoning services. 5

2.1 Complete ontologies are satisfied by all intended worlds. The more
precise an ontology is, the less unintended worlds satisfy the ontology. . 12

2.2 Model-theoretic semantics of concepts and roles 24
2.3 Ontology engineering activities. 34

3.1 Concept template in MoKi. 53
3.2 Individual template in MoKi. 54
3.3 Property template in MoKi. 55
3.4 Access to MoKi functionalities via a wiki-style menu with hyperlinked

items . 61
3.5 Import a hierarchy into MoKi. 62
3.6 List of concepts in MoKi. 62
3.7 Tree visualisation of hierarchy MoKi (IsA Browser). 63

4.1 Ontology questionnaire displaying inferred and explicitly stated axioms. 70
4.2 Ontology questionnaire explaining an inferred axiom. 70
4.3 Zoom into the revision process of the domain model in the Integrated

Modelling Methodology (IMM) . 77

5.1 Knowledge base about common geographic knowledge and historical
persons. 82

6.1 Categorisation of MoKi validation modules according to place of
appearance in MoKi and according to reactivity to user actions. 94

6.2 Ontology questionnaire in MoKi. 97
6.3 Explanations for an inference in the Ontology Questionnaire in MoKi. . 97
6.4 Removing statements leads to a loss of inferences. 98
6.5 Success page after deleting statements from within the ontology

questionnaire. 98
6.6 Assertional effects on a concept page . 101

XIV List of Figures

6.7 Assertional effects on a property page . 102
6.8 Models checklist . 104
6.9 Models checklist: List of concepts without a verbal description 105
6.10 Quality indicator on a concept page. 106

B.1 Class diagram of the ontology questionnaire within MoKi. 147
B.2 Sequence diagram of the ontology questionnaire within MoKi. 148
B.3 Class diagram of the assertional effects functionality within MoKi. 152
B.4 Activity diagram of the assertional effects functionality within MoKi. . . 153

List of Tables

2.1 Syntax and semantics of ALC concepts. 23
2.2 Terminological, role and assertional axioms. 25
2.3 Syntax and semantics of SHOIN concepts. 27
2.4 Syntax and semantics of SROIQ concepts and roles. 27
2.5 Simple roles in SROIQ. 28
2.6 A regular role hierarchy in SROIQ . 28
2.7 Categories in Ontology Evaluation: What Is Evaluated? 36
2.8 Categories of Ontology Evaluation: When Does Evaluation Take

Place? This influences who evaluates and what requirements are put
on the evaluation methodology. 39

2.9 Categories of Ontology Evaluation: What Is the Reference? The right
reference depends on how the ontology was created, in which situation
ontology evaluation takes place, and on the purpose of the ontology.
The first three references indicate a glassbox evaluation procedure,
while the last leads to a blackbox evaluation procedure. 40

3.1 MoKi category names . 50
3.2 Concept template in MoKi. 56
3.3 Property template in MoKi. 57
3.4 Individual template in MoKi. 57

6.1 Automatic checks for concepts. 118
6.2 Automatic checks for individuals. 118
6.3 Automatic checks for properties. 119
6.4 Quality indicator: Completeness for concepts. 119
6.5 Quality indicator: Completeness for properties. 120
6.6 Quality indicator: Completeness for individuals. 120
6.7 Quality indicator: Sharedness. 120

1

Introduction

Just as testing is an integral part of software engineering, so is ontology evaluation
an integral part of ontology engineering. Typically, the knowledge representation for-
malisms in which ontologies are represented are chosen to accommodate well to the
strengths of machines rather than to the strengths of humans, such as expressive log-
ics. This puts humans who create ontologies at a disadvantage and makes it difficult
for them (all of us!) to assess the quality of the created ontologies. Second, ontology
evaluation is typically carried out as an activity separate of modelling itself, so that at
the end of the ontology engineering process the complete ontology is evaluated given
a set of evaluation criteria. Especially in ontology engineering settings where contrib-
utors are spatially distributed, or where an ontology is intended to evolve over time,
this falls short of the actual necessity to execute continuous quality control. The central
research question addressed within this thesis is how to evaluate ontologies and how
to support this automatically, ideally within an ontology engineering environment. A
focus has been put on investigating the assessment of implications of formal axioms,
i.e. knowledge which is implicit in the explicitly stated ontology, in order to ensure
alignment between the interpretation of the ontology by machines and humans.
To this purpose, the benefits of reviewing inferences for ontology evaluation purposes
are discussed, and a reasoning service that computes specific inferences, namely asser-
tional effects, has been created. The latter allows contributors to assess their modelling
choices as soon as they have been taken. Through this, ontology engineering and on-
tology evaluation activities become more tightly integrated, which in the end is a pre-
requisite for an evolutionary execution of the ontology engineering process.
Where necessary, theoretical discussions are limited to the knowledge representation
formalism of description logics, and implementation-oriented discussions to ontologies
expressed in OWL, the W3C recommended web ontology language that is based on de-
scription logics. Furthermore, ontology engineering is considered to take place during
ontology engineering. From a methodological viewpoint, this thesis contributes at a
conceptual level to automated support for ontology evaluation by providing theoretical
discussions and consequent implementation of promising ideas. User evaluations were
outside the scope of this thesis.

2 1 Introduction

1.1 Motivation

Ontologies have received rising attention especially through the interest in the Semantic
Web, although they have a long tradition in the scientific fields of artificial intelligence,
database theory, library and life sciences, where however not always the term “ontol-
ogy” is used. An ontology is now most commonly understood to be “a formal, explicit
specification of a shared conceptualization” [123], although many slightly differing
definitions of what an ontology precisely is still exist. More casually put, a formal
ontology consists of an agreed-upon list of concepts, their inter-relations and the con-
cepts’ formal definitions in a given knowledge representation formalism as for instance
logic. In computer science, ontologies are seen as enabling technology for a variety of
purposes. First, they can be used to describe content in a machine-intelligible way
(which is one of the milestones towards realising the Semantic Web [12]). Also the
recent trend to publish data, e.g. about products or about people, on the web instead
of processed content such as full-blown texts1, falls together well with the goals of the
Semantic Web. Second, ontologies serve to pull knowledge out of applications and ex-
plicate this knowledge, thus making it easier to build reusable applications. In the same
vein, interoperability between applications (ontology merging in order to produce a
common viewpoint on a domain) can be increased for instance. Finally, ontologies can
also be used to simply document a precise, shared understanding of a domain between
humans as happens when a terminology needs to be fixed. In this case however, on-
tologies sometimes are not heavily formalised. Although ontologies range from very
informal to simple to strictly formal, in the context of computer science, formal on-
tologies, i.e. machine-readable and machine-interpretable ontologies, are naturally at
the focus of attention.

Creating and maintaining a formal ontology requires a significant quantity and
quality of human effort. On the one hand, the goal of representing knowledge for-
mally is to make knowledge accessible to machines. Hence, knowledge representation
formalisms are chosen to accommodate well to the strengths of machines, often at the
expense of being less easy to understand for humans. For instance, highly expressive
logics have been chosen to represent knowledge on the Semantic Web rather than pic-
tures. At the same time, the formal representation is often created or maintained by
humans and not by machines. This discrepancy is one of the main reasons why knowl-
edge engineering is such a cumbersome task for humans.
In order to create a formal ontology, typically some variation of the following ontol-
ogy engineering process is executed: First, the domain to be represented is defined, i.e.
what shall be represented and what shall be left out of the representation. Knowledge
which shall be expressed formally is then acquired from different data sources such
as domain experts, documents, databases etc. This knowledge needs to be organised,
and different world views or conflicts of knowledge need to be sorted out. Finally, the
acquired and structured knowledge needs to be encoded in the chosen knowledge repre-
sentation formalism. Attempts have been made to automatically create ontologies, for
instance by learning ontologies from natural language text through applying machine-
1 The trend to publish data is part of the paradigm change named “Web 2.0” by O’Reilly [94]

and the Linked Data initiative [73] is its Semantic Web incarnation.

1.1 Motivation 3

learning techniques and prior knowledge about natural language. However, such on-
tology learning approaches provide only partial support since state-of-the-art ontology
learning techniques is at the level of term and relation extraction when learning from
natural language text [17, 77]. On the other hand, they currently usefully serve as part
of knowledge acquisition activities. Furthermore, even if ontology learning was com-
pletely successful, ontology engineering can not always be seen as merely “re-writing”
already known knowledge in a formal language. Sometimes, it is precisely this act of
formal specification in which implicit knowledge is made explicit or new knowledge
is generated. So there may not actually be natural language texts or other prior docu-
mentation of the knowledge to be formalised at hand. For this reason I argue that some
manual interference with ontologies will always be necessary where a certain quality
is expected from these formal models.
However, as becomes apparent already from the short description of the ontology engi-
neering process above, ontology engineering is a challenging task also for humans. Al-
ready explicating knowledge which is implicitly available to domain experts frequently
presents difficulties, and is often not possible at all. Structuring explicit knowledge is
the next task, conceptually difficult as well. The complexity of the knowledge repre-
sentation formalisms significantly adds to these difficulties (see e.g. [75] for a similar
statement). In this work, I address the latter problem in the context of description log-
ics, which underlies the W3C recommended web ontology language OWL. In short,
ontology engineers shall review inferences, which can be thought of as the interpreta-
tion given by machines to the explicitly stated ontology. Thus, ontology engineers can
ascertain that machines understand the ontology (and reason on it) as intended by the
ontology engineers.

Through understanding the implications of formal statements, ontology engineers
are able to judge the statements’ adequacy and to detect modelling mistakes. Mod-
elling mistakes may occur for instance because the ontology in question is large, com-
plex or heterogeneous if multiple people were involved in modelling, or because the
used formalism is too little understood, naturally besides simple errors of negligence.
Sometimes mistakes manifest themselves as logical inconsistencies2, at other times as
undesired inferences or less obviously via the implemented ontology’s models. The
latter means that either there are unintended models which satisfy the given ontology
or there are intended models which do not satisfy the modelled ontology3. One fun-
damental difficulty for humans is to anticipate the implications formal statements may
have if reasoning is applied to the whole ontology (see also [75] and specifically for
2 Note that logical inconsistencies are always modelling mistakes. In the case where inconsis-

tent facts, as for instance conflicting world views as “God exists” vs. “God does not exist”,
shall be modelled this must still be done in a logically consistent manner, for instance by qual-
ifying these statements as opinions of different persons. Nevertheless, it can be argued that
particularly in a distributed and collaborative knowledge engineering setting it is reasonable
to assume that logical inconsistencies will arise from time to time. Following this argument,
the question of how ontology engineering tools, and foremost reasoners, should deal with
inconsistencies in case they do arise are studied, e.g. in [11, 53].

3 The latter two modelling mistakes are inspired by the discussion by Guarino in [50] of con-
ceptualizations, ontologies and intended models, where mismatches between intended models
and implemented ontologies are discussed as problem in the context of ontology integration.

4 1 Introduction

OWL 1 DL [109]). The following are examples of factors that complicate the correct
and efficient judgement of implications of their own statements by ontology engineers.

Model Size and Overview

The formal model may be so large that an ontology engineer can not easily maintain
and/or get an overview of the complete ontology. Thus, it becomes impossible to judge
the implications of single statements that are added, deleted or modified.

Complexity of Inference Rules

Inference rules in the chosen knowledge representation language may be so complex
that an ontology engineer can not easily judge the implications of single statements that
are added, deleted or modified.
This can be assumed to be true for most logics, including description logics. The precise
reason may be a limited computational ability of the ontology engineer. Additionally,
it may even be impossible to compute all consequences because infinitely many exist.
In the latter case also an automated support can only present a subset of all inferences.
The most relevant challenge for an automated approach then is to find relevant conse-
quences which can be presented. In most logics and description logics, infinitely many
consequences may exist.

Control

In a collaborative setting, the formal model is not under the control of a single knowl-
edge engineer. Effects of modelling may result from parts that the current ontology
engineer had no hand in and is not aware of. This is closely related to the two previous
points, i.e. collaborative modelling becomes more of a problem only when the infer-
ence rules as well as the formal model are ”sufficiently complex”, so that one ontology
engineer has a hard task of keeping an overview of the formal model.

1.2 Structure of this Thesis

Chap. 2 gives an overview of the theoretical foundations on which this thesis builds.
First, ontologies and their purpose in various areas of research are described (Chap. 2.1).
An introduction to description logics (DL) gives an insight into the formalism that un-
derlies the W3C recommended web ontology language OWL (Chap. 2.2). The ontology
engineering process from beginning to end is described in Chap. 2.3, before ontology
evaluation is put into focus in Chap. 2.4. The sequence of the four foundational chap-
ters can be regarded as leading step-by-step into the core research area of this thesis,
namely evaluating manually created ontologies in DL. This zoom view on the founda-
tional topics ontologies, description logics, ontology engineering and ontology evalu-
ation is depicted in Fig. 1.1. Following this, MoKi, a wiki-based ontology engineering
environment, is presented as technical basis for the implementation of ontology evalu-
ation functionalities in the scope of this thesis (Chap. 3). There, the goals of MoKi, the
challenges on the way to meeting them and MoKi’s overall design are described.

1.3 Contributions of this Thesis 5

Chapters 4- 6 contain the contributions that were made by the author in the scope of
this thesis. All contributions circle around presenting implications of formal statements
(inferences) with the purpose to enable ontology engineers to review whether what they
explicitly stated corresponds to what they intended to express. First, the benefits and
limitations of reviewing entailed statements as part of an evaluation procedure are stud-
ied analytically based on a list of common modelling errors and empirically based on
usage of a suitable tool in five application cases (Chap. 4). Second, a particular kind of
entailed statements, namely the effects of ontology editing activities on instance data
(assertional effects) have been studied from a theoretical point of view (Chap. 5). The
purpose of assertional effects is to provide ontology engineers with concrete examples
of the implications of logical axioms. Chapter 6 is concerned with the integration of
the insights gained from the two theoretical ventures into MoKi as concrete ontology
evaluation functionalities. The thesis concludes with a summary of the most relevant
insights and a reflection on the contribution of this thesis to the research field of auto-
matic support for ontology evaluation (Chap. 7).
Throughout this thesis, many examples are given to illustrate complex issues. In the
foundational chapters (Chaps. 2 and 3), examples are taken from a variety of subjects
to underline the broad applicability of what is described. In the contribution chapters
(Chaps. 4- 6), examples are consistent throughout each chapter. In Chap. 4, examples
are inspired by an ontology that describes core concepts relevant in an Austrian innova-
tion management company. This exemplary ontology was chosen because it is also one
of the ontologies used in the experimental study described in Chap. 4, and therefore
gives an insight into a practical ontology engineering setting. In Chap. 5, a very small
example about Greek islands and philosophers is used to make clear complex logical
issues. In Chap. 6, a large ontology about the academic world (publications, university
structures, etc.) is used to provide examples. This choice was made in order to use the
same example as the demonstration MoKi at [83].

Fig. 1.1. The research field to which this thesis contributes can be narrowed down from a mul-
titude of research fields to the research area of evaluating DL ontologies during and after
manual creation, and in particular (hence the necessity to focus on a particular formalism) the
usage of reasoning services to automatically support evaluation.

1.3 Contributions of this Thesis

Chapter 2 represents an overview of ontologies, description logics, ontology engineer-
ing and ontology evaluation. The overview is given based on research carried out by

6 1 Introduction

the author in the field of knowledge engineering in collaboration with, mostly, Chiara
Ghidini, Barbara Kump, Stefanie Lindstaedt, Marco Rospocher and Luciano Serafini.
Selected own publications from the field of knowledge engineering are:

– Viktoria Pammer, Barbara Kump, Chiara Ghidini, Marco Rospocher, Luciano
Serafini, and Stefanie Lindstaedt. Revision Support for Modelling Tasks, Topics
and Skills. In Proceedings of I-SEMANTICS’09, 5th International Conference on
Semantic Systems, pages 501-508, Graz, Austria, September 2-4, 2009.

This paper discusses ontology evaluation when interpreted as formative evalua-
tion which takes place repeatedly during ontology engineering. An implementation
of such a formative evaluation approach in the scope of the Integrated Modelling
Methodology, a methodology for modelling tasks, topics and skills, is described.
All methodological steps and tools presented in this paper have been applied and
evaluated in practice during the APOSDLE project [3, 71]4, and some of them have
been integrated in MoKi afterwards (models checklist, ontology questionnaire, see
Chap. 6).

– Chiara Ghidini, Marco Rospocher, Luciano Serafini, Barbara Kump, Viktoria
Pammer, Andreas Faatz, Andreas Zinnen, Joanna Guss and Stefanie Lindstaedt.
Collaborative Knowledge Engineering via Semantic MediaWiki. In Proceedings of
the Third International Conference on Semantic Systems (I-Semantics 2008), pages
134-141, Graz, Austria, September 3-5, 2008.

This paper describes early efforts to bridge the gap between knowledge acquisi-
tion and formal modelling through the usage of Semantic MediaWiki and lessons
learned from this. The work describes a forerunner of MoKi (see Chap. 3).

Chap. 3 presents MoKi, a wiki-based ontology engineering environment that aims
to accommodate both informal modelling and formal modelling activities. MoKi has
been designed in the scope of the APOSDLE project [3, 71], initially by Chiara Ghidini,
Marco Rospocher and Gaetano Calabrese. In Chap. 3 I thus describe work to which I
have contributed, but which has been led by others.

– Marco Rospocher, Chiara Ghidini, Viktoria Pammer, Luciano Serafini, and Ste-
fanie Lindstaedt. MoKi: the MOdelling WIki. In Proceedings of the Forth Semantic
Wiki Workshop (SemWiki 2009), co-located with 6th European Semantic Web Con-
ference (ESWC 2009), volume 464 of CEUR Workshop Proceedings, 2009.

The above is a recent publication which outlines the central concepts of MoKi, al-
though it is by necessity shorter than Chap. 3. For instance, it does not contain
detailed descriptions of all model element templates in MoKi and the formal mean-
ings given to fields in them. Also the description of related work in Chap. 3.2 is

4 APOSDLE (www.aposdle.org) has been partially funded under grant 027023 in the IST work
programme of the European Community.

1.3 Contributions of this Thesis 7

more extensive than in the above publication.

In Chap. 4, the systematic review of entailed statements is studied as part of the
ontology evaluation process. The benefits and limitations of this approach have been
investigated analytically and through an experimental study. Although inferences and
often also explanations for inferences are available in state-of-the-art ontology engi-
neering tools, the procedure of reviewing inferences for ontology evaluation purposes
is little studied in literature. This thesis thus adds to state-of-the-art by showing ana-
lytically which kinds of modelling errors can be detected through such a procedure,
and which not. Moreover, the application of this review procedure in practice indicates
the feasibility of this approach, but also the need for better than existing support in
removing undesired inferences. On a meta-level, my contribution therefore consists of
bringing relevant description logic founded work into the field of knowledge engineer-
ing.

– Viktoria Pammer and Stefanie Lindstaedt. Ontology Evaluation Through Assess-
ment of Inferred Statements: Study of a Prototypical Implementation of an Ontol-
ogy Questionnaire for OWL DL Ontologies. In Knowledge Science, Engineering
and Management, Third International Conference, KSEM 2009, pages 394-405,
Vienna, Austria, November 25-27, 2009.

This paper corresponds closely to Chap. 4, but misses the analysis of benefits and
limitations based on common modelling errors.

In Chap. 5, the extension of reasoning services computing logical differences between
terminologies (description logic TBoxes) to consider also data is described. While the
latter is well-studied under the name of conservative extensions in description logics,
the impact of changes in terminology on data has not been studied so far. However,
there is certainly merit in doing so: When an ontology is used to define the semantics
of data, thus forming a knowledge base, the ontology needs not only to describe cor-
rectly a shared view of the world, but more importantly the ontology and the data must
both correspond to the same view of the world. Furthermore, presenting the effects of
formal statements on concrete data serves to illustrate the general truths by concrete
examples. Research in this direction has been targeted foremost at the theoretical side
, i.e. on formal definitions of such effects, decision procedures for finding them and on
issues that arise when bringing these to practical implementation. (Chap. 5). This part
of the thesis provides the basis for supporting evaluation already during formal model
authoring as opposed to after formal model authoring in practice.

– Viktoria Pammer, Luciano Serafini and Stefanie Lindstaedt. Highlighting Asser-
tional Effects of Ontology Editing Activities in OWL. In Proceedings of the 3rd
International Workshop on Ontology Dynamics (IWOD 2009), co-located with the
8th International Semantic Web Conference (ISWC 2009), volume 519 of CEUR
Workshop Proceedings, 2009.

8 1 Introduction

This paper corresponds closely to Chap. 5.

– Viktoria Pammer, Peter Scheir and Stefanie Lindstaedt. Ontology Coverage
Check: Support for Evaluation in Ontology Engineering. In Proceedings of FOMI
2006 - 2nd Workshop on Formal Ontologies Meet Industry, December 14-15, pages
123-134, Trento, Italy, December 14-15, 2006.

Effects of terminological axioms on data have first been described in this paper.
The central idea is that an ontology can be tested through test individuals similar
to testing software by exemplary executions of the code, and the concept of what it
means to cover an ontology with test individuals is discussed.

In Chap. 6, four validation modules that support ontology evaluation in MoKi are
described. Two of these are based directly on the above two ventures, namely the ontol-
ogy questionnaire that provides inferences to support ontology evaluation in a separate
evaluation step (Chap. 4), and the assertional effects functionality that provides effects
of knowledge base modifications on individuals to support evaluation directly during
authoring (Chap. 5). The other two modules, the models checklist and the quality in-
dicator stem from research done in collaboration with Barbara Kump, Chiara Ghidini
and Marco Rospocher [41, 97]. Together, the MoKi validation modules support ontol-
ogy evaluation both during modelling as well as during a separate evaluation activity.
As a consequence, MoKi is now, to the best of my knowledge, the only state-of-the art
ontology engineering environment that explicitly supports conceptual ontology evalu-
ation.

2

Foundations

2.1 Ontologies

What is an ontology?

In the field of computer science, an ontology is now commonly understood as an engi-
neering artefact [50] which is a “formal, explicit specification of a shared conceptuali-
sation” [123] of a domain of discourse.

Example: A domain of discourse could be “medicine”, “life sciences”, “re-
quirements engineering”, “everything which a company X needs to know in
order to be successful” etc.

Formal essentially means that an ontology is expressed in a machine-interpretable way.
This is not meant in the technological sense, i.e. something hand-written can be formal
although current character recognition technology would not be able to interpret it.
Rather, formal means the language in which the ontology is expressed, i.e. the meaning
of the language’s symbols and syntactical constructs is clearly defined.

Example: Natural languages are not formal languages, since the meanings of
their words are not clearly defined. Meanings change, words (symbols) are
ambiguous, etc.

Explicit means that in an ontology the meaning of its elements, such as for instance
concepts, relations or individuals, must be described unambiguously and in a definite
manner, leaving as little space for interpretation as required/possible.

Example: The word (symbol) “Jaguar” stands for various concepts such as
“a wild feline predator” or “a racy car” . If the symbol “Jaguar” is used in
an ontology, it must be clear for which concept it stands. Additionally, the
concept’s relations with other concepts must be made clear, e.g. “Jaguar, the
cat” hunts other “Animals” such as “Deer” in order to eat, and it eats only
“Animals” as opposed to “Plants”.

In practice, a rigorous definition of a concept is often dispensed with if the effort to
reach such a definition (e.g. little benefit in definition, a complex or disputed topic)
outweighs the benefits of having such a definition. Therefore practical ontologies only

10 2 Foundations

“approximate intended models” [50]. Very often this concerns very common-sense
concepts such as “Person” or “Animal” or “Event”1 2.

Example: Coming back again to the above introduced ontology about jaguars
(the wild cats), it may be that “Animal” is only known to be opposed to
“Plants”. In such an ontology, nothing would be stated about which proper-
ties qualify something as an animal rather than a plant.

A conceptualisation is an “intensional semantic structure” [51]. It is a particular, often
simplified, view of the world that contains relevant objects and relevant relationships
between these objects. A conceptualisation is not an engineering artefact but rather an
abstract idea inside a human’s mind: It is what we actually “mean” or intend to say.
Thus, a conceptualisation is also language-independent, i.e. could be expressed as an
ontology in different knowledge representation languages. More formally expressed, a
conceptualisation is the set of intended worlds given a particular domain.

Example: Given the particular domain of persons and the parent-relationship,
a typical conceptualisation would be that in every admissible (intended) world,
a person has exactly one female and one male person as parents. This is not
something which is given a priori by calling the objects “parents” and the rela-
tionships “parents”, but this is simply the usual meaning. This set of intended
worlds is only a subset of all possible worlds. Among all possible worlds there
are for instance also worlds in which a person has three parents, another has
no parents, and yet another person has two male parents and so on.

Consequently, an engineering artefact such as an ontology typically only approximates
a conceptualisation. In rare, simple cases it may be possible to completely capture a
conceptualisation in an ontology. An ontology’s completeness and precision then de-
pend on how close the set of modelled worlds (worlds which satisfy the explicitly stated
ontology) matches the set of intended worlds. It can be said that an ontology is com-
plete when all intended worlds are among the modelled worlds, and that an ontology is
more precise as there are less unintended worlds are among the modelled worlds3. This
is illustrated in Fig. 2.1, and a good discussion of intended versus modelled worlds is
1 A good practice would be of course to reuse existing formal definitions from so-called upper

level ontologies, as e.g. DOLCE [27, 79] or SUMO [87, 124]
2 This seems to point to a major limitation of symbolic knowledge representation: There are

definitely concepts which are hard to define formally. Is then the goal to create intelligent
agents achievable when based on such limited representations? In a philosophical sense this is
seriously a debatable question. In practice, it seems that representing knowledge symbolically
goes a long way to building more intelligent systems than exist nowadays. However, none of
them will probably win a Turing test as long as they lack inherently human skills such as
e.g. understanding natural language. Naturally, the Turing test itself is something which is
hotly argued about. For instance, it is debatable whether an artificial intelligence must be
undistinguishable from human intelligence in the first place.

3 This terminology does not as far as I know come up directly in ontology-related literature. In-
stead, I borrow here from the notions of precision and recall as known in information retrieval
and am consistent with the general informal understanding of the terms “completeness” and
“precision”.

2.1 Ontologies 11

given in [50]. While a conceptualisation underlies essentially all human-created arte-
facts such as free natural language text or software, the underlying conceptualisation
is not always made explicit. When reading a natural language text, it is left to the (hu-
man) reader to disambiguate between multiple meanings of words or to bring along
the necessary background knowledge required to understand the text. In software, the
conceptualisation may be made more explicit, e.g. as UML diagram, through class
structures or database schemata. In these instances however, the goal is not to explicate
a conceptualisation but to implement a program that does something or a database that
holds a certain kind of data and responds well to specific queries. Additionally, fac-
tual knowledge is frequently mixed with problem-solving knowledge (e.g. in software
programs) and implementation-specific artefacts (e.g. database schemata optimised for
specific queries). Nonetheless, for concrete UML diagrams or database schemata etc.
it may well be argued that they constitute ontologies.
Shared refers to the fact that an ontology should represent the view of a community
on a domain of discourse, or a view to which multiple agents (human or machine) are
expected to commit. This part of the definition is motivated partly from the intended
usage of ontologies to facilitate knowledge sharing and reuse.

An ontology typically describes concepts, relations between concepts, and some-
times individuals. At a first level, all concepts, relations and individuals that appear in
an ontology (the engineering artefact, e.g. the digital file one can open) are represented
by symbols. These symbols in turn stand for real-world objects, which in turn evoke
some response in an agent (neural activity in case the agent is a human). Individuals
are elements in an ontology which indeed refer to things in the real world. Concepts
and relationships on the other hand are closer to the German “Begriff” or what Plato
called “ideas”.

Example: The idea of a house is an ideal or simplification which no real house
can ever attain. Nevertheless, all real houses are somehow similar to this ideal.

Concepts and relationships therefore can be thought of as referring, instead of to a
single real-world element, to sets of real-world elements.

Example: The concept “house” can thus be understood as a symbol which
refers to the set of all things which are houses and which evokes for instance
the picture of a stylized house plus some memories of real houses in a human
agent.

However, an ontology is not necessarily a complex construct. This has been illus-
trated in [80] by using the metaphor of “ontology spectrum”. Within this spectrum, the
degree of detail and the level of logical expressivity rises from “controlled vocabulary”
over “taxonomy” to complex logic theories. A glossary for instance represents a con-
trolled vocabulary, and if it is shared by a certain community it may already qualify as
ontology. Classification systems for books such as the Dewey Decimal Classification
system [24] or online directory systems such as for instance the dmoz Open Directory
Project [26] are examples of taxonomies. In general however, an ontology in computer
science is understood to contain at least a specialisation hierarchy (is-a hierarchy).
This excludes glossaries, many taxonomies and online directories (whenever they are

12 2 Foundations

hierarchically structured but not according to a single hierarchical relation such as sub-
sumption of mereonomy). On the other hand this definition includes for instance a clas-
sification schemata of different biological species. Based on a specialisation hierarchy,
it is already possible to do simple reasoning. For example, properties can propagate
down the specialisation hierarchy. In other fields of computer science, this principle is
known under the name “inheritance”.

Example: “An Online Store is a Store.” expresses that the concept of an “on-
line store” is more specific than the concept “store”. If a store sells products,
then it can be inferred that an online store also sells products.

Fig. 2.1. Complete ontologies are satisfied by all intended worlds. The more precise an ontology
is, the less unintended worlds satisfy the ontology (the figure shows very precise but incomplete
ontologies). A complete and precise ontology is satisfied only and by all intended worlds. The
sets labelled “ontology” in the figure are actually sets of worlds that satisfy an ontology.

What are ontologies useful for?

Ontologies are being perceived as useful for different reasons in different research areas
which are actually application areas from the point of view of ontologies.

In the field of artificial intelligence, knowledge representation is studied primarily
with the goal to empower machines to act intelligently based on some kind of reasoning
over the represented knowledge (see e.g. [122] for some scenarios). As clear-cut as this
may sound at first, extremely divergent approaches have been put forward to represent
knowledge. For instance, knowledge may be represented as a logic theory, as a set of
rules which capture case-based experiences of domain experts, as a set of values and
preferences on which decisions can be based, as probabilities or as a complex system as
for instance a neural network [23]. Ontologies, because of their rather general nature

2.1 Ontologies 13

of specifying concepts and their interrelations, have been most often represented in
frame-based (e.g. F-Logic), graph-based (e.g. semantic networks, topic maps), or logic-
based (e.g. description logics) knowledge representation formalisms. In the context of
artificial intelligence, an ontology serves to set up a common vocabulary, formally
defined, based on which discussions between agents can take place.

Example: In this scenario it is assumed that all necessary resources are de-
scribed in a machine-readable way, so that an artificial agent can process them:
Alice organises a trip to Graz. She specifies the desired arrival and depar-
ture dates, her preferred way of travel and her preferred type of accommoda-
tion together with a price range. Her personal intelligent and automatic travel
agent carries out the search for appropriate offers instead of Alice. When the
agent searches for accommodation, it finds information about rooms in Bed
& Breakfeast establishments, in hotels or in youth hostels. In order to intelli-
gently process these offers, the internal knowledge structure of the agent needs
to contain these concepts, so that it can filter out the offers which correspond
to types of rooms as desired by Alice.
Note that in order to rank all offers which satisfy Alice’s requirements, Alice’s
preferences should be taken into account. These preferences and in particular
the method for applying the preferences to rank the received offers are typi-
cally not part of the ontology, even though it makes sense that the intelligent
agent has ways to encode both preferences and a ranking method.

Example: An ontology can define the kinds of objects a robot can expect to
find in its environment.

In the field of database theory, ontologies are perceived as useful for database de-
sign and data modelling to provide an implementation independent specification of the
database entities and their relations at knowledge level [50]. Given an ontology, map-
pings to schemata for different types of databases such as relational, object-oriented etc.
can be constructed. In this case, ontologies provide the technical basis for reuse across
application or enterprise boundaries. Of course, in order to reuse data across bound-
aries, applications and enterprises still need to commit to one ontology, which is to a
large part not a technical but rather a conceptual difficulty. It is generally agreed upon,
that database schemata can not be directly seen as ontologies, since database schemata
mostly (i) are not intended to be shareable but rather describe data as required by one
specific application or within one specific enterprise setting, (ii) do not give a for-
mal definition of the schema’s semantics, (iii) serve to constrain which data are valid,
but are not used at query time to generate inferences and (iv) are implementation-
specific [121].

Example: An ontology defines an employee as a “person who is employed
by a company”. A database at a social insurance company Dest represents
insured persons in a table which includes the persons’ names and their respec-
tive employer. A database at company Src represents its employees in a table
including the employees’ names and their salary. In order for an application
Register-Employees-with-Insurance-Company at company Src to successfully

14 2 Foundations

register new employees with the social insurance company Dest, Register-
Employees-with-Insurance-Company needs to map the schema of company
Src’s databases somehow to company Dest’s database schema. This is possi-
ble if both, company Src and company Dest, commit to the same ontology.
Note that such a commitment could of course be hardwired into the code of
Register-Employees-with-Insurance-Company. Hardwiring has the disadvan-
tage that valuable information is not made explicit. So if a database designer
at company Src changes for instance the meaning of the column “employee”
in company Src’s database to hold not the full employees’ names but just
a String identifier without knowing how Register-Employees-with-Insurance-
Company exactly works, the wrong data will be registered with the social in-
surance company Dest. If the database schema of Src’s database however
were conceptually described in an ontology, the database designer would not
even need to know about the existence of Register-Employees-with-Insurance-
Company Thus, an ontology also serves as explicit documentation underlying
conceptualisations and consequently rationale underlying complex software
systems.

The research field around the vision of the Semantic Web is comparatively young.
In short, the Semantic Web aims to make Web content accessible to machines by adding
formal semantics to the current Web. It is expected that this will significantly reduce
efforts and alleviate a variety of activities on which humans nowadays spend a lot of
time and efforts, such as searching for information, extracting information or maintain-
ing facts consistent throughout different publication resources [32]. Research around
the Semantic Web is strongly influenced both by artificial intelligence and database
theory. This becomes clear when one considers how web content can actually be made
more accessible to machines: First, by describing content formally, which relates di-
rectly to issues around knowledge representation formalisms and the design of agents
acting intelligently upon such formalisms. Second, by directly publishing data instead
of processed content, which relates immediately to issues of data modelling, data shar-
ing and reuse, and querying over data bases. Semantic descriptions of knowledge on the
web are considered in three forms: As general knowledge about some domain of dis-
course (i.e. upper ontologies, domain specific ontologies), as specific knowledge about
instances in the world (i.e. knowledge bases containing facts, in which ontologies pro-
vide the means to understand the facts)4 and as metadata of other content (i.e. semantic
annotations whose meaning is defined by underlying ontologies). Thus, the Semantic
Web will be not a separate web, but be an extension of the existing Web, and published
data and formally described Web content will coexist with conventional Web content.
The problem addressed by the Semantic Web is that content on the WWW is laid
out for human consumption. A typical HTML page, or even worse (from a machine-
understanding point of view) a page with some flash animations etc. can be easily
4 The boundaries between the first two (general knowledge vs. specific knowledge about in-

stances) sometimes blur: On the one hand in terminology, where an artefact which contains
facts is also called an ontology, and on the other hand when an ontology formalisms contains
the notion of “nominals”. A clearer definition and discussion of these subtleties is given in
Section 2.2.

2.1 Ontologies 15

understood by human consumers if designed with a minimum of sensibility. Unfortu-
nately this makes it hard for machines to understand content, and difficult for humans
to tell machines in a conceptual manner how to interpret content.

Example: On a typical newspaper website, as for instance on the website of
the Austrian newspaper “der Standard”, http://derstandard.at, a hu-
man reader can easily distinguish between the different articles from the type
of font used. A machine agent however needs to painfully parse the webpage
in order to find out different phrases in different fonts, and is then not guar-
anteed to find only articles instead of advertisements. Additionally, a machine
agent is susceptible to changes in layout of the website. On the Semantic Web,
a newspaper could publish its articles directly as data and offer different dy-
namically generated versions for a variety of user-end-point devices, or the
newspaper could publish its articles in a rather traditional HTML page but en-
riched with some semantic markup to indicate for machine-agents what each
HTML/XML element actually means.

The transition from the current WWW to a Semantic Web is already taking place (see
e.g. [133]). Languages like XML and XHTML [143] provide the possibility to in-
clude content markup through self-defined tags in webpages in addition to layout in-
formation. New languages are currently being developed for more semantic markup,
i.e. where the content markup is given well-defined semantics through underlying on-
tologies and by being based on a semantically defined language. An example of such
a language is for instance RDFa [1, 107], which defines its own small vocabulary (in
the RDFa DTD schema) based on which RDF [78] statements can be embedded in
XHTML and unambiguously interpreted. Additionally, there are many websites on the
current web whose graphical appearance is already driven directly by data storages, as
for instance websites of many online stores. On the Semantic Web, such data could
also be published directly as data, interpretable based on an underlying ontology.
A machine-intelligible Web can in many aspects make the Web a better place to be
for humans. For instance, information overload is an often-heard term which describes
a real problem. It is now widely acknowledged that human agents on the web need
better support than what currently exists for finding relevant information. Addition-
ally, complex issues like trust, security and identity-management are currently being
attacked at a fairly technical level. By this I mean that the technical prerequisites for
trust relationships over the web, and the mathematical foundations of cryptography
etc. are being laid down. However, the issue of trust raises more fundamental questions
of what trust is, how it works and how it influences people’s interactions with (digital)
artefacts. Additionally, the challenge of embedding complex technical solutions to trust
into easy-to-use user interfaces is still open: In state-of-the art systems, users need to
go into a lot of technical details in order to find configurations which suit their needs,
e.g. for defining which sources to trust, for signing emails, for choosing between iden-
tities etc. In a word, users need to translate their needs into some machine-language
instead of telling computers in natural language what they want. While the Semantic
Web does not immediately provide natural language understanding (indeed, the current
approach to realising a machine-intelligible web is less ambitious than that), current se-

http://derstandard.at

16 2 Foundations

mantic technologies aim to enable humans and machines to communicate at knowledge
level [86]5. Thus, automatic intelligent agents with an internal knowledge representa-
tion at knowledge level can not only navigate the web better but also communicate
better with humans.

Example: Taking up the above example of articles from newspapers, in the
current web a user who wants get an overview over all articles from the news-
paper der Standard from a specific day X, the user can not just tell an automatic
agent just to search for articles from the newspaper der Standard published on
day X. Instead, the user needs to tell the agent the specific web address of der
Standard and additionally which HTML elements the agent should consider
as articles.

Technologies that enable the Semantic Web are called semantic technologies. Seman-
tic technologies are prone to change, and the currently proposed semantic technologies
are only a proposal of how to achieve the vision of a machine-readable web. To date,
semantic technologies encompass most prominently RDF [78], a graph-based language
for relating resources, as a quasi-standard on which the Semantic Web will be based as
it currently seems. In addition, logic-based knowledge representation formalisms are
being used, with OWL 2 [96] being the current W3C recommendation and de facto
standard representation language. There are however a plethora of other languages
available that could serve as alternatives, or inform a continued development of the
current standards. Two examples are topic maps and conceptual graphs. Additionally,
it is widely recognised that the current languages are missing the possibility to express
and process rules.
Concluding this short excursion into the Semantic Web, I point out that the issue of
deciding how to semantically represent knowledge on the Semantic Web, i.e. choosing
a suitable knowledge representation formalism, should not be confused with the goals
and arguments for the Semantic Web in general. The latter points into the desirable di-
rection, whereas various semantic technologies try to provide solutions. Furthermore,
if e.g. the challenge of natural language understanding would be solved, then the whole
paradigm of realising the Semantic Web vision through formal representation of knowl-
edge would need to be revisited.

In addition to the above stated uses for ontologies like representing knowledge
on which machines can act intelligently (AI perspective), providing implementation-
independent data model specifications (database theory perspective) which can facil-
itate data sharing, representing web content in a machine-readable way in order to
support intelligent automatic web agents and applications and to support data sharing
on the web (Semantic Web perspective), some other uses can be argued for ontologies.
5 In [86], knowledge level is informally defined as a level of a system description. At this level

of system description, every system is an agent that has goals, is capable performing actions
that may or may not lead to goals and has a body that exists in the real world and that actually
performs these actions. When communicating at knowledge level, humans could tell machines
what goals should be achieved, and ideally machines would know of or find actions that lead
to achieving them. Similarly, machines could explain their results to humans in terms of the
goal that should have been achieved and explain why they “believed” that certain actions
would lead to the achievement of goals.

2.2 Description Logics 17

Ontologies as explicit description of knowledge can be used to document the shared
understanding of a community of people, to facilitate knowledge reuse (think e.g. of
patterns) or finally can also serve as a tool for conceptual analysis, e.g. to analyse a
domain and separate domain knowledge from operational knowledge [89].

Since I consider in this thesis solely application scenarios in the context of the Se-
mantic Web, I restrict discussions from now on to ontologies represented in the knowl-
edge representation formalism of description logics. This is because the proposed stan-
dard ontology language for the web, OWL 2, is based on a specific description logic,
namely SROIQ. In this sense I consider an ontology as a logical theory which should
capture the conceptualisation of its creator(s) of a particular domain. Thus, I keep im-
portant properties which actually define what an ontology is, such as “shared”, “typ-
ically describing factual knowledge rather than problem-solving knowledge” in mind
only as background on which I work. This view on ontologies as engineering artefacts
expressed in description logics then also illuminates clearly the key motivation for this
work: While machines deal well with logic theories, humans do less so, and yet hu-
mans have interest in providing formal descriptions of their knowledge in the form of
ontologies.

2.2 Description Logics

Description logics (DL) are a family of logics which are usually decidable and most
often but not always fragments of first-order logics6. In the context of the Semantic
Web, important description logic languages are SHOIN , on which OWL 1 DL [10]
is based, and SROIQ, on which OWL 2 DL [96] is based.
Although this chapter contains a complete introduction into description logics and gives
all language constructs that appear in SHOIN and SROIQ, I nevertheless refer the
interested reader to [8] for a thorough introduction to description logics. More specific
references are of course given in the text below. The notation used for DL in this chapter
and throughout the rest of this thesis follow the standard notation for DL, which is also
used e.g. in [8].

2.2.1 Description Logic Basics and ALC

Vocabulary and DL Elements

Each DL representation uses a vocabulary Σ which consists of a set of concept names
NC , a set of role names NR and a set of individual names NI . These three sets are
required to be disjoint7.
6 Modern description logics for instance often contain the notion of datatypes, which is not

exactly part of first-order logics.
7 In OWL 2 a feature called punning has been introduced. It allows an ontology engineer to use

a single name (URI) for e.g. a concept and a role. This is a technical construct however: When
interpreting an OWL 2 ontology, one must interpret the concept and the role as two different
entities.

18 2 Foundations

Example: Island, Sea ∈ NC , locatedIn, hasInhabitant ∈ NR and
crete,mediterranean ∈ NI are exemplary concept, role and individual
names when one wants to talk about geographic knowledge. Note that the
names themselves do not carry formal meaning but for usability of an ontol-
ogy it makes sense to give concepts, roles and individual meaningful names.

In DL languages, complex concepts and complex roles are inductively defined by a set
of constructors operating on the concept, role and possibly individual names of Σ.
Different description logic languages are distinguished by the set of constructors and
properties of elements they provide. The set of complex concepts therefore depends on
the chosen description language DL and the chosen vocabulary Σ and is abbreviated
C(Σ,DL). Concepts (resp. roles) who are described just by a concept (resp. role) name
are also called primitive or named concepts (resp. roles). Usually I will useA,B ∈ NC

to denote primitive concepts, C,D ∈ C(Σ,DL) to denote possibly complex concepts,
R,S ∈ NR to denote roles and lower-case letters a, b, x, y ∈ NI to denote individuals.
Although the formal definition of various constructors will only be defined later on,
the following example already illustrates some, thus clarifying the difference between
primitive and complex concepts.

Example: The conceptUninhabitedIsland can be defined by using the prim-
itive concepts Island and Person and the primitive role hasInhabitant

as UninhabitedIsland
.= Island u ¬∃hasInhabitant.Person, i.e. an

uninhabited island is an island which is not inhabited by any person. If
UninhabitedIsland should denote the sets of islands on which nothing at
all (not even animals, say) lives, the definition could look like

UninhabitedIsland
.= Island u hasInhabitant.⊥

This means that it is impossible (logically inconsistent) that something or
someone inhabits this island. In both cases, UninhabitedIsland is a complex
concept.

Concepts can be seen as unary predicates, such that each concept describes a set of
entities for which the unary predicate is true. Roles can be seen as binary predicates,
such that each role describes a set of entity-pairs for which the binary predicate is true.
Figure 2.2 illustrates this model-theoretic semantics of concepts and roles (see also
below for interpretations and models). N-ary predicates are usually not built-in in DL
languages but can be expressed based on unary and binary predicates (see e.g. [90]).

Example: “Alice travelled from Athens to Crete in summer 2009” is a 4-
ary relation. One cannot simply separate this sentence into binary relations
by saying “Alice started her travel in Crete”, “Alice travelled to Crete” and
“Alice travelled in summer 2009”. What one would like to do is write travel
as a 4-ary predicate e.g. as travel(alice, athens, crete, summer2009). One
frequently used workaround is to formulate the predicate travel as a con-
cept Travel and assign different positions in the 4-ary predicate travel to
different relations like for instance participant, duration, startingPoint
and visitedLocation. A reformulation of the above statement in unary and

2.2 Description Logics 19

binary predicates could then read for instance as Travel(alicesHoliday),
participant(alicesHoliday,Alice), startingPoint(alicesHoliday, athens)
and visitedLocation(alicesHoliday, crete).

The Basic DL ALC

The DL language ALC8 knows the concept constructors shown in Table 2.1, namely
complex negation¬ (both primitive and complex concepts can be negated), conjunction
C u D and the universal restriction ∀R.C. > denotes a tautology and is a valid ALC
concept, together with all concepts A ∈ NC and all concepts that can be constructed
using the above-mentioned concept constructors. The above given list of constructors
is minimal: In addition, the following expressions are used as abbreviations. ⊥ is used
to abbreviate ¬>, i.e. it denotes a contradiction. C tD abbreviates ¬(¬C u ¬D), i.e.
it denotes disjunction. ∃R.C abbreviates ¬∀R.¬C, i.e. it denotes existential restric-
tion. So ALC contains all boolean constructors plus qualified universal and existential
quantification. ALC provides the basis for a lot of more expressive DL languages. All
discussions in this work consider languages which at least contain ALC.

Logical Axioms

Throughout this work the term statement is used interchangeably with axiom, but the
first is used rather when talking about ontology engineering issues and the latter is used
rather when talking about logic/theoretical issues.

Terminological axioms describe relation between concepts. A concept inclusion
axiom is an expression of the form C v D and is often expressed verbally as “D sub-
sumes C” or “C is a subclass of D”. A concept equality axiom is an expression of
the form C

.= D and can be seen as abbreviation for writing the two inclusion ax-
ioms C v D and D v C. A set of terminological axioms constitutes a terminological
box, the so called TBox. Role axioms describe relations between roles. In analogy to
terminological axioms, there are role inclusion axioms and role equality axioms. Ad-
ditionally, roles may have properties like functional, transitive, reflexive, irreflexive or
antisymmetric, and it may be possible to define roles as inverses of each other depend-
ing on the expressivity of the chosen DL language. Such statements about properties of
roles are also sometimes called “role assertions”, e.g. in [57]. I will call them role prop-
erty axioms instead in order not to mix them up with role assertions as defined further
below. A set of role axioms (role inclusion, equality and property axioms) constitutes
a role box, the so called RBox. Terminological and role axioms express general truths
within the domain of discourse. Note that ALC does not know role axioms.

Example: Sea v WaterArea means that every sea is a water-area, and thus
is more specific. This allows stating common properties for everything which
is a water area, as are ponds, rivers etc. For instance, one can state that “All
fish live in water areas”.
locatedIn v partlyLocatedIn means that if something is (completely) lo-
cated somewhere, then it is also partly located there. This describes a certain
view on what completely located and partly located means.

8 Attributive Language with complex negation.

20 2 Foundations

Assertional axioms describe knowledge about individuals. A concept (resp. role)
assertion is a statement of the form C(x) resp. R(x, y). These are often expressed
verbally as “x is of type C” or “x is an instance of C” respectively “x is related to y
via R”. Concept and role assertions constitute an assertional box, the so called ABox.
Assertional axioms express truths about specific individual entities. Note that ALC
does not allow equality and inequality assertions.

Example: Assertional axioms about Crete and the Mediterranean Sea are
for instance Island(crete) and locatedIn(crete,mediterranean). The first
states that every “Crete is an island” while the second states that “Crete is
located in the Mediterranean Sea”. Subscribing again to the set-view of con-
cepts and roles, this means that crete belongs to the set of all islands, and
(crete,mediterranean) is an entity-pair in the set of all things where the
first is located in the second (see Figure 2.2).

An overview over terminological, role and assertional axioms is given in Table 2.2,
where already a number of axioms which are not available in ALC but available in
SHOIN and SROIQ are listed.
By ontology a TBox and an RBox (T ,R) is understood, while by knowledge base a
TBox, an RBox and an ABox KB = (T ,R,A) is meant. From this point of view,
an ontology (resp. a knowledge base) is simply a logical theory, in contrast to the
more philosophical definition of an ontology being a “formal, explicit specification of
a shared conceptualisation” given above (Chap. 2.1). In the course of this thesis, I will
use the term ontology when it is clear from the context that I speak about a logical
theory that does not reference individual entities. I will use the term knowledge base to
indicate that the logical theory references individual entities, or in general to indicate
that the logical theory may as well reference individual entities. In particular with very
expressive DL languages such as SHOIN or SROIQ as described below, the borders
between ontologies and knowledge bases begin to blur as individuals can become part
of terminological axioms.

Semantics of Description Logics

So far, the basic syntactical elements of DLs, in particular of ALC, have been dis-
cussed, and with the knowledge described above one should be able to construct syn-
tactically valid ALC concepts and logical axioms. What is missing so far, is how to
interpret such concepts and axioms, in a word the semantics (or meaning) is missing.

An interpretation I consists of a non-empty set ∆I , the domain of interpretation,
and an interpretation function that assigns to every primitive concept A ∈ P a set
AI ⊆ ∆I , to every primitive role R ∈ R a binary relation RI ⊆ ∆I ×∆I and to any
instance x ∈ X an element xI ∈ ∆I . An interpretation satisfies an inclusion axiom
C v D iff CI ⊆ DI , a concept assertion C(x) iff xI ∈ CI and a role assertion
R(x, y) iff (xI , yI) ∈ RI . Note that the domain of interpretation can be infinite. An
interpretation that satisfies a TBox T (resp. an RBox R or an ABox A) is said to be a
model of T (resp. ofR or of A).

Example: One possible model for Island vWaterArea is∆I = {1, 2} and
IslandI = {1} andWaterAreaI = {1, 2}. The following is for instance not

2.2 Description Logics 21

a model of Island v WaterArea: ∆I = {1, 2} and IslandI = {1} and
WaterAreaI = {2}, since not everything which is an island (1) is interpreted
as water area (WaterAreaI does not contain the element 1).

The domain of interpretation can be understood as the set of all “real world” objects
that are described by the logical axioms in a knowledge base. It is important to remem-
ber here that the logical axioms in a knowledge base use a given vocabulary, and only
the mapping from concept, role and individual names (symbols) to objects in some
world gives these statements a meaning. In the end it does not matter then whether the
described world is the real world or an imaginary world.
An ontology (resp. knowledge base) is satisfiable iff there is an interpretation that sat-
isfies all its axioms, i.e. if it has a model. An ontology (resp. knowledge base) entails
an axiom α if and only if all its models satisfy α. This is written as T |= α resp.
KB |= α. In practice, most ontologies and knowledge bases have multiple models,
and indeed this is most often the desired behaviour.

Example: An ontology that defines Island v WaterArea has infinitely
many models. For instance, in one world there is maybe only a single island
island1 ∈ ∆I which is element both of IslandI and WaterAreaI . In an-
other world there are two islands, island1, island2 ∈ ∆I and both of them are
elements of both IslandI and WaterAreaI . This is the intended behaviour -
with the inclusion axiom Island vWaterArea one after all wants to express
that in every conceivable world, whatever is an island is also an area of water,
no matter how many islands exist.

As already mentioned above however (see Fig. 2.1), it may happen that not all of the
models that satisfy a knowledge base correspond to intended models.

Open World Assumption and the Unique Name Assumption

Two distinguishing features of description logics are the open world assumption (OWA)
and the non-Unique Name Assumption (UNA). The first means that for reasoning one
must assume that the available information may be incomplete. The second means that
for reasoning it is not assumed that two names denote different entities just because
the names are different. These two issues are inherently linked together, but I start by
explaining the Open World Assumption.

Example: Assume that likes(alice, bob) and Female(alice),Male(bob) is
known, and that females and males are disjoint. Then following the OWA,
∀likes.Male(alice), i.e. that Alice likes only male persons, is not entailed,
since there could be a female whom Alice likes about which the knowledge
base has no knowledge.

Consequently, one can never conclude from data alone a universal restriction.

Example: Assume that likes(alice, bob) is known. In a closed world, one
could then conclude that ∀likes.Male(alice), i.e. Alice likes only male per-
sons. In an open world, there may be other people who Alice likes and which
are female.

22 2 Foundations

Clearly, this feature is particularly well suited to a web environment where, in con-
trast to a closed environment, one cannot assume to have all existing data available.
Closed world environments are for instance local database applications, such as e.g.
information about train schedules by one train company. Already in data exchange it
may be necessary to switch to the open world assumption, for instance if not all fields
in a target database can be filled given the data available in a source database [70].
Under the Unique Name Assumption (UNA), a reasoner can assume that if it encoun-
ters two different symbols, such as crete and kos, that these denote two different en-
tities. This means that in every model which satisfies a knowledge base, two different
elements of the domain of interpretation must be used to interpret crete and kos. If
the UNA is not made, a reasoner can make no prior assumption about the (in)equality
of entities: It could be that crete and kos denote two different entities, but it could
also be that they denote the same entity. In languages that do not make the UNA, it
is typically possible to explicitly assert equality, such as crete = kos , or inequality,
such as crete 6= kos, between entities9. The non-adoption of the UNA is also very well
suited to a web environment where one cannot assume that everyone will give the same
names to the same things.
The difference between the closed world and the open world assumption and between
making the unique name assumption and not making it, is really a shift of paradigm
similar to the shift between data retrieval and information retrieval. It marks a transition
from a (web) environment in which a few people control a limited amount of informa-
tion to an open environment with many people contribute content (“produsers”) in a
very heterogeneous and often incomplete manner. Unfortunately, reasoning under the
open world assumption minus the unique name assumption is sometimes perceived
as counterintuitive by users, who have grown up in a digital world of closed-world-
reasoning applications based on unique names.

Example: If a source, such as a website, lists all neighbouring countries of
Greece following the pattern isNeighbourOf(greece, turkey) etc. the state-
ment isNeighbourOf(greece, austria) can not be identified as wrong. As
far as any reasoner knows, the information from the source could simply be
incomplete.

This counterintuitive reasoning (the absence of an inference that seems “logic” to
most people in the example above) that follows from the open world assumption is
aggravated by the fact that the Unique Name Assumption is not made in the available
Semantic Web languages RDF(S) and OWL.
9 Note that (in)equality can only be asserted between individuals. Assume that one wants to

state that the concepts Islander and Icelander are really different concepts. This is not
directly possible in most description logic languages, as long as concept names cannot be used
as individuals. It is also not directly possible in most DL languages to express “inequivalence”
between concepts, i.e. that the can share individuals, but need not share all. However, it is
possible to express disjointness, i.e. that two concepts can not share any domain individuals
that interpret them, and equivalence, i.e. that two concepts are interpreted always by the same
domain elements.

2.2 Description Logics 23

Example: A less than ideal solution, but “obvious” at first glance, is to use a
negative role assertion such as ¬isNeighbourOf(greece, austria). This so-
lution has two disadvantages however: First, from a practical viewpoint, many
DL languages do not support negated role assertions. For instance, in the web
ontology language OWL negated role assertions have only been introduced
very recently with the OWL 2 specification. Second, even if it is possible to
assert ¬isNeighbourOf(greece, austria), this negative assertion needs to
be made for all countries that are not neighbours of Greece. This is unfortu-
nate if there are more countries that are not neighbours of greece than there are
neighbours. It is also conceptually unfortunate, since if any new country comes
into being (e.g. when a country splits like Yugoslavia, the UdSSR etc.) some
new assertions need to be made about these countries relating them negatively
go Greece. This is counterintuitive, since if Slovenia has nothing to do with
Greece, a user would probably also not think of explicitly stating that Slovenia
is not a neighbour of Greece.

Example: A good way to solve the issue addressed by the example above is
to model a concept NeighbourOfGreece, and describe it as an exhaustive
set of different individuals[108]. First, it must be stated for all involved coun-
try names that they denote different real world entities10. Then, the concept
NeighbourOfGreece would be defined as the disjunction of all neighbour-
ing countries, i.e.NeighbourOfGreece .= (albanyt. . .tturkey). Note that
such an expression requires a DL language which contains nominals, and thus
is already fairly expressive. In OWL, NeighbourOfGreece would be repre-
sented as an enumeration class, which has the same meaning as the above-
described disjunction.

Name Syntax Semantics

Universal concept > ∆I

Negation ¬C ∆I \ CI

Conjunction C uD CI ∩DI

Universal restriction ∀R.C {v ∈ ∆I |(v, w) ∈ RI → w ∈ CI}
Table 2.1. Syntax and semantics of ALC concepts.

2.2.2 SHOIN and SROIQ

SHOIN extends ALC with role hierarchies, i.e. role inclusion and hence also role
equality, inverse and transitive roles, cardinality restrictions and nominals (see Ta-
bles 2.2 and 2.3 for an overview, [58] for a detailed description of an only slightly
10 This is necessary because the UNA is not made. Without stating that the different country-

names denote different entities, a reasoner would again not detect an inconsistency with
NeighbourOfGreece(austria). Instead, it would simply assume that “austria” is another
name for one of the neighbouring countries of Greece.

24 2 Foundations

Fig. 2.2. Concepts are unary predicates and interpreted as sets of entities. Roles are binary pred-
icates and interpreted as sets of entity-pairs. Typically, for concept names the singular is used,
i.e. the concept Island, although it denotes a set of many islands, is named in singular.

more expressive logic, and [10] for the corresponding constructs in OWL 1). Since no
role constructors are provided in SHOIN , only very simple role hierarchies can be
expressed.

A functional role allows only one value per individual, i.e. if an individual a relates
to two individuals b and c via a functional role R, then b and c must be the same
individual. Functional roles are often also called features. The inverse of a functional
role is inverse functional.

Example: The role hasCapital is functional since per definition a country
has exactly one capital.

Example: The inverse role isCapitalOf = hasCapital− is inverse func-
tional, i.e. everything can have at most one “incoming” relation of type
isCapitalOf .

A transitive role describes a relation that given R(a, b) and R(b, c) entails R(a, c).
Typically, ordering relations such as ≤,≥, < . > and derived ordering relations based
on numeric values such as “has more inhabitants” or “is heavier than” are transitive.

Example: If locatedIn(Heraklion, crete) and locatedIn(crete, greece) then
locatedIn(Heraklion, greece) can be inferred if locatedIn is a transitvite
role.

A cardinality restriction describes individuals who appear in a certain number of (or
in more or less than a certain number of) relations via a specified role R. In addition to
≤ nR (shown in Table 2.3), ≥ nR abbreviates ¬ ≤ (n − 1)R and = nR abbreviates
≤ nRu ≥ nR. Functional roles can be expressed using a number restriction as > v≤

2.2 Description Logics 25

Name Syntax Semantics

Terminological Axioms
Concept inclusion C v D CI ⊂ DI

Concept equality C
.
= D CI = DI

Disjointness C uD v ⊥ CI ∩DI = ∅
Role Axioms
Role inclusion R v S RI ⊂ SI

Role equality R
.
= S RI = SI

Role disjointness Dis(R,S) RI ∩ SI = ∅
Inverse role R = S− RI = {(u, v) ∈ ∆×∆|(v, u) ∈ SI}

Functional role Func(R) ∀u, v, w ∈ ∆I : (u, v) ∈ RI ∧ (u,w) ∈ RI → v = w

Inverse functional role InvFunc(R) ∀u, v, w ∈ ∆I : (v, u) ∈ RI ∧ (w, u) ∈ RI → v = w

Symmetric role Sym(R) (u, v) ∈ RI → (v, u) ∈ RI

Antisymmetric role Asym(R) (u, v) ∈ RI → (v, u) 6∈ RI

Reflexive role Ref(R) {(u, u)|u ∈ ∆I} ⊂ RI

Irreflexive role Irr(R) {(u, u)|u ∈ ∆I} 6∈ RI

Transitive role Trans(R) ∀u, v, w ∈ ∆I : (u, v), (v, w) ∈ RI → (u,w) ∈ RI

Assertional Axioms
Concept assertion C(x) xI ∈ CI

Role assertion R(x, y) (xI , yI) ∈ RI

Equality assertion x = y xI = yI

Inequality assertion x 6= y xI 6= yI

Table 2.2. Terminological, role and assertional axioms. Not all description logics support all
kinds of axioms. In particular not all DL languages support role axioms. Role disjointness must
be expressed as a separate binary operator as long as boolean role constructors are not available
in the DL language of choice. This is the case for most currently available DL languages. There
is no standard syntax for defining roles as functional, inverse functional etc. for description logics
in general. Functionality and inverse functionality can be expressed as > v≤ 1.R and > v≤
1.R− respectively in DL languages that support number restrictions.

1R, i.e. wherever the role R occurs, there can be at most one value for any individual.
In analogy, inverse functional roles can be expressed as > v≤ 1R−.

Example: ≤ 3 hasNeighbourCountry is the set of all countries that have at
most three neighbouring countries. = 3 hasNeighbourCountry is the set of
all countries that have exactly three neighbouring countries.
≥ 3 hasNeighbourCountry is the set of all countries that have more than or
equal to three neighbouring countries.

A nominal o ∈ NO is a concept whose interpretation set has exactly one element.
Nominals can also be seen as individuals that are used like concepts. Where nominals
are allowed in a DL language, the sets NI and NC are therefore not disjoint since
NO ⊆ NI and NO ⊆ NC and consequently NI ∩NC = NO.

Example: Let christianGod be the individual denoting the god Christians
believe in, and believesIn the role that models in which god a person be-
lieves in. Then one can define a Christian as follows: Christian .= . . . u
∃believesIn.{christianGod} u The dots express that there may be also

26 2 Foundations

other requirements on being a Christian. The existential restriction expresses
that every Christian believes in christianGod. Given this definition it is not
excluded that a Christian believes also in other things, such as e.g. the Holy
Mary or something else entirely.

In addition, the availability of inverse roles in SHOIN allows expressing both do-
main and range restrictions on roles. Although these are seen as restrictions on roles for
practical purposes in OWL, both actually can be encoded as terminological axioms and
are consequently not listed among role axioms, nor as a specific kind of terminological
axioms. A domain restrictions forces each subject of a role to be of a certain type and
corresponds to the terminological axiom ∃R.> v C. A range restriction forces each
object of a role to be of a certain type and corresponds to the terminological axiom
∃R−.> v C.

Example: The domain of isCapitalOf can be restricted to cities, and its
range can be restricted to countries. This is encoded as the two terminolog-
ical axioms ∃isCapitalOf.> v City and ∃isCapitalOf−.Country.

SROIQ further adds a lot of expressivity regarding roles. Roles can now be de-
fined as reflexive, irreflexive, symmetric and antisymmetric. Furthermore, the universal
role U which subsumes all other roles, role composition R ◦ S and negative role asser-
tions ¬R(x, y) are added. As concerns concept constructors, cardinality restrictions are
now enhanced to qualified cardinality restrictions (≤ nR.C) and the Self-Constructor
(∃R.Self) is added. (see Table 2.4 for an overview of SROIQ language constructs,
[57] for a detailed description of SROIQ plus a tableaux-based decision procedure,
and [96] for the corresponding constructs in OWL 2). Some restrictions as to which
roles can appear in role inclusion axioms and in role property assertions apply. In short,
role inclusion axioms must not lead to a cyclic role box (called a “regular” role hier-
archy), and role property axioms are only allowed on “simple” roles (see Tables 2.5
and 2.6 or [57] for a detailed definition of simple roles and regular role hierarchies).

Qualified cardinality restrictions generalise both unqualified cardinality restrictions
as available e.g. in SHOIN and quantified restrictions such as the universal and the
existential restriction available from ALC on. ≤ nR thus becomes an abbreviation of
≤ nR.>, ∃R.C an abbreviation for ≥ 1R.C and ∀R.C an abbreviation of = 0R.¬C.
The Self -constructor describes sets of individuals that are all related to themselves via
a specific relation. Role composition means chaining together roles. Role composition
in conjunction with role hierarchies can also be used to express transitivity. Thus the
role property assertion Trans(R) can also be expressed as the role inclusion axiom
R ◦R v R.

Example: I give here two typical examples for the Self -constructor. The first
is Suicide = ∃kills.Self , i.e. suicides are people who kill themselves. On a
more joyful note, Narcissist = ∃loves.Self i.e. narcissists are people who
love themselves. The latter example does have some philosophical difficulties
however, since the question arises whether everyone who loves him- or herself
is already a narcissist.

2.2 Description Logics 27

Example: Through role composition one can express that if a person is citi-
zen of a city, and this city belongs to a country, then the person in question
is also a citizen of the country. isCitizenOf ◦ isGeopoliticalPartOf v
isCitizenOf expresses the general truth that if a person is a citizen of some-
thing which in turn geopolitically belongs to something else, then the person
is also a citizen of the “something else”

Example: Role composition can also be used to address the traditional exam-
ple of why rules are necessary in addition to description logics11: isDaughterOf◦
isSisterOf v isNieceOf expresses that if A is the daughter of B and B is
the sister of C, then A is the niece of C.

Name Syntax Semantics

Cardinality restriction ≤ nR {v ∈ ∆I |#{w|(v, w) ∈ RI} ≤ n}
Nominals o ∈ NO |oI | = 1

Table 2.3. Syntax and semantics of SHOIN concepts, only constructs which extend ALC are
shown.

Name Syntax Semantics

Qualified cardinality restriction ≤ nR.C {v ∈ ∆I |#{w|(v, w) ∈ RI ∧ w ∈ CI} ≤ n}
Self -constructor ∃R.Self {v ∈ ∆I |(v, v) ∈ RI}

Universal role U ∆I ×∆I

Role composition R ◦ S {(u,w) ∈ ∆I ×∆I |(u, v) ∈ RI ∧ (v, w) ∈ SI}
Table 2.4. Syntax and semantics of SROIQ concepts and roles, only constructs which extend
SHOIN are shown.

2.2.3 Standard Reasoning Problems

One of the goals of a knowledge representation (KR) formalism is to provide inference
mechanisms. Typically, together with a knowledge representation formalism comes a
specification of what can be inferred from explicitly stated (“already known”) knowl-
edge [23]. In description logics, as the name already suggests, the chosen inference
mechanism is logical deduction based on the semantics given to a DL language.
11 There are still other examples where rules might be necessary. In general, variables can

be used in rules, and thus more complex logical formulae are possible. One simple ex-
ample is “If Country(x) and Country(y) and numberInhabitants(x, xNum) and
numberInhabitants(y, yNum) and xNum > yNum then largerThan(x, y)”, i.e. if
country x has more inhabitants than y, we want to infer that x is larger than y. This can not
be expressed in description logic languages. Finally, operational rules (actions triggered by
events) can not directly be formulated in logic in general, where the sequence in which axioms
are considered does not matter [54].

28 2 Foundations

Given a role boxR, a role R is simple iff:

– R does not occur on the right hand side of a role inclusion axiom, or
– R− is simple, or
– S v R ∈ R and S is a simple role

A role boxR is simple iff all roles that appear in role property axioms are simple.

Table 2.5. Simple roles in SROIQ. Role property axioms in SROIQ can be asserted on
simple roles only.

Let ≺ be a regular order on roles. A role inclusion axiom w v R is ≺-regular iff R is a role
name, i.e. a primitive role, and:

– w = RR, or
– w = R−, or
– w = S1 ◦ . . . ◦ Sn and Si ≺ R for all 1 ≤ i ≤ n, or
– w = R ◦ S1 ◦ . . . ◦ Sn and Si ≺ R for all 1 ≤ i ≤ n, or
– w = S1 ◦ . . . ◦ Sn ◦R and Si ≺ R for all 1 ≤ i ≤ n

A role boxR is regular iff an order≺ exists such that all role inclusion axioms inR are regular.

Table 2.6. A regular role hierarchy in SROIQ. A role hierarchy in SROIQ must be regular.

The existence of software tools that automatically compute inferences is extremely
important for knowledge engineers who want to use a specific KR formalism. In the
case of description logics, a number of DL reasoners, tools that perform logical infer-
ences based on a DL knowledge base, are available. I list here the most prominent:
Pellet [99] is an open-source Java reasoner, Fact++ [30] an open source C++ reasoner,
and Racer [105] is a commercial reasoner.

Satisfiability

The notion of knowledge base satisfiability has already briefly been defined above but
is reviewed here in some more detail. A concept C is satisfiable iff there is an interpre-
tation I such that CI is non-empty, i.e. C is non-contradictory.

Example: The concept Island u ¬Island is unsatisfiable since nothing can
be both, an Island and not an Island. Formally, this means that no domain
element w ∈ ∆I can be both in IslandI and (¬Island)I = ∆I \ IslandI .

A knowledge base KB is satisfiable iff it has a model, i.e. there is an interpretation I
that satisfies KB. Sometimes this is also called consistency.

Example: A knowledge base KB = (T ,R,A) with T = {C .= Island u
¬Island} and A = {IslandA(crete),¬Island(greece)} is satisfiable. In
one possible interpretation I,CI is empty, creteI ∈ IslandI , greeceI 6∈ AI .
C is of course still unsatisfiable.

One can also consider the satisfiability of a conceptC with respect to a knowledge base
KB. This means whether there is an interpretation that satisfies both C and KB.

2.2 Description Logics 29

Example: The concept Island u WaterArea by itself is satisfiable, since
one can build an interpretation I in which there is a domain element w ∈ ∆I
such that w ∈ IslandI and w ∈ WaterAreaI . However, given the TBox
T = {Island v LandArea, LandArea u WaterArea v ⊥}, Island u
WaterArea becomes unsatisfiable: In order to satisfy T , every w ∈ ∆I that
interprets Island also interpretsLandArea and cannot interpretWaterArea.
Therefore, the set (Island uWaterArea)I is empty in all models of T and
Island uWaterArea is unsatisfiable with respect to T .

For ABox consistency one can differentiate, in analogy to concept satisfiability , be-
tween whether an ABox is consistent “by itself” and whether an ABox is consistent
with respect to an ontology (T ,R).

Example: While the ABox A = {Island(crete),WaterArea(crete)} is
consistent by itself, it is inconsistent with respect to the TBox T = {Island v
LandArea, LandArea uWaterArea v ⊥}.

Naturally, knowledge base consistency and concept satisfiability are fundamentally in-
teresting reasoning services for knowledge engineers. For instance, when one creates a
knowledge base it is crucial to know whether the knowledge base allows a model at all
or whether there are concepts that cannot be instantiated in any case12.

Concept satisfiability and ABox consistency (with or without respect to an ontology
(T ,R)) can easily be reformulated as knowledge base satisfiability.

– A concept C is satisfiable w.r.t. a knowledge base KB if and only if, given a new
individual xnew that does not occur yet in KB, KB ∪ {C(xnew)} is satisfiable.

– An ABox A is consistent with respect to an ontology (T ,R) if and only if the
knowledge base KB = (T ,R,A) is satisfiable.

Actually, the distinction between these cases (concept satisfiability, concept satis-
fiability with respect to an ontology, knowledge base satisfiability) disappears in many
DL languages, at least as regards computational purposes. Conceptually, it may still
make sense to differentiate.

Summarising, concept satisfiability and knowledge base satisfiability are central
reasoning problems. Below I discuss some more reasoning problems of interest to on-
tology engineers that can be reduced to knowledge base satisfiability, i.e. they can be
regarded as special cases of knowledge base satisfiability.

Subsumption

Is C more specific than D, i.e. does C v D “always” hold? Similar to the distinction
between concept and knowledge base satisfiability, subsumption can be asked with
respect to no ontology or with respect to an ontology. In the first case, one actually
asks whether C v D holds regardless of any ontology. If this is true, one also says
|= C v D. In the second case one asks whether an ontology entails C v D, i.e.

12 A knowledge base which contains unsatisfiable concepts is sometimes also called “incoher-
ent” (see e.g. [104]). In the example above, the knowledge base is, according to this terminol-
ogy, satisfiable but incoherent.

30 2 Foundations

T |= C v D.
The below reduction of subsumption to (un)satisfiability holds in DL languages that
are closed under negation13.

– C v D holds if and only if C u ¬D is unsatisfiable.
– T |= C v D holds if and only if C u ¬D is unsatisfiable with respect to T .

Equivalence

Is C .= D? Since equivalence is only an abbreviation for the two general inclusion
axioms C v D and D v C, i.e. for mutual subsumption, also equivalence can be
reduced to satisfiability.

Disjointness

Are C and D disjoint? Since disjointness can be expressed as the general inclusion
axiom C uD v ⊥, also disjointness can be reduced to satisfiability.

Instance checking

DoesC(x) “always” hold, i.e. does a knowledge base KB entailC(x)? Instance check-
ing is always performed with respect to a knowledge base KB = (T ,R,A). However,
single elements such as T ,R or A may be empty.

– KB |= C(x) is true if and only if KB ∪ {¬C(x)} is unsatisfiable.

Instance retrieval

Find all individuals x ∈ NI that are instances of C. This can be done by checking for
all individuals x ∈ NI whether x is an instance of C. Instance retrieval is mentioned as
a separate reasoning problem not so much because it is logically distinct from instance
checking but because this is the basis for knowledge base querying.

2.3 Ontology Engineering

Knowledge engineering is the activity of creating a formal description of knowledge.
This activity typically encompasses studying a particular domain, excerpting the rele-
vant concepts in this domain and the inter-relationships of these concepts, and repre-
senting these in a chosen knowledge representation formalism (see e.g. [112]). If the
outcome of the process is specifically an ontology, this activity is also called ontology
13 “Closed under negation” means that if C ∈ C(Σ,DL) then also ¬C ∈ C(Σ,DL). This is

true for all DL languages that are discussed in this section since they all contain complex
negation.

2.3 Ontology Engineering 31

engineering (OE)14.
In the course of this thesis, I use the term ontology engineering rather than knowledge
engineering in order to emphasize that my research considers specifically the construc-
tion of ontologies and ontology-based knowledge systems. However, many activities
are shared between general knowledge engineering and specifically engineering an on-
tology, and a lot of arguments are more generally true for any knowledge engineering
process which involves a formal representation of knowledge.

2.3.1 Ontology Engineering Activities

In the following, a list of typical ontology engineering activities is given. For each of
the activities, the description contains the main goals pursued in the activity and the
main challenges that this activity presents. Despite the linear presentation however,
the ordering does not mean to imply a specific ontology engineering process. Typ-
ically, knowledge bases and ontologies are built following an evolutionary lifecycle
model [33, 101], which means that it is possible to always go back to any other phase
in the process in case some knowledge is found to be missing. Such a structuring of the
ontology engineering tasks is also depicted in Figure 2.3.

Scope Definition

In this phase, the scope of the domain of discourse is determined. Factors which help
determine the scope are typically the purpose of the knowledge base and the available
resources (time, money, domain experts, digital resources, etc.) The outcome of this
phase provides the baseline against which decisions of how to represent knowledge,
and which knowledge to represent will be taken in the rest of the process.

Knowledge Acquisition

The goal of this phase is to collect as much knowledge about the domain of discourse
as possible from a variety of sources, e.g. domain experts, specific problem instances
(e.g. case studies) or digital resources such as documents, multimedia files, etc. The
outcome of this phase is an unsorted, largely non-prioritised collection of knowledge
and knowledge sources from the domain of discourse. The collection typically contains
inconsistencies as to vocabulary or different viewpoints. The focus of this stage is to
come up with as complete knowledge as possible.
14 I remind the reader here of an earlier distinction between the terms ontology and knowledge

base, where the first denoted a terminology (T ,R) and the second denoted a terminology plus
data (T ,R,A). When I talk about ontology engineering in this thesis I do not strictly exclude
the possibility however that the ontology engineer also creates assertional axioms and thus an
ABox A. However, it is typically the case that the hard part is designing the structure of data
and that this structure is expressed as T andR. Concrete data are typically filled automatically
through an application or at least not according to a conceptually difficult process such as
ontology engineering. On the other hand, especially in DL languages that contain nominals
and hence also in OWL 2, the borders between TBoxes and ABoxes get fuzzier through
nominals, and thus also an ABox is created in the ontology engineering process as described
below. In a wider sense, the outcome may still be called a knowledge base then.

32 2 Foundations

The main difficulty in this stage consists in identifying all and only relevant sources
of information, and in motivating domain experts to share their knowledge, and to
invest time to do so. Research targeted at this stage is typically concerned either with
knowledge elicitation from experts (see e.g. [21]), with ontology learning from text
(see e.g. [17, 77]) or integration of structured information from heterogeneous sources.

Informal Modelling

The goal of this phase is to present the knowledge collected in the knowledge acqui-
sition phase in an informal but structured manner. At this stage, a vocabulary is fixed.
Concepts and inter-relationships are described verbally as unambiguously as possible.
However, constraints are not yet formalised in the chosen knowledge representation
formalism.
Challenges at this stage are of conceptual nature, and lie for instance in deciding on
how to consistently accommodate differing viewpoints and representations or in decid-
ing which knowledge is in scope and which is not.

Formal Modelling

At this stage, the outcome of the informal modelling phase is encoded in a selected
knowledge representation formalism. Typically, this activity does not only mean rewrit-
ing the acquired knowledge in a different formalims (i.e. simple transfer from verbal
encoding to formal encoding) but requires asking more detailed questions, and thinking
in more detail about what actually is true. At this stage also decisions as to the degree
of detail with which knowledge is to be represented are taken.
The difficulty in this stage lies in finding an adequate formal representation of the
knowledge available so far. Another difficulty pertains to the evaluation of formally
encoded knowledge: While in the informal modelling phase, domain experts could
still directly be asked to verify stated knowledge, this is not necessarily possible with
complex formal expressions. Research targeted at this stage is mostly concerned with
knowledge representation. On the one hand, knowledge representation formalisms are
researched, for instance regarding their computational properties such as decidability
or computational complexity or their suitability to different domains is researched. On
the other hand, representing patterns of knowledge in a given KR formalism is also
researched.

Evaluation

As all engineering artefacts, the knowledge base can contain errors. In the evaluation
phase, such errors are systematically sought and remedied. Naturally, evaluation may
lead to revision of the knowledge base. A detailed discussion of ontology evaluation is
given below in Chap. 2.4.
Evaluation activities are carried out in all ontology engineering phases but with regard
to different aspects of the ontology. Research targeted at this stage concerned both with
evaluation methodologies and with the automation of this task.

2.3 Ontology Engineering 33

In all phases, research revolves around human-computer interaction issues when
software is built that shall support the corresponding task.

The naming of the above activities follows roughly the naming of activities in the
first version of the Integrated Modelling Method (IMM) [42, 43] specified for develop-
ing a Domain Model, a Task Model and a Skill Model in the context of the APOSDLE
project [3, 40, 71]15. The essentially same ontology engineering tasks have been de-
scribed by many authors in a similar way however, sometimes under a different nam-
ing, and sometimes to a different degree of detail.
Russell and Norvig [112] talk about knowledge engineering in general and call the
single activities differently. For instance what is called informal modelling above is
called “Decide on a vocabulary or predications, functions and constants” by Russell
and Norvig, but otherwise describe the very same activities. Additionally, Russell and
Norvig include a task called “Pose queries to the inference procedure and get answers”
between formal modelling and evaluation. This activity fits well (i) into the category
of evaluation as described within this work, if queries are asked to detect errors or (ii)
into the category of application of the knowledge base. Russell and Norvig describe
the ontology engineering process as linear.
Specifically for ontologies, Pinto and Martins [101] describe the ontology creation pro-
cess as consisting of “Specification” (= scope definition), “Conceptualization”, “For-
malization”, “Implementation” and “Maintenance”. Conceptualization here means de-
scribing an ontology’s concepts and their interrelationships, and thus corresponds ap-
proximately to informal modelling as described above. Pinto and Martins differentiate
between formalising the conceptualization and representing this formalisation in a spe-
cific knowledge representation language, and thus formalization and implementation
correspond to formal modelling as described above. The task of maintenance is left
out in the above described general ontology engineering process, which is a point open
for argumentation in each concrete case. Pinto and Martins see knowledge acquisi-
tion, evaluation and documentation as ontology engineering activities which need to be
present in all phases. Pinto and Martins relate their ontology creation process specif-
ically to three more ontology engineering methodologies, namely TOVE ([48, 49],
ENTERPRISE ([138]) and METHONTOLOGY ([33, 34]).
Noy and McGuinness [89] describe the ontology creation process on a very fine gran-
ular scale. Roughly, the following steps are carried out in any ontology engineering
process: First, “Determine the domain and scope of the ontology”, which corresponds
to the scope definition task described above. Second, “Consider reusing existing on-
15 Note that in the final version of the IMM [41], the phases informal modelling, formal mod-

elling and evaluation have been integrated into more abstract tasks for creating the Domain
and Task Model, and for creating the Skill Model (Learning Goals) The reason for this ab-
straction was that the final version of the IMM realised an inherent order in which the three
models for domain, domain tasks and domain skills should be modelled. The final version of
the IMM is now more modular, in that it prescribes an overall knowledge engineering process
for modelling all three aspects, with single modules for creating the single aspects. Although
the IMM also prescribes a specific way of modelling the domain, the domain tasks and the do-
main skills, it is now easily possible to substitute any other knowledge/ontology engineering
methodology specific for such a model in the whole IMM.

34 2 Foundations

tologies”, which is only implicitly suggested by other methodologies if at all. Then the
authors proceed to list “Enumerate important terms in the ontology”, “Define classes
and the class hierarchy” (classes correspond to concepts), “Define the properties of
classes - slots” (properties and slots roughly correspond to relations between classes,
but the term “slot” stems from the knowledge representation formalism of frames),
“Define the facets of slots” (i.e. define the formal properties of relationships, for in-
stance which values they can take) and “Create instances”. The final step assumes that
a knowledge base about concrete instances is to be built, instead of an ontology hold-
ing only generic truth (which may serve to hold data which is automatically created for
example).

An ontology engineer is a person carrying out these tasks. Note that in the ontol-
ogy engineering process there may be (i) multiple ontology engineers at work and (ii)
ontology engineers may have different fields of expertise, i.e. ranging from knowledge
acquisition to specific KR formalisms.
In most ontology engineering methodologies, the ontology engineer is assumed to be
an expert, a person specifically trained for the above ontology engineering activities and
usually trained in some knowledge representation formalisms. In this thesis however I
argue in many places that the success of intelligent knowledge based systems depends
on enabling also persons less proficient in ontology engineering to create ontologies
adequate quality.

Fig. 2.3. Ontology engineering activities, organised as evolutionary process with evaluation in
each single phase.

2.3.2 Tool Support for Ontology Engineering

Tool support for ontology engineering can be given at different levels and for differ-
ent ontology engineering phases. Tools that support the knowledge acquisition phase
are typically not seen as ontology engineering tools, especially if they support the
rather creative and unstructured process of knowledge acquisition from humans (do-
main experts). Nevertheless, some computer-based support can be given. For instance,
mind-mapping tools can be used to document the output of creativity techniques

2.4 Ontology Evaluation 35

such as brainstorming. Better technical support is available for knowledge acquisi-
tion from digital resources. For text, there are ontology learning tools like for in-
stance Text2Onto [20] or tools for general knowledge discovery from text like the
KnowMiner [65]. Informal modelling is rarely directly supported by tools, and if so
mostly through the availability of graphical modelling or the attachment of rich media
content to formal models. In this category fall mind-mapping tools and some ontology
editors such as for instance WebODE [22], which provides a graphical designer, or
myOntology [119], which supports the attachment of rich media resources and hyper-
links. I point here also to MoKi (see Chap. 3.2), since it particularly aims to address
informal modelling. In general, it is unclear how these two creative phases, knowledge
acquisition and informal modelling, can be supported automatically. This in turn can be
assumed to be the main reason why there is no convention to call such tools ontology
engineering tools.
Tools that support formal modelling are called ontology engineering tools and some-
times more specifically ontology editors. Also, requirements on ontology editors are
more clear than requirements on tools supporting the knowledge acquisition and infor-
mal modelling stages. Per definition, an ontology editor must be able to read and write
ontologies in a recognised format for ontologies. To date, this includes mostly formats
for languages from RDF(S) to OWL, but also editors for other formalisms like topic
maps or conceptual graphs could be considered.I focus in the following discussion on
tools that support OWL. Of course, it is desirable that an ontology editor supports mul-
tiple languages or at least multiple formats for a single language (since e.g. RDF(S) and
OWL typically know more than one format). Additionally, since OWL is a web ontol-
ogy language, tool support at a technical level includes the editors capability to load
ontologies from the web. An ontology editor should also support the creation of OWL
ontologies at a logical level, i.e. interface with a reasoner, so that basic questions such
as satisfiability can be answered directly within the ontology editor, and if the editor
contains a query mechanism to systematically find model elements. The requirements
presented so far are supported by a lot of editors such as e.g. Swoop [126], Protégé
[102] or the NeOn toolkit [130]16. Other requirements on ontology editors concern for
instance versioning, collaboration, or visualization. These are met very differently, if at
all, by different ontology editors. In Chap. 3 I discuss in particular the challenge to sup-
port collaboration, and together with this the issue of ontology versioning. Regarding
visualization, I only point out that a lot of visualization approaches actually visualize
the graph described by RDF(S), or the RDF-graph representation of an OWL ontology.
Tool support for ontology evaluation is discussed below, after a more thorough discus-
sion of ontology evaluation itself.

2.4 Ontology Evaluation

Despite the fact that ontology evaluation is a crucial task in ontology engineering, there
are relatively few systematic approaches to ontology evaluation and none that can be
16 A longer list of available ontology editors can be found e.g. in Wikipedia: http://en.
wikipedia.org/wiki/Ontology_editor

http://en.wikipedia.org/wiki/Ontology_editor
http://en.wikipedia.org/wiki/Ontology_editor

36 2 Foundations

called standard. Ontology evaluation turns out to be a non-trivial task, as is the whole
of the ontology engineering process, and additionally one that can be generalised only
with difficulty. Therefore, while I start off with some general considerations, I quickly
narrow down a discussion of ontology evaluation to evaluation by an ontology engineer
during the phase of formal modelling, and relate to my own work where appropriate.

2.4.1 Categories in Ontology Evaluation

What Is Evaluated?

Different authors have come up with different categorisations for relevant dimensions
which to consider when evaluating an ontology. I follow the categorisation of [38]
when I divide the relevant dimensions into usability-related, structure-related and
functionality-related. Usability-related features are for instance a naming scheme (good
if it is consistent), documentation of the ontology (good if it exists and is intelligi-
ble), structure (good if it is conceptually clear), information about licensing (good if it
exists), etc. Structure-related features concern an ontology’s graph nature and logical
properties, such as the existence of cycles, the depth, logical consistency, etc. Valuat-
ing these features is often dependent on the purpose of the ontology but logical consis-
tency is always a required feature in ontologies expressed in logic-based formalisms.
Functionality-related features finally concern the adequacy of an ontology with respect
to the goal for which the ontology will be used. For instance, it is considered whether
an ontology contains all and only relevant information, whether it is modular enough,
whether it is agreed upon by the relevant people (i.e. domain experts, participants in
a community). I call the latter conceptual correctness, in order to express that this
property depends on the conceptualisations of people. However, correctness may be
unattainable in practice, so one may settle for adequacy instead of correctness in any
real-world situation. Obviously, the functional features are typically the ones that one
finds hard to measure. In this thesis I am mainly concerned with the functional dimen-
sion of an ontology, and here specifically with conceptual correctness, i.e. whether the
relevant people agree with what is modelled. In my work I focus on agreement between
people and the ontology, and do not consider problems of agreement between people.

Summary “What Is Evaluated”:

– Usability
– Structure
– Functionality

Table 2.7. Categories in Ontology Evaluation: What Is Evaluated?

When Does Evaluation Take Place?

On the other hand, the situation in which an ontology is evaluated must be considered.
Each situation has specific requirements on ontology evaluation methodologies and on

2.4 Ontology Evaluation 37

desired outcomes, and additionally determines who the evaluators are (see e.g. [46] for
a discussion of a similar categorisation). Three situations can be distinguished: ontol-
ogy reuse, ontology engineering, and application. When reusing ontologies it is neces-
sary to find out which ontology fits best to one’s own purpose. One can differentiate
between reuse with the purpose of integrating the reused ontology with own work17 on
the one hand and reusing an existing ontology without further modification on the other
hand. The latter situation shares its requirements on an evaluation methodology with
the requirements of evaluation during application as will be seen. During application,
the ontology is a part of a larger system. Evaluation or testing of different components
may be part of a required procedure before deployment, or may be part of a debugging
process. In any case, the situation in which ontology evaluation takes place influences
which ontology evaluation methodologies are appropriate. First, this is because the
people who carry out the evaluation are different. In the case of evaluating an ontology
during modelling, the evaluator is an ontology engineer and the creator (or at least part
of a team) of the ontology. In the case of reuse for the purpose of modification, the eval-
uator is typically an ontology engineer too, but not the creator of the ontology. In the
case of reuse for the purpose of direct application and in the case of evaluation during
application, the evaluator is not necessarily an ontology engineer, and is not the creator
of the ontology either. Then, each specific situation puts different requirements on an
ontology evaluation methodology. I start here by going backwards with the three situa-
tions, since I continue the rest of this chapter with ontology evaluation during ontology
engineering. If an ontology is evaluated during application or reused directly within
an application, the evaluator just wants to know whether the ontology is adequate or
not for the application. This can mean that the evaluation does not take place directly
on the ontology but that the ontology is evaluated purely within the context of an ap-
plication. Such a procedure is also called blackbox, since the content of the ontology
is not directly observed. Conceptual correctness for instance is not important per se
in this situation but only if it influences the behaviour of the application in a negative
way. If an ontology is reused for further modification, the evaluator needs to have more
fine-grained information about the ontology content (glassbox procedure), but again in
the end the evaluator only wants to know whether the ontology is adequate. In these
two cases, given more than one ontology that is considered for reuse, the evaluator
benefits from a ranking of ontologies. When an ontology is evaluated during ontology
engineering, the needs of the evaluator change in that the evaluator does not only want
to have feedback on whether the ontology is adequate or not, or a measurement of how
adequate it is, but in addition wants to have feedback on how to modify it in order to
improve it.

Example: I assume for this simple example that there is a direct correlation
between the existence of verbal descriptions of concepts and usability. This
assumption does not consider other aspects of usability, and neither that an

17 In this case, different relations between the reused ontology and the product of the new ontol-
ogy engineering activities are possible: For instance, an existing ontology may be imported
into a new ontology to reuse vocabulary and formal definitions, an existing ontology may
be refined or modified, or an existing ontology may serve simply as a template from which
design is borrowed, as is the purpose of ontology design patterns [37, 92].

38 2 Foundations

existing verbal description may not be intelligible or may simply be wrong.
If the evaluator wants to reuse the ontology, (s)he would probably be satisfied
with an evaluation that outputs “70 percent of the ontology’s elements are not
documented”. If the evaluator is an ontology engineer and wants to improve
this, (s)he would in addition want to know which elements are not documented.

Since the goal of this thesis is to investigate support for ontology engineering, I dis-
cuss in more detail evaluation in different phases of the ontology engineering process.
Depending on the phase in which evaluation takes place, the evaluator deals with differ-
ent kinds of artefacts and different goals against which to evaluate. In scope definition,
there is not yet something which can actually be called ontology, but nevertheless the
evaluation of the scope definition is valuable in order to find out whether the purpose
and scope of the ontology are well-aligned, and if the scope is precisely enough defined.

Example: If two primary applications which shall use the ontology are iden-
tified within the scope definition phase, the evaluator should check that these
two applications do not have conflicting requirements or assumptions on the
ontology.

In knowledge acquisition, the evaluator needs to find out for instance whether all rele-
vant data sources (sources can be domain experts or data sources like text corpora) have
been considered, or whether there are conflicting views on the knowledge that shall be
described between different sources. In informal modelling, the evaluator needs in par-
ticular to check whether relevant parts of the domain have been left out of the model,
whether verbal descriptions are already precise enough to start formalising, etc. Formal
modelling finally needs to consider in particular whether the formalisation corresponds
to the informal model, whether the formalisation is logically correct, i.e. a consistent
ontology has been formalised, etc. I note here, that I and colleagues have published a
paper on formative evaluation throughout an ontology engineering process in which a
more detailed discussion of evaluation in different phases is given [97].

What Is the Reference?

Finally, the reference against which evaluation is performed can be considered to cat-
egorise evaluation methods [14]. In the end, the chosen reference depends very much
on the ontology evaluation situation, i.e. how the ontology has been created, for what
purpose it has been created and at which stage in the ontology engineering process
evaluation takes place. First, the reference can be a gold-standard, i.e. an ontology of
which one knows already that it is good (enough). This approach is typically taken
when an ontology has been automatically learned from text documents or from any
other data source. One could argue, that here the ontology evaluation serves to actually
evaluate the ontology learning algorithm. Second, the reference can be directly another
data source, where the data is typically expressed in a different formalism as the ontol-
ogy. For instance, the data source may be a collection of text documents or the content
of a database. This approach is useful if the ontology shall serve to describe already
existing data. Two examples are that a knowledge base shall directly contain data, or
because the ontology is to be used to annotate digiatl resources. The obvious difficulty

2.4 Ontology Evaluation 39

Summary “When Does Evaluation Take Place”:

– Reuse
– Reuse with subsequent modification

The evaluator is an ontology engineer but not the creator of the ontology.
– Reuse for direct application

The evaluator is possibly not an ontology engineer and possibly not the creator of the
ontology.

In case there are multiple ontologies to choose from, the evaluator benefits from a ranking.
– Ontology Engineering

The evaluator is an ontology engineer, the creator of the ontology, and benefits from hints
on how to improve the ontology.

– Application
The evaluator is possibly not an ontology engineer and possibly not the creator of the
ontology, and benefits from a binary judgement (adequate / not adequate) on the ontology
in the context of a particular application.

Table 2.8. Categories of Ontology Evaluation: When Does Evaluation Take Place? This influ-
ences who evaluates and what requirements are put on the evaluation methodology.

with this approach lies in how the ontology should be compared with data in a pos-
sibly completely different format. To a certain extent, this is one of the principles on
which the investigation of assertional effects, as described within this thesis, is based.
The display of assertional effects also serves to enable ontology engineers to check the
compliance of their ontology with respect to already existing data. For the purpose of
assertional effects, the existence of data in a description logic formalism is assumed.
Third, the reference can be the knowledge of domain experts, who may or may not
evaluate an ontology systematically given a set of criteria. This is the kind of evalua-
tion that is investigated within this thesis, since I always assume that it is humans who
review inferences and ascertain their correctness. Fourth, the frame of reference can be
the performance of an application environment in which the ontology is deployed. The
comparison can be either with the same application environment fed with other ontolo-
gies, as well as an application environment that performs the same tasks but based on a
different architecture. In the latter case, one can again argue that it is not the ontology
itself that is evaluated but rather the architecture of the ontology-based system.

2.4.2 Ontology Evaluation Methodologies

As already mentioned, there is not really a standard set of methodologies or evaluation
guidelines available. In practice, it seems to be the case that depending on the evalu-
ation situation (one from the above), the evaluator chooses a set of relevant properties
the ontology should have and tries to evaluate these. This can be supported for instance
through a catalogue of ontology properties that one can evaluate, as implicitly given
in [38] or explicitly given in the Ontometric framework [128]. Ontometric is applica-
ble particularly in a situation of reuse, and therefore I do not consider it in more depth
in the following discussion. Modelling methodologies are often accompanied by guide-
lines on what to pay attention to during modelling. From this point of view, also many

40 2 Foundations

Summary “What Is the Reference”:

– Gold Standard
The reference is an already existing ontology. This is useful if the ontology has been created
automatically.

– Data Source
The reference is any data source, and data is typically not expressed in the same formalism
as the ontology. This approach is useful if the ontology is intended to describe the data.

– Domain Experts
The reference is the knowledge of domain experts. This appraoch is useful during ontology
engineering.

– Application
The ontology is evaluated with an application.

Table 2.9. Categories of Ontology Evaluation: What Is the Reference? The right reference de-
pends on how the ontology was created, in which situation ontology evaluation takes place, and
on the purpose of the ontology. The first three references indicate a glassbox evaluation proce-
dure, while the last leads to a blackbox evaluation procedure.

modelling guidelines can be used to evaluate an ontology during ontology engineering.
The investigation of typical modelling errors for a specific knowledge representation
formalism can lead to catalogues of modelling mistakes and solutions to them. For
OWL in particular, there are at least two such studies that I am aware of [109, 111].
Currently, such lists are not widely available as practical guidelines to ontology engi-
neers, and they are rarely incorporated into ontology engineering tools.

Among existing ontology evaluation methodologies, OntoClean [52] stands out as
the most formal methodology. It is based on metaproperties of concepts like essence,
identity and unity of concepts, inspired by philosophical considerations about the na-
ture of concepts. After having identified the relevant metaproperties of each concept,
the ontology’s taxonomic relations can be evaluated with regard to their conceptual
correctness. The main drawback of this method is that it is difficult to apply in practice,
and thus will probably be applied only for high-quality or top-level ontologies. This
method directly targets conceptual correctness, is applicable during ontology engineer-
ing and in the phase of formal modelling.
A more practical approach to evaluation is the usage of so called competency questions,
first mentioned in [137]. Competency questions are questions the ontology should be
able to answer and can be posed either informally e.g. as natural language questions, or
formally as queries or logical axioms. This approach serves very well for using com-
petency questions as requirements on the ontology against which it can at different
stages be tested. Competency questions are formulated repeatedly during the ontology
engineering process and refined as well. A first set of competency questions should be
formulated already during the scope definition phase. This method targets functional-
ity of the ontology with regard to a specific purpose, and is applicable during ontology
engineering in knowledge acquisition (is the required knowledge that can answer the
competency questions already collected?), in informal modelling and in formal mod-
elling.

2.4 Ontology Evaluation 41

There is also a proposal to express expected inferences and unexpected inferences as
logic formulae [140] similar to unit tests in software engineering. Although this ap-
proach has not been applied in practice by the authors to date, an implementation of
unit tests for WSML has been described in [127].

2.4.3 Tool Support for Ontology Evaluation

The Ontometric framework [128], which supports choosing between ontologies, can
be supported through decision making tools. Such tools must be given a weighting of
available evaluation features plus an assessment of different ontologies with respect to
all features. The provision of this input may not be very practical given the large num-
ber of features that can be considered. OntoClean can also be partly automated [139].
A correct labelling of concepts in the ontology with the metaproperties of essence,
identity and unity is required beforehand. Reasoning services can be used to verify the
logical consistency of an ontology. Thus, they support ontology evaluation during on-
tology engineering in the formal modelling phase, and evaluate the structural feature of
logic consistency. Since this thesis is subsequently concerned with the review of logi-
cal inferences for evaluation purposes and detecting inferred knowledge lost or gained
about data, I go into some more detail at this point.

As has already been pointed out, logical inconsistency of an ontology as well as
single unsatisfiable concepts constitute a modelling error. Reasoning services that find
axioms responsible for unsatisfiable concepts and then suggest ways to repair the on-
tology have been researched under the names of ontology debugging and repair (see
e.g. [63, 118]). Inference explanation, e.g. [56, 61], is based on the same theoretical
foundation, but with a different focus in application, as is already suggested through the
naming. Research in belief revision investigates how a knowledge base must be modi-
fied in order to account for a change in beliefs on a broader basis. Changes are either the
addition of new knowledge (new axioms are added) or the removal of prior knowledge
(axioms are deleted). Central difficulties treated by research in this regard are (i) how to
revise the existing knowledge base if directly adding α to KB would lead to an incon-
sistent knowledge base and (ii) how to revise KB such that α is no longer entailed ([2],
and [104] specifically for description logics). While ontology debugging and repair is
specifically concerned with resolving unsatisfiability (or equivalently: with removing
an arbitrary inference), research in belief revision deals more generally with compu-
tational properties of these actions. Therefore, belief revision provides the theoretical
foundation for knowing how an undesirable inference can be dealt with.
Strategies for belief revision are useful once a problematic inference has been identi-
fied. The problematic inference is obvious when it consists of an unsatisfiable concept
or the inconsistency of a whole knowledge base. In other situations, an update (adding
or removing a particular axiom) may be explicitly asked for, which means that the
problematic inference has already been defined in some way. This can happen for in-
stance when a logic theory contains some working hypotheses and one of them has
been proven wrong in some world external to the ontology. In a general ontology en-
gineering setting however, the question is also how to find out that there are wrong
statements in the ontology, or wrong conclusions that can be derived. This is where

42 2 Foundations

my research on reviewing inferences in general (Chap. 4) as well as particularly on
data (Chap. 5) comes in. Such a review makes ontology engineers aware of inferences,
which is the prerequisite of identifying wrong inferences.

3

MoKi- A Wiki-based Ontology Engineering
Environment

There is a gap in tool support for ontology engineering between the activities seen as
creative, such as knowledge acquisition and informal modelling and formal modelling,
which is seen as more technical. Typically, different methods and tools support knowl-
edge acquisition, informal modelling and formal modelling. Support for knowledge ac-
quisition is given on the one hand by knowledge elicitation techniques for knowledge
acquisition from experts, like card-sorting, laddering or structured interviews, and text
mining tools for knowledge acquisition from natural language text on the other. Tool
support for informal modelling is given for instance by mind-mapping tools, which en-
able loosely structuring knowledge. Ontology editors like Swoop, Protégé or the NeOn
toolkit support formal modelling. The advantage of a single integrated modelling en-
vironment in which all these phases can be carried out is clear. Every switch between
tools involves some work additional work, no matter how well importing and exporting
between tools works, and people tend to avoid unnecessary work. A single modelling
environment thus has the potential to make people execute more easily a dynamic and
agile ontology engineering process. By the latter, I mean a process in which iterations
through knowledge acquisition, informal modelling, formal modelling, evaluation and
consequent refinement and revision are short and frequent. Such dynamics and agility
have indeed been seen as inherent in ontology engineering from the start [101], and
they become more central as ontology engineering moves into strongly collaborative
and spatially as well as temporally distributed environments. This is often the case
nowadays, where a modelling team can be distributed over the globe, or when it is a
virtual community that builds up its own knowledge base. Additionally, results from
different ontology engineering activities can be documented in one place as well as
discussions which have led to these results. Thus every actor involved in some stage of
the ontology engineering process can easily check up on what has become of her con-
tribution over time, or where the ontology part she is currently working on has actually
come from (traceability).
MoKi attacks precisely the gap between modelling tools supporting different modelling
activities, in that it aims to be and to become an ontology engineering environment
which accommodates informal modelling and formal modelling activities. The follow-
ing challenges for a computational environment to achieve this goal have been identi-
fied as central.

44 3 MoKi- A Wiki-based Ontology Engineering Environment

3.1 Challenges for a Computational Environment to Accommodate
Informal and Formal Modelling Activities

Collaboration Between Actors with Different Expertise

First, people with a variety of skills must be addressed as users. This addresses not
only the dichotomy of domain experts vs. (expert) ontology engineers, but a much
finer-granular shading of skills in people participating in ontology engineering. Users
may be experts in different domains, and regarding different parts of ontology engineer-
ing, for instance some ontology engineers may have more experience with knowledge
acquisition and others with a particular knowledge representation formalism.

Example: In the context of APOSDLE [3, 71], learning topics, business
processes and human skills were modelled in an integrated manner. Various
knowledge engineers were involved in each application domain, where some
were more involved with the overall modelling process, and integrating the
several aspects, while others concentrated for instance on modelling business
processes or on formalising the collected knowledge and on technical issues
related to putting the formal models to use in the APOSDLE system [42].

While ontology engineering has always been seen as a collaborative activity, typically
the focus has been put on dealing with the quantity of persons interacting with com-
mon resources when dealing with support for collaboration, instead of dealing with
their quality, i.e. their different competencies. In the few instances where collaboration
between people with different skills, typically expert ontology engineers and domain
experts, is considered, the focus is often put on capturing and structuring discussions
about content [129, 141]. In the traditional sense of collaboration, the following are
features of tools1 which support the collaborative creation of a common engineering
artefact: Distributed (synchronous or asynchronous) access to the shared content is
essential. Following this, typically version control is required in order to deal with van-
dalism. Along the same line, user identity management in order to keep track of who is
responsible for which information (provenance of information, the possibility to pun-
ish vandalism or to reward “good” behaviour), and further also access control are often
provided. Interconnecting discussions and content helps document the work process
and rationales for the outcome2. Depending on the environment in which collabora-
tive work tools are used, support for officially imposed workflows is also sometimes
required. For instance, in a productive environment, there may be an official chain of
contributors who need to agree to changes before they can be effectuated and published.
1 There is no standard naming convention for such tools. In literature they are called for instance

collaborative editing tools, collaborative authoring tools, computer-supported collaborative
work tools etc.

2 Such a documentation of the process is for instance among the obligatory features according
to [74] in order for a tool to be called a collaborative writing tool (The authors consider
only writing, in contrast to authoring images/multimedia/structured-data etc). It is also argued
in [28] to be a key feature in collaborative ontology engineering since ontology engineering is
a creative process similar to writing and designing, and for both such activities the necessity
to interlink created content and discussion has been shown in earlier work.

3.1 Challenges 45

Technically, implementing a workflow in a tool requires at least user identity manage-
ment and rating or voting (in the widest sense, to include also approval) mechanisms.
Specifically for collaborative ontology engineering environments, similar features have
been elicited as requirements as discussed in [88, 135]. MoKi provides most of these
features by design, as will be discussed at the end of this chapter.
The requirements for supporting collaboration between users with different skills, and
thus different requirements on the work environemt are less clear. During development
of MoKi, the main assumption was that depending on skill (and task at hand), users
need different views of the knowledge contained in the working environment. Views
may differ in formality and in content, i.e. which parts of the model(s) a user is inter-
ested in.

Coherence Between Content Expressed At Different Levels of Formality

Second, it must be possible to store content at different levels of formality and in dif-
ferent knowledge representation formalisms. Content must be as coherent as possible
across different levels of formality and different formalisms. This way, the computa-
tional environment can become useful both during conceptual and creative activities
such as knowledge acquisition and informal modelling as well as during technical and
rigorous activities such as formal modelling and evaluation.
Coherence is an essential basic requirement in order to meet the first goal, namely to
support collaboration among people with different skills and therefore different needs.
Consider that in a traditional ontology engineering process, domain experts would ex-
press their knowledge and structure it informally, not making use of any KR formalism.
Domain experts could then go through a validation procedure and finalise their infor-
mal version of the ontology. Ontology engineers, experts in some chosen formalism
such as e.g. description logics in the form of OWL, would then start with this infor-
mal yet “final” ontology and formalise and implement it. During this translation from
informal knowledge representation to formal knowledge representation, collaboration
between domain experts and ontology engineers would typically take place. During
such collaboration, new knowledge might be created, or some precisions to the infor-
mally expressed knowledge may take place. While such changes would be expressed in
the resulting formal ontology, these changes would not necessarily be documented in
the final informal ontology. The formal ontology however would not, conceptually, be
easily accessible to the domain experts. In contrast to this, within an ontology engineer-
ing environment which is able to keep informal and formal descriptions of knowledge
coherent, such changes would be translated back from the formal ontology to the in-
formal ontology.
The main difficulty is that it is little understood what support for keeping coherence is
required. An automatic translation between essentially differently formal representa-
tions is a huge challenge, and is in its extreme the core challenge of ontology learning.
However, related to this is the slightly easier challenge of providing import and export
functionalities from and to a number of standard KR formalisms and standard for-
mats for informal models (like for instance mind-maps). A more lightweight approach
to support coherence could be for instance a notification of ontology engineers when
changes at one level of formality occur.

46 3 MoKi- A Wiki-based Ontology Engineering Environment

Integration of Different Kinds of Models

Third, the formalisation of different kinds of models such as for instance general do-
main knowledge, business processes, a system design etc, must be supported. The first
rationale behind this is that during informal modelling it makes sense not to spend too
much efforts on deciding what kind of knowledge a particular piece of knowledge ac-
tually is. Such decisions should be taken care of mostly during formalisation where a
differentiation between different kinds of knowledge is reasonable. On the one hand,
this is because particular kinds of models, such as process models, skill models in
human resources development etc., have particular well-known properties which may
have been studied well and particular modelling and evaluation guidelines may exist.
On the other hand, because some knowledge representation formalisms especially suit-
able for a particular kind of models may exist, such as for instance OWL for general
domain knowledge, BPMN (Business Process Modelling Notation, [19]) for business
process modelling or UML (Unified Modelling Language, [136]) for system and soft-
ware modelling etc. The second rationale behind the goal to support the formalisation
of different kinds of models is that in cases where such different aspects about a single
domain need to be modelled, it makes sense to model as much as possible together to
profit from overlaps as well as to document interconnections between these different
aspects.

Example: For the APOSDLE system, domain knowledge and business pro-
cesses were modelled. It was desirable to keep interconnections between sin-
gle tasks and single topics, which would then form the basis for a more de-
tailed skill model (see e.g. [40] for a description of the underlying knowledge
model). “To Hold a Creativity Workshop requires knowledge about Creativity
Techniques” is an interconnection between a task and a topic from the general
domain model. The more detailed skill would then read “Know how to apply
a Creativity Technique”.

Such an integration can be realised through the implementation of robust import and
export functionalities. Models contained in an integrated environment must be easily
exported to specialised knowledge representation formalisms, and imported again after
manipulation in external, possibly specialised, tools. In case a corresponding import
mechanism does not exist, this may present a direct trade-off with the requirement for
coherence as discussed above however. For instance, if a BPMN model is exported
from an integrated modelling environment, and in an external tool unsupported BPMN
features are included, the BPMN model can not be fully re-imported.

3.2 Related Work

Naturally there are tools which address to some extent the same challenges as MoKi.
Where these tools have already been discussed above in Chap. 2.3 the discussion be-
low focuses in particular on how these tools target the above described challenges of
collaboration, coherence and integration.

3.2 Related Work 47

Collaborative ontology engineering tools

Early web-based ontology engineering environments like for instance the Ontolingua
Server [31] and WebODE [22] supported collaboration simply in that they give web
access to a single resource to multiple persons. Tadzebao [28] adds to this by support-
ing discussions on all kinds of ontology components in a web based environment, with
the added bonus that discussions could contain pictures as well as text. Also Swoop
claimed from the beginning to support collaborative ontology engineering, e.g. in [62].
The relevant features are limited to supporting versioning and publishing annotated
changes on an annotation server, and Swoop is still a stand-alone desktop application.
On the other hand, the versioning supported by Swoop is very fine-grained. For in-
stance, it is possible to show the revision log of a single entity, of a single ontology
or of the complete workspace, which may span multiple ontologies. Changes in the
ontology can be annotated based on the Annotea framework [59], and are external to
the annotated resource, i.e. changes in the ontology are annotated and published on an
Annotea server. Collaborators can retrieve annotated changes from the Annotea server
and update their local ontologies accordingly. Thus, Swoop does not enforce the de-
velopment of a single coherent ontology in the case of collaboration, but instead sup-
ports the exchange of fine-grained ontology changes. Also discussion of content is only
indirectly supported via ontology changes and their annotations. Quite recently, Col-
laborative Protégé [135] was released, and it contains a multitude of more advanced
features to support collaboration. It is also implemented as a client-server architecture,
where contributors can simultaneously access the same remote ontology. Collaborative
Protégé enhances this basic collaboration support through the possibility to annotate all
kinds of ontology elements. The primary intended use of such annotations are threads
of discussions, but annotations also capture provenance information, i.e. which user
has effectuated a change.

Semantic wikis for ontology engineering

A number of ontology engineering environments are wiki-based, and fall into the
broader category of semantic wikis. These tools typically offer per default, per def-
inition of being a wiki that is, functionalities like synchronous access to the shared
ontology, user identity management, tracking of provenance of information and anno-
tation of single model elements, although the granularity at which annotation is pos-
sible varies in some details between the tools. OntoWiki [7, 91] offers the possibility
to annotate, comment on and rate all its elements such as concepts, instances, liter-
als, statements, or files. myOntologyy [85, 119] allows discussions on concepts, and
additionally supports a consensus finding process. Both OntoWiki and myOntology
have been built from scratch, i.e. they do not build on an existing wiki platform, and
both are typical wiki-style environments in other respects. BOWiki [9, 13] on the other
hand is an example of a domain-specific environment in which biological informa-
tion, specifically about the links between genotypes and phenotype in the form of gene
annotations, can be stored. BOWiki is an extension of MediaWiki and Semantic Medi-
aWiki (see below), but it offers features supporting collaboration in addition to those
provided by MediaWiki. At the time of writing, no working version of BOWiki was to

48 3 MoKi- A Wiki-based Ontology Engineering Environment

be found. AceWiki [69], a Java-based wiki built from scratch. It stands a little bit apart
from the previous tools in that its focus lies on expressing logics in Attempto Con-
trolled English (ACE, [6]), which is a subset of the natural languge English. So while
at the user front-end only ACE is displayed, the information can be (mostly) translated
to OWL and thus Pellet can be used to reason on it. AceWiki definitely helps non-
expert ontology engineers express their knowledge formally, since AceWiki users are
able to from near-natural language sentences for doing so [68]. However, in contrast to
the above discussed wiki-based ontology engineering environments it does not provide
more support for collaboration than giving synchronous access to a shared ontology
over the web.

Semantic wikis as platforms

Semantic wikis such as Semantic MediaWiki (SMW) [67] and KiWi [64, 116] aim to
be general platforms on which traditional, human-readable content such as text, im-
ages and multimedia can co-exist with structured data. In contrast to environments for
ontology engineering, structured data are primarily seen as metadata for the traditional
content. KiWi also supports light-weight content structuring paradigms such as tagging
and related features such as tag recommendation, and aims to include social software
features as well.

Coherence Between Content Expressed At Different Levels of Formality

A pragmatic approach for an ontology engineering tool to support coherence between
content expressed at different levels of formality is of course to provide the possibility
to attach annotations to all kinds of ontology components. This enables at least keep-
ing informal and formal (parts of the) models in one place. Many of the above ontol-
ogy environments can contain only textual annotations (Ontolingua, WebODE, Swoop,
Protégé). In contrast to this, Tadzebao supports attaching pictures as annotations as
well, and most wiki-based ontology engineering environments support annotation with
everything which can be held in a webpage.
Research concerning translations between different KR formalisms (or concerning im-
ports and exports from and to different KR formalisms) have traditionally focussed
on the comparison between languages which already are formal, such as a compar-
ison of the description logic ALC and the logic multi-modal K which have been
found to be equivalent [117], or the attempts to bidirectionally map RDF and Topic
Maps [39, 84, 100, 134].

3.3 Design and Implementation of MoKi

The description below holds for Version 1.2 of MoKi, with the ontology questionnaire
and the assertional effects functionality (two of MoKi’s evaluation functionalities) only
being available from Version 1.5Beta on. An online demonstration system, a user man-
ual, screencasts and various other resources can be found on MoKi’s website [83].
Source code and binaries are expected to be released in the near future.

3.3 Design and Implementation of MoKi 49

3.3.1 MoKi as a MediaWiki plugin

With the above challenges in mind, it was decided to implement MoKi based on the Se-
mantic MediaWiki. Semantic MediaWiki is a plugin to MediaWiki [81] which allows
storing data as RDF and thus enriching textual and multimedia content of MediaWiki
pages by structured knowledge. MoKi is itself a plugin to MediaWiki, and it requires
the plugins Semantic MediaWiki and Semantic Forms to be installed in order to run
correctly.
The choice to implement MoKi as a semantic wiki was taken for several reasons. First, a
wiki environment was chosen since the wiki principles of giving access to content (both
read and write) to all as well as to make that access as easy as possible for everyone
are well-aligned with the goals of MoKi. Furthermore, wikis are inherently web-based
and allow textual as well as multimedia content , i.e. everything which can be pub-
lished on the web can be published in a wiki. Most support versioning and standard
collaboration (in the traditional sense) features like discussion threads or comments.
Finally, most potential users of a system such as MoKi can be expected to know how
a wiki looks and feels, and a large portion of these people also know how to actively
contribute to wiki content. This is partly due to the large success of the online en-
cyclopaedia Wikipedia [142], but as well to the arrival of wiki (and other Web 2.0)
technology in the corporate world, as observed e.g. in [45, 113]. Second, a semantic
wiki [115] already has the basic infrastructure to deal with structured data in addition
to traditional human-readable content-types like text or multimedia. Thus, it is techni-
cally well suited to accommodate the results from informal as well as formal modelling
activities. In choosing a particular semantic wiki upon which to build MoKi, the main
requirements were (i) that it be under active development and that it could reasonably
be expected to stay thus for some time in the future, (ii) that it be easy to extend and
(iii) that it have a reasonable implementation of the semantic infrastructure. Although
several semantic wikis exist that are under ongoing development, but still relatively few
are suitable as a platform for extension. Nowadays, KiWi would be a serious alternative
to consider besides Semantic MediaWiki. KiWi is a comparatively recently developed
semantic wiki, although it goes back to an earlier system called IkeWiki [114]. The
KiWi system is programmed in Java and has been newly developed from scratch, but
the user interface follows the well-known wiki paradigm. At the time the MoKi devel-
opment was started however, KiWi did not yet exist, and the continued development
of IkeWiki was too unsure to be considered as basis for MoKi. Most semantic wikis,
like for instance AceWiki or OntoWiki simply promised too little security in terms of
continued development, too little benefits for reuse like features outside semantic con-
tent creation or, as e.g. SweetWiki [16, 125] a too ad-hoc semantic infrastructure. The
choice therefore fell on Semantic MediaWiki first because it is based on MediaWiki,
which is widely-spread, has a large community of developers and users, and is easily
extensible through plugins. Second, Semantic MediaWiki itself has a sound, straight-
forward implementation of a semantic infrastructure and it is generic insofar as it is not
adapted to any specific application scenario.

50 3 MoKi- A Wiki-based Ontology Engineering Environment

3.3.2 Every Model Element Is a Wiki Page

The basic design principle of MoKi is that every model element, i.e. every basic com-
ponent of a model, corresponds to a wiki page. Speaking of ontologies, the relevant
model elements are concepts, individuals and roles. etc. Different model elements are
differentiated through the use of MediaWiki categories, such that for instance a wiki
page describing a concept has the wiki category “Domain model”3 , a wiki page de-
scribing an individual has the category “Individuals” and a wiki page describing a role
has the category “MokiProperty”4. Each model element is internally given a formal
meaning. For instance, a concept is given the meaning of a description logic concept,
i.e. it is a unary predicate and can be interpreted as a set of entities for which the unary
predicate holds. It is essential to be clear about this internal interpretation of model
elements, since this forms the basis of technically dealing with imports from various
knowledge representation formalisms and exports to various knowledge representation
formalisms. Table 3.1 shows a synopsis of categories available in the current imple-
mentation of MoKi, their formal interpretation as well as in which kind of model the
corresponding model element is expected to be useful.

Category Model Element Interpretation Type of Model

“Domain model” Concept DL Concept Domain ontology
“MokiProperty” Property / Relation DL Role Domain ontology

“Individuals” Individual DL Nominal Domain ontology
“Process model” Process BPMN Process Process/Task model

Table 3.1. Category names in MoKi for designating different kinds of model elements in MoKi.
“Type of Model” refers to the type of model in which such a model element is expected to occur.

For every kind of model element supported by MoKi, a template exists. Figure 3.1
shows an excerpt of an already filled-out concept description. The implementation of
templates in MoKi is based on the Semantic Forms [36] extension to Semantic Medi-
aWiki, which makes it easy to create templates. From a user perspective, a template is
displayed as a list of fields which to be filled out in order to describe the model element.
Fields can differ between model elements. Conceptually, a template asks the ontology
engineer for information which is typically needed for a specific kind of model element.

Example: When describing a domain concept, it is typical to ask “What is a
superconcept?”, i.e. what are more general notions than the currently described
concept, in which categories does it fall?

3 Wiki categories could have been used as well to represents the concepts of the domain model.
However, when we started developing the tool, the support for categories in Semantic Me-
diaWiki was rather preliminary, so we decided to represent domain concepts using standard
pages.

4 Semantic MediaWiki also knows relations (properties and types), but since these are inter-
preted as RDF properties and not as OWL properties, it was decided to not change the in-
terpretation of built-in Semantic MediaWiki construct but overlay SMW with extra features.
However, every MoKi property is also an SMW Property.

3.3 Design and Implementation of MoKi 51

Naturally, most given fields are just possibilities and the users are not necessarily re-
quired to fill all of them when describing a specific model element. Additionally, there
is in some templates the possibility for users to add custom fields.

Example: An ontology engineer may want to describe the concept “Project”,
and then express that a project is typically managed by a person. In this case,
the ontology engineer can add a new field to the concept “Project” which is
called “managed-by” and fill it with the concept “Person”.

The use of templates, which can easily be constructed using Semantic Forms, means
that it is easy to extend MoKi to hold other kinds of models apart from generic domain
ontologies and business processes. Although such an extension can not yet be done
solely at the user interface (some programming in PHP is required in order to define
the formal meaning of the fields in a new template and to add import and export support
for the new model elements), it is easy to program.
Templates for all kinds of model elements are split conceptually into two different
parts, namely one for informal modelling and one for formal modelling. Furthermore,
most fields in a template are given a formal meaning, such that they can be imported
from and exported to knowledge representation formalisms. Tables 3.2- 3.3 show the
existing templates in MoKi with their fields and the formal meaning given to fields.

Informal Description

Every model element can be described informally. The purpose of this part is to doc-
ument the model and to clarify what this element is meant to describe. This serves on
the one hand as a starting point for modelling, during informal modelling activities,
where formal descriptions are not yet aimed for. On the other hand, this part serves as
“backwards”-interface to users not trained and/or not interested in reading and under-
standing the formal representation.
Part of the informal description is kept in the formal models as annotation elements if
the formal language allows for this during export. For instance, OWL allows including
verbal descriptions as rdfs:comment and labels (e.g. synonyms for concept names)
as rdfs:label. In direct correspondence to these two annotation properties, tem-
plates for domain ontology elements have the fields “Description” and “Synonyms”.
Additionally, there is the possibility to add free notes, in which all content which Me-
diaWiki allows can be added. This is a good possibility to reference source documents,
document modelling choices and keep notes about open problems, etc. Free notes are
per definition not meant to appear in the formal representation of the model. First, this
would be technically impossible since most formal languages do not offer possibilites
to embed rich content, such as e.g. a picture. Second, this is also conceptually undesir-
able since the free notes should be a place reserved for notes and knowledge which is
not (yet) meant to be formalised.

Formal Description

Every model element can also be described formally. The central distinguishing charac-
teristic of this formal description is, that each field is given a formal meaning by MoKi.

52 3 MoKi- A Wiki-based Ontology Engineering Environment

Some fields may be predefined, as for instance the fields “Is a” and “Is part of” for do-
main concepts (see Fig. 3.1), which are translated to description logic subsumption and
an existential quantification over a dedicated “part-of” relationship5 respectively (see
Table 3.2). Depending on the field of application, it may also be decided to predefine
fields which interconnect different kinds of models. Such predefined fields correspond
to the metamodel which underlies a particular knowledge engineering scenario.

Example: In APOSDLE a field called “required knowledge” was predefined
in the template for tasks. The meaning of this field was to express that a task
requires knowledge about some topic. Thus, users could connect tasks imme-
diately to concepts of the learning domain ontology [40, 41].

Example: In BOWiki, parts of the Gene Ontology [4] and the Ontology of
Functions [18] provide the metamodel for the knowledge captured in BOWiki.
For instance, the relation “hasFunction” is used to describe the function of a
gene [9].

Other fields are user defined, as for instance the field “financedBy” in the example
depicted in Fig. 3.1, which is translated through giving the subject (the currently edited
concept) as rdfs:domain and the object (the filler of the corresponding field) as
rdfs:range of the OWL object property corresponding to “financedBy”. Such user
defined fields give the MoKi users the possibility to create custom relations between
model elements. Although this description is entered in wiki style or in form fields,
it is necessary to remember that this still constitutes a formal description, since MoKi
gives a very definite meaning to the values in these fields in relation to the edited page.
This definite meaning is used during import from and export to various knowledge
representation formalisms.

5 MoKi defines dedicated has direct part and inverse is direct part of relations for this
purpose. It is planned to map these MoKi relations to corresponding relations in existing
upper ontologies such as DOLCE [27].

3.3 Design and Implementation of MoKi 53

Fig. 3.1. Excerpt of a filled-out concept template in MoKi, shown in the figure for a concept
called “Workshop”. The fields in the Annotation, Hierarchical structure and Notes boxes are
available for all domain concepts. The fields in the Properties box are added by the ontology
engineer specifically for each domain concept, as e.g. “hasParticipant” and “isOrganizedBy” for
the concept “Workshop”.

54 3 MoKi- A Wiki-based Ontology Engineering Environment

Fig. 3.2. Filled-out individual template in MoKi, shown in the figure for an individual called
“ISWC2009” (the International Semantic Web Conference 2009). The fields in the Annotation,
Concept Memberships and Notes boxes are available for all individuals. The statements in the
Relations with other Individuals box are added by the ontology engineer specifically for each
individual, as e.g. “isAbout” for the individual “ISWC2009”.

3.3 Design and Implementation of MoKi 55

Fig. 3.3. Filled-out property template in MoKi, shown in the figure for a property called “Car-
riesOut”. All fields (fields in the boxes Annotation, Domain and Range, Hierarchical Structure,
Characteristics and Free text) are available for all properties.

56 3 MoKi- A Wiki-based Ontology Engineering Environment

Concept template in MoKi
Description
Formal interpretation: rdfs:comment(C, v)

Synonym(s)
Formal interpretation: rdfs:label(C, v)

Usage: Values in the field are comma-separated
Is a
Formal interpretation: C v D
Is part of
Formal interpretation: D v ∃has direct part.C
Comments: An inverse role is direct part of = has direct part−1 also exists.

has direct part, is direct part of are MoKi-defined roles.
R (user defined)
Formal interpretation: C v ∀R.D
Free notes
Comments: Intended for rich content, not intended to be formalised.

Table 3.2. Concept template in MoKi, fields and their formal meaning. The formal meaning is
expressed either as DL formula or as RDF triple (subject predicate object). C is the concept
which the template describes, D is the concept with which a field is filled, or v is the data value
with which a field is filled.

3.3 Design and Implementation of MoKi 57

Property template in MoKi
Description
Formal interpretation: rdfs:comment(C, v)

Synonym(s)
Formal interpretation: rdfs:label(C, v)

Usage: Values in the field are comma-separated
Domain
Formal interpretation: ∃R.> v D
Usage: Comma-separated values in the field denote a disjunction.
Range
Formal interpretation: ∃R−.> v D
Usage: Comma-separated values in the field denote a disjunction.
Is a sub-property of:
Formal interpretation: R v S
Is an inverse property of:
Formal interpretation: R = S−

Further properties: Functional, inverse functional, transitive, symmetric.
Formal interpretation: As usually defined, see e.g. Table 2.2.
Free notes
Comments: Intended for rich content, not intended to be formalised.

Table 3.3. Property template in MoKi, fields and their formal meaning. The formal meaning is
expressed either as DL formula or as RDF triple (subject predicate object). R is the role which
the template describes, D is the concept, S the role, y the individual or v the data value with
which a field is filled.

Individual template in MoKi
Description
Formal interpretation: rdfs:comment(C, v)

Synonym(s)
Formal interpretation: rdfs:label(C, v)

Usage: Values in the field are comma-separated
Is a member of
Formal interpretation: D(x)

Usage: Comma-separated values in the field denote a conjunction.
R (user defined)
Formal interpretation: R(x, y)

Free notes
Comments: Intended for rich content, not intended to be formalised.

Table 3.4. Individual template in MoKi, fields and their formal meaning. The formal meaning is
expressed either as DL formula or as RDF triple (subject predicate object). x is the individual
which the template describes and y is the individual or v the data value with which a field is
filled.

58 3 MoKi- A Wiki-based Ontology Engineering Environment

3.3.3 MoKi Functionalities

The functionalities within MoKi support activities like importing and exporting mod-
els to and from MoKi, navigating through the MoKi content, authoring and editing the
models contained in MoKi at an informal as well as formal level, and validating the
models contained in MoKi. MoKi functionalities are accessed in the typical wiki-style
through a menu with hyperlink items (see Fig. 3.4). Alternatively, the functionalities
can also be accessed through directly typing in the corresponding URL into the address
bar of the browser. Since the objective of this dissertation is not to provide a user man-
ual, no screenshots with step-by-step explanations on how to use MoKi will be given.
Instead the functionalities and their inner workings are explained. As already pointed
out above, the online MoKi resources at [83] contain an excellent user manual with
this information. All functionalities described below are additions to the existing se-
mantic infrastructure provided by the Semantic MediaWiki, except if especially noted.
For communication between MoKi users, no extra support is given so far. Instead, the
discussion feature of MediaWiki is used. Versioning and keeping track of changes is
also supported via the standard MediaWiki features.

Import/Export

MoKi can export the models it contains according to the formal meaning given to fields
in templates for model elements. To date, this means that MoKi can export the domain
ontology it contains into OWL 2, RDF/XML Rendering. For export, MoKi first exports
its contents to RDF using the Semantic MediaWiki built-in functionality, and then re-
interprets the generated RDF as OWL 2 according to the interpretation rules given to
fields as explained in Tables 3.2 - 3.3 for domain concepts. Of course MoKi also sup-
ports the inverse functionality and is able to import OWL 2 ontologies in any rendering
supported by the Jena Semantic Web and insofar as the imported ontology does not
contain features which exceed MoKi’s expressivity6. All constructs which MoKi does
not know are ignored at import, so importing and exporting again can lead to a loss of
data7.
Apart from this straightforward support for import and export, MoKi also supports im-
porting knowledge from less structured sources. First, it is possible to easily import
hierarchies of concepts. This can be done by writing down the hierarchy as a simple
ASCII list of terms, and indentation indicates the hierarchy (for a simple example see
Fig. 3.5). The hierarchy can be interpreted either as specialisation hierarchy (descrip-
tion logic subsumption) or as mereological hierarchy (part-of relationships as inter-
preted by MoKi are created between super- and subordinate concepts). Second, MoKi
supports the import of knowledge from text documents by including a term extrac-
tion functionality. This functionality uses at the backend the KnowMiner framework, a
Java-based framework for knowledge discovery [47, 65]. Extracted terms can be taken
over with one click as (candidate) concepts into the MoKi-contained knowledge base.
6 MoKi’s expressivity is the sum of features listed in Tables 3.2- 3.3. The goal of MoKi is to

support OWL 2.
7 At the time of writing, e.g. negative property assertions can not be made (“Alice does not

like Bob”). This means that if an ontology with a negative property assertion is imported and
exported again, this negative property assertion will be missing from the exported ontology.

3.3 Design and Implementation of MoKi 59

Navigation / Model Access

In any information or knowledge management system, navigation through content is
vital to its success. The best content is useless if it cannot be easily accessed. MoKi
content can be accessed through standard MediaWiki functionalities like search, or
through typing in the URL of a single page in the address bar of the browser. Apart
from this, there is on the one hand the possibility to get lists of model elements in a
tabular style (e.g. “List Concepts”, “List Individuals”, “List Properties” entries in the
menu, see Fig. 3.6). These lists are by default sorted alphabetically according to con-
cept names, but can be sorted according to any other column as well. The lists are cre-
ated simply by using Semantic MediaWiki’s “Ask” mechanism [5]. On the other hand,
MoKi provides more visual access to the model(s) it contains. For domain ontologies,
the obvious visualisations are tree visualisations of different hierarchies. Different to
most existing ontology editors, MoKi displays not only the specialisation hierarchy as
a tree (“IsA Browser”) but also the mereological hierarchy in the “IsPartOf Browser”
(see Fig. 3.7). Among the other ontology editors, there is only Protégé with its Out-
line/Existential View [29] plugin which offers a similar feature, namely the possibility
to create hierarchical visualisations according to existential restrictions along arbitrary
object properties. The model contained in MoKi can be directly interacted with via the
tree visualisations: The subsumption hierarchy between model elements can be ma-
nipulated by dragging and dropping model elements, model elements can be added,
deleted or renamed, and finally the full description of model elements (a wiki page
in MoKi) can be accessed via a right-click. The trees are implemented based on the
Javascript DHTMLx-Tree library [25].

Editing

Editing activities relate to single model elements and concern the creation of model el-
ements, their repeated editing (among this renaming the model element, or even chang-
ing its type), and the deletion of model elements. These activities are supported mainly
through standard MediaWiki functionalities related to pages, which is easy since ev-
ery model element is represented as single wiki page. Changing the type of a model
element (i.e. from domain concept to individual) can be done by changing the wiki
category of the page. Note that information may be lost, and no advanced support is
available for this operation.

Evaluation

Whatever purpose models are created for, they need to be evaluated in order to en-
sure that they will serve their intended use. MoKi expressly aims to support ontology
evaluation during modelling, and the focus of this thesis has been to make progress in
this direction. As a result, MoKi supports ontology evaluation through a models check-
list, a quality indicator, the ontology questionnaire and through displaying assertional
effects. While all evaluation functionalities are described in detail in the following
chapter (Chap. 6), I shortly describe each here to complement the general overview of
MoKi functionalities. The models checklist is accessible via the MoKi menu (“Models
Checklist” in the menu, see Fig. 3.4). It is a list of characteristics that typically point to

60 3 MoKi- A Wiki-based Ontology Engineering Environment

oversights and modelling guidelines, and automatically retrieves elements that fit the
characteristics. For instance, one point on the checklist is “Orphaned concepts”, i.e.
concepts that have no super- or subconcepts, have no parts and are not part of anything.
These are often concepts left-over from brainstorming or another earlier modelling it-
eration. The quality indicator is displayed on the page of all elements and visualises
the completeness and sharedness of the corresponding element. Both completeness
and sharedness are heuristic measures, where the first captures how much information
(verbal, structural) about the element is available while the second captures how many
people have contributed to the description of the element. The ontology questionnaire
corresponds roughly to the ontology questionnaire described above in Chap. 4, and is
also accessible via the MoKi menu (“Inferences: Do You Agree?” in the menu, see
Fig. 3.4). It displays inferred knowledge, i.e. statements that can be derived from the
models contained within MoKi, provides explanations for them, as well as the possibil-
ity to remove them. In case explicitly made statements are deleted in order to remove an
undesired inference, the ontology questionnaire also displays side-effects, i.e. all infer-
ences that will be lost alongside. Assertional effects (Chap 5) are displayed on concept
and property pages directly after an ontology edit that causes one or more assertional
effects.

Maintenance

A data cleaner functionality allows the batch deletion of concepts, properties, individ-
uals, the complete domain model, the complete process model or the complete MoKi
content. It is currently available only through direct access of the corresponding special
page Special:DataCleaner.

3.3 Design and Implementation of MoKi 61

Fig. 3.4. Access is given to MoKi functionalities via a wiki-style menu with hyperlinked items.
Functionalities in MoKi support activities like importing and exporting models, navigating
through MoKi content, authoring and editing the models contained in MoKi at an informal and a
formal level, and validating the models contained in MoKi.

62 3 MoKi- A Wiki-based Ontology Engineering Environment

Fig. 3.5. Import a hierarchy into MoKi. Due to the selected radio button “Is a” this hierarchy will
be interpreted as specialisation hierarchy, and the statements LandArea v GeographicArea,
WaterArea v GeographicArea, Island v LandArea, Sea v WaterArea will be in-
serted into MoKi.

Fig. 3.6. Excerpt of the list of concepts in MoKi. MoKi displays all concepts and some relevant
properties like verbal description, superconcept or containing component in a tabular form. By
default the list is sorted alphabetically by concept names, but the user can sort it according to
other table columns as well.

3.3 Design and Implementation of MoKi 63

Fig. 3.7. Tree visualisation of the specialisation hierarchy (IsA Browser) in MoKi. Also the
mereological hierarchy (part-of relationships) can be visualised as tree in MoKi. The model can
also be directly manipulated via the visualisation.

64 3 MoKi- A Wiki-based Ontology Engineering Environment

3.3.4 PHP and Java

MediaWiki, MoKi’s basis, as well as Semantic MediaWiki and Semantic Forms on
which MoKi strongly builds are implemented purely in PHP. MoKi is therefore natu-
rally implemented to a large part in PHP as well. However, MoKi uses JavaScript and
Java in addition. JavaScript is used for the tree visualisations (DHTMLx Tree Library,
as indicated above) following the AJAX paradigm in order to provide a rich and re-
active user interface. Java is used at the backend for a variety of functionalities. The
main reason is for using Java at the backend is that many good libraries are available in
Java. Therefore, import and export functionalities and the term extraction functionality
are implemented in Java. Java-based functionalities are implemented as main methods
which take commandline arguments. The MoKi’s PHP code executes the Java-based
functionalities in the commandline then via the PHP command exec(). The export
functionality writes as result of its call an owl-file in a temporary directory, which is
then opened for download by the PHP code. The import functionality translates a given
OWL file into an XML file, which is written to a temporary directory. This XML files
can be imported by a semantic page import functionality of MoKi as the required wiki
pages. The term extraction functionality writes the extracted terms to a file which is
then read by MoKi’s PHP code and output to the user interface.
Executing Java functionality through commandline calls of main methods and commu-
nicating over temporary files is an easy way to access Java from PHP, and serves its
purpose well where only a few arguments need to be passed from one to the other.

3.4 Discussion

MoKi aims at supporting a variety of ontology engineering activities, such as knowl-
edge acquisition, informal modelling, formal modelling, and evaluation of models
at various stages. Knowledge acquisition is supported through the term extraction
functionality. The term extraction functionality is state-of-the-art, which unfortunately
means that it supports only a limited number of languages (English and German cur-
rently) and that the quality of results depends a lot on the corpus it is given. Informal
modelling is supported via the possibility to import simple hierarchies, via the promi-
nently placed possibility to verbally describe and document (“Description”, “Syn-
onym(s)”) all kinds of model elements, as well as via the possibility to richly docu-
ment (“Free notes”) all kinds of model elements in all formats which can be held in a
webpage. Furthermore, also evaluation of informal aspects of the models contained in
MoKi is supported, in that for instance elements with no verbal description are explic-
itly pointed out to MoKi users. Formal modelling is supported from a user perspective
by providing form fields with auto-fill functionality to ontology engineers. Fields are
given a formal meaning, which is the basis of technically supporting formal modelling.
However, on the formal modelling side, MoKi does not (yet) support the full expressiv-
ity of OWL 2. Most importantly, it does not yet support complex concepts. Evaluation
finally is supported by checklists which list model elements with qualities which indi-
cate potential modelling mistakes and which thus should be reviewed.
In order to accommodate the integration of informal and formal modelling within one

3.4 Discussion 65

computational environment, the issues of collaboration between actors with different
skills, keeping coherence between content expressed at different levels of formality and
of integrating different kinds of models have been investigated during development of
MoKi. Collaboration between people with varying skills in the domain, ontology en-
gineering, and description logics as knowledge representation formalism is supported
by providing a medium (a wiki) which can hold both informal and formal knowledge.
Note also, that most requirements which are discussed in [88] for collaborative knowl-
edge construction tools and in [135] for Collaborative Protégé are easily met by MoKi,
merely by its being implemented on top of MediaWiki. The requirements satisfied by
MoKi are distributed access to a shared ontology, version control, user identity manage-
ment and tracking the provenance of information and discussion on model elements.
Fine-grained access control is not possible in MoKi, and collaborative protocols that
involve rating or voting are not supported in MoKi either. Coherence is ensured mostly
through keeping the informal and formal model element descriptions in one place, i.e.
in one wiki page. Inconsistencies between the natural language text or rich content on
the one hand and the formal descriptions on the other hand are not detected. Indeed,
this would exceed state-of-the-art in natural language understanding, and even more
so in multimedia understanding. However, coherence is supported in another slightly
roundabout way, namely through the “watch” functionality of MediaWiki. Through
this functionality, users can be notified if changes at a wiki page, in MoKi that is
changes concerning a model element, occur. Like this, both domain experts and on-
tology engineers can easily detect changes to parts of the ontology in which they hold
an interest. MoKi is currently able to integrate the creation of domain models, busi-
ness process models and skill models. An extension to other kinds of models is easily
possible since templates, as provided by Semantic Forms, are used to create the spe-
cific model element pages. While MoKi naturally does not aim to substitute specialised
modelling tools which have been developed for all kinds of knowledge representation
formalisms, it does aim to be a central ontology engineering environment for all, such
that sufficiently developed formal models can exported into standard KR formalisms
from MoKi.

The goals that MoKi targets (supporting knowledge acquisition, informal and for-
mal modelling, integration of informal and formal modelling through supporting col-
laboration between people of different skills, providing coherence across levels of for-
mality and integrating different kinds of models) have been partly reached. The follow-
ing are directions of ongoing and future work to come still closer. First, MoKi does not
yet fully support OWL 2 but this is underway. The challenge hereby is less technical
than related to user-interaction design. Care must be taken not to trade off knowledge
representation complexity with ease-of-use, since MoKi was in particular designed to
be used also by non-expert knowledge engineers. Second, MoKi did not originally in-
tegrate a reasoner. This has been addressed by myself in the context of integrating
feedback on modelling through assertional effects and on evaluation through review
of entailed statements into MoKi and is discussed in more detail below in Chap. 6. In
general, the support for integrating informal and formal modelling in MoKi could go
further. As an example, some back-translation of formally expressed knowledge into
natural language could be provided (logic verbalisation).

4

Ontology Evaluation Through Review of Entailed
Statements

Through reviewing entailed statements, ontology engineers can verify whether what
they modelled is what they meant. The trick hereby is that entailed statements as well
as simple solutions to get rid of unwanted entailments can be generated automatically.
Ontology engineers benefit from reviewing inferred statements in two ways: First, they
get an insight into knowledge implicit in the ontology, and second they can review the
ontology without getting bored by having to go through what they have explicitly mod-
elled yet another time.
My contribution consists of bringing relevant description logic founded work into the
field of knowledge engineering. Diagnosing and repairing inconsistent logical theories
has for long been researched in the logic community, and it will turn out that the devel-
oped methodologies will serve as a starting point to handle undesired inferences. It will
also be seen however, that this can only be a starting for supporting ontology engineers
in their inherently creative activities. I start my discussions from the ontology engineer-
ing viewpoint, namely that reviewing what has already explicitly been stated in slightly
different terms is beneficial. Only from there will I discuss how this is related to the
description logic problems of repairing inconsistencies. Relevant contributions are then
the analytic discussion of the potential and limitations of reviewing entailed statements
in order to evaluate an ontology, and experimental study in which this approach was
executed based on a prototypical implementation, called the ontology questionnaire.
Insights gained from this investigation finally have led to a more advanced support for
ontology evaluation in MoKi (see Chapter 6).

4.1 Related Work

A variety of tools could be used to review entailed statements, since functionalities for
inference explanation and ontology repair are available in most modern ontology ed-
itors, for instance in Swoop, in Protégé 4 using the explanation plugin [56, 103] and
in the NeOn toolkit through the RadOn plugin [106]. Because of a different focus, the
access to the inferred statements and to their explanations is often not very direct, and
the approach to repair is more technical than conceptual. Although Protégé 4 includes

68 4 Ontology Evaluation Through Review of Entailed Statements

a list of inferred statements 1, inferred concept inclusions are most often displayed im-
plicitly through a tree visualisation of the subsumption hierarchy. This implicit display
of inferences may not be enough, for instance in order to detect misleading concept
names. Although concept names do not change the formal meaning of an ontology,
it is nonetheless important to convey as much information as possible via the name
to human users of the ontology in order to enhance the ontology’s usability. Usabil-
ity in turn is relevant for ontologies since ontologies are often applied at the interface
between humans and computers.

Example: In order to distinguish between information sources accessible only
from within a company and public information sources, in a tree visualisa-
tion it is easy to build a hierarchy with InformationSource at the root, and
Internal and External as child-concepts. When displayed as explicit state-
ments however, it is easy to see that “Internal is an Information Source” does
not make sense as statement.

Furthermore, the review of entailed statements during an ontology evaluation proce-
dure can be seen as complementary to other systematic approaches for evaluation.
Among the few systematic evaluation strategies (see Chapter 2.4), I argue that the us-
age of competency questions is particularly well suited to complement the review of
entailed statements as ontology evaluation practice. While the first validates the ontol-
ogy’s conformity to requirements, the latter validates the agreement of domain experts
and ontology engineers with what they have implicitly modelled.

4.2 Ontology Questionnaire: Tool Support for Reviewing Entailed
Statements

The following procedure for systematic evaluation of a formal ontology is investigated:
The ontology engineer reviews entailed statements, i.e. statements that logically fol-
low from the ontology but are not explicitly stated. In case of agreement, a statement
“passes” this review. In case of disagreement, the ontology engineer asks for an ex-
planation for the statement in question. An explanation for an inferred statement is a
minimal set of logical, explicitly made, statements that cause the inferred statement. In
the ontology questionnaire, a tool to support exactly this procedure, partial support is
given to the decision of how to act. The name “ontology questionnaire” expresses that
this process can be seen as going through an automatically generated questionnaire for
assessment of the ontology under review.
Within a complete ontology engineering process as depicted above in Fig. 2.3, such an
evaluation procedure would take part within the “Formal Modelling” phase.

4.2.1 Walkthrough

Starting point for using the ontology questionnaire therefore is a content-wise arbi-
trary ontology. The ontology questionnaire displays inferred statements, as for instance
1 In the “Active Ontology” tab, as “Inferred Axioms”.

4.2 Ontology Questionnaire 69

“Imaginary brainstorming is a creativity technique” for an ontology about the domain
of innovation management (see Fig. 4.1). For each inferred statement, the ontology
questionnaire offers a justification, i.e. a reason why the statement is entailed by the
ontology. While reviewing the inferred statements, the user of the questionnaire (do-
main expert or ontology engineer) might disagree with an inferred statement and wish
to remove it. This is now the interesting part: Removing an inferred statement is not
directly possible precisely because it is inferred and not explicitly stated. The ontology
questionnaire finds one or more explanations for an inferred statement, and the user
can choose to remove the reason for the inference.

Example: The statement “Imaginary brainstorming is a creativity technique”
is inferred because of the explicit statements “Imaginary brainstorming is a
brainstorming technique”, “Brainstorming is an intuitive-creative creativity
technique” and “An intuitive-creative creativity technique is a creativity tech-
nique”2.

Usually there is more than one option (see Fig. 4.2), and sometimes it is also neces-
sary to remove more than one statement. There is of course always the option to react
more indirectly and change the structure and design of the ontology instead of simply
removing some statements. Returning to the example from above, if the user disagreed
with the inferred statement that “Imaginary brainstorming is a creativity technique” she
can either delete the statement “Imaginary brainstorming is a brainstorming technique”
or delete the statement “Brainstorming is a creativity technique” in the ontology in or-
der to get rid of the unwanted inference. Note that side-effects are possible, i.e. it may
be that such a deletion causes other inferences besides “Imaginary brainstorming is a
creativity technique” to be removed as well.

4.2.2 Implementation

A prototypical implementation of an ontology questionnaire, the outcome of a bach-
elor thesis [132], was used for the experimental study described below. It is realised
as a client-server application, and consequently users need only a browser to access
the application. For reasoning, it accesses the open-source OWL DL reasoner Pel-
let [99, 120]. Justifications are computed using the built-in explanation functionalities
in the Swoop [62, 126] libraries. Several decisions regarding the presentation to the
user were made. First, in order to remove a selected axiom, the user needs to make
a conscious choice. A minimal hitting set is suggested by the ontology questionnaire,
but in case of multiple hitting sets of the same size, this suggestions is purely random
and does not follow any further heuristics. Second, subsumption axioms of the form
C v >, i.e. subsumption axioms stating that a concept is satisfiable, were excluded
from display. Apart from this, no heuristics were applied for display. An improved ver-
sion of the ontology questionnaire is integrated in MoKi [83, 110] and described in
detail in Chap. 6.
2 In this ontology there are two kinds of creativity techniques, one of which are called intuitive-

creative and the other are called systematic-analytic.

70 4 Ontology Evaluation Through Review of Entailed Statements

Fig. 4.1. The ontology questionnaire displays inferred subsumption axioms (upper box) as well
as explicitly stated axioms (lower box).

Fig. 4.2. Why is imaginary brainstorming a creativity technique? The ontology questionnaire
retrieves an explanation for the inference. In case of disagreement, the user can choose to remove
the suggested statement in the upper (blue) box, either of the three statements in the lower (pink)
box, or deal more indirectly with it by changing the ontology’s structure.

4.3 Formulation of Relevant Problems in DL 71

4.3 Formulation of Relevant Problems in DL

Some notions from the field of description logics are necessary in order to formally
express the fundamental questions which need to be answered in an implementation of
the ontology questionnaire: Which statements are entailed by an ontology? How must
an ontology be modified in order to no longer entail a statement?

Given an ontology O = {C1 v D1 . . . Cn v Dn}, explicitly stated axioms can be
removed from O by simply deleting them. For any inferred axiom α, i.e. O |= α and
α 6∈ {Ci v Di|i = 1 . . . n}, a more complex solution is obviously necessary. The task
is formalised as follows: Modify O such that it results in a modified ontology O′, for
which O′ 6|= α is true. This modification is called “removing an inferred axiom from
O” throughout this paper, although clearly not the inferred axiom itself can be removed
but only its causes. Since OWL DL is based on a monotonic logic, it can be seen at this
point already that O′ ⊂ O, i.e. some statements need to be removed from O in order
to remove an inferred axiom α.

Two questions are fundamental to realising the ontology questionnaire as sketched
conceptually above. Given an ontology O = {C1 v D1, . . . Cn v Dn}:

1. Apart from the explicitly modelled general inclusion axioms Ci v Di, i = 1 . . . n,
which further general inclusion axioms are entailed by O?

2. Given a general inclusion axiom α such that O |= α, and α 6∈ O, how must O be
modified into O′ such that O 6|= α?

It is strictly necessary to answer the first question in order to construct the list of
inferred statements which the ontology engineer shall review at all. It is not necessary
in the technical sense but clearly desirable to be able to answer the second question in
order to give hints on how to revise the ontology to the ontology engineer. As will be
seen in the discussion later on however, the kind of support given is limited under a
certain aspect.

4.3.1 Limitation to Explicitly Mentioned Concepts

In general, OWL DL ontologies entail an infinity of subsumption axioms. Thus, the
number of entailed statements that are computed and displayed needs to be limited to
a finite number for every practical purpose. Within the scope of the ontology question-
naire, such a limitation is achieved by considering only statements including concepts
that are actually mentioned within the ontology in question. An arbitrarily complex
concept C is mentioned within an ontology iff there exists an explicit statement involv-
ing C.

Example: To illustrate this limitation consider an ontology in which Human
and Mammal are concepts and parent is a role. The axiom Human v
Mammal entails an infinity of axioms like
∀parent.Human v ∀parent.Mammal, ∀parent.(∀parent.Human) v
∀parent.(∀parent.Mammal) etc. If the complex concepts ∀parent.Human

72 4 Ontology Evaluation Through Review of Entailed Statements

and ∀parent.Mammal are not mentioned explicitly in the ontology, the en-
tailment ∀parent.Human v ∀parent.Mammal is not displayed in the
questionnaire.

Then, listing entailed but not explicitly stated general inclusion axioms simply amounts
to comparing concepts pair wise and checking which of the two is subsumed by the
other, or if no subsumption is entailed either way. If any subsumption is found which
is not explicitly stated, it counts as an entailed general inclusion axiom.

4.3.2 Justifications in OWL

The second question has been treated with slightly varying focus under the names of
ontology debugging, ontology repair and ontology explanations (for a short discussion
see Chapter 2.4). For the first implementation of the ontology questionnaire, I decided
to follow the explanation mechanism that is available Swoop libraries [126] and since
recently also in the OWL Api [131] which is based on justifications [61].
First, a justification of an entailment, which correspond to what has also been called
“the reason for an entailed axiom” in this paper, is defined as follows.

Definition 1 (Justification). Let O |= α where α is an axiom and O an ontology. A
set of axioms O′ ⊆ O is a justification for α in O if O′ |= α and O′′ 6|= α for every
O′′ ⊂ O′. (e.g. [61, p269])

In other words, a justification is a minimal set of axioms from which the statement
α follows. There may be more than one justification for any particular α. Clearly, in
order to remove the entailment α, at least one axiom from each justification must be
removed. Such a set of axioms (at least one from each justification)HS can be formally
defined ∀s ∈ S : HS ∩ s 6= ∅ where S is the set of all justifications. The technical
term forHS is hitting set. This explains why sometimes multiple statements need to be
deleted from an ontology in order to remove an inferred statement. Several algorithms
to find all justifications for OWL entailments are described in [61].

4.4 Analysis of Benefits and Limitations Based on Typical
Modelling Errors in OWL

Based on a study of typical modelling errors in OWL [109], I analysed which typi-
cal modelling errors can be detected through assessing inferred statements, and which
would need further support. I note that the following analysis is of course valid for
all ontology editing tools which give support by somehow displaying inferences. The
following list of error patterns is directly taken from [109].
I count modelling errors which lead to erroneous inferences as amenable to the
suggested support, and modelling errors which cause the lack of inferences as not
amenable to the suggested support. The reason is that in order to detect missing in-
ferences, the ontology engineer already needs to be sufficiently advanced.

4.4 Analysis of Benefits and Limitations 73

Inclusion Axioms as Implication

Inexperienced ontology engineers sometimes understand the subsumption hierarchy as
a vague, informal structure like for instance a folder hierarchy. However, subsumption
has a very specific meaning, namely A v B means that everything that is of type A is
also of type B.

Example: ReviewedArticle v Article can be verbalised as “The concept
ReviewedArticle is subsumed by the conceptArticle”, i.e.ReviewedArticle
is more specific than Article. It could also be expressed as implication “if
something is a reviewed article then it is an article”.

Although subsumption is one of the more simple to understand features of OWL, it is
yet often not understood, and especially lost sight of in deep hierarchies.

Example: From

ConferenceProceedings v ReviewedArticle
ReviewedArticle v Article

it can be inferred that

ConferenceProceedings v Article

Looking at this inference, it is unclear whether ConferenceProceedings re-
ally denotes conference proceedings. In this case the explicitly stated hier-
archy would be wrong. Alternatively, ConferenceProcedings could mean
something like “article published in conference proceedings” in which case
the concept should stay where it is in the hierarchy but should be renamed.

A wrong specialisation hierarchy can easily be detected through the review of entailed
statements.

Range and Domain Constraints

Range and domain constraints of relations in OWL are used for reasoning, while many
people seem to expect range and domain constraints to actually restrict the values one
can use relations with. However, these constraints work in the other direction: When-
ever a relation is used in a role assertion, the subject and object are inferred to conform
to the range and domain constraints.

Example: If the relation organises shall be used to specify that events are
organised by persons, it makes sense to define Person as the domain of
organises, andEvent as its range. If someone then statesProjectWorkshop v
Workhop u ∃organises−.P roject, i.e. a ProjectWorkshop is a workshop
that is organised by a project, then Project will be inferred to be a specific
kind of Person.

Such surprising inferences can easily be detected through the review of entailed state-
ments.

74 4 Ontology Evaluation Through Review of Entailed Statements

Difference Between Necessary and Necessary and Sufficient Conditions

A necessary condition corresponds to an inclusion axiom, while a necessary and suffi-
cient condition corresponds to an equality axioms.

Example: Workshop v ∃organises−.P erson essentially means that “a
workshop is organised by someone” but not “everything which is organised
by someone is a workshop”.

These two often get mixed up (which may to some extent have something to do with
the user interface in ontology editing tools). In order to exploit reasoning it is advan-
tageous to find necessary and sufficient conditions even though this may be difficult,
since nothing will be inferred to be subsumed under a class defined only by necessary
conditions.
Assessing inferences can partly support detecting such an error, in case either (i) some-
thing is stated wrongly as necessary and sufficient condition and a second concept, or
an instance, exists which is then classified (wrongly) or (ii) an expected inference is
not made.

Errors in Understanding Logical Constructs

Finally, also common logical constructs may pose problems to ontology engineers.
Reasons for this range from too little formal training to the fact that it is sometimes
inherently difficult to sort out exactly what one actually wants to state. Particular dif-
ficulties seem to be the meanings of “and” (conjunction) and “or” (disjunction), which
are slightly different than the less formal meaning given to these words in daily use
of language. Additionally, it is sometimes not obvious in which order to put existen-
tial/universal restrictions, conjunction or disjunction, and negation.

Example: For instance, it is wrong to define “A project funded by both an EU
Funding Program and a National Program” as

EUCofundedProject
.= ∃fundedBy(EUFundingProgram u

NationalFundingProgram)

The above means that aEUCofundedProject is funded by something which
is both an EUFundingProgram and a
NationalFundingProgram. Instead, the following definition is closer to the
intended meaning :

EUCofundedProject
.= ∃fundedBy.EUFundingProgram u
∃fundedBy.NationalFundingProgram

Such modelling mistakes can only partly be detected by reviewing entailed statements,
depending on whether the wrong definitions lead to any inferences at all.

4.4 Analysis of Benefits and Limitations 75

Open World Assumption

Directly related to the issues pertaining to existential and universal restrictions, is the
difficulty of understanding open world reasoning. Most people nowadays are socialised
with database systems, as e.g. getting train times from a website. If some piece of
information does not exist in a database, it is assumed not to exist at all (closed world
reasoning). This contrasts with the open world assumption made in description logics
and in OWL.

Example: In order to differentiate between EU projects which are solely
funded by a European funding program and EU co-funded projects which are
funded jointly by a European funding program plus some other funding pro-
gram (e.g. a national program), it does not suffice to define a EU Project as a
project which is funded by a EU funding program:

EUProject
.= ∃fundedBy.EUFundingProgram

In this case, given the definition that a project co-funded by the EU is a project
which is funded by the EU and additionally by some national funding program:

EUCofundedProject
.= ∃fundedBy.EUFundingProgram u
∃fundedBy.NationalFundingProgram

EUCofundedProjectwould be inferred to be a specific kind ofEUProject.
This is undesirable if we wanted to express that a EUProject is only funded
by a European funding program. Such an undesired inference, originating from
misunderstanding open world reasoning, can be detected through a review of
entailed statements.
On the other hand, if the definition of a EU project is correctly extended to

EUProject
.= ∃fundedBy.EUFundingProgram u
∀fundedBy.EUFundingProgram

then an FP7 project defined as FP7Project .= ∃fundedBy.{FP7}, where
FP7 v EUFundingProgram is known, would still not be known to be a
EU project because a reasoner would assume that maybe there is some addi-
tional funding by a national program that is not known to the reasoner. Hence,
in this case no inference is made and this problem related to open world rea-
soning would only indirectly be visible through the lack of a probably expected
result.

Therefore, modelling errors related to open world reasoning can be detected partly
through the review of entailed statements.

Universal vs. Existential Restriction

In this error pattern I include also what is discussed as “trivial satisfiability of universal
restriction” in [109]. This error pattern describes the difficulty non-expert ontology
engineers have with differentiating between the two.

76 4 Ontology Evaluation Through Review of Entailed Statements

Example: Stating
Workshop v ∃organises−.P ersonmeans that every workshop is organised
by at least one person, but additionally there could be more people, or other
things, e.g. werewolves who help organising.

In order to exclude this possibility, an additional universal restriction along the lines
Workshop v ∀organises−.P erson is required.

Example: Stating only that Workshop v ∀organises−.P erson means that
everyone who organises a workshop is a Person, but it could be that a workshop
is organised by no one (trivial satisfiability).

Both omissions are therefore not easily visible as inferences, apart through the lack
of expected inferences.

Failure to Make Information Explicit

Inexperienced ontology engineers often assume that properties of concepts are obvious
to everyone, including a reasoner, because of their background knowledge about the
concepts that are usually denoted by a given symbol (word). It is a learning process
to realise that humans need good verbal descriptions, and machines need good for-
mal descriptions. Additionally, being more precise is the whole purpose of creating an
ontology.

Example: The similarity between the concepts “Brainstorming” and “Imagi-
nary Brainstorming” is available to humans because of the given names. It is
a mistake however to not connect them formally, for instance through a sub-
sumption relation.

Example: Very often, disjointness statements are missing from an ontology.
For instance, something that is a “Creativity Technique” is not a “Project Part-
ner” in any intended world.

Missing information is not systematically detected through assessing inferred state-
ments.

In general it can be seen that through the study of entailments, missing information
can not be detected. Naturally this points strongly into a direction for future research,
namely to find potentially missing information and suggest axioms for addition. Re-
lated to this is the problem that expected inferences that do not appear are not directly
revealed by reviewing inferred statement. Instead, the ontology engineer can only re-
member expected inferences and try to find ways to produce them. Nonetheless, some
modelling errors can be directly unveiled through reviewing inferred entailments. The
following experimental study sheds some more light on potentials of the proposed pro-
cedure.

4.5 Experimental Study 77

4.5 Experimental Study

4.5.1 Application Setting

In the scope of the APOSDLE [3, 71] project, five learning domains were modelled. For
each learning domain an ontology about relevant topics for learning (domain model), an
ontology about work processes in which learning should take place (task model) and an
ontology about skills required by these tasks (skill model) were created. These models
were created following a modelling methodology, the Integrated Modelling Method-
ology (IMM), which is described in detail in [41, 71]. The IMM has been specifically
designed to support non-expert knowledge engineers and consequently offers revision
support at all its steps [97]. Therefore all ontologies which “reached” the point of be-
ing reviewed in the ontology questionnaire had already gone through several different
reviews, as is sketched in Fig. 4.3.

Fig. 4.3. A zoom into the revision process of the domain model in the Integrated Modelling
Methodology (IMM). All revision steps imply, where the necessity of changes in the models is
identified, an iteration loop going back to revising the domain model in MoKi and another entry
into the revision process.

The five learning domains that were created concern the topics of consulting on
industrial property rights (ontology with 95 concepts), the Information Technology In-
frastructure Library (ontology with 101 concepts), electromagnetic simulation (ontol-
ogy with 116 concepts), innovation management (ontology with 134 concepts) and
statistical data analysis (ontology with 71 concepts). Each domain model configures an
APOSDLE installation at an application partner of the project [72], and each domain
model except the model about RESCUE was reviewed using the prototypical ontol-
ogy questionnaire. The review was performed by employees of the application partner
companies, who had knowledge both of the domain and of ontology engineering, with-
out necessarily being an expert in either field. These persons are called “responsible
ontology engineers” in the following description of the study.

78 4 Ontology Evaluation Through Review of Entailed Statements

4.5.2 Evaluation Procedure and Results

At each application partner, the responsible ontology engineer completed the ontol-
ogy questionnaire. When this was done, I conducted a telephone interview with each
ontology engineer to elicit information about the invested effort, the perceived benefit
and consequences of reviewing the ontology via the ontology questionnaire. In order
to guarantee some confidentiality to the involved application partners, the following
analysis does not refer to the domain ontologies by their domain.
The questions were:

– Invested effort: How long did it take to go through the questionnaire? Was this a
difficult task?

– Benefit: Did the ontology engineers benefit from going through the questionnaire?
– Effect: Did going through the questionnaire trigger any changes in the model? If

yes, which?

The effort to go through the questionnaire ranged from half an hour to three hours.
In two cases, the domain ontology was a simple taxonomy with only two levels. There-
fore they did not contain any implicit subsumptions besides the asserted subsumptions,
and the ontology questionnaire did not offer an additional benefit. In two cases, no
change in the underlying domain model was triggered by its application. In a third
case, which took three hours, a discussion about the organisation of domain concepts
was triggered. Finally it was decided to split one concept into three more specific con-
cepts in order to obtain a more valid hierarchy. This indicates the usefulness of the
ontology questionnaire to support reflection of the created model.
All ontology engineers stated that they benefited from going through the questionnaire,
since this allowed them to review in a slightly different form (i.e. minus everything they
explicitly stated anyway) the domain ontology they had created. Interestingly, also the
two knowledge engineers who did not change their ontology due to review in the ontol-
ogy questionnaire nevertheless noted explicitly that they liked the tool, but had already
revised thoroughly their ontology before applying it in the scope of the IMM. This re-
flects well on the IMM, in that it encourages sufficient incentives and ideas for revision,
but unfortunately does not give more constructive feedback on the ontology question-
naire.
Concerning the usability, the ontology engineers were satisfied in general with the
rather straight-forward presentation, but dissatisfied with the presentation of statements
as lists without prioritisation. Both inferred statements and the originally explicated on-
tology were presented as such lists.

4.5.3 Discussion of the Experimental Study

Although it is difficult to derive general conclusions from just five use cases, such an
experience nevertheless gives useful indications. One, the effort to use the ontology
questionnaire is manageable for ontologies containing around 100 concepts. Two, it
is desirable to develop a prioritised list of statements to review. Such a prioritisation
will become more important if larger ontologies are to be reviewed. Three, all involved
persons judged such a review as being worth the time spent. This is indeed highly

4.6 Discussion 79

relevant to keep up the motivation of people in carrying out the ontology evaluation.
Together, this feedback indicates that further research into the proposed direction of
ontology evaluation is worthwhile. One point which definitely influenced the given
feedback however was that the ontology questionnaire was applied in situations where
the creation of the models was embedded in a thorough modelling methodology. From
some statements given by the ontology engineers it can be suspected that the small
number of changes triggered is due to the rigour of revisions which happened before
the ontology questionnaire was even applied.
Furthermore, I have seen in some more informal experiments than the above described
application study, that removing existing statements was not actually the method of
choice to deal with an undesired inference. Frequently, more subtle actions were taken,
which ranged from simple renaming to removal/addition of concepts and relations, and
to a complete restructuring of the representation.

4.6 Discussion

Based on the analysis and the experimental study given a first prototype of the ontology
questionnaire, the following improvements were made during integration of the ontol-
ogy questionnaire within MoKi: A first improvement of the ontology questionnaire con-
cerned the inclusion of assertional axioms in the ontology questionnaire. This means
that assertional axioms such as for instance “Alice is a project leader” and “Alice works
together with Bob” also show up as inferred statements. This does not present a major
innovation, and such functionality is already integrated for instance in Swoop. In the
context of the experiment carried out so far, not displaying inferred assertional axioms
did not represent a limitation since the ontologies in question only contained concepts.
Directly following user feedback, prioritisation of inferred statements was also taken
up in MoKi’s ontology questionnaire. A simple heuristic is to prioritise all subsump-
tion axioms which do not stem from the simple transitivity of subsumption. However,
such axioms shall nevertheless be displayed in order to make explicit the meaning of
a hierarchy in description logic, which contrasts with hierarchies frequently encoun-
tered in other settings such as folder hierarchies or keyword hierarchies for classifying
books. Another issue is the representation of side-effects of removing axioms. When
deleting asserted axioms, it is possible that not only the undesired entailment but also
some actually desired inferences are also “removed”. Such information was not pre-
sented in the ontology questionnaire used in the experimental study described above,
but is present in MoKi’s ontology questionnaire. However, there are also directions
for further improvement that require more in-depth research and thus cannot be said
to have been solved in MoKi’s ontology questionnaire either. One issue concerns the
representation of axioms themselves. Although a simple attempt at expressing logical
axioms in a close-to-natural-language form was made, no sophisticated verbalisation
functionality was employed. that a more closely natural language representation of the
logical axioms would push the ontology questionnaire more into the direction of the
knowledge experts, i.e. more towards the source of knowledge. A critical point is that
although work on English verbalisation for OWL exists (e.g. [60]), this seems to be
lacking for most other languages.

80 4 Ontology Evaluation Through Review of Entailed Statements

An inherently more complex open issue is how to improve the hints given on how to
modify the ontology in order to improve it. Currently, hints can be given as to which
axioms might be removed via explanations of undesired inferences. The ultimate goal
however should be to provide also hints on which (kinds of) axioms then to add. The
rationale behind this goal is of course that if many undesired inferences are removed
by removing explicit statements, in the end only the empty ontology with no undesired
inferences remains. A first step in this direction could be based on the catalogue of
modelling mistakes in [109] and take the form of simple links to modelling guidelines
or specific examples in tutorials. In general however it is not obvious how such complex
ontology revision behaviour could be supported automatically.

To conclude, the hypothesis that reviewing inferred statements is a valuable part of
an ontology evaluation procedure which contributes to evaluating an ontology’s cor-
rectness is supported by the analytic discussion and experimental study which have
been carried out. Reviewing inferred statements can be tightly integrated with mod-
elling, and lends itself naturally to being integrated in a modelling environment.

5

Assertional Effects of Ontology Editing Activities

Disregarding very simple ontologies, it is not trivial even for expert ontology engineers
to grasp the effects of changes to an ontology. Given a knowledge base, which includes
not only terminological and role axioms but also data, I propose to capitalize on the ex-
istence of data in order to support contributors during ontology editing. The goal is to
make the effects of removing or adding terminological axioms to a knowledge base vis-
ible in terms of knowledge lost or gained about data. On the one hand, the formulation
of effects in terms of assertions about instance data is expected to be easily intelligible
also for contributors with little knowledge engineering expertise. On the other hand,
when an ontology is used to define the semantics of data as it happens in a knowledge
base, the ontology and the data must both correspond to the same view of the world.
Presenting contributors to a knowledge base with knowledge lost or gained about data
allows checking for this correspondence.
The contribution of this part of the thesis lies first in motivating the presentation of
knowledge lost or gained about data to knowledge base contributors, second in the
presentation of a formal characterization of the problem, and third in putting down
conditions on the underlying description logic under which the problem is then de-
cidable. From this theoretical discussion, a decision algorithm immediately follows.
An approximation of the decision algorithm for assertional effects of ontology editing
activities has been integrated in MoKi (Chap. 6).

5.1 Motivation

Consider the following excerpt from a knowledge base about common geographic
knowledge and historical persons: It is known that “Crete and Kos are islands” (5.1,5.2),
“Crete is located in Greece” (5.3) and “Crete is located in the Mediterranean Sea” (5.4)
These facts are embedded in a knowledge base where a set of key concepts such as
islands, areas of land vs. areas of water, nations etc. are defined along a hierarchy as
illustrated in Figure 5.1, and individuals are assigned in general to sensible concepts as
their types (e.g. “The Mediterranean Sea is a water area”). A contributor wants to for-
malise the concept Island and adds an axiom stating that all islands are located only
in areas of water (5.5).

82 5 Assertional Effects of Ontology Editing Activities

Island(crete) (5.1)

Island(kos) (5.2)

locatedIn(crete, greece) (5.3)

locatedIn(crete,mediterranean) (5.4)

Island v ∀locatedIn.WaterArea (5.5)

Fig. 5.1. The knowledge base given in (5.1) - (5.5) is a knowledge base about common geo-
graphic knowledge and historical persons. It is defined on top of an ontology which expresses
that islands are a specific kind of land areas, both water and land areas are natural areas, nations
are geopolitical areas, and everything mentioned so far is a geographic area. In correspondence
with common knowledge, the Mediterranean Sea is seen as a water area, kos and crete as islands,
and greece is a nation. The figure illustrates the tentative addition of the constraint “Every island
is only located in water areas” (5.5).

The most obvious consequence of the additional axiom is that greece will then
be inferred to be a WaterArea, which is surely not intended. As a further example
consider that the universal restriction (∀locatedIn.WaterArea)(kos) does not im-
mediately imply the existence of a relation locatedIn for kos. This has been pointed
out in Section 4.4 above under the name of “trivial satisfiability of universal restric-
tions”. Such a consequence, or rather the lack of such a consequence, can become
visible by considering how the additional axiom affects the models of the knowledge
base. Among the constraints added to the models of the original knowledge base are the
additional type WaterArea to greece and mediterranean, but no additional relation
locatedIn for kos. In order to remedy this omission, an existential restriction such as
for instance Island v ∃locatedIn.WaterArea should be added.
From the logical point of view, the new knowledge base is consistent. However, a con-
ceptual inconsistency exists due to the fact that the ontology entails a statement that is
inconsistent with the world that the modeller has in mind, namelyWaterArea(greece).
Hence, the resulting theory will represent the point of view of the modeller inade-
quately or incorrectly. It must be pointed out that this problem is of conceptual nature,

5.2 Assertional Effects of Ontology Editing Activities 83

in contrast to more formal problems like an unsatisfiable concept or a logically incon-
sistent knowledge base. Apart from inconsistent vocabulary use, sources of conceptual
inconsistency also include differing design preferences by contributors, divergent to
incompatible underlying views on the domain or modelling errors originating in (too)
little experience with formal knowledge representation.
Considerations of this kind led to the study of terminological axioms on the instance
data in a knowledge base. In particular I consider inferred facts caused by additional
terminological axioms as effects. Where terminological axioms are removed from a
knowledge base, inferences that are lost and thus “not known anymore” by the knowl-
edge base are considered as effects. By ontology editing activities I understand in the
scope of this work the explicit addition or removal of terminological axioms to/from an
ontology. Such an activity is called an ontology edit. This work is not concerned with
the manipulation of role axioms or facts.

Giving immediate feedback on the effect of ontology edits in terms of concrete
individuals gives the contributing users an easy means to review their actions in the
light of effects on the whole. This addresses the observation that an inherent difficulty
in ontology engineering is that such effects are not obvious. By contrast, in software
engineering the consequences of one’s changes are immediately executable and thus
visible (see also [75]). It is precisely this point that a reasoning service computing the
effects of axioms on instance data changes. From this perspective, effects in terms of
instance data serve as examples of how the terminological axioms will “work” on the
knowledge base’s data.
A reasoning service that computes effects of terminological axioms on concrete data is
therefore especially relevant for knowledge bases maintained in the spirit of Web 2.0,
where contributors add not only content, as e.g. in since Wikipedia [142], or facts, as
e.g. in the Semantic Wikipedia envisioned in [67], to a knowledge base but also add
terminological axioms to the underlying ontology. In such a setting, (i) frequent ontol-
ogy edits are expected, (ii) the group of contributors is expected to be heterogeneous in
terms of knowledge engineering expertise, but also in terms of views on the knowledge
itself and (iii) it follows that such a knowledge base is in danger of becoming chaotic if
not each contributor is able to judge the effects of her actions correctly and efficiently.

5.2 Assertional Effects of Ontology Editing Activities

The following definition restricts the meaning of assertional effects to concept asser-
tions. Possible extensions with regard to these limitations are part of our ongoing re-
search and discussed in Section 5.4.

Definition 2. (Assertional effects) Let KB = (T0,R,A) and KBT = (T0∪T ,R,A).
Let Σ = (NC , NR, NI) be the vocabulary in which KBT is formulated and let DL be
the DL in which the assertional effects shall be formulated.

– C(x) such thatC ∈ C(Σ,DL) is an assertional effect of T on KB iff KB 6|= C(x)
and KBT |= C(x).

84 5 Assertional Effects of Ontology Editing Activities

– T affects an individual x ∈ NI in KB iff an assertional effect C(x) of T on KB
exists.

– T affects a knowledge base KB iff an assertional effect C(x) of T on KB exists.

KBT is assumed to be consistent and NI is assumed to be non-empty, i.e. the
knowledge base knows about at least one individual. Individuals can occur in A or, if
the DL allows for nominals as SHOIN and SROIQ, also in T .

Example: Assume KB = (T0,R,A) is the knowledge base described above
in (5.1) - (5.4). It contains the facts that Crete and Kos are islands, that Crete
is located in Greece, and that Crete is located in the Mediterranean Sea. T0
and R are empty. Then, (5.5), which states that islands are located only in
water areas, is added. The resulting knowledge base is called KBT = (T0 ∪
T ,R,A). WaterArea(greece) is an assertional effect of T on KB since
KB 6|= WaterArea(greece), but KBT |= WaterArea(greece).

The above definition can be applied to both ontology editing activities. If T is added
to KB, then the assertional effects of T on KB represent knowledge about individuals
which is gained. If T is removed from KBT , then the assertional effects of T on KB
represent the knowledge about individuals which is lost.

5.2.1 Deciding the Existence of Assertional Effects

Since the set C(Σ,DL) is in general infinite for DLs equally or more expressive than
ALC, I consider at first the decidability of the general question whether a particular
TBox T affects a particular knowledge base KB. In order to do so, I first define the
notion of reachability of a concept C from an individual x in a knowledge base KB.
Let R− denotes an inverse role such that (R−)I = {(y, x)|(x, y) ∈ RI}, and let
N−R = {R|R ∈ NR or R− ∈ NR} in description logics which include inverse roles.

Definition 3. (Path) w0R1w1 . . . Rnwn is called a path in an interpretation I =
(∆I , ·I) if and only if for i = 1 . . . n it holds that wi ∈ ∆I , and (wi−1, wi) ∈ RIi and
Ri ∈ N−R .

Definition 4. (Reachability) A concept C is reachable from x ∈ NI w.r.t. KB iff there
is a model I = (∆I , ·I) of KB in which xI = w0, and a path w0R1w1 . . . Rnwn

exists in I such that wn ∈ CI .

In other words, C is reachable from x in KB iff either C(x) or ∃R1 . . . Rn.C(x)
for n > 0 is satisfiable w.r.t. KB.
The definition of reachability is motivated by the fact that it can be shown that reach-
ability is equivalent to the existence of assertional effects. First, this is shown under
the condition that the DL in question is decidable under a tableaux decision procedure.
Later, I will show a small generalisation.

Theorem 1 In description logics weaker or equivalent to SROIQ, T = {> v CT }
affects KB iff an individual x exists in KB such that ¬CT is reachable from x in KB.

5.2 Assertional Effects of Ontology Editing Activities 85

The proof for Theorem 1 is based on the fact that for SROIQ a tableaux deci-
sion procedure exists. For exact descriptions of tableaux algorithms I refer the reader
to [58] where a tableaux decision procedure for SHOIQ, a language that encompasses
SHOIN , is described and to [57] for a tableaux decision procedure for SROIQ.
Nonetheless, some basic notions related to tableaux decision procedures are reviewed
before delving into the proof for Theorem 1.

A completion graph for a knowledge base KB formulated in the vocabularyΣ and
the description logic DL is a labelled directed graph G = (V,E,L, 6 .=) where each
node x ∈ V is labelled with a set L(x) ⊆ C(Σ,DL) and each edge (x, y) ∈ E is
labelled with a set of role names such that L(x, y) ⊆ N−R . The symmetric binary re-
lation 6 .= between the nodes of G is used to store inequalities between nodes. A set of
completion rules are used to manipulate the underlying completion graph(s).
A completion graph contains a clash iff a label L(x) contains either ⊥ or both A and
¬A. A completion graph which does not contain a clash is called open, while a a com-
pletion graph which contains a clash is called closed. A completion graph to which no
more completion rules apply is called complete.
More specifically I make use of the following connections between consistency, com-
pletion graphs and models, which hold whenever a tableaux algorithm has been shown
to be a decision procedure for a DL language.

– If a knowledge base is consistent, then an open and complete completion graph
can be constructed. This is the basis of the completeness property of tableaux
decision algorithms.

– Every open and complete completion graph can be translated into a model.
This is the basis of the correctness property of tableaux decision algorithms. The
relevant part of this translation is the following: If a completion graph G =
(V,E,L, 6 .=) is translated into a model I = (∆I , ·I), then every node x ∈ V cor-
responds to at least one node w ∈ ∆I such that for all C ∈ C(Σ,DL), C ∈ L(x)
if and only if w ∈ CI . For every edge (x, y) ∈ E, there are at least two nodes
v, w ∈ ∆I corresponding to x and y such that for all R ∈ N−R , R ∈ L(x, y) if and
only if (v, w) ∈ RI .

– All nodes in a completion graph for a knowledge base KB are either an indi-
vidual or connected to an individual iff KB contains at least one individual.
This property follows from the procedure of tableaux-based algorithms, which start
with a set of initial nodes consisting of individual nodes (individuals or nominals)
and create only new nodes which are connected to an existing node. If KB does
not contain any individual however, tableaux-based algorithms typically start with
an “invented” initial single node labelled with CT given that T = > v CT . Re-
member that the existence of individuals was assumed as a precondition.

In the following I say that a concept C can be consistently added to the label of a
node w ∈ V of a completion graph G = (V,E,L, 6 .=) iff G can be completed into an
open and complete graph using the completion rules after C is added to the label of w.

Proof. Let KB = (T0,R,A) and KBT = (T0 ∪ T ,R,A), and T = {> v CT }.
⇐ If ¬CT is reachable from an individual x in KB, T affects x in KB

86 5 Assertional Effects of Ontology Editing Activities

If ¬CT is reachable from an individual x, there is an n ∈ N0 such that if n = 0 then
¬CT (x) or if n > 0 then (∃R1 . . . Rn.¬CT)(x) is satisfiable w.r.t. KB. If n = 0 this
means that KB 6|= CT (x) or if n > 0 this means that KB 6|= (∀R1 . . . Rn.CT)(x).
On the other hand, > v CT |= > v ∀R1 . . . Rn.CT is trivially true, and therefore
KBT |= CT (x) and KBT |= (∀R1 . . . Rn.CT)(x).
⇒ If T affects KB, then an individual x exists such that ¬CT is reachable from x

in KB
Proof by contradiction, i.e. it is assumed that an assertional effect exists but that ¬CT

is not reachable from x in KB.
Let D(x) be one of the possibly many assertional effects of T on KB.
Since ¬D(x) is consistent w.r.t. KB, an open and complete completion graph G =
(V,E,L, 6 .=) for KB can be constructed such that ¬D ∈ L(x).
¬D(x) is inconsistent with the extended knowledge base KBT . Therefore the follow-
ing procedure, extending the open and complete graph G leads to only closed com-
pletion graphs: Add CT to the label of a node in V . Follow the completion rules, and
ensure that nodes newly created in the process are also labelled with CT . Repeat for all
nodes in G until for one nodewC addingCT to L(wC) leads to only closed completion
graphs.
Then however, ¬CT can be consistently added to L(wC).
Since all nodes in a completion graph either are an individual node or connected to
one, there is then an individual y ∈ V from which a path to wC can be constructed.
Call this path yR1w1 . . . RnwC . If n = 0, then y = wC .
G can be translated into a model I such that wC ∈ (¬CT)I , and (y, w1) ∈ RI1 ,
(w1, w2) ∈ RI2 , . . ., (wn−1, wC) ∈ RIn. Then, ¬CT is reachable in KB from y.

As by-product from the equivalence between assertional effects and reachability
the following corollary can be derived.

Corollary 1 If T = {> v CT } affects KB, then an assertional effect C(x) exists
such that C .= ∀R1 . . . Rn.CT and Ri ∈ Σ, i = 1 . . . n. If n = 0, this corresponds to
C = CT . n is bounded by the maximal number of nodes in completion graphs for the
corresponding description logic.

Then, the following theorem about decidability follows immediately:

Corollary 2 The existence of assertional effects of T on KB can be decided in all
logics decidable under tableaux algorithms.

Some interesting observations follow from the these results: First, in order to ex-
press such assertional effects, DLs which contain at least ALC, i.e. which include
negation over complex concepts and qualified universal/existential quantification, are
required. Second, if an assertional effect exists, then not all assertional effects are nec-
essarily of the form C(x) with C .= ∀R1 . . . Rn.CT . As a simple example consider
extending the knowledge base KB = {R(a, b)} with the TBox T = {> v ∀R.A}.
In this case, the effect (∀R.A)(a) will be found if looking for assertional effects of the
above-mentioned pattern, but A(b) will be missed. Third, although bounded, n can be
quite high: In SHOIQ already, n is bounded double-exponentially with the size of the

5.2 Assertional Effects of Ontology Editing Activities 87

closure of T0 and A (the smallest set containing all subconcepts of T0 and A that is
also closed under negation) and the number of roles and inverses occurring in the input
knowledge base KB = (T0,A) [58]1.

5.2.2 Generalisation to DLs with the Connected Model Property

In description logics which additionally provide role union and the reflexive-transitive
closure (Kleene operator ∗), “C is reachable from x in KB” can also be expressed as
∃(

⊔
Ri∈N−R

Ri)∗.C(x). This led to the question of whether Theorem 1, which states
equivalence between assertional effects and reachability, can be generalised to require
a more general property of the underlying description logic than being decidable under
a tableaux decision procedure. Indeed, it can be shown that only the connected model
property is required:

Definition 5. (Connected model) A model I = (∆I , ·I) is connected if and only if
for every w ∈ ∆I there is an element x ∈ NI , xI = wo such that there is a path
w0R1w1 . . . Rnw in I.

A logic is said to have the connected model property if every satisfiable concept
or consistent knowledge base has a connected model. Since tree and forest models are
connected models, all logics which enjoy the tree (forest) model property, also have the
connected model property.

Theorem 2 In description logics with the connected model property T = {> v CT }
affects KB iff an individual x exists in KB such that ¬CT is reachable from x in KB.

Proof. Let KB = (T0,R,A) and KBT = (T0 ∪ T ,R,A), and T = {> v CT }.
⇐ If ¬CT is reachable from an individual x in KB, T affects x in KB
This direction is the same as in the proof for the tableaux-based Theorem 1.
⇒ If T affects KB, then an individual x exists such that ¬CT is reachable from x

in KB
Proof by contradiction, i.e. it is assumed that an assertional effect exists but that ¬CT

is not reachable from x in KB.
Let D(x) be one of the possibly many assertional effects of T on KB.
Then there is a connected model I = (∆I , ·I) of ¬D(x) w.r.t.
I is not a model however of the extended knowledge base KBT , since ¬D(x) is in-
consistent w.r.t. KBT .
Therefore, there is an element w ∈ ∆I such that w 6∈ (CT)I . Otherwise,∆I = (CT)I

and I would also be a model of KBT .
Since w 6∈ (CT)I , it holds that w ∈ (¬CT)I .
Because of the connected model property, there is then an individual y ∈ NI and yI =
w0 such that there is a path w0R1w1 . . . RnwC . If n = 0 this means that w0 = wC .
Then, ¬CT is reachable from the individual y, which contradicts the assumption that
¬CT is not reachable from any individual in the knowledge base.
1 In [58], only the size of the closure of T is mentioned, however this is because they note in the

beginning that they incorporate the ABox into the TBox by expressing every C(x) as x v C
and every R(x, y) as x v ∃R.y.

88 5 Assertional Effects of Ontology Editing Activities

Therefore, the problem of deciding whether T affects KB can be posed as consis-
tency checks of the form ∃(

⊔
Ri∈N−R

Ri)∗.¬CT (x) for all x ∈ NI in DLs which have
the connected model property and the required concept and role constructors. Such a
reformulation has the advantage of posing the original problem as a standard reasoning
problem. Naturally, this reformulation only makes sense if the resulting logic is also
decidable. A logic for which all these requirements hold is for instance ALCQIb+reg ,
which has been shown to be decidable [95]. Unfortunately no reasoners exist to date
for this DL to the best of our knowledge. Note also, that specifically SHOIN and
SROIQ, the DLs underlying OWL 1 DL and OWL 2 DL, are not contained within
ALCQIb+reg since the latter misses nominals.

5.3 Related work

Both conceptually and technically, conservative extensions in description logics are
a closely related topic. In short, deciding conservativity for two TBoxes T0 and T
means finding out whether T0 ∪ T entails any inclusion axioms expressible in a given
vocabulary and a given DL that are not entailed by T0 alone [44, 76]. It can easily
be shown that non-conservativity of T0 ∪ T with respect to T0 is a precondition for
the existence of TBox effects of T on KB = (T0,R,A): By inventing an ABox
A = {>(x)}, any inclusion axiom entailed by T0 ∪ T but not by T0 alone produces an
effect on x.
However, non-conservativity is not a guarantee for the existence of effects. To illustrate
the latter, consider the following knowledge base KB = (T0,R,A):

A v ∀R.A
A v ∃R.A
A(x)

(5.6)

which is extended with T :
> v A (5.7)

Obviously, T0 ∪ T is not a conservative extension of T0 w.r.t. Σ = {A,R, x} and
the description logic ALC. There are however, no effects on the individual x, since
KB already entails all types that can be constructed from the vocabulary {A,R} for x
in ALC. Complexity results for deciding conservativity therefore give a lower bound
on the complexity of deciding effects according to the deductive definition.
Depending on the choice of vocabulary, conservativity can be reduced to subsumption
if the full vocabulary of KB is considered [44]. Interestingly, the problem becomes
harder if the vocabulary under consideration is a subset of the vocabulary used by KB.
Then, conservativity is decidable up to ALCQI [76].
Using these results from conservativity now opens up the possibility to extend the no-
tion of assertional TBox effects as considered so far. Remember that assertional TBox
effects on a knowledge base have been defined only for the case where Σ is the vo-
cabulary in which KBT is formulated (Definition 5.2). If a contributor is interested in
effects in terms of a smaller vocabulary Σ′ ⊂ Σ, the following procedure can be taken

5.3 Related work 89

to circumvent this small restriction: Given is the knowledge base KB = (T0,R,A)
which shall be extended with the TBox T . Let KBT = (T0∪T ,R,A) and letΣ be the
vocabulary in which KBT is formulated. Furthermore we assume that Σ′ ⊂ Σ is the
vocabulary and DL the description logic in which the assertional effects on KB shall
be formulated. Then, in a first step it must be decided whether T0 ∪T is a conservative
extension of T0 w.r.t. Σ′ and DL can be decided. If T0 ∪ T is not a conservative ex-
tension of T0 w.r.t. Σ′ and DL, then a witness concept C ′T such that ¬C ′T is satisfiable
w.r.t. T0 but unsatisfiable w.r.t. T0 ∪ T exists. A decision procedure for conservativity
such as e.g. in [76] outputs such a witness concept2. Given this C ′T , the question of
whether and which assertional effects of T on KB exist can be reformulated to the
question whether > v C ′T affects KB, under the condition that DL contains at least
ALC.
Conceptually, I stress the difference in underlying motivation between conservative ex-
tensions and assertional TBox effects on a knowledge base. Comparing TBoxes for
differences is a general approach to support the frequent task of extending or refining
an ontology. The rationale behind focusing on effects in terms of instance data is di-
rected towards ontology edits in a specific ontology application scenario, namely where
the ontology describes data in a knowledge base. In this scenario it is important that
ontology and data are well aligned with each other in order to maintain conceptual
consistency. Second, expressing effects of terminological axioms (general truths in a
domain) in terms of concrete facts illustrates them in an easily understandable way3.
This gives users an opportunity to double-check on whether the effectuated changes
were actually “meant this way”.

In continuance of the idea underlying conservativity, Kontchakov et al [66] study
the differences between DL-Lite TBoxes. Especially, the authors study query-differences
over arbitrary ABoxes. By query-difference the authors understand the different query
answers that must be given to a query on a particular ABox for the two OWL DL-Lite
TBoxes. In their work, the authors always assume that only the TBoxes are given, and
the task is to decide whether there exists a query q and an ABox A such that there
is a difference in result when querying A with q. It turns out, that the set of query-
differences is either empty (the two TBoxes do not differ in terms of queries given a
specific vocabulary at all) or infinite (infinitely many ABoxes exist after all). Naturally
it would be interesting to consider effects in terms of queries over a specific ABox,
which I have not done so far. I speculate that the results for such a problem formulation
will be similar than the comparison of deductively defined effects with conservative ex-
tension, namely that it is at least as hard as deciding the existence of query-differences,
and not immediately clear how the existence of query-differences then can be decided
for a given ABox.

On a more general note, ontology editors like Swoop [126] and Protégé [102] dis-
play inferred types for all individuals and concepts in the loaded knowledge base. Typ-
ically, such inferred types involve only primitive concepts. Additionally, the dynamic
2 Note that this particular decision procedure would actually output the negation of C′T .
3 Compare also [75], in which the creation of concept definitions from exemplary individuals is

being discussed for exactly the same reason. It often seems to be helpful to think in concrete
terms when formulating abstractions.

90 5 Assertional Effects of Ontology Editing Activities

aspect of the ontology edits is not considered in that inferred types are shown for a
complete knowledge base (static feedback) and no relation is automatically made to
the most recent activities.

5.4 Discussion

5.4.1 Informative Effects

Consider again the knowledge base excerpt given above (Equations 5.1- 5.4). Assume
further that the knowledge base also describes famous historical persons, and contains
facts such as “Sophocles is a Greek” (5.8)4. Extending this knowledge base with the
statement that every island is located only in water-areas as above (Equation 5.5) led
to undesirable results as discussed already in Section 5.1 above. The example is now
modified to consider effects when the following two axioms are added to the knowledge
base. First, a disjointness axioms stating that nothing can be both an area of land and an
area of water (5.9). Second, an existential restriction which expresses that each island
must be located in some water-area (5.10).

Greek(sophocles) (5.8)

LandArea uWaterArea v ⊥ (5.9)

Island v ∃locatedIn.WaterArea (5.10)

It can be seen that the definition of assertional effects captures knowledge gained
such as

¬WaterArea(crete) (5.11)

¬LandArea(mediterranean) (5.12)

(∃locatedIn.WaterArea)(crete) (5.13)

(¬WaterArea t ¬LandArea)(sophocles) (5.14)

(¬Island t ∃locatedIn.WaterArea)(sophocles) (5.15)

This short list demonstrates that some assertional effects are more informative than
others and this quality does not directly depend on whether complex concepts are in-
volved or not. Presumably good heuristics for discerning more informative from less
informative effects can be found, as for instance thresholding the length of effects.
However, such considerations are out of scope for this work as I am primarily con-
cerned fundamentally with the formal definition of assertional effects and providing
the computational means to find assertional effects.

5.4.2 Exemplary Effects

A critical issue concerning assertional in the envisioned scenario concerns the quantity
of data to be dealt with. If a knowledge base contains data about a million song-titles
4 Omitting the discussion for the moment whether, since Sophocles is dead, he is or was Greek.

5.4 Discussion 91

and a new axiom stating that “every song has an author” is added, it is clearly not
desirable to see a million effects of the form “The song XY has an author”. Instead,
assertional effects should be expressed using exemplary individuals only. A lead into
that direction could be given by techniques such as ABox summarization [35]. The
authors exploit the observation that similar individuals are related in similar ways to
other individuals. For instance, songs have titles, belong to albums and have maybe
been in some charts for a given period of time. Songs do not however have parents
or children as do human persons. Thus, individuals about which similar assertions
exist in a knowledge base can be grouped together. The main issues which need to
be studied when applying this ABox summarization to the computation of exemplary
assertional effects are that (i) ABox summarization has been defined for SHIN only
in [35] and (ii) the summary ABox does not preserve consistency, i.e. it is possible
that the summary ABox is inconsistent while the original ABox is consistent w.r.t. a
knowledge base. Apart from these theoretical issues however, the benefit clearly lies
not only in enabling an improved presentation to the user but also in increasing the
computational performance (though not the computational complexity class).

5.4.3 Extending the Definitions of Effects

The definition of assertional TBox effects on a knowledge base (Definition 2) can be
extended into a variety of directions. One such extension, namely the possibility to
restrict the vocabulary under consideration to a subset of the vocabulary Σ in which
KBT is formulated, has already been discussed in Section 5.3 in relation with con-
servative extensions. Another obvious but much more simple extension is to consider
also role assertions R(x, y) as assertional effects. This is trivial in DL languages in
which the set of roles which can occur in role assertions is finite, as is the case in both
SHOIN and SROIQ and thus also in OWL 1 and OWL 2. Then, for everyR ∈ Next

R

and every pair (x, y), x, y ∈ NI , it simply needs to be checked whether KB 6|= R(x, y)
and KBT |= R(x, y). In SHOIN , Next

R = N−R = {R|R ∈ NR or R− ∈ NR}. For
SROIQ, Next

R must be extended to be closed under negation. I note that unless nom-
inals occur in T , terminological axioms can not cause the gain or loss of role assertion
axioms. Furthermore, also equality or inequality assertions between individuals could
be considered as effects. Such effects may occur when T contains nominals or number
restrictions. Finally, the notion of assertional effects could also be extended to consider
assertional effects of the addition or removal of role axioms.

6

Ontology Evaluation in MoKi

It has already been noted that evaluation is a vital activity in ontology engineering, and
also that tool support for evaluation activities is poor. Typically, ontology engineering
environments focus in their design on preventing modelling errors rather than on find-
ing modelling errors. While the first is necessary, and indeed a number of modelling
mistakes can be prevented by good tool design, mistakes will nonetheless be made.
The goal of the validation modules in MoKi is essentially to embed support for on-
tology evaluation directly within an ontology engineering environment. Following the
requirements discussed for evaluation methods during ontology engineering, the val-
idation modules in MoKi aim to give feedback on how the models can be improved
rather than rating the quality of the models on a numerical scale. An additional goal
was to trigger model refinement already during modelling.

Considerations of how these goals can be realised in MoKi led to the following
categorisation of ontology evaluation functionalities within a computational ontology
engineering environment: Evaluation functionalities that give feedback on the models
directly during modelling on the one hand and functionalities that serve to review the
models in a separate evaluation activity on the other hand can be differentiated by look-
ing at the “place” where they appear to users in the user interface. The first are displayed
locally, when a model element is described. The latter are displayed at a separate place
and consider the whole model and thus are called “global”. Second, one can differenti-
ate between functionalities that take a user’s recent actions into account (dynamic) and
those that consider the model as it is (static). Together this leads to a categorisation of
ontology evaluation functionalities into the categories “global and static”, “global and
dynamic”, “local and static” and “local and dynamic”. This categorisation is depicted
in Fig. 6.1, where also the four validation modules available in MoKi (ontology ques-
tionnaire, assertional effects, models checklist, quality indicator) are filled in at their
place.
The ontology questionnaire and the models checklist are global (and static) evalua-
tion functionalities, that can be used in a separate evaluation step. While the models
checklist can be used to validate both informal and formal aspects of the domain model
contained within MoKi, the ontology questionnaire uses reasoning over the formal rep-
resentation and can be used to validate the formal model. The quality indicator is a local
and static evaluation functionality that visualises on element pages the same character-

94 6 Ontology Evaluation in MoKi

istics that are given for the complete model in the models checklist. The assertional
effects finally give local and dynamic feedback to MoKi users depending on their most
recent activities.

Fig. 6.1. Within a computational ontology engineering environment, ontology evaluation func-
tionalities can be categorised according to where they are displayed in the user interface (global
vs. local) and whether they react to a user’s activities or consider the model as is (dynamic vs.
static). The first correlates with whether evaluation takes place as a separate activity (global) or
directly during modelling (local). The above figure shows the categorisation of the MoKi valida-
tion modules into these categories.

6.1 The MoKi Validation Modules

The MokiValidation plugin, which is itself a module of MoKi (see Chap. 3), contains
four validation modules: The ontology questionnaire, assertional effects, the models
checklist and the quality indicator. The ontology questionnaire displays inferences from
the domain model contained within MoKi. It supports the process of reviewing infer-
ences for ontology evaluation purposes that has been described in Chap. 4 above, and
corresponds closely to the prototypical implementation described there. The assertional
effects module displays assertional effects (see Chap. 5 above) after modifications to
a knowledge base, provided any exist. Both the ontology questionnaire and the asser-
tional effects module support ontology evaluation based on the formal interpretation
given to the domain model within MoKi, and use reasoning services to do so. These two
modules put the insights gained from the theoretical investigations covered in Chaps. 4
and 5 above to practical use. In addition, MoKi contains two validation modules that
can be considered as implementation of (heuristic) modelling guidelines, the models
checklist and the quality indicator. Given very general guidelines on good practices in
modelling, such as e.g. model elements should be well documented, the models check-
list lists elements that do not comply to modelling guidelines, and the quality indicator

6.1 The MoKi Validation Modules 95

visualises how well a given element complies with modelling guidelines. The latter two
validation modules therefore complement the approach to support ontology evaluation
by providing inferences, on which this thesis focuses, with a heuristic approach to on-
tology evaluation.
This chapter describes the functionality and rationale of each validation module.
General implementation principles for the MoKi validation modules are described in
Chap. 6.2 below, and implementation details are then described module-by-module in
Chap. 6.3.

6.1.1 Ontology Questionnaire

The ontology questionnaire displays inferred statements, i.e. statements that logically
follow from the knowledge explicitly contained within MoKi. It gives MoKi users an
insight into knowledge that is implicitly entailed by the domain model contained within
MoKi, and the possibility to review the domain ontology without having to go through
the set of explicitly modelled statements. The ontology questionnaire is accessible via
the MoKi menu (“Inferences - Do You Agree?”, see also Fig. 3.4) or via its special page
address (“Special:MV OntologyQuestionnaire”).

Functionality and Rationale

Inferences are limited to statements referring to concept expressions that occur in the
explicitly stated ontology, as is usual in comparable tools. The ontology questionnaire
within MoKi (Fig. 6.2) corresponds quite closely to the description in Chap. 4, minus
one and plus three features. First, the ontology questionnaire within MoKi includes
inferred assertional and role axioms in addition to inferred terminological axioms. Sec-
ond, it divides inferred statements into “Most Striking Inferences” and “Inferences de-
rived from the Concept and Property Hierarchy”. The latter category displays all infer-
ences that follow from the transitivity of the subsumption hierarchy for concepts and
properties. The first category then comprises, by elimination, all other inferences. As-
sertional axioms, in the current implementation, always show up in the first category.
The idea behind this separation of inferences into two categories is to give MoKi users
the possibility on the one hand to limit review of inferences to those that are derived by
more complex mechanisms than subsumption, while on the other hand still enabling
them to go execute a full review and thus to also check the correctness of the hierar-
chies. This also partly addresses the wish of users, according to the study described in
Chap. 4, to have a prioritised list of inferences which should be checked.

Example: Article v Publication and Publication v Document together
entail that Article v Document. This inference follows from the transitivity
of the subsumption relation, and is therefore displayed in the section “Infer-
ences derived from the Concept and Property Hierarchy”.

Third, the ontology questionnaire within MoKi displays side-effects of deleting explic-
itly made statements. So when a MoKi user decides to delete some explitly made state-
ments in order to remove a selected, undesired, inference, (s)he will be informed about
inferences that will be lost in addition to the selected inference. Fourth, the ontology

96 6 Ontology Evaluation in MoKi

questionnaire in MoKi does not preselect statements for deletion, given an inference.
Originally, such a preselection was made based on minimal hitting sets1.

Functionality

Explanations for an inference can be viewed by clicking on “Why?” at the end of line
for the corresponding inference (see Fig. 6.2). An inference can have one or more ex-
planations (see Fig. 6.3), where a single explanation corresponds to a justification as
defined in Def. 1, i.e. it is a minimal set of statements that entail the selected infer-
ence. If the reviewing MoKi user, the reviewer, disagrees with an inference, (s)he has
the possibility to remove it directly from within the ontology questionnaire by deleting
explicitly made statements from the domain model. Since multiple explanations are
independent from each other, and each suffices to entail the inference it explains, the
reviewer must select at least one statement from each explanation in order to remove
the inference (s)he disagrees with. Before the selected statements are actually removed
from the domain model contained within MoKi, the reviewer is asked for confirmation
(Fig. 6.4). This confirmation window is intended less as an annoying “Are you sure?”-
dialog but as a double-check regarding side-effects of deleting one or more statements.
Obviously, if at least one statement from each explanation was selected, the inference
the reviewer disagreed with will not appear anymore after deleting the selected state-
ments. However, this deletion may also lead to the loss of other inferences. The confir-
mation window lists the inferences that will be lost alongside, and gives the reviewer
the possibility to cancel and select other statements for deletion. A final success page
informs the reviewer of the actual deletion (Fig. 6.5).

Summary

The ontology questionnaire is used for evaluating the domain model contained within
MoKi in a separate evaluation step, and not directly during modelling and thus belongs
to the category of global (and static) ontology evaluation functionalities. It reasons
over the formal representation of the domain model in description logics, and thus it
becomes more and more relevant and also interesting to use the ontology questionnaire
as the formalisation of the domain model within MoKi proceeds2.

6.1.2 Assertional Effects

Assertional effects, as defined in Chap. 5 in Def. 2, are entailed concept assertions that
illustrate the consequences of ontology editing activities (addition or removal of ter-
minological axioms to/from an ontology). Terminological axioms can be added and
removed MoKi by creating, editing, deleting or restoring concept pages. The corre-
spondence between MoKi’s user interface elements on concept pages and terminolog-
ical axioms is listed in Table 3.2. Assertional effects completely ignore process or any
other models contained within MoKi.
1 A minimal hitting set is a minimal set of explicit statements such that if all statements in it

are deleted, the selected inference can not be inferred anymore.
2 Assuming that the goal of MoKi is met, in that its users perform both informal and formal

modelling within MoKi, and based on the hypothesis that the creation of an ontology follows
an evolution from more “sketchy” and informal to more axiomatised and formal.

6.1 The MoKi Validation Modules 97

Fig. 6.2. The ontology questionnaire in MoKi. Inferences are limited to inferred statements that
refer to explicitly mentioned concept expressions, and are divided into “Most Striking Infer-
ences” and “Inferences Derived from the Concept and Property Hierarchy”. For each inference,
its explanation(s) can be accessed by clicking on “Why?” at the end of the line.

Fig. 6.3. Multiple explanations for an inference are displayed in groups and numbered starting
with “1”. If the MoKi user disagrees with the inference, (s)he can select statements from the
explanations (at least one from each group) and click on “Delete selected statements” in order to
delete the explicitly selected statements from the domain model and thus get rid of the inference.

98 6 Ontology Evaluation in MoKi

Fig. 6.4. The confirmation page displayed to a MoKi user who has selected several statements to
be deleted from the domain model in order to remove a single inference. However, the deletion
of statements can also lead to the removal of other inferences. Thus, this confirmation window
also serves as an information about the side-effects of deletion that the MoKi user may not be
aware of otherwise.

Fig. 6.5. After the selected statements have been deleted successfully from within the ontology
questionnaire, the above success page is shown to the MoKi user. It displays the deleted state-
ments as well as the inference the MoKi user disagreed with.

Functionality and Rationale

Assertional effects can occur if logical changes to the MoKi content are made. Changes
to for instance verbal descriptions can not lead to assertional effects. In case a logical
change is detected, an approximation of the decision procedure for assertional effects is
executed. The approximation consists of not searching up to the theoretically required
path length but giving up earlier (see below for some more details). Therefore, while as-
sertional effects that are displayed are always correct, it may be that assertional effects
exist when none are displayed. This is in order to avoid searching unnecessarily long
for a negative decision. The underlying rationale is that assertional effects are intended
only as a support for the MoKi users and thus reactivity of MoKi takes precedence over
completeness of results.
If editing a concept page leads to assertional effects, these are displayed on the concept
page directly after saving the page (Fig. 6.6). The assertional effects are only displayed
directly after the ontology edit however, and are not displayed when the MoKi user

6.1 The MoKi Validation Modules 99

navigates back to the same concept page after other activities. The same happens when
new concept pages are created, so that directly after saving a newly created concept
page, assertional effects will be displayed. Also the deletion of a concept page can
lead to assertional effects. These are not displayed however, primarily because it is not
clear where to display them in a meaningful way3. Similarly, assertional effects that
are caused by the restoration of a concept page are not displayed. On a meta-level it is
clear that the assertional effects from restoring a concept page are the same as when
newly creating this concept page. However, there are two usability issues in this case.
First, it is not clear whether a representation of assertional effects in case of a page
restoration are meaningful, since restoration could be viewed as mostly a maintenance
activity in contrast to a modelling activity. Second, it is unclear where the effects should
be presented4.

In addition to considering concept assertions as assertional effects, as has been
extensively discussed in Chap. 5.2, in MoKi also role assertions involving primitive
roles are considered as assertional effects, and assertional effects caused by the addition
or removal of role axioms are computed as well. The effective definition of assertional
effects in MoKi is therefore Def. 6, given below in the description of implementation
details in Chap. 6.2. Now, also creating, editing, deleting and restoring property pages
can lead to assertional effects and therefore assertional effects may also appear on
property pages (Fig. 6.7). The underlying mechanisms are completely analogous to
those described for concept pages as above. Therefore, although deleting and restoring
property pages can lead to assertional effects, these are not displayed in MoKi.

Extending the Definition of Assertional Effects

The deductive definition of assertional effects as given in Chap. 5 has been extended in
two directions for implementation within MoKi. Note that the following extensions are
at various points targeted specifically towards the expressivity currently supported by
MoKi.
The first extension concerns the inclusion of inferred role assertions as assertional ef-
fects. OWL 2 (and the description logic language SROIQ it is based upon) includes
positive as well as negative role assertions. Checking for gained or lost role assertions
in this case does not pose a theoretical problem, since the set of individual namesNI , as
well as the set of role names NR are finite. Within MoKi, only positive role assertions
are considered as assertional effects, which is a reflection on MoKi’s current expressiv-
ity however since neither negative role assertions, nor role disjointness axioms can be
expressed in MoKi as it is..
The second extension concerns the inclusion of added or removed role axioms as causes
3 After deleting a wiki page, MediaWiki provides a deletion message that basically tells the

wiki user that a page been deleted. It is possible that in future versions of MoKi, assertional
effects that result from the deletion of a concept will be displayed on this page.

4 As with deletion, MediaWiki provides a restoration message after a successful restoration has
taken place. The assertional effects caused by such a restoration could be placed either on this
page, or at the concept page that has been restored the next time it is visited. The latter seems
to provide usability problems, since the display of assertional effects would then be “more
than one click away” from the action that caused them.

100 6 Ontology Evaluation in MoKi

of assertional effects. This is a bit more tricky from a theoretical point of view. A quick
analysis of role axioms available SROIQ (see Table 2.2) reveals however, that role
axioms by themselves can lead only to role assertions (involving both primitive and
negated primitive roles) and (in)equality assertions (e.g. in the case of functional and
inverse functional property axioms). (In)Equality assertions are not considered as as-
sertional effects within MoKi, but this may be included at a later stage of development.
Only role disjointness axioms could lead to negative role assertions, but role disjoint-
ness can currently not be expressed in MoKi. The extension of assertional effects to
consider also updates of the role box is therefore well covered within MoKi by the con-
sideration of positive role assertions as assertional effects.
Together, these two extensions lead to the following definition for assertional effects as
implemented in MoKi:

Definition 6. (Assertional effects) Let KB = (T0,R0,A) and KBT = (T0∪T ,R0∪
R,A). Let Σ = (NC , NR, NI) be the vocabulary in which KBT is formulated and let
DL be the DL in which the assertional effects shall be formulated.

– α ∈ {C(x), R(y, z)} such that C ∈ C(Σ,DL), R ∈ NR and x, y, z ∈ NI is an
assertional effect of T on KB iff KB 6|= α and KBT |= α.

– T ∪ R affects an individual x ∈ NI in KB iff an assertional effect C(x) of T on
KB exists, or

– T ∪ R affects the individuals y, z ∈ NI in KB iff an assertional effect R(y, z) of
T ∪ R on KB exists.

– T ∪ R affects a knowledge base KB iff an assertional effect α of T ∪ R on KB
exists.

The Practical Decision Procedure

The practical decision procedure of detecting assertional effects as implemented for
MoKi consists first of an approximation of assertional effects, which limits the search
for assertional effects of the form (∀R1 . . . Rn.CT)(x) to a rather small n. Instead of
a double-exponential dependency of n on the size of the original knowledge base KB,
the approximate decision procedure only searches up to n linear with the size of the
original knowledge base KB. Thus, while all assertional effects that are detected are
correct, it is not guaranteed that assertional effects will be found if they exist. Second,
the practical decision procedure tries to shorten the assertional effects if possible. given
an assertional effect of the form C(x), this is done by searching subconcepts (meaning
subformulae) of C and determining whether these constitute an assertional effect on x.

Example: If an assertional effect of the form (¬CtD)(x) is found, andD(x)
is also an assertional effect, then the longer effect is thrown away and only the
shorter effect is displayed.

On the other hand, the practical decision procedure also searches directly for assertional
effects of the form C(x), where C is a primitive or negated primitive concept.

Finally, a small hitch in the current MoKi implementation concerns the treatment of
domain and range restrictions. From a logical point of view, these should be treated as

6.1 The MoKi Validation Modules 101

terminological axioms as concerns assertional effects5. They are however not treated
as such, and thus are not included in the transformed TBox T = {> v CT } which
is necessary to search for assertional effects exhaustively. In practice, given MoKi’s
current expressivity, this does not present a problem, since MoKi only allows primitive
concepts to restrict a property’s domain and range, and assertional effects involving
primitive and negated primitive concepts are searched for explicitly in the current im-
plementation. As soon as MoKi’s expressivity is increased to support also domain and
range restrictions involving complex concepts however, this will need to be remedied.

Summary

Assertional effects give dynamic feedback to the MoKi users in that they directly react
on a user’s most recent activities. They are also directly visible during modelling and
thus can trigger immediate revisions. Assertional effects do not point to modelling
errors but instead make visible the implicit implications of ontology edits, and illustrate
them as concrete examples using individuals from the knowledge base.

Fig. 6.6. After editing a concept page, assertional effects on individuals that are described within
MoKi are displayed in the box titled “Changes and Effects on Data”. Both the explicitly made
changes (below “You added” in the screenshot) as well as the assertional effects caused by the
changes (below “You gained for instance” in the screenshot) are displayed.

5 As a reminder, a domain restriction corresponds to an axiom of the form ∃R.> v C and a
range restriction corresponds to an axiom of the form ∃R−.> v C, see also Chap. 2.2.

102 6 Ontology Evaluation in MoKi

Fig. 6.7. After editing a property page, assertional effects on individuals that are described within
MoKi are displayed in the box titled “Changes and Effects on Data”. Both the explicitly made
changes (below “You added” in the screenshot) as well as the assertional effects caused by the
changes (below “You gained for instance” in the screenshot) are displayed.

6.1.3 Models Checklist

The models checklist (Fig. 6.8) contains a set of checks, and for each check the ele-
ments that fit are listed. The checks concern characteristics that typically, but not al-
ways, point to oversights and modelling mistakes. Technically, the single checks are
pre-defined queries asked about MoKi’s content. The models checklist is therefore a
heuristic tool for ontology evaluation. It can be thought of as a set of modelling guide-
lines that have been implemented as automatic checks for elements that do not comply
with the modelling guidelines.

Example: A typical modelling guideline is to verbally describe model ele-
ments and document design decisions. While it is impossible with the current
state-of-the-art to automatically determine how good a description really is, it
is possible to automatically check for model elements that are not documented
at all.

The models checklist is accessible via the MoKi menu via the entry “Models Checklist”
(Fig. 3.4) or via its page address (“Models Checklist”).

Functionality and Rationale

MoKi lists all kinds of model elements (concepts, individuals, properties, processes)
without verbal descriptions. Documenting model elements by describing them ver-
bally is considered good style since this makes clear in the language of domain experts,
namely in natural language, what the element is about. For all kinds of elements, MoKi

6.1 The MoKi Validation Modules 103

lists elements to which only one person has contributed (called non-shared elements).
This pays tribute to the definition of an ontology as a shared conceptualisation, as well
as to the well-known four-eyes principle, namely that having at least a second person
review some engineering artefact usually increases quality of the artefact6. Individuals
are excepted in the default configuration because they are seen not as designed ele-
ments but as elements used for explanation, testing or automatically provided by some
source in general. This viewpoint may not hold for all possible MoKi setups, but the
default models checklist can be easily edited to include the list again for individuals as
well, using the corresponding special page given in Table 6.2. Additionally, MoKi im-
plements some checks that are specific to the different kinds of elements. For concepts,
MoKi additionally checks for orphaned concepts and for un-instantiated concepts. The
first are concepts which are not part of a subsumption or meronymic hierarchy. This
is considered a potential modelling error since mostly a concept in a domain ontology
should be grouped together with sibling concepts beneath a more general concept or
be itself used to group together more specific concepts. However, it is also conceivable
that the ontology is per design non-hierarchical.

Example: A simple ontology about the food chain between animals could
contain only the information about which animal eats which other animal,
without representing information about the hierarchy of species and sub-
species between animals.

Not instantiating concepts is not really a modelling mistake. However, there are two
reasons why this check is included nevertheless. In the case of a general ontology,
individual data can be used as examples for concepts and thus provide additional doc-
umentation, or test logical axioms that describe concepts. If MoKi is used to hold a
knowledge base, uninstantiated concepts are redundant with respect to the data. If it
is indeed irrelevant in a particular setting whether concepts are instantiated or not, the
check can easily be removed from the models checklist. For individuals, MoKi addi-
tionally gives a list of individuals which have no asserted type. This is typically an
oversight. For properties, MoKi additionally checks whether domains and ranges are
defined. While it is not strictly a modelling error to leave out domain and/or range
restrictions, both these restrictions make an ontology logically more precise. It can
be expected that as knowledge becomes more and more formalised, such restrictions
should be added.

Summary

The goal of the models checklist is to make it easy for users to review the models in
MoKi based on modelling guidelines. However, these are only guidelines and not every
element that is pointed out by the models checklist is wrongly modelled. The models
checklist contains checks both on informal and formal aspects of the models contained
in MoKi. Informal aspects that are checked for are the existence of verbal description
and the sharedness. Formal aspects are checked via the check for orphaned concepts,
6 Although there is a small hitch: The MoKi takes notice only of people editing pages. So if a

second person were to review a page and totally agree with everything on it, MoKi would not
realise that a second person had been involved and still regard this page as “non-shared”.

104 6 Ontology Evaluation in MoKi

uninstantiated concepts, individuals without types and properties without a defined do-
main or range. Such characteristics were categorised as usability-related features and
structure-related features in Chap. 2.4. The models checklist represents a separate mod-
elling step, reachable from the phases of informal and formal modelling, since it is a
wiki page on which no modelling can directly take place.

Fig. 6.8. The models checklist contains a set of checks, and for each check the elements that fit
are listed. The checks concern characteristics that typically, but not always, point to oversights
and modelling mistakes.

6.1.4 Quality Indicator

The quality indicator (Fig. 6.10) visualises the completeness and sharedness of sin-
gle model elements and appears on wiki pages that represent model elements. Both
completeness and sharedness are visualised as bars that grow from left to right in four
discrete steps, and take on different colours (red, orange, yellow, green) according to
value. Whenever a model element shows one of the characteristics listed below it col-
lects points, and the quality indicator bar grows with the achieved points. The points
given for each characteristic follow rules-of-thumb, and in particular also the division

6.1 The MoKi Validation Modules 105

Fig. 6.9. Models checklist: List of concepts without a verbal description.

of the values into four partitions (red, orange, yellow, green) is based on common-sense
only.

Functionality

Completeness captures how much information (verbal, structural) about the element
is available. It takes into account usability information like the existence of a verbal
description, the existence of synonyms and structural information like the embedding
into a hierarchy for concepts and properties, the existence of relations to other con-
cepts, the existence of domain and range restrictions for properties and the existence of
a defined type and of relations to other individuals for individuals. Sharedness captures
how many people have contributed to the description of the element. As with the mod-
els checklist above, sharedness is not rated for individuals.
Sharedness in particular makes sense only in settings where multiple persons are ex-
pected to contribute to the MoKi content, and the value partitioning must be configured
accordingly to the number of expected participants.

Example: Within the APOSDLE project, MoKi was used to model six do-
mains (an earlier version of MoKi however). In each case there was only a
single person who was responsible for entering information into MoKi. In this

106 6 Ontology Evaluation in MoKi

case, the sharedness would not have been indicative of the conceptual shared-
ness of the model elements.

Example: MoKi has also been used in a lecture about knowledge management,
where multiple groups of around 50 students filled a single MoKi with content.
In this case, sharedness makes sense, and the value partition can be configured
for instance that at least 5 persons must have contributed to a page before it
reaches the green, i.e. full, bar.

Summary

Completeness and sharedness are heuristic measures insofar as a low value does not
necessarily mean that the element is modelled incorrectly and a high value does not
guarantee that the element is is modelled correctly. The quality indicator is effectively
a local, compact visualisation of compliance of a model element to the corresponding
modelling guidelines. The characteristics visualised by the quality indicator are sim-
ilar to the characteristics available in the models checklist, and thus stem both from
literature (usability-related and structure-related features) as well as from application
in several real-world ontology engineering settings where they have been used to itera-
tively revise models [97]. The concrete number of points given for each characteristic
as well as the value partition have not been evaluated in practice.

Fig. 6.10. The above figure shows the quality indicator on a concept page (yellow and orange
bars). The yellow box below the quality indicator is additional information about the quality
indicator that is available to MoKi users on pointing their mouse over the question marks to the
right of the quality indicator.

6.2 Implementation Principles 107

6.2 Implementation Principles

The overall design of MoKi has been covered in Chap. 3.3 above. This chapter goes
into details on the extension mechanism used to implement the MoKi validation mod-
ules, and describes additions to MoKi’s basic design that were necessary in order to
implement the MoKi validation modules, namely a closer integration of PHP and Java
and a second data storage alongside MediaWiki’s native database.

6.2.1 Extending MediaWiki Through Special Pages and Hooks

MediaWiki provides different possibilities for extensions. Two, namely special pages
and hooks, will be described in more detail below since these were used to implement
the MoKi validation modules. Other kinds of extensions are tag extensions (new tags
of the form “<example tag></example tag>” can be defined), magic words (new
reserved words that trigger functions can be defined), parser functions (a kind of magic
words that accept parameters) and skins (changing the appearance of a wiki). Details
on different kinds of MediaWiki extensions and how to write them can be found at [82].

Loading the MoKi Validation Modules

The MoKi extension code resides in the extensions subdirectory of the Medi-
aWiki installation directory, as is typical for MediaWiki extensions. In order to have
MediaWiki load the MoKi code at startup, the following line is included in the
LocalSettings.php file in the MediaWiki installation directory:

require_once("extensions/MoKi/MoKi_Settings.php");

The file MoKi_Settings.php in the extensions/MoKi subdirectory itself
loads other modules of MoKi, amongst them the MoKi validation modules. They are
implemented as yet another substructure that resides in the
extensions/MoKi/modules/MoKiValidation directory, so that a single file
MV_Settings.php is responsible for loading and configuring all and only MoKi
validation modules. The following line is therefore included in the
MoKi_Settings.php file:

require_once(’modules/MokiValidation/MV_Settings.php’);

Hooks

A hook in MediaWiki is an event, like for instance that a page is opened for editing.
MediaWiki itself contains a series of event handlers that are triggered at each hook. A
hook extension is a function (an event handler) that gets triggered at a given event in
addition to all other event handlers (event handlers by MediaWiki plus event handlers
by other installed extensions). In order to make MediaWiki execute a hook extension
at a given hook, the extension must be registered with MediaWiki. A list of available
hooks as well as documentation on how to write a hook extension can be found at [55].

108 6 Ontology Evaluation in MoKi

Example: In order to have the function mvAE display, which is respon-
sible for displaying assertional effects if they exist, called always just before
MediaWiki displays a wiki page, it is registered with MediaWiki as event han-
dler for the OutputPageBeforeHTML hook:

$wgHooks[’OutputPageBeforeHTML’][] = ’mvAE_display’;

Special Pages

While normal wiki pages can be created, edited and deleted manually by wiki users
through the user interface of a MediaWiki installation, special pages are created auto-
matically and can not be edited. Typically, special pages perform some computation
like finding pages that are not linked to from anywhere and display the result. Special
pages have the prefix Special: in front of their page name.

Example: One special page provided by MediaWiki itself is for instance
the “Special:Specialpages” page, which displays all special pages registered
within a MediaWiki installation.

Special pages are implemented as PHP classes that extend the predefined SpecialPage
class. The SpecialPage class predefines a constructor and an execute()method.
The latter is called and executed when the special page is loaded in a browser. Typi-
cally, the execute() method performs some computation and then outputs wiki or
HTML code. A special page extension must also register with MediaWiki.

Example: The special page “Special:MV OntologyQuestionnaire” is regis-
tered as follows with MediaWiki in the MV OntologyQuestionaire.php

file:

Let MediaWiki know about your new special page.

$wgSpecialPages[’MV_OntologyQuestionnaire’] =

’MV_OntologyQuestionnaire’;

Tell MediaWiki to load the extension body.

$wgAutoloadClasses[’MV_OntologyQuestionnaire’] =

$dir . ’MV_OntologyQuestionnaire_body.php’;

Example: The main code of the special page “Special:MV OntologyQuestionnaire”
resides in the MV OntologyQuestionaire body.php file, with the fol-
lowing class skeleton:

<?php

class MV_OntologyQuestionnaire extends SpecialPage {

function __construct() {

parent::__construct(’MV_OntologyQuestionnaire’);

[...]

}

function execute($par) {

global $wgOut;

6.2 Implementation Principles 109

[...]

Write text in wiki syntax to the output

$wgOut->addWikiText(wfMsg(’mv-oq-intro’));

}

}

6.2.2 PHP and Java revisited

Two MoKi validation modules, the ontology questionnaire and assertional effects, are
basically reasoning services on OWL knowledge bases. While there are libraries in
PHP that support RDF, there are none that support OWL and neither are there reason-
ers in PHP. On the other hand, in Java there are at least two open source libraries for
OWL (Jena, OwlApi) and an open source reasoner (Pellet). It was therefore decided to
implement the backend functionality of the ontology questionnaire and of assertional
effects in Java.
Also some core functionalities of MoKi rely on a Java backend, namely the import
and export functionalities and the term extraction functionality. However, they are not
very user-interactive and not used throughout modelling. For this reason, the simple
communication between PHP and Java through calling Java methods in a command-
line and passing results from Java to PHP back through files in a temporary directory
were sufficient for the import, export and term extraction functionalities7. By contrast,
the ontology questionnaire requires more user interaction: Explanations for inferences
must be given and simple revisions (deletion of statements) of the model from within
the ontology questionnaire must be possible. Assertional effects are not interactive but
frequently called upon, since essentially after every ontology edit it must be verified
whether assertional effects exist or not. Communication between PHP and Java via
commandline and files is clearly too unwieldy for such purposes.

It was decided to use the PHP/Java Bridge [15] to achieve a more direct commu-
nication between PHP and Java code. The PHP/Java Bridge allows directly calling
Java methods from within PHP code and vice versa. For the MoKi validation mod-
ules, only the first is necessary. The PHP/Java Bridge is started from within MoKi as
an HttpServer at a local port (usually at 8087), and a dedicated MoKi page8 lets users
see whether the server is up and running as it should be, stop and restart the PHP/Java
Bridge.

Example: In order to instantiate the Java class OntologyQuestionnaire,
the base class in Java that handles the backend functionality of the ontology
questionnaire and to call the member method getInferredAxioms, the
following PHP code is executed:

$oq = new java("at.tugraz.kmi.oq.OntologyQuestionnaire",

7 In version 1.2 of MoKi, this communication is still kept. In version 1.5Beta, since the ontology
questionnaire and assertional effects require a different communication between PHP and
Java, also the other functionalities were re-written.

8 “$MoKi/extensions/MoKi/modules/MoKi Ext Utils/BridgeControl.php”, where “$MoKi”
points to the base URL of the MoKi installation.

110 6 Ontology Evaluation in MoKi

$this->owl_filename);

$list_entailed_axioms = $oq->getInferredAxioms();

6.2.3 Data Storage in MoKi

MediaWiki can store its content in either a MySQL or a Postgres database. Semantic
MediaWiki (SMW) has initially supported storage only in MySQL databases, but since
recently also supports the usage of Postgres. Since MoKi itself relies on a working
SMW installation, MoKi has been developed on machines with a MySQL database
only and has not been tested for Postgres at the backend. While SMW adds database
tables to the MediaWiki database, MoKi fully stores its content within MediaWiki and
SMW tables.

The Need for a Synchronised OWL Representation of MoKi Content

The interpretation of MoKi content as description logic axioms (as given in Tables 3.2-
3.4) is done by most MoKi functionalities based directly on the database content. An
explicit translation between database content and OWL occurred originally only dur-
ing import and export. The first translates an OWL ontology into appropriate database
content according to the MediaWiki and SMW database schemata, while the second
translated database content of a MoKi installation into an OWL ontology. Essentially,
the MoKi export functionality first calls SMW’s built-in RDF export functionality, and
then translates the created RDF represenation into an OWL representation of the MoKi
content. The difference between the RDF and the OWL representation lies less in the
formalism than in the interpretation given to content. The SMW’s built-in RDF export
functionality interprets MoKi content as content of a normal SMW installation, while
the translation from RDF to OWL is a MoKi functionality that interprets MoKi content
according to Tables 3.2-3.4.

Example: Assume that MoKi contains a relation expressed as “Conference —
(participant)—> Person” in MoKi’s user interface (as e.g. visible on Fig. 6.6).
In RDF as directly exported from SMW, this would be represented as the
triple Conference participant Person. The MoKi export function-
ality would translate this to the following representation in OWL however:
Conference v ∀participant.Person.

The models checklist, the quality indicator, and all core MoKi functionality de-
scribed in Chap. 3 above, can work directly on the database content, since the inter-
pretation of MoKi content as description logic axioms is sufficiently easy for their pur-
poses. The ontology questionnaire and assertional effects need full-blown OWL 2 rea-
soning over the MoKi content however, and thus any reasoner would need an OWL (or
another description logic) representation of MoKi content. Furthermore, the assertional
effects rely on information about the dynamics of the logical content, i.e. the addition
and deletion of axioms.

In a first prototypical implementation of the ontology questionnaire and the as-
sertional effects within MoKi, the available ontology export functionality was used to
create an OWL representation of the MoKi content whenever needed. The problem

6.2 Implementation Principles 111

with this solution was its low performance, due to the fact that whatever happened, the
whole MoKi content had to be exported into RDF and then translated to OWL. This
would have been acceptable for the ontology questionnaire, since it could be expected
that the ontology questionnaire would not be called very frequently. For the assertional
effects on the other hand, this is not at all acceptable since they have to be computed
every essentially every time a concept or property page is edited. Furthermore, asser-
tional effects would have required a complete export of the MoKi content twice at each
concept and property page edit since the assertional effects work on the difference be-
tween a knowledge base before and after an ontology edit.
This led to the decision to keep a constantly synchronised OWL representation of the
MoKi content. The goal was to increase the average performance of MoKi while still
enabling functionalities that rely on an OWL representation of the MoKi content.

The MoKi OWL knowledge base

The OWL representation of the domain model contained within MoKi is called the
MoKi OWL knowledge base. It contains all information about the current domain
model contained within MoKi, but does not contain information about processes or
possibly other content of MoKi. Concerning the domain model, the MoKi OWL knowl-
edge base most notably does not contain information contained within “Free Notes” on
model element pages, nor information about the revision history of single pages, users
who edited pages nor does it contain the information about the talk pages that relate to
model element pages.
In the current implementation, the MoKi OWL knowledge base is stored in a single
OWL file in the images/OntologyExport subdirectory of the MediaWiki instal-
lation directory. Changes to the MoKi content can not be made directly through ma-
nipulating the MoKi OWL knowledge base but must be made through the MoKi user
interface.

When To Update the MoKi OWL Knowledge Base

An analysis of the MoKi user interface shows, that changes to the MoKi content that
should be reflected in the MoKi OWL knowledge base can be made through the fol-
lowing activities in the following places:

– Creating, editing, deleting or restoring concept pages
– Creating, editing, deleting or restoring property pages
– Creating, editing, deleting or restoring individual pages
– Modifications in the IsA Browser
– Modifications in the IsPartOfBrowser
– Ontology import functionality
– Data cleaner functionality

Incremental vs. Batch Update of the MoKi OWL Knowledge Base

Updating the MoKi OWL knowledge base can be done either incrementally or as a
whole. In the first cases, only a small amount of changes (the addition or deletion of

112 6 Ontology Evaluation in MoKi

axioms) are registered and applied to the MoKi OWL knowledge base. In the second
case, whenever a change occurs, the complete MoKi content that is relevant for the
MoKi OWL knowledge base is exported into RDF and translated to OWL. The redun-
dancy is clear: When a single concept, property or individual page is edited, changes
occur only in a very small part of the OWL ontology that represents the MoKi content,
but still the complete content is exported and translated.
Further analysis of the list of activities that necessitate an update of the MoKi OWL
knowledge base shows that the first three activities (creating, editing, deleting or
restoring model element pages) are most appropriate for incremental update of the
MoKi OWL knowledge base. The last two, ontology import and data cleaner func-
tionality, perform batch update operations on the MoKi content. Embedding incre-
mental updates into these functionalities would slow them down. Modifications in the
IsA/IsPartOfBrowser may be single updates or multiple updates, in the end depending
on how many changes the user makes within the tree visualisation. It has therefore been
decided to incrementally update the MoKi knowledge base when concept, property or
individual pages are created, edited, deleted or restored and to suspend incremental up-
date in the other cases. Note that with restoration, the actual implementation deviates
from this plan in that updating the MoKi knowledge base after a page restoration is im-
plemented as suspending the incremental update (see further below for a more detailed
discussion of this case).
Practically, suspension is achieved by deleting the MoKi OWL knowledge base and
lazily exporting it again only when needed, i.e. when assertional effects or the ontol-
ogy questionnaire require the MoKi OWL knowledge base again.

Implementation of the Incremental Update Functionality

Essentially, the update functionality views the domain model contained within MoKi
as an OWL knowledge base, which in turn can be seen as a set of axioms. This is
in line with the definition of a knowledge base as KB = (T ,R,A) as is typical
in description logics. In addition, an OWL knowledge base also contains annotation
axioms which contain meta-information about elements without logical meaning, such
as e.g. verbal descriptions of elements. Then, the core update functionality only needs
to deal with atomic ontology edits, the addition or removal of axioms to/from the MoKi
OWL knowledge base. The challenge here is to actually detect axioms which have been
removed or added in a non-atomic edit activity such as for instance creating, editing,
deleting or restoring a model element page. A model element page in this discussion
always means either a concept, a property or an individual page.
The technical basis of the incremental OWL update is again a mixture of the SMW
built-in RDF export and the translation from the RDF representation into OWL. In
contrast to the existing ontology export functionality, only the currently edited model
element page is exported into RDF and translated to OWL.

I first discuss the incremental update functionality conceptually, and start with how
it works when a single model element page is edited. Based on this, the incremental
update functionality can easily be extended to support also creating, deleting or restor-
ing a model element page.
The OWL representation of the model element page after the page has been edited

6.2 Implementation Principles 113

gives only a static view. In order to detect which axioms have been added or removed,
it must be compared with some prior version. A direct comparison with the complete
MoKi OWL knowledge base, which represents the state of the domain model before
the page edit, would be possible9 but tedious. Therefore it has been decided, to create
the OWL representation of the edited model element page before saving the changes as
well as after. This gives, after a model element page A has been edited, two OWL rep-
resentations KB′1 (stored in a file called MV_A_orig.owl) and KB′2 (stored in a file
called MV_A.owl), where the comma ′ denotes that both are only a small excerpt of
the complete MoKi OWL knowledge base KB. The incremental update functionality
then compares KB′1 and KB′2 by a simple set comparison of the axioms in KB′1 and
KB′2 and determines the sets of added and deleted axioms. The set of added axioms is
then added to, and the set of deleted axioms is deleted from, the complete MoKi OWL
knowledge base KB.
In case a page is created, the comparison is easy since KB′1 is empty. In case a model
element page A is deleted, simply all references to the model element A are deleted
from the MoKi OWL knowledge base KB.

The above conceptual design lends itself clearly to be implemented as a se-
ries of hook extensions. The code for all these hooks is contained within the file
MV_AssertionalEffects.php in the MoKiValidation directory.
The state of a model element page before changes are saved is retrieved within an
ArticleSave hook called mvAE_saveOriginal. This function outputs, for a
concept/property page with name A, the file MV_A_orig.owl. The state of a model
element after changes have been saved is retrieved within an ArticleSaveComplete
hook called mvAE_saveNew. This function outputs, for a concept/property page
with name A, the file MV_A.owl. Also the creation of a page is treated by the
mvAE_saveNew function . The function mvAE_saveNew takes care of computing
the difference between KB′1 and KB′2 and updates the MoKi OWL knowledge base
accordingly. The difference between KB′1 and KB′2 is computed by an instance of
the Java class KnowledgeBasePair, whose only job is to compare two knowl-
edge bases and return comparison values and changes in terms of sets of axioms that
must be added or removed in order to transform one knowledge base into the other.
Updating the MoKi OWL knowledge base is also done in Java through static meth-
ods of a utility class called Utilities. The deletion of a page is noticed within an
ArticleDelete hook called mvAE_delete. This function creates the OWL rep-
resentation of the model element page as it was before deletion. The restoration of a
page is noticed within an ArticleUndelete hook called mvAE_undelete. This
function however does not create the OWL representation of the page after restora-
tion, but follows the suspension of incremental update as implemented for the IsA and
IsPartOf browsers and the batch update functionalities of ontology import and data
cleaning. The main reason for this is that the restoration functionality in MoKi is not
9 A direct comparison with the complete MoKi OWL knowledge base in order to detect changes

made by editing a single element page A is possible since editing a single element page can
only lead to the addition or removal of axioms where A is the subject of the axiom, e.g.
A v B. This is inherent in the design of the concept, property and individual page templates.

114 6 Ontology Evaluation in MoKi

fully mature since it is not the inverse of a page deletion10 and is thus in general recom-
mended to be used only with care. Then, since restoration is not expected to be carried
out very often, the suspension is not expected to cause a significant loss in performance.

6.3 Implementation of the MoKi Validation Modules

6.3.1 Ontology Questionnaire

The ontology questionnaire is accessible via the MoKi menu entry “Inferences - Do
You Agree” or via its special page address “Special:MV OntologyQuestionnaire”. It is
implemented as a PHP class that extends the MediaWiki class SpecialPage and re-
sides in the file MV_OntologyQuestionnaire_body.php. Subsequently, I will
abbreviate this class as OQ_PHP. The ontology questionnaire uses the MoKi OWL
knowledge base as source of information about the domain model contained within
MoKi.
Its execute() function first checks whether the MoKi OWL knowledge base is avail-
able, and if this is not the case, freshly exports the complete MoKi content which is
relevant into RDF and translates it to OWL. It then goes on to load the MoKi OWL
knowledge base into a Java instance of the class MoKiOntologyQuestionnaire
(subsequently abbreviated as OQ_Java). This Java class is implemented as a quasi-
singleton, such that for each OWL file on any filesystem, there is at most one current
OQ_Java instance. Using the singleton pattern allows the OQ_PHP to post intermedi-
ate results, such as selecting statements for deletion, confirming or cancelling deletion,
back to itself while remembering all previous actions in the Java instance of OQ_Java
as long as this Java instance is not cleared.

Example: The OQ Java instance remembers the selection of axioms that
are to be deleted and computes side-effects of this deletion without actually
performing it. In a next step, OQ PHP only needs to know whether deletion
has been confirmed or cancelled, without having to remember the actually se-
lected statements since this information is persisted in the singleton OQ Java

instance.

The OQ_PHP changes its behaviour depending on the requested URL (parameteres
that affect its behaviour are the fragment and the query) and on the content of the
$_POST variable, which is an associative array storing the variables the PHP OQ_PHP
has received via the an HTTP POST action. The basic actions that OQ_PHP performs
are the following:

– Display the list of axioms that can be inferred from the MoKi OWL knowledge base
– Jump to a specific inferred statement in the list
10 The restore functionality only restores the information that was stored within MediaWiki on

the concept page that is being restored. A concept can be referred to from other pages however,
and the delete functionality deletes all such references but without persisting these additional
deletions. They can not be restored therefore. It is possible that in future versions of MoKi,
this will be remedied.

6.3 Implementation of the MoKi Validation Modules 115

– Display the explanation for a selected inferred statement in the list
– Tentatively delete statements selected from explanations, display side-effects, and

ask for confirmation.
– Actually delete the selected statements and display a success page.
– Cancel deletion of selected statements and return to the explanation from where the

deletion process was started.

Let “$MoKi” denote the base URL of a MoKi installation. Then, if the simple URL
“$MoKi/index.php/Special:MV OntologyQuestionnaire” is requested,
OQ_PHP displays the two lists of inferred statements, one caused by the hierarchy of
the concepts and properties, and all others (Fig. 6.2).
OQ_PHP indexes inferred axioms with a letter j ∈ {A,B} that denotes in which of
the two lists an inferences is displayed, and a number i that refers to the position of the
axiom within the corresponding list.

Example: The seventh axiom from top of the axioms derived from the concept
or property hierarchy has the index “7B”.

The fragment is used to denote the position of the display in this list, using the above
described indices.

Example: OQ PHP displays the axiom “7B” on top of the page when the URL
“$MoKi/index.php/Special:MV OntologyQuestionnaire#7B” is requested

This anchor is used for internal purposes mostly, so that in case of cancellation of
any action, the OQ_PHP is able to jump back to exactly the same view as before the
cancellation.
If the URL contains a query of the form “explain=ij”, the explanation for the indicated
axiom is displayed (Fig. 6.3).

Example: OQ PHP displays the explanation for the axiom “7B” when the
URL “$MoKi/index.php/Special:MV OntologyQuestionnaire?explain=7B” is
requested.

If $_POST contains a value for the key ‘selected_axioms’, OQ_PHP asks the
OQ_Java to create a dedicated Java OQAxiomRemover instance which can mark the
selected axioms for deletion and can compute side-effects. These are then displayed by
OQ_PHP (Fig. 6.4).
If $_POST contains a value for the key ‘remove_btn’, OQ_PHP asks the ded-
icated OQAxiomRemover instance to actually delete the axioms from the MoKi
OWL knowledge base and calls a dedicated PHP class called MV_OWL2DBMapper

to delete the selected axioms in MoKi’s database. After deletion, the OQ_Java is
cleared which forces a fresh loading of the MoKi OWL knowledge base and of the
OQAxiomRemover instance. A success page is displayed (Fig. 6.5).
If $_POST contains a value for the key ‘cancel_btn’, OQ_PHP clears the OQ_Java
which again enforce a fresh loading of the MoKi OWL knowledge base and of the
OQAxiomRemover instance, and returns to the display of the explanation from which
the tentative deletion has been started (Fig. 6.3).

116 6 Ontology Evaluation in MoKi

A more in-depth view at an intermediate level of technicality on the ontology ques-
tionnaire’s implementation within MoKi is given in App. B.1 in a functional view, a
logical view (class description and class diagram) and a process view (user actions and
triggered method calls, and a sequence diagram).

6.3.2 Assertional Effects

A dedicated OutputPageBeforeHTML hook called mvAE_display implements
the assertional effects functionality within MoKi. The code is located within the file
MV_AssertionalEffectsHook.php. The assertional effects functionality uses
the MoKi OWL knowledge base as source of information about the domain model con-
tained within MoKi.
Assertional effects can be displayed on concept and property pages after a logical
change has been made to the MoKi content, i.e. terminological or role axioms have been
added or deleted. In any case, even if no assertional effects exist, the logical changes are
displayed. It is first necessary to detect logical differences between the domain model
before and after an ontology edit. To this purpose, the assertional effects functional-
ity within MoKi relies on the incremental OWL update functionality to create, for a
concept/page with name A, the two files MV_A_orig.owl and MV_A.owl. In case
only the latter file exists, the page has been newly created. The two OWL files concep-
tually represent the knowledge bases KB′1 and KB′2, which are both small excerpts
of the complete MoKi OWL knowledge base KB. The difference between KB′1 and
KB′2 is computed by an instance of the Java class KnowledgeBasePair. If logical
differences exist, an instance of the Java class TeaTypes is created, which takes the
complete MoKi OWL knowledge base KB plus the changes (added and deleted termi-
nological and role axioms) as input and from there on computes assertional effects as
described above.
If assertional effects are found, they are displayed by inserting HTML source code di-
rectly between the HTML source code of the quality indicator and that of the rest of
the concept page.

A more in-depth view at an intermediate level of technicality on the implementation
of assertional effects within MoKi is given in App. B.2 in a functional view, a logical
view (class description and class diagram) and a process view (backend actions when
a concept or property page is edited or newly created, and an activity diagram).

6.3.3 Models Checklist

The models checklist is a normal wiki page that links to a number of MediaWiki spe-
cial pages, each presenting the results of a single check to the MoKi user. It is typically
created during the MoKi installation process. Alternatively, a setup_moki.xml file
is available in each MoKi distribution that can be input via the special page “Spe-
cial:SemanticPageImport”. As a third alternative, the same page could be created man-
ually as a simple wiki page within a MoKi installation.
Since the models checklist page is a normal wiki page, it can be modified for differ-
ent settings by simply editing it. Links can be removed and added (choosing from all

6.3 Implementation of the MoKi Validation Modules 117

available checks) in usual wiki syntax. The checks concerning the domain model are
summarised in Tables 6.1-6.3. Additional checks for processes and for model integra-
tion are available in the current MoKi implementation but not described here.

Subsequently, I describe in some more detail the implementation of the check for
concepts without verbal descriptions. The other checks are implemented very much in
analogy. All checks query the database representation of the models contained within
MoKi, and do not use the MoKi OWL knowledge base.
The special page “Special:Concepts without verbal description” is implemented as a
PHP class which extends the predefined MediaWiki class SpecialPage and resides,
together with all other special pages that check concepts for certain characteristics, in
a file called MV_ConceptChecks_body.php.
Its execute() function calls a more generic, globally available, function that is
able to retrieve all model elements of a specific kind (i.e. concepts, properties, indi-
viduals or processes) without a verbal description. This function in turn first uses a
built-in function of the SemanticForms extension that retrieves all pages of a given
category, in this case to retrieve all concept pages. It then iterates through the result
list, and checks for each concept page with name ConceptName whether a triple of
the form ConceptName Description DescriptionText. exists. Concept
pages for which this triple does not exist are returned as having no verbal description.
The execute() function then outputs a header, a count of concepts without verbal
description, a help text, and a list of returned concepts, formatted as a HTML bullet
point list (see Fig. 6.9).

6.3.4 Quality Indicator

The quality indicator is implemented as a OutputPageBeforeHTML hook called
mvQualityIndicatorHook. An OutputPageBeforeHTML hook is triggered
just before a wiki page is displayed as HTML in the browser.
The function mvQualityIndicatorHook computes the points for completeness
and sharedness for the element whose page is being displayed and prepends the HTML
source code that visualises the bars to the HTML body. Similar as above, I describe
only the quality indicator for concepts in detail. The implementation for properties,
individuals, and processes is very much in analogy, with only a slight difference in
characteristics that are computed. A complete list of characteristics for each kind of
model elements is given below in Tables 6.4- 6.7. Similar to the models checklist, the
quality indicator uses the database representation of the models contained within MoKi,
and does not use the MoKi OWL knowledge base.

On a given concept page with name ConceptName, the quality indicator com-
putes the the points for completeness as follows: If ConceptName has a verbal de-
scription, 3 points are given. If at least one synonym is defined, 1 point is given. If
ConceptName is part of a hierarchy (i.e. if ConceptName has superconcepts, sub-
concepts, has any parts or is part of anything else), 2 points are given. If ConceptName
is related to other concepts via user-defined properties, 1 point is given for each rela-
tion. In order to compute these characteristics, the quality indicator accesses the same,
globally available, functions that are also accessed by the models checklist, the only

118 6 Ontology Evaluation in MoKi

Checklist for concepts
Concepts without verbal description

Lists: Concepts without a verbal description.
Rationale: Verbal descriptions for model elements increase the usability of the ontology.
Special Page: Special:Concepts without verbal description

Orphaned concepts
Lists: Concepts which are not part of any hierarchy, i.e. have no super or subconcepts,

have no parts, and are not part of anything.
Rationale: Probably redundant concepts. Typically, concepts are organised hierarchically

in an ontology.
Special Page: Special:Orphaned Concepts

Concepts without individuals
Lists: Concepts which are not instantiated by any individual.
Rationale: This is not necessarily a modelling mistake, except if it is explicitly intended

that every concept shall be instantiated. Instance data can be used to document
concepts as examples and to test logical axioms concerning concepts.

Special Page: Special:Concepts Without Individuals
Non-shared concepts

Lists: Concepts which have been edited only by a single person.
Rationale: It is good practice to model an ontology collaboratively.

At least, a second person should review the ontology.
Special Page: Special:Non shared Concepts

Table 6.1. Automatically generated checklist for concepts. The checklist lists concepts with
characteristics that point to potential modelling mistakes.

Checklist for individuals
Individuals belonging to no concept

Lists: Individuals for who no type is asserted, i.e. whose type is owl:Thing.
Rationale: Most surely a modelling mistake by oversight. Typically, at least one

type of an individual is known.
Special Page: Special:Individuals With No Type Defined

Non-shared individuals
Lists: Individuals which have been edited only by a single person.
Rationale: Whether sharedness is a relevant characteristic for individuals depends on the

kind of knowledge base. In knowledge bases where individuals are subject of
discussion, such as in encyclopaedias, sharedness is relevant also for
individuals. Per default this check is not shown in the models checklist.

Special Page: Special:Non shared Individuals

Table 6.2. Automatically generated checklist for individuals. The checklist lists individuals with
characteristics that point to potential modelling mistakes.

6.3 Implementation of the MoKi Validation Modules 119

Checklist for properties
Properties without verbal description

Lists: Properties without verbal description.
Rationale: Verbal descriptions for model elements increase the usability of the ontology.
Special Page: Special:Properties without verbal description

Properties with no domain defined
Lists: Properties for which no domain is defined.
Rationale: It is not a modelling mistake by itself to not define the domain of a property.

However, defining a property’s domain increases the logical precision of the
ontology and increases the benefits of reasoning over the ontology.

Special Page: Special:Properties with no domain
Properties with no range defined

Lists: Properties for which no range is defined.
Rationale: It is not a modelling mistake by itself to not define the range of a property.

However, defining a property’s range increases the logical precision of the
ontology and increases the benefits of reasoning over the ontology.

Special Page: Special:Properties with no range
Non-shared properties

Lists: Properties which have been edited only by a single person.
Rationale: It is good practice to model an ontology collaboratively.

At least, a second person should review the ontology.
Special Page: Special:Non shared Properties

Table 6.3. Automatically generated checklist for properties. The checklist lists properties with
characteristics that potentially point to modelling mistakes.

difference being that the quality indicator does not need to iterate through a list of con-
cepts but checks only for a single concept.
The collected points are divided into value partitions, i.e. if a concept reaches less than
3 points, it gets a red bar for completeness, if it reaches 3 or 4 points, the concept gets
an orange bar. If a concept reaches 5 points, it gets a yellow bar and above that it gets
a green bar.

Completeness for concepts
Points given if . . . #Points
A verbal description for the concept exists 3
At least one synonym exists 1
The concept is part of a hierarchy 2
A user-defined relation to another concept exists 1 for each relation

Table 6.4. The distribution of points given for each characteristic that contributes to the com-
pleteness measure of a concept.

120 6 Ontology Evaluation in MoKi

Completeness for properties
Points given if . . . #Points
A verbal description for the property exists 3
At least one synonym exists 1
The property is a subproperty or an inverse of another property,

2
or has a domain or range defined

Table 6.5. The distribution of points given for each characteristic that contributes to the com-
pleteness measure of a property.

Completeness for individuals
Points given if . . . #Points
A verbal description for the individual exists 1
At least one synonym exists 1
The individual has a defined type 2
A user-defined relation to another individual exists 1 for each relation

Table 6.6. The distribution of points given for each characteristic that contributes to the com-
pleteness measure of an individual. The existence of a verbal description is rated lower than
elsewhere, because individuals are concrete real-world entities that in general need less explana-
tion than the more abstract concepts.

Sharedness
Points given if . . . #Points
Multiple users have contributed to this model element page 1 for each contributor

Table 6.7. The sharedness measure counts the number of active contributors to a model element
page. It does not register how many people have viewed the page and agreed with it.

6.4 Discussion

Concerning the contribution to the field of ontology engineering (environments) and
ontology evaluation, there are two clear innovations. First, the ontology questionnaire
contains an innovation regarding the display of inferences insofar as side-effects of
a “repair” activity, such as deleting explicitly made statements in order to remove an
undesired inference, are displayed to the user. Additionally, the integration of the ontol-
ogy questionnaire within MoKi is such, that the MoKi users are pointed towards using
it for ontology evaluation purposes. A future change in the implementation could be
to move the ontology questionnaire more into the direction of being a “real” question-
naire by providing the users with a possibility to explicitly agree or disagree with single
inferred statements. Such a questionnaire could be useful in organisational ontology en-
gineering situations where a formal documentation of ontology evaluation procedures
is required.
Second, evaluation is typically seen as an activity separate from each corresponding on-
tology engineering phase (first, informal modelling, then evaluation of informal model
etc.). While MoKi also supports such evaluation activities, it provides functionality to
make users aware of potential issues already during modelling. Thus, ontology evalua-
tion in MoKi becomes tightly integrated with modelling itself, moving ontology evalu-

6.4 Discussion 121

ation into the direction of what is known as “formative evaluation”. To the best of the
author’s knowledge, this is an innovative feature which is indeed not present in other
comparable ontology engineering environments.

A user evaluation of the MoKi validation functionalities would naturally be of
benefit. However, evaluations exist for prior prototypes of the ontology questionnaire
and the models checklist (which uses the same characteristics as the quality indica-
tor) [41, 98]. An evaluation of usefulness in a real ontology engineering setting is
missing only for the assertional effects functionality, but here the focus was on the
theoretical development in the scope of this thesis.

7

Conclusion

The description-logic based formalisms which have established themselves as de-facto
standard in the Semantic Web both benefit and suffer from their current, very high,
expressivity. On the one hand, complex issues can be described in description logics
(although researchers are constantly pushing towards even more expressive languages),
while on the other hand human ontology engineers have even now trouble grasping the
implications of their explicitly expressed knowledge. This difficulty constitutes a severe
impediment to systematic ontology evaluation. Furthermore, in ontology engineering
as opposed to software engineering there is no execution environment in which to test
an ontology per default, safe the usage of reasoners to check ontologies for logical
consistency. This thesis has picked up the state-of-the art in ontology evaluation, which
has been at a rather conceptual level, and led it from there to automated support for
ontology evaluation.

Summary

To this purpose, first the benefits of including a review of entailed statements into the
ontology engineering activity of formal model evaluation have been investigated. An
analysis based on a list of typical modelling errors in OWL and experiences from a
practical application of the ontology questionnaire revealed the following main points.
While missing information cannot be detected through such a review, a variety of mod-
elling errors related to open world reasoning, domain and range constructs and more
general logic-related issues can be highlighted. This indicates that the underlying idea
is of practical interest for ontology engineers, which is supported by the finding of
an experimental study that the amount of invested time is manageable. Furthermore,
results of the experimental study indicate that knowledge engineers understand the
purpose of such a procedure, and together with the limited time efforts thus are easily
motivated to go through such a process. On a different level, the experimental study
also gave insight into the complex problem solving approaches taken by ontology en-
gineers, which by large exceeds the support a tool such as the ontology questionnaire
can offer based on inference explanations. A deeper research of human creativity and
conflict resolution mechanisms involved in this process was unfortunately outside the
scope of this thesis. However, I regard this as the most interesting forward-leading re-
search question concerning the investigated approach of reviewing inferred statements

124 7 Conclusion

as part of an ontology evaluation procedure. Such research is necessary in order to
provide more humanly intelligent automated support for ontology repair. The summar-
ily positive findings have also led to the implementation of the ontology questionnaire
within MoKi, which delivers inferences, explanations for inferences, supports the dele-
tion of the cause of an undesired inference and computes side-effects of such a deletion
as well.

In a second venture, the delivery of concrete effects of ontology editing activities
directly during modelling have been investigated. In collaborative knowledge bases
users are expected to contribute not by adding textual or multimedia content as is cur-
rently the practice in Web 2.0 like environments, but also facts about individuals or
general knowledge e.g. in the form of terminological or role axioms. Contributors to a
knowledge base benefit from seeing implications of their ontology editing activities on
existing data in three ways. First, assertional effects give concrete examples of the gen-
eral knowledge (terminological and role axioms) which was removed or added. Second,
such effects give contributors the possibility to review their contribution from a view-
point in addition of the explicitly added, removed or modified statements. Finally, since
such effects can be displayed directly during modelling, contributors can immediately
assess whether what they modelled is interpreted by a reasoner as intended.
The focus of investigation in this part was on providing a formal definition of what has
been termed intuitively “knowledge lost or gained about data”. On a theoretical side,
I showed that the existence of assertional effects can be decided if the DL language
in question is decidable through a tableaux algorithm, or if it has the connected model
property contains role disjunction and the Kleene-operator. The first condition holds
for SROIQ, the DL language underlying OWL 2, which makes the integration of a
reasoning service deciding on the existence of assertional effects and displaying them
interesting for OWL 2 modelling tools. Following such considerations, the assertional
effects functionality was integrated in MoKi, including several practical extensions in
comparison to the exhaustive theoretical discussion on assertional effects. The main
open challenge for broad applicability of displaying assertional effects is to find suit-
able exemplary individuals within a knowledge base on which to illustrate effects.

Both theoretically oriented ventures have led to the implementation of valida-
tion functionalities within MoKi. Together with two more validation functionalities in
MoKi, the models checklist and the quality indicator, MoKi has thus been extended to
broadly support ontology evaluation activities both during modelling and as a separate
evaluation activity in the ontology engineering process. This is definitely one aspect
that makes of MoKi an outstanding ontology engineering environment compared to
other state-of-the art tools.

Self-Assessment

The goal of this thesis was to investigate how reasoning, as something that machines
can do well given a logic-based knowledge representation formalism, can be used to
support humans in assessing whether what they expressed as logical formulae corre-
sponds to what they intended to say. Some progress in understanding has been made by
this thesis in particular in the area of delivering inferences and finding modelling errors
through reviewing inferences. Among the achievements are first the confirmation that

7 Conclusion 125

ontology engineers do find reviewing inferred statements useful, while occasionally
preferring to solve detected problems less technically than can be currently supported
for instance through inference explanation. Second, a new reasoning service that com-
putes effects of terminological axioms on data has been proposed to fill the gap be-
tween TBox related reasoning, on which there is a lot of research, and data. Third, the
achieved results have been integrated in an ontology engineering environment, MoKi,
and are thus easily available for a wider public to use. Nonetheless, as has been pointed
out above, there are also unresolved issues that would lend themselves well to further
research. First, this concerns the question how people resolve modelling errors once
they have detected them. As has been pointed out, such resolution may be more com-
plex and indirect than solutions that can be automatically proposed by using ontology
debugging and repair services. Second, this concerns the provision of exemplary indi-
viduals given a knowledge base with a lot of data, assuming that many individuals in
the knowledge base are similar to some extent.

References

[1] Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton.
RDFa in XHTML: Syntax and Processing. http://www.w3.org/TR/

rdfa-syntax/, Last visited: 2010-02-18.
[2] Carlos E. Alchourròn, Peter Gärdenfors, and David Makinson. On the logic

of theory change: Partial meet contraction and revision functions. Journal of
Symbolic Logic, 50:510–530, 1985.

[3] APOSDLE - Advanced Process Oriented Self-Directed Learning Environment.
http://www.aposdle.org. Last visited: 2010-02-18.

[4] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather
Butler, J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight,
Janan T. Eppig, Midori A. Harris, David P. Hill, Laurie Issel-Tarver, Andrew
Kasarskis, Suzanna Lewis, John C. Matese, Joel E. Richardson, Martin Ring-
wald, Gerald M. Rubin, and Gavin Sherlock. Gene ontology: tool for the unifi-
cation of biology. Nature Genetics, 25:25–29, 2000.

[5] Ask - Semantic search in Semantic MediaWiki. http://

semantic-mediawiki.org/wiki/Help:Semantic_search.
Last visited: 2010-02-18.

[6] Attempto Controlled English. http://attempto.ifi.uzh.ch. Last vis-
ited: 2010-02-18.

[7] Sören Auer, Sebastian Dietzold, and Thomas Riechert. Ontowiki - a tool for
social, semantic collaboration. In Isabel F. Cruz, Stefan Decker, Dean Allemang,
Chris Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo,
editors, The Semantic Web - ISWC 2006, 5th International Semantic, volume
4273 of Lecture Notes in Computer Science, pages 736–749. Springer, 2006.

[8] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[9] Michael Backhaus and Janet Kelso. Bowiki - a collaborative annotation and
ontology curation framework. In Natalya Fridman Noy, Harith Alani, Gerd
Stumme, Peter Mika, York Sure, and Denny Vrandecic, editors, CKC, volume
273 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdfa-syntax/
http://semantic-mediawiki.org/wiki/Help:Semantic_search
http://semantic-mediawiki.org/wiki/Help:Semantic_search
http://attempto.ifi.uzh.ch

[10] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web On-
tology Language Reference. http://www.w3.org/TR/owl-ref/, Last
visited: 2010-02-18.

[11] David A. Bell, Guilin Qi, and Weiru Liu. Approaches to inconsistency han-
dling in description-logic based ontologies. In Robert Meersman, Zahir Tari,
and Pilar Herrero, editors, OTM Workshops (2), volume 4806 of Lecture Notes
in Computer Science, pages 1303–1311. Springer, 2007.

[12] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001.

[13] BOWiki. http://bowiki.net/. Last visited: 2010-02-18.
[14] Janez Brank, Marko Grobelnik, and Dunja Mladenic. A survey of ontology

evaluation techniques. In Conference on Data Mining and Warehouses, 2005.
[15] PHP/Java Bridge. http://php-java-bridge.sourceforge.net/

pjb/. Last visited: 2010-02-18.
[16] Michel Buffa and Fabien Gandon. Sweetwiki: semantic web enabled technolo-

gies in wiki. In WikiSym ’06: Proceedings of the 2006 international symposium
on Wikis, pages 69–78, New York, NY, USA, 2006. ACM.

[17] Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini. Ontology Learning
From Text: Methods, Evaluation and Applications, volume 123 of Frontiers in
Artificial Intelligence and Applications, chapter Ontology Learning from Text:
An Overview, pages 1–10. IOS Press, 2005.

[18] Patryk Burek, Robert Hoehndorf, Frank Loebe, Johann Visagie, Heinrich. Herre,
and Janet Kelso. A top-level ontology of functions and its application in the open
biomedical ontologies. Bioinformatics, 22(14), July 2006.

[19] Business Process Modeling Notation. http://www.bpmn.org/. Last vis-
ited: 2010-02-18.

[20] Philipp Cimiano and Johanna Völker. Text2Onto - a framework for ontology
learning and data-driven change discovery. In Andres Montoyo, Rafael Munoz,
and Elisabeth Metais, editors, Proceedings of the 10th International Conference
on Applications of Natural Language to Information Systems (NLDB),, volume
3513 of Lecture Notes in Computer Science, pages 227–238, Alicante, Spain,
June 2005. Springer. ISBN: 3-540-26031-5.

[21] Nancy J. Cooke. Varieties of knowledge elicitation techniques. International
Journal of Human-Computer Studies, 41(6):801–849, 1994.

[22] Oscar Corcho, Mariano Fernandez-Lopez, Asuncion Gomez-Perez, and Oscar
Vicente. WebODE: an integrated workbench for ontology representation, rea-
soning and exchange. In 13th International Conference on Knowledge Engi-
neering an Knowledge Management (EKAW’02), volume 2473 of Lecture Notes
on Artificial Intelligence, pages 138–153. Springer-Verlag, October 2002.

[23] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a knowledge rep-
resentation? AI Magazine, 14(1):17–33, 1993.

[24] Dewey Decimal Classification system. http://www.oclc.org/dewey/,
last visited: 2010-02-18.

128

http://www.w3.org/TR/owl-ref/
http://bowiki.net/
http://php-java-bridge.sourceforge.net/pjb/
http://php-java-bridge.sourceforge.net/pjb/
http://www.bpmn.org/
http://www.oclc.org/dewey/

[25] DHTMLx Tree Library. http://www.dhtmlx.com/docs/products/
dhtmlxTree/index.shtml. Last visited: 2010-02-18.

[26] dmoz Open Directory Project. http://www.dmoz.org. Last visited: 2010-
02-18.

[27] DOLCE: A Descriptive ontology for Linguistic and Cognitive Engineering.
http://www.loa-cnr.it/DOLCE.html, last visited: 2010-02-18.

[28] John Domingue. Tadzebao and webonto: Discussing, browsing, and editing on-
tologies on the web. In In Proceedings of the 11th Knowledge Acquisition for
Knowledge-Based Systems Workshop, 1998.

[29] Nick Drummond. Outline/existential view. http://code.google.com/
p/co-ode-owl-plugins/wiki/OutlineView, Last visited: 2010-02-
18.

[30] Fact++. http://code.google.com/p/factplusplus/, last visited:
2010-02-18.

[31] Adam Farquhar, Richard Fikes, and James Rice. The ontolingua server: a tool
for collaborative ontology construction. Int. J. Hum.-Comput. Stud., 46(6):707–
727, 1997.

[32] Dieter Fensel, Jim Hendler, Henry Lieberman, and Wolfgang Wahlster, editors.
Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential.
MIT Press, 2003.

[33] Mariano Fernandez, Asuncion Gomez-Perez, and Natalia Juristo. Methontol-
ogy: from ontological art towards ontological engineering. In Proceedings of
the AAAI97 Spring Symposium Series on Ontological Engineering, pages 33–
40, Stanford, USA, March 1997.

[34] Mariano Fernandez-Lopez, Asuncion Gomez-Perez, Juan Pazos Sierra, and Ale-
jandro Pazos Sierra. Building a chemical ontology using Methontology and
the Ontology Design Environment. Intelligent Systems and Their Applications,
IEEE, 4(1):37–46, Jan/Feb 1999.

[35] Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg, and Kavitha
Srinivas. The summary abox: Cutting ontologies down to size. In Isabel F.
Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter Mika,
Michael Uschold, and Lora Aroyo, editors, International Semantic Web Con-
ference, volume 4273 of Lecture Notes in Computer Science, pages 343–356.
Springer, 2006.

[36] Semantic Forms. http://www.mediawiki.org/wiki/Extension:

Semantic_Forms. Last visited: 2010-02-18.
[37] A. Gangemi. Ontology design patterns for semantic web content. In Yolanda

Gil, Enrico Motta, Richard V. Benjamins, and Mark Musen, editors, The Se-
mantic Web - Proceedings of the Fourth International Semantic Web Confer-
ence, ISWC 2005, volume 3729 of Lecture Notes in Computer Science, pages
262–276. Springer Berlin, 2005.

[38] Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann.
Modelling Ontology Evaluation and Validation. In York Sure and John
Domingue, editors, The Semantic Web: Research and Applications: 3rd Euro-
pean Semantic Web Conference, ESWC 2006 Budva, Montenegro, June 11-14,

129

http://www.dhtmlx.com/docs/products/dhtmlxTree/index.shtml
http://www.dhtmlx.com/docs/products/dhtmlxTree/index.shtml
http://www.dmoz.org
http://www.loa-cnr.it/DOLCE.html
http://code.google.com/p/co-ode-owl-plugins/wiki/OutlineView
http://code.google.com/p/co-ode-owl-plugins/wiki/OutlineView
http://code.google.com/p/factplusplus/
http://www.mediawiki.org/wiki/Extension:Semantic_Forms
http://www.mediawiki.org/wiki/Extension:Semantic_Forms

2006 Proceedings, volume 4011 of Lecture Notes in Computer Science, pages
140 – 154. Springer, 2006.

[39] Lars Marius Garshol. Living with topic maps and rdf-s/owl. Technical report,
Ontopia.

[40] Chiara Ghidini, Viktoria Pammer, Peter Scheir, Luciano Serafini, and Ste-
fanie Lindstaedt. Aposdle: learn@work with semantic web technology. In
I-SEMANTICS ’07, 3rd International Conference on Semantic Technologies,
2007.

[41] Chiara Ghidini, Marco Rospocher, Barbara Kump, Viktoria Pammer, Andreas
Faatz, and Andreas Zinnen. Integrated modelling methodology version 2,
APOSDLE Deliverable 1.6, April 2009.

[42] Chiara Ghidini, Marco Rospocher, Luciano Serafini, Barbara Kump, Vikto-
ria Pammer, Andreas Faatz, and Joanna Guss. Integrated Modelling Method-
ology Version 1, APOSDLE Deliverable 1.3. Deliverable D3.1, Aposdle
(www.aposdle.org), Nov 2007.

[43] Chiara Ghidini, Marco Rospocher, Luciano Serafini, Barbara Kump, Viktoria
Pammer, Andreas Faatz, Andreas Zinnen, Joanna Guss, and Stefanie Lindstaedt.
Collaborative knowledge engineering via Semantic MediaWiki. In Proceedings
of the Third International Conference on Semantic Systems (I-Semantics 2008),
Graz, Austria, Sept. 3-5 2008, pages 134–141, 2008.

[44] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did I damage my ontology?
A case for conservative extensions in description logics. In Patrick Doherty,
John Mylopoulos, and Christopher A. Welty, editors, Proceedings of KR2006:
the 20th International Conference on Principles of Knowledge Representation
and Reasoning, Lake District, UK, June 2–5, 2006, pages 187–197. AAAI Press,
2006.

[45] Bernhard Gissing and Klaus Tochtermann. Corporate Web 2.0 Bankd I: Web 2.0
und Unternehmen - Wie passt das zusammen? Shaker Verlag, 2007.

[46] Asuncion Goméz-Pérez. Some ideas and examples to evaluate ontologies. In
Proceedings of the 11th Conference on Artificial Intelligence for Applications,
pages 229–305. IEEE Computer Society, Feb 1995.

[47] Michael Granitzer. Konzeption und Entwicklung eines generischen Wissenser-
schliessungsframeworks. PhD thesis, Graz University of Technology, 2006.

[48] Michael Grüninger. Designing and evaluating generic ontologies. In Workshop
on Ontological Engineering, European Conference on Artificial Intelligence,
1996.

[49] Michael Grüninger and Mark S. Fox. Methodology for the design and evaluation
of ontologies. In Workshop on Basic Ontological Issues in Knowledge Sharing:
Montreal, Quebec, Canada: 1995, August, 20-25, pages 6.1–6.10, 1995.

[50] Nicola Guarino. Formal ontology and information systems. In Nicola Guarino,
editor, Formal Ontology and Information Systems, Proceedings of FOIS 1998.,
pages 3–15. IOS Press, 1998.

[51] Nicola Guarino and Pierdaniele Giaretta. Ontologies and Knowledge Bases:
Towards a Terminological Clarification. Towards Very Large Knowledge Bases:
Knowledge Building and Knowledge Sharing, pages 25–32, 1995.

130

[52] Nicola Guarino and Chris Welty. Handbook on Ontologies, chapter An
Overview of OntoClean, pages 151–172. International Handbooks on Infor-
mation Systems. Springer, 2004.

[53] Peter Haase, Frank van Harmelen, Zhisheng Huang, Heiner Stuckenschmidt,
and York Sure. A framework for handling inconsistency in changing ontologies.
In Yolanda Gil, Enrico Motta, V. Richard Benjamins, and Mark A. Musen, edi-
tors, International Semantic Web Conference, volume 3729 of Lecture Notes in
Computer Science, pages 353–367. Springer, 2005.

[54] Pascal Hitzler, Rudolf Sebastian, and Markus Krötzsch. Foundations of Seman-
tic Web Technologies. Chapman & Hall/CRC, London, 2009.

[55] MediaWiki Hooks. http://www.mediawiki.org/wiki/Manual:

Hooks. Last visited: 2010-02-18.
[56] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and precise justifi-

cations in owl. In Amit P. Sheth, Steffen Staab, Mike Dean, Massimo Paolucci,
Diana Maynard, Timothy W. Finin, and Krishnaprasad Thirunarayan, editors,
International Semantic Web Conference, volume 5318 of Lecture Notes in Com-
puter Science, pages 323–338. Springer, 2008.

[57] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible
SROIQ. In Proceedings of the 10th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2006), pages 57–67. AAAI
Press, 2006.

[58] Ian Horrocks and Ulrike Sattler. A tableau decision procedure for SHOIQ.
Journal of Automated Reasoning, 39(3):249–276, 2007.

[59] José Kahan and Marja-Ritta Koivunen. Annotea: an open rdf infrastructure for
shared web annotations. In WWW 2001: Proceedings of the 10th international
conference on World Wide Web, pages 623–632, New York, NY, USA, 2001.
ACM.

[60] Kaarel Kaljurand and Norbert E. Fuchs. Verbalizing OWL in Attempto Con-
trolled English. In Proceedings of Third International Workshop on OWL: Ex-
periences and Directions, Innsbruck, Austria (6th–7th June 2007), volume 258,
2007.

[61] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Finding all
justifications of OWL DL entailments. In Karl Aberer, Key-Sun Choi, Natasha
Noy, Dean Allemang, Kyung-Il Lee, Lyndon J B Nixon, Jennifer Golbeck, Peter
Mika, Diana Maynard, Guus Schreiber, and Philippe Cudré-Mauroux, editors,
Proceedings of the 6th International Semantic Web Conference and 2nd Asian
Semantic Web Conference (ISWC/ASWC2007), Busan, South Korea, volume
4825 of LNCS, pages 267–280, Berlin, Heidelberg, November 2007. Springer
Verlag.

[62] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and James
Hendler. Swoop: A web ontology editing browser. Elsevier Journal of Web
Semantics, 4(2):144–153, 2006.

[63] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging
unsatisfiable classes in OWL ontologies. Journal of Web Semantics, 3(4):268–
293, 2005.

131

http://www.mediawiki.org/wiki/Manual:Hooks
http://www.mediawiki.org/wiki/Manual:Hooks

[64] KiWi - Knowledge in a Wiki. http://www.kiwi-project.eu/. Last
visited: 2010-02-18.

[65] Werner Klieber, Vedran Sabol, Markus Muhr, Roman Kern, Georg Öttl, and
Michael Granitzer. Knolwedge discovery useing the knowminer framework.
In IADIS International Conference Information Systems, pages 307–314, 2009.

[66] Roman Kontchakov, Frank Wolter, and Michael Zakharyaschev. Can you tell
the difference between dl-lite ontologies? In KR 2008: Eleventh International
Conference on Principles of Knowledge Representation and Reasoning, 2008.

[67] Markus Krötzsch, Denny Vrandecic, Max Völkel, Heiko Haller, and Rudi
Studer. Semantic wikipedia. Journal of Web Semantics, 5:251–261, Sept. 2007.

[68] Tobias Kuhn. AceWiki: A Natural and Expressive Semantic Wiki. In Proceed-
ings of Semantic Web User Interaction at CHI 2008: Exploring HCI Challenges.
CEUR Workshop Proceedings, 2008.

[69] Tobias Kuhn. Acewiki: Collaborative ontology management in controlled nat-
ural language. In Proceedings of the 3rd Semantic Wiki Workshop (SemWiki
2008), Tenerife, Spain, June 2 2008. CEUR Workshop Proceedings.

[70] Leonid Libkin and Cristina Sirangelo. Open and closed world assumptions in
data exchange. In Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, and Ulrike
Sattler, editors, Description Logics, volume 477 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2009.

[71] Stefanie Lindstaedt, Tobias Ley, and Harald Mayer. Aposdle - new ways to work,
learn and collaborate. In Proccedings of the 4th Conference on Professional
Knowledge Management WM2007, pages 227–234, Potsdam, Germany, March
28-30 2007. GITO-Verlag Berlin.

[72] Stefanie Lindstaedt, Peter Scheir, Robert Lokaiczyk, Barbara Kump, Günter Be-
ham, and Viktoria Pammer. Knowledge services for work-integrated learning.
In Proceedings of the European Conference on Technology Enhanced Learning
(ECTEL) 2008 Maastricht, The Netherlands, September 16-19, pages 234–244,
2008.

[73] Linked Data - Connect Distributed Data Across the Web. http://linkeddata.org/,
Last visited: 2010-02-18.

[74] Paul Benjamin Lowry, Aaron Curtis, and Michelle René Lowry. Building a tax-
onomy and nomenclature of collaborative writing to improve interdisciplinary
research and practice. Journal of Business Communication, 41(1):66–99, 2004.

[75] Carsten Lutz, Franz Baader, Enrico Franconi, Domenico Lembo, Ralf Möller,
Ricardo Rosati, Ulrike Sattler, Boontawee Suntisrivaraporn, and Sergio Tessaris.
Reasoning support for ontology design. In Bernardo Cuenca Grau, Pascal Hit-
zler, Connor Shankey, and Evan Wallace, editors, OWL: Experiences and Direc-
tions 2006, 2006.

[76] Carsten Lutz, Dirk Walther, and Frank Wolter. Conservative extensions in ex-
pressive description logics. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence IJCAI-07. AAAI Press, 2007.

[77] Alexander Maedche and Steffen Staab. Ontology learning for the semantic web.
IEEE Intelligent Systems, 16(2):72–79, 2001.

132

http://www.kiwi-project.eu/

[78] Frank Manola and Eric Miller. RDF Primer. http://www.w3.org/TR/

rdf-primer/, Last visited: 2010-02-18.
[79] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, Alessandro

Oltramari, and Luc Schneider. The wonderweb library of foundational ontolo-
gies. Deliverable D17, National Research Council, Institute of Cognitive Sci-
ences and Technology, May 2003.

[80] Deborah L. McGuinness. Spinning the Semantic Web: Bringing the World Wide
Web to Its Full Potential., chapter Ch. 5: Ontologies Come Of Age, pages 171–
194. MIT Press, 2003.

[81] MediaWiki. http://www.mediawiki.org. Last visited: 2010-02-18.
[82] MediaWiki Extensions. http://www.mediawiki.org/wiki/Manual:

Extensions. Last visited: 2010-02-18.
[83] MoKi - The MOdelling WiKI. http://moki.fbk.eu. Last visited: 2010-

02-18.
[84] Graham Moore. Rdf and topicmaps: An exercise in convergence. In XML Eu-

rope 2001, Berlin, Germany, 2001.
[85] myOntology. http://www.myontology.org/. Last visited: 2010-02-18.
[86] Allen Newell. The knowledge level (presidential address). AI Magazine, 2(2):1–

20, 33, 1980.
[87] Ian Niles and Adam Pease. Towards a standard upper ontology. In Chris Welty

and Barry Smith, editors, Proceedings of the 2nd International Conference on
Formal Ontology in Information Systems (FOIS-2001), October 2001.

[88] Natalya F. Noy, Abhita Chugh, and Harith Alani. The ckc challenge: Explor-
ing tools for collaborative knowledge construction. Intelligent Systems, IEEE,
23(1):64–68, January-February 2008.

[89] Natalya F. Noy and Deborah L. McGuinness. Ontology development 101: A
guide to creating your first ontology. Technical report, Stanford University,
March 2001.

[90] Natasha Noy and Alan Rector. Defining N-ary Relations on the Semantic
Web, http://www.w3.org/TR/swbp-n-aryRelations/. Last vis-
ited: 2010-02-18.

[91] Onto Wiki. http://ontowiki.net/Projects/OntoWiki. Last vis-
ited: 2010-02-18.

[92] Ontology Design Patterns. http://ontologydesignpatterns.org.
Last visited: 2010-02-18.

[93] Ontology Questionnaire. http://services.know-center.tugraz.

at:8080/InteractiveOntologyQuestionnaire. Last visited:
2010-02-18.

[94] Tim O’Reilly. What is web 2.0: http://www.oreillynet.com/pub/a/
oreilly/tim/news/2005/09/30/what-is-web-20.htm. Last vis-
ited: 2010-02-18.

[95] Magdalena Ortiz. An automata-based algorithm for description logics
around SRIQ. In Proceedings of the Fourth Latin American Work-
shop on Logic/Languages, Algorithms and Non-Monotonic Reasoning 2008

133

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.mediawiki.org
http://www.mediawiki.org/wiki/Manual:Extensions
http://www.mediawiki.org/wiki/Manual:Extensions
http://moki.fbk.eu
http://www.myontology.org/
http://www.w3.org/TR/swbp-n-aryRelations/
http://ontowiki.net/Projects/OntoWiki
http://ontologydesignpatterns.org
http://services.know-center.tugraz.at:8080/InteractiveOntologyQuestionnaire
http://services.know-center.tugraz.at:8080/InteractiveOntologyQuestionnaire
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.htm
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.htm

(LANMR’08), volume 408, Puebla,Mexico, October 2008. CEUR Workshop
Proceedings.

[96] OWL 2 Web Ontology Language - Structural Specification and Functional-Style
Syntax. http://www.w3.org/tr/owl2-overview/. Last visited: 2010-02-18.

[97] Viktoria Pammer, Barbara Kump, Chiara Ghidini, Marco Rospocher, Luciano
Serafini, and Stefanie Lindstaedt. Revision support for modeling tasks, topics
and skills. In Proceedings of I-SEMANTICS 2009, 5th International Confer-
ence on Semantic Systems, Graz, Austria, September 2-4, pages 501–508, Graz,
Austria, September 2-4 2009.

[98] Viktoria Pammer and Stefanie Lindstaedt. Ontology evaluation through assess-
ment of inferred statements: Study of a prototypical implementation of an on-
tology questionnaire for owl dl ontologies. In Dimitris Karagiannis and Zhi
Jinpeng, editors, Knowledge Science, Engineering and Management, Third In-
ternational Conference, KSEM 2009, number 5914 in Lecture Notes in Artificial
Intelligence, pages 394–405, Vienna, Austria, November 25-27 2009. Springer.

[99] Pellet - The Open Source OWL DL Reasoner. http://clarkparsia.

com/pellet/. Last visited: 2010-02-18.
[100] Steve Pepper, Fabio Vitali, Lars Marius Garshol, Nicola Gessa, and Valentina

Presutti. A Survey of RDF/Topic Maps Interoperability Proposals. http://
www.w3.org/TR/rdftm-survey/, Last visited: 2010-02-18.

[101] Helena Sofia Pinto and João P. Martins. Ontologies: How can they be built?
Knowledge and Information Systems, 6(4):441–464, July 2004.

[102] Protégé. http://protege.stanford.edu/. Last visited: 2010-02-18.
[103] Protégé - Explanation Workbench. http://owl.cs.manchester.ac.

uk/explanation/, Last visited: 2010-02-18.
[104] Guilin Qi and Fangkai Yang. A survey of revision approaches in description

logics. In Proceedings of the 21st International Workshop on Description Logics
(DL’08), volume 353. CEUR, MAY 2008.

[105] Racer. http://www.racer-systems.com/, last visited: 2010-02-18.
[106] RaDON - Repair and Diagnosis in Ontology Networks. http://www.

neon-toolkit.org/wiki/RaDON, Last visited: 2010-02-18.
[107] RDFa Primer - Bridging the Human and Data Webs. http://www.w3.org/

TR/xhtml-rdfa-primer/. Last visited: 2010-02-18.
[108] Alan Rector. Representing specified values in owl: ”value partitions” and ”value

sets”,. http://www.w3.org/TR/swbp-specified-values/, Last
visited: 2010-02-18, May 17 2005.

[109] Alan Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger
Knublauch, Robert Stevens, Hai Wang, and Chris Wroe. Owl pizzas: Practi-
cal experience of teaching owl-dl: Common errors & common patterns. In En-
rico Motta, Nigel Shadbolt, Arthur Stutt, and Nicholas Gibbins, editors, EKAW,
volume 3257 of Lecture Notes in Computer Science. Springer, 2004.

[110] Marco Rospocher, Chiara Ghidini, Viktoria Pammer, Luciano Serafini, and Ste-
fanie Lindstaedt. MoKi: The Modelling Wiki. In Proceedings of the Forth Se-
mantic Wiki Workshop (SemWiki 2009), co-located with 6th European Semantic

134

http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/
http://www.w3.org/TR/rdftm-survey/
http://www.w3.org/TR/rdftm-survey/
http://protege.stanford.edu/
http://owl.cs.manchester.ac.uk/explanation/
http://owl.cs.manchester.ac.uk/explanation/
http://www.racer-systems.com/
http://www.neon-toolkit.org/wiki/RaDON
http://www.neon-toolkit.org/wiki/RaDON
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/swbp-specified-values/

Web Conference (ESWC 2009), volume 464 of CEUR Workshop Proceedings,
pages 113–128, 2009.

[111] Catherine Roussey, Oscar Corcho, and Luis Manuel Vilches-Blázquez. A cata-
logue of owl ontology antipatterns. In K-CAP ’09: Proceedings of the fifth in-
ternational conference on Knowledge capture, pages 205–206, New York, NY,
USA, 2009. ACM.

[112] Stuart Russell and Peter Norvig. Artificial Intelligence, A Modern Approach.
Prentice Hall Series in Artificial Intelligence. Pearson Education International,
2003.

[113] Werner Schachner and Klaus Tochtermann. Corporate Web 2.0 Band II: Web
2.0 und Unternehmen - das passt zusammen! Shaker Verlag, 2008.

[114] Sebastian Schaffert. Ikewiki: A semantic wiki for collaborative knowledge man-
agement. In 1st International Workshop on Semantic Technologies in Collabo-
rative Applications STICA 06, Manchester, UK, June 2006.

[115] Sebastian Schaffert, François Bry, Joachim Baumeister, and Malte Kiesel. Se-
mantic wikis. IEEE Software, 25(4):8–11, 2008.

[116] Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, Mihai Rad-
ulescu, Rolf Sint, and Stephanie Stroka. Kiwi - a platform for semantic social
software. In Proceedings of the Forth Semantic Wiki Workshop (SemWiki 2009),
co-located with 6th European Semantic Web Conference (ESWC 2009), volume
464, pages 171–185, Crete, Greece, June 1 2009. CEUR Workshop Proceedings.

[117] Klaus Schild. A correspondence theory for terminological logics: Preliminary
report. In Proceedings of the 12th International Joint Conference on Artificial
Intelligence (IJCAI’91), pages 466–471, 1991.

[118] Stefan Schlobach, Zhisheng Huang, Ronald Cornet, and Frank Harmelen. De-
bugging incoherent terminologies. Journal of Automated Reasoning, 39(3):317–
349, 2007.

[119] Katharina Siorpaes and Martin Hepp. myontology: The marriage of ontology
engineering and collective intelligence. In Bridging the Gep between Semantic
Web and Web 2.0 (SemNet 2007), co-located with the 4th European Semantic
Web Conference (ESWC 2007), pages 127–138, Innsbruck, Austria, June 7 2007.
Springer.

[120] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Semantics, 5(2):51–
53, 2007.

[121] Peter Spyns, Robert Meersman, and Mustafa Jarrar. Data modelling versus on-
tology engineering. SIGMOD Rec., 31(4):12–17, 2002.

[122] Rudi Studer, Anupriya Ankolekar, Pascal Hitzler, and York Sure. A semantic
future for ai. IEEE Intelligent Systems, 21(4):8–9, Juli 2006.

[123] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge Engineering:
Principles and Methods. IEEE Transactions on Data Knowledge Engineering,
25(1-2):161–197, 1998.

[124] Suggested Upper Merged Ontology (SUMO). http://www.ontologyportal.org/.
Last visited: 2010-02-18.

135

[125] SweetWiki - Semantic WEb Enabled Technology Wiki. http://

sweetwiki.inria.fr/sweetwiki/. Last visited: 2010-02-18.
[126] Swoop. http://code.google.com/p/swoop/. Last visited: 2010-02-

18.
[127] Martin Tanler. Unit testing for ontologies. Bachelor Thesis, Digital Enterprise

Research Institute, University of Innsbruck.
[128] Adolfo Lozano Tello and Asunción Gómez-Pérez. Ontometric: A method to

choose the appropriate ontology. Journal of Database Management, 15(2):1–
18, 2004.

[129] Christoph Tempich, Elena Simperl, H. Sofia Pinto, and Rudi Studer.
Argumentation-based ontology engineering. IEEE Intelligent Systems, 22(6),
November 2007. to appear.

[130] The NeOn Toolkit. http://www.neon-toolkit.org/. Last visited: 2010-02-18.
[131] The OWL API. http://owlapi.sourceforge.net/. Last visited:

2010-02-18.
[132] Stefan Herbert Tiran. Ursprung von Inferenzen finden und bei Bedarf löschen.

Unveröffentlichte Bakkalaureatsarbeit, Technische Universität Graz, 2008.
[133] Klaus Tochtermann. Das Future Internet. ispa News, 4:13–15, 2009.
[134] Topic Maps. http://www.topicmaps.org. Last visited: 2010-02-18.
[135] Tanja Tudorache, Natalia Noy, Samson Tu, and Mark A. Musen. Supporting col-

laborative ontology development in protege. In Seventh International Semantic
Web Conference, Karlsruhe, Germany, 2008. Springer.

[136] Unified Modeling Language. http://www.uml.org/. Last visited: 2010-
02-18.

[137] Mike Uschold and Michael Grüninger. Ontologies: Principles, methods, appli-
cations. In Knowledge Engineering Review, volume 11, pages 93–155. 1996.

[138] Mike Uschold and Martin King. Towards a methodology for building ontolo-
gies. In Workshop on Basic Ontological Issues in Knowledge Sharing, held in
conduction with IJCAI-95, Montreal, Canada, 1995.

[139] Johanna Völker, Denny Vrandecic, York Sure, and Andreas Hotho. Aeon - an
approach to the automatic evaluation of ontologies. Journal of Applied Ontol-
ogy, 3(1-2):41–62, 2008.

[140] Denny Vrandecic and Aldo Gangemi. Unit tests for ontologies. In Mustafa
Jarrar, Claude Ostyn, Werner Ceusters, and Andreas Persidis, editors, Proceed-
ings of the 1st International Workshop on Ontology content and evaluation in
Enterprise, LNCS, Montpellier, France, OCT 2006. Springer.

[141] Denny Vrandecic, H. Sofia Pinto, York Sure, and Christoph Tempich. The dili-
gent knowledge processes. Journal of Knowledge Management, 9(5):85–96,
Oktober 2005.

[142] Wikipedia. http://www.wikipedia.org. Last visited: 2010-02-18.
[143] XHTML 1.0 The Extensible HyperText Markup Language. http://www.

w3.org/TR/xhtml1/. Last visited: 2010-02-18.

136

http://sweetwiki.inria.fr/sweetwiki/
http://sweetwiki.inria.fr/sweetwiki/
http://code.google.com/p/swoop/
http://owlapi.sourceforge.net/
http://www.topicmaps.org
http://www.uml.org/
http://www.wikipedia.org
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/

A

Ontology Questionnaire Manual

This manual was distributed in December 2008 to the ontology engineers who used the
ontology questionnaire in the scope of the APOSDLE project [3, 71]. It describes the
usage of the then-current version of the Ontology Questionnaire [93].

Informal Models Revision Phase - Guidelines

© APOSDLE consortium: all rights reserved page 1

1 Ontology Questionnaire

These questionnaires are meant to propose to the Knowledge Experts statements and questions that
are extracted from the models contained in the MoKi and aim to verify if the Knowledge Experts (KE)
agree with those statements. If not, this obviously triggers a request for some manual verification and
revision of parts of the models contained in the MoKi. The questionnaire concerns only the domain
model.
APs should use it on-line once the first revision (manual and automatic checks) is completed.

The ontology questionnaire is made for the purpose of letting a Knowledge Expert verify the
“knowledge” that can be inferred from an ontology and remove it in case it was not intended.
The rationale behind this is, that neither the knowledge expert nor the knowledge engineer explicitly
state wrong things. Nevertheless, they might encode their knowledge in the ontology in such a way
that they do not agree with everything that can be inferred from it. This can be due either to not well
knowing the used formalism (OWL DL) or to having a large and complex domain ontology.
After seeing the inferred statements, the KE or knowledge engineer might disagree with an inferred
statement and wish to remove it. This is not directly possible because it is inferred and not stated. The
ontology questionnaire finds the reason for an inferred statement, and lets the user remove the reason
for the inference.

In the following I use the terms “axiom” and “statement” interchangeably.

1.1 Conceptual walk through the ontology questionnaire

The ontology questionnaire uses a reasoner on an (OWL DL) ontology to infer statements.

Example: “ANOVA subClassOf Test” is a statement. It states that the concept “ANOVA” is a subclass
of the concept “Test”. Other ways of expressing this could be: “Everything which is an ANOVA is also
a Test” (in nearly natural language) or “ TestANOVA⊆ (in a formal language).

It then shows the list of inferences to the knowledge expert. The knowledge expert should read
through these statements carefully. In case of disagreeal, the knowledge engineer can get the reason
why this statement was inferred.

Example: “ANOVA subClassOf Test” was inferred because of the statements “ANOVA subClassOf
Parametric_Test” and “Parametric_Test subClassOf Test”. If the KE disagrees, either of the two
statements must be removed. Then, the offending statement “ANOVA subClassOf Test” will not be
inferred anymore from the ontology.

Aposdle - Specific

One important point for the usage of the Questionnaire in APOSDLE is, that although the changed
ontology can in principle be saved directly, for APOSDLE you must note the axioms you deleted and
delete them manually in the MoKi. How this can best be done is also described in detail below – we
expect that to be quite fast and easy however.

Informal Models Revision Phase - Guidelines

© APOSDLE consortium: all rights reserved page 2

1.2 Step-by-Step through the Questionnaire

1.2.1 Start the questionnaire

Figure 1

Click on the link “Click here to start the interactive ontology questionnaire”.

1.2.2 Upload your domain ontology on

Upload the domain ontology for which you want to verify the inferences.

Figure 2

Click on “Browse” to open a file dialogue and browse for your ontology-file. Click on “Upload” to upload
it.

Aposdle-Specific

If XXX is a prefix like “EADS”, “ISN” and so on for your company, this file is called “XXXdomain-
ontology.owl”. If you do not know where you can find it, ask your coach for it.

1.2.3 Navigation

The header of the page shows the following entries:

• Upload Ontology

• List Entailed Statements

• Justification

• Save current ontology

• List Removed Axioms

• Options

These are the different views of the ontology. At every point in time, the views that are open to you are
displayed as links. Click on them to go there.
A plain-text-view is either closed to you or you are currently seeing it.

You are here

Informal Models Revision Phase - Guidelines

© APOSDLE consortium: all rights reserved page 3

1.2.4 List inferred statements

You will automatically be transferred to the “List Entailed Statements”-View.

Figure 3

On the displayed page, you see two boxes: One with the title “Entailed Statements” and one with the
title “Axioms” (see Figure 4). We call the first the “Entailed Statements” – box and the second the
“Explicit Statements” – box.
The first box shows the statements which are inferred from the uploaded ontology. If you open the
*.owl-file with a text editor you would not find these statements written there.
The second box shows the statements which were explicitly given in the MoKi.

Figure 4

1.2.5 Find out the reason for an inferred statement and optionally delete it

If you want to know why a statement has been inferred, select the corresponding radio button and
click the button “Justify” at the bottom of the “Entailed Statements” – box (see Figure 4).

You will be taken to the Justification – View (see Figure 5).

You are here

„Entailed Statements“ - box

„Explicit Statements“ - box

Informal Models Revision Phase - Guidelines

© APOSDLE consortium: all rights reserved page 4

In the first line you will see for which statement you are shown the reason. In the rose box you find one
or more groups of statements. Each group represents one reason for the selected axiom.

• You can now simply go back to the list of entailed statements, or to another view.

• If you want to delete the selected axiom from the ontology you have two choices. You can not
directly delete an inferred axiom, because it is not explicitly stated in the ontology. You can only
remove the reasons why this axiom was inferred.

• In the blue box there is a suggestion which axiom to remove. In order to accept this choice,
click on the button “Delete Minimum Hitting Set”.

In the rose box you find one or more groups of statements. As each group represents one reason for
the inferred axiom, you must remove one line from each group. You can do nothing wrong: the radio
buttons ensure that you have selected one from each group. Click on the button “Remove” to remove
all selected axioms.

Note that deleting axioms in the ontology does not change in any way your local ontology file! All
changes are made on the server on a temporary model!

Note that after removing the reason(s) for the selected axiom you can go back to the “List Entailed
Statements” – View and if you check, you should not find it in the list anymore.

Figure 5

1.2.6 Undo and check which axioms you have already removed

Go to the “List Removed Axioms” – View.

You see a list of axioms / statements which you have removed from the ontology since you uploaded it
to the questionnaire. By checking the checkbox in front of one or more axioms and then clicking
“Reinsert!” you can add them again to the ontology, thus undoing your changes.

Aposdle – Specific

When you are finished with the questionnaire, i.e. when you have reviewed all inferred statements and
are ready to assert the changes, go the the “List Removed Axioms” – View. For each axiom that is
listed there: If it says “A subClassOf B”, then go to the concept page of the concept “A” in the MoKi. In
the line “Is A” you should see the concept “B”. Edit the concept description and remove the concept
“B”.
Please, for evaluation purposes, copy and paste the list of removed axioms into an email and send it
to Viktoria Pammer (vpammer@know-center.at).

You are here
Statement for which you are shown the reason

One reason for the selected axiom

Informal Models Revision Phase - Guidelines

© APOSDLE consortium: all rights reserved page 5

Figure 6

1.3 Additional features

1.3.1 Delete explicitly given statements

In the “Explicit statements” – box (see Figure 4) you see statements that were explicitly given in the
ontology. If you decide you do not want to state this after all, you can simply check the checkbox
corresponding to the statement and click on the “Delete” Button at the bottom of the box.

1.3.2 Save current ontology

In case you want to save the changed ontology to your local system, to to the “Save current ontology”-
View. Depending on the browser you use, you will either be prompted directly to save the file or you
will see a lot of text (RDF/XML) in the browser window. In this case, click on File and “Save As…” to
save the ontology.

Note that the ontology questionnaire does not store labels, comments or similar things!

1.3.3 Options

In the “Options”-View you can (un)check the option “Use symbolic rendering engine”. After changing
the selection you must click “Submit”.

If this checkbox ix checked, the statements will be shown as TestANOVA⊆ . If it is unchecked,
statements will be shown as “Anova subClassOf Test”.

1.4 Known issues and bugs

The ontology questionnaire does not deal with imported ontologies. So if an ontology contains imports,
the reasoning is done only over the statements within the uploaded file.

The ontology questionnaire does not store labels, comments or similar things.

The ontology questionnaire relies on Pellet to do the reasoning. If Pellet cannot deal with an ontology,
the questionnaire cannot either. In case uploading an ontology takes too long, try loading the ontology
into Protégé 4 and classifying it with Pellet. If this works, you have discovered a bug in the ontology
questionnaire. If Pellet in Protégé 4 also fails, then this ontology can simply not be dealt with.

You are here

B

Software Architecture of the MoKi Validation Modules

This appendix documents the software architecture of the two MoKi validation mod-
ules ontology questionnaire and assertional effects functionality at an intermediate level
of technicality. Some simplifications have occasionally been made where this was as-
sumed to increase intelligibility.
The modules models checklist and quality indicator have been deemed simple enough
to be sufficiently described by Chaps. 6.1.3 and 6.1.4.

B.1 Ontology Questionnaire

B.1.1 Functional View

The ontology questionnaire displays statements that are inferred from the MoKi OWL
knowledge base but not explicitly stated within the latter. For each inferred statement,
the ontology questionnaire delivers a list of explanations (each itself a list of logical
statements) on request. In case statements from within the explanations are selected, the
ontology questionnaire computes a list of inferences that would be lost if the selected
axioms were to be removed. In case removal is confirmed, the ontology questionnaire
deletes the selected statements both from MoKi’s database and from the MoKi OWL
knowledge base.
These actions provided by the ontology questionnaire, also given above in Chap. 6.1.11,
are linked in the list below to user actions that trigger them:

– Load page: Display the list of axioms that can be inferred from the MoKi OWL
knowledge base

– Get explanations for an inference: Display the explanation for a selected inferred
statement in the list

– Select statements for deletion: Tentatively delete statements selected from explana-
tions, display side-effects, and ask for confirmation.

– Confirm deletion: Actually delete the selected statements and display a success
page.

1 The action “Jump to a specific inferred statement in the list” is not given here, since this is
implemented as a simple HTML anchor and additionally it is not a core feature.

– Cancel deletion: Cancel deletion of selected statements and return to the explana-
tion from where the deletion process was started.

B.1.2 Logical View

Figure B.1 shows the classes involved in providing the ontology questionnaire’s func-
tionality within MoKi, their most important methods and members. The responsibilities
of all classes are explained below.
Furthermore, the Java package at.tugraz.kmi.verb is used to render OWL ax-
ioms. This package and its members are not depicted and not described here.

MV OntologyQuestionnaire

The special page “Special:MV OntologyQuestionnaire” is the user interface entrypoint
to the ontology questionnaire. The PHP class MV_OntologyQuestionnaire im-
plements the predefined MediaWiki class SpecialPage and is responsible for deal-
ing with all user interactions. Complex computations are delegated to the Java backend
in the at.tugraz.kmi.oq package and, in order to remove selected statements
from MoKi’s database, to the PHP class MV_OWL2DBMapper.

MV OWL2DBMapper

The PHP class MV_OWL2DBMapper contains functionality to remove selected OWL
statements from MoKi’s database. It does so by editing model element pages. It calls
upon the Java class MoKiAxiomCategoriser to categorise the OWL statements
that shall be deleted according to “subject”.

MoKiOntologyQuestionnaire

The Java class MoKiOntologyQuestionnaire is the main entrypoint for the PHP
class MV_OntologyQuestionnaire to access complex background functionality
that delivers inferred statements given an OWL knowledge base, explanations for infer-
ences and gives access to a dedicated instance of the Java class OQAxiomRemover.
It extends a more generally usable Java class OntologyQuestionnairewith func-
tionality to keep a singleton MoKiOntologyQuestionnaire for a given ontology
file in memory, to own a single instance of the Java class OQAxiomRemover, and or-
ganises OWL axioms according to IDs in order to pass them more easily as parameters
of POST operations through the MV_OntologyQuestionnaire.

OQAxiomRemover

The Java class OQAxiomRemover marks statements (axioms) for removal, computes
which inferences would be lost in case these were removed (side-effects), and removes
them on request.

MoKiAxiomCategoriser

The Java class MoKiAxiomCategoriser owns a list of OWL axioms and returns
them categorised according to “subject”, i.e. the MoKi page in which such a statement
would appear. For instance, the subject of a class assertion axiom C(a) is the MoKi
page corresponding to a, since membership in MoKi is defined on individuals’ pages.

144

B.1.3 Process View

Figure B.2 shows the possible user actions within the ontology questionnaire and the
calls between different (PHP and Java) classes that are triggered in response.
Calls to members of the at.tugraz.kmi.verb package, necessary to render OWL
axioms within the ontology questionnaire in a more easily intelligible way, are not
depicted and not described here.

Load Page

When a MoKi users loads the “Special:MV OntologyQuestionnaire” page, the class
MV_OntologyQuestionnaire retrieves the singleton instance of the class
MoKiOntologyQuestionnaire responsible for the MoKi OWL knowledge base
and clears it (getMoKiOntologyQuestionnaire(), clear()).
MV_OntologyQuestionnaire then asks the MoKiOntologyQuestionnaire
singleton to deliver inferred statements, both those derived from the concept and prop-
erty hierarchy and more complex inferences (getInferredAxioms(),
getHierarchicalAxioms()). These statements are rendered and output to the
MoKi user (see e.g. Fig. 6.2).

Get Explanations for Inference

When a MoKi user clicks on the “Why?” at the end of line of an inferred statement,
(s)he gets one or more explanations for the inference. Technically, a query with the key
explain and the value ij, where i ∈ {A,B} denotes to which of the two lists of in-
ferred statements the selected statement belongs and j = 0 . . . n indexes the statements
in each list, is created.
Most operations triggered by this user action are the same as for loading the page.
Additionally, MV_OntologyQuestionnaire asks for explanations for the se-
lected inference from MoKiOntologyQuestionnaire and outputs also these
(getExplanationIds(), see e.g. Fig. 6.3).

Select Statements for Deletion

When a MoKi user selects statements from the given explanations and presses the
“Delete selected statements” button, (s)he arrives at a confirmation page that displays
side-effects of the deletion and asks for a confirmation before actually deleting the
selected statements. Technically, a variable selected_axioms which contains the
IDs of the statements selected for deletion is posted.
MV_OntologyQuestionnaire first retrieves the statements selected for dele-
tion via their IDs and asks MoKiOntologyQuestionnaire to give it a dedi-
cated OQAxiomRemover (getOQAxiomRemover()). Then, it passes the state-
ments selected for deletion to the OQAxiomRemover and asks for side-effects in
case the deletion actually takes place (getSideEffectsOfRemoval()). Finally,
MV_OntologyQuestionnaire renders the selected inference that shall be re-
moved, the explicit statements selected for deletion, and the side-effects (see e.g.
Fig. 6.4).

145

Confirm Deletion

When the MoKi user confirms the deletion of the selected statements by pressing again
a “Delete selected statements” button, the actual deletion takes place and a success page
is displayed. MV_OntologyQuestionnaire first creates an MV_OWL2DBMapper
and asks it to delete the selected statements from MoKi’s database (construct(),
deleteAxioms()). Then, it asks the OQAxiomRemover to delete the selected
statements from the MoKi OWL knowledge base (removeSelectedAxioms()).
Finally, MV_OntologyQuestionnaire clears the OQAxiomRemover and out-
puts a success page to the user (clearOQAxiomRemover(), see e.g. Fig. 6.5).

Cancel Deletion

The MoKi user can also decide to cancel the deletion of the selected statemets by press-
ing the “Cancel button”. In this case, MV_OntologyQuestionnaire clears the
OQAxiomRemover (to free it for possibly another experimental deletion of state-
ments) and loads MV_OntologyQuestionnaire such that the explanations for
the selected inference are displayed again.

146

Fig. B.1. Class diagram of the ontology questionnaire within MoKi. Classes in the
at.tugraz.kmi.verb package are not depicted.

147

Fig. B.2. Sequence diagram of the ontology questionnaire within MoKi depicting the most
relevant calls that are triggered by user interactions. Generally, calls to the members of the
at.tugraz.kmi.verb package are not depicted.

148

B.2 Assertional Effects

B.2.1 Functional View

The assertional effects functionality detects and displays assertional effects caused by
ontology editing activities such as adding, deleting or editing terminological or role
axioms within MoKi. Assertional effects hereby are class or role assertions that have
not been inferred from the MoKi’s OWL knowledge base before manipulations but are
inferred after manipulations (knowledge gained about data) or vice versa (knowledge
lost about data). A formal definition of assertional effects as implemented in MoKi is
given above in Def. 6.
Assertional effects are depicted on concept and property pages within MoKi, after either
creating them or editing existing pages. After deletion or restoration of a whole wiki
page, after editing the MoKi content in the visual IsA and IsPartOf browsers, after
importing a domain model or batch deleting large parts of the domain model via the
data cleaner functionality, no assertional effects are displayed although these may exist
from a logical point of view.

B.2.2 Logical View

Figure B.3 shows the classes involved in providing the assertional effects functionality
within MoKi, their most important methods and members. The responsibilities of all
classes are explained below.
Furthermore, the Java package at.tugraz.kmi.verb is used to render OWL ax-
ioms. This package and its members are not depicted and not described here.

KnowledgeBasePair

The Java class KnowledgeBasePair holds pair of two knowledge bases A and
B. It always considers A to be the starting point of the changes and B the result of
changes, and when talking about additional or removed axioms, axioms that need to
be added to or removed from A in order to arrive at B are meant. An instance of the
class KnowledgeBasePair can be constructed with two knowledge bases or with
a single knowledge base and explicitly a set of additional and a set of removed OWL
axioms. KnowledgeBasePair delivers functionality and serves as a data container
that links A and B and results of their comparisons. For each KnowledgeBasePair,
every computation is done only once. Comparisons do not make use of reasoning but
compare sets of axioms.
The KnowledgeBasePair is used by the assertional effects functionality to detect
logical changes in the MoKi OWL knowledge base, as well as by the incremental OWL
update functionality to detect any kind of change (also non-logical changes such as for
instance changes of verbal descriptions) in a single page and to update the MoKi OWL
knowledge base accordingly.

149

TeaTypes

The Java class TeaTypes is responsible for computing assertional effects given an
instance of the class KnowledgeBasePair. It computes assertional effects sepa-
rately, once for additional axioms and once for removed axioms. It provides a number
of methods for retrieving various kinds of assertional effects, in ascending order of
computational complexity: First, it is conceivable that the KnowledgeBasePair

instance with which TeaTypes was initialised holds knowledge bases in which as-
sertions have been explicitly added (getExplicitAssertionalEffects()).
Second, assertional effects involving primitive concepts and roles can be retrieved
(getAtomicAssertionalEffects) as well as assertional effects involving negated
primitve concepts (getNegativeAtomicAssertionalEffects()). Finally,
assertional effects can be detected through the decision procedure described in Chap. 5.2.1
(getComplexAssertionalEffects()), although TeaTypes limits the search
depth and thus only performs an approximation.
An aggregation method (getCollectedAssertionalEffects()) computes
all above-mentioned kinds of effects, does not return explicitly added or removed con-
cept and role assertions, and tries to simplify complex assertional effects.

AssertionalEffectsContainer

The Java class AssertionalEffectsContainer holds the result of a computa-
tion of TeaTypes. It holds the KnowledgeBasePair for which assertional effects
were computed, it knows which kind of assertional effects were computed (explicit,
atomic, negative atomic, complex, collected), and it holds gained or lost assertional
axioms.

SortAssertionalEffectsContainer

The Java class SortAssertionalEffectsContainer provides sort function-
ality for instances of the class AssertionalEffectsContainer. The current
implementation supports sorting by individual name (the first name to occur for role
assertions) and by effect size (the size of the involved concept or role).

B.2.3 Process View

Figure B.4 shows the actions in the background after a MoKi user confirmed editing a
concept or property page, or created a new concept or property page (the actions are
the same in both cases).
Sorting, done by SortAssertionalEffectsContainer, and calls to members
of the at.tugraz.kmi.verb package, necessary to render OWL axioms within
the asertional effects functionality in a more easily intelligible way, are not depicted
and not described below.

150

Save OWL Representation Before Edit

The ArticleSave hook is triggered after a MoKi user has confirmed the edit of an
existing or newly created page, but before changes are persisted in the MoKi database.
Thus, at this stage the incremental OWL update functionality exports the OWL repre-
sentation of the edited page as it was before the edit.

Save OWL Representation After Edit

The ArticleSaveComplete hook is triggered after changes in an edited page are
persisted in the MoKi database. Thus, at this stage the incremental OWL update func-
tionality exports the OWL representation of the edited page as it is after the edit.

Detect Logical Changes

An instance of the Java class KnowledgeBasePair is constructed with the edited
page before and after edit as input. It detects logical changes. If none are made, the
edited wiki page is output as it is, with no further additions.

Prepare KnowledgeBasePair with MoKi OWL Knowledge Base and the Detected
Additional and Removed Axioms

A new instance of the Java class KnowledgeBasePair is constructed with the MoKi
OWL knowledge base and the additional and removed axioms detected in the previous
step as input.

Prepare TeaTypes

The latter KnowledgeBasePair instance is used to construct an instance of the
class TeaTypes.

Compute Assertional Effects

TeaTypes is used to compute all available kinds of assertional effects (atomic, nega-
tive atomic, complex), excluding explicitly added or removed assertions and including
assertional effects with simplified complex concepts if possible
(getCollectedAssertionalEffects()).

Add Logical Changes and Assertional Effects to Output Page

If logical changes were detected, these are added to the output page. If also assertional
effects were detected, these are output, too (see e.g. Fig. 6.6 and 6.7).

151

Fig. B.3. Class diagram of the assertional effects functionality within MoKi. Classes in the
at.tugraz.kmi.verb package are not depicted.

152

Fig. B.4. Activity diagram of the assertional effects functionality within MoKi. Note that the
actions are the same in both cases, whether a concept or property page has been newly created
or edited. Sorting and calls to the members of the at.tugraz.kmi.verb package are not
depicted.

153

	Title
	Acknowledgements
	Abstract
	Kurzfassung
	Contents
	Figures
	Tables
	Introduction
	Motivation
	Structure of this Thesis
	Contributions of this Thesis

	Foundations
	Ontologies
	Description Logics
	Description Logic Basics and ALC
	SHOIN and SROIQ
	Standard Reasoning Problems

	Ontology Engineering
	Ontology Engineering Activities
	Tool Support for Ontology Engineering

	Ontology Evaluation
	Categories in Ontology Evaluation
	Ontology Evaluation Methodologies
	Tool Support for Ontology Evaluation

	MoKi- A Wiki-based Ontology Engineering Environment
	Challenges
	Related Work
	Design and Implementation of MoKi
	MoKi as a MediaWiki plugin
	Every Model Element Is a Wiki Page
	MoKi Functionalities
	PHP and Java

	Discussion

	Ontology Evaluation Through Review of Entailed Statements
	Related Work
	Ontology Questionnaire
	Walkthrough
	Implementation

	Formulation of Relevant Problems in DL
	Limitation to Explicitly Mentioned Concepts
	Justifications in OWL

	Analysis of Benefits and Limitations
	Experimental Study
	Application Setting
	Evaluation Procedure and Results
	Discussion of the Experimental Study

	Discussion

	Assertional Effects of Ontology Editing Activities
	Motivation
	Assertional Effects of Ontology Editing Activities
	Deciding the Existence of Assertional Effects
	Generalisation to DLs with the Connected Model Property

	Related work
	Discussion
	Informative Effects
	Exemplary Effects
	Extending the Definitions of Effects

	Ontology Evaluation in MoKi
	The MoKi Validation Modules
	Ontology Questionnaire
	Assertional Effects
	Models Checklist
	Quality Indicator

	Implementation Principles
	Extending MediaWiki Through Special Pages and Hooks
	PHP and Java revisited
	Data Storage in MoKi

	Implementation of the MoKi Validation Modules
	Ontology Questionnaire
	Assertional Effects
	Models Checklist
	Quality Indicator

	Discussion

	Conclusion
	References
	Ontology Questionnaire Manual
	Software Architecture of the MoKi Validation Modules
	Ontology Questionnaire
	Functional View
	Logical View
	Process View

	Assertional Effects
	Functional View
	Logical View
	Process View

