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Abstract

The segmentation of tubular tree structures like vessel systems in volumetric medical im-

ages is of vital interest for many medical applications. However, a diverse set of challenging

objectives and problems is related to this task in different application domains. In this

work, we develop and evaluate methods to address these issues.

To accomplish the segmentation of heavily branched structures in a robust manner, we

propose a generally applicable three-step approach consisting of: (i) a bottom-up identifi-

cation of tubular structures followed by (ii) a grouping and linkage of these tubular struc-

tures into tree structures that are (iii) used as a prior for the actual segmentation. This

approach incorporates additional prior knowledge compared to conventional approaches:

the individual tubular structures have to be connected with each other and – from a bio-

logical perspective – to be supplied. In this way, we achieve a high robustness regarding

the structural correctness of the segmentation results.

We develop and investigate novel methods for each of these processing steps addressing

the needs of different applications. In particular, we present a novel approach for detection

of tubular objects using the Gradient Vector Flow to address limitations of the typically

used Gaussian scale space. We propose two methods for grouping and linkage of sets of

unconnected tubular structures into tubular tree structures. One enables an extraction of

high quality centerlines in regions that deviate significantly from a typical tubular shape,

while the other one allows for a separation of interwoven tubular tree structures as well

as handling of various kinds of disturbances. To accurately segment the identified tubular

structures two methods are developed. One solves the segmentation task in a globally

optimal way using graph cuts, while the other one segments according to the edge closest

to the centerline.

Based on these methods, different applications for segmentation of blood vessel trees

(liver vasculature and coronary arteries) and airway trees in CT datasets are developed.

The methods are evaluated on clinical datasets and compared to results achieved with other

state-of-the-art methods developed for the same task. The results successfully demonstrate
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the benefits and strengths of the presented methods and underline the robustness achieved

with the outlined three-step approach regarding the structural correctness.

Keywords. medical image analysis, tubular tree structure segmentation, vessel seg-

mentation, airway segmentation, tube detection filter, vessel tree separation, liver vessel

segmentation, coronary artery extraction



Kurzfassung

Die Segmentierung tubulärer baumartigen Strukturen wie Gefäßsystemen in vol-

umetrischen medizinischen Bildern ist von wesentlichem Interesse für viele medizinische

Anwendungen. Jedoch sind mit dieser Aufgabe verschiedene herausfordernde

Zielsetzungen und Probleme in unterschiedlichen Anwendungsbereichen verbunden. In

dieser Arbeit entwickeln und evaluieren wir Methoden die diese Punkte adressieren.

Um die Segmentierung solcher stark verzweigten Strukturen auf robuste Art zu bew-

erkstelligen, schlagen wir einen generell einsetzbaren drei-schrittigen Lösungsansatz vor:

(i) Identifizieren tubulärer Strukturen gefolgt von (ii) Gruppieren/Verbinden in baumar-

tige Strukturen die dann (iii) als Vorwissen für die tatsächliche Segmentierung verwendet

werden. Gegenüber konventionellen Vorgehensweisen bezieht dieser Ansatz zusätzliches

Vorwissen mit ein: Die einzelnen tubulären Strukturen müssen miteinander verbunden

sein und – biologisch betrachtet – versorgt werden. Auf diese Weise erzielen wir eine hohe

Robustheit im Bezug auf die strukturelle Korrektheit der Segmentierungsergebnisse.

Wir entwickeln und untersuchen Methoden für jeden Verarbeitungsschritt um die

Anforderungen verschiedener Anwendungen zu adressieren. Im Besonderen präsentieren

wir einen neuen Ansatz für die Detektion von tubulären Objekten mittels Gradienten

Vektoren Fluss der Beschränkungen des üblicherweise verwendeten Gauß’schen

Größenraumes überwindet. Wir stellen zwei Methoden zum Gruppieren/Verbinden

unverbundener tubulären Strukturen auf. Eine erlaubt eine Extraktion qualitativer

Mittelachsen in Bereichen die stark von der typischen tubulären Form abweichen,

während die andere eine Separierung von ineinander verwobenen baumartigen Strukturen

sowie eine Behandlung verschiedener Störungen erlaubt. Um genaue Segmentierungen

der identifizierten baumartigen Strukturen zu erhalten werden zwei Methoden entwickelt.

Eine löst die Segmentierungsaufgabe auf global optimale Weise mittels Graphenschnitten,

während die andere entsprechend der innenliegendsten Kante segmentiert.

Basierend auf diesen Methoden werden unterschiedliche Anwendungen für die Seg-
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mentierung von Blutgefäßbäumen (Lebergefäße, Koronararterien) und Bronchialbäumen

entwickelt. Die Methoden werden auf klinischen Datensätzen evaluiert und mit den Re-

sultaten anderer anerkannter Methoden verglichen. Die Resultate zeigen erfolgreich die

Vorteile und Stärken der präsentierten Methoden und unterstreichen die Robustheit die

mit dem skizzierten drei-schrittigen Lösungsansatz erzielt wird.

Schlagwörter. medizinische Bildanalyse, Segmentierung tubulärer baumartiger

Strukturen, Gefäßsementierung, Bronchialsegmentierung, Gefäßbaumseparierung,

Lebergefäßsegmentierung, Koronararteriensegmentierung
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Chapter 1

Introduction

Contents

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 A General Approach for Segmentation of Branched Tubular

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Overview and Contributions of the Work . . . . . . . . . . . . . 13

Blood vessels and airway trees of the human body from dense tubular networks. They

form tubular structures – elongated objects with an approximately circular cross section

– that branch recursively. During branching the radius of the tubular structures steadily

decreases, such that as a result they form tubular tree structures as those shown in Fig. 1.1.

With modern medical imaging techniques like (contrast enhanced) CT, MR, or 3D

ultrasound, tubular tree structures can be depicted in great detail. Their identification

and description in volumetric datasets is of vital interest for a variety of clinical appli-

cations as their analysis facilitates diagnosis, quantification, and monitoring of disease.

The derived models are also utilized for visualization, interaction, registration, surgery

planning, or simulation tasks such a blood flow simulation or training of surgery. How-

ever, deriving this information manually from datasets is infeasible in clinical practice due

to their complexity and the required time effort. Doing it manually would additionally

introduce observer variability that should be avoided. Therefore, automated and robust

segmentation methods for these kinds of tasks are needed.

In this work, we deal with the segmentation of such tubular tree structures in volu-

metric medical datasets. The remainder of this chapter is structured as follows: In Sec-

tion 1.0.1 we give an overview about general requirements and problems for such methods,

in Section 1.0.2 we give an overview about representations utilized to describe tubular tree

1



2 Chapter 1. Introduction

(a) Portal and hepatic vein trees of
the liver.

(b) Coronary artery trees.

(c) Aorta. (d) Airway tree. (e) Lung vessels.

Figure 1.1: Examples of tubular tree structures in medical images.

structures, and in Section 1.0.3 we discuss issues related to the evaluation of tubular tree

structure segmentation methods. In Section 1.1 we discuss related work that is concerned

with similar objectives, in Section 1.2 we introduce a general concept for segmentation of

tubular tree structures that forms the basis of this work, and in Section 1.3 we outline the

main objectives and the organization of the rest of the work.

As a general remark, throughout this work we will use the terms blood vessel (tree),

airway (tree), or more generally tubular (tree) structure interchangeably where appropriate

to refer to the corresponding structure as all of them show very similar characteristic

properties in the underlying images.



3

1.0.1 Requirements and Problems

The segmentation of tubular tree structures in medical datasets is a challenging problem.

Not only acquisition-dependent parameters such as contrast, resolution, and imaging ar-

tifacts have to be considered, but in particular their complex structure and the potential

small size of vessels/airways is problematic for segmentation methods. For the segmen-

tation tasks, the requirements may vary for different applications regarding the type of

extracted information, accuracy requirements, and the degree of automation. This has to

be outlined for each application individually. However, a set of general requirements can

be identified that typically have to be addresses by the methods in order to be clinically

applicable:

• Deliver correct 3D reconstructions of the tubular tree structures in a volume of

interest.

• Have the ability to segment thin tubular structures with low contrast.

• Differentiate tubular tree structures from other adjacent structures with the same

gray values such as tumors or other tubular tree structures.

• Robustly handle cases where parts of the tubular tree structure are disturbed; e.g.

due to imaging artifacts such as motion artifacts or beam hardening or due to disease

such as tumors, calcifications, aneurysms, or stenosis where the appearance and

geometry of the tubular structures is disturbed.

• Require only minimal or no user interaction.

1.0.2 Representations

Depending on the application, different informations can be of interest. Consequently,

different kinds of descriptions/models at different abstraction levels are used for their

representation. We distinguish between volume/surface-based representations of the seg-

mentations, skeleton-based representations, and graph-based representations that can be

utilized to describe the tubular tree structure. The different representations are illustrated

in Fig. 1.2.

Volume/surface-based representations: The classical segmentation task is to assign

each voxel of an image a label (object/background) describing its membership with a

targeted object – a tubular tree structures in our case. Such segmentations represent
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(a) Volume/surface-
based representation
describing surface.

(b) Curve skeleton describing struc-
ture (bottom right: with additional
radius information).

(c) Graph-based struc-
ture representing topol-
ogy.

Figure 1.2: Representations of tubular tree structures.

the surfaces of the tubular tree structures in an implicit way. The surfaces may also be

represented explicitly using mesh representations for example. These volume or surface-

based segmentations (Fig. 1.2(a)) allow for an accurate detailed representation of the

targeted structure and its delineation from the background. In addition, they represent

the most suitable representation for visualization purposes. However, with tubular tree

structures often structural properties are of interest that are not well described with this

kind of representations.

Skeleton-based representations: From a structural point of view, a tubular tree

structure can be partitioned into individual branches that are connected at branch points.

The structure of each of the branches may be roughly described by its centerline, while

the centerlines of all branches together form a curve skeleton. Such centerlines/curve

skeletons (Fig. 1.2(b)) are of primary interest for a variety of applications as they cover

the structure of the the individual branches/the whole tubular tree structure well. Often

additional information is assigned to each of the centerline points such as its tangent-

direction or radius. Such an enriched representation may also be considered as a rough

segmentation.
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Graph-based representations: On an even higher level of abstraction, the skeleton

can be represented as a graph-based structure (Fig. 1.2(c)), where each branch point or

endpoint of the skeleton is represented as a node and the centerlines of the branches in

between are represented as links between the branch points/endpoints. Such a represen-

tation captures the topology of the tubular tree structure – the connectivity information

between the individual branches – well. This provides information about the child-parent

relationship of the individual branches that encodes how each each vessel is supplied.

Of course the different kinds of representations are closely related to each other. Starting

from a valid segmentation the other representations may be derived quite easily, using a

skeletonization method to obtain the curve skeletons that can then be transformed into

a graph-based representation. Note, that there are also other possibilities to extract

the structural information directly from the datasets without the need to produce valid

segmentations first as described later in this work.

1.0.3 Evaluation Issues

The evaluation of tubular tree structure segmentation methods is a difficult problem due

to the complex topology of tubular systems (e.g. blood vessel trees).

Structure vs. accuracy: When evaluating tubular tree structure segmentation meth-

ods, structural properties have to be considered. These properties are not well captured

with conventional segmentation performance measures such as average surface distance or

volumetric error measures that target only segmentation accuracy aspects. An example

illustrates this in Fig. 1.3 where three different segmentations with a comparable surface

distance error are shown. While in case of Fig. 1.3(a) the surface is inaccurate, the rea-

son in Fig. 1.3(b) and (c) are related to structural errors (missing branch, unconnected

tubes). For evaluation one has to distinguish between structural correctness and sur-

face/centerline accuracy. For assessment of structural correctness one has to investigate,

whether all branches are correctly identified and correctly connected with each other. And

only for those tubes with a correct structure, valid statements about the accuracy of their

associated surface/centerline can be made.

Reference segmentations: Usually, reference segmentations are generated and utilized

for evaluation of segmentation methods, but with complex interwoven tubular tree struc-

tures this is very time consuming as shown by some examples known from the literature
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(a) Inaccurate surface. (b) Missing tube branch. (c) Unconnected tubes.

Figure 1.3: Various segmentations with comparable surface distance/volume error due to
different reasons, showing the reference segmentation (green) and different segmentation
results (red).

[88, 124]. Schaap et al. [124] annotated in 32 coronary datasets the centerlines of 4 arteries,

which took three observers all together approximately 300 hours of work. Lo et al. [88]

spend about 750 hours to obtain references of airway trees in 20 chest CT datasets using a

semi-automated approach that only focused on structural correctness of the segmentation

results, but not on surface accuracy aspects. In some application domains such as liver

vasculature segmentation/separation or lung vessel segmentation/separation even more

tubular structures must be identified and additionally a separation of multiple interwoven

tubular tree structures is required, making it practically infeasible to produce reference

segmentations in such application domains.

1.1 Related Work

Due to the importance of tubular structure segmentations, difficulties related to this task,

as well as varying application requirements, many publications dealing with this problem

can be found in the literature. Extensive surveys of existing vessel segmentation techniques

can be found in the review of Kirbas and Queck [62] as well as in the recent work of

Lesage et al. [79] who provide an excellent overview and classification of the techniques.

For an overview of methods for extraction of airways from CT datasets we refer to the

work of Sluimer et al. [132], while more recent approaches are described in Lo et al. [88].

Because of the large number of methods published, we refrain from highly detailed

discussions of all approaches and refer to the above mentioned review papers. Instead, we

provide a brief summary of related vessel/airway segmentation techniques following closely

the classification and work of Lesage et al. [79]. In the following, we discuss some general

aspects of these methods when applied to heavily branched tubular tree structures, and

present the concept of vessel mining. Publications more closely related to parts of our



1.1. Related Work 7

work are discussed in appropriate chapters later in this work.

1.1.1 Models, Features, and Extraction Schemes

Lesage et al. [79] provide an excellent and up-to-date overview and classification of 3D

vessel segmentation techniques that is also valid for airway segmentation techniques. The

different methods known from the literature utilize many different image processing frame-

works. In [79] the authors distinguish between three main characteristics of vessel seg-

mentation techniques: models, features, and extraction schemes.

Models: Models are used to represent prior knowledge about the target vessel structures.

In this context, one may distinguish between photometric and geometric properties of the

vessels. Methods utilizing pure photometric models make assumptions about the expected

luminance [1, 40, 117, 175] of the vessels and/or the background [40, 52, 93, 125, 126] as

well as the image noise [52, 148] to distinguish between vessel structures and non-vessel

structures. Methods utilizing geometric models make assumptions about a key characteris-

tic of vessels, namely their specific shape. Therefore, the methods may encode information

about their elongation, properties of their centerline [15, 42, 72], and/or their cross-section

[26, 27, 42, 43, 150]. Photometric and geometric information are often combined into hy-

brid models, incorporating assumptions about the spatial appearance of vessels such as

Gaussian- or bar-like cross section profiles [64, 70, 135, 166], appearance as a ridge in scale

space [2, 12, 45], or template-based approaches [44, 48, 83]. The models typically focus

solely on regular vessel segments, while models about bifurcations or anomalies can only

be found rarely, although exceptions – typically adapted to specific kinds of disease – can

be found [1, 42, 83, 159, 162].

As a general note, these models are often embedded implicitly in the features and

extraction schemes discussed below.

Features: Features are the actual detectors/filters used to evaluate a vascular model on

the image data. Therefor the methods utilize information about the basic image intensity,

first order, and/or second order image derivatives to match against the expected model,

often embedded in a Gaussian scale-space framework [84, 143] to account for tubular

structures of varying size. Features used in the literature are isotropic features where no

assumption about the directionality of the vessel is made [3, 74, 75, 138], features making

use of the local geometry typically based on derivative features [1, 44, 73, 83, 89, 121] or

model fitting [48, 72, 148, 166] with few other techniques. Another approach is utilizing
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features based on 2D cross-sectional measurements that require the orientation as an input

parameter [2, 40, 41, 46, 64, 141, 162]. Similarly as with the different models, bifurcations

or anomalies are often not considered explicitly. However, exceptions – typically adapted

to specific diseases – can be found in [1, 45, 83].

Extraction Schemes: The extraction scheme represents the actual segmentation algo-

rithm – they are based on the model assumptions and are guided by the extracted features.

Lesage et al. [79] classify methods known from the literature into three general classes of

extraction schemes as well as pre- and post-processing techniques.

For pre-processing, several vessel-specific methods can be found in the literature. Sev-

eral of the features described above were originally presented as vessel enhancement filters

[1, 44, 64, 70, 83, 121], while similar formulations may be incorporated into vessel-dedicated

anisotropic diffusion schemes [66, 94, 140]. Other typical pre-processing tasks involve the

generation of pre-segmentations such as generation of regions of interest based on prior

knowledge [39, 111, 131] or based on thresholded potential maps derived from probability

maps from appearance models or from vessel enhanced images [1, 23, 161, 167, 170]. To

select sparse sets of vessel-candidate points robust maxima [138] or local maxima are used

[39, 75].

For the actual extraction scheme one may distinguish between region-growing algo-

rithms, active-contour based methods, and centerline based approaches. Region-growing

or wave-propagation methods start from a seed point or region inside the vessel and merge

neighboring voxels in a greedy way using various merging criteria [14, 19, 62, 117, 175].

More advanced techniques of this category adapt parameters during growing or analyze

the local segmentation results to avoid segmentation errors [62, 93, 101, 117, 146, 175].

Active-contour based methods evolve an interface following external data-driven and in-

ternal model-driven forces, using explicit (classical snakes) [28, 42, 59, 96, 103] or implicit

representations (level-sets) [60, 61, 90, 91, 106]. Within this category several vessel-specific

adaptions have been presented in the literature to handle the complex topology of vas-

cular systems (topology-adaptive snakes) [97, 98], to incorporate vessel-specific features

exploiting the vessels direction (eigen-snakes, curves) [90, 144, 145], or they are based

on curvature-based regularization [60, 155, 169]. The last category of extraction schemes

are centerline based approaches, that in contrast to the other methods do not focus on

detecting the vessels contour using pixel-wise criteria, but on extraction of the vessels

centerlines directly from the image data. Therefore, direct centerline tracking methods

[1, 2, 42, 45, 48, 141] have been presented that track starting from a seed along a vessel
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by iterative prediction and correction steps; increased robustness can be achieved by ex-

plicitly embedding geometric models into the tracking process. Another class of centerline

based extraction methods is based on minimal path techniques with cost metrics related

to some vessel-dedicated features [42, 51, 83, 163] or closely related formulations based on

fuzzy connectedness [149] or ordered region-growing [21, 173]. These minimal-path tech-

niques have issues like eccentric or even erroneous “shortcut” paths [81, 82]; However, this

problem has been addressed in [82] by introducing an additional dimension corresponding

to the vessel radius [82, 163]. A few stochastic frameworks have been introduced in the

literature to increase the robustness of such extraction schemes [41, 78, 126] to the cost

of a much higher computational effort. Only the multi-hypothesis tracking presented in

[47, 48] is practically applicable.

Post-processing techniques address issues regarding missing or inaccurate surface infor-

mation or topological considerations. To obtain/refine surface segmentations in case of a

known centerline a few methods have been presented in the literature by segmenting either

slice-by-slice in the 2D-cross sections [107, 108] or directly in 3D [42, 152, 165]. Another

typical post-processing step is the other way around – obtaining centerlines/skeletons in

case of given segmentations using a skeletonization method. Skeletonization has been ad-

dressed based on homotopic thinning [92, 109, 110] or distance transformations [101, 115,

116]. Gradient flux maximization [15, 16] or the use of minimal-path techniques [53, 54]

are more recent approaches. As segmentations of vascular trees may be topologically er-

roneous, a few techniques have been presented to correct such errors. In case of isolated

false positives/negatives or noisy contours, mathematical morphology [1, 156, 167] or for-

mulations based on Markov random field techniques [23, 164] have been used. In case of

leakage, competitive region growing [171], a hierarchical segmentation scheme [61], and

fuzzy connectedness [77, 149] have been utilized to remove these areas. To clean up and

reconnect segmentations a few methods have been proposed using graph based techniques

(typically minimum spanning tree algorithms [39, 58, 118]) that exploit the intrinsic nature

of tree structures [1, 75, 138, 173].

In practice, it is crucial to combine the appropriate models, features, and extraction

schemes for specific task at hand. In particular, incorporation “of a priori knowledge on

the geometry and appearance of the target vessel is crutial to the robustness and accuracy

of a segmentation method” [79].
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1.1.2 Discussion

The above presented techniques address the segmentation of vascular/airway structures

in general, and not necessarily whole tubular tree structures. Considering these tech-

niques with respect to the requirements and problems we aim at addressing in this work

(Section 1.0.1), one gains insight into the challenges of this problem.

Identifying an appropriate vessel/airway model that is valid in all possible

cases is a non-trivial task, in particular when one considers pathology like

stonsis/aneurysms/calcifications or simple bifurcations where the appearance and/or

geometry of the tubular structures is disturbed. Also cases of local disturbances such

as imaging/motion artifacts or partly overlapping image structures with the same

gray-value (e.g. adjacent tumors or multiple partly overlapping vessel trees) are difficult

to model. For these reasons, it seems illusory to identify a model that is valid in all cases.

This becomes a problem when combined with the discussed extraction schemes. While

the pre-processing methods are typically applied voxel-wise, an inadequate model leads

to fragmented outputs, with false positive and false negative detections. The presented

extraction schemes (region-growing, active-contour, and centerline-tracking methods) all

require appropriate initializations and basically merge neighboring voxels or extend a

known centerline according to the model. In case of conservative model assumptions this

easily leads to premature termination of the (iterative) extension process, while in case of

weak model assumptions the methods are prone to leakage. Methods based on minimal

path-techniques show a higher robustness against such local failures of an inadequate

model. However, they require appropriate start- and end-points for each vessel. For

heavily branched tubular tree structures this is a practically infeasible task.

In case of failure, the segmentation errors (under/over segmentation) that result

from local model-inadequateness may have a strong influence on the resulting

structure/topology of the segmented tubular trees. This is problematic, since the

structural information is of vital interest for several applications (Section 1.0.1).

1.1.3 Vessel Mining

To address some of the problems mentioned above, Beichel et al. [10] proposed a concept to

enhance the robustness of vessel segmentation approaches against local disturbances. The

idea behind the concept that they termed “vessel mining” is: “first identify all potential

tubular structures in the search volume and then reconnect the found tube structures

based on defined criteria like for example gray-value evidence” [10]. This approach was
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designed to avoid leakage into other structures and increase the robustness in cases of noise

or anisotropic voxel size, compared to simpler methods like region growing. Beichel et al.

presented a system based on this concept for liver portal vein tree segmentation that has

been applied to a phantom dataset and to one routinely acquired liver CT dataset. A

comparison to a simple region grower showed the increased robustness of their system.

In later work of the same group [113, 114], the authors focused on refining parts of the

approach for their main application – liver portal vein tree segmentation – where they

improved the methods ability to identify vascular structures and where they increased the

accuracy of the segmented vessel walls by utilizing the identified vascular structures as

initialization of an intrinsic segmentation.

The general approach for segmentation of branched tubular networks as described

in the next section is based on these seminal ideas of “vessel mining” as proposed by

Beichel et al. [10, 113].

1.2 A General Approach for Segmentation of Branched

Tubular Networks

3D tubular tree structures form sets of tubular structures that are connected with each

other. Each of the tubular parts has its structure and surface delineating it from the

background. To segment all kinds of branched tubular networks, the following general

approach can be use (Fig. 1.4):

1. Extraction of tubular structures: Identify all tubular structures in a volume

of interest and generate a structural representation for all of them. The resulting

centerline-based representations describe already major parts of the branched tubu-

lar network, but they describe only the parts following the tube model, while in the

branched tubular network parts may still be missing where the appearance strongly

deviates from a typical tubular shape. This may be in case of branching areas, due

to other cases where the shape of the vessels is severely perturbed such as steno-

sis, aneurysms, or tumors, due to other structures with similar gray in the image

domain, or due to imaging artifacts.

2. Grouping and linkage into connected networks: Group the tubular structures

belonging to the same tubular tree and link them together recovering the structures

of the different branched tubular networks. The individual tubular structures of
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Structural representation of
whole branched tubular networks

Extraction of Tubular Structures
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Structural representation of
individual tubular objects

Segmentation of branched
tubular networks

Input volume dataset
visualized using Maximum Intensity
Projection and an organ mask

Resulting segmentations
of all tubular networks

Figure 1.4: General concept for segmentation of branched tubular networks.

a branched tubular network are interconnected and from a biological perspective

they have to be supplied somehow. Utilizing this fact, the structures of the whole

branched tubular networks is recovered also in the disturbed regions. The result-

ing skeleton-based representations describe the complete structure of the branched

tubular structures, but not their surface.

3. Tube segmentation: Segment the branched tubular networks utilizing their al-

ready know structures as prior knowledge. During this step the surfaces of the

branched tubular networks are obtained and accurately delineated from the back-

ground.

With this approach we seek for a higher robustness to shortcoming of the tube

model or disturbances compared to conventional extraction schemes as discussed in
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Section 1.1.2. “Practically all currently used vessel [tubular tree structure] segmentation

methods are based on a growth process emanating from an automatically- or user-defined

start point” [47], which results in the problem that in case of larger deviations from the

tube model or disturbances major parts of the tree structure may remain unidentified

(Section 1.1.2). Contrary to that, with our approach initially tubular structures are

identified in a bottom-up fashion such that also in cases where the assumptions of the

tube model do not hold still major parts of the tree structure are identified. This

information can be utilized in the following processing steps. Additionally, we incorporate

the prior knowledge that the individual tubular structures of a branched tubular network

are interconnected. This combination allows resolving cases, where typical assumptions

of a vessel/airway model may be inadequate, such that the structure of the tubular tree

structures can be obtained correctly and later on used for a more accurate segmentation.

The outlined approach is of general applicability. It has a strong focus on the struc-

tural correctness of the segmentation results, which is of importance for most applications

dealing with tubular tree structure. In addition, handling of different kinds of disturbances

is considered directly as part the approach. However, it is only an approach and not a spe-

cific method. It does not specify how to detect tubular structures, how to group and link

them together, or how to utilize the so obtained information for the actual segmentation.

And indeed, this may vary from application to application depending on its requirements.

Also, depending of the application’s requirements, only parts of this approach may be

necessary, e.g. in case only the structural information is of importance but not accurate

segmentations, step three – the tube segmentation – can be skipped. But all typical

requirements and representations needed in different applications are covered with this

approach.

1.3 Overview and Contributions of the Work

In this work, we develop and evaluate methods for the segmentation of 3D tubular tree

structures in medical images. The goal is to address the outlined requirements and prob-

lems found in different clinical applications and to provide suitable solutions. Thereby, we

follow the proposed general concept for segmentation of tubular tree structures as outlined

in the last section. We present several original contributions that resulted from the research

on this topic and that have also been presented in several publications [4–9, 105, 119, 124].

A list of these publications can also be found in Appendix A.

The work is roughly organized in two parts, a general methods part and an applications
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part:

Methods: In the methods part, we are dealing with the development and evaluation of

suitable methods for the individual building blocks of the proposed general approach [9]

(Section 1.2) that forms the basis of our work. Depending on the applications, the re-

quirements for the these building blocks may vary and therefore different methods for

each building block are presented. The methods are compared to each other and proper-

ties of the different methods are analyzed.

In Chapter 2 we first review different methods for the detection/extraction of tubular

structures from volumetric medical images known from the literature. We highlight a

core problem of conventional tube detection approaches that is related with the utilized

Gaussian scale space – diffusion of nearly image structures on larger scales – which may lead

to false responses. To overcome this problem, we introduce a novel approach for detection

of tubular objects [6] (Section 2.3) to address this issue by replacing the conventional

multi-scale gradient vector computation by the Gradient Vector Flow (GVF) [168]. As

shown in our experiments, this approach proofs to be beneficial in case of surface patches

or other nearby image structures. Additionally, the method has the ability to cope with

varying background conditions, an issue that can not be addressed using conventional

Gaussian scale space based methods. This makes the presented GVF-based approach also

applicable in areas where the utilization of tube detection filters has not been considered

so far. Further, we present an efficient height ridge traversal for extraction of the tubular

structures from the tube detection filter responses (Section 2.4).

In Chapter 3 we introduce two novel methods for grouping and linking identified tubu-

lar structures into complete tree structures. The first method [9] (Section 3.2) is based

on structural properties of the identified tubular structures and enables a separation of

interwoven tubular tree structures and handling of various kinds of disturbances – objec-

tives that are typically not addressed in this level. The second method [5] (Section 3.3)

utilizes properties of the GVF and enables an extraction of centered linkage paths in areas

where the shape of the structures deviate strongly from a typical tubular shape such as

stenosis, aneurysms, or branching areas. This allows extraction of high quality curve skele-

tons directly from the the gray scale image with an accuracy comparable to sophisticated

skeletonization methods, what supersedes the need to deal with a segmentation problem

and a skeletonization problem.

In Chapter 4 we present two novel methods for the segmentation of tubular objects

associated with known tubular structures. Both aim at preserving the topology of the
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already known tubular tree structures. The first method [7] (Section 4.2) utilizes the

same GVF field that can also be utilized for detection of tubular objects (Section 2.3).

It performs the segmentation according to the first distinct edge closest to the centerline.

The second method [9] (Section 4.3) on the other hand utilizes the obtained information

as a shape prior and solves the segmentation task in a globally optimal manner using a

Graph Cut algorithm. This makes the approach robust to various kinds of disturbances.

The presented set of methods allows building various applications for the segmentation

of 3D tubular tree structures with different requirements.

Applications: In the applications part, we develop novel methods for specific applica-

tion domains based on the proposed general approach for segmentation of tubular tree

structures and the presented methods for the individual building blocks. The objectives

and problems that are addressed in these application areas are very diverse and challeng-

ing. We evaluate the methods on clinical datasets with various kinds of disturbances and

compare them to other state of the art methods with the same objectives.

In Chapter 5 we present a method for segmentation and separation of liver vascular

trees in contrast CT datasets for surgery planning [9]. The method is evaluated on CT

scans of a plastic phantom and clinical datasets based on the assessment by an experienced

radiologist. The results show a high robustness of our approach against disturbances, the

methods ability to successfully reconstruct, separate, and accurately segment multiple

interwoven tubular tree structures in this application domain.

In Chapter 6 we present an automated method for extraction of the coronary artery

trees centerlines in contrast CT datasets [4]. The method is evaluated on a publicly

available database [124] and compared to other methods for this task. Compared with

the other methods that have been evaluated on this database, only methods that utilized

information about the endpoint of the coronary arteries – information not available in

practice – performed better with respect to the extraction capability.

In Chapter 7 we present two automated methods for the extraction of airway trees

from CT datasets. The two developed methods show different advantages [7, 8]. The

first method (Section 7.2.1) produces immediately accurate segmentations and allows for

an additional extraction of the associated curve skeleton in a straight forward manner.

The second method (Section 7.2.2) allows handling of local disturbances and shows a

higher robustness in case of disease. Both approaches are evaluated on a publicly avail-

able database [88] and compared to other methods for this task. Both methods perform

about comparably well in practice, and are among the best performing methods known
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in the literature. Only one other method evaluated on the public database allows for an

extraction of more airway branches while having a lower leakage volume, however to the

cost of about one hour of manual user interaction.

Conclusion: Finally, in Chapter 8 conclusions are presented. We summarize the results

achieved on the different applications and analyze the usefulness, general applicability, and

advantages of the individual developed methods. The results successfully demonstrate the

benefits and strengths of the presented methods and approaches, including the robustness

achieved with our proposed general approach for segmentation of tubular tree structures

as outlined in Section 1.2.

With our proposed general approach [9] we are seeking for a higher robustness re-

garding the structural correctness of the segmentation results compared to conventional

approaches as these are prone to possible shortcomings of the utilized vessel/airway mod-

els as discussed in Section 1.1.2. To achieve this, we consider handling of different kinds of

disturbances directly as part of the approach by combining an initial bottom-up extraction

of tubular structures with a grouping and linkage step. This allows resolving cases where

typical vessel/airway models are inadequate, such that the structure of the tubular tree

structures can be obtained correctly and later on used for a more accurate segmentation.

By comparing the results achieved with our methods – that are all based on the proposed

general approach – to the results of other methods in the different applications, we con-

clude that this approach leads to a high robustness compared to conventional approaches.

This conclusion can also be considered as one of the main contributions of the overall

work.
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Extraction of Tubular Structures
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2.1 Introduction

A tubular tree structure can be described as a set of tubular structures that are intercon-

nected with each other such that there are no loops. In this chapter, we are concerned

with the extraction of these tubular structures in medical images. Thereby, we aim at

deriving structural representations for all tubular structures in a given volume of interest

in a fully automated fashion.

In the literature, methods have been presented that enable extraction of structural

representations (centerlines) of tubular structures directly from the gray-value images

[2, 163]. However, these methods require an appropriate initialization for each single

tubular structure. In contrast to these methods, tube detection filters (TDF) – a.k.a.

vessel detection filters, lineness filters, or vessel enhancement filters (e.g. [44, 70, 123]) –

do not require such an initialization, because they perform a shape analysis for each voxel

in the image domain resulting in a kind of medialness measure or tube-likeliness. However,

TDFs do not result in structural representations of the tubular objects. To extract such

17
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structural representations from TDF responses, a combination of hysteresis thresholding

and local directional non-maximum suppression was used by Krissian et al. [68] while

Steger et al. [135] utilized an efficient ridge tracking approach for processing 2D images.

Therefore, to achieve the objectives for our fully autonomous bottom-up identification and

extraction of tubular objects, the combination of a TDF with a centerline extraction based

on a ridge traversal is the appropriate choice.

In the next sections, we review different TDFs known from the literature (Section 2.2),

develop a novel approach for detection of tubular objects (Section 2.3), and present a

3D ridge traversal for extraction of structural representation from TDF responses (Sec-

tion 2.4). In Section 2.5, the methods will be evaluated and compared with each other.

Some well known TDFs are presented in more detail for two reasons. First, some of their

ideas are utilized in the later part of this chapter where the novel TDF approach is devel-

oped. Second, some of the presented TDF methods are used in the applications part of

this work.

2.2 Tube Detection Filters in Gaussian Scale Space

Most TDFs presented in the literature like [11, 44, 70, 89, 114, 123] are based on the

assumption that the tubular objects can be specified by their local geometry and that

they form bright structures surrounded by a darker homogeneous background. The radius

of these structures varies, but using the concepts of scale-space theory [85], the tubular

structures form height-ridges in the Gaussian scale space when the scale is adapted prop-

erly to the size of the objects. Based on these assumptions, conventional TDFs try to

identify the tubular objects at different scales in the Gaussian scale space and combine all

scale dependent responses into one multi-scale response. The response on a single scale is

obtained by convolution of the initial image with a tube-likeliness function function T σ(x),

where x is a point in 3D space and σ denotes the radius dependent scale of the measure-

ment. In the literature also the terms vesselness or medialness function are utilized as it

is related to medial axes. These single scale responses are obtained at various scales and

combined into one multi-scale response T (x) by selecting the maximum response over the

range of all scales between σmin and σmax:

T (x) = max
σmin≤σ≤σmax

{T σ(x)} . (2.1)
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The maximal response over all scales further indicates the associated radius r and tangent

direction t of the tube.

The different tube detection methods presented in the literature differ from each other

in the way the tube-likeliness measures are obtained on the different scales. Many ap-

proaches use the first order derivatives (gradient vectors), or second order derivatives

(Hessian matrix), or a combination of both to identify the tubular objects at a specific

scale. All of them use – directly or indirectly – properties of the gradient vector field. The

reason is that tubular objects show characteristic gradient vector fields which can be used

for detection. One such example is shown in Fig. 2.1. For a tubular object, all the gradient

vectors point directly towards the centerline of the tube. At the centerlines of the tubular

objects, the local vector field shows a large variance in two dimensions (the tubes cross

section), and a low variance in the third dimension (the tubes tangent direction). The

gradients magnitude is large at the tubes surface and decreases with increasing distance

from the surface. Based on these properties, the different methods try to identify tubular

structures.

In the following subsections we present three well known tube detection filters/vessel

enhancement filters using different assumptions. The purpose of this study is to present

the utilized assumptions and to investigate their behavior as well as their possibilities and

limitations. Roughly, the medialness functions can be classified into central medialness

functions and offset medialness functions. Central medialness functions only consider

information at the center of the voxel for classification, while offset medialness functions

also incorporate information away from the tubes center at a distance that is related to

the tubes size. We follow this classification and present methods falling in each of these

categories.

To make use of a common notation, we utilize following terms: I corresponds to the

original image, Iσ = Gσ ? I corresponds to the original image at scale σ, and Bσ(x) =

σ∇Iσ(x) and Hσ(x) = σ2
[
∂2Iσ(x)
∂xi∂xj

]
represent the normalized first and second order deriva-

tives at location x at a given scale, respectively. The normalization is of importance to

ensure invariance under scale [85].

2.2.1 Central Medialness Functions

Central medialness functions obtain a tube-likeliness measure considering only the infor-

mation at the center of the voxel. Therefor, frequently the eigenvalues of the Hessian

matrix are utilized. The Hessian matrix with it’s associated eigenvalues |e1| ≥ |e2| ≥ |e3|
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(a) Original image showing 2D cross sections of 3D tubular structures. Left: Cross section
orthogonal to tubes tangent direction. Right: Cross section along the tubes tangent direction.

(b) Filtered image and corresponding gradient vectors (vector: direction, grayvalue: magnitude)
on a small scale.

(c) Filtered image and corresponding gradient vectors (vector: direction, grayvalue: magnitude)
on a large scale.

Figure 2.1: Tubular structures and derived gradient vectors in Gaussian scale space.
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and eigenvectors v1, v2, and v3, encode information about the basic shape of image struc-

tures (blob, tube, or plane) as well as the polarity of the structures (brighter or darker

than the surrounding). Based on this information, bright tubular structures can be iden-

tified as they require their two larger eigenvalues to be negative e1 < 0 and e2 < 0 and

the third eigenvalue e3 being close to zero. For those structures, the tangent direction is

then indicated by v3.

Frangi et al. [44]: One method based on the eigenvalues of the Hessian matrix that

has been utilized extensively in practice due to it’s simple geometric interpretation is the

method of Frangi et al. [44]:

T (x) =

{
0 if e1 > 0 or e2 > 0(
1− exp

(
− R2

A
2α2

))
exp
(
− R2

B
2β2

)(
1− exp

(
− S2

2c2

))
otherwise

(2.2)

with RA = |e3|/
√
|e1||e2| indicating blob-like structures, RB = |e2|/|e1| to distinguish

between plate-like and line-like structures, and S =
√
e2

1 + e2
2 + e2

3 for suppression of

random noise effects. The parameters α, β, and c allow controlling the weighting of the

measures RA, RB, and S, respectively. Frangi’s suggested default values are α = 0.5 and

β = 0.5, while c depends on the expected contrast and setting it to half the value of the

maximum Hessian norm in the image is suggested.

2.2.2 Offset Medialness Functions

Offset medialness functions incorporate information away from the tubes center at a dis-

tance that is related to the tubes size. It was shown by Krissian et al. [70] that such

offset medialness functions allow for a greater robustness compared to central medialness

functions. Krissian’s approach utilizes the Hessian matrix solely for pre-selection of can-

didate tube points and to determine the tubes cross-section plane, while in a second step

boundariness information bi along a circle in this plane is sampled and combined into the

actual tube-likeliness response as illustrated in Fig. 2.2. Considering the Hessian matrix,

the eigenvectors associated with the two smaller eigenvalues provide estimates about the

tubes cross-section plane spanned by the eigenvectors v1 and v2 as well as it’s tangent

direction given by v3.

In the following, we present two approaches based on this idea of estimating the tubes

cross section plane using the Hessian matrix and afterwards sampling along the expected

surface in this plane; the TDFs of Krissian et al. [70] and Pock et al. [9, 114].
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Figure 2.2: Cross-section plane spanned by eigenvectors v1 and v2 of the Hessian
matrix and sampling of boundary information along a circle (red) in
this plane.

Krissian et al. [70]: Krissian’s TDF response T σKKrissian(x) is obtained by averaging the

individual boundariness samples T σKKrissian(x) = 1
N

∑N−1
i=0 bi that are computed at N =

b2πr + 1c discrete points with varying angle αi = (2πi) /N . The individual boundariness

samples bi measure the contribution of the boundary information in the radial direction

of the circle bi = B(x + τσKvαi)vαi , such that a matching with the expected tubular

model is performed. One of the main contributions of Krissian et al. [70] was to derive

mathematically the optimal relation between the radius r of the tube, the radius τσK of the

offset medialness function, and the scale σK to use for computation of the Hessian matrix

and the boundary information, such that under the assumption of a single perfectly circular

tubular object with known cross section profile the response at the center is maximized.

Assuming Gaussian cross section profiles, σK = r
√

2/2 and τ =
√

3 have to be used.

Pock et al. [9, 114]: The TDF of Pock T σPPock(x) also obtains boundariness samples

bi = |B(x + rvαi)vαi | that are obtained at N = b2πr + 1c discrete points with vary-

ing angle αi = (2πi) /N . However, in their approach the Hessian matrix HσP (x) and

the gradient information BσP2(x) and are obtained on different scales, σP = r and

σP2 = rη with 0.0 ≤ η ≤ 1.0. The scale σP incorporates the whole structure for

the tangent direction estimation, while σP2 is smaller as it is only utilized to obtain

boundary information. To combine the individual boundary responses into an offset

medialness function, the authors also apply an averaging of the boundariness samples

b(x, r) = 1
N

∑N−1
i=0 bi, but weight it with a parameter free symmetry criterion based on

the variance s2(x, r) = 1
N

∑N−1
i=0

(
bi − b

)2: T σPPock0(x) = b(x, r)(1 − s2(x, r)/b(x, r)2). Ad-
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ditionally, an adaptive thresholding is applied to suppress responses away from the tubes

centers where the gradient magnitude ideally vanishes such that the final TDF response

is obtained as T σPPock(x) = max{T σPPock0(x)− |BσP (x)|, 0}.

2.3 Tube Detection using Gradient Vector Flow

In the last section, we studied different popular TDFs. What they all had in common is

that they utilized a linear (Gaussian) scale space to cope with the varying size of tubular

objects. They all were based on the assumption that the tubular objects form bright

structures in front of a homogeneous darker background without any other nearby image

structures. These assumptions hold for some application domains, however, they limit the

applicability of these TDFs in complex datasets where a variety of other image structures

are present. In this section, we analyze the underlying problem that is related to the used

Gaussian scale space and we develop a novel approach for detecting tubular structures

that addresses this problem.

Figs. 2.3(a) and (f) show the aorta in a CT dataset with no contrast enhancement.

The aorta is surrounded by a variety of different tissues and image structures and the

contrast to the background varies. For example, the ascending aorta is separated from the

heart chambers only by a thin darker structure, while in some areas even no boundary is

visible. The descending aorta is on the one side adjacent to the much darker lung tissue,

while on the other side it is tangented by the much brighter spine. Figs. 2.3(b)-(e) and

(g)-(j) show the same image in the Gaussian scale space. As can be seen, on smaller scales

the Gaussian smoothing solely leads to a reduction of the image noise, while on larger

scales structures diffuse into each other. On very large scales even the individual parts of

the spine diffuse into each other. Also close nearby smaller tubular structures may diffuse

into tube-like structures on a larger scale, leading to false responses. This highlights the

limitations of the Gaussian scale space and shows that it is generally not the appropriate

choice for detection of blood vessels in such complex medical images.

As discussed above, TDFs in Gaussian scale space (Section 2.2) utilize – directly or

indirectly – the first order spatial derivatives to identify tubular objects, because tubular

objects show characteristic gradient vector fields which can be used for classification.

Therefore, the whole tube detection process can be split into two parts: deriving an

appropriate gradient vector field V from the given image I and a subsequent classification

based on this vector field.

While for classification several methods have been studied in the literature – some
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(a) Original (b) σ = 1.0 (c) σ = 2.5 (d) σ = 5.0 (e) σ = 10.0

(f) Original (g) σ = 1.0 (h) σ = 2.5 (i) σ = 5.0 (j) σ = 10.0

Figure 2.3: Scale space of a non-contrast CT dataset showing ascending (yel-
low arrow) and descending aorta (red arrow). Top row: axial view.
Bottom row: coronal view.

of them have been presented in Section 2.2 – they all relied on the computation of the

gradient vector field at multiple scales. Given a specific scale σ, the gradient vector field

Vσ is computed by convolution of the original image with a Gaussian filter kernel Gσ
and computation of the local derivatives: Vσ = ∇(Gσ ? I) which equals Gσ ? ∇I. This

explicit formulation of the linearity points out that the computation of the gradients in

the Gauss-smoothed image equals the Gauss-smoothing of the gradients obtained in the

original image, what can also be interpreted as a distribution of gradient information

over the image domain. When the scale is adapted appropriately to the size of the tube,

the resulting vector field shows the typical characteristics of a tube at their centerlines

(Fig. 2.4(b)). However, when the scale gets larger, nearby objects diffuse into one another

and may produce vector fields that can also be interpreted as tubular objects (Fig. 2.4(c)).

This behavior is inherent in the linear scale space, as Gaussian filtering is a non-feature-

preserving isotropic diffusion process.

To avoid such a diffusion of image gradients over edges in the image, it is necessary

to replace the Gaussian diffusion of the initial vector field Fn by a feature-preserving

(edge-preserving) diffusion process. Feature-preserving diffusion of the original image does

not solve the problem, because for tube detection it is necessary to distribute gradient



2.3. Tube Detection using Gradient Vector Flow 25

(a) Original image showing 2D cross sections of 3D tubular structure. Left: Cross sec-
tion orthogonal to tubes tangent direction. Right: Cross section along the tubes tangent
direction.

(b) Filtered image and corresponding gradient vectors (vector: direction, gray value: mag-
nitude) on a small scale.

(c) Filtered image and corresponding gradient vectors (vector: direction, gray value: mag-
nitude) on a large scale.

(d) Gradient Vector Flow result.

Figure 2.4: Comparison between gradient vectors obtained from Gaussian scale
space and the Gradient Vector Flow.



26 Chapter 2. Extraction of Tubular Structures

information from the boundary of the tubular object towards its center. The key is

to perform a feature preserving diffusion of the gradient information. A method that

fulfills this requirement - edge-preserving diffusion of gradient information - is the GVF as

presented by Xu and Prince [168]. Given an initial vector field Fn(x), the GVF is defined

as the vector field V (x) that minimizes:

E(V ) =
∫∫∫

Ω
µ|∇V (x)|2 + |Fn(x)|2|V (x)− FnI(x)|2dx, (2.3)

where x = (x, y, z), Ω represents the image domain, and µ is a regularization parameter

that has to be adapted according to the amount of noise present in the image. The varia-

tional formulation of the GVF makes the result smooth where the initial vector magnitudes

are small, while keeping vectors with high magnitude nearly equal. In practice, the GVF

preserves even weak structures while being robust to large amounts of noise [168].

For tubular objects, applying the GVF to a vector field obtained from a small scale

gradient vector computation results in the vector field shown in Fig. 2.4(d). Compared

to the vector fields derived from the Gaussian scale space, the GVF has two different

properties. First, the problem of the Gaussian scale space, diffusion of gradients over

image boundaries, is avoided. Second, for tubular objects the GVF results in a vector

field with similar characteristics as obtained with the multi-scale gradient computation

when the scale is adapted appropriately to the tubes size. Similar to the gradient vectors

computed at the appropriate scale in the Gaussian scale space, the gradients magnitude

of the GVF fields vector decreases with increasing distance from the boundaries, and it

vanishes towards the center of the tubular structures. This allows detection of tubular

objects directly from the vector field produced by the GVF - without the need for a

multi-scale analysis.

Because of these facts, the GVF can – to some extent – be used as a replacement of the

multi-scale gradient vector computation performed by other tube TDFs, as the resulting

vector field shows similar characteristics that are utilized by conventional approaches. In

the following, we present combinations of the GVF with a (a) central medialness function

and (b) an offset medialness function and show necessary adaptations when using the GVF

field. While the combination with the central medialness function is faster to compute, the

combination with the offset medialness function shows a higher selectivity and additionally

provides radius estimates for the tubes.
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2.3.1 Combination with Central Medialness Function

As discussed in Section 2.2.1, central medialness functions utilize the local gradient vector

field to obtain a tube-likeliness measure. These methods utilize the fact that for tubular

structures the gradient vectors point directly towards the centerline of the tube and that

the vector field shows a large variance in two dimensions, and a low variance in the third

dimension (see Fig. 2.4). Similar to methods based on the Hessian matrix, the derivate of

the GVF field can be utilized for the classification. However, a normalization of the vectors

is necessary because the vectors magnitude is not of importance: V n(x) = V (x)/|V (x)|.
From the derivative of this vector field H(x) = ∇V n(x) and its eigenvalues |λ1| ≤ |λ2| ≤
|λ3|, plate-like, blob-like, and tubular structures (brighter or darker than the background)

can be distinguished similar to conventional central medilaness functions.

We combine the method with the tube-likeliness measure of Frangi et al. [44] (see

equation (2.2)) and use default parameters α = 0.5, β = 0.5, and c = 100. While with

Frangi’s method usually the parameter c has to be adapted depending on the expected

noise level, here a fixed value can be utilized, as the noise suppression is already performed

by the GVF. This combination of the GVF with Frangi’s tube-likeliness measure allows

the detection of tubular structures at their centerlines, independent of the tubes size and

contrast.

2.3.2 Combination with Offset Medialness Function

As discussed in Section 2.2.2 on offset medialness functions, these methods utilize infor-

mation away from the tubes center. Similarly to the method of Krissian et al. [70], we

present a method that initially obtains an estimate of the tubes cross-sectional plane and

performs a fitting of circles with varying size circle in this plane.

To obtain an estimate of the tubes cross-sectional plane, the derivate of the GVF field

H(x) = ∇V n(x) and it’s eigenvalues/eigenvectors are utilized, where the cross-sectional

plane is spanned by the eigenvectors v2 and v3 associated with the two smaller eigenvalues.

As can be seen from Fig. 2.4(d), the magnitude of the vectors vanishes toward the center of

the tubular objects. Thus, candidate centerline points of tubular objects can be identified

as local directional minima considering the magnitude of the GVF field vectors. This

avoids the computation of the computationally expensive offset medialness function at

undesired locations.

After determining the candidate centerline points and their cross-sectional plane, a

tube-likeliness measure is obtained for these points by fitting a model to the GVF field.
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The fitting term [70] is obtained as the mean flow through the circle and depends on the

radius r: T (x, r) = 1
2rΠ

∫ 2Π
α=0〈V (α, r), D(α)〉 dα ∗. V (α, r) represents the GVFs vector

at the circle point and D(α) defines a normal vector on the circle pointing towards its

center. For the circle fitting, the TDF response steadily increases with increasing radius

until the circle touches an actual edge/surface of the object. Increasing r further results in

a drop of T (x, r) as the magnitude of the vectors drop off. Thus, the fitting is performed

for increasing radii as long as the fitting term increases. The best fit provides the tube-

likeliness T (x).

In this way a tube-likelness measure and a radius estimate are obtained for each po-

tential centerline point.

2.3.3 Adaption to Varying Background Conditions

In the last sections we showed how the GVF field can be utilized for detection of tubular

structures using conventional central or offset medialness functions. The basic requirement

was an initial vector field Fn(x) where at edge points the vectors have a larger magnitude

than the noise regions and where the vectors point toward the center of the tubular object.

Depending on the expected background conditions, such an initial vector field can be

obtained from the gray value image by computing image gradient vectors, using F = ∇Iσ

for structures surrounded by darker tissue (e.g. angiography images) or F = −∇Iσ for

structures surrounded by brighter tissue (e.g. airways), or from a gradient magnitude map

using F = −∇|∇Iσ| in case of tubular structures that may be surrounded by arbitrary

backgrounds. The resulting vectors fields for these three cases are are shown in Fig. 2.5.

As can be seen from the results, in all cases the resulting vector fields show the character-

istic properties necessary for the tube detection approaches. In contrast to conventional

Gaussian scale space based TDFs, the gradient information can be obtained on a small

scale that only accounts for image noise. The ability to cope with structures surrounded

by arbitrary step edges is an issue that can not be addresses by conventional Gaussian

scale space methods, and represents an advantage of our approach.

The tubular structures found in medical datasets may show a large variability of con-

trast. To account for this variability, a normalization of the initial gradient informa-

tion can be used, treating all gradients with a minimum magnitude as definite edges:

Fn(x) = F (x)/|F (x)| ∗ (min(|F (x)|, Fmax)/Fmax) where x = (x, y, z). This normalization

has the effect that the response for tubular structures primarily depends on the shape and

∗The integral is approximated in practice by computing the sum over 32 discrete circle points.
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(a) Tubular objects with different background. From left to right: dark background, bright
background, varying background.

(b) Initial vector fields (vector: direction; grayvalue: magnitude) depending on expected back-
ground.

(c) Resulting Gradient Vector Flow fields (vector: direction; grayvalue: magnitude).

Figure 2.5: Initializing the GVF differently for different backgrounds conditions.
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not on the contrast of the tubular structures. Additionally, it allows the use of a fixed

regularization parameter µ for the GVF that is otherwise problematic to adapt in practice.

2.4 Centerline Extraction using Ridge Traversal

As outlined in the introduction, we are interested in extracting structural (centerline

based) representations of all tubular objects in a given volume of interest. In the last

sections, we presented various TDFs that allow a bottom-up detection of tubular objects

by obtaining a tube-likeliness T (x) for each voxel of an image. They all have in common,

that the tube-likeliness (aka. medialness) increases towards the centers of the tubular

objects and their response decreases at locations away from the tubes center or in case

of other deviations from a tubular shape (e.g. junctions). Therefore, centerline based

representations can be obtained from the tube-likeliness images by extracting those height

ridges. In this section, we present an efficient procedure for this task based on traversing

these height ridges. We combine the ridge traversal with a hysteresis thresholding with

the upper threshold thigh and the lower threshold tlow to allow local variations from a

perfectly tubular structure along the centerline. The algorithm is listed in Algorithm 1

and explained below.

The height ridge traversal method requires a starting point x0 on a height ridge and

an estimate of the ridges tangent direction t(x), as obtained with all the presented TDFs,

to extract its associated centerline. Starting from x0 the height ridge is traversed inde-

pendently into both directions t0 and −t0. For a current centerline point on the height

ridge xi, all local neighbors xni with
−−→
xixni · ti > 0 are considered, and the neighbor point

with the highest medialness response is chosen as the next centerline point xi+1 on the

height ridge. The tangent direction ti+1 of xi+1 is set to ti+1 = sign(−−−−→xixi+1 · ti+1)ti+1

to maintain the direction during traversal and the procedure is repeated until a stopping

criterion is met. The procedure is stopped when the tube-likeliness T (x) falls below a

given threshold tlow or an already processed centerlinepoint is reached. The second stop

condition is necessary to avoid that the same height ridge is traversed several times. In

this way the centerline associated with a height ridge is extracted.

To obtain a starting point for each height ridge following property of the TDFs can

be used: the tube-likeliness increases for tubular structures and the response falls off in

proximity of junctions. Thus, we can conclude that there is for each tubular structure at

least one local maximum in the tube-likeliness image. Therefore, all local maxima in the

tube-likeliness image with a value T (x) > thigh are considered as starting points for the
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height-ridge traversal. These starting points are processed in descending order of their

associated tube-likeliness.

Using this ridge traversal in combination with the TDFs, centerline based structural

representations of all tubular structures can be extracted. Additionally, one may assign

each of these centerline points an associated gray value (from the original image), a radius

estimate and a tangent-direction estimate (from the TDFs), which may also give useful

information for further processing steps.

2.5 Experiments

In this section, we study the behavior of the previously presented Gaussian scale space

based TDFs (Section 2.2) and the GVF-based approaches (Section 2.3) on synthetic and

clinical datasets.

For all Gaussian scale space based approaches, the default parameters suggested by

the authors were used, and the filter responses were obtained between the optimal scale for

tubular structures with a radius of one voxel and the optimal scale for a tubular structure

with a radius of 1.5 times the radius of largest interesting tubular structure. With Frangi’s

approach α = 0.5, β = 0.5, and c equal to half of the maximum Hessian norm in a clearly

identifiable vessel were used. With Krissian’s approach σK = r
√

2/2 and τ =
√

3 were

used. Pock et al. [114] did not make any suggestions in their earlier work, however in [9]

µ = 0.5 was used on the synthetic datasets and we also used this parameter.

With both proposed GVF-based approaches the edge information was obtained at

a scale of σ = 1 voxel (intra-slice resolution) and the normalization parameter Fmax
was adapted to the contrast of a clearly identifyable vessel in a similar manner as with

Frangi’s approach. The GVF itself was performed using default parameters of µ = 5 and

500 iterations for the iterative computation scheme [168].

In order to visualize the datasets and to make the filter responses comparable, all

images shown in the next sections were produced using a maximum intensity projection

for visualization. The gray value ranges of the datasets were adapted for visualization to

show the full data range.

Exceptions using other parameters or another visualized gray value range are men-

tioned explicitly.
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2.5.1 Synthetical Datasets

In this section, we demonstrate the general behaviour of the presented TDFs under varying

tube configurations, varying cross section profiles, varying contrast levels, and varying

noise levels under controlled and reproducible conditions using synthetic datasets. Where

available, public datasbases were used to make the results comparable with other methods.

In these datasets, the tubular objects show different kinds of edge-types as they appear in

medical datasets: perfect step edges, slightly blurred step edges (due to partial voluming),

and tubes with Gaussian cross-section profiles.

Varying tube configurations: The public database of Krissian and Farneback† [69,

71] (Fig. 2.6(a)), shows standard situations of tubular objects, as they occur in vascular

systems. One of the most obvious differences between the Gaussian Scale Space based

methods and our proposed GVF-based methods is that the GVF-Based methods only

produce responses near the centers of the tubular structures, while the other methods also

produce responses away from the tube center. For junctions of tubular objects with largely

varying diameters, the response of most methods falls off slightly with all approaches as

these parts are not really tubular; However, as pointed out by Bennink et al. [11], this

behavior may be assumed as correct for pure lineness filters. In case of the tube with the

varying diameter, all methods allow for extraction of the correct centerline, but as the

structure of this tube becomes more blob-like the response of Frangis’s method, Pock’s

method, and our proposed method falls off slightly. The response of Krissian’s approach on

the other hand is wider than the tubular object itself. The datasets with the tangenting

tubes and the helix highlight the problem of the linear scale space analysis. All the

Gaussian scale space based methods produce high responses outside the tubular objects,

because on a larger scale these structures diffuse into one another. A separation is not

possible anymore. In contrast, the response of our GVF-based methods is insensitive to

influences outside the tubular objects and they respond only at the correct centerline of

the tubes.

Varying cross section profiles: Fig. 2.7(a) shows 3D tubular structures with varying

cross section profiles (shape and edge type) representing typical situations as they occur in

clinical datasets. The used cross section profiles represent (from left to right) two perfectly

circular tubular structures with step edges and different contrast, a step edge convolved

†http://lmi.bwh.harvard.edu/research/vascular/SyntheticVessels/SyntheticVesselImages.html
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(a) Datasets from the public database of of Krissian and Farneback [69, 71].

(b) Response of Frangi’s method [44].

(c) Response of Krissian’s method [70].

(d) Response of Pock’s method [114].

(e) Response of the GVF-based approach with the central medialness function
(Section 2.3.1).

(f) Response of the GVF-based approach with the offset medialness function (Sec-
tion 2.3.2).

Figure 2.6: 3D tubular objects in varying configurations and responses of the different
TDFs. From left to right: T-junction with constant diameter, T-junction with varying
diameter, Y-junction with constant diameter, Y-junction with varying diameter, tube with
varying diameter, tangenting tubes, helix.

with a Gaussian, a pure Gaussian cross section profile, a cross section with an ellipsoidal

shape, two large closely tangenting perfectly tubular objects, a thinner tubular structure,

two thinner closely tangenting tubular objects, and another non-tubular structure that
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represents a slightly curved surface path.

(a) 3d volume rendering. (b) 2d cross sections of 3d objects.
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(c) 1d cross sections of 3d objects.
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(d) Response of Frangi’s method [44].
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(e) Response of Krissian’s method [70].
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(f) Response of Pock’s method [114] using
typical parameter η = 0.5. For variations
of η see Fig. 2.8.
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(g) Response of GVF-based tube detection
with central medialness (Section 2.3.1).
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(h) Response of GVF-based tube detection
with offset medialness (Section 2.3.2).

Figure 2.7: Tubular structures with varying cross section profile representing situations
found in typical CT datasets and responses of different TDFs. The x-axis indicates the
location and the y-axis the contrast/response.

Fig. 2.7(d)-(h) show the responses of the different TDFs. With all the approaches

the responses descreases with increasing deviation from the expected cross section profiles

(ellipse) or in case of other nearby image structures (e.g. another closely tangenting

tube). In case of the TDFs of Krissian and Pock the response is also correlated with

the edge-type (blurred edges, or Gaussian cross section profile), while with the method

of Frangi and the GVF-based approaches the responses do not decrease in these cases.

The TDFs of Frangi and Krissian also produced quite strong responses for the surface

patch like structure and between the closely tangenting tubular objects. The GVF-based

approaches do not produce responses between the closely tangenting tubular objects as

we have already seen in the experiments of the varying tube configurations (see Fig. 2.6).
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However, the approach of Krissian does not produce any response between these closely

tangenting tubular objects in Fig. 2.7(e), in contrast to the example in Fig. 2.6(d) where

it did.

This behavior deserves a closer investigation and explanation. With Pock’s approach

two different scale spaces are utilized where the scale at which the boundary information

is obtained depends on a parameter η. Moreover, the relation between the radius of the

tubular objects and the boundary information is non-linear (σP2 = rη with 0.0 ≤ η ≤ 1.0

as explained in Section 2.2.2), meaning that the response also depends on the size of the

tubular objects explaining the different results between the two figures. The approach of

Pock addresses the problem of the pure Gaussian scale space methods (Frangi, Krissian),

by computing the boundary information on a smaller scale. However, this computation

of the boundary information on a smaller scale represents a tradeoff with this method

as illustrated in Fig. 2.8. Computing the boundary information on a too large scale, the

method shows the same problems as Krissians approach and produces responses between

the tubular objects (Fig. 2.8(a)), while computing the boundary information on a too small

scale, the method can not account for deviations from a perfectly circular cross section

(e.g. ellipsoidal) (Fig. 2.8(b)).
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(a) Response of Pock’s method [114] using
very large η = 1.0.
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(b) Response of Pock’s method [114] using
very small η = 0.0.

Figure 2.8: Influence of η on the TDF response with Pock’s method [114] for the tubular
structures shown in Fig. 2.7(a).

With the GVF-based approaches this tradeoff does not exist. The edge information is

computed on a very small scale and the GVF diffuses the gradient information, thus making

it still possible to produce reasonable responses to slight variations from a perfectly circular

cross section profile (ellipsoid). The method of Pock and the GVF-based approaches do not

produce any response for surface patches contrary to the methods of Frangi and Krissian.

Varying contrast level: In Fig. 2.9 the effect of varying contrast is shown. For the

TDF of Frangi and the GVF-based methods the parameters were adapted accordingly to

the contrast indicated by the dotted line, while the methods of Krissian and Pock do not
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have a parameter that can be adapted to the expected contrast. As shown from the results,

with the methods of Krissian and Pock the responses depend linearly on the contrast, while

with the other approaches the response saturates above the expected contrast and starts

decreasing with lower contrast than the expected one. One may argue that the methods

of Krissian and Pock do not require an adaption to the expected contrast, however, on

the other side this implies that for extraction of the tubular structures it is necessary

to adapt thresholds on the TDF response appropriately to achieve a discrimination from

noise responses. Morover, because of this behavior the methods of Krissian and Pock also

produce strong responses to structures with a strong contrast, even in case the structure

itself strongly deviates from a tubular shape. In contrast to that, the method of Frangi

and the GVF-based method produce normalized results allowing to use the same set of

parameters for extraction of the actual tubular structures.

Varying noise level: The datasets provided by Aylward et al.‡ [2], see Fig. 2.10, con-

tains a tortuous, branching, tubular object with vanishing radius. The contrast between

the tubular object and the background ranges from 100 at the center of the tube to 50 at

the tube’s edge. The datasets were corrupted with additive Gaussian noise with increasing

standard deviations η of 10, 20, 40 and 80. “The η = 20 data is representative of the noise

level in MR and CT data. The η = 40 data more closely resembles the noise magnitude

of ultrasound data. [...] The η = 80 images are well beyond any worst case number [...]

for any clinically acceptable MRA, CT, or ultrasound data.”[2].

For Frangi’s method and the GVF-based methods, the noise-sensitivity parameters,

c and Fmax, respectively, were adapted on the low noise dataset (η = 10). As already

mentioned above, the methods of Krissian and Pock do not allow controlling the influence

of contrast on the filter response. As a result, with these methods the response to image

noise increases with an increasing noise level. The GVF-based approaches produce clean

responses at the centers of the tubular objects even under high (clinically acceptable) noise

levels (η = 10, 20, and 40), although for noise reduction only a Gaussian smoothing with

a very small variance (σ = 1.0) was used. This shows that in practice only a Gaussian

smoothing with a very small variance is necessary. Computation of gradient information on

a large scale as done by the Gaussian scale space based methods is not necessary to account

for image noise. However, in case of insufficient noise suppression the GVF-based method

with the central medialness function produces unsatisfying results, while the GVF-based

method with the offset medialness function shows a slightly better behavior, as shown in
‡http://ij.itk.org/midas/item/view/1065
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(a) 3d volume rendering
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(b) 1d cross section showing contrast
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(c) Response of Frangi’s method [44].
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(d) Response of Krissian’s method [70]
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(e) Response of Pock’s method [114].
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(f) Response of GVF-based tube detection
with central medialness (Section 2.3.2).
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(g) Response of GVF-based tube detection
with offset medialness (Section 2.3.2).

Figure 2.9: Tubular structure with vanishing contrast and responses of different TDFs.
The x-axis indicates the location and the y-axis the contrast/response. The dotted line in
(b) indicates the contrast for which the parameters were adapted.

Figs. 2.10(e) and (f) on the very right.

2.5.2 Clinical Datasets

In this section, we apply the three methods to three medical volume datasets and show

the impact of the results obtained on the synthetic datasets on clinical datasets.

CT angiography: In the top row of Fig. 2.11, a CT angiography image and enlarged

subregions of challenging areas are shown. The main problems for TDFs with this kind

of dataset are the detection of very thin low contrast vessels, diffuse edges, and closely

adjacent vessels. Note that Frangi’s and Krissian’s methods were specifically designed for

angiography images.



38 Chapter 2. Extraction of Tubular Structures

The overview image of the whole dataset (leftmost column) shows that our approach

works similarly well for wide tubes with bar-like cross-section profiles and for very thin

tubular objects with Gaussian cross-section profiles. The magnified subregion showing the

tangenting tubes (second column), verifies the results of the synthetic datasets. The Gaus-

sian scale space based approaches diffuse the closely adjacent structures into one another,

making an extraction of height ridges as suggested by Krissian et al. [71] for centerline

extraction impossible. Our approach allows a clear separation of both. The magnified

subregion shows some very thin low contrast vessels (third column). As the responses

of Frangi’s and Krissian’s methods decrease with decreasing contrast (see Fig. 2.9), the

response to low contrast vessels also decreases. This makes a separation from the back-

ground difficult (e.g. based a single threshold as suggested by Krissian et al. [71]). Our

approach is insensitive to changing contrast situations and finding a single threshold for

extraction of the centerlines is easier. The magnified subregion on the very right column

shows another example of very thin tubular structures. The vessels overlap completely in

the image because of the partial volume effect. None of the methods is able to separate

them because they work on voxel level.

Contrast enhanced CT of the liver: In Figs. 2.12(a) and (b) a contrast enhanced

liver CT dataset is shown. For TDFs the main problems with these kinds of datasets are

the complex surrounding of the liver (other orangs, bones, etc.), the tumor that forms a

blob like structure and the low contrast to noise ratio for the thinner blood vessels. The

method of Pock [9, 114] was specifically developed for this kind of datasets.

As the results of the TDF responses show (Figs. 2.12(c)-(g)), the methods of Frangi

and Krissian produce strong responses inside the liver at the transitions to other nearby

organs with a lower density (e.g. the transition to the lung). Contrary to that, the method

of Pock and the GVF-based methods do not show this behavior. The methods of Frangi,

Pock, and the GVF-based methods are also capable of suppressing the blob-like tumorous

image structure, showing the ability to identify tubular structures and to discriminate

them from other structures. On the other hand, the methods also do not respond to

the blood vessel adjacent to the tumor. The response with all approaches also decreases

considerably or breaks up completely at branching areas, as these parts of the vascular

structures deviate significantly from a typical tubular shape.

CT of the aorta: To demonstrate the performance of the different methods in a more

complex environment, the methods have been applied to a CT dataset without contrast
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enhancement of the abdomen showing ascending aorta, descending aorta and the aortic

arch (see Figs. 2.13(a) and (b)). The aorta is surrounded by multiple different tissues,

parts of the background are brighter (the spine), some parts of the background are darker

(the lung), and in some areas a discrimination from ascending image structures is difficult

(inside the heart). These situations are problematic for conventional TDFs. With our

approach, the GVF-flow was initialized to cope with varying step edges (Section 2.3.3).

The results of the Gaussian scale space based methods on this dataset (Figs. 2.13(c)-

(e)) reveal the drawback of the linear scale space very clearly: the close proximity of

spine and aorta disturbs the detection of the aorta when applying Franig’s, Krissian’s, or

Pock’s method. These methods produce undesired responses to several structures in the

image, making a valid extraction of the aorta impossible. In Gaussian scale space, one

may consider the whole spine as a tubular object at a large scale, but this disturbs the

detection of smaller vessels in its close proximity. With the GVF-based approaches on

the other hand (Figs. 2.13(f) and (g)), the detection of the aorta is not influenced by any

surrounding structures, allowing for an extraction of the aorta (Fig. 2.13(h)).

2.6 Discussion and Conclusion

In this chapter, we were concerned with the extraction of tubular structures from medi-

cal images. We presented a novel approach for detection of tubular structures based on

the GVF (Section 2.3) and compared it to several TDFs known from the literature (Sec-

tion 2.2). In Section 2.5 we studied these TDFs on synthetic and clinical datasets showing

some of their properties in different situations. For the extraction of the centerlines of the

tubular structures from the TDF responses, the combination with a height ridge traver-

sal procedure (Section 2.4) was presented, which allows for a fully automated bottom-up

extraction of the interesting structures.

As shown from the examples, the GVF-based approach addresses a core problem of the

Gaussian scale space based methods – the diffusion of nearby structures into one another

on larger scales – what may lead to false responses. We showed that this can be avoided

by using the GVF field as a replacement for the conventional multi-scale gradient vec-

tor computation. The resulting GVF-based methods proofed beneficial in case of surface

patches or other nearby image structures and allow for a more selective extraction of tubu-

lar structures. Additionally, the method has the ability to cope with varying background

conditions, an issue that can not be addressed using conventional Gaussian scale space

based methods. This makes the presented GVF-based approach applicable in areas where
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the utilization of TDFs has not been considered so far.

However, as the GVF-based approaches only respond at the center of the tubular

structures, these methods are not so suitable for visualization tasks where the TDFs are

utilized for vessel enhancement, as is the case with Frangi’s method. Also, the response

of the GVF-based methods falls off completely in case a minimum contrast-to-noise ratio

in the initial vector field is not given, while with the approaches of Krissian and Pock the

response only decreases. Therefore, it may be necessary for some applications to use com-

binations of the GVF-based approach for sufficiently contrasted tubes and a conventional

TDF computed only on a very small scale for the identification of thinner low contrast

tubular structures in noisy datasets.

TDFs compute a tube-likeliness measure independently for each voxel of the image do-

main. This makes them ideally suited for GPU implementations and thus allows achieving

low computation times. The Gaussian scale space based methods obtain a tube-likeliness

measure for each voxel at multiple scales, meaning that their computation time depends

linearly on the number of voxels and the number of used scales. With the GVF-based ap-

proach on the other hand, the tube-likeliness has to be computed only once for each voxel

while the main computation time is on behalf of the GVF that has to be computed only

once; the GVF is also easily parallelizeable and can be implemented on the GPU. Using

such GPU based implementations of the TDFs, the computation times on typical volume

datasets remain in the range of seconds to maybe few minutes on large datasets. E.g. on a

CT dataset with an axis aligned bounding box surrounding only the liver (380×425×210

voxels), the computation time for the TDF of Pock et al. [114] is about 10 seconds when

computed on 10 scales and the computation time for the GVF-based approach with the

offset medialness function (Section 2.3.2) is about 15 seconds, using an NVIDIA GeForce

8800 GTX in both cases.

All TDFs have in common that the output (the tube-likeliness measure) decreases due

to deviations from the assumptions about the tubular structures or decreasing contrast.

In addition, the methods may also show some slight response to noise. Extracting tubular

structures from the tube-likeliness images requires appropriate thresholding of this tube-

likeliness. However, in particular in regions of the tubular trees that strongly deviate from

a typical tube shape (e.g. junctions, stenosis) the tube-likeliness is as low or lower as in

the noise image regions such that a discrimination of these cases based on thresholding

is not possible. The presented height-ridge traversal with the incorporated hysteresis

thresholding accounts for this problem to some extend and tolerates slight variations from
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a tubular structure. As a result of these issues only the tubular parts of tubular tree

structures that don’t deviate strongly from a perfectly tubular shape can be extracted

with these methods.
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Algorithm 1 Centerline extraction using ridge traversal.
input: Tube likeliness image T (x) with tangent directions t(x)
input: thresholds thigh and tlow for double-thresholding

set CL← {} /* set of extracted centerlines */
image C(x)← false /* auxiliary centerline image */

/* obtain starting points */
queue M;
for each voxel x ∈ T do

if T (x) > thigh and T (x) ≥ maxy∈Adj26(x)T (y) then
M ←M ∪ {x}

end if
end for

/* traverse ridges */
while M 6= {} do
x0 ← extract(M)
if C(x0) = false then

list cl /* centerline associated with starting point x0 */
/* traverse in first direction t(x0) */
point x← x0

direction t← t(x0)
repeat
cl← pushFront(cl, x)
C(x)← true
point xn = argmaxy∈Adj26(x)T (y)sign(−→xy · t)
direction tn = t(xn)sign(−−→xxn · t(xn))
x← xn, t← tn

until T (x) < tlow or C(x) = false
cl← popBack(cl) /* remove such that x0 is only once in cl */
/* traverse in second direction −t(x0) */
point x← x0

direction t← −t(x0)
repeat
cl← pushBack(cl, x)
C(x)← true
point xn = argmaxy∈Adj26(x)T (y)sign(−→xy · t)
direction tn = t(xn)sign(−−→xxn · t(xn))
x← xn, t← tn

until T (x) < tlow or C(x) = false
CL← CL ∪ cl

end if
end while

output: extracted centerlines CL
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(a) Datasets from the public database of of Aylward et al. [2].

(b) Response of Frangi’s method [44].

(c) Response of Krissian’s method [70].

(d) Response of Pock’s method [114].

(e) Response of the GVF-based approach with the central medialness function (Sec-
tion 2.3.1).

(f) Response of the GVF-based approach with the offset medialness function (Sec-
tion 2.3.2).

Figure 2.10: Tubes with varying noise levels and responses of the different methods. From
left to right: increasing noise level using additive Gaussian noise with standard deviations
η of 10, 20, 40, and 80.
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(a) Original dataset (left) and enlarged subwindows.

(b) Response of Frangi’s method [44].

(c) Response of Krissian’s method [70].

(d) Response of Pock’s method [114].

(e) Response of the GVF-based approach with the central medial-
ness function (Section 2.3.1).

(f) Response of the GVF-based approach with the offset medialness
function (Section 2.3.2).

Figure 2.11: CT angiography image and responses of the different methods. From left to
right: overview of the whole dataset, closely tangenting vessels, thin vessels, overlapping
vessels.
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(a) Image slice of original
dataset with adapted gray
value range.

(b) Original dataset.

(c) Response of Frangi’s
method [44].

(d) Response of Krissian’s
method [70].

(e) Response of Pock’s
method [114].

(f) Response of the GVF-
based approach with the
central medialness func-
tion (Section 2.3.1).

(g) Response of the GVF-
based approach with the
offset medialness function
(Section 2.3.2).

Figure 2.12: TDF responses on contrast CT dataset of a diseased liver with a tumor
visualized using liver mask.



46 Chapter 2. Extraction of Tubular Structures

(a) Image slice of
original dataset with
adapted gray value
range.

(b) Alpha blending
of original dataset.

(c) Response
of Frangi’s
method [44].

(d) Response
of Krissian’s
method [70].

(e) Response of
Pock’s method [114].

(f) Response of
the GVF-based
approach with
the central me-
dialness function
(Section 2.3.1).

(g) Response of
the GVF-based
approach with
the offset medi-
alness function
(Section 2.3.2).

(h) Aorta extracted
with the GVF-based
approach with the
offset medialness
function.

Figure 2.13: TDF responses on CT of the abdomen showing the aorta in proximity to the
spine.
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3.1 Introduction

In the last chapter we presented different methods for the identification and extraction

of tubular objects from medical images. With these methods major parts of tubular tree

structures can be already described. However, the methods are not capable of coping

with branching areas or other areas where the appearance of the vessels/airways strongly

deviates from the typical tube shape. This may be because of stenosis, aneurysms, or

tumors where the shape of the vessels/airways is perturbed, or in case of imaging arti-

facts or adjacent structures within the same gray value range. Due to these cases the

tubular structures extracted with methods as the ones presented in the last chapter are

unconnected. A second issue not addressed with TDFs is that they identify all tubular

structures in a given volume of interest and they do not distinguish between multiple

potentially interwoven tubular tree structures. Consequently, such structures need to be

separated in an additional processing step.

47
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In this chapter, we are concerned with the reconstruction of the complete tree struc-

tures from identified unconnected tubular structures. This requires, that the tubular

structures belonging to the same tree have to be grouped and linked together. In this

context, we refer to grouping as identifying which tubular structures are connected and

are a part of the same tubular tree structure, and to linkage as finding a connecting path

between the identified tubular structures.

In the literature only a few methods can be found that are addressing these issues. They

are based on image information and/or structural information. Methods utilizing primarily

image information make use of shortest path techniques and cost images typically derived

from the image gray values [10, 24, 29, 114]. These methods suffer from shortcuttings;

this induces that the linkage path may drift away from the center and/or that there may

be wrong connections. Such methods are also not able to avoid misconnections between

multiple overlapping tubular tree structures within the same gray value range. Methods

utilizing primarily structural information make use of distance, radius, and/or blending

angle between the identified tubular objects to obtain a connection confidence [18, 39,

58, 75, 138]. These confidence measures are typically utilized in a minimum spanning

tree algorithm together with some centerline interpolation method to obtain connected

skeletons of a tree structure. To the best of our knowledge, only one method has addressed

the simultaneous reconstruction and separation of multiple interwoven tree structures from

identified tubular objects. In this work Agam et al. [1] presented a method that is especially

tailored to lung vasculature and imposes constraints that are only valid for this specific

application. The separation of multiple overlapping tree structures is usually addressed

based on the analysis of connected skeletons derived from existing segmentations utilizing

radius information (e.g. [130]) or additionally angle information (e.g. [134]). However, such

approaches based on skeletonization of segmentation results are sensitive to segmentation

errors, especially to missing parts or leakage where the topology of the extracted centerlines

is incorrect. Of course, combinations of image information and structural information

are also used; e.g. verifying the interpolated linkage path determined by a structural

connection method based on gray value evidence.

As can be seen from this literature review, two issues have not been addressed by other

authors so far. Except in the lung case, no method has addressed the grouping/separation

of unconnected tubular structures in case of multiple interwoven tree structures. No

method is capable of extracting a linkage path that stays centered in regions where the

shape strongly deviates from a typical tubular shape, thus resulting in a high quality curve
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skeleton. In the next two sections, we present two methods addressing these issues, using

a structure based approach (Section 3.2) for the grouping/separation of tubular structures

in case of multiple interwoven tree structures, and an image based approach (Section 3.3)

for extraction of centered linkage paths.

3.2 Structure Based Approach

Biological tubular tree structures such as blood vessel trees or the airway tree show charac-

teristic structural properties regarding their branching behavior (branching angle, radius).

In this section, we present a method that addresses the reconstruction and separation of

multiple potentially interwoven tubular tree structures based on such structural properties.

The method incorporates distance information, radius information, and branching angle

information in order to group unconnected tubular structures into biologically reasonable

trees and to separate multiple interwoven tree structures from one another. Incorporation

of branching angle information is in particular of importance in case of multiple interwoven

tree structures where tube elements tangent each other and seem to overlap due to partial

volume effects. Considering an afferent vessel system, the following characteristics can be

observed. Starting from a root element, blood flows into a recursively branching vessel

tree. The diameters of the vessels decrease and the direction does not change abruptly.

Our reconstruction strategy tries to preserve this “flow” in the trees by taking geometrical

properties into account. Starting from given root elements of the trees with known flow

direction, tube elements are grouped and connected iteratively using a confidence function.

This strategy allows the separation of the different interwoven trees and the reconstruction

of valid skeletons for the individual trees by closing gaps between the individual tubular

structures which separate parts of the trees. During this process, high-level structural rep-

resentations of the whole trees are derived which describe the parent-child relationships

between the tube elements.

Structural representation of the trees: The structural representation of the different

trees is based on a directed acyclic graph. All trees together form a forest. The nodes in

this graph represent branchpoints of the trees and the edges correspond to tube elements

connecting these branchpoints. For all tubular structures lj = {xji}oi=1 the centerline points

xji with associated tangent direction tji , radius rji , and the flow direction in the tubular

structure dj ∈ {+1,−1} are known. If the flow direction is from the first centerline point

of the tube element to the last, we set dj = +1; otherwise dj = −1. In addition, for every
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tube element the average radius rj and gray-value Ij is known.

Tree reconstruction and separation: Starting from given tube elements that repre-

sent the roots of the different tree structures, the corresponding trees are reconstructed and

separated from each other by iteratively merging unconnected tube elements. Therefor,

the endpoints of unconnected tube elements xji are considered as candidates for connec-

tion to one of the centerline points xlk of the known trees. Based on geometric properties,

possible connections are identified and preferences based on a confidence function are

computed and the connection with the highest confidence is inserted into the graph. The

procedure is repeated as long as the highest connection confidence stays above a threshold

cmin. Determination of the set of possible connections and the confidence for a connection

are based on above stated flow preservation constraint and primarily utilizes the dis-

tance d = max
(
0, |
−−→
xlkx

j
i | − rlk

)
and the angles αl = ∠

(−−→
xlkx

j
i , d

ltlk
)

and αj = ∠
(−−→
xlkx

j
i , d

jtji
)

(Fig. 3.1). The following hard constraints have to be fulfilled to form biological reasonable

tree structures, and therefore, to determine the set of possible connections:

1. There must not be sharp turns in the flow direction: αj ≤ γa and αl ≤ γa.

2. The radius must not increase: rpath ≤ γrrl, where rpath is the smallest radius on the

whole path from the root.

3. The connection distance must not be too large: d ≤ γdr
j . Incorporation the radius

rj as an additional factor makes the formulation independent of the scale of the

actual application domain (e.g. airways of men or animals).

To yield correct connections in case of tangenting or overlapping tubular structures, a

combination of distance and angle is used to compute the connection confidence for all

possible connections:

conf(xji ,x
l
k) = e

− αj

2ρ2
1

1 + 1
rj
d

(3.1)

The pair of points xji and xlk with the highest connection confidence is determined

and a linkage path in the image domain is obtained using linear interpolation. The tube

element is connected to the corresponding tree and the structural forest description is

updated. During this step the flow direction of the newly added tube element of the tree

is determined, dependent on the endpoint of the tube element that is connected.
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Figure 3.1: Information used for calculation of the confidence function for structural tree
reconstruction.

As a note, we want to point that an iterative optimization scheme is utilized here and not

a globally optimal optimization method due to the high computational complexity of the

resulting problem, such that a globally optimal optimization is generally not applicable.

However, Agam et al. [1] were able to solve a similar problem on lung vascular trees

in a globally optimal way. But in their application they were able to utilize additional

assumptions based on prior knowledge about the lung anatomy.

Linkage path verification: Depending on the application it may be desirable to verify

the plausibility of the linkage based on gray value evidence, while for some applications

such a verification may not be necessary or even counterproductive (e.g. occluding struc-

tures separating parts of a tubular tree structure). In case such a gray value based verifi-

cation is desired, the gray values of the pixels along the determined path are analyzed to

verify the correctness of the link. Therefor, the maximal gray value difference between the

path points and the average gray value of the considered tubular structures is determined:

diff = maxx∈path |I(x)− (Ij + I l)/2|. A linkage path with a too large deviation diff > γdiff

may be assumed invalid and discarded. Note, that this step only serves to verify the

plausibility of the connection, while the structural information is the main factor for the

grouping.

3.3 Image Based Approach

In this section, we present a method for grouping/linkage of identified tubular objects

based on image information by utilizing image gradient information and the GVF field
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obtained from this image gradient information. We used the GVF field already for identifi-

cation of tubular objects as a replacement for the multi-scale gradient vector computation

for detection of tubular structures (Section 2.3). In combination with a tube likeliness

measure based on central or offset-medialness functions, the overall approach allows de-

tection of tubular objects at their centerlines showing several advantages compared to

conventional multi-scale TDFs. But similar to other TDFs, the method does not pro-

duce valid centerline paths in the proximity of junctions or diseases like stenosis where

the objects shapes strongly deviates from the typical tubular shape. However, the GVF

shows another property that can be used to solve this problem and that has been used

for extraction of curve skeletons (CS) from binary segmentations by the skeletonization

approach of Hassouna and Farag [53, 54]. In contrast to skeletonization approaches that

are based on the distance transformation, the magnitude of the GVF always decreases

towards the medial curves independent of the object’s shape. This property of the GVF

enables the extraction of the centerlines also in case of junctions or plate like structures.

(a) (b) (c) (d) (e)

Figure 3.2: Illustration of the basic idea on 2D cross section profiles of some 3D structures.
Top row: cross section T-junction of a tubular object; bottom row: structures with a
circular cross section (left) and a strong deviation from a circular cross section (right).
From left to right: original dataset, GVF, derived tube-likeliness, derived medialness λ(x),
extracted CS.

Fig. 3.2 illustrates this property and the basic idea for our image based

grouping/linkage on some 2D cross sections of 3D structures. In these images the

GVF field, the TDF response (using the central medialness function as described in

Section 2.3.1), and the derived medialness measure based on the GVF magnitude that
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can be utilized for the grouping/linkage in regions with significant deviation from a

typical tubular shape, is shown. As a measure of medialness Hassouna and Farag [53, 54]

applied the following weighting of the GVF magnitude |V (x)|:

λ(x) = 1.0−

(
|V(x)| −min|V(x)|

max|V(x)| −min|V(x)|

)q

(3.2)

with 0.0 < q < 1.0 in combination with their levelset based skeletonization approach. As

can be seen from the medialness images, the GVF magnitude decreases with increasing

distance from the surfaces of the structures. This property is independent of the size of the

structures and it is also preserved in areas where the tubes do not show a circular cross-

section. For our purpose, we utilized the weighting of the GVF magnitude as applied by

Hassouna and Farag only for visualization in Fig. 3.2(d), while for the actual extraction a

similar but simpler medialness measure is used: M(x) = 1− |V(x)|. From the medialness

images, the medial curves can be extracted as the height-ridges using the ridge traversal

procedure presented in Section 2.4.

For our image based grouping and linkage, we search for connecting paths between the

identified tubular structures in the medialness map M(x). Therefor, starting from each

endpoint of each tubular structure the associated height-ridge in the medialness map is

traversed in the direction pointing away from the tubular structure into the direction where

the shape strongly deviates from the typical tube shape. The traversal is stopped when the

medialness falls below a given threshold mmin or a centerline point of a tubular structure

is found. The extracted traversal path is analyzed if it forms a valid connection/linkage

path and added as a link between the tubular structures if it is valid. A traversal path

in the medialness map is assumed as a valid link if the traversal ends at another tubular

object and if the gray values along the linkage path do not change too much; therefor the

maximal gray value difference d = maxx∈path |I(x)−Itube| between the linkage path points

and the average gray value Itube of the considered tubular structure has to stay below a

given threshold d < γdiff.

In this way the tubular structures are grouped and linked together based on image

information. The overall approach allows for extraction of complete CSs from tubular

networks directly from gray value images by utilizing the same GVF field two-fold, for a

bottom-up identification of tubular structures and for an extraction of medial curves also

in the regions that strongly deviate from the typical tubular shape.
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3.4 Experiments

In this section, we study the behavior of the previously presented grouping and linkage

methods (Section 3.2 and 3.3) with respect to the structural correctness of the tubular

tree structures and with respect to the accuracy of the extracted curve skeletons.

3.4.1 Structural Correctness

To study properties of the method’s abilities to obtain the correct structure, both meth-

ods were applied for the task of airway tree reconstruction and liver vascular tree recon-

struction/separation (Figs. 3.3 and 3.4). The tubular structures were obtained from the

datasets using the GVF-based TDF with the offset medialness function as presented in

Section 2.3.2. Organ masks were utilized to discard tubular structures in the datasets.

For the structural tree reconstruction method (Section 3.2), the required root elements

were selected manually.

Ability to separate multiple interwoven tubular tree structures: Fig. 3.3 show

the results on a contrast enhanced liver CT dataset. Fig. 3.3(a) and (b) show the original

dataset and the extracted tubular structures respectively. The dataset contains the portal

vein tree and the hepatic vein trees. Both of them have a comparable gray value in the

datasets, and both appear overlapping in some areas due to partial voluming. The dataset

further shows a tumorous region adjacent to one of the vessels. As can be seen from the

extracted tubular structures, the TDF was able to suppress the tumorous region, however,

also the vessel adjacent to the tumor was not identified. Additionally, the centerlines

between the tubular structures break up in some areas (e.g. branching areas). Fig. 3.3(c)

and (d) show the results of the image based and the structure based approach, respectively,

showing all tubular structures identified as part of the portal vein tree in blue. As can be

seen, the image based approach was able to close the gap in proximity of the tumor, but

it was not able to distinguish between the two vascular tree structures as both overlap in

the image domain. Using the presented structure based approach avoids this problem and

allows for a correct reconstruction and separation of the vascular trees.

Impact of flow direction information on structural correctness: Contrary to

other structure based approaches that perform a grouping of unconnected tubular struc-

tures into complete tree structures, our method incorporates flow direction information

(Section 3.2). To assess the impact of this additional information on robustness, we re-
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(a) MIP of dataset. (b) Extracted tubular
structures.

(c) Image based group-
ing/linkage.

(d) Structure based group-
ing/linkage.

(e) Structure based group-
ing/linkage without angle
information.

Figure 3.3: Grouping and linkage of tubular structures applied to a liver CT containing
multiple interwoven tubular tree structures. Top row: dataset and identified tubular
structures. Bottom row: grouping and linkage result for the two methods showing linkage
paths (green), identified tubes connected to the portal vein tree by the grouping (blue),
and identified tubes not connected to the portal vein tree (red).

moved all part of the structural approach that utilizes flow direction (angle) information.

A result of applying this simpler algorithm on this dataset is shown in Fig. 3.3(e), where

also misconnections between the vascular trees can be observed resulting in a grouping of

major part of the portal vein tree as part of a hepatic vein tree. An evaluation of this

simpler structure based approach and the approach as presented in Section 3.2 on 5 clinical

liver CT datasets showed, that the number of misconnections can be reduced significantly

by utilizing flow direction information. Without using flow direction information 23 mis-

connections occurred, while when using flow direction information only one misconnection

occurred. As a basis for these claims, we used evaluated segmentation results that were

verified by a trained radiologist (see Section 5.3.2). Thus, utilizing flow direction infor-

mation in the structural approach enhances the robustness in case of multiple overlapping
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tubular tree structures considerably.

Behavior in case of disturbances and significant deviations from a typical tubu-

lar shape: Fig. 3.4 shows an airway tree containing a large tumor that infiltrates the

airways. The tumor blocks the connection to one of the airway branches completely and

leads to a stenosis in another airway branch (Fig. 3.4(a) and (b)). As can be seen from the

extracted tubular structures (Fig. 3.4(c)) both parts were not identified by the TDF. The

result of applying the structure based and the image based grouping/linkage approaches

on this datasets results in the extracted structures shown in Fig. 3.4(d) and (e). The image

based approach was able to extract a valid link in case of the stenosis. However, it was

not able to identify a connection to the completely blocked airway branch. The structure

based approach on the other hand was able to cope with all these severe disturbances.

3.4.2 Centerline Accuracy

In this section, we study the achievable centerline accuracy with previously presented

grouping and linkage methods. We present results achieved on clinical datasets and com-

pare them quantitatively and qualitatively to other methods with similar objectives. We

will show two things. First, our presented image based approach that utilizes the prop-

erties of the GVF (Section 3.3) is able to extract medial curves that stay centered in

complicated cases where conventional TDFs and non-image based linkage strategies have

problems. We do this by comparing the results achieved with the GVF-based approach

to results achieved with the structure based approach and to the results achieved with

another approach by Krissian et al. [18, 70] that extracts medial curves directly from the

gray value images . Second, the accuracy of the centerlines extracted with the GVF-based

approach is comparable to those achieved with pure skeletonization approaches from ac-

curate segmentations. We do this by comparing the results of our GVF-based approach to

the skeletons extracted with three different skeletonization approaches [15, 53, 110] from

known gold standards (available segmentations of the interesting structures).

Datasets and methods: The two clinical datasets we use for evaluation show an air-

way tree (see Fig. 3.5) and a contrast CT of an aorta containing a severe stenosis due

to calcification (see Fig. 3.6). Segmentations of the bronchial tree and the aorta were

available. The segmentation of the aorta follows the interior of the aorta excluding the

calcifications.
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(a) (b) (c)

(d) Image based grouping/linkage. (e) Structure based grouping/linkage.

Figure 3.4: Grouping and linkage of tubular structures from an airway tree containing a
tumor that infiltrates one airway branch completely. Note the gap between the airway
branches at the tumor region. Top row: dataset and identified tubular structures. Bottom
row: grouping and linkage result for the two methods showing linkage paths (green),
identified tubes connected to the trachea by the grouping (blue), and identified tubes not
connected to the trachea (red).

The approaches we used for comparison are three sophisticated skeletonization ap-

proaches (using binary segmentations) and one method that derives the medial curves
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(a) Volume render-
ing of dataset.

(b) GVF-based
grouping and link-
age (Section 3.3).

(c) Structure based
grouping and link-
age (Section 3.2).

(d) Mutliscale tube
detection and simple
linkage.

(e) Hassouna’s skele-
tonization approach.

(f) Bouix’s skele-
tonization approach.

(g) Palagyi’s skele-
tonization approach.

Figure 3.5: Curve skeletons of an airway tree. Green: Result of GVF-based grouping and
linkage (Section 3.3). Red: Other approaches.

directly from the gray value image. The skeletonization approaches are that of Has-

souna et al. [53–55], Bouix et al. [15], and Palagyi et al. [110]. Hassouna’s approach also

uses the GVF similarly to our approach; the other two methods were specifically developed

for tubular objects. As an alternative method that tries to extract centerlines directly from

gray value images we decided to use a combination of the methods of Krissian et al. [70]

(for a bottom-up detection of tubular structures) and Bullitt et al. [18] (for grouping the

single tubular objects into tree structures and an extraction of the complete CS). For all

approaches the authors default parameters were used. For our grouping/linkage meth-
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(a) Volume render-
ing of dataset.

(b) GVF-based
grouping and link-
age (Section 3.3).

(c) Structure based
grouping and link-
age (Section 3.2).

(d) Mutliscale tube
detection and simple
linkage.

(e) Hassouna’s skele-
tonization approach.

(f) Bouix’s skele-
tonization approach.

(g) Palagyi’s skele-
tonization approach.

Figure 3.6: Curve skeletons of an aorta containing a severe stenosis due to calcification.
Green: Result of GVF-based grouping and linkage (Section 3.3). Red: Other approaches.

ods, the tubular structures were obtained from the datasets using the GVF-based TDF

with the offset medialness function as presented in Section 2.3.2. For the structural tree

reconstruction method (Section 3.2) the required root elements were selected manually.
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Qualitative Results: In Figs. 3.5 and 3.6, the results achieved with our methods and

the other methods on the clinical datasets are shown. Enlarged subwindows in regions

around a junction and stenosis are shown in Figs. 3.7 and 3.8, respectively.

The airway dataset (Figs. 3.5 and 3.7) demonstrates that the results of the different

methods in the case of a single perfectly tubular structure are almost identical. Only the

method utilizing the multi-scale tube detection filter shows some deviation. But at one

of the junctions that shows a larger variation from the typical shape (it becomes more

plate like) some approaches had problems to produce valid centerlines. In particular, the

combined approach of Krissian and Bullit had problems since this combination does not

guarantee centered paths in junction areas. Both our grouping/linkage methods show a

reasonable behavior in this case and the centerlines overlap in the tubular parts completely

as both are based on the same extracted tubular structures. Thus, the results only deviate

in the branching areas. The completeness of the resulting CS regarding the structure of

the trees achieved with the GVF-based approach is also comparable to that of the gold

standard segmentation.

(a) GVF-based grouping
and linkage.

(b) Structure based
grouping and linkage
(Section 3.3).

(c) Mutliscale tube detec-
tion and simple linkage
(Section 3.2).

(d) Hassouna’s skeletoniza-
tion approach.

(e) Bouix’s skeletonization
approach.

(f) Palagyi’s skeletoniza-
tion approach.

Figure 3.7: Enlarged subwindow showing curve skeletons of an airway tree. Green: Result
of GVF-based grouping and linkage (Section 3.3). Red: Other approaches.

On the aorta dataset (Fig. 3.6), the different methods show major differences at the
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junction with the stenotic area (Fig. 3.8). Krissian’s multi-scale TDF was influenced

by the calcification and thus the resulting centerline moved far away from the desired

position. The GVF-based TDFs on the other hand are not sensitive to such kinds of

disturbances. In proximity of the stenosis where the TDF filter was not able to identify

a tubular structure, the GVF-based grouping/linkage was able to extract a medial curve

that stayed centered with a quality comparable to that of the skeletonization approaches.

The simpler structure-based grouping/linkage methods on the other hand closed the gap

between the tubular structures along a straight line, showing a large deviation from a

high quality skeleton. The skeletonization approaches of Bouix and Palagyi showed some

sensitivity to surface noise in the gold standard segmentation and produced additional

centerlines. The authors themselves mention this behavior and these spurious branches

can be removed by appropriate pruning strategies.

(a) GVF-based grouping
and linkage (Section 3.3).

(b) Structure based
grouping and linkage
(Section 3.2).

(c) Mutliscale tube detec-
tion and simple linkage.

(d) Hassouna’s skeletoniza-
tion approach.

(e) Bouix’s skeletonization
approach.

(f) Palagyi’s skeletoniza-
tion approach.

Figure 3.8: Enlarged subwindow showing curve skeletons of an aorta containing a severe
stenosis due to calcification. Green: Result of GVF-based grouping and linkage (Sec-
tion 3.3). Red: Other approaches.
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Quantitative Results: The quantitative comparison of the centerline accuracy is based

on the average centerline distances between the different methods. To make the CSs

comparable, the skeletons obtained with the methods of Bouix and Palagyi were pruned

and only branches detected by all methods (the segmentation methods and the TDF

methods) were considered. Tables 3.1 and 3.2 summarize the average centerline distances

between the different methods for the two datasets. All the methods are quite comparable

(except the results achieved with the combined approach of Krissian and Bullitt). Our two

grouping/linkage methods utilized the same tubular structures, thus only showing small

differences. But also notable is the small difference between our GVF-based method and

Hassouna’s approach on the airway tree, but this may be explained since this method is

also based on the GVF. As these results show, the achieved centerline accuracy of our GVF-

based tube detection and grouping/linkage method is comparable to the variation found

between different skeletonization approaches. Note that all the skeletonization approaches

use the same binary segmentations while our method does not know this gold standard.

This shows that our approach is able to extract CSs of comparable quality directly from

the gray value images.

Table 3.1: Average centerline distances in voxels (aorta).
M1 M2 M3 M4 M5 M6

GVF TDF + GVF linkage M1 – 0.01 0.66 0.62 0.79 1.49
GVF TDF + structure linkage M2 0.03 – 0.69 0.58 0.81 1.38
Hassouna M3 0.63 0.68 – 0.60 0.72 1.14
Bouix M4 0.59 0.58 0.63 – 0.78 1.58
Palagyi M5 0.78 0.81 0.75 0.80 – 1.53
Krissian + Bullitt M6 1.61 1.45 1.17 1.70 1.60 –

Table 3.2: Average centerline distances in voxels (bronchial tree).
M1 M2 M3 M4 M5 M6

GVF TDF + GVF linkage M1 – 0.08 0.24 0.41 0.40 0.58
GVF TDF + structure linkage M2 0.04 – 0.24 0.44 0.40 0.66
Hassouna M3 0.22 0.23 – 0.37 0.34 0.72
Bouix M4 0.47 0.42 0.36 – 0.45 0.67
Palagyi M5 0.44 0.47 0.33 0.44 – 0.70
Krissian M6 0.59 0.67 0.53 0.57 0.66 –
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3.5 Dicussion and Conclusion

In this chapter, we were concerned with the grouping and linkage of tubular structures into

complete tree structures. Therefor, two methods have been presented: (a) a structure-

based approach has been presented (Section 3.2) that is capable of grouping/separating

tubular structures in case of multiple interwoven tree structures into valid tree structures

and (b) an image based methods has been presented (Section 3.3) for extraction of centered

linkage paths. In Section 3.4 we studied these two methods in several examples showing

some of their properties.

As shown by these examples, the GVF-based approach for identification of tubular ob-

jects and for extraction of linkage paths between these tubular objects allows us to extract

high quality curve skeletons directly from gray value images. This approach combines the

advantages of a bottom-up tube detection filter with the GVF’s ability for extraction of

medial curves, also in cases where the tube detection is perturbed due to larger deviations

from the typical tube shape such as furcations, stenosis, or aneurysms. The presented

image based linkage approach allows for extraction of medial curves also in these areas.

We showed that the accuracy of the resulting centerlines is comparable to that achieved

with state of the art skeletonization approaches that are all based on the same known seg-

mentations. Thus, the resulting CSs are directly applicable for tasks requiring high quality

skeletons and this supersedes the need to deal with segmentations and skeletonizations in

these applications.

However, as shown in the experiments, pure image based methods are not capable of

handling disturbances such as overlapping tubular tree structures or cases where parts

of the tubular tree structure are not identifiable in the image domain (e.g. the tumor

in case of the airway tree; see Fig. 3.4). In such a case, only some kind of centerline

interpolation can be utilized as done with our structure based approach. As we showed in

the experiments, the presented structure based approach allows a separation of interwoven

overlapping tubular tree structures and handling of various kinds of disturbances, but it

cannot guarantee a centered path in these disturbed regions.

Also a combination of the two approaches could be applied, using the image based

linkage path extraction in cases of deviations from a tubular shape and a linear centerline

interpolation in case of imaging artifacts or partly overlapping tubular tree structures.

Therefor the validity of the centerline paths extracted with the image based method should

be verified based on structural properties and additional linear centerline paths added in

case the structure based method requires a link between two tubular structures. This



64 Chapter 3. Grouping and Linkage into Connected Networks

would combine the advantages of both approaches.
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4.1 Introduction

In the last two chapters, we presented methods for the extraction of structural rep-

resentations of tubular tree structures. The derived representations consist of center-

lines/skeletons usually associated with a radius and tangent direction estimate for each

centerline point. Such a representation can be seen as a segmentation result [18, 68],

however, this information does not accurately represent the actual surfaces of the tubular

objects. The known structures could be utilized as a good initialization for a segmentation

method (e.g., levelsets) to obtain more accurate segmentations. However, most segmenta-

tion methods do not necessarily preserve the topology of the already known tree structure

as the methods may still show leakage (additional branches in the tree) or holes/gaps in

the segmentation results (unconnected branches in the tree). In this chapter, we are con-

cerned with methods to obtain accurate segmentations related to already known tubular

structures that make use of the already known information in such a way that the topology

is preserved.

65
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Only a few methods in the literature have addressed the issue of utilizing known

structural information to obtain accurate segmentations of tubular tree structures in a

topology preserving way. Deformable models are the most common approach [43, 103,

104, 151, 165, 172]. In very recent works, approaches based on graph-cuts [127] and

optimal surface finding [32] were applied.

In the last few chapters, we presented methods utilizing properties of the GVF for

detection of tubular objects (Section 2.3) and for grouping/linkage of tubular objects

into tree structures (Section 3.3). However, the GVF was originally presented to guide

snake based segmentations [168]. But properties of the GVF (or similar gradient diffusion

methods) have also been used to generate voxel accurate 2D and 3D segmentations without

using snakes [22, 82, 129, 174]. For example, Li et al. [80] used a gradient flow tracking in

the GVF field in combination with a locally adaptive thresholding scheme based on gray

value statistics to segment blob like 3D structures. But to our knowledge, none of the so

far presented methods is directly applicable for segmentation of tubular structures.

In the next two sections, we present two different methods to obtain accurate seg-

mentations associated with already known tubular structures that preserve the topology.

Therefor, two methods are presented. The first utilizes the same GVF field as utilized

for the tube detection approach (Section 2.3) and the second utilizes a graph cut based

approach that performs a segmentation in a globally optimal fashion.

4.2 Inverse Gradient Vector Flow Tracking

To achieve an accurate segmentation of the tubular structures identified in a GVF field

by using the approach from Section 2.3, we present in this section a method that can

be directly applied to the same already obtained GVF field. As we have seen in Sec-

tion 2.3.3, the GVF-based approach may be adapted to varying background conditions.

In case of varying background conditions and arbitrary edge types, the initial vector field

is obtained from a gradient magnitude image, while for tubular structures surrounded by

the dark/bright background the initial vector field for the GVF is obtained directly from

the gray value images. For the tube segmentation method presented in this section, we

also have to distinguish between these two cases.

Considering the GVF field V (x) of a tubular structure as illustrated in Fig. 4.1, all

the vectors flow towards the centers of the tubular structures, which correspond to the

extracted centerlines of the tubular structures (in case of tubular objects). By following the

direction V n(x) = V (x)/|V (x)| of the vectors, each voxel can be assigned to a neighboring
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voxel and a path can be tracked for each voxel of the tubular structure to its centerline.

Based on this assignment, the voxels of tubular structures associated with the individual

centerlines can be segmented by following the gradient flow tracking path in the inverse

direction. In case the GVF field was obtained from a gradient magnitude image, it is

sufficient to track all these paths until their end, because at the boundaries the vectors

point into the opposing direction (Fig. 4.1(f)). However, in case the GVF field was obtained

directly from the gray value image, an additional criterion is necessary. The magnitude of

the GVF M(x) = |V (x)| increases until the actual boundary is reached (Fig. 4.1(c)) from

where on it starts decreasing.

(a) (b) (c)

(e) (f)

Figure 4.1: Illustration of properties of the GVF using a 2D cross section of a 3D branch-
ing tubular structure. Top row: vector fields for bright/dark structures. Bottom row:
vector fields based on gradient magnitude image. (a) Branching 3D tubular structure.
(b) and (e) Initial vector fields Fn(x) (gray-value: vector magnitude; arrow: vector direc-
tion). (c) and (f) Resulting GVF fields V (x) (gray-value: vector magnitude; arrow: vector
direction).

Based on these properties of the GVF, the tubular structures are segmented. Therefor,

starting from the points at the tubes center, neighboring voxels fulfilling above criteria are

merged iteratively to generate a segmentation, using Algorithm 2 in case the GVF was

obtained directly from the gray value image, and using Algorithm 3 in case the GVF was
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obtained from a gradient magnitude image. In this way, the voxels associated with the

centerline of a tubular structure are segmented.

Algorithm 2 Inverse gradient flow tracking tube segmentation for GVF obtained from
gray value image.

input: GVF field V (x) with direction V n(x) and magnitude M(x)
input: centerline points C = {x1, x2, . . . , xn}
set S ← C
queue Q← C
while Q 6= {} do
x← extract(Q)
for each voxel y ∈ Adj26(x) do

if y /∈ S and M(y) > M(x) and argminz∈Adj26(y)〈V n(y),−→yz〉 = x then
S ← S ∪ {x}
Q← Q ∪ {y}

end if
end for

end while
output: segmented tube voxels S

Algorithm 3 Inverse gradient flow tracking tube segmentation for GVF obtained from
gradient magnitude image.

input: GVF field V (x) with direction V n(x) and magnitude M(x)
input: centerline points C = {x1, x2, . . . , xn}
set S ← C
queue Q← C
while Q 6= {} do
x← extract(Q)
for each voxel y ∈ Adj26(x) do

if y /∈ S and argminz∈Adj26(y)〈V n(y),−→yz〉 = x then
S ← S ∪ {x}
Q← Q ∪ {y}

end if
end for

end while
output: segmented tube voxels S

4.3 Graph Cut Based Tree Segmentation

In this section, we present an approach to accurately delineate the boundary of tree struc-

tures in a globally optimal manner using a graph cut segmentation approach [17]. The



4.3. Graph Cut Based Tree Segmentation 69

method incorporates the gathered information about structure (skeleton and estimated

radius) as a shape prior to guide the segmentation process.

The actual segmentation is constrained to an image region in proximity of the expected

surface by defining object and background seed regions as shown in Fig. 4.2. Therefore, the

information about centerline point locations xji and associated radii rji are used to calculate

the signed distance to the shape prior (tube) surface Dsurface(x) and the distance to the

closest centerline point Dcenterline(x). Both distance maps are computed using a fast

marching method which is an efficient way to solve the Eikonal equation |∇T (x)|F = 1,

where T (x) is the arrival time at point x of a front moving with speed F . Assuming that

the front starts at the centerline points xji at time T0(xji ) = −rji and the speed is constant

(i.e. F = 1), the solution gives the required distance map Dsurface(x), whose zero level set

represents the estimated surface. All points inside the tube are assigned negative values,

all points outside the tube positive values. Similarly, the distance map of the centerlines,

Dcenterline is calculated by using T0(xji ) = 0. Based on the so obtained distance maps

Dsurface(x) and Dcenterline(x), the object (Dsurface(x) < −dm or Dcenterline(x) < dmin)

and background seed regions (Dsurface(x) > dm) are defined.

Figure 4.2: Shape prior for the constrained graph cut segmentation.

The objective of the graph cut segmentation step is to find the optimal surface that

separates the object from the background seed regions. This is done by finding a closed

surface S in between, whose associated energy E(S) =
∮
S g(x)dx is minimized. The term

g with g ≥ ε > 0 represents the costs and is based on edge information. A globally optimal

solution to a discretized formulation of this minimization problem is determined using the

graph cut algorithm [17]. Therefore, the voxels of an image are represented as nodes of

a graph. Nodes representing adjacent voxels in the image are connected by an edge with
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associated costs g(x) (the costs are computed as the average costs of the values computed

at the discrete voxels). The utilized cost term g(x) incorporates the gradient magnitude

|∇Gσ ? I| and a soft shape prior based on Dsurface that emphasizes edge information in

proximity of the expected tube surface:

g(x) = e
− |∇Gσ?I(x)|2

2σ2
edge

(
1− αe

−
Dsurface(x)2

2σ2
shape

)
(4.1)

where 0 ≤ α ≤ 1 can be used to control the influence of the shape prior. σ depends

on the image noise level, while σedge depends on the contrast and is application specific.

The value of σshape depends on the maximally expected variation from a perfectly tubular

shape.

4.4 Experiments

In this section we study the behavior of our previously presented tube segmentation meth-

ods with respect to their robustness against variations from a standard cylindrical tubular

shape and disturbances in the image. Therefor we present qualitative and quantitative

results achieved on clinical datasets showing such variations.

Datasets and methods: The datasets we use for evaluation are an airway tree

(Fig. 4.3 and 4.5) and four pathological abdominal aortas in contrast enhanced CT

datasets (Fig. 4.4). The aortas had stenosis or aneurysms, as well as calcifications

(Fig. 4.4(a)), thus their shape deviated significantly from a standard tubular shape.

For each of these abdominal aorta datasets, two semi-automatically generated reference

segmentations in image regions around the aneurysms/stenosis were available; one

segmentation following the inner aorta wall including the calcifications and one

segmentation that excludes the calcifications. The reference segmentations only contain

the three branches around the main bifurcation of the abdominal aorta.

The structural representations required for the segmentation methods were obtained

using the GVF-based TDF with the offset medialness function (Section 2.3.2) and the

GVF-based grouping and linkage method (Section 3.3). However, as the reference seg-

mentations of the aortas only contain the three main branches of the abdominal aorta, the

corresponding branches from the structural representations were selected manually and the

others were discarded, such that the structures of the resulting segmentations are compa-

rable. For comparison, we also show the shape priors reconstructed from these structural
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representations by using inverse distance transformations based on the centerlinepoints

and radius estimates.

Qualitative results: The airway tree segmentations were obtained for the whole tree

structure (Figs. 4.3(d)-(f)) and also for a selected path starting from the trachea leading to

one of the distal ends of the airway tree (Fig. 4.3(c) and the green part in Figs. 4.3(d)-(f)).

As can be seen from Figs. 4.3(d)-(f), the segmentations associated with the selected path

do not leak severely into the side branches of the airway tree. Note that in these areas no

edge information is present. With the graph cut based method this is not very surprising

as the method utilizes a hard shape prior that avoids leakage, however, the GVF-based

method also shows a comparable behavior and no hard shape prior is utilized. This shows

some robustness of the GVF-based approach against leakage.

In Fig. 4.5 the segmentation results are shown in axial image slices along the selected

path from Fig. 4.3(c). As can be seen, the shape of the airway tree shows larger deviations

from a tubular shape and the cross section profiles deviate significantly from a perfectly

circular or purely convex shape. While the shape prior still deviates significantly from the

actual airway shape, the segmented surfaces obtained with the graph cut and GVF-based

methods both show a good correspondence with the image data.

In Fig. 4.4 the segmentation of one of the diseased abdominal aorta datasets is shown.

The dataset shows an aneurysm and a severe stenosis due to calcification. The segmen-

tation results for our presented methods are shown in Fig. 4.4(c) and (d), showing a

qualitative difference between the two methods. The segmentation result of the graph

cut based method seems smoother and includes the calcifications, while the GVF-based

method on the other hand excludes the calcifications. With such calcifications two distinct

edges can be observed in proximity of the shape prior and the graph cut based method

chooses between the two possible edges in a globally optimal way based on the preference

given by the soft shape prior. The GVF-based method on the other hand evolves a front

from the centerline outwards until the first distinct edge is reached, thus showing a more

local segmentation behavior.

We also want to point out that the TDFs were capable of coping with these devia-

tions from a perfectly cylindrical tube shape, although these conditions deviate from the

assumptions of the TDFs. This shows that these assumptions are not too restrictive to

cope with the deviations found in clinical practice.



72 Chapter 4. Tube Segmentation

(a) Volume rendering of
dataset.

(b) Structure of the whole
airway tree.

(c) Structure of a selected
centerline path.

(d) Shape prior based on
centerlinepoints and radius
estimates.

(e) Graph cut segmenta-
tion.

(f) GVF-based segmenta-
tion.

Figure 4.3: Segmentation of an airway tree in CT data. Top row: Dataset, reconstructred
tree, and a selected centerline path. Bottom row: Segmentations showing the segmentation
of the whole tree (red) and the segmentation associated with the selected centerline path
(green).

Quantitative results: For quantitative evaluation, the segmentation results were com-

pared with the reference segmentations and some well known segmentation performance

measures were obtained. As the graph cut segmentation and the GVF-based method
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(a) Original dataset. (b) Shape prior. (c) Graph cut seg-
mentation.

(d) GVF-based seg-
mentation.

Figure 4.4: Segmentation of a diseased abdominal aorta. Tow row: 3D visualization.
Bottom row: slice based visualization.

show a qualitative difference – the graph cut segmentation includes calcifications while

the GVF-based method does not – the segmentation results were also compared to ref-

erence segmentations including/excluding calcifications. As segmentation performance

measures, the segmentation overlap, the unsigned volume error, and the unsigned surface

distance are used. Given the segmentation result S and the reference segmentation R, the

segmentation overlap Φ is defined as Φ = 2V (S ∈ R)/(V (S)+V (R)) where V corresponds

to the volume, the unsigned volume error Υ is Υ = |V (S) − V (R)|/V (R), and the mean

unsigned surface distance error µd is the average distance of all surface points of S to

the closest point on the surface R. The results on the four datasets are summarized in



74 Chapter 4. Tube Segmentation

Table 4.1. The performance measures seem to be slightly better with the graph cut based

segmentation method. However, with both of the methods an average unsigned surface

distance of 0.5 ± 0.1mm and 0.6 ± 0.1mm, respectively, is achieved, which is lower than

the average intra-slice resolution of these datasets.

Table 4.1: Segmentation performance on diseased abdominal aorta datasets.
Error measure Graph cut segmentation GVF based segmentation

mean± std.dev. mean± std.dev.
Segmentation overlap Φ 95.1± 0.9% 93.5± 0.5%
Mean unsigned volume error Υ 2.1± 1.8% 7.6± 1.6%
Mean unsigned surface distance µd 0.5± 0.1mm 0.6± 0.1mm

4.5 Discussion and Conclusion

In this chapter, we were concerned with the segmentation of tubular structures in case

of a given rough shape prior. We presented a graph cut based method utilizing a shape

prior (Section 4.3) and a GVF-based segmentation method (Section 4.2). In Section 4.4

we studied the robustness and behavior of both methods showing some of their properties.

Both methods were capable of handling cases of abnormal tubular shapes and pro-

duced voxel-accurate segmentations in these cases showing a good correspondence with

the expected results. Both methods showed robustness against major leakage due to the

used shape prior or properties of the GVF, respectively. The main difference between

both approaches is that the graph cut segmentation solves the segmentation in a glob-

ally optimal way, while the GVF-based approach segments according to the first distinct

edge closest to the centerline. Which of the two different behaviors is desired may vary

depending on the application.

Regarding computation time, both approaches are computationally inexpensive. The

GVF-based segmentation method (Section 4.2) shows similar characteristics as a con-

ventional region grower. With the graph cut based method (Section 4.3) also only image

regions in proximity of the tubular structures are considered for computation of the signed

distances and the graph cut algorithm itself.
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(a) Original data.

(b) Shape prior based on centerlinepoints and radius estimates.

(c) Graph cut segmentation.

(d) GVF-based segmentation.

Figure 4.5: Segmentation of an airway tree showing segmentations in the axial slices along
the centerline path (Fig. 4.3(c)) from the trachea to a distal end of the airway tree.
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5.1 Introduction

Planning of liver surgery requires the segmentation and analysis of the livers vascular

trees [120] (Fig. 5.1). Basically, the liver has three vessel systems consisting of portal

veins, hepatic veins, and hepatic arteries. A segmentation method for surgery planning

has to be able to correctly reconstruct and separate these blood vessels trees that can

appear overlapping in the image domain due to partial volume effects. The task also

requires a segmentation of thin low contrast vessels as this is necessary for an accurate

determination of the volume of liver segments [130] and the methods have to cope with

tumorous regions and other kinds of disturbances (e.g. imaging artifacts). All this with a

minimal amount of user interaction.

Depending on the used imaging protocol, different parts of the liver vasculature can be

visible due to contrast enhancement, and some methods in the literature only consider the

case where the portal vein tree is contrast enhanced [31, 33, 99], while the task of handling

and separating multiple liver vessel trees is only addressed by few authors. Selle et al. [130]

77
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presented a refined region growing approach with an automatic threshold determination

as a stopping criterion with a method for separation of overlapping vessel trees based on

the analysis of skeletons after segmentation. The authors did not present a performance

analysis, but mentioned the need to manually adapt parameters for each dataset. In

addition, they utilized a tool to correct errors in the tree separation. Soler et al. [133, 134]

presented a combined approach for the segmentation of blood vessels and tumorous regions

inside the liver with an additional postprocessing for the separation of the blood vessels

trees based on a skeletonization. Both approaches require liver masks for preprocessing or

analysis of the dataset, respectively, and both systems approach the separation of the blood

vessels trees based on the analysis of extracted skeletons after the actual segmentation step.

However, such approaches are sensitive to segmentation errors, especially to missing parts

or leakage where the topology of the extracted centerlines is incorrect.

In this chapter, we present an approach that addresses the simultaneous separation

and segmentation of different tubular tree structures for the task of liver vasculature

segmentation. The method has been evaluated on phantom and clinical datasets, regarding

the structural correctness and the surface accuracy of the segmentations. Results are

reported, qualitative properties and limits of the method are shown on clinical datasets,

and a comparison to results achieved with other methods is provided.

5.2 Method

Our method follows our general approach for segmentation of branched tubular networks

as outlined in Section 1.2 to achieve a high robustness against disturbances. It combines

three main processing steps to obtain a segmentation and separation of the individual

liver vessel trees: a detection and extraction of tubular structures, a tree reconstruction

and separation, and a constrained segmentation. An exemplary dataset with intermediate

processing results is shown in Fig. 5.1.

Extraction of tubular structures: The TDF of Pock et al. [113] as described in Sec-

tion 2.2.2 was specifically developed for detection of blood vessels in contrast CT datasets

and it showed excellent results in our experiments as shown in Section 2.5.2. Therefore,

for extraction of tubular structures, the TDF of Pock et al. [113] is utilized in combina-

tion with the height-ridge traversal with hysteresis-thresholding for centerline extraction

as described in Section 2.4. To discard short spurious responses of the tube detection

filter (noise), all centerlines with an accumulated tube likeliness below tconf are discarded.
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(a) MIP of the
dataset using a liver
mask.

(b) Final segmenta-
tion of all trees.

(c) TDF response. (d) Extracted tubu-
lar structures.

(e) Reconstructed tree structures. (f) Segmented trees.

Figure 5.1: Segmentation of liver vasculature trees from a contrast CT dataset with inter-
mediate processing results.

The results of the TDF response and the so extracted tubular structures are shown in

Fig. 5.1(c) and (d), respectively. The method allows extraction of all tubular objects

without false positives due to image noise. However, the centerlines break up at junction

areas and the method can not distinguish between parts of the different vessel trees.

Grouping and linkage: To separate the different vessel trees and to close gaps between

the individual tubular structures, the structure based grouping and linkage method with

the verification of the connection path based on gray value information as presented in

Section 3.2 is used. The method requires a seed point for each of the vessels trees at the

root of the tubular tree structure as well as the flow direction of each tree. To obtain

such seed points in case of a liver masks following observation can be used to specify the

tree roots fully automatically. The tubular tree structures enter the organ and branch

recursively, whereby their radius decreases and they never exit the organ. Therefore, all

tubular structures in the dataset that pass through the surface of the provided organ mask

are roots of trees. However, in case such an organ mask is not provided, the roots of the



80 Chapter 5. Liver Vascular Tree Segmentation

tubular tree structures have to be selected manually. The results of the reconstructed and

separated vessel trees are shown for each of the trees in Fig. 5.1(e).

Tube segmentation: To obtain accurate segmentations of the individual blood vessel

trees, the graph cut based approach as presented in Section 4.3 is used that utilizes shape

priors based on inverse distance transformations of the tubes centerline/radius. This

method is slightly adapted to guarantee non-overlapping segmentation results in case of

multiple partly overlapping tubular tree structures. The signed distance Dsurface(x) that

is computed based on a fast marching method is obtained for all tubular tree structures

simultaneously and Dsurface(x) determines the assignment of the individual voxels to the

different trees. Examplary results of final liver vasculature tree segmentations are shown

in Fig. 5.1(f) separately for each tree and in Fig 5.1(b) for all trees together.

Parameters: Following set of parameters is used to process the datasets. The tube

detection is performed on 9 radius steps on a linear scale between radii 0.5 mm and

8.5 mm with η = 0.7; thigh = 5, tlow = 3, and tconf = 300 for the centerline extraction;

ρ = 0.5, γa = 90◦, γr = 1.3, γd = 3.0, and cmin = 0.1 for the tree reconstruction and

separation; and σ = 2.0 mm, α = 0.5, dm = 3.0 mm, and dmin = 0.5 mm for the

segmentation.

5.3 Evaluation and Results

Producing reference segmentations for evaluation of our method is practically infeasible

for this task due to the reasons discussed in Section 1.0.3. To overcome this problem, our

evaluation is based on two parts, each of them evaluating different aspects of our method

with respect to structural correctness and surface accuracy. The first part is based on CT

scans of a plastic phantom. Using a digital model of the plastic phantom as ground truth,

we quantify the methods tube detection performance and segmentation accuracy under

varying imaging conditions. The second part of our evaluation is based on clinical contrast

liver CT datasets containing multiple interwoven vessel trees. Based on an assessment by

a radiologist, we quantify the ability of our method to correctly obtain the structure of the

different trees. In addition, the segmentation accuracy is evaluated based on a qualitative

scoring scheme. Finally, a qualitative comparison to results achieved with other methods

is presented.
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5.3.1 Phantom Vessel Tree

To evaluate the performance of our approach under the influence of varying noise levels,

scan resolutions, contrast situations, and tube diameters, we produced a plastic phantom

“vessel tree” with known digital ground truth. The design of the “vessel tree” (Fig. 5.2(a)),

that was manufactured with a rapid prototyping machine, is inspired by the branching

pattern of the human portal vein tree of the liver and consists of about 600 cylindrical

branches with varying orientation and diameter (1 mm to 16 mm). The phantom was

scanned with a Siemens Somatom Sensation 64 CT scanner with various resolutions to

produce different noise levels, partial volume effects, and image reconstruction artifacts.

To generate different contrast situations, different “backgrounds” were used: water and

water enriched with contrast agent (Fig. 5.2(c) and (d)). In Table 5.1, estimates for the

contrast (gray value difference between homogeneous regions inside the phantom and the

background) and the noise level (standard deviation in a homogeneous background region)

are summarized. With decreasing resolution, the noise level decreases due to the averaging

effect of the larger volume of a single voxel. For some datasets, the noise level is almost

as high as the contrast difference.

Table 5.1: Measured contrast difference between phantom and background and standard
deviation of the noise for different background types and scan resolutions.

Resolution Background
water water & contrast agent

contrast noise contrast noise
[HU] [HU] [HU] [HU]

0.59× 0.59× 0.5 mm −44.03 40.31 −55.83 39.68
0.59× 0.59× 1.5 mm −43.28 17.25 −55.51 19.60
0.59× 0.59× 3.0 mm −42.62 13.11 −55.57 14.77

All CT scans of the phantom were segmented with the proposed method after adap-

tion of the parameters on one single dataset (the high resolution dataset with water as

background). The parameters are listed at the end of Section 5.2.

The surfaces of the resulting segmentations were registered to the ground truth (rigid

transformation) before error measures were calculated. The error measures are based on

the centerline descriptions of the ground truth and on the binary segmented volumes. To

establish a relationship between an arbitrary point x of the segmentation and a centerline

point xji of the known ground truth, x is assigned to the point that minimizes |
−−→
xxji | − r

j
i .

This allows a correct assignment in proximity of branch points. For the computation of

average errors, tubes with similar diameter were grouped together into discrete diameter
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(a) (b)

(c) (d)

Figure 5.2: Rigid plastic “vessel” tree and image slices of the resulting phantom datasets for
varying backgrounds and scanning resolutions. (a) The plastic “vessel” tree. (b) Ground
truth of the phantom vessel tree showing thin branches that are not visible in some of the
CT scans. (c) Background: water & contrast agent. Resolution: 0.59 × 0.59 × 1.5 mm.
(e) Background: water. Resolution: 0.59× 0.59× 3.0 mm.

bins.

Tube detection: Based on the centerline description and the registered segmentations,

tubes of the reference model were classified as detected or undetected, and the false neg-

ative rate and the false positive rate were calculated. We counted a ground truth tube

as detected, if at least 80% of its centerline points have a corresponding centerline point

in the result within a maximal distance of 2 mm. This formulation is necessary to tol-

erate inaccuracies of the centerline description that result from the not uniquely defined
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centerline descriptions in proximity of furcations. Fig. 5.3 summarizes the percentages of

undetected tubes for the varying contrast situations, scan resolutions, and tube diame-

ters. In all datasets, all tubes with a diameter above or equal to 3 mm were detected.

As expected, the detection rate decreases with decreasing contrast and scan resolution,

but even some of the very thin tubes can be detected in cases of low contrast and low

inter-slice resolution. We also tested for false positive responses of the tubular structure

extraction, but none were found.

Segmentation accuracy For quantification of the segmentation accuracy, the relative

tube diameter error is used, because typical volume- or distance-based segmentation accu-

racy measures would be influenced by the remaining registration error. For computation

of the tube diameter, every voxel of the final segmentation was assigned to its correspond-

ing centerline point in the ground truth. Based on the volume of the tube elements and

the lengths of the centerlines, the diameter dm was calculated for every detected tube

under the assumption of a perfect cylindrical shape. Based on dm, the relative diame-

ter error |dm − dk|/dk was calculated, where dk denotes the known (true) tube diameter.

Fig. 5.4 summarizes the results for varying contrast, tube diameter, and scan resolution,

averaged over all tubes with a similar diameter. As can be seen, the segmentation error de-

creases with increasing scan resolution. For very thin tubular objects, performance seems

to be slightly better for the datasets with water as background (Fig. 5.4(a)). However,

only very few tubes were detected (Fig. 5.3(a)) and consequently the resulting statistic

is not very meaningful. In absolute numbers, the largest diameter error found over all

datasets was 1.24 mm for a tube with a diameter of 3 mm scanned at a voxel resolution

of 0.59× 0.59× 3.0 mm with water as background.

5.3.2 Clinical Datasets

In this section, an evaluation of our approach on clinically acquired contrast enhanced

liver CT datasets is presented. The main focus of this evaluation was to assess, if all

liver vessels are detected and if the structures of the different vascular trees is correct.

In addition, the vessel segmentation quality was also assessed in terms of suitability for

clinical application (e.g., planning of surgery) by using a scoring scheme.

For evaluation of our methods ability to separate multiple interwoven vessel trees, 15

clinical contrast CT datasets that show at least portal and hepatic veins were used. In

10 out of the 15 cases, livers included tumors or metastases. In one case, the right liver
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(a) Background: water.

(b) Background: water & contrast agent.

Figure 5.3: Percentage of undetected tubes (false negatives) for varying contrast situations,
scan resolutions, and tube diameters.
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(a) Background: water.

(b) Background: water & contrast agent.

Figure 5.4: Segmentation error (relative tube diameter error) for varying contrast situa-
tions, scan resolutions, and tube diameters.
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lobe was resected. For segmentation, the same set of parameters as on the phantom data

(Section 5.3.1) was used on all datasets. The root elements of the different vascular trees

were selected manually.

For evaluation, an expert radiologist was asked to assess the above outlined evaluation

criteria. To facilitate this process, we provided the radiologist an interactive visualization

system. The user interface allows visualizing the CT datasets as MIPs (Fig. 5.5(a)) or

cutting planes (Fig. 5.5(b)). In addition, the segmentation results of the different trees

can be visualized as colorized skeletons (Fig. 5.5(c)), meshes (Fig. 5.5(e)), or as overlays

on the cutting plane (Fig. 5.5(e)). The user interface also allows to: interactively change

the visualization by moving the cutting plane, manipulate the display gray-value range

as well as transparency, display the different vessel trees individually or together, and

overlay different visualizations among each other. Such overlays provide an effective way

to judge the correctness and quality of vessel segmentations. In the following paragraphs,

we present the results of this assessment (Table 5.2).

Completeness/correctness of vessel branches: The radiologist was asked to identify

false positive (non-existing vessel branches) or false negative (missing vessel branches)

branches in the 15 segmented datasets. Note that we denote the vessel parts between

bifurcations or the vessel parts at the end of the tree structures as branches. While no

false positives were generated by our method, 11 (0.26%) vessel branches were identified

as missing in the segmentation results (Table 5.2). Overall, 4159 vessel branches out of

the 4170 true vessel branches were correctly identified. The majority of the missing vessel

branches have a small diameter and low contrast. The largest missing vessel is shown in

Fig. 5.6, and an example concerning the portal artery is shown in Fig. 5.7. Examples for

the successful segmentation of poorly contrasted vessels and vessels in close proximity to

a tumor are shown in Figs. 5.8 and 5.9, respectively.

Correctness of connections/tree separation: The ability to reconstruct and simul-

taneously separate different interwoven vessel systems is one of the key features of our

method. For evaluation, all branch connections were assessed and judged as “correct” or

“incorrect”, similar to the work of Bullitt et al. [18]. In addition, we quantified the effect

of each single misconnection by counting the number of affected branches as measure for

the size of the affected subtree. Out of the 4159 branches that were assessed during the

evaluation, only 3 (0.072%) connections were classified as incorrect, with a total number

of 8 (0.19%) affected branches. An example is shown in Fig. 5.10. All errors affected distal
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(a) 3D MIP. (b) 2D cutting planes.

(c) Skeleton of a signle tree. (d) All segmented trees as meshes.

(e) Segmentation in 2D.

Figure 5.5: Interactive visualization system for evaluation of liver vasculature tree seg-
mentation and separation with different visualization types.
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(a) Axial cutting plane
through the dataset.

(b) Coronal cutting
plane indicated by the
white line in (a) showing
anisotropy.

Figure 5.6: Unsegmented vessel (arrow) found by the radiologist.

(a) Segmentation result
showing the hepatic artery
(bright) in proximity of the
portal vein (dark).

(b) Cutting plane through
the dataset indicated by
the black line in (a), show-
ing two hepatic arteries (1
& 2) close to the portal
vein (3).

(c) While artery (2) was
successfully detected,
artery (1) was too close
to the portal vein such
that no tubular structure
was detected/extracted.
Instead, this part of the
artery was segmented as
part of the portal vein.

Figure 5.7: Unsuccessfully detected portal artery.

parts of the vessel trees and consisted of up to 3 branches. No misconnection of larger

vessels was observed.

Data and segmentation quality: CT data quality and segmentation quality were as-

sessed qualitatively by the radiologist, ranking them as “poor”, “ok”, or “good”. A sum-

mary of all scores is given in Table 5.2. For evaluation, results of several individual
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(a) Cutting plane through
the dataset showing the
trunk of the hepatic veins.

(b) MIP of the dataset. (c) Segmentation result.

Figure 5.8: Successful segmentation of poorly contrasted hepatic vessels (arrow).

(a) MIP of dataset. (b) Segmentation result.

Figure 5.9: Successful segmentation of vessels in close proximity of a bright tumor.

hepatic vessel trees of a liver were combined. Note that we excluded results for portal

arteries, because they were only visible in 3 of the 15 utilized datasets (imaging protocol).

Data quality is primarily related to the noise level, scan-resolution, and contrast between

vessels and liver parenchyma. Note that different vascular systems can have a different

score for the same dataset. The segmentation quality measure is utilized to evaluate the

quality/accuracy of the identified vessel boundaries. As part of this evaluation, we took

the non-uniform contrast agent distribution in different generations of the vessel systems

into account. Consequently, we assessed the number of visible generations and the seg-

mentation quality related to different vessel generations. In case of “good” data quality

the segmentations were always scored as “good” in all generations, while in cases with
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(a) Identified vessels; black
arrow indicating vessel
that was falsely connected
to the wrong parent vessel.

(b) Segmentation re-
sult showing falsely
reconstructed vessel trees.

(c) The black line indicates
the correct vessel struc-
ture.

Figure 5.10: Wrong vessel connection identified by radiologist.

“poor” data quality and only a few visible generations, the segmentation quality tended

to be scored as “ok”. This is in particular the case towards the distal parts of the portal

vein tree where the contrast vanishes completely. None of the segmentations was scored

as “poor”. A plot of the contrast of the main vessel trunk versus the combined center-

line length for each dataset is shown in Fig. 5.11. As can be seen, the contrast varies

considerably and has a strong influence (correlation) on the resulting centerline length.
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Figure 5.11: Relation between image contrast and length of the extracted portal veins and
hepatic veins of the liver.

5.3.3 Comparison to Other Methods

We compare our method with two different vessel segmentation approaches proposed by

Selle et al. [130] and Manniesing et al. [94]. The first method [130] was specifically designed
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for liver vessel separation and segmentation. The second method is a standard approach

based on level sets ([94]). Both methods require a liver mask for preprocessing and the

segmentation.

(a) MIP of the dataset using a liver
mask.

(b) Segmentation results generated
with Selle’s approach [130] showing
erroneous portal vein and hepatic vein
separation.

(c) Segmentation result of the level
set based method [94] showing iso-
lated vessel segments and leakage of
the portal vein tree into hepatic veins
and the tumor.

(d) Segmentation result of the pro-
posed method.

Figure 5.12: Separation and segmentation of liver vessel trees in a contrast enhanced
CT dataset with different methods (dark: portal veins, bright: remaining vessels). The
dataset contains a tumor in close proximity to the portal vein tree and hepatic veins that
overlap in the image with the portal vein tree due to partial volume effects.

Figs. 5.12(b) and (c) show segmentation results of these methods on a typical contrast

enhanced liver CT dataset. Both methods utilize primarily gray-value information for seg-

mentation. Consequently, the tumor shown in Fig. 5.12(a) is included in the segmentation
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results. Selle’s approach to tree separation was able to remove major parts of the hepatic

veins from the initial portal vein tree segmentation result. However, some errors still re-

main in the segmentation result (Fig. 5.12(b)). The result achieved with the algorithm

of [94] contains some parts of the hepatic vein and the tumor is connected to the portal

vein tree (Fig. 5.12(c)). In comparison, our approach resulted in a correct segmentation

shown in Fig. 5.12(d). Our structural analysis step during the grouping an linkage of the

tubular structures allows to resolve problems and a valid shape prior is generated such

that leakage or undersegmentation is avoided. The ability to consider local disturbances

in a more global context contributes to the robustness of our approach and is one of its

major advantages.

5.4 Discussion

We have evaluated our method in Section 5.3 on several different datasets to assess the

ability to: a) correctly obtain/separate different tree structures (e.g., vessel systems), b)

accurately determine the surface of tubular tree structures (segmentation accuracy), and c)

robustly handle noise and disturbances (e.g., tumors). In this section, we discuss different

aspects of the evaluation.

Structural correctness: On experiments with phantom and clinical data, we demon-

strated our method’s ability to identify tubular objects (Section 5.3.1 and 5.3.2). In all

experiments, no false positives were detected, demonstrating the robustness of our method

to imaging artifacts and noise. With decreasing contrast and scan resolution, the detection

of thin tubular objects becomes increasingly difficult, and at some point, tubes become

indistinguishable from the image background. Using phantom datasets, we quantified the

effect of contrast and resolution on the detectability of tubular objects. On clinical liver

CT datasets, we showed the correlation between contrast and the centerline lengths of

the extracted vessel trees (Fig. 5.11). For clinical liver datasets, the radiologist identified

only a few missing vessel branches (11 (0.26%) out of 4170). On phantom data, far more

missing tubes were identified (Fig. 5.3). In case of the phantom datasets, the location and

number of tubular branches was known a priori, because of the available ground truth.

Note that most of the unidentified tubes in the phantom datasets can not be visually de-

tected in the image data by humans (Fig. 5.2). Clearly, for clinical data, no such ground

truth was available. Overall, our method performed well even in case of poor data quality.

We demonstrated the ability of our method to separate and segment multiple interwo-
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ven vessel trees on clinical CT datasets (Section 5.3.2) and compared it to other methods

with similar objectives (Section 5.3.3). The method performs well and produced only a

few minor errors without clinical significance, contrary to the other methods. In particu-

lar, the structural grouping and linkage with the incorporated flow direction information

was an important factor in obtaining the correct structure of multiple overlapping (vessel)

trees (Sections 5.3.2, 5.3.3, and 3.4.1)

Segmentation accuracy: On phantom datasets we quantified the segmentation ac-

curacy for tubular objects with different radius under varying imaging conditions (Sec-

tion 5.3.1). Investigated contrasts and scan resolutions showed almost no effect on the

accuracy in case of vessels with larger diameter. For thin tubular objects the statistics

was not very meaningful, because only a few tube elements were detectable (about 90%

undetected) due to low contrast, noise, and low resolution. For all successfully identified

vessels, the absolute radius error stayed within an one voxel range (inter-slice resolution).

Note that the used graph cut segmentation is only able to produce voxel accurate seg-

mentations. We also scored the segmentation accuracy on liver CT datasets in terms of

clinical usability for surgical planning (Section 5.3.2). The majority of segmented branches

were scored as ”good“ and no branch was scored as ”poor“, even for datasets with ”poor“

data quality. For low quality datasets with only few visible generations, the segmentation

tended to be scored as ”ok“ toward the distal parts of the vessel trees where the contrast

almost vanishes.

Robustness: Our method performed robustly on the clinical datasets of the liver CT

data as shown in our evaluation. For example, it produced correct results in disturbed

regions caused by adjacent tumors (Figs. 5.9 and 5.12). All liver datasets utilized in our

evaluation contained multiple overlapping vessel trees that had to be separated, and 11

out of the 15 datasets had pathological variations where other methods are likely to fail,

as discussed in Section 5.3.3.

5.5 Conclusion

In this chapter, we presented and validated an approach for the segmentation and sep-

aration of the livers blood vessel trees. In contrast to other approaches, our method

performs an identification of tubular objects followed by a a structural analysis to obtain

the structure of the different vessel trees. This structure information is then utilized as
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a prior to constrain the intrinsic segmentation process. By using this strategy, problems

like separation of different tubular trees/systems or handling of local disturbances are ad-

dressed on a global level by utilizing information about all identified tubular objects and

the flow direction in the biological tree structures. Consequently, our approach outper-

forms other methods developed for this task. We evaluated our approach on phantom and

clinical datasets. Results show a high robustness of our approach against disturbances,

the methods ability to successfully reconstruct, separate, and accurately segment multiple

interwoven tubular tree structures.
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6.1 Introduction

Coronary artery disease is the first leading cause of death in the USA. For the assessment of

coronary artery disease like plaques, aneurysms, or stenosis computer tomography angiog-

raphy (CTA) has become an established method as with current multi-slice CT scanners

the coronary arteries can be imaged with sufficient detail. For diagnosis, visual inspection

of 2D slices of coronary CTA data is still common. However, to facilitate radiologists in

this process and to raise the quality of the assessment from a pure qualitative level to a

quantitative level, computer aided tools for this task are desired. An integral part for these

tools is the identification of the coronary arteries and an extraction of their centerlines.

For coronary artery centerline extraction methods, the main difficulties are closely ad-

jacent vessels or calcifications, the proximate heart chambers, changing gray value along

the vessels, and regions where locally the vessels are partly indistinguishable from the

background; due to occlusions or imaging artifacts for example. In the literature several

techniques for the segmentation/centerline extraction of coronary arteries have been pre-

sented. For an overview, we refer to the work of Shaap et al. [124]. The methods typically

97
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follow a tracking paradigm, iteratively expanding already known coronary artery parts

starting from a single seed. To the best of our knowledge, the only two exceptions are

the work of Szymszack et al. [138] and Florin et al. [39]. Both identify candidate vessel

locations using persistent maxima in single image slices and a normal MIP-raycasting tech-

nique, respectively. These candidate vessel locations are merged bottom-up into complete

tree structures using a minimum spanning tree approach. The method of Florin et al. [39]

requires a heart segmentation to limit the vessel candidate detection to a small region

at the hearts surface and to avoid false candidates. The candidate selection approach of

Szymszack et al. [138] is not very discriminative such that the method requires additional

pruning steps and a selection of the coronary artery tree to remove false positives.

In this chapter, we present an automated approach for the extraction of coronary artery

trees from cardiac CTA datasets obtaining curve skeletons for the two largest coronary

trees. The approach has been evaluated on a publicly available database. Results as well

as a comparison to the results achieved with other methods are presented and discussed.

6.2 Method

The method follows our general approach for segmentation of branched tubular networks

as outlined in Section 1.2 to achieve a high robustness against disturbances. It combines

tree main processing steps for extraction of the coronary artery trees centerlines: an

extraction of all tubular structures, a grouping and linkage of the tubular structures, and

discarding centerlines not belonging to the coronary arteries based on prior knowledge.

The segmentation step of our general approach is skipped as accurate segmentations are

not required. An exemplary dataset with intermediate processing results is shown in

Fig. 6.1.

Extraction of tubular structures: For identification of tubular structures the GVF

based TDF with the central medialness function as presented in Section 2.3.1 is utilized.

The required initial vector field Fn is obtained from an edge potential image to be able

to handle varying background conditions (e.g. calcifications) after median filtering of the

original dataset (filter size 5 × 5 × 5 voxels). Applying this approach for detection of

coronary arteries on heart CTA datasets results in the response shown in Fig. 6.2(c),

whereas applying Frangi’s vesselness measure to the original vector field Fn results in

the response shown in Fig. 6.2(b). The GVF based approach performs well in identifying

major parts of the coronary arteries independent of their size and produces clean responses
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(a)

(b) (c)

(d) (e)

Figure 6.1: Centerline extraction and vascular tree reconstruction. (a) MIP of the original
dataset (b) TDF response. (c) TDF response after suppression of responses inside the
lung. (d) Extracted centerlines. (e) Identified coronary artery trees after grouping and
linkage into tree structures.
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at their centerlines, but for the very thin low-contrast vessels at the distal ends of the

arteries the edge-information is not sufficiently strong and the response falls off completely.

Compared to that, applying Frangi’s vesselness measure to the original vector field Fn,

the response for the thin low-contrast vessels just decreases, but it also produces responses

of similar strength to some imaging artifacts/noise that locally may look similar to such

thin vessels. Resolving this ambiguity in the tube detection filtering without a more

sophisticated pre-processing for noise-suppression seems unrealistic. However, the usage

of a hysteresis thresholding (see next paragraph) enables coping with this problem. Of

course, applying Frangi’s vesselness measure to Fn, does not allow detection of larger

image structures. To enable an extraction of larger vessels and thin-low contrast vessels,

the maximum of both filter responses – Frangi’s vesselness measure applied to the initial

vector field Fn and the GVF result V n – is used which is in the remainder of this chapter

considered as the TDF response T (see Figs. 6.2(d), 6.1(b) and 6.1(c)).

After the TDF step, centerlines for the individual tubular structures are extracted

using the ridge traversal with hysteresis-thresholding as described in Section 2.4, and very

short spurious responses are discarded by keeping only centerlines that have connected

regions of a minimum length (length > lmin) above the upper threshold T (x) > thigh. In

Fig. 6.1(d) the extracted centerlines from the TDF response from Fig. 6.1(c) are shown.

The outlined ridge traversal performs well in extracting the centerlines of the tubular

objects also at the thin low-contrast ends of the vessels where the TDF response falls

off considerably while still discarding short spurious responses. In this way major parts

of the coronary artery centerline are already extracted, but the centerlines may break

up in junction areas or regions where the vessels are partly indistinguishable from the

background.

Grouping and linkage: To account for these cases and to reconstruct the complete

vascular trees, the single centerlines are grouped and linked together. Therefor, possible

connections (and connection costs) between the centerlines are identified based on dis-

tance, angle, and gray value difference similarly to the structure based tree reconstruction

and separation method as described in Section 3.2. However, for coronary artery trees no

separation of interwoven tubular tree structures is necessary and the coronary artery tree

structures can be obtained by constructing a minimum spanning forest (see [25], Chap-

ter 23). Similarly to the structure based tree reconstruction method from Section 3.2,

connection costs are computed between complete centerlines and not all centerline points

of all tubular structures. The endpoints of single centerlines are considered and the ap-
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(a) (b)

(c) (d)

Figure 6.2: Tube detection step. For visualization only image regions in proximity of the
coronary artery trees are shown. (a) MIP of the original dataset. (b) Tube detection result
on the initial vector field Fn. (c) Tube detection result on the normalized GVF field V n.
(d) Combined tube detection result T .

proach searches in the outward pointing tangent-direction of the centerline for potential

continuations. Based on the centerline points coordinate xS and its tangent-direction tS
connection costs to other centerline points xE are computed and used for the minimum

spanning forest construction; possible connections with a too large gray value difference

|I(xS) − I(xE)| > dmax are immediately rejected. The connection costs C(xS , tS ,xE)

represent a trade-off between distance and angle similarly to the formulation used in Sec-

tion 3.2:

C(xS , tS ,xE) = ||xS − xE ||/exp(−∠(−−−→xSxE , tS)/(2ρ2)) (6.1)
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what forms a kind of coned region (with an opening angle specified by ρ) pointing away

from the centerline where the method searches for continuations; potential connections

with too large costs C > cmax are discarded. The final reconstructed trees (after removal

of the non-coronary artery trees; see next paragraph) is shown in Fig. 6.1(e).

Coronary artery tree identification: The method as described above also extracts

the centerlines of other tubular objects (see Fig. 6.1). Thus, not just the coronary arteries

are identified, but also other structures such as blood vessels in the lung and chest area,

the aorta and also some of the bones and an identification of the coronary artery trees is

necessary. The lung tissue is identified and removed based on thresholding (I(x) < −700

HU) and morphological closing using a spherical structuring element with a radius of 10

voxels; see Fig. 6.1(c) for the TDF response after removal of the lung tissue. Other tree

structures not belonging to the coronary artery trees are typically isolated and relatively

small. Thus, the coronary artery trees can be identified as the two largest connected

components (regarding their centerline length). An example of the identified coronary

artery trees is shown in Fig. 6.1(e).

Parameters: Following set of parameters is used to process the datasets. Fmax = 100,

thigh = 0.5, tlow = 0.1, and lmin = 10 voxels for the extraction of tubular structures with

µ = 5 and 500 iterations for the GVF computation [168] and ρ = 0.7, dmax = 200 HU,

and cmax = 20 for the grouping and linkage.

6.3 Evaluation and Results

Our approach was evaluated on 32 coronary CTA datasets from the “Rotterdam Coronary

Artery Algorithm Evaluation Framework” (http://coronary.bigr.nl), whose goal is

the quantitative evaluation and comparison of methods for the coronary artery centerline

extraction based on a set of well defined performance measures. The datasets are split

in two groups of 8 training datasets with provided reference where the parameters have

been adapted and 24 testing datasets with undisclosed reference centerlines. For each of

the datasets, reference centerlines of four vessels are available that were obtained based on

manual annotation and reference points that unambiguously identify the corresponding

vessels. In Fig. 6.3 the coronary artery trees and provided reference centerlines are shown.

Based on these provided reference points the centerlines of the associated arteries were

selected from the coronary artery trees – which are extracted completely with our approach
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– by following the centerline into both directions, at junctions of multiple vessels choosing

the centerline with the smaller branching angle.

(a) Extracted coronary artery trees. (b) Reference centerlines.

Figure 6.3: Extracted coronary artery trees and provided reference centerlines. For visu-
alizations just the image regions in proximity to the coronary artery trees are shown.

At the proximal ends of the coronary arteries – the transition to the aorta – the

centerlines extracted with our approach are sometimes slightly shorter than the reference

centerlines (see Fig. 6.4). This is due to properties of the tube detection filter as these

regions are not really tubular any more. To account for this issue (see the ”overlap until

first error” measure in Section 6.3.1), the proximal ends of the centerlines are extrapolated

along a straight line, solving this issue in most datasets, but not all of them.

In the next two sections, we present quantitative results achieved with our method

on the 24 testing datasets. For comparison, results achieved with other methods are

summarized and discussed as well. The quantative measures were obtained by the “Rot-

terdam Coronary Artery Algorithm Evaluation Framework” and are available online at

http://coronary.bigr.nl.

6.3.1 Results of Proposed Method

The performance measures are grouped into overlap measures and an accuracy measure.

For the exact description of the performance evaluation and the used measures we refer

to the paper of Shaap et al. [124]. The results are summarized in Table. 6.1.

Overlap: The overlap measures are used to assess the ability of the approach to identify

the structures of interest. Measures are the overlap OV , the overlap until first error
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Table 6.1: Summary of performance measures for proposed coronary artery centerline
extraction method.

Measure % / mm
min. max. avg.

OV 70.70% 100.00% 92.70%
OF 6.10% 100.00% 71.90%
OT 72.80% 100.00% 95.30%
AI 0.25 mm 0.59 mm 0.37 mm

OF , and the overlap with clinically relevant parts of the vessels OT (vessel parts with

a diameter above 1.5 mm). Summarizing, our approach shows a high overlap with the

provided reference centerlines: OV = 92.70%, OF = 71.90%, and OT = 95.30% on

average; performing better than a human user on most datasets [124]. The average OF

of 71.7% seems quite low. For some vessels the overlap until first error is 6.90%, while the

overlap is still very high (OV > 96.5%), meaning that just the first few centerline points at

the proximal end are assumed to be incorrect. This behavior is related to properties of the

TDF as discussed in Section 6.2. The strategy for performance evaluation just tolerates

too long centerlines at the proximal end leading into the aorta (see “Clipping the proximal

part” in [124]), but it does not tolerate slightly too short centerlines as delivered by our

approach. However, we think that in practice this behavior of our approach is acceptable.

Accuracy: The used accuracy measure is the average distance inside the vessel AI,

as the accuracy can only be evaluated when the extraction succeeded (as discussed in

Section 1.0.3). On average an accuracy of AI = 0.37mm is achieved, which is about the

resolution of one voxel in the datasets.

6.3.2 Comparison to Other Methods

A larger set of other methods [20, 30, 49, 56, 63, 67, 102, 137, 142, 157, 176, 177] has

been evaluated on the “Rotterdam Coronary Artery Algorithm Evaluation Framework”.

The results achieved with these methods are summarized in Table 6.2. We refrain from

a detailed discussions of all other methods and refer to the work of Shaap et al. [124].

Instead, a short comparison of our proposed method with the other methods is provided.

Degree of automation: The different methods range range from automatic extraction

methods, to extraction methods with minimal user interaction, to interactive methods.

Automatic extraction methods are those that do not require any user interaction, extrac-
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Table 6.2: Summary of performance measures for different coronary artery centerline
extraction methods.

OV OF OT AI
% % % mm

automated methods
Tek et al. [142] 84.7 59.5 86.2 0.34
Kitslaar et al. [63] 78.8 64.4 81.2 0.29
Zambal et al. [176] 84.7 65.3 87 0.28
proposed 92.7 71.9 95.3 0.37
VirtualContrast [157] 75.6 56.1 78.7 0.39
minimal user interaction methods
Wang and Smedby [30] 90.8 48.9 91.7 0.46
Castro et al. [20] 67 36.3 69.1 0.59
Krissian et al.[67] 88 74.2 88.5 0.39
interactive methods
Zhang et al. [177] 89.6 49.9 90.6 0.51
Hernandez et al. [56] 77 52.1 79 0.4
Friman et al. [49] 98.5 83.1 98.7 0.23
Szymczak [137] 95.1 63.5 95.5 0.26
Metz et al. [102] 91.9 56.4 92.5 0.46

tion methods with minimal user interaction are assumed to be those that require only

one user-provided reference point per vessel, and interactive methods may use as many

reference points as required. Arguably, the task at hand is easier to address with more

user interaction. In particular, for the interactive methods the exact start and endpoints

as well as two additional reference points along each vessel are provided by the database

making it easier for the methods to achieve a high overlap.

Overlap: All other methods that have been evaluated on this database have in common

is that they follow a tracking paradigm for extraction of the coronary artery centerlines.

Starting from the root of the vessels the coronary arteries are tracked in an iterative

fashion by consecutively expanding the already found coronary arteries. The methods of

Szymszack et al. [138] and Florin et. al. [39] we mentioned in the introduction that fol-

low a bottom-up approach have not been evaluated on this database, instead Szymszack

evaluated another interactive approach [137] on this database. The results vary signifi-

cantly between the different methods. Methods with more user interaction (more provided

reference points) generally perform better. Compared to the other automated methods,

our approach achieves a high overlap with the references, comparable to some interac-

tive methods. However, the best performing method (Friman et al.[49]) still performs
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significantly better, but it utilizes information about the exact endpoint of the reference

centerline.

Accuracy: Regarding centerline accuracy, our method is about average compared to the

other methods. Many of the other automated methods show a higher centerline accuracy.

6.4 Discussion

In the previous section, we presented results achieved with our method on a publicly

available database and presented a comparison to other approaches.

Contrary to other methods, our presented approach performed a bottom-up extrac-

tion of tubular structures with a consecutive grouping/linkage of these structures to be-

come more robust against local disturbances. As the results show, this allows achieving

a high overlap with the provided references, comparable to that achieved with interactive

methods. Only methods utilizing information about the exact endpoint of the reference

centerlines showed a higher overlap. However, in practice these exact endpoints of the

vessels are not known and their position may vary depending on the observer when se-

lected by a human user. This point was also shown by Schaap et al. [124] who compared

the performance of different observers. Compared to the performance of different human

observers, our method even performed slightly better regarding the achieved overlap with

the reference centerlines.

Another issue with required reference points is, that obtaining such a set of reference

points for each vessel in case the complete coronary artery trees are of relevance may be

a laborious task and the result may also vary between observers. Our presented method

on the other hand obtains the complete coronary artery trees without the need to specify

such reference points (e.g. Fig. 6.3(a)). However, an evaluation about the complete-

ness/correctness of the complete coronary artery tree structures has not been performed

because of limitations of the database.

Compared to most other automated methods, our method shows a slightly larger

average centerline distance. There are two possible reasons for this. First, the ridge

traversal used for the centerline extraction as described in Section 2.4 is at most voxel-

accurate. Second, the linkage strategy that is applied in regions where our TDF does

not respond (e.g. at junctions) does not guarantee centered paths. However, in case a

higher accuracy is required, a further refinement of the centerline point positions as a

post-processing step can be applied.
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The use of the used TDF allows identification of blood vessels also in proximity of

calcifications or other image structures with a similar gray value (e.g. Fig. 6.4).

(a) (b) (c) (d)

Figure 6.4: Centerline extraction at the proximal end of the coronary artery contain-
ing a calcification. (a) Original dataset. (b) Tube detection response T . (c) Extracted
centerlines. (d) Provided reference centerlines.

6.5 Conclusion

We presented an approach for the extraction of the centerlines of the coronary artery trees

from CTA datasets (Fig. 6.3(a)). The approach builds on an extraction of tubular struc-

tures followed by a grouping and linkage of these structures into complete tree structures.

The use of the presented TDF proofed beneficial in proximity of calcifications or nearby

image structures with a similar gray value (Fig. 6.4). In combination with the presented

ridge traversal that incorporates a hysteresis thresholding, centerlines of the coronary ar-

teries can be extracted also in proximity of calcifications and in case of thin low-contrast

vessels. The grouping and linkage accounts for situations where locally parts of the vessels

are indistinguishable from the background; e.g. due to occlusions or imaging artifacts.

Thus, our approach enables a reliable extraction of the coronary artery trees centerlines

without the need for any user specified seed points. We think that the results obtained

with the presented approach are a good starting point for a refinement of centerline point

positions in case a higher centerline accuracy is required and for other clinically relevant

measurements such as tube diameter measurement for assessment of aneurysms/stenosis

or severity of adjacent calcifications.
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7.1 Introduction

Segmentation of airway trees in lung CT data is a prerequisite for several clinical ap-

plications including diagnosis and monitoring of lung disease or surgical planning. To

facilitate such applications, it is highly desirable to have an automated and robust airway

segmentation method.

In the literature, several airway tree segmentation methods have been presented. An

overview is given in the survey of Sluimer et al. [132], newer approaches are discussed

in [50], and a larger set of algorithms has been evaluated on the EXACT’09 database [88].

Frequently, region growing or front propagation methods [34, 128, 153] are utilized that

make assumptions about the density (gray-values) of airways in CT data. More sophisti-

cated variants of front propagation methods try to avoid segmentation errors by constantly

analyzing local segmentation results and by adapting parameters accordingly. Therefor

different approaches have been proposed [128, 146, 153] that utilize local information like

radius or branching angle. To enhance robustness, compared to methods that solely rely

109
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on density/gray-value information for airway segmentation, some approaches focus on

airway candidate detection using mathematical morphology [37], template matching tech-

niques [136], or voxel classification based on different image descriptors [86, 122]. Many

of the available approaches have problems in dealing with local disturbances (e.g., motion

artifacts) or pathology (e.g., obstructed airway) which may result in incomplete airway

segmentations. Graham et al. [50] addressed this problem using a different approach by

building an airway tree from candidate airway branch segments by computing connec-

tion costs between branches and using graph theoretic approaches to extract the airway

tree [50].

In this chapter, we present two different methods for the extraction of airways trees

from CT datasets with different properties. The first method performs a segmentation of

the airway tree based on the GVF, while the second method performs a reconstruction of

the airway tree from detected/extracted tubular objects based on structural properties.

Both approaches have been evaluated on a public database. Results as well as a comparison

to the results achieved with other methods are presented and discussed.

7.2 Methods

7.2.1 Airway Tree Segmentation Based on Gradient Vector Flow

In this section, we present an automated approach for segmentation of airway trees based

on the GVF. The method produces accurate segmentations of the airway lumen and the

obtained GVF field may be directly utilized to obtain a high-quality skeleton. The method

follows the general approach for segmentation of branched tubular networks as outlined in

Section 1.2. However, the grouping step is skipped as it is not necessary for this task. The

method consists of four processing steps: deriving an appropriate initial vector field and

applying the GVF, extraction of tubular structures from the GVF field, segmentation of

the identified tubular structures using the GVF field, and post processing for identification

of the airway tree. Intermediate processing results are depicted in Figs. 7.1, 7.2, and 7.3.

Gradient Vector Flow: The extraction of the tubular objects as well as the seg-

mentation parts utilize the GVF field V (x) resulting from the following initial vector

field that is required if one is interested in dark structures as explained in Section 2.3:

Fn(x) = F (x)
|F (x)|

min(|F (x)|,Fmax)
Fmax

with F = −∇(Gσ ? I), where I is the original image and Gσ
is a Gaussian filter kernel at scale σ. An example of applying it to a thorax CT dataset is
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shown in Fig. 7.1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.1: Example of initial vector field and GVF field on a thorax CT dataset. (a) Mini-
mum Intensity Projection (MinIP) of the dataset. (b) MinIP showing the Gauss-smoothed
dataset with σ = 0.5 that was used to calculate the initial gradient F (x). (c) MinIP of the
GVF magnitude M(x) inside the segmentation result. (d) Segmentation result; the axial
cutting plane used in (e)-(h) is indicated by a black line. (e) Axial slice of the dataset
showing part of the trachea and some thin low contrast airways. (f) Magnitude of initial
vector field |Fn(x)| before applying the GVF. (g) Magnitude of the GVF field |V (x)|.
(h) Segmentation result.

Extraction of tubular structures: In this GVF field, the tubular structures are iden-

tified using the offset medialness function based method as described in Section 2.3.2. This

results in a tube-likeliness measure at the centerlines, as shown in Fig. 7.2(a). This infor-

mation can be used for detection and centerline extraction of tubular objects. However, for

thin low contrast airways, the response may fall off strongly, if their gradient-magnitude is

too low so that they are not completely preserved in the GVF result (Figs. 7.1(f) and (g)).

Applying the same procedure with a radius of 0.5 mm on the initial vector field Fn(x)

allows identification of these structures as shown in Fig. 7.2(b), and therefore, the max-

imum of both responses is utilized to produce a combined tube-likeliness volume. From

this combined tube-likeliness image the centerlines of tubular structures are extracted us-

ing the hysteresis thresholding as described in Section 2.4. From these initial centerlines,

short spurious centerlines with a length (below ts) are discarded. In addition, centerlines

with a mean tube-likeliness below tm are removed. The resulting centerlines of the tubular
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objects are shown in Fig. 7.2(c).

(a) (b) (c) (d)

Figure 7.2: Intermediate results of the tube centerline extraction method. The tube
likeliness for the computed centerline points is shown as intensity value, and the extracted
centerlines are drawn in green. (a) Tube-likeliness for larger structures. (b) Tube-likeliness
for thin low contrast structures. (c) Extracted tube centerlines. (d) Segmentation result
showing the size of the airways.

Tube segmentation: After identification of the tubular structures, they are segmented

using the method as described in Section 4.2. The segmentation results for individual

tubular structures are shown in Fig. 7.3. Note that the combination of all individually

segmented airway branches provides a valid segmentation of the complete airway tree

although the centerlines are not necessarily connected.

(a) (b) (c) (d)

Figure 7.3: Inverse gradient flow tracking tube segmentation applied to extracted tubular
structures. (a) Extracted centerlines showing 4 selected centerlines. (b) Segmentations
associated with the selected centerlines. (c) Combined results of all tubular structures.
(d) MinIP of smoothed dataset for comparison.

Post processing: For the actual identification of the airway tree, the largest connected

segmented component is extracted and other segmented tubular structures are discarded.
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Additionally, the extracted centerlines are dilated and added to the segmentation result

to assure 6-connected segmentation results.

Parameters: The following set of parameters is used for segmentation of the datasets:

σ = 0.5mm, Fmax = 200, µ = 5 for the GVF using 500 iterations, thigh = 0.5, tlow = 0.1,

ts = 5, and tm = 0.5.

7.2.2 Airway Tree Reconstruction Based on Multi-Scale Tube Detection

In this section, we present an automated approach for the reconstruction of airway trees.

It is based no our general approach for segmentation of branched tubular networks as

outlined in Section 1.2 to achieve a high robust against local disturbances which can

result from disease or imaging artifacts, for example. The method consists of three main

processing steps: preprocessing, extraction of tubular objects, and a grouping and linkage

of the identified tubular objects to reconstruct the airway tree. Fig. 7.4 illustrates the

individual processing steps by showing intermediate results.

Preprocessing: To fully automate the approach for airway detection, the input CT

dataset is preprocessed to discard non lung tissue and to restrict the search area for tubular

structures. Therefor, a rough lung mask is generated by using thresholding (< −700HU),

connected component analysis, and morphological closing with a ball structuring element

with a radius of 10 voxels. All voxels outside this lung mask or with a value larger than

−700HU in the original dataset are set to −700HU . The resulting dataset (Fig. 7.4(a))

was used as input for the later steps of the method.

Extraction of tubular structures: For extraction of tubular structures, the tube

detection filter of Pock et al. [113] as described in Section 2.2.2 is utilized in combination

with the height-ridge traversal with hysteresis-thresholding for centerline extraction as

described in Section 2.4. The method of Pock et al. was slightly adapted as for thin

airways the surrounding is not necessarily symmetric and the utilized symmetry criterion

adversely influences the tube detection. Therefore, for these structures (radius ≤ 0.5mm),

the variance-based symmetry criterion is discarded. The tube detection filter response

is shown in Fig. 7.4(b). To discard short spurious responses of the tube detection filter

(noise), all centerlines with an accumulated tube detection filter response below tconf are

discarded. Figs. 7.4(c) and (d) depict the resulting descriptions of the identified tubular

structures. Fig. 7.4(c) shows only the centerline information, while in Fig. 7.4(d) also the
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: Illustration of the processing steps of the airway tree reconstruction approach.
(a) Volume rendering of the utilized dataset. (b) Tube detection filter response. (c) Cen-
terlines of initially extracted tubular structures. (d) Initially extracted tubular structures
with associated radii/tangent directions. (e) Grouping and linkage step showing the iden-
tified tubular structures belonging the airway tree (blue), the discarded tubular structures
(red), and the closed gaps (green). (f) Reconstructed airway tree.

associated radius and tangent direction are indicated using a cylinder with appropriate

orientation and radius. As can be seen, major parts of the airway tree can be extracted

with this approach. However, two problems remain that have to be addressed. First, the

centerlines of the tubular structures may break up at junctions or in disturbed regions

(e.g., motion artifacts). Second, some false positive responses caused by other low density

(dark) tube-like structures that are not airways are also present.



7.3. Evaluation and Results 115

Grouping and linkage: For reconstruction of the airway tree the structure base ap-

proach as presented in Section 3.2 is utilized that is used to identify the tubular structures

that are part of the actual airway tree and to discard all other unrelated tubular struc-

tures. The method requires information about the root of the tree and the flow direction

inside this root element. Therefore, the trachea is identified automatically by searching

for the largest tubular structure, it’s flow direction is determined as pointing towards the

center of the volume. The result of the tree reconstruction process is shown in Figs. 7.4(e)

and (f).

Parameters: Following set of parameters is used to process the datasets. The tube

detection is performed on 15 radius steps on a logarithmic scale between radii 0.25 mm and

10mm with η = 0.7 (the variance term of the boundariness samples in the offset medialness

function was omitted for radii ≤ 0.5 mm); thigh = 35, tlow = 25, and tconf = 150 for the

centerline extraction; ρ = 0.5, γa = 90◦, γr = 1.3, γd = 40 mm, and γc = 0.1 for the tree

reconstruction.

7.3 Evaluation and Results

Both approaches were applied to 40 clinical datasets (with undisclosed gold standard)

which were provided by the “Extraction of Airways from CT 2009 (EXACT09)” database

(http://image.diku.dk/exact), whose objective is the quantitative evaluation and com-

parison of airway tree extraction methods. The focus of the database is on the methods

ability to successfully extract the structure of the airway trees, while surface accuracy is

not considered. The datasets are split in two groups of 20 training datasets, where the

parameters are adapted and 20 testing datasets. For information about how the reference

segmentations were obtained and the exact definition of the used performance measures

we refer to Lo et al. [88].

For evaluation, binary volume datasets are required that contain a single 6-connected

airway structure. While the GVF based method (Section 7.2.1) already provides such

a segmentation, the airway tree reconstruction method (Section 7.2.2) only produces a

26-connected airway tree skeleton with corresponding radius information. Thus, to obtain

a binary volume dataset for the airway tree reconstruction method, we performed an

inverse distance transformation to obtain a rough segmentation and dilated the so obtained

reconstruction to assure 6-connectivity.

In the next two sections, we present quantitative results achieved with our two pre-
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sented methods on the 20 testing datasets and for comparison results achieved with other

methods. The quantitative measures were provided by the “Extraction of Airways from CT

2009 (EXACT09)” database and are available online at http://image.diku.dk/exact.

7.3.1 Results of Proposed Methods

Tables 7.1 and 7.2 summarize the evaluation results for the 20 testing datasets of both

methods. For the GVF based method (Table 7.1), on average 63.0% of airway branches

were detected with an average detected tree length of 58.4%. The mean leakage count

was 5.0, and the mean false positive rate was 1.44% (median: 0.61%). For the airway tree

reconstruction method (Table 7.2), on average, 57.9% of airway branches were detected

with an average detected tree length of 55.2%. The mean leakage count was 6.5, and the

mean false positive rate was 2.44% (median: 1.41%).

7.3.2 Comparison to Other Methods

A larger set of other methods [13, 35, 36, 38, 57, 76, 87, 100, 112, 147, 154, 158, 160] has

been evaluated on the “Extraction of Airways from CT 2009 (EXACT09)” database. The

results achieved with these methods are summarized in Table 7.3 and Fig. 7.5. We refrain

from detailed discussions of all other methods referring for this purpose to the work of

Lo et al. [88] and only provide a short comparison of our proposed method with the other

methods.

Most methods for airway tree segmentation are fully automated methods, or they are

semi-automated methods that require only minimal user interaction such as selecting initial

seed points inside the trachea or adaption of parameters. An exception is the method of

Tschirren et al. [147] that is part of a clinical product. Their software allows for extensive

editing of an initial segmentation result. What all other methods have in common, is that

they use region-growing or wave propagation approaches for extraction of the airway trees.

The methods evolve starting from a seed inside trachea and recursively merge potential

airway regions, usually combined with a method for leakage prevention.

A large variation between the performance of the different methods can be observed as

well as a general trade-off between extraction capability and leakage as shown in Fig. 7.5.

Methods with higher branch count also show a higher leakage volume and vice versa. The

better methods show an ability to extract about 55-60% of the airway tree with a false

positive rate of below 5%. The method with the highest extraction capability also allows

extraction of only about 75%. However, to the cost of a false positive rate of more than
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Table 7.1: Evaluation results for the GVF based method (Section 7.2.1) on the twenty
test cases.

Branch Branch Tree Tree length Leakage Leakage False
count detected length detected count volume positive

(%) (cm) (%) (mm3) rate (%)
CASE21 114 57.3 68.5 62.0 3 35.2 0.31
CASE22 270 69.8 218.9 66.2 9 474.6 1.60
CASE23 187 65.8 134.0 51.5 5 43.5 0.20
CASE24 139 74.7 113.9 70.0 8 176.9 0.59
CASE25 158 67.5 123.1 48.8 4 98.6 0.32
CASE26 59 73.8 51.2 78.0 2 274.3 2.70
CASE27 77 76.2 58.1 71.7 4 353.5 3.06
CASE28 86 69.9 66.9 61.0 1 49.6 0.43
CASE29 120 65.2 81.2 58.8 4 118.9 0.85
CASE30 114 58.5 87.5 57.2 5 98.9 0.64
CASE31 96 44.9 70.5 40.2 1 59.8 0.34
CASE32 101 43.3 80.3 36.8 1 175.2 0.86
CASE33 117 69.6 90.4 61.5 1 32.0 0.29
CASE34 250 54.6 184.6 51.6 11 358.1 1.05
CASE35 168 48.8 110.9 35.9 5 69.8 0.30
CASE36 294 80.8 330.6 80.2 5 78.6 0.25
CASE37 112 60.5 87.9 49.5 2 102.9 0.48
CASE38 64 65.3 51.2 77.1 4 311.0 2.64
CASE39 291 56.0 250.6 61.2 13 3577.0 9.21
CASE40 225 57.8 187.7 48.5 11 959.0 2.65
Mean 152.1 63.0 122.4 58.4 5.0 372.4 1.44
Std. dev. 75.7 10.4 75.2 13.2 3.6 785.4 2.06
Min 59 43.3 51.2 35.9 1 32.0 0.20
1st quartile 96 56.0 68.5 48.8 2 59.8 0.31
Median 119 65.3 89.2 59.9 4 110.9 0.61
3rd quartile 250 73.8 187.7 71.7 9 358.1 2.65
Max 294 80.8 330.6 80.2 13 3577.0 9.21

15%. None of the methods comes close to obtaining the whole airway tree.

The method of Graham et al. [50] who also presented an airway tree extraction ap-

proach based on a bottom-up airway detection with a consecutive grouping into a complete

tree structure as described in the introduction has not been evaluated on the database.
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Table 7.2: Evaluation results for the airway tree reconstruction method (Section 7.2.2) on
the twenty test cases.

Branch Branch Tree Tree length Leakage Leakage False
count detected length detected count volume positive

(%) (cm) (%) (mm3) rate (%)
CASE21 100 50.3 54.6 49.4 1 102.5 1.09
CASE22 296 76.5 258.7 78.3 23 1311.2 3.91
CASE23 232 81.7 201.0 77.2 14 700.5 2.81
CASE24 148 79.6 121.0 74.4 5 288.7 1.18
CASE25 157 67.1 134.0 53.2 9 1693.0 6.08
CASE26 39 48.8 29.4 44.7 4 254.1 5.13
CASE27 38 37.6 27.6 34.1 1 56.8 1.08
CASE28 70 56.9 50.9 46.5 2 8.6 0.09
CASE29 118 64.1 83.6 60.5 3 222.6 1.56
CASE30 91 46.7 70.2 46.0 1 47.6 0.32
CASE31 100 46.7 73.8 42.0 1 64.7 0.38
CASE32 125 53.6 118.6 54.4 2 34.8 0.14
CASE33 117 69.6 99.1 67.4 15 931.2 7.56
CASE34 296 64.6 233.5 65.3 6 167.3 0.49
CASE35 187 54.4 133.2 43.1 2 123.3 0.57
CASE36 239 65.7 283.0 68.7 8 661.1 2.12
CASE37 96 51.9 82.8 46.6 5 360.2 2.25
CASE38 40 40.8 30.8 46.3 2 79.6 1.25
CASE39 210 40.4 198.1 48.4 8 745.7 2.61
CASE40 237 60.9 219.6 56.7 17 3678.0 8.07
Mean 146.8 57.9 125.2 55.2 6.5 576.6 2.44
Std. dev. 81.8 13.0 80.3 12.8 6.3 864.9 2.46
Min 38 37.6 27.6 34.1 1 8.6 0.09
1st quartile 91 46.7 54.6 46.0 2 64.7 0.49
Median 122 55.6 108.8 51.3 5 238.3 1.41
3rd quartile 237 69.6 219.6 68.7 14 931.2 5.13
Max 296 81.7 283.0 78.3 23 3678.0 8.07

7.4 Discussion

Discussion of the GVF based method: The evaluation results show that this

method achieves a good average airway branch count (63.0%) without any major leakage.

One exception is CASE39, where some leakage occurred (3577mm3), a dataset with em-

physema. Examples of segmentation results are shown in Fig. 7.6 and Fig. 4.5(c). As can

be seen, the segmented surface shows a good correspondence with the image data. The
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Figure 7.5: “Tree length detected” vs. “false positive rate” for different airway tree ex-
traction methods based on [88]. To ascribe the individual methods numbers to the corre-
sponding publication see Table 7.3.

method is also capable of handling cases where the airway shape deviates from a perfectly

circular or purely convex shape (e.g., trachea of CASE18 in Figs. 7.6 and 4.5(c)). Leakage

into non-tubular structures is uncommon. However, in case of emphysema some leakage

was observed (e.g., CASE14 in Fig. 7.6).

Discussion of the airway tree reconstruction method: In this paragraph, we

discuss properties of the tree reconstruction approach based on two examples. In Fig. 7.7,

a case with emphysema is shown. Several structures that are similar to airways are present

in the image data. They are hard to distinguish solely based on gray-value appearance.

Without utilizing prior knowledge about the structure of airway trees, a correct segmen-

tation is hard to achieve, and simple algorithms will likely show leakage. As shown in

Fig. 7.7(b), our approach initially also identifies some of these structures as tubular struc-

tures. However, the constraints incorporated into the tree reconstruction step successfully

prevent that such structures are added to the airway tree (Fig. 7.7(d)).

In the example shown in Fig. 3.4(a) and (b), a tumor infiltrates the airway wall and

blocks one of the lower airway branches completely, such that the airway tree appears
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to be unconnected in the image data. Contrary to region growing or front propagation

approaches, our approach identifies the unconnected airways and allows us to link them

together (Fig. 3.4(e)). This ability enables our method to handle local disturbances ro-

bustly.

Compared to other methods, a slightly increased leakage volume can be observed;

Fig. 7.8(a)-(c) depicts the three cases with the largest “leakage volume”. Two points can

be observed: first, the majority of the “leaks” detected by the evaluation framework are due

to surface representation inaccuracies (Figs. 7.8(c) and (d)) and second, blobs are included

in some airway segmentations (Figs. 7.8(a) and (b)). Our approach produces a description

of the airway tree on a structural level (centerline points, radius, tangent direction), but

not a voxel or sub-voxel accurate segmentation of the inner and/or outer airway wall(s).

The first point can be explained as we performed a dilation of the segmentation results to

assure 6-connectivity, which negatively influencs the performance evaluation. The second

point was later found to be related to a bug in the software part that transforms the

structural representation to a binary volume dataset.

Comparison between the two methods: We presented two approaches for airway

tree extraction from CT datasets with different properties. Regarding the evaluation, both

seem to perform comparably well on this database and the differences are more on the

qualitative side. While with the GVF based method shows a higher “branch count”, is

the “tree length” larger for the airway tree reconstruction method. The “leakage volume”

for the airway tree reconstruction method seems slightly larger. However, reasons for this

statical conclusion were discussed.

The GVF based approach produces a voxel-accurate segmentation of the airway lu-

men while the airway tree reconstruction method only produces a structural representation

roughly describing the airways surfaces. An additional advantage of the GVF based meth-

ods is that the presented centerline extraction method may be easily extended to extract a

complete high quality curve skeleton of the airway tree. This can be achieved by obtaining

connections between the individual centerlines based on the GVFs medialness property

using the method presented in Section 3.3. However, the GVF based method can not cope

with severe disturbances (e.g. the example with the tumor) and it does not avoid leakage

in case of emphysema as no structural verification of the airway tree is performed. Con-

trary to that, the airway tree reconstruction method allows handling these disturbances

successfully.
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Comparison to other methods: Our two approaches show a good trade-off between

airway extraction capability and leakage volume compared to the other methods (Fig. 7.5

and Table 7.3). Only the method of Tschirren et al. [147] that is based on extensive

user interaction shows a larger amount of extracted airway branches and a lower leakage

volume; the results achieved with this method also represent the performance of a human

observer on this task. Tschirren et al. [147] note that with their method a human observer

requires on average about one hour of work to produce results like these.

Although both proposed methods perform well compared to other presented methods,

with both methods typically only less than 60% of the airway trees can be extracted,

showing the need for further improvements of all methods known in the literature [88].

7.5 Conclusion

We presented and evaluated two different methods for extraction of airway trees in CT

datasets. The main differences between both are in their general objectives. The GVF

based method already produces accurate segmentations and allows for an additional ex-

traction of the associated curve skeleton in a straight forward manner. On the other hand,

the airway tree reconstruction methods allows handling of local disturbances and shows a

higher robustness in case of disease as additional structural properties of the whole tree

structure are incorporated into the approach. Thus, giving a general conclusion about

the superiority of one of the methods can not be made as both approaches have different

advantages. A combination of properties of both approaches would be beneficial.
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Figure 7.6: Examples of segmentation results on the EXACT09 database using the GVFG
based method (Section 7.2.1). From top to bottom: CASE03, CASE14, CASE18, CASE24.
From left to right: 3D visualization of result; coronal slice showing CT data; coronal slice
showing the segmentation result.
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(a) (b) (c) (d)

Figure 7.7: Emphysema lung CT data. (a) Volume rendering of the dataset. (b) Identified
tubular structures. Note that some of the “pathological” structures have been detected as
tubular structures. (c) Tree reconstruction step showing the identified tubular structures
belonging to the airway tree (blue), the discarded tubular structures (red), and the closed
gaps (green). (d) Reconstructed airway tree.

(a) (b) (c) (d)

Figure 7.8: Examples of reconstructed airways with a high “leakage volume”. (a)
CASE40: “leakage count”=17; “leakage volume”=3678.0 mm3. (b) CASE25: “leakage
count”=9; “leakage volume”=1693.0 mm3. (c) CASE22: “leakage count”=23; “leakage
volume”=1311.2 mm3. (d) CASE22 comparison to gold standard: voxels classified as
leakage (red), correct voxels (green), missed airways (yellow).
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8.1 Conclusion

In this work we were dealing with the segmentation of 3D tubular tree structures in med-

ical images. In the introduction, we outlined the general requirements and objectives

for different applications in this field, emphasizing the importance of the structural cor-

rectness, and reviewed related work on vessel/airway segmentation. Based on that we

presented a general approach for segmentation of branched tubular networks (Section 1.2)

that puts a strong focus on the structural correctness of the segmentation results. The

approach consists of a tube extraction step, a grouping and linkage step, and the actual

tube segmentation step.

We developed and investigated methods for each of these processing steps, leading

to a set of flexible methods that can be utilized in various applications. In particular,

in Chapter 2 we developed a novel approach for detection of tubular objects based on

the GVF that addresses limitations of these typically used Gaussian scale space based

methods and compared it to promising TDFs known from the literature. In Chapter 3

we proposed two methods for grouping and linkage of unconnected tubular structures

into tubular tree structures, one enabling an extraction of high quality centerlines in that

deviate significantly from the typical tube shape, while the other one allows for a separation

of interwoven tubular tree structures as well as handling of various kinds of disturbances.

125
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In Chapter 4 we developed two methods to accurately segment the identified tubular tree

structures, one solving the segmentation task in a globally optimal way, while the other

one segments according to the first distinct edge closest to the centerline.

Based on these methods, different applications for segmentation of blood vessel trees

(Chapter 5 and Chapter 6) and airway trees (Chapter 7) in CT datasets were developed.

The methods were evaluated on larger sets of clinical datasets and comparisons to results

achieved with other methods developed for the same task were presented.

In Chapter 5 we developed a system for the segmentation of the livers vascular trees

in contrast CT datasets. The task requires a separation of multiple interwoven tubular

tree structures, a robustness against disease such as tumorous regions, and the ability to

cope with poor contrast agent distributions. In particular, the separation of interwoven

tubular tree structures in case of unconnected tubular objects has not been addressed in

this area before, while our newly developed grouping method (Section 3.2) allows coping

with this case. For evaluation of the method CT datasets of a plastic phantom and clin-

ical datasets were used. On the phantom datasets we presented quantitative results by

comparison with the ground truth, while for the clinical datasets an experienced radiolo-

gist verified the correctness and accuracy of the segmentations. The results show a high

robustness of our approach against disturbances, the methods ability to successfully re-

construct, separate, and accurately segment multiple interwoven tubular tree structures in

this application domain. For comparison to other methods we reimplemented the methods

of Selle et al. [130] and Manniesing et al. [94] in part and presented qualitative differences,

showing that with our approach more of the thinner blood vessels can be segmented and

that with the other methods additional user interaction would be necessary to achieve a

valid separation of the different vascular trees.

In Chapter 6 we presented a system for the extraction of the coronary artery trees

based on a centerline description. The main difficulties with this task are closely adjacent

vessels or calcifications, the proximity of the heart chambers, and regions where locally

the vessels are partly indistinguishable from the background (e.g. due to occlusions or

imaging artifacts). Due to these difficulties, conventional TDFs were not applicable while

our developed GVF-based TDF (Section 2.3) allows coping with these cases of varying

backgrounds. As the evaluation on clinical datasets from a publicly available database with

reference centerlines shows, our method allows for a reliable extraction of the coronary

artery centerlines, comparable to the performance of a human observer [124]. Compared to

other methods, only methods that utilized information about the endpoint of the coronary
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arteries – information not available in practice – performed better with respect to the

extraction capability. Regarding centerline accuracy, an average centerline distance of

about one voxel as achieved.

In Chapter 7 we presented two approaches for the segmentation of airway trees in

CT datasets. With this task, one has to cope with the differentiation from the actual

lung tissue, disease such as emphysema or stenosis due to tumorous regions, as well as

with a large variation in data quality as the imaging protocols are not always adapted

for the main purpose of airway segmentation. The two developed methods show different

advantages. While one method produces immediately accurate segmentations and allows

for an additional extraction of the associated curve skeleton in a straight forward manner,

the other one allows handling of local disturbances and shows a higher robustness in case

of disease. As the evaluation and comparison to other methods on clinical datasets of a

publicly available showed [88], both methods perform about comparably well in practice,

and are among the best performing methods known in the literature. Only one other

approach allows for an extraction of more airway branches while having a lower leakage

volume; however, to the cost of about one hour of manual user interaction.

The reasons for the robustness of the developed applications is related with the pre-

sented general approach for segmentation of branched tubular networks (Section 1.2), that

puts a strong focus on the structural correctness of the segmentation results and considers

handling of different kinds of disturbances directly as part of the approach. Considering

other methods, as discussed in the related work part (Section 1.1), “practically all cur-

rently used vessel segmentation methods are based on a growth process emanating from

an automatically- or user-defined start point; the differences between the methods lie in

the constraints imposed on the growth process” [47]. Contrary to that, our approach does

not proceed form a single seed but performs a bottom-up extraction of tubular structures

with a grouping/linkage of these structures into a connected network. During the grouping

additional prior knowledge about tubular tree structures is incorporated: The individual

tubular structures of a branched tubular network are connected with each other and –

from a biological perspective – they have to be supplied. Utilizing this information, cases

can be resolved, where a typical vessel/airway model may be inadequate, such that the

structure of the tubular tree structures can be obtained correctly and later on used for a

more accurate segmentation.

In the literature only very few methods can be found that follow this paradigm of

extraction and grouping of tubular structures. To the best of our knowledge, besides
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the seminal ideas of Beichel et al. [10, 113], only the works of Szymszack et al. [138],

Florin et al. [39], and Graham et al. [50] presented applications using similar ideas. How-

ever, none of these methods has been evaluated on larger sets of clinical datasets or

compared to other methods.

As seen from the applications summarized above, the objectives and problems that

have to be addressed in such application areas for segmentation of tubular tree structures

are very diverse and challenging. But with the proposed general approach for segmentation

of branched tubular networks (Section 1.2) and the set of developed methods most of the

problems occurring in such kinds of datasets can be addressed and the developed methods

proofed to be suitable for different application domains.

8.2 Directions for Future Work

The general framework and the methods we have developed in this thesis provide a flexible

basis for future work in the area of vessel/airway segmentation. It can be adapted to other

applications or requirements by replacing or improving individual parts (of our three-step

approach). Besides the application and evaluation of the already developed methods in

other application areas, we see primarily two further directions for possible future work:

Improvement of the robustness of the tube extraction approach: The extrac-

tion of tubular structures is the first and most critical part of the overall approach. For

larger tubular structures, the presented methods perform well and the developed meth-

ods also proofed sufficient for identification of thinner low-contrast vessels in liver and

coronary CT datasets (Sections 5 and 6). However, in case of airways still about 1/3 of

the airways remain undetected (Section 7). The reasons for this behavior are the com-

plex background in lung CT datasets and the fact that even smaller local disturbances

can lead to problems in combination with the used height-ridge traversal procedure and

the hysteresis-thresholding (Section 2.4). One may consider to enhance the robustness of

the tube extraction method for smaller airways either by appropriate pre-processing of

the datasets, post-processing TDF results, or by incorporating additional airway-specific

prior knowledge into the airway detection. Therefor, pre-processing techniques for noise

suppression specifically developed for tubular structures such as “vessel enhancing diffu-

sion” [95] or “flux-based anisotropic diffusion” [66] could be used. Possible TDF result

post-processing methods could combine local evidence about candidate airways by taking

their elongated structure into account. This could be based on “improved structure ten-
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sors” [65], “tensor voting” [139], “vessel enhancing diffusion” [95], or similar techniques.

The last point is that airways can be characterized locally not only as a dark structure

surrounded by brighter tissue as assumed by our methods in Section 7, but they are sur-

rounded by an airway wall of a certain thickness. Incorporating properties of this airway

wall would enhance the selective of the airway extraction.

Visualization and user interaction: Although a fully automated segmentation of the

tubular tree structures without the need for any user interaction is desirable, there may

still remain cases in clinical practice where fully automated methods may fail. Therefore,

to be clinically applicable, a system also has to be able to cope with such cases in a semi-

automated way. Our developed general approach performs a bottom-up identification

of all tube-like structures in a given volume of interest, such that the overall system is

aware of potential problems (e.g. identified but unconnected sub-trees). Combined with an

appropriate 3D visualization this allows giving a user feedback about potential errors. The

user could then easily verify such situations and in case of errors manual correction could

be used as such cases occur only very rarely. This behavior of our general approach that

allows handling of such errors (unconnected sub-trees) is in contrast to other conventional

tubular tree structure segmentation approaches that simply discard the remaining tree

parts, which is a severe drawback of conventional tube extraction schemes.
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List of Acronyms

a.k.a. also known as

CS curve skeleton

CT computer thomography

CTA computer thomography angiography

GPU graphics processing unit

GVF Gradient Vector Flow

MinIP minimum intensity projection

MIP maximum intensity projection

MR magnetic resonance

MRI magnetic resonance imaging

ROI region of interest

SNR signal to noise ratio

vs. versus

133





BIBLIOGRAPHY 135

Bibliography

[1] Agam, G., Armato, S. G., and Wu, C. (2005). Vessel tree reconstruction in thoratic CT

scans with application to nodule detection. IEEE Trans. Med. Imag., 24(4):486–499.

[2] Aylward, S. and Bullit, E. (2002). Initialization, noise, singularities, and scale in

height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imag.,

21(2):61–75.

[3] Aylward, S., Bullitt, E., Pizer, S., and Eberly, D. (1996). Intensity ridge and widths for

tubular object segmentation and description. Proc. IEEE Math. Meth. Biomed. Image

Anal., pages 131–138.

[4] Bauer, C. and Bischof, H. (2008a). Edge based tube detection for coronary artery

centerline extraction. The Midas Journal.

[5] Bauer, C. and Bischof, H. (2008b). Extracting curve skeletons from gray value images

for virtual endoscopy. In Workshop on Medical Imaging and Augmented Reality, pages

393–402.

[6] Bauer, C. and Bischof, H. (2008c). A novel approach for detection of tubular ob-

jects and its application to medical image analysis. In DAGM Symposium on Pattern

Recognition, pages 163–172.

[7] Bauer, C., Bischof, H., and Beichel, R. (2009a). Segmentation of airways based on

gradient vector flow. In International Workshop on Pulmonary Image Analysis, Medical

Image Computing and Computer Assisted Intervention, pages 191–201.

[8] Bauer, C., Pock, T., Bischof, H., and Beichel, R. (2009b). Airway tree reconstruction

based on tube detection. In International Workshop on Pulmonary Image Analysis,

Medical Image Computing and Computer Assisted Intervention, pages 203–213.

[9] Bauer, C., Pock, T., Sorantin, E., Bischof, H., and Beichel, R. (2010). Segmentation

of interwoven 3d tubular tree structures utilizing shape priors and graph cuts. Medical

Image Analysis, 14:174–184.

[10] Beichel, R., Pock, T., Janko, C., Zotter, R., Reitinger, B., Bornik, A., Palágyi, K.,
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