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Abstract

The introduction of next-generation sequencing (NGS) technologies enables scientists to analyze

millions of DNA sequences in a single run. The hereby produced gigabytes of raw data need to be

further analyzed in order to gain biological meaningful results. Although NGS has lowered the cost

for whole genome sequencing dramatically, its application for high-throughput screening studies

still remains expensive. Exome sequencing provides a more cost effective approach where only

the protein coding regions of a genome is utilized to find mutations which cause and maintain

human diseases.

Spurred by NGS technologies, new efficient and well designed bioinformatics tools emerged

which are addressing different tasks in the downstream analysis of NGS data. Since combining

these tools into an analysis pipeline greatly facilitates the interpretation of NGS results, an exome

sequencing pipeline was developed in this thesis which connects all necessary analysis steps

into a unified application. The pipeline supports input data generated by the NGS platforms

Illumina and ABI SOLiDTM, handles correct execution of all integrated tools, and automatically

distributes computational expensive tasks on a high-performance computing (HPC) cluster. It

performs quality statistics on raw and processed reads, allows users to trim and filter sequence

reads, and aligns the processed reads to a reference genome. Post alignment analysis includes

the calculation of alignment statistics, region filtering, and the detection of variants resulting in a

list of potential disease driving candidates. The developed pipeline was applied in a joint project

with clinical research partners to detect potential causes for Mendelian disorders.

The integration of well established tools and newly developed promising algorithms into a

unified solution eases the analysis of NGS data and may provide a valuable method for detecting

and investigating therapeutical targets of diseases such as cancer and hereditary disorders.

Keywords: next-generation sequencing, exome analysis, pipeline development,

high-performance computing, distributed analyses
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Kurzfassung

Durch die Entwicklung von ‘Next Generation Sequencing’ (NGS) wurde die Analyse von Millio-

nen von DNA Sequenzen in einem einzigen Sequenzierdurchlauf ermöglicht. Die auf diesem

Wege gewonnen Rohdaten erfordern weitere Analysen um biologisch aussagekräftige Resul-

tate zu liefern. Trotz drastisch gesunkener Kosten für die Sequenzierung vollständiger Genome,

bleiben die absoluten Kosten für vergleichende Parameterstudien hoch. Exom-Sequenzierung

bietet eine kosteneffizientere Methode, welche nur Eiweiß kodierende Regionen des Genoms zur

Detektion von krankheitsauslösenden und -relevanten Mutationen im Menschen heranzieht.

Verschiedenste bioinformatische Werkzeuge wurden entwickelt, um die unterschiedlichsten

Aufgaben der Analyse von NGS Daten zu bewerkstelligen. Die gegenwärtige Dissertation beschäf-

tigt sich mit der Kombination einiger dieser Werkzeuge zu einer Analysekette, welche alle notwendi-

gen Analysen in eine einheitliche Applikation vereint. Die hierbei erstellte Software unterstützt

Exom-Sequenzdaten der NGS Plattformen Illumina und ABI SOLiDTM, stellt die korrekte Ausführ-

ung aller Werkzeuge sicher und verteilt rechnerisch aufwendige Aufgaben auf Hochleistungsrech-

ner. Sie berechnet Qualitätsmerkmale der Sequenzdaten, ermöglicht Trimmen und Filtern von Se-

quenzen und detektiert die Position der aufgearbeiteten Daten im Referenzgenom. Folgeanalysen

beinhalten die Berechnung von Alignment Statistiken, das Filtern anhand der Position im Genom

und die Detektierung von Mutationen, welche in eine Liste von potentiellen Krankheitsauslösern

resultieren. Die entwickelte Software wurde bereits in einer Kooperation mit einem klinischen

Forschungspartner zur Identifikation von potentiellen Ursachen von Erbkrankheiten angewandt.

Die Integration von etablierten sowie innerhalb der gegenwärtigen Arbeit neu entwickelten

Algorithmen in eine einheitliche Software erleichtert die Analyse von NGS Daten und kann eine

wertvolle Methode zur Detektierung und Erforschung von therapeutischen Targets für Erbkrank-

heiten und Krebs darstellen.

Stichw örter: Next Generation Sequencing, Exomanalyse, Pipeline Entwicklung,

Hochleistungsrechnen, verteilte Analysen
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Chapter 1

Introduction

1.1 Next-generation sequencing

The discovery of the use of dideoxy nucleotides for chain termination by Sanger et al. [1977]

marked a milestone in the history of DNA sequencing. This concept provided a basis for the de-

velopment of automated Sanger sequencing (Smith et al. [1986], Ansorge et al. [1987]) which has

been the method of choice for DNA sequencing for almost 20 years. During this time, the technol-

ogy has been enhanced to account for longer DNA fragments and for a higher level of parallelism.

In its current stage, the technology supports simultaneous sequencing of 1000 base pairs (bp) per

DNA fragment in 96 capillaries. Although this method achieved a limited level of parallelization,

Sanger-based approaches have not been able to analyze DNA in a high-throughput manner.

Automated Sanger sequencing was the core technology of the Human Genome Project, which

was funded in 1990 with the goal of determining all three billion base pairs making up the human

genome. The project took ten years to produce first draft results (Lander et al. [2001], Venter et al.

[2001]) and an additional three years to complete (Jasny and Roberts [2003]). During the project’s

final phase and early years thereafter numerous spin-off projects have been launched including

the International HapMap Project and the prominent 1000 Genomes Project. The former project

aimed at developing a haplotype map of the human genome which describes the common pat-

terns of human DNA sequence variation (International HapMap Project [2006]). The latter con-

centrated on sequencing the genomes of at least one thousand anonymous participants from a

number of different ethnic groups to provide a comprehensive resource on human genetic vari-

ation (1000 Genomes [2008]). Both projects were accompanied by the necessity for extensive

sequencing. They led, together with a program aiming at the economic sequencing of complete,
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EXOME ANALYSIS USING NEXT-GENERATION SEQUENCING DATA INTRODUCTION

high-quality, mammal-sized genomes (Service [2006], Mardis [2006]), to the development of new

sequencing technologies. These so-called next-generation sequencing (NGS) technologies al-

lowed sequencing at unprecedented speed in combination with low costs per base (illustrated in

figure 1.1). As a consequence, the number of sequencing related data stored in public available

databases has increased significantly over the last years and is expected to grow even faster

(shown in figure 1.2). Taking advantage of the newly developed machines, the 1000 Genomes

Project has accomplished yet to sequence the complete genome of 185 individuals from four pop-

ulations, and to analyze targeted exons of 697 individuals from seven populations within only two

years (Consortium et al. [2010]).

Figure 1.1: Per base cost development of DNA sequencing on a log scale. Prices have fallen from approx-
imately $10 in the beginning of the 1990s to a fraction of a cent in 2009. Figure adapted from
Carlson [2009].

Figure 1.2: Growth rates of database entries and their corresponding number of nucleotides in the European
Nucleotide Archive (ENA) shown in log scale. Figure taken from ENA [2010].

As NGS machines generate millions of short sequence reads per run, the bottleneck in se-

quencing shifted from sequence generation to data management and analysis. Data volume now

2
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represents a major challenge for storage, backup, and analysis. New algorithmic approaches

are required to overcome the drawbacks of short read lengths. The development of streamlined,

highly automated pipelines for data analysis is critical for the transition from technology adoption

to accelerated research and consequent publication (Koboldt et al. [2010]).

1.2 Exome sequencing

Since its early days, medical research has striven for identifying the causes of disorders with the

ultimate goal of establishing therapeutic treatments and finding cures. Nowadays, whole genome

sequencing (WGS) approaches are designed to discover genetic variations contributing to rare or

common diseases. Despite the decrease in sequencing costs, the expenses for routinely obtain-

ing and analyzing full genomes of a large number of individuals remain prohibitive (Hedges et al.

[2009]). Alternative methods, focusing on only a fraction of the human genome, represent afford-

able approaches to identify potential disease-associated genetic variants. Sequencing all protein

coding regions of the genome, also referred to as exome sequencing, is the promising candidate

as

• it is believed that coding exons harbor most functional variations (Botstein and Risch [2003],

Ng et al. [2008]),

• the exome constitutes only about 1% of the human genome requiring to sequence just

approximately 30 mega bases (Mb) (Ng et al. [2009]),

• the whole exome sequencing effort is only 1/20 compared to WGS (Ng et al. [2010]), and

• single nucleotide polymorphisms (SNPs) occurring in coding regions, which are a resource

for mapping complex genetic traits, are the most common causes for Mendelian disorders

(Horner et al. [2010]).

1.3 Bioinformatics tools for exome sequencing data

Due to the high demand of analysis tools for exome sequencing data, numerous programs were

developed to support aspects of a typical exome analysis workflow consisting of raw sequence

quality control, sequence alignment, alignment postprocessing, and variant detection. TileQC

(Dolan and Denver [2008]) and FastQC (Barbraham Bioinformatics [2009]) provide, among oth-

ers, basic quality statistics for raw sequence data. Alignment programs such as SOAP2 (Li et al.

[2009c]), BWA (Li and Durbin [2009]), and Bowtie (Langmead et al. [2009] were especially de-

signed for mapping high amounts of short reads to a reference genome. The most popular tools

3
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for alignment enhancement and variant detection are provided by the Genome Analysis Toolkit

(GATK, McKenna et al. [2010]) which is used in the 1000 Genomes Project and The Cancer

Genome Atlas (Broad Institute [2010a]).

Given the vast amount of provided tools, choosing an appropriate set of analysis software to

obtain high quality results from NGS data is a very challenging and complex task. To overcome

this problem, exome analysis pipelines were developed by several groups including Eck et al.

[2010], CLCbio GenomicsWorkbench (CLCbio [2010]), and NextGENe (Softgenetics [2010]). How-

ever, these pipelines are either incomplete, designed to process only Illumina sequencing data,

or not freely available to the scientific community. Therefore, a freely available exome analysis

pipeline providing a streamlined exome analysis for SE and PE data generated by Illumina or

ABI SOLiDTMplatforms would be a major contribution to the field and tremendous help for human

geneticists.

4
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1.4 Objectives

The aim of this thesis was to develop and evaluate a pipeline for the detection of SNPs and dele-

tion/insertion polymorphisms (DIPs) within DNA sequences obtained by targeted re-sequencing

of a genome’s entire set of protein coding regions. The pipeline should be capable of handling

NGS data produced by Illumina and ABI SOLiDTMplatforms. The application should then be tested

with real biological data obtained by clinical research partners.

The specific goals were to develop a pipeline which

• allows processing different kinds of input data to analyze reads encoded either in nucleotide

or color space and supports single-end (SE) as well as paired-end (PE) data

• generates measurements for input quality evaluation as well as for sequence alignment and

sequence capturing efficiency characterization

• includes automatic detection of SNPs and DIPs and supports SNP ranking

• determines and splits homo- and heterozygous variant calls

5



Chapter 2

Results

The results of this thesis are presented in two sections. The first consists of a universal pipeline for

exome sequencing and its associated pipeline tools, the second describes the obtained pipeline

analysis results of two biological samples.

2.1 Exome sequencing analysis pipeline

The main objective of this thesis was the development of a pipeline for investigating exome se-

quencing data generated by Illumina and ABI SOLiDTMNGS devices (see section 4.1.2 for a de-

tailed description). Therefore, a highly configurable exome sequencing analysis pipeline was

developed which meets the challenging requirements of NGS data-handling while still being an

easy to use program. The pipeline is based on the Java Platform, Enterprise Edition (JEE) and

uses high performance computing (HPC) approaches in conjunction with an inhouse developed

cluster application programming interface (API). Since the application distributes and executes all

computationally expensive analysis tasks on an HPC infrastructure and provides an easy to use

command line interface, the pipeline can be used universally from every PC connected to the HPC

server. Furthermore, the pipeline supports the analysis of single-end (SE) as well as paired-end

(PE) data and provides the following analysis components (see figure 2.1):

• read preprocessing - for checking and enhancing read quality

• sequence alignment - for creating and refining read alignment

• alignment statistics - for verifying read alignment quality and statistics

• variant detection - for identifying and filtering variants

6
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The pipeline requires as input sequence reads, their corresponding base calling quality values,

and a list of the re-sequenced exon positions, specifying the exome.

Figure 2.1: Exome sequencing analysis pipeline workflow. Dashed boxes indicate optional analysis steps.

2.1.1 Read preprocessing

This analysis component was developed to offer a first overview of the sequence reads, to allow

the user to convert data to standardized file formats, and to enhance the overall read quality. All

analysis steps conducted within this component operate on reads stored in the FASTQ file format

(definition given in section 4.6.1) and are highly configurable to meet the needs of the different

NGS devices and library preparation methods.

FASTQ conversion

Exome sequencing studies conducted on various NGS devices can currently produce three differ-

ent FASTQ file formats (see section 4.3 for a detailed discussion). The traditional Sanger FASTQ

7
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format is seen as a de facto standard in sequencing and is the file format of choice for submitting

sequence data into NCBI’s Sequence Read Archive (SRA, Wheeler et al. [2008]). Therefore, the

pipeline converts data from Illumina 1.3- and Illumina 1.3+ to Sanger FASTQ.

Read quality statistics

To support quality evaluation of a sequencing run, the following read and read quality character-

istics are calculated and reported by the pipeline:

• number of sequenced reads

• read length information - this characteristic includes minimum, first quartile, median, mean,

third quartile, maximum, boxplot and histogram of the read lengths (see figure 2.2).

Figure 2.2: Read quality statistics. a) Histogram representing the read length distribution of a sequencing
run before read trimming. b) Plot illustrating frequencies of unidentified base calls per sequence
read before trimming.

• base call comparisons depending on the position within the read - two separate graphs are

used for illustrations (shown in figure 2.5). The first one prints the median base calling quality

values separately for each nucleotide. The second chart shows the absolute occurrence of

a certain nucleotide per position within the read. Both figures include all nucleotide calls

represented in the IUPAC codes A, C, G, T, and N.

• GC, AT, and N content in percent

• characteristics concerning unidentified base calls (N) within the reads

– number of reads containing no unidentified base calls

– amount of reads consisting solely of unidentified base calls

– histogram describing the distribution of number of unidentified base calls within one

read (illustrated in figure 2.2)

8
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• plot of the base calling quality distribution based on the position within the read for each

nucleotide - the quality value distribution is presented in a normalized heatmap where the

amount of quality values per position is color encoded (see figure 2.3).

All statistics are calculated on the HPC back-end of the pipeline using the R programming

language (R Development Core Team [2010]) and printed to a PDF file.

Figure 2.3: Example of base calling quality heatmap showing the quality distribution per read position for
cytosines. The color keys on the upper right side and on the vertical left stripe encode the
values ∈]0; 1]. Light gray areas mark quality values that did not occur. For displaying reasons
only every other quality value is labeled.

Read trimmer

This preprocessing step, which was implemented as trimmer for I/O streams, allows the trimming

of FASTQ entries based on a given read length, nucleotide, or quality value. Read length trimming

9
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causes the truncation of all FASTQ entries after the specified length at the 3’ end, whereas the

other trimmers are applied at both sites. Nucleotide and quality value based trimming clips all

flanking nucleotides and quality values equal to the specified parameters. Figure 2.4 shows an

example of using a combination of these two trimmers. In order to allow tracking of all changes,

the pipeline logs the number of altered reads in one file and writes all original FASTQ entries of

the edited sequences into another file.

@GA03_0001:4:1:1068:4935#0/1

NCCACTTCCTAAGNTTCTCTCACACTGAAAGTTAGAAGTGTNTAGGNNNNNNNNNNTCA

+GA03_0001:4:1:1068:4935#0/1

CCBCCC?CCC?88#688888>AA8B?>>ABB>?B>######>###########?>?###

Input

@GA03_0001:4:1:1068:4935#0/1

CCACTTCCTAAGNTTCTCTCACACTGAAAGTTAG

+GA03_0001:4:1:1068:4935#0/1

CBCCC?CCC?88#688888>AA8B?>>ABB>?B>

Output

Figure 2.4: FASTQ entry before and after read trimming. A combination of nucleotide and quality trimmer
was applied to the input data. ‘N’ was chosen as nucleotide and ‘2’ as numeric phred value
(encoded as ‘#’) for quality trimming.

Read filter

Several read filters, which can be applied in serial, were developed to eliminate short or error

prone sequence reads. Similar to read trimmers, all read filters write individual log files containing

the number of filtered reads and FASTQ tracking files listing all rejected reads. The following filters

are offered:

• Length filter - depending on the parameter settings, this filter rejects reads which are either

shorter or longer than a specified read length.

• Quality filter - this filter parses a read’s quality value sequence for the occurrence of a

predefined value and rejects all reads containing more than a given amount of this quality

value. This threshold is specified either by a universally applied absolute value or by allowing

a certain percentage of each read length.

• Unidentified read call filter - the filter rejects reads containing more than a specified num-

ber of unidentified bases, either absolutely or relatively to each read’s length specified.

For PE data, two FASTQ files including the first and second pairs are taken as input files. The

filters are applied simultaneously on both files as both reads of a pair must satisfy the criteria to

10
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pass the filter.

Read quality statistics

In order to overview the read quality improvements after trimming and filtering, the edited reads

can be characterized again by the same analysis methods as used for raw read quality statistics

calculation. Figure 2.5 illustrates the read quality enhancement after fastq trimming and filtering.

Figure 2.5: Comparisons of base calls before (a, b) and after (c, d) read trimming and filtering. Median base
qualities of the raw sequencing run reveal very poor quality at both ends for each nucleotide.
Cytosines show additional problems between position 15 and 22 (a). The number of uniden-
tified base calls is shown to be disproportional large (b). Read trimming and filtering greatly
enhanced the median base qualities, especially for cytosines and at all 3’ ends (c). The number
of unidentified base calls decreased to an acceptable size (d).

2.1.2 Sequence alignment

As a prerequisite for detecting variants with NGS, the positions of sequence reads in the refer-

ence genome has to be determined by sequence alignment. The developed pipeline supports

alignment against the UCSC human genome version hg18 and hg19 of the primary assembly,

11
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including assembled chromosomes, unlocalized sequences, and unplaced sequences. Unlocal-

ized sequences are sequences of an assembly which is associated with a specific chromosome

but cannot be ordered or oriented on that chromosome whereas unplaced sequences can not be

associated with any chromosome (GRC [2010]).

The developed sequence alignment component takes FASTQ files as input and mainly oper-

ates on BAM files (see section 4.6.2). Analysis tools provided by the Genome Analysis Toolkit

(described in section 4.7) were integrated into the pipeline for local alignment around DIPs and

base quality score recalibration.

BWA alignment

The program BWA (Li and Durbin [2009]) was chosen as short read aligner since it supports

alignment in nucleotide and color space, executes gaped alignment in a time efficient way (see

section 4.4 for further descriptions), and stores the alignment in SAM format. After alignment, the

pipeline directly converts the result files into binary SAM files, also referred to as BAM, to reduce

storage usage.

Alignment taggers

The initial alignment does not produce all information required for further downstream analysis.

Therefore, alignment taggers were implemented to complement BAM entries with the missing

tags.

• Color space tagger - BAM files store alignments as a nucleotide sequence, even for reads

originating from color encoding NGS platforms. The developed color space tagger adds

information about raw color sequence and base calling qualities in form of CS and CQ tags

to each BAM entry.

• Read group tagger - read group tags are used to group sequence reads to indicate that

reads of one group originate from the same DNA sample. This component assigns read

group tags derived from the original FASTQ input file name to reads where no read group

information is present.

Coordinate sorter

Sequence reads are not sorted in any obvious order after alignment. To ensure time efficient

and correct calculations, most analysis tools depend on alignments which are sorted based on

coordinate and chromosome order of the reference. This pipeline step prepares the alignment

for further processing by ensuring that the correct alignment order is met. As sorting NGS reads

12
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is usually a memory consuming task, the pipeline allows specifying the number of reads stored

in RAM to consider the available memory capacities. If PE reads are provided this step will also

check and correct any inconsistent SAM PE flag information.

Local realignment around DIPs

The initial alignment of sequence reads may include alignment artifacts due to the suboptimal

characteristics of single read alignment algorithms. In contrast to multiple read alignment, single

read alignment methods only take data from one individual read instead of the set of all reads

into account. The resulting alignment is formally correct but may include false positive SNPs and

wrongly aligned DIPs, given the limited information provided. Reads covering the DIP near their

5’ or 3’ end are particularly likely to be misaligned (example given in figure 2.6).

Multiple local realignment around DIPs corrects alignment artifacts by minimizing the number

of mismatching bases across all reads. As multiple local realignment is a time consuming task,

only sites likely requiring realignment (specified by a list of already known DIP sites or based on

the aligned data itself) are processed. To further improve runtime, the pipeline evenly divides the

aligned reads by chromosome sets, executes multiple realignment in parallel, and recomposes

the realigned reads to one result BAM file.

Figure 2.6: Visualization of 40 bp of chromosome 4 in the Integrative Genomics Viewer (IGV, Broad Institute
[2010c]) illustrating the effects of local realignment around indels. Position and chromosome
ideogram are shown in the upper panel (a) whereas RefSeq gene information is displayed in
the lower panel (d). Raw alignment (b) detects eight mismatches in 5 sequence reads between
position 26,387,959 and 26,387,960 (shown in red and green) representing false positive SNPs.
After local realignment (c), the erroneous mismatches are replaced by a deletion at position
26,387,960.

13
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Base quality score recalibrator

Initial base calling quality calculations introduce bias depending on sequencing cycle and pre-

ceding nucleotide (Poplin [2010]). As these quality measurements are used in variant detection

methods, a more accurate quality estimation is desired. Therefore, the base quality score recali-

brator analyzes and corrects the covariation of the following features of a base call:

• assigned quality value

• position within the sequence read

• preceding and current nucleotide call

• probability of mismatching the reference genome

After performing this recalibration, reports which summarize information about initial and re-

calibrated base call quality covaritions are generated to facilitate comparison between input and

output. Figures 2.7, 2.8, and 2.9 compare certain aspects of initial and recalibrated base calling

quality values.

Figure 2.7: Base calling quality histogram before (a) and after (b) recalibration. Recalibrated data shows
higher variation in terms of assigned base quality values than initial qualities.

Alignment filters

Several alignment filters were developed to provide mapped, properly paired, non duplicate, and

exon spanning reads, as they are required by further downstream analyses. To evaluate filter

results, each filter logs the number of rejected and accepted reads and stores filtered and passing

BAM entries in two separate files.
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Figure 2.8: Empirical minus reported base calling quality per dinucleotide combination before (a) and after
(b) recalibration. Before recalibration, reported quality values greatly differ from expected values
which is corrected by recalibration.

Figure 2.9: Empirical versus reported base calling quality values before (a) and after (b) recalibration.

• Mapped read filter - unmapped reads are filtered out at this point in the pipeline.

• Proper paired filter - this filter sorts out read pairs which are not within the expected insert

size or are aligned in the wrong directions. As SE reads do not contain this information, the

filter is only applied on PE data.

• Duplicate filter - it is common practice to scan for read duplicates by identifying each read’s

orientation and 5’ core site, where most of the read’s bases have been aligned, and com-

paring all identified characteristics with each other. The pipeline determines the duplicates

and filters all reads except the one with the highest sum of base qualities. For PE data, all

5’ core sites and orientations of both pairs need to be identical in order to be regarded as

duplicates.

• Exome filter - exome sequencing aims at the targeted re-sequencing of protein coding re-
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gions. As the applied capturing methods may also select DNA fragments originating from

non-coding regions, read filtering based on the alignment was implemented. The filter re-

quires a list of exon positions and rejects every read which does not overlap one of these

positions. Additionally, capture specificity as defined by Ng et al. [2009] is calculated by the

filter.

2.1.3 Alignment statistics

The developed analysis component provides several alignment statistics allowing the user to eval-

uate the alignment and data quality before variant detection. All steps within this section are ap-

plied on reads which passed all precedent filters. If PE library preparation is applied insert size

characteristics will be analyzed as well.

BAM statistics

This component provides a quick summary of basic alignment information, including:

• total number of reads

• number of mapped and unmapped reads

• percentages of mapped and unmapped reads with respect to total number of reads

• read coverage with regard to genome size

• mapping quality frequencies

Alignment summary metrics

Additional high level characteristics are reported to support a more fine grained evaluation of the

alignment. Therefore, metrics are shown summarized by first read in pair, second read in pair,

and aggregated for both reads in pair. Among others, the following information is provided:

• number of reads which solely consist of adenine and/or unidentified bases as they are con-

sidered as noise

• median read length

• number and percentage of reads aligned in pairs

• percentage of reads which have been aligned to the forward strand in respect of the total

number of aligned reads
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• number of high quality aligned reads, i.e. reads with an assigned mapping quality of 20 or

higher

• total number of bases of high quality aligned reads

• total number of confidently called bases of high quality aligned reads. A base with calling

quality value of 20 or higher is considered to be confidently called.

• the median number of bases mismatching the reference in high quality aligned reads

• the percentage of bases mismatching the reference in high quality aligned reads

Insert size metrics

The pipeline reports information about insert size distribution for PE data by providing the following

metrics:

• number of read pairs

• basic statistical measurements including minimum, maximum, mean, standard deviation,

and median insert size of all PE reads

• read pair orientation

• bin width of insert size frequencies for histogram plot.

Visualization of the insert size distribution is provided as a histogram in a PDF file (example

given in figure 2.10).

Figure 2.10: Insert size histogram generated
by the alignment statistics compo-
nent. FR indicates that first read in
pair is aligned in forward, second
read in pair in reverse direction.
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2.1.4 Variant detection

The final analysis component deals with the identification of variants while refining all variant

calls to improve accuracy. In order to facilitate the search for recessive or dominant causes, the

variants are divided by the pipeline into homo- and heterozygous mutations. Variants are detected

based on mapped, local realigned, base quality score recalibrated, properly paired, unique, and

exon overlapping reads to reduce the number of false positives. DIP calling, SNP identification,

and variant score recalibration are realized with analysis components provided by the Genome

Analysis Toolkit (see 4.7).

DIP caller

A first set of potential DIPs is detected by combining information including the number of reads

covering a DIP site, the number of reference- and DIP supporting reads, read mapping qualities,

and mismatch counts. These DIP calls are then filtered based on heuristic cutoffs to remove false

positives. The results are reported in form of BED, VCF, and TXT files separately for initial and

for filtered DIP sets. To display the results in Genome Browser tracks (see section 4.8), BED files

containing basic information about chromosome, start/end positions, number of DIP supporting

reads, total number of reads at the site, and the inserted or deleted sequence are generated. VCF

files provide further information by comparing consensus supporting and reference supporting

reads at the DIP site. The following characteristics are taken into account:

• consensus/reference sequence

• number of supporting consensus DIP reads versus the number of any DIP call at this site,

referred to as allele count

• total number of reads at the DIP site

• average number of mismatches per consensus/reference supporting reads

• average mapping quality of consensus/reference supporting reads

• average neighboring base calling quality values from consensus/reference supporting reads

• average neighboring mismatches in consensus/reference supporting reads

• counts of forward- and reverse-aligned consensus/reference supporting reads

The analysis uses RefSeq (Pruitt et al. [2005]) data to annotate DIPs. Variants located within

a gene are tagged with the gene’s name and meta information about the variant’s location (i.e.

intron, UTR, coding region), whereas DIPs not overlapping any genes are marked as genomic.
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In order to accelerate DIP identification, the pipeline evenly divides the input set and executes

DIP identification in parallel.

SNP caller

This analysis step generates a raw set of SNP calls by applying a Bayesian identifier to infer the

consensus sequence. Then, potential SNPs are detected by comparing the consensus sequence

with the reference genome. Practice has shown that machine artifacts, which appear as a combi-

nation of DIP and SNPs, can not be eliminated by local alignment around DIPs (DePristo [2010]).

Therefore, DIP masking is applied prior to SNP identification to avoid SNP calling within a user

definable window around DIPS.

The program provides an overview by logging the number of visited bases, callable bases,

confidently called bases, and actual calls made in a metrics file. Evaluation of the resulting SNP

call set is provided by recording dbSNP concordance and transition/transversion ratios of the

variants in an evaluation document. Detailed information about each SNP call is given in the

generated VCF file which includes total number of reads covering the site, genotype, genotype

quality, genotype likelihood provided only for bi-allelic sites, ratio of reference supporting reads to

total number of references (referred to as allele balance), number of identified alleles (referred to

as allele count), allele frequencies for each allele, root mean square of the mapping qualities of

all reads covering the site, number of reads supporting the site with mapping quality zero, dbSNP

id if variant is known, and strand bias.

SNP pre-filter

The SNP filter masks ambiguous SNP calls to create an improved SNP call set which is used

as training data for variant score recalibration. SNPs near called DIPs, overly clustered SNPs,

and SNPs mapping equally well to multiple positions within the reference are considered to be

ambiguous. By default, ‘overly clustered’ is defined as having more than 3 SNPs within a 10 bp

window.

Variant score recalibrator

Variant score recalibration aims at the improvement of variant scores to provide a more accurate

estimate that the detected mutation is an actual true biological variant. Therefore, a subset of

the pre-filtered variants is used as training data for clustering, yielding an adaptive error model.

HapMap Project and dbSNP data is used to determine true sites within the training set. The

resulting error model is used for the recalibration of all raw variants, including the ones which were
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rejected in the pre-filtering process. Subsequently, filters are applied on recalibrated variants to

detect false positive classified mutations.

Homo-/heterozygous splitter

The final result is represented by two VCF files containing either solely homo- or heterozygous

SNP call sets (see figure 2.11 and 2.12 for examples). A developed homo-/heterozygous splitter

is applied on variant score recalibrated SNPs and provides additional information about dbSNP

concordance and transition/transversion ratios of each call set in separated files.

Figure 2.11: Visualization of a homozygous SNP call in IGV. Sequence reads overlapping RefSeq gene
PDLIM5 show a homozygous SNP call, displayed in green, in the coverage and sequence
track near position 95,578,600. Gray areas indicate matching alignments whereas color codes
are used for A (green), C (blue), G (orange), and T (red) mismatches. Homozygous SNPs are
displayed by a continuous vertical line in the coverage track.

2.2 Experimental results

The developed pipeline was tested on data sets sequenced with Illumina’s Genome Analyzer IIx

in combination with PE library preparation. Therefore, two exome samples, which are referred to

as S1 and S2, were sequenced with Illumina PE technology resulting in four Illumina 1.3+ FASTQ

files. For each sample two files were generated each representing one part of the read pairs.

In order to distinguish the files of one sample, first reads are marked by the postscript R1 and

second reads by R2. In S1 36,427,610 read pairs were sequenced compared to 36,355,815 read

pairs were reported for S2.

20



EXOME ANALYSIS USING NEXT-GENERATION SEQUENCING DATA RESULTS

Figure 2.12: Heterozygous SNP call shown in IGV. Parts of the sequence reads show a mutation near
position 1,330,750. Since not all reads covering the SNP site contain the mutation, the SNP
is identified as homozygous. The coverage track highlights this sort of SNPs by a two colored
vertical line (in this case red and blue) which encodes the genotype.

2.2.1 Preprocessing results

The complete set of preprocessing steps was applied by the pipeline. As the input samples were

not encoded in standard Sanger format, it was necessary to first apply FASTQ conversion. Read

quality statistics processed on the raw data show that each read in each sample is exactly 78 bp

long (see figure 2.2). Moreover, a slight decrease in median quality values is reported for each

sample. Table 2.1 lists the overall GC content of the samples categorized by first and second

reads.

FASTQ
GC content AT content N content

input

S1 R1 45.93 % 54.03 % 0.04 %

S1 R2 45.79 % 54.09 % 0.12 %

S2 R1 44.94 % 55.02 % 0.04 %

S2 R2 44.84 % 55.03 % 0.13 %

Table 2.1: Table listing overall GC, AT, and N content in percent categorized by sample and first/second read
in pair.

The generated heatmaps (see figure 2.13) indicate that the data contains reads where a quality

value of ‘2’ is assigned, which is used by Illumina as Read Segment Quality Control Indicator. This
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indicator is assigned for regions at the start or the end of a read (Mann [2009]). These regions are

ignored by further downstream analyses. Therefore, and for enhancing read quality, the quality

value ‘2’ and all unidentified base calls were trimmed at both sides of the reads. Between 15 to

30 percent of the reads are affected by trimming (see table 2.2 for a detailed summary).

Figure 2.13: Heatmap showing base quality score distribution of raw sequence data of S1 R1 for adenine.
Quality values range between two and 35. Light gray areas depict quality values which do not
occur in the data.

Read filtering removed read pairs whose reads are shorter than 20 bp or contain more than

five percent of unidentified bases in their read sequence. In order to qualify for elimination, it is

sufficient that only one of the reads failed the filter. Table 2.3 summarizes the filter results grouped

by sample. More than 96 percent of the reads are accepted for further downstream analyses.

22



EXOME ANALYSIS USING NEXT-GENERATION SEQUENCING DATA RESULTS

FASTQ Total number N & QV Trimmer
input of reads trimmed not trimmed

S1 R1 36,427,610 9,854,774 26,572,836

27.05 % 72.95 %

S1 R2 36,427,610 5,869,569 30,558,041
16.11 % 83.89 %

S2 R1 36,355,815 8,738,227 27,617,588

24.04 % 75.96 %

S2 R2 36,355,815 5,104,367 31,251,448
14.04 % 85.96 %

Table 2.2: FASTQ trimming results showing total number of reads in one FASTQ file and the number of
trimmed and untrimmed reads as absolute value and percentage. Trimmer was parametrized to
trim quality value ‘2’ and IUPAC code ‘N’. The table lists statistics for each input file as trimming
was applied on each FASTQ file separately.

Sample
Total number Length filter N filter
of read pairs passed failed passed failed

S1 36,427,610 35,309,589 1,118,021 35,306,212 3,377

96.93 % 3.07 % 96.92 % 0.01 %

S2 36,355,815 35,366,540 989,275 35,362,774 3,766
97.28 % 2.72 % 97.27% 0.01 %

Table 2.3: FASTQ filter results of the applied length and subsequent unidentified base filter (named N filter).
The table lists total number of read pairs, number of filtered and passed read pairs as absolute
value and percentage. The length filter was parametrized to rejected read pairs with reads shorter
than 20 bp whereas the N filter rejected read pairs with more than five percent unidentified bases
in one of their reads.

2.2.2 Alignment results

35,306,212 and 35,362,774 read pairs were passed to the alignment program for S1 and S2,

respectively. After processing the sequence alignment component, 49.96 (S1) and 46.01 (S2)

percent of the alignment input reads are categorized as properly paired, unique, and exon over-

lapping (see figure 2.14 and tables 2.4 and 2.5 for intermediate filter results), which results in an

exome capture specificity of 51.87 (S1) and 46.33 (S2) percent.
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Sample
Total number Mapped read filter Proper paired filter
of read pairs passed failed passed failed

S1 70,612,424 68,010,027 2,602,397 66,344,318 1,665,709

96.31 % 3.69 % 93.96 % 2.36%

S2 70,725,548 70,251,286 474,262 69,856,104 395,182

99.33 % 0.67 % 98.77 % 0.56 %

Table 2.4: Alignment filter results of the applied mapped read and proper paired filter. The table lists the
total number of read pairs passed to the sequence alignment program, and number of passed
and failed reads per filter. The second row of each sample shows the percentage of accepted
and rejected reads in relation to the total number of read pairs passed to the sequence alignment
component.

Sample
Total number Duplicate filter Exome filter
of read pairs passed failed passed failed

S1 70,612,424 54,959,346 11,384,972 35,278,875 19,680,471

77.83 % 16.12 % 49.96 % 27.87 %

S2 70,725,548 53,146,424 16,709,680 32,544,256 20,602,168
75.14 % 23.63 % 46.01 % 29.13 %

Table 2.5: Alignment filter results of the applied duplicate and exome filter. The table lists the total number
of read pairs passed to the sequence alignment program, and number of passed and failed reads
per filter. The second row of each sample shows the percentage of accepted and rejected reads
in relation to the total number of read pairs passed to the sequence alignment component.

Figure 2.14: Illustration of alignment filter results of all processed filters applied on S1 and S2 in percent.
Violet bars show percentage of reads which could be mapped onto the reference, light yellow
bars represent the percentage of properly paired reads, turquoise bars encode the percentage
of unique reads, and purple bars illustrate the percentage of exon overlapping reads.
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2.2.3 Alignment statistics

Alignment statistics were conducted on mapped, properly paired, unique, and exon overlapping

reads. Table 2.6 lists selected alignment summary metrics generated by the alignment statistics

component. The quality of the passed reads is high, as strand balance is close to optimum and

more than 99 percent of the passed sequence reads are high quality assigned reads. Since PE

Sample
Total number Mean read Strand High quality High quality

of analyzed reads length balance aligned reads error rate

S1 35,278,875 74.81 0.48 35,101,928 1.36·10−3

99.50 %

S2 32,544,256 75.32 0.47 32,388,515 1.34·10−3

99.52 %

Table 2.6: Alignment summary metrics for sample S1 and S2. Only properly paired, unique, and exon
overlapping reads were taken into account. The strand balance metric reports the ratio between
the number of reads aligned onto the forward strand and total number of reads. High quality
aligned reads describe the number of reads with an assigned mapping quality of 20 or higher.
The high quality error rate metric illustrates the percentage of bases that mismatch the reference
in high quality reads.

data was processed, additional insert size distribution characteristics were generated. Figure 2.15

illustrates the insert size distributions in a histogram for S1 and S2, whereas table 2.7 lists basic

statistics about both samples.

Figure 2.15: Insert size histograms for sample S1 and S2. In S1, the majority of read pairs was between 75
and 200 bp apart, whereas in S2 most reads were aligned within 160 to 200 bps.
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Sample
Median Minimum Maximum Mean Standard

insert size insert size insert size insert size deviation

S1 176 23 397 163.55 32.95

S2 180 32 260 177.23 16.18

Table 2.7: Insert size metrics for sample S1 and S2. Table lists median, minimum, maximum, mean, and
standard deviation for reported insert sizes.

2.2.4 Variant detection

DIP calling resulted in 1,939 and 2,039 identified DIPs for S1 and S2, respectively. A minimum

coverage of six reads at a site was required to be considered in DIP detection. Table 2.8 and

figure 2.16 illustrate the DIP calling results in further detail.

Sample
Total number Not in Intron Coding UTR Unknown

of DIPs RefSeq DIPs DIPs DIPs DIPs

S1 1,939 1,725 173 29 11 1

88,96 % 8,92 % 1.50 % 0.57 % 0.05 %

S2 2,039 1,823 177 24 13 2
89.40 % 8.68 % 1.18 % 0.64 % 0.10 %

Table 2.8: Number and categorizations of identified DIPs in S1 and S2. Table lists the total number of iden-
tified DIPs, DIPs which did not overlap any RefSeq genes, intron affecting DIPs, DIPs present
in RefSeq coding regions, DIPs covering untranslated regions (UTRs), and unknown DIPs. Un-
known DIPs are DIPs which did overlap RefSeq genes but no functional information was provided
for categorization.

Figure 2.16: Categorization of identified DIPs in S1 and S2. In both samples, the majority of called DIPs
was not associated with any RefSeq gene. Among DIPs covering RefSeq genes, DIPs located
in intron regions were most prominent, followed by affected coding regions, and DIPs covering
UTRs. RefSeq related DIPs were categorized as unknown if no functional information could be
provided for the affected region.
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SNP calling reported 18,575 (S1) and 18,605 (S2) raw SNPs. 1,410 (S1) and 1,543 (S2)

SNPs were marked to be omitted by variant quality score recalibration. Subsequent filtering ex-

cluded SNPs with a false discovery rate (FDR) > 0.1, which resulted in 14,583 (S1) and 14,790

(S2) filtered SNPs. In the final pipeline analysis step, both samples were divided into homo- and

heterozygous SNPs. Table 2.9 lists the detailed results for new SNPs and all SNPs known to

dbSNP. The analysis results show that most detected SNPs were already stored in dbSNP. The

percentage of known homozygous and heterozygous SNPs resembled each other, while novel

SNPs were primarily labeled heterozygous (illustrated in figure 2.17).

Sample Novelty Homozygous Heterozygous
status SNPs SNPs

S1 all 5,696 8,887
known 5,640 8,362

new 56 525

S2 all 5,747 9,043
known 5,686 8,390

new 61 653

Table 2.9: Homo- and heterozygous SNP calls in S1 and S2. Table lists the total number of homo-
/heterozygous SNPs, as well as the number of SNPs already reported in dbSNP, and new SNPs.

Figure 2.17: Relations between homo- and heterozygous SNPs detected in sample S1 and S2. For each
sample, the relations between homo- and heterozygous SNPs for all, reported in dbSNP, and
new SNPs are illustrated.

Based on this data, further investigations can be conducted to experimentally verify the authentic-

ity of the identified variants and potential disease driving candidates can be studied in subsequent

biological research programs.

In summary, 36,427,610 (S1) and 36,355,815 (S2) read pairs generated by Illumina Genome
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Analyzer IIx were analyzed by the implemented pipeline. After read trimming and filtering more

than 96 percent of both samples were passed to further downstream analyses. Sequence align-

ment and subsequent alignment filtering identified 35,278,875 (S1) and 32,544,256 (S2) exon

overlapping reads. The aligned reads of both samples showed high quality as more than 99 per-

cent of the exon overlapping reads were assigned a mapping quality of 20 or higher. Subsequent

variant detection and filtering resulted in 1,939 (S1) and 2,039 (S2) DIPs and 14,583 (S1) and

14,790 (S2) SNPs of which 61 percent (S1 and S2) were classified as heterozygous.
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Chapter 3

Discussion

The effective usage of NGS in modern genetics strongly depends on efficient software solu-

tions which are capable of handling the downstream analyses of generated sequencing data

(McPherson [2009]). As the bottleneck shifted from sequence generation to analysis, new and

innovative analysis tools are in high demand to conquer the computational challenges of NGS

(Flicek [2009]). Implementing a unified software solution that combines these tools (for a detailed

list see Olivares [2010]) with necessary HPC approaches greatly facilitates the analysis process

and therefore, focus is laid on the development of analysis integrative pipelines.

In this thesis a highly configurable sequencing analysis pipeline for exome studies was devel-

oped. The resulting application covers the whole process of exome analysis starting from raw

sequence preprocessing, over sequence alignment and alignment statistics, to variant detection.

To the best of our knowledge, the developed software is the first freely available exome analy-

sis pipeline providing a streamlined analysis for SE and PE data generated by Illumina or ABI

SOLiDTMplatforms.

Read preprocessing

The first pipeline module covers read preprocessing which supports the evaluation of raw data

quality by providing basic statistics about read length and read quality. Furthermore, the com-

ponent refines raw data by individually trimming and filtering error prone sequence reads. Sev-

eral quality control programs were tested for their suitability including TileQC (Dolan and Denver

[2008]), PIQA (Martı́nez-Alcántara et al. [2009]), CANGS (Pandey et al. [2010]), and SolexaQA

(Cox et al. [2010]). These programs provide several read processing options but as neither of

them supports both, Illumina and ABI SOLiDTMplatforms, they did not qualify for incorporation into

29



EXOME ANALYSIS USING NEXT-GENERATION SEQUENCING DATA DISCUSSION

the pipeline. Therefore, new preprocessing components were developed which allow the analy-

sis of SE and PE Illumina and ABI SOLiDTMreads. The R component ShortRead (Morgan et al.

[2010]) accepts both sequencing platforms but does not handle PE data and emphasizes only

Illumina data. The unpublished software FastQC (Barbraham Bioinformatics [2009]) is, besides

the work presented here, the only one meeting the requirements for quality statistics but was not

available at the time of development.

Sequence alignment

The next pipeline module includes the read alignment component consisting of a mixture of well-

established third party programs and newly developed applications. External software was incor-

porated for short read alignment, local realignment around DIPs, base quality score recalibration,

and duplicate removal. The Burrows-Wheeler based aligner BWA (Li and Durbin [2009]) was

chosen to be integrated into the pipeline as it supports gapped, time efficient, and quality scored

alignment. Furthermore, it is capable of analyzing sequences encoded in nucleotide or color

space and handles SE and PE reads. Other alignment programs such as MAQ (Li et al. [2008a]),

SOAP (Li et al. [2008b]), Bowtie (Langmead et al. [2009]), and ELAND (Illumina [2010]) were dis-

carded as they were either slower than BWA (MAQ, SOAP) or did not support gapped alignment

(Bowtie, ELAND).

Alignment postprocessing

In order to generate accurate read alignments for variant detection, the pipeline refines raw read

alignments by applying numerous post alignment steps in the following order: read tagging, local

realignment around DIPs, base quality score recalibration, and alignment filtering. This particular

sequence of analysis steps was chosen to ensure correct and ideal input for each analysis step.

Local realignment around DIPs corrects misalignments based on the alignment of all reads

mapping at the site under investigation. Although this analysis step does not require unmapped

reads, they are not yet filtered, because the subsequent base quality score recalibration step

relies on this information. The recalibration method considers the probability of mismatching

the reference genome to update the base calling quality score. Therefore, the pipeline applies

recalibration after realignment.

Subsequent alignment filtering is applied to discard reads which do not originate from exon

regions. Mapping and properly-paired filters are applied first since these reads can be easily

detected by SAM flags and subsequently reduce the input for computationally more expensive

filtering steps. It is a known fact that DNA amplification during library preparation may introduce

bias by duplicating DNA fragments. Allowing these duplicate reads in downstream analyses may
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lead to wrong conclusions, as the sequence reads derived from technical artifacts rather than real

biological data. Therefore, the pipeline applies duplicate filtering. In order to provide information

about DNA capture efficiency, exome filtering is executed at the end of the alignment component.

A key characteristic of capture efficiency is the capture specificity which is defined by Ng et al.

[2009] as the ratio of exon overlapping reads to total number of reads mapping the reference.

The generated proper pair information allows drawing conclusions about the alignment ac-

curacy which can be affected by erroneous library preparation, inconsistencies within the align-

ment, or structural reallocations. Since this information is only provided by PE reads, PE exome

sequencing is preferred to SE approaches. Additionally, SE duplicate removal tends to overesti-

mate the number of true duplicates, especially with increasing coverage. Bainbridge et al. [2010]

showed that analysis of PE data with SE approaches nearly quadrupled the amount of detected

duplicates. By default, the pipeline performs duplicate removal on SE data, but in order to allow

the use of a larger number of reads for variant detection, duplicate removal can be turned off for

SE analysis.

Variant detection

Among the several variant callers available, GATK was chosen to be incorporated into the pipeline

as it supports several NGS platforms, individual as well as multi sample analyses, and gener-

ates VCF 4 output. Moreover, it provides a set of additional SNP analysis tools including SNP

quality evaluation, SNP filtering, and standardized downstream recalibration of variant quality

scores. Another reason in favor of GATK is that several tools of this suite have proven re-

liable in large-scale projects like the 1000 Genomes Project and The Cancer Genome Atlas

(Broad Institute [2010a]). Other applications tested for SNP detection are CRISP (Bansal [2010]),

DiBayes (Applied Biosystems [2010]), SOAPsnp (Li et al. [2009b]), VarScan (Koboldt et al. [2009]),

SNPSeeker (Druley et al. [2009]), and SAMtools (Li et al. [2009a]). Some of them are limited to

a certain NGS platform (DiBayes, SNPseeker), while others are designed to handle only pooled

sequencing data (CRISP). SAMtools and SOAPsnp are equipped for single sample analysis and

multi platform support but do not provide further functionality to detect the novelty status of SNP

calls. The feature set of VarScan is comparable to GATK as it is designed for pooled and single

sample SNP calling, allows analyzing sequence reads derived from nucleotide or color space, and

offers SNP annotation. However, since the tool does not provide as many downstream analysis

options as GATK, VarScan was not integrated into the pipeline.

The last pipeline module covers variant detection handled by GATK and additional splitters.

GATK performs SNP calling based on statistical methods which allow the assignment of scores to
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enable the ranking and comparison of SNP calls. Since raw variant calls do include false positives,

further SNP refinement is required. This can be achieved by individually filtering the SNP call set

based on certain characteristics such as read coverage and quality scores which may cause

the drawback of introducing bias. To support a more standardized SNP call refinement, GATK

provides a variant score recalibration method which is solely based on covariates obtained by the

call set itself. Thereby, bias introduced by unexperienced users can be avoided and comparison

between DNA samples is facilitated.

Since the DIP detection tool provided by GATK is based on heuristic cutoffs and not on a statis-

tical model, no DIP quality score is provided and DIP comparison between samples is hampered.

More suitable approaches provided by Dindel (Albers et al. [2010]), Pindel (Ye et al. [2009]), and

SRMA (Homer and Nelson [2010]) were either not available at the time of development (Dindel,

SRMA), or only designed for PE data (Pindel).

Comparison with existing software

Compared to other analysis pipelines and toolkits the developed application incorporates a com-

plete set of necessary analysis steps and offers automatic and efficient execution. The pipeline

presented by Eck et al. [2010] supports exome analysis starting with sequence alignment for Il-

lumina data but lacks raw read preprocessing and ABI SOLiDTMsupport. Galaxy (Goecks et al.

[2010]) provides similar analysis functionality as the developed pipeline but does not yet offer a

streamlined pipeline for exome sequencing. The Omixon Variant Toolkit (Omixon Webservices

[2010]) and GATK provide numerous analysis tools for exome sequencing but are based on al-

ready aligned reads. Additionally, the Omixon Variant Toolkit is designed for ABI SOLiDTMdata

only. Commercial software such as CLCbio GenomicsWorkbench (CLCbio [2010]) and NextGENe

(Softgenetics [2010]) offer a similar exome analysis functionality as the developed pipeline but are

not freely available to the scientific community. Therefore, the pipeline developed and evaluated

in this thesis represents an important contribution to genetic and clinical research.

Outlook

Due to the ongoing development of biological and information technologies, requirements of com-

putational environments continuously change and applications can never be considered finished.

The developed pipeline will undergo constant improvements and adaptations to include new find-

ings and software tools for analyzing exome sequencing data.

Today, it is known that library preparation and DNA sequencing may introduce several types

of artifacts, including primer sequences and low complexity sequences. Sequence cleaning pro-

grams like Seqclean (Chen et al. [2007]) or TagDust (Lassmann et al. [2009]) are capable of iden-
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tifying and removing these contaminants. Therefore, the integration of such an analysis tool into

the read preprocessing component would enhance raw read quality and increase the percentage

of mapped reads.

Currently, heuristic cutoffs are used for DIP identification. As new and improved DIP callers

like Dindel are now available, these tools will be tested for compatibility with Illumina and ABI

SOLiDTMSE and PE reads and qualified programs will be incorporated into the pipeline.

The current pipeline was designed for analyzing DNA samples originating from only one sam-

ple. To gain further insights into hereditary diseases, some exome sequencing approaches an-

alyze samples of several relatives together. Therefore, the application will be extended to be

equipped for multi sample analysis.

Conclusion

In conclusion, the implemented analysis software provides an easy to use pipeline for the efficient

and well-structured study of exome sequencing data generated by Illumina and ABI SOLiDTMde-

vices. It supports the analysis of both, SE and PE, sequencing data types by implementing

different strategies to fit the characteristics of the two different library preparation protocols. The

combination of state-of-the-art libraries with newly developed code and HPC approaches allows

the application to be capable of meeting the daunting challenges of NGS. Testing the pipeline on

biological data obtained by a cooperation with clinical research partners showed that the devel-

oped application is tremendously suitable for exome sequencing analysis and generates highly

reproducible results.

We strongly believe that the developed pipeline will be of interest not only to the biological

community but can also have an impact on upcoming diagnostic applications in clinical settings.

As the price for sequencing costs is plummeting, the diagnostic application of exome sequencing

for the identification of genetic diseases is on the verge of becoming routine. In this context, fast

and robust pipelines for the analysis of exome sequencing data are of utmost importance and will

contribute to the adoption of existing and upcoming powerful sequencing technologies in routine

clinical applications.
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Chapter 4

Methods

4.1 Next-generation sequencing

Prior to the introduction of the first NGS platform, automated Sanger sequencing (Smith et al.

[1986], Ansorge et al. [1986]) was the method of choice for DNA sequencing. Its major limitations

were the low number of samples which could be analyzed in parallel and its resulting high costs

per base. Together with the prospect of a broad field of application, these objectives led to the

development of new sequencing technologies. NGS devices provide high throughput and speed at

the expense of analyzing only relatively short reads at a lower per base accuracy than automated

Sanger sequencing (see table 4.1 for detailed information).

In general, the sequencing process can be grouped into library preparation, sequencing and

imaging, and data analysis (Metzker [2010]).

4.1.1 Library preparation

Library preparation describes the preparation of DNA templates prior to sequencing (Roe [2004]).

This process includes breaking a DNA sample randomly into smaller fragments, ligating adapter

sequences to allow the later use of universal primers, and amplifying the produced DNA tem-

plates. Based on different library preparation protocols one can distinguish between single-end

(SE), paired-end (PE), and mate-paired (MP) libraries.
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Platform
Library/template Read length

Run time Gb per run
preparation [bp]

Sanger sequencing bacterial cloning 650 1-3 h 0.0017-0.005

Roche/454 SE/MP 400 10 h 0.4-0.6

GS FLX Titanium emulsion PCR

Illumina HiSeq 2000 SE/PE/MP 35 1.5 da 2-35a

bridge amplification 50 x 50 4 db 75-100b

100 x 100 8 dc 150-200c

ABI SOLiDTM4hq SE/PE/MP 75d 3 dg 100g

emulsion PCR 75 x 35e 12 dh N/A

75 x 75f 14 di N/A

a 35bp SE b 50 x 50 PE/MP c 100 x 100 PE/MP
d SE module e PE module f MP module g 75bp SE h 75 x 35 PE i 75 x 75 MP

Table 4.1: Comparison of sequencing platforms, summarizing Roche [2010], Illumina [2010], and ABI [2010]

Single-end library

SE libraries (also referred to as fragment libraries) are created by randomly shearing genomic

DNA (gDNA) or complementary DNA (cDNA) into fragments which are less than 1 kb in size.

Paired-end library

PE library preparation resembles the SE protocol except that different sequencing primer (SP)

sites are ligated at each end. This is needed, as PE reads are created by sequencing a DNA

fragment from both sides sequentially. After analyzing the first read with SP 1 the templates are

regenerated and the second read is sequenced by the use of SP 2 (see figure 4.1). This technol-

ogy allows the creation of read pairs which are between 200 to 500 bp apart in the original sample.

This distance is referred to as insert size. Currently only Illumina (4.1.2) and ABI SOLiDTM(4.1.2)

offer PE protocols (Illumina [2010], ABI [2010]).

Figure 4.1: Schema of PE protocol. Figure adapted from Illumina [2010].
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Mate-pair library

In MP protocols, sheared DNA with 2-5 kb in size is labeled at the ends, circularized, and again

linearized by cutting the cycles. Only fragments containing the label and therefore both ends of

the original DNA fragment are selected and sequenced as described in PE sequencing (see figure

4.2).

Figure 4.2: MP protocol. Figure adapted from Illumina [2010].

After the initial library preparation step, Sanger sequencing and most NGS technologies use

a DNA amplification step to ensure sufficient signal intensity for nucleotide detection. Bacterial

cloning of DNA fragments, as used for Sanger sequencing, may incorporate parts of the cloning

vector thus introducing artifacts. New technologies avoid this by applying alternative amplification

steps or directly sequencing single DNA molecules (Branton et al. [2008], Schadt et al. [2010]).

Commonly used amplification procedures are emulsion PCR and bridge amplification.

Emulsion PCR

In emulsion PCR, single-stranded DNA (ssDNA) hybridizes onto oligonucleotide bound beads,

ideally leaving one DNA template per bead (see figure 4.3). The beads are part of water-in-

oil micro-emulsions which additionally contain all necessary components for PCR. After PCR

amplification within these micro-reactors, up to thousands of complementary DNA strands are

covalently bound to the beads. The original DNA template strands are washed away and the

beads are purified and immobilized for later sequencing (Dressman et al. [2003], Metzker [2010]).

Figure 4.3: Description of emulsion PCR. Figure taken from Metzker [2010].
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Bridge amplification

A solid surface which is densely coated with forward and reverse primers is the main device for

bridge amplification (see figure 4.4). ssDNA templates anneal randomly to the surface and their

complementary strands are built. After denaturation, a washing step removes all original template

DNA. The remaining covalently bound complementary strands bind over to nearby reverse primers

enabling the creation of yet another replicated strand. The DNA is denaturated again to yield

ssDNA and the next cycle of primer annealing and DNA replication is started. Thereby, clusters

of DNA are produced all over the solid surface. As a last step prior to sequencing the template

DNA is cleaved and washed away. (Adessi et al. [2000], Fedurco et al. [2006], Mardis [2008])

Figure 4.4: Bridge amplification. Figure taken from Metzker [2010].

4.1.2 Sequencing and imaging

The three most widely used NGS platforms up to today are Roche/454, Illumina, and ABI SOLiDTM.

All three technologies implement a sequencing-by-synthesis approach in which the synthesis of

a complementary DNA strand is used to determine the DNA sequence. A second shared feature

is the use of a template amplification step to increase signal intensity for nucleotide identification.

Third generation sequencing (TGS) platforms are capable of analyzing single DNA molecules

but are out of the scope of this thesis and will not be further discussed. An review about TGS

technologies is given in Schadt et al. [2010] and Munroe and Harris [2010].

Roche/454

In 2005 Roche/454 introduced the first commercially available NGS device. The platform analyzes

DNA by the use of an alternative sequencing technology known as pyrosequencing (Ronaghi et al.

[1996], Ronaghi et al. [1998]) where nucleotides are detected based on the release of pyrophos-
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phate. After the amplification of target DNA with emulsion PCR, beads, pyrosequencing enzymes,

and pyrosequencing sulfates are loaded into a pico titer plate device, which places each bead into

an addressable position within the plate. After the sequencing primer has been annealed the

first sequencing cycle is started. Each cycle, nucleotides of one type (either dATP, dCTP, dGTP,

or dTTP) are added to the plate. When incorporated, the nucleotide releases a pyrophosphate

thereby triggering a series of downstream reactions. The use of luciferase in these reactions

causes emission of a light signal which is proportional to the amount of integrated nucleotides.

This signal is detected by a CCD camera and image information is stored for further processing.

The remaining nucleotides are washed away and the next type of nucleotides is added to the

plate. (Margulies et al. [2005], Ansorge [2009], Roche [2010])

Figure 4.5: Roche/454 sequencing workflow. (A) Library preparation. (I) DNA is randomly sheared and
universal primer sites are ligated. (II) Emulsion PCR results in beads with thousands of identical
template DNAs. (III) Beads and pyrosequencing molecules are loaded into a pico titer plate. (B)
Illustration of a pyrosequencing reaction including the enzymes DNA polymerase, DNA primer,
ATP sulfurylase, and luciferase, and the substrates adenosine 5’ phosphosulfate (APS) and
luciferin. Figure taken from Ansorge [2009].

Illumina

The Illumina (formerly known as Solexa) sequencing technology analyzes different DNA samples

in parallel by the use of bridge amplification and dye-terminated nucleotides. After primer hy-

bridization, nucleotides which are labeled by different fluorescent dyes are added to the slide. In

each sequencing cycle, only one nucleotide is incorporated into the complementary strand due

to its attached terminator group. A washing step removes all remaining free nucleotides before

the newly added base is identified. Finally, the terminator and dye group are cleaved off, and the

sequencing cycle is restarted. (see figure 4.6) (Bentley et al. [2008], Metzker [2010]). is
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Figure 4.6: Illumina sequencing schema. a) After the sequencing primer is hybridized to the primer site,
fluorescently labeled, reversibly terminated nucleotides are incorporated into the complementary
strand. b) The remaining nucleotides are washed away and the fluorescence signal identifying
the base is recorded. c) The fluorescent label and terminator group are removed and a new
cycle of sequencing is started. Figure adapted from Metzker [2010].

ABI SOLiDTM

The SOLiDTMsystem is based on ligating fluorescently labeled dinucleotide probes to the DNA

template under investigation (figure 4.7)(Tomkinson et al. [2006], Landegren et al. [1988]). After

emulsion PCR, beads are covalently bound to a glass slide and universal sequencing primers, lig-

ases, and a pool of labeled dinucleotide probes are added to the glass slide. The DNA sequence

is determined by recording the color code, representing the first two bases of the dinucleotide, in

several cycles of DNA ligation and cycles of primer reset. Figure 4.8 describes the sequencing

process in further detail. Due to the two color encoding each base is determined independently

two times. Therefore, the distinction between true SNPs and sequencing errors is possible.

Figure 4.7: ABI SOLiDTMsequencing chemistry. a) The SOLiDTMsubstrate consists of an emulsion PCR
bead, its covalently bound primer site (two sites for MP and PE), and the DNA template to be
sequenced. b) SOLiDTMuses ‘1,2-probes’ (a version of a dinucleotide probe) where the first
and second nucleotides are analyzed. The remaining six bases consist of either degenerated or
universal bases (Metzker [2010]). Each dye represents 4 of 16 possible dinucleotide sequences.
Figure adapted from Mardis [2008].
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Figure 4.8: ABI SOLiDTMsequencing cycle. The complementary dinucleotide hybridizes to the already
primer-bound template sequence and is ligated (1). After fluorescence is measured (2) un-
extended strands are capped (3) and the dye is cleaved off (4) leaving a free 5’ phosphate group
available for further reactions. This process is repeated for several cycles until the required read
length is achieved (5). The synthesized strand is removed, a new primer with a one-base offset
is hybridized (6) and the ligation cycles are repeated (7). This primer reset process is repeated
for five rounds providing a dual measurement of each base (8) (ABI [2010]). Figure adapted
from Mardis [2008].

4.2 Sequencing applications

The combination of different types of sample input and library preparations allows for the analysis

of numerous sequencing applications such as whole genome sequencing, ChIP-Seq, metage-

nomics, targeted re-sequencing (e.g. exome sequencing), RNA-Seq, Methyl-Seq, and others.

For a brief review on these methods see Wold and Myers [2008]. As this thesis focuses on the

analysis of exome sequencing data, this application is described in further detail.
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4.2.1 Exome sequencing

Exome sequencing describes the process of targeted re-sequencing of a genome’s entire protein

coding regions with the goal to identify mutations. Sample input is created by using exome cap-

turing arrays or capturing libraries (NimbleGen [2010], Agilent [2010], Gnirke et al. [2009]) which

isolate and enrich the DNA templates to be analyzed (see figure 4.9). After sequencing, qual-

ity estimations allow the evaluation of each analyzed base and sequence alignment is used to

map the relatively short reads onto a reference genome. In order to gain first insights into library

preparation and sequencing efficiency, filtering steps are required to determine the percentage

of sequence reads which do not originate from protein coding regions or could not be aligned

at all. Subsequently, variant detection algorithms obtain a set of genome positions where the

analyzed sample differs significantly from the reference. Since these call sets contain numerous

non-biologically based variations, further filtering steps are applied to increase the number of true

biological variants.

Figure 4.9: Illustration of exome sequencing workflow. After targeted re-
sequencing of protein coding regions, base calling and quality assess-
ment methods are automatically applied. Sequence alignment of the
resulting reads followed by refinement and filtration enable variant de-
tection. In order to enhance the called variant set, false positive calls
are filtered out, too.

4.3 Base/color calling quality assessment

In order to provide accuracy estimates, every NGS platform assigns phred-like quality values for

each base or color call. Initially introduced by the base-calling program Phred (Ewing and Green

[1998], Ewing et al. [1998]), this quality measurement links error probabilities logarithmically to a

base or color call. It is defined as

qphred = −10 · log10 (p) (4.1)

where p is the estimated error probability for that call. Roche/454 and ABI SOLiDTMdirectly

adopted this definition (Illumina [2010], Roche [2010]) whereas Illumina analysis pipelines prior to
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version 1.3 applied the odds ratio instead of p:

qIll1.3− = −10 · log10 (
p

1− p
) (4.2)

It is straightforward to show that the two scores commute as:

qphred = 10 · log10 (10
qIll1.3

10 + 1) and qIll1.3 = 10 · log10 (10
qphred

10 − 1) (4.3)

Later Illumina switched to the original phred scoring schema (see formula 4.1).

4.4 Alignment

Alignment can be described as

the process of determining the most likely source within the genome sequence for the

observed DNA sequence read, given the knowledge of which species the sequence

has come from. (Flicek and Birney [2009])

Traditional alignment programs for Sanger sequencing such as BLAST (Altschul et al. [1990]) or

BLAT (Kent [2002]) do not scale well with NGS reads in terms of memory usage, processing time,

and mapping accuracy. Therefore, several new alignment tools, especially designed for mapping

large amount of short reads, were developed. The algorithms are able to handle NGS specific

sequence read error profiles, PE reads, color space, gapped alignment, and reads originating

from repetitive regions. (Trapnell and Salzberg [2009], Flicek [2009])

Generally, all short read alignment programs use a two step procedure to map a sequence.

First, heuristic techniques identify a small subset of the reference genome where the read is most

likely to align. Then, a slower and more accurate alignment algorithm is used to determine the

exact position of the sequence read. For the latter, suitable algorithms are discussed in Batzoglou

[2005].

Short read aligners can be divided in Burrows-Wheeler transform (BWT, Burrows and Wheeler

[1994]) and hash table based algorithms. Hash table based aligners either index the read se-

quences and search through the reference or vice versa. Read indexing algorithms require little

memory but may be inefficient for aligning a small amount of reads whereas reference indexing

methods have a large memory footprint. BWT based aligners use a reversible compression al-

gorithm to build a reference index suffix tree and then search within this suffix tree for possible

alignments. In contrast to hash table based methods, when using the BWT index only a fraction

of time is needed for whole genome sequence alignment. (Flicek and Birney [2009])

42



EXOME ANALYSIS USING NEXT-GENERATION SEQUENCING DATA METHODS

In order to handle ambiguity or lack of accuracy in alignments, Li et al. [2008a] introduced

the concept of mapping qualities which are a measure for the confidence that a read actually

originated from the position it was aligned to by the mapping program. They consider a read

alignment as an estimate of the true alignment and calculated the mapping quality Qs by phred

scaling the alignment’s error probability P :

Qs = −10 · log10 (P{read is wrongly mapped}) (4.4)

Consequently, the mapping quality is set to 0 for reads which map equally well to multiple positions

in the genome. It is common practice to apply mapping qualities to 255 to indicate that mapping

quality is not available (Li et al. [2009]). As PE reads combine information of both DNA fragment

sides their mapping qualities Qp are calculated as Qp = Qs1 + Qs2. This applies only if both

alignments are consistent, i.e. if the insert size and alignment direction is correct. If alignments

do not add up both reads will be treated as SE regarding their mapping quality score calculations.

A detailed discussion about several available short read aligners is given by Li and Homer

[2010]. A recently established, public online repository (Division for Bioinformatics [2010]) pro-

vides an overview about many currently available NGS alignment programs and lists for each tool

short description, authors, publications, implementation language, supported file formats, and

further information.

4.5 Variant detection

The main goal of exome sequencing is detecting variations from the reference genome to deter-

mine genes associated with rare or common disorders (Ng et al. [2010]). Generally, SNPs are

determined by the comparison of an assembled consensus sequence, which represents the most

likely genotype based on the analyzed sequence reads, with its reference genome. Various SNP

and DIP callers were implemented to identify sites which differ statistically significant from the

reference genome. Simple variant detection approaches apply fixed filters which are based on

the percentage of reads containing the same non-reference base call. More advanced methods

include Bayesian identifiers in combination with prior genotype probabilities to infer the geno-

type and detect variants. Most Bayesian methods differ regarding their estimated prior genotype

probabilities. Some SNP callers define their prior probabilities considering transition and transver-

sion rates or even nucleotide substitution patterns based on previous studies on NCBI dbSNPs

(Zhao and Boerwinkle [2002]) (Li et al. [2008a], Li et al. [2009b], Martin et al. [2010]).

It is advisable to consider different quality indices such as base and mapping quality as poor
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data quality affects SNP calling accuracy. Phred scaled quality scores for consensus and variant

quality estimation describe the probability that the genotype call is incorrect or that an inferred

variant is in fact identical to the reference (Li [2008]).

In order to distinguish biological variants from variants caused by sequencing errors, several

pre- and post filtering steps must be applied. A common approach to reduce false positive calls is

to ignore SNP calls around DIPs and clusters of SNPs, as practice has shown that misalignments

around these sites are commonly error prone (Broad Institute [2010a]). Additional post filtering

must be individually adjusted for each data set which may introduce further bias. In order to

ensure comparability between results, a more standardized way of variant filtration was recently

introduced in the Genome Analysis Toolkit (see section 4.7). It recalibrates variant scores based

on trained data provided by dbSNP (Wheeler et al. [2007]), the HapMap Project (Consortium

[2003]), and optionally the 1000 Genomes Project (1000 Genomes [2008]). The Genome Analysis

Toolkit also offers statistics about transition/transversion rate, HapMap concordance, and dbSNP

concordance, which allows drawing conclusions about the quality of called SNP sets.

4.6 File formats

Several file formats were established for handling data in sequencing and NGS projects (see table

4.2 for an overview of the most commonly used formats and their specifications). As NGS tech-

nologies generate large amount of data, new file formats were introduced, especially designed for

efficient data processing.

4.6.1 FASTQ format

The FASTQ format is a text-based file format for storing sequence read data. For each read the

nucleotide sequence as well as assigned quality values are listed. The format is closely related to

the FASTA sequence file format (Pearson and Lipman [1988]) and is seen as a de facto standard

for storing NGS data. Similar to the FASTA format, FASTQ lacks an explicit definition which led

to the introduction of several incompatible variants. Cock et al. [2010] addressed this issue and

defined the Open Bioinformatics Foundation (OBF [2010]) consensus of the FASTQ format with

four different line types as follows:

@title and optional description

sequence line(s)

+optional repeat of title line

quality line(s)

Figure 4.10: FASTQ format definition
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File format Description Publication/Specification

FASTA stores nucleotide an protein sequences Pearson and Lipman [1988]

FASTQ stores nucleotide sequences and their Cock et al. [2010]

quality values Cock et al. [2010]

GFF General Feature Format ; exchange format for WTSI [2000]
feature description within sequences

GTF Gene Transfer Format ; based on GFF with a WUSTL

structure providing a separate definition and
format name

BED Browser Extensible Data; defines data UCSC [2010]

displayed in the UCSC Genome Browser
annotation track

WIG aka WIGGLE ; format to display continuous- UCSC [2010]

valued data in a track format

BIGBED Big Browser Extensible Data; compressed, Kent et al. [2010]
binary indexed BED

BIGWIG Big WIGGLE ; compressed, binary Kent et al. [2010]

indexed WIG

ROD Reference Ordered Data; file format for storing McKenna et al. [2010]

data ordered by references

VCF Variant Call Format; stores sequence 1000 Genomes [2010a]
variants 1000 Genomes [2010b]

Table 4.2: List of common file formats used in NGS.

‘@’ indicates the beginning of the title line with unlimited length. It often contains a read iden-

tifier and may include any additional information like read length or read position within the plate.

The second line type stores the nucleotide sequence which may be line wrapped. There are no

restrictions regarding the allowed characters in this line type. Still, Cock et al. [2010] recommend

to use only upper case IUPAC single letter codes for (ambiguous) DNA or RNA (IUPAC [1970]) in

sequence lines. ‘+’ at the start of a line signals the end of sequence lines and optionally repeats

the title line. The subsequent lines contain the read’s nucleotide quality scores in ASCII encoding.

It is crucial to notice that both line delimiters - ‘@’ and ‘+’ - can occur anywhere in the quality lines

which complicates file parsing. To enable simple line parsing most programs avoid line wrapping

in their output routines.
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FASTQ variants

Currently, three different FASTQ variants are known: standard Sanger, Illumina prior to version

1.3, and Illumina after version 1.3. Illumina applied in its early version different base quality

calculations (see section 4.3) and introduced different ASCII offsets. Table 4.3 lists type and

range of the quality score as well as ASCII offset and range as handled in the different FASTQ

variants.

FASTQ variant
Quality score ASCII
type range offset range

Sanger FASTQ phred 0 - 93 33 33 - 126

Illumina 1.3- FASTQ Illumina 1.3- -5 - 62 64 59 - 126

Illumina 1.3+ FASTQ phred 0 - 62 64 64 - 126

Table 4.3: FASTQ file format variants including ASCII encoding and quality calculation.

Since all FASTQ variants share valid ASCII ranges and contain no header information it is not

always possible to determine the used variant solely based on the file content.

4.6.2 Sequence Alignment/Map format

The Sequence Alignment/Map (SAM) format (Li et al. [2009]) was designed to store nucleotide

alignments in a generic way. It aims at supporting several sequencing platforms, allowing short

and long reads up to 128 Mb, saving SE as well as PE information, and including various types

of alignments. The tab delimited text format can be divided into a header and an alignment

section. Header lines can be identified by the ‘@’ character at the start of each line and con-

tain, among others, information about the reference against the reads have been aligned, and

read groups. In the alignment section, a tab delimited line describes a read alignment and con-

tains required information about read name, read flags, reference sequence, alignment position,

mapping quality, extended CIGAR, reference sequence of the paired read, position of the paired

read, inferred insert size within the read pair, read sequence, and read quality. The extended

CIGAR string characterizes the type of alignment operation including clipped, spliced, multi-part,

and padded alignment. Allowed operations are match/mismatch (M), insertion (I), deletion (D),

skipped base (N), soft clipping (S), hard clipping (H), and padding (P). Additional optional fields

allow the documentation of less important or program specific data. Color space read information

is also described in the optional fields. To accelerate parsing and ease data processing, the binary

file format Binary Alignment/Map (BAM) equivalent to SAM was introduced (Li et al. [2009a]).
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SAMtools

SAMtools describes the sum of software packages designed for parsing and manipulating align-

ments in the SAM/BAM format available in C, C++, Java, Perl, Python, Ruby, and Common Lisp.

They provide several utilities for format conversions, alignment sorting, alignment merging, file in-

dexing, PCR duplicate removal, generating alignments in a per-position format, and many more.

(Li et al. [2009])

4.6.3 VCF format

The variant call format (VCF) is a text based file format designed for storing the most prevalent

types of sequence variations - including SNPs, DIPs and larger structural variants - together with

rich annotations in a standardized way (Danecek et al. [2010]). It is divided into a header and a

body section where each header line is identified by a leading ‘#’. The header stores mandatory

information about the file format version and body content. Optional header lines contain meta-

data about annotations in the VCF body section. Commonly used annotations include genotype

likelihoods, dbSNP membership, ancestral allele, read depth, and mapping quality (Danecek et al.

[2010], 1000 Genomes [2010a], 1000 Genomes [2010b]).

VCFtools

The freely available software library VCFtools provides general Perl and Python APIs and sup-

ports VCF format validation, migration, annotation, file comparison, basic statistics, merging, and

creation of intersections and complements (Danecek et al. [2010]).

4.7 Genome Analysis Toolkit

The Genome Analysis Toolkit (GATK) is a structured Java cross-platform API specifically designed

for the development of efficient and robust analysis tools for already base called and aligned

NGS data (McKenna et al. [2010]). To ensure a quick and stable parallel processing of the data,

GATK uses the functional programming philosophy Map/Reduce (Dean and Ghemawat [2008])

and requires its input to be sorted in the chromosome order of the analyzed genome (referred

to as reference ordered). Besides providing an API for support the development of user-specific

analysis tools, GATK already contains a set of data access patterns and tools for generally needed

tasks including recalibration of base quality scores, local realignment, genotyping, and variant call

detection (Broad Institute [2010a]). Currently, the GATK is used in large-scale sequencing projects
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like the 1000 Genomes Project (1000 Genomes [2008]) and The Cancer Genome Atlas (TCGA

[2005]).

4.8 Genome visualization

The introduction of NGS technologies was accompanied by the generation of data in unprece-

dented amounts and speed. Although many NGS analysis tasks are now accomplished by au-

tomated processes, their resulting data still requires visual inspection and interpretation by re-

searchers. In order to ease exploration and interpretation of NGS data, qualitative and quanti-

tative abstraction is of utmost importance. Therefore, tools, especially designed for displaying

large amount of data, ranging from simple stand alone software to complex integrated software

packages, were developed (Nielsen et al. [2010], Evanko [2010]).

The presentation of the reference genome and their mapped sequence reads represented as

letter strings allow the inspection of sequence alignments. As displaying each and every single

read can impede the structured representation of data, a simplified stacked visualization is of-

fered where only variances between reference and reads are highlighted. To reveal the exact

read sequence a zooming mechanism is used for the detailed representation of NGS data. The

inclusion of additional information from external sources may facilitate the interpretation of NGS

data. Therefore, genome browsers incorporate biological annotations such as gene expression,

and genotype variation within a graphical interface (Nielsen et al. [2010], Cline and Kent [2009]).

A detailed list of viewers can be found in Olivares [2010] and Nielsen et al. [2010].

4.9 Pipeline concept

The developed exome pipeline allows authorized users the parallel or serial execution of a fixed,

pre-defined sequence of steps on a cluster. A properties file, containing all cluster and user data,

provides all necessary information (i.e. URL, user name, and password) for user authentication

and authorization which is checked at the beginning of each pipeline run. Additional parameters

allow input specification and fined tuned configuration of each pipeline step. Before a particular

step is submitted to a queue, the information required for its execution is determined by the pro-

gram. The pipeline then transfers all missing files to the task’s folder on the cluster. If any data

is already stored on the cluster (due to previous analysis steps) it can be referenced for further

processing steps and paths to these files is automatically resolved. Finally, the appropriate com-

mand for analysis step execution is generated. On the workstation, the pipeline checks every few

seconds the status of all started analysis tasks and fetches the output files including exit status
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information once the commands have completed. Then the next pipeline step will be started. The

pipeline automatically checks at each start if there are already finished steps reported to avoid

unnecessary computations in case of pipeline abortions and restarts. It is possible but not advis-

able to define computationally inexpensive tasks to be run directly on the workstation in order to

avoid additional I/O on the cluster.

4.10 IT infrastructure

Sophisticated hard- and software systems are required to conquer the computationally expensive

tasks of NGS data analysis. This section and figure 4.11 describe the IT infrastructure used in

this thesis.

Figure 4.11: Two Sun FireTMX4600 M2 Servers (32 CPUs, 160 GB RAM in total) attached via GBit Ether-
net interconnect to SAS storage with 16 TB (extendable to max. 256 TB) are the basis for
all HPC calculations. CentOS (CentOS [2010]) and Rocks cluster distribution (Rocks cluster
[2010]) were used as operating systems of choice for both servers. The pipeline software is
based on the Java Platform, Enterprise Edition (JEE) three-tier architecture and uses JClus-
terService API for communication with the HPC cluster. Data is secured by the detached user
management system.

Hardware infrastructure

To provide an efficient system for analyzing and visualizing exome sequencing data, a 64 bit

computing cluster, consisting of the following components, was introduced:

• two Sun FireTMX4600 M2 Servers each with

• four Quad-Core AMD OpteronTM8356, 2.3 GHz, 80 GB RAM and

• Serial attached SCSI (SAS) storage of 16 TB (extendable up to 256 TB) connected via

• GBit Ethernet interconnect
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Software infrastructure

The developed pipeline is attached to a file based user management system in order to ensure

that only authorized users access the high-performance computing cluster. All required input and

output data is transferred to the HPC cluster using the JClusterService API (Stocker et al. [2009]).

The Oracle Grid Engine was chosen as cluster-queuing system, which internally handles task

scheduling and resource management between different analysis jobs.
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Appendix B

Glossary

3’ end DNA end with a terminal hydroxyl group

5’ end DNA end with a terminal phosphate group

allele any of two or more variants of a gene’s DNA sequence

API Application Programming Interface

BAM Binary Alignment/Map

BED Browser Extensible Data

CCDS Consensus CDS

cDNA complementary DNA, synthesized from a mature mRNA template

CDS CoDing Sequence

consensus idealized sequence reflecting the most common base of multiple sequence

reads at each position of the genome

CPU Central Processing Unit

dATP deoxyAdenosine TriPhosphate

dCTP deoxyCytidine TriPhosphate

dGTP deoxyGuanosine TriPhosphate

DIP Deletion/Insertion Polymorphism

DNA DeoxyriboNucleic Acid

dTTP deoxyThymidine TriPhosphate

ENA European Nucleotide Archive

exome complete set of all protein-coding regions of a genome

forward strand DNA strand in direction of 5’ to 3’ end

gDNA genomic DNA
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genotype entire set of genes in a cell, an organism, or an individual

GFF General Feature Format

GRC Genome Reference Consortium

GTF Gene Transfer Format

haplotype set of alleles closely linked on a chromosome that are transmitted together

HapMap Haplotype Map of the human genome

hard clip truncated read bases

HPC High-Performance Computing

IUPAC International Union of Pure and Applied Chemistry

JEE Java Platform, Enterprise Edition

kb kilo base

Mb mega base

MP Mate Pair

NCBI National Center for Biotechnology Information

NGS Next-Generation Sequencing

PCR Polymerase Chain Reaction

PE Paired End

phenotype physical trait or feature of an organism, as determined by a particular genotype

RAM Random-Access Memory

reverse strand DNA strand in direction of 3’ to 5’ end

SAM Sequence Alignment/Map

SAS Serial Attached SCSI

SCSI Small Computer System Interface

SE Single End

sequence read sequencing machine output of an analyzed DNA fragment

SNP Single Nucleotide Polymorphism

soft clip alignment ignored read bases

SP Sequencing Primer

SRA Sequence Read Archive

transition substitution of a purine for another purine (adenine to guanine or vice versa)

or of a pyrimidine for another pyrimidine (cytosine to thymine or vice versa)

transversion substitution of a purine for a pyrimidine or vice versa

USCS University of California, Santa Cruz

UTR UnTranslated Region

WGS Whole Genome Sequencing
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WTSI Wellcome Trust Sanger Institute

WUSTL Washington University in ST. Louis
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Abstract
Background: In recent years, the genome biology community has expended considerable effort
to confront the challenges of managing heterogeneous data in a structured and organized way and
developed laboratory information management systems (LIMS) for both raw and processed data.
On the other hand, electronic notebooks were developed to record and manage scientific data,
and facilitate data-sharing. Software which enables both, management of large datasets and digital
recording of laboratory procedures would serve a real need in laboratories using medium and high-
throughput techniques.

Results: We have developed iLAP (Laboratory data management, Analysis, and Protocol
development), a workflow-driven information management system specifically designed to create
and manage experimental protocols, and to analyze and share laboratory data. The system
combines experimental protocol development, wizard-based data acquisition, and high-throughput
data analysis into a single, integrated system. We demonstrate the power and the flexibility of the
platform using a microscopy case study based on a combinatorial multiple fluorescence in situ
hybridization (m-FISH) protocol and 3D-image reconstruction. iLAP is freely available under the
open source license AGPL from http://genome.tugraz.at/iLAP/.

Conclusion: iLAP is a flexible and versatile information management system, which has the
potential to close the gap between electronic notebooks and LIMS and can therefore be of great
value for a broad scientific community.

Background
The development of novel large-scale technologies has
considerably changed the way biologists perform experi-

ments. Genome biology experiments do not only generate
a wealth of data, but they often rely on sophisticated lab-
oratory protocols comprising hundreds of individual
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steps. For example, the protocol for chromatin immuno-
precipitation on a microarray (Chip-chip) has 90 steps,
uses over 30 reagents and 10 different devices [1]. Even
adopting an established protocol for large-scale studies
represents a daunting challenge for the majority of the
labs. The development of novel laboratory protocols and/
or the optimization of existing ones is still more distress-
ing, since this requires systematic changes of many param-
eters, conditions, and reagents. Such changes are
becoming increasingly difficult to trace using paper lab
books. A further complication for most protocols is that
many laboratory instruments are used, which generate
electronic data stored in an unstructured way at disparate
locations. Therefore, protocol data files are seldom or
never linked to notes in lab books and can be barely
shared within or across labs. Finally, once the experimen-
tal large-scale data have been generated, they must be ana-
lyzed using various software tools, then stored and made
available for other users. Thus, it is apparent that software
support for current biological research - be it genomic or
performed in a more traditional way - is urgently needed
and inevitable.

In recent years, the genome biology community has
expended considerable effort to confront the challenges of
managing heterogeneous data in a structured and organ-
ized way and as a result developed information manage-
ment systems for both raw and processed data. Laboratory
information management systems (LIMS) have been
implemented for handling data entry from robotic sys-
tems and tracking samples [2,3] as well as data manage-
ment systems for processed data including microarrays
[4,5], proteomics data [6-8], and microscopy data [9]. The
latter systems support community standards like
FUGE[10,11], MIAME [12], MIAPE [13], or MISFISHIE
[14] and have proven invaluable in a state-of-the-art lab-
oratory. In general, these sophisticated systems are able to
manage and analyze data generated for only a single type
or a limited number of instruments, and were designed
for only a specific type of molecule.

On the other hand, commercial as well as open source
electronic notebooks [15-19] were developed to record
and manage scientific data, and facilitate data-sharing.
The influences encouraging the use of electronic note-
books are twofold [16]. First, much of the data that needs
to be recorded in a laboratory notebook is generated elec-
tronically. Transcribing data manually into a paper note-
book is error-prone, and in many cases, for example,
analytical data (spectra, chromatograms, photographs,
etc.), transcription of the data is not possible. Second, the
incorporation of high-throughput technologies into the
research process has resulted in an increased volume of
electronic data that need to be transcribed. As opposed to
LIMS, which captures highly structured data through rigid

user interfaces with standard report formats, electronic
notebooks contain unstructured data and have flexible
user interfaces.

Software which enables both, management of large data-
sets and recording of laboratory procedures, would serve
a real need in laboratories using medium and high-
throughput techniques. To the best of our knowledge,
there is no software system available, which supports tedi-
ous protocol development in an intuitive way, links the
plethora of generated files to the appropriate laboratory
steps and integrates further analysis tools. We have there-
fore developed iLAP, a workflow-driven information
management system for protocol development and data
management. The system combines experimental proto-
col development, wizard-based data acquisition, and
high-throughput data analysis into a single, integrated
system. We demonstrate the power and the flexibility of
the platform using a microscopy case study based on com-
binatorial multiple fluorescence in situ hybridization (m-
FISH) protocol and 3D-image reconstruction.

Implementation
Workflow-driven software design
The design of a software platform that supports the devel-
opment of protocols and data management in an experi-
mental context has to be based on and directed by the
laboratory workflow. The laboratory workflow can be
divided into four principal steps: 1) project definition
phase, 2) experimental design and data acquisition phase,
3) data analysis and processing phase and 4) data retrieval
phase (Figure 1).

Project definition phase
A scientific project starts with a hypothesis and the choice
of methods required to address a specific biological ques-
tion. Already during this initial phase it is crucial to define
the question as specifically as possible and to capture the
information in a digital form. Documents collected dur-
ing the literature research should be collated with the
evolving project definition for later review or for sharing
with other researchers. All files collected in this period
should be attached to the defined projects and experi-
ments in the software.

Experimental design and data acquisition
Following the establishment of a hypothesis and based on
preliminary experiments, the detailed design of the bio-
logical experiments is then initiated. Usually, the experi-
mental work follows already established standard
operating procedures, which have to be modified and
optimized for the specific biological experiment. These
protocols are defined as a sequence of protocol steps.
However, well-established protocols must be kept flexible
in a way that particular conditions can be changed. The
Page 2 of 12
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typically changing parameters of standard protocol steps
(e.g. fixation times, temperature changes etc.) are impor-
tant to record as they are used to improve the experimen-
tal reproducibility.

Equipped with a collection of standard operating proce-
dures, an experiment can be initiated and the data gener-
ated. In general, data acquisition comprises not only files
but also observations of interest, which might be relevant
for the interpretation of the results. Most often these
observations disappear in paper notebooks and are not
accessible in a digital form. Hence, these experimental
notes should be stored and attached to the originating
protocol step, experiment or project.

Data analysis and processing
After storing the raw result files, additional analysis and
post-processing steps must be performed to obtain proc-

essed data for subsequent analysis. In order to extract
information and to combine it in a statistically meaning-
ful manner, multiple data sets have to be acquired. The
software workflow should enable also the inclusion of
external analytical steps, so that files resulting from exter-
nal analysis software can be assigned to their original raw
data files. Finally, the data files generated at the analysis
stage should be connected to the raw data, allowing con-
nection of the data files with the originating experimental
context.

Data retrieval
By following the experimental workflow, all experimental
data e.g. different files, protocols, notes etc. should be
organized in a chronological and project-oriented way
and continuously registered during their acquisition. An
additional advantage should be the ability to search and
retrieve the data. Researchers frequently have to search

Mapping of the laboratory workflow onto iLAP featuresFigure 1
Mapping of the laboratory workflow onto iLAP features. The software design of iLAP is inspired by a typical laboratory 
workflow in life sciences and offers software assistance during the process. The figure illustrates on the left panel the scientific 
workflow separated into four phases: project definition, data acquisition and analysis, and data retrieval. The right panel shows 
the main functionalities offered by iLAP.
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through notebooks to find previously uninterpretable
observations. Subsequently, as the project develops, the
researchers gain a different perspective and recognize that
prior observations could lead to new discoveries. There-
fore, the software should offer easy to use interfaces that
allow searches through observation notes, projects- and
experiment descriptions.

Software Architecture
iLAP is a multi-tier client-server application and can be
subdivided into different functional modules which inter-
act as self-contained units according to their defined
responsibilities (see Figure 2).

Presentation tier
The presentation tier within iLAP is formed by a Web
interface, using Tapestry [20] as the model view controller

and an Axis Web service [21], which allows programming
access to parts of the application logic. Thus, on the client
side, a user requires an Internet connection and a recent
Web browser with Java Applet support, available for
almost every platform. In order to provide a simple, con-
sistent but also attractive Web interface, iLAP follows usa-
bility guidelines described in [22,23] and uses Web 2.0
technologies for dynamic content generation.

Business tier and runtime environment
The business tier is realized as view-independent applica-
tion logic, which stores and retrieves datasets by commu-
nicating with the persistence layer. The internal
management of files is also handled from a central service
component, which persists the meta-information for
acquired files to the database, and stores the file content
in a file-system-based data hierarchy. The business layer

Software ArchitectureFigure 2
Software Architecture. iLAP features a typical three-tier architecture and can hence be divided into a presentation tier, 
business tier and a persistence tier (from left to right). The presentation tier is formed by a graphical user interface, accessed 
using a web browser. The following business layer is protected by a security layer, which enforces user authentication and 
authorization. After access is granted, the security layer passes the user requests to the business layer, which is mainly respon-
sible for guiding the user through the laboratory workflow. This layer also coordinates all background tasks like automatic sur-
veying of analysis jobs on a computing cluster or synchronizing/exchanging data with further downstream applications. (e.g. 
OMERO (open microscopy environment) image server). Finally, the persistence layer interacts with the relational database.
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also holds asynchronous services for application-internal
JMS messaging and for integration of external computing
resources like high-performance computing clusters. All
services of this layer are implemented as Spring [24]
beans, for which the Spring-internal interceptor classes
provide transactional integrity.

The business tier and the persistence tier are bound by the
Spring J2EE lightweight container, which manages the
component-object life cycle. Furthermore, the Spring con-
text is transparently integrated into the Servlet context of
Tapestry using the HiveMind [25] container backend. This
is realized by using the automatic dependency injection
functionality of HiveMind which avoids integrative glue
code for lookups into the Spring container. Since iLAP
uses Spring instead of EJB related components, the
deployment of the application only requires a standard
conformed Servlet container. Therefore, the Servlet con-
tainer Tomcat [26] is used, which offers not only Servlet
functionality but J2EE infrastructure services [27] such as
centrally configured data-sources and transaction man-
agement realized with the open source library JOTM [28].
This makes the deployment of iLAP on different servers
easier, because machine-specific settings for different pro-
duction environments are kept outside the application
configuration.

External programming interfaces
The SOAP Web service interface for external program-
matic access is realized by combining the Web service
framework Axis with corresponding iLAP components.
The Web service operates as an external access point for
Java Applets within the Web application, as well as for
external analysis and processing applications such as
ImageJ.

Model driven development
In order to reduce coding and to increase the long term
maintainability, the model driven development environ-
ment AndroMDA [29] is used to generate components of
the persistence layer and recurrent parts from the above
mentioned business layer. AndroMDA accomplishes this
by translating an annotated UML-model into a JEE-plat-
form-specific implementation using Hibernate and Spring
as base technology. Due to the flexibility of AndroMDA,
application external services, such as the user manage-
ment system, have a clean integration in the model.
Dependencies of internal service components on such
externally defined services are cleanly managed by its
build system.

By changing the build parameters in the AndroMDA con-
figuration, it is also possible to support different rela-
tional database management systems. This is because
platform specific code with the same functionality is gen-

erated for data retrieval. Furthermore, technology lock-in
regarding the implementation of the service layers was
also addressed by using AndroMDA, as the implementa-
tion of the service facade can be switched during the build
process from Spring based components to distributed
Enterprise Java Beans. At present, iLAP is operating on one
local machine and, providing the usage scenarios do not
demand it, this architectural configuration will remain.
However, chosen technologies are known to work on Web
server farms and crucial distribution of the application
among server nodes is transparently performed by the
chosen technologies.

Asynchronous data processing
The asynchronous handling of business processes is real-
ized in iLAP with message-driven Plain Old Java Objects
(POJOs). Hence, application tasks, such as the generation
of image previews, can be performed asynchronously. If
performed immediately, these would unnecessarily block
the responsiveness of the Web front-end. iLAP delegates
tasks via JMS messages to back-end services, which per-
form the necessary processing actions in the background.

These back-end services are also UML-modelled compo-
nents and receive messages handled by the JMS provider
ActiveMQ. If back-end tasks consume too many calcula-
tion resources, the separation of Web front-end and JMS
message receiving services can be realized by copying the
applications onto two different servers and changing the
Spring JMS configuration.

For the smooth integration of external computing
resources like the high-performance computing cluster or
special compute nodes with limited software licenses the
JClusterService is used. JClusterService is a separately
developed J2EE application which enables a programmer
to run generic applications on a remote execution host or
high-performance computing cluster. Every application
which offers a command line interface can be easily inte-
grated by defining a service definition in XML format and
accessing it via a SOAP-based programming interface
from any Java-application. The execution of the integrated
application is carried out either by using the internal JMS-
queuing system for single host installations or by using
the open source queuing systems like Sun Grid Engine
(Sun Microsystems) or OpenPBS/Torque.

Results
Functional overview
The functionality offered by the iLAP web interface can be
described by four components: 1) hierarchical organiza-
tion of the experimental data, 2) protocol development,
3) data acquisition and analysis, and 4) data retrieval and
data sharing (Figure 1). iLAP specific terms are summa-
rized in Table 1.
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Hierarchical organization of experimental data
This part of the user interface covers the project definition
phase of the experimental workflow. The definition of
projects and experiments consists solely in inserting the
required descriptive parameters via a Web form. In doing
so, a hierarchical structure with projects, sub-projects and
experiments is created and displayed in the iLAP overview.
The hierarchy (Figure 3) and other screen shots can be
found in the iLAP user manual (Additional file 1). This
overview is the starting point of iLAP, from which almost
every activity can be initiated. By navigating through the
tree, an information box appears alongside. This box
details information about the current node in the tree and
the operations which can be performed on the database
managed object represented by the node. Already in this
early stage, files derived from literature research can be
uploaded to projects and experiments, and ongoing
observations can be stored using the general note dialog.
If multiple files must be associated with projects and
experiments, a Java Applet can be used to upload the files
to the generated project/experiment structure. iLAP can
manage every file independent of their file type, and can
thus be considered as a generic document management
system. File types only need to be considered for subse-
quent processing and data extraction.

Protocol development
When starting experimental work, the iLAP facility man-
ager should define commonly used standard protocols
using the protocol development masks. Therefore, a
sequence of steps must be defined which describes the
typical ongoing experiment in detail. Dynamic protocol

parameters, which may be adapted for protocol optimiza-
tion during the experiment, can be associated with the
pre-defined steps. These parameters can be either numeri-
cal values, descriptive text or predefined enumeration
types, all of which can be preset by default values and
marked with appropriate units. In order to force the acqui-
sition of critical parameters in the data acquisition wizard,
parameters can be marked as required. According to our
experience and the experience of other users, it is helpful
to define small and reusable standard protocol units,
which can be used as building blocks during the experi-
ment-specific protocol assembly. Automatic internal ver-
sioning takes care of changes in standard protocols so that
dependent protocols used in previous experiments
remain unaffected.

Equipped with a collection of standard protocols, an
experiment can be initiated and should be defined at the
beginning of the workflow. The name of each experiment,
its general description and specific aims, must be pro-
vided in order to be able to distinguish between different
experiments. The detailed experiment procedure is
defined by its current working protocol which can be
composed step by step or by reusing existing current work-
ing protocols from already performed experiments. If the
experiment is following a standard protocol, the current
working protocol should be created by simply copying the
predefined standard protocol steps and parameter defini-
tions. In order to consider also the concurrent nature of
simultaneously executed steps the experimenter should be
able to define different sub-branches (e.g. cells are treated
with different drugs in order to study their response)

Table 1: iLAP Terminology:

iLAP specific terms Description

Project Logical unit which can be structured hierarchically and holds experiments, notes and other files (e.g. derived from 
literature research).

Experiment Logical unit which corresponds to one biological experiment and holds a current working protocol, experiment 
specific documentation files, parameter values, raw files, notes, and analysis steps.

Standard protocol Frequently used and well established protocol template also known as standard operating procedures (SOP).
Current working protocol Sequence of protocol steps for a specific experiment which holds raw files, notes and experiment specific parameter 

values.
Protocol step One single step in a protocol which is defined by a name, description, and a list of definable parameters. A sequence of 

protocol steps defines a protocol.
Step group Protocol step which groups multiple protocol steps to a logical unit. It can be used as a step container for sequentially 

executed protocol steps or within split steps.
Split step Protocol step which can contain multiple (step groups) which have to be executed concurrently.
Protocol step parameter Changing parameters which are associated with a step and can hold either textual or numerical values as well as a 

selection from a predefined value list (enumeration).
Note Notes are textual descriptions which are intended to be used for documenting abnormal observations at almost 

anywhere within iLAP.
Raw file Raw files are files which are produced by laboratory instruments and are not processed by any analysis step captured 

within iLAP.
Analysis step Description of a processing step which manipulates, analyzes or processes a raw file, and generates processed files 

which are linked to the original raw file. Analysis steps can be either external e.g. using external software or internal 
using iLAP-internal analysis modules.

Analysis step parameter Parameters and values used during the analysis step.
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named split steps. These split steps lead to different
branches of the experimental workflow called step groups
which are separately handled during the data acquisition
phase.

Once the protocol design phase is completed and all nec-
essary protocol steps with their parameters are defined the
researchers should be able to generate a printout of the
current working protocol with which the experiment can
be performed at the lab bench.

Data acquisition and analysis
After having finished all experimental work and having
created raw data files with different laboratory instru-
ments the data acquisition within iLAP should be per-
formed. By going through the early defined current
working protocol steps, generated raw data files, used pro-
tocol parameter values and observation notes must be
entered. Wizard-based input masks (wizard), which are
derived from the defined current protocol steps, assist the
experimenters during this work. On every step the user has

Hierarchical organization of data in iLAP overviewFigure 3
Hierarchical organization of data in iLAP overview. The continuous use of iLAP inherently leads to structured record-
ing of experiments, conserving the complete experimental context of data records throughout the history of the research 
project. In doing so, a hierarchical structure with projects, sub-projects and experiments is created and can be displayed in this 
iLAP overview tree. The P-icons in the tree stand for projects and sub-projects, the E-icon for experiments and the A-icon for 
analysis steps. Files attached to protocol steps are considered as raw files and are therefore collected under the step container 
visualized with the R-icon. The consistent association of color schemes to logical units like projects, experiments, etc. can be 
directly recognized in this overview. By clicking on one of the tree icons on the left hand a detailed overview appears about the 
selected item. Also actions like creation of new projects etc. can be directly initiated using the quick-links in the "Actions" sec-
tion of "Details".
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to fill in the value fields for required parameters and can
attach files and notes to each of the steps. During the cre-
ation of the working protocol, it is important to name
those steps to which files are attached in a descriptive way.
Files that are directly connected to experimental steps are
considered as raw files and are protected against deletion.
Note, files can be linked to the protocol steps anywhere in
iLAP, i.e. also before and after the data acquisition.

For this data association, the iLAP workflow offers also the
possibility to transfer all generated files to a central repos-
itory and associate automatically files with their generat-
ing protocol step at once, using a Java Applet. All the
internal linkages to protocol steps, experiments or
projects are performed automatically without the need of
any user interference. As the files are attached to a proto-
col and an experiment, the overall context is preserved
and the likelihood of reproducibility of the same condi-
tions is increased. Within iLAP experimental notes are
stored and attached to the originating protocol step,
experiment or project and are retrievable using a keyword
based search mask

Data analysis
The analysis steps are recorded in iLAP by either reusing
existing analysis templates or describing new analysis
steps applied to the previously uploaded raw data files.
Additional analysis tools can be developed in Java as
described in the iLAP user manual (Additional file 1).
According to the file type, internally implemented analy-
sis steps or the description of externally performed analy-
sis steps are associated with the raw data files. Result files
from analysis programs together with the used parameters
can be easily attached to analysis definitions. As an exam-
ple, a server analysis tool was implemented for deconvolv-
ing three dimensional image stacks, executed on a remote
high-performance computing cluster using the JClusterS-
ervice (see methods).

Integration of external programs
A proof of concept about external access of programs
using the iLAP application programming interface was
shown by the implementation of a plugin for the widely
used image processing software ImageJ [30,31]. This Java
plugin enables ImageJ to transfer the image files directly
from iLAP to the client machine. This functionality
appears as a regular dialog in the graphical user interface
of ImageJ, and allows upload of result files back into iLAP
in a transparent manner.

Automatic post processing tool chain
Background tasks like the generation of previews are per-
formed using the internal post-processing tool chain
which is started asynchronously as soon as the files are

associated with the originating experiment in iLAP.
According to the detected file type, multiple post-proces-
sor steps are executed and results are automatically stored
back into the database. This flexible system approach is
also used to automatically inform and synchronize further
downstream applications like OMERO [9] image server
from the Open Microscopy Environment project. There-
fore, iLAP is able to transfer files - transparently for the
user - to a server where a comparable project/dataset struc-
ture is created.

Data retrieval and information sharing
The use of the described data acquisition features inher-
ently leads to structured recording of experiments, con-
serving the complete experimental context of data records
throughout the history of research projects. It is often nec-
essary to go back to already completed experiments and to
search through old notes. Therefore, iLAP offers search
masks which allow keyword based searching in the
recorded projects, experiments and notes. These results
are often discussed with collaboration partners to gain dif-
ferent opinions on the same raw data.

In order to allow direct collaboration between scientists
iLAP is embedded into a central user management system
[4] which offers multiple levels of access control to
projects and their associated experimental data. The shar-
ing of projects can be done on a per-user basis or on an
institutional basis. For small or local single-user installa-
tions, the fully featured user management system can be
replaced by a file-based user management which still
offers the same functionalities from the sharing point of
view, but lacks institute-wide functionalities (Additional
file 2). This is only possible because iLAP keeps the source
of user accounts separated from the internal access control
to enable easy integration of additional local or institu-
tion wide user management systems.

Since sophisticated protocols are crucial for successful
experiments iLAP-users can export their protocols not
only in PDF format (Additional file 3) but also in an
exchangeable XML format (Additional file 4 and 5). In
that way scientists can directly pass over their optimized
protocols to partners who do not share the data using
iLAP internally but need to get the protocol information
transferred. The same XML files can be also used on a
broader basis for protocol exchange using central eScience
platforms like MyExperiments [32]. This platform aims
for an increased reuse and repurpose of commonly shared
workflows achieving at the same time reduced time-to-
experiment and avoiding reinvention. Ongoing standard-
ization efforts regarding the XML format like FuGE
[10,11] are currently not supported but could be inte-
grated in future versions of iLAP.
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Case Study
In order to test the functionality of the system, we used a
high-throughput microscopy study. The focus of this
study was on the three dimensional nuclear localization
of a group of seven genes. This required the development
of a combinatorial multicolor fluorescence in situ hybrid-
ization (m-FISH) protocol. This protocol enables simulta-
neous detection and visualization of all seven genes by
using a combination of three different fluorescent labels.
The elaboration and optimization of m-FISH required
many different protocol steps and parameters. Thus it was
crucial to keep a record of any parameter and procedure
changes during the process of protocol development.
These changes were directly connected with data pro-
duced in the lab (e.g. concentration of the FISH probes,
probe labeling efficiencies etc.) and the resulting imaging
data. In the final combinatorial m-FISH protocol, 70 steps
and 139 different parameters were present. Using this pro-
tocol we conducted 10 experiments and produced 1,441
multicolor 3D-Image stacks of which 984 were subse-
quently corrected for color shifts and processed by 3D-
deconvolution performing 100 iterations of the maxi-
mum likelihood estimation algorithm available with the
Huygens Deconvolution Software (Scientific Volume
Imaging - SVI http://www.svi.nl). These image processing
steps were realized as batch analysis in iLAP, which dele-
gated the compute intensive procedure to a high-perform-
ance computing cluster and then stored all processed
image stacks in the analysis container of the correspond-
ing experiments. Afterwards FISH signals were detected
and analyzed using a custom image analysis procedure
which was realized as a Matlab (MathWorks Inc.) exten-
sion of Imaris (Bitplane Inc.) using the Imaris-XT pro-
gramming interface. This extension automatically
recorded FISH signal coordinates, signal to signal dis-
tances, the nuclear volume and several additional param-
eters of each imaged nucleus. These externally generated
data files were transferred back into iLAP and stored in the
context of the corresponding experiment as an external
analysis step. A summary of the data acquisition and anal-
ysis is shown in Figure 4.

During the course of the study we observed several clear
advantages of the iLAP system over a lab-book in paper
form, which was maintained in parallel. The first and
most valuable feature of iLAP is the direct connection
between protocol steps and data files which cannot be
realized using a paper lab book. A second notable advan-
tage of the iLAP system was that lab-tasks that were per-
formed in parallel or in overlapping time-frames could
also be stored as such, whereas in the traditional lab book
all tasks performed in the lab were written sequentially
which implied a break-up of connected protocols. A third
advantage was that iLAP allowed for rapid searching and
finding of experiments, protocols and desired terms,

which required only a few mouse clicks as opposite to the
cumbersome search using a paper notebook. Moreover,
iLAP enabled easy collaboration functionality, data
backup or parameter completeness checks.

Conclusion
We have developed a unique information management
system specifically designed to support the creation and
management of experimental protocols, and to analyze
and share laboratory data. The design of the software was
guided by the laboratory workflow and resulted in four
unified components accessible through a web interface.
The first component allows the hierarchical organization
of the experimental data, which is organized in a generic
document management system. The second component
focuses on protocol development using templates of
standard operating procedures. Next, the data acquisition
and analysis component offers the possibility to transfer
the generated files to a central repository and to associate
the files with the corresponding protocol steps. Addition-
ally, external data analysis programs can be integrated and
executed on a remote high-performance computing clus-
ter. The last component enables collaboration and data
sharing between scientists using iLAP on a user or institu-
tional level as well as protocol transfer with external users.

Although designed in an experimental context for high-
throughput protocols like microarray studies of gene
expression, DNA-protein binding, proteomics experi-
ments, or high-content image-based screening studies,
iLAP has also proven to be valuable in low- and medium-
throughput experiments. For example, protocols for qPCR
analysis of gene expression using 96 and 384-well formats
-a widely used technique- can be easily developed and can
contribute significantly to establishment of robust assays.
Moreover, since the workflow-oriented concept of iLAP
offers the flexibility of a more general scientific data man-
agement system it is not limited to a special laboratory
protocol, instrument, or type of molecule. For example, its
application for next-generation sequencing is straightfor-
ward since similar requirements on the computational
environment (increasing amount of data, integration of
analysis tools, or use of high-performance computing
infrastructure) have to be met.

In summary, we have developed a flexible and versatile
information management system, which has the potential
to close the gap between electronic notebooks and LIMS
and can therefore be of great value for a broader commu-
nity. Extensive tests in our and other labs have shown that
the benefits of better information access and data sharing
immediately result in reduced time spent managing infor-
mation, increased productivity, better tracking and over-
sight of research, and enhanced data quality.
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Availability and requirements
In order to reach a broader audience of users we have
implemented a Java-based installer application, which is
guiding an inexperienced computer user through the
installation process (see Additional file 2). The basic
installer package of iLAP has been tested on most com-
mon operating systems for which a Java Virtual Machine
Version 1.5 or higher is available, e.g. Unix-based systems

(Linux, Solaris, etc.), MacOS and Windows and can be
downloaded from http://genome.tugraz.at/iLAP/. In
addition to the requirement of a Java VM, a PostgreSQL
database must be either locally installed or accessible via
network. PostgreSQL comes with an easy-to-use installa-
tion wizard, so the complete installation should not be a
significant entry level barrier. For further information
about installation, please read the installation instruc-

Case study summaryFigure 4
Case study summary. The functionality of iLAP was tested in a high-throughput microscopy study. The figure illustrates a 
summary of the data acquisition and data analysis performed. In 10 experiments a protocol consisting of 70 steps with 139 dif-
ferent parameters was used to generate three-dimensional multicolor image stacks. Each of the 1,441 raw image stacks con-
sisted of 28 optical sections (slices) where each slice was recorded in 4 different channels. The raw image stacks were stored 
in the iLAP system and thereby connected with the corresponding experiments and protocols. By utilizing the integrated anal-
ysis functionality of iLAP the 984 raw images processed by the Huygens 3D-deconvolution package and analyzed by an external 
semiautomatic procedure implemented in Matlab and Imaris-XT. The analytical pipeline produced data for 121 different dis-
tance measurements of each single image. The resulting images and data were then stored in their experimental context within 
the iLAP system.
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tions from the download web site and in case of problems
please contact the developers under
iLAP@genome.tugraz.at. For initial testing purposes,
please see also our test environment http://ilap
demo.genome.tugraz.at.

Regarding hardware requirements, the most critical issue
is disk space for large data files. These are stored in a direc-
tory hierarchy where the base directory must be specified
during the installation process. The requirements regard-
ing processor performance and memory depend on the
user basis, but PC or server hardware with 2 GB of RAM
should be sufficient for most installations.

The production environment for our central in-house
installation consists of a 4-processor AMD-system X4600
from Sun Microsystems, with 16 GB of RAM which is con-
nected to an 8TB SAN storage. For computational inten-
sive tasks, iLAP delegates the calculations to a 48-node
high-performance computing cluster using the JClusterS-
ervice interface.
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ABSTRACT

Clinical DNA is often available in limited quantities
requiring whole-genome amplification for subse-
quent genome-wide assessment of copy-number
variation (CNV) by array-CGH. In pre-implantation
diagnosis and analysis of micrometastases, even
merely single cells are available for analysis.
However, procedures allowing high-resolution anal-
yses of CNVs from single cells well below resolution
limits of conventional cytogenetics are lacking.
Here, we applied amplification products of single
cells and of cell pools (5 or 10 cells) from patients
with developmental delay, cancer cell lines and
polar bodies to various oligo tiling array platforms
with a median probe spacing as high as 65 bp.
Our high-resolution analyses reveal that the low
amounts of template DNA do not result in a comple-
tely unbiased whole genome amplification but that
stochastic amplification artifacts, which become
more obvious on array platforms with tiling path
resolution, cause significant noise. We implemented
a new evaluation algorithm specifically for the iden-
tification of small gains and losses in such very
noisy ratio profiles. Our data suggest that when
assessed with sufficiently sensitive methods high-
resolution oligo-arrays allow a reliable identification

of CNVs as small as 500 kb in cell pools (5 or
10 cells), and of 2.6–3.0 Mb in single cells.

INTRODUCTION

Many clinical applications, such as pre-implantation and
non-invasive prenatal diagnosis, would benefit from the
ability to characterize the entire genome of individual
single cells by high resolution. Furthermore, in specific
cancer research applications, such as the investigation of
disseminated tumor cells (micrometastases) in bone
marrow or circulating tumor cells in blood, often only
single cells or very small cell numbers are available for
analyses. The same applies to precancerous lesions, such
as cells with dysplasia or early adenomas. In addition,
due to the discovery that the genome of all humans has
copy-number variations (CNVs) (1–3) and that these may
contribute to phenotype variability and disease suscepti-
bility (4), screening of whole genomes for CNVs represents
one of the most fascinating areas in human genetics at
present. More recently, evidence was reported that
CNVs may arise in somatic cells resulting in somatic
CNV mosaicism in differentiated human tissues (5,6).
The prospect that the presence of some CNVs may be
limited to confined somatic areas and their potential
impact on physiological processes further fuels the need
for reliable CNV screening approaches in small cell
amounts.
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Comparative genomic hybridization (CGH) allows
scanning of the whole genome for CNVs. However,
CGH is usually performed with DNA extracted from
thousands of cells and thus measures the average copy
number of a large population of cells. Accordingly,
CGH is sensitive to CNV heterogeneity within the cell
population. Without preceding special, unbiased whole
genome amplification, CGH is not amenable to single
cell or few cell analyses.
Recently, first results were published describing the

hybridization of single cell amplification products to var-
ious array platforms. Initial studies reported resolution
limits of entire chromosomes (7) or of 34 Mb at best (8)
and thus failed to demonstrate a significant improvement
compared with conventional methodologies. By using the
GenomePlex library technology for DNA amplification
(GenomePlex Single Cell Whole Genome Amplification
Kit, Sigma-Aldrich), we reported that copy number
changes as small as 8.3 Mb in single cells can be detected
reliably (9). Another group employed a 3.000 BAC array
and achieved the detection of about 60% of gains, losses
and interspersed normal regions ‘smaller than 20 Mb’ (10).
Therefore, to the best of our knowledge, even the
most advanced published single cell array-CGH technol-
ogies have resolution limits which represent only a slight
improvement as compared to conventional CGH on
metaphase spreads.
These earlier studies do not offer a detailed map of

how robust a genome with CNVs is represented when
whole genome amplification products are applied to
oligo tiling arrays. To this end, we specifically selected
clinical samples from some individuals in which previous
analyses had revealed defined deletions on chromosome
22. We performed analyses on oligo tiling array platforms,
which possess the highest density of oligonucleotides at
present, i.e. NimbleGen’s Chromosome 22 Tiling array
(HG18 CHR22 FT) covering 385.210 oligos resulting in
a median probe spacing of 65 bp and to a custom made
chromosome 22 array (Agilent) with 241.700 oligo probes
and a median probe spacing of 104 bp. In addition, we
employed the NimbleGen Whole Genome Tiling Array
(HG18 WG Tiling 2.1M CGH v2.0D) consisting of
2.1-million oligo probes, resulting in a median probe spac-
ing of 1169 bp. During the evaluation of these cells, we
noted that standard array CGH-evaluation programs are
not suited for the evaluation of single cell amplification
products and we therefore developed a new algorithm.
In order to test the robustness of this algorithm and to
start to address specific biological questions, we analyzed
single cells from two cancer cell lines and polar bodies on a
244K whole genome array (Agilent).
As reported previously multiple displacement amplifica-

tion with �29 polymerase results in different amplification
of regions in relation to the GC content (11). The same
applies to a linker adaptor whole genome amplification
approach (12), because when these amplification products
were hybridized to a BAC array GC rich regions on chro-
mosome 19 had to be excluded from analysis (10). As
we did not observe any nucleotide related amplification
bias when applying the GenomePlex library technology

to a tiling BAC array (9), we applied this amplification
method to all experiments described here.

MATERIALS AND METHODS

Samples from clinical cases, cancer cell lines and
polar bodies

We used cells from two probands (P1 and P2) with mental
retardation and dysmorphic features in whom previous
analyses performed on the whole genome 44K Agilent
array had shown deletions on chromosome 22 with sizes
of 2.8 Mb (P1) and 3 Mb and 1.2 Mb (both P2), respec-
tively. Furthermore, we prepared new cells from the stable
female renal cell carcinoma cell line 769P, because we are
very familiar with this cell line from previous analyses
(9) and the colorectal cancer cell line HT29, which is
known to be chromosomally instable (13). For polar
body analyses oocyte collection and processing were
done according to standard protocols.

Isolation of single cells and whole genome amplification

Cultured cells were centrifuged at 700 g for 10min,
re-suspended in 1�PBS and transferred onto a polyethy-
lene-naphthalate (PEN) membrane covered microscope
slide (Zeiss, Austria) by cyto-centrifugation at 120 g for
3min. After removing the supernatant, slides were air
dried at room temperature overnight. Isolation of single
cells and cell pools was carried out using a laser micro-
dissection and pressure catapulting system (LMPC;
P.A.L.M., Zeiss, Austria). Single cells and cells pools
were randomly selected and directly catapulted into
the cap of a 200 ml Eppendorf tube containing 10 ml diges-
tion mix.

We performed whole genome amplification of the single
cells and cell pools according to our recently published
protocol (9,14). In brief, we employed the GenomePlex
Single Cell Whole Genome Amplification Kit (#WGA4;
Sigma-Aldrich, Germany) according to the manufac-
turer’s instructions with some modifications. In a final
volume of 10 ml, the specimens were centrifuged at
20.800 g for 10min at 48C. After cell lysis and Proteinase
K digest, the DNA was fragmented and libraries were
prepared. Amplification was performed by adding 7.5 ml
of 10� Amplification Master Mix, 51 ml of nuclease-free
water and 1.5 ml Titanium Taq DNA Polymerase
(#639208; Takara Bio Europe/Clontech, France).
Samples were amplified using an initial denaturation of
958C for 3min followed by 25 cycles, each consisting of
a denaturation step at 948C for 30 s and an annealing/
extension step at 658C for 5min. After purification using
the GenElute PCR Clean-up Kit (#NA1020; Sigma-
Aldrich, UK), DNA concentration was determined
by a Nanodrop spectrophotometer. Amplified DNA was
stored at �208C.

The quality of the amplification was evaluated using
a multiplex PCR approach (15) and samples with
four bands on an agarose gel were selected for further
array-CGH analysis.
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Array-comparative genomic hybridization (array-CGH)

We carried out array-CGH using various oligonucleotide
microarray platforms as outlined in the text. For the ana-
lysis of amplified DNA samples, reference DNA amplified
with the same protocol as described above was used.

Agilent platform. Samples were labeled with the Bioprime
Array CGH Genomic Labeling System (#18095-12,
Invitrogen, Carlsberg, CA) according to the manufac-
turer’s instructions. Briefly, 500 ng test DNA and refer-
ence DNA were differentially labeled with dCTP-Cy5 or
dCTP-Cy3 (#PA53021 and #PA55021, GE Healthcare,
Piscataway, NJ). Slides were scanned using a microarray
scanner (#G2505B; Agilent Technologies, Santa
Clara, CA).

NimbleGen platform. Hybridizations on the 2.1M whole
genome array (HG18 WG Tiling 2.1M CGH v2.0D) and
the chromosome 22 specific 385K array (HG18 CHR22
FT, both Roche NimbleGen Systems, Reykjavik, Iceland)
were performed at service from Roche NimbleGen.

Array-CGH evaluation platform

Data normalization and calculation of ratio values were
conducted employing NimbleGen’s NimbleScan software
package and the Feature Extraction software 9.1 from
Agilent Technologies, respectively. The algorithm devel-
oped for this study focuses on detecting which ratio
values differ significantly [two times standard deviation
(SD)] from the ratio profile’s mean and should therefore
be considered as over- or underrepresented. The concept
of the algorithm includes the employment of running
means with different window sizes and analyses at progres-
sively greater levels of smoothing and then combining
these analyses.

The algorithm is implemented in ‘R’ (version 2.7.0) (16)
and addresses three specific issues (i.e. location of win-
dows, window size and threshold selection), which have
a significant impact on the identification of very small
CNVs in noisy CGH-profiles.

Positioning of windows. Consecutive data points are com-
bined and their mean ratio values are presented in graphs
of array-CGH results. The algorithm iterates through the
profile by changing window positions, employing a sliding
window approach.

The positioning of such windows may have an impact
on the ability to detect small CNVs: the scheme in
Supplementary Figure 1a illustrates a heterozygous dele-
tion (black), the windows (red) used for the calculation of
mean ratio values, and their calculated ratio profiles
(blue). In the example on the left side, one window (light
red) is located directly inside the deletion, thus the mean
ratio value characterizing this region will reflect the actual
DNA loss. In addition, the size of the deletion is shown
correctly in the ratio profile. On the right side of
Supplementary Figure 1a, the windows are positioned in
such a way that two windows cover deleted and undeleted
regions by half. As a result, these two windows are
assigned mean ratio values generated in equal parts from

balanced and lost regions. Therefore, the decrease of the
ratio value will be lower and the region displayed in the
profile (i.e. the size of the two windows) will be larger than
the actual deletion.
Taking this into account, the algorithm calculates the

mean ratio value for each window and assigns it only to
the center of the respective window (Supplementary
Figure 1b, blue dots).
As a consequence, CNVs do not appear with a sharp

transition border at the location of breakpoints but as a
more or less steep slope. For example, Supplementary
Figure 1c shows the ratio profiles of the non-amplified
DNA (upper panel) in comparison with the averaged
ratio profile of the 10-cell pool (lower panel) obtained
with DNA of proband P2. The 10-cell pool ratio was
generated with a window size of 5.000 oligos (corre-
sponding to 325 kb). Iterative calculations were made
with windows of the same size, each moved by 1000
oligos. Note that the three largest CNVs (i.e. deletions
with sizes of 3 and 1.2 Mb, and duplication of 532 kb)
have already been correctly identified and are therefore
shown in green and red, respectively. However, the ratio
profile of the 10-cell pool shows no sharp change of the
ratio values at the breakpoints.

Window size and threshold selection. The mean ratio value
is calculated for each window based on the ratio values
it contains. Assuming that a window’s ratio values are
distributed normally, we estimate the SD by considering
the outmost value that is within �34.1% of the mean.
In our previous single cell experiments performed on
BAC-arrays, we defined thresholds as �1.5 times the SD
(9). Due to the higher noise on oligo-arrays as compared
to BAC-arrays, thresholds had to be defined more strin-
gently as �2 times the SD.
Importantly, when testing calculations with various

window sizes we noted that different regions may be
called over- or underrepresented. Supplementary
Figure 2a and b illustrate again two calculations of the
10-cell pool of proband P2. Both calculations were made
with fixed window sizes of 500 oligos (corresponding to
32.5 kb) (Supplementary Figure 2a) and 2.500 oligos
(162.5 kb) (Supplementary Figure 2b). In each case, the
mean ratio for the entire window and not only the
center position is shown. When using the 500 oligo size
windows, many of the respective mean ratio values at the
chromosomal locations of the three largest CNV regions
are above or below the thresholds and are therefore dis-
played in green and red. However, within these regions
there are also many windows which are neither signifi-
cantly increased nor decreased (black colored regions),
and are therefore impeding the distinct identification of
CNVs. On the other hand, there are no false positive
calls. When using larger windows, e.g. 2.500 oligos, there
are more regions within the three largest CNVs which are
significantly increased or decreased (Supplementary
Figure 2b). However, also some false positive regions
are now identified which were not observed with the 500
oligo windows.
These data suggest that a simple increase of the window

size alone may not be efficient for improvements of CNV
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identification. At the same time the observation that dif-
ferent window sizes identify different regions as over- or
underrepresented suggests that real CNVs should show
specific patterns if the calculations are repeated with var-
ious window sizes. Furthermore, these patterns should
enable to distinguish between false positive calls and real
existing CNVs as illustrated in Supplementary Figure 2c.
Panel (1) shows four different calculations, each with a
different window size and threshold, as a different SD
exists for every calculation. If a window shows a signifi-
cantly increased or decreased mean ratio value, the mean
position of that window will be displayed above or below
the respective region of the ratio profile [panel (2)].
Depending on the window size it will be labeled with a
different color and distance to the X-axis. The thus gener-
ated color bar code facilitates the estimation of the size
of a CNV because the smaller the CNV the less color
bars will be generated [panel (3); compare for example
Figure 2a and b]. For more detailed size estimations the
algorithm generates a table with all localizations of signif-
icant calls which allows the estimation of the CNV size
very accurately.
A correctly identified CNV should show the smallest

sized windows and also larger windows (depending on
the size of the CNV) which have been determined as sig-
nificant gains or losses [panel (2)]. Other bar code patterns
should not occur as they suggest that regions identified as
decreased or increased are more likely to be artifacts
[panel (4)]: an example of this would be that no gains
and losses are identified using the smallest windows but
noted at larger window sizes [panel (4), left; for further
examples see Supplementary Figures 6c and 7]. Due to the
noisy CGH-pattern our algorithm does not require all
windows to be detected as CNVs; although the majority
of windows of a given size should be identified as gained
or lost. Windows detected as CNVs should be continuous,
thus no gap between the identification of two different
window sizes should occur [panel (4), center]. A single
call at any window size, except the smallest window size,
is certainly an artifact [panel (4), right]. Therefore the pat-
tern of identified regions with significant deviations from
the mean ratio value can help to distinguish between true
and false positives. This iterative color bar code genera-
tion avoids that a user has to adjust the window size for
an individual experiment, therefore preventing the intro-
duction of user bias.
The only user-defined option to interfere with the data

representation is the selection which of the ratio profiles
should be shown in the center.

RESULTS

Cells from clinical cases (probands P1 and P2) and
establishment of their CNV status

We used cells from two probands (P1 and P2). Previous
analyses performed on the whole genome 44K Agilent
array had shown deletions on chromosome 22 with sizes
of 2.8 Mb (P1) and 3 Mb and 1.2 Mb (both P2), respec-
tively. When hybridizing non-amplified DNA to the
NimbleGen Chromosome 22 Tiling array, we observed

additional CNVs below the resolution limits of the 44K
Agilent array. Proband P1 had an additional duplication
of 272 kb (Figure 1a), whereas in proband P2 one
additional deletion (size: 2.5 kb) and five duplications of
various sizes (532, 335, 296, 255 and 85 kb) (Figure 1b)
were observed. These additional CNVs, which had been
unknown to us when we designed the experiments, turned
out to be very useful for the estimation of resolution
limits.

For each proband, we prepared cell pools, each consist-
ing of 5 and 10 cells. In addition, we prepared one single
cell from P2 and three different single cells from P1. Cell
isolation by laser microdissection and subsequent hybrid-
ization were performed as previously (14). All experiments
were conducted on the NimbleGen Chromosome 22 Tiling
array (HG18 CHR22 FT), all amplification products of
proband P2 were hybridized to the Agilent custom-made
chromosome 22 array and the samples of proband P1 were
additionally hybridized to the Whole Genome Tiling
Array (HG18 WG Tiling 2.1M CGH v2.0D).

Evaluation of CNVs of probands P1 and P2 in noisy
ratios in whole genome amplification products

As expected from our previous experience (9), amplifica-
tion products yielded significantly noisier ratio profiles on
the oligo-arrays than non-amplified DNA did. SDs are a
reliable estimate of this noise (9). On the NimbleGen
arrays the SDs of non-amplified DNA were in the range
of about 0.3, whereas for amplified single-cell or cell-pool
material they increased to values ranging from 0.45 to 0.7
(Table 1). By contrast, the SDs on the Agilent arrays were
generally lower, i.e. about 0.1 for non-amplified DNA
and 0.35–0.66 for amplification products (Table 1).
When trying to evaluate these noisy ratios with currently
used CGH-programs, such as those available on CGHweb
(http://compbio.med.harvard.edu/CGHweb; e.g. CBS,
CGHseg, cghFLasso), CNVs were not detected and/or
the rate of false positive calls was high (data not shown).
This reflects that present CGH programs are not designed
for the evaluation of noisy ratio profiles.

We therefore developed a new CGH evaluation algo-
rithm. New features of this algorithm include that the
entire evaluation is conducted in an automated way with-
out user interaction in order to avoid that selection of
thresholds or sliding window sizes are influenced by user
bias. The algorithm iteratively calculates values above or
below thresholds for various window sizes, analyses the
data at progressively greater levels of smoothing and
then combines the data. These calculations result in a pat-
tern distribution of regions identified as imbalanced,
which allows to distinguish between artifacts and real
imbalances and also to estimate the size of CNVs (details
in ‘Materials and Methods’ section).

In a first step, we reevaluated the array-CGH profiles of
the non-amplified DNA, shown in Figure 1, with this
algorithm. As expected, all previously observed gains
and losses could be identified again (Figure 2a and b).
In addition, we evaluated the DNA of proband P2 on
the custom-made Agilent Chromosome 22 Tiling array
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(Supplementary Figure 3), yielding an almost identical
ratio profile as on the NimbleGen array.

Results obtained with cell samples from proband P2

Analyses of amplification products obtained with 5- and
10-cell pools. The NimbleGen Chromosome 22 Tiling
array comprises 385.210 oligonucleotides and has a
median probe spacing of 65 bp. On this array platform,
we detected the three largest CNVs of 3, 1.2 Mb and
532 kb with ease (Figure 3a and b) with both amplification
products of the cell pools (5 or 10 cells). However, smaller
CNVs could not be identified.

The custom-made Agilent array consists of 241.700
oligo probes with a median probe spacing of 104 bp.
When applying the 5- and 10-cell pools to this array plat-
form, we identified only the 3 Mb deletion in each case,
but no other CNVs (Supplementary Figures 4a and b).
These results suggest that probe density on the array

platform may have an important impact on resolution
limits. Thus, depending on the array platform resolution
limits for the CNV, detection in cell pools consisting of
5–10 cells are in the range of about 500 kb.

Analyses of amplification products obtained with a single
cell. As expected, noise of the single cell amplification

Figure 1. Ratio profiles of non-amplified DNA of probands P1 (a) and P2 (b) on the NimbleGen Chromosome 22 Tiling array. The calculation of
these ratio profiles was based on a classical approach, using a window size of 100 adjacent oligos (corresponding to 6.5 kb) thresholds were simply
determined as �2 times SD. On the NimbleGen arrays losses are illustrated in green above the X-axis, whereas gains are shown in red below the
X-axis. The sizes of observed CNVs are displayed at the respective locations.
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products was increased, which is also reflected in the SD
(Table 1), and resulted in a poorer resolution. On the
NimbleGen Chromosome 22 Tiling array, we clearly
detected the 3 Mb-deletion, whereas smaller CNVs could
not be identified (Figure 4). Similarly, this deletion was
also detected on the Agilent Chromosome 22 Tiling
array (Supplementary Figure 5).
These results suggest that CNVs in single cells with a

size of 3 Mb can be detected on appropriate array
platforms.

Results obtained with cell samples from proband P1

Analyses of amplification products obtained with 5- and
10-cell pools. In general, the hybridization patterns with
the cell samples from proband P1 appeared to be noisier
on the NimbleGen Chromosome 22 Tiling array as com-
pared to proband P2. This is not reflected in the SDs
(Table 1), which may be due to the fact that the SDs of
proband P2 are increased as a result of the unexpected
large number of CNVs on chromosome 22. When apply-
ing our evaluation algorithm, this increased noise is
reflected in the multiple regions above the threshold,
which could only be identified with small window sizes
(Figure 5). In both cell pools (5 or 10 cells), we detected
the deletion of 2.8 Mb, but not the duplication of 271 kb
(Figure 5a and b). However, the 10-cell pool also identified
a 650 kb large deletion at position 21 Mb (Figure 5a). As
shown below, when the same amplification product was
hybridized to another array platform, i.e. the NimbleGen
Whole Genome Array, this deletion was not visible sug-
gesting that this copy number change is a false positive
result and was probably caused by a hybridization artifact
rather than by an amplification artifact.
For proband P1, we could also compare the ratio pro-

files of the NimbleGen Chromosome 22 Tiling array with
the NimbleGen Whole Genome Tiling Array. On the
latter array, chromosome 22 is represented with 26.718
clones, corresponding to median probe spacing of
937 bp. We first compared the ratio profiles obtained
with non-amplified DNA on both array platforms and

found that these were nearly identical (Supplementary
Figure 6a). With the amplification products of the 5-
and 10-cell pools, we again detected the 2.8 Mb deletion
in each case (Supplementary Figure 6b and c).

In this case, there were no significant resolution differ-
ences between the two array-platforms. In fact, the
hybridization patterns on the whole genome tiling array
appeared to be less noisy as compared to the chromosome
22 tiling array (compare Figure 5a and b with
Supplementary Figure 6b and c). In summary, our results
suggest that resolution limits for the CNV detection in cell
pools consisting of 5–10 cells are in the range of �500 kb.

Analyses of amplification products obtained with single
cells. We hybridized three different single cell amplifica-
tion products from proband P1 to the NimbleGen
Chromosome 22 Tiling array. However, only in one of
the three single cells (‘Single cell #1’) of proband P1, we
were able to identify the 2.8 Mb deletion (Figure 6).

When repeating the single cell analyses of cells on
NimbleGen’s Whole Genome Tiling Array, we made the
same observation, i.e. we discovered the 2.8 Mb-deletion
only with the same amplification product from the cell
which had allowed us to identify the deletion on the chro-
mosome 22 tiling array (Supplementary Figure 7).

In order to get a more detailed insight whether CNVs
with the size of 2.8–3.0 Mb are only borderline-detectable,
we also evaluated well-known landmarks on the X-chro-
mosome for hybridizations performed on the NimbleGen
2.1MWhole Genome Tiling Array. The X-chromosome is
represented by 106.458 oligos on this array. Proband P1 is
male and the hybridization was carried out with female
reference DNA. Due to the different sexes of proband
and reference DNA certain landmarks regions on the
X-chromosome should show a balanced profile, whereas
other regions should show decreased ratio values. The
balanced regions include the first pseudoautosomal
region (PAR1; size: 2.6 Mb) at chromosome Xp22.3, the
XY homology region (XY-HR; size: 4 Mb) at chromo-
some Xq21.3, and the second pseudoautosomal region
(PAR2; size: 320 kb) at chromosome Xq28
(Supplementary Figure 8a). This expected hybridization
pattern was indeed observed with non-amplified DNA
(Figure 7a). Moreover, both the PAR1 and XY-HR
were reliably detected in the cell pool hybridizations
(Figure 7b and c) and even in all three single cells
(Figure7d and Supplementary Figure 8b and c).

Analysis of single cells from two cancer cell lines. In order
to further examine how reliably our new algorithm works,
we tested single cells from two cancer cell lines on a 244K
whole-genome array (Agilent). The first cell line was the
female renal cell carcinoma cell line 769P. This cell line is
chromosomally very stable as shown by our own previous
analyses (9) and by other extensive studies employing
M-FISH and array-CGH (17,18). Therefore, we expected
that all analyzed cells should show an almost identical
CGH-profile. The second cell line was colorectal cancer
cell line HT29, which has a good level of chromosomal
instability (CIN) with a highly reproducible modal chro-
mosome number (13). Therefore, in this case, we estimated

Table 1. Summary of the standard deviations determined for each

experiment on the various array-platforms

Proband Sample NimbleGen Agilent

Chromosome
22 array

Whole genome
array

Chromosome
22 array

P1 Non-amplified
DNA

0.29 0.29 ND

Pool 10 cells 0.45 0.50 ND
Pool 5 cells 0.42 0.68 ND
Single cell #1 0.59 0.75 ND
Single cell #2 0.80 0.89 ND
Single cell #3 0.66 1.05 ND

P2 Non-amplified
DNA

0.30 ND 0.11

Pool 10 cells 0.51 ND 0.30
Pool 5 cells 0.59 ND 0.35
Single cell #1 0.87 ND 0.66

ND: Not done.
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that these cells could show some cell-to-cell variation.
Thus, in addition to testing our algorithm’s robustness,
we could also address the phenomenon of CIN, which is
frequently observed in cancer and which is characterized
by cell-to-cell variability (19).

In cell line 796P areas of copy number change identified
by hybridization of non-amplified DNA could also be
detected with the single cell products. To test the reprodu-
cibility of the algorithm we compared the ratio profile of
non-amplified DNA (Supplementary Figure 9a) with four
single cells which met our described quality criteria. For
example, chromosome 1 harbors the equivalent of a single

copy deletion on the p-arm covering a region of �30 Mb
and the equivalent of a single copy gain on the q-arm of
�90 Mb (9). 769P also has a small single copy deletion on
chromosome 9 of 6.3 Mb (genomic position 16.7–23.0
Mb) (9). These regions of copy number change were
easily identified in single-cell amplified material and non-
amplified DNA (Supplementary Figure 9b). We indeed
always discovered the same numerical aberrations and,
notably, the �6.3 Mb deletion on chromosome 9p was
detected in each cell.
Cell line HT29 is near triploid and, according to previous

publications, shows relative excess of chromosome arms

Figure 2. This figure displays the same ratio profiles as in Figure 1a and b, i.e. the ratio profiles of probands P1 (a) and P2 (b), now calculated with
the algorithm described in this manuscript. The center profile is based on calculations with window sizes of 100 adjacent oligos (corresponding to
6.5 kb). A color bar code presents the window size (each in adjacent oligos and the respective physical size) for which calculations have been
conducted. In the case of non-amplified DNA we selected very small window sizes, in the other cases with whole genome amplification products the
window sizes were larger.
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8q, 13q, 19q and 20q, relative deficiency of 8p, 14q, 17p,
18q and 21q, and pronounced intermetaphase variation
(13). To the best of our knowledge, no high-resolution
array-CGH profile of this cell line has been published
yet. However, a partial high-resolution profile is available
on the Agilent web-page (http://www.servicexs.com/blobs
/Agilent/Agilent_CGH_brochure.pdf). Our array-CGH

profile obtained with non-amplified DNA was consistent
with previously published numerical aberrations (13) and
with gains and losses described on the aforementioned
Agilent web-page (Supplementary Figure 10a). This
cell line also harbors two small homozygous deletions on
16p (size: 1.29 Mb; genomic position 6.0–7.3 Mb) and
on 20p (size: 1.81 Mb; genomic position 14.2–16.0 Mb).

Figure 3. Cell-pool results obtained for proband P2 on the NimbleGen Chromosome 22 Tiling array. (a) Evaluation of the 10-cell pool on the
NimbleGen Chromosome 22 Tiling array. The profile shown in the center was obtained with a window size of 5.000 oligos (corresponding to 325 kb).
The two largest CNVs show bar codes from black to cyan, demonstrating that the size of the CNVs is in the range of 1.3 Mb or larger (actual sizes: 3
and 1.2 Mb, respectively; compare Figure 1b). In contrast, the largest duplication has a bar code ranging only from black to blue, showing that the
size of this CNV is somewhere between 325 and 650 kb (the actual size is 532 kb, Figure 1b). To the left side of this duplication another region at
position 26.5 Mb appears to be potentially duplicated. However, the calls are not uninterrupted from black to blue, as there is no pink bar revealing
that this CNV call is likely to be an artifact [compare panel (4) in Supplementary Figure 2c]. (b) Hybridization of the 5-cell pool from proband P2 on
the NimbleGen Chromosome 22 Tiling array resulted in a CNV recognition pattern similar to that of the 10-cell pool. The algorithm shows the
presence of the 255 kb large duplication at position of about 44.7–44.8 (compare Figure 1b), however, the larger 296 and 335 kb duplications were
not identified.
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The aforementioned larger numerical changes were
easily observed in all four different single cells shown
in Supplementary Figure 10b–e. Interestingly, we could
even unequivocally identify the small deletions on 16p
and 20p in three cells (16p deletion: Supplementary
Figure 10c–e; 20p deletion: Supplementary Figure 10b, d
and e). In the other cells the ratios at the respective regions
were decreased, yet they did not exceed the threshold.
Thus, it may be especially easy to detect very small (<2
Mb) homozygous deletions in single cell amplification
products.

As expected from the previously reported intermeta-
phase variation (13), we also observed some alterations
not present in all cells. The best example is the deletion
of the distal part of 6q. This deletion is easily visible with
non-amplified DNA, however, the decrease of the ratio
values is not as pronounced as e.g. for 3p or the distal
region of 4q (Supplementary Figure 10a), suggesting
that this numerical change may be present as mosaic. In
fact, in two (Supplementary Figure 10c and d) of the four
analyzed single cells, we observed a balanced ratio profile
for the entire chromosome 6. In one cell (Supplementary
Figure 10b) there was no gain of 18p, which was other-
wise visible in all other cells and also in cells from
non-amplified DNA. Furthermore, in another cell we
observed a large, balanced region within an area on chro-
mosome 7, which was overrepresented in all other cells
(Supplementary Figure 10c). This suggests that CIN is in
this cell line not only caused by whole-chromosome
changes but also by structural rearrangements result-
ing in segmental aneuploidies. Applying single-cell
array-CGH, we had previously made similar observations
with the colorectal cell line HCT116 (9).

Analysis of polar bodies

Polar bodies represent an interesting model as chromo-
somal gains and losses observed in the first and second
polar body should complement one another to a large
extent. For example, a gain of a certain chromosome in
the first polar body leaves two options for this chromo-
some for the second polar body: first the same chromo-
some could be lost, indicating a balanced status for this
chromosome in the oocyte, or it could be balanced, indi-
cating a loss of this chromosome in the oocyte. However,
the gain of a certain chromosome should never be
observed in both the first and the second polar body and
the same applies for the loss of a chromosome. In preim-
plantation genetic diagnosis, we focus on polar bodies as
Austrian legislation prohibits the analyses of blastomeres.
By now, we have analyzed by CGH 231 polar bodies,

including 170 matching first and polar bodies demonstrat-
ing that our approach is highly reliable even for the anal-
yses of haploid genomes (manuscript in preparation).
Here we present an particularly interesting pair of first
and second polar bodies showing complementary gains
and losses for chromosomes 1, 9, 10, 13, 18, 20 and 21
(Supplementary Figure 11a and b). However, the first
polar body had in addition a gain of chromosome 14
(Supplementary Figure 11a), whereas the second polar
body had additional gains of chromosomes 16 and17
and losses of chromosomes 2, 3, 4, 6, 7, 11 and 15
(Supplementary Figure 11b). Thus, the corresponding
oocyte should be unbalanced.
Inspection of the ratio profiles revealed another inter-

esting phenomenon: in each polar body ratio, values were
at four different levels. For example, in the first polar body
(Supplementary Figure 11a), we observed chromosomes

Figure 4. Chromosome 22 profile for proband P2 obtained with a single cell amplification product on the NimbleGen Chromosome 22 Tiling
array. Beside the 3 Mb deletion, the bar code pattern displays a possible presence of two smaller deletions at positions 34 and 38 Mb with sizes
between 650 kb and 1.3 Mb. The deletion at position 38 Mb corresponds to the location of the real existing 1.2 Mb deletion. However, the second
putative deletion at position 34 Mb is false positive, demonstrating that CNVs with a size of <2 Mb cannot be reliably detected in a single cell. Here
the center profile was obtained with a 20.000 oligo sliding window (1.3 Mb).
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with average ratio profiles of about 1 (i.e. chromosomes
10, 14 and 19), 0 (i.e. chromosomes 2, 3, 4, 6, 7, 11, 15, 22),
�0.3 (i.e. chromosomes 5, 8, 12, 16, 17), and �1.5 (i.e.
chromosomes 1, 9, 13, 18, 20, 21). These different ratio
levels are indicated on the right side of each figure (‘1–4’;
Supplementary Figure 11). If the two meiotic divisions
proceed without any errors, the first polar body should
receive 23 chromosomes, each consisting of two chroma-
tids, whereas the second polar body should get 23

chromosomes, each consisting of one chromatid. The
four different levels of ratio values we observed in this
and other (manuscript in preparation) polar body pairs
most likely reflects that meiotic segregation errors even
during meiosis I may involve not only chromosomes but
also single chromatids. This pair of polar bodies and
results from other polar bodies (our unpublished data)
demonstrate that high rates of chromosome segregation
errors may occur during female meiosis.

Figure 5. Cell-pool results obtained for proband P1 on the NimbleGen Chromosome 22 Tiling array. (a) Hybridization of the 10-cell pool
clearly identified the 2.8Mb-deletion. The algorithm also identified another deletion with a size of about 650 kb at position 21Mb. This deletion
is likely to be an artifact (compare Supplementary Figure 6b and details in text). (b) The 5-cell pool of proband P1 also allowed precise
identification of the 2.8 Mb-deletion. In addition, at positions 27 and 32 Mb, the algorithm shows the possible presence of two further deletions,
each with a size below the 500 kb limit for reliable CNV identification in cell pools. At position 23–24 Mb some bar codes reveal a duplication,
which in fact corresponds to the real 272 kb duplication. In both cases the center profile was obtained with a sliding window of 5.000 oligos
(325 kb).
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DISCUSSION

In this study, we evaluated the performance of amplifica-
tion products from cell pools or single cells on oligo tiling
path arrays. Our results suggest that the use of arrays with
a sufficient density of oligos allows the reliable detection of
CNVs with a size of 3 Mb (P2) or 4 Mb (size of XY-HR).
However, below 3 Mb, the detection of CNVs in single
cells becomes critical as we missed a deletion of 2.8 Mb in
2 of 3 cells, whereas we identified the PAR1 region of 2.6
Mb on the X-chromosome in all of these three analyzed
single cells. This indicates that reliable detection of CNVs
with a size range of below 3 Mb is already at the resolution
limit of present protocols for single cell analysis. In con-
trast, both robustness and resolution increase if only 5 or
10 cells are being analyzed, as we were able to identify
CNVs as small as 500 kb in such cell pools.

Confirming our previous observations (9) our results
again demonstrate that CGH-profiles from single cells or
from a few cells are significantly noisier than those from
non-amplified DNA. Amplification of the entire genome
of a single cell most likely includes multiple stochastic
amplification events due to the low amount of template
DNA. Thus, while whole genome amplification products
appear to be ‘unbiased’ at low resolution, e.g. if hybridized
to metaphase chromosomes [as shown for example by (12)
or (20)], variant amplification becomes more obvious on
oligo tiling arrays and affects the detection sensitivity of
small CNVs.

This requires particularly sensitive methods for data
interpretation. Currently available array-CGH programs
have been developed for the evaluation of ratio profiles
with limited noise, which are usually achieved when non-
amplified DNA is used.

In previous experiments when we (9) or others
(8,10) tested the performance of amplified DNA on

array-platforms, the standard procedure involved a com-
parison of ratio profiles obtained with amplified DNA
versus a baseline profile usually generated with non-ampli-
fied DNA. Resolution is then estimated based on the con-
cordance between the two ratio profiles. During these
comparisons users will presumably adjust parameters,
such as window smoothing or thresholds, until the best
correlation between the profiles is achieved. However,
since whole genome amplification of single cells or few
cells involves a number of stochastic events, CGH-evalua-
tion parameters, which may be optimal for a particular
single cell experiment, may be less suited in the next
experiment. Accordingly, lacking the option of a compar-
ison with a baseline-ratio profile, the user will not know
which parameters are optimal for a most sensitive CNV
identification. In fact, in most scenarios performing single
cell/few cell analyses reliable baseline profiles are not
available for comparison, because otherwise there would
be no need for an elaborate single cell analysis.
Accordingly, our tests with various standard array-CGH
programs revealed in fact that these had not been devel-
oped for noisy CGH-patterns and therefore they are not
suited for the identification of very small changes in extre-
mely noisy CGH ratio patterns.
For these reasons we developed a new algorithm with

the specific aim of detecting small CNVs in very noisy
ratio profiles. For the aforementioned reasons the algo-
rithm excludes user interaction. Instead, ratios are itera-
tively calculated at progressively greater levels of
smoothing and the analyses are then combined. This gen-
erates a pattern of regions gained or lost. Based on such a
pattern the algorithm determines regions of significant
ratio deviation. Thus, the main advantages over and dif-
ferences from other CGH-programs include (i) no user
interaction and thus avoidance of user bias; (ii) identifica-
tion of small CNVs in noisy ratio profiles; (iii) distinction

Figure 6. Identification of the 2.8 Mb deletion in a single cell (‘#1’) of proband P1 on the NimbleGen Chromosome 22 Tiling array. The center
profile was generated using a 20.000 oligo sliding window (1.3 Mb).
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Figure 7. Ratio profiles of the X-chromosome. (a) Evaluation of the X-chromosome with non-amplified DNA. All X-chromosome landmark
regions, i.e. PAR1, PAR2 and the XY-homology region (compare Supplementary Figure 8a) are identified. (b) X-chromosome evaluation of the
10-cell pool, which results in a similar ratio profile as obtained with the non-amplified DNA. (c) X-chromosome evaluation of the 5-cell pool, again
with a similar ratio profile. (d) X-chromosome evaluation of the single cell ‘#1’ from proband P1. For this cell the deletion on chromosome 22
was also identified.
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between real CNVs and artifacts; and (iv) reliable size
estimates for CNVs based on color coding and tables
listing positions of over- and underrepresented regions.

Our comparisons of the ratio profiles between different
chromosome 22 tiling array platforms and other oligo
tiling arrays suggest that probe density on the array may
have an important impact on the resolution limits.
Furthermore, as demonstrated in our cell pool experi-
ments, stochastic amplification artifacts are already
reduced if only 5 or 10 cells are amplified, resulting in a
drastic improvement of both robustness and resolution.
This will pave the way for the establishment of detailed
CNV-maps from small cell numbers. In addition, we
demonstrated that specific biological questions can now
be addressed with unprecedented resolution such as CIN
in biological samples including cancer cells or polar bodies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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