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Abstract

Interactive image segmentation deals with partitioning an image into multiple pairwise-

disjoint regions based on input provided by a human operator. Being interactive means,

that an algorithm has to quickly react on user input, which limits the computational

complexity of the employed algorithms drastically. Therefore, many interactive segmen-

tation methods represent these regions with simple models based on low-dimensional

feature spaces, which in turn introduces a limitation in terms of expressibility of these

models and thus segmentation quality. Furthermore, most methods can only handle the

two-label case, i.e. the segmentation of an image into foreground and background.

In this work, we investigate the incorporation of arbitrary high-dimensional features

in an interactive multi-label segmentation framework. With such high-dimensional fea-

tures, not only color and grayvalue information, but also complex textural properties of

a region can be modeled. In order to not violate the runtime constraints, we carefully

select the building blocks of our framework according to their ability of being imple-

mented on parallel architectures: We employ Haralick texture features and Local Binary

Patterns to represent local image structure, as well as Random Forests as learning al-

gorithm. Finally, we employ a multi-label Potts regularizer in order to obtain spatially

compact image segments. All these parts are implemented on the GPU or multi-core

CPUs in order to achieve runtimes that allow for convenient user interaction.

We furthermore address the problem of comparatively evaluating interactive multi-

label segmentation algorithms and introduce a large novel benchmark dataset. With

this dataset, we perform detailed experiments in order to evaluate the performance and

runtime of the building blocks of our framework. We show the benefit of incorporating

texture and color features over employing color features alone. Finally, we compare our

framework to the state-of-the-art Power Watersheds method and highlight advantages

and drawbacks of both approaches.
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Kurzfassung

In der interaktiven Bildsegmentierung wird ein digitales Bild anhand von Benutzer-

eingaben in mehrere nichtüberlappende Segmente zerteilt. Um interaktiv sein zu kön-

nen muss die verwendete Methode sehr schnell auf diese Benutzereingaben reagieren,

was die rechnerische Komplexität der verwendeten Algorithmen stark limitiert. Aus die-

sem Grund verwenden viele interaktive Segmentiermethoden relativ einfache Modelle

und niedrigdimensionale Bildrepräsentationen um die Segmente zu beschreiben. Die

Aussagekraft dieser Modelle und folglich auch die Qualität der Bildsegmentierung ist

dementsprechend limitiert. Weiters können viele interaktive Segmentiermethoden das

Bild nur in zwei Segmente zerteilen (Segmentierung in Objekt und Hintergrund).

In dieser Arbeit beschäftigen wir uns mit der Verwendung von hochdimensiona-

len Bildrepresentationen in einem interaktiven Framework, das die Teilung in mehr als

zwei Segmente erlaubt. Mit hochdimensionalen Bildrepresentationen können im Ver-

gleich zu anderen Methoden nicht nur Grau- und Farbinformationen, sondern auch

komplexe Textureigenschaften modelliert werden. Um die Interaktivität unseres Frame-

works zu gewährleisten, werden die verwendeten Algorithmen sorgfältig in Bezug auf

ihre Parallelisierbarkeit ausgewählt: Wir verwenden Haralick Features und Local Binary

Patterns um Textureigenschaften darzustellen, und Random Forests um die Segment-

eigenschaften zu lernen. Mit einer Potts-Regularisierung wird die räumliche Kohärenz

der Segmente sichergestellt. Diese Algorithmen sind allesamt für Mehrkernprozessoren

oder Grafikprozessoren optimiert um schnell genug für Benutzerinteraktion zu sein.

Zur vergleichbaren quantitativen Evaluierung von interaktiven Segmentieralgorith-
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men stellen wir einen neuen Testdatensatz vor. Diesen Datensatz verwenden wir um die

einzelnen Bauteile unseres Frameworks bezüglich Laufzeit und Einfluss auf die Quali-

tät der Segmentierung zu testen. Wir können zeigen, dass die Verwendung von hoch-

dimensionalen Bildrepresentationen Vorteile gegenüber einfachen Farbrepresentationen

hat. Weiters vergleichen wir unser Framework mit dem Power Watersheds Algorithmus

und zeigen Unterschiede zwischen diesen Methoden auf.
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1
Introduction

Image segmentation is one of the cardinal problems in computer vision. It describes

the task of dividing an image into two or more disjoint regions, such that every pixel is

part of exactly one region (Figure 1.1). Applications of image segmentation are found

in the fields of medical image analysis, digital image manipulation, object recognition,

industrial computer vision, aerial image processing and many more (Figure 1.2 and

1.3). The problem of image segmentation has been studied thoroughly during the last

decades, and despite the existence of many seminal works to this research area, it is far

from being solved.

Figure 1.1: The problem of image segmentation deals with partitioning an image into
two or more disjoint regions. The yellow line shows a possible segmentation of this
image, dividing it into two regions: Bears and background.

1
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(a) (b) (c) (d)

Figure 1.2: Digital image editing is a major field of application for interactive image seg-
mentation methods: Given an image (a) and an accurate segmentation (b), new images
can be created by manipulation and composition (c,d).

(a) (b)

(c) (d)

Figure 1.3: Image segmentation is also a commonly used tool in medical applications,
e.g. for MRI or CT data analysis (a,b), as well as industrial applications (c,d), e.g. quality
inspection.
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1.1 Definition of Segmentation

In image segmentation, the image domain Ω ∈ R2 is partitioned into k sets El with

l ∈ {0, 1, . . . , k− 1}
k−1⋃
l=0

El = Ω, (1.1)

such that every pixel is part of exactly one set

Ei ∩ Ej = ∅ ∀ i 6= j. (1.2)

A different definition of the segmentation problem is used in probabilistic / soft seg-

mentation: There, a pixel might be part of more than one set Ei according to a specific

probability, i.e. especially at the border between segments, a pixel typically belongs to

both segments up to a certain extent. Moreover, there also exist higher dimensional

segmentation problems (Ω ∈ Rn), such as e.g. the segmentation of 3D volumes in medi-

cal applications or in videos in spatial-temporal representation. However, in this thesis,

we focus on the definitions (1.1,1.2), hence the hard segmentation of two-dimensional

images.

From a theoretical point of view, there are kN possible splits for an image with N

pixels. However, from a practical point of view, we are only interested in grouping

pixels together that are homogeneous in a certain respect. This homogeneity can be of

various kinds, e.g. we could group pixels with similar color or spatially close position in

the image, pixels that belong to the same object in the image, pixels that are of the same

object class, pixels that do not belong to a specific object or object class etc. Adding

this kind of higher level knowledge to a segmentation problem reduces the amount

of possible solutions greatly and makes the segmentation problem tractable. However,

note that the definition of homogeneity is very loose, i.e. there is still a vast amount of

splits yielding regions which are homogeneous in a certain respect.

1.2 Ambiguity

A typical segmentation problem exhibits many possible solutions, which are not nec-

essarily similar to each other, they can be completely different: E.g. at object level, it

depends on the interpretation of the image which parts should be grouped into one re-

gion and which parts should form their own segment. At pixel level, it is often difficult

to decide to which of the adjacent segments a pixel belongs to.
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1.2.1 Ambiguity at Object Level

Figure 1.1 shows two bears sitting on an earth bank, segmented such that the bears are

considered as one region, and everything else as the other region. However, there are

many other possible solutions: Figure 1.4 shows several objects, which can be considered

as a separate region. Neither one is correct nor wrong, the correctness of a segmentation

solely depends on the interpretation of the image.

Figure 1.4: Some meaningful image segments based on the many possible interpreta-
tions of the image shown in Figure 1.1.

1.2.2 Ambiguity at Pixel Level

Besides the many possible interpretations of an image in terms of regions, there is also

lots of ambiguity at pixel level. Assuming that there was only one interpretation of the

image shown in Figure 1.1 (e.g. four regions: two separate bears, the earth bank and

the background), there would still be many possible segmentations: Figure 1.5 shows

detail crops with two marked pixels each. While in image 1.5(a), a human can easily tell

which segments the marked pixels belong to, in image 1.5(b) and 1.5(c) even a human

has difficulties to assign the marked pixels to either the left or the right bear (note that

this ambiguity can be modeled well with probabilistic segmentation).
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(a) (b) (c)

Figure 1.5: While the marked pixels in (a) can easily be related to a region, the marked
pixels in (b) and (c) are even for a human difficult to assign to either the left or the right
bear.

1.3 The Role of Supervision

One can divide the research field of image segmentation according to the (non-)existence

and role of a supervisor: In unsupervised segmentation, the goal is to divide an image

into regions completely automatic without any previously learned models or user inter-

action. Supervised segmentation is a two-step procedure, where in the first step models

are trained for every expected region from a training database. In the second step, every

pixel is assigned to one of these regions according to the trained models. In between lies

the discipline of interactive (a.k.a. semi-supervised) segmentation, where the image is

partitioned based on some kind of user-provided input. Despite the fact that the focus

of research is quite different in these subfields, there are many similarities and common

concepts between them. Therefore, although we focus on semi-supervised segmentation

in this thesis, we want to first give a short overview over basic concepts of unsupervised

and fully supervised segmentation.

1.3.1 Unsupervised Segmentation

In unsupervised segmentation, the goal is to partition an image into regions with the

only prior assumption that pixels belonging to the same segment are homogeneous

in a certain respect. Early approaches of unsupervised segmentation can be divided

into three families: Segmentation by thresholding, edge-based segmentation and region-

based segmentation. In order to develop basic ideas of image segmentation methods, in

the following we give a short overview of these three families. For a detailed description

of basic segmentation techniques, refer to (Sonka et al., 2007).
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1.3.1.1 Thresholding

Let I(x, y) represent a digital grayscale image as a two-dimensional function defined

on the rectangular domain Ω, where x and y denote spatial coordinates. The aim is

to find a division of the image into two regions represented by a labeling function

u(x, y) ∈ {0, 1}. Segmentation by thresholding finds this labeling function by employing

a scalar threshold θ such that

u(x, y) =

1 : if I(x, y) ≥ θ

0 : else.
(1.3)

This elementary segmentation algorithm (see Figure 1.6 for an example) is extremely

fast to compute and yields good results when there is a significant difference between

the grayscale distributions of the image foreground and background. The key part of

the method is the search for a suitable threshold θ: Most threshold selection methods

analyze the graylevel histogram of the image in order to find θ. E.g., the popular algo-

rithm of Otsu (1979) works by searching greedily for the threshold θ that minimizes the

combined intra-class variance for the foreground and background region. Extensions to

thresholding include the incorporation of multiple thresholds to perform segmentation

with multiple labels (k ≥ 2) or the usage of different thresholds for different image re-

gions. A good overview over thresholding techniques is presented in (Sahoo et al., 1988).

Drawbacks of thresholding methods are, that in practice it is often hard to find thresh-

olds that yield suitable results. Furthermore, the resulting segmentations are typically

noisy and spatially incoherent.

1.3.1.2 Edge-based Segmentation

As stated before, an elementary assumption for image segmentation is that regions

contain pixels which are homogeneous in a certain respect. This assumption can also

be interpreted such that there has to be a change of the homogeneity criterion at the

border between two adjacent image regions. A large group of early image segmentation

methods therefore searched for grayscale value changes in order to find borders between

segments. These intensity changes can be detected e.g. by using image derivatives: The

gradient of a 2D image is defined as

∇I =

[
Ix

Iy

]
=

[
∂I
∂x
∂I
∂y

]
(1.4)



1.3. The Role of Supervision 7

(a) (b)

Figure 1.6: Thresholding a grayscale image (a) results in two regions: Pixels in region
0 have a grayscale value smaller than the threshold θ, all other pixels belong to region
1 (b). In this example, the threshold of θ = 144 was determined with a MATLAB
implementation of the Otsu (1979) algorithm by Damien Garcia.

The partial derivatives Ix and Iy are not isotropic, hence the magnitude of the gradient

can be applied to achieve rotation invariance:

‖∇I‖ =
√

I2
x + I2

y (1.5)

An example for the gradient magnitude is shown in Figure 1.7(b).

(a) (b)

Figure 1.7: The magnitude of the image gradient shown in (b) is a powerful indicator
for possible segment borders. Note that (a) was converted to grayscale before gradient
computation and that the gradient was contrast enhanced for better visualization.
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Note, that the magnitude of the gradient is typically noisy and does often not pro-

duce distinctive gradients (especially in highly textured regions). Therefore, additional

post-processing steps are employed in order to find locally maximal gradients, closed

contours or even complete shapes in the gradient image. A popular method of that

kind has been presented by Canny (1986): Before calculating the gradient magnitude,

the images are smoothed by convolution with a Gaussian filter with a specific standard

deviation σ in order to reduce noise. Then, non-maximum suppression is performed to

ensure that the width of an edge cannot exceed one pixel. Finally, pixels with a gradient

magnitude between two thresholds θ1 < θ2 are marked as edge pixels. See Image 1.8 for

an example with different values of σ.

(a) (b) (c)

Figure 1.8: The Canny edge detector employs Gaussian smoothing, non-maximum sup-
pression as well as hysteresis thresholding to find distinctive edges in gradient maps.
The Canny edge detector response of the image shown in 1.7(a) with a smoothing filter
with σ = 1 is shown in (a), σ = 2 in (b) and σ = 3 in (c).

A huge class of segmentation algorithms aims at finding connected contours in the

intensity gradient maps, an extensive overview of such methods is given in (Sonka et al.,

2007). Another important family of segmentation methods operating on image gradients

employ the Hough transform introduced by Hough and Powell (1960): While initially

invented to detect straight lines in an image, there exist many extensions that allow for

detection of arbitrary parameterizable shapes (cf. the survey of Illingworth and Kittler

(1988)).

1.3.1.3 Region-based Segmentation

Contrary to edge-based segmentation, region-based segmentation directly aims at find-

ing and exploiting homogeneity criteria. A basic and intuitive approach for region-based

segmentation is Region Merging, where the homogeneity criterion is expressed by an
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arbitrary binary evaluation function f (Ei), which is true when Ei is homogeneous. Such

a function could be based on comparing e.g. grayvalues or color properties of the region

Ei. In Region Merging, one starts of with assigning every image pixel a separate region.

Then, adjacent regions Ei and Ej are merged iteratively as long as f (Ei ∪ Ej) stays true.

Note that the result of this algorithm depends heavily on the order of the homogeneity

checks.

Another elementary region-based segmentation approach is the Watershed segmen-

tation, where the regions are found as local valleys in the topographic surface spanned

by the intensity values of the image. An efficient algorithm for Watershed segmentation

has been presented by Vincent and Soille (1991): Their algorithm starts by assigning

each of the lowest pixels in the topographic surface (i.e. the pixels with the smallest

grayvalue) to a separate region. These regions are then grown by adding previously

unassigned pixels, which are located higher in the topographic surface. This process

can be interpreted as flooding the valleys of the surface with water until watersheds

are found. As the water level increases, regions meet at these watersheds, which subse-

quently form the borders between the regions (see Figure 1.9).

0 100 200 300 400 500 600 700 800 900 1000
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Figure 1.9: Watersheds in a one-dimensional example: The intensity profile of an image
is interpreted as a topographic surface, which is immersed with water. Regions are
formed by catchment basins, borders between regions are identified where these basins
meet (i.e. watersheds).

For natural images, the Watershed algorithm typically yields a large number of re-

gions i.e. it over-segments the image. In order to produce less segments, images are

often smoothed with e.g. Gaussian filters before segmentation (see Figure 1.10).
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(a) (b) (c)

Figure 1.10: An example of a Watershed segmentation: The input image (a) is converted
to grayscale, inverted and smoothed with a Gaussian filter (σ = 2) to yield (b). The
Watershed segmentation is given in (c), where the white lines depict the watersheds
between the colored segments. The employed Watershed algorithm (Meyer, 1994) is
implemented in MATLAB.

1.3.1.4 Advanced Techniques

The unsupervised image segmentation methods described so far are early works of im-

age segmentation research. They mostly operated on the grayscale range of images

solely due to the importance of grayscale images as well as the limited computational

power available at the time of their invention. Moreover, they try to solve the segmen-

tation problem based on either edge or region characteristics independently, both of

which have specific drawbacks. In contrast, state-of-the-art segmentation algorithms are

often a useful combination of edge-based and region-based elements, which operate on

color or even higher dimensional feature spaces. Furthermore, many algorithms employ

additional constraints e.g. that resulting regions have to be spatially compact.

A very popular segmentation approach is the mean shift segmentation algorithm of

Comaniciu and Meer (1997), which aims at finding modes in a feature space composed

from color values and spatial pixel coordinates. See Figure 1.11 for an example: The

red, green and yellow peppers in 1.11(a) form modes in the RGB-color space shown in

1.11(b), which can be detected by a mean shift procedure in order to obtain regions with

coherent color signatures. The additional incorporation of the pixel coordinates yields

spatially compact regions.

An important line of research is represented by energy minimization approaches,

where cost functions are designed to control the behavior of an algorithm. These cost

functions are then minimized e.g. by using variational approaches (Mumford and Shah,

1989) or using graph based methods (Shi and Malik, 1997; Wu and Leahy, 1993). An
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Figure 1.11: Cluster analysis can be used to segment images automatically: The peppers
(a) form distinctive modes in the RGB-color space (b), which can be detected using basic
unsupervised learning algorithms.

example for a graph-based algorithm is the method of Felzenszwalb and Huttenlocher

(2004): The image is represented as a graph G = (V, E), with the pixels representing ver-

tices V with edges E between them. The edges are employed to encode a dissimilarity

measure w(p, q) between adjacent pixels p and q. Felzenszwalb and Huttenlocher define

a segmentation to be a subset of the edges E′ ⊆ E forming a connected component C in

the graph. The basic observation is that edges between vertices in the same component

should exhibit a lower dissimilarity than edges between vertices of different compo-

nents. This is modeled by an internal difference of a component C that is represented

by the largest edge weight in the minimum spanning tree of the component:

Int(C) = max
{p,q}∈MST(C,E)

w(p, q). (1.6)

Furthermore, the difference between two components is defined as the smallest edge

weight between these components:

Di f (C1, C2) = min
p∈C1,q∈C2,{p,q}∈E

w(p, q). (1.7)

Based on these models, they evaluate the evidence for a boundary between two compo-
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nents as

D(C1, C2) =

true : if Di f (C1, C2) > min(Int(C1) + k
|C1| , Int(C2) + k

|C2| )

f alse : else,
(1.8)

where the terms k
|C1| and k

|C2| with a constant parameter k act as threshold functions to

control the size of the resulting components. Initially, all pixels form separate compo-

nents. Then, based on sorted edge weights, components are merged iteratively accord-

ing to the boundary evidence predicate (1.8). This predicate allows for capturing fine

details in image regions with low variability while suppressing details in regions with

high variability.

For performance comparison of unsupervised image segmentation algorithms, Mar-

tin et al. (2001) presented the Berkeley Segmentation Benchmark BSDS300 featuring

300 labeled images. This benchmark dataset has become one of the most employed

datasets for the evaluation of unsupervised segmentation methods, therefore Arbelaez

et al. (2010) recently released the superset BSDS500 with an additional 200 annotated

images. Due to the popularity of these datasets, performance results exist for the most

important unsupervised segmentation algorithms. Hence, the benchmark papers of

Martin et al. and Arbelaez et al. give a detailed overview of the current state-of-the-art.

1.3.2 Supervised Segmentation

Supervised (a.k.a. semantic) segmentation aims at assigning every pixel a label out of

a predefined set of labels from a training database. E.g., given a training database with

many labeled images depicting dogs, horses and grass, assign each pixel in an unseen

image one of these three labels. To accomplish this task, state-of-the-art supervised

segmentation methods typically perform four steps:

I Find a good description for the visual and/or spatial properties of all labels. These

descriptions can be based on arbitrary features, starting from simple color models

up to sophisticated local feature descriptions.

I Build an appropriate model for the labels in the database. This step amounts

to training a supervised machine learning algorithm based on the representation

computed in the previous step.

I Find for every pixel the label with the highest likelihood based on the trained

models.
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I Incorporate some kind of spatial regularization to produce compact regions from

the noisy posterior probabilities obtained from the models.

Note that the need for a training set limits the applicability of such segmentation meth-

ods drastically, as they can only be applied when the appearance and content of images

are known beforehand. Furthermore, to have a descriptive training set for the labels to

be covered, the database needs to consist of many different images, which in turn re-

quires lots of labeling effort. Also, as the number of different labels increases, the image

representation needs to get more and more sophisticated.

A recent example for a semantic segmentation algorithm has been presented by

Schroff et al. (2008): They employ Random Forests (Breiman, 2001) to model high-

dimensional features obtained from concatenating RGB values, textons, a filterbank re-

sponse as well as Histogram of oriented Gradients (HoG) features (Dalal and Triggs,

2005). With additional regularization of the posterior probabilities obtained from the

Random Forests, the approach of Schroff et al. yields state-of-the-art results.

In (Shotton et al., 2008), the authors present a powerful image representation called

semantic texton forests. Furthermore, they employ an additional algorithm stage to

model spatial relations, e.g. that pixels labeled as ’sheep’ are more likely to occur in the

vicinity of ’grass’ pixels than in the vicinity of ’building’ pixels.

There exist several benchmark datasets for evaluation of supervised segmentation

methods, two of which are the MSRC and the PASCAL VOC dataset: The MSRC object

recognition database by Shotton et al. (2006) consists of 591 images in which every pixel

is assigned one of 21 predefined labels, such as e.g. building, tree, sky, water, flower,

bird, cat or dog. The PASCAL Visual Object Classes Challenge (VOC) (Everingham

et al., 2010) is a yearly object recognition competition, which since 2007 also contains a

20-class segmentation benchmark.

1.4 Interactive Segmentation

Based on the considerations presented so far, we develop a powerful interactive segmen-

tation framework in this thesis. Interactive (a.k.a. semi-supervised) segmentation deals

with partitioning an image into regions according to user-provided input.
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1.4.1 Conceptual Differences

The existence of a human operator makes a large difference in terms of properties and

requirements of interactive methods compared to supervised and unsupervised algo-

rithms. The main challenges of unsupervised segmentation come from the employed

unsupervised machine learning algorithms: Important variables such as the number of

image segments, a suitable feature space or the shape of the clusters in the feature space

have to be estimated from the data. In supervised segmentation, these problems do

not occur due to the usage of supervised machine learning algorithms. Therefore, such

segmentation methods are restricted to the small number of segment categories trained

beforehand from a database and cannot be employed to segment an arbitrary image.

Interactive segmentation methods do not suffer these conceptual shortcomings: In con-

trast to unsupervised segmentation, the problem is well-defined by the input provided

by the user. Furthermore, in contrast to supervised segmentation, any image can be

processed without the need for a huge training database.

1.4.2 Interaction

The basic interactive segmentation process is depicted in Figure 1.12: Initially, the hu-

man operator marks objects he wants to segment. In Figure 1.12(a), these markings

are brush strokes drawn inside the regions one wants to segment, other possibilities

include marking contours between segments, drawing bounding rectangles or polygons

or providing single seed pixels for segments. After the user has specified what he wants

to segment, the segmentation algorithm tries to "understand" the users intention and

produce a segmentation (Figure 1.12(b)). This step amounts to generalizing knowledge

gained from the user input to the rest of the image. Afterwards, the user can refine

segmentation results by providing additional input (Figure 1.12(c) and 1.12(d)).

These steps are repeated until the user is satisfied with the result, which directly

leads to two essential properties of an interactive segmentation algorithm: First, it needs

to be fast to compute, i.e. there should be only little time passing between drawing in-

puts and getting a segmentation. Second, the amount of user input needed to obtain the

desired segmentation should be as little as possible. This implies, that the algorithm has

to quickly and accurately capture what the user wants to segment. These requirements

are mutually exclusive to a certain extent: Keeping the amount of user input needed

small imposes the need of sophisticated feature representation and good learning algo-

rithms, which in turn increases the computational complexity of the problem.
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(a) (b)

(c) (d)

Figure 1.12: Interactive Segmentation is a process, where an operator guides an algo-
rithm until a desired result is obtained: Image (a) shows user provided input which
leads to an intermediate segmentation (b). The operator corrects this suboptimal result
by providing additional input (c), which leads to the final segmentation (d).

1.4.3 Related Work

The importance of interactive image segmentation is visible not only in the vast body

of literature on this topic, but also in their numerous occurrence in commercial and

open source image editing software packages. In this section, we give an extensive

overview of common approaches as well as recent methods in the field of interactive

image segmentation.

1.4.3.1 Manual Drawing Tools

The simplest user-guided segmentation methods are tools that allow to mark regions

or contours between regions manually. These approaches are completely independent
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of the content of the image and therefore more a drawing tool than a segmentation

method. However, due to their simplicity, such methods are implemented in all major

graphics processing programs such as Adobe Photoshop, Corel Draw or GIMP.

An intuitive approach would be to assign each pixel a label manually with brush-

like tools. As digital images nowadays have several millions of pixels, this method

would require an unacceptable amount of user input. Therefore, the simplest common

segmentation tools require the user to mark only the border pixels between segments.

An example would be the Lasso tool of Adobe Photoshop illustrated in Figure 1.13(a):

Starting with a mouse click, all pixels under the cursor are added to the segment border.

When the mouse button is released, the contour is closed linearly between the first and

the last point of the contour. The major drawback of this tool is that the marked border

points cannot be changed, thus, once the user makes a labeling mistake, he has to start

from scratch. Also, even little tremor in guiding the mouse leads to jittered borders.

Furthermore, the amount of user input is still very high.

Another approach is to approximate the segment border with geometric primitives:

Tools such as the Polygonal Lasso of Adobe Photoshop (Figure 1.13(b)) or the roipoly()

command of MATLAB let the user specify the border between segments by drawing cor-

ner points of a polygon. While drawn points are still not changeable with the Polygonal

Lasso tool, the roipoly() command allows to move polygon points afterwards.

1.4.3.2 Intelligent Scissors

One of the first common approaches to user-guided image segmentation making use of

image information is the Intelligent Scissors (a.k.a. Livewire) approach of Mortensen and

Barrett (1995). In their work, they take the common assumption that there is a change

in pixel intensity between adjacent segments of an image. Therefore, Mortensen and

Barrett used image gradients to define the local cost between a pixel p and its neighbor

q as

dLIVEWIRE(p, q) = λZdZ(q) + λGdG(q) + λDdD(p, q) (1.9)

where λZ, λG and λD are weights to steer the relative influence of the three different

cost functions dZ(q), dG(q) and dD(p, q): The first cost function dZ(q) of Equation (1.9)

is based on Laplacian zero-crossings. The second partial derivative of an image can be
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approximated by convolution of the image with a Laplacian kernel:

IL = I ∗


0 −1 0

−1 4 −1

0 −1 0

 . (1.10)

The zero-crossings of the Laplacian represent the points of maximal gradient magnitude,

which is exploited by setting the cost to zero at these image locations:

dZ(q) =

0 : if IL(q) = 0

1 : else
(1.11)

The second term of Equation (1.9) is formed by the gradient magnitude:

dG(q) = 1− ‖∇I(q)‖
max(‖∇I‖) (1.12)

The last term dD represents the direction of the gradient: With D(p) representing the

unit vector perpendicular to the gradient direction at the point p and L(p, q) denoting

the bidirectional edge vector between pixels p and q

L(p, q) =

q− p : if D′(p) · (q− p) ≥ 0

p− q : else,
(1.13)

the cost dD(p, q) is given as

dD(p, q) =
1
π

{
cos[dp(p, q)]−1 + cos[dq(p, q)]−1

}
, (1.14)

with

dp(p, q) = D′(p) · L(p, q) (1.15)

dq(p, q) = D′(q) · L(p, q). (1.16)

Hence, when the gradient directions of two adjacent pixels p and q are similar, a low cost

is assigned. This leads to a penalization of sharp changes in the direction of the final

segment boundary. Having calculated the local cost dLIVEWIRE(p, q) for every pixel and

its four neighbors, a graph is constructed with a vertex for every pixel and a link between

adjacent pixels representing the local cost between these pixels. Given two points in this
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graph, an optimal path between the points can be computed using optimal graph search

algorithms as presented by Dijkstra (1959).

Segmenting an image with the Intelligent Scissors approach then amounts to the fol-

lowing procedure: The user marks a starting point for a region boundary with his mouse

pointer. As he moves his cursor, the optimal path between the starting point and the

current cursor position is evaluated and displayed. When the user accepts the currently

displayed path with a mouse click, the newly added point is taken as starting point

for the next boundary segment. Finally, the optimal path between the first and the last

point of the boundary is taken to close the contour. While this method performs well on

images where there are distinctive intensity gradients between image segments, lots of

user input is required to obtain acceptable segmentations in highly textured areas with

lots of large gradients. The Intelligent Scissors method is implemented in GIMP, Adobe

Photoshop features a similar approach they call Magnetic Lasso (see Figure 1.13(c)).

(a) (b) (c)

Figure 1.13: Segment boundary marking methods in Adobe Photoshop: (a) shows the
Lasso tool, which allows to directly draw the segment boundary, leading to a noisy
result. With the Polygonal Lasso (b) the boundary is approximated as being piecewise
linear, by letting the user mark vertices of a polygon. Compared to (a), this is less
noisy, therefore curvilinear boundaries and small structures are difficult to mark. (c)
shows the result of the Magnetic Lasso method, which snaps the boundary to large
image gradients. Note that the selection boundary has been emphasized and colored
for visualization.

A related approach to the Intelligent Scissors method using gradient descent on

blurred feature maps was presented by Gleicher (1995). The Intelligent Scissors algo-

rithm itself was improved by combining it with the Watershed segmentation algorithm

(Vincent and Soille, 1991). An overview over such combined algorithms, which were

successfully applied e.g. in (Barrett and Cheney, 2002; Reese and Barrett, 2002), is given

in (Mortensen et al., 2000).
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1.4.3.3 Seeded Region Growing

In contrast to boundary-based segmentation methods which find segment boundaries

by searching for gradient maxima such as the Intelligent Scissors approach, region-based

segmentation methods rely on grouping pixels with similar intensity or color. A com-

mon approach to region-based segmentation are region growing (Zucker, 1976) algo-

rithms: Region growing methods are iterative algorithms which typically start off with

assigning one single pixel an initial label. Then, the intensity or color of the initial pixel

and its neighboring pixels is compared. If the similarity exceeds a certain threshold, the

neighboring pixels are given the same label as the initial pixel, otherwise a new region

with a different label is started. This process is repeated until all pixels are labeled.

While working well for images where the segments have a distinctive color signature,

noise and highly textured areas affect the performance of such methods. Furthermore,

the results heavily depend on the similarity threshold value chosen.

Seeded Region Growing (Adams and Bischof, 1994) is an adaption of the concepts

described above which comes without the need for a similarity threshold, using a mech-

anism similar to the Watershed segmentation method (Vincent and Soille, 1991). The

number of regions as well as an initial set of points for each region have to be specified

by the user by manually placing seed pixels. The similarity between an unassigned pixel

p and an adjacent region E is defined by

δ(p, E) =

∣∣∣∣∣∣I(p)− 1
|E|
∑
q∈E

I(q)

∣∣∣∣∣∣ , (1.17)

which represents the difference of the intensity I(p) to the arithmetic mean of the pixel

intensities in the region E. Other similarity functions can be employed to represent color

signatures or textural properties.

A related approach to Seeded Region Growing has been presented in (Tan and

Ahuja, 2001). There, the authors allow to draw lines and regions in addition to points

to get to an intermediate, coarse segmentation. The coarse segmentation is later refined

and the border approximated to capture diffused boundaries. Therefore, the authors

apply a border matting technique presented by Ruzon and Tomasi (2000), which was

developed to perform soft-segmentation of objects which typically have no distinctive

borders in natural images (e.g. trees, hair, water or smoke).
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1.4.3.4 Magic Wand

The Magic Wand tool implemented in Adobe Photoshop is an elementary color-based

algorithm for two-label segmentation. The user selects seed pixels by clicking at arbi-

trary pixels of the foreground object he wants to segment. All pixels having a color

within a certain range to the colors of the seed pixels are added to the foreground se-

lection. The Magic Wand tool makes no use of intensity gradients and does not impose

any constraints on the shape of the foreground selection, hence the purely color driven

selections tend to be very noisy. Therefore, the Magic Wand tool gives the user many

ways to adjust and refine the selection:

I The user can add or remove seed pixels to the selection.

I The similarity threshold specifying the selection tolerance can be adjusted.

I The selection can be constrained to be connected.

I The contour of the selection can be modified: Operations such as anti aliasing,

smoothing, expansion and contraction are supported.

While the initial color segmentations are typically not satisfying, experienced users

achieve good results using the interaction capabilities: Figure 1.14(a) shows an attempt

to select a yellow digit on the blue vertical stabilizer of a jet plane. Setting one seed

directly on the yellow digit produces a noisy selection where also the tip of the stabi-

lizer is selected. In Figure 1.14(b), the similarity threshold is increased and the selection

is constrained to be connected. Finally in Figure 1.14(c), the border is smoothed and

expanded yielding an acceptable result.

1.4.3.5 Snakes / Active Contours

Active Contours (Kass et al., 1988) are splines that move to the border between two

image segments driven by several forces in an energy minimization functional. The

original energy, which the authors call snake energy due to the slithering movement

during the minimization process, takes into account three force terms:

ESNAKE = λ1

∫ 1

0
|C′(q)|2dq + λ2

∫ 1

0
|C′′(q)|2dq− λ3

∫ 1

0
|∇I(C(q))|dq. (1.18)

In this equation, C(q) : [0, 1] → R2 denotes a parametric planar curve describing the

evolving contour and λ1, λ2 and λ3 are real positive constants. The first two terms
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(a) (b) (c)

Figure 1.14: Using the Magic Wand tool of Adobe Photoshop to segment the yellow
digit: The initial selection (a) is purely color-driven and therefore noisy and not compact.
Adjusting thresholds and adding constraints on the region (b) and contour (c) yields a
good result. Note that the selection boundary has been emphasized and colored for
visualization.

of (1.18) (internal energy) control the shape of the contour: The first derivative of the

contour C′(q) represents the tangents of the contour, hence

∫ 1

0
|C′(q)|2dq (1.19)

describes the integration of the norm of the tangent vectors over the whole contour, i.e.

the length of the contour. Thus, when minimizing the energy ESNAKE, (1.19) aims at

keeping the length of the contour as small as possible. The second derivative C′′(q)

represents the change in tangent directions of the contour, thus

∫ 1

0
|C′′(q)|2dq (1.20)

yields the overall curvature of the contour. During minimization, (1.20) tries to make the

contour smooth with little sharp directional changes. The third term of (1.18) (external

energy) integrates the image gradient magnitude at the positions of the contour i.e. pulls

the contour towards sharp gradients in the image. The constants λ1, λ2 and λ3 are used

to steer the influence of the three terms.

In the segmentation process, C(q) is initialized by drawing a contour C0 manually in

the vicinity of the actual segment boundary. The final contour, which is obtained by per-

forming gradient descent, is the one which minimizes ESNAKE given the initial contour

C0 and the parameters λ1, λ2 and λ3. Note that this is not necessarily a global mini-
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mum, hence the final contour strongly depends on the initial contour C0. An example

segmentation based on Active Contours can be seen in Figure 1.15

(a) (b) (c)

(d) (e) (f)

Figure 1.15: Image segmentation using active contours: (a) shows the initial contour C0,
(b-f) show the segmentation after 1,3,5,10 and 20 iterations respectively. This segmenta-
tion has been performed using the Active Contour Toolbox by Eric Debreuve.

Two major drawbacks of the Active Contour model include that the topology is

fixed with the initial contour and that the results of the energy minimization depend

on the parametrization of the contour. In the Geodesic Active Contour model (Caselles

et al., 1997), the contour is represented implicitly as the zero level-set of a higher order

auxiliary function (Osher and Fedkiw, 2002; Sethian, 1999). In their approach, Caselles et

al. try to find curves with minimum length in a space with Riemannian metric computed

based on the image. In a Riemannian space, the length of a contour is given as

|C|R =
∫ |C|ε

0

√
τT

s · D(C(s)) · τs ds, (1.21)



1.4. Interactive Segmentation 23

where |C|ε denotes the Euclidean length of the contour, τs represents the contour’s unit

tangent vector, D(·) states the local Riemannian metric at a given pixel and ds is the

Euclidean element of length. If D(·) is given as the isotropic metric

D(·) = diag(g(|∇I(·))|), (1.22)

with g(·) an edge indicator function vanishing at large gradient magnitudes, the Geo-

desic Active Contour energy is given as

EGAC =
∫ L(C)

0
g(|∇I(C(q))|) ds, (1.23)

with L(C) denoting the length of the contour. Hence, EGAC reduces to integrating the

Euclidean element of length along the contour, weighted with the strength of the image

gradient at the contour position. The trivial minimizer for EGAC is C = ∅, thus there is

a need for additional constraints to get a meaningful segmentation. When minimized

with level-sets, the algorithm finds a local minimum of EGAC, which depends on the

initial contour. However, an algorithm based on minimal paths able to compute a global

minimum of an equivalent energy functional has been presented by Cohen and Kimmel

(1997). Furthermore, two popular algorithms able to compute the global minimum of

EGAC have been presented by Boykov and Jolly (2001) and Bresson et al. (2007): While the

approach of Boykov and Jolly (cf. Section 1.4.3.6) uses a discrete graph representation,

the weighted Total Variation algorithm of Bresson et al. (cf. Section 1.4.3.8) operates on

a spatially continuous domain.

1.4.3.6 Graph Cut Segmentation

The high quality of segmentation results obtained with Snakes and the Geodesic Active

Contour model led to the necessity of efficient ways to compute global optima of the

underlying energy functionals. A seminal development is the work of Boykov and Jolly

(2001), where the authors find the global minimum of the Geodesic Active Contour

energy (1.23) in a discrete setting using graph-based approaches. In their work, they

reformulate the problem to the cost function

E(u) = λ ·
∑
p∈P

Rp(up) +
∑

{p,q}∈N
[up 6= uq] · g(p, q), (1.24)
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where p, q are pixels of the set P , {p, q} is a pair of pixels from the set of all unordered

pairs N , u denotes a binary vector, which assigns pixels to either foreground / object or

background, and [up 6= uq] is an indicator such that

[up 6= uq] =

1 : if up 6= uq

0 : else.
(1.25)

The energy functional of Boykov and Jolly consists of two terms: The first term

λ ·
∑
p∈P

Rp(up), (1.26)

which is referred to as region term or unary term, employs a penalty Rp(·) for ev-

ery pixel p, that represents the likelihood that p fits a foreground/background model.

Boykov and Jolly train this model using intensity distributions of the seeded pixels with

histograms. The second term

∑
{p,q}∈N

[up 6= uq] · g(p, q), (1.27)

which is referred to as boundary term or pairwise term, employs an edge indicator

function g(p, q), which is small when the pixels p and q exhibit different intensities.

Based on this energy, a graph G = (V, E) with vertices V corresponding to the

image pixels and edges E is constructed. Additionally, a source S and sink T node is

added to represent the foreground and background unary potentials. Links between the

nodes are established such that every pixel is connected to S and T (t-links) and pixels

are interconnected according to a specific neighborhood relation such as 4-connectivity,

8-connectivity etc. (n-links) (see Figure 1.16(a)). The weights for the n-links between

unseeded pixels p and q are assigned as g(p, q) (pairwise term). The t-links are assigned

based on the foreground/background model λRp(·) (unary term). Seeded pixels are

treated differently: For a pixel marked as background, the weight of the t-link to the

background terminal T is set to 0 and the weight of the t-link to the foreground terminal

S is set to a value exceeding the sum of all n-links of the given pixel. Pixels marked as

foreground are treated vice versa. In this completely defined graph, the segmentation

is performed by searching for the minimum-cost cut between the two terminal nodes S

and T (see Figure 1.16(b)). Boykov and Jolly employ a max-flow algorithm (Boykov and

Kolmogorov, 2001, 2004), which finds the global minimum of the cost function (1.24).
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(a) (b)

Figure 1.16: Graph Cut image segmentation of a 4x4 image: The image is first repre-
sented as a graph with two terminal nodes S and T (a). Pixels are linked together (red
edges) based on their neighborhood relation (4-connectivity here) as well as with the
terminal nodes (green and blue edges). The segmentation is then performed by finding
the minimum cost cut between the terminal nodes (b).

An issue often addressed in the literature is the shrinking-bias: The pairwise term

(1.27) reduces to summing up intensity gradients at the border of segments. The smaller

the contour of a segment is, the less intensity gradients are accumulated which results in

a smaller cost. This not only leads to spatially compact regions (which is the purpose of

the pairwise term), but also introduces a bias towards smaller regions exhibiting shorter

contours. Other effects of the shrinking bias are that elongated structures as well as

small isolated regions are suppressed.

Another common problem are metrication errors: Boykov and Kolmogorov (2003)

showed that the quality of solutions obtained with Graph Cut-based approaches suffer

from low connectivity (i.e. a standard 4- or 8-neighborhood as employed in many algo-

rithms) of the underlying graph. The length of this cut is defined as the sum of the edge

weights we of the edges the cut C intersects:

|C|G =
∑
e∈C

we (1.28)

In their paper, Boykov and Kolmogorov proved that with increasing connectivity as well

as proper edge weights the length of the contour gets arbitrarily close to the Euclidean
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length |C|ε. Increasing the number of neighborhood connections however increases

memory consumption and runtime of the minimization algorithm. Another drawback

is, that the computation of a multi-label solution is not straightforward (Grady, 2006):

Computing the globally optimal solution for more than two labels is equivalent to find-

ing a multi way cut through a graph, which is known to be an NP-hard problem. Fur-

thermore, the parallelization of the employed minimization algorithm is complex and

does not scale well to a large number of processing cores (Goldschlager et al., 1982;

Strandmark and Kahl, 2010).

In (Blake et al., 2004; Rother et al., 2004), the authors improve the performance of

the initial algorithm by modeling foreground and background color signatures with

Gaussian Mixture models. They reformulate the energy functional to

E(u) = −
∑

p

log(h(zp; up)) + λ
∑

(p,q)∈N
d(p, q)−1[up 6= uq]g(zp, zq), (1.29)

where the image values are stated in an array z = {z1, . . . , zp, . . . , zN}, d(p, q) represents

the Euclidean distance between pixels p and q and g(zp, zq) = e−β(zp−zq)2
is an edge

indicator function. The function h(zp; up) represents the consistency of the image value

zp and the current labeling up with the foreground/background color signatures. In

their interactive tool GrabCut, Rother et al. let the user specify the object to segment by

drawing a rectangle around it. The color signatures of foreground and background are

deducted from pixels outside and inside the rectangle and a segmentation is performed.

Based on this intermediate segmentation, the foreground color model is re-estimated

and segmentation is performed iteratively until the result is stable. The converged seg-

mentation can be altered by providing additional brush strokes (see Figure 1.17). Note

that, while the intermediate segmentations are globally optimal w.r.t. the seeds and

the color models, there is no guarantee for optimality of the overall iterative algorithm

(Grady, 2006). Vicente et al. (2009) showed how this problem can be modeled by using

graphs with higher order neighborhoods leading to algorithms with bounded optimal-

ity. In spite of the drawbacks of Graph Cut-based algorithms, the GrabCut tool is widely

used due to its simplicity, speed as well as the high quality segmentation results. E.g.

the software package Microsoft Office 2010 includes a foreground extraction method

based on GrabCut.

A common way to increase the speed of graph-based segmentation tools is the re-

duction of the size of the graph: The tool Lazy Snapping by Li et al. (2004) first employs

the Watershed algorithm (Vincent and Soille, 1991) to compute an oversegmentation of
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(a) (b)

(c) (d)

Figure 1.17: The interactive segmentation tool GrabCut allows to specify an object of
interest by marking a bounding rectangle (a). The intermediate segmentation (b) can be
improved by providing additional brush-strokes (c) in order to obtain a good segmen-
tation (d).

the image. The graph is then constructed such that the nodes represent the segments

obtained with the Watershed algorithm. With this procedure, the size of the graph is

reduced significantly. Recently, Liu et al. (2009) introduced their tool Paint Selection,

which uses a coarse-to-fine approach to accelerate the optimization process. Instead of

solving the problem for the whole image at the same time, they split up the segmen-

tation task into consecutive local segmentations. Together with heuristic elements such

as automatic deletion of misleading scribbles and viewport-based local selection, they

achieve impressive results both in terms of speed and usability.

Recently, the incorporation of shape priors to Graph Cut-based image segmentation

was demonstrated: Veksler (2008) showed the use of star-shape priors in order to seg-
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ment star-convex objects. Star-convex objects w.r.t. a star center point c guarantee, that

if a point p is part of the segmentation, any point q on a direct line between p and c

must also be part of the segmentation. Gulshan et al. (2010) extended this idea such

that an object can be composed out of several star-convex objects. Furthermore, they

incorporated geodesic distances into this framework by allowing not only straight lines

between p and c (i.e. the shortest path in Euclidean space), but the shortest path in a

Riemannian space.

Other Tools based on minimizing the Geodesic Active Contour energy using graph-

cuts comprise SIOX (Friedland et al., 2005), which is implemented in GIMP as Fore-

ground Selection Tool and others (Han et al., 2009; Lempitsky et al., 2009).

1.4.3.7 Random Walker

Another interactive segmentation algorithm based on graph-representation is the Ran-

dom Walker approach (Grady, 2006; Grady and Funka-Lea, 2004). Here the image

is represented as a weighted graph G = (V, E) with n vertices v ∈ V and m edges

e ∈ E ⊆ V ×V. Every edge eij between vertices vi and vj is assigned a weight wij repre-

senting the intensity gradient between the edges. Grady employ a Gaussian weighting

function of the form

wij = e−β·(I(i)−I(j))2
(1.30)

to represent the intensity changes between pixel values I(i) and I(j). Having constructed

this graph, seed vertices with multiple (k >= 2) labels can be defined. Segmentation is

performed by calculating for every vertex the probability, that a random walker starting

at this location first reaches a specific seed vertex. The result of the algorithm is a

probability vector with k entries for every image pixel, from which a final segmentation

can be obtained by assigning the pixel the label with the highest probability value.

The computation of a biased random walk for every pixel and every label is unfea-

sible in practice. Instead, the fact that the Dirichlet problem

D[u] =
1
2

∫
Ω
||∇u||2dΩ (1.31)

with boundary conditions at the locations of the seed vertices leads to the same solution

as the random walks, is exploited. In (Grady, 2006), the solution of the combinatorial

Dirichlet problem is derived as follows: First, the Laplacian matrix for the graph is
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constructed, such that

Lij =


di : if i = j,

−wij : if vi and vj are adjacent vertices,

0 : else.

(1.32)

Here, di denotes the degree of the node vi, which sums up the weights of all adjacent

edges. Then, the Dirichlet integral can be formulated as

D[x] =
1
2

∑
eij∈E

wij(xi − xj)2 =
1
2

xT Lx. (1.33)

The goal is to find the function x that minimizes the energy D[x]. For this purpose, the

nodes are divided into two sets, containing the seed nodes VM and the unseeded nodes

VU . Assuming that L is ordered, such that the seeded nodes come first, the energy can

be decomposed to

D[xU ] =
1
2
[xT

MxT
U ]

[
LM B

BT LU

][
xM

xU

]
(1.34)

and

D[xU ] =
1
2
(xT

MLMxM + 2xT
U BTxM + xT

U LUxU). (1.35)

After differentiation with respect to xU , the minimization leads to a system of linear

equations

Luxu + BTxm = 0 (1.36)

with the number of unseeded vertices |VU | unknown variables. When solving this sparse

linear system for a specific label l ∈ {1, 2, . . . , k}, the probabilities for the seeded ver-

tices with the label l are set to 1 and the probabilities for the seeded vertices with any

other label are set to 0. As the probabilities for all k labels for a given vertex sum up

to 1, a total of k − 1 sparse linear systems have to be solved. Computing the solu-

tion directly with LU-decomposition is impracticable for large image sizes due to high

memory consumption. However, iterative solvers exist (Hackbusch, 1994) with a small

memory footprint, that can be computed in parallel and have successfully been ported

to graphics processing units (GPUs) (Bolz et al., 2005).

The algorithm presented in (Grady and Funka-Lea, 2004) leads to a unique solution

with K connected regions i.e. the topology of the final segmentation is fixed by the

seed points. Modifications of the algorithm including prior models (Grady, 2005) allow
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for isolated segments without seed points. In (Sinop and Grady, 2007), the authors

show the close relationship between the Random Walker algorithm and Graph Cut-

based approaches: They reformulate the energy functional (1.33) to

∑
eij∈E

(wij · |I(i)− I(j)|)q

 1
q

, (1.37)

such that the pairwise term of the Graph Cut energy correspond to the case where q = 1

and the Random Walker approach corresponds to q = 2. Recently, Zhang et al. (2010)

showed the relation between the Random Walker algorithm and isotropic diffusion, and

develop a novel algorithm including an anisotropic Diffusion tensor.

The Random Walker approach is popular for its simplicity, as the global optimum

of the cost function can be derived solving basic sparse linear systems. However, the

approach also exhibits a few drawbacks: The simplicity of the region model (i.e. only

intensity differences between pixels are penalized) leads to difficulties when dealing

with highly textured areas. Furthermore, the more gradients an image exhibits, the more

sensitive the algorithm gets with respect to the seed positions. Another common point

of criticism of the Random Walker algorithm is the lack of a geometric meaning: While

the Geodesic Active Contour energy aims at minimizing the length of the segmentation

border, a geometric interpretation of the Random Walker algorithm is straightforward

only in the (useless) case of a homogeneous image, i.e. where the image exhibits no

gradients.

1.4.3.8 Weighted Total Variation

When the Geodesic Active Contour energy is solved in a discrete setting (cf. GrabCut),

one has to make assumptions on how pixels are connected. The more neighbors a

pixel has (i.e. taking into account e.g. 16 neighbors instead of 8 or 4) leads to more

accurate results, but also highly increases the amount of memory needed. Assuming

low connectivity reduces the memory footprint and speeds up graph-based algorithms,

but leads to metrication errors (Boykov and Kolmogorov, 2003).

Bresson et al. (2007) introduced weighted Total Variation as an alternative to the

Geodesic Active Contour energy:

TVg =
∫

Ω
g(x)|∇u|dΩ. (1.38)
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In this equation, g(x) describes an edge indicator function and u ∈ {0, 1} a characteristic

function indicating whether a pixel belongs to foreground or background.

When u is allowed to take an arbitrary value in the interval [0, 1], the problem be-

comes convex, allowing to compute a global minimizer. Bresson et al. perform segmen-

tation based on the functional

TVg =
∫

Ω
g(x)|∇u|dΩ + λ

∫
Ω
|u− f |dΩ, (1.39)

which is essentially the weighted TV-norm together with a data-fidelity term. In this

term, f ∈ [0, 1] is used to incorporate region information.

This framework has been used by Unger et al. (2008) in their interactive segmentation

tool TVSeg. In their work, Unger et al. solve the energy functional

E =
∫

Ω
g(x)|∇u|dΩ +

∫
Ω

λ(x)|u− f |dΩ, (1.40)

which exhibits a per-pixel weighing variable λ(x) to incorporate user constraints: They

let the user draw brush strokes in foreground and background regions and employ

color histograms to model foreground and background color distributions. The values

of f are then initialized by either the strokes, or the foreground/background probability

based on the color histograms. The functional (1.40) also allows to set hard constraints

(i.e. forcing a specific pixel to either foreground or background) via the variable λ(x)

(see also Figure 1.18).

Compared to Graph Cut-based segmentation methods, the weighted TV framework

does not suffer from metrication errors. Furthermore, the employed variational energy

minimization schemes perform iterative pixel updates that depend only on the pixel

itself as well as its direct neighbors. These schemes can therefore be implemented in

parallel in order to greatly speedup the computation time: Unger et al. implemented

the core parts of their tool using NVIDIA CUDA to use the massive parallelism of

graphics processors. This reduces the time needed to compute a segmentation to parts

of a second for 640x480 image dimensions, allowing for convenient user interaction.

1.4.3.9 Geodesic Segmentation

The idea behind geodesic segmentation is to compute weighted distance functions be-

tween seeded and unseeded image pixels. The geodesic distance between two pixels p, q
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(a) (b)

Figure 1.18: The interactive segmentation tool TVSeg models color distributions of fore-
ground and background using color histograms based on brush strokes (a). The seg-
mentation can be altered by providing additional brush strokes to remodel the color
histograms (i.e. the blue stroke in the top right corner of (b)), or by forcing pixels to
either foreground or background (the pink strokes over the heads of the bears in (b)).

over a path Cp,q is written as

d(p, q) = min
Cp,q

∫ 1

0
|∇I · Ċp,q(s)|ds, (1.41)

where ∇I represents the image gradient. Ċp,q(s) is the tangent of the path, hence the

integral in (1.41) reduces to accumulating the gradients over the length of the path. The

solution can efficiently be computed in linear time with raster-scan (Toivanen, 1996) or

fast marching methods (Yatziv et al., 2006). Without the gradient in (1.41), the geodesic

distance equals the Euclidean distance and Cp,q is a straight line between points p and

q. When applied to interactive image segmentation, the seed pixel with the smallest

geodesic distance is calculated for every unseeded pixel.

The image gradient in (1.41) can be replaced by more descriptive weight functions:

In (Protiere and Sapiro, 2007), the authors design a weight function based on image

intensity values and texture descriptions obtained with Gabor filters. This approach is

extended in (Bai and Sapiro, 2007), where the weight function is calculated based on

color distributions modeled with kernel density estimation. Furthermore, the authors

perform border matting to obtain a soft segmentation and demonstrate the applicability

of their approach to video segmentation. These approaches are similar in behavior to

the Random Walker approach, and suffer from the same drawbacks, like e.g. that the
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topology is fixed with positioning the seeds, that the segmentation is highly dependent

on the seed positions and also the lack of a geometric meaning of the minimization

process.

In (Criminisi et al., 2008, 2010), the authors create a set of candidate segmentations

using a geodesic filter and find the optimal candidate within a Graph Cut framework.

Their framework not only allows for topological changes between the seed positions

and the final segmentation, the employed Graph Cut framework also introduces spatial

coherence of the resulting segments. In (Price et al., 2010), the geodesic distance based

on color models is included directly into the unary term of a Graph Cut segmentation

energy.

1.4.3.10 Power Watersheds

Based on the work of Sinop and Grady (2007), where a relation between the Random

Walker algorithm and Graph Cut segmentation is established, the Power Watershed

algorithm of Couprie et al. (2009, 2010) incorporates Watersheds, Random Walker, Graph

Cut and Geodesic Segmentation into a common framework. They state the two-label

problem on a graph with edges eij ∈ E and vertices vi ∈ V as

min
u

∑
eij∈E

wp
ij|ui − uj|q +

∑
vi

wp
Fi

uq
i +

∑
vi

wp
Bi
|ui − 1|q, (1.42)

with wFi and wBi denoting the unary potentials of the foreground and background pixels

respectively. Couprie et al. show how different choices of p and q lead to different

interactive segmentation algorithms (cf. Table 1.1): For zero weight power (p = 0), the

solution of the interactive segmentation is independent of the image data and leads to

Voronoi diagrams with the seed pixels as center nodes. For a finite weight power p,

(1.42) corresponds to Graph Cut for q = 1 and the Random Walker algorithm for q = 2

(Sinop and Grady, 2007).

p = 0 p = f inite p = ∞
q = 1 Graph Cut Watershed
q = 2 Voronoi, L2 norm Random Walker Power Watersheds
q = ∞ Voronoi, L1 norm Voronoi, L1 norm Geodesic Segmentation

Table 1.1: Couprie et al. (2009, 2010) unify Watershed, Random Walker, Graph Cut and
Geodesic segmentation in a common energy minimization framework based on two
parameters p and q.
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The work of Couprie et al. studies the case where the weight power p goes to infin-

ity: In (Allène et al., 2010), the authors show that for q = 1 and p→ ∞, the minimizer of

(1.42) can be computed by a fast maximum spanning forest algorithm instead of com-

putationally costly max-flow methods. In this case, the Graph Cut solution corresponds

to the solution of a Watershed segmentation. Couprie et al. prove that this also holds

for any finite value of q, and present an minimization algorithm with a quasi-linear

best-case complexity. For the case q = 2, their algorithm is able to find a unique global

optimum of (1.42). This new family of segmentation algorithms, which Couprie et al.

call Power Watersheds, allows to incorporate unary terms and spatial regularization into

traditional watershed segmentation. An advantage of Power Watersheds over standard

Graph Cut segmentation is, that the algorithm is able to compute multi-label solutions.

A major drawback of this algorithm is, that the topology of the solution is fixed by the

position of the seed pixels.

In their papers, Couprie et al. show comparable or better results than state-of-art-

algorithms such as Graph Cut, Random Walker and Geodesic Segmentation on the

GrabCut database at a lower runtime. They incorporate color information by employing

the weight function

wij =
√

max ((Ri − Rj)2, (Gi − Gj)2, (Bi − Bj)2), (1.43)

where Ri, Gi, Bi denote pixel values in the RGB color space.

1.4.3.11 Summary

Based on the vast amount of literature dealing with interactive segmentation, we now

want to provide a brief overview describing the key properties and employed energy

functionals of the most important methods. The following table states a set of properties

of interactive segmentation algorithms:

Intensity (I) / Color (C) / Texture (T) Indicates whether an algorithm segments images

based on intensity only, or employs higher dimensional features such as color or

local structure descriptions. Note that these properties are stated according to the

respective publication, and thus indicate the capabilities of the published version

and not the theoretical capabilities of the algorithm.

Region Scribbles (RS) Indicates the type of user interaction an algorithm needs. If

ticked, the algorithm is seeded by drawing scribbles directly into the regions. If not
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ticked, the user has to e.g. loosely draw the contour of the object to be segmented.

Global Optimum (GO) Indicates, whether the algorithm is able to compute a globally

optimal solution based on the input image and the seeds specified.

Free Topology (FT) States, whether the topology of the solution is necessarily identical

with the topology specified by the seed pixels or not.

Multi-Label (ML) Indicates the capability of a segmentation method to partition the

image into several (more than two) regions at the same time.
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Method / Author Description
Data Properties

I C T RS GO FT ML

Intelligent Scissors / Livewire

(Mortensen and Barrett, 1995)

Estimates the optimal path between two points p, q by minimizing the

cost

dLIVEWIRE(p, q) = λZdZ(q) + λGdG(q) + λDdD(p, q)

using optimal graph search algorithms. The cost functions dZ and dG

pull the path towards high gradients, dD penalizes sharp directional

changes.

√
× × ×

√
× ×

Seeded Region Growing

(Adams and Bischof, 1994)

Grows segments from seed points based on the similarity

δ(p, E) =

∣∣∣∣∣∣I(p)− 1
|E|
∑
q∈E

I(q)

∣∣∣∣∣∣
between a pixel p and an adjacent region A.

√
× ×

√ √
×

√

Snakes / Active Contours (Kass

et al., 1988)

Snakes are splines driven by an energy of the form

ESNAKE = λ1

∫ 1

0
|C′(q)|2dq + λ2

∫ 1

0
|C′′(q)|2dq− λ3

∫ 1

0
|∇I(C(q))|dq.

While the first and second derivatives of the contour C keep the contour

short and smooth, the third term pulls it towards large gradients.

√
× × × × × ×

Geodesic Active Contours

(Caselles et al., 1997)

Improvement of the active contours model with the energy term

EGAC =
∫ L(C)

0
g(|∇I(C(q))|)ds,

where L(C) denotes the length of the contour, g() is an edge detection

function and ds is the Euclidean element of length.

√
× × × ×

√
×
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Method / Author Description
Data Properties

I C T RS GO FT ML

Interactive Graph Cuts (Boykov

and Jolly, 2001)

Similar to the Geodesic Active Contour model, where the energy

E(u) = λ ·
∑
p∈P

Rp(up) +
∑

{p,q}∈N
[up 6= uq] · g(p, q)

is solved globally optimal on a graph using max-flow algorithms. The

unary term Rp(up) represents consistency with an intensity model and

the pairwise term [up 6= uq] · g(p, q) pulls the region border towards

edges.

√
× ×

√ √ √
×

GrabCut (Rother et al., 2004) Performs Graph Cut optimizations and foreground model updates it-

eratively until convergence. The minimized energy includes a color

model as unary term:

E(u) = −
∑

p
log(h(zp; up)) + λ

∑
(p,q)∈N

d(p, q)−1[up 6= uq]g(zp, zq).

√ √
×

√
×

√
×

Random Walks (Grady and

Funka-Lea, 2004)

A graph-based algorithm minimizing the energy

E(u) =
∫

Ω
||W

1
2∇u||2dΩ,

with the inhomogeneous metric W encoding intensity changes. The

energy can be minimized optimally using iterative solvers for sparse

linear systems.

√
× ×

√ √
×

√

Lazy Snapping (Li et al., 2004) Employs the algorithm of Boykov and Jolly (2001) on a graph based on

superpixels obtained with a Watershed segmentation.

√ √
×

√ √ √
×

Random Walks (Grady, 2005) A modification of (Grady and Funka-Lea, 2004) able to handle topology

changes.

√
× ×

√ √ √ √



38
C

hapter
1.Introduction

Method / Author Description
Data Properties

I C T RS GO FT ML

Adaptive Weighted Distances

(Protiere and Sapiro, 2007)

Finds the minimal geodesic distance

d(p, q) = min
Cp,q

∫ 1

0
|Wi · Ċp,q(s)|ds

between an unseeded pixel p and a seeded pixel q over a path Cp,q,

where Wi encodes color and texture information gained from Gabor

filter responses.

√ √ √ √ √
×

√

Geodesic Segmentation (Bai and

Sapiro, 2007)

Closely related to (Protiere and Sapiro, 2007), with color signatures

modeled using kernel density estimation.

√ √
×

√ √
×

√

Weighted Total Variation (Bres-

son et al., 2007)

Solves the variational problem

E =
∫

Ω
g(x)|∇u|dΩ + λ

∫
Ω
|u− f |dΩ,

where the first term is equivalent to the Geodesic Active Contour En-

ergy and the second term represents data-fidelity w.r.t. to the image

f .

√
× × ×

√ √
×

GeoS (Criminisi et al., 2008) Extension of (Bai and Sapiro, 2007), where a Graph Cut framework is

employed to select the best segmentation within a set of candidates

obtained with a geodesic filter.

√ √
×

√ √ √ √

TVSeg (Unger et al., 2008) Extends the energy of (Bresson et al., 2007) to

E =
∫

Ω
g(x)|∇u|dΩ +

∫
Ω

λ(x)|u− f |dΩ,

to incorporate per-pixel user constraints via λ(x) and incorporates color

information with histograms in the data fidelity term f .

√ √
×

√ √ √
×

Star Shape Prior (Veksler, 2008) Extension of (Boykov and Jolly, 2001) including a star-shaped prior to

reduce the shrinking bias and the number of necessary seed pixels.

√ √
×

√ √
× ×
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Method / Author Description
Data Properties

I C T RS GO FT ML

Paint Selection (Liu et al., 2009) A method based on (Boykov and Jolly, 2001), where speed and usabil-

ity are highly improved using heuristic mechanisms such as viewport-

based local optimization or seed competition.

√ √
×

√
×

√
×

Power Watersheds (Couprie

et al., 2010)

Unifies Graph Cuts, Random Walks, Watersheds and Geodesic Segmen-

tation with the energy

E(u) =
∑
eij∈E

wp
ij|xi − xj|q +

∑
vi

wp
Fi

uq
i +

∑
vi

wp
Bi
|ui − 1|q,

with p and q specifying the segmentation algorithm. Power Water-

sheds (q ≥ 2 and p → ∞) extend traditional Watershed segmentation

by unary potentials and spatial regularization.

√ √
×

√ √
×

√

Geodesic Star Convexity (Gul-

shan et al., 2010)

Extension of (Veksler, 2008) including multiple stars and geodesic in-

stead of Euclidean paths.

√ √
×

√ √
× ×

Geodesic Graph Cut (Price

et al., 2010)

Adds geodesic distances into the unary term of the Graph Cut seg-

mentation energy, and adjusts the combination weights automatically

according to the quality of the geodesic segmentation.

√ √
×

√ √ √
×

Diffusion (Zhang et al., 2010) Extends (Grady and Funka-Lea, 2004) by anisotropic diffusion

E(u) =
∫

Ω
||T∇u||2dΩ,

where T is a tensor which adds anisotropic diffusion D to the metric

W.

√ √
×

√ √
×

√

Table 1.2: Comparison of selected interactive segmentation algorithms

based on energy functionals, methodology and several key properties.
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1.5 Parallel Computing

As stated in the previous sections, a key requirement for interactive image segmentation

algorithms is their computation time. For applications where computation time is an

issue, the recent development of computing hardware raised the need for algorithms

that can be computed in multiple threads in parallel. Hence, in our framework, we

have to take care that employed algorithms are parallelizable and can be run on several

central processing unit (CPU) cores or even on graphics processors. Without these multi-

core implementations, the processing time would be too large to allow for convenient

interaction. Throughout this thesis, we describe the parallelization strategy for every

multi-core part of our framework and compare runtimes to single core implementations.

For these comparisons, we use a desktop computer featuring an Intel Q9450 Core 2

Quad CPU running at 2.66 GHz with 3 GB of RAM and a NVIDIA Geforce 280 GTX

graphics card. In this section, we first explain the need for parallelizable algorithms and

show how multi-core CPU as well as GPU techniques can help in significantly reducing

computation time.

1.5.1 CPU - Central Processing Units

From the early microprocessors such as Intel’s 4004 (November 1971) or 8086 (June

1987), the increase in computational power came from increasing the number of tran-

sistors on the chips (Moore, 1998) as well as increasing the chip’s clock speed. This

was made possible by continuously decreasing the structure width on the chips: In

1989, Intel introduced their famous 80486 CPU (central processing unit) with 1.2 million

transistors in a 0.8µm process which ran at a clock speed of 50 MHz. Ten years later,

in 1999, they launched the Pentium III (codename Coppermine) featuring 28.1 million

transistors manufactured at 0.18µm operated at up to 1133 MHz. The increasing clock

speeds boosted the performance of every computer program with each new processor

generation. However, the clock speed increase stopped in 2004 with Intel’s Pentium D

(codename Presler) at 3.8 GHz due to thermal limitations: Increasing the clock speed of

an integrated circuit (IC) requires an increase of its operating voltage, which in turn in-

creases the power consumption of the circuit. A high power consumption of an IC leads

to more sophisticated and expensive cooling systems needed to dissipate the heat pro-

duced during operation. Therefore, the leading chip manufacturers combined several

independent CPUs in one package with decreased clock rates: In 2006, Intel launched

their Core 2 CPU family featuring two (codename Conroe, 65nm, up to 3 GHz) and
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four (codename Kentsfield, 65nm, up to 2.67 GHz) independent processor cores. The

currently most powerful consumer CPU is the Intel Core i7-980X (codename Gulftown,

32nm, 3.33 GHz), which features six independent processing cores able to process 12

independent program threads concurrently.

This development leads to the following observation: A computer program will not

get faster with new processor generations unless it is able to use several independent

cores simultaneously. When a program exhibits this property, it is called parallelizable.

In speed-critical applications, future-proof programs nowadays need their key parts to

be parallelizable.

Multi threaded programming on the CPU Compared to GPUs, the development of a

program for a multi-core CPU environment is relatively straightforward: A computer

program is represented as a process, working through all instructions of the program

until it is finished. When time-consuming parts of the program are independent from

each other, a process can calculate these parts in parallel by starting several program

threads, which operate independently from each other on different CPU cores. When

each of the threads is finished, the main process collects their results and continues

its operation. Due to its importance, threading is a built-in feature of nearly every

important programming language.

The speedup reached with threading depends on the number of cores of the CPU,

which gives an upper bound for the decrease in computation time: When running a

program multi-threaded on a four-core processor, the execution is typically faster than

a single-threaded implementation by a factor of 3 to 3.5.

1.5.2 GPU - Graphics Processing Units

Driven by the computer games industry, graphics processing units (GPUs) can nowa-

days be found in desktop computers, workstations, notebooks and even mobile phones.

They have emerged from simple graphics controllers needed to display geometric prim-

itives such as lines, rectangles, circles and arcs onto a screen to highly sophisticated 3D

accelerators able to render three-dimensional worlds with complex illumination at high

frame rates. Early GPUs featured a fixed-function pipeline, with specific hardware for

every rendering operation needed during the displaying process: E.g. for transform-

ing geometric primitives, every GPU featured several vertex processors, for computing

the final color for a pixel there were so-called pixel shaders. The theoretical computa-

tional performance of GPUs boosted, as the number of parallel rendering pipelines in-
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creased: While the NVIDIA Geforce2 GTS introduced in 2000 had only 2 pipelines, the

Geforce 6800 GT of 2004 featured 16 and the Geforce 7800 GTX of 2005 even 24 pipelines.

As these pipelines were specifically designed for rendering three-dimensional scenery,

graphics processors were able to perform an immense amount of basic calculations such

as vector products or interpolations at high speed. As can be seen in Figure 1.19, the

theoretical peak performance of recent GPUs is an order of magnitude greater than the

theoretical peak performance of CPUs.

Figure 1.19: A comparison of the theoretical peak performance of recent Intel desktop
processors and NVIDIA graphics processors in GFLOPS (billions of floating point oper-
ations per second). Note that most of the data is taken from NVIDIA and Intel product
documentations and not from real world benchmarks.

Taking their special hardware design into account, graphics processors were inter-

faced with specific shader programming languages such as GLSL (OpenGL shading

language), HLSL (DirectX High-Level Shader Language) or Cg (C for Graphics). As

of the vast computational power, graphics processors became more and more useful

to the scientific community in spite of the complex programming model induced by

shader languages. Therefore, instead of rendering polygons, the GPUs were used as a

high-performance mathematical co-processor. Some works in the field of computer vi-

sion using GPUs interfaced with shader languages include (Griesser et al., 2005; Labatut
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et al., 2006; Sharp, 2008; Yang and Pollefeys, 2003; Zach et al., 2007).

In 2006, NVIDIA introduced the Unified Shader architecture with their new G80

chip featured in their Geforce 8800 GTX graphics card. In contrast to the Geforce 7800

GTX, which featured 8 vertex shaders and 24 pixel shaders, the Geforce 8800 GTX came

with 128 unified shaders. Depending on the application, these 128 cores could act either

as a vertex shader or as a pixel shader. While traditional shading languages were still

supported, NVIDIA presented a new programming interface called CUDA (Compute

Unified Device Architecture). CUDA allows developers to execute standard C code

on the GPU by providing a set of instructions for e.g. copying data between system

memory and video memory or setting up the graphics card. With the G80 architecture,

GPGPU (General-Purpose Computing on Graphics Processing Units) became a widely

spread technology in many scientific and commercial areas, including not only image

and video processing but also machine intelligence, energy, finance as well as medical

applications.

Programming on the GPU When using CUDA to speedup the computation of a spe-

cific algorithm, there are two major design decisions to be made:

First, one has to decide how to divide the problem into lots of equal, parallelizable

parts: Therefore, the CUDA programming model allows the user to define so-called

kernels, which are small programs executed in parallel on the GPU, operating on differ-

ent data. Starting with the G80 architecture, NVIDIA GPUs consist of several so-called

multiprocessors featuring eight cores each, e.g. a Geforce GTX280 consists of 30 mul-

tiprocessors which makes a total of 240 cores. The threads are grouped together into

blocks, which are distributed to the multiprocessors, such that every multiprocessor is

assigned several blocks. The number of threads in a block should be at least 128 (i.e. four

times the number of threads which are executed simultaneously on one multiprocessor

(a.k.a warp size)). For each kernel, the user has to specify the size of the block as well as

the number of blocks to be computed. The number of blocks should exceed the number

of multiprocessors (ideally be a multiple of the number of multiprocessors), otherwise

parts of the GPU run idle. For the Geforce GTX280 and a block size of 128, the number

of threads should either be a multiple of 3840 or much larger than 3840 to not waste

computational performance on idle GPU cores.

Second, one has to choose the employed memory type carefully: A recent GPU fea-

tures up to 4 GiB of global memory, where each thread can perform unsynchronized

read/write operations, which are relatively slow compared to other memory types. The
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G80 architecture also features 16 KB of so-called shared memory per multiprocessor,

which allows synchronized read/write operations for all threads executed on a multi-

processor. While the global memory typically consists of discrete memory chips located

on the graphics card, the shared memory resides directly on the chip and is therefore up

to two orders of magnitude faster than global memory. As a third important possibility,

for read-only access, CUDA offers the possibility to perform cached texture fetches from

global memory, with interpolation routines implemented in hardware.

However, having chosen a suitable division into threads and the right type of mem-

ory for the problem does not necessarily guarantee a good performance on the GPU.

There are also several important architectural limitations, which can lead to low perfor-

mance or even impede algorithms from being ported to the GPU:

I Every multiprocessor features only one single instruction unit, thus all threads

running on the same multiprocessor execute the same instruction (SIMD). In some

cases (e.g. code branches or wrong shared memory access patterns), the threads

need to run different instructions and are therefore serialized, which leads to sig-

nificant performance drops.

I The amount of shared memory, registers, texture cache etc. is very limited, hence,

as computation kernels get complex, they quickly run into resource problems.

Splitting up large kernels into several smaller kernels is often hardly possible and

can also lead to performance issues.

I There is typically no stack in GPU architectures, hence recursive algorithms cannot

be implemented.

I The support for double precision floating point arithmetic is currently very limited.

I There is no dynamic memory allocation at kernel level, thus the amount of mem-

ory a kernel needs has to be known before its invocation.

Because of these and other limitations of GPU architectures, specific algorithms might

not be suitable for GPU implementations. However, if an algorithm maps well to the

GPU programming model, it is typically substantially faster than multi core CPU im-

plementations.
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1.6 Proposed Framework

In the previous sections, we gave a detailed insight to state-of-the-art interactive image

segmentation algorithms and their shortcomings. Based on these considerations, we

develop a powerful interactive segmentation framework with the following properties:

Multi-label Capability Many of the interactive methods described in the previous sec-

tion can only tackle two-label problems, i.e. the segmentation of an image into

foreground and background. When a user wants to select more than two distinc-

tive regions in an image, he has to use a two-label tool several times. Our method

is capable of partitioning the image into more than two regions simultaneously.

Region Scribbles The user interaction is performed by drawing scribbles into the re-

gion to be segmented rather than loosely drawing its boundary. Many segmenta-

tion tasks can satisfactorily be performed with only a few scribbles.

Free Topology The topology of the final segmentation is independent from the topology

of the seed points.

Arbitrary Features In contrast to most segmentation algorithms which operate only in

the color or intensity feature space, our framework is able to use arbitrary high-

dimensional local image features, which allows e.g. to capture complex textural

properties of the image regions.

High-Speed While capturing textural properties usually comes with the computation-

ally costly analysis of high-dimensional feature spaces, our method is still fast

enough for convenient user interaction by massively using GPU-implementations.

1.6.1 Contributions of this Thesis

The main contributions of this thesis are based on two papers on interactive segmenta-

tion.

In our initial work (Santner et al., 2009), we extended a weighted Total Variation

framework to texture segmentation. Instead of employing intensities or modeling color

with histograms, we learned higher-dimensional local structure descriptors such as

the Histogram of oriented Gradients descriptor (Dalal and Triggs, 2005) with Random

Forests (Breiman, 2001) to capture textural properties. Most of the parts were imple-

mented on graphics processors for convenient interaction speed.
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In our second work on segmentation (Santner et al., 2010), we extended the frame-

work to be able to segment multiple labels (k ≥ 2). We also extended the employed fea-

ture space with HSV and CIELAB color models as well as new features capturing local

structure. We furthermore addressed the problem of assessing the quality of an inter-

active segmentation approach and presented a novel benchmark dataset for interactive

segmentation algorithms. With this benchmark dataset, we measured the segmentation

performance of the building blocks of our framework, i.e. different color and texture

descriptions, multi-label learning algorithms as well as segmentation model parameter-

izations.

1.6.2 Organization

The remainder of this thesis is organized in the order of the work flow of our framework

(see also Figure 1.20):

Given an image to be segmented, the first step involves the calculation of multiple

feature representations. This not only includes several color models, but also features

representing local structure. In Chapter 2, we describe several image features and in-

vestigate their applicability for interactive segmentation especially in terms of memory

consumption and computation time.

In the second step, we generate models for every image region based on input pro-

vided by the user. These models are the product of training a supervised learning algo-

rithm with the user-marked pixels as training set. Based on these models, the likelihood

that a pixel belongs to a certain region is computed for every image pixel. In Chapter 3,

we describe how such descriptive region models can be constructed efficiently based on

the high-dimensional features obtained from the feature stage.

Finally, these pixel likelihoods are regularized with a continuous Total Variation

energy functional for multiple labels (Pock et al., 2009). The development of this energy

functional starting from the two-label weighted Total Variation formulation (Bresson

et al., 2007) as well as discrete counterparts are presented in Chapter 4.

The remainder of this thesis includes the generation of a benchmark dataset for

multi-label interactive image segmentation (Chapter 5) as well as extensive experiments

evaluating the performance of all building blocks of our framework (Chapter 6). We

finally give a conclusion and an outlook to future work in Chapter 7.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.20: Workflow of our interactive segmentation framework: Given an image (a),
the color models as well as local features are computed (b). Then, upon user input (c),
these features are employed to train a model for each region. This model is evaluated for
every pixel, yielding the probability that a pixel belongs to a certain label. (d) shows the
probabilities that a pixel belongs to a certain region, where dark means a high likelihood.
Finally these likelihoods are regularized together with the gradient magnitude (e) in
order to produce a final segmentation result (f). When seed pixels are added or removed,
only the steps (d) and (f) need to be computed.





2
Image Features

In this chapter, we investigate the applicability of several image features for interactive

segmentation. An image feature is the mapping of image values to a given feature

space, which allows to capture certain properties of an image. By mapping e.g. a color

image from the RGB feature space to the grayscale feature space, one obtains a good

interpretation for the image intensity. Besides color models, where the value of one pixel

in the target feature space depends only on the value of the same pixel in the original

feature space, also image representations exist which allow to capture local structure.

These features take into account the pixels in a given neighborhood of the original pixel,

making them able to represent textural properties of the pixel neighborhood.

To be suitable for our interactive segmentation framework, an image feature needs

to be very fast to compute. In this chapter, we therefore describe several color models

and texture features and evaluate their runtime both on CPU and GPU.

2.1 Color Models

In this section, we will briefly describe the color models used in our segmentation

framework. An extensive overview on color theory is given in (Gonzalez and Woods,

2001). The elementary feature spaces for our framework are the RGB color space and

the grayscale range. In the three-dimensional RGB feature space, the color of a pixel is

encoded by three scalar values representing the primary spectral components red, green

49
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and blue. We denote the color of a pixel P in the RGB space as

PRGB =


R

G

B

 , (2.1)

where the components R, G and B vary continuously between [0, 1]. Conversion be-

tween the RGB feature space and the grayscale range is usually performed by a linear

combination of the red, green and blue value:

Pgrayscale = 0.2989 · R + 0.5870 · G + 0.1140 · B. (2.2)

The weights for the spectral components are stated in the NTSC (National Television

Systems Committee) norm (Smith, 1978), and are identical to the weights used to com-

pute the luminance value in the YUV color space.

(a) (b)

(c) (d) (e)

Figure 2.1: The RGB color space: (a) shows a color image which has been converted
to grayscale (b). Images (c),(d) and (e) show the red, green and blue channels of (a)
separately. Note the high correlation between these color channels.
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While the RGB feature space is well suited for displaying purposes, the high corre-

lation between the three channels makes it a bad choice for color image segmentation

(Cheng et al., 2001; Pietikainen et al., 1996). Color models based on linearly transform-

ing the RGB color space such as e.g. YUV or YIQ, do not solve this problem. However,

there also exist color models based on non-linear transformations such as the HSV or

CIELAB model, which are a better choice for general image analysis problems.

2.1.1 HSV

The HSV (hue-saturation-value) color model separates intensity information from color

information. A pixel in the HSV color space has three components (see also Figure 2.2):

The H component denotes the hue of the pixel as angle on a color wheel. The primary

colors are distributed over the color wheel in equal angular distance, such that the red

primary is located at 0◦, the green primary at 120◦ and the blue primary at 240◦. The

center of the color wheel is the white color. The S component encodes the saturation

of the pixel i.e. the distance from the center of the color wheel. The V component

represents the intensity of the pixel. The transformation between the RGB color model

and the HSV color model is described in detail in (Smith, 1978).

(a) (b) (c)

Figure 2.2: Converting the cow from Figure 2.1 from the RGB color space to the HSV
color space: (a) shows the hue, (b) the saturation and (c) the value component of the
original image.

2.1.2 CIELAB

Another color space encoding intensity information independently from color informa-

tion is the CIELAB (a.k.a. CIE L*a*b*) space (Robertson, 1977). An important property

of this color space is the perceptual uniformity: The Euclidean distance between two
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color values approximates the perceptual difference between the colors better than in

other color spaces.

To calculate the CIELAB coefficients from and RGB triplet, first the tristimulus values

XYZ need to be computed. This can be performed as a linear transformation with a

specific transformation matrix, e.g. as stated in (Cheng et al., 2001):
X

Y

Z

 =


0.607 0.174 0.200

0.299 0.587 0.114

0.000 0.066 1.116




R

G

B

 (2.3)

With XW , YW and ZW describing the tristimulus values of a reference white, the CIELAB

color components are derived with the following equations

PCIELAB =


L

a

b

 =


116 · h( Y

YW
)− 16

500 ·
[
h( X

XW
)− h( Y

YW
)
]

200 ·
[
h( Y

YW
)− h( Z

ZW
)
]
 (2.4)

where

h(x) =


3
√

(x) if x > 0.008856

7.787 · x + 16
116 else

(2.5)

2.1.3 Runtime

We implemented the transformations between these color models entirely on the GPU.

As the target value(s) of every pixel depends solely on the original RGB triplet, the par-

allelization is straightforward: Every GPU thread is responsible for the transformation

of one single pixel. The measured runtimes are given in Table 2.1: As the conversions

between RGB and grayscale as well as RGB and HSV are arithmetically very simple,

the GPU implementation is not significantly faster than the CPU implementation. The

arithmetically more complex conversion to CIELAB allows the GPU to outperform the

CPU by a factor of more than 20 for images of the size 512× 512.

Furthermore, the GPU implementation scales better to increasing image sizes than

the CPU implementation: Between the size of the test images (256× 256, 512× 512 and

1024 × 1024) lies a four-fold increase of the number of pixels. While the runtime of

the CPU implementation approximately reflects this four-fold increase, the increase of

GPU computation time is less progressive. One reason for this behavior is, that the times

reported for the GPU implementations include copying the images to and from the GPU
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Operation Image Size CPU [ms] GPU [ms] Speedup
RGB -> grayscale 256× 256 0.55 1.47 0.37

512× 512 2.32 2.70 0.86
1024× 1024 8.35 7.19 1.16

RGB -> HSV 256× 256 2.68 2.30 1.17
512× 512 10.69 6.11 1.75

1024× 1024 42.37 19.49 2.17
RGB -> CIELAB 256× 256 31.89 2.46 12.96

512× 512 127.4 6.36 20.03
1024× 1024 517.0 22.57 22.91

Table 2.1: Runtime comparisons between single threaded CPU implementations and
GPU implementations of color space conversion functions. Note that the GPU times
include copying to and from GPU device memory.

memory. Another reason is the SIMD structure of the GPU (cf. Section 1.5.2): The larger

the images are, the more pixels have to be computed, hence the more blocks can be

evaluated simultaneously on the GPU. This not only reduces the relative time wasted

on kernel launch overhead, but also decreases the probability that multiprocessors run

idle during execution of a kernel.

2.2 Texture Description

Besides color, the local structure of an image is often a very important cue for visual

grouping and scene understanding. In segmentation, there exist many images where

the usage of color cues alone is not sufficiently descriptive for an accurate segmentation.

See the images shown in Figure 2.3 for an example: In both images, a segmentation

of the foreground object is very difficult based on color cues solely. Therefore, interac-

tive segmentation methods exist which additionally include information deducted from

shape priors (Gulshan et al., 2010; Veksler, 2008; Werlberger et al., 2009) and texture

descriptors (Han et al., 2009; Protiere and Sapiro, 2007; Santner et al., 2009).

In this section, we describe several ways to incorporate local structure information

into our segmentation framework. For describing local structure of a pixel, the aim is to

capture characteristic information from a given surrounding of the image pixel. There is

a vast amount of such texture description / classification methods, which are in general

computationally more intensive than the color space transformations presented earlier

in this chapter. In the following, we describe several such methods and measure their

runtime in order to evaluate their applicability for our framework.



54 Chapter 2. Image Features

(a) (b)

Figure 2.3: The segmentation of the foreground objects in (a) and (b) based on estimating
color signatures is hardly possible. To accurately segment these objects, one has to
include additional cues such as shape priors or local structure.

2.2.1 Image Patches

As elementary feature describing local structure, we employ square patches cropped

from the original grayscale image (Varma and Zisserman, 2009). This feature exhibits

no common texture descriptor properties like illumination, rotation or scale invariance,

but still is the easiest way to represent local structure. The only free parameter of this

feature representation is the size s of the square environment, which directly defines

the dimension of the feature space (s2). As the patches are constructed by loading and

storing grayscale values only, the runtime is negligible.

2.2.2 Haralick Features

A still very popular early approach to texture classification is the method of Haralick

et al. (1973). The Haralick texture features are based on computing 14 statistical mea-

sures from a graylevel co-occurrence matrix derived from a given environment around a

pixel. We implemented the creation of the graylevel co-occurrence matrix as well as the

computation of the statistical measures on the GPU, where we took an approach similar

to (Gipp et al., 2009). Note that the last statistical measure described in the original pa-

per is often omitted due to its high computational complexity. We follow this principle,

which leads to a 13-dimensional feature

PHaralick = (H1, H2, H3, . . . , H13) . (2.6)
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2.2.2.1 Graylevel-Cooccurrence Matrix

A graylevel co-occurrence matrix (GLCM) represents the spatial dependence of intensity

levels based on a grayscale image. For every pixel in the image, one N × N GLCM is

computed, where N represents the number of possible grayvalues. The typical radio-

metric resolution of 8 bits per pixel would lead to a 256× 256 GLCM, which in turn

would be populated very sparsely. To reduce the memory consumption, the graylevel

values are mapped to a smaller radiometric resolution such as e.g. 5 bits, which leads to

a better populated GLCM with 32× 32 elements.

The GLCM accumulates co-occurring intensity levels over a sampling environment

around the center pixel: Given the center pixel has intensity a and a neighboring pixel

has intensity b, then the matrix values at the positions (a, b) and (b, a) are incremented.

After all neighboring pixel combinations within the sampling environment have been

accumulated, the symmetric GLCM is normalized.

The neighborhood relation employed for the accumulation of the GLCM can dif-

fer between applications. Typically, four neighbors are taken into account for every

pixel within the sampling environment (see Figure 2.4). To achieve rotation invariance,

the four neighbors representing four different directions are accumulated in the same

GLCM.

Figure 2.4: To achieve rotation invariance, four neighbors from four different directions
are accumulated in the graylevel co-occurrence matrix.

An important issue for computing the GLCM is the memory consumption: To com-

pute Haralick features densely over the image, a separate GLCM has to be computed for

every pixel. After the statistics are computed, the GLCM can be discarded. This proce-

dure maps well to the CPU, where the whole algorithm can be calculated sequentially.

On the GPU, the naive approach to parallelize on pixel level (i.e. every thread computes

the result for one single pixel) leads to memory issues: As all pixels are evaluated in par-
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allel, one would need to store the GLCM for every pixel in the graphics card’s memory.

An example: For a 5-bit graylevel resolution (N = 32), an image with 640× 480 pixels

and a 4-bit floating point GLCM representation, the memory consumption for storing

all GLCMs amounts to

25 · 25 · 640 · 480 · 4 = 1258291200 Byte ≈ 1.2GB.

To not run into memory problems, we apply a hybrid parallelization approach to com-

pute the Haralick features: The image is partitioned into smaller chunks, which consist

of several image lines. These chunks are computed sequentially, while all pixels within

a chunk are computed in parallel. The size of the chunks is adapted, such that the

amount of memory needed to store all of its GLCMs does not exceed 200 MB. After the

computation of the statistical measures is finished, the GLCMs are discarded and the

next chunk is processed.

2.2.2.2 Statistical Measures

From the normalized GLCM, 13 statistical measures are computed. Similar to Haralick

et al. (1973), p(i, j) denotes the GLCM entry at position (i, j). The marginal probabilities

of the GLCM are given as

px(i) =
N∑

j=1

p(i, j) (2.7)

and

py(j) =
N∑

i=1

p(i, j), (2.8)

With µx, µy and σx, σy denoting their means and standard deviations. The sums of the

minor diagonals are denoted as

px+y(k) =
N∑

i=1

N∑
j=1 i+j=k

p(i, j), k ∈ {2, 3, . . . , 2 · N − 1, 2 · N} (2.9)

and

px−y(k) =
N∑

i=1

N∑
j=1 |i−j|=k

p(i, j), k ∈ {0, 1, . . . , N − 2, N − 1} (2.10)

Based on these intermediate values, the Haralick textural measures are then defined

as follows:
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1. Angular Second Moment

H1 =
N∑

i=1

N∑
j=1

p(i, j)2 (2.11)

2. Contrast

H2 =
N−1∑
n=0

n2 ·
N∑

i=1

N∑
j=1 |i−j|=n

p(i, j) (2.12)

3. Correlation

H3 =

∑N
i=1
∑N

j=1 i · j · p(i, j)− µxµy

σxσy
(2.13)

4. Sum of Squares: Variance

H4 =
N∑

i=1

N∑
j=1

(i− µ)2 · p(i, j) (2.14)

5. Inverse Difference Moment

H5 =
N∑

i=1

N∑
j=1

1
1 + (i− j)2 · p(i, j) (2.15)

6. Sum Average

H6 =
2N∑
i=2

i · px+y(i) (2.16)

7. Sum Variance

H7 =
2N∑
i=2

(i− H8)2 · px+y(i) (2.17)

8. Sum Entropy

H8 = −
2N∑
i=2

px+y(i) · log(px+y(i)) (2.18)

9. Entropy

H9 = −
N∑

i=1

N∑
j=1

p(i, j) · log(p(i, j)) (2.19)

10. Difference Variance

H10 =
N−1∑
i=0

(i− H11)2 · px−y(i) (2.20)
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11. Difference Entropy

H11 = −
N−1∑
i=0

px−y(i) · log(px−y(i)) (2.21)

Note that the logarithms are computed with an offset log(p) = log(ε + p) to avoid

numerical problems. For the last two statistical measures, the entropies of the

marginal probabilities px, py are denoted as HX and HY. With

HXY1 = −
N∑

i=1

N∑
j=1

p(i, j) · log(px(i) · py(i)) (2.22)

and

HXY2 = −
N∑

i=1

N∑
j=1

px(i) · py(i) · log(px(i) · py(i)), (2.23)

the last two measures are defined as follows:

12. Information Measures of Correlation 1

H12 =
H9 − HXY1

max(HX, HY)
(2.24)

13. Information Measures of Correlation 2

H13 =
√

1− e−2·(HXY2−H9) (2.25)

Note that due to the symmetry of the GLCM, several simplifications can be per-

formed: The equal marginal probabilities px(i) = py(i) lead to µx = µy and σx = σy as

well as HX = HY. A subset of the Haralick features is depicted in Figure 2.5.

Concerning the GPU implementation, we follow a parallelization strategy simi-

lar to the one presented in (Gipp et al., 2009). Taking into account the interdepen-

dence of the 13 features, we divide the computation into three different kernels: The

first kernel computes the features which depend on the marginal probabilities, i.e.

H1, H2, H3, H4, H5, H9, H12 and H13. The second kernel evaluates the features depend-

ing on px+y(i) (H6, H7, H8) and the last kernel the remaining two features H10 and H11.

2.2.2.3 Runtime

Our implementation of the Haralick texture features offers two parameters: The number

of graylevels N as well as the size of the quadratic sampling environment s employed for
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: Haralick texture features computed densely from image (a): H1 is shown in
(b), H6 in (c), H7 in (d), H8 in (e), and H12 in (f).

accumulation of the GLCM. Figure 2.6 shows a runtime comparison between the CPU

and GPU implementations for three different image sizes, N ∈ {8, 10, . . . , 24} and s ∈
{3, 5, . . . , 13}. Using the GPU implementation, we are able to compute 13-dimensional

Haralick features densely in less than two seconds for 256× 256 and 512× 512 images

with any N ≤ 20. For images of the size 1024× 1024, computation times less than two

seconds can be reached for N < 12 and s < 7. The GPU implementation yields speedup

factors of 10 - 25 over the CPU version depending on the image size and parameters,

however, the runtimes are still relatively high for an interactive application.

2.2.3 Filter Banks

A common approach to texture description is the analysis of image responses to a given

set of linear filters. This usually consists of two steps: Given an image, first the response

of the image to the filter bank is evaluated. This response then serves as starting point

for further analysis, e.g. the calculation of specific energy measures or texton clustering

(Leung and Malik, 2001; Shotton et al., 2006): Textons are cluster centers in the space of

filter bank responses obtained from a given set of training images. These textons form a
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Figure 2.6: Runtime comparisons for Haralick texture features with three different im-
age sizes (256× 256, 512× 512 and 1024× 1024): The first column shows the runtime
comparisons for different parameters N, s between the CPU (upper mesh) and GPU im-
plementations (lower mesh), note the logarithmic scale. The second column depicts the
speedup factor between CPU and GPU.
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vocabulary which can be employed for classification of textures with properties similar

to the textural properties of the training images.

In an early example, Laws (1980) employs five one-dimensional filters

L5 = [ 1 4 6 4 1 ]

E5 = [ −1 −2 0 2 1 ]

S5 = [ −1 0 2 0 −1 ]

W5 = [ −1 2 0 −2 1 ]

R5 = [ 1 −4 6 −4 1 ]

which are multiplied in order to create 25 filters of size 5× 5. E.g., the filter E5S5 is

created by the multiplication

E5S5 = E5T · S5 =



1 0 −2 0 1

2 0 −4 0 2

0 0 0 0 0

−2 0 4 0 −2

−1 0 2 0 −1


.

These filters have been designed heuristically to capture basic structural elements such

as edges, spots or ripples. Based on the success of the Laws filter set, many filter banks

able to model different textural phenomena have been presented, e.g. Gabor filter banks

(Jain and Farrokhnia, 1990) or Quadrature Mirror Filters (Randen and John, 1994) (cf.

also the the survey of Randen and Husoy (1999) on filter bank approaches).

Examples for more advanced filter banks are the Schmid13 set (Schmid, 2001) con-

sisting of 13 rotationally invariant Gabor-like filters and the LM48 filter bank (Leung

and Malik, 1999, 2001) featuring 48 filters with varying shape, orientation and scale (see

Figure 2.7). Computing the image response to such a filter bank amounts to evaluating

computationally expensive convolution operations. Table 2.2 gives a runtime compari-

son for the Schmid13 and LM48 filter banks: The GPU is able to outperform the CPU by

factor of ≈ 50, however, it still needs more than two seconds for the smaller Schmid13

and eight seconds for the LM48 filter bank at an image size of 1024× 1024. There exist

ways to speed up convolution processes, e.g. by using separable filters such as the Laws

filters or by performing convolution by multiplication in the Fourier domain, hence the
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(a)

(b)

Figure 2.7: Two filter bank examples: The Schmid13 filter bank (a) consists of 13 rota-
tionally invariant Gabor-like filters. The LM48 filter bank (b) combines 48 filters with
varying shape, orientation and scale. The creation of these filter banks is based on source
code of Varma and Zisserman (2002), note that the filters have been contrast enhanced
for visualization.

response of certain filter banks may be computed faster than reported here.

However, there is typically additional computational effort needed for calculating

energy measures or texton evaluation. Also, in the latter case, there is a training database

needed for the creation of a texton vocabulary. Based on these observations, we do not

consider filter bank approaches in our framework.

Operation Image Size Runtime CPU [ms] Runtime GPU [ms] Speedup
Schmid13 256× 256 7945 160.1 49.64

512× 512 31516 595.9 52.89
1024× 1024 125430 2325 53.95

LM48 256× 256 29288 583.4 50.2
512× 512 115794 2199 52.66

1024× 1024 461388 8645 53.37

Table 2.2: Runtime comparisons between CPU and GPU for calculating the response of
an image to the Schmid13 and LM48 filter banks.
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2.2.4 Local Binary Patterns

A powerful texture descriptor is the Local Binary Pattern (LBP) approach (Ojala and

Pietikainen, 1999; Ojala et al., 2002). Besides being very efficient to compute, this de-

scriptor is invariant to rotation as well as monotonic grayscale transformations.

The local binary pattern algorithm works as follows: Given a center pixel gc at loca-

tion (x, y), a specific number of points P are sampled from a circle with radius R around

the center pixel from the grayscale image. The coordinates for the p-th point gp are

calculated as

gp = gc + R ·
(
−sin(α(p))

cos(α(p))

)
(2.26)

with

α(p) =
2πp

P
. (2.27)

Figure 2.8 shows three examples for such a circular sampling. As some points drop off

the regular image grid for most of the P, R pairs, the grayscale value for the sampled

points is interpolated bilinearly. This maps well to the GPU, as bilinear interpolation

is implemented in hardware and therefore is a free operation. The sampled intensity

(a) (b) (c)

Figure 2.8: Circular sampling for Local Binary Patterns: (a) shows the sampling pattern
for P = 4, R = 1.0, (b) for P = 8, R = 1.5 and (c) for P = 12, R = 2.0

values are then compared with the center pixel to calculate a specific number from the

pattern: A number with P bits is created, where every sampled point gp represents one

bit. If the sampled intensity I(gp) is larger than the intensity of the center pixel I(gc),

the bit is set to one, otherwise to zero (see Figure 2.9). Mathematically expressed, this
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number is created as follows:

LBPP,R =
P−1∑
p=0

s(I(gp)− I(gc)) · 2p, (2.28)

with

s(x) =

1 if x ≥ 0

0 else
(2.29)

indicating the comparison between a sampled point and the center pixel. The threshold-

ing of the local neighborhood of the center pixel to a binary pattern leads to the name

Local Binary Pattern.

(a) (b) (c) (d)

Figure 2.9: Examples for LBPs with P = 8, R = 1.5: A white dot represents that the
interpolated intensity at that point is smaller than the intensity of the center pixel i.e.
s(I(gp) − I(gc)) = 0. The patterns (a) and (b) could be interpreted as image edges,
(c) could represent an image corner. The pattern in (a) amounts to 111100002, (b) is
represented as 000111102. After applying the rotation invariance transform by shifting
the patterns circularly until a minimum is obtained, both (a) and (b) amount to the
same uniform pattern 000011112. The pattern in (c) is transformed from 111000002 to
000001112, which is also uniform. The pattern 011011012 in (d) is non-uniform.

In their work, Ojala et al. (2002) express the importance of uniform patterns. A uni-

form pattern exhibits at most two 0/1 transition: E.g. the patterns 000000002, 000001112

or 001100002 are uniform, while the patterns 010001002 and 001101112 are not. Rotation

invariance is obtained by a bitwise rotational shift until the minimum value is obtained

(e.g., 000111002 would become 000001112). By taking into account only rotation invari-

ant, uniform patterns, the possible number of patterns reduces to P + 1. When each of

these patterns is assigned the number of ’1’ bits as label (i.e. labels range from 0 to P),

and all non-uniform patterns are assigned the label P + 1, there are P + 2 possible labels
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for any pattern. To compute the final descriptor, a histogram counting the occurrence

of the P + 2 possible labels in a given square environment is created and normalized.

In our implementation, we fix the size of the square environment to s = 3 · R, e.g. for

R = 3.0 the histogram is accumulated over a 9x9 patch.

Implementing the LBP descriptor on the GPU can be realized with only two kernels:

The first kernel computes the rotation invariant, uniform local binary pattern for every

pixel in parallel. The second kernel accumulates the normalized histogram forming

the final LBP descriptor. Figure 2.10 shows a runtime comparison between the CPU

and GPU implementations for three different image sizes and P ∈ {2, 4, . . . , 24} and

R ∈ {2, 3, . . . , 12}. For the largest image size of 1024× 1024, the GPU implementation

is able to compute the P + 2-dimensional LBP-descriptors densely for most parameter

pairs in less than 100ms. Furthermore, it scales better with the size of the image, and is

at least 20 times faster than the CPU implementation for any R ≥ 3.

2.3 Conclusion

In this chapter, we have described and evaluated several color models and texture fea-

tures with respect to their applicability for our segmentation framework. Therefore, we

have conducted detailed runtime experiments for both CPU and GPU implementations.

Based on the source image being given in RGB space, we have evaluated transforma-

tions to the grayscale range as well as HSV and CIELAB feature spaces, which led to two

basic observations: First, the computational complexity of these color space transforma-

tions is negligible compared to the computational effort of textural features. Second,

the color spaces HSV and CIELAB are well suited for our task due to the fact that the

correlation between the color channels is not as high as in the RGB color space.

Furthermore, we have described four types of texture features: Basic grayscale patch-

es, Haralick texture features, Local Binary Patterns as well as two filter Banks (Schmid13

and LM48). There exist many more approaches to texture classification, however, we

have chosen the ones which we believe are best suited for dense computation on a GPU.

Experiments on 1024 × 1024 images showed, that Local Binary Patterns can be com-

puted very efficiently, with runtimes lower than 100ms. Haralick texture features can

be computed in the range of two seconds, depending on the parametrization. Comput-

ing the filter bank responses yields runtimes comparable to Haralick features, however,

these approaches would need further steps such as clustering or energy calculations.

Therefore, we do not include filter bank methods in our framework.
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Figure 2.10: Runtime comparisons for Local Binary Patters with three different image
sizes (256× 256, 512× 512 and 1024× 1024): The first column shows the runtime com-
parisons for different parameters P, R between the CPU (upper mesh) and GPU imple-
mentations (lower mesh), note the logarithmic scale. The second column depicts the
speedup factor between CPU and GPU.



3
Region Model

In the previous chapter, we have presented efficient ways to represent color as well as

local structure in an image. In this chapter, we describe the generation of a descriptive

model for our image segments. This problem can be stated as follows: The image pixels

can be represented as a set F of d−dimensional feature vectors f ∈ F ∈ Rd derived in

the previous chapter. Given user-defined seed pixels, we can assign them a label

l ∈ K = {0, 1, . . . , k− 1}, (3.1)

where k is the number of distinctive regions. The two-label problem k = 2 amounts to a

standard object / background segmentation. The set of pixels is divided into a subset

Fs ⊂ F ×K = {(f0, l0), (f1, l1), . . . , (f|Fs|, l|Fs|)}, (3.2)

where the labels are known from seeds, and a subset Fu containing all unlabeled pixels.

The goal is to derive a model from the seed pixels Fs in order to find the most probable

label for every unseeded pixel from Fu. See Figure 3.1 for a simple example: There, a

model is created by taking the arithmetic mean in the CIELAB color space over all pixels

in Fs belonging to the same segment. The probability for the unlabeled pixels in Fu is

then derived over the distance to the center points in feature space.

This problem is a basic supervised learning problem, where a model is generated

from the seed pixels in the training phase, and probabilities are assigned to every unla-

beled pixel in the evaluation phase. Hence this problem can be tackled using supervised

machine learning algorithms such as e.g. k-Nearest Neighbors, Gaussian Mixture Mod-

els, Histograms, Support Vector Machines or Decision Trees. In order to find a suitable

67
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: A simple region model is the arithmetic mean: Given the image (a) and four
user-provided brush strokes (b), the arithmetic mean over all labeled pixels belonging
to the same class is calculated in the CIELAB space. Then, the probability for every
segment is derived using the distance to the center pixels in the feature space: (c) shows
the likelihood that a pixel belongs to the background label with the yellow seeds, lighter
means higher probability. (d),(e) and (f) show the probability for the green, yellow and
blue pepper respectively. Note that the green stems of the red and yellow pepper have
a significantly higher probability to belong the green pepper.

algorithm for our framework, we take into account the special requirements of our ap-

plication:

Multi-Class We want to partition our image into multiple regions at the same time.

Hence, the applied algorithm has to be capable of solving multi-class problems.

Robustness Users might make mistakes while marking seed pixels, thus the algorithm

should not be prone to label noise.

High-Dimensionality The feature space employed in our framework has many dimen-

sions and might incorporate non-informative or misleading features. The algo-

rithm has to be capable to selecting suitable features itself in high-dimensional

feature spaces.
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Computational Complexity As for each part of our framework, computational perfor-

mance is a crucial requirement, therefore the model must be fast to train and

evaluate and ideally be portable to the GPU.

These requirements allow to exclude commonly used learning algorithms from the se-

lection: Histograms and Gaussian Mixture Models are impractical for high-dimensional

feature spaces, Boosting and k-Nearest Neighbors are prone to label noise and Support

Vector Machines are not inherently multi-class. Therefore, as in previous work (Santner

et al., 2009), we employ Random Forests introduced by Breiman (2001). Random Forests

are inherently multi-class and feature selective, robust to label noise, and their parallel

nature allows for implementing them on the GPU (Sharp, 2008). They have been used

in various computer vision tasks, showing classification performance rates competitive

to Boosting and Support Vector Machines (e.g. (Bosch et al., 2007; Breiman, 2001)).

In this chapter, we first describe Decision Trees and Random Forests as well as the

process of implementing them on the GPU. In the experiments in Section 3.3.3 and

Chapter 6, we compare Random Forests with a k-Nearest Neighbors implementation as

well as linear Support Vector Machines (Fan et al., 2008).

3.1 Decision Trees

A decision tree is an elementary supervised machine learning algorithm, which can be

employed for classification and regression. Due to the underlying tree structure (see

Figure 3.2 for an example), its evaluation is very fast. The tree consists of two types of

nodes: Split nodes (i.e. the elliptic nodes in Figure 3.2) incorporate some kind of decision

function to find out to which child node a sample is passed. If all decision functions are

binary (i.e. every node in the tree has at most two child nodes), the tree is called Binary

Decision Tree. Leaf nodes (i.e. the rectangular nodes in Figure 3.2) assign a sample a

probability for each class.

3.1.1 Evaluation

Given a previously trained binary decision tree and the evaluation set Fu, the evalu-

ation works as follows: A sample from Fu is dropped onto the root note of the tree.

Depending on the outcome of the decision function, it is propagated to either the left

or right child node, until it reaches a leaf node. It is then assigned the probabilities

stored in the leaf node reached. This procedure is performed for every sample from the
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evaluation set Fu. See Figure 3.2 for an example: There, a Binary Decision Tree mod-

eling a two-class problem in a four-dimensional feature space is depicted. The sample

f = [0.2, 0.7, 0.1, 0.9] is evaluated, starting in the root node with the decision function

f(2) > 0.7. Our sample has f(2) = 0.1, hence the statement is false and the sample is

propagated to the right child node. In this child node, the decision function f(1) > 0.4

is true and the sample is propagated to the left child node. The sample follows the path

marked in red all the way to a leaf node, which assigns the probabilities pl = [0.7, 0.3].

This means, that the sample has a probability of 0.7 for label 0 and 0.3 for label 1.

Figure 3.2: A binary decision tree consists of split nodes (elliptic) with decision functions
and leaf nodes (rectangular) with assigned probabilities. The tree depicted in the figure
above represents a two-label problem in a four-dimensional feature space. When the
sample f = [0.2, 0.7, 0.1, 0.9] is evaluated, it takes the path marked in red color through
the tree and is assigned the probabilities stored in the leaf node.

3.1.2 Training

The training procedure of a decision tree is more complex than the evaluation: Given

the training set Fs = {(f0, l0), (f1, l1), . . . , (f|Fs|, l|Fs|)}, one tries at every node to find a

suitable binary decision function. With k the number of classes in our problem and pl

the fraction of samples with label l in the set, there are two commonly used mechanisms

for tree construction: While the CART algorithm (Breiman et al., 1984) employs the Gini

impurity

IG = 1−
k−1∑
l=0

p2
l , (3.3)
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the ID3 (Quinlan, 1986), C4.5 and C5.0 (Quinlan, 1993) algorithms employ the Informa-

tion Gain

IE = −
k−1∑
l=0

pl log(pl), (3.4)

to measure how good a decision function separates the set. When the best decision

function is found, the training set is distributed to the new child nodes according to

the decision function and the process starts from scratch. Decision functions can e.g.

be thresholds on a single feature (as depicted in Figure 3.2) or hyperplanes constructed

from several features. Selecting the best decision function from a large number of candi-

date functions is a computationally expensive process, but in turn automatically selects

features which are discriminative for the learning problem. In the Randomized Decision

Trees approach proposed by Amit et al. (1996), the best decision function is not searched

in the pool of all candidate functions, but e.g. in a randomly sampled subset. This

typically leads to larger decision trees, but in turn greatly reduces the computational

workload during training. A leaf node is inserted when the node is pure (i.e. holds

only samples with the same label), a maximum depth is reached or no suitable decision

function can be found. The leaf node probabilities are then assigned according to the

class distribution pl of the remaining samples in the leaf node.

3.2 Random Forests

Random Forests combine the bagging approach of Breiman (1996) with Randomized

Decision Trees. Bagging (short for Bootstrap Aggregating) is a technique to improve

the stability and generalization of a machine learning algorithm: Instead of training a

model on the whole training set Fs, several models are trained on subsets Fs,i ⊆ Fs

of the training set. The subsets of the training set are randomly sampled from Fs with

replacement. Thus, a Random Forest is a set of N binary decision trees, each of which

is trained with the random subset Fs,i.

In contrast to standard decision trees, where one aims at finding the optimal decision

function in every split node, the decision trees applied in Random Forests exhibit more

randomness: Breiman (2001) and Bosch et al. (2007) employ decision functions of the

form

fTw ≤ θ, (3.5)

where f is the feature vector, w is an arbitrary weight vector and θ is a scalar threshold.
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The weight vector w exhibits only few non-zero elements, which amounts to a separat-

ing hyperplane taking into account only a subset of the dimensions of the feature space.

Even thresholding only one single feature is possible by allowing only one non-zero

element in w. In every split node, several weight vectors are generated randomly. The

splitting function is then derived using only the randomly chosen weight vectors, i.e.

only in some dimensions of the input feature space. This reduces the computational

complexity of finding suitable decision functions largely but still preserves the feature

selective capabilities of decision trees.

In our framework, we only use binary thresholding on one single feature i.e. w

has only one non-zero element e.g. w = (0, 0, 0, 0, 1, 0, 0, 0). The number of randomly

chosen weight vectors per split node is set to one fifth of the feature space dimensions

d, e.g. in a 30-dimensional feature space, d/5 = 6 random features are selected and

tested in every split node. For finding the threshold θ, first the minimum and maximum

response of fTw over all samples is computed. Then the best threshold is selected out of

ten candidates equally distributed between the minimum and maximum response. An

example: Given a d = 25-dimensional feature space, five features are randomly selected.

For each of these features, ten threshold value candidates are computed. Finding the

best decision function then amounts to selecting the feature/threshold combination out

of 5x10 = 50 possibilities that maximizes the Gini impurity (3.3).

For the evaluation of Random Forests, each sample of the test set Fu is propagated

through each tree resulting in a probability pn(l|f), for the nth tree. These probabilities

can be combined to a forest’s joint probability

p(l|f) =
1
N

N∑
n=1

pn(l|f). (3.6)

3.2.1 Multi-Core Implementation

Random Forests consist of a considerable amount of independent binary decision trees.

This inherent parallelism makes them an ideal choice for multi-core implementations.

The first reported GPU implementation of Random Forests was presented by Sharp

(2008), where both training and evaluation were ported using the HLSL shader lan-

guage. Decision trees are typically trained in a recursive manner by growing a tree data

structure with nodes and pointers between nodes. As stacks do not exist in current GPU

architectures, recursion and dynamic tree data structures can not be used to grow a tree.

Therefore, similar as Sharp (2008), we employ a linear data structure to represent the
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Random Forest in GPU memory. See Table 3.1 for an example: For every split node,

we store its own index, the index of its left child node and the decision function repre-

sented by the feature indices i with non-zero weights wi and the threshold θ. The index

of the right child node is per definition the index of the left child node incremented by

one. For leaf nodes, we store its own index, as well as the probabilities for each class

p(l|f). The index of the left son is set to −1 to indicate that the node is a leaf node.

Hence we are able to represent a whole unbalanced binary decision tree as a matrix.

Storing a Random Forest then amounts to concatenating several decision tree matrices

horizontally to form a larger matrix.

Node Index Child Node Index Feature Index i or Weight wi or Threshold θ
p(0|f) p(1|f)

0 1 2 1.0 0.7
1 3 0 1.0 0.2
2 5 1 1.0 0.4
3 -1 0.3 0.7
4 -1 1.0 0.0
5 7 0 1.0 0.4
6 9 3 1.0 0.5
7 -1 0.2 0.8
8 -1 0.7 0.3
9 -1 0.0 1.0
10 -1 0.9 0.1

Table 3.1: A linear data structure for representing binary decision trees. Here, the exem-
plary tree depicted in Figure 3.2 is shown. The node indices start at 0 (root node) and
then grow first from left to right and then with the depth of the tree. The field ’Child
Node Index’ stores the index of the left child node or −1 for leaf nodes. In the remaining
fields, either the decision function is stored (with feature indices i and corresponding
weights wi as well as the threshold θ, or in case of a leaf node, the probabilities p(k|f).

3.2.1.1 Training

The training process of Random Forests does not map well to the GPU architecture

mainly because of two reasons:

I The randomness introduced by the bagging process as well as the random feature

selection leads to non-uniform memory access patterns between different trees,

which impede a high memory bandwidth on the GPU.
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I The parallelization strategy is difficult to chose: If one assigns each thread a sepa-

rate tree to train, most of the GPU would run idle. The number of trees employed

in a segmentation problem ranges between 50 and 500, which leads to lots of idle

GPU cores (cf. Section 1.5.2). Other parallelization strategies quickly lead to very

complex implementations.

In our framework, we therefore perform training of the Random Forests using a

multi-core CPU implementation. We parallelize by separating the decision trees, such

that the total number of trees is distributed among the available CPU cores. This leads

to a speedup factor of 3− 3.5 on a current quad-core processor. As the CPU supports

recursion, the trees are built using a recursive data structure. After the training has

finished, this data structure is translated to the linear data structure for GPU evaluation.

3.2.1.2 Evaluation

The evaluation of a Random Forest can be performed in two separate steps: The first

kernel evaluates every sample of the evaluation set Fu on every tree independently,

yielding for every sample the leaf-node probabilities of every tree. The second kernel

then performs the combination of the leaf-node probabilities for every sample.

An example: Given a k = 3-class problem for an image of the size 640x480 and a

Random Forest with N = 100 trees. The first kernel then computes 640x480x100 ≈ 30M

threads and produces 640x480x100x3 probability values. In the second kernel, the sum

p(l|f) =
1
N

N∑
n=1

pn(l|f). (3.7)

is calculated over all N trees yielding k = 3 probability values for every pixel.

Note that the intermediate probabilities consume lots of memory: If the probability

values are stored as 4-byte floating point variables, the intermediate output consumes

640x480x100x3x4 ≈ 352MB of graphics card memory. To not run into memory issues,

the whole problem is divided into several smaller chunks similar as during the compu-

tation of the GLCM described in Section 2.2.2.1.

3.3 Performance Evaluation

In this section, we evaluate the performance of the region models trained with Random

Forests. We therefore compare to two other learning algorithms: An implementation of
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the k-Nearest Neighbors (kNN) algorithm and a linear Support Vector Machine (SVM).

3.3.1 K-Nearest Neighbors

The k-Nearest Neighbors algorithm finds for every sample of the test set the k samples

of the training set with the smallest Euclidean distance in the feature space. This leads

to virtually no training time but lots of memory consumption, as in the training phase

only the entire training set is stored. In the test phase, the distance between all samples

of the training set and all samples of the test set needs to be computed and compared.

This can be easily parallelized: We employ a GPU-based approach similar to the one

presented by Garcia et al. (2008), with iterative minimum search instead of sorting.

3.3.2 Support Vector Machines

Support Vector Machines are learning algorithms which try to find the optimal deci-

sion boundary between samples of the training set with different labels by maximizing

the margin between the decision boundary and the training samples. We employ an

approach with linear decision boundaries (i.e. hyperplanes in the feature space) imple-

mented in the LIBLINEAR package (Fan et al., 2008), using an L2-regularized logistic

regression solver.

3.3.3 Runtime

For performance evaluation, we employ two common machine learning datasets: The

Statlog (Landsat Satellite) and the Letter Recognition data set. The Statlog (Landsat

Satellite) data set represents a 6-class problem in a 36-dimensional feature space, with

4435 training samples and 2000 test samples. The Letter Recognition data set is a 26-

class problem in a 16-dimensional feature space, with 16000 training samples and 4000

test samples. In our segmentation framework, we typically deal with differently sized

problems: As our training sets consist only of the seeded pixels and our test sets are built

from every single image pixel, we have the situation that |Fs| � |Fu|. For that reason,

we compare on a third artificial dataset (which we call Segmentation data set) featuring

a 5-class problem in a 3-dimensional feature space with 12500 training samples and

300000 test samples. The artificial segmentation dataset, which consists of five Gaussian

modes with different symmetric covariance matrices, is depicted in Figure 3.3.

We compare the Random Forest algorithm described in this chapter as well as an

implementation of the k-Nearest Neighbors (kNN). Results are given in Table 3.2: For
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Figure 3.3: To benchmark our learning algorithm, we have created an artificial dataset
resembling conditions occurring in our segmentation framework. This dataset consists
of five classes in a 3-dimensional feature space, with 12500 training samples and 300000
test samples.

the relatively small machine learning data sets Letter and Landsat, the kNN algorithm

outperforms the Random Forest in terms of speed while reaching comparable accuracy.

Here, due to |Fs| > |Fu|, the training phase of the Random Forests strongly influence the

overall runtime. An important issue is that the accuracy of the kNN algorithm strongly

depends on the right choice of the parameter k: When k is too large, the algorithm tends

to overfit the training data. Note that the Random Forests do not exhibit this behavior.

On the larger artificial dataset, where |Fs| � |Fu|, the Random Forests yield more

accurate results in less time than the kNN algorithm.

3.3.4 Model Quality

In this section, we give a qualitative comparison of the learning algorithm results on

interactive segmentation problems. We employ a d = 17-dimensional feature space

consisting of CIELAB color features and Local Binary Patterns with P = 12, R = 2 as

texture descriptor. We compare Random Forests with 100 trees, the kNN algorithm

with k = 10 and a linear SVM with C = 0.045. In the following figures, the resulting
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Data Algorithm Parameters Ttrain[ms] Ttest[ms] Accuracy
Landsat Random Forest N = 10 433.55 0.65 86.95

N = 20 845.57 0.79 88.05
N = 50 2092.77 1.76 89.90

N = 100 4093.82 3.64 90.40
N = 200 8266.54 9.63 90.45
N = 500 20502.85 25.27 90.60

kNN k = 1 xxx 54.92 89.35
k = 2 xxx 57.70 89.35
k = 5 xxx 62.90 90.65
k = 10 xxx 73.65 90.05
k = 20 xxx 96.58 89.10

Letter Random Forests N = 10 1492.18 3.32 85.35
N = 20 2762.56 7.31 90.05
N = 50 6869.20 24.06 94.00

N = 100 13613.92 53.90 95.32
N = 200 27691.55 126.86 95.70
N = 500 73676.96 286.12 96.10

kNN k = 1 xxx 438.72 95.20
k = 2 xxx 469.05 95.20
k = 5 xxx 583.71 95.40
k = 10 xxx 718.55 94.57
k = 20 xxx 1005.55 93.42

Segmentation Random Forests N = 10 381.30 58.23 86.42
N = 20 773.36 112.11 87.09
N = 50 1872.71 387.70 87.96

N = 100 3809.13 971.98 87.95
N = 200 7843.54 1980.04 88.09

kNN k = 1 xxx 10924.49 83.96
k = 2 xxx 12388.69 83.96
k = 5 xxx 16560.48 87.30
k = 10 xxx 23283.90 88.08
k = 20 xxx 37009.84 88.71

Table 3.2: Performance comparison on standard machine learning datasets (Landsat,
Letter) and an artificial dataset (Segmentation) resembling conditions occurring in our
segmentation framework. While Random Forests are slower than the k-Nearest Neigh-
bors algorithm on Landsat and Letter due to the training phase, they outperform kNN
on the Segmentation data set, where the amount of test samples is much higher than
the amount of training samples. Note also, that Random Forests do not tend to overfit
the training set.

probabilities are encoded in the grayscale range for every label k separately. For the

Random Forests and the kNN algorithm, where p(l|f) ∈ [0, 1], the intensity is set to

−p(l|f). For the SVM, the intensity is set to −log(p(l|f)). This leads to high probability

regions appearing dark and low probability regions light. For a better visibility, the

logarithmic SVM results are contrast enhanced.

Figure 3.4 shows the inherent feature selective capabilities of Random Forests: The

14-dimensional Local Binary Pattern descriptor exhibits dimensions which are mislead-
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ing. While the kNN algorithm as well as the linear Support Vector Machine results are

influenced by these misleading dimensions (cf. the ’noisy’ patterns in Figure 3.4), the

Random Forest algorithm nearly completely neglects them.

The same behavior can be observed in Figure 3.5: There, the problem is a three-label

problem in a d = 17-dimensional feature space, with |Fs| = 33360 training samples and

|Fu| = 154401 evaluation samples. The task is to find a good description for a bridge,

surrounding grassland and the background. A difficulty is given by the similarity of the

color of the bridge to the color of the grassland it is standing on. The kNN algorithm,

which is per definition a bad generalizer, leads to a very noisy result. Also the time for

evaluation (103810 ms) is unacceptable for an interactive framework. The linear SVM

also has difficulties separating the bridge from the grassland, especially at the upper

border of the bridge, however, the training time (467.82 ms) and the evaluation time

(518.54 ms) are very low. The Random Forest is able to select discriminative features

and yields a well generalized result. While the training takes longer than the SVM

training (5444.8 ms), the evaluation is completed in 181.29 ms.

The time spent during training can be reduced significantly by replacing the solid

brush with a spraygun-like brush: As neighboring points typically have very similar

properties, lots of redundancy is given in a training set deducted from seeds drawn

with a solid brush. By randomly sampling a given percentage from these seed pixels,

the training set is significantly reduced while keeping most of the important informa-

tion. Figure 3.6 shows a segmentation problem where a spraygun-like brush is applied

instead of a solid brush. There, a five-label problem is solved with |Fs| = 1818 training

samples and |Fu| = 154401 evaluation samples. The regions to segment are the sky

(red seed pixels), the roof (green seed pixels), the church towers (blue), the mountain

(yellow) as well as the leaves in the top right of the image (magenta). In Figure 3.6,

only the probabilities for the labels sky (red), roof (green) and mountain are shown (yel-

low). Here again, the Random Forests lead to cleaner, more noise-free results than the

other two algorithms. With the spraygun brush, also the runtime characteristics change

massively: While the kNN algorithm needs 3243.04 ms for the evaluation, the Random

Forest takes 824.76 ms to train and 319.92 ms to evaluate. Thus with Random Forests,

we obtain a high-quality probability estimate for this difficult five-label problem in little

more than one second.
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Label 0 (red seeds) Label 1 (green seeds) Label 2 (blue seeds)
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Figure 3.4: Region models trained with three labels: Label 0 (red seeds) is depicted in
the left column, label 1 (green seeds) in the middle column, label 2 (blue seeds) in the
right column. The first row shows the probabilities for the separate labels obtained with
a kNN algorithm with k = 10, the second row the result of a linear SVM with C = 0.045.
The third row depicts results obtained with a Random Forest consisting of 100 trees.



80 Chapter 3. Region Model

Label 0 (red seeds) Label 1 (green seeds) Label 2 (blue seeds)
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Figure 3.5: Region models trained with three labels: Label 0 (red seeds) is depicted in
the left column, label 1 (green seeds) in the middle column, label 2 (blue seeds) in the
right column. The first row shows the probabilities for the separate labels obtained with
a kNN algorithm with k = 10, the second row the result of a linear SVM with C = 0.045.
The third row depicts results obtained with a Random Forest consisting of 100 trees.
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Label 0 (red seeds) Label 1 (green seeds) Label 2 (blue seeds)
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Figure 3.6: Using a spraygun-like brush for marking seed pixels leads to a significant
reduction of the model training time: The regions to segment are the sky (red seed
pixels), the roof (green seed pixels), the church towers (blue), the mountain (yellow)
as well as the leaves in the top right of the image (magenta). The learning algorithm
outputs are arranged similarly to Figure 3.5. Due to spatial reasons, only three labels
are shown: The sky (left), the roof (middle) as well as the mountain (right).





4
Segmentation

The previous chapters described how we can efficiently compute powerful pixel-wise

posterior probabilities p(l|f), encoding the probability that a pixel represented by a

feature vector f belongs to a given label l ∈ {0, 1, . . . , k − 1}. The quality of these

probabilities depends on many factors, e.g. the employed feature space, the type and

parametrization of the learning algorithm or the segmentation problem itself. Hence, if

one of these subparts is badly conditioned or not parametrized reasonably, the proba-

bilities might get very noisy. Figure 4.1 shows a 4-class segmentation problem together

with the posterior probabilities for two exemplary segments. These exemplary segments

have a very similar color distribution, i.e. some of the pixels of both segments lie close

together in the color feature space. While most of the pixels of the two segments can be

classified correctly, some pixels have high probabilities for the wrong segment.

(a) (b) (c)

Figure 4.1: Given the 4-class segmentation problem in (a), (b) and (c) depict pixel-wise
probabilities for two segments with similar appearance (using the same encoding as in
the previous chapters, where a high probability corresponds to dark regions and vice
versa). This leads to some pixels exhibiting a high probability for the wrong label.

83
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The overall problem is to find a suitable split of the image domain Ω into k sets El

with l ∈ {0, 1, . . . , k− 1}
k−1⋃
l=0

El = Ω, (4.1)

such that every pixel is part of exactly one set

Ei ∩ Ej = ∅ ∀ i 6= j. (4.2)

To find such a labeling based on noisy data is a typical and common problem which

not only occurs in segmentation, but in many other computer vision problems such as

stereo, motion estimation or inpainting. In a naive approach, one could find such a

labeling by simply assigning each pixel the label with the highest probability. Based on

noisy posterior probabilities, this would lead to noisy labelings (cf. Figure 4.2).

(a) (b)

Figure 4.2: (b) shows labels obtained from taking the maximum posterior probability for
the 4-class problem in (a): The pixels encoded in black belong to region E1, dark gray to
E2, light gray to E3 and white to region E4.

A suitable labeling should exhibit spatially compact regions, which have borders

aligned with large image intensity changes. These requirements match the properties

of many binary segmentation methods described in the introduction of this thesis, e.g.

the Geodesic Active Contours model (Caselles et al., 1997), Graph Cut segmentation

(Boykov and Jolly, 2001), weighted Total Variation (Bresson et al., 2007), the Random

Walker algorithm (Grady and Funka-Lea, 2004) or Geodesic Segmentation (Criminisi

et al., 2008, 2010). While some methods such as the Random Walker algorithm and

Geodesic Segmentation are inherently able to tackle multi-label segmentation problems,
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the extension of Graph Cut segmentation or weighted Total Variation to k > 2 is not

straightforward.

In this chapter, we first explain the role of the regularization terms in segmentation

energy functionals. Then, we describe how current multi-label segmentation methods

have evolved from their binary counterparts in both the discrete as well as continuous

domain. Note that we focus on the employed models and their properties only. For

details on the energy minimization procedures, refer to the respective papers. Finally,

we show the incorporation of a multi-label segmentation method into our framework.

4.1 Regularization Terms

When image segmentation is cast as an energy minimization problem, the energy typi-

cally takes the form

E(u) = ER(u) + λ · ED(u), (4.3)

with u denoting the labeling. The term ED(u) is referred to as unary term or as data

term, which forces the segmentation to match the probabilities obtained from the region

models. The regularization term or pairwise term ER typically takes care of pulling the

contours towards image gradients and keeping the overall length of the contour small.

In order to yield spatially compact regions, different labels between neighboring pixels

are penalized: In Graph Cut segmentation, regularization terms take the form

ER(u) =
∑

{p,q}∈N
d(up, uq), (4.4)

where N denotes the set of neighboring pixels p, q, and d(up, uq) denotes a function

computing a penalty depending on the label similarity of pixels p and q. In the contin-

uous setting, a common regularization term is the weighted Total Variation

ER(u) =
∫

Ω
g(x)|∇u|dx, (4.5)

where the penalty function is a L1-norm and g(x) is an edge indicator function. Table 4.1

shows different penalty functions employed in regularization terms of computer vision

energy functionals.
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Quadratic (L2) Norm: L1 Norm:

d(a, b) = (a− b)2 d(a, b) = |a− b|

Huber Norm: Truncated Quadratic:

d(a, b) =

{
(a−b)2

2ε : if |a− b| ≤ ε

|a− b| − ε
2 : else

d(a, b) = min((a− b)2, ε)

Truncated L1: Potts:

d(a, b) = min(|a− b|, ε) d(a, b) = ε · [a 6= b]

Table 4.1: Different regularization terms employed in energy minimization functionals.
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4.1.1 Properties

In order to investigate the properties of different penalty functions d(a, b), we assume

that the labels vary continuously in the range [0, 1].

4.1.1.1 Convexity

A very important property of a regularizer is convexity: Formally, a function d(x) is

called convex, if

d(λ · p + (1− λ) · q) ≤ λ · d(p) + (1− λ) · d(q) (4.6)

for any two points p, q and any continuous variable λ ∈ [0, 1]. This means, that any

straight line connecting two points of the function must not intersect the function. If

d(λ · p + (1− λ) · q) < λ · d(p) + (1− λ) · d(q) (4.7)

holds, d(x) is called strictly convex. Examples for convex functions are the L2-norm

d(x) = x2 or the L1-norm d(x) = |x|. The importance of convexity lies in its benefit for

minimization: If a function is convex and the minimization is performed over a convex

set, the global minimizer of the function can be found.

4.1.1.2 Discontinuity Handling

Another important property of penalty functions is the treatment of discontinuities:

Consider the three signals depicted in Figure 4.3, which perform a transition from 0 to

1 via five (s5), three (s3) and one (s1) separate steps respectively. Note that the overall

step size is identical for all three signals, only the number of discontinuities and their

strength changes.

s5 s3 s1

Figure 4.3: Signals for evaluating the handling of discontinuities of penalty functions.

In order to demonstrate the differences between the penalty functions, we calculate

the energy of every signal with different penalty functions (Table 4.2). Based on how the
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Penalty s5 s3 s1
L2-norm 0.2 0.34 1.0
L1-norm 1.0 1.0 1.0
Potts (ε = 0.1) 0.5 0.3 0.1
Truncated L2 (ε = 0.1) 0.2 0.28 0.1
Truncated L1 (ε = 0.1) 0.5 0.3 0.1

Table 4.2: Different regularization terms lead to different energies for the signals de-
picted in Figure 4.3: While the L2-norm penalizes discontinuities, the L1-norm preserves
them. Non-convex functions like the truncated L1 / L2 and the Potts function enhance
discontinuities.

energies change with the number and strength of the discontinuities, one can divide the

penalty functions into three types:

Discontinuity penalizing regularizations such as the L2-norm clearly favor small dis-

continuities over large steps. This leads to smooth results without sharp edges.

Discontinuity preserving regularizations treat all discontinuities equally independent

of their step size. An example for a discontinuity preserving function is the L1-

norm.

Discontinuity enhancing penalty functions like the truncated L1 and L2 norms as well

as the Potts function favor large discontinuities over small ones. While this leads

to sharp boundaries in the solution, it comes at the cost of being non-convex.

4.1.2 Applicability

Finally, we want to investigate which regularization terms can be applied for image seg-

mentation. Generally, we want the energy to be convex in order to be able to compute

a global minimizer. For image segmentation, we want discontinuities to be preserved

or enhanced. Based on these observations, from the penalizers stated in Table 4.1 only

the L1-norm seems to be suitable for image segmentation. Note that this is only ap-

plicable for the binary case: For multiple labels (k > 2), convex regularization terms

are only applicable, when the order of the label space has a meaning for the problem

it is representing. Consider the segments E0, E1 and E2 represented by the labeling

u : Ω → {0, 1, 2}. When applying any convex penalization (except a straight line), a

jump between labels E0 and E2 would be more expensive than a jump between E0 and

E1. While these convex regularizers are well suited for multi-label computer vision tasks
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such as e.g. image restoration or stereo, they are not applicable to segmentation where

the labels have only a symbolic character.

4.2 Binary Segmentation

Many approaches have been presented to obtain binary labelings (k = 2) using energy

minimization. Refer to the introduction of this thesis for a comprehensive overview.

Generally, the global minimum of binary segmentation energies can be computed in the

discrete setting as well as in the continuous setting.

4.2.1 Discrete

A binary labeling u can be obtained with graph-based approaches (Boykov and Jolly,

2001) by minimizing the energy

E(u) = λ ·
∑
p∈P

Rp(up) +
∑

{p,q}∈N
[up 6= uq] · g(p, q), (4.8)

with Rp(up) (unary term) representing the pixel-wise probabilities obtained from the

region models, and g(p, q) (pairwise term) representing the image gradient. The global

minimizer of (4.8) can be found using max-flow algorithms. Refer to Section 1.4.3.6 for

a detailed description of Graph Cut-based binary segmentation.

4.2.2 Continuous

In the continuous domain, Bresson et al. (2007) employ the energy functional

ETV(u) =
∫

Ω
g(x)|∇u|dΩ + λ

∫
Ω
|u− f |dΩ, (4.9)

with u denoting the labeling and f describing the posterior probabilities from the re-

gion models. The first term, which corresponds to the pairwise term in Graph Cut

segmentation is the weighted Total Variation, where the weight is represented by the

edge detection function g(x). The energy (4.9) is convex, but the set over which the

energy is minimized is not: As we want to obtain a binary solution, u is only allowed to

take a value in {0, 1} which is a non-convex set. Bresson et al. overcome this problem

by relaxation: For the minimization, they allow u to vary continuously in [0, 1] which

is a convex set. After computing the globally optimal continuous solution, the binary
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segmentation can be obtained by thresholding. Bresson et al. show that the thresholded

solution equals the global optimum of the binary problem for any threshold ∈ [0, 1].

4.3 Convex Multi-label Functionals

In order to solve for multiple labels, one could easily employ binary energy mini-

mization functionals and allow the field u to take more than two labels i.e. u : Ω →
{0, 1, . . . , k − 1}. Ishikawa (2003) showed how a global minimizer for such functionals

can be found in the discrete domain, Pock et al. (2008) demonstrated a globally optimal

solution of this labeling task in the continuous domain. Both approaches require a con-

vex regularization term as well as a linearly ordered label space. As stated in Section

4.1.2, the convex regularization terms would penalize label jumps differently depending

on the labels involved: E.g. the transition of the set E1 to the set E3 would be more ex-

pensive than the transition between the sets E1 and E2. Such functionals hence can only

be applied when the ordering of the label set is characteristic for the problem, which

is the case for stereo or image restoration. In segmentation, where the label set is not

ordered linearly but has only symbolic character, these functionals can not be applied.

4.4 Sequential Methods

Based on the considerations of the previous Section, we need a regularization term that

is able to treat the unordered labels occurring in segmentation equally. Employing the

Potts regularizer

d(a, b) = ε · [a 6= b] (4.10)

meets this requirement by penalizing neighboring pixels with different labels by a fixed

scalar value ε. However, it has been shown that minimizing the Potts model for multiple

labels can be reduced to finding the minimum cost multi-way cut, which is an NP-hard

problem (Boykov et al., 2001; Dahlhaus et al., 1992). Therefore, a popular class of seg-

mentation algorithms exist, that solve multi-label problems by combining several binary

problems that are solved sequentially. Basically, none of them is able to find the global

minimizer of the multi-label problem, however, they provide useful approximations.
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4.4.1 1-vs-All

An approach, which is common for solving multi-label machine learning problems with

binary classifiers, is to solve the multi-label problem in a 1-versus-All manner. Instead

of solving one single segmentation with k labels, one splits up the problem into k bi-

nary problems. See Figure 4.4 for an example: Here, three binary segmentations are

computed and fused to obtain the multi-label result. Note the small black regions in the

final segmentation: When solving k binary problems, a pixel might not be part of any

of the k segmented objects which leaves them unassigned in the result.

(a) (b)

(c) (d) (e)

Figure 4.4: A multi-label segmentation problem (a) can be solved as a combination of
binary segmentations. The final segmentation (b) is obtained by combining the results
of the binary problems (c-e). Note that a pixel might not be part of any of the binary
segmentations and therefore remain unassigned in the result (cf. the black regions in
(b)).

Figure 4.5 illustrates this phenomenon with a 3-label toy example: The gray center

dot in Figure 4.5(a) has exactly the same distance in the RGB-space to all three border

segments, and therefore the identical posterior probability for all three segments. The
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corresponding binary segmentations for the three labels (Figures 4.5(b) - 4.5(d)) therefore

yield the respectively shortest boundary through the center dot. The combined binary

segmentations hence leave a triangle which remains unassigned. Donoser et al. (2009)

approached this problem of unassigned pixels with a heuristic post-processing step in

order to allocate unassigned regions to a specific label.

(a) (b) (c) (d) (e)

Figure 4.5: The gray center dot in (a) has the identical posterior probability for all three
border segments, hence the optimal result is a 120◦ triple junction. Binary segmentations
(b-d) yield the shortest boundary through the center dot, hence any combination of the
binary results leaves an unassigned center triangle (e).

4.4.2 Expansion / Swap Moves

A popular approach for solving labeling problems for k > 2 using graph cuts has been

presented by Boykov et al. (2001). Starting with an initial labeling, they iteratively min-

imize the energy by moving pixels between labels. They allow two types of moves:

α− β Swap moves (cf. Figure 4.6) between two sets Eα and Eβ allow any pixel in the

sets Eα and Eβ to change its label. Minimization is performed until no swap move

for any pair of labels yields a smaller energy.

α−Expansion moves (cf. Figure 4.7) with respect to a label α are moves which allow

any pixel to change its label to α. Minimization is performed until no expansion

move for any label yields a smaller energy.

Finding the optimal expansion/swap move is performed in a discrete setting, hence

the method suffers from metrication errors and bad parallelizability (cf. Section 1.4.3.6).

Furthermore, the multi-label problem is again approximated by a sequence of binary

problems, and hence suffers similar drawbacks as 1-vs-All segmentation (cf. Figure 4.8).
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(a) (b) (c)

Figure 4.6: Swap moves: Given the initial labeling in (a), in (b) pixels in E1 and E2 are
allowed to swap labels. In (c) pixels of E2 and E3 are allowed to swap. This process is
continued until no swap decreases the segmentation energy.

(a) (b) (c)

Figure 4.7: Expansion moves: Given the initial labeling in (a), in (b) all pixels are allowed
to change to E1 (i.e. E1 is expanded). In (c) all pixels are allowed to change to E2. This
process is continued until no expansion decreases the segmentation energy.

In their paper, Boykov et al. prove bounded optimality within a factor of 2 for the

α-expansion algorithm, i.e. the energy of the minimum obtained by their method is at

most twice the energy of the global minimum. A continuous version of the α−expansion

algorithm with the same bounded optimality has been presented by Olsson et al. (2009).

4.5 Convex Approximations

As stated in the previous section, the computation of the global minimizer of the multi-

label Potts model is NP-hard. The sequential α−expansion algorithms have a bounded

optimality with a factor of 2. However, there exist methods with better optimality

bounds: Dahlhaus et al. (1992) present an approximation to the multiway-cut problem
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(a) (b) (c) (d)

Figure 4.8: Approximating a multi-label segmentation problem by a series of binary seg-
mentations leads to problems with non-descriptive posteriors similar to those observed
in 1-vs-All segmentation: In the toy example from Figure 4.5 (a), the result of a segmen-
tation by expansion or swap moves depends solely on the initial labeling of the gray
region, hence any result of (b-d) would be possible.

with an optimality bound of 2− 2
k . This means, that for the binary case k = 2, the global

optimum can be found. The more labels are involved in the segmentation process, the

worse the optimality bound gets.

An approximation in a spatially continuous setting has been presented by Pock et al.

(2009). In their paper, they state the Potts energy as

EPOTTS =
1
2

k−1∑
l=0

Per(El ; Ω) +
k−1∑
l=0

∫
El

fl(x)dx. (4.11)

In this energy, the regularization term includes the function Per(El ; Ω), which measures

the perimeter of the set El . The binary Potts penalization function d(a, b) = k · [a 6= b]

counts the number of neighboring pixels exhibiting different labels. For a sufficiently

large number of neighborhood relations, this approximates the perimeter of the set (or

the area of the interface in three dimensions).

In the binary case, Chan et al. (2006) minimize the Potts energy via the functional∫
Ω
|Dθ|+

∫
Ω

(1− θ(x)) · f0(x) + θ(x) · f1(x)dx. (4.12)

In this functional, θ is a binary labeling and f0 and f1 represent the data term. With

Dθ denoting the distributional derivative of the labeling,
∫

Ω |Dθ| is the Total Variation

of θ. The distributional derivative allows to express the Total Variation for non-smooth
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functions, reversely if θ was a smooth function,
∫

Ω |Dθ| would equal
∫

Ω |∇θ|. Note

that this model employs the L1-norm as penalizer in the regularization term, which is

legitimate, as the Potts penalizer is identical to the L1-norm for binary functions. In

other words, the perimeter of the set Per(El ; Ω) is approximated equally by the Potts

penalizer and the L1-norm for binary functions. The benefit of this substitution is, that

it makes the energy functional convex, which allows for computing a global minimizer

by relaxation.

In their paper, Pock et al. first define the labeling function u : Ω → {0, 1, . . . , k −
1}, which is represented by k binary functions (θ0(x), θ1(x), . . . , θk−1(x)). The relation

between the binary functions and the labeling function is given by

θl(x) =

1 : if u(x) ≥ l

0 : else
(4.13)

and

u(x) =
k−1∑
l=0

θl(x). (4.14)

In order to find out whether a pixel is part of the set El , the following relation can be

employed:

θl(x)− θl+1(x) =

1 : if u(x) = l

0 : else,
(4.15)

with θ0 = 1 and θk = 0. With these relations, the Potts energy can be reformulated as

EPOTTS =
1
2

k−1∑
l=0

∫
Ω
|Dθl |+

k−1∑
l=0

∫
Ω

(θl+1(x)− θlx) · fl(x)dx. (4.16)

However, the regularization term in this equation is not correct, as the sum over the

labels leads to interfaces between different labels being counted differently, e.g. the

boundary between sets E2 and E5 would be counted three times. Pock et al. overcome

this problem by employing the dual formulation of the Total Variation as regularization

term, and suppress multiple boundary counts by adding constraints on the dual vari-

ables: They approximate the perimeter of the set El by the dual of the Total Variation

k−1∑
l=0

Per(El ; Ω) = sup
ξ∈K

{
k−1∑
l=0

−
∫

Ω
θldivξl

}
, (4.17)
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and constrain the dual variables to the set

K =

(ξ0, ξ1, . . . , ξk−1),

∣∣∣∣∣∣
∑

l1≤l≤l2

ξl(x)

∣∣∣∣∣∣ ≤ 1, ∀x ∈ Ω, 1 ≤ l1 ≤ l2 ≤ k

 . (4.18)

Pock et al. show that the set K is convex, and compute a global optimum by con-

tinuous relaxation. As the thresholding technique employed in the binary case k = 2

is not applicable for multiple labels, the global optimum of the relaxed problem is not

the global optimum of the binary problem. However, Pock et al. give a tight bound

on the optimality: The energy of the thresholded solution EPOTTS(1u∗≥s) cannot be

lower than the energy of the global minimum of the relaxed problem EPOTTS(u∗). The

true binary minimizer of the problem EPOTTS(u) cannot produce a lower energy than

the relaxed problem, but in turn is at least as good as the thresholded solution, i.e.

EPOTTS(u∗) ≤ EPOTTS(u) ≤ EPOTTS(1u∗≥s). Thus the global optimum lies somewhere in

between the optimum of the relaxed problem and the thresholded solution.

Other approximations of the Potts model in the continuous domain have recently

been presented by Zach et al. (2008) and Lellmann et al. (2009). Note that there is no

proven optimality bound for any of these three methods yet. However, in their paper,

Pock et al. show qualitative dominance over the other two approaches.

4.6 Incorporation into the Framework

Based on the considerations presented so far, we employ the labeling algorithm of Pock

et al. (2009) in our interactive segmentation framework. In contrast to the version pub-

lished in the original paper, we employ a GPU-based implementation which allows for

the additional incorporation of an edge weight in the regularization term. This modi-

fication leads to the segment borders being attracted by image gradients (cf. weighted

Total Variation (Bresson et al., 2007)). Instead of regularizing with the energy∫
Ω
|Dθ|, (4.19)

this extension uses ∫
Ω

g(x) · |Dθ|dx, (4.20)
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with g denoting the edge indicator

g(x) = e−α∇I , (4.21)

with α a scalar weighing factor. In the dual formulation, this leads to additional con-

straints on the dual variables. With λ denoting a scalar weight between regularization

and data term, the minimized energy amounts to

1
2

k−1∑
l=0

∫
Ω

e−α∇I · |Dθl |+ λ
k−1∑
l=0

∫
Ω

(θl+1(x)− θlx) · fl(x)dx. (4.22)

In terms of parameters, three parameters are needed to obtain a segmentation result

u(x) =
k−1∑
l=0

θl(x) (4.23)

given the image I and the posterior probabilities f = { f0, f1, . . . , fk−1}: The edge weight

α, the weighing between the regularization term and the data term λ as well as the

number of iterations for the minimization algorithm.

4.7 Conclusion

In this chapter, we have reviewed binary and multi-class labeling algorithms in the

discrete as well as continuous setting (cf. the overview in Table 4.3).

Scenario Discrete Method Continuous Method
Two-label (k ∈ {0, 1}) Boykov and Jolly (2001) Bresson et al. (2007)

(any binary labeling task) global optimum global optimum
Multi-label (k ≥ 2) Ishikawa (2003) Pock et al. (2008)

linearly ordered label sets global optimum global optimum
(stereo, denoising)

Multi-label (k ≥ 2) Boykov et al. (2001) Olsson et al. (2009)
expansion/swap moves bounded optimality bounded optimality
(any labeling task) with factor 2 with factor 2

Multi-label (k ≥ 2) Dahlhaus et al. (1992) Pock et al. (2009)
convex approximations bounded optimality bounded optimality
(any labeling task) with factor 2− 2

k with no proved factor

Table 4.3: Binary and multi-class labeling algorithms in the discrete and continuous
setting as well as their optimality.
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As there is no globally optimal way to solve the labeling problem for the unordered

label space occurring in segmentation (i.e. the labels have only symbolic character),

we have to employ a method calculating an approximation of the global minimizer.

We have shown, that the popular family of expansion/swap move algorithms have a

systematic deficiency for weak unary potentials and also exhibit a large bound on the

optimality. Better results can be obtained with convex approximations, e.g. the discrete

approximation of the multiway-cut problem by Dahlhaus et al. (1992) reaches bounded

optimality with a factor of 2− 2
k . In the continuous domain, Pock et al. (2009) show

excellent results for segmentation and assume a bounded optimality similar or better

to that of Dahlhaus et al. Therefore, in our segmentation framework we employ a fast

GPU-implementation of the convex approximation algorithm of Pock et al.
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Benchmark

The evaluation of the quality of interactive segmentation algorithms is not straightfor-

ward. As the interaction in later steps typically depends of the segmentation result

of earlier steps, there is no segmentation benchmark with identical behavior for every

segmentation algorithm evaluated. Furthermore, there are many different ways of inter-

acting, starting from different scribble types over rectangles or ellipses up to boundary

marking methods. Based on these considerations, many interactive segmentation meth-

ods have been presented without any comparable quantitative scores (e.g. Bai and Sapiro

(2007); Barrett and Cheney (2002); Grady (2006); Santner et al. (2009); Sinop and Grady

(2007); Unger et al. (2008); Veksler (2008)). While some methods were evaluated using

extensive user studies (e.g. Li et al. (2004); McGuinness and O’Connor (2010); Reese and

Barrett (2002)), a recent work of Gulshan et al. (2010) introduces a robot user, which

performs automatic interaction based on intermediate results. This method allows for a

consistent comparison of interactive segmentation algorithms, however, the compliance

of the automated interaction with that of human users is not clear.

In order to evaluate our framework thoroughly, we have created a new benchmark

dataset for interactive image segmentation which is described in this chapter. For this

dataset, we gathered many images of varying objects, people, animals and scenes. We

then let different people provide seed pixels as well as ground truth segmentations

corresponding to their interpretation of the images.

99
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5.1 Related Image Segmentation Benchmarks

The most important segmentation benchmarks that have been applied to interactive

segmentation are the GrabCut database (Rother et al., 2004) as well as the Berkeley Seg-

mentation Dataset and Benchmark (Arbelaez et al., 2010; Martin et al., 2001). Other

popular benchmarks used in image segmentation are the PASCAL VOC dataset (Ever-

ingham et al., 2010) and the LabelMe dataset (Russell et al., 2008). In this section, we

describe these benchmark datasets and discuss why they are not suited for assessing

interactive multi-label segmentation algorithms.

5.1.1 LabelMe Database

The LabelMe database by Russell et al. (2008) consists of images labeled by arbitrary

people via a web annotation tool (see Figure 5.1 for an example). During annotation,

the users have to identify objects within images, loosely draw their outline with poly-

gons and freely choose a descriptive name for the object (e.g. car, building, tree, person,

window, road, sidewalk, sign, sky etc.). As the LabelMe benchmark was mainly de-

Figure 5.1: An exemplary image of the LabelMe database with object annotations.
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signed for object recognition, the annotations are often very imprecise and overlap each

other: E.g.’wheels’ and ’cars’ form different object classes, however a pixel on a wheel

is often annotated as being within a ’wheel’ object and a car ’object’ at the same time.

Furthermore, the benchmark dataset does not contain seed pixels for interactive seg-

mentation.

5.1.2 PASCAL VOC Database

The PASCAL Visual Object Classes (VOC) Challenge is a popular object recognition

competition on a large database, which is extended every year. Since 2007, the challenge

includes a segmentation benchmark, where the task is to assign every image pixel one

out of 20 classes: aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining

table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, and TV/monitor.

The ground truth segmentations provide a pixel-wise labeling into either one of these

20 classes, a background class and an unlabeled class (see Figure 5.2). Compared to the

groundtruth segmentations of the LabelMe dataset, the segmentations of the PASCAL

VOC dataset are very precise and do not contain overlapping segments. However, the

limitation to 20 specific object classes as well as the lack of seed pixels are drawbacks

w.r.t. evaluating the performance of interactive segmentation algorithms.

5.1.3 GrabCut Database

The GrabCut database (Rother et al., 2004) is also known as MSRC database (not to be

confused with the MSRC 21-Class Database (Shotton et al., 2006, 2009) for supervised

image segmentation). This database has been widely used for evaluating interactive

segmentation algorithms, recently e.g. in (Ding and Yilmaz, 2010; Duchenne et al., 2008;

Friedland et al., 2005; Gulshan et al., 2010; Lempitsky et al., 2009; Price et al., 2010;

Zhang et al., 2010). The database consists of 50 images, where 20 images are taken from

the BSDS300 dataset. For every image, a ground truth segmentation is given as well as a

rough labeling based on the object boundary, from which seed pixels are deducted. See

Figure 5.3 as an example: The rough labeling divides the pixels into a set which is used

for foreground model training and a set for background model training. A large amount

of pixels (typically at the border) are not considered. Finally, the remaining pixels are

marked as unknown, and need to be assigned by the segmentation algorithm based on

the generated foreground and background model.

The GrabCut database has two drawbacks: First, as also mentioned by Price et al.
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Figure 5.2: Exemplary images of the PASCAL VOC segmentation dataset together with
groundtruth segmentations.

(2010) and Duchenne et al. (2008), it assumes to have a rough estimate of the object

boundary. For methods working with scribble based interaction such as our framework,

this estimate does not reflect the type of user interaction. Furthermore, typically much

more interaction is needed to generate an approximate object boundary. Second, the

framework is only handling the binary segmentation case i.e. foreground-background

segmentation.
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Figure 5.3: Three example images from the GrabCut database (first row) together with
exemplary ground truth segmentations (second row). The third row shows the seeds
for the segmentation algorithms: White pixels (intensity = 255) denote pixels for fore-
ground model generation, dark gray pixels (64) are used for background model gen-
eration. While black pixels (0) are also background, they are not used for background
model training. Light gray pixels (128) are considered unknown and have to be assigned
correctly by the segmentation algorithm.

5.1.4 Berkeley Segmentation Dataset and Benchmark

The Berkeley Segmentation Dataset and Benchmark was initially presented by Martin

et al. (2001) as BSDS300, consisting of 300 color images. Recently, the dataset was ex-

tended by 200 images to form the BSDS500 database (Arbelaez et al., 2010). For every

image in the dataset, there exist multiple ground truth segmentations manually drawn

by different users (cf. Figure 5.4). These segmentations (in average, there are five seg-

mentations per image) differ in number of segments as well as position of the segment

boundaries. Evaluation scores such as Variation of Information, Probabilistic Rand Index
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or Segmentation Covering are employed to compare results of different segmentation al-

gorithms, however, there is in general no agreement on how to evaluate results of this

benchmark.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.4: Three example images from the BSDS300 dataset (a-c) together with exem-
plary ground truth segmentations (d-f and g-i). Note that the ground truth segmenta-
tions are labeled by different users and therefore represent different interpretations of
the image: (j-l) show the boundary probability accumulated from all segmentations.
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While this benchmark dataset has been widely applied for unsupervised image

segmentation algorithms, it is only partially suited for interactive segmentation meth-

ods: The benchmark consists only of ground truth segmentations but no seed pixels.

McGuinness and O’Connor (2010) bypass this problem by describing the quality of an in-

teractive method by the effort needed to segment a given object according to the ground

truth. In their work, they conduct a series of user experiments where they measure the

time a user needs to perform a specific segmentation as well as the accordance with the

ground truth. Arbelaez and Cohen (2008) generate a single seed pixel per segment by

finding the point with the largest Euclidean distance from the ground truth segment

boundary. While this method would be reproducible and thus comparable, it does not

reflect the way seed pixels are generated by human users.

5.2 IcgBench

As explained in the previous section, there is no benchmark dataset for proper quan-

titative evaluation of the performance of our framework. In this section, we therefore

describe the design and generation of a new publicly available dataset. To alleviate the

shortcomings of the BSDS300 and the GrabCut datasets, our new benchmark exhibits

the following properties:

Multi-label The benchmark exhibits segmentations with several regions in a single im-

age. Furthermore, it can be reduced to evaluating foreground/background seg-

mentations by translating multiple labels to sequential binary problems.

Scribbles The seed pixels are given by scribbles drawn into the region to segment rather

than by geometric primitives such as ellipses or rectangles approximating the ob-

ject boundary. Drawing scribbles to generate seeds has been chosen because this

type of interaction seems to be more common in recent literature as well as in

commercial products.

Interactivity Interactivity is a property that can hardly be covered by automatic bench-

marks. The closest approach is the robot user by Gulshan et al. (2010), that places

correcting seeds automatically in the largest mislabeled region of the image until

an acceptable result is obtained. While being an intuitive approach, this behavior

does still not fully reflect the circumstances of a human correcting intermediate

segmentation results: The position, number and shape of the correcting seeds

drawn by a human operator are typically not defined. Moreover, the definition
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of an acceptable result might vary greatly. In general, there is no simple way to

approximate the ’average’ human user of an interactive segmentation tool auto-

matically. Therefore, we restrict our new benchmark to evaluating the quality of

the initial segmentation only. The question how close an algorithm can get to a

desired segmentation by adding more and more correcting scribbles (cf. Gulshan

et al.) is not covered.

5.2.1 Structure

We wrote a simple annotation tool and let several different users annotate images ac-

cording to their own interpretation. See Figure 5.5 for an example: Here, the image is

interpreted as a three-label segmentation problem, where the surfer and the surfboard

are separate objects, and the water is background. With the tool, the user specified not

only the ground truth segmentation of the image, but also the seeds he would give to

an interactive tool in order to obtain the desired segmentation. If one region is given

no seeds, it is interpreted as background. In that case, background seeds are randomly

sampled from the background region such that the number of background seed pixels

equals the average number of foreground object seed pixels.

Figure 5.5: The annotation tool for creating our interactive segmentation benchmark:
Given an image, the user should specify not only the ground truth segmentation ac-
cording to his own interpretation of the image, but also seeds for every label in the
image. Note that the seed pixels are dilated here for better visibility.

Instead of letting users provide both seeds and segmentation groundtruth, we could

have reused the groundtruth segmentations of the GrabCut or BSDS300 / BSDS500
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datasets. In that case, the users would only have needed to place seed pixels for ex-

isting image segments. However, this would have led to a bias towards the segment

interpretations of the respective benchmarks. In the natural interactive segmentation

process, the user selects the image himself, makes up his mind on what the segments in

the specific image look like and places seeds accordingly. In the design of the IcgBench

dataset, we wanted to get as close as possible to this process by imposing only a few

restrictions: The users were allowed to freely select the images they wanted to annotate,

therefore several images are annotated by several people, while some of the images are

not annotated at all (see Table 5.1 for the full statistics). Furthermore, the users were

allowed to collect and add images themselves freely, only the resolution of the images

was defined for easier display and print.

Annotations per Image 0 1 2 3 4 5
Occurence 85 79 59 16 3 1
Percentage 35.0 32.5 24.3 6.6 1.2 0.4

Table 5.1: As users were allowed to choose images freely, the number of annotations per
image varies: While 85 images were never annotated, 79 where annotated once and 79
annotated more than once.

At the time of writing, we gathered 262 seed-groundtruth pairs labeled by eight

different users. Table 5.2 shows the number of annotations per user: More than half of

the seed-groundtruth pairs were annotated by only two users. The images annotated by

these two users have a large influence on the whole benchmark, however, note that both

users had little to no knowledge on interactive segmentation before the annotations.

User ID 9000 9010 9020 9025 9035 9040 9050 9060
Number of Annotations 30 16 27 17 5 3 97 67
Percentage 11.4 6.1 10.3 6.5 1.9 1.1 37.0 25.6

Table 5.2: Number of annotated images per user. Note that the users 9050 and 9060
annotated more than half of the dataset, however, both users had little to no knowledge
on interactive segmentation before the annotations.

Example images of our dataset together with seed - ground truth pairs are shown in

Figures 5.6 and 5.7.
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Figure 5.6: Exemplary seed - groundtruth pairs of our dataset IcgBench. Note that the
images showing seed pixels (center column) have been dilated for better visibility.
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Figure 5.7: Exemplary seed - groundtruth pairs of our dataset IcgBench. Note that the
images showing seed pixels (center column) have been dilated for better visibility.
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5.2.2 Tooltip

As stated in the beginning of this section, our benchmark is based on seed points spec-

ified by scribbles. In our annotation tool, we therefore recorded the mouse path the

user took when drawing seed pixels (See Figure 5.8(a)). As different algorithms might

require larger training sets than those provided by the mouse paths themselves, anyone

using our benchmark may use a different tooltip based on the recorded mouse path: To

increase spatial support as well as the number of seed pixels, the user can overlay the

mouse path with a solid brush with a certain radius (Figure 5.8(b)). Using a solid brush

increases the number of seed pixels dramatically, but adds a lot of redundant informa-

tion to the training set. Another possibility is the use of a spraygun-like brush (5.8(c)),

where only a random subset of the pixels within a given radius from the mouse path

are taken into account.

(a) (b) (c)

Figure 5.8: Our benchmark dataset allows for different ways of generating seed pixels:
The seeds are specified only by the mouse path the user took while marking them (a).
Algorithms, that need more seed pixels, are free to employ solid (b) or spraygun-like (c)
brush tooltips with varying radius upon this mouse path.

5.2.3 Evaluation Multi-label Case

While many of the quality measures of established segmentation benchmarks describe

the accuracy of the segment boundaries only, we want that the resulting segmentations

are close to the ground-truth labeling of the user, such that the amount of further in-

teraction to yield the desired segmentation is as small as possible. For the evaluation
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of the GrabCut dataset (Rother et al., 2004), the error is computed as the average of the

relation

ε =
no. misclassified pixels

no. pixels in unclassified region
(5.1)

over all images. A similar measure for multiple labels can be expressed by the accuracy

score

accuracy =
no. correctly classified pixels

total no. pixels
. (5.2)

However, this quality measure does not take into account the size of a region: Figure

5.9 shows two examples of our benchmark together with groundtruth labeling and a

fictive segmentation result: In the first example (plane), the fictive result differs from the

ground truth segmentation only by small inaccuracies at the region borders. This result

yields a good accuracy score of 0.963 (i.e. more than 96 % of the pixels are correctly clas-

sified). The second example shows two cows on a meadow. In the fictive segmentation

result, the cows are simply removed, which we think is a much worse result compared

to the border inaccuracies of the previous example. However, as the cows occupy only

very small fraction of the image, the accuracy of this fictional result (0.968) is even higher

than the accuracy of the previous example. Hence, this notion of accuracy is not well

suited to assess the quality of multi-label segmentation results.

For our dataset, we therefore chose the arithmetic mean of the Dice evaluation score

(Dice, 1945) over all segments. This score relates the area of two segments |E1| and |E2|
with the area of their mutual overlap |E1 ∩ E2| such that

dice(E1, E2) =
2|E1 ∩ E2|
|E1|+ |E2|

, (5.3)

where | · | denotes the area of a segment. Given GTi the ground-truth labeling for the

i-th of N segments, the evaluation score for one image amounts to

score =
1
N

N∑
i=1

dice(Ei, GTi) =
1
N

N∑
i=1

2|Ei ∩ GTi|
|Ei|+ |GTi|

(5.4)

The overall benchmark score is computed as the average of the results of all images.

Figure 5.9 also states the average Dice score for the exemplary fictional segmenta-

tions: While the plane example with the border inaccuracies yields a good score of 0.925,

the example with the cows gets a significantly worse result (0.654).
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Image Groundtruth Fictive Result

Accuracy Score: 0.963
Avg. Dice Score: 0.925

Accuracy Score: 0.969
Avg. Dice Score: 0.654

Figure 5.9: Relating the number of correctly classified pixels to the total number pix-
els (denoted as accuracy score here) does not take into account the relative size of the
regions: The example with the plane yields about the same accuracy scores as the (per-
ceptually much worse) example with the cows. Therefore, we employ the average Dice
score over all segments in the labeling to assess the quality of a segmentation result.

5.2.4 Evaluation Binary Case

As stated before, we want our benchmark to be applicable to binary segmentation algo-

rithms as well. Therefore, we simply let the user solve for every single N-label problem

N binary segmentation problems in a one-versus-all manner. The score is then com-

puted similarly to the multi-label case with

score =
1
2
(dice(E1, GT1) + dice(E2, GT2)) =

|E1 ∩ GT1|
|E1|+ |GT1|

+
|E2 ∩ GT2|
|E2|+ |GT2|

, (5.5)

which is averaged over all binary segmentation problems for all images.
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Experiments

In the previous chapters, we have described the essential parts of our interactive seg-

mentation framework, as well as a dataset for its evaluation. In this chapter we first

present the framework itself, and later employ our benchmark to assess its behavior

with respect to different parameter settings, feature combinations as well as learning

algorithms.

In these experiments, we try to adjust our segmentation framework such that it

yields high scores on our benchmark at a low overall runtime. Optimizing for high

scores on the benchmark does not necessarily imply that a parameter is optimal w.r.t. a

certain image. Contrarily, there will always be a segmentation problem where a specific

parameter setting produces bad results and the framework needs to be readjusted to a

certain extent. However, based on the assumption that the benchmark covers a certain

variability of segmentation problems and different user interaction patterns, the frame-

work adjustments performed in this chapter should provide a good starting point for

many interactive image segmentation problems.

6.1 Graphical User Interface

Our interactive segmentation framework is implemented as a full-featured graphical

user interface, that allows for convenient evaluation of all components (see Figure 6.1

for a screenshot). The user interface allows for the following actions:

File I/O The user can load and save images and segmentation results, as well as region

models. Storing region models allows for training a region model on one image,

and evaluating it on any other image (e.g. in a batch processing mode).

113
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Figure 6.1: The graphical user interface of our framework. The sub-windows (starting
from the top left) show the input image together with the user scribbles, the extracted
image features (here the fifth Haralick texture feature is depicted), the final region model
as well as the segmentation.

Scribbles The user can draw scribbles with two different brushes: A solid brush and

an airbrush, both with adjustable radius. Furthermore, random scribbles can be

assigned based on intermediate segmentations in order to refine the segmentation

result.

Feature Extraction The user can select and parametrize several image representations

and local features: Grayscale, RGB, HSV, CIELAB, Patches, Haralick texture fea-

tures as well as Local Binary Patterns. (cf. Chapter 2).

Model Generation The user can select and parametrize different learning algorithms

for the region model generation. This includes Random Forests, Linear Support

Vector Machines and the k-Nearest Neighbors algorithm (cf. Chapter 3).
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Segmentation Finally, the user can adjust the segmentation algorithm as explained in

Section 4.6.

Display The user interface displays not only the input image, but optionally also every

intermediate step of the segmentation algorithm (cf. Figure 6.1).

The user interface is written in C++ using the open source framework Qt. Image I/O is

performed with the OpenCV libraries.

6.2 Segmentation Parameters

We start with evaluating the influence of the parameters of the segmentation algorithm.

As stated in Section 4.6, the algorithm has three parameters: The edge weight α, the

regularization weight λ as well as the number of iterations.

6.2.1 Number of Iterations

Pock et al. (2009) showed how the convergence of their minimization algorithm can be

estimated by observing the gap between the primal and dual energy, which is however

costly to compute. Therefore, the algorithm is simply run for a given number of itera-

tions. In order to find out how many iterations need to be performed we conduct the

following experiment: We keep the other segmentation parameters fixed (λ = 1.0 and

α = 15), perform a sweep over the number of minimization iterations (niter) and com-

pute the score on our benchmark. As image representation, we employ RGB and 5× 5

patches, and as region model we use Random Forests with 200 trees. The seed scrib-

bles provided by the benchmark are used as a mouse path for an airbrush with radius

7. Table 6.1 shows the results as well as the overall runtime for the whole benchmark:

According to these results, the benchmark score is stable for niter ≥ 100.

niter 10 20 50 100 200 500 1000 2000 5000
Performance 0.829 0.835 0.837 0.839 0.838 0.838 0.837 0.839 0.839
Runtime [s] 1169 1164 1211 1190 1227 1321 1497 1851 2975

Table 6.1: Benchmark results for varying number of segmentation algorithm iterations.

This can also be observed with a qualitative evaluation of the resulting segmenta-

tions: For most of the images, the segmentation results change only minimally after

100 minimization iterations. However, few images need longer to converge to a stable



116 Chapter 6. Experiments

result (see Figure 6.2). In order to minimize the influence of this parameter, we employ

niter = 750 for the remaining experiments in this chapter.

niter = 20 niter = 200 niter = 2000

Figure 6.2: The convergence of the segmentation algorithm is data-dependent: The
columns show results after 20, 200 and 2000 iterations respectively. While the seg-
mentation results are visually stable for the first image, they vary largely for the second
image.

6.2.2 Regularization and Edge Weight

A stated in Section 4.6, the segmentation energy employed in our framework

1
2

k−1∑
l=0

∫
Ω

e−α∇I · |Dθl |+ λ
k−1∑
l=0

∫
Ω

(θl+1(x)− θlx) · fl(x)dx. (6.1)

has two weighing parameters: α, the edge weight controls how strong segmentation

boundaries are attracted by image gradients during the minimization. The regulariza-

tion weight λ performs a trade-off between the regularization term and the data-fidelity

term (see Figure 6.3).

Both of these parameters should be adjusted according to a specific segmentation

problem, i.e. values that are well-suited for one image might be a bad choice for another

image. However, in this experiment, we want to find a setting that works well for most

of the images in our benchmark. Therefore, we employ the identical settings as in the

previous experiment and perform two parameter sweeps, once over λ and once over α.

Figure 6.4 shows the results for these sweeps. Based on these results, we choose the

regularization weight λ = 0.2 and the edge weight α = 15.0.
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λ = 0.1 λ = 0.2 λ = 0.3

λ = 0.4 λ = 0.5 λ = 0.6

λ = 0.7 λ = 0.8 λ = 0.9

Figure 6.3: Increasing the parameter λ leads to a higher influence for the data fidelity
term and a lower influence of the regularization term.
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Figure 6.4: Benchmark results for varying values of the regularization weight λ (a) and
the edge weight α (b).
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6.3 Features

We now want to evaluate the influence of the employed image features (cf. Chapter 2)

to the benchmark score. The segmentation algorithm is parametrized according to the

results of the previous experiments (i.e. niter = 750, λ = 0.2 and α = 15).

6.3.1 Color Model

We start with comparing the performance of grayscale images to the performance of

images encoded with the different color models stated in Section 2.1. The results are

stated in Table 6.2:

Color Model Gray RGB HSV CIELAB
Performance 0.728 0.877 0.897 0.898
Runtime [s] 1556 967 890 898

Table 6.2: Benchmark results for grayscale values and color representations.

As can be expected, there is a significant performance gap between grayscale images

and color images. Note also, that the performance of the HSV and CIELAB models are

nearly the same, both slightly better than RGB. This is caused by the high correlation

between the three channels in the RGB space. The non-linear transformations from the

RGB space to the HSV and CIELAB spaces reduce this correlation significantly, making

them better suited for the employed learning algorithm.

This can also be observed when comparing the different runtimes: The computation

of the color models takes only a few ten milliseconds per image, hence the differences

in runtime origin mostly from different training and evaluation times of the Random

Forest. When a learning problem is very ambiguous (which is e.g. the case for segment-

ing the benchmark images only based on grayscale values), the Randomized Trees have

difficulties in finding suitable decision functions in their split nodes. In such a case, the

trees grow very large, which causes increased training and evaluation time. The lowest

training and evaluation times are reached for the CIELAB and HSV color spaces in this

experiment, with RGB as close runner up. Evaluating the whole benchmark based on

grayscale images takes nearly twice as long.
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6.3.2 Textural Features

In Chapter 2, we have described grayscale patches, Haralick texture features as well

as Local Binary Patterns as suitable features for our segmentation framework. These

features depend on parameters which influence the computation time as well as the

descriptive capabilities of the corresponding features. In the following, we want to find

good parameterizations for these features based on their benchmark performance.

6.3.2.1 Grayscale Patches

The benchmark score and runtime for grayscale image patches are given in Table 6.3:

Patch Size 32 52 72 92 112 132 152 172 192

Score 0.777 0.792 0.800 0.805 0.810 0.811 0.813 0.814 0.813
Runtime [s] 1266 1733 2252 2913 3607 4370 5292 6177 7329

Table 6.3: Benchmark results for varying grayscale patch sizes.

The benchmark score steadily increases with the patch size starting from 0.777 for

3× 3 patches until it gets stable at ≈ 0.81 for patch sizes larger than 9× 9. This is due to

the feature selective property of the Random Forests: At each node, the decision function

is based on a single dimension of the feature vector, which is selected from a randomly

sampled subset of all feature vector dimensions. As the patches increase, the dimension

of the feature space increases, which leads to a larger number of possibly useful splitting

functions. In this experiment, the Random Forest is able to find useful splitting functions

and hence steadily improve the benchmark performance up to a patch size of 17× 17.

The performance drops for the first time at a patch size of 19 × 19 (which is a 361-

dimensional feature space). However, larger feature spaces from grayscale patches also

contain lots of noise, which leads to an increased runtime during the training phase of

the Random Forests: While the overall runtime of the benchmark is only 1266 seconds

for 3× 3 patches (i.e. ≈ 4.5 seconds per image), it increases twofold for 7× 7 and even

sixfold for 19× 19 patches. Also the memory consumption increases, not only for storing

the features (≈ 337 MB for a single benchmark image with 19× 19 patches), but also for

the larger Random Forests.
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6.3.2.2 Haralick Textural Features

The Haralick features described in Section 2.2.2 depend on two parameters: N repre-

sents the number of discrete grayvalues for the creation of the graylevel co-occurrence

matrix and s defines the size of the quadratic sampling environment employed for its

accumulation. E.g. the Haralick feature H(16,5) employs 16 discrete grayvalues sampled

from a square 5× 5 environment.

The results for different combinations of N ∈ {8, 16, 24, 32} and s ∈ {3, 5, . . . , 17} are

given in Figure 6.5: Starting with a score for 0.697 for H(8,3), the performance increases

for more discrete grayvalues as well as larger sampling environments, and gets stable

around 0.855 for N ≥ 16 and s ≥ 11. Similar to what has been observed for image

patches, the computation time changes as the feature parameters change: While the

runtime grows steadily for an increasing N, there seems to be a minimum for sampling

environments around s = 11. The best benchmark score (0.8646) can be obtained for

N = 32 and s = 13 in 2226 seconds.
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Figure 6.5: Benchmark score (a) and overall runtime (b) for different parameterizations
of Haralick texture features.

6.3.2.3 Local Binary Patterns

The Local Binary Patterns described in Section 2.2.4 are rotationally invariant and uni-

form, thus they have two free parameters: The number of points P sampled equally

spaced on a circle of radius R. In this experiment, we evaluate the performance of Local

Binary Patterns LBPP,R for P ∈ {4, 8, . . . , 24} and R ∈ {2, 3, . . . , 8}. The results in Figure
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6.6 show that the performance of the LBPs gets stable for P ≥ 16 and R ≥ 6 at a score

of ≈ 0.815. The best result (0.8192) is achieved for P = 20 and R = 8 in 1186 seconds.
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Figure 6.6: Benchmark score (a) and overall runtime (b) for different parameterizations
of Local Binary Patterns.

6.3.3 Feature Combinations

The best results from the single feature evaluations are summarized in Table 6.4.

Color Model Gray RGB HSV CIELAB Patch 17× 17 H(32,13) LBP20,8

Performance 0.728 0.877 0.897 0.898 0.814 0.865 0.819
Runtime [s] 1556 967 890 898 6177 2226 1186

Table 6.4: Benchmark results for grayscale values and color representations.

Based on these results, the following observations can be made:

I The CIELAB color space reaches the best score with 0.898.

I All color models yield better scores than the local structure descriptions, which

suggests that the most important information with respect to this benchmark is

encoded in color.

I The textural features can give important cues for the segmentation process: As the

three texture features operate on the grayscale values only, their result can directly

be compared with the benchmark results obtained for grayscale images. All three
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texture features yield a significantly better score (≥ 0.814) than the grayscale image

alone (0.728).

I The textural features need large sampling neighborhoods for good performance:

The best benchmark performance for patches has been obtained for the size 17×
17, the Haralick features yield good results for s ≥ 11. The Local Binary Patterns

work well for R ≥ 6, which corresponds to an 18× 18 sampling environment (cf.

Section 2.2.4).

A basic requirement for the design of our segmentation framework was, that it has

to be able to handle arbitrary high-dimensional features. This allows for segmenting

in even larger feature spaces by combining different feature representations, which can

be accomplished by simply concatenating several feature vectors to one single larger

feature vector. In the following, we want to evaluate whether such feature combinations

can improve the benchmark performance.

6.3.3.1 Color Features

The best result for a single feature (0.898) has been obtained for the CIELAB color space.

Table 6.5 shows results for combining several color features into a single feature vector

(e.g. Gray+RGB means the combination of grayvalues and RGB color vectors to four-

dimensional feature vectors). These results show that the combination of color features

yields worse benchmark scores than the single CIELAB features at a higher runtime.

Hence, adding grayvalues, RGB or HSV features to the CIELAB features does not add

enough information to improve the benchmark score.

Color Model CIELAB Gray+RGB Gray+CIELAB Gray+RGB+HSV+CIELAB
Performance 0.898 0.876 0.894 0.896
Runtime [s] 898 953 919 973

Table 6.5: Benchmark results for combined color features.

6.3.3.2 Color and Texture Features

In order to improve the results achieved with CIELAB features, we try to combine them

with texture features. We employ the Haralick features as well as the Local Binary

Patterns, which have achieved higher individual benchmark scores than the grayscale

patches (cf. Table 6.4). In order to find out whether the best parameterizations obtained
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from the individual benchmark runs are still good when the features are combined with

CIELAB features, we again conduct parameter sweeps for the textural features.

The results for combined CIELAB and Haralick features for N ∈ {8, 16, 24, 32} and

s ∈ {3, 5, . . . , 17} compared to the results of Haralick features alone are depicted in

Figure 6.7. Note that the addition of CIELAB color information not only significantly
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Figure 6.7: Benchmark score for Haralick features alone (a) compared to the benchmark
score achieved with Haralick features combined with CIELAB color vectors (b). Note
that the Haralick parameters yielding the best results have changed when combined
with CIELAB features.

increases the performance, but also changes the response to different parameter sweeps:

While the performance of Haralick features alone steadily increased with an increasing

sampling environment s, the combined features work best with s ≈ 7. The highest score

(0.916), which is achieved with N = 32, s = 5, is better than the score of the CIELAB

color space alone (0.898).

We now perform a similar experiment for the Local Binary Patterns, with P ∈
{4, 8, . . . , 20} and R ∈ {2, 3, . . . , 8} (cf. Figure 6.8). Similar to what has been observed

for the Haralick-CIELAB combinations, the addition of color information to Local Bi-

nary Patterns significantly improves the benchmark results. Also in this experiment, the

color information renders large sampling environments obsolete: While the best scores

for Local Binary Patterns were reached for R ≥ 6, the performance of the combined fea-

tures peaks at R = 3. The highest score (0.920), which is obtained with P = 16, R = 3, is

better than what can be achieved with Haralick features.

Table 6.6 states the scores and runtime achieved with CIELAB features as well as
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Figure 6.8: Benchmark score for Local Binary Patterns alone (a) compared to the bench-
mark score achieved with Local Binary Patterns combined with CIELAB color vectors
(b). Note that the Local Binary Pattern parameters yielding the best results have changed
when combined with CIELAB features.

the best Haralick and Local Binary Pattern parameterizations alone and in combina-

tion. A basic observation is, that combining color and texture features yields a better

Features CIELAB H(32,13) CIELAB + H(32,5) LBP20,8 CIELAB + LBP16,3

Performance 0.898 0.865 0.916 0.819 0.920
Runtime [s] 898 2226 2183 1186 1286

Table 6.6: Scores and Runtime for CIELAB color and texture features alone and in com-
bination.

score than what can be achieved with the respective color and texture features alone.

Also the optimal parameters for the texture features change when combined with the

color information: Especially the size of the sampling environment (s in the Haralick

parametrization, R for the Local Binary Patterns) can be greatly reduced with the addi-

tion of the CIELAB features. Finally, the combination with Local Binary Patterns yields

better results than the combined Haralick features in less time. Therefore, we employ

the combination CIELAB + LBP16,3 as combined feature for the remaining experiments.
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6.4 Learning Algorithm

In every experiment in this section, we have employed Random Forests with 200 trees for

the generation of our region models. In this experiment, we want to evaluate how far we

can lower the number of trees in order to speedup the overall segmentation process. We

also want to test the performance of the other learning algorithms described in Section

3.

Table 6.7 states benchmark scores and runtimes for Random Forests with different

numbers of trees, k-Nearest Neighbours with varying k and a linear Support Vector

Machine with varying regularization parameter C. When employing Random Forests

Algorithm Parameters Benchmark Score Runtime [s]
Random Forest N = 10 0.9084 626

N = 20 0.9161 655
N = 30 0.9193 686
N = 40 0.9166 746
N = 50 0.9172 793

k-Nearest Neighbors k = 1 0.9161 2663
k = 2 0.9161 2707
k = 5 0.9140 2732
k = 10 0.9069 2876
k = 15 0.9038 2910
k = 20 0.8997 3010
k = 25 0.8954 3140
k = 30 0.8944 3207

linear SVM C = 0.03 0.8111 706
C = 0.035 0.8114 702
C = 0.04 0.8123 713
C = 0.045 0.8128 696
C = 0.05 0.8130 727
C = 0.055 0.8130 736
C = 0.06 0.8131 701

Table 6.7: Benchmark performance for different learning algorithms and parameters.

with N = 200, a score of 0.920 was achieved in 1286 seconds. A close performance (0.919)

can be reached with 30 trees only, which boosts the overall runtime to 686 seconds (≈ 2.6

seconds per benchmark image). The k-Nearest Neighbors algorithm works surprisingly

well in this scenario, reaching a score of 0.916 with k = 1 and k = 2 . However, the

distance computation is very expensive, which leads to a runtime of > 2650 seconds

(> 10 seconds per image). The linear Support Vector Machine is comparably fast to
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Random Forest with 30 trees. However, the problem is obviously not suited for linear

SVMs, as the benchmark score does not exceed 0.82.

6.5 Tooltip

As described in Chapter 5, the seed pixels in the benchmark are represented by the path

the user took with his mouse during annotation. The benchmark does not define how

this mouse paths are interpreted, anybody using the benchmark may employ arbitrary

tooltips upon the mouse paths. In this experiment, we evaluate the performance of a

square solid brush and a spraygun brush with different radii. The spraygun brush is

like a solid brush, where only a random five percent of the pixels are used (cf. Figure

6.9).

(a) (b)

Figure 6.9: Applying different tooltips leads to different results: (a) shows results ob-
tained with a square brush with radius r = 11, (b) shows the same problem with an
airbrush tooltip with r = 11.

The benchmark scores and runtimes are given in Table 6.8: Both the airbrush as

well as the solid brush are able to yield higher benchmark scores with larger radii. As

the radius of tooltips increases, the number of training samples for the Random Forest

increases, which allows to build better models for the regions around the seed pixels.

However, the incorporation of many spatially close pixels includes lots of redundant

information in the training set. The random sampling strategy of the airbrush tooltip

together with the feature selective property of the Random Forest allows to reduce this

redundancy. Hence, the airbrush tooltip yields comparable results on the benchmark in
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Brush Radius Benchmark Score Runtime [s]
Square Solid r = 3 0.9144 804

r = 5 0.9167 986
r = 7 0.9221 1161
r = 9 0.9256 1376
r = 11 0.9253 1488
r = 13 0.9250 1675
r = 15 0.9257 1842

Spraygun r = 3 0.8945 661
r = 5 0.9078 695
r = 7 0.9140 731
r = 9 0.9188 731
r = 11 0.9220 770
r = 13 0.9267 834
r = 15 0.9249 876

Table 6.8: Benchmark scores and runtimes for seeds generated with different tooltips: A
square solid brush and an airbrush with varying radii.

significantly less time: The highest score (0.9267) can be obtained with an airbrush with

r = 13, where the whole benchmark run takes 834 seconds to complete.

6.6 Repeatability

The Random Forests as well as the randomly sampled seed points obtained with the

airbrush tooltip impose a random behavior of our framework, i.e. two identically pa-

rameterized segmentation problems might yield different results at different runtimes.

In this experiment, we evaluate the influence of this randomness on the benchmark per-

formance and runtime in order to find out how reliable the previously obtained results

are. Figure 6.10 shows histograms over the performance of 50 identically parameterized

benchmark runs. The average score over these 30 runs is 0.9257 with a standard devia-

tion of 0.0013, thus at least two thirds of the benchmark runs (in our case exactly 20 of

30) achieved scores between 0.9244 and 0.9269.

The average runtime is 848.9 seconds with a standard deviation of 18.1 seconds.

These observations show, that the inherent randomness in our framework influences the

benchmark performance, however, this influence is not large enough to compromise the

reasoning of the previous experiments. The averaged results obtained in this experiment

(score: 0.9257, runtime: 848.9 seconds), form the basis for the considerations in the

upcoming experiments.
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Figure 6.10: Evaluating the influence of the randomness induced by the Random Forests
and the random seeds of the airbrush tooltip: (a) shows an histogram over the perfor-
mance of 30 identically parameterized benchmark runs, (b) shows the corresponding
runtime in seconds.

6.7 Runtime

In this experiment, we want to examine the runtime of our framework and its building

blocks. Therefore, we analyze a single benchmark run from the previous experiment by

dividing the overall runtime into several parts:

Edge and Feature represent the runtimes for the computation of the gradient image as

well as the image features (CIELAB color vectors and Local Binary Patterns).

Model describes the time spent on training the Random Forests with the seed pixels

forming the training set.

Data Term is the part of the algorithm, where the Random Forests are evaluated for

every pixel in the image in order to obtain the likelihoods for each label.

Segmentation indicates the runtime of the regularization with the Potts model.

Overhead contains everything else, e.g. loading images and groundtruth data, the com-

putation of the benchmark score or displaying, compressing and storing segmen-

tation results.

The runtime for every stage except the overhead is directly measured for every of the

262 segmentation problems in the benchmark. These runtimes include not only the raw
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computation times on the CPU or GPU, but also memory operations such as copying

to and from GPU memory or memory reshape operations. The overhead runtime is the

difference between the total benchmark runtime (812.67 for the given benchmark run)

and all other measured runtimes. The average runtime and the standard deviation over

all 262 segmentation problems are summarized in Table 6.9: The computation of the

Edge Feature Model Data Term Segment. Overhead
Avg. Runtime [ms] 62.30 338.93 768.61 103.51 1008.72 819.73
Std. Dev. [ms] 3.21 6.10 817.26 42.12 454.61 0.0

Table 6.9: Runtime of the different stages of our framework: This table summarizes
the average runtime and the standard deviation over all segmentation problems within
one single benchmark run. The Overhead stage has no standard deviation, as it is not
measured but computed as the difference between all measured runtimes and the overall
benchmark runtime.

gradient image as well as the computation of the image features has very low varia-

tion between the different segmentation problems in the benchmark. This is obvious, as

these operations depend only on the size of the image and the feature parameterizations,

which are the same for every problem in the benchmark. Contrarily, the runtimes of the

training and evaluation of the Random Forest change largely. This can be explained by

the fact that the difficulty of the learning problems varies between different segmenta-

tion problems. While simple problems results in small trees and forests with a small

training and evaluation time, difficult problems lead to larger grown trees and hence

longer training and evaluation times. The time spent for the segmentation algorithm

also differs between the segmentation problems, although the number of iterations of

the algorithm is fixed. The reason for this is, that the number of labels of a segmenta-

tion problem influences the runtime of the algorithm. In Table 6.10, the runtimes of the

segmentation algorithm are grouped according to the number of labels of the different

segmentation problems. This table clearly shows, that the runtimes of the segmentation

# Labels k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
# Problems in IcgBench 64 104 58 18 8 3
Avg. Runtime [ms] 586.65 876.23 1179.44 1520.28 1861.03 2205.57
Std. Dev. [ms] 2.74 1.23 0.90 2.11 3.09 2.73

Table 6.10: The runtime of the segmentation algorithm only depends on the number of
labels involved in a specific problem.

algorithm for problems with the same number of labels is nearly constant. More than 85
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percent of the segmentation problems in IcgBench (226 problems) have at most 4 labels,

for which the segmentation algorithm finishes in less than 1.2 seconds.

Figure 6.11 shows the fraction of the runtimes of the different stages. Concerning

the interactivity, the most important stages are Model, Data Term and Segmentation:

The Edge and Feature stages as well as most of the Overhead can be computed before

or while the user draws his initial scribbles, therefore their runtime is not very impor-

tant. Every time a user adds or removes scribbles, the stages Model, Data Term and

Segmentation need to be computed in order to obtain a displayable result, which makes

their runtime the most important factor for convenient interaction. Based on the mea-

surements in this experiment, these three stages make up ≈ 60 percent of the overall

benchmark runtime, which amounts to an average of ≈ 1.9 seconds per benchmark

problem.

Segmentation (32.5%)

Overhead (26.4%)

Data Term (3.3%)

Edge (2.0%)

Model (24.8%)

Feature (10.9%)

Figure 6.11: Runtime fraction of the different framework stages evaluated over the whole
benchmark. The important stages for interactivity (Model, Data Term and Segmenta-
tion) make up ≈ 60 percent of the overall runtime.

6.8 Comparison to Power Watersheds

In this experiment, we compare our framework to the Power Watersheds algorithm by

Couprie et al. (2010), which is one of few interactive multi-label segmentation methods

with an publicly available implementation. The Power Watersheds method, which is
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a graph-based algorithm operating in the RGB color space (cf. Section 1.4.3.10 for a

detailed description), yields comparable or better results than e.g. Graph Cut or Random

Walker segmentation on the two-label GrabCut benchmark dataset. In Table 6.11, we

compare the benchmark scores and runtimes of Power Watersheds to our framework.

For our framework, we compare to the optimized version with CIELAB color vectors

and Local Binary Patterns, 30 Random Forest Trees and an airbrush tooltip with radius

13. Furthermore, we also compare to an identically parameterized benchmark run of

our framework, with only RGB color vectors as features. The Power Watersheds method

Power Watersheds RGB CIELAB + LBP16,3
Runtime [s] 347 648 849
Score 0.864 0.887 0.926

Table 6.11: Benchmark score and runtime of Power Watersheds compared to results
obtained with our framework.

employs a highly efficient energy minimization algorithm based on the computation of

maximum spanning forests, which allows it to finish the benchmark about two times

faster than our framework. In order to run this benchmark we employed a MATLAB

wrapper, which prepares the benchmark problems for the C implementation of Power

Watersheds by Couprie et al. (2010). Of the overall 347 seconds, only 224 seconds are

spent with the Power Watershed segmentation itself, the rest is overhead produced by

the wrapper. Hence, the algorithm is able to segment one single benchmark problem in

≈ 855 milliseconds.

Concerning the benchmark score, the Power Watersheds method yields slightly

worse results than our framework with RGB values. The best results are obtained with

the optimized version of our framework with CIELAB + LBP16,3 features. Figure 6.12

shows the three segmentation problems where the Power Watersheds algorithm yields

the lowest score: All of them exhibit regions with high variability and lots of strong im-

age gradients, which suggests that Power Watersheds has difficulties with such highly

textured objects and backgrounds. Another drawback can be clearly observed in the

third problem (Image 008, User 9060): The topology of the ground truth solution dif-

fers from the topology of the seed pixels, which cannot be modeled with the Power

Watersheds algorithm.

Figure 6.13 shows the three segmentation problems where the Power Watersheds

algorithm yields the highest score: In all of them, the number of seeded pixels is very

high compared to the number of seeded pixels in the problems where the algorithm
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scored worst. Furthermore, the seed pixels are widely spread over the regions. This

suggests, that the spatial extents of the objects need to be loosely defined by the seed

pixels for a good performance of the Power Watershed algorithm.

In the second best problem (Image 216, User 9050), the Power Watershed algorithm

benefits of its topological limitations coincidentally: From a feature point of view, the

hole in the paper roll clearly should have the same label as the background according to

the specified seed pixels. However, in the groundtruth labeling, the user assigned it the

same label as the paper roll itself. While our framework assigns the hole in the paper

roll as background, the Power Watersheds stick to the topology of the seed pixels and

achieve a high score on this problem.

6.9 Conclusion

In this chapter, we performed extensive experiments on our benchmark dataset IcgBench

in order to find suitable adjustments and parameterizations for our framework. The

following adjustments were found useful in order to achieve a high benchmark score at

a reasonable runtime:

Tooltip In order to generate seed points for the mouse path, we employ an airbrush

tooltip with radius r = 13. The experiments showed, that this sampling tooltip

yields comparable results as a solid brush tooltip at significantly lower runtimes.

Features We evaluated the performance of color and texture features. When evaluated

alone, CIELAB was found to be the best-performing color space. The best scoring

textural representation was a Haralick feature, which however requires a long time

to compute. The best overall performance was reached by concatenating CIELAB

color vectors and Local Binary Patterns with P = 16 and R = 3 to a 21-dimensional

feature representation.

Learning Algorithm We assessed three learning algorithms for the generation of mod-

els from the seed pixels, namely Random Forests, k-Nearest Neighbors and a lin-

ear Support Vector Machine. The Random Forests and the SVM were significantly

faster than k-Nearest Neighbors, however, the SVM achieved only poor benchmark

scores. Based on these results, we employ Random Forests with N = 30 trees.

Segmentation Algorithm The experiments showed, that for most of the images, the

results do not change after niter = 750 iterations. We obtained the best results with

a regularization weight λ = 0.2 and an edge weight α = 15.
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Figure 6.12: When benchmarking the Power Watersheds algorithm, the three depicted
problems yield the lowest score within the entire benchmark dataset. The first and
second row show the input image with seed pixels (dilated for visualization) and the
ground truth segmentation. The other rows depict the results of the Power Watershed
algorithm as well as the results of our algorithm with RGB values and CIELAB + LBP16,3
features.
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Figure 6.13: When benchmarking the Power Watersheds algorithm, the three depicted
problems yield the best score within the entire benchmark dataset. The first and second
row show the input image with seed pixels (dilated for visualization) and the ground
truth segmentation. The other rows depict the results of the Power Watershed algorithm
as well as the results of our algorithm with RGB values and CIELAB + LBP16,3 features.
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With these adjustments, a benchmark score of ≈ 0.926 can be achieved. The overall

runtime with this parameterization is ≈ 830 seconds, which is little more than three sec-

onds per benchmark image. In the interactive setting, mainly the time between drawing

seeds and getting the final segmentation is of interest (i.e. the training and evaluation of

the Random Forest as well as the segmentation algorithm). For most of the benchmark

images, this is performed in about 1.9 seconds.

We finally compared the benchmark result of our framework to the benchmark result

of the Power Watersheds algorithm by Couprie et al. (2010). While this algorithm is

faster than our framework by a factor of two, the benchmark score (0.864) is even lower

than what our framework can achieve with only RGB color vectors. We showed, that

this is mostly because the Power Watersheds algorithm suffers from a fixed topology

and has problems with highly textured areas. Furthermore, the experiments suggest

that the performance of the algorithm depends strongly on the number and position of

the seed pixels.

The fiveteen segmentation problems yielding the highest score within the benchmark

are illustrated in Figure 6.15, the fiveteen worst results are given in Figure 6.14.
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Image: 223, User: 9050, Image: 029, User: 9050, Image: 112, User: 9020,
Score: 0.5719 Score: 0.6064 Score: 0.6167

Image: 124, User: 9050, Image: 048, User: 9050, Image: 180, User: 9060,
Score: 0.6708 Score: 0.6741 Score: 0.6751

Image: 111, User: 9050, Image: 106, User: 9060, Image: 008, User: 9060,
Score: 0.6997 Score: 0.7024 Score: 0.7073

Image: 005, User: 9020, Image: 149, User: 9050, Image: 012, User: 9060,
Score: 0.7232 Score: 0.7328 Score: 0.7330

Image: 024, User: 9025, Image: 110, User: 9050, Image: 018, User: 9060,
Score: 0.7413 Score: 0.7614 Score: 0.7640

Figure 6.14: The 15 worst-scoring segmentation problems of the benchmark
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Image: 132, User: 9000, Image: 202, User: 9050, Image: 217, User: 9060,
Score: 0.9959 Score: 0.9952 Score: 0.9948

Image: 182, User: 9050, Image: 132, User: 9050, Image: 218, User: 9050,
Score: 0.9946 Score: 0.9941 Score: 0.9935

Image: 132, User: 9025, Image: 140, User: 9025, Image: 121, User: 9000,
Score: 0.9916 Score: 0.9914 Score: 0.9911

Image: 140, User: 9000, Image: 131, User: 9000, Image: 212, User: 9050,
Score: 0.9909 Score: 0.9908 Score: 0.9907

Image: 232, User: 9060, Image: 077, User: 9050, Image: 096, User: 9000,
Score: 0.9902 Score: 0.9900 Score: 0.9899

Figure 6.15: The 15 best-scoring segmentation problems of the benchmark
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Conclusion

In this thesis, we studied the process of interactive image segmentation. Popular in-

teractive image segmentation methods typically only divide an image into foreground

and background based on intensity or color information, as the computational effort

needed for an incorporation of textural features is usually prohibitive for reaching in-

teractive runtimes. In this work, we show that interactively segmenting an image into

multiple regions based on high-dimensional feature representations is possible at in-

teractive speeds by carefully selecting the building parts w.r.t. to parallelizability and

implementing them on multi-core CPUs and GPUs.

7.1 Summary

In this work, we first described several color models and texture features and analyzed

their applicability for interactive image segmentation. We demonstrated how the GPU

can be employed to speedup the computation of CIELAB color features as well as Har-

alick texture features (Haralick et al., 1973) and Local Binary Patterns (Ojala et al., 2002)

by factors of up to 90 depending on the image size: E.g., while a single threaded CPU

implementation of dense Local Binary Patterns takes about 6 seconds on a 1024× 1024

image depending on the parameterization, a GPU counterpart performs the same com-

putation in ≈ 150 milliseconds.

In interactive segmentation, one typically solves a supervised machine learning prob-

lem, where the user provided seed pixels form the training set and all other pixels form

the evaluation set. In this work, we compared the performance and runtime of Random

Forests (Breiman, 2001) with that of a linear Support Vector Machine and a k-Nearest

139
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Neighbors implementation on standard machine learning datasets as well as segmenta-

tion problems. Especially for the latter scenario, where the size of the test set (i.e. all

image pixels) is much larger than the size of the training set (i.e. the number of seeded

pixels), we showed that Random Forests are able to yield excellent results at high speed.

Furthermore, the pixel likelihoods obtained from the learning algorithm need to be

regularized in order to yield spatially compact regions. We thoroughly described such

segmentation algorithms in the discrete domain (cf. Graph Cut segmentation (Boykov

and Jolly, 2001)) as well as in the spatially continuous setting (cf. weighted Total Varia-

tion (Bresson et al., 2007)). While these energy minimization approaches can be solved

in a globally optimal way for two labels, the globally optimal solution for multiple la-

bels is NP-hard. We evaluated several approximation techniques and selected a spatially

continuous approximation of a multi-label Potts energy minimization problem, which

can also be implemented on a GPU (Pock et al., 2009).

Finally, we addressed the lack of a comparative benchmark dataset for the evaluation

of interactive multi-label segmentation techniques: We presented a novel benchmark

dataset consisting of 262 seed-groundtruth pairs annotated by eight different people.

We employed this benchmark dataset to evaluate the performance and runtime of the

different building blocks of our framework: We showed that the combination of tex-

ture features with color features leads to better results than what can be achieved with

color features alone. Moreover, we found out, that the best benchmark results can be

obtained when CIELAB color vectors are combined with Local Binary Patterns. Finally,

we showed that our framework outperforms the state-of-the-art Power Watersheds seg-

mentation method on this benchmark dataset.

7.2 Future Work

In this thesis, we presented a powerful interactive multi-label segmentation framework

and evaluated it with a novel benchmark dataset. However, there are still open questions

and drawbacks, which may be addressed in future work:

7.2.1 Semi-Supervised Learning

Currently, the setting of the learning stage of our algorithm is fully supervised, i.e.

there is a training set (the seeded pixels) for learning a model and a test set (the un-

seeded pixels) on which the model is evaluated. However, the problem of interactive

segmentation can also be tackled with semi-supervised machine learning algorithms: In
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the semi-supervised setting, the model is trained not only according to the seeded im-

age pixels, but also by incorporating information of all unseeded pixels. There exists a

semi-supervised version of Random Forests (Leistner et al., 2009), which could be easily

employed to evaluate the benefit of learning the model in a semi-supervised setting. It

is not clear whether employing such a semi-supervised learning algorithm in our inter-

active segmentation framework leads to better results or not. Furthermore, the effect on

the runtime is an open question.

7.2.2 Computational Effort

In this work, we achieved interactive performance with our framework on images with

resolutions below one million pixels (MP). In professional digital image editing, typi-

cally images with a much higher resolution (≥ 10MP) are of interest, which leads to

the question, whether our framework can still be optimized w.r.t. runtime. We want to

note that the framework was set up to be modular in order to evaluate different image

features and learning algorithms. This naturally comes at the cost of runtime, e.g. many

unnecessary copy and store operations. Moreover, we perform every step of our algo-

rithm always on the entire image, which is not the case for e.g. the recently published

very fast Paint Selection method (Liu et al., 2009). The speedup potential of non-global

operations such as employing sequential segmentations on parts of the image needs to

be evaluated.

7.2.3 Evaluation

In this thesis, we mainly employed our benchmark dataset IcgBench to perform detailed

experimental evaluations of our own segmentation framework. We only compared our

framework to the Power Watersheds method, as there is hardly any code available on-

line for other interactive multi-label segmentation tools. In the original Power Water-

sheds paper, the authors demonstrate comparable or better results than e.g. Geodesic

Segmentation or Random Walker Segmentation on the GrabCut database. However,

the GrabCut database consists only of two-label problems and has objects that are spa-

tially very well defined by the seed pixels, thus one cannot draw a conclusion on the

performance of Geodesic Segmentation or Random Walker Segmentation based on the

Power Watersheds result. Hence, in future work, a detailed comparison of interactive

multi-label segmentation methods on IcgBench needs to be done.
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7.2.4 3D / Video

The framework described in this thesis is designed to operate on 2D images only.

An interesting field of future work would be the extension of our framework to 3D-

segmentation for e.g. medical data or videos in spatial-temporal representation.
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November 2010 (to appear), Queenstown, New Zealand

(Accepted for oral presentation, 4.7 % acceptance rate)

Abstract: This paper addresses the problem of interactive multi-label segmentation.

We propose a powerful new framework using several color models and texture descrip-

tors, Random Forest likelihood estimation as well as a multi-label Potts-model segmen-

tation. We perform most of the calculations on the GPU and reach runtimes of less than

two seconds, allowing for convenient user interaction. Due to the lack of an interac-

tive multi-label segmentation benchmark, we also introduce a large publicly available

dataset. We demonstrate the quality of our framework with many examples and exper-

iments using this benchmark dataset.

PROST: Parallel Robust Online Simple Tracking

Jakob Santner, Christian Leistner, Amir Saffari, Thomas Pock and Horst Bischof

In: Proc. of the 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
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Abstract: Tracking-by-Detection is an increasingly popular approach in order to tackle

the visual tracking task. Existing adaptive methods suffer from the drifting problem,

since they rely on self-updates of an on-line learning method. In contrast to previ-

ous work that tackled this problem via reformulating the self-learning to either semi-

supervised or multiple-instance learning, we show that augmenting an on-line learning

method with complementary tracking approaches can lead to better results. In partic-

ular, we use a simple template model as a non-adaptive element, a novel optical-flow-

based meanshift tracker as highly adaptive element and an on-line random forest as

adaptive appearance-based learner. We combine these three trackers in a simple cas-

cade. All of our system parts are chosen in order to run on GPUs or similar multi-core

systems, which allows for near real-time performance. We show the superiority of our

system over current state-of-the-art online tracking methods in several experiments.

FlowGames

Jakob Santner, Manuel Werlberger, Thomas Mauthner, Wolfgang Paier and Horst Bischof

In: 1st IEEE International Workshop on Computer Vision for Computer Games (CVCG),

June 2010, San Francisco, USA

(Accepted for oral presentation, 36.4 % acceptance rate)

Abstract: Computer vision-based interfaces to games hold the promise of rich natural

interaction and thus a more realistic gaming experience. Therefore, the video games in-

dustry started to develop and market computer vision-based games recently with great

success. Due to limited computational resources, they employ mostly simple algorithms

such as background subtraction, instead of sophisticated motion estimation or gesture

recognition methods. This not only results in a lack of robustness, but also in very

limited interaction possibilities and thus reduced gaming experience. In this paper, we

show a couple of concepts to control video games based on optical flow. We use a state-

of-the-art optical flow algorithm able to be computed densely in real-time on GPUs,

which are in fact built-in in nearly every gaming hardware available. Based on the esti-

mated motion, we develop several computer games with increasing complexity: Starting

with using the flow field as force acting on moveable objects, we span the spectrum to

more sophisticated concepts such as controlling widgets and action recognition.



A.2. 2009 145

A.2 2009

Semi-Supervised Random Forests

Christian Leistner, Amir Saffari, Jakob Santner, Horst Bischof

In: Proceedings of the 12th IEEE International Conference on Computer Vision (ICCV),

October 2010, Kyoto, Japan

(Accepted for poster presentation, 19.6 % acceptance rate)

Abstract: Random Forests (RFs) have become commonplace in many computer vision

applications. Their popularity is mainly driven by their high computational efficiency

during both training and evaluation while still being able to achieve state-of-the-art

accuracy. This work extends the usage of Random Forests to Semi-Supervised Learn-

ing (SSL) problems. We show that traditional decision trees are optimizing multi-class

margin maximizing loss functions. From this intuition, we develop a novel multi-class

margin definition for the unlabeled data, and an iterative deterministic annealing-style

training algorithm maximizing both the multi-class margin of labeled and unlabeled

samples. In particular, this allows us to use the predicted labels of the unlabeled data

as additional optimization variables. Furthermore, we propose a control mechanism

based on the out-of-bag error, which prevents the algorithm from degradation if the

unlabeled data is not useful for the task. Our experiments demonstrate state-of-the-art

semi-supervised learning performance in typical machine learning problems and con-

stant improvement using unlabeled data for the Caltech-101 object categorization task.

On-line Random Forests

Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, Horst Bischof

In: 3rd IEEE Online Learning for Computer Vision Workshop (OLCV),

October 2010, Kyoto, Japan

(Accepted for oral presentation, 45.5 % acceptance rate)

Abstract: Random Forests (RFs) are frequently used in many computer vision and ma-

chine learning applications. Their popularity is mainly driven by their high computa-

tional efficiency during both training and evaluation while still achieving state-of-the-art

results. However, in most applications RFs are used off-line. This limits their usability

for many practical problems, for instance, when training data arrives sequentially or

the underlying distribution is continuously changing. In this paper, we propose a novel
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on-line random forest algorithm. We combine ideas from on-line bagging, extremely

randomized forests and propose an on-line decision tree growing procedure. Addition-

ally, we add a temporal weighting scheme for adaptively discarding some trees based

on their out-of-bag-error in given time intervals and consequently growing of new trees.

The experiments on common machine learning data sets show that our algorithm con-

verges to the performance of the off-line RF. Additionally, we conduct experiments for

visual tracking, where we demonstrate real-time state-of-the-art performance on well

known scenarios and show good performance in case of occlusions and appearance

changes where we outperform trackers based on on-line boosting. Finally, we demon-

strate the usability of on-line RFs on the task of interactive realtime segmentation.

Interactive Texture Segmentation using Random Forests and Total Variation

Jakob Santner, Markus Unger, Thomas Pock, Christian Leistner, Amir Saffari and Horst

Bischof

In: Proceedings of the 20th British Machine Vision Conference (BMVC),

September 2009, London, UK

(Accepted for poster presentation, 37.9 % acceptance rate)

Abstract: Common methods for interactive texture segmentation rely on probability

maps based on low dimensional features such as e.g. intensity or color, that are usu-

ally modeled using basic learning algorithms such as histograms or Gaussian Mixture

Models. The use of low level features allows for fast generation of these hypotheses

but limits applicability to a small class of images. We address this problem by learning

complex descriptors with Random Forests and exploiting their inherent parallelism in

a GPU implementation. The segmentation itself is based on a convex energy functional

that uses weighted Total Variation regularization and a point-wise data term allowing

for continuous foreground/background membership hypotheses. Its globally optimal

solution is obtained by a fast primal-dual algorithm providing a reasonable convergence

criterion. As a result, we present a versatile interactive texture segmentation framework.

We show experiments with natural, artificial and medical data and demonstrate superior

results compared to two recent approaches.
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