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Abstract

Testing, i.e. checking whether a computing system works as expected, has been
an integral part of development since the beginning of computer science. Testing
is both standard industrial practice and an area of active academic research, with
results and experiences being exchanged between theory and practice. The goal
of this thesis is to show the possibility and practicality of adapting and reusing
an existing behavioral model, written down in a way that is easy to understand
by the working programmer, as an aid in the testing phase of a software project.
The modeling formalism employed is based on Creol, an object-oriented concur-
rent executable modeling language, but can be adapted to any language with
an operational semantics.

The goal of the thesis was reached with the development of a conformance
relation between a model and an implementation that operates with observable
events; a method of light-weight instrumentation of both model and implemen-
tation; the development of a toolchain for test case generation; and the valida-
tion of the approach against an industrial case study. Additional results of the
thesis comprise a method of calculating test cases for single components that
takes into consideration the internal scheduling within the component; methods
for modeling resource constraints (power consumption, bandwidth, memory) for
Creol, and an interpreter that implements these resource constraint semantics;
and an operational semantics for an extension incorporating models of timed
behavior into Creol and the corresponding interpreter.
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Zusammenfassung

Software-Testen, d.h. die Überprüfung, ob ein EDV-System wie erwartet funk-
tioniert, ist sowohl ein integraler Bestandteil jedes industriellen Software-Ent-
wicklungsprozesses als auch Gegenstand wissenschaftlicher Forschung. Das Ziel
dieser Arbeit ist es, die Möglichkeit und Zweckmäßigkeit der Wiederverwendung
von formalen Modellen, die während des Software-Entwurfsprozesses erstellt
wurden, während des Testprozesses zu zeigen. Notwendig zur Akzeptanz eines
formalen Modells im industriellen Umfeld ist eine ausführbare Semantik und
vertraute Syntax der gewählten Modellierungssprache; diese Arbeit verwendet
Creol, eine objektorientierte, nebenläufige ausführbare Modellierungssprache,
aber die Ergebnisse können mit wenig Aufwand an andere Sprachen mit opera-
tionaler Semantik angepaßt werden.

Das Ziel der vorliegenden Arbeit wurde erreicht durch die Entwicklung einer
Konformitätsrelation zwischen Modell und Implementierung eines Softwaresys-
tems, die auf Abfolgen von Beobachtungen beruht; die Entwicklung einer mini-
mal invasiven Instrumentierung von Modell und Implementierung zur Aufzeich-
nung derselben; die Implementierung eines Testfallgenerators zur automatischen
Erstellung von Testfällen aus diesen Aufzeichnungen; und die Validierung der
Methode mittels einer industriellen Fallstudie. Weitere Ergebnisse der Disserta-
tion sind eine Methode der Berechnung von Testfällen für einzelne Komponen-
ten, die das interne Scheduling von Prozessen innerhalb der Komponente berück-
sichtigt; Methoden für die Modellierung von Ressourcenknappheit (Stromver-
brauch, Bandbreite, Speicher) für Creol und deren Implementierung in einem
modifizierten Creol-Interpreter; und eine operationelle Semantik für die Model-
lierung von Zeit in Creol sowie ihre Implementierung.
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This thesis was written while I was employed by the International Institute
for Software Technology of the United Nations University, Macao, to work
on the European Union FP7 project “Credo: Modeling and analysis of evo-
lutionary structures for distributed services” (IST-33826) [23]. The goal of the
Credo project was to research compositional modeling, testing and validation of
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main technologies employed were the network interaction language Reo and the
object-oriented specification language Creol.

Working with a large team of international researchers of various back-
grounds was an immense help to me, as was participating in the cooperation
among researchers and the case studies in which the tools and techniques were
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in [46].
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Chapter 1

Introduction

Testing, i.e. checking whether a computing system works as expected, has been
an integral part of development since the beginning of computer science. Testing
is both standard industrial practice and an area of active academic research, with
results and experiences being exchanged between theory and practice.

A common theme in testing is the model, which is a description (be it explicit
or implicitly assumed by the stakeholders) of the “ideal”, error-free system that
the computing system being tested (also known as “system under test” (SuT)
or simply “the implementation”) is compared against. This model can be as
abstract as “the system does not crash, no matter what the input”, as used in
robustness testing, or can be a detailed formal model of (some aspects of) the
system’s desired behavior, as in some branches of functionality testing.

1.1 Motivation of this Thesis

The goal of this thesis is to show the possibility and practicality of adapting
and reusing an existing behavioral model, written down in a way that is easy
to understand by the working programmer, as an aid in the testing phase of a
software project. Many model-based testing approaches rely on models specif-
ically created as test oracles or for test-case generation purposes; the ability of
adapting and re-using a model created in the specification / design phase as a
test oracle is an obvious advantage.

This goal was reached with the development of a conformance relation be-
tween model and implementation relying on observable events, a method of
light-weight instrumentation of both model and implementation, the develop-
ment of a toolchain for test case generation, and the validation of the approach
against an industrial case study. Additional results included in this thesis are
an approach for single-object or single-component testing against a behavioral
specification that includes scheduling behavior, and a method of adding resource
constraints to existing functional models in order to validate their functionality
in limited evironments, e.g. in embedded systems. The common theme of all
these results is showing the reusability and adaptability of existing models for
additional purposes – from requirements specification to testing and deployment
planning.

A model of a system might have been created during the requirements gath-
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2 CHAPTER 1. INTRODUCTION

ering and design phases of a software development project; the benefits of using
formal methods in these phases is well-documented [39]. Nevertheless, under
(perceived or real) time pressure, “non-essential” parts of software development,
like documentation and testing, tend to get cut back; furthermore, the rigor
and attention to detail required by a formal specification can be a frustrating
experience sometimes – all the effort of coding without running code. It is my
conviction that this effort can be justified by the prospect of re-using the for-
mal model(s) developed in the specification phase as a test oracle during and
after coding. Hence, a method that allows to adapt, with minimal effort, the
behavioral model of a system for testing purposes is desirable in the software
development process. This thesis presents such an approach to adapt behavioral
models written in the object-oriented Creol language for testing purposes, with
the associated theory and tools.

In order to reuse an existing behavioral model for testing, with minimal
changes to both the model and the system under test, we use passive test-
ing, which does not require controllability of the system. Validating a software
system against a model by recording and replaying traces, while not as main-
stream as test case extraction from models [53], is nevertheless an active area
of research [49, 9, 5, 18, 17]. One contribution of our approach is the method
of adaptating a general-purpose executable model as a test oracle, as opposed
of the usage of models constructed explicitly for the purpose of validation of
run-time behavior.

The approach was validated against a number of case studies in the Credo
project, and other test purposes besides functional whole-system testing (e.g.
single-object component testing, testing against resource-constrained models)
were explored.

1.2 The Credo Project
The Credo project (“Credo: Modeling and analysis of evolutionary structures
for distributed services”, FP7 IST-33826) dealt with modeling and analysis of
distributed software, more specifically

[. . . ] the development and application of an integrated suite of tools
for compositional modeling, testing, and validation of software for
evolving networks of dynamically reconfigurable components. [23]

Figure 1.1 gives an overview of the main objectives: the modeling of the behavior
of components using behavioral interfaces, namely constraint automata [64, 76]
and timed automata [37]; the behavior of the connecting network with Reo,
a network coordination language [6], and an executable model of component
behavior with Creol [57]. The project developed methods and tools for checking
behavioral equivalence between the different layers.

The lowest layer of Figure 1.1, the concrete implementation of a software
system, was not part of the initial project objectives and description of work of
the Credo project, but came in as a result of the work done in this thesis. Since
one of the case study partners had an actual implementation of the system that
was being modeled, the author decided to develop a testing strategy connecting
the Creol model and the existing implementation strategy, thus “grounding” the
stack of models being developed. This decision was a factor in the positive
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Behavioral Interface Specifications
constraint automata, task automata

Network Coordination Language
Reo

Executable Component Specifications
Creol

Validation, Verification

Validation, Verification

System under Test
C, Java, ...

Testing

Scope of this Thesis

Figure 1.1: Objectives of the Credo project. The work described in this thesis
establishes the link between executable component specifications and system
under test.

review verdicts of the Credo project – it was generally accepted that Credo was
a project with a strong academical / theoretical bias, but the connection from
Creol to “real” code, as developed and described in this thesis, was very helpful
in addressing comments by the EU-appointed reviewers about applicability of
the research results in an industrial setting.

1.3 Main Results

The following results were obtained while working on the publications that form
the basis of this thesis:

• The formulation of a theory and technique to test reactive systems against
a model using minimally invasive techniques, and without needing to con-
trol the environment (model-based grey-box or black-box passive testing)

• A tool to generate and execute test cases, implementing the passive testing
approach.

• A model checker for the Creol language that is able to handle larger models
than using the built-in model checker of the Maude platform.

• An approach for expressing resource constraints for Creol models, a col-
lection of modified Creol interpreters implementing various resource con-
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straint semantics, and an approach for testing and quantifying the effects
of resource constraints on the model.

As is customary, many of the results were already presented to the scientific
community in conferences and workshops before finishing the thesis proper. The
following publications contain the main results of this thesis:

• B. Aichernig, A. Griesmayer, R. Schlatte, and A. Stam. Modeling and
testing multi-threaded asynchronous systems with Creol. Electronic Notes
in Theoretical Computer Science, 243:3–14, 2009. Proceedings of the 2nd
International Workshop on Harnessing Theories for Tool Support in Soft-
ware (TTSS 2008).

The idea and method of adapting an existing Creol model for use as test
oracle, as well as the underlying conformance relation, were first developed
in this publication.

• B. K. Aichernig, A. Griesmayer, E. B. Johnsen, R. Schlatte, and A. Stam.
Conformance testing of distributed concurrent systems with executable
designs. In F. S. de Boer, M. M. Bonsangue, and E. Madelain, editors,
FMCO, volume 5751 of LNCS, pages 61–81. Springer, 2008.

This paper contains a more fleshed-out explanation of the testing approach
against executable Creol models, including a description of the tool sup-
port implemented since the former paper’s publication, as well as a method
of generating test inputs from Creol models (developed by A. Griesmayer).

• R. Schlatte, B. K. Aichernig, F. S. de Boer, A. Griesmayer, and E. B.
Johnsen. Testing concurrent objects with application-specific schedulers.
In J. S. Fitzgerald, A. E. Haxthausen, and H. Yenigün, editors, IC-
TAC, volume 5160 of Lecture Notes in Computer Science, pages 319–333.
Springer, 2008.

This paper describes an approach of test case generation that uses single
Creol objects as model and includes dealing with scheduler nondetermin-
ism.

• R. Schlatte, B. Aichernig, A. Griesmayer, and M. Kyas. Resource Mod-
eling for Timed Creol Models. Electronic Notes in Theoretical Computer
Science. Proceedings of the 3rd International Workshop on Harnessing
Theories for Tool Support in Software (TTSS 2009) (to appear).

This paper contains an addition of the main testing approach: how to
augment Creol models with models of runtime constraints and test against
these augmented models. The paper also motivated work on a timed
version of the Creol interpreter, in order to be able to model bandwidth
constraints.

The author also cooperated with other scientists at the International Insti-
tute for Software Engineering, Macao, with colleagues at Graz University of
Technology, and project partners within the Credo project. The following pub-
lications, co-written during the time this thesis was under development, are not
part of the results presented herein:
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• A. Griesmayer, B. K. Aichernig, E. B. Johnsen, and R. Schlatte. Dynamic
symbolic execution of distributed concurrent objects. In D. Lee, A. Lopes,
and A. Poetzsch-Heffter, editors, FMOODS/FORTE, volume 5522 of Lec-
ture Notes in Computer Science, pages 225–230. Springer, 2009.

• B. K. Aichernig, A. Griesmayer, M. Kyas, and R. Schlatte. Exploiting
distribution and atomic transactions for partial order reduction. Technical
Report No. 418, UNU-IIST, June 2009.

• A. Griesmayer, B. K. Aichernig, E. B. Johnsen, and R. Schlatte. Dynamic
symbolic execution for testing distributed objects. In Second International
Conference on Tests and Proofs (TAP’09), volume 5668 of LNCS, pages
105–120. Springer, July 2009.

• T. A. Basuki, A. Cerone, A. Griesmayer, and R. Schlatte. Model-checking
user behaviour using interacting components. In Formal Aspects of Com-
puting, 21(6):571–588, Dec. 2009.

• I. Grabe, M. M. Jaghoori, B. K. Aichernig, C. Baier, T. Blechmann,
F. de Boer, A. Griesmayer, E. B. Johnsen, J. Kleijn, S. Klüppelholz,
M. Kyas, W. Leister, R. Schlatte, A. Stam, M. Steffen, S. Tschirner,
X. Liang, and W. Yi. Credo methodology. Modeling and analyzing a
peer-to-peer system in Credo. Electronic Notes in Theoretical Computer
Science, 2009. 3rd International Workshop on Harnessing Theories for
Tool Support in Software (TTSS 2009). ENTCS, Elsevier, Amsterdam
(to appear).

(While this paper contains the main results of this thesis, its broad scope
and the necessarily small contribution each individual part of the Credo
project could be afforded did not merit its inclusion in this thesis.)

1.4 Outline of this Thesis
We start by giving a general overview of model-based testing approaches and
literature in Chapter 2. Chapter 3 presents the Creol language in detail; under-
standing the features and theconcurrency model of Creol is necessary for much
of the remaining chapters. Chapter 4 presents a method and theory for adapting
existing behavioral Creol models as test oracles for passive testing. Chapter 5
expands on the previous chapter, shows how to generate test inputs from a Creol
model and how to calculate a model of the environment (based on implemen-
tation behavior) to accompany partial models, and presents tools for test case
generation and execution. Chapter 6 is a further variation of the approach, this
time generating a detailed environment model and scheduling specification in
order to test a single component of a Creol model. Finally, Chapter 7 presents
results for adding an additional test purpose to the approach: the modeling and
testing of resource-constraints (memory, parallelism, bandwidth, battery usage)
on the implementation. Finally, Chapter 8 summarizes and concludes the thesis.
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Chapter 2

Passive Testing and
Model-Based Testing

This thesis explores passive testing against executable models. This chapter puts
the chosen modeling and testing approach in context with the wider field of
testing, and presents common terminology and approaches of testing in general
and model-based testing specifically.

A software system can be evaluated with respect to a (formal) specification
or with respect to the (informal) requirements of its stake-holders. The first
activity is called verification while the second is validation. In the context of
this thesis, testing is understood as a verification activity, that is, testing is the
process of comparing a system to a (usually higher-level, more abstract) formal
description of its desired behavior.

It could be naively assumed that proving programs correct would obviate
the need for testing, and indeed, the testing process can only show the pres-
ence of errors, never their absence.1 On the other hand, a proof is only as
strong as the assumptions (axioms) it rests upon, such as the assumption that
the program will run on faultless hardware. (One of the purposes of stability
testing before deployment, “burn-in”, is to discover hardware faults in the de-
ployment environment.) Another example for the importance of testing can be
found in [40], where the authors show how an algorithm that was proven to be
deadlock-free exhibited deadlocks on the deployed system under certain circum-
stances – the reason being that the proof assumed that creating an arbitrary
number of threads was possible. Thus, while the algorithm itself was correct,
some of its underlying assumptions were violated by the implementation. In the
end, a revised model incorporating this limited number of threads was proved
correct under the conditions of the deployment systems, and a working system
was implemented. In general, it is prudent to validate the axioms of a proof,
and to prove the assumptions of a test [43].

1There are, in principle, test suites that show the absence of errors w.r.t. a specification,
but they are of infinite size (see [84]).

7
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2.1 Terminology
The software system under assessment is called System under Test (SuT). Dur-
ing a test run, the SuT is executed and observed; its behavior generally varies
depending on stimuli such as input data and events from the environment. A test
case is responsible for supplying relevant stimuli to the SuT, observing relevant
test output behavior, and reaching a test verdict (generally, one of Pass, Fail,
Inconclusive; the latter resulting from nondeterminism and/or partial models).
A test suite is a collection of test cases. When a test is executed, the actual
output or behavior of the SuT must be compared with the output or behavior
expected by the test case. The general problem of determining whether an out-
put is correct with respect to the specification is known as the oracle problem;
a test oracle is an entity that can decide whether a test is successful or not.

Jan Tretmans, in the introduction to [83], defines four areas of testing:

Robustness Testing how does the SuT react if its environment does not be-
have as expected?

Reliability Testing how long can we rely on the correct functioning of the
SuT?

Performance Testing how fast can the SuT perform its tasks?

Conformance Testing does the behavior of the SuT comply with its func-
tional specification?

All these areas of testing need a model to test against. For robustness and
stability testing, the model can be quite abstract (“SuT does not crash”), and test
cases implement or simulate an environment driving the SuT. Robustness and
stability testing differ in that robustness testing needs a more involved model
of the environment that considers (an approximation of) all possible inputs,
whereas stability testing only needs to consider valid inputs.

Although all testing is testing against a specification or model, the term
“Model-Based Testing” (MBT) is usually used in performance and conformance
testing, where models are expressive enough to serve for generating test cases,
estimating test coverage, and/or checking the validity of the outputs of the sys-
tem under test, which are the main activities in model-based testing. Hence,
research in model-based testing deals mostly with conformance testing and per-
formance testing, since these areas need these more detailed, concrete models
of behavior of the SuT.

2.2 Formal Models of Software
The models used in this thesis are written in Creol, an object-oriented, exe-
cutable modeling language (see Chapter 3). There are many different formal
languages to model various aspects of a software system. Hierons et al. [53] give
a survey and overview of the major modeling paradigms used for model-based
testing. In brief, the following modeling styles are predominantly used in MBT:

Contract-Like Specifications Models of this type have an explicit state, pos-
sibly with invariants, and operations that change the state are defined via
pre- and postconditions.



2.3. MODEL-BASED TESTING APPROACHES 9

Algebraic Specifications In this formalism, a system (classically, but not
necessarily, an abstract datatype) is described in terms of the relation-
ships between operations on that type; nothing is said about its internal
representation. Gaudel and Le Gall [44] gives an overview of test case
generation techniques from algebraic specifications.

Labeled Transition Systems (LTS) Systems are modeled as a (possibly in-
finite) set of states, with labeled transitions representing input, output or
internal state changes. The semantics of many specification languages are
based on LTS. Brinksma and Tretmans [13] present an annotated bibli-
ography on testing from LTS, Tretmans [84] a tutorial and introduction
that also references some testing tools.

Finite State Machines A system is modeled as a finite set of labeled states,
with transitions between states triggered by inputs, and transitions (in the
case of Mealy machines) or states (for Moore machines) being annotated
by system output. Extensions include hierarchical state (State Charts)
and symbolic state, with explicit assignments on transitions (UML state
charts). Lee and Yannakakis [60] presents a survey of test case generation
methods from FSMs.

Kripke Structures These models are used by model checkers; input is usually
in the form of a more readable specification language. Model checkers can
be used to automatically generate test cases; for details, see [42, 41].

Dataflow- and Hybrid Models Models of these types are usually used to
model embedded and control systems. They are often graphical in nature,
executable and have a very natural way of expressing parallel calculations.
The general survey of Hierons et al. [53] gives an overview about these
kinds of model as well.

As can be expected, there is no one “best” modeling formalism. Education and
experience of the modeler, available tools, purpose of the model etc. play a large
role in choosing the best modeling language for a given project. The techniques
in this work are based on Creol, which is accessible to the working programmer
due to its explicit state-based, executable structure.

2.3 Model-Based Testing Approaches

Utting et al. [85] present a taxonomy of model-based testing approaches along
various criteria. Of particular interest for our purposes is their criterion of the
role that input and output can play in the testing process:

Input-Only Testing In this approach, a formal model is used to calculate
Test Inputs. The model features a notion of possible inputs (function
call, events) for the SuT; input domains are either the same as for the
SuT, or an abstraction. Usually some form of model coverage is used
to determine whether sufficient test input sets have been generated. For
example, preconditions can be used to describe allowed input data and
to partition the input domain into equivalence classes. Usually then one
input is chosen from every equivalence class.
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Output-Only (Passive) Testing In this approach, the model is used to val-
idate the system’s behavior. This can for example take the form of vali-
dating the output of a module against the postcondition of its contract,
or trying to reproduce the SuT’s behavior in its state machine model.
Passive testing is explained in greater detail below.

Input-Output Testing Depending on the model and the testing approach,
this can be a straightforward combination of test data generation and
output validation using one or multiple models, or take the form of more
involved online testing approaches, with on-the-fly test data generation
and validation. In this case, the model is used to simulate an operating
environment for the SuT and controls its behavior.

Passive Testing, also called Runtime Verification, is an interesting area of
model-based testing. The basic idea is to observe the SuT, record events and val-
idate the observed behavior against a model. Passive testing is a complementary
method to more common methods of testing; its distinguishing characteristic is
that there is no test case supplying inputs to the SuT; rather, the system is
observed during normal operation and the formal model serves as test oracle
only.

There is a certain similarity in the work of Petrenko and Yevtushenko [69],
who separate a test case into queues supplying test inputs on the one hand,
and collecting and verifying the SuT’s outputs on the other. Passive testing
sacrifices all controllability of the SuT, but gains easier applicability especially
in an industrial setting, since the active part of the environment (that which
supplies stimuli to the SuT) does not have to be modelled or implemented.

A good overview on runtime verification specification languages is contained
in [49]. Approaches differ in the formal apparatus employed in the languages
(state machines versus regular expressions versus temporal logics), and in the
amount of data abstraction assumed. The common theme is that a model
is constructed specifically for the purpose of validating runtime traces. One
contribution of this thesis is to show a way of adapting an existing executable
model, which might be created during specification or system design, to serve
as test oracle for passive testing.

Bertolino et al. [11] is similar to this work, with regard to a focus of re-using
models for validation purposes at run-time. They generate message sequence
charts (MSC) from inter-module communications recorded on the SuT and use
them to validate the communication patterns against the system architecture
as specified in UML diagrams. This work elides many of their complexities by
using event traces directly, without the onus of generating well-formed message
sequence charts, and can also be extended to white-box testing (the cited paper
talks about problems with their method resulting from programmers communi-
cating with objects directly instead of via the expected interfaces, which in the
approach of this thesis is no problem, since the event can simply be recorded
within the called object, regardless of how it was called).

A second contribution of this work is a means of generating a model of the
environment – the models employed in passive testing have to encompass both
the SuT and its environment, in order to validate both inputs to and outputs
of the SuT. We show that it is possible to partition the recorded traces into
events, which should be observed from the model, and commands, which should
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stimulate the model. In that way, an existing model of the system can be used
without the need of a model of the environment.
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Chapter 3

The Creol Language and The
Case Studies

Creol is a high-level, object-oriented modeling language for distributed and con-
current systems. Creol is formally defined in an operational semantics expressed
in rewriting logic [65] that is executable on the Maude [22] rewriting engine.
Hence, Creol’s definition also serves as an interpreter for models written in the
language. Creol is especially suited for modeling loosely-coupled, active and
reactive communicating systems and allows various analysis techniques to be
developed and applied to the Creol models, including e.g. pseudo-random sim-
ulation and breadth-first search through the execution space.

The language Creol is being developed at the University of Oslo (UiO),
and used in education and various research projects, for example the Credo
project [23] that funded this thesis. There is a compiler and interpreter [24], an
Emacs mode (written by the author of this thesis), and a plug-in for the Eclipse
IDE offering editing, compiling and visualization support.

Creol contains the “standard” features of an object-oriented imperative lan-
guage: inheritance both for interfaces and class implementations; strings and
the usual numeric primitive datatypes; tuples; the list, set, and map collection
types; assignment, conditional and looping statements. In contrast to, e.g.,
Java, each Creol object completely encapsulates its state; i.e., all external ma-
nipulation of the object state happens through calls to the object’s methods.
The concurrency model of Creol is based on cooperative scheduling with unspec-
ified message arrival times and scheduling behavior of processes. This allows
maximal freedom of execution while still preserving object invariants.

There is also a timed version of the Creol language, with additional language
constructs for modeling with discrete time. One of the contributions of this
thesis was an operational semantics and Maude interpreter (implemented as
enhancement to the existing Creol interpreter) for this timed version of Creol.
Timed Creol is described in Chapter 7.

This chapter first gives an overview of the features of Creol that are impor-
tant to understand the models presented in this work in Section 3.1; for a formal
definition of Creol semantics and an accompanying proof system, see [30, 31].
Section 3.2 describes the modeling process and tool support of Creol. Finally,
Section 3.3 describes the case studies created within the Credo project, which

13
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are used throughout the thesis.

3.1 Language Definition

3.1.1 Syntax

A Creol model is composed of classes that implement interfaces; instance vari-
ables of classes can be:

• a primitive type (number, string, Boolean),

• a complex type (list, set, map, tuple),

• or a reference to an object.

Interfaces enumerate method names and signatures. Classes implement inter-
faces and contain methods. Methods can have multiple arguments and return
values. Object references are typed with interfaces; class names are used at
object creation time only.

The Java-like language syntax of Creol is presented in Figure 3.1. In this
overview, we omit some parts of Creol: inheritance and listing the operators of
the built-in data types (Float, String, Set, List, Map, etc.), which are standard.
For a full overview of Creol, see for example [57].

In the language subset used in the examples of this paper, classes L are of
type C with a set of methodsM . Classes can implement zero or more interfaces,
which define methods that the class must then implement.

The rest of this section shows the syntax for the elements of the Creol lan-
guage that are necessary to understand the examples throughout this thesis.

Types

Creol is a strongly, statically typed language – variables contain values of one
type, which is known at compile time. Creol has the following types:

• Basic types: strings, integer and floating point numbers, Boolean values

• Lists, sets, maps, tuples

• Labels (future variables) that contain the status and return values of asyn-
chronous method calls

• Interfaces

Expressions

Expressions can be:

• Literals of the supported datatypes (string, integer, floating-point number,
Boolean true and false, tuples, maps and lists).

• The object expressions null, this and caller – the last two evaluate
inside method bodies to the object executing the method and the object
that sent the method invocation, respectively.
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• In timed Creol: the expression now, which evaluates to the current value
of the global clock.

• Identifiers of local and instance variables, which evaluate to their current
value.

• The new C(arguments) expression, which evaluates to a reference to a
fresh object.

• Various composite expressions, for example a + b for numerical addition.
These expressions are defined in the Creol standard library, in the file
datatypes.creol of the Creol interpreter.

Statements

The following statements are available:

• skip, the no-op statement.

• The suspension statements release and await expression, which suspend
the current process and invoke the scheduler. In the case of await(c) with
c evaluating to false, the process is put into the object’s process queue and
can be rescheduled only when c becomes true. If c is true, the process is
not suspended at all and the await statement becomes effectively a skip.

• The assignment statement: variables := expressions (both single- and
multi-assignment are possible)

• The conditional statement: if condition then statements [ else state-
ments ] end

• The loop: while expression do statements end

• The synchronous method call obj.method( arguments ; results) and the
asynchronous method call l!obj.method(arguments), where l is a label
(future variable) for the results.

• The blocking return-value synchronization statement l?(results), which
receives the results of an asynchronous method call.

These statements are mostly standard fare, apart from the asynchronous
method call l!e.m(e) where l is of type Label and is a reference (future variable)
for the return value(s) of m, the blocking read operation l?(v) that attempts
to retrieve the return value from the label, and release points await g and
release.

Guards g on await statements are conjunctions of Boolean expressions b
and synchronization operations l? on labels l. When the guard in an await
statement evaluates to false, the statement is disabled and is equivalent to
release, otherwise it is enabled and becomes a skip (no-op). A release
statement always suspends the active process and another suspended process
may be rescheduled. A suspended process releases its implicit lock on the ob-
ject’s attributes. The guarded call await e.m(e; v) is shorthand for a call which
suspends the active process until the reply to the call has arrived; it abbreviates
l!e.m(e); await l?; l?(v).
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P::= D L D::= interface I extends I {Ms}
T::= I | Label[T ] | Bool L ::= class C(v) begin var f : T ;M end

| Int | String | ... M::= op m(in x : T out x : T ) == var x : T ; s end
v ::= f | x e ::= v | new C(v) | null | this | caller | ...
g ::= e | l? | g ∧ g s ::= l!e.m(e) | !e.m(e) | l?(v) | e.m(e; v) | await g

| v := e | skip | release | await e.m(e; v)

| while g do s end | if e then s end
| s[]s

Elided for brevity: expressions on datatypes (string, numeric, boolean)

Figure 3.1: The language syntax of a subset of Creol. Variables v are fields (f)
or local variables (x), C is a class name, I an interface name and l a label (future
variable). Some details (e.g. access to attributes shadowed by inheritance) have
been omitted.

The l?() statement to wait for the return values is blocking, which means
that the processor is not released and no other process in the caller is executed
until the called method returns. To release the process while waiting for a
method to finish, the statement await l? is used. A blocking method call,
which models the “transfer of control” semantics of conventional method calls,
can be implemented by calling a method and immediately issuing a blocking
wait for its return. (Note that this blocking statement may lead to deadlocks
in models.)

Interfaces

Objects are referenced by interface only, never by class; the only time a class is
named in code is in a new statement, but the newly-created instance is assigned
to a variable typed by an interface. Interfaces form a semi-lattice with the
interface Any as top element. The syntax for declaring an Interface is:

1 interface I [ extends I ]
2 begin
3 with CI
4 method declarations ...
5 ...
6 end

Methods declared in the scope of a with declaration can only be called from
objects implementing the co-interface CI. The caller variable will be of type
CI.

Classes

The syntax of a class definition is similar to an interface definition, with added
elements: methods are defined instead of declared, and private methods and
instance variables are defined. A class can have class parameters (constructor
arguments), and lists the interfaces that are implemented and the classes that
are inherited from, if any.

1 class C [ (class_parameters) ]

2 [ implements I ] [ extends C ]
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3 begin
4 instance variable declarations
5 [ op init == statements ]
6 [ op run == statements ]
7 method definitions ...
8 with CI
9 method definitions ...

10 ...
11 end

Class parameters are treated as read-only instance variables. Additional in-
stance variables are declared in the class definition body. The init method
is typically used to initialize instance variables, the run method is used to im-
plement active object behavior. These two special methods are run at object
creation time. Additional private methods can be defined before the first with
section.

All method declarations of the interfaces that a class implements must have
a corresponding method definition in the class or one of its superclasses, with
the same parameter list and co-interface.

Method Declarations and Definitions

Method declarations have the form:

1 op method_name (in arguments ; out return_values);

Method definitions are of the form:

1 op method_name (in arguments; out return_values) ==
2 var local_variable : type [ = expression ]
3 statement_list

where the identifiers named in return_values are to be used like uninitialized
local variables – the values assigned to these identifiers are passed back to the
caller when the method finishes.

3.1.2 Special Language Features

Active Objects

Creol objects can be active (having a dedicated run method that is started
upon object creation) or passive (only reacting to messages). All method calls
(including self-calls) result in a new process to be created within the called
object. Each Creol object conceptually contains its own processor and manages
its processes by itself, interleaving active and reactive behavior. Processes in
different objects execute concurrently, only one process can be active in one
object at a time.

Within each object, at most one process is in an active or blocked state; that
process has exclusive access to the object’s attributes. The other processes in
the object are suspended. Some suspended processes are ready to run, the others
are waiting for some condition to become true. In a standard setting, there are
no assumptions about the order of process execution within an object. (For an
approach to add schedulers to Creol objects, see [72] resp. Chapter 6.)
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Inter-Process Communication and Synchronization within an Object

Creol processes do not use preemption. Instead, explicit conditional suspension
points (in form of await statements) are used to release a process and allow
another process to execute. This cooperative scheduling semantics has great
benefits for modeling: the places where object invariants must be valid are
syntactically apparent (namely, release points and method termination), and
no explicit locking is necessary to avoid race conditions.

We distinguish between blocking a process and releasing a process. Blocking
stops the execution of the process, but does not let another suspended process
resume. Releasing a process suspends the execution of that process and lets
another process become active. Thus, if a process is blocked there is no execution
in the object, whereas if a process is released another process in the object
may execute. Processes need not terminate for scheduling to take place – the
execution of several processes within an object can be combined using release
points within method bodies. For example, in Figure 3.2 (right-hand side), the
process m1 dynamically creates a new process m3. Since it is an asynchronous
call, m3 does not begin running immediately; rather, m1 continues after the call
until it reaches a release point, at which point the object schedules another
thread from its thread pool.

At a release point, which consists of a special statement (release or await)
in the method body, the active process is suspended and some suspended process
may resume. If the active process tries to read from a future variable whose
associated process has not yet finished, the process is blocked until a return
value can be read. This means no other process within the object is allowed to
run in the meantime. Return values can be read from futures in a non-blocking
way by suspending the process via an await statement until the return value is
ready.

The local scheduling of processes inside an object is given by Boolean ex-
pressions (guards) associated with release points. These guards may depend
on local state, allowing cooperative scheduling between the processes within an
object, but may also depend on future variables, i.e. the object’s communication
with other objects. Note that guards are non-monotonic – in general, a guard
that depends on object state can become true and then false again. A guard
solely depending on future variables is monotonic – once true, it will stay true
(in Creol, a method call that has returned can never restart).

Guards on release points include synchronization operations on labels, so the
local scheduling can depend on both the object’s state and the arrival of replies
to asynchronous method calls, which is the method of inter-object communica-
tion and synchronization.

Communication Between Objects

Communication between objects in Creol is based on method calls. Method calls
are a priori asynchronous; in the caller, method replies are assigned to labels
(also called future variables, see [26]). There is no synchronization associated
with calling a method, the caller continues execution as normal. However,
reading a reply from a label is a blocking operation and allows the calling object
to synchronize with the callee. A method call directly followed by a blocking
read operation models a synchronous call. Thus, the calling process may decide
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Figure 3.2: Modeling function calls via Creol synchronous method calls (left)
and parallelism via Creol asynchronous calls and release points (right).

at runtime whether to call a method synchronously or asynchronously.
The execution model of Creol has been derived from the actor model [52]

and uses cooperative multi-programming for coordination. For method calls, the
caller can choose whether to block and wait for a return value (synchronous call),
to synchronize with the callee later (asynchronous call), or to not synchronize
at all by ignoring the return value. In the second case a future variable [50, 26]
is used by the caller to poll the method invocation’s termination and to obtain
the return values, blocking if necessary. Additionally, the identity and type
of the caller is available in most method bodies through the variable caller,
which allows for type-safe call backs. A process need not (and indeed cannot)
distinguish whether it was created from a synchronous or asynchronous call.
Thus, Creol provides and allows to combine different styles of object interaction.

These features together allow Creol to model both concurrent and single-
threaded control flows in a uniform way. Figure 3.2 illustrates the flow of control
between 3 processes within one object in the synchronous and asynchronous
case. Note that m3 is called asynchronously in one case and synchronously in the
other – a method has no way of determining whether it was called synchronously
or asynchronously.

As seen in Section 3.1.1, the syntax for method calls is as follows:

Synchronous call: object.name(in-parameters;out-parameters)

Asynchronous call: future-variable!object.name(in-parameters)

After a synchronous call returns, the output parameters contain the return
value(s) of the method. For an asynchronous call, the return value(s) are stored
in the caller’s future variable upon completion. If an asynchronous call does not
return any value, there is an abbreviated call syntax that is for example used in
Line 14 of Figure 3.10.

As a special case, a synchronous self-call unconditionally transfers control
to the new process created by the self-call, and arranges for an unconditional
transfer of control back to the calling process upon completion (Figure 3.2,
left-hand side). Reading from a future variable blocks the whole object until
the values arrive; hence, a synchronous method call in Creol can be seen as
just an asynchronous call plus an immediate blocking read of the associated
future variable. For synchronization without whole-object blocking, an await
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statement is used that suspends the process but allows other processes in the
object to run.

3.2 Modeling with Creol

A Creol model consists of a set of classes. To execute a model, the Creol inter-
preter is started with a class name (and constructor arguments). The interpreter
creates an object of the given class and calls its constructor and run method.
This initial object is then responsible for initializing the model and creating the
needed objects. For example, in a model of a sensor network, the initial object
will instantiate one object per sensor node that is to be simulated, and connect
the sensor objects with each other.

The interpreter terminates after all objects have stopped their work, or at
the user’s discretion after a defined number of steps. The result is the state of
the model, including the internal state of all objects. The model state can be
visualized using a tool running on the Eclipse platform.

3.2.1 Levels of Abstraction in Creol Models

Experience gained from using Creol, both in the Credo project and elsewhere,
has shown that there is more than one “style” for modeling. Due to the multiple
communication patterns possible in Creol, objects tend to fulfil different roles,
depending on the abstraction level of the model.

At a low abstraction level, Creol objects are used similar to objects in a con-
ventional Java-style object-oriented programming language: as means of struc-
turing and encapsulating data and the operations working thereon. Models of
this type usually resemble in their structure the code of the implementation,
both with respect to data structures and control flow. Hence, the predominant
communication style is the synchronous method call, which simulates a “con-
ventional” programming thread that executes within different objects as time
passes.

More abstract models, on the other hand, use objects more as models of
actors in the real world, or of entire components or subsystems of the imple-
mentation. The portion of asynchronous method calls is higher, and the data
values passed between objects tend to be more abstract.

In summary, it can be said that more abstract Creol models tend to be
distributed, with objects modeling physical entities, with more concrete models
resembling code in object-oriented programming languages instead. The two
case studies of the Credo project illustrate the different styles. While the ASK
system model (see Section 3.3.1), especially in its earlier versions, very closely
follows the ASK system implementation’s architecture and control flow, the
BSN sensor model (Section 3.3.2) in the end had one object instance per sensor
modelled, plus one object for the air space connecting the sensors. An earlier
version of the BSN sensor model that used objects to model the messages passed
between sensors was abandoned in favor of using maps as data structures.

Table 3.1 summarizes the two modeling styles. It should be mentioned that
these styles should be seen as “emergent properties” of models and not as hard-
and-fast rules for modeling – for example, the BSN model, although mostly
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Modeling style low-level abstract
Method calls mostly synchronous asynchronous
Use of objects for structuring data for modeling physical entities
Object communication models control flow models data flow
Abstraction level low high

Table 3.1: Different modeling styles in Creol.

written in the abstract style, contains a very detailed, low-level style implemen-
tation of the AODV routing algorithm [68, 67], since that part of the system
is of particular interest to the modelers and had to be investigated in greater
detail.

3.2.2 Tool Support
During the time of the Credo project, various tools were developed for the Creol
language: compiler, interpreter and editing environments.

The Creol Compiler and Interpreter

First and foremost in tool support is a means of executing a language – for
Creol, the compiler and interpreter were implemented by Marcel Kyas, with
contributions by Ingrid Chieh Yu and Jasmin Christian Blanchette.

The Creol interpreter is implemented in Maude and implements an opera-
tional semantics of the Creol language as a collection of Maude’s term definitions
and rewrite rules operating on these terms. A Creol program is, for purposes of
the interpreter, a collection of Maude terms describing classes (and the enclosed
instance variables and methods). To simulate a running Creol program, a term
is inserted that evaluates to an object; the interpreter’s rewriting rules take care
of executing its init and run methods, creating other objects and delivering
method invocation messages as caused by the initial object.

The Creol compiler converts a Creol program written in Creol’s concrete
syntax (which was described in Section 3.1.1) into the term definitions needed
by the Creol interpreter. Also, type-checking is done by the compiler. The
interpreter is essentially dynamically-typed – a type error during execution in
the interpreter leads to a “hung” state, since none of the rewrite rules apply for
an incorrectly-typed term. For example, the Maude equation

eq "+" (int(I) :: int(I’)) = int(I + I’) .

applies only if both operands to the + operator are actually integers – attempts
of adding a string to an integer would lead to an irreducible statement in the
interpreter (but will be caught by the compiler while producing the Maude terms
before execution time anyway).

Editing Environments

While a text editor is generally sufficient for writing code in any text-based pro-
gramming language, more specialized editing environments help programmers to
be more productive. For Creol, two such environments have been implemented:
a plugin for the Eclipse IDE and a major mode for the Emacs text editor.
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Figure 3.3: Creol support in Eclipse.

The Eclipse plug-in for Creol was developed by Johan Dovland and is cur-
rently maintained by the author of this thesis. The Creol plugin supports syntax
coloring, folding of class and method bodies, and jumping to class and interface
definitions of a Creol file. Also supported are calling the compiler from within
Eclipse, and running and stepping through a Creol model with a graphical rep-
resentation of the model’s state. All these features are shown in Figure 3.3.

The Creol mode for Emacs was implemented by the author of this thesis.
It supports syntax coloring and indenting of Creol code, calling the Creol com-
piler and jumping to error locations. Executing a model is supported by running
Maude inside an Emacs buffer and interacting with the model there. The Creol
mode for Emacs currently does not support a visualization of the model’s state
while it is running; the modeler has to read the Maude output directly. Fig-
ure 3.4 shows a Creol file being edited and compiled within Emacs.

3.3 Case Studies

This section contains a description of the case studies used for obtaining and
validating the results of this thesis. Most of the models in this thesis were created
in the context of the Credo project. The person responsible for the ASK case
study of Section 3.3.1 was Andries Stam of Almende, Wolfgang Leister of NR
was in charge of the BSN case study, described in Section 3.3.2.
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Figure 3.4: Creol support in Emacs.

3.3.1 Case Study 1: The ASK System
ASK is an industrial software system for connecting people to other people via
a context-aware response system. ASK was developed by the research company
Almende [4] and is marketed by ASK Community Systems [7]. ASK provides
mechanisms for matching users requiring information or services with potential
suppliers. Moreover, it is often used as a planning and scheduling system for
the recruitment of skilled workers for various situations. Typical applications for
ASK are workforce planning, customer service, knowledge sharing, social care
and emergency response. Customers of ASK include the originally Dutch mail
distribution company TNT Post and the cooperative financial services provider
Rabobank. The amount of people connected and involved in an ASK system
configuration may vary from several hundreds to several thousands.

Figure 3.5 shows a simplified architectural view of the existing ASK system.
The “heartbeat” of the system is the request loop, indicated by thick arrows.
A request can be e.g. an incoming phone call from a user of the system or a
pre-configured task in the database that is to be executed at a specific time.
A request always contains the information of two participants (a requester and
a responder). Based on the request, the ASK system attempts to provide a
connection between the two participants if possible, and otherwise attempts to
suggest an alternative responder. A number of more or less independent com-
ponents (Reception, Matcher, Executer, Resource Manager) work together to
search for appropriate participants for a request, fill in request details, deter-
mine how to connect the participants, or in general figure out the best way in
which a request can be fulfilled:

• The Reception component determines, based on information in the initial
request, which actions are needed to fulfil the request.

• The Matcher component, if needed, searches for appropriate participants
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Figure 3.5: Overview of the ASK system architecture.

for the request.

• The Executer determines the best way in which the participants can be
connected, or the best way in which a request can be fulfilled.

• The Resource Manager component facilitates the creation, deletion and
reconnection of so-called connectoids, which represent specific media cur-
rently in use (a connected phone call, a played sound file, an email being
written, an SMS message to be sent).

• The Scheduler component, finally, schedules certain requests based on
job descriptions inside the database, like the request to recruit a certain
amount of people for a certain job.

As an example, consider the request from a user of the ASK system to get
in contact with a service supplier. Once the user contacts the ASK system, a
connectoid created by the resource manager represents the incoming open call.
The new connectoid is used to create an initial request containing the calling
number and the number that was called (ASK systems typically support mul-
tiple call-in numbers). The request is sent to the reception, which e.g. presents
an interactive voice response menu to the user, which involves the playing of
sound files of the available choices. In that case the request iterates through the
components, in the meanwhile causing the creation of sound file connectoids in
the resource manager, which are connected to the open call-in line to the user
(the user listens to the sound file). As soon as the actual request is clear, namely
to get in touch with a service supplier, the matcher searches for the appropri-
ate supplier registered in the database. The matching can be based on various
sources of information, including feedback from users about the quality of the
supplier and its current reacheability (based on a time table in the database).
In the end, the resource manager sets up a connection to the service supplier,
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via e.g. a phone connectoid. After that, the scenario continues with e.g. dial
tones entered by both participants, hangup of one participant, or even hangup
of both, in which case the request could cease to exist.

Each of these components is itself multi-threaded. The threads act as workers
in a thread pool, executing tasks put into a component-wide shared task queue.
Tasks are used to implement the requests described above. Within a single
component, threads do not communicate directly with each other. However,
they can dispatch new tasks to the task queue that are eventually executed by
another or the same thread. Threads are also able to send messages to other
components. In most of the components, the number of threads can change over
time, depending on the number of pending tasks in the task queue respectively
the number of idle threads.

Two reference models for the ASK system have been developed in Creol, in
collaboration with Almende [1]. A low-level model follows the structure of the
C implementation closely, while a second, high-level model abstracts away from
concrete behavior and is written in a more abstract, nondeterministic style.

An example of a class from the low-level model is given in Figure 3.6, which
shows the implementation of the ThreadPool and also contains the system-
wide task queue. The thread pool is initialized with the parameters size and
maxNofThreads which determine the initial number of threads in the pool and
the maximum allowed number of threads, respectively. The class also contains
a number of counters to keep record of tasks and threads (number of pend-
ing tasks taskCtr, total number of worker threads threadCtr, and number of
worker threads that currently execute a task busyCtr). The initialization of
these variables is straightforward and omitted in the shown code for matters
of presentation. When the class is initialized, the init method in Line 9 ff.
creates the balancer task which is responsible for creating and deleting work-
ing threads when needed. The dispatchTask method (Line 21) inserts tasks
into the task queue that are then executed by an idle worker thread. Method
createThreads, starting on Line 24, creates a given number of worker threads,
which themselves look into the task queue for open tasks. After the system
is set up, the thread pool is activated from the outside by the start method,
which calls createThreads with the initial number of worker threads (as set
by the class parameter size). (Note that in Creol input and output param-
eters are separated by semicolon. Hence, the absence of output is indicated
by a semicolon at the end of the actual parameter list, as e.g. in the call to
createThreads at the end of the start method.)

The same class in the high-level model can be seen in Figure 3.7. While
the line count is about the same, that model also contains the functionality
of the TaskQueue and Balancer classes (not shown in the low-level model),
and the Thread class is about 50% shorter. The main difference is the use of
more abstract constructs of the Creol language: for example, while the low-level
model replicates the C implementation’s search through a linear list of threads,
checking whether each thread is busy, the high-level model uses Creol’s choose
construct (Line 23) and uses a data structure for free threads only, with threads
responsible for inserting themselves into the free set.
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3.3.2 Case Study 2: Biomedical Sensor Networks
A wireless sensor network is a wireless network of spatially distributed au-
tonomous devices using sensors to cooperatively monitor physical, environmen-
tal or biomedical conditions, such as temperature, sound, vibration, pressure,
motion, pollutants or biomedical signals at different locations. Sensor networks
have been an active area of research for more than a decade, with applications
in e.g. medicine, military, oil and gas, and smart buildings. A biomedical sensor
network (BSN) consists of small, low-power and multi-functional sensor nodes
that are equipped with biomedical sensors, a processing unit and a wireless com-
munication device. Each sensor node has the abilities of sensing, computing and
short-range wireless communication. Due to BSNs’ reliability, self-organization,
flexibility, and ease of deployment, the applications of BSNs in medical care are
growing fast.

The case study presented in this section was developed as part of the Credo
project [23]. It models a sensor network consisting of a set of sensor nodes
and one sink node. Sensor nodes are actively monitoring their environment and
sending out their measurements. In addition, sensor nodes have the task of
routing messages from neighboring sensor nodes towards the sink node. The
sink node, typically connected to back-end processing, receives data from all
nodes but does not create any data itself.

Connectivity is modeled by a network object. This object does not corre-
spond to a physical artifact, but represents the topological arrangement of nodes
and their connectivity and also models the behavior of broadcasting a message
from a node to its neighboring nodes. Figure 3.8 shows an arrangement of four
sensor nodes and one sink node.

In our model, sensor node objects have active behavior: after creation, they
transmit a sequence of measurements and then switch to idle (reactive) behavior,
only listening for and retransmitting messages.

Figure 3.9 shows the model of a sensor node. Its active behavior is im-
plemented by the run method starting at Line 16. A sensor node has two
functions: read sensor values (method sense) and send them to neighboring
nodes (method transmit), and receive and re-send values from other nodes in
the network (methods receive and again transmit). The nondeterministic
choice operator ([]) in Line 19 chooses between reading a sensor value and
transmitting a value that can either originate from the node itself or from the
network. The method receive models the receiving part of the node’s behavior
and is called from the Network object.

Figure 3.10 shows the network model. This class does not model a physical
object; instead it describes and implements the topology of co-operating Node

objects; i.e., which other nodes will receive a message broadcast by some node.
Line 6 shows the data structure containing the connection map, the method
starting in Line 10 implements the network’s behavior. The pragma statements
in lines 2 and 10 restrict objects of this class to have only one concurrent running
broadcast method.
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1 class ThreadPool(size: Int, maxNofThreads: Int)
2 implements ThreadPool
3 begin
4 vars taskCtr, threadCtr, busyCtr : Counter;
5 var taskQueue: TaskQueue;
6 var threads: List[Thread];
7 var balancer: Task;
8

9 op init ==
10 var mrate: Int;
11 taskCtr := new Counter;
12 threadCtr := new Counter;
13 busyCtr := new Counter;
14 taskQueue := new TaskQueue(taskCounter);
15 threads := nil;
16 mrate := 5;
17 balancer := new BalancerTask(1, taskCtr, threadCtr, busyCtr,
18 maxNofThreads, mrate, taskQueue, this);
19 this.dispatchTask(balancer;)
20

21 with Any op dispatchTask(in task: Task) ==
22 taskQueue.enqueueTask(task;)
23

24 with Any op createThreads(amount: Int) ==
25 var i: Int;
26 var thread: Thread;
27 i := 0;
28 while (i < amount) do
29 thread := new Worker(taskQueue, busyCtr, threadCtr);
30 threads := threads |- thread; // append thread
31 threadCtr.inc(;);
32 i := i + 1
33 end
34

35 with Any op start ==
36 this.createThreads(size;)
37 end

Figure 3.6: ThreadPool of the ASK system, in the low-level model (instantiation
of Counter and TaskQueue omitted).
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1 class ResourcePool(nofThreads: Int, maxNofThreads: Int)
2 implements ResourcePool
3 begin
4 var freeThreads: Set[Thread];
5 var nofTasks: Int;
6 var nofThreads: Int;
7

8 op init ==
9 freeThreads := {};

10 createThreads(nofThreads;);
11 nofTasks := 0
12

13 op createThreads(in nofThreads: Int) ==
14 var thread: Thread;
15 var n: Int := nofThreads;
16 while (n > 0) do
17 thread := new Thread(this);
18 n := n - 1
19 end
20

21 op chooseThread(out thread: Thread) ==
22 await ~ isempty(freeThreads);
23 thread := choose(freeThreads);
24 freeThreads := remove(freeThreads,thread)
25

26 op task ==
27 var thread: Thread;
28 chooseThread(;thread);
29 !thread.task();
30 nofTasks := nofTasks - 1
31

32 op poisonTask ==
33 // omitted for brevity
34

35 op shepherd ==
36 // omitted for brevity
37

38 with Thread op request ==
39 freeThreads := add(freeThreads,caller)
40

41 with Outside op addTask ==
42 nofTasks := nofTasks + 1;
43 !task();
44 !shepherd()
45

46 end

Figure 3.7: Thread pool of the ASK system in the high-level model.
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Figure 3.8: A biomedical sensor network: 4 sensor nodes and one sink node.
Note that the connections are not necessarily symmetric: Node 4 transmits
with more power and can therefore reach Node 2, but Node 2 cannot reach
Node 4.

1 class SensorNode(id: Int, network: Network)
2 begin
3 var received: List[[Int,Int]] := nil
4 var outgoing: List[[Int,Int]] := nil
5 var noSensings: Int := 3 // No. of sensings to do
6 var seqNo: Int := 0 // Running package seq. no
7

8 op transmit ==
9 !network.broadcast(head(outgoing));

10 outgoing := tail(outgoing)
11 op queue(in data: [Int,Int]) ==
12 outgoing := outgoing |- data
13 op sense ==
14 queue((id,seqNo);); // dummy value
15 seqNo := seqNo + 1
16 op run ==
17 while true do
18 await seqNo < noSensings; sense(;) // read sensor
19 [] // nondeterministic choice
20 await #(outgoing) > 0; transmit(;);
21 release
22 end
23 with Network // receive data from outside
24 op receive(in data: [Int,Int]) ==
25 if ~(data in received) then
26 queue(data;)
27 received := received |- data;
28 end
29 end

Figure 3.9: Model of a sensor node. The receivemethod, called by the network,
implements reactive behavior, the run method implements the node’s active
behavior.
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1 class Network
2 pragma Max_resources(1)
3 begin
4 // All nodes in network that have registered and
5 // their connections.
6 var nodesConns: Map[Node, List[Node]] := empty()
7 [...]
8 // Broadcast a message from a node to its neighbors
9 with Node

10 op broadcast(in data: [Int,Int]) pragma Need_resources(1) ==
11 var receivers: List[Node] := get(nodesConns, caller)
12 while ~isempty(receivers) do
13 if head(receivers) /= caller then
14 !head(receivers).receive(data)
15 end
16 receivers := tail(receivers);
17 end
18 end

Figure 3.10: Model of the network. (Code to initialize the connection map
nodesConns elided.) Only one broadcast method can be called simultane-
ously because of the specified resource availability.



Chapter 4

Trace-Based Passive Testing
of Creol Models

Modeling concurrent systems and testing multi-threaded systems against mod-
els of their behavior is an exciting field of study. This chapter presents an
approach for constructing and executing test cases using the Creol language.
The approach was validated using a case study consisting of an industrial-size
multi-threaded application and a behavioral model written in the Creol model-
ing language.

Models written in Creol, an object-oriented, concurrent modeling language,
tend to be structurally similar to the finished implementation; we show how to
exploit this property for re-using existing Creol models as test oracles. Partial
models that assume input or stimuli from the environment can be used as well; in
this case, a model of the environment is automatically generated from observed
runtime behavior of the SuT. We also show the underlying conformance relation
between model and system under test.

(The publication which forms the basis for this chapter, “Modeling and Test-
ing Multi-Threaded Asynchronous Systems with Creol” [1], was written with
Bernhard K. Aichernig, Andreas Griesmayer, and Andries Stam.)

4.1 Introduction

Formal testing of single-threaded programs can rely on a rich body of theory
and industrial experience [43, 86, 35]. Formal testing of multi-threaded or dis-
tributed systems, on the other hand, is still an open area of research. This
chapter presents work on modeling a concurrent system and testing the system
against the model.

As modeling language, Creol [57] is used. Creol is an object-oriented, dis-
tributed modeling language that has, in our experience, proved capable of mod-
eling the behavior of large parallel software systems. Because of Creol’s ex-
pressiveness, the models can have similar code structure to the implementation
(e.g. with respect to method names and flow of control); this helps modeler and
implementer to have a common understanding and vocabulary.

One main contribution of this chapter is to show a way to instrument ex-
isting Creol models so they can be used for testing, without needing extensive

31
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restructuring or rewriting. Another contribution of the chapter is to present
a conformance relation between a model and an implementation in the face of
minimal controllability of both implementation and model.

We validate our testing approach through the case study based on ASK, an
industrial software system for connecting people to each other via a context-
aware response system. A substantial part of the ASK implementation, which
is mainly written in C, has been modeled in Creol. The ASK system is inher-
ently multi-threaded and uses asynchronous communication. See Chapter 3,
Section 3.3.1 for more information about the case study.

The testing approach in this chapter relies only on the SuT’s observable
behavior. No test input needs to be generated; instead, relevant parts of the
recorded behavior of the SuT are used to generate a model of the environment
to use during validation of the SuT’s behavior.

The rest of this chapter is organized as follows: Section 4.2 presents some
related work in the area of formal testing. Section 4.3 contains a short discus-
sion of the ASK case study in the context of this chapter, Section 4.4 presents
the conformance relation used to generate test cases. Section 4.5 describes the
approach for generating test cases, adding instrumentation to model and imple-
mentation, and reaching test verdicts. Finally, Section 4.6 contains conclusions
and discusses possible future work.

4.2 Related Work

There is considerable previous work on the use of formal methods for testing
components [43, 83]. Various conformance relations have been proposed, with
varying demands w.r.t. controllability and observability placed on the system
under test (SuT). As an example, the ioco conformance relation is widely used
in the literature, as well as in available testing tools like TGV [35], TestGen [51]
and TorX [10].

ioco stands for input/output conformance and requires that during a test
run, inputs to the SuT are selected by the tester while outputs are observed
by the tester. After each run that is allowed in both the specification and the
SuT, every output of the SuT has to be possible in the specification. While this
conformance definition (and some derivations of it like in [86]) is useful for many
applications, it requires that SuT and tester can be synchronized, i.e. that after
some sequence of output actions, the implementation waits for an input action
from the tester.

In our application, however, the components are coupled asynchronously.
Input actions emitted from the environment are put in a queue. They are
processed in any order determined by the implementation, emitting input events.
A test verdict is reached by observing the input events interleaved with output
events.

Asynchronous I/O is studied in [69] by introduction of queued testing. The
test process is decomposed into subprocesses to produce input and output se-
quences according to a test case. This approach yields a weaker conformance
relation than ioco, because it does not capture relations (cause-effect-chains)
between input and output; on the other hand, this approach places fewer con-
trollability demands on the implementation (in original ioco, the tester is not
input enabled, hence might not be prepared to accept output from the SuT,
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although this has been revised in [84]). We expand upon that work by dropping
the need to distinguish between input and output while monitoring events, thus
(1) capturing relations between input and outputs and (2) allowing to monitor
events that can be stimulated both from the tester as well as the SuT itself.

The idea of modeling languages with operational semantics that can be used
for testing is not new. A recent example is Microsoft’s Spec Explorer [14],
which models observable and controllable events (“Actions” in their parlance)
as methods, with preconditions that tell when events can occur. Test cases are
constructed by calculating a state machine and then generating traces of events,
replaying them on the SuT. The big advantage of that model is the automated
test case generation; in our approach the initial configuration of events must be
authored manually. On the other hand, the models in Spec Explorer are geared
towards testing, and observation of events is always on the method call level. In
our approach, the models can be written in a style that might be more familiar
to programmers and more useful for initial system modeling. The same models
can then be re-used for testing with minimal effort.

4.3 Case Study Scenario

The scenario that we use as an example throughout this chapter models the
creation, dispatch and execution of tasks inside the ASK components. However,
the introduction to the ASK system in Chapter 3 already shows that more
complex scenarios are possible by modeling and instrumenting other parts of
the system.

For now, we consider the following scenario: The scheduler component,
which reads its jobs from the ASK database, is provided with a database con-
taining a single job. This job, once retrieved and executed by the scheduler,
results in the creation of many tasks, inside the scheduler itself but also cer-
tainly inside other components, like the reception. This depends heavily on the
precise job for the scheduler, as configured in the database. For example, issuing
the recruitment of ten individuals for a certain service could cause the creation
of ten callout requests to the reception component, resulting in ten new tasks
inside that component. However, if some people have recently been called for
recruitment, or no contact information of people can be found in the database,
the amount of callout requests could be smaller.

As a test scenario, we consider the verification of the correct dispatching of
tasks based on the contents of the scheduler job and the database.

4.4 A Conformance Relation for Passive Testing

In testing, we initiate a run of the SuT (System under Test) and check if the
resulting run behaves as expected. For synchronous systems, this can be done
by building a test graph, which relates inputs given to the SuT with the outputs
returned from the SuT. Depending on the outputs, new inputs can be selected
to reach a certain goal in the test graph.

In the setting of asynchronous, concurrent systems, however, this is not
practical. In general, the system does not “wait” for the tester to send inputs
if there are still open tasks to perform. Waiting with sending inputs until the
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system finished all open tasks is a bad option because that would eliminate
important test scenarios. On the other hand, a complete pre-computed test
graph would be enormous due to the possible interleaving inherent to concurrent
systems. Instead, we let the system run by itself and use the Creol model as
oracle for the test run. To test if an execution of the SuT is valid, the tester
tries to reproduce it in the model too – only if that is possible, the run is valid.

In the following we assume that we have a Creol model that completely
models the SuT and has a similar structure.1 Due to their similar structure, both
model and SuT can be annotated with the same events (modulo an abstraction
function π) (see Subsection 4.5.2 for a discussion of events and instrumentation).
The principle of the approach is quite simple: If the SuT is correct, then for each
initial configuration and sequence of observable events in the implementation, a
tester shall be able to observe the same sequence of events (lifted into the model
domain) in the model.

Formally, the implementation can be seen as a function I from an initial
configuration to a set of event traces: confI

I−→ {eventsI}. Similarly, the
operational semantics of the model maps an initial configuration confM to a set
of event traces eventsM . Each element of {eventsI} resp. {eventsM} represents
a possible sequence of observable events in response to the initial configuration
in implementation or model. The results of both M and I are sets because of
the nondeterministic nature of process scheduling and, in the case ofM , Creol’s
other nondeterministic statements.

An abstraction function π projects configurations and event traces from
implementation to model. This results in the following diagram:

confM
M−→ {eventsM}

↑ π ↑ π
confI

I−→ {eventsI}
(4.1)

If the model and implementation have exactly the same observable behavior
regarding their event traces, this diagram commutes. But this is not necessary
for the implementation to conform to the model – an implementation behaves
according to a model if the following holds:

∀confI · π(I(confI)) ⊆M(π(confI)) (4.2)

Informally, this conformance relation says that the projection of all possible
sequences of events observable in the implementation must be contained in the
set of sequences of events observable in the model. The objective of testing is to
try to find a counter-example for the above relation – to find a scenario where
I exhibits behavior not covered by M .

In order to be able to verify the conformance relation, we introduce a tester
T , a process actor who supplies the initial configuration to the model and re-
stricts the order of observable events during execution of the model. Formally,
T is constructed from a specific event trace, and is just the process that emits
π(eventsI) in sequence:

eventsI ; T (4.3)

1Where by “similar structure” we mean that roughly the same traces can be emitted by
model and SuT; in particular, the same sets of events must be observable.



4.5. TEST IMPLEMENTATION 35

We restrict process scheduling in the model at carefully chosen points so that
the model can only proceed past an observable event when the tester, who knows
the sequence of events recorded from the implementation, allows it. Formally,
this can be seen as the parallel composition of model and tester: T ||M . The
test process can be described as follows:

∀eventsI ∈ I(confI) · π(eventsI) = (T ||M)(π(confI)) (4.4)

Section 4.5 describes the implementation of this test approach.

4.5 Test Implementation

4.5.1 Actions and Events: Generating a Test Environment

Our test assumption is that a sequence of events that is observed on the imple-
mentation can be reproduced (replayed) by the model. Usually in the testing
literature, both implementation and model are specified as some variant of In-
put/Output Labeled Transition Systems (IOLTS). In that model, events are
separated into Input and Output Actions that occur interleaved; this is the
basis of ioco [83] and indeed much of the formal testing theory.

In our case, the situation is slightly different. Like in [69], input and output
can be performed independent from each other. Consequently, we distinguish
between (controllable) actions and (observable) events.

An action is a stimulation to SuT and model, while an event testifies that
something happened in the system. E.g., a method call from the tester is an
action, the start of execution of that method is a related event. Because of the
asynchronism of our systems, several events might occur between a method call
(the action) and its execution (the event). Likewise, the order in which methods
are executed might be different from the order of the calls.

An action is always initiated by the tester. Some events (like, say, the
start of execution of a method create_task) are the direct consequence of
actions (a call to a method create_task). The same events can potentially
be observed in the SuT without being the direct consequence of an action by the
tester as well – for example, in the ASK system one task can start another; this
means a task scheduling event will be observed without a preceding action by the
environment. In order to increase testability, event probes in the implementation
should be placed such that they reflect when an action is accepted in the SuT.

4.5.2 Adding Instrumentation to Model and SuT

As mentioned above, the language Creol is expressive enough that model and
implementation can have a similar structure with respect to function/method
names and control flow. Consequently, SuT and model can be instrumented
to produce equivalent events. This subsection describes the technicalities of
producing events.

Instrumenting the Implementation

There are various methods for adding instrumentation to the implementation,
depending on circumstances. Groce et al. [49] recommend re-using existing
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logging output, which, in their application, is already implemented and budgeted
(memory- and processor-wise). In general, if the system already contains logging
and diagnostic output, it is easiest to re-use this for testing purposes.

If no or only ad-hoc logging is implemented, adding tracing behavior via
other means can be less work. There are some low-level tracing tools available.
In principle, the debugging interface of the operating system (for example, the
ptrace system call on Linux and other Unix-like platforms) can be used to
inspect the system’s memory and set breakpoints, but this is a quite low-level
approach to logging. For example, the Linux manual page for dtrace warns:

This page documents the way the ptrace() call works currently
in Linux. Its behavior differs noticeably on other flavors of Unix. In
any case, use of ptrace() is highly OS- and architecture-specific.

The SunOS man page describes ptrace() as "unique and arcane",
which it is.

Slightly higher-level logging tools include SystemTap [79] on Linux and dtrace
[78] on the Solaris and Mac OS X platforms. These tools work with trace points
that are inserted into the source by the developer at well-chosen points, but
they can also intercept arbitrary function calls. Logging or tracing is specified
via a script; i.e. what happens at a specific trace point is not written down in
the source code itself.

Another possibility for tracing is using aspect-oriented programming, which
works by augmenting certain points in the program (“point cuts”) with behavior
that is orthogonal to the main purpose of the code at that point, for example
logging or locking functionality. We used Aspect-C [8] to insert event recording
points into the existing code for the ASK system.

Actions (incoming phone calls and emails, tasks to be started) are created
by a test driver that runs in parallel with the ASK system, or by the system’s
users should the real system’s behavior be recorded. Typically, the following
events are logged:

• Task read from database, task added to queue, task claimed by worker
thread.

• Outgoing phone call, incoming phone call, key pressed on phone, phone
hangup.

• worker thread created, worker thread removed.

Other events can be added depending on the needs of the test case. In our case,
we recorded creation and termination of worker threads and beginning and end
of tasks.

Instrumenting the Model

While the instrumentation in the SuT merely emits the events, the code of the
model is changed such that the tester is able to steer it to verify the sequence
of events performed by the SuT (see Section 4.4 for the theoretical basis of this
approach). So, at the time when an event occurs in a model, the tester can
delay or entirely disallow (infinitely delay) the process that signals the event.
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1 op dispatchTask(out index: Int) ==
2 await tc.request("dispatchTask"); // <-- the added call
3 await openCounter > 0;
4 index := index(states, "OPEN");
5 states := replace(states, "BUSY", index);
6 openCounter := openCounter - 1

Figure 4.1: The dispatchTask method of the TaskQueue class of the ASK
system. The first line of the method body signals the event dispatchTask to
the testcase tc and requests permission to continue.

For each event, a Counting Semaphore is used to synchronize the model and
the tester. For each event, a request call is inserted at the point where the
event occurs:

1 await tc.request("eventX");

Figure 4.1 shows the dispatchTask method of the TaskQueue class of the ASK
system; in the model of the ASK system, this method is called by the worker
threads to remove a task from the queue.

4.5.3 Implementing the Tester for the Model

We have seen how the model signals that an event occurs. The tester allows the
model to proceed if the same event was observed on the implementation, and
waits until the model has actually continued past the event. Most of the tester
will consist of a sequence of pairs of Creol statements like these:

1 this.allow("eventX";);
2 await pendingEventXCounter = 0;

These two lines synchronize with an await tc.request("eventX") line in the
model. The first line allows the model to generate an observable event eventX
that has been observed on the implementation. The second line forbids the test
case to proceed until the model has produced that expected event. Together,
these two lines enforce a tight synchronization between the sequence of events
as observed on the implementation and on the model.

4.5.4 Generating Test Cases

Testing the implementation against the model consists of:

1. Designing an initial configuration confI (test case input)

2. Recording a sequence of observations eventsI by running the implemen-
tation with the initial configuration

3. Translating initial configuration and observation sequence into the model
view, resulting in a tester

4. Executing the model with the generated tester, reaching a test verdict
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Configuration Events Tester

createTask createTask
↓

dispatchTask
↓

createTask
↓

dispatchTask

1 op run ==
2 // The initial configuration
3 queue.createTask(taskId);
4

5 // The observations
6 this.allow("createTask";);
7 await pendingCreateTask = 0;
8 this.allow("dispatchTask";);
9 await pendingDispatchTask = 0;

10 this.allow("createTask";);
11 await pendingCreateTask = 0;
12 this.allow("dispatchTask";);
13 await pendingDispatchTask = 0;
14 ok := true

Figure 4.2: Initial configuration and recorded events, and the resulting tester.
In this scenario, initial creation of one task results in two observations of (task
creation, task dispatch). After each call to allow, the tester awaits until the
event is consumed by the model.

Observation Verdict Diagnosis
Tester finishes Pass
Tester deadlocks Fail Model and SuT differ in behavior
Model assertion violated Fail Internal model error

Table 4.1: Test Outcomes.

Figure 4.2 shows an example of an initial configuration, the observed events
in the implementation (eventsI) and the corresponding tester.

The initial configuration for the ASK system is created by domain experts,
consisting of a task list (stored in the database) and of a set of incoming calls
to be simulated by the test driver.

4.5.5 Reaching a Test Verdict
The instrumented ASK system is started, with the database configuration and
telephony environment supplied by the test driver. The result of running the
SuT is an event trace eventsI .

A test is successful if the model successfully handles the same trace as the
implementation and if all assertions and invariants in the model hold during the
test run. If an assertion in the model is violated, the model itself has an incon-
sistency and is in error; no verdict about the implementation can be reached. If
the tester deadlocks when run in parallel with the model, the implementation
violates the test assumption and the test fails. If the tester runs to completion,
the test passes. Table 4.1 summarizes the possible outcomes and the accompa-
nying test verdicts.

Since Creol’s scheduling and some other language features are nondeter-
ministic, observing a deadlock does not necessarily mean the test failed. For
example, if two methods are invoked at the same time, the interpreter chooses
an arbitrary sequence of process creation, which leads to an arbitrary order of
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events occuring in the model. This might lead to spurious test failures, where
a different ordering of method invocations would lead to test success.

The ok variable in the tester was introduced to have an easy target for model
checking T ||M . Since the model checker of the underlying Maude rewriting en-
gine does not know about Creol semantics and checks possible interleavings
of rewrite rules that cannot change the eventual outcome, a specialized model
checker was written that only explores Creol’s nondeterministic statements. It
is implemented as a depth-first search that assumes a terminating model (no
infinite runs), which is guaranteed by the test case, which either terminates
or deadlocks before terminating, so if no part of the model runs without syn-
chronizing with the test case, the model will terminate. The depth-first search
results in memory usage which is not higher than during a normal program run.

4.6 Conclusions

Testing multi-threaded implementations is still an open field of research. In our
work, we test a multi-threaded implementation against a multi-threaded model.
We make use of the fact that Creol’s semantics allows for concise modeling,
while still being close to a conventional object-oriented imperative programming
language. Hence, our model can have a similar structure as the implementation.
It is our belief that this ease of modeling will encourage developers to use Creol
models both during initial modeling and system design, to gain confidence in the
system architecture, and as a testing tool to verify the implementation against
the model.

A possible approach for recording more varied event traces eventsI , and
hence obtaining more test cases, is described in Edelstein et al. [32]. The cen-
tral observation in that work is that, contrary to conventional wisdom, operating
system schedulers are largely deterministic. This observation explained hard-to-
reproduce errors that only occur on production but not in the test environment:
heavy load induces changes in scheduler behavior, thus exposing race conditions
– lighter system load, as on a developer machine, makes the error unobservable
again. The paper’s solution for reproducing these kinds of bugs is to artificially
introduce more nondeterminism in scheduling, by instrumenting either the pro-
gram or, for Java programs, the virtual machine. Making the scheduler truly
nondeterministic in that way reportedly helps uncover these hard-to-reproduce
bugs, and should be straightforward to adopt for our purpose of obtaining more
varied event traces as well.

Our approach can also be adapted for testing only a part of the system, for
example, if the model is incomplete. In that case, some events that originate in
a part of the implementation that is not modeled would not be observed in the
model and the test would fail. However, if we annotate the origin of recorded
events, we can insert actions corresponding to the missing events into the tester;
that way, the tester simulates the behavior of the missing parts of the model
and the test case can be executed. Chapter 5 describes how to create a tester
environment based on a recorded event trace in detail.

Finally, the semantics of Creol allows us very easily to weaken the event
execution sequence. This way, we could selectively enable certain reorderings of
event observations between model and implementation, e.g. two simultaneous
incoming calls could be accepted in different order in the model without leading
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to test failure. It remains to be seen whether this feature results in stronger test
cases.



Chapter 5

Test Input and Tester
Environment Generation

This chapter presents a unified approach to test case generation and confor-
mance test execution in a distributed setting. A model in the object-oriented,
concurrent modeling language Creol is used both for generating test inputs and
as a test oracle. For test case generation, we extend Dynamic Symbolic Ex-
ecution (also called Concolic Execution) to work with multi-threaded models
and use this to generate test inputs that maximize model coverage. For test
case execution, we establish a conformance relation based on trace inclusion
by recording traces of events in the system under test and replaying them in
the model. User input is handled by generating a test driver that supplies the
needed stimuli to the model. An industrial case study of the Credo project
serves to demonstrate the approach.

(The publication which forms the basis of this chapter, “Conformance Testing
of Distributed Concurrent Systems with Executable Designs” [2], was written
with Bernhard K. Aichernig, Andreas Griesmayer, Einar Broch Johnsen and
Andries Stam. The work on dynamic symbolic execution is mainly due to An-
dreas Griesmayer.)

5.1 Introduction

The method described in this chapter consists of two parts: generating test cases
from a Creol model, and validating the implementation against the model. Gen-
erating test cases is done by computing test input values to achieve maximal
model coverage. To handle the parallelism in the models, dynamic symbolic ex-
ecution is used to avoid the combinatorial state space explosion that is inherent
in static analysis of such systems. Validating the implementation is achieved via
light-weight instrumentation of both model and implementation, and replaying
traces that were recorded on the implementation on the model in order to verify
the conformance of the implementation’s behavior.

Model-based testing has become an increasingly important part of robust
software development practices. Specifying a system’s behavior in a formal
model helps to uncover specification ambiguities that would otherwise be re-
solved in an ad-hoc fashion during implementation. Using the model as a test
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oracle as well as a specification aid reinforces its critical role in the development
process.

The techniques presented in this chapter are based on the object-oriented
modeling language Creol, a language designed to model concurrent and dis-
tributed systems. Creol models are high-level as they abstract from, e.g., par-
ticular network properties as well as specific local schedulers. However, Creol is
an executable language with a formal semantics defined in rewriting logic [65].
Thus, Creol models may be seen as executable designs. Test cases are written
in Creol as well, and dynamic symbolic execution (DSE) is applied to calculate
a test suite that reaches the desired model coverage. DSE is a combination
of concrete and symbolic execution, and therefore, it is also known as concolic
execution.

To show conformance between model and implementation, sequences of
events are recorded from the instrumented implementation and replayed on the
model. This approach allows reasoning about control flow and code coverage and
goes beyond observations on program input/output. The conformance relation
is based on trace inclusion, that is, every behavior shown by the implementation
must be observable on the model as well. In case of non-deterministic models,
we apply model-checking techniques in order to reach conclusive fail verdicts.
To deal with user input events, the generated test driver stimulates the model
in the same way as was observed in the implementation.

This testing methodology is applied in the context of the ASK system (see
Section 3.3.1), one of the industrial demonstrators of the Credo project. How-
ever, Creol and the presented model-based testing technique is general and
covers a wide range of distributed architectures.

The major results of this chapter are:

• A tool-supported method for calculating optimal-coverage test cases from
a model that serves as a test oracle.

• An extension of dynamic symbolic execution to deal with concurrency.

• A conformance relation that can handle both input/output events and
internal actions in a uniform way and allows reasoning about program
flow and code coverage.

• A tool to generate a test driver from recorded implementation behavior
that copes with arbitrary input events.

The rest of the chapter is organized in two main parts: Section 5.2 gives an in-
depth overview of the approach to test input generation using dynamic symbolic
execution, Section 5.3 shows how to generate full test cases and calculate test
verdicts by recording an implementation’s behavior responding to these test
inputs, and checking whether the Creol model can exhibit the same behavior.
Sections 5.4 and 5.5 contain related work and a conclusion to the chapter.

5.2 Finding Test Cases with Dynamic Symbolic
Execution

As explained in Chapter 3, only one process is executing on each object’s lo-
cal state at a time, and the interleaving of processes is flexibly controlled via
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(guarded) release points. Together with the fact that objects communicate
exclusively via messages (strict encapsulation), this gives us the concurrency
control necessary for extending DSE to the distributed paradigm.

This section gives a brief introduction to dynamic symbolic execution (DSE)
and its application to test case generation of sequential programs. Our ex-
tensions for distributed and concurrent systems are presented in Section 5.2.3.
Conventional symbolic execution uses symbols to represent arbitrary values dur-
ing execution. When encountering a conditional branch statement, the run is
forked. This results in a tree covering all paths in the program. In contrast,
dynamic symbolic execution calculates the symbolic execution in parallel with
a concrete run that is actually taken, avoiding the usual problem of eliminating
infeasible paths. Decisions on branch statements are recorded, resulting in a set
of conditions over the symbolic values that have to evaluate to true for the path
to be taken. We call the conjunction of these conditions the path condition; it
represents an equivalence class of concrete input values that could have taken
the same path. Note, in the case of non-determinism, there is no guarantee
that all inputs of this equivalence class will take this path. For the application
of DSE to systematic test case generation, the symbolic values represent the
inputs of a program; concrete input values from outside this equivalence class
are selected to force new execution paths, and thereby new test cases. Hence,
the selection of new input values for finding new paths is a typical constraint
solving problem.

Example 1 Consider the following piece of code from an agent system calcu-
lating the number of threads needed to handle job requests.

1 amountToCreate := tasks - idlethreads + . . . ;
2 if (amountToCreate > (maxthreads - threads)) then
3 amountToCreate := maxthreads - threads;
4 end;
5 if (amountToCreate > 0) then . . . end;

Testers usually analyze the control flow in order to achieve a certain coverage.
For example, a run evaluating both conditions above to true is sufficient to
ensure statement coverage. Branch coverage needs two cases at least and path
coverage all four combinations. The symbolic computation calculates all possible
conditions, expressed in terms of symbolic input values. We denote the symbolic
value of an input parameter by appending S to the parameter’s variable name.
Let threads, idlethreads, and tasks denote the input parameters for testing,
and maxthreads being a constant. Then statement coverage (both conditions
evaluate to true) is obtained for all input values fulfilling the condition
(tasksS-idlethreadsS)>(maxthreads-threadsS)

∧(maxthreadsS-threadsS)>0

Dynamic symbolic execution calculates these input conditions for a concrete ex-
ecution path. The next test case is generated in such a way that the same path
is avoided by negating the input conditions of the previous paths and choosing
new input values satisfying this new condition. For example, inputs satisfying

(tasksS-idlethreadsS)≤(maxthreads-threadsS)

∧(maxthreads-threadsS)>0

will avoid the first then-branch, resulting in a different execution path.
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One immediately realizes that the choice of which sub-condition to negate
is determined by the desired kind of coverage (branch coverage, path coverage,
statement coverage), but the coverage that can actually be achieved also depends
on the actual program and the symbolic values used. For example, the pres-
ence of unreachable code obviously makes full statement coverage impossible.
The concrete test values from symbolic input vectors can be found by mod-
ern constraint solvers (e.g., ILOG Solver [54]) or SMT-solvers (e.g., Yices [90],
Z3 [28]).

5.2.1 Representation of a Run

A run of a Creol system captures the parallel execution of processes in different
concurrent objects. Such a run may be perceived as a sequence of atomic execu-
tion steps where each step contains a set of local state-transitions on a subset of
the system’s objects. However, only one process may be active at a time in each
object and different objects operate on disjoint data. Therefore, the transitions
in each execution step may be performed in a truly concurrent manner or in
any sequential order, so long as all transitions in one step are completed before
the next execution step commences. For the purposes of dynamic symbolic exe-
cution the run is represented as a sequence of statements which manipulate the
state variables, together with the conditions which determine the control flow,
as follows.

The representation of an assignment v := e is straightforward: Because fields
and local variables in different processes can have the same name and statements
from different objects are interleaved, the variable names are expanded to unique
identifiers by adding the object id for fields and the call label for local variables.
This expansion is done transparently for all variables and we will omit the
variable scope in the sequel.

An asynchronous method call in the run is reflected in four execution steps
(remark that the label value l uniquely identifies the steps that belong to the
same method call): o1

l
⇀ o2.m(e) represents the call of method m in object o2

from object o1 with arguments e; o1
l
⇁ o2.m(v) represents the moment when a

called object starts execution, where v are the local names of the parameters for
m; o1

l
↼ o2.m(e) represents the emission of the return values from the method

execution; and o1
l
↽ o2.m(v) represents the corresponding reception of the val-

ues. These four events fully describe method calling in Creol. In this execution
model the events reflecting a specific method call always appear in the same
order, but they can be interleaved with other statements.

Object creation, new C(v), is similar to a method call. The actual object
creation is reduced to generating a new identifier for the object and a call to the
object’s init and run methods, which create the sequences as described above.

Conditional statements in Creol are side effect free, i.e. they do not change
an object’s state. In order to record the choice made during a run, the condition
or its negated version are included into the run as Boolean guard 〈g〉. Hence, a
run represents both, the variable changes together with the taken branch. As
will be shown later, the conditions in a run are used to calculate the equivalence
class of all input values that may take this path.

Await statements await g require careful treatment: if they evaluate to
false, no code is executed. To reflect the information that the interpreter failed
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to execute a process because the condition g of the await statement evaluated
to false, the negated condition 〈¬g〉 is recorded.

5.2.2 Test Case Generation

The low-level model of the ASK system (see Section 3.3.1) forms the basis
for this chapter’s work on testing. Note that in this chapter we only show
excerpts of the model and omit some of the details for better demonstration
of the approach. This simplified model consist of six different kinds of objects
with various instances and does not induce any performance problems.

To generate test cases from the Creol model, we extend dynamic symbolic
execution from Section 5.2 to distributed concurrent objects. Coverage criteria
define a measurement of the amount of the program that is covered by the
test suite. Two runs that cover the same parts of a system can be considered
equivalent. A good test suite maximizes the coverage while minimizing the
number of equivalent runs in order to avoid superfluous effort in executing the
tests.

To set up a test case, the testing engineer first selects a test scenario, a
description of the intention of the test, either from use cases or a high level
specification of the system. Using this scenario, a first test run is set up that
triggers a corresponding execution of the system. Starting with this run, the
coverage is enhanced by introducing symbolic values tS in the test object and
computing new values such that new, non-equivalent runs are performed.

Dynamic symbolic execution on a run gives the set of conditions that are
combined to the path condition C =

∧
1≤i≤n ci (for n conditions), characterizing

exactly the equivalence class of tS that can repeat the same execution path.
Only one test case that fulfills C is required. A new test case is then chosen by
violating some ci so that another branch is executed. Note that by executing new
branches, also new conditions may be discovered. To reach decision coverage
(DC) in a test suite, for instance, test cases are created until for each condition
ci there is at least one test case that reach and fulfill as well as violate this
condition. The process of generating new test cases ends after all combinations
required for the required coverage criterion are explored.

In the case of distributed concurrent systems, however, we frequently deal
with scenarios in which the naive approach does not terminate. Most impor-
tantly, such concurrent systems often contain active objects that do not termi-
nate and thus create an infinite run. In this case, execution on the model has to
be stopped after exceeding some threshold. The computation of the path condi-
tion can be performed as before and will prohibit the same partial run in future
computations. Creol also supports infinite datatypes. For a code sample such
as while (i > 0) do i := i - 1 end, there is a finite run for each i, but
there are infinitely many of them. To make sure that the approach terminates,
a limiting condition has to be introduced manually, for example by creating an
equivalence class for all i greater than a user defined constant.

5.2.3 Dynamic Symbolic Execution in the Parallel Setting

We now present the rules to compute the symbolic values for a given run. The
formulas given in this section very closely resemble the rewrite rules of the Creol
simulation environment [57], defined in rewriting logic [65] and implemented in
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v := e; s
[
Θ, σ, C

]
=⇒ s

[
Θ, σ ] 〈v � (eσ)〉, C

]
. (assign)

o1
l
⇀ o2.m(e); s

[
Θ, σ, C

]
=⇒ s

[
Θ ] 〈l � eσ〉, σ, C

]
. (call)

o1
l
⇁ o2.m(v); s

[
Θ, σ, C

]
=⇒ s

[
Θ, σ ] 〈v � lΘ〉, C

]
. (bind)

〈g〉; s
[
Θ, σ, C

]
=⇒ s

[
Θ, σ, C 〈̂gσ〉

]
. (cond)

Figure 5.1: Rewrite rules for symbolic execution of Creol statements.

Maude [22]. A rewrite rule t =⇒ t′ may be interpreted as a local transition rule
allowing an instance of the pattern t in the configuration of the rewrite system
to evolve into the corresponding instance of the pattern t′. When auxiliary
functions are needed in the semantics, these are defined in equational logic, and
are evaluated in between the state transitions [65]. The rules are presented here
in a slightly simplified manner to improve readability.

Denote by s the representation of a sequence of program statements. Let
σ = 〈v1 � e1, v2 � e2, . . . , vn � en〉 = 〈v � e〉 be a map which records key–
value entries v � e, where a variable v is bound to a symbolic value e. The
value assigned to the key v is accessed by vσ. For an expression e and a map
σ, define a parallel substitution operator eσ which replaces all occurrences of
every variable v in e with the expression vσ (if v is in the domain of σ). For
simplicity, let eσ denote the application of the parallel substitution to every
expression in the list e. Furthermore, let the expression σ1 ] σ2 combine two
maps σ1 and σ2 so that, when entries with the same key exist in both maps,
the entry in σ2 is taken. In the symbolic state σ, all expanded variable names
are bound to symbolic expressions. However, operations for method calls do not
change the value of the symbolic state, but generate or receive messages that are
used to communicate actual parameter values between the calling and receiving
objects. Similar to the expressions bound to variables in the symbolic state σ,
the symbolic representations of these actual parameters are bound in a map Θ
to the actual and unique label value l provided for each method call by Creol’s
operational semantics. Finally, the conditions of control statements along an
execution path are collected in a list C; the concatenation of a condition c to C
is denoted by C ĉ.

The configurations of the rewrite system for dynamic symbolic execution are
given by s

[
Θ, σ, C

]
, where s is a sequence of statements, Θ and σ are the maps

for messages and symbolic variable assignments as described above, and C is the
list of conditions. Recall that the sequence s (as described in Section 5.2.1) is
in fact generated on the fly by the concrete rewrite system for Creol executed
in parallel with the dynamic symbolic execution. Thus, the rules of the rewrite
system have the form

s
[
Θ, σ, C

]
=⇒ s′

[
Θ′, σ′, C′

]
.

The primed terms on the right-hand side are updated results from the execution
of the rule. The rules are given in Figure 5.1 and explained below.

Rule assign defines the variable updates that are performed for an assign-
ment. All variables in the right hand side are replaced by their current values in
σ, which is then updated by the new expressions. Note that we do not handle
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variable declarations, but work in the runtime-environment. We expect that
a type check already happened during compile time and insert variables into
σ the first time they appear. A method call as defined by Rule call emits a
message that records the expressions that are passed to the method. Because
of the asynchronous behavior of Creol, the call might be received at a later
point in the run (or not at all if the execution terminates before the method
was selected for execution) by Rule bind, which handles the binding of a call to
a new process and assigns the symbolic representation of the actual parameter
values to the local variables in the new process. The emission and reception of
return values are handled similarly to call statements and call reception.

Object creation is represented as a call to the constructor method init of the
newly created object. In this case there is no explicit label for the call statement,
so the object identifier is used to identify the messages to call the init and run

methods, which are associated to the new statement. For conditionals, the local
variables in the condition are replaced by their symbolic values (Rule cond).
This process is identical for the different kinds of conditional statements (if,
while, await). The statement itself acts as a skip statement; it changes no
variables and does not produce or consume messages. The expression gσ char-
acterizes the equivalence class of input values that fulfill the condition if it is
reached. The conjunction of all conditions found during symbolic evaluation
represents the set of input values that can trigger that run. The tool records
the condition that evaluated to true during runtime. Therefore, if the else
branch of an if statement is entered or a disabled await statement with g is
approached, the recorded condition will be ¬g.

5.2.4 The ASK Case Study Revisited

We revisit our running example to demonstrate the parallel version of DSE
and the way test cases are generated. The balancer Task is instantiated by
the ThreadPool in Figure 3.6 to compute the number of worker threads to
create or destroy depending on a given maximal number of threads, the cur-
rently existing number of threads and the number of remaining tasks. Fig-
ure 5.2 shows one central part of this balancing task: the tail-recursive method
createThreads. This method and its opponent in the model, killThreads,
are responsible for creating and killing threads as needed. The balancer is ini-
tialized with maxthreadsS , the maximum number of threads that are allowed
in the thread pool. In the balancer’s init method (not shown here), the local
variable maxthreads is incremented by one to account for the balancer task
itself, which also runs inside the thread pool. The balancer has access to the
number of threads that are active (threads), the number of threads that are
processing some task (busythreads), and the number of tasks that are waiting
to be assigned to a worker thread (tasks).

The await statement in Line 7 suspends the process while it is not necessary
to create further worker threads; i.e., if the maximal number of threads is already
reached or half of the threads are without a task (they are neither processing a
task nor is there a task open for processing). The if statement in Line 10 checks
that there are not more tasks created than allowed by maxthreads. Finally, the
thread pool is instructed to create the required numbers of threads in Line 14.

Figure 5.3 shows the code to instantiate the model and create a fixed number
of tasks (10 in our example). The dynamic symbolic interpreter allows to treat
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1 op init ==
2 maxthreads := maxthreads + 1;
3

4 op createThreads ==
5 var amountToCreate: Int;
6 var idlethreads: Int := threads - busythreads;
7 await ((threads < maxthreads)
8 && ((idlethreads - tasks) < (threads / 2)));
9 amountToCreate := tasks - idlethreads + (threads / 2);

10 if (amountToCreate > (maxthreads - threads)) then
11 amountToCreate := maxthreads - threads;
12 end;
13 if (amountToCreate > 0) then
14 await threadpool.createThreads(amountToCreate);
15 end;
16 createThreads(); //infinite loop by tail-recursion

Figure 5.2: Parts of the balancing thread to initialize and create new threads.
The fields threads, idlethreads and tasks are updated by outside method
calls, so the conditions in the await statements can become true.

special variables as values. Such variables are treated as a symbolic value for
the dynamic symbolic execution and are selected by a special naming scheme,
here denoted by the subscript S . This enables a flexible monitoring of symbolic
values of variables at any arbitrary level in the code.

The test case setup of Figure 5.3 uses two symbolic variables as parameters:
the maximum number of working threads maxWorkThreadsS and the initial
number of threads nthreadsS . DSE is used to find different concrete values
for those symbolic values to optimize the coverage of the model.

For a first run we randomly choose the initial values maxWorkThreadsS==0

and nthreadsS==1. Dynamic symbolic execution with these starting values
results in the path condition:

{"ifthenelse": (0 < nthreadsS) }
{"ifthenelse": not(1 < nthreadsS) }
{"disabled await": not( 1 < (maxWorkThreadsS + 1) ∧ true) }

The first two conditions are from the loop in Line 28 of Figure 3.6 and cor-
respond to one loop traversal in which a thread is created. The third condition
corresponds to Line 7 in Figure 5.2 and shows that the path was taken because
0 >= maxWorkThreadsS and the balancer is not allowed to create any worker
threads. Any other start values will lead to a different run.

Each of the conjuncts in the path condition depends only on the input
maxWorkThreadsS . For easier presentation, we will exploit this fact in the
following and compute new values only for this input and leave nthreadsS

constant. Note that this is generally not the case, conditions that rely on sev-
eral symbolic values require that the input space is partitioned considering all
variables.

For the second run we choose a value that is outside the previously computed
path condition and continue with maxWorkThreadsS==15, which records the
conditions:
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1 class Main(nthreadsS: Int, maxWorkThreadsS: Int)
2 begin
3 var threadpool: ThreadPool;
4 var executionCounter: Counter;
5

6 op init ==
7 threadpool := new ThreadPool(nthreadsS, maxWorkThreadsS);
8 executionCounter := new Counter;
9

10 op run ==
11 var task: Task;
12 var i: Int;
13 i := 0;
14 while (i < 10) do
15 task := new CounterTask(i, executionCounter);
16 threadpool.dispatchTask(task;);
17 i := i + 1;
18 end
19 threadpool.start(;)
20 // After running, the executionCounter should be 10
21 end

Figure 5.3: Setting up a model for DSE. Here, nthreadsS is the number of
initial threads to be created and maxthreadsS is the maximal size of the thread
pool.

{"enabled await": (1 < (maxWorkThreadsS + 1) ∧ true) }
{"ifthenelse": not(10 > maxWorkThreadsS ) }

for the await in line 7 and the if in line 10 of Figure 5.2. The number 10
in the second condition reflects that we create ten tasks at initialization in
Figure 5.3. The path condition reflects that all inputs with maxWorkThreadsS

>= 10 lead to the same path because there will not be more threads created
than the number of outstanding tasks. There is no condition for the if in
Line 13 because the amount to create does not exceed maxWorkThreadsS and
therefore is not dependent on it.

A third run, created with maxWorkThreadsS == 5, results in

{"disabled await": (1 < (maxWorkThreadsS + 1) ∧ true) }
{"ifthenelse": 10 > maxWorkThreadsS }
{"ifthenelse": maxWorkThreadsS > 0 }

In this test case the amount of threads to create exceeded the maximal allowed
number of threads and therefore was recomputed in Line 11. The new value
depends on maxWorkThreadsS , which causes the if statement in Line 13
to contribute to the path condition. The new path condition does not further
divide the input space, so the maximal possible coverage according to the chosen
coverage criterion is reached.

The nthreadsS variable controls the initial number of threads in the thread-
pool, and is the only variable that determines the number of traversals through
the loop in Line 28 of Figure 3.6. This is also reflected in the path condition that
we got from nthreadsS==1— it states that the same path through the loop will
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maxWorkThreadsS nThreadsS Condition
0 1 nThreadsS > 0 ∧ ¬(nThreadsS > 1)

∧¬(maxWorkThreadsS > 0)
15 1 maxWorkThreadsS > 0

∧¬(maxWorkThreadsS < 10)
5 1 maxWorkThreadsS > 0

∧maxWorkThreadsS < 10
5 0 ¬nThreadsS > 0

Table 5.1: The calculated test input parameters. Every value for nThreadsS
besides zero and one leads to another, different path condition, with the resulting
test cases differing in the number of initial threads only.

be taken if (0 < nthreadsS) and (1 ≥ nthreadsS), i.e., nthreadsS == 1.
Thus, using this condition for test case selection, we need a test case for each
value of nthreadsS , it is not possible to create bigger equivalence classes. A
closer look at the path condition shows us how to create a new run that never
traverses the loop: negating the first condition, (0 < nthreadsS). Thus, we get
a new test case with nthreadsS==0 (we keep the value maxWorkThreadsS==5

from the previous test case). The path condition only consists of:

{"ifthenelse" not(0 < nthreadsS) }

None of the conditions of Figure 5.2 is reached. This is due to the fact that in
this case no worker thread is created on initialization of the threadpool, thus,
the balancer cannot be executed.

Test cases with nthreadsS>1 lead to similar test cases as the initial one, with
the variation that a different number of threads are calculated to be created.
If too many threads are created in the beginning, the tasks are all completed
before the balancer is called. This is because the tasks in the model are strongly
abstracted versions of the real implementation and complete instantly. A delay
in the tasks or more tasks in the test setup can be used to solve that problem.

Table 5.1 summarizes the calculated test input values and their path condi-
tions. The computation of the values for maxWorkThreadsS can be automa-
tized by constraint- or SMT solvers. For the example above we used Yices [27],
which takes the negated path condition as input and computes a valuation for
the variables if it is satisfiable.

5.3 Test Case Execution

The previous section explained how to calculate test inputs for the implemen-
tation that cover different parts of the model. This section describes how to
reach test verdicts by generating test drivers to run the test cases and validate
the implementation’s behavior against the model. As explained in the following
section, our test assumption is that a sequence of events that is observed on the
implementation can be reproduced (replayed) by the model.
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5.3.1 Conformance Testing Using Recorded Event Traces

In the setting of asynchronous, concurrent systems, and when facing nondeter-
minism, testing for expected behavior by examining the outputs of the system
under test (SuT) is not always sufficient. Our approach utilizes the observed
structural similarity of a model written in Creol and its implementation to test
that the implementation has a similar control flow as the executable model. To
this end, both model and implementation are instrumented at points in the code
where meaningful events occur. At a high level, an implementation can be seen
as a mapping I from an initial configuration confI to an event trace eventsI – or
more generally, in the face of nondeterminism, to a set of event traces {eventsI}.
Similarly, the instrumented model M maps an initial configuration confM to a
set of traces {eventsM}.

Given a function ρ that converts (refines) configurations from the model to
the implementation view, and a function α to abstract event traces from imple-
mentation to the model, the relationship between model and implementation
can be seen in Diagram 5.1:

confM
M−→ {eventsM}

↓ ρ ↑ α
confI

I−→ {eventsI}
(5.1)

In the literature this is also called U-simulation [29]. The conformance rela-
tion of the approach can then be described as follows: given a test input (written
by a test engineer or calculated via DSE), all possible event traces resulting from
stimulating the implementation by that input must also be observable on the
model. Equation 5.2 shows the formulation of this trace inclusion relation:

α(I(ρ(confM ))) ⊆M(confM ) (5.2)

Section 5.3.3 shows an implementation of the α function as a generated Creol
test driver class that is run in parallel with the instrumented model to reach
a test verdict. Some of the recorded events correspond to user input to the
implementation; the generated test driver supplies the equivalent stimuli to the
model.

In contrast to the automated α mapping, currently the ρ mapping between
initial configurations is manual.

5.3.2 Obtaining Traces from the Implementation

In order to obtain traces of events, the implementation is instrumented via
code injection. The case study, where the system under test is implemented in
C, uses AspectC [8] for this purpose; similar code injection or aspect-oriented
programming solutions can be used for systems implemented in other languages.

Traces are recorded in a simple XML-based format, for ease of automatic
processing. Figure 5.4 shows parts of a trace from the ASK system. At the start,
a createThreads event occurs, followed by the events associated with threads
being started and waiting for a task to work on (starting and waiting,
respectively). Other events used in the case study are killThreads (recorded
when the balancing thread decides to remove some threads), enqueue (recorded
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<trace>
<createThreads thread="3079972528" time="501911878"

number="10"/>
<starting thread="3075214224" time="501911929" info=""/>
<waiting thread="3075214224" time="501911951" info=""/>
<starting thread="3066821520" time="501911980" info=""/>
<waiting thread="3066821520" time="501911999" info=""/>
...
<enqueue thread="3079972528" time="501912403"

info="Sabbey - balancer (Sabbey.c 353)"/>
...

</trace>

Figure 5.4: Parts of a recorded event trace from the ASK system. At the begin-
ning, 10 threads are created; each thread emits a starting and a waiting
event when created. Later, a task is added to the system.

Figure 5.5: Generating the tester from a recorded trace: separating Actions and
Events. “enqueue” is to be triggered by the tester, so is designated to be an
Action using this dialog.

when a new Task is created) and dequeue (recorded when a thread starts
working on a task).

5.3.3 Generating the Test Driver and Adapting the Model

As mentioned in Section 5.3.1, some of the events recorded in the implementa-
tion originate from the environment (user input, incoming network data, etc.).
We call these “external” events actions, and generate a test driver that stim-
ulates the model in the same way. In the example, enqueue is an event that
comes from outside – in the implementation, it is typically triggered by an in-
coming phone call or by a database-stored work queue; the test driver has to
trigger the same action when replaying the trace on the model.

Figure 5.5 shows the dialog that is used to differentiate actions and events
from the recorded trace for the purpose of generating the tester. Each action
is a stimulus that the tester gives to the model. The tool generates a Creol
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1 interface TestActions
2 begin
3 with Any op enqueue(in thread:Int, time:Int, info:String)
4 end
5

6 class TestAdapter implements TestActions
7 begin
8 op init ==
9 skip // TODO: implement test driver setup here

10 with Any op enqueue(in thread:Int, time:Int, info:String) ==
11 skip // TODO: implement enqueue action
12 end

Figure 5.6: Test actions interface and test adapter class template, created from
the implementation trace. The method bodies must be implemented by the test
engineer.

interface TestActions and a class TestAdapter which is ready to contain code
for initializing the model and for stimulating the model from the test case im-
plementation. Methods with empty bodies are generated for these purposes.

Figure 5.6 shows the interface TestActions and class TestAdapter that
are generated using the choices made in Figure 5.5. The one designated action
(“enqueue”) results in a method called enqueue, which will be called by the
generated tester code. In the TestAdapter class, the test engineer then supplies
implementations for model initialization (Figure 5.6, Line 9) and any actions
(line11).

In addition to implementing the methods in TestAdapter, the test engineer
has to add events to the model at the place equivalent to where they were added
in the implementation to record the trace. At each point where an event occurs,
the model communicates with the tester, indicating which event is about to
happen. The thread of execution which generates an event is blocked until the
tester accepts the event; other threads can continue executing. The tester, in
turn, waits for each event in sequence and then unblocks the model so that it
can continue. The model thus synchronizes with the sequence of events recorded
from the implementation, as implemented by the tester. The following code
snippet shows the createThreads event added to the createThreads method
from Figure 5.2:

if (amountToCreate > 0) then
tester.request("createThreads"); // EVENT
await threadpool.createThreads(amountToCreate);

end;

Figure 5.7 shows parts of the tester’s run method; the sequence of Creol
statements corresponds one-to-one to the sequence of events and actions in the
trace of Figure 5.4. The ok variable is set to false at the beginning and to
true at the end of the run method; this allows us to use model checking to
find a successful run. Each action in the trace is converted to a call to the
corresponding method in the TestAdapter class, as implemented by the user.
In Line 14 is a call to action. Each event is converted to a pair of statements, the
first statement (this.allow(...)) unblocks the model and allows the event
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1 op run ==
2 ok := false;
3 this.allow("createThreads";);
4 await get(sem, "createThreads") = 0;
5 this.allow("starting";);
6 await get(sem, "starting") = 0;
7 this.allow("waiting";);
8 await get(sem, "waiting") = 0;
9 this.allow("starting";);

10 await get(sem, "starting") = 0;
11 this.allow("waiting";);
12 await get(sem, "waiting") = 0;
13 ...
14 this.enqueue(3079972528, 501912403,
15 "Sabbey - balancer (Sabbey.c 353)";);
16 ...
17 ok := true

Figure 5.7: Replaying the trace of Figure 5.4: tester event and action behavior
in the model.

to occur, the second statement (await get(...)) blocks the tester until the
event actually occurs in the model.

5.3.4 Obtaining Test Verdicts

To actually run the test case, an instance of the generated TestCase class is
generated. Its init method, inherited from TestAdapter and implemented
by the user, sets up and starts the model, and its run method (Figure 5.7),
generated from the recorded implementation trace, steers the model to generate
the expected events in sequence.

A test results in a verdict of “pass” if the model can reproduce the trace
recorded from the implementation and if all assertions and invariants in the
model hold. If an assertion in the model is violated, the model itself has an
inconsistency and is in error (assuming the model is supposed to be valid for all
inputs); no verdict about the implementation can be reached. If the run method
of TestCase runs to completion, the test passes. If the tester deadlocks when
running in parallel with the model, the implementation potentially violates the
test assumption. But this result is still inconclusive, since a different scheduling
in the model (or executing a different branch of a nondeterministic choice state-
ment) would potentially allow the test to pass. Model checking the combination
of model and tester can give a definitive answer and let us reach a verdict of
“pass” or “fail”.

The first approach was to simply use Maude’s built-in model checker – this,
however, did not prove feasible for even moderately-sized models. The reason
is that the highly-parallel design of Creol (concurrent processes inside objects)
leads to lots of possible interleaving of statement execution that cannot make
a difference in the result but still will be checked by a naive model checker.
In practice, the ASK case study + test case could be model-checked within
reasonable time to a depth of 500 rewrite steps, which is not sufficient to get to
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the end of a test case.
However, in [3] a technique is shown how to reduce the model checking

complexity. The basic idea is that most interleavings of statement execution
cannot lead to a different end state, except for:

• Scheduling: a model checker must explore executing each enabled process
at each scheduling decision

• The non-deterministic statement []: a model checker must explore both
alternatives, should they be enabled

• The choose function, which non-deterministically chooses an arbitrary
element from a set: in this case, each choice must be considered.

We have implemented a simplified model checker that only considers these three
decision branches, and could execute test cases to reach a definitive Fail verdict.

5.4 Related Work
To our knowledge, the first to use symbolic execution on single runs were Boyer
et al. in 1975 [12] who developed the interactive tool SELECT that computes
input values for a run selected by the user. Some of the first automated tools for
testing were DART (Directed Automated Random Testing) from Godefroid et
al. [45], and the CUTE and jCUTE tools from Sen at al. [75]. Perhaps the most
prominent and most widely used tool in that area is PEX by Tillmann et al. [81],
which creates parameterized unit tests for single-threaded .NET programs. A
closer look at DSE for generating test input in a parallel setting can be found
in [48, 47], recent work on examining all relevant interleavings in [3].

The use of formal models for testing has a long history, some of the more
influential work are [43] and [83]. Various conformance relations have been
proposed. They place varying demands w.r.t. controllability and observability
placed on the SuT; for example ioco [86] by Tretmans et al. demands that
implementations be input-enabled, while Petrenko and Yevtushenko’s queued-
quiescence testing does away with that assumption. Our proposed conformance
relation is even more permissive, in that arbitrary input can become part of the
test case and conforming behavior is checked after the fact instead of in parallel
with the implementation.

Most tools for automated or semi-automated model-based software testing,
including TorX [10] and TGV [34], work by simulating a user of the system,
controlling input and checking output. A testing method similar to the one de-
scribed in this chapter, also relying on event traces, was developed by Bertolino
et al. [11], whereby at run-time traces are extracted and model-checked to verify
conformance to a stereotyped UML2 model. They emphasize black-box test-
ing of components and reconstruct cause-effect relationships between observed
events to construct message sequence charts. Consequently, they have to employ
more intrusive monitoring than our approach.

5.5 Conclusions
We have presented an approach to test case generation and conformance test-
ing which is integrated into the development cycle of distributed systems. We
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specify models in Creol, a concurrent object-oriented modeling language for ex-
ecutable designs of distributed systems. A single model serves to both optimize
test cases in terms of coverage, and as test oracle for test runs on the actual
implementation. Test input generation and model coverage are controlled via
dynamic symbolic execution extended to a parallel setting, which has been im-
plemented on top of the Maude execution platform for Creol. The conformance
relation is based on U-simulation. Only a lightweight level of instrumentation
of the implementation is needed, which is here achieved by means of aspect-
oriented programming. The problem of reaching conclusive verdicts in case of
non-determinism is handled by replaying the traces using Maude’s search facil-
ities. The techniques have been successfully applied in the context of the ASK
systems, one model serving as a reference for several versions of the system.



Chapter 6

Single-Object Testing with
Application-Specific
Schedulers

In this chapter, we propose a novel approach to testing executable models of con-
current objects under application-specific scheduling regimes. Method activa-
tions in concurrent objects are modeled as a composition of symbolic automata;
this composition expresses all possible interleavings of actions. Scheduler speci-
fications, also modeled as automata, are used to constrain the system execution.
Test purposes are expressed as assertions on selected states of the system, and
weakest precondition calculation is used to derive the test cases from these test
purposes. Our new testing technique is based on the assumption that we have
full control over the (application-specific) scheduler, which is the case in our ex-
ecutable models under test. Hence, the enforced scheduling policy becomes an
integral part of a test case. This tackles the problem of testing non-deterministic
behavior due to scheduling.

(The publication which forms the basis of this chapter, “Testing Concurrent
Objects with Application-Specific Schedulers” [72], was written with Bernhard
K. Aichernig, Frank de Boer, Andreas Griesmayer and Einar Broch Johnsen.
The formalization of weakest precondition calculation for test input generation
was done by Andreas Griesmayer.)

6.1 Introduction

In this chapter we address the problem of testing executable high-level behav-
ioral models of concurrent objects. In contrast to multi-threaded execution
models for object-oriented programs such as, e.g., the Java model for the par-
allel execution of threads, we consider a model of object-oriented computation
which describes a method call in terms of the generation of a corresponding
process in the callee. The concurrent execution of objects then naturally arises
from asynchronous method calls, which do not suspend while waiting for the re-
turn value from the method calls. Objects execute their internal (encapsulated)
processes in parallel. In this setting, the scheduling of the internal processes of

57
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an object directly affects its behavior (both its functional and non-functional
behavior). Therefore, a crucial aspect of the analysis of concurrent objects is
the analysis of the intra-object scheduling of processes. In contrast to schedul-
ing on the operating-system level, the object-level scheduling policies will be
fine-tuned according to the application requirements. We call this application-
specific scheduling. In this chapter we introduce a novel testing technique for
concurrent objects under application-specific scheduling regimes.

We develop a testing technique for concurrent objects in the context of
Creol [57, 26], a high-level modeling language which allows for the abstrac-
tion from implementation details related to deployment, distribution, and data
types. The semantics of this language is formalized in rewriting logic [65] and
executes on the Maude platform [22]. As such the Creol modeling language
also allows for the simulation, testing, and verification of properties of concur-
rent object models, based on execution on the Maude platform as described by
formal specifications. One of the main contributions of this chapter is a for-
mal testing technique for this language which integrates formal specifications of
application-specific scheduling regimes at an abstraction level which is at least
as high as that of the modeling language. The novelty of this approach is that it
takes the scheduling policy as an integral part of a test case in order to control
its execution.

In order to specify test cases in our formal testing technique, we first de-
velop suitable behavioral abstractions of the mechanisms for synchronizing the
processes within an object, as featured by the modeling language. The integra-
tion of these behavioral abstractions and the formal specification of a particular
scheduling regime provides the formal basis for the generation of test cases. For
the formal specification of test purposes we use assertions which express required
properties of the object state (or a suitable abstraction thereof). Test cases are
then generated by applying a weakest precondition calculus in order to find an
abstract behavior which satisfies the assertions [56]. The execution of a test
case on the Maude platform requires instrumenting the Maude interpreter of
Creol’s operational semantics such that it will enforce the embodied scheduling
policy on the processes of the particular concurrent object which is considered
by the test case. Particular test cases address the behavior of the concurrent
object model under a given, formally defined scheduling regime. If such a test
case fails to reach its goal (test purpose), this might indicate a problem with
the given scheduling policy. Hence, the relevance of this contribution for mod-
eling object-oriented systems in general is that it also allows the specification
and analysis of scheduling issues in an early stage of design, as an integral part
of the high-level models. However, in the following discussion we focus on the
important aspect of controlling test-case execution by enforcing a scheduling
regime.

Chapter overview. The rest of this chapter is organized as follows: Section 6.2
gives a high-level overview and scope for our approach to testing. Section 6.3
explains the modeling approach used, including the high-level specification of
scheduling policies. Section 6.4 discusses the details of test case generation and
execution. Finally, Section 6.5 discusses related work and Section 6.6 concludes
the chapter.
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6.2 Testing and Testing Methodology
The executable formal semantics of the Creol language allows the application
of different analysis techniques. In this section we briefly sketch our proposed
methodology for testing Creol applications on the Maude platform.

Our methodology focuses on testing run-time properties of Creol objects. By
the very nature of Creol objects, of particular interest is to test run-time prop-
erties of the object state under different possible interleavings of its processes.
In order to specify and execute such tests we need an appropriate abstraction
of processes which focuses on their interleavings as described by the control
structure of their release points. We do so by modeling the internal flow of
control within a process between its release points into atomic blocks consisting
of sequences of assignments. The release points of a process themselves then
can be represented by the states of a finite automaton, also called a method
automaton (because processes are generated by method calls). The transitions
of a method automaton involve the assignments and a guard on the object state
which specifies the enabling condition of the corresponding atomic block. The
test input is a finite set of internal processes in an object, reflecting the message
queue of incoming method calls for the object. The possible interleavings of this
initially given finite set of processes is thus abstracted into the interleavings of
their automata representations.

Scheduler automata further constrain the possible interleavings by means of
abstract representations of the enabling conditions of the method automata.
The automatically generated scheduled system automaton representing the pos-
sible interleavings of the method automata and the scheduler automaton is in-
strumented with test purposes, expressed as Boolean conditions over the method
automata’s state variables, that are attached to states.1

To compute test cases for a test purpose we search for paths that reach and
fulfill the test purpose. We generate a set of such test cases by computing a test
“harness” describing all paths in the model that will reach the test purpose. To
this end, we use weakest precondition computation to propagate the conditions
to the initial state of the system. The condition at the initial state describes
the values that state variables can take for executing that test case, reflecting
the actual parameters to the method calls in the message queue. Each possible
path that reaches the condition(s) is its own test case.

The execution of a test on the Maude platform then checks whether the
particular interleaving of the method automata described by the path in the
system automaton can be realized by the Maude implementation of the Creol
object such that it satisfies the conditions.

6.2.1 Example.
We consider a version of barrier synchronization given by the class Batch_queue
in Figure 6.1. In a Batch_queue object, clients are processed in batches (of size
batch_size, the parameter x to the constructor sets the size of the batches).
A client which registers must wait until enough clients have registered before
getting assigned a slot in the queue. For simplicity, we represent the queue as a
local variable display, which is a sequence of clients (semicolon is the append

1Computing test cases that reach a certain condition in the program can be done with
conditions that are simply true.
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1 Interface Client
2 begin
3 end
4

5 class Batch_queue(batch_size: Nat)
6 begin
7 var wc: Nat // number of waiting clients
8 var comein: Nat // number of clients to be processed
9 var display: List[Client] // queue of registered clients

10

11 op init ==
12 wc := 0;
13 comein := 0
14

15 with Client
16 op register ==
17 wc := wc + 1;
18 if wc >= batch_size then
19 comein := batch_size
20 end;
21 await comein > 0;
22 comein := comein - 1;
23 wc := wc - 1;
24 display := display |- caller
25 end

Figure 6.1: Motivating example: The Batch_queue class.

operator on sequences). Before any call to register will return, the object will
contain batch_size processes.When enough calls are waiting to be registered,
the next batch of processes may proceed by assigning the value of batch_size
to display. It is easy to see that the order in which callers are added to the
display sequence depends on the internal scheduling of processes in the object.

6.3 Combining Method Automata and Schedul-
ing Policies

In this section, we present the symbolic transition system construction used to
specify the system’s behavior. We adapt the symbolic transition systems of Rusu
et al. [71], by using shared variables for communication instead of input/output
actions.

Syntax

A Symbolic Transition System is a tuple 〈Q, q0, T, V 〉, where:

• Q is a finite set of locations qi, i ≥ 0

• q0 ∈ Q is the initial location

• V is a set of variables
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wc := wc + 1
comein := 
  (wc >= batch) ?
  batch : comein

comein := comein - 1
wc := wc - 1
display := (display ; caller)

a b c
[ comein > 0 ]

Figure 6.2: Method Automaton of the register() method.

• T is a set of transitions of the form 〈q, g, S, q′〉, where

– q ∈ Q is the source location

– g is a Boolean guard expression over V

– S is a sequence of assignment statements changing the value of some
v ∈ V

– q′ ∈ Q is the target location

Semantics

A state is a pair 〈q, v〉 consisting of a location q and a valuation v for the
variables. For the initial state, q = q0. Let eval be the function mapping an
expression and a valuation to a result2. Then, for a state 〈q, v〉, executing a
transition 〈q, g, S, q′〉 results in a new state 〈q′, v′〉 where the new valuation v′
is the result of evaluating all assignment statements in S, using eval with the
former valuation v to calculate new values for the affected variables, provided
that eval(g, v) = true.

6.3.1 Modeling Method Invocations: Method Automata

Invocations of methods on Creol objects are modeled by Method Automata, a
slight extension of the symbolic transition systems described above.

A method automaton is a tuple 〈m,Qm, q
m
0 , Tm, Vm,Valm〉 so that m is a

unique identifier, Q is a set of locations qmi etc. Other than the systematic
renaming of locations, the semantics is the same as that of symbolic transition
systems. Additionally, Valm is a mapping v ∈ Vm 7→ x giving initial values x to
all variables v. (Conceptually, Valm models parameters passed to the method
as well as initial values of local variables.)

A Creol method without release points is modeled as a method automa-
ton with only beginning and end state. Each release point is modeled as an
intermediate state where execution can switch to another running method.

By convention, the names of the local variables in a method automaton are
prefixed with the unique identifier m of the automaton, so that the names are
unique in the presence of multiple instances of the automaton. This approach
is sufficient since each invocation of a Creol method is modeled by its own
automaton. Names of instance variables, such as wc and display in Fig. 6.2
are not prefixed in this way, since every method automaton has access to the
same instance variables.

2In this chapter, we use expressions over the integer and Boolean domains with the usual
operations and semantics.
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6.3.2 Modeling Parallelism: The System Automaton

A configuration of multiple method invocations running in parallel is modeled
as a symbolic transition system as well. We shall refer to such an automaton as
a system automaton.

Definition 1 Let Ai = 〈mi, Qmi
, qmi

0 , Tmi
, Vmi

,Valmi
〉 be method automata

(for 1 ≤ i ≤ n). Define the composition of A1, . . . , An as a system automaton
A = 〈Q, q0, T, V,Val〉 such that

Q = {〈mi, q
m1 , . . . , qmn〉 | ∀0 < j ≤ n : qmj ∈ Qmj

}
qo = 〈m1, q

m1
0 , . . . , qmn

0 〉

T =

〈q, g, S, q′〉
∣∣∣∣∣∣
q = 〈ml, q

m1 , . . . , qmi , . . . , qmn〉 ∧
q′ = 〈mi, q

′m1 , . . . , q′mi , . . . , q′mn〉 ∧
〈qmi , g, S, q′mi〉 ∈ Tmi

∧ ∀j 6= i : q′mj = qmj


V =

⋃
0<i≤n Vmi

Val =
⋃

0<i≤n Valmi

The semantics of executing a transition of the system automaton is that of
executing the transition of one of the participating method automata (qmi ;

q′mi), leaving the state of all other method automata invariant (q′mj = qmj ).
Further note that the first element of the system automaton’s state designates
the method automaton which did the previous transition (for the initial state, it
is arbitrarily set tom1). Because of this, the transitions of the system automaton
can be attributed back to a particular method automaton; this will become
important in scheduling.

6.3.3 Modeling Schedulers: The Scheduler Automata

The system automaton as defined in Section 6.3.2 does not place restrictions on
which method automaton executes at each step beyond the guards of the method
automata transition themselves. We use a scheduler automaton to express ad-
ditional restrictions on method automata execution in the system automaton.

A scheduler automaton is modeled as a labeled transition system. It is used
to strengthen the guards on the transitions of a system automaton composed of
method automata m1 . . .mn, and hence, restricts which method(s) are allowed
to run.

Definition 2 Let A be a system automaton for methods m1, . . . ,mn. Define a
scheduler for A as an automaton S = 〈Q, q0, T 〉 such that

Q = {mi | 1 ≤ i ≤ n}
q0 = m1

T = {〈q, g, q′〉 | q ∈ Q ∧ q′ ∈ Q ∧ g ∈ G(A)}

The transitions on a scheduler automaton have guards g ∈ G(A) in the
form of readiness predicates that are defined in the following way: Given a
system automaton A for methods m1, . . . ,mn, G(A) is defined inductively by
ready(mi) ∈ G(A) and ¬ready(mi) ∈ G(A) for 1 ≤ i ≤ n, and g1 ∧ g2 ∈ G(A)
and g1 ∨ g2 ∈ G(A) if g1, g2 ∈ G(A). The expression ready(mi) denotes a
predicate which is true whenever the method automaton mi has at least one
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m1 m2

ready(m1)

ready(m1)

¬ready(m1)

¬ready(m1)

m1 m2

¬ready(m2)

ready(m1)

ready(m2)

¬ready(m1)

Figure 6.3: Example scheduler automata: priority (left), round-robin (right).

enabled transition (i.e., whose guard evaluates to true) in the current state of
A.

The scheduler automaton has n states, one for each method automaton in
the system automaton. Each scheduler state is labeled with one method au-
tomaton’s unique identifier mi. The label on the current state of the scheduler
automaton names the method automaton that executed the most recent transi-
tion of the system automaton. By definition, m1 is the scheduler automaton’s
initial state.

Figure 6.3 shows two scheduling automata, both for a system automaton
with two method automata m1 and m2: a simple priority scheduler that always
gives preference to m1 over m2, and a round-robin scheduler.

6.3.4 Integration of the Scheduler and the System Au-
tomaton

The scheduling of tasks in a system automaton according to the policy expressed
by a specific scheduler automaton is done in the following way:

For each state q = 〈mk, . . . 〉 of the system automaton, find the corresponding
state mk of the scheduler automaton. For each transition t = 〈q, g, S, q1〉 in the
system automaton, take the scheduler automaton’s transition that enables t,
i.e. the transition that leads to the scheduler state mi if q1 = 〈mi, . . . 〉. If
there is no such scheduler transition, remove the transition from the system
automaton (since the scheduler does not allow the method automaton mi to
run after mk). Otherwise, strengthen the guard on the transition t by the
guard expression on the scheduler transition from mk and mi, replacing all sub-
expressions ready(mx) with the disjunction of the guards on all transitions of
method automaton mx in its current state.

We refer to a system automaton which is scheduled by a scheduler automaton
as a scheduled system automaton. Formally, we define the expansion of readiness
predicates for specific states of a system automaton and a scheduled system
automaton as follows.

Definition 3 Let A = 〈Q, q0, T, V,Val〉 be a system automaton for the methods
m1, . . . ,mn. For a state q ∈ Q and a scheduler guard g ∈ G(A), scheduler guard
expansion is a function [[g]]q, inductively defined as follows:

[[ready(mi)]]q =
∨
{g | 〈q, g, S, q1〉 ∈ T ∧ q1 = 〈mi, q

m1 , . . . , qmn〉}
[[¬ready(mi)]]q = ¬[[ready(mi)]]q
[[g1 ∨ g2]]q = [[g1]]q ∨ [[g2]]q
[[g1 ∧ g2]]q = [[g1]]q ∧ [[g2]]q



64 SINGLE-OBJECT TESTING

[ x = 5 ]

[ x = 5 ]

[ ¬(x = 5) ]
x := 5

[ ¬(x = 5) ]
x := 5

[ ¬(x = 5) ]
x := 5

[ ¬(x = 5) ]
x := 5

[ x = 5 ]

[ x = 5 ]

A

B

[ x = 5 ]

c

d

x := 5

1,A,c 1,A,d

2,A,c 2,A,d

1,B,c 1,B,d

2,B,c 2,B,d

Figure 6.4: Two simple method automata and a system automaton consisting of
the two automata running in parallel under the priority scheduler of Figure 6.3
(guards in bold added by the scheduler).

In the first part of Definition 3, we use the disjunction on a set to denote
the disjunction of all the elements in the set.

Definition 4 Let A = 〈QA, q
A
0 , TA, VAValA〉 be a system automaton for meth-

ods m1, . . . ,mn and let S = 〈QS , q
S
0 , TS〉 be a scheduler. Define a scheduled

system as an automaton SA = 〈Q, q0, T, V,Val〉 such that

Q = QA

q0 = qA0

T =

{
〈q, g, S, q′〉

∣∣∣∣ q = 〈ml, q
m1 , . . . , qmn〉 ∧ q′ = 〈mi, q

′m1 , . . . , q′mn〉
∧〈q, g′, S, q′〉 ∈ TA ∧ 〈ml, g

′′,mi〉 ∈ TS ∧ g = (g′ ∧ [[g′′]]q)

}
V = VA
Val = ValA

For example, if the transition guard on the scheduler is [¬ready(m)] and
automaton m in its current state has two transitions with the guards [x <= 5]
and [x > 5], then relevant guards on the transitions in the system automaton
will be strengthened with ¬(x <= 5 ∨ x > 5). Transitions whose guards reduce
to false (as in this example) can be eliminated from the system automaton.

6.4 Test Case Generation with WP and Sched-
ulers

We use a scheduled system automaton SA (see Definition 4) to test the Creol
object it represents. SA contains all runs an object can perform for a given
initial message queue and scheduler. In the following, we give an approach to
computing test cases of interest from this automaton.

Specifically, we define how to compute the weakest precondition (WP) for
a scheduled system automaton and use this technique to generate test cases
according to a test purpose.

The intention of the test cases to generate is captured by test purposes,
which are abstract specifications of actual test cases. In conformance testing,
the notion of a test purpose has been standardized [55]:
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reg1

[ false ]
reg2

[ comein>0 ]
reg2

[ comein>0 ]
reg2

[ ¬ comein>0 ]
reg1

reg1

[ comein>0 ]
reg2

reg1

[ comein > 0 ]
reg2 [ comein > 0 ]

reg2

reg1

[ false ]
reg1

reg2
reg2

[ comein>0 ∧ ¬ comein>0 ]
reg2

a,a m2,a,b m2,a,c

m1,b,a

m1,c,a

m2,b,b m1,b,b m2,b,c m1,b,c

m2,c,b m1,c,b m2,c,c m1,c,c

{ display = (caller1; caller2) }{ display = (caller1) } { display = (caller1) }{ display = (caller1) }

{ display = () } { display = () }

{ display = () }

reg1 ::= wc := wc + 1
             comein := (wc >= 2) ? 2 : comein

reg2 ::= comein := comein - 1
             wc := wc - 1
             display := (display ; caller)

Figure 6.5: A scheduled system automaton with two method automata for the
register method, under priority scheduling and with batch size 2. Guard
terms in bold are added by the scheduler, states that are unreachable under
priority scheduling are dashed.

Definition 5 (Test purpose, general) A description of a precise goal of the
test case, in terms of exercising a particular execution path or verifying the
compliance with a specific requirement.

In our setting, these requirements are expressed by assert statements in a
system automaton. The condition p of an assert has to be fulfilled in all possible
runs leading to the assert. (For simplicity, we will use p to refer to the assertion
and its condition synonymously.) To compute test cases for a test purpose, we
search for paths that reach and comply with all its assert statements. Intuitively,
this corresponds to computing the weakest precondition for p. In the following
we will, without loss of generality, concentrate on test purposes that can be
specified with a single assertion. Conditions for the general case are computed
by combining the results from the single conditions.

Figure 6.5 shows the graph of a system automaton that models two invo-
cations of the register method and batch_size size 2, scheduled with the
priority scheduler from Figure 6.3. This scheduler removes the edge from the
initial state (a,a) to (m2,a,b) because both processes are enabled (with m1 hav-
ing priority). Consequently, a portion of the state space of the system automaton
becomes unreachable in the scheduled system automaton and can be removed.

Figure 6.5 also shows the additional conditions from scheduling on the edges.
E.g., in state (m1,b,a) process m2 is only enabled if comein is not > 0. The test
purpose is to compute test cases to reach state (m2,c,c) with display = (caller1 ;
caller2 ). We constrain ourselves to only illustrate the WP computation for the
display variable, whose computed value is depicted in curly brackets. Computing
the WP to the initial state results in an empty display variable, for which all
paths reach the desired state3. The actual implementation must not block for
this input and must satisfy the assertion.

3The representation is strongly simplified, exact computation will give more conditions on
the states and unveils that only the path using the edge (m1,b,a)(m2,b,b) is feasible.
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To test the intermediate and final assertions on the Creol model, we create
a test harness H. The harness is constructed from the system automaton A
as H = 〈QA, q

A
0 , TA, VA, c(QA)〉, with QA, qA0 , TA and VA reflecting the system

automaton, and c(QA) a condition defined for each location of A, representing
those valuations in a location that only occur in runs that eventually will reach
and comply with p. Thus, for every valuation in c(QA) two properties hold:
(1) there is a transition such that the destination is again in c(QA) and (for
determinism) (2) there is no transition such that the destination is not in c(QA).
Using standard weakest-precondition predicate transformers wp for our simple
statements S (assignments and sequential composition only), we have:

cp(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S, c(q′)) ∧ g (6.1)

c¬p(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S,¬c(q′)) ∧ g (6.2)

c(q) = cp(q) ∧ ¬c¬p(q) (6.3)

We compute c(QA) iteratively by setting c0(q) = p for q = qp and c0(q) =
false for all other locations. The first iteration will result in all states that reach
p in one step, then those with distance two and so forth. The iteration steps
are sound: each iteration results in valuations that give valid test cases. This
is an important observation because although this process always results in a
fixed point for finite state systems (cf. CTL model checking of AF p [21]), the
state space for STS is infinite and the iteration might not terminate. Soundness
allows us to stop computation after a certain bound or amount of time even if
no fixed point is reached yet. Any initial state in c(q0) gives valid test cases
even if no fixed point can be computed.

The test case for the scenario of Figure 6.5 consists of the following:

• A list of method invocations (〈m1,register()〉, 〈m2,register()〉)

• The priority scheduler from Figure 6.3

• The initial value () for the instance variable display

• The test harness H, giving verdicts at each scheduling decision point

6.4.1 Test Case Execution
The test driver in Creol uses the scheduler to guide the Creol model and the test
harness H to arrive at test verdicts. The initial values and method parameters
are chosen such that condition c(q0) is fulfilled, at each release point of the
Creol object, the conditions on the harness are checked. At each release point,
the scheduler chooses among the enabled processes to continue the execution.
There are two different ways of arriving at a test verdict of Fail :

• If the Creol object does not fulfill the current condition of the harness, the
implementation of the last executed basic block violates the specification
by the method automaton.

• If the condition is fulfilled but no process is enabled (the test process
deadlocks), the implementation fails to handle all the valuations that are
required by the model.
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If the test harness arrives at the terminating state and the condition is fulfilled,
a test verdict of Success is reached.

Implementation of the test driver can be done with techniques adapted from
the Creol-specific model checker already mentioned in Section 4.5.5. In both
cases, what is needed is the ability to control an object’s scheduling regime, im-
plementing a scheduler whose behavior is calculated in advance. Controllability
is achieved by a trace data structure, which contains a sequence of scheduling
decisions, with one entry per scheduling point in the model. A special Creol
interpreter was implemented that implements this approach.

Strengthening the Guards of the Harness.

The computation as shown above uses the weakest precondition to reach the test
purpose p, or, in other words, the set of initial states that reach the test purpose
in every legal run. Input values that might miss p due to non-determinism are
ignored. To achieve optimal test coverage, however, it is desirable to search for
all input values that can fulfill the test purpose and add enough information
to H for the test driver to guide the run to the desired state. In other words,
instead of computing those initial states that will reach p in every run, we want
to compute states for which a run exists.

The annotated automaton provides us with a simple mechanism to achieve
this goal. For the necessary adjustments we have a second look at the computa-
tion of c(QA). Formula (6.1) represents the states that can reach p, while those
states that can avoid p are removed using Formula (6.2). If we don’t consider
c¬p in Formula (6.3), we compute all valuations for which a run to p exists, but
the test driver has to perform the run on a trial an error basis: executing a
statement and checking if the result still can reach p, backtracking otherwise.
To avoid this overhead, we add new guards g′ to H to restrict the runs to those
valuations that always can reach p:

g′(< q, g, S, q′ >) = g ∧ wp(S, c(q′))

Using g′ for the computation of c(QA) results in all states for which a run to p
exists, which easily can be seen by inserting g with g ∧wp(S, c(q′)) in formulae
(6.1) and (6.2):

c′p(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S, c(q′)) ∧ g ∧ wp (S, c(q′)) = cp(q)

c′¬p(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S,¬c(q′)) ∧ g ∧ wp (S, c(q′)) = false

c′(q) = c′p(q)

Using g′ as guards for the test driver excludes all transitions to states that
cannot reach p. This allows to avoid unnecessary backtracking while examining
all paths that can be extended to reach the test purpose, resulting in a larger
variety of possible runs and better coverage. The approach does not come with-
out obstacles though, g′ only points to states that can reach p — the test driver
needs to be able to detect loops to make sure to finally reach it. Furthermore,
a path to p might not be available in the implementation. If the only available
path avoids p, the test driver has to backtrack to find a path to p.
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6.5 Related Work

With the growing dependency on distributed systems and the arrival of multi-
core computers, concurrent object-oriented programs form a research topic of
increasing importance. Automata-based approaches have previously been used
to model concurrent object-oriented systems; for example, Kramer and Magee’s
FSP [62] use automata to represent both threads and objects, abstracting from
specific synchronization mechanisms. However, they do not address the issue
of representing specific scheduling policies that we consider in this chapter.
Schönborn and Kyas [74] use Streett Automata to model fair scheduling policies
of external events, with controlled scheduler suspension for configurations that
deadlock the scheduler.

A lot of work is done in the area of schedulability which mainly deals with
the question if a scheduler exists which is able to meet certain timing con-
straints (e.g., [66, 36]), but does not look into the functional changes imposed
by different application-level scheduling policies. Established methods for test-
ing object-oriented programs like unit-testing, on the other hand, deal with the
functionality on a fine grained level, but fail to check for the effects of different
schedulers (see e.g., [89]). Instead, the main challenge for testing concurrent
programs is to show that the properties of interest hold independent of the used
scheduler. In contrast, the approach we have taken in this chapter is to test
properties of a program under a specific scheduling regime.

Stone [77] was the first proposing the manipulation of the schedules to iso-
late failure causes in concurrent programs. Her idea was to reduce the non-
determinism due to scheduling by inserting additional break points at which a
process waits for an event of another process. In Creol, this could be achieved
by inserting additional await-statements. However, dealing with a modeling
language, we prefer the more explicit restriction of non-determinism by mod-
eling the scheduling policy directly. More recently, Edelstein et al. [33] ma-
nipulated the scheduler in order to gain higher test coverage of concurrent Java
programs. They randomly seeded sleep, yield or priority statements at selected
points in order to alter the scheduling during testing. This approach is based
on the observation that a given scheduler behaves largely deterministic under
constant operating conditions; by running existing tests under other scheduling
strategies, additional timing-related errors are uncovered. Choi and Zeller [19]
change schedules of a program to show the cause of a problem for a failing test
case. They use DEJAVU, a capture/replay tool that records the thread sched-
ule and allows the replay of a concurrent Java program in a deterministic way.
Delta-debugging is used to systematically narrow down the difference between
a passing and failing thread schedule. This approach helps in order to check if
programs work under different schedules, but unlike the method shown in this
chapter do not help in the actual generation of the test case.

Jasper et al. [56] use weakest precondition computation to generate test cases
especially tailored for a complex coverage criterion in single threaded ADA pro-
grams. Rather than augmenting the model, they generate axioms describing the
program and use a theorem prover to compute its feasibility. More recently, [88]
use weakest precondition to identify cause-effect chains in failing test cases to
localize statements responsible for the error (fault localization). WP computa-
tion is furthermore used in several abstraction algorithms to identify relevant
predicates for removing infeasible paths in abstract models. In [82], Tillmann
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and Schulte introduce “parametrized unit tests”, which serve as specifications for
object oriented programs. They use symbolic execution to generate the input
values for the actual test cases. However, none of these approaches use WP
computation for test case generation in concurrent systems.

6.6 Conclusion and Future Work
This chapter presents an approach to generating test cases for concurrent,
object-oriented programs with application-specific schedulers. The scheduling
policy becomes part of the test case in order to control its execution. We there-
fore introduce an automaton approach for specifying the behavior of both the
system and the scheduler, as well as its composition and extension to a harness
for a test driver. Enforcing a scheduling regime limits the non-deterministic
interleavings of behavior, a well-known problem in testing and debugging of
concurrent systems. A further important aspect is that the separation of con-
cerns between functionality and scheduling allows scheduling issues, which are
crucial in concurrent programs, to be specified and tested at the abstraction
level of the executable modeling language.

In this chapter, we expect the method automata and scheduler to be given
as specifications, and check for compliance with a given Creol implementation.
A natural extension for future work is to automatically construct the method
automata from the Creol code and check against different schedulers for com-
pliance. The test driver will be implemented within the Maude interpreter for
Creol, which allows the test driver to influence the scheduling.

Further future work comprises the extension to schedulers with internal state
to express more involved scheduling strategies and to extend our approach with
further features of object-oriented languages.
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Chapter 7

Resource Modeling for Timed
Creol Models

This chapter describes the semantics of a timed, resource-constrained extension
of the Creol modeling language. Creol is an object-oriented modeling language
with a design that is suited for modeling distributed systems. However, the
computation model of Creol assumes infinite memory and infinite parallelism
within an object. This chapter describes a way to extend Creol with a notion of
resource constraints and a way to quantitatively assess the effects of introducing
resource constraints on a given model. We discuss possible semantics of message
delivery under resource constraints, their implementation and their impact on
the model. The method is illustrated with a case study modeling a biomedical
sensor network.

(The publication which forms the basis of this chapter, “Resource Modeling
for Timed Creol Models” [73], was written with Bernhard K. Aichernig, Andreas
Griesmayer and Marcel Kyas)

7.1 Introduction

Modeling is an important activity in the design phase of a software project. A
formal model can be used to answer questions about a system’s functionality,
behavior and properties during the specification and implementation phase. By
nature, a model focuses on specific aspects of the system under development.
For reasons of simplicity and clarity, other aspects of the eventual implemen-
tation are abstracted away in the model, e.g. power, bandwidth and memory
requirements of components of the system. However, these aspects can be of
high importance, for example in embedded systems – models that include these
aspects are needed for validating the design against the constraints of the de-
ployment platform.

This chapter describes an enhancement of the modeling language Creol [57]
supporting the modeling of resource constraints, specifically restrictions on par-
allelism, call stack depth, memory consumption, bandwidth and power con-
sumption. Creol is an object-oriented modeling language with asynchronous
communication primitives. As described in Chapter 3, a model in Creol consists
of classes and objects; objects can have active and reactive behavior. Conceptu-
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Resource type Class attribute Method attribute Resources freed
Parallelism Max. processes — at process end
Recursion depth Maximal depth — at process end
Memory Total memory Memory needed at process end
Bandwidth Avail. bandwidth Invocation cost at clock tick
Power Available power Execution cost never

Table 7.1: Types of Resource modeling feasible with the approach described in
this chapter. Resources are claimed at process creation time and relinquished
depending on the semantics of the modelled resource.

ally, each Creol object has its own processor and handles concurrency indepen-
dently of other objects. Objects communicate solely via messages and control
flow never leaves an object; instead, when a process issues a method call, the
receiving object creates a new process that the calling process can synchronize
with. These features of Creol make it very suitable for modeling systems of
independent, cooperating agents, such as wireless sensor networks.

The idea of the approach is to enhance an existing functional model with in-
formation about planned resource usage. This is done by assigning each method
a (possibly zero) amount of needed resources, and each class an amount of avail-
able resources. This means that resource allocation occurs conceptually at pro-
cess creation time. The time for relinquishing a resource depends on what the
resource models; e.g. in the case of power consumption, the claimed resources
are never freed. This abstract concept of resources can be used, among other
things, to restrict the amount of parallelism within an object (by giving each
method a cost of 1 and the class a number of resources corresponding to the
number of allowed concurrent threads), or to model a finite amount of memory
or processing power to be claimed by running threads. Table 7.1 shows types
of resource that can be modeled with this approach, what the total resources
(specified in the class) and the needed resources (specified in the method) mean,
and when a resource is freed.

Our definition of “resource” is quite abstract and serves to qualitatively model
behavior under resource constraints, for example rendering an object inert after
a number of method calls as a model of battery exhaustion. Hence, resource
modeling as described herein is not meant to obtain quantitative simulation
results of resource depletion.

Various behaviors can be implemented when encountering lack of resources:
delaying message delivery, blocking the sender or dropping the message. We give
examples for these behaviors, show how to implement them in our rewrite rule-
based system and discuss advantages and disadvantages as pertains to modeling.

The rest of this chapter is structured as follows: Section 7.2 describes timed
Creol, an extension of the Creol language described in Chapter 3 for modeling
timed behavior. Section 7.3 explains how the Creol semantics and interpreter
were altered to allow modeling of resource constraints. Section 7.4 presents some
results and experiences gained from introducing resource constraints in the BSN
case study of Section 3.3.2. Section 7.5 shows how to test against models with
resource constraints, and Section 7.6 gives an overview of related work in this
area. Section 7.7 concludes the chapter.
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7.2 Timed Creol
The base Creol language as described in Chapter 3 does not model time or
progress, but there are two extensions implementing timed models of differing
expressiveness, described in Kyas and Johnsen [59] and Johnsen et al. [58],
respectively.

Both extensions are common and simple: the value of a global clock is acces-
sible to all objects through the expression now, which behaves like a read-only
global variable of type Time. The two approaches differ in the degree of free-
dom that the model can exhibit in timed constraints. In both approaches,
values of type Time can be stored in variables and compared with other Time
values. There is no absolute notion of time; progress can be expressed by adding
Duration values to observations to obtain other values of type Time. An ad-
vantage of this design is that specifications in timed Creol are shift invariant :
properties involving time hold regardless of the point in (absolute) time at which
the evaluation happens. (This time extension is inspired by the time model of
the Ada programming language [80, Appendix D.8].)

In contrast to the Ada programming language, Creol focuses on modeling
and not on implementations. As such, a Creol model is a logical description
and certain aspects like preemption due to interrupts are ignored. Interrupt
handlers may be modeled by methods of singleton objects, which are invoked
as a result of an interrupt signal. Thus, the method described in this chapter
allows to model the effect of interrupts without the need of taking the actual
machine into account.

In both mentioned approaches to modeling time in Creol, expressing a time
invariant looks as follows:

1 var t: Time := now;
2 SL
3 await now >= t + 10;

The await statement in Line 3 guarantees that after evaluating the statement
list SL, at least 10 units of time pass before the process can continue. (If
the effects of SL should be visible only after 10 time units, then the await

statement should be placed before SL.) Note that the model does not include
explicit advancement of time, such as with a tick rule; instead, the time is
advanced by the interpreter once all object activity has finished in the current
tick.

The semantics of Creol allows a process to be suspended indefinitely in-
side an await statement. To ensure forward progress of the system, Kyas and
Johnsen [59] introduce the posit statement:

1 var t: Time := now;
2 SL
3 posit now <= t + 15;

Here, Line 3 guarantees that evaluating SL takes at most 15 time units. A
posit statement expresses a global property of the system and may result in a
system that has no behavior at all (i.e. a system that has no traces); all posit
statements are proof obligations on the statement level. For details and exact
semantics of this version of timed Creol, we once again refer to [59].

The alternative approach of Johnsen et al. [58] implements a different, sim-
pler version of timed Creol, with an operational instead of denotational seman-
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tics. The posit statement is elided, hence only minimum execution durations
can be modeled via await. The advantage of this simpler approach is that both
implementation and use of the timed constructs is easier; the obvious disadvan-
tage is that progress is not guaranteed.

The results in this chapter were obtained with a timed Creol interpreter
written by the author that implements the simpler approach, with as-early-as-
possible, run-to-completion semantics. While an await statement containing a
timed expression could in principle wait forever, the interpreter as implemented
guarantees that all enabled processes execute before the global clock is advanced.

7.3 Implementing Resource Constraints

The execution semantics of Creol assumes that an object can execute an arbi-
trary number of processes. Especially for small embedded systems, this assump-
tion does not hold. It is therefore desirable to be able to model the operating
constraints of real systems in Creol. This section presents the implementation
approach that was taken to adapt the semantics and execution engine of Creol
to deal with resource constraints.

Creol models can be animated on the Maude rewrite engine. In Maude, the
execution state of the model is represented as a state containing terms represent-
ing Creol objects, classes and pending method invocations. The representation
of an object O of class C is

< O : C | Att: AL, Pr: { BL | SL}, PrQ: PL >

O, C, AL, BL, SL, and PL are typed variables, where object O is an instance of
class C with instance variables AL and an active process that consists of local
variable bindings BL and a list of statements SL. The list of pending processes
is represented by PL. Classes and method invocations have a similar Maude
notation.

To implement resource-constrained objects, the notation for classes was up-
dated to contain an attribute RLimit:

< C : Class | Inh: I, Param: P, Att: S, Mtds: M, RLimit: N >

The rest of the attributes are standard and are used for inheritance (Inh),
constructor parameters (Param), Attributes (Att) and methods (Mtds). The
new RLimit attribute tells how much memory / processing capacity objects of
this class can supply to their processes.

Similarly, an additional method definition was introduced that specifies, in
addition to the method name M, parameters P, local variables A and code C, how
much resources a method needs when called:

< M : Method | Param: P, Att: A, Code: C, RNeed: N >

With limit(O) the resource limit of an object O (as determined by its class),
P (O) the object’s set of active processes, and cost(P ) the cost of a process (or



7.3. IMPLEMENTING RESOURCE CONSTRAINTS 75

O2
PrQ:

O1
PrQ:

invoc(O2, m)

step 1

step 2

Figure 7.1: Method calls in Creol. For restricted objects, the caller can be
blocked (delay in step 1), the call can be delayed infinitely “in the cloud” (delay
in step 2) or the call can be dropped (only step 1 happens and the invoc term
is discarded).

zero if the process has no resource cost), the following invariant needs to hold
for all constrained objects: ∑

p∈P (O)

cost(p) ≤ limit(O)

The dynamic semantics of Creol is given as a set of Maude rewrite rules operat-
ing on parts of this state. When a rule of the form <C1> => <C2> is executed,
the part of the state matching <C1> is replaced by <C2>. For example, the
rewrite rule for the skip statement of Creol looks as follows:

< O : C | Att: AL, Pr: { BL | skip ; SL}, PrQ: PL >
=>

< O : C | Att: AL, Pr: { BL | SL}, PrQ: PL >

The left-hand side of this rule matches any object with an active process having
skip as its next statement. Such an object is replaced with an object identical
in every way except that the skip statement is removed and the remaining
statement list SL left for execution. Rules for other statements follow the same
pattern, but typically have more effect, such as rebinding variables, creating,
destroying and scheduling processes or creating new objects.

7.3.1 Possible Semantics of Message Delivery

Delivering a message to an unconstrained object, or to an object that has enough
free resources, always succeeds. A new process is created and will be scheduled
by the object in due time. However, when the object cannot accept the message
and create a process, various behaviors are possible:

1. The message delivery can be delayed until the callee can accept it, without
the caller being blocked.

2. The caller can be blocked until the callee can accept the message.

3. The message can be dropped ; if the callee cannot accept it, the message is
lost.
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< C : Class | Inh: I, Param: AL, Att: S1, Mtds: MS, RLimit: N >
< O : C | Att: S, Pr: P, PrQ: PL >
invoc(O, m, param)

=>
< C : Class | Inh: I, Param: AL, Att: S1, Mtds: MS, RLimit: N >
< O : C | Att: S, Pr: P, PrQ: (PL, createProcess(m, param) >

if nResources(P, PL, m) < N and idleOrSelfcall(P)

Figure 7.2: The (slightly simplified) conditional rewrite rule for creating a new
process m in a constrained object O. A process is created if there are enough
resources available and if the object can accept a method invocation (i.e., is idle
or its current process issued the call).

< O’ : C’ | Att: S’, Pr: { BL | call(O, m, param) ; SL’ },
PrQ: PL’ >

< C : Class | Inh: I, Param: AL, Att: S1, Mtds: MS, RLimit: N >
< O : C | Att: S, Pr: P, PrQ: PL >

=>
< O’ : C’ | Att: S’, Pr: { BL | SL’ }, PrQ: PL’ >
< C : Class | Inh: I, Param: AL, Att: S1, Mtds: MS, RLimit: N >
< O : C | Att: S, Pr: P, PrQ: PL >
invoc(O, m, param)

if nResources(P, PL, m) < N

Figure 7.3: The (slightly simplified) conditional rewrite rule for invoking a
method of object O from object O1. Evaluation of the rule is delayed until
O is in a position to create a process m.

Figure 7.2 shows a simplified version of the rule for creating a new process
in an instance of a restricted class. A new process is created only when adding
it to the object’s process queue does not exceed the available resources. This
rule implements delayed message delivery.

To implement a delay of the message sender, another rule has to be added
that is shown in Figure 7.3. This rule blocks the sender until the receiver can
accept the message.

To implement message loss in a Creol model, yet another rule has to be
added; a simplified version is shown in Figure 7.4. This rule works in concert
with the process creation rule of Figure 7.2; the [owise] Maude attribute
guarantees that the invocation is only dropped if the process cannot be created.

All of the possible behaviors of message delivery are meaningful in some
context. Dropping messages comes closest to the behavior of a system of loosely-
coupled components, such as a network of wireless sensors or the datagram level
in a TCP/IP network. On the other hand, this model behavior requires extensive
changes of the Creol model, compared to an unconstrained model, that are not
necessary for the other two possible behaviors. Specifically, every method call
that expects a return value has to be implemented with a timeout and an error
path:

1 var t: Time := now; var l: Label[Int]; var result: Int;
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< C : Class | Inh: I, Param: AL, Att: S1, Mtds: MS, RLimit: N >
< O : C | Att: S, Pr: P, PrQ: PL >
invoc(O, m, param)

=>
< C : Class | Inh: I, Param: AL, Att: S1, Mtds: MS, RLimit: N >
< O : C | Att: S, Pr: P, PrQ: PL >

[owise]

Figure 7.4: The rewrite rule implementing message loss, working in concert with
the process creation rule of Figure 7.2. The left-hand sides of both rules are
identical, but this rule only applies if no other rule matches the left-hand side
(via Maude’s [owise] attribute).

2 var success: Bool;
3

4 l!o.m();
5 await l?; l?(result); success := true
6 []
7 await now >= t + 10; success := false;
8 if (success)
9 ... // use ’result’ here

10 else
11 ... // recover from timeout here
12 end

Delaying message delivery and suspending the sending process both model
reliable message delivery. Delivery delay models a “smart” network, or an
application-transparent buffer-and-resend layer of the sender. Blocking the
sender models a tightly-coupled system, probably implemented on a single ma-
chine, where querying the receiver’s state does not incur sending a message.

7.3.2 Possible Semantics of Resource Allocation and Deal-
location

Resources, as understood in this chapter, are always claimed by processes, and
are necessary for a process to run. A class specifies how many of these abstract
resources its instances have available, and how many (possibly zero) of these
resources are claimed by processes running the different methods.

In all cases, resources are claimed upon process start, but different times of
freeing resources influence what the resource models.

1. If resources are freed upon process end, the resource puts an upper limit
on the number of processes that can run simultaneously. This limit on the
number of active processes models memory usage or restricted parallelism
/ recursion depth, depending on the intents of the modeler.

2. If resources are freed after an amount of time has passed in the simulation,
the resource puts an upper limit on the number of method calls per time
unit. This resource limit models bandwidth, i.e. limited communication
between objects in the model.



78CHAPTER 7. RESOURCE MODELING FOR TIMED CREOL MODELS

3. Resources that are never freed put a limit on the total number of method
calls that can run during a simulation of the model, i.e. the objects “run
out of power”.

Resource constraints, as described in this section, can be used to model and
validate a variety of behavior:

Restricted parallelism : To model an object that has restricted parallelism,
assign each method a cost of 1 and the class a limit corresponding to the
maximum number of running processes.

Recursion depth : To validate that a model run does not exceed a certain
depth of self-calls, assign all involved methods a cost of 1 and the class
a limit corresponding to the maximum recursion depth. If the methods
contain release points, outside calls (that can be used to model interrupts)
also factor in the maximum depth.

Memory consumption : Assign the class the amount of memory that is avail-
able, and each method its memory cost. This assumes that an object
models a physical processor, for example a sensor node.

Bandwidth : Assign the class an amount of bandwidth that is available for
method calls in each cycle, and each method its invocation cost. Processes
can be created as long as bandwidth is still available; bandwidth again
becomes available in the next cycle. Simulating bandwidth-constrained
models needs a timed interpreter.

Power consumption : Assign the class an amount of power that is available to
processes, and each method its power cost. Power is only ever decreased;
an object becomes unresponsive when its power is used up. Similar to
memory consumption, the power cost of a method should be a worst-case
estimate.

7.4 Modeling with Resource Constraints

This section describes the experiences gained when adding resource constraints
to the BSN case study (see Section 3.3.2). The motivation was to model collision
of messages, which was not considered in the case study originally. Section 7.4.1
shows the results of a qualitative model, which uncovered a case of unintentional
tight coupling between components in the case study, while Section 7.4.2 shows
quantitative results of the influence of varying bandwidth constraints and net-
work topologies on the timed behavior of the sensor network.

7.4.1 Results of Adding Restricted Parallelism

The classes SensorNode (Figure 3.9) and Network (Figure 3.10), together with
a class SinkNode (not shown) implement a simple flooding routing protocol. In
the original case study, network collisions were not considered – an arbitrary
number of nodes were allowed to broadcast data at the same time.

An obvious way to model the incremental-backoff strategy of resending pack-
ets on collision is to restrict the network to only one broadcast method at a
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Bandwidth Topology 1 (mixed) Topology 2 (linear) Topology 3 (star)
4 14 14 2
3 15 19 3
2 22 29 5
1 45 59 11

Table 7.2: Time for 3 messages each from 4 sensors to arrive at the sink node,
depending on topology and available bandwidth.

time. This is very straightforward using the presented resource limit framework
– simply assign a cost of 1 to the broadcast method and a single resource to
the class, while delaying message delivery but allowing the sender to continue
running (with these semantics, the timeout-and-resend behavior is implicit, al-
lowing the original model’s code to stay in place). With these constraints in
place, the original model deadlocked.

The cause of the deadlock was identified in Line 14. The original model
had a synchronous call to the receiving node’s receive method at that point.
This serialized message delivery, forcing the receiving node to finish processing
the message (including a recursive call to Network.broadcast) before the next
node would even receive the message. Converting the synchronous call to an
asynchronous call allowed the model to run to completion.

While the functional aspects of the model were correct (all messages ar-
rived at the sink node during a simulated run), constraining the Network class
uncovered what is arguably a modeling error – since that class models the be-
havior of the “air space” between nodes, messages broadcast by one node should
reach all of that node’s neighbors at the same time, which must be modeled via
asynchronous calls. Constraining the network to its intended behavior helped
uncover this modeling error – before, one message would reach the sink and be
“on the air” multiple times, rebroadcast from different nodes, before the first
broadcast had finished.

7.4.2 Results of Modeling Bandwidth

We now show some simulation results using bandwidth modeling on the timed
Creol interpreter. The resource modeled was bandwidth of the Network object
(see Figure 3.10, page 30), specifically the broadcast method which gets called
by the sensor nodes to send a message. The SinkNode object was modified to
record the time of each incoming message; each SensorNode object was set up
to send three messages. To add another variable, two topologies were evaluated
in addition to the “mixed” topology of Figure 3.8. We chose the most extreme
topologies for a network of 4 nodes: one where each node is directly connected
to the sink node (the “star” topology, which is expected to result in minimal
time) and one where the nodes are arranged in a linear fashion, with the last
sensor node connected to the sink (the “linear” topology, which should result in
maximal time).

Table 7.2 shows the measurements obtained by animating the resource-
constrained model on the timed Creol interpreter. The available bandwidth
was varied between 1 and 4 messages per timer tick – an available bandwidth of
zero results in no arrived messages and hence infinite time to completion, and
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Figure 7.5: Arrival time of the last of 12 messages from 4 sensors, depending on
topology and available bandwidth.

a bandwidth of more than 4 messages does not alter the results since there are
only four sensor nodes.

Figure 7.5 shows the results in graphical form; as expected, the star topology
has significantly lower transmit times than the other two topologies.

7.5 Testing Against Resource Constraints
One of the advantages of a formal model that is executable is that it can serve
as test oracle, i.e. to validate the implementation (model-based testing). This
section explores the possibilities of using a resource-constrained model for test-
ing.

Testing in general means comparing the behavior of a System under Test
(SuT) against a specification of the system in order to reach a verdict about
the conformance of the SuT w.r.t. the specification. A conformance relation is
used to determine whether observed behavior constitutes allowed behavior with
respect to the specification. For abstract datatypes, algebraic specifications can
be a good fit for testing [44]. To test the communication of reactive systems
with input and output behavior, labeled transition systems [83] and CSP [15]
have been employed to good effect.

In our case, the models are written in Creol. Following past work [1], we use
the following points to arrive at a test methodology:

• Our test assumption is that model and implementation have similar struc-
ture and hence equivalent paths of execution.

• To prepare for testing, the tester instruments both model and implemen-
tation to record the flow of control at certain meaningful points (e.g. in
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the case study at the points where nodes send and receive messages).

• Both Model M and implementation I can thus be seen as mappings from
an initial stimulus st to a set of sequences of observed events:

stM
M−→ (eventsM ) ∗ ; stI

I−→ (eventsI)∗

(In the case of a deterministic model or implementation, the cardinality of
the set will be 1 because a stimulus will always result in the same sequence
of observed events.)

• A conforming implementation may only show behavior that the model can
also exhibit:

I(stI) ⊆M(stM ) (7.1)

Equation 7.1 can be used as the basis of testing an implementation, both
against the constrained and the unconstrained model. That equation is not an
equality since it is useful for the model to be less restrictive (i.e. more abstract)
than the implementation.

7.5.1 Calculating Test Inputs

In [47], the authors present a way of using dynamic symbolic (concolic) execution
to calculate a set of inputs for a given Creol model that maximizes model path
coverage. Briefly summarizing, the approach consists of remembering the sym-
bolic conditions influencing each branching point and scheduling decision of the
model, and using a constraint solver to find input values that force the model
into another branch of execution during the next run. Each iteration gives a new
stimulus st that results in different parts of the model being executed. A full
set of these test inputs comprises a test suite with full (bounded) path coverage
of the model. In other words, the calculated simuli give us equivalence classes
of traces of the model.

The approach has been implemented using a customized Creol interpreter
and the Yices constraint solver [90]. For further details, we refer to [47].

7.5.2 Validating a Recorded Trace Against the Model

The traces I(stI) of equation 7.1 are obtained by animating the SuT with an
initial stimulus st, which is the test input, and recording the events in the
implementation. In the case of a non-deterministic implementation, approaches
similar as the one described in [32] can be employed to increase the variety of
traces obtained from one test input. The stimuli st are calculated from the
model, as described in Section 7.5.1, and translated into inputs of the SuT by
a suitable adapter function.

Recording traces from the SuT is done by instrumenting the source code
or by observing events by other means, for example recording network packets.
While we have not yet recorded the activity of a physical network of biomedical
sensors, we used the approach described in this section on a large conventional
software system (see [1]). In that case, recording traces of events was done by
instrumenting the system via aspect-oriented programming.
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Instrumented model:

1 ...
2 with Network // receive data from outside
3 op receive(in data: [Int,Int]) ==
4 if ~(data in received) then
5 await tester.request("Receiving";);
6 queue(data;);
7 received := received |- data
8 end
9 ...

Tester:

1 ...
2 allow("Receiving";);
3 await pendingReceiving = 0;
4 ...

Figure 7.6: Instrumented model and tester. The tester consists of a sequence
of allow / await calls that replay the sequence of events observed on the
implementation. The model blocks at the instrumented points (e.g. at Line 5)
to synchronize with the tester.

Validating the recorded implementation traces against the model (i.e. check-
ing that the model can reproduce the sequence of events, as per equation 7.1)
is done by generating a tester that runs in parallel with the model, restricting
the model’s nondeterminism and forcing it to either exhibit the same trace of
events, or deadlock. This post-hoc validation is in contrast to many other ap-
proaches [15], which execute model and SuT in parallel. One consequence of
the approach is that there is no distinction between input and output on the
implementation trace level, but in [1] we describe how to generate a tester that
simulates the model according to specific implementation events that represent
user input or environment action.

Figure 7.6 shows the receive method of the model of the Node class of
Figure 3.9, instrumented for testing purposes (Line 5), and a fragment of the
tester that allows one “Receiving” event to happen. The tester is essentially a
sequence of these allow / await calls, forcing the model to emit the specified
events in the given order. The authors implemented a tool, further described
in [2], to automatically generate the tester and supporting code from a recorded
trace.

7.5.3 Obtaining Test Verdicts

Traces recorded with the calculated stimuli as described in Section 7.5.1 can be
used to validate an implementation, as described in Section 7.5.2. This section
discusses how to reach a test verdict.

• If the constrained model cannot run to completion from a stimulus st cal-
culated from the unconstrained model, this means the constraints as spec-
ified are too restrictive. This is not a test failure as per Equation (7.1), but



7.6. RELATED WORK 83

it needs to be investigated by the modeler whether the model is expected
to fail with the given input and constraints or not.

• If the unconstrained model cannot replay an implementation trace (the
tester deadlocks), the implementation does not conform to the model; the
test verdict is Fail1.

• If the constrained model cannot replay an implementation trace (but the
unconstrained model can), the implementation does not conform to the
constrained model. This might indicate an implementation error or too
restrictive a constraint model; in any case, the test verdict is Fail.

• If both models can replay the implementation trace, the test verdict is
Pass.

7.6 Related Work

Modeling bounded computing resources is relevant because micro-controllers
expose the programmer to a bounded call depth, either explicitly or because
of memory constraints. For example, the PIC family of micro-controllers has
an explicit maximal call depth between 2 and 31, depending on the model.
Version 2 of TinyOS [61], an operating system for wireless sensor networks, con-
tains tos-ramsize, a tool for static stack depth analysis calculating worst-
case memory usage by summing stack usage at call points for the longest
path through the call graph, and adding stack usage of all interrupt han-
dlers. The theory behind this tool is presented in [70]. Being a simple tool,
tos-ramsize does not handle recursion. McCartney and Sridhar [63] present
stack-estimator, a similar tool for the TinyThread library. The value of
our work is that resource constraints can be expressed already on the modeling
level, and that the model can be validated by simulation. Also, we present a
unified approach to modeling call stack depth and restricted parallelism in a
model.

Foster et al. [40] make a strong case for checking a model under resource
constraints via an example deadlocks in a proven-deadlock-free web service de-
ployment. These deadlocks arose because of thread starvation – the proof of
deadlock-freedom did not take the maximum number of threads of the under-
lying implementation into account. In their approach, the underlying BPEL
(Business Process Execution Language) web service orchestration and the thread
pool of the system that executes the service requests are modeled together as
a labeled transition system. Model checking is then used to ascertain deadlock
freedom under resource constraints. Another extensive work using automata to
model resource consumption is Chakrabarti et al. [16], where interface automata
are used to express the behavior and resource consumption of components, and
a compositional game approach is used to calculate the behavior and resource
consumption of a composition of components. Chothia and Kleijn [20] present
Q-Automata, an automata-based high-level view of components enriched with

1In case of non-deterministic models, a backtracking interpreter has to be used to reach a
definitive verdict.
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costs for taking transitions, with an algebraic notion of combining resources se-
quentially and in parallel which can model bandwidth, time, power consumption
etc. via different operators in the Q-algebra for different resource types.

Our work deals with modeling systems on a lower level of abstraction than
using automata models, using Creol [57], an imperative, object-oriented model-
ing language with asynchronous communication between objects. Similar work
was done by Verhoef et al. [87], who use the timed variant of the modeling lan-
guage VDM++ to model distributed embedded systems. They model processing
time, schedulability and bandwidth resources by enriching timed VDM++ with
a notion of CPUs, communication buses and asynchronous communication, and
loosening the global time model of standard timed VDM++. Creol supports
many of the changes necessary for modeling distributed systems in the core
language already. Kyas and Johnsen [59] use Creol to model timing aspects of
wireless sensors, but do not consider resource constraints of that platform.

7.7 Conclusion
This chapter presented a flexible way of adding resource constraints to a behav-
ioral model written in Creol. The original motivation was to model collision of
messages sent over a wireless sensor network, but the approach proved applica-
ble for a whole range of resource constraints: restricted parallelism, recursion
depth, memory usage, bandwidth and power consumption. The approach was
validated when resource constraints showed that the original model, while show-
ing the expected outcome (messages arriving at the sink node), exhibited too
tight coupling between sensor objects and network object and hence did not
model the Flooding algorithm correctly.

Adding resource constraints to an existing Creol model requires only one
annotation per class and one annotation per constrained method and no re-
quired changes to the behavioral specification; if needed, timeout behavior can
be added to the model in a simple, straightforward way using the nondetermin-
istic statement of Creol. We believe that the approach is easily adaptable for
VDM++ and similar modeling languages. The value of our approach lies in
the ease in which it can be added to an existing Creol model, and in the way
different behaviors of message delivery can be explored with only local changes
in a model. It should be noted that the results obtained by simulating the
model are sound but not necessarily complete – while the presence of deadlocks
caused by resource constraints can be shown, their absence can only be proven
by model-checking, which restricts the size of the model. Nevertheless, experi-
ence has shown that the approach can give valuable insight into the behavior of
a system that is confronted with limited computing resources.



Chapter 8

Conclusion

This thesis explored the multiple ways in which existing, executable models of
the functionality of software or hardware/software systems can be used: for
testing, documentation, description of system behavior, and simulation using
multiple interpreters with different operational semantics. Speaking personally
for a moment, upon finishing this work I see modeling much more as a process
of collecting data about a system in a structured form, and much less as trying
to specify its behavior (or, trying to program it in a non-executable language)1
– the characteristic of data being, of course, that it can be used in multiple,
sometimes surprising ways.

8.1 On the Multiple Uses of Formal Models

It can be seductive to see a model, especially one written in a language with
an operational semantics like Creol, as some sort of “poor man’s program”. To
counter this view, here are the ways that the existing case studies of the Credo
project were put to use in the course of this thesis:

• For describing and modeling the functionality of a software or hardware/-
software system (the original reason for creating them).

First and foremost, a model can be executed, if the modeling language
has an operational semantics. The act of observing a model “in action”
gives the modeler valuable insights about its behavior, if the model state
is visualized properly.

• As test oracles, checking the functionality of the systems they model as a
whole (Chapters 4, 5) and of single components (Chapter 6).

Here, the main contribution of this thesis is describing and implementing a
way of adapting an existing model, in a minimally-invasive way (insertion
of trace points at chosen locations), to act as a test oracle. The existing
toolchain (Creol compiler, interpreter and editing environment) can be
used as-is; the test case generator was added to the normal workflow.

• For test input calculation.
1I realize this point is obvious to more advanced practitioners.
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Test inputs can be derived even from informal descriptions of a system,
via derivation of equivalence classes. Chapter 5 shows how to calculate
equivalence classes from a Creol model, by running it in an interpreter
with concolic execution semantics.

• For modeling, testing and visualizing the operation of the system in ad-
verse circumstances, operating under constrained bandwidth, memory or
timing conditions.

Chapter 7 shows how to simulate the effect of environmental constraints
on executable models. The approach mandates no code changes to the
models themselves; for added precision, timeout behavior can be modelled
(which is not needed in the unconstrained, untimed interpreter that was
used during development of the case studies). Again, the approach works
by changing the interpreter and adding some annotations to the models.

Most of these uses can be characterized as testing or validation – since a
model purports to describe a software or software/hardware system, verdicts,
predictions and axioms extracted from the model will necessarily pertain to the
system and be useful in relation to it.

8.2 Using Models As Data: Tools Created
A more pragmatic result of this thesis was the creation of tools for working with
the models. What underlines the data nature of the models was the number of
interpreters that was created, utilizing each model for different purposes:

• A timed version of the interpreter, following the semantics of Johnsen et
al. [58].

• An interpreter that allows to both record and control the scheduling de-
cisions of Creol processes.

• Interpreters implementing the semantics of restricted parallelism, memory
and bandwidth (an interpreter implementing restricted power was not
implemented but is a trivial adaptation of the existing ones).

• An implementation of dynamic symbolic execution (courtesy of Andreas
Griesmayer).

All the interpreters are variations of the original interpreter as contained in the
Creol tools package [24], courtesy of Marcel Kyas.

Additionally, a specialized model checker, a test case generator and an edit-
ing environment for Creol on the Emacs editor were created by the author, who
also took over maintenance of the Eclipse plugin from Johan Dovland.

8.3 Experiences with Creol Modeling
During his work on the Credo project, the author was fortunate to work closely
with the authors of the case studies described in Chapter 3. The models created
during the case studies are the largest known Creol models in existence, so the
tools were pushed to limits not previously encountered. The author himself
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uncovered a performance problem in the Creol compiler, by compiling a test
method consisting of 600 lines of code generated from an ASK system trace.
But all in all, the tools and the language held up well; the case studies were
completed to the satisfaction of all participants.

Often mentioned as particular advantages of Creol were the easily under-
standable semantics and the mostly familiar syntax of the language, the pos-
sibility to express different inter-object communication patterns (blocking vs.
non-blocking, method return values vs. callbacks), and the cooperative concur-
rency model of Creol with its reduction of accidental race conditions.

A phenomenon seen in the ASK case study was that the model actually
got smaller during the modeling activity; this was attributed to increased un-
derstanding of the system’s behavior and the resulting higher abstraction level
in the model. The BSN case study model went through a similar process, but
stayed at a constant code size, gaining new features instead of shrinking its code
base.

8.4 Future Work
At the time of this writing, the author has been hired by the University of
Oslo to continue work on the Creol toolchain and Creol language. Hence, some
items in this section describing planned future work are already under active
development, and most of them will be implemented within the next three years.

Since this thesis has been written, the Creol language has been extended
with a datatype language; it is planned to adapt the testing approach to use
parameterized events, i.e. events that carry additional information. This ap-
proach will lead to closer correspondence between test case and SuT, and to
less spurious test failures.

Similarly, the visualization and editing tools will be extended to not only
show the model’s current state but also its execution history in a graphical way.
Many times, the modeler needs to know not only what state the model is in,
but also how it got there and what its state was in a previous point in time. A
good simulation and visualization tool will be an invaluable tool.

Finally, the question of verification and model-checking of Creol models is
still not solved to the author’s satisfaction. While full, automated state-space
exploration of Creol models is clearly infeasible (for starters, Creol has infinite
datatypes), its cooperative scheduling makes techniques developed in sequential
settings seem within reach. Some preliminary work in that direction seems
encouraging.

More generally, the passive testing approach of this thesis can be adapted
to other modeling languages; in general, the techniques for enriching functional
models to use them in other contexts (testing, domain modeling, simulation of
quantitative aspects of the implementation, . . . ) are sufficiently general that
they can be applied to almost any modeling formalism. The idea of adapting
formal models for testing purposes is really powerful, and might help to integrate
formal modeling into both the specification and testing phase of a software
project. Again, the success of this in an industrial setting depends on tool
support and documentation, so enough work remains to be done to make the
Creol language a success in this area.



88 CHAPTER 8. CONCLUSION



Bibliography

[1] B. Aichernig, A. Griesmayer, R. Schlatte, and A. Stam. Modeling and test-
ing multi-threaded asynchronous systems with Creol. Electronic Notes in
Theoretical Computer Science, 243:3–14, 2009. Proceedings of the 2nd In-
ternational Workshop on Harnessing Theories for Tool Support in Software
(TTSS 2008).

[2] B. K. Aichernig, A. Griesmayer, E. B. Johnsen, R. Schlatte, and A. Stam.
Conformance testing of distributed concurrent systems with executable de-
signs. In de Boer et al. [25], pages 61–81.

[3] B. K. Aichernig, A. Griesmayer, M. Kyas, and R. Schlatte. Exploiting
distribution and atomic transactions for partial order reduction. Technical
Report No. 418, UNU-IIST, June 2009. http://www.iist.unu.edu/
www/docs/techreports/reports/report418.pdf.

[4] Almende website. http://www.almende.com. Last accessed December
2, 2009.

[5] J. H. Andrews and Y. Zhang. General test result checking with log file
analysis. IEEE Trans. on Software Engineering, 29(7):634–648, 2003.

[6] F. Arbab. Reo: a channel-based coordination model for component compo-
sition. Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[7] ASK community systems website. http://www.ask-cs.com. Last ac-
cessed November 27, 2010.

[8] ACC: The AspeCt-oriented C compiler. http://www.aspectc.net.
Last accessed December 2, 2009.

[9] H. Barringer, K. Havelund, D. E. Rydeheard, and A. Groce. Rule systems
for runtime verification: A short tutorial. In S. Bensalem and D. Peled,
editors, RV, volume 5779 of Lecture Notes in Computer Science, pages
1–24. Springer, 2009.

[10] A. Belinfante, J. Feenstra, R. G. de Vries, J. Tretmans, N. Goga, L. M. G.
Feijs, S. Mauw, and L. Heerink. Formal test automation: A simple exper-
iment. In G. Csopaki, S. Dibuz, and K. Tarnay, editors, IWTCS, volume
147 of IFIP Conference Proceedings, pages 179–196. Kluwer, 1999.

[11] A. Bertolino, H. Muccini, and A. Polini. Architectural verification of black-
box component-based systems. In N. Guelfi and D. Buchs, editors, RISE,

89

http://www.iist.unu.edu/www/docs/techreports/reports/report418.pdf
http://www.iist.unu.edu/www/docs/techreports/reports/report418.pdf
http://www.almende.com
http://www.ask-cs.com
http://www.aspectc.net


90 BIBLIOGRAPHY

volume 4401 of Lecture Notes in Computer Science, pages 98–113. Springer,
2006.

[12] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT – A formal system for
testing and debugging programs by symbolic execution. SIGPLAN Notices,
10(6):234–245, June 1975.

[13] E. Brinksma and J. Tretmans. Testing transition systems: An annotated
bibliography. In F. Cassez, C. Jard, B. Rozoy, and M. D. Ryan, editors,
MOVEP, volume 2067 of Lecture Notes in Computer Science, pages 187–
195. Springer, 2000.

[14] C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and
M. Veanes. Testing concurrent object-oriented systems with Spec Explorer.
In J. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, FM 2005: Formal
Methods, volume 3582 of Lecture Notes in Computer Science, pages 542–
547. Springer, 2005.

[15] A. Cavalcanti and M.-C. Gaudel. Testing for refinement in CSP. In M. But-
ler, M. G. Hinchey, and M. M. Larrondo-Petrie, editors, 9th International
Conference on Formal Engineering Methods (ICFEM) 2007, volume 4789
of Lecture Notes in Computer Science, pages 151–170. Springer, 2007.

[16] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Resource
interfaces. In R. Alur and I. Lee, editors, Embedded Software, volume 2855
of Lecture Notes in Computer Science, pages 117–133. Springer, 2003.

[17] F. Chang and J. Ren. Validating system properties exhibited in execution
traces. In R. E. K. Stirewalt, A. Egyed, and B. F. 0002, editors, ASE, pages
517–520. ACM, 2007.

[18] F. Chen and G. Rosu. Mop: an efficient and generic runtime verification
framework. In R. P. Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S. Jr.,
editors, OOPSLA, pages 569–588. ACM, 2007.

[19] J.-D. Choi and A. Zeller. Isolating failure-inducing thread schedules. In
International Symposium on Software Testing and Analysis, pages 210–220.
ACM, 2002.

[20] T. Chothia and J. Kleijn. Q-Automata: Modelling the resource usage of
concurrent components. Electronic Notes in Theoretical Computer Science,
175(2):153–167, 2007.

[21] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

[22] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and
J. F. Quesada. Maude: Specification and programming in rewriting logic.
Theoretical Computer Science, 285:187–243, Aug. 2002.

[23] Credo: Modeling and analysis of evolutionary structures for distributed
services (IST-33826). http://www.cwi.nl/CREDO. Last accessed March
14, 2010.

http://www.cwi.nl/CREDO


BIBLIOGRAPHY 91

[24] Creol Tools. Creol compiler and interpreter for Unix-like systems.
http://folk.uio.no/kyas/creoltools/index.html. Last ac-
cessed November 20, 2009.

[25] F. S. de Boer, M. M. Bonsangue, and E. Madelain, editors. Formal Methods
for Components and Objects, 7th International Symposium, FMCO 2008,
Sophia Antipolis, France, October 21-23, 2008, Revised Lectures, volume
5751 of Lecture Notes in Computer Science. Springer, 2009.

[26] F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future.
In R. de Nicola, editor, Proc. 16th European Symposium on Programming
(ESOP’07), volume 4421 of Lecture Notes in Computer Science, pages 316–
330. Springer, Mar. 2007.

[27] L. de Moura and B. Dutertre. A fast linear-arithmetic solver for DPLL(T).
In Proc. 18th International Conference on Computer Aided Verification
(CAV’06), volume 4144 of Lecture Notes in Computer Science, pages 81–
94. Springer, Aug. 2006.

[28] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. R.
Ramakrishnan and J. Rehof, editors, TACAS, volume 4963 of Lecture Notes
in Computer Science, pages 337–340. Springer, 2008.

[29] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented
Proof Methods and their Comparison. Cambridge University Press, 1998.

[30] J. Dovland, E. B. Johnsen, and O. Owe. Verification of concurrent ob-
jects with asynchronous method calls. In SwSTE, pages 141–150. IEEE
Computer Society, 2005.

[31] J. Dovland, E. B. Johnsen, and O. Owe. Observable behavior of dynamic
systems: Component reasoning for concurrent objects. Electronic Notes in
Theoretical Computer Science, 203(3):19–34, 2008.

[32] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur. Frame-
work for testing multi-threaded Java programs. Concurrency and Compu-
tation: Practice and Experience, 15(3-5):485–499, 2003.

[33] O. Edelstein, E. Farchi, Y. Nir, G. Ratzaby, and S. Ur. Multithreaded Java
program test generation. IBM Systems Journal, 41(1):111–125, Feb. 2002.

[34] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly verifi-
cation techniques for the generation of test suites. In R. Alur and T. A.
Henzinger, editors, Computer Aided Verification, 8th International Confer-
ence, CAV ’96, volume 1102 of Lecture Notes in Computer Science, pages
348–359. Springer, 1996.

[35] J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in au-
tomatic generation of test suites for protocols with verification technology.
Science of Computer Programming, 29(1-2):123–146, 1997.

[36] E. Fersman, P. Krcál, P. Pettersson, and W. Yi. Task automata: Schedu-
lability, decidability and undecidability. Information and Computation,
205(8):1149–1172, 2007.

http://folk.uio.no/kyas/creoltools/index.html


92 BIBLIOGRAPHY

[37] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability anal-
ysis of fixed-priority systems using timed automata. Theor. Comput. Sci.,
354(2):301–317, 2006.

[38] J. S. Fitzgerald, A. E. Haxthausen, and H. Yenigün, editors. Theoretical
Aspects of Computing - ICTAC 2008, 5th International Colloquium, Is-
tanbul, Turkey, September 1-3, 2008. Proceedings, volume 5160 of Lecture
Notes in Computer Science. Springer, 2008.

[39] J. S. Fitzgerald and P. G. Larsen. Balancing insight and effort: The indus-
trial uptake of formal methods. In C. B. Jones, Z. Liu, and J. Woodcock,
editors, Formal Methods and Hybrid Real-Time Systems, volume 4700 of
Lecture Notes in Computer Science, pages 237–254. Springer, 2007.

[40] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. S. Rosenblum, and
S. Uchitel. Model checking service compositions under resource constraints.
In I. Crnkovic and A. Bertolino, editors, ESEC/SIGSOFT FSE, pages 225–
234. ACM, 2007.

[41] G. Fraser, F. Wotawa, and P. Ammann. Issues in using model checkers for
test case generation. Journal of Systems and Software, 82(9):1403–1418,
2009.

[42] G. Fraser, F. Wotawa, and P. Ammann. Testing with model checkers: A
survey. Software Testing, Verification and Reliability, 19(3):215–261, 2009.

[43] M.-C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen,
and M. I. Schwartzbach, editors, TAPSOFT ’95: Proceedings of the 6th
International Joint Conference CAAP/FASE on Theory and Practice of
Software Development, volume 915, pages 82–96. Springer, 1995.

[44] M.-C. Gaudel and P. L. Gall. Testing data types implementations from
algebraic specifications. In R. M. Hierons, J. P. Bowen, and M. Harman,
editors, Formal Methods and Testing 2008, volume 4949 of Lecture Notes
in Computer Science, pages 209–239. Springer, 2008.

[45] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated ran-
dom testing. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and implementation, pages 213–223.
ACM, 2005.

[46] I. Grabe, M. M. Jaghoori, B. K. Aichernig, C. Baier, T. Blechmann,
F. de Boer, A. Griesmayer, E. B. Johnsen, J. Kleijn, S. Klüppelholz,
M. Kyas, W. Leister, R. Schlatte, A. Stam, M. Steffen, S. Tschirner,
X. Liang, and W. Yi. Credo methodology. modeling and analyzing a peer-
to-peer system in Credo. Electronic Notes in Theoretical Computer Science,
2009. 3rd International Workshop on Harnessing Theories for Tool Support
in Software (TTSS 2009). ENTCS, Elsevier, Amsterdam (to appear).

[47] A. Griesmayer, B. K. Aichernig, E. B. Johnsen, and R. Schlatte. Dynamic
symbolic execution for testing distributed objects. In C. Dubois, editor,
TAP, volume 5668 of Lecture Notes in Computer Science, pages 105–120.
Springer, 2009.



BIBLIOGRAPHY 93

[48] A. Griesmayer, B. K. Aichernig, E. B. Johnsen, and R. Schlatte. Dynamic
symbolic execution of distributed concurrent objects. In D. Lee, A. Lopes,
and A. Poetzsch-Heffter, editors, FMOODS/FORTE, volume 5522 of Lec-
ture Notes in Computer Science, pages 225–230. Springer, 2009.

[49] A. Groce, K. Havelund, M. Smith, and H. Barringer. Let’s look at the
logs: Low-impact runtime verification. http://www.havelund.com/
Publications/logscope09.pdf (submitted for publication).

[50] R. H. Halstead. MULTILISP: A language for concurrent symbolic com-
putation. ACM Transactions on Programming Languages and Systems,
7(4):501–538, Oct. 1985.

[51] J. He and K. J. Turner. Protocol-inspired hardware testing. In Testing
of Communicating Systems: Method and Applications, IFIP TC6 12th In-
ternational Workshop on Testing Communicating Systems, volume 147 of
IFIP Conference Proceedings, pages 131–148. Kluwer, 1999.

[52] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ACTOR for-
malism for artificial intelligence. In IJCAI’73: Proceedings of the 3rd in-
ternational joint conference on Artificial intelligence, pages 235–245, San
Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[53] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. J. H. Simons, S. A. Vilkomir, M. R. Woodward, and H. Zedan. Using
formal specifications to support testing. ACM Computing Surveys, 41(2):1–
76, 2009.

[54] ILOG Solver 6.0 User’s Manual. http://www.lkn.ei.tum.
de/arbeiten/faq/man/ILOG/CONCERT/concert20/pdf/
solver60userman.pdf. Last accessed March 12, 2010.

[55] ISO/IEC 9646-1: Information technology - OSI - Conformance testing
methodology and framework - Part 1: General Concepts, 1994.

[56] R. Jasper, M. Brennan, K. Williamson, B. Currier, and D. Zimmerman.
Test data generation and feasible path analysis. In Proceedings of the In-
ternational symposium on Software testing and analysis (ISSTA’94), pages
95–107. ACM, 1994.

[57] E. B. Johnsen and O. Owe. An asynchronous communication model for
distributed concurrent objects. Software and Systems Modeling, 6(1):35–
58, Mar. 2007.

[58] E. B. Johnsen, O. Owe, J. Bjørk, and M. Kyas. An object-oriented com-
ponent model for heterogeneous nets. In F. S. de Boer, M. M. Bonsangue,
S. Graf, and W. P. de Roever, editors, FMCO, volume 5382 of Lecture
Notes in Computer Science, pages 257–279. Springer, 2007.

[59] M. Kyas and E. B. Johnsen. A real-time extension of Creol for modelling
biomedical sensors. In de Boer et al. [25], pages 42–60.

http://www.havelund.com/Publications/logscope09.pdf
http://www.havelund.com/Publications/logscope09.pdf
http://www.lkn.ei.tum.de/arbeiten/faq/man/ILOG/CONCERT/concert20/pdf/solver60userman.pdf
http://www.lkn.ei.tum.de/arbeiten/faq/man/ILOG/CONCERT/concert20/pdf/solver60userman.pdf
http://www.lkn.ei.tum.de/arbeiten/faq/man/ILOG/CONCERT/concert20/pdf/solver60userman.pdf


94 BIBLIOGRAPHY

[60] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines – a survey. Proceedings of the IEEE, 84(8):1090–1123, August
1996.

[61] P. Levis and D. Gay. TinyOS Programming. Cambridge University Press,
2009.

[62] J. Magee and J. Kramer. Concurrency: State Models & Java Programs.
Wiley, 2nd edition, 2006.

[63] W. P. McCartney and N. Sridhar. Abstractions for safe concurrent pro-
gramming in networked embedded systems. In A. T. Campbell, P. Bonnet,
and J. S. Heidemann, editors, Proceedings of the 4th International Con-
ference on Embedded Networked Sensor Systems (SenSys), pages 167–180.
ACM, 2006.

[64] S. Meng and F. Arbab. Web services choreography and orchestration in
reo and constraint automata. In Y. Cho, R. L. Wainwright, H. Haddad,
S. Y. Shin, and Y. W. Koo, editors, SAC, pages 346–353. ACM, 2007.

[65] J. Meseguer. Conditioned rewriting logic as a united model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

[66] L. Nigro and F. Pupo. Schedulability analysis of real time actor systems
using coloured petri nets. In Concurrent Object-Oriented Programming
and Petri Nets: Advances in Petri Nets, volume 2001 of Lecture Notes in
Computer Science, pages 493–513. Springer, 2001.

[67] C. E. Perkins and E. M. Belding-Royer. Ad-hoc on-demand distance vector
routing. In WMCSA, pages 90–100. IEEE Computer Society, 1999.

[68] C. E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc On-Demand
Distance Vector (AODV) Routing. RFC 3561 (Experimental), July 2003.
http://www.ietf.org/rfc/rfc3561.txt.

[69] A. Petrenko and N. Yevtushenko. Queued testing of transition systems
with inputs and outputs. In R. Hierons and T. Jéron, editors, Formal
Approaches to Testing of Software, FATES 2002 workshop of CONCUR’02,
pages 79–93. INRIA Report, 2002.

[70] J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow by ab-
stract interpretation. ACM Transactions on Embedded Computing Systems
(TECS), 4(4):751–778, Nov. 2005.

[71] V. Rusu, L. du Bousquet, and T. Jéron. An approach to symbolic test gen-
eration. In Proceedings of the 2nd International Conference on Integrated
Formal Methods (IFM’00), volume 1945 of Lecture Notes in Computer Sci-
ence, pages 338–357. Springer, 2000.

[72] R. Schlatte, B. K. Aichernig, F. S. de Boer, A. Griesmayer, and E. B.
Johnsen. Testing concurrent objects with application-specific schedulers.
In Fitzgerald et al. [38], pages 319–333.

http://www.ietf.org/rfc/rfc3561.txt


BIBLIOGRAPHY 95

[73] R. Schlatte, B. K. Aichernig, A. Griesmayer, and M. Kyas. Resource mod-
eling for timed Creol models. Electronic Notes in Theoretical Computer
Science, 2009. 3rd International Workshop on Harnessing Theories for Tool
Support in Software (TTSS 2009). ENTCS, Elsevier, Amsterdam (to ap-
pear).

[74] J. Schönborn and M. Kyas. A theory of bounded fair scheduling. In Fitzger-
ald et al. [38], pages 334–348.

[75] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit testing and ex-
plicit path model-checking tools. In Proc. 18th International Conference
on Computer Aided Verification (CAV’06), volume 4144 of Lecture Notes
in Computer Science, page 419. Springer, 2006.

[76] M. Sirjani, M. M. Jaghoori, C. Baier, and F. Arbab. Compositional seman-
tics of an actor-based language using constraint automata. In P. Ciancarini
and H. Wiklicky, editors, COORDINATION, volume 4038 of Lecture Notes
in Computer Science, pages 281–297. Springer, 2006.

[77] J. M. Stone. Debugging concurrent processes: A case study. In Proceedings
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI’88), pages 145–153. ACM, June 1988.

[78] Sun Microsystems, Inc. Solaris Dynamic Tracing Guide, Sept. 2008. Part
No: 817-6223-12. http://dlc.sun.com/pdf/817-6223/817-6223.
pdf. Last accessed November 27, 2009.

[79] SystemTap. http://sourceware.org/systemtap/
documentation.html. Last accessed November 27, 2009.

[80] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Plödereder, and P. Leroy.
Ada 2005 Reference Manual. Language and Standard Libraries – Inter-
national Standard ISO/IEC 8652:1995 (E) with Technical Corrigendum 1
and Amendment 1, volume 4348 of Lecture Notes in Computer Science.
Springer, 2006.

[81] N. Tillmann and J. de Halleux. Pex - white box test generation for
.NET. In Proc. of the 2nd International Conference on Tests and Proofs
(TAP’08), volume 4966 of Lecture Notes in Computer Science, pages 134–
153. Springer, 2008.

[82] N. Tillmann and W. Schulte. Parameterized unit tests. In Proceedings of
the 10th European Software Engineering Conference / 13th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE’05),
pages 253–262. ACM, 2005.

[83] J. Tretmans. Test generation with inputs, outputs, and quiescence. In
T. Margaria and B. Steffen, editors, Second Int. Workshop on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’96), vol-
ume 1055 of Lecture Notes in Computer Science, pages 127–146. Springer,
1996.

http://dlc.sun.com/pdf/817-6223/817-6223.pdf
http://dlc.sun.com/pdf/817-6223/817-6223.pdf
http://sourceware.org/systemtap/documentation.html
http://sourceware.org/systemtap/documentation.html


96 BIBLIOGRAPHY

[84] J. Tretmans. Model based testing with labelled transition systems. In
R. M. Hierons, J. P. Bowen, and M. Harman, editors, Formal Methods and
Testing, An Outcome of the FORTEST Network, Revised Selected Papers,
volume 4949 of Lecture Notes in Computer Science, pages 1–38. Springer,
2008.

[85] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based test-
ing approaches. Working Paper 04/2006, Department of Computer Science,
The University of Waikato, Apr. 2006. ISSN 1170-487X. http://www.
cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf.

[86] M. van der Bijl, A. Rensink, and J. Tretmans. Compositional testing with
IOCO. In A. Petrenko and A. Ulrich, editors, Formal Approaches to Soft-
ware Testing, Third International Workshop on Formal Approaches to Test-
ing of Software (FATES 2003), volume 2931 of Lecture Notes in Computer
Science, pages 86–100. Springer, 2003.

[87] M. Verhoef, P. G. Larsen, and J. Hooman. Modeling and validating dis-
tributed embedded real-time systems with VDM++. In J. Misra, T. Nip-
kow, and E. Sekerinski, editors, FM 2006: Formal Methods, 14th Inter-
national Symposium on Formal Methods, volume 4085 of Lecture Notes in
Computer Science, pages 147–162. Springer, 2006.

[88] C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Whodunit? Causal analysis
for counterexamples. In International Symposium on Automated Technol-
ogy for Verification and Analysis (ATVA’06), volume 4218 of Lecture Notes
in Computer Science, pages 82–95. Springer, 2006.

[89] E. J. Weyuker. Testing component-based software: A cautionary tale. IEEE
Software, pages 54–59, Sept. 1998.

[90] The YICES SMT Solver. http://yices.csl.sri.com/
tool-paper.pdf. Last accessed December 2, 2009.

http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf
http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf
http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

	Introduction
	Motivation of this Thesis
	The Credo Project
	Main Results
	Outline of this Thesis

	Passive Testing and Model-Based Testing
	Terminology
	Formal Models of Software
	Model-Based Testing Approaches

	The Creol Language and The Case Studies
	Language Definition
	Syntax
	Special Language Features

	Modeling with Creol
	Levels of Abstraction in Creol Models
	Tool Support

	Case Studies
	The ASK System
	Biomedical Sensor Networks


	Trace-Based Passive Testing of Creol Models
	Introduction
	Related Work
	Case Study Scenario
	A Conformance Relation for Passive Testing
	Test Implementation
	Actions and Events: Generating a Test Environment
	Adding Instrumentation to Model and SuT
	Implementing the Tester for the Model
	Generating Test Cases
	Reaching a Test Verdict

	Conclusions

	Test Input and Tester Environment Generation
	Introduction
	Finding Test Cases with Dynamic Symbolic Execution
	Representation of a Run
	Test Case Generation
	Dynamic Symbolic Execution in the Parallel Setting
	The ASK Case Study Revisited

	Test Case Execution
	Conformance Testing Using Recorded Event Traces
	Obtaining Traces from the Implementation
	Generating the Test Driver and Adapting the Model
	Obtaining Test Verdicts

	Related Work
	Conclusions

	Single-Object Testing with Application-Specific Schedulers
	Introduction
	Testing and Testing Methodology
	Example.

	Combining Method Automata and Scheduling Policies
	Modeling Method Invocations: Method Automata
	Modeling Parallelism: The System Automaton
	Modeling Schedulers: The Scheduler Automata
	Integration of the Scheduler and the System Automaton

	Test Case Generation with WP and Schedulers
	Test Case Execution

	Related Work
	Conclusion and Future Work

	Resource Modeling for Timed Creol Models
	Introduction
	Timed Creol
	Implementing Resource Constraints
	Possible Semantics of Message Delivery
	Possible Semantics of Resource Allocation and Deallocation

	Modeling with Resource Constraints
	Results of Adding Restricted Parallelism
	Results of Modeling Bandwidth

	Testing Against Resource Constraints
	Calculating Test Inputs
	Validating a Recorded Trace Against the Model
	Obtaining Test Verdicts

	Related Work
	Conclusion

	Conclusion
	On the Multiple Uses of Formal Models
	Using Models As Data: Tools Created
	Experiences with Creol Modeling
	Future Work


