
Martin Umgeher

Automated Usability Evaluation in

Agile Projects

————————————–

Dissertation

vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

(Dr.techn.)

durchgeführt am Institut für Softwaretechnologie

Technische Universität Graz

Vorstand: O. Univ.-Prof. Dipl.-Ing.Dr. techn.Wolfgang Slany

Graz, im Dezember 2010

Deutsche Kurzfassung der Dissertation

Die kontinuierliche, automatische Verifikation von Qualitätskriterien ist eine zentra-
le Praktik moderner Software-Entwicklungsprozesse. Die automatisch evaluierbaren
Anforderungen reichen von statischer Code-Analyse und funktionalen Tests bis zu
automatisierten Builds und Deployments. Durch die Automatisierung wird der ma-
nuelle Aufwand der Verifikationen minimiert.

Agile Software-Entwicklungsprozesse hängen im Speziellen von automatisierter
Verifikation ab. Die häufigen, inkrementellen Code-Änderungen, auf denen agile Ent-
wicklung basiert, bergen stets die Gefahr in sich, Fehler einzuschleusen. Daher ist die
ständige Verifikation von Integrität und Korrektheit von entscheidender Bedeutung
für den Erfolg agiler Projekte.

Automatisierte Verifikation beschränkt sich großteils auf funktionale Anfor-
derungen, währen nicht-funktionale Belange, wie z.B. Usability, nur selten eva-
luiert werden. In dieser Dissertation wird eine Erweiterung der bestehenden,
etablierten Software-Verifikationsschritte vorgeschlagen. Automatisierte Usability-
Evaluierungen (AUE) erlauben es, Usability auf dem selben Automatisierungs-
Level zu prüfen, wie dies für funktionale Korrektheit geschieht. Die Anforderungen
an solche AUE-Werkzeuge sowie allgemeine Eigenschaften von Prozessautomatisie-
rungssystemen werden diskutiert. Darauf aufbauend wird das Konzept eines AUE-
Werkzeuges für die Evaluierung von Web-Software entwickelt, das die Vorausset-
zungen für die Integration in bestehende Automatisierungssysteme erfüllt. Durch
automatisches, exploratives Durchwandern von Web-Anwendungen kann jede Seite
einzeln untersucht werden; zusätzlich wird die Navigationsstruktur analysiert. Die
Anwendung des Konzeptes wird anhand der Integration in den agilen Entwicklungs-
prozess Extreme Programming und dessen Automatisierungssystem, Continuous In-
tegration, veranschaulicht. Implementation und Anwendbarkeit im Kontext kommer-
zieller Software-Entwicklung werden besprochen.

Das präsentierte Konzept basiert auf den Erfahrungen und Ergebnissen, die
während eines dreijährigen angewandten Forschungsprojektes gesammelt wurden.
Im Rahmen dieses Projektes wurden verschiedene Aspekte agiler Entwicklungsme-
thoden, mit besonderem Fokus auf der Integration von Usability-Praktiken (z.B.
Einbeziehen von Usability-Experten, Anwendung von AUE-Methoden), untersucht.
Diese Experimente wurden durch extern durchgeführte Untersuchungen (Experten-
Evaluationen und Benutzer-Studien) evaluiert. Die Forschungsergebnisse werden in
dieser Dissertation präsentiert.

Abstract

The continuous, automated verification of software requirements has become a core
practice in modern development processes. The automatically verifiable requirements
are manifold, ranging from static code analysis and functional testing to automated
building and deployment. The automated nature of these verifications minimizes
the required manual effort, allowing their continuous application throughout the
development life cycle. This practice helps to spot errors as soon as possible, thereby
reducing the cost of repair.

In particular, agile software development processes depend on automated veri-
fication. Agile development is based on frequent, incremental changes, a practice
which perpetually bears the danger of introducing errors. Thus, the constant verifi-
cation of the developed software’s integrity and correctness is crucial for the success
of agile projects.

In current software development practice, automatically and continuously ap-
plied verifications are mostly limited to evaluating functional requirements, while
non-functional concerns of software quality, for example usability, are rarely em-
ployed. In this thesis, an extension of the established set of verification methods is
proposed: using automated usability evaluation (AUE) techniques, usability aspects
can be analyzed and verified on the same level of automation as functional correct-
ness. The requirements for the integration of AUE methods into existing automation
systems, as well as characteristics of these systems, are examined. Then, an AUE
tool for Web software development meeting the requirements is presented. By au-
tomatically exploring Web applications, the tool accesses and inspects all pages of
the Web application; additionally, the navigation graph structure is analyzed. The
tool’s application is exemplified by describing its integration into the Extreme Pro-
gramming (XP) development method and XP’s automation framework, Continuous
Integration. Implementation issues are highlighted, and applicability for commercial
software development is discussed.

The presented approach is based on the experiences and results gathered during
an applied research project. In the course of this project, different aspects of agile
development were studied over a period of three years. A special focus was put on
the integration of usability practices, probing usability expert involvement and appli-
cation of AUE methods. These experiments were evaluated by additional, externally
conducted examinations, namely expert evaluations and user studies. The results of
this research are presented in this thesis.

Contents

Kurzfassung (abstract in German) 1

Abstract 2

Table of Contents 3

List of Tables 7

List of Figures 8

1 Introduction 10
1.1 Agile Development . 10

1.1.1 Software Development Processes 10
1.1.2 Concepts of Agile Development 12
1.1.3 Automation in Agile Development 15

1.2 Usability . 20
1.2.1 What is Usability? . 20
1.2.2 Usability Engineering . 21
1.2.3 Automated Usability Evaluation 25

1.3 Research Context . 28
1.4 Results of this Thesis . 29

1.4.1 Agile Development Process Description 30
1.4.2 Application Development . 30
1.4.3 AUE Tool and Process Integration 31

1.5 Structure of this Thesis . 32

2 User Interface Design for a Mobile Multimedia Application: An
Iterative Approach 34
2.1 Introduction . 34

3

CONTENTS 4

2.2 Related Work . 36
2.2.1 Applications . 36
2.2.2 Iterative User Interface Design 37

2.3 Usage Scenarios . 37
2.3.1 TV Archive for Subway Riders 37
2.3.2 Radio Archive for Car Drivers 37
2.3.3 Media Recommendations for Users 38

2.4 Usability . 38
2.4.1 Iterative User Interface Design 39
2.4.2 An Iterative Design Example 40
2.4.3 User-Centered Application Design 42

2.5 User-Based Recommendations . 42
2.5.1 Interactive Model . 43
2.5.2 Behavior-Based Model . 43
2.5.3 Model Combination . 43
2.5.4 Implications . 44

2.6 Conclusion . 44

3 Optimizing Extreme Programming 46
3.1 Introduction . 47
3.2 Project Environment . 47
3.3 Process . 49

3.3.1 Fully Implemented Practices 49
3.3.2 Partially Implemented/Modified Practices 52

3.4 Reflection . 53
3.5 Conclusion . 55

4 Integrating Extreme Programming and User-Centered Design 56
4.1 Introduction . 56
4.2 Common Values of XP and UCD . 57

4.2.1 End-User Involvement . 58
4.2.2 Continuous Testing . 58
4.2.3 Iterative Development . 58

4.3 Project and Team Setup . 59
4.4 The Design Process . 59

4.4.1 Approach to UCD . 59
4.4.2 Choosing the Type of Mock-Up 61
4.4.3 Frequency of End-User Tests 61

CONTENTS 5

4.4.4 The Testing Workflow . 62
4.4.5 Feedback from a Usability Test 62
4.4.6 Testing Issues . 63

4.5 Conclusion . 64

5 Agile User-Centered Design Applied to a Mobile Multimedia
Streaming Application 66
5.1 Introduction . 66
5.2 Similarities between XP and UCD . 68

5.2.1 End-User Involvement . 68
5.2.2 Continuous Testing . 68
5.2.3 Iterative Development . 69

5.3 Project and Team Setup . 69
5.4 Application Features . 70
5.5 Agile Usability Process . 71

5.5.1 Approach to User-Centered Design 71
5.5.2 Choosing the Type of Mock-Up 72
5.5.3 Frequency of End-User Tests 73
5.5.4 Integration of HCI Instruments 73
5.5.5 Testing Issues . 74
5.5.6 Communication and Collaboration 75
5.5.7 The Planning Game . 75
5.5.8 Pair Programming . 76
5.5.9 On-Site Customer . 76

5.6 Usability Study . 76
5.6.1 Improvements of Layout and Design 77
5.6.2 Improvements of the Usability of the Prototype 77
5.6.3 A Task Example . 79

5.7 Conclusion . 82

6 Concept and Design of a Contextual Mobile Multimedia Content
Usability Study 84
6.1 Introduction . 84
6.2 Related Work . 86
6.3 Application . 86

6.3.1 Features . 87
6.4 Selection of Respondents . 89
6.5 Study Setup . 89

CONTENTS 6

6.5.1 Media Content . 90
6.5.2 Diary Study . 91
6.5.3 Contextual Interview . 92

6.6 Expected Results . 93
6.7 Conclusion . 94

7 Continuous Usability Evaluation 96
7.1 Introduction . 96
7.2 Related Work . 100

7.2.1 Automated Usability Evaluation 100
7.2.2 Development Process Integration 103

7.3 Automated Usability Evaluation in Continuous Integration Environ-
ments . 103
7.3.1 Capture . 104
7.3.2 Analysis . 107
7.3.3 Critique . 109
7.3.4 Integration in the Automated Build Process (CI) 111

7.4 Graph-Related Usability Problems . 113
7.4.1 Self link . 113
7.4.2 Inconsistently Used Link Labels 113
7.4.3 Inconsistently Labeled Link Target URLs 114

7.5 Prototype Implementation . 114
7.5.1 Implementation Notes . 115
7.5.2 Walkthrough . 116
7.5.3 Limitations . 128

7.6 Conclusion and Future Work . 130

8 Epilogue 131
8.1 Conclusions . 131
8.2 Challenges and Perspectives . 133

Bibliography 134

Acknowledgments 147

List of Tables

3.1 Subjective Metric (Shodan 2.0 Input Metric Survey). 54

7

List of Figures

1.1 The steps performed during Continuous Integration. 18

2.1 Iterative User Interface Design Workflow. 39
2.2 From Paper Mock-Up to Mobile: The first Search-Results Screen. . . . 40
2.3 An additional HTML Mock-Up: A refactored Search-Results Screen. . 41

3.1 Application, Research and Business Aspects in a Release. 48
3.2 Selected Story Cards on the Release-Board (Release Planning). . . . 51
3.3 Selected Story Cards on the Iteration-Board (Iteration Planning). . . 51
3.4 Executable Code versus Test Code and Test Coverage. 53

4.1 Iterative User Interface Design Workflow [52]. 60
4.2 The Integration of HCI Instruments into XP [122]. 63
4.3 The Prototype of the Home Page. 64

5.1 Iterative User Interface Design Workflow [52]. 71
5.2 The Integration of HCI Instruments into XP [122]. 74
5.3 The Prototype of the Home Page [54]. 78
5.4 The Prototype of the Channel Page showing the Calender. 79
5.5 The Menu Entries without any visual Separation. 79
5.6 Improvements of Menu Layout and Arrangement. 81
5.7 Use the Space on top of the Clip Detail Page more efficiently. 82

6.1 Home Page. 87
6.2 Categories Page. 88

7.1 Simple page graph. 105
7.2 The steps performed during Continuous Integration, extended by an

AUE step. 112
7.3 Self link. 113

8

LIST OF FIGURES 9

7.4 Inconsistently used link labels. 114
7.5 Inconsistently labeled link targets. 115
7.6 Dialogs for creating and loading projects. 117
7.7 Project overview. 118
7.8 Crawl job summary. 119
7.9 Dialog for configuring and running a crawl job. 119
7.10 Extended crawl dialog. 121
7.11 List of all pages in the graph. 122
7.12 List of all links in the graph. 122
7.13 Page details. 123
7.14 Graph comparison. 124
7.15 Problem list. 125
7.16 Inconsistent link labels list. 126
7.17 Inconsistent link targets list. 127

Chapter 1

Introduction

This chapter introduces the two core aspects of the research presented in this thesis,
agile development methods and usability evaluation methods. Then, it presents the
subject of this thesis, automated usability evaluation in agile projects, and gives an
introduction on the context of the presented research. Finally, the overall structure
of this thesis is outlined.

1.1 Agile Development

Agile development was created as a response to the many shortcomings of traditional
development processes in software engineering. In the remainder of this section, the
roots of agile development are explored in more detail. Then, agile development
is introduced, followed by a description of the role of process automation in agile
development, which is an essential part of this thesis.

1.1.1 Software Development Processes

When software development started to become a major business in the 1960s and
1970s, the need to structure, manage, and plan software projects arose. Initially,
existing and well-established development processes from construction and manufac-
turing industries were applied to software projects. These processes implemented a
sequential paradigm: product development was broken down into steps or “phases”,
requiring each phase to be completed before continuing with the next. In the domain
of software development, this approach was later described as “Waterfall Model”.

The Waterfall Model is based on the sequential execution of well-defined life
cycle phases (e.g.: requirements specification, design, implementation, testing, and

10

CHAPTER 1. INTRODUCTION 11

maintenance) which build upon each other. A phase is started only when the outcome
of the previous phase is considered to be complete and correct.

The approach strictly separates planning steps from construction steps: when
initiating the implementation phase of the project, the project plan created in the
previous phase is assumed to contain all relevant information needed to implement
the project. If in a later stage of the project this plan turns out to be inconsistent with
the actual requirements and needs to be changed, this is considered to be a mistake
of a previous phase. However, in many software projects the final requirements are
not initially known, hence a comprehensive plan can often not be provided. There
are various valid reasons why requirements can change during a commercial software
project:

• The customer might find out that an important aspect was not considered
in the actual requirements analysis, and that the developed software product
would not be useful without introducing this aspect. This is a frequent mistake
when “translating” the customer’s needs into software requirements.

• Both developers and users of the software might get new insights during de-
velopment or by test-using prototypes, which, when applied to the project
implementation, could substantially increase the quality of the final product
[80].

• General technical advances during the course of the project might make parts
of the original plan obsolete.

• Better problem solutions than originally planned might be found during the im-
plementation, making development more efficient or the produced application
more effective.

• The legal context of the intended usage of the application might change, re-
quiring the application to be adapted accordingly.

The sequential development paradigm assumes that any project can be planned
in such detail that the actual implementation becomes the mere mechanic process
of following a plan. Again, this does not hold for many software projects: due to
the inherent complexity of software systems, unforeseen issues can arise during the
implementation, forcing the developers to diverge from the plan. This is especially
true if the project team has no or little experience with the used technologies or in the
project’s business domain; without the proper pre-knowledge, it is almost impossible
to plan all steps in detail.

CHAPTER 1. INTRODUCTION 12

Another implication of the Waterfall Model is the emphasis placed on documen-
tation artifacts. Comprehensive documentation of all relevant outcomes is the only
means of communication between adjacent phases, as different phases often are con-
ducted by different teams, preventing implicit knowledge transfer. Due to this reason,
Waterfall Model-oriented development methods are often critizised as “heavy-weight
processes”. A benefit of this approach is that work results only have to be verified
at phase borders: when a phase is completed, its results are verified, and assumed
to be correct in later phases.

Many less strict variations of the original Waterfall Model have been developed
(e.g., the “Sashimi Model” which allows the overlapping of adjacent phases). How-
ever, especially for small and medium-sized projects, the strict sequential develop-
ment process has proven to be impractical for many software development contexts.

To address these problems of Waterfall Model-oriented methods, new develop-
ment processes following an iterative paradigm were created, which allow to adapt
the initial plan in case of changed requirements.

1.1.2 Concepts of Agile Development

The term “agile development” was coined by a group of software professionals in
2001. This group met in order to discuss the shortcomings of the established and
commonly applied “heavy-weight” development processes and aimed at finding more
“light-weight” processes. The results of the meeting were written down and published
as the “agile manifesto” [16], an abstract description of the agreed-on values and
practices. Since then, the term “agile” has been used to describe a set of software
development methods which share the ideas of the agile manifesto. Some of the most
popular methods are Extreme Programming (XP) [15] and Scrum [101].

In the following, some core concepts of agile development are described.

Iterations

Agile development is based on the iterative development paradigm. In contrast to
the separate, coarse-grained phases of sequential development methods, agile devel-
opment focuses on short-term iterations, each of which contains some or all develop-
ment phases:

• At the start of the iteration, requirements are defined in detail and the iteration
is planned.

• During the iteration, the planned features are implemented and tested.

CHAPTER 1. INTRODUCTION 13

• At the end of the iteration, a working version of the developed software is
available.

The duration of an iteration varies depending on the concrete development
method; typically, iterations last between one and four weeks.

Detailed planning is only performed on iteration base: an iteration plan consists
of a list of implementation task descriptions; developers sign up for tasks and thus
take responsibility for implementation during the iteration. This keeps the planning
overhead low and minimizes the impact of requirement changes on project planning.
Each iteration aims at adding features which immediately increase the customer
benefit when using the software. Therefore, tasks are planned with a scope that is
both valuable for the customer and completable in a single iteration.

At the end of each iteration, the developed software must be in a working, us-
able state. This allows to frequently present incremental updates of the software to
the customer and get feedback, which can be incorporated into the next iteration’s
planning. Furthermore, these periodic results document the project progress most
accurately, so little emphasis is put on written-down documentation describing the
project.

Customer Involvement

Agile development puts much emphasis on the project “customer”. In general, the
customer represents the stakeholders of the project. Depending on the project con-
text, this could be a company commissioning a contractor to develop a software, or
the company employing the agile team (in case of in-house development), or even
the general public (in case of open-source projects).

Collaboration with the project customer is not restricted to initial requirements
analysis and final approval. Development aims at frequently providing new releases
(ideally every few iterations) which are deployed and used in a productive environ-
ment as early as possible. This serves two reasons: first, each released and deployed
version adds some value for the customer; and second, problems can be spotted early,
and the customer can provide feedback on the new version which helps to validate
the performed work.

The customer is required to take an active role in agile development. Usually, an
agile team contains a customer representative. This person is assigned to the team by
the project customer and mediates between development activities and stakeholder
interests:

CHAPTER 1. INTRODUCTION 14

• The customer representative supports iteration planning by prioritizing the
upcoming development activities: features are prioritized according to their
expected value for the customer, and planned accordingly.

• During iterations, the representative acts as a problem-domain expert for the
developers, in case any unexpected issues arise.

• At the end of an iteration, the current version of the software is demonstrated to
the representative, who in turn provides feedback on the implemented features.

Incremental Development

In contrast to “traditional”, plan-driven development approaches, agile development
accepts requirement changes as an integral part of software projects. Therefore,
agile development does not attempt to avoid change, but rather welcomes it as an
opportunity to improve the quality of the developed product. This acceptance for
change is reflected in the way agile development teams work:

• The customer, not the development team, decides the order of implemented
features. This means that implementation tasks are not grouped by technical
aspects; it is well possible that an iteration contains tasks which require working
on different parts of the software. As a result, subsystems of the developed
software are rarely “complete” but rather constantly subject to change.

• Since the software is required to work at each iteration’s end, all performed
changes need to be integrated with the entire software system immediately
(or, at least, in every iteration). Developers cannot implement subsystems
independently from the overall system and integrate them at a later point in
time; instead, the system is constantly kept in an “integrated” state.

• Instead of building comprehensive solutions that also cover assumed future
demands on the software, only the immediately necessary functionality is
implemented—work beyond that point is seen as a potential waste of time,
as requirements might change until the next iteration, rendering the additional
work obsolete.

Team Management

The focus of agile development lies on individual persons, as opposed to viewing
team members as replaceable positions in the process organigram. Personal meetings

CHAPTER 1. INTRODUCTION 15

are preferred over document-based correspondence; frequent communication between
the team members is the preferred way of knowledge transfer. Consequently, agile
development proposes to locate the entire project team in one place to ease direct
communication. Furthermore, the whole team participates in iteration planning, and
everyone is involved in decision-making. Also, developers are encouraged to work on
all parts of the system instead of specializing on specific parts in order to distribute
knowledge in the entire team.

Agile teams are considered “self-organizing”, so team structure and role distri-
bution are subject to team-internal decisions and are allowed to evolve during the
course of the project.

“Agile Values”

For the sake of completeness, the four “values” stated in the agile menifesto are listed
below:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contracted negotiation

4. Responding to change over following a plan

1.1.3 Automation in Agile Development

The incremental development style of agile development increases the danger of in-
troducing bugs or other unexpected effects to the software system, as even small code
changes can have unintended side effects on seemingly unrelated parts of the system.
To always ensure that the software is working, and working as expected—which is a
core value of agile development—, frequent verification of the software’s structural
and functional integrity is mandatory.

Structural integrity describes the (static) correctness of source files and the source
code. The integrity of source files depends on the correct naming, locating, and
referencing of files: when changing a file’s name or moving it to a different location,
other parts of the system which reference that file need to be updated accordingly.
The integrity of source code depends on the syntactical correctness: when existing
code is changed or deleted, all references to that code need to be updated.

CHAPTER 1. INTRODUCTION 16

Functional integrity describes the correctness of the software’s dynamic behavior.
This subsumes both the interaction between subsystems and modules of the software,
as well as the interaction between user and software.

Agile development promotes a range of practices to support preservation of soft-
ware integrity, for example:

Refactoring During implementation, structural code changes (i.e., changes which
do not alter software features, but only affect the program structure) are per-
formed in a controlled way by means of so-called “refactorings”, i.e., patterns
of simple programming steps which, when applied correctly, ensure that the
software’s functionality is unchanged [96]. Refactoring tools can automate this
process to a large extent. Most modern software IDEs (integrated development
environments; e.g., eclipse, Visual Studio) have built-in support for refactoring.

Automated Build Structural integrity can largely be verified by building the soft-
ware, i.e., by transforming the project’s source code to a runnable and de-
ployable software. Any changes applied to the source code are verified by
building; if a change violates the structural integrity, the build fails, requiring
the responsible changes to be identified and fixed. To allow frequent building,
agile development aims at making the build process fast and simple, which is
achieved by automating the build.

Unit tests On code level, functional integrity is controlled by unit tests [88]. These
tests test separate modules and functions, by invoking the implemented func-
tionality and comparing expected and actually retrieved results. Unit tests are
implemented as test programs; while their creation requires work from devel-
opers, their execution and evaluation is fully automated. Therefore, unit tests
are run as regression tests: each new test is added to the project’s test suite;
when evaluating a code change, all unit tests are run, not just the tests directly
related to the changed code. This allows to spot unintended side-effects of the
performed code changes.

System tests On system level, functional integrity is controlled by system tests
which evaluate the software in its entireness. Test users interact with the de-
ployed system and perform representative work tasks. System tests involve the
project customer who, both as user of the software and as domain expert, can
give feedback and point out problems. This type of test requires the software
to be built successfully, thus relying on the build system.

CHAPTER 1. INTRODUCTION 17

All these practices have in common that they (one way or another) apply automa-
tion in order to support the fast-paced development style of agile methods. While
agile development does not specify any specific automation systems, the implemen-
tation of agile practices often relies on automation. For example, one of the core
practices of XP is “continuous integration” (CI), which in the following shall serve
as an example of how automation drives agile projects.

CI denotes both a toolset and a work process. Its main aim is to support an in-
cremental development style: as development tasks are broken down into increments,
developers are required to frequently perform small yet consistent and meaningful
changes. All changes are applied to a shared code base, thereby directly integrating
them with the base system. If this integration fails due to integrity violations (i.e.,
the build or some automated tests failed), the CI system notifies the development
team which in turn is responsible for immediately fixing the problem.

CI applies automation on two levels. First, the steps required to build an appli-
cation, to deploy it, to test it, and to notify about any occurring integrity violations
are implemented as an automated task. Second, the invocation of this task itself can
be automated as well. Common triggers for invoking CI are:

• The CI system discovers when the project was changed and a re-integration is
required in order to verify the project’s integrity (implicit trigger).

• The CI system is executed at fixed times, e.g., as a “nightly build” (scheduled
trigger).

• Programmers can also trigger CI manually (explicit trigger).

Figure 1.1 shows a diagram depicting the steps which are run during a CI ex-
ecution. Any errors occurring during the steps are collected and passed on to the
Result Notification step. The diagram also includes the context of CI execution: CI
is triggered by an external event, and, when finished, notifies the development team
about its success or about the occurred errors.

Technically, CI environments are based on three main aspects: a central source
code repository, an automated build system, and automated testing1.

1None of these practices is specific to CI or XP; notably, code repositories and automated builds

have been successfully used in software engineering for decades. However, their combination and

usage as specified by CI yields a powerful tool for development and quality control, which also can

be applied outside the scope of agile development methodologies.

CHAPTER 1. INTRODUCTION 18

Figure 1.1: The steps performed during Continuous Integration.

Shared Code Repository

All developers concurrently send (“commit”) their code changes to a shared repos-
itory and retrieve (“update”) the latest code version from it. This serves different
purposes:

• By frequently committing incremental changes and retrieving updates, the
common code base gets distributed among the team. Therefore, all developers
work with the most current code version, which helps to spot inconsistencies
early.

• All changes get instantly integrated with the base system. This avoids the
(often problematic) explicit integration of separately developed subsystems.

• CI is informed when changes are committed by a developer and can trigger
verification steps.

CHAPTER 1. INTRODUCTION 19

• Single developers do not “own” parts of the code base, so inconsistencies in the
code can be spotted early.

The most common issue of concurrent development is a “commit conflict” which
occurs if two (or more) developers perform changes to the same resource at the
same time. Version control systems (VCS; e.g., CVS, Subversion) which serve as
code repositories can detect such conflicts. In some cases, conflicts can be resolved
automatically by the VCS, otherwise the affected developer is informed and requested
to solve the conflict, or to revert the change.

Automated Build

Depending on the size and complexity of a project, building an application from
source code can be a complicated, time-consuming, and error-prone task. Building,
amongst other things, comprises compiling source files, resolving dependencies be-
tween subsystems, configuring components, and creating installable binaries; in Web
projects, it is also common to deploy the built application on a test server. An au-
tomated build system provides means to automate all required build steps in order
to perform the whole build process by invoking a single command.

In a CI environment, the automated build is triggered automatically whenever
a developer commits a new version to the central code repository, or (if the build
takes too long for frequent executions) at least once a day at a fixed time, usually at
midnight (“nightly build”). The frequent automatic building helps to identify “bro-
ken builds”: a developer might commit a change which, when integrated with the
entire application, causes the build to fail (or, in less serious cases, yield a warning
message); for example, a resource referenced by other files was deleted, or a function
used by other parts of the application was renamed without also changing the de-
pendent code. The sooner such a broken build is disclosed, the easier it is to identify
the cause of the error and subsequently to fix the problem; therefore, the CI system
can send alert messages (e.g., via e-mail) to the originator of the responsible change
or to the whole development team.

Automated Tests

Every software project requires testing in some way in order to validate the developed
application regarding implicit and explicit requirements. Testing can be conducted
on different levels: for example, system tests ensure that the whole application be-
haves as expected by executing realistic use cases, whereas unit tests test a single unit
of source code (i.e., a function or a class) in great detail. In general, a software test

CHAPTER 1. INTRODUCTION 20

is performed by executing a series of interactions with (part of) the tested software
system and comparing the actual results with expected values. Most software tests
can be automated by means of a test program which automatically performs the
required test steps, validates the retrieved results, and yields the success or failure of
the test. Test automation has two main benefits over manual testing: the tests run
much faster, and they are reproducible without the danger of human errors slipping
in.

XP advocates that tests are written before the code they should test, and no
code is written without test (Test-Driven Development [14]). The tests have to be
maintained: when existing code is changed, the respective tests have to be changed
accordingly. This leads to a large number of up-to-date test cases which cover a big
part of the implemented functionality.

The CI environment executes the project’s entire test suite after every auto-
matically triggered (and successfully performed) build. This is done to verify that
a committed change also functionally integrates with the application: changes can
have unintended side-effects on other parts of the application, so all tests are run
to ensure that previously working code is not broken. The CI system’s notification
mechanism used to inform about build failures is also used to notify about failed
tests (in fact, failing tests are also considered to “break the build”). This immedi-
ate feedback helps to fix the introduced errors as soon as possible, which in turn
minimizes the impact on other developers’ work.

1.2 Usability

1.2.1 What is Usability?

Usability is an abstract, qualitative attribute which describes a device’s ease-of-use.
The usability of a device reflects the quality of interaction between human users and
the device. Therefore, it not only depends on device characteristics, but also on the
specific users and usage contexts.

The “devices” usability is concerned with are any objects persons can interact
with, ranging from simple things like books and door knobs, to complex machines like
mobile phones and cars. For the domain of computer programs (“virtual devices”),
and more specifically Web applications (which are the main focus of this work),
a common definition2 of usability [91] comprises five demands for usable software:

2There exist many defintions of usability, which, although differing in their details, overlap with

the presented five points [103].

CHAPTER 1. INTRODUCTION 21

learnability, efficiency, memorability, error avoidance, and satisfaction.

Learnability of a software describes how easy it is for a user to perform tasks
without prior knowledge of the software. Depending on the usage context,
a learning phase can be acceptable. Professional programs usually are too
complex to be used instantly without explicitly learning the user interface.
However, a simple application like an informational Web site should be usable
intuitively, without requiring the user to explicitly learn how to use it (assuming
that the user has pre-knowledge with other, similar Web sites).

Efficiency of Use describes how well a user who is already familiar with a software
can use this software. Usage efficiency can be measured (and hence compared)
as successfully performed tasks per time unit.

Memorability describes how well previous knowledge of the software’s usage can
be reapplied after not using it for a period of time.

Few and Noncatastrophic Errors The error aspect of usability expresses how
easy it is for users to commit a usage error, and how hard to recover from such
an error. On the one hand, software should prevent the user from committing
errors in the first place; on the other, once an error has occurred, the software
should support the user in fixing the problem. In general, the software should
be designed so that “catastrophic” (i.e., unrecoverable) errors cannot occur.

Subjective Satisfaction describes how “pleasant” it is for users to use the soft-
ware. This is especially important for public Web sites which aim at attracting
new users: a low user satisfaction can cause users to turn away from the site
and instead use alternative offers on the Web.

Another aspect of software usability which is gaining more and more importance
is accessibility, i.e., the degree to which users with disabilities (e.g. visually impaired
people) can use a software product.

1.2.2 Usability Engineering

The process of applying usability principles and improvement practices to software
development is called usability engineering. The aim of usability engineering is to
ensure a certain level of usability, taking into account the targeted user group and
usage context. This makes it necessary to measure usability. The techniques for
measuring usability are commonly referred to as usability evaluation methods. Hence,

CHAPTER 1. INTRODUCTION 22

the role of usability engineering in the software development process is to use the
results of usability evaluations in order to improve the usability of the developed
software.

Most usability evaluation methods can be broken down into three main activities
[59]:

Capture Initially, the relevant data for the usability evaluation has to be gathered.
In general, any kind of data related to the interaction between human and
computer can be of interest. The specific kind of data which is collected depends
on the applied evaluation method; it can range from qualitative feedback from
a user to a detailed record of every action a user performs on a user interface.

Analysis The collected usability data is inspected in order to identify potential
problems of the evaluated user interface.

Critique The found usability problems have to be put into context concerning their
severeness and relevance. Also, possible improvements or changes of the user
interface which would solve (or at least mitigate) the problems can be sug-
gested.

Usability is a non-functional requirement of engineering. As such, it cannot be
deduced directly from the software under development. Instead, different metrics
which indicate “good” or “bad” usability have to be collected; these metrics are
quantified and put into context with each other. For example, one measure would be
the number of committed user errors during a test usage session; another would be
the number of successfully performed tasks during a given time period; yet another
would be the number of identified deviations from a usability design guideline.

Quantitative usability measures allow to compare software interface designs. This
serves different purposes:

Evaluate designs When deciding between design alternatives, measurements help
to choose the variant with the best usability.

Validate usability improvements When trying to improve usability, measure-
ments allow to validate the performed steps.

Deduce best practices By measuring different design approaches, best practices
for usable design can be identified, which can be reapplied in future designs.

There exist different approaches to usability evaluation; the most important eval-
uation classes are listed below:

CHAPTER 1. INTRODUCTION 23

• testing the software with users (“usability testing”)

• applying usability expertise to judge the software’s usability (“usability inspec-
tion”)

• questioning users about the software to retrieve qualitative feedback, or pre-
senting general questions to potential users in order to collect information about
the users’ needs (“usability inquiry”)

It is not always necessary to implement a design in order to measure its usability.
Another approach is to use so-called “paper prototypes”, i.e., manually or virtually
drawn visualizations of the user interface which are used to simulate the intended
interactions [107]. Prototyping can be used with any of the mentioned usability
evaluation approaches.

In the following, the evaluation classes “usability testing” and “usability inspec-
tion” are discussed in more detail.

Usability Testing

In usability testing, test users are observed in a controlled environment while using the
software under test to perform a list of tasks [99]. Usability information is gathered
by observing in detail how the users manage to fulfill the requested tasks.

The data collected during usability tests can be of different kinds [33] [99]. To
analyze the steps users perform when using the software, all relevant user actions
(e.g., menu item selection, navigation, ...) have to be recorded. Also, the user’s
general behavior can be observed in order to deduce further aspects, e.g., whether
the user seems satisfied, frustrated, or lost in the user interface. To analyze the
usage efficiency of a software, the start and end times of tasks are recorded. With
eye tracking, the eye movements of the test user can be recorded [94]. Finally, pre-
and post-test questionnaires allow to collect additional qualitative feedback [39].

Furthermore, there exist some more specialized techniques for usability testing.
To get a deeper understanding of what users think when using the software, a ”think
aloud” test can be performed [74]. Here, test users are instructed to verbalize their
thoughts while performing the test tasks. Another method is “co-discovery” testing
where a pair of test users uses the software together [33]. The conversation between
the users is recorded in order to gain insights into the users’ understanding of the
software.

The overall number of test users participating in a usability test depends on the
goal of the test: in order to find as many usability problems as possible, large test

CHAPTER 1. INTRODUCTION 24

groups are preferable, while frequent tests with small test groups help to incremen-
tally improve a design. The test can either take place in the “test department” of
a company testing a product (either with in-house testers or external test persons
brought in), or in the workplace of actual users [91]. Additionally, tests can also
be carried out remotely: test users use the software in their own environment (e.g.,
home or office) instead of a test laboratory [5]. Usage and timing data is collected
programmatically and later analyzed and interpreted by the test conductors.

Usability Inspection

Usability inspection subsumes a list of methods where usability experts evaluate a
software design [92].

To measure the usability of a software, the evaluators inspect different proper-
ties of the user interface and check them against predefined principles. There exist
different so-called “usability heuristics”, lists of generic usability principles which
are applied to evaluate the general usability (“heuristic evaluation” [93]). To test for
more specific properties of the software, the evaluators use (or create) detailed guide-
lines which follow the specific usability requirements of the respective software design
(“guideline checking” [78]). In both cases, the test results in a list of deviations from
the predefined principles.

During a so-called “cognitive walkthrough” [73], the evaluators perform tasks,
trying to act and think like novice users of the software. The focus of this test lies on
finding out how easily the interface can be used from scratch, without any previous
knowledge (e.g., gained from reading a manual).

To measure efficiency of a software, an “action analysis” can be performed: the
test tasks are further broken down into smaller steps or “actions”, for each of which
a time estimate is provided. The actions can either be atomic (e.g., moving the
mouse pointer, or reading and recognizing a word on the screen; “keystroke level”
[24]) or abstract (e.g., selecting a menu item, or pressing the OK button; “back-
of-the-envelope” [74]). The expected time of task completion is then calculated by
summing up the action estimates.

CHAPTER 1. INTRODUCTION 25

1.2.3 Automated Usability Evaluation

Automated usability evaluation (AUE) tools3 automate different aspects of usability
evaluations. The degree of automation varies significantly among available tools,
ranging from support tools for “manual” evaluation methods which automate single
evaluation steps, to comprehensive fully-automated evaluation techniques.

In the following, some potential benefits of AUE tools are described [59]:

Reduced costs A major benefit of automation is the reduction of time spent on
evaluations. AUE tools can reduce (or even supersede) the effort of human eval-
uation conductors, thereby significantly decreasing the overall cost of usability
evaluations. For example, instead of employing an observer who manually notes
down all actions performed by a user, an AUE tool can automatically capture
and record all user inputs; this approach has the additional benefit that the
gathered action log is already in a computer-readable format, easing its use in
further analysis steps.

Increased consistency In contrast to human usability evaluators, automated tools
work deterministically. Repeated evaluations of the same user interface will al-
ways yield the same results, as they do not depend on the subjective judgement
and interpretation of humans. Also, a usability problem occurring multiple
times will be reported consistently.

Increased coverage Manual usability evaluations usually only cover a relatively
small part of the user interface due to time and cost constraints: evaluation
conductors choose a representative subset of the interface and then extrapo-
late the found usability problems to the entire application. For example, the
participants in a usability test are instructed to achieve specific goals during
the test session; this limits the effective exploration space of the test users. In
contrast, AUE tools are hardly restricted concerning time and other resources,
so they can assess an interface in its entirety. Also, the repeated application
of AUE tools is more cost-effective than a repeated evaluation with human
participants, and thus can be applied more frequently.

Less expertise required AUE tools which cover the analysis and critique activi-
ties of usability evaluations (see Section 1.2.2) encode expert usability knowl-
edge, reducing the need for this kind of expertise among the evaluators. This

3In the context of AUE, the terms “tool” and “method” are used synonymously, as every (partially

or entirely) automated evaluation method requires some kind of software tool which implements the

automation aspect.

CHAPTER 1. INTRODUCTION 26

enables development teams which do not comprise usability experts to incor-
porate usability principles in their development process.

It is important to note that automated evaluations can not substitute manually
conducted evaluations. AUE tools are applied in order to increase the efficiency
and/or quality of usability evaluations; they serve as a complement to standard
methods. A major drawback of AUE tools is that they can only identify expected
usability problems: if an AUE tool is not instructed to search for a certain kind of
problem, this problem cannot be found. Human testers, however, have the ability to
also identify unexpected usability issues.

There is no concise definition for AUE; on the contrary, most software tools
created or tailored for usability evaluations are labeled as AUE tools. Therefore, the
term is often used ambiguously, complicating the discussion and comparison of new
AUE methods due to the heterogeneous context.

A taxonomy for usability evaluation methods with a strong focus on AUE (pub-
lished by Ivory and Hearst [59]) shall serve as a display for the complexity of the
field of AUE tools. The taxonomy comprises three dimensions4 which are used to
categorize usability evaluation tools: the applied method, the provided automation
type, and the additionally required non-automated effort.

Method class and type The evaluation method of the AUE tool is categorized
on two levels. The taxonomy comprises five classes (testing, inspection, in-
quiry, analytical modeling, simulation), analogously to the usability evaluation
classes presented in Section 1.2.2. Each class again comprises approximately
ten more specific method types (e.g., for the testing class: think-aloud test, log
file analysis, ...).

Automation type The automation type describes the evaluation activity which is
automated by the AUE tool. The types are defined analogously to the equally
named basic evaluation activities. Four levels of automation are listed: none
(no automation; the described method is not an AUE method), capture (auto-
mated recording of usability data), analysis (automated detection of usability
problems in the data), and critique (automated solution proposal).

Effort level The effort level describes the amount of non-automated work required
for applying the tool. Four levels of effort are listed: minimal effort (almost

4In the original publication, the authors list method class and method type as separate dimensions,

resulting in four dimensions altogether; however, method type is a sub-categorization of method class,

hence the two are non-orthogonal and cannot be seen as independent dimensions.

CHAPTER 1. INTRODUCTION 27

no additional workload), model development (requires the creation of a model
depicting the user interface), informal use (requires the evaluated software
to be used with freely chosen tasks), and formal use (requires the evaluated
software to be used with predefined tasks).

To some degree, the applied “method class” also determines the possible au-
tomation. Obviously, evaluations incorporating test users (i.e., testing and inquiry
method classes) cannot be entirely automated since the relevant aspect of such eval-
uations is the nondeterministic behavior and subjective opinion of human testers;
still, AUE tools can aid as a valuable enhancement to increase the efficiency of such
methods. In contrast, evaluations which aim at objectively judging a user interface
based on predefined rules (i.e., inspection method class) can be largely automated,
given that the capture activity of the evaluation can be performed automatically: if
gathering of the relevant usability data does not require human involvement, then
also the remaining activities (analysis and critique) can be automated.

In the context of this document, the focus lies on AUE tools of the latter kind,
i.e., tools which are fully or largely automated. In the following, some commonly
used types of this evaluation method class (and examples thereof) are listed5:

Property checks There exists a wide range of tools for checking usability-relevant
properties of user interfaces. These tools usually are used by user interface
designers to certify that basic usability criteria are met.

A common example for this type of AUE are tools for checking the color con-
trast, e.g. according to the W3C’s Web Content Accessibility Guidelines [125].
This comprises simple static contrast checks which only requires the input of
foreground and background colors6, as well as dynamic analysis of an entire
Web page, analyzing the contrast of all elements of a Web page7. Another
common example are screen resolution simulators which allow to view a Web
page’s appearance in different screen resolutions8.

Guideline checks This type of AUE tool analyzes a user interface in its entirety,
compares its elements to a predefined rule set, and highlights rule deviations.

Technical guideline are applied to verify that a user interface’s implementation
is standard-compliant and thus can be assumed to be rendered correctly (i.e.,

5The presented AUE tools are mainly focused on usability of Web-based software; however, there

exist many similar tools for desktop-based software as well.
6E.g., http://snook.ca/technical/colour contrast/colour.html
7E.g., http://www.checkmycolours.com/
8E.g., http://www.screen-resolution.com/

CHAPTER 1. INTRODUCTION 28

without display errors) on the users’ computers. For example, the World Wide
Web Consortium (W3C) [123] has published a set of online tools which can
be used free of charge to verify that a Web page’s source code (e.g., HTML9,
CSS10, RDF11) is well-formed.

Other guideline checks are concerned with qualitative usability properties; these
tools are similar to the “heuristic evaluation” method in that they test for high-
level usability principles. For example, a range of tools12 covers accessibility
requirements (e.g., alternative texts for images on Web pages; appropriate color
contrasts; all functionality is controllable via keyboard) of Web pages. More
general usability aspects (also including aesthetic properties) can be checked
as well [90].

Model analysis Based on existing or especially created models of the application
structure, model analysis tools allow to verify usability-related aspects, not
merely perceiving user interface screens as independent units but also taking
into account the navigational context.

Many software development methods implicitly or explicitly comprise the cre-
ation of application models. For example, many Web development frameworks
are based on models of the navigation structure which can be accessed for
usability evaluations [6]; more generically, model-driven development (MDD)
by definition structures development around a comprehensive model which is
suitable for AUE [36].

1.3 Research Context

The research presented in this thesis to a large extent has taken place in the context
of the project “Mobile Multi-Media Replayer” (m3). This project was conducted
within the framework of SOFTNET Austria, and was partially funded by the Federal
Ministery of Economics and Labour of Styria, Austria.

The research goal of m3 was to evaluate agile development methods (particularly
XP) regarding their suitability for small and medium size enterprises. A strong focus
was put on integrating usability engineering methods with agile development. The
project topic was to plan, implement and evaluate a Web-based video portal for

9E.g., http://validator.w3.org/
10E.g., http://jigsaw.w3.org/css-validator/
11E.g., http://www.w3.org/RDF/Validator/
12E.g., http://wave.webaim.org/

CHAPTER 1. INTRODUCTION 29

mobile devices. The aim was to exemplify the agile development method on a “real-
world” example, in contrast to the “toy applications” often implemented in scientific
projects. Therefore, the developed software was also presented to market experts
and potential customers. The retrieved feedback was integrated in the development
cycle to further simulate a business-driven development project.

The project’s core team was located at the Institute for Software Technology of
the Technical University Graz. The project consortium additionally comprised four
Austrian companies, each of which brought in important knowhow: network and
communication technology consulting was covered by Kapsch CarrierCom; video
content analysis was facilitated by Sail Labs Technology; user interface design was
supported by E-NOVATION Gmbh; and usability expertise was provided by CURE
- Center for Usability Research & Engineering.

During the course of project, the benefits of continuous and automated testing—a
key practice of XP—became apparent, thus the practice was extended to the field of
usability. In a feasibility study conducted in tight cooperation with CURE, usability-
relevant tests were added to the project’s suite of automated tests. Then, as this
first attempt turned out to be successful, a more comprehensive testing scheme was
devised to verify further usability aspects.

The concept of an automated usability evaluation module as part of the Con-
tinuous Integration system was derived from the positive experience gained in the
project. This concept is presented in this thesis.

1.4 Results of this Thesis

The research conducted in the m3 project and resumed for this thesis yielded results
on different levels:

• an extensively documented and evaluated agile development process integrating
usability engineering as a core practice

• a software product which was evaluated concerning usability and market po-
tential

• concept and implementation of a fully automated usability evaluation tool,
ready for integration in the agile development process

CHAPTER 1. INTRODUCTION 30

1.4.1 Agile Development Process Description

The XP development method is optimized for small team sizes. It incorporates a
strong integration of the project customer who is involved in all design decisions
throughout the project. This practice is founded in the observation that the initial
project conception, formulated as a requirement specification document, rarely is
kept unchanged during the course of the project. XP promotes the often inevitable
requirement changes to a first-class right of the project customer, thereby increasing
the customer’s control, but also granting additional responsibility.

One major drawback of this approach, however, is that the “big picture” of the
developed software is not necessarily kept consistent during the project. This can
cause problems especially in the user interface of the software, where inconsistencies
are particularly visible. As a result, the developed software suffers from usability
problems.

The extended XP process described in this thesis aims at solving this issue by
incorporating User-Centered Design in the process workflow. This is implemented
by three main factors:

• Development and user interface design iterations are synchronized so that func-
tionality and usability can be planned on the same level.

• A usability expert is co-located with the development team or, if not possible,
at least available for requests (e.g., via phone or instant messaging). As a
minimum requirement, the expert must participate in planning meetings (both
at iteration and release scope). This ensures that no design decision is taken
without considering its usability implications; furthermore, it helps to increase
the awareness for usability among the development team.

• A range of usability engineering instruments is used at different stages of the
project: User Studies, Extreme Personas, Usability Expert Evaluations, Us-
ability Tests, and Automated Usability Evaluations.

In the remainder of this thesis, the tailoring of the standard XP method, the inte-
gration of usability engineering, and the applied usability instruments are described
in detail.

1.4.2 Application Development

During the m3 project, a Web-based video portal for mobile devices was developed.
The application facilitates video streaming to avoid the necessity for storing video

CHAPTER 1. INTRODUCTION 31

files on end-user devices. Furthermore, the video portal is implemented as a Web
application instead of a native rich client application and thus can be accessed via
the Web browser available on any modern handheld device. The application allows
users to browse the available video material by various categories as well as to search
in the entire metadata, including the spoken text of the videos.

The user interface was optimized for the use on handheld devices, taking into
account the various limitations of such gadgets (e.g., small screen resolution; high
color contrast due to unfavorable lighting conditions when used outdoors; limited
input capabilities). The specific usability needs of this kind of application served as
a testbed for the usability-aware XP development process described in this thesis.
The success of the development approach was evaluated by means of a usability
expert evaluation and a user study.

1.4.3 AUE Tool and Process Integration

Driven by the experiences with AUE gathered during the m3 project, a comprehen-
sive, fully automated and integrated usability evaluation tool for agile Web applica-
tion development was designed. The tool automates the “capture” and “analysis”
activities, and to some degree also the “critique” activity of usability evaluations.

Capturing of usability data is implemented by means of a Web crawler, i.e., a
tool component which automatically explores the Web application in a methodical
manner by following navigational links and downloading pages. The crawler collects
two kinds of usability-relevant data: page content (both as HTML content and as a
screenshot of the rendered page) and navigation structure information (in the form
of a graph data structure). The content of downloaded pages can be analyzed to
identify in-page usability problems, e.g., by performing guideline checks (see Section
1.2.3). The graph structure of the application, on the other hand, can be used to
analyze various navigation-related properties of the application, including navigation
consistency, page reachability, and click path lengths.

A central design goal of the developed AUE tool was to minimize the required “ef-
fort level”, that is, to keep the configuration and maintenance workload for software
developers using the tool as low as possible. While additional, optional configuration
effort can increase the benefit (i.e., the number and quality of correctly identified us-
ability problems), the most basic tool setup requires no more effort than to provide
the Web application’s start page. Furthermore, the tool can be integrated with the
project’s CI system. This yields two benefits: the execution of the usability evalu-
ation is triggered automatically at defined points in time (e.g., after every change
applied to the code base, or at every nightly build), and usability problems are

CHAPTER 1. INTRODUCTION 32

reported to the developers with the same level of importance as functional errors
identified by broken functional tests.

The described tool concept has been implemented as a comprehensive proof-of-
conecept and is currently being evaluated by usability experts at CURE.

1.5 Structure of this Thesis

The body of this thesis mainly consists of pre-published texts, except Chapters 1, 7
and 8, which are previously unpublished. The pre-published texts have been edited
and adapted to the context of this thesis where appropriate.

The following list gives a short description of each chapter’s contents:

1. In this initial chapter, the two central fields of research discussed in this thesis
are introduced: agile software development and usability engineering. Addi-
tionally, the context of research of this thesis is presented, and a preliminary
overview of the thesis’ results is given.

2. In Chapter 2, the project used as a testbed for the research of agile development
methods is presented. The developed application, a Web-based platform for
video playback on mobile devices allowing users to access a large database of
content, is described. Additionally, the agile development process applied for
conducting the project is outlined, with special focus on the integration of
usability engineering practices.

This chapter is a refined version of the texts “User interface design for a content-
aware mobile multimedia application: An iterative approach” [51], published
in Frontiers in Mobile and Web Computing: Proceedings of MoMM2007 &
iiWAS2007 Workshops, 2007, and “User Interface Design for a Mobile Multi-
media Application: An Iterative Approach” [52], published in ACHI 08: Pro-
ceedings of the International Conference on Advances in Computer-Human In-
teractions, 2008.

3. Chapter 3 describes the applied development process in detail, examining the
threefold alignment of project activities (application development, business de-
velopment, scientific work). The actually performed development activities are
compared to the practices originally stipulated by XP.

This chapter is a refined version of the text “Optimizing Extreme Program-
ming” [50] published in ICCCE 2008: Proceedings of the International Confer-
ence on Computer and Communication Engineering, 2008.

CHAPTER 1. INTRODUCTION 33

4. Chapter 4 describes usability-related adaptations of the XP development pro-
cess. The integration of five human-computer interaction instruments (User
Studies, Extreme Personas, Usability Expert Evaluations, Usability Tests, and
Automated Usability Evaluations) into the development process is explained.

This chapter is a refined version of the text “Integrating Extreme Programming
and User-Centered Design” [54] published in PPIG 2008: Proceedings of the
20th Annual Psychology of Programming Interest Group Conference, 2008.

5. In Chapter 5, the previously discussed aspects (application design, adapted XP
process, applied usability practices) are recapitulated. Then, the results of a
usability study (comprising usability tests and questionnaires) are summarized.

This chapter is a refined version of the text “Agile User-Centered Design Ap-
plied to a Mobile Multimedia Streaming Application” [53], published in USAB
2008: Proceedings of the 4th Symposium of the Workgroup Human-Computer
Interaction and Usability Engineering of the Austrian Computer Society on
HCI and Usability for Education and Work, 2008.

6. Chapter 6 presents the concept and design of a further usability study con-
ducted in the context of the m3 project. The selection of study participants
and the study setup are described.

This chapter is a refined version of the text “Concept and Design of a Con-
textual Mobile Multimedia Content Usability Study” [55], published in ACHI:
Proceedings of the Second International Conference on Advances in Computer-
Human Interactions, 2009.

7. In Chapter 7, an AUE tool which was designed and developed based on expe-
riences in the m3 project is presented. Initially, the general architecture of the
tool is outlined. Then, the tool’s AUE features (i.e., the discoverable usability
problems) and potential extensions are summarized. The applicability for us-
ability experts as well as software developers is discussed. Finally, the facilities
for integrating the tool in CI environments are shown.

8. Chapter 8 presents conclusions drawn from the research presented in this the-
sis, including both successfully achieved results and identified problem areas.
Finally, topics for future research in the field of AUE, with special focus on the
context of agile development, are presented.

Chapter 2

User Interface Design for a

Mobile Multimedia Application:

An Iterative Approach

Mobile phones have become full-featured mobile computers. Applications providing
good user experience and taking full advantage of the increasing capabilities of mo-
bile phones are still rare. One such application is audio and video on mobile phones,
which is expected to become a killer application in the near future. A lot of valuable
audio and video content is hidden in archives of content providers. We are developing
an application that enables a user to perform content-based search for audio and video
content in large databases and play it on a mobile phone virtually anywhere, at any
time. Our approach to application development focuses on the adoption of agile soft-
ware development methodologies and user-centered design, emphasizing iterative user
interface development involving usability engineers and non-technical users. Thus,
the application evolves according to the needs of the end user, providing maximized
usability and customer satisfaction.

2.1 Introduction

Mobile computing is leading a revolution. Our lives are changing at a pace never
experienced before in human history. A wide variety of applications for mobile phones
is available at the moment. Still, there are not so many full-featured applications
which utilize the available bandwidth and are accepted by the users.

Studies show that multimedia – Audio and Video (AV) – consumption is on the

34

CHAPTER 2. USER INTERFACE DESIGN ... 35

edge to become one of the next killer applications for mobile devices [32]. User
behavior in consuming AV is changing. Traditional broadcasting is losing more and
more audience because online and mobile AV intrudes heavily into this area. A recent
report states that 43 % of Britons, who watch video regularly from the Internet or
on a mobile device, are now watching less TV than before [11]. Clearly, it is in the
interest of broadcasting companies to adapt to these changes in user behavior and
invest in these new technologies. For these companies, one of the major advantages
of mobile phones, compared to other devices, is that they can charge for their services
easily and directly, as the existing infrastructure can be reused. Additionally, the
possibility to place advertisements for specific user groups is a huge benefit. At the
same time, customers are given the flexibility to access rich multimedia content from
anywhere, at any time.

The major problem for an average user is the combination of the overwhelm-
ing amount of multimedia content available and unsatisfactory user interfaces for
accessing it. Usability is the key success factor for such applications.

For this reason, we are developing an application that enables a user to perform
content-based search for AV content and play it on a mobile phone. This content
includes radio and TV archive material, such as documentaries or other recordings
of historical, political and cultural importance, discussion programs, movies, music
videos, audio books, and music. The AV content will be stored in a database contain-
ing transcribed speech from the clips, as well as additional metadata, such as titles
or a summary, where available. The media delivery will be based on standard web
technology. This will enable people to use this service with almost any modern mo-
bile phone. Furthermore, the application addresses not only the emerging functional
and cognitive needs of the users, but also the objectives of the content providers.
The application is designed keeping in mind the social interaction aspects of users.
The system provides different community-building features to encourage interaction
amongst them. The aim is to build a community platform for mobile phone users,
where they can share their views and interests about AV content provided by the sys-
tem. The feedback from the community will reflect the current trend of multimedia
consumption as well.

One of the research goals of this project is to apply usability test procedures for
mass-market applications on mobile phones. At present, usability testing for mobile
phones is cumbersome and too expensive for small and medium sized enterprises.
Another objective of this project is to automate certain parts of the usability testing
procedures and provide a testbed for effective and efficient mobile usability testing.
Special emphasis is placed on the adoption of agile software development method-

CHAPTER 2. USER INTERFACE DESIGN ... 36

ologies, in particular Extreme Programming (XP), for mobile phones and their user
interfaces.

This chapter presents an overview about related work. The following section
presents different usage scenarios. Afterwards, the usability engineering process,
which is applied to the iterative UI development cycle, is described. The next sec-
tion defines various user-based recommendation approaches. Finally, a conclusion is
given.

2.2 Related Work

This section provides an overview of related work. Basically, existing work can be
divided into the categories applications and iterative user interface design. Related
work in each of the categories is examined in the following subsections.

2.2.1 Applications

This section provides an overview of different AV search and streaming applications.
They can be categorized by means of features they offer, particularly speech recog-
nition, which is used to enhance the meta data for advanced search and streaming
on mobiles.

Mobile YouTube [127] and MobiTV [25] allow to search for content and stream it
on mobile phones. Mobile YouTube has the big advantage to have Google as parent
organization, but the content is very limited and consists only of user-contributed
material. In comparison to that, MobiTV offers different realtime worldwide TV
channels streaming without search functionality, but for streaming on a mobile phone,
client-side software is required.

In contrast to this, Blinkx [21], TVEyes [117], and EveryZing [35] perform speech
recognition in order to enhance the search with additional meta data but do not
provide mobile phone streaming. Blinkx provides user-contributed content as well as
content from broadcasting companies. The content offered by TVEyes is restricted
to news material, and the content of EveryZing is restricted to web based content.

Other applications offering online video search and streaming are JumpCut [63]
and Joost [61]. Neither has the feature of speech recognition or streaming on mobiles.
Jumpcut has the big community of Yahoo users but is limited to user contributed
content. Joost provides more content, but is based on peer2peer technology requiring
its own client-side software still in its beta phase.

The comparison shows that there is no application offering both features, speech
recognition and streaming on mobiles, at the same time, which our application does.

CHAPTER 2. USER INTERFACE DESIGN ... 37

2.2.2 Iterative User Interface Design

There already exist approaches of combining agile methodologies and Usability Engi-
neering [48][81][29]. However, to the best of our knowledge none applies this specific
composition of practices: we combine XP [15], user-centered design, and an itera-
tive user interface design approach utilizing different HCI instruments such as user
studies, extreme personas (a variation of the personas approach), usability expert
evaluations, usability tests, and automated usability evaluations.

2.3 Usage Scenarios

In daily life, many people are at work or school at day time. They have no time to
watch TV or listen to radio programs, because of the schedules set by the broad-
casting companies. Time-delayed, played-back, and individually-delivered AV on
mobile phones provides a new platform taking radio and TV into the street, car,
public transport, waiting room, park, and virtually any other location. This type of
application creates additional audiences, eager to access multimedia content during
new prime times set by themselves, that is, in their commuting periods or other
idle times. Also, a market survey shows that consumers are interested in using this
technology and are ready to pay a realistic price for these services [25]. The basic
idea of such a system can be illustrated by the following sample usage scenarios.

2.3.1 TV Archive for Subway Riders

• A commuter in the subway searches for “Fernando Alonso”.

• The system matches each word of the textual search query with the positions
it occurs in each AV clip.

• The system presents a list of clips in which the name “Fernando Alonso” has
been mentioned, sorted by temporal occurrence and relevance based on content,
e.g., how often the name was mentioned.

• The user selects one of the presented entries.

• The system’s media server streams the selected clip to the user’s mobile phone.

2.3.2 Radio Archive for Car Drivers

• A user listens to the last sentences of a radio broadcast about the “European
Constitution”. The user still has to travel with the car for some time and

CHAPTER 2. USER INTERFACE DESIGN ... 38

therefore searches for the keyword “European Constitution”.

• The system lists a number of related news items, interviews, and documen-
taries.

• The user selects the desired topic.

• The handsfree set of the mobile phone plays back the selected material through
the car’s stereo.

2.3.3 Media Recommendations for Users

• A user wants to consume AV content but has nothing particular in mind.

• The user asks the system for recommendations.

• The system generates recommendations based on the user’s stored preferences
and on the recent behavior of other users. A short description of each item is
provided as well.

• The user selects an item and plays it on the mobile phone.

If the user interrupts the media stream, in all scenarios it is possible to resume
at the previous location at any time, even weeks later. This feature is unavailable
with regular broadcasting or streaming systems. The user of this system has more
flexibility for consuming the AV content. This is particularly important because of
the short continuous viewing or listening periods. For example, while commuting,
interruptions and (possibly much) later resumptions will be the regular case.

Such behavior is rather uncommon for AV consumption so far, especially for
viewing video. But it is not so much different from the way a book is read, having
breaks between reading periods. Thus, it seems plausible that users will be willing
to switch to this new way of listening and viewing AV content with interruptions,
as it brings them the convenience of being able to decide what to consume in a
just-in-time way, independent of place and time.

2.4 Usability

User interface design determines the success or failure of almost any application.
Massive AV consumption on mobile phones will be accepted only, if users can easily
find what they are searching for. But search on a mobile phone presents unique
challenges as compared to a PC [82]. The inherent interface limitations of mobile

CHAPTER 2. USER INTERFACE DESIGN ... 39

phones strongly constrain the choices of user interface and interaction design. Special
attention has to be paid to the constraints of small screens [67], possibly unfavorable
lighting conditions, and limited text input capabilities.

We propose an iterative and user-centered approach to user interface design and
system development in order to solve the stated problems.

2.4.1 Iterative User Interface Design

Usability is evaluated in small iterative steps to gain insight into whether the users’
functional and cognitive requirements are met. User interface prototypes of the
system are developed and tested throughout the development process. As a result
the fidelity of the prototypes increases and evolves.

Figure 2.1: Iterative User Interface Design Workflow.

The workflow presented in Figure 2.1 illustrates the iterative design approach.
The process starts with the creation of user stories by the customer or the product
manager who acts as a representative of the customer. Developers create different
paper mock-ups to collect and present ideas. A final mock-up is derived, serving
as the basis for further development. The benefit of using paper mock-ups for the
interaction design is that they can be designed and modified quickly. Because of
that, the feedback given by the usability engineers and the users can be incorporated
easily. An additional advantage is that it is easier for users to criticize simple and

CHAPTER 2. USER INTERFACE DESIGN ... 40

(a) Paper Mock-Up. (b) Application on Mobile.

Figure 2.2: From Paper Mock-Up to Mobile: The first Search-Results Screen.

rough mock-ups compared to ones which look neat and perfect from the graphic
design perspective [102]. For simple interaction designs, a paper mock-up suffices as
a basis for further discussions and the implementation. In more complex cases, an
additional HTML mock-up is created based on the final paper mock-up.

The approach combines the quick feedback-and-change cycle of hand-drawn pa-
per mock-ups with the more time-consuming process of computer-based prototypes.
Paper mock-ups are used to get the basic concepts right, while HTML mock-ups are
used for a more detailed view.

The designs are examined by usability engineers and tested by non-technical
users. The feedback from the usability engineers, as well as from the users, is taken
as input for further refinements of the design. Also, the results are incorporated
into automated tests which are used, by employing test driven development, as an
executable specification for the actual implementation. This feedback-and-change
cycle provides insights into whether the user interface design is meeting different
usability criteria.

For the actual user tests it is important to choose representative test users from
different age groups, bearing in mind the targeted customers for the proposed service.
These tests are conducted only after incorporating the feedback from the usability
engineers on the paper as well as the HMTL mock-up. Therefore, the expensive part
of involving real users can be done more effectively.

2.4.2 An Iterative Design Example

For the paper mock-up in Figure 2.2(a) the usability engineer raised the following
issues:

CHAPTER 2. USER INTERFACE DESIGN ... 41

• Missing strategy for displaying larger result sets (balance between pagination
and scrolling).

• Missing feedback mechanism to highlight the pointed-to item (especially needed
in unfavorable lighting conditions).

• Undefined application behavior after playback of the clip ends (no return option
specified).

(a) Paper Mock-Up.

(b) HTML Mock-

Up.

(c) Final Application.

Figure 2.3: An additional HTML Mock-Up: A refactored Search-Results Screen.

Figure 2.3 shows the mock-ups of an improved version of the same feature. Here,
an HTML mock-up was created after the paper mock-up. The design was derived
from the following user scenario (a so-called user story in XP [15]):

Search results presented to the user should contain clip-related information which
can aid the user in choosing the clip. Also, the context in which the keyword was
found, as well as the number of search results, should be visible. Furthermore, it
should be possible to start a new search immediately.

CHAPTER 2. USER INTERFACE DESIGN ... 42

It can be seen that two issues from the previous feedback, namely pagina-
tion/scrolling and item highlighting, have been addressed in the refactored design.
On the refactored design depicted in Figure 2.3 the usability engineer provided the
following feedback:

• Forms: It is common to leave some white space between text-input-field and
the button. For graphical user interface solutions there are distances fixed in
guidelines for the operating system - for mobiles we recommend to put the
button in a second line (this is preferred to putting the button close to the
input field).

• Background Colors (Table): The alternating rows should vary decently, and
should preferably be coloured in slightly different shades - the selected colors
are “eye bending”.

2.4.3 User-Centered Application Design

User interface development cannot be separated from the development of the under-
lying application. Intended user interactions strongly influence the internal structure
and functionality of the system [28]. A big issue in mobile user interface practice is
that current approaches are not sufficient for mobile phones [108]. Therefore, another
focus is placed on the combination of iterative user interface design and user-centered
application design.

The design process and user tests provide feedback about the user interface which
will be used for the system’s functional requirements. It reveals the mental model
of the users, how they expect the system to work. The assessment of each feature
from the perspectives of the users influences the whole development process of the
application and addresses the problem that conversation only with the stakeholders
is not enough [60]. As the application development is done in short iterations, the
developers are able to refactor the system continuously according to the feedback
derived from the parallel, iterative, user interface design process. Hence, the system
evolves according to the needs of the end user and the specifications derived from
actual usage.

2.5 User-Based Recommendations

Web-based companies already use recommendation systems with great success. Ama-
zon, for example, has millions of customers. Seeing the benefits of recommendations,

CHAPTER 2. USER INTERFACE DESIGN ... 43

Amazon has developed its own technique called “item-to-item collaborative filter-
ing”. Their customers regularly take advantage of these recommendation facilities
when making their purchases [75].

The personalized approach of our system makes it possible to implement user-
based recommendations. The unique identification of a user is necessary for account-
ing purposes, implying that a user profile has to be managed by the system. This
profile will be augmented with additional data, which is used for recommendations
to the same and to other users. The data is collected by means of two information
acquiring models, the interactive model and the behavior-based model.

2.5.1 Interactive Model

The interactive model is based on user ratings. After users finish consuming an
item, they are able to rate it according to their liking and preferences. Information
about which clips a user consumed is stored in his individual profile. In addition, the
corresponding clip ratings are stored as well. The rating of a specific clip in each user
profile affects the overall rating of the clip in the database. The individual ratings
are still traceable. For more personalized recommendations, ratings of similar user
groups can be combined.

2.5.2 Behavior-Based Model

The behavior-based model is applied by collecting usage data. Information about the
clips consumed, and the duration of the consumption, is stored in the user profiles.
This is used for user-specific recommendations. If many users stop the same clip
after a short time, this clip is most likely not very interesting. Of course, this equally
depends on the overall playing time. Therefore, a ratio measure is used for clip
rating. The system will take into account that users are allowed to stop and resume
clips at any time, which can influence the measurements. Alternatively, it is possible
to consider ratings of a specific user group only, as described in 2.5.1.

2.5.3 Model Combination

When generating recommendations, the two models already described are combined.
For the system, user ratings are more important than usage data. However, rat-
ings may not be available for every item. In this case, only behavior data is used.
Furthermore, the changing preferences of users are taken into account by adding a
time-descending weighting factor.

CHAPTER 2. USER INTERFACE DESIGN ... 44

There are different scopes for the rating mechanism. On the one hand, all users
are considered, and on the other hand, just a specific user group is considered. This
results in different recommendations. The default recommendation setting can be
overridden by user preferences.

2.5.4 Implications

An attractive feature of the system is the possibility to target advertisements more
precisely. This feature is useful for companies wanting to address specific user groups.
Additionally, users benefit, because they receive only advertisements related to their
interests. For example, Google’s Gmail is using this technique for advertising pur-
poses on its popular mail accounts. The large user base of Gmail is a valuable target
for business. The advertising is tailored to users’ mail contents. Gmail also offers
the possibility to use mobile devices [41]. As Google has purchased YouTube, it is
expected that this trend will continue. The advertising and search capabilities are,
or will be soon, extended to video content as well [82].

The feature of collecting additional user data provides continuous feedback, en-
abling constant improvement of the system. By recording this information, valuable
data about how the user is interacting with the system is obtained. This allows to
react quickly to new usage patterns and needs as they arise.

2.6 Conclusion

The emerging technologies of delivering rich AV content on mobile phones will result
in reducing the number of users for traditional TV and radio broadcasting services.
This might compel traditional TV and radio broadcasting companies to become part-
ners in this technology by opening their huge collections of AV content to the public.
Today’s consumers are willing to pay a reasonable price for this service [25]. Accord-
ing to current trends, the community of mobile phone application users will grow
rapidly. The standards concerning codecs, formats, and technical infrastructure, re-
quired for AV content delivery on mobile phones are already well established. These
general trends are in favor of the development of this type of application.

The critical factor for this kind of applications will be user acceptance, which
heavily depends on the fact that the system suits the user’s needs. To address
this issue, in our software engineering process, usability engineers are accompanying
the system development team during the whole project life cycle. The engineers
provide suggestions that are incorporated continuously into the system. This process
is facilitated by the short development iterations and has proven to provide early

CHAPTER 2. USER INTERFACE DESIGN ... 45

and valuable feedback. The test-driven development approach allows to convert
these findings into a set of automated tests. These tests define the functionality
of the system, serve as specifications for the development, and prevent previously
discovered usability problems from reappearing. Furthermore, the inclusion of test-
users provides additional benefits. This continuous input allows to adjust the system
effectively according to the end-user’s needs.

Chapter 3

Optimizing Extreme

Programming

The vast amount of published literature explaining the “right way” of doing Extreme
Programming shows, that in practice there simply is no single right way. Even though
Extreme Programming is a simple and slim process, it has to be tailored to the nature
of each team and project in order to provide the benefits it promises.

Our team has been working on a project employing the Extreme Programming
methodology, experiencing unique issues arising from the distinct project setup and
team composition, as well as the additional academic interests in the project. Ini-
tially, we aimed at applying “pure Extreme Programming”, but it became more and
more obvious that for our project some of the practices just cannot be applied in their
“pure” form. The concrete interpretation of these practices determines if Extreme
Programming can be applied successfully in the context of a team and a project.

In order to reach an optimized process for our project, we continuously evaluate
different approaches of applying Extreme Programming practices on short release
basis. We have noticed that some practices can be adopted directly, while others need
to be tailored according to the unique environment. In this chapter, we reflect on
our process based on the data collected through code analysis and process evaluation
tools, as well as notes of process retrospective review meetings. The lessons we have
learned can also help other teams to lead them to an optimized Extreme Programming
process for the success of their projects.

46

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 47

3.1 Introduction

The number of software projects constantly increases, but the overall success rate
is still rather low [77]. Many projects fail because of their inability to cope with
the changing user requirements. Heavy up-front design without continuous feedback
from the customer is another factor. To have a greater probability of success, the
developers need a software development process which should be flexible enough to
cope with the constantly changing requirements and which is also people-oriented.
Agile software development methodologies have emerged in response to these needs,
as agile methods give more value to individuals, working software, and change [16].

The intention of large scale research into software engineering techniques has
been a formulation of an ideal methodology that can consistently and predictably
lead to software development success [86]. A recent survey shows that agile software
development has seen far better success rates in comparison to other methodologies
[4]. Being an emerging agile methodology, Extreme Programming (XP) offers a
number of practices, values, and principles, which are advised to be adopted in order
to run a software development project [15]. XP is being experimented in different
ways to make it fit to the specific needs of the projects as well as the development
teams [111].

This is of interest for many academic, research and development organizations, as
there is a room for more explorations in the area of agile development methodologies.
Many experience reports in the field of agile research have been presented, helping
other teams passing through the same process [111]. However, there is still a need
for more experience reports of teams already using XP, giving valuable information
for those, who are planning to adopt the XP methodology. In addition, this data
also serves the purpose of defining the agility level of software development teams.
In this chapter, we present our own experience about the XP methodology which we
have gained by applying it to a software development project.

The next section describes our project environment. In Section 3.3 our XP pro-
cess, focusing on the practices applied in our project, is presented. Section 3.4
describes our reflections. Finally, a conclusion is presented.

3.2 Project Environment

We are developing a multimedia streaming application for mobile devices as a testbed
to analyze the XP methodology. XP is being applied in a progressive manner: each
practice is consciously applied and constantly evaluated in order to yield process

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 48

improvement. Hence, each team member is not only taking part in the software
development process, but is also making a critical analysis of the way the process
is being used. The objective of the project is twofold: on the one hand, having a
software product fulfilling the user requirements, and on the other hand, XP process
optimization as profound academic research.

We have been working on the project since summer 2007. The project’s duration
is three years, which is quite appropriate for the development of the product, as well
as for the team members to carry out the research for their doctoral studies.

We are a team of six regular members: five developers and a product man-
ager. The product manager plays the role of the “On-Site Customer”, enabling the
implementation of this XP core practice. Furthermore, he communicates with the
partners who come from various domains, including telecommunication, content pro-
viding, and hardware infrastructure. Also, developers communicate directly with the
engineers of a partner usability research company regarding usability issues.

This project’s main scientific and academic goal is the analysis of agile software
development methodologies. Another goal is research in the field of mobile appli-
cation usability. Additionally, the business partners are interested in commercial
aspects of the project. Figure 3.1 shows the allocation of the application, research,
and business aspects after the first one-month release.

Figure 3.1: Application, Research and Business Aspects in a Release.

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 49

3.3 Process

It was pre-decided that XP will be used as a methodology. Therefore, effort was made
to establish a basis for its implementation. None of the team members had worked in
an agile development environment before, so available literature, especially [12][15],
was used for initial guidance and reference. The team tried to apply all those main
practices which could be applied at the initial stage of the project. In this way, some
of the basic practices were adopted fully, while others were implemented partially,
or in modified form. The following subsections outline how the practices have been
implemented, as well as the current status.

3.3.1 Fully Implemented Practices

Small Releases

We aim to release a working version of our application to the project partners on
a regular basis. In the early stages of the project, the duration of one release cycle
was set to one month. This enabled us to quickly get feedback on our work from
the partners in order to sharpen our vision of the project goal. As the project took
shape, the release size was gradually increased to two and finally to three months.
For now, we are satisfied with three-month release cycles, which complies with the
quarterly planned business targets of the partners.

For tracking short-term progress, releases are further divided into iterations. Ini-
tially, we used a one-week iteration duration, but later we shifted to two week itera-
tions in order to reduce the administrative overhead added by the iteration planning
meeting.

The Planning Game

The planning meetings are held on iteration and release basis. Release meetings are
attended by all project partners who, as stakeholders of the project, identify and
define user requirements. These requirements are then are formulated as XP user
stories.

In our project, we distinguish three main types of user stories: application, busi-
ness, and science.

• Application stories are “traditional” XP user stories, representing features of
the application.

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 50

• Business stories describe diverse business activities, e.g., collaboration with
partners, meetings, presentations, etc.

• Science stories are only relevant for our team, hence they are not specified
during the release planning meeting. They depict the academic and research
activities of the team, e.g., paper-writing, performing process analysis, etc.

The stories generated during the release planning are written down on story
cards and are prioritized by the participating partners. To visually represent the
different story types, we use a simple color encoding for the different story types:
application story cards are white, business cards are green, and science cards are
yellow. Then, the developers estimate the time required for implementing the stories.
Also, stories created in former release meetings that have not yet been implemented
are re-estimated, if required. The final step of the release planning is to select a
subset of the available stories. This is done by prioritizing the available stories and
selecting as many top-priority stories as “fit in” the available velocity. The amount
of user stories to be scheduled is determined by following calculation: the sum of
their estimates is lower than or equal to the sum of the estimates of the user stories
finished in the previous release.

The iteration meeting is held at the beginning of each iteration and is attended
only by team members including the product manager. The product manager takes
the role of the on-site customer and selects and prioritizes stories for the current
release. The stories are then broken down into detailed tasks, which are again esti-
mated by the developers. The intended results of the tasks are explicitly defined by
writing acceptance criteria.

Figure 3.2 and Figure 3.3 show user story cards of release and iteration plannings
stuck on whiteboards.

Pair programming

All production code is written by two developers working together on the same
machine with one screen, one mouse and one keyboard [12][15]. This practice has
been implemented from the first day. It helped us in sharing the project-specific
knowledge and improving the technical skills of the developers.

We also applied working in pairs to non-technical stories. For example, the
product manager pairs with a developer when writing customer-acceptance tests
and when creating business assignments requiring technical knowledge. Working in
pairs on research stories was not successful. For this kind of stories everyone works
solo.

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 51

Figure 3.2: Selected Story Cards on the Release-Board (Release Planning).

Figure 3.3: Selected Story Cards on the Iteration-Board (Iteration Planning).

In daily stand–up meetings, the developers sign up for tasks according to their
interest. The pair partners are chosen voluntarily [106].

Sit Together

The team members including the product manager sit in one large room at their
private workspaces. There are three separate pairing stations in the same room.
Due to sitting in the same room, the face–to–face communication has resolved many
difficulties which arose within the project, the team, and the process.

Collective Ownership

A Subversion repository is used for managing the code base. The code is shared by
all developers. Whenever a chance for code improvement is identified and there is
enough time at hand, the required actions are performed on the spot. The changes are

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 52

communicated in the stand-up meetings, during pair programming, and sometimes
through a short ad-hoc discussion involving all developers. One basis for a successful
application of collective ownership is the strict adherence to coding standards.

40-hour Week

The purpose of the “40-hour week” practice is that developers should not work over-
time, because tired developers make more mistakes during coding [46]. We strictly
follow this practice.

3.3.2 Partially Implemented/Modified Practices

On-Site Customer

As the target group of the product being developed within in project is manifold,
we cannot directly implement the on-site customer practice. Therefore, initially the
product manager, as well as the developers, played the role of the customer. But
soon, many shortcomings of this approach became apparent. The absence of common
acceptance criteria for the stories resulted in long discussion cycles in the planning
meetings and the implementation. We also felt difficulties in the prioritization of the
stories. To overcome those problems, we decided that the product manager, who
also communicates with our project partners, will play the role of the customer.

Metaphor

As everyone was new to the process and the project, there was no common un-
derstanding of the metaphor – the shared terminology about the project and the
process [12][15]. This resulted in misunderstandings about the features to be imple-
mented, which eventually led to the delaying of their delivery. The release planning
meetings with partners, our internal iteration planning meetings, stand-up meetings,
retrospective meetings, and pair programming have contributed to evolvement our
metaphor.

Simple Design and Refactoring

From the very beginning the team aimed at keeping the design as simple as possible.
The design started with creating paper prototypes to visualize customer require-
ments illustrating the customer how the requirements will be put into reality. An
important factor of being able to keep the design simple is refactoring. For our team,
simple design has been beneficial, because it facilitated the incorporation of changes

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 53

demanded by the partners. Refactoring of code is not a routine practice in our team,
but it is done on demand basis, that is, whenever any developer sees the opportu-
nity to improve the code, or when we need to substantially change the application
fundamentals, e.g., the usage of a new framework.

Test-first Programming

As all the team members were new to XP, it was difficult to follow the XP style of
writing the failing automated test before any code [12][15].

Figure 4 shows a graph comparing lines of executable code, lines of test code and
test coverage. For this, the data was collected using Emma, a Java code coverage tool
[34], and LinesOfCodeWichtel [76], and is based on the work performed during the
second release of the project. The low amount of test code and test coverage shows
that the practice of testing is not well exercised by the team. For the subsequent
releases, the implementation of this practice has improved. If not being impossible
due to framework restrictions, tests are being written beforehand.

Figure 3.4: Executable Code versus Test Code and Test Coverage.

3.4 Reflection

In order to measure the performance of the team and to resolve human issues, a
retrospective review meeting on the process is held after every iteration and release.
This retrospective meeting is called “reflection meeting”. It has helped us a lot to
find out the reasons for difficulties faced during the process and their remedies. The
common decisions that we take after these meetings are noted down and followed
by all team members. Almost all XP values – communication, simplicity, feedback,

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 54

courage, and respect – and XP practices adhere to human aspects [12][15]. The
benefits of sitting together, face-to-face communication, feedback, stand-up meetings,
the planning meetings, pair programming, and reflection meetings have contributed
to improve not only our process, but also increased the overall morale of the team.

To review the development process, we collect empirical data from various sources
describing our performance of each applied XP practice.

For a qualitative analysis, we perform the Shodan 2.0 survey [68] on a regular basis
(e.g., at the end of each release). Additionally, we use quantitative data generated
by the XP tracker tool “XPlanner” [126], and different code analysis tools [34][76].

Table 3.1: Subjective Metric (Shodan 2.0 Input Metric Survey).

Testing metrics %

Test First Design 44
Automated Unit Tests 68
Customer Acceptance Tests 22

Planning metrics %

Stand-up meetings 92
Short Releases 86
Customer Access / On-Site Customer 48
Planning Game 96

Coding metrics %

Pair Programming 98
Refactoring 66
Simple Design 76
Collective Ownership 86
Continuous Integration 100
Coding Standards 84
Sustainable Pace 82
Metaphor 46

The data gathered using Shodan 2.0 Input Metric Survey shown in Table 1 gives
an overview about the methodology and the extent to which a given XP practice
is applied. As there was an explicit effort to apply these practices, low percentages
indicate that either the team was not fully content with the practice, or the practice

CHAPTER 3. OPTIMIZING EXTREME PROGRAMMING 55

needs to be tailored for our project. For example, the team members perceived that
pair programming was practiced for almost every development task, while metaphor
was given the lowest rating because of the unfamiliarity of the team members with the
project. These conclusions are also supported through iteration and release reflection
notes and from key discussion points raised in stand-up meetings.

3.5 Conclusion

After working with XP practices for almost one year, our experience shows that most
of the practices are helpful for a project with multiple objectives (in our case, re-
search, application development and business). Pair programming helps in spreading
knowledge. The benefits of co-location, face-to-face communication, stand-up and
planning meetings, and retrospective review meetings have contributed to improve
not only our process, but also to increase the overall morale of the team. The low
ratings of some practices indicate that our team still needs more experience to apply
them in a proper way.

We continuously try to optimize our approach to XP. Future results will help
software development teams working under similar environments to improve their
development process for the success of their projects.

Chapter 4

Integrating Extreme

Programming and

User-Centered Design

The success of a software development project is associated not only with tools and
technologies, but it also depends on how much the development process helps to be
user-centered and developer-oriented. Involving customers in the process and be-
ing people-oriented, Extreme Programming – one of the popular agile methods – can
be a choice for developing a usable system. The project under study is a multi-
media streaming application for mobile phones. The application allows to perform
content-based search for audio and video content in large databases and play it on a
mobile phone virtually anywhere, at any time. Our approach to application develop-
ment focuses on the adoption of Extreme Programming and User-Centered Design,
emphasizing iterative user-interface development involving usability engineers and
end-users.

This chapter describes the process of integrating Extreme Programming with User-
Centered Design and shows how an agile development technique facilitates to be user-
oriented and at the same time preserves the social values of the development team.

4.1 Introduction

An inherently usable and technically elegant application cannot be considered a
success, if it does not satisfy the end-users’ needs. End-users are often left out of
the development process [83]. A usable software application should focus on its end-

56

CHAPTER 4. INTEGRATING EXTREME PROGRAMMING ... 57

users, their goals, and their satisfaction. Agile development processes - especially
Extreme Programming (XP) - involve a customer as business representative, who
is responsible to specify the business value of user requirements and prioritize them
accordingly in the development. Along with this, XP possesses all the advantages
of: on-time delivery, optimized resource investments, short release cycles, working
high quality software, tight customer integration, incremental design and test driven
development [12][15]. All these characteristics are in favor of the customer and
ultimately benefit the end-user. XP, being people oriented, defines the whole social
structure which is needed to run a development process in a productive way.

User-Centered Design (UCD) is a design approach focused on the information
about the people who are the actual users of the product. This user focus is main-
tained by considering this information during planning, design, and development of
a product [120].

Although XP and UCD are two different methodologies, both focus on the user.
Due to the same main focus, both methodologies can be integrated very easily [42].
The integration will obviously result in a complementing process, which allows to gain
the advantages of both worlds, and at the same time minimizes the deficiencies of
both methodologies. The disadvantages of bot approaches are eliminated: XP lacks
in knowing their true users and UCD lacks in a flexible and adaptive development
methodology that lasts throughout the entire project [115].

In the context of this project, we integrate XP and UCD [44], utilizing differ-
ent Human Computer Interaction (HCI) instruments such as user studies, personas,
usability expert evaluations, usability tests, and automated usability evaluations [52].

The following section outlines the integration points of both methodologies by
comparing the values of the two methodologies. Then, our project and team setting
described in order to show in which context and by whom the process is used. We
proceed by going into the details of our UCD process and afterwards examine the
results of a usability study recently conducted by the usability engineers. Finally, a
conclusion is given.

4.2 Common Values of XP and UCD

The core values of XP and UCD are applied to solve different issues: In XP, a simple
implementation, fulfilling the minimum requirements of the application, is created
and iteratively extended, while UCD tries to continuously improve the usability of
the user interfaces. However, when comparing some of the core values, it seems
obvious that the two development processes can benefit from each other’s practices.

CHAPTER 4. INTEGRATING EXTREME PROGRAMMING ... 58

4.2.1 End-User Involvement

One of the core practices of XP is to have an On-Site Customer, a real user of the
application under development, who is co-located with the programmers in order to
answer domain-specific questions and give feedback on the system. This practice
matches well with the testing of prototypes with actual users as proposed by UCD.

4.2.2 Continuous Testing

Continuous and extensive testing is at the heart of XP. It is mainly embodied by
two practices: Continuous Integration runs all existing automated tests whenever
the code base is changed or extended in order to check if the changes caused any
undesired side effects. Most of these tests emerge from Test-Driven Development.
First, automated tests checking the desired behavior are created. Then, the actual
behavior is implemented and can be evaluated right away with the tests. This usually
is done only for pure behavioral code, but can be extended to user interfaces. Tests
can check the expected behavior of an interface, and these tests can be run whenever
the code is changed.

The end-user tests of UCD are a valuable source for test targets. An unexpected
user action that caused a problem in the application can be replicated as an auto-
mated test. By executing this test in the Continuous Integration process it is ensured
that the problem, after solving it once, does not reappear.

4.2.3 Iterative Development

Both processes, XP [12] and UCD [44], propagate an iterative procedure of design and
development [120]. An XP project yields Small Releases (another core XP practice)
on a regular and frequent basis (usually a few months). Each release version is based
on the previous one, incorporating new features and fixing bugs of the predecessor.
Inside a release time frame, work is organized in “iterations” (usually taking one to
four weeks). On an even smaller scope, many feedback-and-change iterations take
place, especially in conjunction with Test-Driven Development and Refactoring (the
practice of changing source code in order to improve its quality without changing its
functionality).

UCD also proposes a design–test–modify circle for developing user interfaces. The
scope of iterative development in XP and UCD differs. Releases and iterations in XP
are mainly organizational units and Refactoring is considered to be a development
tool. In contrast to this, UCD’s iterative user interface refinement is a more explicit

CHAPTER 4. INTEGRATING EXTREME PROGRAMMING ... 59

process, as its involvement of external persons (the test users) makes it more com-
plex. Nonetheless, iterative interface development of UCD fits well into the iteration
principle of XP, because both approaches are aware of the value (and necessity) of
evolutionary development.

4.3 Project and Team Setup

We are developing an application that enables a user to perform content-based search
for audio and video content and play it on a mobile phone. This content includes radio
and TV archive material, such as documentaries or other recordings of historical,
political and cultural importance, discussion programs, movies, music videos, audio
books, and music. The application is being designed keeping in mind the social
interaction of users. The system provides different community-building features to
encourage interaction amongst them [52].

In addition, one goal of the project is the analysis of agile software development
methods, particularly XP, and to devise a usability test procedure for mass applica-
tions on mobile devices with emphasis on UCD and iterative user-interface design.

The team consists of six full-time regular members, having different social and
cultural background; five developers (two of them are from South Asia and the others
are from Europe)and a product manager who plays the role of the On-Site Customer.

The customer communicates with the project partners, who come from various
domains, including user interface design, usability research, telecommunication, con-
tent providing, and hardware infrastructure. Also, developers communicate directly
with the engineers of a partner usability research center regarding usability issues.
The usability engineers working for our project are active in UCD research with the
team.

4.4 The Design Process

The following subsections describe our adapted UCD process which is followed in
application development.

4.4.1 Approach to UCD

User interface design plays a very important role in the acceptance of a web based
application. The overall process of our approach to UCD is based on evaluating the
usability of the application in small iterative steps. This helps us to gain insight into

CHAPTER 4. INTEGRATING EXTREME PROGRAMMING ... 60

the real users’ functional and cognitive requirements. We design prototypes of the
user interface of the system and test them throughout the development process. As
a result the fidelity of the prototypes increases and evolves.

Figure 4.1: Iterative User Interface Design Workflow [52].

The work flow presented in Figure 4.1 illustrates our iterative design approach
incorporating UCD into our XP process. From a broad perspective, the application
development cycle starts with defining user stories (user-required application fea-
tures), then comes to mock-up designing and at the end the actual implementation
is performed. The process steps are implemented as follows:

• Different feature-related user stories of the application are created by the cus-
tomer in coordination with all the stakeholders.

• Developers create different paper mock-ups for each of the required features to
collect ideas and to present them to the customer.

• The customer decides which one of the mock-ups best suits his needs, or he
suggests modifications to the mock-ups.

• A final mock-up is derived according to customer’s likeness which then serves
as the basis for the actual implementation.

CHAPTER 4. INTEGRATING EXTREME PROGRAMMING ... 61

• Once the implementation mock-up of a feature (or group of related features)
is finished, the usability engineers are asked to give the feedback on it.

• After incorporating the feedback given by the usability engineers into the ap-
plication, the end-user tests are conducted by the usability engineering team.

• The feedback on the application from the usability engineers, as well as from
the test-users, is taken as input for further refinements in the user interface
design of the application.

• The results are then incorporated into automated tests, which serve as an
executable specification for the actual implementation.

This feedback-and-change cycle provides insights into whether the user interface
design is meeting different usability criteria. As the application development is done
in short iterations, the developers are able to refactor the system continuously ac-
cording to the feedback derived from the parallel, as well as iterative, user interface
design process. Hence, the system evolves according to the needs of the end-users
and the specifications derived from actual usage.

4.4.2 Choosing the Type of Mock-Up

We make use of two different types of mock-ups; low fidelity paper mock-ups and
high fidelity implementation mock-ups. The benefit of using paper mock-ups for
the interaction design is that they can be designed and modified quickly. For sim-
ple interaction designs, a low fidelity paper mock-up suffices as a basis for further
discussions and the implementation. An additional advantage is that it is easier to
criticize simple and rough mock-ups compared to ones, which look neat and per-
fect from the graphic design perspective [102]. But for some features a high fidelity
mock-up is required to clearly visualize the interface. As we have the benefit of an
on-site customer co-located with the development team all the time, for those tasks
a quick implementation mock-up is designed and presented to the customer. This
implementation mock-up is then modified accordingly, if required by the customer.
If our customer would not have been co-located with us all the time, it would have
been difficult to have the benefit of this quick feedback-and-change cycle.

4.4.3 Frequency of End-User Tests

The end-user tests are made on an on-demand basis. That is, when the customer says
that now is the appropriate time, from the business point of view, to run a usability

CHAPTER 4. INTEGRATING EXTREME PROGRAMMING ... 62

test with test-users. Also, when there is enough of new functionality added to the
application, it becomes effective to perform the usability tests and then continue
with development. It would have been good, if user tests could have been made
on regular basis, e.g., at the end of each release, but considering the expenses and
resources required for it, we have kept it only on an on-demand basis. So, the
expensive part of involving real users is done more effectively.

4.4.4 The Testing Workflow

Figure 4.2 describes our model of integrating HCI instruments (user studies, per-
sonas, extended unit tests, usability tests and usability expert evaluations) into the
XP process [122]. It shows the interplay of the HCI instruments into the XP process.
Applied correctly in different phases of the project the instruments are designed to
reach the goal of improved usability of the application. It can be seen that end-users
are integrated in two different ways. First, user studies are taken into account to
develop personas [64]. The personas specify the direction of the development (by
guiding the customer in identifying user stories) and are extended at the end of the
iteration, when the vision about the user has broadened. This serves as an indirect
end-user input for the development process. Second, feedback from usability tests
performed by test-users (as part of the usability evaluations) serves as a direct input
for further enhancement and development of the application [122].

4.4.5 Feedback from a Usability Test

The following points were highlighted as the result of a recent usability study con-
ducted by the usability engineers on the latest version of the application available at
that time. Figure 4.3 shows a screen shot of the application. The application was
evaluated with ten test-users on a specific mobile phone. Results of the evaluation
were (example issues):

• Improvements of layout and design. Some major changes in the layout and
design of the user-interface were suggested by the usability engineers according
to the feedback given by the test users.

• Improvements of the prototype’s usability. Some usability issues became ap-
parent for some navigation and data controls on the interface

• Improvements of the colour schemes. The users were also presented three
different color schemes of the application. They graded the color schemes as
best average and worst.

CHAPTER 4. INTEGRATING EXTREME PROGRAMMING ... 63

Figure 4.2: The Integration of HCI Instruments into XP [122].

During this study, two of the developers were participating as observers. This
provided a great opportunity for the developers to see how users actually reacted to
simple items and controls used in the interface. At the end of the study, many new
stories were generated from the observations and interviews with the end-users. This
approach of testing involves the end-users directly in eliciting their requirements: how
they perceive the application, and what they want from the application.

4.4.6 Testing Issues

A big issue in mobile user interface practice is that current approaches are not suf-
ficient for mobile phones [108]. For designing any software, use of UCD practices
ensures that the product works [65]. This further supports the use of UCD the
approach for user interface design. To enhance it further, we provide high fidelity
implementation prototypes to our usability engineers for user testing. As paper pro-
totypes are good and sufficient for verifying non mobile-based product requirements,
in case of applications for mobile phones they are not sufficient for finding out and
solving usability issues related to detailed interaction [65]. Also, it is very important
that the application is tested on mobile phones and not on some web based simulator

CHAPTER 4. INTEGRATING EXTREME PROGRAMMING ... 64

Figure 4.3: The Prototype of the Home Page.

for understanding the interaction issues concerning the use of mobile phone interfaces
[65].

4.5 Conclusion

XP is a lightweight process that puts very little administrative overhead on the de-
velopers. Therefore, extending XP with additional practices is much easier than
extending other, more restrictive, methodologies. The integration of usability engi-
neering methods works especially well because of the many overlapping principles
(e.g. iterative development, end-user incorporation) of XP and UCD.

The user interface design process of UCD is highly beneficial, as it provides feed-
back which is used for the system’s functional requirements [42]. The assessment of
each feature from the users’ perspectives influences the whole development process
of the application and addresses the problems which arise when the system require-
ments are gathered only by discussions with stakeholders [60].

When deciding about usability issues in our project, we try to involve not only
the development team and the product manager, but also the usability engineers

CHAPTER 4. INTEGRATING EXTREME PROGRAMMING ... 65

and all project stakeholders, especially end-users. This practice led to an application
that, from the beginning, was lacking many of the teething troubles common to
technician-dominated development teams and can be seen as a big success factor for
our project.

Chapter 5

Agile User-Centered Design

Applied to a Mobile Multimedia

Streaming Application

Mobile computing is leading a revolution. Multimedia consumption on mobile de-
vices is increasing day by day. The most important factor for the success of such
applications is user acceptance. Additionally, the success of a software development
project is associated not only with tools and technologies, but also depends on how
much the development process is user-centered and developer-oriented. We are work-
ing on a project to develop a multimedia streaming application for mobile phones.
This chapter describes our adopted development process: the integration of Extreme
Programming – one of the popular agile methods – with User-Centered Design. Fur-
thermore, it is shown how the integrated process facilitates user-orientation and at
the same time preserves the social values of the development team. This chapter also
presents a summary of a recently carried out usability study.

5.1 Introduction

The most important factor for the success of a software application is user acceptance.
An inherently usable and technically elegant application cannot be considered a
success if it does not satisfy the end-users’ needs. End-users are often left out of
the development process [83]. Agile development processes involve a customer as
a business representative who is responsible to specify the business value of user
requirements, but this customer needs not necessarily to be a real end-user.

66

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 67

Agile methods are becoming popular nowadays. Being a lightweight agile method,
Extreme Programming (XP) has the advantages of: on-time delivery, co-located
team, relying on the team members’ knowledge rather than documentation, opti-
mized resource investments, short release cycles, working high quality software, tight
customer integration, incremental design, constant communication and coordination,
rapid feedback, continuous refactoring, pair programming, and test driven develop-
ment [12][15][2]. XP is a collection of well-known software engineering practices. XP
aims at enabling successful software development despite vague or constantly chang-
ing software requirements. The novelty of XP is based on the way the individual
practices are collected and lined up to function with each other [2]. It is also a
people-oriented process with many social core practices.

Usability measures the quality of a user’s experience when interacting with a
product or system. User-Centered Design (UCD) is an approach for employing
usability [118]. UCD, also called human-centered design, is an approach to user
interface design which is based on information about the people who will use the
product. UCD processes focus on users throughout planning, design, and devel-
opment of a product [120]. Holzinger emphasizes that every software practitioner
should be aware of different usability methods and apply them according to specific
situation of a project [47].

There already exist approaches of integrating agile methodologies and Usability
Engineering (UE) / UCD [48][37][81][29][85]. Memmel et al. point out that when
UE becomes part of agile software engineering, it helps to reduce the risk of running
into wrong design decisions by asking real end users about their needs and activities
[85].

The focus of both methodologies, XP and UCD, on users makes it possible to inte-
grate them [42]. The integrated process allows to combine benefits of both method-
ologies and makes it possible to reduce the shortcomings of each. XP needs to
know its true end-users and UCD benefits from a flexible and adaptive development
methodology which runs throughout the project life-cycle [115]. We integrate XP
and UCD in our project, where we are developing an application that enables a user
to perform content-based search for audio and video content and play the streamed
content on a mobile phone [54]. The end-users are indirectly involved in the pro-
cess by our use of different Human-Computer Interaction (HCI) instruments such as
user studies, personas, usability expert evaluations, usability tests, and automated
usability evaluations [122]. Usability of a mobile application is an important ongoing
research issue. Numerous studies address UE / UCD issues for mobile applications
[19][49][66]. We conduct various usability studies and in this chapter a summary of

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 68

one of the studies is presented.
Section 5.2 outlines the similarities between XP and UCD. Section 5.3 examines

the project environment. Section 5.5 describes the adopted process. Section 5.6
provides the details of a usability study. Section 5.7 concludes the chapter.

5.2 Similarities between XP and UCD

The core values of XP [15] and UCD [44] are applied to solve different issues. In
XP, a simple implementation fulfilling the minimum requirements of the application
is created and iteratively extended, while UCD tries to continuously improve the
usability of the user interface. However, when comparing some of the core values
it seems obvious that the two development processes can benefit from each other’s
practices.

5.2.1 End-User Involvement

One of the core practices of XP is to have a Customer on Site who is co-located with
the programmers in order to answer domain-specific questions and give feedback on
the system. This practice can be matched well with the testing of prototypes with
actual users as proposed by UCD. Especially, if the customer is also the real end-user
or if developers have direct access to end-users.

5.2.2 Continuous Testing

Continuous and extensive testing is at the heart of XP. It is mainly embodied by
two practices: Continuous Integration runs all existing automated tests whenever
the code base is changed or extended in order to check if the changes caused any
undesired side effects. Most of these tests emerge from Test-Driven Development.
First, automated tests checking the desired behavior are created. Then, the actual
behavior is implemented and can be evaluated right away with the tests. This is
usually done only for pure behavioral code, but can be extended to user interfaces.
Tests can check the expected behavior of an interface, and these tests can be run
whenever the code is changed.

The end-user tests of UCD are a valuable source for test targets. An unexpected
user action that caused a problem in the application can be replicated as an auto-
mated test. By executing this test in the Continuous Integration process it is ensured
that the problem, after solving it once, does not reappear.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 69

5.2.3 Iterative Development

Both, XP and UCD, propagate an iterative procedure of design and development
[44][12][120]. An XP project yields Small Releases (another core XP practice) on
a regular and frequent basis (usually a few months). Each release version is based
on the previous one, incorporating new features and fixing bugs of the predecessor.
Inside a release time frame, work is organized in “iterations” (usually taking one
to four weeks). On an even smaller scope, many feedback-and-change cycles take
place, especially in conjunction with Test-Driven Development and Refactoring (the
practice of changing source code in order to improve its quality without changing its
functionality).

UCD also proposes a design–test–modify circle for developing user interfaces. The
scope of iterative development in XP and UCD differs. Releases and iterations in XP
are mainly organizational units and Refactoring is considered to be a development
tool. In contrast to this, UCD’s iterative user interface refinement is a more explicit
process as its involvement of external persons (the test users) makes it more com-
plex. Nonetheless, iterative interface development of UCD fits well into the iteration
principle of XP, because both approaches are aware of the value (and necessity) of
evolutionary development.

5.3 Project and Team Setup

We are working in a project where we develop an application that enables a user to
perform content-based search for audio and video content and play it on a mobile
phone. The project started in summer 2007 and will end in 2010. The application
enables a user to search not only in the metadata but also in the spoken words of the
AV clips. This content includes radio and TV archive material, such as documen-
taries or other recordings of historical, political and cultural importance, discussion
programs, movies, music videos, audio books, etc. The application is being designed
keeping in mind the social interaction of users and provides some Web 2.0 features
[52].

In addition, one goal of the project is the analysis of agile software development
methods, particularly XP, and to devise a usability test procedure for mass applica-
tions on mobile devices with emphasis on UCD and iterative user-interface design.

The team consists of six full-time regular members having different social and
cultural backgrounds, five developers and a product manager who plays the role of
the On-Site Customer of XP.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 70

The customer communicates with the project partners who come from various
domains, including user interface design, usability research, telecommunication, con-
tent providing, and software-hardware infrastructure. Also, developers communicate
directly with the engineers of a partner usability research center regarding usabil-
ity issues. The usability engineers working for our project are also active in UCD
research with the team.

5.4 Application Features

The user interface of the current prototype comprises the following main features.
The application’s main screen provides the features: “Search”, “Top rated”, and
“Most recent” clips. It provides links to the “Channel” and “Media Feeds” pages,
as well as a link to the “Clip Detail” page when one clicks on the title of a clip. The
application also implements a few other Web 2.0 features like “Recommended” and
“Most viewed” clips.

Search:

“Search” allows to search the whole AV content by entering keywords. It displays
the search results ordered by broadcast date (if any). For each result item, the clip’s
title, link, description, duration, originating channel (if any), and a representative
thumbnail image are shown. The user can play a clip by clicking on the respective
link.

Channel:

“Channel ” allows to browse the schedule of TV and radio channels. A channel lists
the original program schedule of the current day, but users can browse the schedule
of previous days or can search within the channels. Users can select the date and
the time (either Morning, Afternoon, Prime time, or Night), where the system then
displays the list of clips in the selected time period, ordered by broadcast time. The
resulting items are shown in a similar format as in the “Simple Search” result list
with rating stars and a channel icon for each clip in the schedule. The top of the
page also provides a dropdown list for selecting channels.

Media Feeds:

The “Media Feeds” feature is intended to provide the users a facility to create and
consume a constantly updated stream of clips based on the users’ search criteria.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 71

This media feed can be sent to a friend by SMS or email.

Clip Detail:

The system shows the “Clip Detail” page when users click on the title of the clip.
Users can rate a clip, add a comment, or view all comments. With the “Tell a friend”
feature, users can send a clip to their friend by SMS or by email.

5.5 Agile Usability Process

The following subsections describe the process which is followed in application de-
velopment.

5.5.1 Approach to User-Centered Design

User interface design plays an important role in the acceptance of a web based
application. The overall process of our approach to UCD is based on evaluating the
usability of the application in small iterative steps. This helps us to gain insights
into the functional and cognitive requirements of real users. We design prototypes of
the user interface of the system and test them throughout the development process.
As a result the fidelity of the prototypes increases and evolves.

Figure 5.1: Iterative User Interface Design Workflow [52].

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 72

The work flow presented in Figure 5.1 illustrates the iterative design approach
incorporating UCD into our XP process. From a broad perspective, the application
development cycle starts with defining user stories, then comes to mock-up designing,
and at the end to the actual implementation. The process is executed as follows:

• Different feature-related user stories of the application are created by the cus-
tomer along with partners.

• Developers create different paper mock-ups for each of the required features to
collect ideas and to present them to the customer.

• The customer decides which of the mock-ups best suits his needs or suggests
modifications to the mock-ups.

• A final mock-up is derived according to customer’s wishes, which then serves
as the basis for the actual implementation.

• Once the implementation mock-up of a feature or a group of related features
is finished, the usability engineers are asked to give feedback on it.

• After incorporating the feedback given by the usability engineers into the ap-
plication, end-user tests are conducted by the usability engineering team.

• The feedback on the application from the usability engineers, as well as from
the test-users, is taken as input for further refinements of the user interface
design of the application.

• The results are then incorporated into automated tests which serve as an exe-
cutable specification for the actual implementation.

This feedback-and-change cycle provides insights into whether the user-interface
design is meeting different usability criteria. As the application development is done
in short iterations, the developers are able to refactor the system continuously ac-
cording to the feedback derived from the parallel, as well as iterative, UI design
process. Hence, the system evolves according to the needs of the end user and the
specifications derived from actual usage.

5.5.2 Choosing the Type of Mock-Up

We make use of two different types of mock-ups; low fidelity paper mock-ups and
high fidelity implementation mock-ups. The benefit of using paper mock-ups for

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 73

the interaction design is that they can be designed and modified quickly. For sim-
ple interaction designs, a low fidelity paper mock-up suffices as a basis for further
discussions and the implementation. An additional advantage is that it is easier to
criticize simple and rough mock-ups compared to ones, which look neat and perfect
from the graphic design perspective [102]. But for some features a high fidelity mock-
up is required to clearly visualize the interface. As we have the benefit of an on-site
customer co-located with the development team all the time, for those tasks a quick
implementation mock-up is designed and immediately presented to the customer.
This implementation mock-up is then modified based on the immediate feedback of
the customer. If our customer would not have been co-located with us all the time,
it would have been difficult to have the benefit of this quick feedback-and-change
cycle.

5.5.3 Frequency of End-User Tests

The end-user tests are performed on an on-demand basis, that is, when the customer
says that now is the appropriate time, from the business point of view, to run a
usability test with test-users. Also, when there is enough amount of new functionality
added to the application, it becomes effective to perform usability tests and then
proceed with development. It would have been good if user tests could have been
made on regular basis, e.g., at the end of each release, but considering the expenses
and resources required for, it we have kept it only on an on-demand basis. So, the
expensive part of involving real users is done more effectively.

5.5.4 Integration of HCI Instruments

Figure 5.2 describes our model of integrating HCI instruments (user studies, per-
sonas, extended unit tests, usability tests, and usability expert evaluations) into the
XP process [122]. It shows the interplay of the HCI instruments with the XP pro-
cess. When applied correctly in various phases of the project, the instruments are
designed to reach the goal of improved software quality not only in terms of technical
quality, but also in terms of usability. End-users are integrated in two different ways.
On the one hand, user studies are taken into account to develop personas [64]. The
personas specify the direction of development by guiding the customer in identifying
user stories and are extended at the end of the iteration when the vision about the
user has broadened. This serves as an indirect end-user input for the development
process. On the other hand, feedback from usability tests performed by test-users
as part of the usability evaluations serves as a direct input for further enhancement

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 74

and development of the application [122].

Figure 5.2: The Integration of HCI Instruments into XP [122].

5.5.5 Testing Issues

A big issue in mobile user-interface design practice is that current approaches are not
sufficient for mobile phones [108]. For designing any software, use of UCD practices
ensures that the product is accepted by the users [65]. This further supports the use
of the UCD approach for user interface design. To enhance it further, we provide
high fidelity implementation prototypes to our usability engineers for user testing.
Paper prototypes are good and sufficient for verifying non mobile-based product
requirements. But in case of applications for mobile phones, they are not sufficient for
finding and solving usability issues related to detailed interaction on the small device
with its limited user input capabilities [65]. Therefore, in our case the application is
tested on mobile phones and not on any web based simulator in order to understand
issues concerning the use of mobile phone interface [65].

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 75

5.5.6 Communication and Collaboration

Communication between stakeholders is an important characteristic of software de-
velopment. Communication and collaboration between customers, business partners,
developers, and other stakeholders enhance the overall team efficiency [83]. The value
of communication is expressed by the XP practices of pair programming, metaphor,
informative workspace, simple design, on-site customer, the planning game, and cod-
ing standards [46]. Other factors in communication are the use of whiteboards, posi-
tioning and sharing of desk facilities to ease pair programming, stand–up meetings,
developers buying-in to the concepts of the rules and practices of XP, and collective
code ownership [40]. We sit side by side in a spacious room having enough space
for private workplaces, as well as for three separate pairing stations. This seating
arrangement has promoted effective interaction in the team and has helped in re-
solving technical issues on the spot [70]. The teams’ XP room is equipped with six
whiteboards which are used to record the XP stories agreed at release and iteration
planning meetings. Story cards are physically stuck to the whiteboards in prioritized
order with adjacent notes written on the board. Various graphs showing architecture
and velocity of the project are also drawn on the whiteboards. By looking at the
whiteboards, anyone can see the current status of the project.

Email, phone calls, and video conferencing are the tools used in routine commu-
nication with the usability engineers and other partners. Personal visits to and by
project partners are also made by the product manager and by other team members
whenever necessary.

5.5.7 The Planning Game

We hold two types of planning meetings: release based meetings and iteration based
meetings. A release lasts for three months, where within a release, an iteration lasts
for two weeks. Project partners attend release meetings where through discussions
user requirements are identified and defined in the form of so-called XP user stories
[50]. The parallel with the UCD approach is visible in the understanding and appre-
ciation of the users and their requirements [83]. The user stories are written down
on story cards and are prioritized by the project partners. Developers then estimate
the time required for implementing the stories.

At the beginning of each iteration, an iteration meeting is held which is attended
only by the team members including the product manager. The product manager
selects and prioritizes stories which fit in the current iteration depending on the
available velocity. Then, developers break down the stories into detailed tasks and

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 76

estimate them. Finally, the product manager defines the acceptance criteria for each
story and task.

Before and after implementing the user stories, continuous feedback is obtained
from the usability engineers. Then, these stories are modified according to the feed-
back of end-users and the usability engineers. Once again, this is a common step
with UCD approaches; an understanding of the user goal and the tasks to achieve
that goal. Addressing a requirement in terms of the user and their goals focuses
development upon what is needed [83].

5.5.8 Pair Programming

This practice has helped us in spreading and sharing the project-specific knowledge
and improving the technical skills of the developers. We also applied the practice of
working in pairs with the product manager [50]. The product manager pairs with
a developer when writing customer-acceptance tests, thus exposing the customer to
the process and the internal status of the application, which helps in better un-
derstanding and implementing the end-users’ requirements. This also has enhanced
the enthusiasm of the team members to work in a collective and collaborative team
environment.

5.5.9 On-Site Customer

In UCD, all activities are focused on providing business value through ensuring a
useful, usable and engaging product. The customer is not only defined as the project
stakeholder, but the end user as well [83]. The Manifesto for Agile Software Devel-
opment [16] does not clearly demand end-users as customers. In our process, the
product manager plays the role of an “on-site customer” and communicates with the
various stakeholders. The end-users are indirectly involved by the usability engineers.

5.6 Usability Study

Usability tests are carried out to evaluate the running prototype. One of the usability
studies was executed in January 2008 with 10 respondents using a mobile phone. The
classical task-based usability test method was used [99]. Each respondent was asked
to execute 5 different tasks. Tasks were carried out on a Nokia N95 mobile phone.
To gather general feedback and general opinions, two interviews were carried out:
One before and one after the task session (pre- and post-interview). Each task was
accompanied by task specific post-questionnaires. Interview sessions lasted about 1

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 77

hour. For the tests the device’s standard browser, as well as opera-mini 3.0, were
used (the first is incorporating a web-like mouse pointer, the latter a link marker to
navigate through the interface).

After the test, respondents had to judge three different visual design paper-
prototypes. We used the AttrakDiff questionnaire [45] to capture the attitudes of the
users towards the application in terms of graphical design, enjoyment, and aesthetics.
The AttrakDiff questionnaire was filled-out after the task.

The following two subsections outline the results of the test in the form of im-
provement suggestions.

5.6.1 Improvements of Layout and Design

Main improvements should be made concerning the visual appearance of the site:

• The actual site, menu, and navigation layout is not ideal. Through the use of
the color blue as text color and background color at the same time, equal text
sizes throughout the interface and different alignments, the site’s hierarchy is
not visible for users.

• The current layout does not incorporate visually attractive design elements
and is rated as pragmatic and monotone with a lack of stimulating elements
(Attrakdiff questionnaire).

Figure 5.3 shows the prototype of the home page presented in the usability study.

5.6.2 Improvements of the Usability of the Prototype

On the “Channel” web page, a web-like calendar function to select dates should be
integrated (the current function will not be usable for greater amounts of data). All
navigation menu elements should be separated from content menu elements (“Home”
vs. “Watch”). Furthermore, interactive elements (“Rate”, “Comment” etc.) should
be placed on a separate page and not on the bottom of a description page. Figure
5.4 shows the recommended prototype of the “Channel” page showing the calender.
Figure 5.5 shows the menu entries without any visual separation.

For the further development of the prototype the sub-site “Media Feeds” should
be separated into two categories introducing the sites “create Media Feed” and
“watch Media Feed”. Special attention should be given to feedback mechanisms,
which at the moment do not support the user (feedback of search queries, display of
media feed search results).

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 78

Figure 5.3: The Prototype of the Home Page [54].

From the mock-ups of three different designs, the AttrakDiff results suggest that
a yellow design was most liked by the respondents. It was also suggested that the
blue design may be used in the future, but the following improvements should be
made:

• Accentuate contrast on whole site.

• Avoid light blue text on darker blue backgrounds.

• Introduce visually attractive design elements that increase the attractiveness
of the site.

• Eliminate monotony by introducing more colors.

Two of the developers also observed the usability study session which gave them
a chance to realize the impressions of actual end-users and their feelings. This helped
in guiding the development according to the wishes of end-users.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 79

Figure 5.4: The Prototype of the Channel Page showing the Calender.

Figure 5.5: The Menu Entries without any visual Separation.

5.6.3 A Task Example

In this subsection, a task example is presented. The task is: “Find the detailed
description of a given movie, write a comment and rate it”.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 80

Facts on Task:

The task was completed without any greater difficulties by all respondents. On the
“Home” page and on the “Channel” page respondents used the heading to find the
detailed description and the video’s thumbnail to watch the video. Respondents did
not encounter much problems on the “Clip Detail” page. The prominent position of
the links “Comments”, “Rate” and “Tell a friend” – Figure 5.5 – on top of the de-
scription page helped respondents to understand which possibilities are offered. On
the “Clip Detail” page there are two interaction paradigms that were both under-
stood: Clicking on the link “Tell a fried” opens a new page. This did not cause any
problems for users. The functions “Rate” and “Comment” are placed at the bottom
of a “Clip Detail” page and users had to scroll down or use a link to jump down.
In reference to both described paradigms, user comments indicate that the longer
the list of comments is, the more uncomfortable the site is to browse. Further, the
task uncovered that on the mobile interface respondents did not recognize that they
were scrolling down the page when using the anchor-links “Comment” and “Rate”.
To get back to the top of the site they pushed the “back” button. This did confuse
some of the respondents as they jumped back to “Home” although their intention
was to get to the top of the “Clip Detail” page. Of course, this depends on how the
browser implements the “back” functionality.

A solution that incorporates interactive functions (“Rate”, “Comments”, “Tell a
Friend”) on a separate page is recommended.

Suggested improvements resulting fro this concrete tasks:

• Back Button: A dedicated back button should be integrated on top of the page.
This is the place, where basic navigation elements are expected.

• Watch Button: A watch button should be designed and integrated consistently.
An additional watch button – if necessary – should be placed on a particular
spot on the site and not be integrated in the navigation menu. The watch
button should be visually highlighted.

• Tell a friend, Rate and Comments: These elements describe interactive func-
tions on the site and therefore should be kept together and aligned to the left
side of the page.

Figure 5.6 shows the recommended menu layout and arrangement.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 81

Figure 5.6: Improvements of Menu Layout and Arrangement.

Respondents’ Feedback/Comments:

• All respondents indicated that in their opinion the “Clip Detail” page provides
a good overview.

• The design of the “Comments” and “Rating” section is good and intuitive. Too
many comments on one page should be avoided as the page would get too long
(1 respondent).

• Comments should be ordered in chronological sequence, beginning with the
most recent entry (1 respondent).

• It should be possible to select which information is sent to another person
via the “Tell a friend” function (the video’s description, the video itself, etc.).
Radio buttons should be used to specify one out of different possibilities (1
respondent).

• The space on top of the “Clip Detail” page (heading) should be used in a better
way. This would provide more space for description texts (1 respondent).

Figure 5.7 shows the space on top of the “Clip Detail” page which should be used
more efficiently.

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 82

Figure 5.7: Use the Space on top of the Clip Detail Page more efficiently.

5.7 Conclusion

Agility is an invitation to adapt, to mold, and to reshape the software development
methodology according to the requirements of a project. Being a lightweight agile
process, it is easy to extend the XP process with additional practices. Our XP
process fits well into the UCD approach, because of the many overlapping principles
(iterative development, end-user incorporation, testing) of both methodologies. The
usability engineers in the project are well integrated into the development team.
It would have been even better if one of the usability engineers had been present
physically with the team all the time, as face-to-face communication is more helpful
in quickly resolving design issues. We could not conduct usability tests frequently
with end-users due to time and budget constraints, but mitigated it with usability
expert evaluations. The whole development process is influenced when each feature
of the application is assessed from users’ perspective. This addresses the problems
which arise when the system requirements are gathered only by discussions with
stakeholders [60]. The involvement of all stakeholders, particularly end-users, in the
process, can increase the chance of the success of a project.

We continuously try to optimize our process as long as the project lasts and will
provide further insights whether the process has been able to enhance the usability
of the application. In October 2008, we will conduct a contextual mobile multimedia
content usability study which will give insights into mobile HCI concerning the co-

CHAPTER 5. AGILE USER-CENTERED DESIGN ... 83

herence of content types, consumption times, and consumption contexts. Integrating
of end-users indirectly in the form of HCI instruments, co-location, communication,
and planning meetings has not only contributed to improving our process, but also
has led to increasing the overall morale of the team.

Chapter 6

Concept and Design of a

Contextual Mobile Multimedia

Content Usability Study

The popularity of consuming multimedia content on mobile phones is increasing more
and more, not only because of the availability of the technical infrastructure, but also
because of the mobility in modern society. We are developing a mobile multimedia
streaming application. The crucial factor for such applications in order to be adopted
and successful is user acceptance. This chapter presents the preliminary concept and
design of a contextual mobile multimedia content usability study. The study is con-
ducted within a research project on agile software development methodologies with
special emphasis on Extreme Programming and continuous usability evaluation. Past
work included satisfaction of the needs of end users by means of focusing on user-
experience in all steps of the development process. To gain scientific relevant data,
the careful design of a study is considered most important. The study which will be
conducted in October 2008 will give insights into mobile Human-Computer Interac-
tion concerning the coherence of content types, consumption times, and consumption
contexts.

6.1 Introduction

We are working on a research project where we are developing an application that
enables a user to perform content-based search for audio and video content and
play it via streaming on a mobile phone. The basic research goal is to examine

84

CHAPTER 6 CONCEPT AND DESIGN ... 85

agile software development methodologies, in particular Extreme Programming, with
special emphasis on User-Centered Design. This is obtained by two means. On the
one hand, we have established a development process where the quality focus is not
only placed on technical excellence, but also on delivering a usability-tested high-
quality end-product. On the other hand, we have created a testbed for effective and
efficient mobile usability testing automating certain parts of the usability testing
procedures.

Within this research project, a lot of topics already have been covered. Our
adopted development process, the integration of Extreme Programming with User-
Centered Design, examined in [54], facilitates user-orientation and at the same time
preserves the social values of the development team. The techniques of enhancing
Extreme Programming by integrating Human-Computer Interaction (HCI) instru-
ments (user studies, personas, extended unit tests, usability tests, and usability
expert evaluations) are treated in [122]. An iterative and user-centered approach
to user interface design, where usability is evaluated in small iterative steps to gain
insight into whether the users’ functional and cognitive requirements are met, is pub-
lished in [52]. Also, the results of a usability study applying a classical task-based
usability test method [99], executed in January 2008, was made public in [53]. The
outcome of a study on the relation of basic human values to behavior patterns of
the usage and production of mobile multimedia content, conducted with a technique
referring to the means-end theory, can be found in [72].

For us, the next logical step in the realm of mobile HCI is the evaluation of
the coherence of consumption behavior of different content type categories and the
consumption behavior in different contexts. This chapter presents the preliminary
study setup of a usability evaluation study to be conducted in October 2008. The goal
of the study is to examine mass-market capability of a mobile multimedia streaming
application. More precisely, the aim is to analyze adoption and consumption behavior
of such applications by means of a field trial, where diary studies and contextual
interviews will be used. The resulting data is intended to give insights into what
needs to be in place from the content type setup perspective in order to make such
applications successful.

This chapter presents an overview about related work. The following section
briefly outlines the application being developed. Then, the selection of the respon-
dents is described. The next section examines the study setup concerning the media
content, the diary study, and the contextual interview. Finally, a conclusion is given.

CHAPTER 6 CONCEPT AND DESIGN ... 86

6.2 Related Work

This section provides an overview of related work in the field of usability evaluation
of contextual mobile multimedia content. Basically, existing work in this area can be
divided into the categories contextual studies, studies on mobile video consumption,
and studies on technical issues in mobile multimedia consumption.

In [1] the importance of context in interactive mobile applications is stated, and
definitions and categories of context, in order to create a framework for the devel-
opment of context-aware applications, are presented. The work in [110] aims at
understanding different mobile contexts and provides design implications for mobile
and context-aware human-computer interaction. The necessity of considering the
mobile user’s context in conjunction with the user’s cultural context is shown in [22].

In the realm of mobile video consumption [95] presents a study identifying the
social motivations and values of people when using mobile video technologies. Also,
[100] focuses on human behavior, human needs, and interaction design concerning
the creation, management, and consumption of moving images using mobile devices.

In [62] the effects of codecs and combinations of audio and video streams with
low bitrates and different contents on the perceived video quality of mobile devices
are described. A methodology to evaluate the perceived quality of mobile video
with variable physical quality is introduced in [79]. Interestingly, the outcome of
the studies conducted with this methodology was that when watching high motion
videos users prefer high-resolution images to high frame rate.

However, to the best of our knowledge, none of the existing work examines a
contextual mobile multimedia study aiming at relating user context, consumption
behavior, and content type categories.

6.3 Application

The application being developed enables a user to perform content-based search for
audio and video content and play it on a mobile phone via streaming. The user
is able to search not only in the meta-data, but also in the spoken words of the
audio and video clips. The content includes radio and TV archive material, such as
documentaries or other recordings of historical, political and cultural importance,
discussion programs, movies, music videos, audio books, etc. The content setup
for the study is especially tailored and described in Section 6.5.1. Moreover, the
application is being designed keeping in mind the social interaction of users and
provides several Web 2.0 features [52].

CHAPTER 6 CONCEPT AND DESIGN ... 87

6.3.1 Features

The user interface of the application comprises several main features. The main
screen (see Figure 6.1) provides the features “Search”, “Top rated”, and “Most re-
cent” clips. Links to the “Channels” and “Categories” pages are presented. When
one clicks on the title of a clip the “Clip Detail ” page is shown. The application also
implements other Web 2.0 features like “Rate” and “Comment” clips respectively
“Others also watched” and “Tell a Friend” the link to a clip [53].

Figure 6.1: Home Page.

Search

“Search” allows to search the whole content by entering keywords (see Figure 6.1).
The returned search results are ordered by broadcast date (if any). For each result
item, the clip’s title, link, rating, duration, originating channel (if any), content type,
and a representative thumbnail image is shown. The user can play a clip by clicking
on the image respectively go the “Clip Detail” page when clicking on the title.

CHAPTER 6 CONCEPT AND DESIGN ... 88

Channels

“Channels” allows to browse the schedule of TV and radio channels. One channel
lists the program schedule of a particular day. Different channels can be selected by
using a drop-down box, listing all available channels, at the top of the page. The
user can browse to previous or future days and is able to search within a channel.
The search result items are presented in the same format as the search result items
from the “Search” feature of the main screen.

Categories

The “Categories” page (see Figure 6.2) displays the whole content filtered by content
type. By means of a drop-down box, containing all content type categories, the user
can select to have only clips of a specific content type presented.

Figure 6.2: Categories Page.

Clip Detail

The system responds with the “Clip Detail” page when a user clicks on the title of a
clip. On this page the user is given the possibility to “Rate” a clip, add a “Comment”,
or view comments. In addition to that, the “Others also watched” feature displays

CHAPTER 6 CONCEPT AND DESIGN ... 89

clips which have been watched by users with similar interests. The “Tell a friend”
functionality enables a user to send the link to a clip to a friend by SMS or by email.

6.4 Selection of Respondents

For the study 16 respondents in the age group between 18 and 35 are chosen. From
the chosen respondents the percentage of men and woman is balanced. Ideally, the
respondents are interested in the following topics:

• They are interested in politics, economics, and other classical news themes.
Respondents have to indicate to watch news on television on a regular basis
(at least three times a week).

• The respondents are interested in technical content, especially in the field of
computer science and information technologies. They are interested in products
and news from Internet and telecommunication branches.

• They are interested in television series from the entertainment sector. Respon-
dents have to indicate to watch pre-evening series on television on a regular
basis (at least three times a week).

• The respondents are interested in music and music television. They are inter-
ested in particular bands in the pop and rock scene.

All respondents need to have at least some experience in using mobile multimedia,
no matter if it is listening to music on an mp3-player or using the photo-gallery of
their mobile.

6.5 Study Setup

The following section describes the study setup. First, the choice of the media content
is examined. Then, the setup and execution of the individual methods of the study
is outlined.

Fundamentally, the study is composed of two methods which are not depending
on each other and therefore may be executed independently:

• Diary Study.

• Contextual Interview.

CHAPTER 6 CONCEPT AND DESIGN ... 90

Both methods will be executed with the same respondents. Although there are
no dependencies between the two, ideally the diary study is executed shortly before
the contextual interview. This allows to examine user-experience issues when they
are still in the minds of the respondents. As a prerequisite, each respondent fills
out a questionnaire covering basic and demographic data as well as data concerning
current mobile multimedia consumption.

6.5.1 Media Content

In order to be able to gather relevant data, the basic parameter for the study is the
choice of specific content type categories. Four types of video content, each repre-
senting different information and entertainment levels, are chosen. Moreover, in the
four media content types, the importance of the audio component (spoken text, au-
dio) and the video component (visual information, graphics and pictures) is different.
On the one hand, the video sequences for the diary study have a length between 15
and 20 minutes. On the other hand, the video sequences for the contextual interview
have a shorter duration of approximately 10 minutes for the purpose of minimizing
the overall interview time.

1. Music Video Content: When watching a music video, the audio as well as
the video information is important. In practice, the audio content can exist
without the additional video content. Consequently, the user does not have to
pay primarily attention to the screen.

2. News Content: News content is a mixture of audio and video material. In addi-
tion to that, text is an important factor of news content as well. Nevertheless,
video material strongly supports the given information. Often, news content is
separated in different themes and topics.

3. Documentaries/Scientific and Technical Content: This type of content is com-
parable to news content, hence both, visual and auditive, information is impor-
tant. In contrast to news content, scientific content forces the viewer to keep
up with the video, since all information in the video sequence is important.

4. Television Series/Entertainment Content: Series have a continuous plot over
the whole video sequence. In comparison to scientific and news content, the
visual and auditive information is equally important to keep up with the story.
But, even if missing seconds of both information, one is still able to follow the
story.

CHAPTER 6 CONCEPT AND DESIGN ... 91

6.5.2 Diary Study

In the diary study, each respondent is given a mobile device with which she or he is
told to use the application for one week. The web interface, as well as the content
presented to the respondents, is especially tailored to the diary study. The setup
fulfills the following characteristics:

• The web interface for the diary study has limited possibilities in comparison to
the actual application developed.

• The content type categories are limited to four different types (see Section
6.5.1).

• In each content type category approximately 40 to 50 clips are presented (except
the news category, where there are less but only current clips).

For the sake of gathering relevant data for the diary study, two different groups
of respondents are created:

• One group is told that they should watch at least X videos per day.

• The other group is told that they should watch less than X videos per day.
This group is created in order to provide more realistic data during the one
week study.

All respondents are told to choose time and place of consumption, as well as
content types, on their own. After each video session, the respondents fill out a
questionnaire and take a photo of the current context with the mobile device.

For the purpose of recording activities of the respondents, different log files (web
server logs and streaming server logs) of the application are used. The user tracking
of the application, respectively the activities recorded in the log files, give information
about:

• When are videos watched.

• How long is each video watched.

• How many and which videos are watched during one video session.

With the overall setup of the diary study it is possible to get the following results:

• The average length of video sessions.

CHAPTER 6 CONCEPT AND DESIGN ... 92

• Information on the content selection according to the day time and context.

• Overall information on the content selection (mix up of content types during
sessions).

• Information on the context (when and where videos are watched and correla-
tions to content types).

6.5.3 Contextual Interview

For the contextual interview, each respondent is given a mobile device. She or he is
supposed to use the application in four controlled video sessions, each in a different
context. The web interface presented is tailored as described in Section 6.5.2. In
each video session, the respondent watches four different videos from four different
content type categories. The content setup for the contextual interview is described in
Section 6.5.1. In the contextual interview, sixteen clips are shown to each respondent
on the whole.

During one contextual interview (one video session in a specific context) the
respondent is accompanied but not interrupted. The procedure is as follows:

• The interview starts with a pre-questionnaire covering basic and demographic
data as well as data concerning mobile multimedia consumption.

• The respondent is explained the device.

• The respondent watches four videos from different content type categories.

• After each video, the respondent gives qualitative feedback to the interviewer
and fills out post-video questionnaires (see Section 6.5.3).

After each contextual interview the respondent gives qualitative feedback to the
interviewer and fills out post-session questionnaires (see Section 6.5.3).

For the purpose of getting significant results from the individual contextual inter-
views, different locations are necessary. The interviews are conducted in two indoor
locations and two outdoor locations. The locations themselves, as well the order of
the locations the interviews are conducted in, are as follows:

1. Indoor Location: Usability Lab.

2. Indoor Location: Cafe.

CHAPTER 6 CONCEPT AND DESIGN ... 93

3. Outdoor Location: Tube and Bus: Respondents watch a video traveling a
predefined distance in the public transport network. Respondents will have
to change three times the means of transport having to cross train and bus
stations and moving between people.

4. Outdoor Location: Public Spaces: Respondents watch a video while standing
on and walking across a public space.

After all four sessions the respondent fills out an overall questionnaire.

Post-Video Questionnaires

The post-video questionnaires the respondent fills out after each video cover three
different types of feedback:

• Emotion after Watching the Video: To capture the post-video-watching emo-
tion the “SAM - Self Assessment Manikin” will be used [23].

• User Experience and Sensation of Usability: Similar to relevant concepts out
of the Appeal Measurement questionnaire by Hoonhout [10].

• Qualitative Feedback concerning the Video.

Post-Session Questionnaires

The post-session questionnaires the respondent fills out after each contextual inter-
view cover three different types of feedback:

• Context specific Feedback.

• User Experience and Sensation of Usability: Similar to relevant concepts out
of the Appeal Measurement questionnaire by Hoonhout [10].

• Qualitative Feedback concerning the Session.

6.6 Expected Results

The basic concept of the study is that we use a method-mix of diary studies and
contextual interviews. Therefore, from each individual method different results are
expected. We also expect that the use of these two methods will give insight into
the two approaches, hence backing up and assisting each other.

The expected findings from the diary study are:

CHAPTER 6 CONCEPT AND DESIGN ... 94

• Coherence between daytime of consumption and content type.

• Coherence between context of consumption and content type.

• Average number of watched clips per session.

• Average time how long a clip is watched.

From the contextual interview, the following results are expected:

• Availability of different contexts: Ability to define “Contextas” like “Personas”
[64] for mobile multimedia consumption.

• Availability of qualitative user feedback on content types in different contexts.

• Availability of Manikin [23] ratings according to content type and context.

• Availability of user experience data concerning context variables like light,
noise, people, and others.

All findings, from the diary study, as well as from the contextual interview, are
correlated to sex and age of the respondents.

6.7 Conclusion

The current trend in mobile multimedia consumption is more than obvious: it is
becoming more and more popular. For this reason, we are developing a mobile
multimedia streaming application with special focus on agile software development
methodologies and usability. The most critical factor for this kind of application
will be user acceptance. While developing this application we took all efforts to
satisfy the needs of the end user. We combined Extreme Programming with User-
Centered Design, integrated HCI instruments in our development process, developed
an iterative UI development process, conducted usability studies and did studies on
the relation of basic human values to behavior patterns of the usage and production
of mobile multimedia content.

With the study whose setup is described in this chapter and which will be con-
ducted in October 2008, we expect new insights in the field of mobile user-experience.
In order to gain scientific relevant data, we consider the careful design of the study
as being crucial. The data to be gathered promises the ability to draw conclusions
on coherence of content types, consumption times, and consumption contexts. Fur-
thermore, deriving different contexts, as well as the availability of qualitative and

CHAPTER 6 CONCEPT AND DESIGN ... 95

experience data, is an important goal. Future work includes publishing the results
of this study.

Chapter 7

Continuous Usability Evaluation

Usability is largely accepted as a core success factor of software projects. Still, usabil-
ity evaluation techniques are not as widely adopted as, for example, the evaluation
of functional correctness. While modern development processes advocate a constant
verification of functionality, usability often is only monitored sporadically, if at all.
As a result, usability issues often are identified too late in the development life cycle
and thus cannot be corrected comprehensively.

In projects employing agile development methodologies, Continuous Integration
(CI) systems are often used to automate the steps necessary to ensure functional
correctness. Automated tests which assert functional and implementation require-
ments are created for all relevant parts of the code base. CI systems automatically
build and test the application whenever the project’s code base is changed, and im-
mediately notify the development team if the build or any tests failed.

In this chapter, concept and prototypical implementation of a fully automated
Web usability evaluation tool are presented, which can be easily integrated into CI
systems. With the presented approach, usability aspects can be evaluated concurrently
during development, allowing for early detection of usability problems.

7.1 Introduction

Usability is a core success factor of software development. This is especially true
for Web applications which—in contrast to many desktop applications—often do
not have a homogenous target user group but are rather intended to be used by as
many people as possible. The users of Web applications can differ vastly in their
knowledge of computer interaction idioms and often are not willing to spend time
learning how to use a new user interface, so a smooth usage experience is crucial in

96

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 97

order to increase user acceptance.
The importance of usability for Web applications is widely accepted in the scien-

tific community, as can be deduced from the constantly growing number of published
usability methods and tools. A study by Ivory and Hearst [59] describes and classifies
58 Web usability evaluation methods; a literature review by Insfran and Fernandez
[58] lists 51 recent publications concerned with such methods. However, the accep-
tance and adoption of usability evaluation in practical software development lags
behind other development aspects, especially functional correctness. While func-
tional testing on various levels (from unit tests to system tests) has virtually become
a mandatory practice in software development, explicit usability evaluation is far less
common, especially in small projects.

This imbalance partially results from the different degrees of development process
integration of the two aspects. Functional correctness can in large part be evaluated
by the development team, and automated testing has become an integral part of de-
velopment (especially in agile development methods). Furthermore, test conduction
can be fully automated, for example by means of a CI environment: once the test sys-
tem is set up, both test execution and result reporting are performed automatically;
developers are only required to react on reported test failures.

In contrast, usability evaluation (for both Web and desktop applications) is more
complicated to integrate in the project workflow due to the following reasons:

• The members of the software development team usually lack the required ex-
pertise to conduct usability evaluations. Therefore, it is a common practice to
involve external usability experts for this function. Communication between
developers and usability experts, who usually have a human factors-related
background, can be problematic due to differences in domain knowledge and
profession-specific vocabulary [104].

• Some evaluation methods are resource-intensive in terms of time and/or money
[9] and thus cannot be conducted on demand (e.g., when required for design
decisions).

• Some methods are based on observing the behavior of “real” users (“usability
testing”, see Section 1.2.2) using the application, requiring the application to be
deployed and running. These methods are reasonable only at advanced stages
of the project life cycle, when the application is mature and comprehensive
enough to be presented to users. However, at this point in development, the
application design is also harder to change than at the early stages, since a lot

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 98

of usability problems have manifested deeply in the application’s architecture;
therefore, fundamental usability problems often can only be corrected superfi-
cially. This issue is aggravated when using a sequential development method
(i.e., Waterfall Model-oriented methods) which produces a runnable—and thus
testable—program only at the end of the project life cycle.

• Some methods require additional effort which can complicate the development
workflow. For example, certain methods (see Section 7.2) require the creation
of models depicting the interaction structure, or to extend the sources with
specific code used by the evaluation.

• Some methods only work with specific development methods or application
frameworks; thus the decision for such a method has to be made at the project
start since a later integration is not feasible. For example, some methods (see
Section 7.2) build on top of model-driven development (MDD) methodologies,
and thus can only be applied when using MDD for project development.

Part of the available usability evaluation methods falls in the category of Au-
tomated Usability Evaluation (AUE). AUE tools are software programs which are
intended to aid in the evaluation of usability aspects. The concrete nature of au-
tomation in the respective tools is manifold, ranging from support in conducting
questionnaires to automatic checking of usability guidelines. Some AUE tools are
intended to assist usability experts in their work, while others implement expert
knowledge and thus allow non-experts to conduct usability evaluations. While AUE
tools of the latter kind cannot replace user tests and expert evaluations, they can
be considered a valuable complement to these measures, and a starting point for
implementing further usability practices.

AUE tools can alleviate the integration of usability evaluations into the develop-
ment workflow. To be accepted by project managers and developers, an AUE tool
is required to cause as little cost as possible, and subsequently should minimize the
additionally introduced workload (including both the initial setup and the recurring
execution overhead). Furthermore, broad adoption of an AUE tool is also deter-
mined by the degree of technical independence. Tools which are bound to a specific
software framework, programming language, or development process, are unlikely to
be adopted due to the restricted scope of applicability.

This chapter presents the concept and the prototypical implementation of an
AUE tool for evaluating the usability of Web applications. The presented tool con-
cept fulfills the above stated requirements of effort minimization and technological
independence:

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 99

• The tool processes the deployed Web application (e.g., hosted on a test server)
and thus is largely independent of the technology used to implement and host
the application1.

• The tool automatically crawls the whole application, thereby building a graph
representation of the application’s navigation structure as perceived by the
user. All visited pages as well as the navigation model are analyzed regarding
several usability metrics and properties. These steps do not require any effort
of developers besides initial configuration of the analysis; thus, evaluation is
cheap in terms of consumed developer time.

• The tool can be integrated into Web projects at any stage of development,
only requiring the application to be runnable on a Web server. In iterative
development methods, features are added by and by to the application. This
allows to continuously evaluate the usability, from start to end of the project.

• The tool can be integrated into the automation script of a CI system; thus
the usability evaluation can be executed whenever the application is changed.
The notification mechanism of the CI system is used to notify developers about
found usability violations. Furthermore, evaluation results from different builds
can be compared in order to track development of usability compliance and
application complexity.

The aim was to design a tool which is simple enough to be integrated and used
by developers without specific usability knowledge, yet powerful and comprehensive
enough to support usability experts. The latter is achieved by providing a presen-
tation and analysis module which can be used to manually “drill down” into the
usability data. Also, the raw data (i.e., graph structure and page data) of each ex-
ecuted evaluation is stored, allowing to track the development of usability aspects
over time, as well as to compare different user interface designs.

The tool promotes an incremental integration into the project workflow: initially,
it can be used as-is, without forcing any additional workload (e.g., configuration) on
the project team; when the acceptance of developers rises, the tool allows for addi-
tional, more in-depth analysis which cannot be easily automated. This approach is
well-suited for (but not limited to) agile development methods where development is
fast-paced due to short iterations and almost immediate feedback (many agile meth-

1While the prototype is limited to plain HTML pages, the approach can be adapted for more

complex—and modern—Web technologies, like AJAX (see Section 7.5.3).

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 100

ods require a representative of the “customer” to be co-located with the development
team in order to answer project-specific questions and to give feedback).

Similar approaches employing the same technical key elements (i.e., crawling,
graph representation, graph analysis) have been discussed in scientific literature
(most significantly, [114] and [20]). The main difference to the tool presented in
this chapter is the emphasis put on when and by whom usability is evaluated: ex-
isting approaches are meant to be used as standalone tools, mostly operated by a
usability expert. The presented approach, on the other hand, proposes to automati-
cally evaluate usability aspects on a regular basis.

The remainder of this chapter is structured as follows: Section 2 summarizes
related work in the fields of AUE and process integration of usability engineering;
Section 3 describes a system for automated usability evaluation of Web applications
and its integration into CI environments; Section 4 explains some usability problems
which are related to (or derivable from) the navigation graph of the application, and
which are used as examples in the following section; Section 5 presents the current
state of the prototypical implementation of the presented tool concept; finally, Section
6 summarizes the work presented in this chapter, draws conclusions and gives an
outlook on future work.

7.2 Related Work

This section summarizes existing work (both scientific and practical) related to the
work presented in this chapter. Two fields are examined: automated usability evalu-
ation techniques, and integration of usability engineering practices into the software
development workflow.

7.2.1 Automated Usability Evaluation

The term “Automated Usability Evaluation” is not used consistently, neither in the
scientific literature nor in the vocabulary of practitioners. The degree of human in-
volvement in the evaluation process varies significantly between different approaches
labeled AUE, ranging from tools which perform a static guideline-driven analysis of
a user interface without involving any human user, to tools recording and analyzing
usage sessions of real users, to tools optimizing the workflow of usability experts, to
integration tests (run against deployed applications) asserting usability aspects.

In the following, the focus is put on model-checking and guideline-checking tech-
niques for Web application, both of which form the base of the work presented in
this chapter. In general, these techniques only require configuration effort but no

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 101

human actions during the actual analysis process, which is the main requirement for
fully automated usability analysis.

Model-Checking

Various types of usability evaluations without involvement of real users have been
discussed in the scientific literature. Similar to the technical approach presented
in this chapter, some described AUE tools perform their evaluation by crawling a
deployed Web application. Tonella et al. [113] describe a tool which reverse-engineers
a Web application and constructs a graph meta-model, depicting pages as vertices
and links as edges, and additionally models the server-side state of the application.
The graph data is used to analyze graph characteristics (e.g., average link path
lengths) and to generate paths through the application for manually conducted tests.
In a later publication [114], the same authors discuss the applicability of this approach
for modern Web technologies. Similarly, Alfaro et al. [31] describe MCWEB, a
“model-checking tool for Web site debugging”, which uses a graph to calculate various
usability-related metrics.

Benedikt et al. [20] describe VeriWeb, a tool which systematically explores the
paths through a Web application. Each encountered page is validated against a
configurable set of rules and guidelines. Additionally, graph-related properties like
the length of traversed paths can be checked.

Other tools use development artifacts (i.e., models describing the application
structure) to perform usability evaluations. The use of models created in Model-
Driven Development approaches for usability evaluation has been discussed by Fer-
nandez et al. [36], highlighting the benefits of early conduction of usability evaluation
in the project life cycle. Evaluated usability aspects include graph properties (e.g.,
breadth and depth of navigation paths) as well as UI properties (e.g., color contrast).
Other approaches (Feuerstack et al. [38] and Atterer [6]) are also based on model-
oriented development methods but require to extend the models with additional,
usability-specific metadata.

Ahmad et al. [3] describe the prediction of a Web application’s “navigational
burden”—that is, the amount of “navigational efforts” (e.g., mouse clicks to follow
Web links) required to complete intended tasks—based on the application model
graph.

Thimbleby [112] highlights a range of usability properties and metrics that can
be calculated from graph-like models. The models are represented as finite state
machines where transitions describe user interactions, changing the internal and
external device state. In the described approach, these models not only serve as

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 102

a usability tool but rather form the central documentation and design tool for the
entire development process.

Beer et al. [18] describe IDATG (Integrating Design and Automated Test Case
Generation), a tool for generating integration test cases and test paths; the model
has to be explicitly constructed using the IDATG application.

Miao et al. [89] describe a Web-centric approach to derive test paths from a Web
application relation graph.

Guideline-Checking

Besides model analysis, another important aspect of AUE is guideline-checking. Be-
yond scientific literature, a lot of—mostly Web-hosted—guideline-checking tools are
available, the majority of which performs guideline checks on single pages or whole
Web sites. Guideline-checking tools perform a static analysis of HTML documents,
extracting various properties and validating them against well-established guidelines.
Existing tools cover many areas of different relevance for usability. Verifications range
from checking purely technical aspects, to accessibility concerns, to page layout and
visual aesthetics (e.g., whitespace between elements, color contrast, count of used
fonts).

The World Wide Web Consortium (W3C) [123] provides a set of freely usable
validators for checking Web pages for well-formed HTML, XML, and CSS source
code. Furthermore, the W3C’s Web Accessibility Initiative (WAI) [124] offers a
comprehensive list of accessibility checkers. An example of such an accessibility
validation service is AChecker [7] which checks single pages for conformance with a
variety of accessibility guidelines (BITV 1.0, Section 508, Stanca Act, WCAG 1.0
and 2.0). The NIST Web Metrics tool suite [90] offers a range of guideline-based
usability checks for Web pages. Au et al. [8] describe a guideline-checking-based
approach for evaluating usability of software on mobile devices. Vanderdonckt et al.
[119] propose a separation of guidelines evaluation logic and the evaluation engine:
first, rules are defined in terms of the Guideline Definition Language (GDL); then,
a Web page is parsed and checked against the GDL rules by the evaluation engine.
This approach allows to independently develop rules and engine, and enables flexible
configuration of the evaluated guidelines.

A different approach for extracting usability-relevant metrics from Web pages is
presented by Tuch et al. [116]: the file size of JPEG-compressed screenshots can be
used as a simple, yet significant measure for the visual complexity of Web pages.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 103

7.2.2 Development Process Integration

The integration of usability methods into software development processes, especially
into agile development methods, has been discussed extensively in recent years. How-
ever, most existing work in this field focuses on the process integration of manually
conducted usability methods; this is reflected by a recent survey by Hussain et al.
[57], showing that less than 8% of the 92 software professionals participating in the
survey use automated usability tools.

Hussain et al. [56] discuss the integration of usability experts into the process
workflow of XP. Meszaros and Aston [87] describe the integration of UI paper pro-
totyping into agile projects. Patton [97] describes incorporating Interaction Design
methods in an agile development process. Propp et al. [98] propose the use of soft-
ware models to optimize the conduction of user tests performed by usability experts.

Other approaches are more comprehensive, comprising extended process frame-
works. Memmel et al. [84] describe CRUISER, an “agile cross-discipline user inter-
face and software engineering lifecycle”. Chamberlain et al. [26] describe a framework
for integrating agile development and user-centred design.

7.3 Automated Usability Evaluation in Continuous In-

tegration Environments

In recent years, iterative software development approaches have gained more and
more attention. These development methodologies (e.g., the family of agile develop-
ment [27] processes like Extreme Programming (XP) [13] or Scrum [17]; the Rational
Unified Process [69]) have emerged as a reaction to the problems and drawbacks
of Waterfall Model-oriented software development. A major issue of the Waterfall
Model is its inflexibility to cope with changing project requirements, which are an
inherent aspect of most non-trivial business-oriented software projects. Iterative
methodologies work with short-term detail plans instead of comprehensive project
plans, so the cost of adapting a plan to changed requirements is substantially lowered.

To cope with changing requirements and their possible side-effects on seemingly
unrelated project aspects, constant verification of the project’s integrity and valid-
ity is mandatory. XP, amongst other iterative methods, advocates automation for
continuously testing structural and functional validity. The technical foundation for
this automation is Continuous Integration (CI), which describes both a work process
and a technical framework. CI is described in detail in Section 1.1.3.

With the CI infrastructure in place, AUE can be integrated into the development

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 104

process seamlessly, on the same level as automated functional testing. The require-
ment on any integrated AUE method is that the execution—except initial setup and
configuration—must not require any manual action or intervention from developers;
all three main activities of an evaluation—capture, analysis, critique [59]—must be
fully automated:

• Capture: The data for the subsequent usability analysis must be gathered
automatically, without the involvement of real users or developers.

• Analysis: Usability-relevant properties and metrics must be deduced from the
collected data automatically in order to identify usability defects.

• Critique: A report summarizing all relevant findings must be produced, possi-
bly including suggestions for improvements or solutions.

In this section, the concept for a tool fulfilling the above requirements is pre-
sented, and the integration into a CI environment is discussed. Then, the current
development state of the prototypical implementation is presented. The prototype
serves as a proof-of-concept and covers the tool concept to a large extend.

The design for the presented AUE tool2 was led by the following principles:

• Web UI technology constantly changes, so AUE tools for Web applications have
to be adapted to new technologies constantly. Therefore, no such tool can be
considered to be “finished” if it claims general applicability.

• An AUE tool can be useful even if it does not provide full coverage (e.g., analyze
all pages in a Web application; find all usability problems of a certain kind).
Quality and overhead have to be balanced: while exhaustive usability tests are
likely to yield results of higher accuracy and significance, they also cause higher
costs in terms of time and money. A fully automated AUE tool, on the other
hand, causes little to no overhead, and can establish a ground level of usability
quality.

7.3.1 Capture

The capture activity of the AUE tool is implemented in terms of a Web crawler, thus
requiring the evaluated application to be deployed and running. The crawler sys-
tematically visits all pages of the application and builds a model of the application’s
navigational structure. This approach ensures that the resulting graph model depicts

2In this section, the term “tool” refers to the tool concept, not its prototypical implementation.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 105

the navigational structure as perceived by a human user. The model is implemented
in terms of a directed graph; vertices represent pages, edges represent links. In this
context, a “page” is considered the application’s entire response to a URL request
as rendered by a browser, ignoring any implementation details transparent to users;
a “link” is an HTML anchor element. Figure 7.1 shows a simple graph comprising
three pages and five links. In the example graph, all pages contain links to all other
pages, only the link from C to B is missing.

Figure 7.1: Simple page graph.

The crawler attaches metadata to the graph vertices and edges: each vertex stores
the page’s URL and title, the connection information (connection success, response
code, content type), the full HTML source code, and a screenshot image; each edge
stores the link’s label (text label or image URL), the target URL (which can differ
from the target page’s URL if the target URL redirected to another URL3) and the
link’s position and size on the page.

The crawler implementation used in the prototype requires to be configured with:

• Start URL: The URL where crawling should start; typically the home page.

• URL filter: A filter describing which link URLs should be followed; allows
separate filter rules for protocol, host, port, path, and query parts of URLs.4

For example, filtering can be used to limit the crawler to application-internal
3Web applications can use URL redirection to forward the browser (and thus the user) to a

different URL due to various reasons (e.g., moved pages, short aliases for long URLs).
4The de-facto standard mechanism for controlling crawler-like applications, robots.txt (Standard

for Robots Exclusion, http://www.robotstxt.org), is not used due to its lack of flexibility.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 106

links, and to block certain parts of the application. Also, it is used to exclude
access to non-HTML content (via file extension filtering) which might be costly
to provide (e.g., dynamically generated images) and thus might slow down the
crawling process.

• Maximum crawl depth: The maximum allowed number of crawl iterations.
Since Web applications can dynamically generate content and thus might pro-
vide an infinite virtual URL space, the maximum crawl depth is used to limit
the crawler’s scope.

Using this configuration data, the crawler implements the following algorithm (in
the following, the terms “page” and “link” denote meta-objects describing the actual
entities):

1. The start URL is parsed and the resulting page is added to the graph as a
vertex and to the sourcePages list.

2. The target URLs of all links of all pages in sourcePages are collected and
stored in targetUrls.

3. Duplicate and already visited URLs are removed from targetUrls; URLs not
matching the crawl filter criteria are removed from targetUrls and stored in
blockedUrls.

4. All remaining URLs in targetUrls are parsed, and the resulting pages are
stored in the newPages list and added to the graph as vertices. Multiple parse
tasks are performed in parallel in order to speed up the process.

5. For each URL in blockedUrls, a dummy vertex (without any attached metadata
except the URL) is added to the graph.

6. For each page ps in sourcePages, the corresponding vertex vs is looked up in
the graph. For each link of ps, the vertex vt corresponding to the link’s target
URL is looked up in the graph; then, an edge from vs to vt is added to the
graph.

7. If newPages is empty or the maximum crawl depth has been reached, the algo-
rithm stops; else, sourcePages is set to newPages, then newPages, targetUrls

and blockedUrls are cleared, and the algorithm continues with step (2).

The parser component used in this algorithm takes a URL as input and builds a
meta-object describing the page as rendered in a browser. The parser performs the
following steps:

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 107

1. The parser opens an HTTP connection to the URL.

2. If the connection cannot be established, the parser stops and yields an “error”
page object.

3. If the connection indicates non-HTML content (via the Content-Type property
of the HTTP header), the parser stops and yields a “content” page object.

4. The HTML page is loaded; if a URL redirection is encountered, the steps (1)
to (3) are repeated for the redirect URL.

5. The page title and link information is extracted; a screenshot image is created;
then, the parser yields a page object built from this data.

The link URLs retrieved from parsed pages are normalized [71]. This helps to
identify semantically identical but syntactically different URLs, ensuring the integrity
of the created graph structure: if equivalent URLs are treated as different, the same
page will be parsed multiple times, and multiple unrelated nodes will be added to
the graph. In the following, some of the applied normalization steps are listed:

• Relative URLs are made absolute (e.g., the URL content/home.html in ex-
panded to http://foo.com/content/home.html).

• The default HTTP port (80) is removed if present in the URL.

• URLs pointing to directories are ensured to end with a slash.

• Default directory index files (e.g. index.html) are removed.

7.3.2 Analysis

Based on the automatically gathered data, the analysis activity is performed on two
different levels: usability evaluation of single pages, and of the overall application
structure. For both levels, there exists a host of techniques and tools which can be
retrofitted in order to be used by a fully automated usability evaluator. A detailed
discussion of the possible evaluation methods is out of the scope of this chapter.
Where appropriate, existing work is referenced.

Page evaluation is based on analyzing the DOM tree and the rendered represen-
tation of a singe page. Possible evaluations include (but are not limited to):

• Accessibility guideline checks [124].

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 108

• Layout guideline checks, e.g., sufficient whitespace between form elements; ap-
propriate color contrast, horizontal scrolling detection (Fighting Layout Bugs
library [109]).

• Visual complexity measures, e.g., comparing the file size of JPEG-compressed
screenshots [116]; semantic or phonetic similarity of neighboring link labels;
percentage of the “clickable” area of a page.

• Error detection, i.e., checking for the presence of error messages by matching
the page’s text content against regular expression patterns [20].

• Validating well-formedness of HTML and CSS source code [123].

Structure evaluation uses the generated graph model of the application’s navi-
gational structure in order to calculate graph properties and metrics, as well as to
evaluate the application-wide consistency of the UI. For example, graph analysis can
be used to evaluate the following aspects:

• Overall complexity, e.g., page and link count; average and maximum number
of links per page.

• Navigational burden, e.g., average and worst-case click path lengths [3] [112].

• Semantic consistency, e.g., a link label should always be used to link to the
same page; a page should always be linked with the same label (see Section
7.4).

• Structural consistency, e.g., every page should link to the Home page; a page
should not contain multiple links to another page; a page should not link to
itself (see Section 7.4).

• Error recovery, i.e., after clicking a link by mistake, what are the average and
worst-case costs (in terms of click path length) of returning to the source page
[112].

• Reachability constraints, e.g., the application should not contain “dead ends”
(pages which do not provide any links to the application).

Some of the listed evaluations require specific configuration in order to be per-
formed. For example, in-page error detection requires a list of regular expressions
which indicate errors; evaluation of consistent Home page linking requires to know

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 109

the Home page URL. Some quantitative properties require threshold values in order
to be interpreted and evaluated, e.g., the longest tolerable length of click paths.

For some evaluations, rule exceptions have to be defined. For example, the con-
sistent usage of link labels can in general be evaluated automatically. However, in
some contexts the re-use of labels is meaningful, hence certain labels (or labels on
certain pages) should not be flagged: e.g., in a page sequence implementing some ap-
plication task, each page might be connected to the following page via a link labeled
“Next Page”.

Other evaluations do not require any specific configuration due to their “objec-
tive” nature: e.g., HTML and CSS are defined standards, hence standard adherence
can be evaluated without further configuration; the same applies for accessibility
guidelines. Also, some graph properties (e.g., “dead ends” in the navigation struc-
ture) can be calculated without configuration.

7.3.3 Critique

Based on the automatically generated analysis data, the critique activity can be
provided by means of a report listing all found defects. Each defect item consists of
three elements:

• The defect type provides a name and a general description of the defect.

• The defect reason specifies why a defect was identified (omitted if this infor-
mation is obvious from the defect type).

• The defect context represents the application entities which are affected by the
defect.

The context information is intended to locate the defect as specifically as possible
in order to help solving the problem. Depending on the applied evaluation, the
context’s scope can be one of the following:

• Page element: a specific HTML element on a specific page; the outcome of
evaluations which statically analyze the HTML code. For example, the context
of an accessibility defect due to a missing alt tag for an image is the affected
img element, including the respective page and location in the HTML source
code.

• Link: similar to page element, but with added information about the target
page; usually the outcome of structural analysis. For example, if the link label

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 110

foo is used to link to different pages, the defect’s reason is “Inconsistent usage
of label foo”, and the context is a list of all links with that label.

• Page region: a graphical region (position and size in pixels) on a specific page;
the outcome of evaluations which are implemented via visual or DOM analysis
of the rendered page. For example, a color contrast defect’s context is the area
enclosing the affected text.

• Entire page: identifies defects affecting whole pages. For example, a page
contains horizontal scrolling.

• Entire application: identifies defects affecting the whole application. For ex-
ample, the average link count exceeds a threshold value.

The defect list can be arranged by different views: by defect instance, by affected
page, or by defect type.

• Defect instance view lists all defects as separate items.

• Page-wise view lists all pages containing any defects. Subsequently, for each
page a list of defects found on the page or involving the page is shown. Each
item comprises a textual description and the context (i.e., the affected entities)
of the defect.

• View by defect type lists all identified defect types. For each defect type, a
list of affected entities is presented. Here, entities represent the “cause” of the
defect.

Using the collected visual data (i.e., page screenshot and element position), de-
fects can also be presented graphically by showing the screenshot with an overly
indicating and describing the defect position. This approach has been demonstrated
by the Fighting Layout Bugs library which automatically highlights affected page
regions (e.g., texts overlapping borders) on a screenshot image.

The gathered usability data can also be inspected manually in order to inves-
tigate usability aspects which cannot be analyzed automatically. For this purpose,
an interactive reporting and analysis tool is required. The following list gives an
overview of some evaluations possible with this kind of data:

• Structure inspection: the application structure can be queried to calculate
custom properties (e.g., minimum path length between two specific pages).

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 111

• Graph comparison: graphs produced at different points in time in the project
life cycle can be compared (e.g., with regard to added/removed pages and
links).

• Simulation: a graph can be modified virtually (e.g., by adding links not present
in the actual application); then, the resulting experimental graph can be ana-
lyzed and compared to the actual graph.

• Project progress: if every generated graph is preserved, the progress of the
developed application can be tracked along the whole development process.

7.3.4 Integration in the Automated Build Process (CI)

An AUE tool as described in the Sections 7.3.1 to 7.3.3 can be used as a standalone
tool similar to existing AUE software. However, a bigger benefit can be achieved by
integrating the tool into a CI system:

• Usability evaluation is not triggered explicitly by developers, but implicitly by
the build script, and hence cannot be “forgotten” by developers.

• CI “knows” when the application was changed, so the usability effects of any
performed change can be evaluated immediately.

• The project team is periodically notified about the state of the developed ap-
plication’s usability.

• Serious usability defects can break the build (and thereby force immediate
fixing).

• The tool creates periodic “snapshots” of the application’s status, thus tracking
the project progess. This is not only useful for usability concerns but also for
project management.

• The acceptance of usability as a core software quality can be increased in the
project team. Also, developers gain usability expertise.

Different project contexts value different usability aspects, so the effect of found
defects on the build has to be specified individually. Constructs which are identified
as errors might be accepted or even intended in some contexts. In order to avoid a
potentially large number of false-positive usability error notifications from the build
system, an error filter is required which can assign an “effect” to each found error:

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 112

• Omit: The defect is logged, but developers are not notified about it.

• Notify: Developers are notified about the defect (usability warning).

• Break build: Serious defects can break the build, causing an alert notification
for the development team (usability error).

The concrete implementation of the integration depends on the used build au-
tomation framework. Figure 7.2 shows a diagram depicting the steps which are run
during a CI execution, extended by a step running an AUE analysis. The AUE step
is performed after deploying the application because the AUE approach described in
this chapter depends on a deployed and running application.

Figure 7.2: The steps performed during Continuous Integration, extended by an
AUE step.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 113

7.4 Graph-Related Usability Problems

In this section, some usability problems which can be found by analyzing the page
graph of a Web application are described.

7.4.1 Self link

A page should not contain links to itself. Such links add unnecessary complexity to
a site, which increases the cognitive load on the users.

Figure 7.3 shows a graph containing two pages, A and B. The link labeled x

links from A to A and is a “self link”; this link should be avoided. The link labeled
y also links from A to A, but targets an in-page anchor in A (A#foo) and thus is not
considered a “self link”. The link labeled z is a normal link between two different
pages.

Figure 7.3: Self link.

7.4.2 Inconsistently Used Link Labels

A link label should always be used to link to the same page. If a link label is used to
link to different pages, this increases the navigational complexity for the user. There
are, however, exceptions to this rule. A common exception are links used to access
lists of similar items, e.g., “Play” links next to each song in a playlist; “Next” links
on each page of a multi-step input sequence.

Figure 7.4 shows a graph containing four pages, A, B, C and D. Both links
are labeled x; however, one link targets page B, the other targets page D. This

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 114

is generally considered inconsistent; the label x should only be used to target one
distinct page.

Figure 7.4: Inconsistently used link labels.

7.4.3 Inconsistently Labeled Link Target URLs

All links to a specific target URL should have the same label. If a target URL is
linked with different labels, this increases the navigational complexity for the user.
Each in-page anchor in a page represents a different link target URL.

Figure 7.5 shows a graph containing three pages, A, B and C. Page C is targeted
by three links, each bearing a different label. The links labeled x and y are considered
inconsistent, as they both target the same page but use different labels. The link z,
however, targets an in-page anchor in C (C#foo), which is not considered inconsistent.

7.5 Prototype Implementation

A proof-of-concept of the tool concept presented in this chapter has been developed to
large extents. All relevant aspects (crawler, page and structure evaluations, reporting
front-end, build integration) have been implemented. The prototype was named
“Fawoo” (for “Fully Automated Web Usability”).

From the user’s point of view, the application model is structured as follows:
a Fawoo deployment allows to create and store “projects”. When crawling a Web
application, the results (i.e., graph model data, analysis data, and crawl metadata)
are stored as a “crawl job” inside a project. A Fawoo project typically reflects a

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 115

Figure 7.5: Inconsistently labeled link targets.

development project and thus contains crawl jobs for one specific Web application.
The different crawl jobs inside a project represent snapshots of the Web application,
taken at different times during development. Crawl jobs can be viewed and analyzed
separately or compared with each other.

In the remainder of this section, some implementation details of Fawoo will be
presented. This is followed by a walkthrough of the most important functions of
Fawoo. Then, limitations of the prototypical implementation are discussed.

7.5.1 Implementation Notes

Fawoo is implemented as a Web application using the Java programming language5,
an is hosted by a Tomcat6 server. For the user interface, the WingS library 7 is used.

The crawler implementation uses the Selenium/WebDriver library [105]. Web-
Driver allows to programmatically load and render Web pages, read Document Ob-
ject Model (DOM) information, and take screenshots. This “virtual browser” ap-
proach allows to extract usability data not available by merely parsing HTML code.
For example, HTML element positions and sizes cannot be deduced from the HTML
markup; this information is only accessible via the page’s DOM, which in turn is
a result of rendering the page. Furthermore, WebDriver provides different native
rendering engines (currently Internet Explorer, Firefox, and Chrome). This allows

5http://www.oracle.com/technetwork/java/index.html
6http://tomcat.apache.org/
7http://www.wingsframework.org/

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 116

to perform page rendering in different browsers, helping to detect browser-specific
layout bugs.

Fawoo is intended to be used by the development team to analyze a Web appli-
cation hosted on an internal test server, so download bandwidth was not considered
when implementing the prototype. While “traditional” crawlers try to limit the
workload they put on the crawled servers (e.g., by pausing after each downloaded
page), the Fawoo crawler tries to maximize the data throughput (by downloading
and parsing multiple pages in parallel) in order to minimize crawl duration. Thus,
crawling a public Web server with the Fawoo crawler could be considered a denial-of-
service attack and should be avoided unless the server operator is notified and allows
the experiment.

7.5.2 Walkthrough

The views (or “input masks”) available in Fawoo can be grouped into four categories:

• Project views are used to manage and display projects.

• Job views are used to manage jobs (e.g., to create a new job by crawling).

• Graph views are used to analyze the page graph structure of a crawled Web
application.

• Problem views are used to view usability problems identified in the analyzed
Web application.

In the following, sample screenshots of all relevant views are presented. On some
screenshots displaying data tables, columns unimportant for the displayed context
have been hidden in order to reduce the screenshot size.

The screenshot sequence forms a scenario: a project is created, a page is crawled,
the page graph structure is explored, and the found usability problems are examined.
Throughout this section, the Web site of Firebug is used as a continuous example.
Firebug8 is a popular browser plug-in for analyzing technical aspects of Web pages
from within the browser, which often is used to support usability evaluations.

Project Views

Figure 7.6 shows the dialogs used to create new projects, and to load existing projects.
In the first screenshot, a new project named “Firebug Homepage” is created. In the

8http://getfirebug.com/

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 117

(a) Project creation dialog. (b) Project selection dialog.

Figure 7.6: Dialogs for creating and loading projects.

second screenshot, the dialog lists the projects stored by Fawoo, including the project
“Firebug Homepage”.

Once a project is loaded, an overview of the project’s contents is displayed (Figure
7.7). The list in the top left corner displays all jobs currently stored in the project.
When selecting a job (by clicking its name), the user interface changes to “job mode”
and displays the contents of the selected job; when marking a job (by clicking the
checkbox next to the job), it is added to the comparison table displayed in the main
part of this view. The comparison table allows to get a quick overview of the marked
jobs’ contents by listing each job’s crawl parameters, graph metrics, and usability
metrics.

In the example screenshot, two jobs are displayed in the comparison table. The
crawl dates indicate that the jobs have been created on two consecutive days; hence,
the page graph properties are almost identical. The only notable difference is the
increased number of links in the second graph (one link was added).

Further actions available on this view (via the menu in the top right corner) are:
running a new crawl job, selecting and creating projects, deleting the current project,
and switching to “job mode” (opens the last selected job).

Job Views

When a crawl job is selected in the project overview, the user interface changes to “job
mode” (Figure 7.8). In this mode, different views on the selected job are provided.
Initially, the job summary view is displayed. This shows the same information as the
comparison table on the project overview, for the selected job only.

Other actions available on all job views (via the menu in the top right corner)
are: running a new crawl job using the same crawl parameters, deleting the job, and

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 118

Figure 7.7: Project overview.

switching back to “project mode”.
When the creation of a new crawl job is initiated (either from the project overview

or from a job view), a dialog for entering the crawl parameters is displayed. This
dialog offers two display modes: simple mode just allows to enter the start URL for
crawling; for all other crawl parameters, default value are used. Figure 7.9 shows
the crawl dialog in simple mode, with the URL http://getfirebug.com/ entered
as start URL. When the crawl process is started, the crawl dialog displays progress
information (elapsed time so far, number of parsed pages, number of followed links)
and allows to cancel crawling (also shown in Figure 7.9).

In extended mode, the crawl parameters can be set explicitly (Figure 7.10). These
include URL filter settings (for defining which URLs get visited by the crawler),
performance settings (the number of parallel parser threads), and HTTP connection

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 119

Figure 7.8: Crawl job summary.

(a) Simple crawl dialog. (b) Crawl progress dialog.

Figure 7.9: Dialog for configuring and running a crawl job.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 120

settings. Some additional parameters (e.g., the used browser rendering engine) are
currently hard-coded and cannot be changed in the user interface.

In the example screenshot, the URL filter is set to block URLs with paths match-
ing /wiki* (denoting the wiki part of Firebug) or *getinvolved* (denoting the de-
veloper community part of Firebug); the host filter is set to allow getfirebug.com,
which implicitly excludes sub-domains like blog.getfirebug.com (in order to crawl
sub-domains as well, the host filter would have to be changed to *getfirebug.com)9.
These settings prevent the crawler from visiting parts of the application which con-
tain ad-hoc structures, as found in wiki-style and other user-generated sites. Such
sites (or, as in this case, sub-sites) can grow very large and thus cause a lot of work-
load for the crawler. Furthermore, changes can be performed at unforeseen times
and uncontrolled by the owner, causing Fawoo to identify structural changes even
though the actual Web application has not been changed. In other contexts, how-
ever, crawling wikis might be useful, for example if the structural development of a
wiki is to be analyzed.

Graph Views

The different graph views are used to manually explore the job’s graph, e.g., to find
pages or links matching certain search criteria.

Page list view displays a filterable list of all pages contained in the job’s graph
(Figure 7.11). For each page, the URL, the page title, the number of links to this
page, the number of links on this page, and the page type are displayed. The link
labeled “show/hide controls” in the lower right corner of the page list toggles display
of filter controls. The page type is used to encode different kinds of errors which
can be encountered during crawling (e.g., malformed URL, unknown host, invalid
HTML) and marks special leaf pages (e.g., non-HTML content type, blocked by the
URL filter); “normal” pages are indicated by the page type Ok. When clicking on a
page’s URL, the detail view for the selected page is displayed.

Link list view displays a filterable list of all links contained in the job’s graph
(Figure 7.12). As on the page list view, the link labeled “show/hide controls” in
the lower right corner of the link list toggles display of filter controls. For each link,
the source and target pages, the link fragment (the URL part targeting an in-page
anchor, e.g., http://foo.com/bar#foo), and the link’s text label or label image URL
are displayed (alternatively to separately displaying target page and link fragment,

9Pages blocked by the URL filter still are added to the page graph, with their type property set

to BlockedPage. This ensures that links targeting blocked pages are preserved.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 121

Figure 7.10: Extended crawl dialog.

the target URL combining these two values can be displayed) When clicking on a
source or target page’s URL, the detail view for the selected page is displayed.

Page detail view shows a summary of a specific page in the job’s graph (Figure
7.13). The displayed information comprises a summary of the page’s attributes, a
list of all links to this page, and a list of all links from this page. The page detail
view can be invoked from various other views which display lists of pages or links.

Graph comparison view allows to compare two jobs (Figure 7.14). The view
shows a table summarizing the selected jobs, and lists all pages which where added
to and removed from the second job, as well as all links which where added to and
removed from the second job.

In the example screenshot, the only difference between the two jobs’ graphs is
one link which was added to the second graph.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 122

Figure 7.11: List of all pages in the graph.

Figure 7.12: List of all links in the graph.

Problem Views

Problem views show various usability problems which where found when analyzing
a job’s crawl results.

Problem list view is the main problem view (Figure 7.15). It shows a filterable
list of all distinct found usability problems. For each problem, the problem type,
the problem context (i.e., the location or context of the problem; the affected ele-
ment), and a textual problem description are displayed. When a problem is selected,
additional context information is displayed in a second view below the list.

In the example screenshot, the list displays ten out of 124 identified usability

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 123

Figure 7.13: Page details.

problems. The displayed problems comprise two problem types: self links (see Section
7.4) and uppercase link labels (use of labels only containing uppercase letters is
discouraged due to reduced readability). For the selected problem (an uppercase
link label problem), the context data is displayed (for this problem type, a list of all
links affected by the problem; in this case, only one link is affected).

Inconsistent link labels view (Figure 7.16) is a custom view for a specific usability
error type, “inconsistently used link labels” (see Section 7.4; this error type is also
displayed in the problem list). The view shows a list of all inconsistently used link

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 124

Figure 7.14: Graph comparison.

labels in the graph. When a label is selected, the target URLs which are linked with
the selected label are displayed in a second list. When one of the URLs is selected,
the links targeting the selected URL with the selected label are displayed in a third
list.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 125

Figure 7.15: Problem list.

In the example screenshot, the label What’s New? is selected in the
first list. This label is used for links to three different URLs; the URL
http://getfirebug.com/firebuglite/#WhatsNew is selected in the second list. In
the third list, the sole link with the label selected label (What’s New?) linking to the
selected URL (http://getfirebug.com/firebuglite/#WhatsNew) is displayed.

Inconsistent link target URL view (Figure 7.17) is a custom view for a specific
usability error type, “inconsistently labeled link target URLs” (see Section 7.4; this
error type is also displayed in the problem list). The view shows a list of all inconsis-
tently linked URLs in the graph. When a URL is selected, the different labels which
are used to link to the selected URL are displayed in a second list. When one of the
labels is selected, the links targeting the selected URL with the selected label are
displayed in a third list.

In the example screenshot, the URL http://blog.getfirebug.com/ is selected
in the first list. Four different link labels are used to link to this URL; one of them,
Blog, is selected in the second list. In the third list, all 24 links with the label Blog
linking to http://blog.getfirebug.com/ are displayed.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 126

Figure 7.16: Inconsistent link labels list.

Build Integration

Besides being invoked manually from the user interface, the crawler can also be run
automatically. In the context of a Continuous Integration environment, a call to the
crawler can be added to the ant build script. First, the ant task implementing the
usability evaluation has to be imported:

<taskdef name="fawoo" classname="org.fawoo.FawooTask"/>

Then, a target invoking the task fawoo for a specific project is defined:

<target name="run-fawoo">

<fawoo home-dir="/opt/fawoo-home/" project-name="foo"/>

</target>

This target can be invoked anywhere in the build script; prior to its execution,
the application has to be built and deployed successfully.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 127

Figure 7.17: Inconsistent link targets list.

In this example, only two parameters are passed to the fawoo task: the tool’s
home directory and the name of the project. The home directory contains the master
database storing references to all projects and their associated configurations; the
project name identifies one of the projects and allows the task to load the required
configuration data (e.g., start URL, URL filter, evaluation parameters, etc.) from
the database. This approach requires a project to be created manually using the
graphical front-end before running an automated evaluation.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 128

7.5.3 Limitations

The presented tool still lacks support for some important technologies used in Web
applications, namely HTML forms, JavaScript and AJAX.

HTML Forms

The crawler can only follow static HTML anchor links but does not support naviga-
tion based on HTML forms. Form navigation requires to fill input values into form
elements (e.g., text input fields, drop-down lists) before submitting the form to the
server (usually by clicking a button). Furthermore, a form often triggers a server-side
program which dynamically generates a result page. Each distinct set of form input
values might yield a different page.

In order to crawl forms, the crawler would have to be configured with input
parameter sets for all forms in the Web application. This poses three problems:

1. Input parameters for all forms have to be provided, which is complex and
work-intensive.

2. A representative subset of all possible input parameter combinations has to
be chosen for each form in order to limit the crawler’s workload (thereby also
reducing its coverage).

3. All forms have to be known before crawling, which requires a-prior knowledge
of the application’s navigation model.

The first two problems can, for example, be solved, or at least alleviated, by using
“SmartProfiles”, a technique described by Benedikt et al. [20] (this approach still
requires a lot of non-automatable work).

The third mentioned problem can be solved by explorative crawling: The crawler
is equipped with a lookup L which provides input parameters sets for forms. In
crawl session si, the crawler reports all unknown forms Fi it encounters. Appropriate
input values for Fi have to be provided and are added to L. In the next crawl session
si+1, the crawler can navigate past the forms Fi using L, and will eventually stop
crawling with a new set Fi+1 of unknown forms. After n iterations, this process
can be stopped if either Fn is empty, or n exceeds a threshold level (this limits
the exploration of graphs which contain a virtually infinite number of pages due to
dynamic page generation).

Even though technically possible, form navigation is neither included in the tool
concept nor implemented by the tool prototype as the above mentioned requirements
contradict the philosophy of striving for full automation of usability evaluation.

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 129

This limitation causes the following drawbacks: If a page pt accessed via a form
interface on page ps is also reachable by a static link on page pu, only the form-based
“link” from ps to pt is not added to the graph model; pt will eventually be reached
by another link path via pu. If, however, pt is only accessible via the form, neither pt

nor any page only accessible by link paths via pt are parsed and thus can neither be
analyzed nor added to the graph model. For example, a search result page is usually
only accessible via a search form. Neither the link from the page hosting the form
to the result page, nor the result page itself will be added to the graph; however,
the pages accessible from the result page (e.g., product descriptions) usually are also
accessible by other means (e.g. a link-based browsing interface) and thus are covered
by the crawler. Another example with more serious limitations would be a login form
providing access to the secured part of an application. As every page in the secured
part requires to pass the login form, no such page will be crawled.

JavaScript and AJAX

JavaScript-driven navigation is not supported by Fawoo. Web applications can at-
tach JavaScript functions to links (or form elements). So instead of following the
URL in the href attribute of the link tag, the browser runs a client-side script which
might redirect to a new page. While the used “virtual browser” software compo-
nent (WebDriver) supports execution of JavaScript code, JavaScript navigation is
currently not implemented in Fawoo.

Asynchronous page updates are not supported by Fawoo. The crawler and the
graph model are based on the assumption that each visible “state” of the application
is represented by a unique URL. The current trend towards asynchronous technolo-
gies (e.g., AJAX) leads to applications where servers send data instead of documents
to clients (browsers), and rendering of that data is performed on the client-side (e.g.,
by dynamically manipulating the DOM). The application state no longer is reflected
by a URL, but by the page’s contents. The structure of such an application still
can be represented as a graph [112]; however, a new hashing function for deriving
application state identifiers from pages has to be found. Tonella and Ricco [114]
propose to utilize the client-side DOM state for such a function.

Features

Besides technical limitations, some of the described features are missing in the current
prototype implementation.

Fawoo contains a fixed set of evaluation types. In order to increase flexibility

CHAPTER 7. CONTINUOUS USABILITY EVALUATION 130

of development and usage, a plug-in system for dynamically attaching evaluation
modules would be feasible.

The used “virtual browser” is not exploited to the full extent. HTML element
positions and sizes are not evaluated for usability aspects, and the Fighting Layout
Bugs library (which is based on the same “virtual browser”, Selenium/WebDriver)
is not integrated. Thus, some important usability metrics are not yet covered by
Fawoo. However, all metrics have been implemented in standalone proof-of-concept
studies and thus can be considered to also work in the context of an automated
usability evaluation tool like Fawoo.

7.6 Conclusion and Future Work

In this chapter, the concept and the prototypical implementation of a tool for fully
automated usability evaluation of Web applications was presented. The tool is ca-
pable of evaluating single pages as well as the entire application structure regarding
usability aspects. Furthermore, the tool can be integrated into a Continuous Inte-
gration system in order to automate is execution.

Fully automated usability evaluations cannot replace evaluations incorporating
humans, be it analysis by usability experts or feedback from users. Still, AUE meth-
ods can point out some common usability errors of Web applications, and give clues
for further investigations targeted at potential problems. Automation allows to ap-
ply usability evaluation comprehensively (i.e., checking the whole application, not
just some representative pages) and repeatedly (i.e., the usability impact of every
change to the UI can be evaluated). Furthermore, integration of AUE methods can
increase awareness of usability concerns amongst developers.

Future work on the presented tool—and on Web AUE in general—incorporates
support for HTML forms and client-side technologies like AJAX. Furthermore, the
tool’s applicability for real-world projects will be evaluated by testing it in the context
of a commercial project.

Chapter 8

Epilogue

In this concluding chapter, the research results presented in this thesis are reviewed,
and topics for future research in the field of automated usability analysis are pre-
sented.

8.1 Conclusions

In this thesis, different concepts of the integration of usability engineering practices
into agile software development have been examined. These concepts are mainly
based on two aspects: the agile development method Extreme Programming (XP)
has been adapted in order to better support usability concerns; and a novel toolset
supporting the specific demands of usability evaluation in the context of agile devel-
opment has been created.

Adapted Development Process

The presented adaptions to the standard XP development process comprise three
main factors:

• By synchronizing development and user interface design iterations, feature re-
quirements and usability demands no longer have to be planned separately but
are part of the same iteration plan.

• Usability experts are considered an integral part of the development team, sim-
ilar to the “customer on site” required by XP. Instead of consulting external
experts at defined time points in the project life cycle (e.g., before release plan-
nings), a dedicated expert is available for inquiries and feedback. This ensures
that no design decision is taken without considering its usability implications.

131

CHAPTER 8. EPILOGUE 132

• Existing usability engineering instruments have been integrated into the de-
velopment workflow. The Personas approach has been adjusted to the special
demands of XP, resulting in Extreme Personas; different automated usability
evaluation methods have been integrated.

The effects of these adaptions have been evaluated using different measurements:

• The development process has been monitored using the Extreme Programming
Evaluation Framework (XP:EF, [68] [121]). The results of XP:EF showed that
the applied process adaptions do not interfere with the development workflow
of XP. On the contrary, XP:EF illustrated that the adapted process allows to
apply XP practices to other development aspects, namely the user-interface
design and the human-computer interaction model.

• The usability of the developed software product has been evaluated with user
studies and usability expert evaluations. In both cases, the feedback on the
software’s usability was confirming, indicating positive effects of the usability
adaptions.

• A general rise in the awareness and acceptance of usability concerns among the
development team could be observed.

Automated Usability Evaluation Toolset

An AUE tool for Web applications, capable of integration in Continuous Integration
(CI) systems, was developed. The tool monitors the usability effects of code changes,
thereby allowing for continuous, automated evaluation of usability concerns. Revis-
iting the design goals stated in Section 1.1:

• The tool automates the collection of usability data by crawling the deployed
Web application. Each visited page is analyzed in order to identify usabil-
ity problems. In addition to that, the navigation graph of the crawled Web
application is extracted, allowing for structural analysis.

• The manual effort required from the members of the project team is minimal as
the tool can be used without any additional configuration overhead. However,
for optimal results some configuration steps are recommended.

• By integration into a CI system, the tool’s evaluations can be executed im-
plicitly (e.g., at every committed code change, or during nightly builds). The

CHAPTER 8. EPILOGUE 133

results of the analysis steps are reported to the development team, causing the
software build to fail in case of severe usability defects.

The tool has been implemented as a proof-of-concept and was successfully in-
tegrated into the popular CI system CruiseControl [30]. The AUE quality of the
tool is currently being examined in an expert-driven evaluation conducted by CURE
[43]. HCI experts participating in the evaluation perform heuristic evaluations of a
Web site’s usability with and without the AUE tool and fill out questionnaires. The
preliminary results of this analysis indicate that the tool provides a solid coverage
of common usability issues, and additionally helps to identify some otherwise easily
overlooked issues.

8.2 Challenges and Perspectives

In the field of automated usability evaluation for Web applications, the biggest chal-
lenge for future development lies in the support of current and upcoming technologies
used for building Web applications. The concept presented in this thesis requires a
relatively simple Web architecture in order to be applied; many state-of-the-art tech-
nologies (e.g., client-side scripting) are not supported due to the lack of standardized
programming interfaces. The supported navigation model is based on anchor tags in
plain HTML documents, which are relatively easy to parse; every visible and relevant
application state is reflected by a unique URL. However, more advanced technologies
allow programmers to embed arbitrary logic in their Web applications. For example,
navigation actions are not limited to links but can be attached to virtually any page
element; state transitions are not necessarily reflected by changed URLs; Web pages
can change the displayed content dynamically. There exist promising approaches for
accessing pages employing such technologies; however, currently no such approach is
sufficiently developed for general applicability.

Another challenge is the porting of the presented approach to desktop-based soft-
ware technologies. In theory, the concept can be applied to any software technology,
provided that there is a uniform way of parsing the user interface, and a function
for deriving a unique identifier representing the application state is available. Many
popular user interface frameworks either incorporate explicit model creation for in-
put masks and navigation (e.g., by means of markup languages), or support deriving
of such models from the executed application (e.g., by means of reflection), and
hence are potential platforms for fully automated usability evaluation as described
in this thesis. However, the diversity of existing frameworks prevents the creation of
a generally applicable approach.

Bibliography

[1] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith,
and Pete Steggles. Towards a better understanding of context and context-
awareness. In HUC ’99: Proceedings of the 1st international Symposium
on Handheld and Ubiquitous Computing, pages 304–307, London, UK, 1999.
Springer-Verlag.

[2] Pekka Abrahamsson, Juhani Warsta, Mikko T. Siponen, and Jussi Ronkainen.
New directions on agile methods: A comparative analysis. In ICSE ’03: Pro-
ceedings of the 25th International Conference on Software Engineering, pages
244–254, Washington, DC, USA, 2003. IEEE Computer Society.

[3] Rashid Ahmad, Zhang Li, and Farooque Azam. Measuring navigational bur-
den. In SERA ’06: Proceedings of the Fourth International Conference on
Software Engineering Research, Management and Applications, pages 307–314,
Washington, DC, USA, 2006. IEEE Computer Society.

[4] Ambysoft. IT project success rates: Survey results.
http://www.ambysoft.com/surveys/success2007.html. Last visit: 15.01.2008.

[5] Morten Sieker Andreasen, Henrik Villemann Nielsen, Simon Ormholt Schrøder,
and Jan Stage. What happened to remote usability testing?: an empirical
study of three methods. In CHI ’07: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 1405–1414, New York, NY, USA,
2007. ACM.

[6] Richard Atterer. Model-based automatic usability validation: a tool concept
for improving web-based UIs. In NordiCHI ’08: Proceedings of the 5th Nordic
conference on Human-computer interaction, pages 13–22, New York, NY, USA,
2008. ACM.

134

BIBLIOGRAPHY 135

[7] ATutor. ATRC web accessibility checker. http://www.achecker.ca. Last visit:
30.04.2010.

[8] Fiora T. W. Au, Simon Baker, Ian Warren, and Gillian Dobbie. Automated
usability testing framework. In AUIC ’08: Proceedings of the ninth conference
on Australasian user interface, pages 55–64, Darlinghurst, Australia, Australia,
2008. Australian Computer Society, Inc.

[9] Jakob Otkjaer Bak, Kim Nguyen, Peter Risgaard, and Jan Stage. Obstacles
to usability evaluation in practice: a survey of software development organiza-
tions. In NordiCHI ’08: Proceedings of the 5th Nordic conference on Human-
computer interaction, pages 23–32, New York, NY, USA, 2008. ACM.

[10] Christoph Bartneck. Interacting with an embodied emotional character. In
DPPI ’03: Proceedings of the 2003 International Conference on Designing
Pleasurable Products and Interfaces, pages 55–60, New York, NY, USA, 2003.
ACM.

[11] BBC. Online video eroding tv viewing. http://news.bbc.co.uk/2/hi/entertain-
ment/6168950.stm. Last visit: 31.05.2007.

[12] Kent Beck. Extreme Programming Explained: Embrace Change (1st Edition).
Addison-Wesley Professional, 1999.

[13] Kent Beck. Extreme Programming Explained: Embrace Change (1st Edition).
Addison-Wesley Professional, 1999.

[14] Kent Beck. Test-Driven Development: By Example. Addison-Wesley, 2002.

[15] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, November 2004.

[16] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cun-
ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt,
Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken
Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for agile software
development. http://www.agilemanifesto.org/, 2001. Last visit: 26.03.2008.

[17] M. Beedle and K. Schwaber. Agile Software Development with Scrum, 1st
edition. Prentice Hall PTR, 2001.

BIBLIOGRAPHY 136

[18] Armin Beer, Stefan Mohacsi, and Christian Stary. Idatg: An open tool for
automated testing of interactive software. In COMPSAC ’98: Proceedings of
the 22nd International Computer Software and Applications Conference, pages
470–475, Washington, DC, USA, 1998. IEEE Computer Society.

[19] Raquel Benbunan-Fich and Alberto Benbunan. Understanding user behav-
ior with new mobile applications. Journal of Strategic Information Systems,
16(4):393–412, 2007.

[20] Michael Benedikt, Juliana Freire, and Patrice Godefroid. Veriweb: Automati-
cally testing dynamic web sites. In In Proceedings of 11th International World
Wide Web Conference (WWW2002, 2002.

[21] Blinkx. Video search engine. http://www.blinkx.com. Last visit: 01.11.2007.

[22] Jan Blom, Jan Chipchase, and Jaakko Lehikoinen. Contextual and cultural
challenges for user mobility research. Communications of the ACM, 48(7):37–
41, 2005.

[23] M.M. Bradley and P.J. Lang. Measuring emotion: the self-assessment manikin
and the semantic differential. Journal of Behavioral Therapy and Experimental
Psychiatry, 25(1):49–59, March 1994.

[24] Stuart K. Card, Thomas P. Moran, , and Allen Newell. The Psychology of
Human-Computer Interaction. Lawrence Erlbaum, 1983.

[25] Christer Carlsson and Pirkko Walden. Mobile tv - to live or die by content. In
HICSS ’07: Proceedings of the 40th Annual Hawaii International Conference
on System Sciences, page 51, Washington, DC, USA, 2007. IEEE Computer
Society.

[26] Stephanie Chamberlain, Helen Sharp, and Neil Maiden. Towards a framework
for integrating agile development and user-centred design. In 7th International
Conference on Extreme Programming and Agile Processes in Software Engi-
neering, XP 2006, volume 4044 of LNCS, pages 143–153, Heidelberg, Germany,
2006. Springer.

[27] D. Cohen, M. Lindvall, and P. Costa. An introduction to agile methods. New
York: Elsevier Science, 2004.

[28] Larry L. Constantine and Lucy A. D. Lockwood. Software for Use: A Prac-
tical Guide to the Models and Methods of Usage-Centered Design. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

BIBLIOGRAPHY 137

[29] Larry L. Constantine and Lucy A. D. Lockwood. Usage-centered software
engineering: An agile approach to integrating users, user interfaces, and us-
ability into software engineering practice. In ICSE ’03, pages 746–747. IEEE
Computer Society, 2003.

[30] Cruise Control. Cruise control. http://cruisecontrol.sourceforge.net/. Last
visit: 8.3.2010.

[31] Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. MCWEB: A
model-checking tool for web site debugging. In In World Wide Web Conference
(WWW) – Poster Proceedings, pages 86–87, 2001.

[32] Jen-Wen Ding, Chin-Tsai Lin, and Kai-Hsiang Huang. ARS: An adaptive
reception scheme for handheld devices supporting mobile video streaming ser-
vices. In International Conference on Consumer Electronics. ICCE ’06, vol-
ume 1, pages 141– 142, 2006.

[33] Joseph Dumas and Janice Redish. A Practical Guide to Usability Testing,
Revised Edition. Intellect, 1999.

[34] EMMA. Emma: Java code coverage tool. http://emma.sourceforge.net/. Last
visit: 26.03.2008.

[35] Everyzing. Everyzing. http://www.everyzing.com. Last visit: 01.11.2007.

[36] Adrian Fernandez, Emilio Insfran, and Silvia Abrahao. Integrating a usability
model into model-driven web development processes. In WISE ’09: Proceedings
of the 10th International Conference on Web Information Systems Engineering,
pages 497–510, Berlin, Heidelberg, 2009. Springer-Verlag.

[37] Jennifer Ferreira, James Noble, and Robert Biddle. Agile development iter-
ations and UI design. In Agile 2007, pages 50–58. IEEE Computer Society,
2007.

[38] Sebastian Feuerstack, Marco Blumendorf, Maximilian Kern, Michael Kruppa,
Michael Quade, Mathias Runge, and Sahin Albayrak. Automated usability
evaluation during model-based interactive system development. In HCSE-
TAMODIA ’08: Proceedings of the 2nd Conference on Human-Centered Soft-
ware Engineering and 7th International Workshop on Task Models and Dia-
grams, pages 134–141, Berlin, Heidelberg, 2008. Springer-Verlag.

BIBLIOGRAPHY 138

[39] William Foddy. Constructing Questions for Interviews and Questionnaires:
Theory and Practice in Social Research. Cambridge University Press, 1994.

[40] Robert Gittins and Sian Hope. A study of human solutions in extreme pro-
gramming. In PPIG 2001, The 13th Annual Psychology of Programming Inter-
est Group Conference, Bournemouth, UK. 10th - 12th September 2008, pages
41–51, 2001.

[41] Google. About Gmail. http://mail.google.com/mail/help/intl/en/about.html.
Last visit: 25.05.2007.

[42] Bengt Göransson, Jan Gulliksen, and Inger Boivie. The usability design process
– integrating user-centered systems design in the software development process.
Software Process: Improvement and Practice, 8(2):111–131, 2003.

[43] Cornelia Graf, Peter Wolkerstorfer, and Manfred Tscheligi. FAWOO - evalua-
tion of an automated usability evaluation tool through HCI experts. Unpub-
lished manuscript, 2011.

[44] Jan Gulliksen, Bengt Göransson, Inger Boivie, Stefan Blomkvist, Jenny Pers-
son, and Äsa Cajander. Key principles for user-centred systems design. Be-
haviour & Information Technology, Special Section on Designing IT for Healthy
Work, Vol. 22 No. 6:397–409, 2003.

[45] Marc Hassenzahl, Michael Burmester, and Franz Koller. AttrakDiff: Ein Frage-
bogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität.
In G. Szwillus and J. Ziegler, editors, Mensch and Computer 2003: Interaktion
in Bewegung, pages 187–196, Stuttgart, 2003. B. G. Teubner.

[46] Orit Hazzan and James E. Tomayko. Human aspects of software engineering:
The case of extreme programming. In XP, pages 303–311, 2004.

[47] Andreas Holzinger. Usability engineering for software developers. Communi-
cations of the ACM, 48:71–74, 2005.

[48] Andreas Holzinger, Maximilian Errath, Gig Searle, Bettina Thurnher, and
Wolfgang Slany. From Extreme Programming and Usability Engineering to Ex-
treme Usability in software engineering education (XP+UE→XU). In COMP-
SAC ’05: Proceedings of the 29th Annual International Computer Software and
Applications Conference (COMPSAC’05) Volume 2, pages 169–172, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

BIBLIOGRAPHY 139

[49] Andreas Holzinger, Gig Searle, and Alexander K. Nischelwitzer. On some as-
pects of improving mobile applications for the elderly. In Constantine Stephani-
dis, editor, Universal Access in HCI, volume 4554 of Lecture Notes in Computer
Science, pages 923–932. Springer, 2007.

[50] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, and Thomas Vlk. Optimizing extreme programming.
In ICCCE 2008: Proceedings of the International Conference on Computer
and Communication Engineering, Kuala Lumpur, Malaysia, pages 1052–1056.
IEEE, 2008.

[51] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, Thomas Vlk, and Peter Wolkerstorfer. User inter-
face design for a content-aware mobile multimedia application: An itera-
tive approach. In Frontiers in Mobile and Web Computing: Proceedings of
MoMM2007 & iiWAS2007 Workshops, volume 231, pages 115–120, Jakarta,
Indonesia, 2007.

[52] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, Thomas Vlk, and Peter Wolkerstorfer. User interface
design for a mobile multimedia application: An iterative approach. In ACHI
’08: Proceedings of the International Conference on Advances in Computer-
Human Interaction 2008, pages 189–194, 2008. Published 1st International
Conference on Advances in Computer-Human Interaction (ACHI 2008) Febru-
ary 10-15, 2008 - Sainte Luce, Martinique.

[53] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, and Peter Wolkerstorfer. Agile user-centered design
applied to a mobile multimedia streaming application. In USAB 2008, vol-
ume 5298/2008 of Lecture Notes in Computer Science, pages 313–330. Springer
Berlin / Heidelberg, November 2008.

[54] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, and Peter Wolkerstorfer. Integrating extreme pro-
gramming and user-centered design. In PPIG 2008, The 20th Annual Psychol-
ogy of Programming Interest Group Conference, Lancaster University, UK.
10th - 12th September 2008, 2008.

[55] Zahid Hussain, Martin Lechner, Harald Milchrahm, Sara Shahzad, Wolfgang
Slany, Martin Umgeher, and Peter Wolkerstorfer. Concept and design of a

BIBLIOGRAPHY 140

contextual mobile multimedia content usability study. In ACHI, pages 277–
282. IEEE, 2009.

[56] Zahid Hussain, Harald Milchrahm, Sara Shahzad, Wolfgang Slany, Manfred
Tscheligi, and Peter Wolkerstorfer. Integration of extreme programming and
user-centered design: Lessons learned. In XP, volume 31 of LNBIP, pages
174–179. Springer, 2009.

[57] Zahid Hussain, Wolfgang Slany, and Andreas Holzinger. Current state of agile
user-centered design: A survey. In USAB 2009, volume 5889 of Lecture Notes
in Computer Science, pages 416–427. Springer Berlin / Heidelberg, November
2009. USAB 2009 - HCI and Usability for e-Inclusion, Linz, Austria, 9-10
November 2009.

[58] Emilio Insfran and Adrian Fernandez. A systematic review of usability evalua-
tion in web development. In WISE ’08: Proceedings of the 2008 international
workshops on Web Information Systems Engineering, pages 81–91, Berlin, Hei-
delberg, 2008. Springer-Verlag.

[59] Melody Y. Ivory and Marti A Hearst. The state of the art in automating
usability evaluation of user interfaces. ACM Comput. Surv., 33(4):470–516,
2001.

[60] Timo Jokela and Pekka Abrahamsson. Usability assessment of an extreme
programming project: Close co-operation with the customer does not equal to
good usability. In 5th International Conference, PROFES ’04, pages 393–407,
2004.

[61] Joost. Free online tv. http://www.joost.com. Last visit: 01.11.2007.

[62] Satu Jumisko-Pyykkö and Jukka Häkkinen. Evaluation of subjective video
quality of mobile devices. In MULTIMEDIA ’05: Proceedings of the 13th
Annual ACM International Conference on Multimedia, pages 535–538, New
York, NY, USA, 2005. ACM.

[63] Jumpcut. Be good to your video. http://www.jumpcut.com. Last visit:
01.11.2007.

[64] Plinio Thomaz Aquino Junior and Lucia Vilela Leite Filgueiras. User mod-
eling with personas. In CLIHC ’05: Proceedings of the 2005 Latin American
Conference on Human-Computer Interaction, pages 277–282, New York, NY,
USA, 2005. ACM.

BIBLIOGRAPHY 141

[65] Eeva Kangas and Timo Kinnunen. Applying user-centered design to mobile
application development. Communications of the ACM, 48(7):55–59, 2005.

[66] Jesper Kjeldskov and Jan Stage. New techniques for usability evaluation of mo-
bile systems. International Journal of Human-Computer Studies, 60(5-6):599–
620, May 2004.

[67] Hendrik Knoche, John D. McCarthy, and M. Angela Sasse. Can small be
beautiful?: Assessing image resolution requirements for mobile tv. In MULTI-
MEDIA ’05: Proceedings of the 13th Annual ACM International Conference
on Multimedia, pages 829–838, New York, NY, USA, 2005. ACM Press.

[68] Bill Krebs. Shodan 2.0 input metric survey. http://agile.csc.ncsu.edu/survey.
Last visit: 03.08.2011.

[69] Philippe Kruchten. The Rational Unified Process: An Introduction, 3 edition.
Addison-Wesley Longman Publishing Co., 2003.

[70] Amy Law and Raylene Charron. Effects of agile practices on social factors. In
HSSE ’05: Proceedings of the 2005 Workshop on Human and Social Factors of
Software Engineering, volume 30, pages 1–5, New York, NY, USA, July 2005.
ACM Press.

[71] Sang Ho Lee, Sung Jin Kim, and Seok Hoo Hong. On URL normalization.
In Osvaldo Gervasi, Marina Gavrilova, Vipin Kumar, Antonio Lagan, Heow
Lee, Youngsong Mun, David Taniar, and Chih Tan, editors, Computational
Science and Its Applications - ICCSA 2005, volume 3481 of Lecture Notes
in Computer Science, pages 1076–1085. Springer Berlin, Heidelberg, 2005.
10.1007/11424826 115.

[72] Michael Leitner, Peter Wolkerstorfer, Reinhard Sefelin, and Manfred Tsche-
ligi. Mobile multimedia: Identifying user values using the means-end theory.
In Proceedings of the 10th International Conference on Human Computer In-
teraction with Mobile Devices and Services, pages 167–175, Amsterdam, The
Netherlands, 2008. ACM.

[73] Clayton Lewis, Peter Polson, Cathleen Wharton, and John Rieman. Method-
ology for theory-based design of walk-up-and-use interfaces. In Proceedings of
Conference on Human Factors in Computing Systems (CHI90), pages 235–242.
ACM, 1990.

BIBLIOGRAPHY 142

[74] Clayton Lewis and John Rieman. Task-Centered User Interface Design: A
Practical Introduction. Shareware book, University of Colorado, 1993.

[75] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80,
January 2003.

[76] LinesOfCodeWichtel. Linesofcodewichtel. http://www.andreas-berl.de/lines-
ofcodewichtel/en/index.html. Last visit: 25.03.2008.

[77] Joe Marasco. Software development productivity and
project success rates: Are we attacking the right problem?
http://www.ibm.com/developerworks/rational/library/feb06/marasco/
index.html, Feb 2006. Last visit: 15.01.2008.

[78] Deborah Mayhew. Principles and Guidelines in Software User Interface De-
sign. Prentice-Hall, 1991.

[79] John D. McCarthy, M. Angela Sasse, and Dimitrios Miras. Sharp or smooth?:
Comparing the effects of quantization vs. frame rate for streamed video. In CHI
’04: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 535–542, New York, NY, USA, 2004. ACM.

[80] Steve McConnell. Code Complete, Second Edition. Microsoft Press, Redmond,
WA, USA, 2004.

[81] Paul McInerney and Frank Maurer. UCD in agile projects: Dream team or
odd couple? Interactions, 12(6):19–23, 2005.

[82] Laurianne McLaughlin. Next-generation entertainment: Video goes mobile.
IEEE Pervasive Computing, 06(1):7–10, 2007.

[83] Marc McNeill. User centred design in agile application development.
http://www.thoughtworks.com/pdfs/agile and UCD MM.pdf. Last visit:
30.03.2008.

[84] Thomas Memmel, Fredrik Gundelsweiler, and Harald Reiterer. Agile human-
centered software engineering. In BCS-HCI ’07: Proceedings of the 21st British
CHI Group Annual Conference on HCI 2007, pages 167–175, Swinton, UK,
UK, 2007. British Computer Society.

BIBLIOGRAPHY 143

[85] Thomas Memmel, Harald Reiterer, and Andreas Holzinger. Agile methods
and visual specification in software development: A chance to ensure universal
access. In Constantine Stephanidis, editor, Universal Access in HCI, volume
4554 of LNCS, pages 453–462. Springer, 2007.

[86] John Mendonca and Jeff Brewer. Lean, Light, Adaptive, Agile and Appropriate
Software Development: The Case for a less methodical Methodology, pages 42–
52. IGI Publishing, Hershey, PA, USA, 2003.

[87] G. Meszaros and J. Aston. Adding usability testing to an agile project. In
Agile Conference, 2006.

[88] Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007.

[89] Huaikou Miao, Zhongsheng Qian, and Bo Song. Towards automatically gener-
ating test paths for web application testing. In TASE ’08: Proceedings of the
2008 2nd IFIP/IEEE International Symposium on Theoretical Aspects of Soft-
ware Engineering, pages 211–218, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[90] National Institute of Standards and Technology. NIST web metrics.
http://zing.ncsl.nist.gov/WebTools/. Last visit: 11.10.2010.

[91] Jakob Nielsen. Usability Engineering. Morgan Kaufmann, 1993.

[92] Jakob Nielsen and Robert L. Mack. Usability Inspection Methods. John Wiley,
1994.

[93] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In
Proceedings of Conference on Human Factors in Computing Systems (CHI90),
pages 249–256. ACM, 1990.

[94] Jakob Nielsen and Kara Pernice. Eyetracking Web Usability. New Riders Press,
2009.

[95] Kenton O’Hara, April Slayden Mitchell, and Alex Vorbau. Consuming video
on mobile devices. In CHI ’07: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 857–866, New York, NY, USA,
2007. ACM.

[96] William F. Opdyke and Ralph E. Johnson. Refactoring object-oriented frame-
works. Technical report, 1992.

BIBLIOGRAPHY 144

[97] Jeff Patton. Hitting the target: adding interaction design to agile software
development. In OOPSLA 2002 Practitioners Reports, Seattle, Washington,
2002. ACM.

[98] Stefan Propp, Gregor Buchholz, and Peter Forbrig. Integration of usabil-
ity evaluation and model-based software development. Adv. Eng. Softw.,
40(12):1223–1230, 2009.

[99] Jeffrey Rubin and Theresa Hudson. Handbook of Usability Testing: How to
Plan, Design, and Conduct Effective Tests. John Wiley & Sons, Inc., New
York, NY, USA, 1994.

[100] Barbara Schmidt-Belz and Matt Jones. Mobile usage of video and tv. In
MobileHCI ’06: Proceedings of the 8th Conference on Human-Computer Inter-
action with Mobile Devices and Services, pages 291–292, New York, NY, USA,
2006. ACM.

[101] Ken Schwaber. Agile Project Management With Scrum. Microsoft Press, 2004.

[102] Reinhard Sefelin, Manfred Tscheligi, and Verena Giller. Paper prototyping -
what is it good for?: A comparison of paper- and computer-based low-fidelity
prototyping. In CHI ’03: CHI ’03 extended abstracts on Human factors in
computing systems, pages 778–779, New York, NY, USA, 2003. ACM Press.

[103] Ahmed Seffah, Mohammad Donyaee, Rex Bryan Kline, and Harkirat Kaur
Padda. Usability measurement and metrics: A consolidated model. Software
Quality Journal, 14(2):159–178, 2006.

[104] Ahmed Seffah, Jan Gulliksen, and Michel Desmarais. An introduction to
human-centered software engineering: Integrating usability in the development
process. In Human-Centered Software Engineering Integrating Usability in the
Software Development Lifecycle, pages 3–14. Springer Netherlands, 2005.

[105] Selenium Project. Selenium 2.0 and WebDriver.
http://seleniumhq.org/docs/09 webdriver.html. Last visit: 30.04.2010.

[106] Helen Sharp and Hugh Robinson. An ethnographic study of XP practice.
Empirical Software Engineering, 9(4):353–375, 2004.

[107] Carolyn Snyder. Paper Prototyping. Morgan Kaufmann, 2003.

[108] S.R. Subramanya and Byung K. Yi. User interfaces for mobile content. IEEE
Computer, 39(4):85–87, April 2006.

BIBLIOGRAPHY 145

[109] Michael Tamm. Fighting layout bugs. http://code.google.com/p/fighting-
layout-bugs/. Last visit: 30.04.2010.

[110] Sakari Tamminen, Antti Oulasvirta, Kalle Toiskallio, and Anu Kankainen. Un-
derstanding mobile contexts. Personal Ubiquitous Computing, 8(2):135–143,
2004.

[111] Bjornar Tessem. Experiences in learning XP practices: A qualitative study. In
XP, pages 131–137, 2003.

[112] Harold Thimbleby. Press On — Principles of Interaction Programming. MIT
Press, 2007.

[113] Paolo Tonella and Filippo Ricca. Dynamic model extraction and statistical
analysis of web applications. In WSE ’02: Proceedings of the Fourth Interna-
tional Workshop on Web Site Evolution (WSE’02), page 43, Washington, DC,
USA, 2002. IEEE Computer Society.

[114] Paolo Tonella and Filippo Ricca. Dynamic model extraction and statistical
analysis of web applications: Follow-up after 6 years. In 10th International
Symposium on Web Site Evolution, pages 3–10. IEEE Computer Society, 2008.

[115] Anders Toxboe. Introducing user-centered design to extreme program-
ming. http://blog.anderstoxboe.com/uploads/16082005 XP and UCD.pdf,
May 2005. Last visit: 30.03.2008.

[116] Alexandre N. Tuch, Javier A. Bargas-Avila, Klaus Opwis, and Frank H. Wil-
helm. Visual complexity of websites: Effects on users’ experience, physiology,
performance, and memory. Int. J. Hum.-Comput. Stud., 67(9):703–715, 2009.

[117] TVEyes. Tveyes. http://www.tveyes.com. Last visit: 01.11.2007.

[118] Usability.gov. Step-by-step usability guide. http://www.usability.gov/. Last
visit: 18.08.2008.

[119] Jean Vanderdonckt, Abdo Beirekdar, and Monique Noirhomme-Fraiture. Au-
tomated evaluation of web usability and accessibility by guideline review. In
Lecture Notes in Computer Science, Volume 3140/2004, page 762, Berlin /
Heidelberg, 2004. Springer.

[120] W3C. Notes on user centred design process (UCD).
http://www.w3.org/WAI/EO/2003/ucd, April 2004. Last visit: 19.01.2009.

BIBLIOGRAPHY 146

[121] Laurie Williams, Lucas Layman, and William Krebs. Extreme programming
evaluation framework for object-oriented languages version 1.4. Technical re-
port, North Carolina State University, Department of Computer Science, June
2004.

[122] Peter Wolkerstorfer, Manfred Tscheligi, Reinhard Sefelin, Harald Milchrahm,
Zahid Hussain, Martin Lechner, and Sara Shahzad. Probing an agile usabil-
ity process. In CHI ’08: CHI ’08 Extended Abstracts on Human Factors in
Computing Systems, pages 2151–2158, New York, NY, USA, 2008. ACM.

[123] World Wide Web Consortium. W3C open source software.
http://www.w3.org/Status.html. Last visit: 30.04.2010.

[124] World Wide Web Consortium. Web accessibility evaluation tools.
http://www.w3.org/WAI/ER/tools/. Last visit: 30.04.2010.

[125] World Wide Web Consortium. Web content accessibility guidelines (WCAG)
2.0. http://www.w3.org/TR/WCAG20/. Last visit: 2.10.2010.

[126] XPlanner. Xplanner: (XP) project planning and tracking tool.
http://www.xplanner.org/. Last visit: 04.01.2008.

[127] Mobile YouTube. Mobile youtube. http://m.youtube.com. Last visit:
01.11.2007.

Acknowledgments

First of all, I would like to thank my parents and my girlfriend Fanny for the support
they provided during the writing of this thesis.

I thank my supervisor, Professor Dr. Wolfgang Slany, for the help and encour-
agement he offered during my research.

Also, I owe gratitude to my external supervisor, Professor Dr. Manfred Tscheligi,
for his support and guidance.

Many thanks to my colleagues at the Institute for Software Technology in Graz
and at the Center for Usability Research and Engineering in Vienna.

Martin Umgeher

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Graz, am …………………………… ………………………………………………..
 (Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared

sources / resources, and that I have explicitly marked all material which has been quoted either

literally or by content from the used sources.

…………………………… ………………………………………………..
 date (signature)

