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Abstract

Numerical simulation is a growing and important tool in the field of tunnel

construction; it can be very helpful, allowing the investigation of various alter-

natives in virtual reality rather than reality. Selecting the best option can result

in significant cost savings, reduced construction time and in improved safety.

Commonly used methods require a significant amount of computational costs

especially for large 3D simulations. The effort for mesh generation as well as

the calculation time increase considerably.

An attractive alternative for simulating tunnelling problems is the Boundary

Element Method (BEM). In this method the discretised mesh is much smaller

and simpler, thus the mesh generation is more user-friendly, the calculation

time is shorter and the mesh is less error-prone. The effort to do 3D simulations

is significantly reduced. However, the BEM is not as far developed as other

methods at the moment. There are currently no commercial programs available

that include all the features required for conventional tunnelling, for example

the simulation of ground support and ground improvement techniques.

The aim of this work was the development and the implementation of methods

to simulate ground support (rock bolts and pipe roofs) into the BEM pro-

gram (BEFE++). Novel methods were developed to simulate these inclusions

efficiently and realistically.

In these methods the inclusions are simulated by applying stresses or forces to

the system. These stresses or forces are calculated within an iterative algorithm.

Because of this, a huge number of inclusions (for example rock bolts) can be

calculated efficiently and the iterative procedure can be easily combined with
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a non-linear calculation (for example to simulate plastic material behaviour).

Next to the simulation of rock bolts and pipe roofs these methods can be used

to simulate geological inhomogeneities as well. In contrast to commonly used

methods the mesh generation for such problems is very easy and independent

from any domain discretisation. This means a considerable increase in user

friendliness and accuracy especially for the simulation of rock bolts in comparison

with other methods. The high stress variations in the near-field of the bolt can

be simulated more accurately. With a relative small effort very accurate results

are obtained.

Keywords: Boundary Element Method, body forces, internal cells, inclu-

sions, inhomogeneities, tunnelling, ground support, rock bolts, anchors, pipe

umbrella.
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Kurzfassung

Um Tunnelbauprojekte hinsichtlich Sicherheit, Kosten und Qualität zu op-

timieren werden realitätsnahe numerische Simulationen sowohl in der Pla-

nungsphase als auch während der Ausführung eingesetzt. Derzeit verwendete

Simulationsmethoden stoßen speziell bei der Berechnung von großen 3D Problem-

stellungen schnell an ihre Grenzen. Der Rechen- und Modellierungs- Aufwand

steigt enorm an.

Eine attraktive Alternative dazu stellt die Randelemente Methode (REM)

dar. Durch ein kleineres, einfaches und überschaubares Netz wird die Netz-

generierung benutzerfreundlicher, die Berechung weniger Fehleranfällig und der

Rechenaufwand geringer als bei anderen Methoden. Das stellt speziell bei 3D

Simulationen einen wesentlichen Vorteil dar. Allerdings ist die REM noch nicht

auf dem gleichen Entwicklungsstand wie derzeit gängige Methoden. Es sind bis

heute noch keine kommerziellen Randelemente Programme erhältlich die in der

Lage sind alle nötigen Bestandteile eines konventionellen Tunnelvortriebs zu

simulieren (wie z.B. den Einbau verschiedener Stützmittel usw.).

Ziel dieser Arbeit war die Entwicklung von Methoden zur Simulation von

Stützmitteln (Felsanker und Rohrschirme) in das Randelemente Programm

(BEFE++) und deren Implementierung . Es wurden völlig neue Methoden

entwickelt um diese Einschlüsse effizient und realitätsnah zu simulieren. Dabei

werden anstelle der Einschlüsse Spannungen oder Kräfte auf das System aufge-

bracht welche diese Einschlüsse simulieren. Diese Spannungen oder Kräfte

werden mithilfe eines iterativen Algorithmus berechnet. Durch dieses iterative

Verfahren kann eine große Anzahl von Einschlüssen (Felsankern, Rohrschirme)

effizient berechnet werden und der Algorithmus kann einfach und effektiv mit



vi

einer nichtlinearen Berechnung (z.B. bei plastischem Materialverhalten) kom-

biniert werden. Neben der Berechnung von Felsankern und Rohrschirmen

kann diese Methode auch zur Simulation von geologischen Inhomogenitäten

herangezogen werden. Die Generierung eines solchen Netzes ist denkbar ein-

fach und unabhänging von einer Bereichs-diskretisierung. Dies stellt besonders

bei der Simulation von Felsankern eine wesentliche Verbesserung gegenüber

derzeit verwendeten Methoden dar. Die hohen Spannungsvariationen im Umfeld

des Ankers können sehr genau wieder gegeben werden. Mit relativ geringem

Rechenaufwand werden qualitativ hochwertige Ergebnisse erzielt.

Schlüsselwörter: Rand Elemente Methode, Volumskräfte, Zellen, Einschlüsse,

Inhomogenitäten, Tunnel, Stützmittel, Felsanker, Rohrschirm.
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Chapter 1

Introduction

1.1 Motivation

In the design of engineering structures, numerical simulation plays an increasingly

important role. This has become very popular due to rapid advancements in

computer technology and its availability to engineers. Numerical techniques

have been developed for solving many kinds of engineering problems, also in

the field of underground engineering structures.

For tunnelling problems, numerical techniques help the designer in dimensioning

the opening, selecting the best alignment, the best excavation sequence, choosing

and dimensioning the support structures, and to quantitatively assess its overall

behaviour through parametric or sensitivity studies. Diverse information about

geology, physics, construction techniques, economy, the environment and their

interactions can be considered. Problems with arbitrary shape, with nonlinear

material behaviour, consideration of ground support, self weight, external forces,

in situ stresses, pre-stressing, etc. can be calculated. All this achievements

have greatly enhanced the development of modern rock mechanics; see Jing and

Hudson (2002), Gioda and Swoboda (1999), Pande et al. (1990). Simulations

allow testing of various alternatives in virtual reality rather than reality; this

results in significant cost savings, reduction of construction time and makes

tunnelling safer.
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A number of computational methods have been developed. However, it is

clear that a very important step in numerical simulation is the early choice

of the best numerical method in terms of scope, accuracy, efficiency and user-

friendliness. The Finite Element Method (FEM) is perhaps the most widely

applied numerical method in engineering fields. Today’s FEM-programs have

reached a very high development-stage; almost all important features involved

in underground engineering problems are included. However, it has some

disadvantages as well:

Domain based methods, like the FEM are techniques in which the discretisation

has to be introduced in the entire domain. In tunnelling this means the

discretisation of the whole surrounding rock mass into small elements. Thus,

one can imagine that the system of equations and the effort for mesh generation

become very huge; especially for three dimensional analyses. The required

effort is the reason why unrealistic 2-D analyses are often carried out instead.

However, the advancing process of a tunnel has an essentially 3D nature. 3D

modelling is necessary for the simulation of effects ahead of the tunnel face,

of the correct stress-strain distribution, the non-linear behaviour of the rock

mass, and the influence of support measures. Furthermore, when simulating

tunnels supported by rock bolts, the mesh around the bolts has to be extremely

fine to handle the local stress concentrations. This problem leads either to an

extremely large number of elements or to inaccurate results.

This leads to the statement that currently used numerical methods have major

drawbacks with respect to user-friendliness and efficiency. An attractive alterna-

tive is the Boundary Element Method (BEM), where only the excavation surface

has to be discretised and the effort to do 3D simulations is significantly reduced.

However, the BEM is much less developed than the FEM and currently there are

no commercial programs available that are able to include all relevant features

for tunnelling problems in their calculation. This means especially the following

features: calculation of sequential excavation, non-linear material behaviour,

inhomogeneous ground conditions, support measurements (as shotcrete, rock

bolts or pipe umbrella systems) and a user-friendly pre-processor.
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The goal of the research activities of the Institute for Structural Analysis at

the University of Technology in Graz is the development of the BE-program

BEFE++ which is especially capable to simulate conventional tunnelling pro-

cesses, including all important features, mentioned before. The calculation of

sequential excavation processes was developed in Duenser (2001); non-linear

material behaviour are discussed by Ribeiro (2006), Thoeni (2009), Prazeres

(2009); and the simulation of shotcrete refer to Prazeres (2009).

This thesis deals with the efficient calculation of rock bolts, pipe umbrella

systems and general inclusions such as geological inhomogeneities. They have

one thing in common: they are all inclusions inside the domain. Rock bolts are

very narrow inclusions, a pipe umbrella system and geological inhomogeneities

are inclusions with general shape. A novel method was developed that allows to

model rock bolts (and also anchors and geological inclusions) efficiently with the

BEM. An iterative solution procedure is used for solving the problem. Because

of this, the system of equations stays small, even with a very large number

of rock bolts (or anchors or inclusions) and the algorithm can be efficiently

combined with the iterative procedure for the non-linear material behaviour.

Especially for large scale problems, for problems containing a lot of rock bolts

and for problems considering non-linear material behaviour this method is of

great advantage.

The new method is applicable to:

• Passive (or non-stressed) fully grouted rock bolts. Features are included

to calculate bolt yielding and bond slip effects.

• Anchors or bolts which are bonded at the ends (by cement grout, resin,

or fixed by a mechanical anchor) and have a free length in between. They

can be passive or active (pre-stressed) and bolt yielding can be considered.

• Geological inhomogeneities with general shape (which can have non-linear

material behaviour).

• The simulation of pipe roofs (to improve the rock mass behaviour and

stabilise the excavated area). They are approximately simulated by a

homogenized plane-shaped umbrella-zone.
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Next the conventional tunnelling will be described briefly and then an intro-

duction to computational modelling will be presented. At the end of this

introductory chapter the structure for the next chapters of this work will be

given.

1.2 Conventional Tunnelling

1.2.1 Historical Development

The history in tunnel engineering is referred in several works, for example Kovari

(2003a,b), Romana (2009), Schubert (1997), Karakus and Fowell (2004). Below

a short overview of the main developments are summarised:

Kovari (2003a) claims that the beginning of tunnel engineering was seen in the

1.1 km long Tronquoy Tunnel in France, built by Napoleon in 1803. Here, for the

first time, a large area of excavation in difficult ground conditions was realised.

Thus, this tunnel is regarded as the first to be built on engineering principles.

Since that, up to the middle of the 19th century, the most important modes

of “ground response” were defined and classified. One of the first publications

on tunnelling was written in 1844, by the Englishman F.W. Simms, see Kovari

(2003a). He already expressed the idea that in the case of deep tunnels “a small

portion only gets into motion, the upper part acting as a key, by which the

mass supports itself”. He clearly states that “it is the mass in adjusting itself to

equilibrium”. An other early and important work on tunnelling was written in

1870 by Rziha (see Schubert (1997)).

Timberwork

At this early state tunnels were supported by timberwork, however this timbering

had a lot of disadvantages (for example: timber structure involved up to 60

percent of the cross-section; over-excavation was necessary; difficult construction

...). The replacement of timbering was introduced gradually, by steel supports,
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then shotcrete, followed by rock anchors and finally, the systematic combination

of these support measured on a broad scale (at about 1950).

Steel Support

Steel support were used in mining since 1862 (see Kovari (2003a)). At a very early

state (in 1872) also Rziha proposed to replace timberwork by steel supports

(Schubert (1997)). By the end of the 19th century, the basic construction

problems using steel supports had been solved and this support system began

to replace timbering mainly in the United States. In European tunnels, steel

supports were not economical at this time, because of the high material costs in

comparison to the personnel costs; this relation was different than in the United

States.

Shotcrete and Rock bolts

The development of shotcrete and rock anchors represents one of the greatest

advancements in tunnelling history. The first use of these support elements

began already very early in the field of mining, with the first use of rock anchors

in 1913 and that of shotcrete in 1914(Kovari (2003a)).

The development of shotcrete technology started with the American taxidermist

C.E. Akeley; he invented the “cement-gun”. The patent for an “apparatus for

mixing and applying plastic or adhesive materials”, which was called a “cement

gun” was obtained in 1911. During the 1910s, shotcrete was used in mines in

the United States and in the early 1920s it came to Europe. The possibilities

for the application of shotcrete were recognised and utilised very rapidly by the

technical world (see Kovari (2003a), Karakus and Fowell (2004)).

The history of rock bolting began in 1913, with the submission of a patent

by Stephan, Fröhlich and Klüpfel: “... boreholes of sufficient depth will be

drilled into the rock in which rods, tubes or cables of a load-bearing material,

for example steel, will be inserted and fixed at the end in a proper manner or
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cemented along the whole length.” The first World War delayed the issuing of

the patent until 1918, see Kovari (2003b).

Sprayed concrete lining method / New Austrian Tunnelling Method

The combined use of rock bolting, reinforcing nets and sprayed concrete has

been practice in mining in Ontario, Canada, since approximately 1930. Keeley

published 1934 in Canada a work, describing a support concept for mining

which involves the use of expansion-bolts together with sprayed concrete. The

introduction of a shotcreting machine by the Swiss engineer G. Senn in 1950

marks a new area for the sprayed concrete lining method. Since that the sprayed

concrete lining took on a greater role than had earlier been assumed, see Kovari

(2003b).

From about this point the opinions drift apart and the polemic in the interna-

tional tunnelling community is big. One party promotes the idea of the New

Austrian Tunnelling Method as a self-contained new method developed by the

Austrian Rabcewicz. The other party appeal against this Austrian claim and

proposes the name Sprayed Concrete Lining Method.

• One view is that after the introduction of the shotcreting machine 1950,

very soon it was realized all over the world that a combination of shotcrete

and rock anchors in many cases provides the most efficient method (both

structurally and economically). The new methods of support opened sev-

eral novel excavation concepts; and they were summarised as the Sprayed

Concrete Lining Method; in the 1960s this method was firmly estab-

lished. Not until 1963 the Austrian engineer Rabcewicz renamed the

method in “New Austrian Tunnelling Method” (NATM); however, in this

point of view NATM is only a nickname for the sprayed concrete lining

method, which was developed and practised in the international commu-

nity much earlier. For more detailed information see Kovari (2003b).

• The other view is that Rabcewicz had the first ideas for a new method after

his experience in the second World War, building underground bunkers
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in the Russian front. He invented dual-lining supports (initial and final

support) expressing the concept of allowing the rock to deform before

the application of the final lining so that the loads on lining are reduced.

In 1948 Rabcewicz submitted an Austrian patent about this method.

1956-1958 he risks the first time the application of shotcrete and anchors

as stand-alone support system without other supports for the construction

of the highway- and railway-tunnels in Caracas, Venezuela. 1962 he

proposed the term New Austrian Tunnelling Method (NATM) for

this concept. The first urban application in soft ground of the NATM was

the subway tunnel in Frankfurt, Germany in 1969 by Müller. Detailed

information about the developments of the NATM can be seen in Schubert

(1997), Karakus and Fowell (2004), Romana (2009).

The conflict about the name NATM lead back to the question: Is the NATM a

construction method or is it more than that is it a design philosophy?

1.2.2 Design Philosophy and Construction Method

Rabcewic explains the NATM in 1964 by emphasizing three key points: the first

is the application of a thin-sprayed concrete lining, the second is closure of the

ring as soon as possible and the third is systematic deformation measurement.

However, this definition might not been able to explain neither what’s new

nor what’s Austrian about this method and thus induced the above mentioned

conflicts. Because of that a lot of new definitions evolved which tried to specify

the NATM in more detail; they argue that NATM is a design philosophy rather

than a construction method (a set of excavation and support techniques), see

Karakus and Fowell (2004).

Design Philosophy

Müller, one of the advocators of NATM proposed 1978 that: “The NATM is,

rather, a tunnelling concept with a set of principles... Thus in the autor’s
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opinion it should not even called a construction method, since this implies a

method of driving a tunnel.” He summarised the NATM by the following points

(see Romana 2009, Karakus and Fowell 2004): use the rock mass for the support

of the terrain charges; allow deformation in order to develop the rock mass

strength around the tunnel and to minimize the support needs; deformations

must be controlled; design is done during the excavation; basic instrumentation

control is done by convergence measurements.

An other definition was given by the Austrian National Committee on Un-

derground Construction of the International Tunnelling Association (ITA) in

1980, see Karakus and Fowell (2004): “The New Austrian Tunnelling Method

(NATM) is based on a concept whereby the ground (rock or soil) surrounding

an underground opening becomes a load bearing structural component through

activation of a ring like body of supporting ground”.

A more actual definition of the design philosophy NATM has been formulated

by Brown in 1995 (see Romana 2009): “The terrain strength around the tunnel

is mobilized to a maximum possible level; this is done allowing for a controlled

deformation. The primary support is installed with strength-deformation char-

acteristics adequate for the terrain and in a compatible time with the terrain

deformability. Instrumentation is used to control the support deformation

in order to change (if/when necessary) the initial design and the excavation

sequence. Movements at surface and around the tunnel are controlled in urban

environment.“

Construction Method

However, the NATM or Sprayed Concrete Lining Method can also be seen as

a construction method. In 2002 Romero pointed out: ”Tunnel excavation and

support are done in a sequential way. The sequence can be changed. Initial

support by: shotcrete; bolts; steel sets. Secondary lining is (very often, but

not always) concrete put in place with forms.“ Thus, NATM is being used as a

construction method and the design philosophy is not necessarily applied, see

Romana (2009). In soils for example, the deformations are bigger and more
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difficult to control. In this case it is easy to apply NATM as a construction

method; however, it is difficult to apply NATM as a design philosophy.

As described in Galler (2009) the basic principles of the construction method

NATM can be summarised as the following: Typical support elements in NATM

are shotcrete and rock anchors to allow controllable deformation of the rock

mass. Steel ribs or lattice girders provide limited early support before the

shotcrete hardens and ensure correct profile geometry. Face bolts, sealing

shotcrete and pipe roofs are installed, if ground conditions require support at

or ahead of the excavation face. The subdivision of the excavation cross-section

in top heading, bench and invert depends on geological conditions as well as on

logistical requirements to facilitate the use of standard plant and machinery in

tunnelling. Side drift galleries are provided to limit the size of large excavation

faces and the associated surface settlements.

Different procedures have to be chosen for different ground conditions, see Galler

(2009).

Hard Rock Conditions

In deep rock tunnels, the shotcrete lining thickness does not has to be larger; the

main support elements are long rock anchors (2.5m to 9m length). The shotcrete

lining is slotted and yielding supports are installed to allow deformations without

damaging the shotcrete. Once the stabilisation of the system is confirmed by

monitoring, the slots in the lining are closed with shotcrete. The typical

cross-section for a deep rock tunnel is horse-shoe shaped. The cross-section

is typically subdivided into the top heading (the top half of the tunnel cross

section); the bench (excavated a few hundred meters behind); and an invert

arch (which is only installed if ring closure is required by poor rock conditions).

A ramp between top heading and bench is maintained on one half side of the

cross-section.
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Soft Rock Conditions

Shallow tunnels in soft ground situated in an urban environment require a rigid

support. The shotcrete lining is more rigid, the advance length is short, and

a rapid closure as well as a subdivision of the cross-section in side and centre

drifts is necessary. The typical cross-section is similar to the cross-section of

a hard rock tunnel; however an invert arch is arranged in the standard case

throughout. A temporary invert in the top heading is employed in some cases.

Furthermore, elephant feet and the arrangement of a pipe canopy can become

necessary. Face reinforcement with dowels and a supporting core is usually

required. The secondary lining is reinforced and its thickness is adjusted to the

substantial ground loads depending on the depth of overburden.

1.3 Computational Modelling

Since about the 60’s of the last century, a number of computational methods

have been developed for numerical simulation. They have become popular

due to rapid advancements in computer technology and its availability to

engineers. Before, rock structures were designed mainly based on rules of thumb,

experience and a trial and error procedure. Analytical or “closed form” solutions

are available for some simple situations, see Pande et al. (1990). However,

in most cases they simplify the real problem drastically concerning material,

geometry, supports...; see for example Feder and Arwanitakis (1976), Kovari

(2003a), Schweiger (2008), Schubert (1997).

However, the excavation and construction process and the technological details

have a strong influence on the stress/strain distribution in the rock mass and

in its support system. The stress/strain distribution is strongly dependent

of the excavation sequence when dealing with supported openings or with

non-linear material behaviour. Another important aspect is the complex geo-

metrical nature; this is not only related to the shape of the opening, but also to

discontinuities in the rock mass, of non-homogeneous or non-isotropic layers,
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etc. This represents the main drawback for the analytical solutions, or for the

approximated “standard” methods, which in most cases cannot consider this

aspects with sufficient approximation, see Gioda and Swoboda (1999).

Today a number of advanced numerical techniques exist which are able to

simulated underground engineering problems very accurately. Numerical tech-

niques can help the designer in dimensioning the opening, in determining the

loads carried by support structures and for quantitatively assessing its overall

behaviour through parametric or sensitivity studies, see Gioda and Swoboda

(1999). It is possible to analyse problems with arbitrary shape, nonlinear mate-

rial behaviour, considering ground support, self weight, external forces, in situ

stresses, pre-stressing, etc, see Pande et al. (1990).

A categorisation into four principal modelling methods can be pointed out (see

Jing and Hudson 2002):

• Design based on previous experience:

pre-existing standard methods; precedent type analyses

• Design based on simplified models:

analytical methods; rock mass classification

• Design based on numerical modelling which attempts to capture most

relevant mechanisms:

basic numerical methods (FEM, BEM, FDM, DEM)

• Design based on “all-encompassing modelling”:

extended numerical methods; integrated systems approaches

Indeed, computing techniques have become daily tools for formulating diverse

information about geology, physics, construction techniques, economy, the

environment and their interactions. This achievement has greatly enhanced the

development of modern rock mechanics - from the traditional “empirical” art of

rock deformability, strength estimation and support design; to the rationalism

of modern mechanics, see Jing and Hudson (2002).

Whereas the most commonly applied numerical methods for rock mechanics

problems are (see Jing and Hudson 2002):
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• Continuum methods

– Finite Element Method (FEM)

– Finite Difference Method (FDM)

– Boundary Element Method (BEM)

• Discrete methods

– Discrete Element Method (DEM)

– Discrete Fracture Network (DFN)

• Hybrid continuum/discrete methods

Special issues and difficulties in numerical modelling of underground engineering

problems are (see Jing and Hudson 2002):

• Scale effects, homogenization and upscaling methods

• Numerical representation of engineering processes, such as excavation

sequence, grouting and reinforcement

• Large-scale computational capacities

• Representation of rock mass properties and behaviour as an equivalent

continuum

• Quantification of fracture shape, size ...

It is clear that a very important step in numerical simulation is the early

“conceptualisation” of the problem in terms of the dominant processes and their

mathematical presentation. Thus, the choice of the best numerical method

in terms of scope, accuracy, efficiency and user-friendliness is very important.

Below the mostly used numerical methods are described briefly to have a better

comparison later on.

Finite Element Method

The FEM is perhaps the most widely applied numerical method in engineering

fields. Since its origin in the early 1960s, much work has been done in both

theoretical developments and applications, and it has been applied to a large
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number of problems in widely different fields. Today’s FE-programs have

reached such a stage that almost all important features involved in underground

engineering problems are solved. This has been because it was the first numerical

method with enough flexibility for the treatment of material heterogeneity, non-

linear deformability, complex boundary conditions, in situ stresses and gravity,

see Jing and Hudson (2002), Venturini (1983).

The physical meaning of the calculation-steps is relatively transparent: The

method essentially involves dividing the body in smaller “elements” of various

shapes, connected at the nodes. The displacements at the nodes are treated as

unknowns and are calculated, see Pande et al. (1990).

The advantages and disadvantages of the FEM can be summarised (see Schweiger

2008, Venturini 1983, Pande et al. 1990):

Advantages:

• almost no limitations with respect to modelling complex geometries;

• construction steps; advanced constitutive models; change material proper-

ties during calculation;

• special elements for modelling joint sets;

• interface elements for soil/structure interaction; extensively used -> sig-

nificant experience available;

• system of equations is normally banded and symmetric for constitutive

models with associated flow rule;

• each element can have different material properties.

Disadvantages:

• volume discretisation required (significant pre- and postprocessing effort

for 3D analysis);

• long calculation times for 3D and high disk storage requirements;

• non-symmetric equation system for constitutive models with non-associated

flow rule;
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• modelling of post peak behaviour (softening material) requires special

formulations and algorithms;

• not suitable for blocky structures (discontinua).

However, for simulating problems like narrow fractures or reinforcements inside

large scale problems the FEM is handicapped by the requirement of very

small element sizes in the nearfield of the narrow discontinuity. This overall

shortcoming makes the FEM less efficient in dealing with fracture problems

than its BEM counterparts, see Jing and Hudson (2002).

Boundary Element Method

This method consists of transforming the governing partial differential equation

into an integral equation relating only boundary values. As a direct consequence,

the dimension of the problem is reduced by one. Only the surface (the boundary)

of the rock mass to be analysed needs to be discretised, i.e. divided into boundary

elements. The domain does not need to be discretised, thus the data preparation

is relatively simple. Smaller systems of equations are obtained as compared

with those from domain type techniques (e.g. FEM or DEM), see Venturini

(1983), Pande et al. (1990).

In the BEM a lot of development work has been done; but the BEM has

not yet reached the development-stage as the FEM. However, applications for

general stress and deformation analysis for underground excavations, fracturing

processes, dynamic analysis, soil-structure interaction and groundwater flow

have been developed. The BEM can range from simple techniques such as the

so-called indirect methods to the more versatile direct formulation, see Venturini

(1983).

Inclusion of source terms, such as body forces, heat sources etc. leads to domain

integrals in the BEM. This problem also appears when considering initial

stress/strain effects for example for non-linear material behaviour. Different

techniques have been developed over the years for dealing with such domain
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integrals; one of them is the division of the domain into a number of internal

cells, see Jing and Hudson (2002).

In the field of rock mechanics, the most notable original development of the

BEM application may be attributed to early works, see for example: Venturini

(1983), Brebbia et al. (1984), Pande et al. (1990), for a more detailed literature

review see Jing and Hudson (2002), Jing (2003), Gioda and Swoboda (1999).

BEM appears to be a very efficient method for homogeneous, linear elastic

problems, particularly in three dimensions. For complex nonlinear material laws

with a number of sets of materials, advantages of the method are considerable

diminished. The matrices of equations arising in this method are not banded

and symmetric as for FEM, but are fully populated. Thus, although the number

of equations to be solved is considerably reduced, computation time does not

reduce in the same proportion, see Pande et al. (1990).

A great enhancement in comparison to the FEM is the BEMs applicability

for stress or strain analysis problems. The solutions inside the domain are

continuous; stress and strain results inside the domain have the same accuracy

as displacement results. However the BEM is not as efficient as the FEM

in dealing with material heterogeneities. The BEM is also not as efficient as

the FEM in simulating non-linear material behaviour, such as plasticity and

damage evolution processes. The BEM is more suitable for solving problems

of fracturing in homogeneous and linearly elastic bodies, see Jing and Hudson

(2002).

The advantages and disadvantages of the BEM can be summarised (see Schweiger

2008, Venturini 1983):

Advantages:

• only surface discretisation, no volume discretisation required;

• reduced set of equations, smaller amount of data;

• no interpolation error inside the domain;

• better accuracy of stress/strain results;
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• proper modelling of infinite domains;

• valuable representation for stress concentration problems.

Disadvantages:

• equation system is non-symmetric and fully populated;

• not well suited to nonlinear material behaviour;

• not well suited to inhomogeneous material;

• modelling of excavation sequence is more difficult.

Finite Difference Method

The Finite Difference Method (FDM) was the first numerical approach formu-

lated on mathematical bases which has been applied in continuum mechanics

stress analysis. The method started as a numerical technique after Southwell had

presented his relaxation method (1946), although no computer automatisation

was possible at that time, see Venturini (1983).

In the FDM the partial differential equations (PDE) are approximated by

replacing the derivative expressions by linear combinations of function values at

the neighbouring grid points. With this the PDE is replaced by a linear system

using only nodal values. With proper formulations, such as static or dynamic

relaxation techniques, no global system of equations in matrix form needs to be

solved. It also provides a more straightforward simulation of nonlinear material

behaviour, such as plasticity and damage. The conventional FDM with regular

grid system is not flexible in dealing with complex boundary conditions, material

heterogeneities and fractures. However, progress has been made with irregular

meshes, such as triangular grid or Voronoi grid systems, which leads to Finite

Volume techniques (FVM), see Jing and Hudson (2002).

One very attractive feature of FDM is that it can be very easy implemented.

The quality of a FEM approximation is often higher than in the corresponding

FDM approach, but this is extremely problem dependent, see Wikipedia.
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The advantages and disadvantages of the FDM can be summarised by (see

Schweiger 2008):

Advantages:

• complex constitutive models easier to implement;

• no equation system is required for explicit solution algorithms.

Disadvantages:

• volume discretisation required;

• slightly less versatile with respect to geometric discretisation;

• not the same range of higher order elements available;

• long calculation times in 3D;

• for linear or moderately nonlinear systems less efficient than FEM;

• method is based on Newton’s law of motion thus no “converged” solution

for static problems exist (artificial damping required; long calculation

time; with different time steps it converges to different solutions).

Discrete Element Method

In this method the rock mass is treated as a discontinuum. The domain is

assumed to consists of rigid or deformable blocks/particles and the contacts

between them need to be identified and updated during the deformation/motion

process. When loads are applied, the changes in contact forces are traced with

time. In the earlier versions of the method rigid spherical balls or discs were

used as elements. In the recent versions of the method, the elements can be of

arbitrary shape and they can be deformable. The elements can split up based

on the assumed fracture criterion, see Pande et al. (1990), Jing and Hudson

(2002).

This method is based on the equation of motion using implicit and explicit

formulations. The implicit DEM is represented mainly by the discontinuous

deformation analysis (DDA) approach. It uses standard FEM meshes over
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blocks and the contacts are treated using the penalty method. The implicit

DDA has two advantages over the explicit DEM: larger time steps and closed-

form integrations for the stiffness matrices of elements, see Jing and Hudson

(2002). The DEM is one of the most rapidly developing areas of computational

mechanics, and it has wide applications in rock engineering.

There are, however, several drawbacks. Firstly, the parameters required for the

description of the material behaviour and additional parameters like damping

are required to be chosen quite carefully. And the computation time required

to solve even simple problems can be excessive, see Pande et al. (1990).

The advantages and disadvantages of the DEM can be summarised by (see

Schweiger 2008):

Advantages:

• modelling of blocky structures (discontinua);

• for explicit solution algorithms no equation system required;

• suitable for studying micromechanical behaviour of granular materials.

Disadvantages:

• volume discretisation required;

• very long calculation times (for 3D);

• artificial damping required for static problems;

• influence of various input parameters (difficult to judge, i.e. joint stiffness

may cause numerical problems, a lot of experience required).

Conclusion

The mostly used numerical methods were described and their main advantages

and disadvantages have been specified. It was shown that the BEM is the only

method who does not need the volume discretisation. Thus, this method has

two big advantages compared to the other methods: only surface discretisation

is required (more user-friendly mesh generation); and the system of equations is
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smaller (less amount of data). Additional advantages are the better accuracy

of stress/strain results and the accurate computability of stress concentration

problems. Because of this, we wanted to invest further development work into

this rather common method. Especially for the 3D tunnelling simulation we

expect great enhancements in user-friendliness and efficiency compared to other

methods.

The subject of this thesis is the simulation of rock bolts, pipe umbrella systems

and geological inhomogeneities. A novel method was developed that allows

to model these inclusions in combination with non-linear material behaviour

efficiently with the BEM, see chapter 3.

Especially the simulation of rock bolts and anchors has key benefits compared

to other methods. Whereas the FEM needs an extremely fine mesh around the

bolts to handle the local stress concentrations, the capability of the BEM to deal

with stress concentration problems is utilised and makes the BEM more efficient

and more precisely for this kind of problems, see chapter 5 and chapter 6.

1.4 Structure of this work

The work consists of eight chapters. After this first introductory chapter, an

overall description of the Boundary Element Method for elasto static continua

is given in chapter two. In chapter three the basic idea of the solution procedure

for calculating embedded inclusions of different kinds will be described. Different

kinds of rock bolts can be calculated with this procedure as well as general

inclusions like geological inhomogeneities or pipe umbrella systems. In the next

chapters the special treatments for simulating different kinds of inclusions are

described in detail: chapter four deals with general inclusions and pipe roofing

systems; chapter fife with fully bonded rock bolts; and chapter six with discrete

anchored bolts. Final some numerical examples will be presented in chapter

seven.
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Chapter 2

Boundary Element Method

2.1 Introduction

2.1.1 Numerical Simulation of Engineering Problems

To obtain engineering solutions for real problems following three steps have to

be taken in general (see also Gaul et al. (2003)):

• A basic physical theory has to be chosen, which is suitable to the observed

problem. Additional assumptions and simplifications are introduced (for

example on the type of analysis, material, loading, etc). This leads us to

the physical model. In this work elastostatic continua are outlined, the

governing Partial Differential Equation (PDE) is formulated in section 2.2.

• In the next step the physical model has to be translated into a suitable

mathematical model. For our problem the Boundary Integral Equation

(BIE) is formulated at this point, which fulfils exactly the governing PDE;

this is demonstrated in section 2.3. In addition the boundary and initial

conditions and additional constraints have to be defined.

• After having the particular mathematical description of the problem (in our

case the BIE), a numerical computational method is used to approximate

the solution; this procedure is described in section 2.4
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2.2 Physical Model

In this section the physical model for an elastostatic continuum will be described

briefly, and with this the governing Partial Differential Equation (PDE) for

elastostatics will be obtained. For this, three components are required: the

kinematic relations; the kinetic relations (balance or conservation laws); and

the constitutive equations; see also Gaul et al. (2003). The detailed description

of the concepts of continuum mechanics is not subject of this work, it is very

well explained in several standard textbooks.

Kinematics: “Kinematics (from Greek κινειν, kinein, to move) is the branch

of classical mechanics that describes the motion of objects without consid-

eration of the causes leading to the motion.”, see Wikipedia.

The general non-linear kinematics of a continuous body is a rather complex

subject and can be described in various ways which is treated exhaustively

in many publications. Here a commonly used simplified relation is used;

assuming small strains we obtain the symmetric linear strain tensor:

εij =
1

2
(ui,j + uj,i) (2.1)

εij is the strain tensor and ui is the displacement vector.

Kinetics: “In physics and engineering, kinetics is a term for the branch of

classical mechanics that is concerned with the relationship between the

motion of bodies and its causes, namely forces and torques.”, see Wikipedia.

In other words it deals with the external loading of a body and the resulting

internal force field (balance law).

The Cauchy’s equation of motion can be derived for a general dynamic

problem:

σji,j + bi = %üi (2.2)

where σji,j are the derivatives of the stress tensor; bi are the body forces;

% is the mass density; and üi is the acceleration (the time derivative of

the velocity u̇i). For elastostatic problems time effects are neglected, the
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right side vanishes in equation 2.2 and we obtain:

σji,j + bi = 0 (2.3)

Constitutive Equations: “In physics, a constitutive equation is a relation

between two physical quantities (often described by tensors) that is specific

to a material or substance, and approximates the response of that material

to external forces”, see Wikipedia. Here it describes the relation between

the stress tensor σij and the strain tensor εkl.

In the general nonlinear case the constitutive equation is obtained in

differential form:

dσij = Cijkl (εkl) dεkl (2.4)

dσij and dεkl are the differential stress- and strain-rates, Cijkl (εkl) is the

constitutive tensor depending on the strain state εkl. Considering linear

elastic material behaviour we obtain the generalised Hooke’s law:

σij = Cijklεkl (2.5)

Strictly speaking this is valid only for the case that σ0
ij = 0; where σ0

ij

are stresses in the unstrained state (initial stresses). The general relation

considering initial stresses is:

σij = σ0
ij + Cijklεkl (2.6)

Combining these three concepts we achieve the field equation. Using equation 2.1,

equation 2.2 and equation 2.5 and the symmetry of the stress tensor the governing

Partial Differential Equation (PDE) for elastodynamic problems is obtained

(the well known Navier’s equation):

Cijkluk,lj + bi = %üi (2.7)
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In elastostatics we use equation 2.3 instead of equation 2.2 and it occurs:

Cijkluk,lj + bi = 0 (2.8)

To solve the particular boundary-value problem additional information (bound-

ary conditions) are needed. Boundary conditions can be classified as follows:

• Dirichlet boundary condition: prescribed the primary field variable (here

the displacement vector ui)

• Neumann boundary condition: prescribed the derivative of the primary

field variable (here the traction vector ti)

• Robin boundary condition: prescribed a function of the primary field

variable and its derivative (here not used)

The governing PDE can be obtained for different types of physical phenomena

in an analogical way; not only for elastodynamics and elastostatics but also for

example for heat conduction, electrodynamics, thermoelasticity, acoustics and

piezoelectricity. However, in this work the elastostatic problem is investigated.

2.3 Integral Formulation

In this section it is shown how to solve the physical problem (section 2.2)

with the Boundary Integral Equation (BIE) for the elastostatic case. The

derivation of the BIE can be done in different ways; one general method is

the Weighted Residual Approach which can be applied to any kind of linear

differential operator with constant coefficients (see for example Gaul et al. 2003,

Brebbia et al. 1984). However, a more direct and engineering-like way is to

derive the BIE by using Betti’s theorem (see for example Beer and Watson 1994,

Paris and Canas 1997, Gaul et al. 2003). In this work the second way using

Betti’s theorem is described since this is the easier comprehensible way.
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2.3.1 Betti’s Theorem

Two problems are considered: the actual configuration and the auxiliary config-

uration, see figure 2.1. It is assumed that both configurations are related to the

same linear elastic material, see for example Paris and Canas (1997).

ui, bi, σij, εij

S

V

ui

ti

(a) Actual configuration

u∗i , b
∗
i , σ

∗
ij, ε

∗
ij

S

V

u∗i

t∗i

(b) Auxiliary configuration

Figure 2.1: Configurations involved in Betti’s theorem

Betti’s First Theorem

The first theorem establishes the reciprocity of the internal work of these two

problems: ∫
V

σijε
∗
ijdV =

∫
V

σ∗ijεijdV (2.9)

Where σij, σ
∗
ij and εij, ε

∗
ij are the stresses and the strains in the two configurations;

V is the volume. It states that the work of σij on ε∗ij is the same as the work of σ∗ij

on εij. This can be demonstrated immediately using following assumptions:

σij = 2Gεij + λεkkδij

σ∗ij = 2Gε∗ij + λε∗kkδij
(2.10)
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Substituting this into the first part of equation 2.9 we obtain:∫
V

σijε
∗
ijdV =

∫
V

(2Gεij + λεkkδij) ε
∗
ijdV

=

∫
V

(
2Gεijε

∗
ij + λεklδklε

∗
ijδij

)
dV

=

∫
V

(
2Gε∗ij + λε∗kkδij

)
εijdV =

∫
V

σ∗ijεijdV

(2.11)

Betti’s Second Theorem

The second theorem establishes the reciprocity of the external work of the two

problems: ∫
V

biu
∗
i dV +

∫
S

tiu
∗
i dS =

∫
V

b∗iuidV +

∫
S

t∗iuidS (2.12)

The external loads consist of the boundary loads ti, t
∗
i (tractions on the boundary

S) and the domain loads bi, b
∗
i (body forces in the domain V ); ui, u

∗
i are the

displacements. The tractions are defined to be boundary stresses:

ti = σijnj t∗i = σ∗ijnj (2.13)

where ni is a unit vector in the direction normal to the the boundary S.

To achieve Betti’s second theorem different ways are possible, two of them are

described here:

• One easy and short way to reach equation 2.12 is to apply the Virtual

Work Theorem and substitute this into equation 2.9 (see Paris and Canas

1997). ∫
V

σijε
∗
ijdV =

∫
V

biu
∗
i dV +

∫
S

tiu
∗
i dS (2.14)

∫
V

σ∗ijεijdV =

∫
V

b∗iuidV +

∫
S

t∗iuidS (2.15)
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• An other way which leads to the same equation 2.12 is the following (see for

example Brebbia et al. 1984, Gaul et al. 2003): first we use the kinematic

equation 2.1 and assume the symmetry of stress- and strain- tensor which

leads to εij = ui,j . Substituting this into equation 2.9, integrating by parts

both sides and applying the theorem of Gauss we obtain:∫
V

σij,ju
∗
i dV +

∫
S

σiju
∗
injdS =

∫
V

σ∗ij,juidV +

∫
S

σ∗ijuinjdS (2.16)

Substituting Cauchy’s equation 2.3 and the relations of equation 2.13

into the above equation 2.16, it follows identically the same relation as in

equation 2.12.

For Betti’s second theorem to be true, ui and u∗i have to be twice continuously

differentiable. In the derivation of the BIE this condition is essential.

2.3.2 Somigliana’s Identity

Betti’s second theorem (equation 2.12) can be modified further by assuming

that the body force components in the reciprocal field b∗i corresponds to unit

point loads applied at the load points P ∈ V , see figure 2.2 (see for example

Brebbia et al. 1984). The unit point load can be described by the Dirac delta

function δ (P,Q) and a unit vector in the direction of the load ni:

b∗i = δ (P,Q)ni (2.17)

The Dirac delta function has following properties:

δ (P,Q) =∞ if P = Q

δ (P,Q) = 0 if P 6= Q∫
V

g (Q) δ (P,Q) dV (Q) = g (P )

(2.18)

where g is any function.
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With this, the first integral of the right-side of equation 2.12 can be rewritten:∫
V

b∗iuidV = uini (2.19)

Thus, u∗i is defined to be the particular solution for a point load in an infinite

domain, it represents the displacement response due to the point load b∗i . u
∗
i is

the so-called fundamental solution, which is described later in more detail in

section 2.3.3. At this point it is assumed that the fundamental solution u∗i has

been found.

Q̄ field point

u∗i
r

P̄ load point

V ∗ →∞

b∗i

Figure 2.2: Unit point load b∗i in the domain V ∗

By applying the point load b∗i in all three coordinate directions, all three

components of the displacement vector are obtained. This leads to three

different fundamental solutions u∗i which can be combined to the fundamental

solution tensor Uij.

u∗i (Q) = Uij (P,Q)nj (P ) (2.20)

The displacement u∗i at point Q results from the unit point load at P acting in

the direction nj.

Substituting the generalised Hooks law (equation 2.5) and the kinematic equa-

tion 2.1 into the definition for the tractions (equation 2.13) and assuming the

symmetry of the strain tensor, the traction t∗i can be derived directly from the
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primary field variable u∗i :

t∗i = σ∗ijnj = Cijklε
∗
klnj = Cijklu

∗
k,lnj (2.21)

Thus, the fundamental solution tensor for the traction response Tij due to unit

point loads b∗i in all three coordinate directions can be calculated similar to

equation 2.20:

t∗i (Q) = Tij (P,Q)nj (P ) (2.22)

Substituting equation 2.19, equation 2.20 and equation 2.22 into Betti’s second

theorem (equation 2.12) and reduce nj it arises:

ui
(
P̄
)

=

∫
S

Uij
(
P̄ , Q

)
ti (Q) dS (Q)−

∫
S

Tij
(
P̄ , Q

)
ui (Q) dS (Q)

+

∫
V

Uij
(
P̄ , Q̄

)
bi
(
Q̄
)
dV
(
Q̄
) (2.23)

Equation 2.23 is known as Somigliana’s identity for displacements; it is also

called representation formula. Equation 2.23 allows us to calculate unknown

displacements ui
(
P̄
)

inside the domain, when the boundary variables ti (Q) and

ui (Q) and the body forces bi
(
Q̄
)

are known. Henceforward, the points with

the over bar character are defined to be inside the domain P̄ , Q̄ ∈ V and the

points without an over bar are defined to be at the boundary Q,P ∈ S.

2.3.3 Fundamental Solutions

For elastostatics, the fundamental solution is the displacement distribution in a

material, due to a concentrated point force acting on an infinite elastic domain.

In other words, it is a function that satisfies the governing PDE (Navier’s

equation 2.8), by applying a unit point load as body force (see equation 2.17):

Cijklu
∗
k,lj + δ (P,Q)ni = 0 (2.24)



30 2. Boundary Element Method

assuming isotropic material behaviour, equation 2.24 can be written as:

Gu∗i,jj +
G

1− 2ν
u∗j,ij + δ (P,Q)ni = 0 (2.25)

where G is the shear modulus and ν is the Poisson’s ratio. This is a set of

three coupled PDE with very difficult solutions. However, it is possible to

transform the equation 2.25 into a set of uncoupled equations by introducing

the Galerkin vector (a three dimensional vector considering potential functions).

This set of uncoupled equations can be solved (for a detailed description see for

example Brebbia et al. 1984, Paris and Canas 1997, Gaul et al. 2003) and the

fundamental solution is obtained. Using the expressions for the fundamental

displacement tensor Uij (equation 2.20) the solution of equation 2.25 is given

by:

Uij (P,Q) =
1

16π (1− ν)Gr
{(3− 4ν) δij + r,ir,j} ... 3D (2.26)

Uij (P,Q) =
−1

8π (1− ν)G
{(3− 4ν) ln (r) δij + r,ir,j} ... plane strain (2.27)

Uij is Kelvin’s fundamental solution for 3D and 2D (plain strain). r = r (P,Q)

represents the distance between the load point P and the field point Q, see

figure 2.2.

r = |Q− P | = (riri)
1
2

ri = Qi − Pi

r,i =
∂r

∂
=
ri
r

(2.28)

Once the fundamental solution for displacements are known the equations of

the elasticity theory can be applied to determine the fundamental solution for

tractions Tij. Using equation 2.21 and equation 2.22 we obtain:

Tij (P,Q) =
−1

4απ (1− ν) rα{
[(1− 2ν) δij + βr,ir,j]

∂r

∂n
− (1− 2ν) (r,inj − r,jni)

} (2.29)
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α = 2;β = 3 for 3D and α = 1;β = 2 for plane strain. The fundamental

solution tensors for strains and stresses are defined by:

ε∗jk = Eijkni

σ∗jk = Rijkni
(2.30)

They are determined by using the kinematic relations (equation 2.1) and the

generalised Hooke’s law (equation 2.5), see also Gao and Davies (2002), Beer

et al. (2008):

Ejki (P,Q) =
−1

8απ (1− ν)Grα

{(1− 2ν) (r,kδij + r,jδik)− r,iδjk + βr,ir,jr,k}
(2.31)

Rjki (P,Q) =
−1

4απ (1− ν) rα

{(1− 2ν) (r,kδij + r,jδki − r,iδjk) + βr,ir,jr,k}
(2.32)

The plane strain expressions are valid for plane stress too, by replacing ν with

ν̄ = ν/ (1 + ν). In addition to these fundamental solutions which are valid

for an infinite domain, fundamental solutions can be adopted to half-space

problems.

Generally, Fundamental solutions are known for homogeneous materials, whether

isotropic or not, and so the common BIE is applicable to the analysis of

homogeneous domains only. By various mathematical techniques, fundamental

solutions of a wide range of PDE have been derived.

2.3.4 Boundary Integral Equation

As noted before in section 2.3.2, Somigliana’s identity (equation 2.23) returns

the values of displacements in the interior of the domain when the boundary

solutions ui and ti and the body forces bi are known. However at the beginning

only one set of boundary conditions are known, either ui or ti, the other set is

unknown and Somigliana’s identity can not be solved. To obtain an equation that
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contains only the boundary data and the body forces, we have to move the load

point from the domain P̄ ∈ V to the boundary P ∈ S. The resulting equation

is called Boundary Integral Equation (BIE), which describes the field problem

exclusively in terms of boundary variables (and the known body forces).

The process of moving the load point to the boundary is not trivial because

singularities arise at the point P = Q. For this the boundary is augmented by a

small spherical extension (radius ε) in the load point, see figure 2.3. And than

a limiting process has to be carried out, where the spherical extension tends

to zero ε→ 0, taking this limit the modified boundary approaches the original

boundary:

S = lim
ε→0

S − Sε + S̄ε (2.33)

Sε

S̄ε

S

ε
Q

Figure 2.3: Spherical boundary extension around the load point Q

Applying this modified boundary and the limiting process to equation 2.23 we
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obtain:

ui (P ) = lim
ε→0

∫
S−Sε

Uij (P,Q) tj (Q) dS (Q) + lim
ε→0

∫
S̄ε

Uij (P,Q) tj (Q) dS (Q)

− lim
ε→0

∫
S−Sε

Tij (P,Q)uj (Q) dS (Q)− lim
ε→0

∫
S̄ε

Tij (P,Q)uj (Q) dS (Q)

+

∫
V

Uij
(
P, Q̄

)
bj
(
Q̄
)
dV
(
Q̄
)

(2.34)

Integration over Uij

The integral over the fundamental solution Uij in equation 2.34 leads to a

weakly singular or improper integral, see section 2.5.1. The weakly singular

integral exists independently of how the limit ε tends to zero. In the 2D case

the fundamental solution has the order Uij = O (ln (r)) and in the 3D case

it has the order Uij = O (1/r), see section 2.3.3. By introducing cylindrical

coordinates in the 2D case (dS = rdrdΘ) or polar coordinates in the 3D case

(dS = r2 sin (Θ1) dΘ1dΘ2) the singularity is cancelled out.

The integral over the boundary extension S̄ε vanishes.

lim
ε→0

∫
S̄ε

Uij (P,Q) tj (Q) dS (Q) = 0 (2.35)

The integral over S − Sε can be calculated by taking the limit ε→ 0 , it leads

to a finite solution:

lim
ε→0

∫
S−Sε

Uij (P,Q) tj (Q) dS (Q) =

∫
S

Uij (P,Q) tj (Q) dS (Q) (2.36)
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Integration over Tij

The integration over the fundamental solution Tij in equation 2.34 leads to a

strongly singular integral. However, in this case the strongly singular integral

exists as Cauchy principal value. In other words it exists for a certain form of

the limit ε, if certain symmetry-conditions are fulfilled the infinite part adds to

zero, see section 2.5.2.

The integral over the boundary extension S̄ε can be written as:

lim
ε→0

∫
S̄ε

Tij (P,Q)uj (Q) dS (Q) = lim
ε→0

∫
S̄ε

Tij (P,Q) [uj (Q)− uj (P )] dS (Q)

+ lim
ε→0

uj (P )

∫
S̄ε

Tij (P,Q) dS (Q)

(2.37)

The first integral on the right side in equation 2.37 disappears because in the

limit (P = Q) the part [uj (Q)− uj (P )] vanishes. In the second term on the

right side uj (P ) might be taken out of the integral because it is independent of

the integral variable Q.

The integral over S − Sε exists too, and it is written as follows:

lim
ε→0

∫
S−Sε

Tij (P,Q)uj (Q) dS (Q) = −
∫
S

Tij (P,Q)uj (Q) dS (Q) (2.38)

where −
∫

denotes the Cauchy principal value integral.
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Boundary Integral Equation

Substituting this (equation 2.35, equation 2.36, equation 2.37 and equation 2.38)

into equation 2.34 we obtain finally the Boundary Integral Equation (BIE):

cij (P )uj (P ) =

∫
S

Uij (P,Q) tj (Q) dS (Q)− −
∫
S

Tij (P,Q)uj (Q) dS (Q)

+

∫
V

Uij
(
P, Q̄

)
bj
(
Q̄
)
dV
(
Q̄
)

(2.39)

where cij (P ) contains the remaining part of the integral in equation 2.37 and is

called free term:

cij (P ) = δij + lim
ε→0

∫
S̄ε

Tij (P,Q) dS (Q) (2.40)

If the boundary at point P is smooth, the free term is cij (P ) = δij/2.

Equation 2.39 provides the relation between boundary displacements, boundary

tractions and body forces. The BIE is the starting point for the numerical

solution.

2.3.5 Body Forces

In many practical applications nonzero body forces are present; therefore a

procedure is presented for computing its influence into the analysis. It has been

shown that if body forces are considered, domain integrals have to be computed

(see equation 2.40), see for example Gao and Davies (2002), Beer et al. (2008).

Solving the Domain Integral

In some particular cases, if the body force is constant or a harmonic function

(i.e. it satisfies b,ii = 0) the domain integral can be transformed to a boundary
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integral, and thus a domain discretisation can be avoided, see Gaul et al. (2003),

Brebbia et al. (1984)). This is used for example to analyse gravitational loads

(assuming a constant mass density and a constant gravitational field); for

problems considering a centrifugal load; or for problems considering thermal

loadings; see Brebbia et al. (1984). However, in several cases this transformation

to the boundary is not possible; this is the case when body forces are neither

constant nor harmonic functions or if they are acting on certain areas only.

Here a cell-integration technique is used for this kind of problems, in which the

domains where the body forces are acting are discretised by a certain number

of cells and numerical integration is carried out over these cells. While the cells

have the appearance of a Finite Element mesh, it is essentially different because

there are no unknowns in the domain and the cells are only used to carry out

the integration (e.g. Gaussian quadrature).

Different Kinds of Body Forces

In addition to the applied forces bj in equation 2.40, it is also possible to apply

initial stresses σ0 ij and initial strains ε0 ij inside the domain (see figure 2.4).

Adding this additional external loads to the actual configuration and apply the

virtual work theorem (see section 2.3.1, equation 2.14) we obtain Betti’s second

theorem (see equation 2.12) in the following form:∫
V

biu
∗
i dV +

∫
V

σ0 ijε
∗
ijdV +

∫
V

ε0 ijσ
∗
ijdV +

∫
S

tiu
∗
i dS =

∫
V

b∗iuidV +

∫
S

t∗iuidS

(2.41)

With this and by using the fundamental solutions tensors for stresses (equa-

tion 2.32) and for strains (equation 2.31), Somigliana’s identity (see equa-
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tion 2.23) can be written:

ui
(
P̄
)

=

∫
S

Uij
(
P̄ , Q

)
tj (Q) dS (Q)−

∫
S

Tij
(
P̄ , Q

)
uj (Q) dS (Q)

+ fi
(
P̄
) (2.42)

with

fi
(
P̄
)

=

∫
V

Uij
(
P̄ , Q̄

)
bj
(
Q̄
)
dV
(
Q̄
)

+

∫
V

Eijk
(
P̄ , Q̄

)
σ0 jk

(
Q̄
)
dV
(
Q̄
)

+

∫
V

Rijk

(
P̄ , Q̄

)
ε0 jk

(
Q̄
)
dV
(
Q̄
)

(2.43)

ε0

σ0

b

Figure 2.4: Problem considering forces b, initial stresses σ0, initial strains ε0

In order to simplify the presentation, the volume integrals considering the body

forces (forces bj , initial stresses σ0 jk and initial strains ε0 jk) are represented by

the body force vector fi. Applying the limiting process of section 2.3.4 (P̄ → P ),
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the BIE is obtained:

cij (P )uj (P ) =

∫
S

Uij (P,Q) tj (Q) dS (Q)−
∫
S

Tij (P,Q)uj (Q) dS (Q)

+ fi (P, )

(2.44)

Point Forces and Line Loads

In some problems a concentrated force has to be considered, for example to

simulate a pre-stressed anchor (see chapter 6). When using domain discretisation

methods like Finite Elements or Finite Differences such problems are difficult to

incorporate: a very fine mesh around the concentrated force would be necessary

to handle the stress distributions correctly. In contrast, the Boundary Element

Method is excellently suitable to solve problems with concentrated sources since

the fundamental solutions are already exact solutions of the governing equations

for a point source (see Gaul et al., 2003). Assuming a concentrated force of the

magnitudes bpi at the point Q̄ inside the domain V (see figure 2.5), the body

force vector fi can be written as

fi (P ) = Uij
(
P, Q̄

)
bpi
(
Q̄
)

(2.45)

In this case no volume integral occurs.

An other kind of problems are forces acting along a line inside the domain (see

figure 2.5), this can be used for example to simulate fully bonded rock bolts

(see chapter 5). Assuming a line with the length L and applying a line load bli

on it, the body force vector fi can be written as

fi (P ) =

∫
L

Uij
(
P, Q̄

)
bli
(
Q̄
)
dL
(
Q̄
)

(2.46)

In this case the volume integral is replaced by the integral over the line-length.
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bp

bl

Figure 2.5: Problem considering a concentrated point forces bp and a line-
loading bl

2.3.6 Internal Results

Once the BIE (equation 2.39) is solved all boundary quantities have been found

(ui, ti on S). After that, displacements, strains or stresses can be calculated at

any point inside the domain.

Displacements at Internal Points

At this stage ui and ti are known over the whole boundary S and the displace-

ments at the internal points P̄ can be calculated directly by using Somigliana’s

Identity (see equation 2.42):

ui
(
P̄
)

=

∫
S

Uij
(
P̄ , Q

)
ti (Q) dS (Q)−

∫
S

Tij
(
P̄ , Q

)
ui (Q) dS (Q)

+ fi
(
P̄
) (2.47)

After the displacements are known the strains and stresses could be obtained

by deriving the displacements according to a certain interpolation, as it is done



40 2. Boundary Element Method

in the Finite Element Method. Thus strains and stresses would have a lower

level of accuracy. In the Boundary Element Method it is possible to calculate

them directly with the integral representation of strains and stresses. With this

the same level of precision as for the displacements is achieved.

Strains at Internal Points

The strains can be expressed as a function of displacements (equation 2.1):

εij =
1

2
(ui,j + uj,i) (2.48)

Assuming the symmetry of the strain tensor, and substituting ui given in

equation 2.47 into equation 2.48 we obtain:

εij
(
P̄
)

= ui,j
(
P̄
)

=
∂ui
(
P̄
)

∂xj
(
P̄
) =∫

S

∂Uik
(
P̄ , Q

)
∂xj

(
P̄
)︸ ︷︷ ︸

Dεkij

tk (Q) dS (Q)−
∫
S

∂Tik
(
P̄ , Q

)
∂xj

(
P̄
)︸ ︷︷ ︸

Sεkij

uk (Q) dS (Q) + f εij
(
P̄
)

(2.49)

The differentiation of the displacements yields the strains. Both of the differen-

tials in equation 2.49 can be evaluated without difficulty. The representation in

compact form is:

εij
(
P̄
)

=

∫
S

Dε
kij

(
P̄ , Q

)
tk (Q) dS (Q)−

∫
S

Sεkij
(
P̄ , Q

)
uk (Q) dS (Q)

+ f εij
(
P̄
) (2.50)

where:

Dε
kij =

1

8απ (1− ν)Grα
[(1− 2ν) (δikr,j + δjkr,i)− δijr,k + βr,ir,jr,k] (2.51)
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Sεkij =
1

4απ (1− ν) rβ
[
βr,mnm [ν (δikr,j + δjkr,i) + δijr,k − γr,ir,jr,k]

+ (1− 2ν) (δiknj − δijnk + δjkni + βr,ir,jnk) + βν (njr,ir,k + nir,jr,k)
]

(2.52)

With α = 1, β = 2 for 2D (plain strain) and α = 2, β = 3 for 3D, see for

example Beer et al. (2008). Under consideration of the different kinds of body

forces (forces, initial stresses and initial strains; see equation 2.43) the body

force vector for the strain integral equation f εij can be derived:

f εij
(
P̄
)

=

∫
V

∂Uik
(
P̄ , Q̄

)
∂xj

(
P̄
)︸ ︷︷ ︸

Dεkij

bk
(
Q̄
)
dV
(
Q̄
)

+
∂

∂xj
(
P̄
) ∫
V

Ekli
(
P̄ , Q̄

)
σ0 kl

(
Q̄
)
dV
(
Q̄
)

+
∂

∂xj
(
P̄
) ∫
V

Rkli

(
P̄ , Q̄

)
ε0 kl

(
Q̄
)
dV
(
Q̄
)

(2.53)

It can be seen that the differential in the first integral of equation 2.53 is equal

to the Dε
kij in equation 2.49. However, the last two terms include derivations

over strongly singular integrals and thus needs further investigations, see also

Telles (1983), Brebbia et al. (1984). Here the procedure is shown to solve the

first of these two terms; the second one can be done in a similar way.

First a sphere with the radius ε located in the load point P̄ is removed from

volume V , the remaining volume is called Vε, see figure 2.6. By taking the limit

ε→ 0 the modified volume approaches the original volume:

V = lim
ε→0

Vε (2.54)

Applying this modified volume and the limiting process to the second term on

the right side of equation 2.53 we obtain:

∂

∂xj

∫
V

Ekliσ0 kldV = lim
ε→0

∂

∂xj

∫
Vε

∂Ekliσ0 kldV (2.55)
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S

P̄ ≡ 0

Q̄

r0

ϕ0

R

Vε
Sε

ε0

(a) Cylindrical coordinate system
based on P ≡ 0

S

0

P̄

Q̄

r

ϕ

R

Vε

Sε

ε
∂xj

(b) Moving the singular point by a
small increment ∂xj

Figure 2.6: Introducing a modified volume Vε

Cylindrical coordinates (r, ϕ) are introduced for the 2D case and polar coordi-

nates for the 3D case; here the 2D case is presented. Expressing the tensor Ekli

with cylindrical coordinates we obtain:

Ekli =
1

r
gkli (ϕ) (2.56)

Where gkli (ϕ) is a function depending on ϕ. When the load point is located at

the origin of the cylindrical coordinate system P̄ ≡ 0 it holds r = ro and ϕ = ϕ0,

see figure 2.6(a); but if P̄ moves with a small increment ∂xj, r = r (roϕ0) and

ϕ = ϕ (roϕ0) becomes different, see figure 2.6(b).

Substituting equation 2.56 into equation 2.55 and transforming the coordinates

(dV = rodrodϕ0), it occurs:

2π∫
0

lim
ε→0

 ∂

∂xj

R∫
ε0

gkli (ϕ (roϕ0))

r (roϕ0)
σ0 klr

odro

 dϕo (2.57)

wich allows the application of Leibnitz formula; Leibnitz formula is defined as:

d

dα

ϕ2(α)∫
ϕ1(α)

F (x, α) dx =

ϕ2(α)∫
ϕ1(α)

∂F

∂α
dx− F (ϕ1, α)

dϕ1

dα
+ F (ϕ2, α)

dϕ2

dα
(2.58)
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Applying this to the term between the brackets of equation 2.57 we obtain:

∂

∂xj

R∫
ε0

gkli (ϕ)

r
σ0 klr

odro =

R∫
ε0

∂

∂xj

gkli (ϕ)

r
σ0 klr

odro − gkli (ϕ)

r
σ0 klε

0 ∂ε
0

∂xj
+
gkli (ϕ)

r
σ0 klR

∂R

∂xj

(2.59)

The last term in equation 2.59 vanishes, because R is independent of xj and

thus ∂R/∂xj = 0. For a detailed proof see Telles (1983), Brebbia et al. (1984).

Substituting this bag into the brackets from equation 2.57 and taking into

consideration that P ≡ 0 and r = ε it arise:

2π∫
0

lim
ε→0

 R∫
ε0

∂

∂xj

gkli (ϕ)

r
σ0 klr

odro − gkli (ϕ)

r
σ0 klr

∂r

∂xj

 dϕo (2.60)

After that, one can transform equation 2.60 back to rectangular coordinates

(with r = r0 and dS = r0dϕo and using equation 2.56):

∂

∂xj

∫
V

Ekliσ0 kldV = −
∫
V

∂Ekli
∂xj︸ ︷︷ ︸
W ε
ijkl

σ0 kldV −
∫
Sε

Eklir,jdS

︸ ︷︷ ︸
F εijkl

σ0 kl

(2.61)

in which the first integral is interpreted as Cauchy principal value; the last term

F ε
ijkl is called free term.

The term for applying initial strains ε0 kl (the last term of equation 2.53) can

be calculated similar as described above. At the end we obtain:

∂

∂xj

∫
V

Rkliε0 kldV =

∫
V

∂Rkli

∂xj︸ ︷︷ ︸
V εijkl

ε0 kldV −
∫
Sε

Rklir,jdS

︸ ︷︷ ︸
Hε
ijkl

ε0 kl

(2.62)
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The whole integral equation for strains can be written in compact form:

εij =

∫
S

Dε
kijtkdS −

∫
S

SεkijukdS + f εij (2.63)

and

f εij =

∫
V

Dε
kijbkdV +

∫
V

W ε
ijklσ0 kldV + F ε

ijklσ0 kl

+

∫
V

V ε
ijklε0 kldV +Hε

ijklε0 kl

(2.64)

With

W ε
ijkl =

1

8απG (1− ν) rα+1

[
(1− 2ν) (δikδjl + δjkδil)− δijδkl

+ βν (δilr,jr,k + δjkr,ir,l + δikr,jr,l + δjlr,ir,k)

+ β (δklr,ir,j + δijr,kr,l − γr,ir,jr,kr,l)
] (2.65)

F ε
ijkl =

−1

2ηG (1− ν)
[δjkδil − C1 (δikδjl + δijδkl)] (2.66)

V ε
ijkl =

1

4απ (1− ν) rα+1

[
(1− 2ν) (δikδjl + δjkδil − δijδkl)

+ βν (δilr,jr,k + δjkr,ir,l + δikr,jr,l + δjlr,ir,k)

+ β ((1− 2ν) δklr,ir,j + δijr,kr,l − γr,ir,jr,kr,l)
] (2.67)

Hε
ijkl =

−1

η (1− ν)
[C1 (δjkδil + δikδjl)− C2δijδkl] (2.68)

With α = 1, β = 2, γ = 4, η = 8, C1 = 3− 4ν, C2 = 1 for 2D (plain strain) and

α = 2, β = 3, γ = 5, η = 15, C1 = 4− 5ν, C2 = 1− 5ν for 3D, see Beer et al.

(2008).
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Stresses at Internal Points

The stress integral equation can be derived from the strain integral equation by

using following relation:

σij = Cijklεkl (2.69)

Substituting equation 2.63 into equation 2.69 we obtain directly the stress

integral equation. In compact form it can be written as:

σij =

∫
S

Dσ
kijtkdS −

∫
S

SσkijukdS + fσij (2.70)

and

fσij =

∫
V

Dσ
kijbkdV +

∫
V

W σ
ijklσ0 kldV + F σ

ijklσ0 kl

+

∫
V

V σ
ijklε0 kldV +Hσ

ijklε0 kl

(2.71)

With

Dσ
ijk =

1

4απ (1− ν) rα
[(1− 2ν) (δikr,j + δjkr,i − δijr,k) + βr,ir,jr,k] (2.72)

Sσijk =
G

2απ (1− ν) rβ[
βr,mnm [(1− 2ν) δijr,k + ν (δikr,j + δjkr,i)− γr,ir,jr,k]

+ βν (nir,jr,k + njr,ir,k)

+ (1− 2ν) (βr,ir,jnk + δiknj + δjkni+)− (1− 4ν) δijnk
]

(2.73)

W σ
ijkl =

1

4απ (1− ν) rα+1

[
(1− 2ν) (δikδjl + δjkδil − δijδkl + βδijr,kr,l)

+ βν (δilr,jr,k + δjkr,ir,l + δikr,jr,l + δjlr,ir,k)

+ β (δklr,ir,j − γr,ir,jr,kr,l)
] (2.74)

F σ
ijkl =

−1

αη (1− ν)
[C3 (δjkδil + δikδjl) + C4δijδkl] (2.75)
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V σ
ijkl =

g

2απ (1− ν) rα+1

[
(1− 2ν) (δikδjl + δjkδil)− (1− 2αν) δijδkl

+ βν (δilr,jr,k + δjkr,ir,l + δikr,jr,l + δjlr,ir,k)

+ β ((1− 2ν) δklr,ir,j + C5δijr,kr,l − γr,ir,jr,kr,l)
] (2.76)

Hσ
ijkl =

G

κ (1− ν)
[C3 (δikδjl + δjkδil) + C6δijδkl] (2.77)

With α = 1, β = 2, γ = 4, η = 8, C1 = 3− 4ν, C2 = 1 for 2D (plain strain) and

α = 2, β = 3, γ = 5, η = 15, C1 = 4− 5ν, C2 = 1− 5ν for 3D, see Beer et al.

(2008).

2.4 Numerical Implementation

To solve the BIE equation 2.44 numerically, some approximations have to

be introduced. On the one hand the geometry of the problem has to be

approximated numerically, on the other hand also the distribution of physical

quantities (e.g. boundary displacements and boundary tractions) has to be

approximated numerically. Both, the geometry and the physical quantities on

the boundary are approximated by using boundary elements. Applying point

collocation on the element nodes a system of equations can be obtained. In

order to simplify the notation, form now on matrix notation will be used instead

of indicial notation.

2.4.1 Discretisation of the Boundary Geometry

The boundary S of the domain is discretised with boundary elements Se, see

figure 2.7(a).

S ≈
E∑
e=1

Se (2.78)

where E is the number of boundary elements. For the 2D case we use 1D

boundary elements with two nodes for linear interpolation over the element or

with three nodes for quadratic interpolation over the element.
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S ≈
∑
Se

(a) Discretisation of the boundary S

x2

x1

x3

n = 2 n = 1 n = 3
ξ

ξ = −1 ξ = 0 ξ = +1

(b) Quadratic Boundary ele-
ment

Figure 2.7: Boundary discretisation in 2D with quadratic elements

Each boundary element is transformed into a local intrinsic coordinate system

(with the intrinsic coordinate ξ), see figure 2.7(b). The coordinate vector xe (ξ)

of any point ξ at the element e can be interpolated by using the interpolation

functions Φn (ξ) and the nodal coordinate vectors of the element xen:

xe (ξ) =
Ne∑
n=1

Φn (ξ)xen (2.79)

When using 1D quadratic elements we have three nodes at one element (N e = 3)

The interpolation functions are defined to have a unit value at the node n and

a zero value at the other nodes, see figure 2.8:

Φ1 =
1

2

(
−ξ + ξ2

)
Φ2 =

1

2

(
ξ + ξ2

)
Φ3 = 1− ξ2

(2.80)

For the 3D case 2D boundary elements are used, they can have for example

four nodes N e = 4 (linear interpolation) or eight nodes N e = 8 (quadratic

interpolation). The intrinsic coordinates are ξ and η, see figure 2.9.
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n = 2 n = 1 n = 3

Φ2

Φ1

Φ3

Figure 2.8: Quadratic shape functions for a 1D element

The interpolation functions for a quadratic quadrilateral element are:

Φ1 =
1

4
(1− ξ) (1− η) (−ξ − η − 1) Φ5 =

1

2

(
1− ξ2

)
(1− η)

Φ2 =
1

4
(1 + ξ) (1− η) (ξ − η − 1) Φ6 =

1

2

(
1− η2

)
(1 + ξ)

Φ3 =
1

4
(1 + ξ) (1 + η) (ξη − 1) Φ7 =

1

2

(
1− ξ2

)
(1 + η)

Φ4 =
1

4
(1− ξ) (1 + η) (−ξ + η − 1) Φ8 =

1

2

(
1− η2

)
(1− ξ)

(2.81)

and the coordinates for the node at the element xe (ξ, η) can be interpolated as

in equation 2.79:

xe (ξ, η) =
Ne∑
n=1

Φn (ξ, η)xen (2.82)

For more details and linear interpolation functions see for example Beer and

Watson (1994); for the interpolation of triangular elements see for example Gaul

et al. (2003).
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η

ξ

n = 1 25

68

34 7

Figure 2.9: Quadratic quadrilateral element, intrinsic coordinates ξ and η and
local nodes n = 1...8

2.4.2 Approximation of Physical Quantities

In addition to the discretisation of the boundary geometry, the displacement-

and traction- vectors u and t at the boundary have to be approximated too:

ue =
Ne∑
n=1

Φnu
e
n (2.83)

te =
Ne∑
n=1

Φnt
e
n (2.84)

where uen and ten are the displacement- and traction- vectors at node n of

element e. And the same interpolation functions Φn as for the geometry in

section 2.4.1 can be used. The fact that the traction interpolation function

is of the same order as the displacement interpolation presents an advantage

over the Finite Element Method, where stresses and tractions are calculated by

differentiation of the displacement interpolation functions and thus results in

loss accuracy.

The BIE involves the three coordinates of the traction vector t at the boundary

nodes; however, the stress tensor has six independent components and three

of them cannot be calculated directly with the BIE; however, the boundary
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stresses cannot be calculated with the integral equation for stresses as well,

because the kernel function Sσijk is hyper singular (see also section 2.4.5). The

most popular and easiest way to compute boundary stresses is the traction

recovery (or stress recovery) method, see for example Gao and Davies (2002),

Brebbia et al. (1984).

2.4.3 Discretisation inside the Domain

S ≈
∑
Se

V̀ ≈
∑
V c

Figure 2.10: Domain discretised with integration cells V c

As described before, the boundary geometry and the boundary quantities are

approximated by using boundary elements. However, for a problem containing

body forces (forces, initial stresses or initial strains) domain integrals have to

be computed, see section 2.3.5. One way to calculate the domain integral is the

cell integration technique in which the volume V̀ on which the body forces are

acting is subdivided into a certain number C of cells, see figure 2.10:

V̀ ≈
C∑
c=1

V c (2.85)

The geometry and the distribution of the body forces are defined by the nodal



2.4. Numerical Implementation 51

cell values and the interpolation functions.

xc =
Nc∑
n=1

Φnx
c
n (2.86)

bc =
Nc∑
n=1

Φnb
c
n; σ0 c =

Nc∑
n=1

Φnσ
0 c

n; ε0 c =
Nc∑
n=1

Φnε
0 c

n (2.87)

N c is the number of cell-nodes. For 2D problems 2D cells are used (equal to the

2D boundary elements described before) and for 3D problems 3D cells (brick

cells) are used, for example linear brick cells (with eight nodes N c = 8) or

quadratic brick cells (with 20 nodes N c = 20). For the 3D case three intrinsic

coordinates are introduced (ξ, η and ζ), see figure 2.11.

ζ

η

ξ

n = 1 29

10
12

3114

20

8

19

7

18

6

17

5 13

15
16

14

Figure 2.11: Quadratic brick cells, intrinsic coordinates ξ, η, ζ and local nodes
n = 1...20

The interpolation functions for quadratic brick cells are:

Φα =
(1 + ξαξ) (1 + ηαη) (1 + ζαζ) (ξαξ + ηαη + ζαζ − 2)

8

for α = 1 · · · 8
(2.88)

Φα =
(1 + ξαξ) (1 + ηαη) (1 + ζαζ) {1 + (ξ2

α − 1) ξ2 + (η2
α − 1) η2 + (ζ2

α − 1) ζ2}
8

for α = 9 · · · 20

(2.89)
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2.4.4 Matrix Assembly / System of equations

Applying the boundary discretisation (equation 2.78) to the BIE equation 2.44

and expressing it in matrix notation we obtain the equation system for the load

point (subscript l):

clul =
E∑
e=1

∫
Se

U lt
edS −

E∑
e=1

∫
Se

T lu
edS + f (2.90)

Substituting the displacement- and traction- approximation of equation 2.83

and equation 2.84 into equation 2.90:

clul =
E∑
e=1

Ne∑
n=1

∫
Se

U lΦndS︸ ︷︷ ︸
∆U e

l n

ten −
E∑
e=1

Ne∑
n=1

∫
Se

T lΦndS︸ ︷︷ ︸
∆T e

l n

uen + f l (2.91)

Where ∆U e
l n and ∆T e

l n are introduce to replace the integrands of the products

of the fundamental solution with the shape functions. Replacing the double

summation over the elements E and the element nodes N e by the summation

over all nodes N , it remain:

clul =
N∑
n=1

∆U l ntn −
N∑
n=1

∆T l nun + f l (2.92)

In section 2.4.5 it is described how to solve the integrals ∆U l n and ∆T l n

numerically. To setup the entire system of equations for all N unknowns, the

load point (subscript l) is placed at all global discretisation nodes N . The whole

system of equations is:

cu = ∆Ut−∆Tu+ f (2.93)

Where u, t and f are defined to be the global vectors containing the complete

set of N nodal vectors ul, tl and f l. ∆T , ∆U are assembled matrices. By

defining the matrix ∆T̂ in such a way that the free term c is already included,
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we obtain:

∆T̂ u = ∆Ut+ f (2.94)

The boundary conditions are imposed by changing columns between the matrices

∆T̂ and ∆U and the following system of equations is obtained:

Ax = b+ f (2.95)

where x contains the unknown boundary values, either tractions t or displace-

ments u; A is a matrix containing a mixture of ∆T̂ and ∆U , related to x;

b contains the contributions due to the known boundary values; and f is a

vector containing the contributions due to the body forces. Assuming a problem

containing all three types of body forces (forces b, initial stresses σ0 and initial

strains ε0), the body force vector given in equation 2.43 can be written in the

form:

f = ∆Ub+ ∆Eσ0 + ∆Rε0 (2.96)

∆U , ∆E and ∆R are the assembled matrices including the integrals of the

products of the fundamental solutions with the shape functions over the cell-

volumes. b, σ0 and ε0 are the global vectors containing the complete set of all

M nodal body force vectors. M is due to the number of cells C and the number

of nodes per cell N c (M = CN c).

The systems of equations for calculating results at interal points (load point is

inside the domain, subscript i) can be expressed in an analogous manner (see

also equation 2.47,equation 2.63 and equation 2.70):

ui = ∆U i t−∆T i u+ f i (2.97)

εi = ∆Dε
i t−∆Sεi u+ fε (2.98)

σi = ∆Dσ
i t−∆Sσi u+ fσ (2.99)

Where the body force vector f i for the displacement results is described in

equation 2.96 and the body force vectors for the strains and for the stresses fε
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and fσ are defined as follows:

fεi = ∆Dε
ib+ ∆W ε

iσ0 + F εσ0 + ∆V ε
iε0 +Hεε0 (2.100)

fσi = ∆Dσ
ib+ ∆W σ

iσ0 + F σσ0 + ∆V σ
iε0 +Hσε0 (2.101)

2.4.5 Numerical Integration

The last thing to do before we are able to operate with the system of equations

in section 2.4.4 is to carry out the integrals over the boundary elements Se

and over the volume cells V c. All these integrals consist of the product of the

fundamental solution (·) (P,Q) and the interpolation functions φ (Q):

Ien (P ) =

∫
Se

(·) (P,Q)φn (Q) dS (Q) (2.102)

Icn (P ) =

∫
V c

(·) (P,Q)φn (Q) dV (Q) (2.103)

Equation 2.102 shows an integral over a boundary element (like in equation 2.91)

and equation 2.103 shows an integral over a cell. Analytical integration is rarely

used because even when it is possible to calculate the final expression, it can be

very complicated and its evaluation can have high cost from the computational

point of view (see Paris and Canas 1997). Several numerical procedures (e.g.

trapezoidal rule, Simpson’s rule) are described in literature to approximate

an integral like this. However, the Gauss quadrature formula shows the best

accuracy for a given number of points, thus these technique is commonly used

in the BEM.

Depending on the distance of the load point P to the element Se (Q) over which

the integration is carried out, we have to distinguish between regular integrals,

singular integrals and ideally also nearly singular integrals, see for example Gaul

et al. (2003).
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Regular Integration

The load point P is far away from the element Se or the cell V c, respectively.

For this the standard Gauss quadrature (also called Gauss-Legendre quadrature)

is used. The original integral can be calculated in the form:

x2∫
x1

f (x) dx =
M∑
j=1

wjf (xj) (2.104)

We can find a set of M weights w and abscissas x (also called Gauss points)

such that the approximation is exact if f (x) is a polynomial of the order R

(M = 2R− 1). Once the order M is chosen, the Gauss points and the weights

can be calculated, for a detailed description see Press et al. (2002). Regarding

a 1D element with the intrinsic coordinates (−1 ≤ ξ ≤ 1) the weights wj and

Gauss points ξj for M = 1, 2, 3 are:

M ξj wj
1 0. 2.
2 +0.57735, -0.57735 1., 1.
3 +0.77459, 0., -0.77459 0.55555, 0.88888, 0.55555

Table 2.1: Gauss points ξ and weights w for Gauss quadrature

Applying this to the integral equation 2.102 it occurs:

Ien (P ) ≈
M∑
j=1

(·) (P, ξj)φn (ξj) J (ξj)wj (2.105)

where J (ξj) is the Jacobian which transforms the coordinates xj to the intrinsic

coordinates ξj:

dS (x, y) =

√(
dx

dξ

)2

+

(
dy

dξ

)2

= Jdξ ... 2D boundary element (2.106)
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dS (x, y, z) =
∂ (x, y, z)

∂ (ξ, η)
= Jdξdη ... 3D boundary element (2.107)

The integration over the volume cells (equation 2.103) can be done analogous:

dV (x, y) =
∂ (x, y)

∂ (ξ, η)
= Jdξdη ... 2D cell (2.108)

dV (x, y, z) =
∂ (x, y, z)

∂ (ξ, η, ζ)
= Jdξdηdζ ... 3D cell (2.109)

Nearly Singular Integration

The load point P is close to the element Se or the cell V c, respectively. In this

case, the integrand is still regular and the standard Gauss quadrature formula

can be used. However, a high number of Gauss points xj is needed for an

accurate approximation of the pronounced peak for r (P,Q)�. A better way

to obtain a better accuracy is the subdivision method. If the point is too close to

the element to be integrated, the element is divided into smaller sub-elements,

see Ribeiro (2006).

Singular Integration

When the load point P lies on the element Se or on the cell V c, respectively

the integrand becomes singular for r = 0 (P = Q). Depending on the type of

fundamental solutions different types of singularities occur:

1D Integration 2D Integration 3D Integration

weakly singular ln r
1

r

1

r2

strongly singular
1

r

1

r2

1

r3

hyper singular
1

r2

1

r3

Table 2.2: Different types of singularities
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Thus the integrands in the BIE include weak and strong singularities at P = Q:

cu (P ) = ∆U (P,Q)︸ ︷︷ ︸
weak

t (Q)−∆T̂ (P,Q)︸ ︷︷ ︸
strong

u (Q) + f (P ) (2.110)

and the body force terms consists of weakly singular volume integrals only in

the case that P = Q̄:

f (P ) = ∆U
(
P, Q̄

)︸ ︷︷ ︸
weak

b
(
Q̄
)

+ ∆E
(
P, Q̄

)︸ ︷︷ ︸
weak

σ0

(
Q̄
)

+ ∆R
(
P, Q̄

)︸ ︷︷ ︸
weak

ε0

(
Q̄
)

(2.111)

However, the integral equations for computing stresses or strains consist of

strongly and hyper singular integrals for P̄ = Q:

ε,σ
(
P̄
)

= ∆Dε,σ
(
P̄ , Q

)︸ ︷︷ ︸
strong

t−∆Sε,σ
(
P̄ , Q

)︸ ︷︷ ︸
hyper

u+ fε,σ
(
P̄
)

(2.112)

To avoid hyper singular integrals, the integral equation 2.112 is used to calculate

stresses and strains at internal points only. For the boundary we use the stress

recovery technique. Thus we obtain regular boundary integrals only:

ε,σ
(
P̄
)

= ∆Dε,σ
(
P̄ , Q

)︸ ︷︷ ︸
regular

t−∆Sε,σ
(
P̄ , Q

)︸ ︷︷ ︸
regular

u+ fε,σ
(
P̄
)

(2.113)

and the volume integrals for the body forces contain strongly singularities at

P̄ = Q̄:

fε,σ
(
P̄
)

= ∆Dε,σ
(
P̄ , Q̄

)︸ ︷︷ ︸
weak

b
(
Q̄
)

+ ∆W ε,σ
(
P̄ , Q̄

)︸ ︷︷ ︸
strong

σ0

(
Q̄
)

+ F ε,σσ0

(
Q̄
)

+ ∆V ε,σ
(
P̄ , Q̄

)︸ ︷︷ ︸
strong

ε0

(
Q̄
)

+Hε,σε0

(
Q̄
) (2.114)

The different types of singularities are described in more detail in section 2.5.

However, here a short overview is given, how to integrate them numerically
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inside the BE-program:

Weak Singularity The integral exists and can be calculated analytically (see sec-

tion 2.5.1). The numerical evaluation using the standard Gauss-Legendre

quadrature (section 2.4.5) is inaccurate since the behaviour in the neigh-

bourhood of the singularity can not be approximated very good with

polynomial functions. For the 1D boundary integration a special Gauss

formula the Gauss-Laguerre formula is used, see Beer et al. (2008), Press

et al. (2002).

For 2D and 3D integrations some regularising transformations have to be

considered in which the Jacobian J vanishes at the singularity (e.g. Lachat-

Watson transformation). Quadrilateral elements or cells (2D integration)

have to be subdivided into two triangles. Brick cells (3D integration) have

to be subdivided into pyramid shaped sub-cells. With this subdivisions

new coordinates are introduced and the Jacobian vanishes in the singular

point. For detailed description see for example Ribeiro (2006), Beer et al.

(2008).

Strong Singularity The strongly singular integrals appearing in the BEM exist

in the sense of Cauchy principal values, see section 2.5.2. In the BEM they

often can be evaluated indirectly using the traction-free rigid body motion;

so that the evaluation of the strongly singular integrals can be avoided.

However, in some cases we have to evaluate the strongly singular integrals

explicitly, see Gaul et al. (2003). Therefore different methods can be used

based on analytical or semi-analytical integration. Here the Guiggiani

approach (Guiggiani and Casalini (1987), Guiggiani and Gigante (1990))

is used. This method is based on the idea of regularising the singularity

by subtraction. First we simplify the problem by introducing a function

g (0):

−
b∫

a

g (x)

x
dx =

∫
ab
g (x)− g (0)

x
dx︸ ︷︷ ︸

regular

+ −
b∫

a

g (0)

x
dx (2.115)
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The first integral on the right side is regular and can be evaluated using

standard Gauss quadrature. The second integral remains strongly singular

but its solution is known:

−
b∫

a

g (0)

x
dx = g (0) ln | b

a
| (2.116)

This procedure can be used for 2D and 3D integrations as well.

As for the weak singular integration, the quadrilaterals or bricks are

subdivided into triangular or pyramid shaped sub-elements, respectively.

For example the 2D integration for the strongly singular term ∆T given

by equation 2.91 is expressed in local polar coordinates (ϕ, r) based at

the singular load point P :

∆Tij =
N∑
e=1

lim
ε→0

∫
Se−Sε

TijΦndS =

N∑
e=1

lim
ε→0

π∫
ϕ= 3

4
π

r1(ϕ)∫
r0(ε,ϕ)

fij (r, ϕ) rdrdϕ

(2.117)

where Se is the boundary of the element and Sε is the boundary of the

vanishing neighbourhood around the singularity. Then the distance vector

ri is approximated by developing a Taylor series for the field point Q

near the load point. Thus the integrand in the vicinity of the load point

approximate by:

f̆ij (r, ϕ) =
1

r2
f̆ ∗ij (ϕ) (2.118)

The integrand has been separated into a regular part f̆ ∗ij (ϕ) which is only

a function of ϕ and a singular part 1
r2 . Similar to the 1D integration
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function f̆ij (r, ϕ) is subtracted and added:

∆Tij =
N∑
e=1

π∫
ϕ= 3

4
π

r1(ϕ)∫
0

(
fij (r, ϕ)−

f̆ ∗ij (ϕ)

r2

)
rdrdϕ

+
N∑
e=1

lim
ε→0

π∫
ϕ= 3

4
π

r1(ϕ)∫
r0(ε,ϕ)

fij (r, ϕ)
f̆ ∗ij (ϕ)

r
drdϕ

(2.119)

where the first integral is regular and can be evaluated using standard

Gauss quadrature. The second integral can be carried out analytically

over r, see Gaul et al. (2003), Ribeiro (2006).

Hyper Singularity As it was shown in equation 2.112 hyper singular integrals

occur when we want to calculate stresses or strains at the boundary. To

avoid this kind of singularity the stresses and strains at the boundary are

not calculated directly by using the integral equations, however stresses

and strains can be computed by using special techniques. The most

popular and easiest way is the traction recovery (or stress recovery, strain

recovery) method, see for example Gao and Davies (2002), Brebbia et al.

(1984).

For a general description of weakly and strongly singular integrals see sec-

tion 2.5.

To apply special kinds of body forces, such as line loads or concentrated point

forces as it is described in section 2.3.5, the singularities have to be considered

in special ways. However, this will be described later in more detail in chapter 5

and chapter 6 where line loads and point forces are used to model different

kinds of rock bolts.
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2.5 Singular Integrals

For detailed descriptions of singular integrals see for example the mathematics

books Gakkov (1966), Mikhilin and Prössdorf (1987); for a more engineering

description related to the BEM see for example Paris and Canas (1997), Gaul

et al. (2003). In this section short overview over weak and strong singularities

is given.

2.5.1 Weak Singularity

The definition of the weakly singular integral can be given in a visual way (see

Gaul et al. 2003): the integrand is infinite at a point c of the integration range

a ≤ c ≤ b but its integral is finite and continuous at c. See for example the

integrand f (x):

f (x) = ln (|x|) I (x) =

∫
f (x) dx = x ln (|x|)− x (2.120)

The integral I (x) is continuous, see figure 2.12

f (x)

I (x)

Figure 2.12: Weak singularity: integrand f (x) and integral I (x)

In mathematics this kind of integral is called improper integral. The integral

is carried out by removing the neighbourhood of the singular point c and

integrating over the remaining part and passing to the limit:

lim
ε1→0; ε2→0

 c−ε1∫
a

f (x) dx+

b∫
c+ε2

f (x) dx

 (2.121)
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For the improper integral this limit exists. In this definition it is important

that the neighbourhood cut out is entirely arbitrary (ε1 6= ε2); see for example

Gakkov (1966), Paris and Canas (1997).

2.5.2 Strong Singularity

We have a stong singularity if the integrand is infinite at a point c and its

integral is infinite too. See for example (figure 2.13):

f (x) =
1

x
I (x) =

∫
f (x) dx = ln (|x|) (2.122)

f (x)

I (x)

Figure 2.13: Strong singularity: integrand f (x) and integral I (x)

This kind of integrals can not be solved as an improper integral:

b∫
a

1

x
dx = lim

ε1→0; ε2→0

 −ε1∫
a

1

x
dx+

b∫
+ε2

1

x
dx

 =

ln

(
|b|
|a|

)
+ lim

ε1→0; ε2→0
ln

(
ε1

ε2

) (2.123)

It is evident that the limit of the last expression depends on the manner in which

ε1 and ε2 tend to zero. However, it can be given a meaning if a dependence

between ε1 and ε2 is established; i.e. ε1 = ε2 = ε. In this example this gives a
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finite value the integral is said to exist in the sense of a Cauchy principal value,

see also Gakkov (1966), Paris and Canas (1997):

b∫
a

1

x
dx = lim

ε→0

 −ε∫
a

1

x
dx+

b∫
+ε

1

x
dx

 = ln

(
|b|
|a|

)
(2.124)

However, some strongly singular integrands do not converge in the sense of

Cauchy principal value (they do not lead to a finite value); these integrals are

called divergent integrals, see Paris and Canas (1997). For example:

b∫
a

1

|x|
=

b∫
a

1

r
lim
ε→0

 −ε∫
a

1

r
dx+

b∫
+ε

1

r
dx

 =

lim
ε→0

[− ln | − ε|+ ln |a|+ ln |b| − ln |ε|] =∞

(2.125)

If the integrand were multiplied by a certain function u (x) the integral could

exist in the sense of Cauchy principal value.

2.6 Conclusion

The principles of the BEM were shown in this chapter. It was stated that the

classical boundary integral equation can deal only with homogeneous, elastic

media. In standard BE-approaches different regions have to be defined for

simulating problems containing inclusions with different materials.

In this work a novel method is presented to simulate different materials with only

one single BE region. Therefore the possibilities to apply body forces (initial

forces, initial stresses or initial strains), presented in this chapter, will be used.

In this chapter it was shown how to apply body forces on volumes, line loads

along lines and concentrated forces on points. In the next chapters it will be

presented how to use these possibilities for the new method to simulate different

kinds of inclusions: general inclusions or narrow inclusions like continuous

anchored rock bolts as well as discrete anchored rock bolts.
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Chapter 3

Solution Procedure for Embedded

Inclusions

3.1 Introduction

The analysis of solids including embedded inclusions is a very common problem

in engineering, for example a rock mass with stiff or soft layers which are often

found in underground engineering problems. An other example are solids which

are reinforced by thin inclusions (as rock bolts in tunnelling) or other ground

improvement methods like pipe roofing, where a stiff umbrella-shaped zone is

created inside the grond.

As described in chapter 2 the classical boundary integral equation (BIE) can

deal with homogeneous and linear elastic materials only, since fundamental

solutions are known for homogeneous materials. The boundary element method

(BEM) is already proved suitable for solving homogenous and linear elastic

problems. For problems where the material properties of the solid changes for

example in the case of embedded inclusions or if nonlinear material behaviour

appear, special treatments have to be introduced:

BEM-FEM Coupling: The combination of BEM and FEM is the most com-

monly used technique to treat these cases. The inclusions are modelled with
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finite elements and combined (coupled) with the boundary elements, see fig-

ure 3.1(a). Also if some areas inside the solid become plastic this technique

can be used by discretising these plastic zones with finite elements and the

rest with boundary elements. The philosophy of this technique is to have

the best of each method, Zienkiewicz was the first who presented the “mar-

riage a la mode - The best of both worlds” in his classical paper presented

in Zienkiewicz et al. (1977). Up to now this method is well-established and

an extensive number of research has been done on this subject, see for exam-

ple Beer and Watson (1994), Brebbia et al. (1984), Hagen (2005), Pereira (2008).

BEM-BEM Coupling: Another alternative technique is the BEM sub-region

technique. Where zones with different materials are considered by boundary

element sub-regions which are connected to each other, see figure 3.1(b). Each

region can be assigned different elastic material properties. However, the BEM

regions can not behave in a nonlinear manner, they have to be linear elastic.

One early work presenting an elastic body divided into sub-regions was written

by Lachat and Watson (1976), further works dealing with this problem are for

example Beer (2001), Duenser (2001), Leite and Venturini (2005).

Body force approach: A completely different technique to deal with different

material properties with the BEM is the approach which will be called here

“body force approach” (this can be either an initial stress or an initial strain or

an initial force approach as well). In this method the whole solid is discretised

by one single region and the effects of the zones with different material properties

are simulated by applying body forces of any kind (initial stresses, initial strains

or initial forces), see figure 3.1(c).

In the literature this method is commonly used to simulate nonlinear material

behaviour. The development of simulating nonlinear material behaviour with

the BEM started in the early 1970s. Since that many approaches have been

proposed, see for example Telles (1983), Gao and Davies (2002), Cisilino and

Aliabadi (1998), Ribeiro et al. (2008).
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(a) BEM-FEM Coupling (b) BEM-BEM Coupling

(c) Body force approach

Figure 3.1: Methods to simulate inhomogeneous domains

In this work a body force approach is proposed, not only for simulating plastic

zones in an homogeneous media as described in various papers, but also for

simulating embedded inclusions. This inclusions can be softer or stiffer than

the surrounding material and they can also plastify, see also Riederer and Beer

(2009).

3.2 Body Force Approach

The idea in this approach is to introduce only one single region and apply initial

loadings or “body forces” (initial stresses, initial strains or initial forces) to

simulate the effect of the different materials, see figure 3.2.

For simulating nonlinear material behaviour like plasticity or visco-plasticity

this method is well known, commonly an initial stress formulation or an initial

strain formulation is used. The varying material properties in the plastic zones

are simulated by initial stresses or initial strains, the magnitudes and the

distribution of these initial loadings are calculated in an iterative procedure.
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In this work embedded inclusions are proposed to be simulated in a similar way.

The system of equations considering some kind of body forces is given as (see

chapter 2):

Ax = b+ f (3.1)

Where is x a vector with the unknown boundary quantities (displacements and

tractions), b is a vector with the contributions due to the known boundary

values, and f is a vector containing the contributions due to the body forces

(e.g. initial stresses σ0).

The system of equations (3.1) can be solved directly to obtain the unknown

boundary values x if the body forces and thus the vector f is known. For the

simulation of inclusions the body forces are unknown at the beginning and

thus the system of equations (3.1) is under-determined and can not be solved

directly.

However, a second condition can be formulated which relates the body forces to

internal results. For example: the relation of the initial stress loadings σ0 and

stress results σ is given by using the constitutive matrices of the domain and

the inclusion material. With this second condition another set of equations are

introduced which leads to a determined problem which can be solved.

This problem can be either solved directly or iteratively. In the next two

sections both approaches are described and at the end their advantages and

disadvantages will be discussed.

Figure 3.2: Simulation of embedded inclusions with initial stresses
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3.2.1 Direct Solution Procedure

A direct solvable system of equations can be derived by using the BIE, the

integral equation for computing internal results and a second condition for the

relation of body forces and internal results. In general this problem could be

arranged in several variations; body forces can be either, initial stresses, initial

strains or initial forces and also the internal results can vary form stresses, strains

or displacements. Here an initial stress approach in combination with stress

results at internal nodes is used for explanation, but every other assortment

could be used in a similar way.

First the system of equations (see equation 2.95) considering initial stress loading

(f = ∆Eσ0) is rewritten:

Ax−∆Eσ0 = b (3.2)

For a better view over the system of equations equation 3.2 will be presented in

a way in which the sizes of the vectors and matrices are indicated:

[A]ee {x}e − [∆E]ec {σ0}c = {b}e (3.3)

The subscript e represents the total number of degree of freedoms at the

boundary nodes and c is the total number of stress components at the cell

nodes.

The system of integral equations for computing stresses at internal points is

(see also equation 2.99):

[Aσ]ce {x}e −
[
∆W F

]
cc
{σ0}c = {σ}c + {bσ}c (3.4)

Whereas ∆W F = ∆W + F includes the integrated fundamental solution and

the jump term. Aσ is a matrix containing sub-matrices ∆D and ∆S related

to the unknown boundary conditions x; and bσ are the contributions due to

the known boundary values.
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Writing both equation 3.3 and equation 3.4 together, it arise a equation system

of the form: [
[A]ee [∆E]ec
[Aσ]ce

[
∆W F

]
cc

][
{x}e
−{σ0}c

]
=

[
{b}e

{σ}c + {bσ}c

]
(3.5)

Now another condition has to be found which relates the initial stresses σ0 to

the internal results σ. Therefore following relations are introduced per node:

σIncl = σ (3.6)

σRock = σ+ σ0 (3.7)

σIncl are the stresses in the inclusion and σRock are stresses which would appear

in the solid if there where no inclusion. By introducing the compatibility

condition of the strains (ε = εIncl = εRock) and by using Hooke’s law we

obtain:

ε = CIncl −1

σIncl = CRock −1

σRock (3.8)

Where CIncl and CRock are the constitutive matrices of the inclusion and the

solid material, respectively. With this it occurs:

σRock = CRockCIncl −1

σIncl (3.9)

Substituting equation 3.9 into equation 3.7 and using also the relation in

equation 3.6 it occurs:

CRockCIncl −1

σ = σ+ σ0 (3.10)

This can be arranged for the whole system (for all cell nodes) and the matrix

C1cc is obtained, which gives finally the relation between initial stresses σ0 and

internal results σ:

{σ0}c =
([
CRock

]
cc

[
CIncl

]−1

cc
− [I]cc

)
︸ ︷︷ ︸

[C1]
cc

{σ}c (3.11)
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[I]cc contains assembled identity matrices.

Substituting this additional relation in equation 3.11 into equation 3.5 a directly

solvable system of equations is obtained:[
[A]ee − ([∆E]ec [C1]cc)

[Aσ]ce −
([

∆W F
]
cc

[C1cc]− [Icc]
)]({x}e

{σ]c

)
=

(
{b}e
{bσ}c

)
(3.12)

Where the vector on the right hand side includes the contributions due to the

known boundary conditions b and bσ; and the vector on the left hand side

contains the unknown boundary conditions x and the unknown stresses at the

cell nodes σ.

3.2.2 Iterative Solution Procedure

Now an alternative solution procedure will be presented, where the unknown

body force term f is calculated iteratively. The system of equations (3.1) is

rewritten here:

Ax = b+ f (3.13)

In contrast to the direct solvable system of equations 3.12 no additional unknowns

arise in the system of equations (3.13) because of the inclusions; the system

itself remains small.

This procedure looks very similar to the iterative procedure used for the nonlinear

material behaviour and thus can easily combined with it. The advantage of this

combination is that both, the solid and the inclusion are able to behave in a

nonlinear manner without producing much additional effort in contrast to the

direct solution procedure of section 3.2.1.

As for the direct solution, also here the problem could be arranged in several

variations of body forces (initial stresses, initial strains or forces) and in several

variations of internal results (stresses, strains or displacements). Below the

procedure will be described in a general way, where different kinds of body force
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loadings can be used and also different kinds of internal results (internal results

are overall indicated by r).

The iteration procedure starts with an initial analysis (subscript j = 0), in

which the solid is assumed to be homogeneous without any inclusion, thus the

body forces are zerro (∆f j=0 = 0).

A∆xj=0 = b (3.14)

After solving 3.14, the results ∆rj at all cell nodes can be obtained. The total

boundary results and internal results are initialised at this stage:

xj=0 = ∆xj=0

rj=0 = ∆rj=0

(3.15)

After this homogeneous initial analysis the iteration procedure starts:

(i) The index for the iteration step is incremented j = j + 1.

(ii) Because of the different materials of the inclusion and the solid, the stresses

are different in both. The results which are calculated before ij−1 may be

incorrect. The error produced in the last analysis can be calculated and

expressed in terms of residual loadings (e.g. residual initial stresses); with

this the residual vector ∆f j is calculated.

(iii) The convergence is checked by comparing the vector-norm of the residuum

‖∆f j ‖ with a given tolerance:

‖∆f j ‖ ≤ tol (3.16)

After the first iteration step (j > 1) the tolerance is defined by a percentage

of the of the fist residuum tol =‖∆f 1 ‖ ε. Whereas ε = 0.01 is in most

cases accurate enough. If the convergence criterion is fulfilled, the iteration

procedure ends here, otherwise it continues with the next step (iv).
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(iv) The previous calculated residuum is applied to the system of equations as

new right hand side ∆f j:

A∆xj = ∆f j (3.17)

(v) After solving 3.17, the results ∆rj are calculated at all cell nodes.

(vi) The boundary results and the internal results will be updated:

xj = xj−1 + ∆xj

rj = rj−1 + ∆rj
(3.18)

(vii) The iteration procedure continues with step (i).

The iterations proceed until convergence is reached in step (iii). The final system

of equations can be written as the sum of the incremental systems:

Axj = b+ f j (3.19)

where f j =
∑

∆f j is the sum of all incremental residual vectors.

In the next chapters (chapter 4, chapter 5, chapter 6) the simulation of different

types of inclusions will be described. For each kind of inclusion the procedure

varies a bit: different kinds of cells, of body forces and of internal result types are

used; also the computation of the residuum is done in different ways. However,

the same iteration loop can be used for all this different kinds of inclusions

and they can be calculated at the same time. For this reason cellgroups are

introduced, which combine all cells with the same characteristics (as inclusion

type, material properties and so on).

In addition nonlinear behaviour (like plasticity) may occur even for the solid

or for the inclusion. The iterative procedure for simulation nonlinear material

behaviour is very similar to the iterative procedure used for calculating the

inclusions. The same iteration loop is used for both. For doing this, all plasticity

cells have to be summarized by one cellgroup too. Considering plasticity in the
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BEM is described in various publications, as for example in Telles (1983), Gao

and Davies (2002), Cisilino and Aliabadi (1998), Ribeiro et al. (2008).

Using the concept of the cellgroups, the different methods can be combined into

one iteration loop. For each cellgroup (index CG) the internal results rCG and

the applied body forces can be different; and the residuum can be calculated in

diverse ways. The total residual vector is obtained by the sum over all cellgroup

residual vectors (∆f j =
∑

∆fCGj ). The final system of equations is:

Axj = b+
∑
CG

fCGj (3.20)

The itrative solution procedure using as many cellgroups as desired, is presented

in figure 3.3.

Iterative Procedure and Coupling

For the simulation of tunnelling problems the coupling of different regions is

in most cases indispensable. For example the simulation of the excavation

process in tunnelling, where the solid around the tunnel is defined by an infinite

BE-region and the solid inside the tunnel surface is subdivided in several finite

BE-regions. The excavation process is simulated, by deactivating the finite

regions step by step, see Duenser (2001). Another example for coupled problems

in tunnelling is the simulation of shotcrete along the tunnel surface. The thin

shotcrete shell can be simulated efficiently with shell elements, see Prazeres

(2009); however this FE’s has to be coupled to the BE-region.

Thus, the iteration procedure described above has to be extended to coupled

problems. The procedure is shown in figure 3.4, the index SYS denotes the

whole system with all regions.
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Figure 3.3: Flow chart of the iterative algorithm



76 3. Solution Procedure for Embedded Inclusions

Figure 3.4: Flow chart of the iterative algorithm for coupled problems
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3.3 Conclusion

In this work the iterative solution procedure section 3.2.2 is proposed. For

problems where only linear elastic material behaviour is required, it would be

possible to solve the problem directly (see section 3.2.1), in all other cases

where nonlinear material behaviour occurs an iterative solution procedure has

to be used for the material nonlinearity. In most tunnelling problems nonlinear

material behaviour has to be considered; thus an iterative procedure and the

discretisation of the domain with internal cells are necessary anyway. Because

of this the iterative solution procedure is proposed in this work. The iterative

procedure for calculating the inclusions can be efficiently combined with the

iterative procedure for the nonlinear material behaviour and thus produces

almost no additional expense in comparison to a system without inclusions.

In the next sections it is shown how the residual vectors are calculated for the

different kinds of inclusions (fully grouted rock bolts, discrete anchored bolts or

anchors and geological inhomogeneities or pipe umbrellas). Figure 3.5 shows

a BE mesh of a tunnel including different cell-groups for plasticity, geological

inclusions, pipe umbrella and rock bolts

geological inclusion

pipe umbrella

plastic zone

rock bolts

tunnel

infinite doamin

Figure 3.5: BE discretisation including different cells
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Chapter 4

General Inhomogeneities and Pipe

Umbrellas

4.1 General

Usually the ground will not be homogeneous and the simulation program should

be able to consider this. In tunnelling problems different types of inclusions

occur; on the one hand inclusions arise from the geology like fault zones and

soft or stiff layers; on the other hand inclusions are placed in to support the

excavated tunnel, for example rock bolt, anchors, pipe umbrella systems ...

As described in chapter 2 the classical BIE can deal with homogeneous, linear-

elastic domains only. However, in chapter 3 a possibility was presented to

simulate inclusions by applying body forces (e.g. initial stresses) calculated

within an iterative procedure. In this chapter the approach for simulating

geological inclusions and pipe umbrella systems will be presented.

4.1.1 General Inhomogeneities

The calculation of inclusions with arbitrary shape, like geological inhomo-

geneities, can be done within the iterative procedure described in chapter 3.

The inclusions are modelled by ordinary volume-cells, see figure 4.1.
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volume-cells

boundary elements

Figure 4.1: Geological inclusion discretised with cells

4.1.2 Pipe Umbrellas

Technique

To improve the behaviour of the ground and for the stabilisation of the excavated

area, especially the working face, a grouted pipe-roofing technique can be used.

In this technique a series of pipes are installed and after that grout is injected

through the pipes. Thereby the properties of the ground between the pipes are

changed and the pipes are connected to a kind of umbrella around the area to

be excavated, see figure 4.2.

pipe
grout

tunnel tunnel

pipe grout

Figure 4.2: Grouted pipe roofing technique
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Numerical Simulation

Such a pipe-roofing technique described before is a geometrically and mechani-

cally complex problem. In this work it is proposed to approximately simulate

this problem by a homogenized zone. Consequently, the same volume-cells and

the same algorithm as for the general inhomogeneities can be used; one single

layer of ordinary volume-cells is used for discretisation, see figure 4.3.

homogenized zone

tunnel tunnel

homogenized zone

Figure 4.3: Approximated modelling of pipe roofs
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4.2 BE-approach

The general procedure described in section 3.2.2 is adapted to model geological

inhomogeneities. For this, the following special configurations are used:

• General volume-cells are used for discretisation: in 2D problems we have

quadratic quadrilateral cells, in 3D problems quadratic brick cells (see

section 2.4.3).

• Initial stresses σ0 are applied as loading in the volume-cells.

• Internal strain results ∆εj are use for computing the residuum in the j-th

iteration step, see section 4.2.2.

• The residual-vector is computed as described in section 4.2.3.

4.2.1 Iterative Procedure

The iterative procedure is used, as described in section 3.2.2.

First the homogeneous elastic problem is solved:

A∆xj=0 = b (4.1)

After that the strain results ∆εj=0 are calculated at all cell nodes. The total

boundary results and internal results are initialised:

xj=0 = ∆xj=0

εj=0 = ∆εj=0

(4.2)

Then the iteration starts and following steps have to be done:

(i) The index for the iteration step is incremented j = j + 1.

(ii) The residual vector ∆f j is calculated, see section 4.2.3.
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(iii) The convergence is checked by comparing the vector-norm of the residuum

‖∆f j ‖ with a given tolerance:

‖∆f j ‖ ≤ tol (4.3)

After the first iteration step (j > 1) the tolerance is defined by a percentage

of the fist residuum tol =‖∆f 1 ‖ ε. If the convergence criterion is fulfilled,

the iteration procedure ends here, otherwise it continues with the next

step (iv).

(iv) The residual vector is applied to the system of equations as new right

hand side:

A∆xj = ∆f j (4.4)

(v) The strain results ∆εj are calculated at all cell nodes.

(vi) The boundary results and the strain results are updated:

xj = xj−1 + ∆xj

εj = εj−1 + ∆εj
(4.5)

(vii) The iteration procedure continues with step (i).

4.2.2 Computation of the Strains

Internal strain results (∆εj) are needed for the computation of the residuum.

Between two materials (like the ground and the inclusion) a jump arises in

the stress-field. Because of this discontinuity the strains cannot be calculated

directly by using the integral equation (see equation 2.63). For points inside one

material (even if they are very near to the border) the integral equation 2.63

gives the correct results; but not for points located directly on the border. We

have two options to compute strains at these nodes:

• For nodes located on the border to an other material, the strains are

extrapolated from strain results of points inside the material.



84 4. General Inhomogeneities and Pipe Umbrellas

• The other option is to calculate displacements at all cell nodes by using

the integral equation 2.47. This can be done without problems, because

the displacements do not have a jump at the border between two materials.

Afterwards the strains are calculated for each cell by the derivation of the

displacements (via the interpolation function of the cell).

In this work the second option (derivation of the displacements) is used for

calculating the strains. Thus, this option is described in more detail:

The displacements over the cell are approximated using the interpolation func-

tions Φn and the nodal displacements ucn, see section 2.4.3:

uc =
Nc∑
n=1

Φnu
c
n (4.6)

The strains for a one dimensional problem can be expressed by the derivative of

the interpolation functions:

ε =
∂uc

∂x
=

Nc∑
n=1

∂Φn
∂x

ucn (4.7)

For the general 2D or 3D case this can be written in matrix form:

ε =
Nc∑
n=1

Bc
nu

c
n (4.8)

WhereBc
n is a matrix containing the derivation of the interpolation functions:

Bc
n =


∂Φn
∂x

0

0 ∂Φn
∂y

∂Φn
∂y

∂Φn
∂x

 for 2D (4.9)
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Bc
n =



∂Φn
∂x

0 0

0 ∂Φn
∂y

0

0 0 ∂Φn
∂z

∂Φn
∂y

∂Φn
∂x

0

0 ∂Φn
∂z

∂Φn
∂y

∂Φn
∂z

0 ∂Φn
∂x


for 3D (4.10)

4.2.3 Computation of the Residuum

The residual initial stresses ∆σ0j for one iteration step j are calculated by using

the strain results ∆εj and the generalised Hooke’s law for the two different

materials. In order to get a better convergence, different methods are used for

the cases when the inclusion material is softer than the rock mass or when it is

stiffer.

After the residual initial stresses ∆σ0j are calculated at all cell nodes, the

residual vector ∆f j can be computed (see equation 2.43):

∆f j =

∫
V

E∆σ0jdV (4.11)

Soft Inclusions

If the inclusion material is soft compared to the rock mass (for example soft

layers), the residual initial stresses are computed by:

∆σ0j =
(
CRock −CIncl

)
∆εj−1 (4.12)

CRock and CIncl are the constitutive matrices of the rock-material and the

inclusion-material, respectively. Equation 4.12 is appropriate to calculate soft

inclusions; because the strains ∆εj−1 are related to the rock mass (which is

stiffer than the inclusion), see figure 4.4.
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Hard Inclusions

If the inclusion is harder than the surrounding solid (as it is the case for pipe

umbrellas) the residual stress computed with equation 4.12 would be very high

and the iteration would not converge in many cases. For this, the residual

stresses are computed in an alternative way:

∆σ0j =
(
CRock −CIncl

)
∆εInclj−1 (4.13)

∆εInclj−1 means that the strains are related to the inclusion material:

∆εInclj−1 = CIncl−1
∆σInclj−1

= CIncl−1 (
∆σRockj−1 −∆σ0j−1

)
= CIncl−1 (

CRock∆εj−1 −∆σ0j−1)
) (4.14)

The difference of both variants are schematically shown in figure 4.4. In order to

get convergence in the iteration procedure, the strains are related to the harder

material in each case, thus the residual initial stresses are not too high.

hard inclusion rock mass

rock mass soft inclusion

∆ε ∆ε

∆σ ∆σ

∆εIncl = f
`
∆σIncl

´
∆ε = f

`
∆σRock

´

∆σIncl ∆σRock

∆σRock ∆σIncl

∆σ0 ∆σ0

Figure 4.4: Schematic diagram for computing the residuum for soft and hard
inclusions
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Inclusion with Nonlinear Material

For a problem where the inclusion material behaves nonlinear (e.g. it plastifies)

the residual initial stress consists of two parts: the elastic part σe0 and the

plastic part σp0, see figure 4.5:

σ0 = σe0 + σp0 (4.15)

The elastic part is computed as described before; with this the situation of an

elastic inclusion is obtained (see equation 4.16). The plastic part is computed

starting from the elastic inclusion state σIncl e, see equation 4.17; the plastic

part can be calculated as described in various publications, see for example

Telles (1983), Gao and Davies (2002), Ribeiro et al. (2008).

σIncl e = σRock + σe0 (4.16)

σIncl = σIncl e + σp0 = σRock + σ0 (4.17)

σ

σRock

σIncl e

σIncl

ε
ε

σ

σ
p
0

σe0

σ0

Figure 4.5: Schematic figure of the stress states for inclusions with nonlinear
material behaviour
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4.2.4 Evaluation of the Integral

In order to achieve the residual vector ∆f j an integration over the volume-cells

has to be carried out, see equation 4.11. This is done in the standard way as

described in section 2.4.5.
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4.3 Verification Examples

Some very simple examples are presented to verify the described method. Soft,

elastic or plastic inclusions have been tested in 2D and 3D examples. A soft

inclusion in combination with multiple regions has been tested as well; and also

a stiff inclusion and changing material properties within different calculation

steps has been tested.

4.3.1 Example 1: Soft inclusion in plane strain

The first example shows a block with a soft inclusion in plane strain. The

dimension of the block is 2m x 2m; the Young’s modulus is E=5000MN/m2;

and the Poisson’s ratio is ν=0.3. The block is fixed at the bottom and on the

top of the block a constant pressure is applied p=1MN/m2.

Three calculations were carried out: the first without an inclusion; the second

with an elastic inclusion and the third with an inclusion with nonlinear material

behaviour. The soft inclusion has a square shape, placed in the centre of the

block; its dimension is 1m x 1m. The elastic material properties for the inclusion

in the second and the third calculation are: Young’s modulus E=2500MN/m2;

Poisson’s ratio ν=0.3. For the third calculation the Drucker Prager yield

criterion is used with an associated flow rule; the cohesion is c=0.1MN/m2 and

the friction angle is Φ=30◦.

The results are compared with reference solutions calculated with the same

BE-program but with multiple regions (BEM MR); where the inclusion is defined

as an own region. The third calculation is also compared with results from a

FE-analysis. The results are presented in figure 4.6 and figure 4.7.
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Figure 4.6: Example 1: vertical displacements on the top of the block

Figure 4.7: Example 1: deformed mesh and contours of vertical displacements
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4.3.2 Example 2: Soft inclusion in 3D

This example shows a 3D block with a soft inclusion. The dimension of the block

is 10m x 10m x 10m; the Young’s modulus is E=5000MN/m2; and the Poisson’s

ratio is ν=0.0. The block is fixed at the bottom and a constant pressure is

applied at the top of the block p=50MN/m2.

Three calculations were carried out: the first without an inclusion and the

second with an soft elastic inclusion and the third with a plastic inclusion. The

inclusion is placed in the centre of the block and has the dimensions 4m x 4m

x 4m. The elastic material properties of the inclusion are: Young’s modulus

is E=2000MN/m2; Poisson’s ratio is ν=0.3. And for the third calculation the

Drucker Prager yield criterion is used with an associated flow rule; the cohesion

is c=5.0MN/m2; the friction angle is Φ=30◦.

The deformed mesh with the contours of the vertical displacements are shown

in figure 4.8. The results are compared with those calculated with the FEM,

see figure 4.9 and figure 4.10.

Figure 4.8: Example 2: deformed mesh and contours of vertical displacements
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Figure 4.9: Example 2: vertical displacements along the top of the block

Figure 4.10: Example 2: vertical displacements along the top of the inclusion
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4.3.3 Example 3: Soft inclusion and multiple regions

The third example shows again a block with a soft inclusion in plane strain

conditions, but it exhibits the compatibility of this algorithm with multiple

region problems. Two variational calculations have been carried out to calculate

the same problem. The first is with a single region; and the second with two

regions where the splitting is directly in between the inclusion. Both calculations

show good agreement for the displacement results but also for the stress results,

see figure 4.11 and figure 4.12.

The dimension of the block is 2.167m x 2m; the Young’s modulus is E=5000MN/m2;

and the Poisson’s ratio is ν=0.0. The block is fixed at the bottom and on the

top of the block a constant pressure is applied p=1MN/m2. The inclusion

has a dimension of 1m x 1m; the Young’s modulus is E=500MN/m2; and the

Poisson’s ratio ν=0.0.

(a) Single region (b) Two regions

Figure 4.11: Example 3: deformed shape and displacement contours
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(a) Single region (b) Two regions

Figure 4.12: Example 3: deformed shape and contours of vertical stresses

4.3.4 Example 4: Cantilever with stiff inclusion in second

analysis step

The last example is testing a stiff inclusion (modelled by one layer of cells) wich

is under bending load. This shows the applicability of this method to model

pipe umbrellas within a strongly reduced example. In a first step a homogeneous

cantilever beam is loaded over the entire length with a constant pressure; after

that in a second step, an additional loading is applied and the material in the

upper part of the cantilever is changing to be stiffer then before. This stiffer

part is modelled by one layer of inclusion cells, see figure 4.13. The results are

compared with those calculated by the FEM, see figure 4.14.

The cantilever is 10m long and 2m high; it is fixed at the left side and loaded

with a constant pressure along the whole length (in the first step the pressure is

p=5MN/m2 and in the second step an additional pressure of p=5MN/m2 is

applied). The Young’s modulus of the cantilever is E=10000MN/m2 and the

Poisson’s ratio is ν=0.3. In the second step a stiffer zone in the upper part of

the cantilever is introduced, it has a high of 0.5m and the Young’s modulus is

E=50000MN/m2 and the Poisson’s ratio is ν=0.3.
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Figure 4.13: Example 4: deformed mesh after the second calculation step

Figure 4.14: Example 4: vertical displacements along the top of the cantilever
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Chapter 5

Continuous Anchored Bolts

5.1 General

In conventional tunnel excavation rock bolts, especially in combination with

shotcrete lining are the most important support elements (see section 1.2). For

different needs a wide variety of bolt types have been developed which are used

in mining and civil engineering. The different kinds of bolts can be assigned

into two main groups: the continuous anchored bolts (or dowels); and the

end-anchored or discrete anchored bolts, see Hoek et al. (1997). In this chapter

the modelling of the first of these groups (the continuous anchored bolts) is

described. The numerical modelling of the second group (the discrete anchored

bolts) will be described in chapter 6.

Technique

Continuous anchored rock bolts generally consist of deformed steel bars which

are grouted into the rock. Pre-stressing of the bolt is not possible and the

loads in the bolts are generated by movements in the rock mass. In order

to be effective, these kind of rock bolts have to be installed before significant

movements in the rock mass has taken place, see Hoek et al. (1997). Figure 5.1

shows different types of typical bolts which can be used in tunnelling.
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(a) Grouted dowel (b) Grouted cable

(c) Swellex dowel

Figure 5.1: Different types of continuous anchored bolts, see Hoek et al. (1997)

Numerical Simulation

Fully grouted rock bolts (or rock bolts which are in continuous contact with

the ground) could be treated like general inclusions (see chapter 4). However,

because of their narrow geometry it is reasonable to introduce some simplifica-

tions. A number of special BE-formulations have been developed in the past,

for simulating problems containing thin inclusions inside a solid such as piles,

reinforcements or rock bolts, see also Riederer et al. (2009).

Most of the approaches use BEM-FEM coupling, where the solid is modelled

with boundary elements and the thin inclusions are considered by using finite

elements. The coupling is done by enforcing displacement compatibility and

traction equilibrium at the interface nodes between inclusion and solid. Such

inclusions have been modelled in various degrees of simplification: as simple truss
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elements, as beam elements, or as general volume elements. For the simulation

of very thin inclusions such as reinforcement or rock bolts the bending stiffness

can be neglected and truss elements are used (see for example: Coda 2001,

Leite et al. 2003, Leite and Venturini 2005). For simulating the behaviour of

inclusions where the bending stiffness is taken into account such as for piles,

beam elements are used (see for example: Coda and Venturini 1999, Filho et al.

2005, Padron et al. 2007, Leite and Venturini 2005).

Some papers use pure BEM formulations, where the inclusion is also discretised

with boundary elements (for example in: Banerjee 1981, Wang and Gao 1998,

Maeso et al. 2005, Aliabadi and Saleh 2002, Ma et al. 2008).

In all these approaches the problem is solved directly and therefore additional

unknowns are introduced for the inclusions. Because of this, the size of the

system of equations increases with the number of inclusions.

The goal of this work was to efficiently calculate a very high number of thin linear

inclusions (rock bolts) with a pure BEM and in combination with nonlinear

material behaviour of the rock mass. Because of this a complete new approach

has been developed which solves the problem iteratively.

It is assumed that the rock bolts are in continuous contact with the ground and

that they are sufficiently thin, so that their bending stiffness can be neglected;

they are only able to carry axial stresses. They are modelled by simple line-

cells.
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5.2 BE-approach

In order to simulate the continuous anchored bolts, the general procedure

described in section 3.2.2 is adapted for these kind of problem, see also Riederer

et al. (2009). Following configurations are used:

• Line-cells are used for the discretisation, see section 5.2.2.

• Axial initial stresses σ0 x̄x̄ are applied as loading along the line-cells.

• Internal stress results in axial direction of the bolt σx̄x̄ are use for compu-

tation, see section 5.2.3.

• The residual-vector is computed as described in section 5.2.4.

5.2.1 Iterative Procedure

First the homogeneous elastic problem is solved:

A∆xj=0 = b (5.1)

Then the stresses in axial direction of the bolt ∆σx̄x̄j are calculated at all

cell nodes. The total boundary results xj=0 and internal results σx̄x̄j=0 are

initialised:
xj=0 = ∆xj=0

σx̄x̄j=0 = ∆σx̄x̄j=0

(5.2)

The iteration starts and following steps have to be done:

(i) The index for the iteration step is incremented j = j + 1.

(ii) The residual vector ∆f j is calculated, see section 5.2.4.

(iii) The convergence is checked by comparing the vector-norm of the residuum

‖∆f j ‖ with a given tolerance:

‖∆f j ‖ ≤ tol (5.3)
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The tolerance is defined by a percentage of the fist residuum tol =‖∆f 1 ‖ ε.
If the convergence criterion is fulfilled, the iteration procedure ends here,

otherwise it continues with the next step (iv).

(iv) The residual vector is applied to the system of equations as new right

hand side:

A∆xj = ∆f j (5.4)

(v) The stresses in axial bolt direction ∆σx̄x̄j are calculated at all cell nodes.

(vi) The boundary results and the strain results are updated:

xj = xj−1 + ∆xj

σx̄x̄j = σx̄x̄j−1 + ∆σx̄x̄j
(5.5)

(vii) The iteration procedure continues with step (i).

5.2.2 Line-cells

As described before, the bolts are modelled by line-cells. Line-cells with three

nodes and quadratic interpolation functions are used, see figure 5.2. The

interpolation functions used for this are the same as these used for the boundary

elements in 2D problems (see section 2.4.1):

Φ1 =
1

2

(
−ξ + ξ2

)
Φ2 =

1

2

(
ξ + ξ2

)
Φ3 = 1− ξ2

(5.6)

The line-cells are placed at the position of the bolts centre-line. According

to requirement, one bolt can be modelled by a number of connected line-cells.

For common problems usually two to four line-cells are sufficiently accurate to

model one rock bolt.
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0

2

1

x̄
ȳ

−ξ

ξ

Figure 5.2: Line-cells with three nodes and quadratic interpolation

In order to model these bolts by simple line-cells, some simplifications have to

be introduced. It is assumed that the bolts are sufficiently thin, so that their

bending stiffness can be neglected and that the cross-section is circular and

constant over the length.

Intial axial stresses σ0 x̄x̄ are applied as loading along these line-cells to simulate

the effect of the bolts inside the rock mass.

5.2.3 Computation of Stresses in Axial Bolt Direction

The internal results needed for the computation of the residuum in the iterative

procedure (section 5.2.1) are the stresses in axial bolt direction ∆σx̄x̄j. These

results have to be calculated at all line-cell-nodes. It is possible to compute

displacements or stresses directly at the cell-nodes, in spite of the singularities

(see section 5.2.5).

Therefor we have two possibilities:

• Stress based computation: The stresses are calculated directly by using

the integral equation for stresses at internal points (and stress recovery at

the boundary). Afterward these stress results are transformed into local

coordinate system of the line-cell to obtain the axial stress ∆σx̄x̄j at each

node.
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• Displacement based computation: The displacements are calculated by us-

ing the integral equation for displacements at internal points (the boundary

displacements are already achieved from the BIE). These displacements

are transformed into the local coordinate system of the line-cell to obtain

the axial displacements ∆ux̄j at each node. The axial stresses are calcu-

lated from the displacements by using the derivative of the interpolation

functions and Hooke’s law.

Regarding only the rock bolt oneself, in generally the stress based computation

might be the better one, because no derivation of the interpolation function

is necessary and thus it is the more accurate method. However, regarding the

rock bolt computation together with other methods (like the plasticity or the

inclusion calculation) one of both computation methods can be more efficient

than the other one. For example when using rock bolts and inclusions (see

chapter 4) at the same time and using some equal nodes for both, it might be

the best way to use the displacement based computation for the rock bolts,

since the displacement results are needed anyway for the inclusion algorithm

and thus produce no additional effort.

For this work both methods have been implemented into the program BEFE++,

in order to choose the most efficient or most accurate computation for each

example. Thus, both methods will be described in the following in more detail.

Stress Based Computation

As described before, for this computation method the stresses are calculated

at all cell nodes. Stresses at internal nodes are calculated with the integral

equation 2.70, at the boundary nodes the stress recovery method is used. After

that, the stresses are transformed into the local coordinate system of the cell.

For doing so the transformation matrix Tσ for stresses is introduced, see Beer

et al. (2008):

Tσ =

[
Tσ11 Tσ12

Tσ21 Tσ22

]
(5.7)



104 5. Continuous Anchored Bolts

Tσ11 =

s
2
1x s2

2x s2
3x

s2
1y s2

2y s2
3y

s2
1z s2

2z s2
3z



Tσ12 =

2s1xs2x 2s2xs3x 2s1xs3x

2s1ys2y 2s2ys3y 2s1ys3y

2s1zs2z 2s2zs3z 2s1zs3z



Tσ21 =

s1xs1y s2xs2y s3xs3y

s1ys1z s2ys2z s3ys3z

s1xs1z s2xs2z s3xs3z



Tσ22 =

s1xs2y + s1ys2x s2xs3y + s2ys3x s1xs3y + s1ys3x

s1ys2z + s1zs2y s2ys3z + s2zs3y s1ys3z + s1zs3y

s1xs2z + s1zs2x s2xs3z + s2zs3x s1xs3z + s1zs3x



(5.8)

s1, s2, s3 are the unit vectors in the directions of the locals coordinate system

of the bolt, see figure 5.3. The stresses in local directions σ̄ can be written as:

σ̄ = Tσσ (5.9)

z

y

x

s3

s2

s1

0

2

1

x̄, ξ

Figure 5.3: Local coordinate system of a bolt in 3D

Here we need only the axial stress σx̄x̄, which is the first entry in the vector σ̄.

This can be described by introducing the vector vT = [1 0 0 0 0 0]; with this
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the axial stress is given by:

σx̄x̄ = vT (Tσσ) (5.10)

Displacement Based Computation

After the displacements are computed at all points, they are transformed into

the local coordinate systems of the cells:

ux̄ = s1
Tu = s1xux + s1yuy + s1zuz (5.11)

where s1 is the unit vector in local bolt direction x̄, see figure 5.3.

The strains in the cell are computed by using the derivatives of the displace-

ments:

εx̄x̄ =
dux̄
dx̄

=
dux̄
dξ

dξ

dx̄
(5.12)

where ξ is the local intrinsic coordinate of the line-cell. Additional, the interpo-

lation over the nodal displacements and the definition of the Jacobian J are

introduced:

ux̄ =
Nc∑
n=1

Φnux̄n ; J =
dx̄

dξ
(5.13)

For the three node line-cell we have N c = 3, the interpolation functions are

specified in equation 5.6. Substituting this into equation 5.12 it occurs:

εx̄x̄ =
Nc∑
n=1

dΦn
dξ

ux̄n
J

(5.14)

The derivations of the interpolation functions (equation 5.6) can be easily

obtained:
dΦ1

dξ
= ξ − 1

2
dΦ2

dξ
= ξ +

1

2
dΦ3

dξ
= −2ξ

(5.15)
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At the end the stresses for the cell-nodes are obtained:

σx̄x̄ = ERockεx̄x̄ − σ0 x̄x̄

= ERock

Nc∑
n=1

dΦn
dξ

ux̄n
J
− σ0 x̄x̄

(5.16)

5.2.4 Computation of the Residuum

To compute the residuum ∆f j in the j-th iteration step, first residual initial

stresses ∆σ0 x̄x̄j in axial bolt direction x̄ have to be found. If the residual

initial stresses are calculated at all cell nodes, the residual vector ∆f j can be

computed (see equation 2.43 and equation 2.46):

∆f j =
C∑
c=1

∫
Lc

Ê∆σ0 x̄x̄jdx̄ (5.17)

where C is the number of line-cells and Lc is the length of the line-cell c.

The residual inital stresses for the iteration step j are calculated by using the

axial stress results ∆σx̄x̄j and the Hooke’s law. The relation between axial

stress in the bolt σBoltx̄x̄ , the axial stress in the rock σRockx̄x̄ and the loading (the

axial initial stresses σ0 x̄x̄) is shown in figure 5.4; see also:

σBoltx̄x̄ = σx̄x̄

σRockx̄x̄ = σx̄x̄ + σ0 x̄x̄

(5.18)

To achieve this relation, the residual initial stress is obtained in each iteration

step j. Again we have two alternative ways for computing the residual stresses:

In the first way the incremental results ∆σx̄x̄j are used for computation and

in the second way the total results σx̄x̄j are used. At the end both alternatives

lead to the same solution.
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σ0

σRock = σ + σ0

σBolt = σ

Figure 5.4: Schematic illustration of the stresses in the rock, in the bolt and
the initial stresses (σRockx̄x̄ , σBoltx̄x̄ and σ0 x̄x̄).

• Incremental calculation: The residual stress is calculated by the difference

of the incremental rock stress and the incremental bolt stress:

∆σ0 x̄x̄j = ∆σRock
∗

x̄x̄j
−∆σBoltx̄x̄j

(5.19)

∆σRock
∗

x̄x̄j
is the expected rock stress, calculated from the bolt stress and

the relations of the Young’s modulus.

∆σRock
∗

x̄x̄j
= ∆σx̄x̄j

ERock

EBolt
(5.20)

where ERock and EBolt are the Young’s modulus of the rock and the bolt,

respectively. At the end one obtains:

∆σ0 x̄x̄j = ∆σx̄x̄j

(
ERock

EBolt
− 1

)
(5.21)

• Total calculation: The residual stress is calculated by the difference of the

total calculated rock stress σRockx̄x̄j
to the total expected rock stress σRock

∗
x̄x̄j

(which is computed from the bolt stress):

∆σ0 x̄x̄j = σRock
∗

x̄x̄j
− σRockx̄x̄j

(5.22)
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σRock
∗

x̄x̄j
is defined analogous to equation 5.20; with this we obtain:

∆σ0 x̄x̄j =σBoltx̄x̄j

ERock

EBolt
− σRockx̄x̄j

=σx̄x̄j
ERock

EBolt
−
(
σx̄x̄j − σ0 x̄x̄j

) (5.23)

Yielding Bolts

The rock bolt behaviour depends on the behaviour of the steel bar and the

connection of the bar to the surrounding rock mass. Here idealized constitutive

laws for modelling both of these components are presented. The steel bar is

assumed to behave linear elastic up to a defined yield-stress and then perfectly

plastic. The yield stress in the bolt σBolt Y has to be defined and with this the

residual initial stress can be checked and modified if necessary:

σBoltx̄x̄j+1
= σBoltx̄x̄j

− σ0 x̄x̄j

if σBoltx̄x̄j+1
≤ σBolt Y → ok

if σBoltx̄x̄j+1
> σBolt Y → ∆σ0 x̄x̄j = σBoltx̄x̄j

− σBolt Y

(5.24)

If the yield stress in the bolt is reached, the residual initial stress σ0 x̄x̄j calculated

before (in equation 5.19 or equation 5.22) is corrected, see also figure 5.5. In gen-

eral the yield stress should be compared with the effective stress state (including

not only the axial stresses). However, here in this work the yield criterion is

strongly simplified (bending moments and shear forces are neglected).

Bond Slip

The connection between steel and rock mass consists of bar-grout interface,

the grout itself and grout-rock interface. Several different failure modes can

appear (failur of the rock mass, the steel bar, the grout, the bar-grout bond,

the grout-rock bond or a combination of these). This problem can be described

very detailed and thus also very complex; various publications can be found in
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this area, see for example in Hyett et al. (1996), Chen et al. (2004), Benmokrane

et al. (1995), Ivanovic and Neilson (2009), Marence (1992).
σ

ε

σBoltj

σBolt Y

σBoltj−1
∆σ0j−1

∆σ0j

∆σ0j (corrected)

Figure 5.5: Computation of residual stresses by bolt-yielding

However, here a very simple model is used. The bond behaviour is modelled

only by the shear stress in the grout which transfers stresses between the bar

and the rock mass. Currently only a linear shear behaviour is implemented:

f = Kδ = K
(
uRock − uBolt

)
(5.25)

where K is the bond-stiffness, f are the shear forces in the grout and δ =

uRock − uBolt is the slip (the relative displacements between rock and bolt). To

consider these bond slip effect, the initial stresses σ0 x̄x̄ have to be modified; this

can be done by the following steps:

(i) Additional to the axial rock stresses and the axial bolt stresses (equa-

tion 5.18), the shear forces f are computed by the equilibrium condition,

see figure 5.6:

f = τ2rBoltπ =
dσBoltx̄x̄

dx̄
rBolt

2

π (5.26)

rBolt is the radius of the bolt cross-section. The derivation of the bolt
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stresses σBoltx̄x̄ can be done analogous to equation 5.14:

dσBoltx̄x̄

dx̄
=

Nc∑
n=1

dΦn
dξ

σBoltx̄x̄n

J
(5.27)

The derivatives of the interpolation functions Φn were shown in equa-

tion 5.15

τ

dx̄

σBolt

σBolt + dσBolt

Figure 5.6: Equilibrium on a small part of the bolt

(ii) With equation 5.25 following relation can be obtained:

uRock = uBolt +
f

K
(5.28)

(iii) In order to compute the residual stresses either in the incremental form

(equation 5.19) or in total form (equation 5.22), the expected rock stress

∆σRock
∗

x̄x̄j
or σRock

∗
x̄x̄j

has to be computed. This is done as follows:

σRock
∗

x̄x̄ = ERockεRockx̄x̄ = ERock du
Rock
x̄

dx̄
(5.29)

Substituting equation 5.28 into the above equation we obtain:

σRock
∗

x̄x̄ = ERock

(
duBoltx̄

dx̄︸ ︷︷ ︸
=εBoltx̄x̄ =

σBoltx̄x̄
EBolt

+
df

dx̄

1

K

)
(5.30)
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This can be rewritten in the following form to compute the residual stress

in iteration step j with equation 5.22:

σRock
∗

x̄x̄j
= σBoltx̄x̄j

ERock

EBolt
+
dfj
dx̄

ERock

K
(5.31)

And the same can be done for the incremental calculation of the residual

stress in equation 5.19:

∆σRock
∗

x̄x̄j
= ∆σBoltx̄x̄j

ERock

EBolt
+
d∆fj
dx̄

ERock

K
(5.32)

5.2.5 Evaluation of the Integral

To solve the BIE (see equation 2.42) and to compute internal displacements or

interanl stresses (equation 2.47 or equation 2.70) the body force therms f and

fσ have to be computed. These terms contain the integration over the cells.

For computing rock bolts, the general integrations over the volume-cells Vc are

reduced into one-dimensional integrals over the line-cell-length Lc:

∆f j =
C∑
c=1

∫
Vc

E∆σ0jdV

→
C∑
c=1

∫
Lc

Ê∆σ0 x̄x̄jdx̄

(5.33)

∆fσj =
C∑
c=1

∫
Vc

W σ∆σ0jdV + F σ∆σ0j

→
C∑
c=1

∫
Lc

Ŵ σ∆σ0 x̄x̄jdx̄+ F̌ σ∆σ0 x̄x̄j

(5.34)

Axial initial stresses σ0 x̄x̄ are applied as loading along the line-cells (local

direction x̄). E and W σ are the Kelvin’s fundamental solutions and F σ is the

free term, they are described in chapter 2. In order to reduce the general volume
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integral into an one-dimensional integral, Kelvin’s fundamental solutions have

to be modified (Ê, Ŵ σ).

For this following assumptions are introduced: the variation of displacements

and stresses is assumed to be constant over the cross-section of the inclusion;

the inclusions are only able to carry axial stresses; bending is neglected; and

the cross-section is assumed to be circular. With these assumptions, the bolt-

inclusions degenerate so that they can be represented by line-cells along the

centre line, see section 5.2.2.

Modified Fundamental Solutions

The computation of the modified fundamental solution Ê is described by the

following points:

(i) First of all the stresses are replaced by the sum over the interpolation

functions times the nodal stresses. And all components are expressed in

local coordinates (x̄, ȳ, z̄). This leads to locally expressed fundamental

solution E → Ē, locally expressed initial stressex σ0 → σ̄0 and the local

vector f → f̄ :

f̄ =
∑
c

∑
n

∫
Vc

ĒΦn dV σ̄0n

=
∑
c

∑
n

∫
Lc

∫
Ac

ĒΦn dA dx̄ σ0 x̄x̄n

(5.35)

The integral over the cell volume Vc is divided into an integral over the

cell length Lc and an integral over the cell cross-section area Ac. Since

only axial stresses are taken into account the general initial stress σ̄0 is

replaced by the axial initial stress σ0 x̄x̄ and only the first column of the

matrix Ē has to be computed:

Ēσ0 x̄x̄ =

Ex̄x̄x̄Eȳx̄x̄

Ez̄x̄x̄

∆σ0 x̄x̄j (5.36)
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(ii) Since the stresses are assumed to be constant over the cross-section, and

the interpolation functions Φn are only depending on the cell length, one

obtains:

f̄ =
∑
c

∑
n

∫
Lc

∫
Ac

Ē dA


︸ ︷︷ ︸

Ẽ

Φndx̄ σ0 x̄x̄n (5.37)

(iii) Ẽ is computed by integrating Ē analytically over the predefined cross-

section of the line-cell. After that, the term f̄ (which is in the local

coordinate system) has to be transformed to the global one by multiplying

it with the geometrical transformation matrix Tg; it follows:

f = Tgf̄ =
∑
c

∑
n

∫
Lc

(TgẼ)︸ ︷︷ ︸
Ě

Φndx̄ σ0 x̄x̄n (5.38)

σ0 x̄x̄n can be taken out of the transformation, because it is a scalar value.

Because of this Tg can be placed inside the integral, to obtain Ě = TgẼ.

Tg is defined to be:

Tg = [s1 s2 s3] =

s1x s2x s3x

s1y s2y s3y

s1z s2z s3z

 (5.39)

s1, s2, s3 are the unit vectors in the directions of the local coordinate

system of the bolt, see figure 5.3.

(iv) With this, the modified fundamental solution Ě is obtained, and the

general volume integral reduces to a 1D integral over the line-cell length:

f =
∑
c

∑
n

∫
Lc

Ě Φndx̄ σ0x̄x̄n (5.40)
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In a similar way, the body force term fσ for the stress integral equation is

calculated:

fσ =
∑
c

∑
n

∫
Lc

W̌ σ Φndx̄ σ0 x̄x̄n + F̌ σ∆σ0 x̄x̄n (5.41)

As it was shown, for the calculation of Ě also here the modified fundamental

solution is calculated starting from Kelvin’s fundamental solution W σ, express

it in local coordinate system W̄ σ, compute then W̃ σ and finally W̌ σ.

W̃ σ =

∫
Ac

W̄ σ dA

W̌ σ = TσW̃ σ

(5.42)

The only difference is the transformation matrix for stresses Tσ which has to be

used here instead of geometrical transformation matrix Tg; Tσ was defined in

equation 5.7.

The free term F σ is independent of a coordinate system, thus the modification

is done by multiplying it with the transformation matrix for stresses Tσ:

F̌ σ = TσF
σ (5.43)

The procedures for calculating Ě and W̌ σ are described in detail in Riederer

et al. (2009).

Regular Integration

In the regular case, when the source point is not a node of the cell (P 6= Q̄),

the integrals in equation 5.33 and equation 5.34 can be evaluated numerically

by using Gaussian quadrature, see also section 2.4.5.

For this, the line-cells are described in local (intrinsic) coordinates −1 ≤ ξ ≤ 1.

The mapping from ξ to x̄ involves the Jacobian J = dx̄/dξ. For straight rock

bolts the Jacobian is constant over the cell length, i.e. J = Lc/2. The integrals
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in equation 5.33 and equation 5.34 can be replaced by the sum over the number

of Gauss-points M :

f =
∑
c

∑
n

∫
Lc

(
Ě Φn

)
dx̄ σ0 x̄x̄n

=
∑
c

∑
n

M∑
i=1

(
Ě Φn (ξi) wi

)
Jσ0 x̄x̄n

(5.44)

wi is the weight corresponding to the i-th Gauss-point with the coordinate ξi.

Weakly Singular Integration

When the source point coincides with the cell node (P = Q̄) a singularity occurs

at the point when r = 0 (see figure 5.7), which makes Gaussian quadrature

unsuitable, see also section 2.4.5. In this case the integral over the whole cell

volume is evaluated analytically:

f =
∑
c

∑
n

Tg

∫
Vc

Ē Φn dV

︸ ︷︷ ︸
∆Ē

σ0 x̄x̄n (5.45)

When the source point P is one of the cell nodes (n = 1, 2, 3), the distance

r = rx̄ is defined by (see figure 5.7):

P at node n = 0 : r =
Lc
2

+ x̄

P at node n = 1 : r =
Lc
2
− x̄

P at node n = 2 : r = x̄

(5.46)

The quadratic interpolation functions Φn (x̄) in terms of x̄ for the line-cell are
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given by:

Φ0 =
2x̄2 − Lcx̄

L2
c

Φ1 =
2x̄2 + Lcx̄

L2
c

Φ2 =
(Lc − 2x̄) (Lc + 2x̄)

L2
c

(5.47)

P
Q̄

0

2

1

x̄

r = rx̄

Lc

Figure 5.7: Singular integration over the line-cell

Using the interpolation functions equation 5.47 and substituting equation 5.46 to

compute the coefficients of Ē, the integral ∆Ē in equation 5.45 can be evaluated

analytically. These are weakly singular integrals, they have a singularity of

O (1/r) for 2D or O (1/r2) for 3D (see also section 2.5.1). The analytical

integration can be done without any difficulties:

∆Ē =

∫
Vc

Ē Φn (Q) dV =

∫
Vc

ĒRest (P, ϕ) s (r) Φn (Q) dV

=

∫
Vc−VBall

ĒRest (P, ϕ) s (r) Φn (Q) dV

+

∫
VBall

ĒRest (P, ϕ) s (r) Φn (Q) dV

(5.48)
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ĒRest (P, ϕ) is the regular part of Ē without singularity and s (r) contains the

singularity (s (r) = 1
r

for 2D and s (r) = 1
r2 for 3D). VBall is the volume of a

circle in 2D or a sphere in 3D centred at the singular point P . The integral

over Vc − VBall in equation 5.48 is regular and the singularity in the other

integral (over VBall) can be easily cancelled out by introducing cylindrical or

polar coordinates for 2D or 3D, respectively. For a singularity at node n = 2

for example, the second integral of equation 5.48 is:

Rc∫
r=0

2π∫
ϕ=0

(
ĒRest (P, ϕ)

r
[Φ2 (Q)− 1] r

)
dϕdr ... 2D (5.49)

2π∫
ϕ=0

π
2∫

ψ=0

Rc∫
r=0

(
ĒRest (P, ϕ)

r2
[Φ2 (Q)− 1] r2 sinψ

)
drdψdϕ ... 3D (5.50)

where Rc is the radius of the ball (which is here defined to be the same as the

radius of the bolt).

Strongly Singular Integration

The term fσ for the stress integral equation has to be evaluated as well. Also

here the interpolation functions equation 5.47 are used and equation 5.46 is

substituted to compute the coefficients of W̄ σ.

The 2D integral has the order O (1/r2) and the 3D integral has the order

O (1/r3), which are both strong singularities, see section 2.5.2. But, the integrals

exist as Cauchy Principal Value and thus can be evaluated analytically, see for

example Paris and Canas (1997), Gaul et al. (2003), Gakkov (1966), Mikhilin

and Prössdorf (1987). The kernel W̄ σ is subdivided into the singular part s (r)

(which is s (r) = 1
r2 for 2D and s (r) = 1

r3 for 3D) and in the rest, the so called

characteristic W̄Rest (P, ϕ̄).

∆W̄ σ =

∫
Vc

W̄ σ Φn (Q) dV =

∫
Vc

W̄Rest (P, ϕ) s (r) Φn (Q) dV (5.51)
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For mathematical describtion the interpolation function Φn (Q) is called here

density. With this the following equation is obtained:

∆W̄ σ =

∫
Vc−VBall

W̄Rest (P, ϕ) s (r) Φn (Q) dV

+

∫
VBall

W̄Rest (P, ϕ) s (r) [Φn (Q)− Φn (P )] dV

+Φn (P )

∫
VBall

W̄Rest (P, ϕ) s (r) dV

(5.52)

The singularity arises only for that interpolation function which is equal to 1 at

the singular point P (Φn (P ) = 1). Thus, Φn (P ) can be taken outside of the

last integral, because it is not a depending on dV (Q). Equation 5.52 can be

solved now: the first integral is a regular integral; the second integral exists and

is an improper (weak singular) integral if the Hölder condition is satisfied:

|Φn (Q)− Φn (P ) | ≤ Arα with A > 0 and 0 < α ≤ 1 (5.53)

and the last integral in equation 5.52 exists if

2π∫
0

W̄Rest (P, ϕ) dϕ = 0 (5.54)

Thus the only singular integral which has to be solved is the second one. It is

assumed that the radius of VBall is the same as the bolt radius (respectively the

line-cell radius Rc); wiht this we obtain for example if the singularity is located

at node n = 2:

Rc∫
r=0

2π∫
ϕ=0

(
W̄Rest (P, ϕ)

r2
[Φ2 (Q)− 1] r

)
dϕdr ... 2D (5.55)
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2π∫
ϕ=0

π
2∫

ψ=0

Rc∫
r=0

(
W̄Rest (P, ϕ)

r3
[Φ2 (Q)− 1] r2 sinψ

)
drdψdϕ ... 3D (5.56)

For 2D cylindrical coordinates (r, ϕ) and for 3D polar coordinates (r, ψ, ϕ)

have been introduced.

The computation of equation 5.52 as described before is applicable only for

points inside the bolt, not for points at the bolt-ends. Here it is assumed that

on the ends of the bolt the initial stresses are zero σ0 x̄x̄ = 0, see figure 5.8.

With this assumption the singularity problem at the ends of the bolt is avoided.

As well, this assumption seems to be more realistic for real problems, because

the bolt stresses at the bolt-ends can not be higher than the rock stresses at

this point (σBoltx̄x̄ = σRockx̄x̄ ) to satisfy the equilibrium condition.

σ0 x̄x̄

σRockx̄x̄

σBoltx̄x̄

σBoltx̄x̄ = σRockx̄x̄

Figure 5.8: Schematic representation of a bolt and it’s stress distribution
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5.3 Verification Examples

To verify the previously described method to model continuous anchored bolts;

some examples have been carried out and compared with the existing finite

element program BEFE. Both, 2D (plain strain) and 3D examples have been

tested and at the end the effect of yielding bolts and of bond slip effects will be

shown.

5.3.1 Example 1: Fully grouted rock bolt in plane strain

In this example a block with a fully grouted bolt in plane strain conditions is

presented. The dimensions of the block are 10m× 10m, the Young’s modulus

is E = 1000MN/m2 and the Poisson’s ratio is ν = 0.3. The rock bolt has a

length of 5m and the Young’s modulus of the bolt is E = 10000MN/m2, the

cross section is A = 0.05m2. The block is fixed at the bottom and on the top of

the block is a constant tension t = 1MN/m2 is applied as loading. The results

are compared with reference solutions done by the FEM and show very good

agreement, see figure 5.9.

Figure 5.9: Example 1: vertical displacements along the bolt
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5.3.2 Example 2: Fully grouted rock bolt in 3D

This example shows a 3D block with a fully grouted bolt. The dimensions of the

block are 10m× 10m× 10m, the Young’s modulus is E = 1000MN/m2 and the

Poisson’s ratio is ν = 0.3. The rock bolt has a length of 5m a Young’s modulus

of E = 10000MN/m2 and the cross section is A = 0.05m2. The block is fixed

at the bottom and on the top of the block is a constant tension t = 1MN/m2.

The results are compared with FE reference solutions and show good agreement,

see figure 5.10.

Figure 5.10: Example 2: vertical displacements along the bolt

5.3.3 Example 3: Bond Slip Effects

An other example has been calculated, to show the effect of the bond slip effects.

The geometry is the same as presented in example 1, the Young’s modulus is

E = 2000MN/m2 and the Poisson’s ratio is ν = 0.3. The rock bolt has a cross

section is A = 0.002m2 and a Young’s modulus of E = 200000MN/m2. The

block is fixed at the bottom and on the top a constant tension t = 10MN/m2

is applied.
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Various calculations with different bond stiffnesses have been carried out (a

rigid bond and K = 2000; 200; 20MN/m2). The relative displacements, the

bolt stresses and the frictional forces are presented in figure 5.11.

(a) Relative displacements along the bolt (b) Frictional forces in the bond

(c) Stresses in the bolt

Figure 5.11: Example 3: effects of variational bond stiffness’s

5.3.4 Example 4: Yielding Bolt

Finally, the results of calculations considering yielding bolts are presented. The

same configurations as for example 3 are used. Three variational calculations

are carried out, one without the yielding of the bolt, one with a bolt yield stress

of σY = 900MN/m2 and one with a yield stress of σY = 600MN/m2. The

relative displacements and the bolt stresses of all three calculations are shown

in figure 5.12.
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(a) Relative displacements along the bolt

(b) Stresses in the bolt

Figure 5.12: Example 4: effects of variational bolt yield stress
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Chapter 6

Discrete Anchored Bolts

6.1 General

Technique

Discrete anchored (or end-anchored) bolts generally consist of plain steel rods

with a mechanical anchor at one end and a face plate and nut at the other,

see Hoek et al. (1997). They are always tensioned after installation. For short

term applications the bolts are generally left ungrouted. For more permanent

applications or in rock in which corrosive ground water is present, the space

between the bolts and the rock can be filled with cement or resin grout. Figure 6.1

shows different types of typical discrete anchored rock bolts.

(a) Mechanical anchored rock bolt (b) Resin anchored rock bolt

Figure 6.1: Different types of discrete anchored bolts (see Hoek et al. 1997)
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Numerical Simulation

Also for the discrete anchored bolts the system is solved within the iterative

procedure.

For simulating this kind of bolts it is assumed that the load transfer between

bolt and rock is only at the bonded ends and in between no stresses are assigned

to the ground. As in the last section, we assume that the bolts have a constant

and circular cross-section and that they carry only axial stresses. They are

modelled by a simple pair of points.
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6.2 BE-approach

To simulate discrete anchored bolts with the BEM, the general procedure

described in section 3.2.2 is used. For this the following configurations are

specified:

• Instead of cells, just a pair of points is necessary to discretise these kind

of bolts, see section 6.2.2.

• Concentrated forces F0 x̄ in axial direction of the bolt are applied to these

points.

• Strains in axial bolt direction and bolt forces (εx̄x̄ and FBoltx̄ ) are used

for computation, see section 6.2.3.

• The residual-vector is computed as described in section 6.2.4.

6.2.1 Iterative Procedure

The procedure starts with an initial homogeneous elastic calculation:

A∆xj=0 = b (6.1)

After that the strains in axial bolt direction ∆εx̄x̄j and the bolt forces ∆FBoltx̄ j

are calculated at all points. The total boundary results, axial strains and the

bolt forces are initialised:

xj=0 = ∆xj=0

εx̄x̄j=0 = ∆εx̄x̄j=0

FBoltx̄ j=0
= ∆FBoltx̄ j=0

(6.2)

Then the iteration starts and following steps have to be done:

(i) The index for the iteration step is incremented j = j + 1.
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(ii) The residual vector ∆f j is calculated, see section 6.2.4.

(iii) The convergence is checked by comparing the vector-norm of the residuum

‖∆f j ‖ with a given tolerance:

‖∆f j ‖ ≤ tol (6.3)

Where tol =‖∆f 1 ‖ ε is a percentage of the fist residuum. The iteration

procedure ends here if the convergence criterion is fulfilled, otherwise it

continues with the next step (iv).

(iv) The residual vector is applied to the system of equations as new right

hand side:

A∆xj = ∆f j (6.4)

(v) The axial strain results ∆εx̄x̄j and the bolt forces ∆FBoltx̄ j
are calculated

at all pair of points.

(vi) The boundary results, the strain results and the bolt forces are updated:

xj = xj−1 + ∆xj

εx̄x̄j = εx̄x̄j−1 + ∆εx̄x̄j

FBoltx̄ j
= FBoltx̄ j−1

+ ∆FBoltx̄ j

(6.5)

(vii) The iteration procedure continues with step (i).

6.2.2 Pair of Points

Here the bolts are just modelled by a pair of points (see figure 6.2), no cells with

interpolation functions are needed for this kind of problem. These two points

belonging together and the axial stress or axial strain in between is constant.

The pair of points is placed at the bolts beginning and end. In order to model

the anchored end of a bolt in more detail, a number of linked point pairs can

be used, see for example figure 6.3.
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0

1

0

1

F0 x̄

F0 x̄

F0 x̄

F0 x̄

s1 s1

Figure 6.2: Pair of points to model discrete anchored bolts

The simplifications which are introduced for modelling the bolt by pairs of

points are: the bolts are sufficiently thin so that their bending stiffness can

be neglected; the cross-section is circular and constant over the length. The

load transfer between bolt and rock takes place only at the bonded ends and

in between no stresses are assigned to the ground. Concentrated forces F0 x̄ in

axial direction of the bolt are applied as loading on these points to simulate the

effect of the bolts inside the rock mass.

σBolt

Figure 6.3: Modelling of the bonded end of an anchor
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6.2.3 Computation of Bolt Strains and Bolt Forces

Bolt forces FBoltx̄ are needed for the computation of the residuum in the iterative

procedure (section 6.2.1). For this first the axial strains in bolt direction εx̄x̄

are computed. Since the bolts are loaded only at ends and in between no load

transfer between bolt and rock is admitted, the strain and the force in the bolt

is constant between one pair of points. Because of this, we can directly use the

relative displacements between the pair of points to calculate the axial strain in

the bolt.

The displacements at the internal points are calculated by using the integral

equation for displacements, whereas the boundary displacements are already

achieved from the BIE. After the displacements are obtained at all point pairs,

they have to be transformed into the local coordinate systems in direction of

the bolt:

ux̄ = s1
Tu = s1xux + s1yuy + s1zuz (6.6)

where s1 is the unit vector in local bolt direction x̄, see figure 6.2.

With this the relative displacement ∆Lpp between one pair of points is obtained

and the constant axial strain between both points is:

εx̄x̄ =
∆Lpp
Lpp

(6.7)

where Lpp is the length between the pair of points.

After the strain is known the bolt force FBolt
x̄ can be calculated. The relation

between axial forces in the bolt FBolt
x̄ , the axial forces in the rock FRock

x̄ , the

axial strains εx̄x̄ and the loading (F0 x̄) is:

FRock
x̄ = εx̄x̄A

BoltERock

FBolt
x̄ = εx̄x̄E

RockABolt − F0 x̄

(6.8)

where ERock and EBolt are the Young’s modulus of the rock mass and the bolt,

respectively; ABolt is the cross-section of the bolt; and F0 x̄ is the concentrated
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force applied at both points in opposing direction.

6.2.4 Computation of the Residuum

First residual forces in axial bolt direction ∆F0 x̄j have to be found. If these

residual forces are calculated at all points, the residual vector ∆f j can be

computed; this means just a multiplication of the fundamental solution with

the concentrated force applied at a point p, no integration is needed for this

problem, see also equation 2.45:

∆f j =
P∑
p=1

Û∆F p0 x̄j (6.9)

where P is the number of concentrated forces applied at points.

The relations between bolt force, rock force and strain of equation 6.8 is rewritten

here:

FBolt
x̄ = εx̄x̄E

RockABolt − F0 x̄ (6.10)

It can be stated, that at the end when the system is converged, following relation

has to be fulfilled:

FBolt
x̄ = εx̄x̄E

RockABolt − F0 x̄ = εx̄x̄E
BoltABolt (6.11)

To achieve these relations, the force F0 x̄ is calculated iteratively. In each

iteration step j the incremental residual force ∆F0 x̄j has to be computed.

The residual forces ∆F0 x̄j are calculated by the difference of the incremental

rock force and the incremental bolt force:

∆F0 x̄j = ∆FRock∗

x̄j
−∆FBolt

x̄j
(6.12)

∆FRock∗
x̄j

is the expected rock force, calculated from the bolt force and the
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relations of the Young’s modulus.

∆FRock∗

x̄j
= ∆FBolt

x̄j

ERock

EBolt
(6.13)

At the end one obtains:

∆F0 x̄j = ∆FBolt
x̄j

(
ERock

EBolt
− 1

)
(6.14)

where ∆FBolt
x̄j

is achieved form equation 6.10.

This procedure is used for discrete anchored bolts without a pre-stressing,

however in most cases pre-stressed discrete anchored bolts are used in practise.

This will be described in the following.

Pre-stressed Bolts

The pre-stressing of the bolt can be defined in two ways:

• A specified pre-stress load is applied to the bolt; however, after setting

equilibrium less stress is left over in the bolt because of some deformations

due to the loading.

• The finally remaining stress in the bolt is defined; for this a higher pre-

stressing has to be applied to achieve finally the specified bolt stress (after

setting the equilibrium). In praxis this method is generally used: The

bolt is installed and pre-stressing is applied as long as the bolt has the

pre-defined stress.

In the first method we start with the initial analysis as described in section 6.2.1,

but in addition the specified pre-stress load (which gives the vector ∆f j=0) is

applied to this initial system:

A∆xj=0 = b+ ∆f j=0 (6.15)

After the initial analysis has been calculated and the bolt forces are computed

and initialised (see equation 6.2) the incremental bolt force has to be corrected
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for starting the iterative procedure:

∆FBolt
x̄j=0

= ∆FBolt
x̄j=0

+ ∆F0 x̄j=0
(6.16)

∆F0 x̄j=0
is the applied pre-stress force. This is the only difference for the calcu-

lation considering pre-stressing. After that the procedure and the computation

of the residual forces in the next iteration steps ∆F0 x̄j is exactly the same as

described above for bolts without pre-stressing (equation 6.14). The residual

forces in the further iteration steps are computed from the incremental bolt

forces ∆FBolt
x̄j

(see equation 6.14) and the initial pre-stressing is included in the

total bolt forces FBolt
x̄j

from beginning.

In the second method again we start with the initial analysis and apply the

specified pre-stress loads in addition, see equation 6.15. After that the axial

strains ∆εx̄x̄j=0 and bolt forces ∆FBoltx̄ j=0
are computed. And the total bolt

forces are initialised:

FBolt
x̄j=0

= ∆F0 x̄j=0
(6.17)

The bolt force is assigned to be exactly this predefined force. During the

iteration the bolt forces do not change, the residual forces are computed during

the iteration by using the total results:

∆F0 x̄j = FBolt∗

x̄j
− FBolt

x̄j=0
(6.18)

where FBolt∗
x̄j

is the actual acting bolt force and FBolt
x̄j=0

is the predefined bolt

force, which should remain finally. The actual bolt force in the j-th iteration

step is:

FBolt∗

x̄j
= εx̄x̄jE

RockABolt − F0 x̄j (6.19)

Yielding Bolts

The effect of bolt-yielding can be easily considered, in the same way as described

in section 5.2.4 for continuous anchored bolts. A linear elastic and perfectly

plastic steel behaviour is assumed. The yield stress in the bolt σBolt Y has to
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be defined. And with this the residual force can be checked and modified if

necessary. If the yield stress in the bolt is reached, the residual force F0 x̄ has

to be corrected.

if
FBolt
x̄j

ABolt
≤ σBolt Y → ok

if
FBolt
x̄j

ABolt
> σBolt Y → ∆F0 x̄j = FBolt

x̄j
− σBolt YABolt

(6.20)

6.2.5 Evaluation of the body force terms

To solve the BIE (equation 2.42) and to compute internal displacements or

internal stresses (equation 2.47 or equation 2.70) the body force vectors f and

fσ have to be computed. These terms consist only a product of the fundamental

solution and the concentrated force, as described before, no integration has to

be carried out.

∆f j =
P∑
p=1

Û∆F p
0 x̄j

(6.21)

∆fσj =
P∑
p=1

D̂σ∆F p
0 x̄j

(6.22)

Concentrated forces in axial directions F0 x̄ are applied as loading on the points p.

U andDσ are the common Kelvin’s fundamental solutions described in chapter 2.

To compute the global vectors ∆f j and ∆fσj eigther the concentrated forces

F0 x̄ have to be transformed back into the global coordinate system or Kelvin’s

fundamental solutions have to be transformed. In order to use the scalar value

F0 x̄ in local coordinate direction x̄, here Kelvin’s fundamental solutions are

transformed (Û , D̂σ).

Modified Fundamental Solutions

The computation of the modified fundamental solution Û is described by the

following points:
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(i) First of all, all components are expressed in local coordinates (x̄, ȳ, z̄).

This leads to a locally expressed fundamental solution U → Ū and the

locally expressed vector f → f̄ :

f̄ =
P∑
p=1

Ū∆F0 x̄j (6.23)

Since only the axial force F0 x̄ is taken into account, only the first column

of the matrix Ū has to be computed and the problem is reduces to:

Ū∆F0 x̄j =

Ux̄x̄Uȳx̄

Uz̄x̄

∆F0 x̄j (6.24)

(ii) After that vector f̄ has to be transformed to the global coordinate system.

This can be done by multiplying it with the geometrical transformation

matrix Tg (see equation 5.39); it follows:

f = Tgf̄ =
∑
p

(TgŪ)︸ ︷︷ ︸
Û

F0 x̄ (6.25)

F0 x̄ can be taken out of the transformation, because it is a scalar value.

With this, the modified fundamental solution Û has been obtained.

In a similar way, the vector fσ for the stress integral equation is calculated. First

the terms of Kelvin’s fundamental solution are expressed in local coordinates

Dσ → D̄σ. Also here only the first column of the matrix D̄σ has to be computed,

since only axial forces F0 x̄ are taken into account. After that the modified

fundamental solution is obtained by multiplying D̄σ with the transformation

matrix for stresses Tσ (see equation 5.7).

D̂σ = TσD̄
σ (6.26)



136 6. Discrete Anchored Bolts

Singular Term

It is possible to compute displacements directly at the points where the concen-

trated forces are loaded, in spite of the singularities. However, when the source

point coincides with the load point (P = Q̄) a singularity occurs which leads

to an infinite result. This problem is avoided by replacing the concentrated

force at the singular point by a volume force distributed on a small cylinder, see

figure 6.4. This cylinder has the same cross-section as the bolt and the length

is equal to the radius rc of the cross-section.

F0 x̄

(a) Concentrated point force

f0 x̄ = F0 x̄

Vc

Vc

(b) Distributed forces on
a small volume

Figure 6.4: Replacing the concentrated force by a volume force at the singular
point

The volume force is assumed to be constant over the small cylinder, thus

following relation is obtained:

F0 x̄ ≈ Vcf0 x̄ (6.27)

where Vc = r3
cπ is the volume of the small cylinder and f0 x̄ is the distributed

volume force. With this we obtain:

ÛF0 x̄ = TgŪF0 x̄ ≈ Tg
∫
Vc

Ū
F0 x̄

Vc
dV = Tg

1

Vc

∫
Vc

ŪdV

︸ ︷︷ ︸
Û sing

F0 x̄

(6.28)
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The integration over the small cylinder Vc is done analytically; with this equa-

tion 6.21 can by used directly, where Û is simply replaced by Û sing to compute

the singular part.

The analytical integration over the small cylinder can be done without any

difficulties. The singularity is of order O (ln r) for 2D or O (1/r) for 3D. These

singularities can be easily cancelled out by introducing cylindrical or polar

coordinates for 2D or 3D, respectively:

∫
Vc

ŪdV =

Rc∫
r=0

2π∫
ϕ=0

O (ln r) rdϕdr ... 2D (6.29)

∫
Vc

ŪdV =

2π∫
ϕ=0

π
2∫

ψ=0

Rc∫
r=0

O
(

1

r

)
r2 sinψdrdψdϕ ... 3D (6.30)

Simmilar to the above described procedure also the vector fσ for calculating

stresses at internal points can be computed (see equation 6.22). As described

before also here we have a singularity for the case that the source point coincides

with the load point; or in other words: when we want to calculate the stress

exactly at the point where the concentrated force is acting.

This singularity is avoided similar as described before for the displacement

equation: the concentrated force has to be replaced by a volume force distributed

over a very small cylinder at the singular point, see figure 6.4. Again, this

cylinder has the same cross-section as the bolt and the length is equal to the

radius rc of the cross-section.

For 2D problems the singularity is of order O (1/r) and for 3D problems

O (1/r2), which are both weak singularities, see section 2.5.1.Thus, the analytical

integration over the small cylinder can be done without any problems. The

singularities are cancelled out by introducing cylindrical coordinates for 2D or
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polar coordinates 3D problems:

∫
Vc

D̄σdV =

Rc∫
r=0

2π∫
ϕ=0

O
(

1

r

)
rdϕdr ... 2D (6.31)

∫
Vc

D̄σdV =

2π∫
ϕ=0

π
2∫

ψ=0

Rc∫
r=0

O
(

1

r2

)
r2 sinψdrdψdϕ ... 3D (6.32)
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6.3 Verification Examples

The method to compute discrete anchored bolts is verified by two examples.

A 2D (plain strain) and a 3D example are shown which include also the pre-

stressing of the bolt. The results are compared with those calculated with the

finite element program BEFE.

6.3.1 Example 1: Discrete anchored bolt in plane strain

(with pre-stressing)

In this example a block in plane strain conditions with a pre-stressed bolt is

presented. The dimensions of the block are 10m× 10m, the Young’s modulus

is E = 1000MN/m2 and the Poisson’s ratio is ν = 0.3. The bolt has a

length of 5m the cross section is A = 0.05m2, the Young’s modulus of the

bolt is E = 100000MN/m2 and variational pre-stress-forces have been tested

(F = 0MN , F = 1MN , F = 2MN). The block is fixed at the bottom and on

the top of the block is a constant tension t = 1MN/m2. The results are shown

in figure 6.5 and compared with FE-solution.

Figure 6.5: Example 1: vertical displacements along the bolt
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6.3.2 Example 2: Discrete anchored bolt in 3D

The second example shows a 3D block with a discrete anchored bolt without pre-

stress. The dimensions of the block are 10m x 10m x 10m, the Young’s modulus

is E=1000MN/m2 and the Poisson’s ratio is ν=0,3. The rock bolt has a length

of 5m the cross section is A=0,00786m2 and variational bolt- Young’s modulus

have been tested (E=10000MN/m2, E=50000MN/m2 and E=100000MN/m2).

The block is fixed at the bottom and on the top of the block is a constant

tension t=1 MN/m2. The results are compared with FE-reference solutions.

The results are shown in figure 6.6.

Figure 6.6: Example 2: vertical displacements along the bolt
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Chapter 7

Examples

In the previous chapters methods have been presented to simulate geological

inhomogeneities, pipe umbrella systems, fully bonded rock bolts and discrete

anchored bolts. Very simple examples were shown after each chapter to verify

the described methods. In this chapter some bigger examples are presented.

First three tunnel examples in plane strain conditions are shown in which

different of the above described methods are applied in combination. The

results are compared with FE-analyses. Finally a 3D tunnel example including

most of the features (rock bolts, pipe umbrella, plasticity, sequential excavation)

is presented.

7.1 Plane Strain Examples

7.1.1 Example 1: Tunnel with plasticity and rock bolts

This example is a tunnel with rock bolts and plastic material behaviour. The

example is used to investigate the effect of rock bolts in combination with

plasticity. The tunnel-radius is r = 5m the material of the ground is: Young’s

modulus E = 1000MN/m2; Poisson’s ratio ν = 0.3; Von Mises yield criterion;

yield stress σY = 10MN/m2. Six rock bolts with a length of L = 2.5m, a cross-

section of A = 0.001257m2 and a Young’s modulus of E = 200000MN/m2
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are introduced. A hydrostatic virgin stress field is assumed σv = −9MN/m2.

The problem has been calculated with elastic and with plastic assumptions.

FE reference solutions with the program BEFE have been carried out, both

meshes are shown in figure 7.1. The displacement results along the vertical

bolt of both calculations (elastic and plastic assumptions) are compared with

the FE-reference solution and presented in figure 7.2. The deformed mesh and

the contour lines of the total displacements of the plastic analysis are shown in

figure 7.3(a) and the contours of the tangential stresses in the rock mass are

presented in figure 7.3(b).

(a) BE-mesh (b) FE-mesh

Figure 7.1: Example 1: mesh discretisation

Figure 7.2: Example 1: displacements along the vertical bolt
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(a) Contours of displacements (b) Contours of tangential stresses

Figure 7.3: Example 1: deformed BE-mesh contour lines

7.1.2 Example 2: Tunnel with inclusion and rock bolts

This example shows a tunnel with rock bolts and soft inclusion zone. The

example is used to investigate the effect of rock bolts in combination with an

inclusion. The tunnel radius is r = 5m, the overburden is h = 795m, the soft

zone is 2m thick and the distance to the tunnel is 1m. The Rock mass properties

are: E = 10000MN/m2, ν = 0.333, γ = 0.02MN/m3. The Inclusion properties

are: E = 10MN/m2, ν = 0.333, γ = 0.02MN/m3. The Bolt properties are:

E = 200000MN/m2, A = 0.001963m2.

The results are compared with those calculated by the FE-program PLAXIS.

The FE and BE discretisations are presented in figure 7.4, it can be seen that

the FE-mesh is much more complex than the BE-mesh. The deformed mesh and

the contours of the total displacements are shown in figure 7.5, the displacement

results along the bolts are presented in figure 7.6 and the bolt stresses are shown

in figure 7.7.
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(a) FE-mesh (16886 nodes) (b) BE-mesh (494 nodes)

Figure 7.4: Example 2: mesh discretisation

RB 1

RB 2

RB 3

Figure 7.5: Example 2: deformed BE-mesh contours of displacements
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Figure 7.6: Example 2: displacements in axial bolt directions

RB 1

RB 2

RB 3

Figure 7.7: Example 2: bolt stresses
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7.1.3 Example 3: Tunnel with plasticity, rock bolts and pipe

roof

The third example is a tunnel calculated in plane strain conditions, as well. The

material parameters of the rock mass are: Young’s modulus E = 313MN/m2;

Poisson’s ratio ν = 0.2; a hyperbolic Mohr-Coulomb yield criterion is used; the

cohesion is c = 0.3MN/m2; the friction angle is ϕ = 26◦; and the tension cut

off is by 0.114MN/m2.

The overburden is h = 140m, the density is γ = 19.6kN/m3 and the horizontal

earth pressure coefficient is K0 = 0.5; with this the virgin stress state is given

by: the vertical virgin stress σv = γh = 2.75MN/m2 and the horizontal virgin

stress σh = K0σv = 1.375MN/m2. The cross section of the excavated tunnel is

about 9m width and about 6m high.

The material of the pipe umbrella zone is computed by homogenising the rock

material and the pipe material, the zone is supposed to be 80cm thick and the

material properties are assumed as follows: Young’s modulus E = 3000MN/m2;

Poisson’s ratio ν = 0.3.

The rock bolts have a cross section area of A = 0.002827m2 (radius r = 3cm)

and a Young’s modulus of E = 210000MN/m2.

Four variational calculations have been carried out:

PL: only plastic material is considered

PL+RB: plastic material and rock bolts are considered

PL+PU: plastic material and pipe umbrella are considered

PL+RB+PU: plastic material, rock bolts and pipe umbrella are considered

The results are compared with those calculated by the FE-program PLAXIS.

Figure 7.8 shows the contour lines of the calculation PL+RB+PU, the results

of both methods (BEM and FEM) show good agreement. In figure 7.9 the

tangential stresses in the rock mass of the BE-calculation are shown. The

displacement results in the tunnel roof and the tunnel floor of all four calculations
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are summarised in figure 7.10 and compared with those, calculated with the

FEM.

5.4 cm ↓

7.9 cm ↑

(a) FE-results

5.2 cm ↓

7.6 cm ↑

(b) BE-results

Figure 7.8: Example 3: contours of displacements (PL+RB+PU)

Figure 7.9: Example 3: tangential stresses in the rock mass
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Figure 7.10: Example 3: displacement-results (tunnel roof and tunnel floor)

7.2 Three Dimensional Example

7.2.1 Tunnel with plasticity, rock bolts and pipe roof

Finally a 3D tunnel example is presented. The process of tunnel excavation is

calculated sequentially within eight construction stages (i.e. calculation steps).

Most of the features (rock bolts, pipe umbrella and plasticity) are involved in

this analysis.

The material parameters of the rock mass are: Young’s modulusE = 313MN/m2;

Poisson’s ratio ν = 0.28; a Drucker Prager yield criterion with associated

flow rule is used; the cohesion is c = 0.269MN/m2; and the friction angle is

ϕ = 26.1◦. The virgin stress field is assumed to be σz = γh = 2.75MN/m2 and

σx = σy = K0σz = 1.375MN/m2. This stress field occurs because of following

assumptions: the overburden is h = 140m, the density is γ = 19.6kN/m3 and

the horizontal earth pressure coefficient is K0 = 0.5.

To support the excavated tunnel, a pipe umbrella system and rock bolts are

installed. The material of the pipe umbrella zone is computed by homogenising
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the rock material and the pipe material, the zone is supposed to be 60cm

thick and the material properties are assumed as follows: Young’s modulus

E = 3000MN/m2; Poisson’s ratio ν = 0.3. The rock bolts have a cross

section area of A = 0.001257m2 (radius r = 2cm) and a Young’s modulus of

E = 200000MN/m2.

The cross-section of the tunnel is subdivided into top heading and bench

excavation. The geometry and the BE-mesh can be seen in figure 7.11. The

shape of the cross-section consists of four circular arcs; the bottom arc has a

radius of 9.7m and the angles on both sides of the symmetry axis are 23.84◦;

smaller arcs are on the side walls of the cross-section, they have a radius of

1.2m and the angle is 83.54◦; and the tunnel roof is made of one arc with the

radius 4.8m and the angle 72.62◦ on both sides of the symmetry axis.

The excavation process is simulated for a 50m long part of the tunnel; this part is

subdivided into 20 segments (per 2.5m) in longitudinal direction, see figure 7.12.

In each construction stage (step) some segments are excavated, and new pipes

and rock bolts are installed. The progress of excavation and installation of

supports are defined in table 7.1. Where step 0 is only for initialisation: in

segments 1 and 2 the whole cross-section is excavated and the rock mass in

these segments is linear elastic.

(a) cross section (b) BE-mesh in step 4

Figure 7.11: 3D Example: tunnel geometry and BE-mesh
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The deformations along the tunnel roof are presented in figure 7.13. The results

are compared with those calculated in plane strain conditions, see figure 7.14 and

table 7.2. At the tunnel floor where no supports are installed, the deformations

in 2D are bigger because the excavation sequence is not considered. However, on

the tunnel roof the deformations in 2D are smaller than in the 3D case, because

also the ground supports (pipe umbrella and rock bolts) are installed all at once

and not sequentially as in 3D.

Figure 7.15 and figure 7.16 show the deformed meshes and the contours of the

total displacements for the steps 1 - 7. For better visualisation the plasticity

cells and the pipe umbrella cells are switched off in these figures.

Bench

Top heading

Pipe umbrella

Rock bolts

Segments: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 7.12: 3D Example: longitudinal sections

Step:
Activities in Segments:

Excavation:
Top Heading

Excavation:
Bench

Installation:
Pipes

Installation:
Rock Bolts

0 1,2 1,2 3 -
1 3,4 - 4,5 3,4
2 5,6 - 6,7 5,6
3 7,8 3,4 8,9 7,8
4 9,10 5,6 10,11 9,10
5 11,12,13 7,8,9 12,13,14 11,12,13
6 14,15,16 10,11,12 15,16,17 14,15,16
7 17,18,19 13,14,15 18,19,20 17,18,19

Table 7.1: 3D Example: activities in segments during construction stages
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Figure 7.13: 3D Example: deformations along the tunnel roof (steps 2-7)

2D: 3D:
Tunnel floor 0,085743 0,073734
Tunnle roof -0,052433 -0,05641

Table 7.2: 3D Example: comparison of vertical displacements

(a) 2D results (b) 3D results

Figure 7.14: 3D Example: comparison of vertical displacements
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Step 1

Step 2

Step 3

Step 4

Figure 7.15: 3D Example: deformed mesh and displacement contours (step
1-4)
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Step 5

Step 6

Step 7

Figure 7.16: 3D Example: deformed mesh and displacement contours (step
5-7)
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Chapter 8

Conclusions

The overall aim was the development of a new numerical simulation tool

(BEFE++) which is especially capable to simulate conventional tunnelling

problems. The ambition was to create a more user-friendly, efficient and accu-

rate program than commonly used programs.

For this the Boundary Element Method (BEM) was chosen. Since the Boundary

Element Method (BEM) is the only method which does not require domain

discretisation, the mesh is much smaller and simpler. Thus the mesh generation

is more user-friendly, the calculation time is shorter and the mesh is less error-

prone. The effort to do 3D simulations is significantly reduced. Additional

advantages are the better accuracy of stress/strain results and the accurate

computability of stress concentration problems.

Since the BEM is not as far developed as other methods a lot of research

and developing work had to be done. All necessary features for simulating

conventional tunnelling processes (for example: sequential excavation, nonlinear

material behaviour, installation of ground supports) had to be developed and

implemented into this new program.

The goal of this work was the development and the implementation of approaches

to simulate ground support (like rock bolts and pipe roofs) into BEFE++. Novel

methods were developed to simulate these inclusions. In the previous chapters
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the simulation of different kinds of rock bolts, pipe umbrella systems and

geological inhomogeneities were presented.

In these methods the inclusions are simulated by applying stresses or forces to

the system. An iterative solution procedure was proposed for these calculations.

With this, a huge number of inclusions (for example rock bolts) can be calculated

efficiently and the iterative procedure can be easily and efficiently combined with

a non-linear calculation (for example to simulate plastic material behaviour). It

was also shown that these procedures work very well in combination with the

coupling algorithm of multiple regions.

In contrast to commonly used methods the mesh generation for such problems

is very easy and independent from any domain discretisation. With a relative

small effort very accurate results are obtained.

Especially the simulation of rock bolts and anchors has key benefits compared to

other methods. Whereas other methods (like the Finite Element Method) needs

an extremely fine mesh around the bolts to handle the local stress concentrations,

the capability of the BEM to deal with stress concentration problems is utilised

and makes the BEM more efficient and more accurate for this kind of problems,

see chapter 5 and chapter 6.

At the end of the chapters small examples were presented to verify each method

separately. Finally some larger examples were shown in which the different

inclusions and also plastic material behaviour were demonstrated to work

together.
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