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Abstract 

 

One of the important factors for a succesfull and economic tunnel project is to realistically 

assess the displacement development in the excavated areas, to allow estimating the 

needed amount of over-excavation. One of the factors guiding the tunnel displacements is 

the interaction between the rock mass and the installed tunnel support. The development 

of a reliable displacement prediction method to a certain extend relies on the correct 

prediction of the influence of the support. 

A series of 3-dimensional numerical simulations for both supported and unsupported 

tunnels was carried out to investigate the influence of the tunnel lining on the displacement 

development.  

The simulation results were compared with existing analytical functions. With varrying input 

parameters the effect of different rock masses and initial stress states on the influence of 

the support was investigated.  

 

For elastic stress-strain conditions the numerical simulations did match the displacements 

obtained from the analytical functions. For linear elastic – perfectly plastic stress-strain 

conditions the numerical simulations deviated from the results obtained with the analytical 

functions, which underestimate the influence of the support. The proposed correction 

factor for the influence of the support shows reliable results within the parameter set 

simulated.  

 

 



 

Kurzfassung 

Ein wichtiger Faktor für ein erfolgreiches und ökonomisches Tunnelprojekt ist die 

Vorhersage der Verschiebungsentwicklung im Tunnel um z.B. Nachprofilierungsarbeiten 

oder zusätzlichen Betonhinterfüllungen aufgrund von Fehleinschätzungen vorbeugen zu 

können. Die Interaktion zwischen Gebirge und Tunnelausbau spielt dabei eine wichtige 

Rolle. Die Entwicklung einer verlässlichen Methode zur Verschiebungsprognose hängt 

wesentlich von der genauen Bestimmung dieser Interaktion ab. 

Mittels numerischer 3-D Berechnungen, jeweils für Tunnel mit und ohne Ausbau, wurde 

die Wirkung des Tunnelausbaus auf die Verschiebungsentwicklung untersucht. Die 

Ergebnisse dieser Berechnungen wurden mit den Werten analytischer Funktionen 

verglichen. Durch unterschiedliche Eingabeparameter wurde der Effekt unterschiedlicher 

Gebirgsarten und Primärspannungszustände auf die Wirkung des Tunnelausbaues 

untersucht. 

 

Solange das Gebirge nur elastische Verformung erfährt, stimmten die Ergebnisse der 

numerischen Berechnung mit jenen der analytischen Funktionen überein. Sobald sich 

jedoch plastische Verformungen einstellen, zeigen die Ergebnisse der numerischen 

Berechnung eine große Abweichung von den analytischen Berechnungen, die vor allem 

die Wirkung des Tunnelausbaus sehr unterschätzt. Der vorgeschlagene Korrekturfaktor für 

die Wirkung des Tunnelausbaus zeigt zufriedenstellende Ergebnisse. 
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Chapter 1. Introduction 1 

1 Introduction 

For a safe and successful tunnel project it is important to have an accurate knowledge of 

the final displacements and their development with respect to face distance and time. An 

incorrect displacement prediction can lead to either over-excavation or under-excavation. 

Both cases can lead to higher cost and delay in completion of the project. 

The displacement development due to an underground excavation can be shown with 

simple formulas, where different factors determine the magnitude and development of the 

displacement in relation to the excavation advance and time. 

For a realistic prediction of the displacements during the construction it is also important to 

know the influence the tunnel lining, especially shotcrete, has on the displacement 

development.  

 

1.1 State of the art 

There exist several analytical models to describe the general relationship between 

displacement development, installed support and tunnel advance.  

 

1.1.1 Fenner-Pacher 

Fenner (1938) and Pacher (1964) presented one of the first methods to show the ground-

support interaction with the so called convergence-confinement method (also called the 

Fenner-Pacher Curve). Figure 1 shows the convergence line of the rock mass as well as 

the confinement line of the tunnel support, where the horizontal axis depicts the radial 

displacement ur in relation to the tunnel radius r and the vertical axis shows the ratio 

between the radial stress at the tunnel wall σr and the initial stress σ0. According to Fenner 

(1938) the convergence line of the rock mass (or ground reaction curve) can be obtained 

from the elasto-plastic solution for a circular cavity. It also depends on the rock mass 

parameters. The final equilibrium is given by the intersection of the two lines. 

However, this method has certain drawbacks, since it does not include the effect of the 

tunnel advance. So therefore it is not applicable for predicting the displacement 

development but can only give the engineer a value for the final displacement.  
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Figure 1: Convergence-confinement lines (taken from Sulem et al. (1987) ) 

1.1.2 Carranza-Torres & Fairhurst 

Carranza-Torres & Fairhurst (2000) further developed the convergence-confinement 

method by introducing the pre-displacements and face-advance dependent displacement 

development. The upper diagram in Figure 2 shows the face-advance displacement 

development proposed by Panet & Guenot (1982). In the lower diagram one can see that 

the ground reaction curve develops linearly between the points O and E and then 

progresses non-linear until the maximum displacement is reached (point M). Point E 

represents the critical pressure required for obtaining linear-elastic behaviour. Beyond 

Point E a plastic zone around the tunnel develops. 

As can be seen in Figure 2, the interaction between the rock mass and the tunnel lining is 

still treated as in the approach by Fenner & Pacher. 
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Figure 2: Schematic representation of the Longitudinal Deformation Profile (LDP), 

Ground Reaction Curve (GRC) and Support Characteristic Curve (SCC) 

(taken from Carranza-Torres & Fairhurst (2000)) 

1.1.3 Sulem, Panet & Guenot and Barlow 

The method proposed by Sulem, Panet & Guenot (1987) describes the displacement 

development as a function of time and face-advance. Barlow (1986) extended this method 

to consider the installed tunnel support (see Chapter 2).  

A major drawback of this approach is that the accuracy heavily relies on the correct 

determination of the different fitting parameters.  
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1.2 Aim of the work 

Nowadays numerical tools are easily accessible but need a lot of time to compute. So 

therefore a quick and accurate tool to help the site engineer is still of great importance. 

Sellner (2000) developed such a tool based on the work of Sulem, Panet and Guenot 

(1987) with the extension for a supported tunnel by Barlow (1986). However the factor K, 

which represents the support effect on the displacement development, is not known with 

sufficient accuracy.  

In order to be able to describe the influence of the tunnel lining in a more realistic way, it 

was decided to carry out a number of numerical simulations with varying rock mass 

parameters.  

1.3 Methodology 

The following steps were taken in order to fulfill the goals mentioned above: 

 Literature study to investigate existing methods for describing the support effect on 

the displacement development. 

 3-dimensional numerical simulations to determine the displacement development 

for both unsupported and supported cases. 

 Determination of the support factor K for each case and comparison with the 

analytical result. 
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2 Basics of Displacement Function 

In this chapter the displacement function proposed by Sulem, Panet and Guenot (1987) 

and the extension by Barlow (1986) is shown. The investigation of the influence of the 

tunnel lining, which is the aim of this work, will be done using this displacement 

formulation; therefore a deeper understanding of the equations is needed. 

2.1 Basic displacement function 

Sulem, Panet and Guenot (1987) proposed a function describing the displacement 

development of a tunnel in relation to face advance and the time. A number of function 

parameters is required to establish the displacement curve.  

The convergence C is calculated with the following equation: 

 

 

  (   )    ( )           ( )  Eqn. 1 

where: 

x distance between observed section and face 

t time elapsed since excavation at observed cross section  

C1(x) time-independent or loading function 

C2(t) time dependent function 

Cx∞ ultimate time-independent convergence 

A ultimate time-dependent convergence 

 

Eqn. 1 shows the basic displacement function, where C1(x) * Cx∞ represents the time-

independent displacement. Since C1(x) * A * C2(t) represents the time-dependent 

displacement, one can see that the displacement development is affected by both the 

elapsed time and the position of the face. 
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2.1.1 Time dependent displacement 

A tunnel deforms time dependent due to the creep deformation of the rock mass. Even 

when the tunnel advance stops, displacements continue, but usually at a smaller rate. 

Sulem et al. (1987) described the time dependent part of the displacement function with 

the following equation: 

 

 
  ( )  [  (

 

   
)
   

] Eqn. 2 

 

where: 

T curve fitting parameter 

t time between cross section and face 

 

The authors applied this model to actual on-site data from tunnel projects and were able 

to differentiate the measured convergence between face-advance and time dependent 

displacements.  

2.1.2 Time independent displacement 

A tunnel driven in a rock mass causes a change in the static system and equilibrium 

conditions resulting in time independent displacement. 

Panet & Guenot (1982) stated the following about the time independent displacement 

problem: “As the face advances, a progressive closure, or convergence, occurs behind 

the face. The analysis of the convergence on a certain length behind the face is a three-

dimensional problem that can be analysed by numerical models. It has been shown that it 

is possible, considering other uncertainties, to approach this problem by an equivalent 

plane strain problem” [see Figure 3]. 

In the plane strain problem a radial stress, σr, is applied on the tunnel wall and is 

decreased from an initial value equal to the initial stress σ0 to zero in the case of no 

support. The temporary support given by the face of the tunnel disappears and tunnel 

closure increases with distance to the face. The radial stress, σr, simulates this face effect 

and this fictitious temporary support is given by 

   (   )     

where the parameter λ varies from 0 to 1.” 
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Figure 3: Change of stress during face advance (taken from Panet & Guenot (1982)) 

After Sulem et al. (1987) the time dependent convergence can be described by Eqn. 3. 

 

 
  ( )  [  (

 

   
)
 

] Eqn. 3 

 

where: 

X curve fitting parameter 

x distance between cross section and face 

 

Finite element analyses by the authors showed that the curve fitting parameter X can be 

described by the following Equation: 

 

           
Eqn. 4 

 

where: 

X curve fitting parameter 

rp plastic radius 

 

Note that rp, used in Eqn. 4 is the plastic radius at an infinite distance from the face where 

the maximum displacement of the tunnel is reached. 
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2.1.3 Convergence law 

Using Eqn. 2 and Eqn. 3 and the function parameter m which equals m = A/C1(x), Eqn. 1 

can be written as: 

 

 
 (   )      [  (

 

   
)
 

]  {    [  (
 

   
)
   

]} 

 

Eqn. 5 

Eqn. 5 is the so-called convergence law describing the displacement development of a 

tunnel cross section due to face-advance and time-dependent effects. The shape of the 

displacement function is governed by the four function parameters: Cx∞, X, T and m. 

 

The major drawbacks of this equation are the non-consideration of the influences of the 

installed tunnel lining and sequential excavation. In the case of a back-calculation with on-

site data, the user will only get information of the “complete” tunnel system, meaning the 

behaviour of the combined rock mass and support system. Any prediction for a specific 

excavation stage, for example the time between the excavation and the installation of the 

support, is not possible. 

 

2.2 Extensions by Barlow 

In order to overcome the mentioned shortcoming of the convergence law, Barlow (1986) 

extended the equation to consider sequential excavation and installation of support 

systems. 

2.2.1 Extension for the pre-displacement formulation 

Especially for the consideration of sequential excavation but also for taking into account 

the effect of the installed support more realistically, a profound knowledge of the pre-

displacement is needed. 

Based on numerical analyses Barlow described the pre-displacement of a given cross 

section by: 
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  (   )        ( )           ( )  Eqn. 6 

 

where: 

Q1 proportion of the total stress change associated with excavation that occurs 

ahead of the face 

Cpf time independent displacement function ahead of the face 

 

 

 

   ( )  [
 

  (
    

 
)
]

   

 
Eqn. 7 

 

where: 

xf value of x at tunnel face 

 

xf represents the coordinate at which the observed cross section and the tunnel face are 

at the same position. 

Accordingly the post-face displacement function is altered to: 

 

  (   )           ( )           ( )  Eqn. 8 

 

where: 

Q2 proportion of the total stress change associated with excavation that occurs 

behind the face 

and: 

         
Eqn. 9 

 

The amount of total stress change in the rock mass, shown by Cpf in Eqn. 6, increases 

from zero, when the face is still far ahead of the observed cross section, to Q1 at xf. The 

amount of the total time independent displacement a rock mass has undergone is given 

by Cx∞ *Q1. The time dependent displacement is given by Q1 * A * C2(t), but is usually of 

minor importance, since the time in which the pre-displacements develop is not long 

enough to reach a noticeable creep behaviour. 

A good approach for the value of Q1 is 0.3, meaning the pre-displacement is about 1/3 of 
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the total maximum displacement. 

 

2.2.2 Extension for tunnel lining 

The introduction of a support system into the excavated tunnel does not change the 

parameters of the rock mass but it alters the process of stress transfer. This process was 

investigated by Fenner (1938) & Pacher (1964) (see 1.1.1) and Hoek & Brown (1980).  

The tunnel lining shares the load with the rock mass and therefore reduces the load acting 

on the rock mass, decreasing the displacement. As the tunnel converges, the load on the 

support increases until a new state of equilibrium is reached. At this point the pressure 

acting on the lining is ps(final) and the reduced pressure on the surrounding rock mass is 

equal to [p0 - ps(final)]. The upper diagram of Figure 4 shows the convergence-confinement 

method with the ground confinement curve (GCC) and the support confinement curve 

(SCC). In the lower diagram the corresponding convergence curves are shown. 
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Figure 4: Convergence-confinement method with corresponding convergence curves 

(taken from Barlow (1986)) 

Barlow introduced the installation of support into the convergence law by subtracting the 

resistance developed by the lining, ps, from the total pressure acting on the rock mass. 

The modified Eqn. 8 than can be written as: 

 

 
 (   )  [        ( )  

  ( (   ))

  
]           ( )  

Eqn. 10 
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The resistance developed by the support for a given convergence ΔC1 is given by: 

 

 

where: 

Ks ring stiffness of the support 

a radius of the tunnel 

 

According to Hoek & Brown (1980) the ring stiffness of the support is given by: 

 

 
   

   (   (    )
 )

(    )   (    )     (   )  
 

Eqn. 12 

 

where: 

Es Young’s modulus of the support 

ts thickness of the support 

νs Poisson’s ratio of the support 

 

Substituting Eqn. 11 in Eqn. 10 and simplifying gives: 

 

 
 (   )  

         ( )       

     (        ( )) 
          ( )  

Eqn. 13 

 

where: 

Cs convergence at the point of support installation 

and 

 
  

  

      
 Eqn. 14 

where:  

K support parameter 

p0 initial stress acting on the rock mass 

 

These equations now split the displacement function in 3 parts: 

The pre-displacements (Eqn. 6), the part between the face and the installation of the 

support (Eqn. 8), and the section after the support installation (Eqn. 13). In these 

 
  ( (   ))     

   

  
 Eqn. 11 
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equations only the factor K in Eqn. 13 describes the influence of the tunnel lining and the 

displacements before the installation of the support are not influenced by it at all. Since 

this is not realistic, another modification of the convergence law is required. To consider 

the effect of the support system ahead of its installation Barlow introduced the functions 

Pk
- and Pk

+ and the factor Qk. 

Pk
- and Pk

+ are defined as: 

 

 
     

 ( )     [
 

  (    )
]
 

 
Eqn. 15 

 

 
     

 ( )     [
 

  (    )
]
 

 Eqn. 16 

 

where:  

xs point of liner installation 

and 

    
 

  
 

where: 

Ld round length 

 

Pk
- is equal to 1 at the point of liner installation xs and decreases to zero far behind the 

face. In the same manner Pk
+ decreases from 1 at xs to zero at a point far ahead of the 

face. Therefore, the installation of the tunnel support has an effect on the displacement 

development ahead and behind its point of installation. 

The factor Qk is equivalent to the maximum displacement reduction due to the installation 

of the support at the tunnel face (x = xf). Its value can be in the range of 0 to 1. According 

to Barlow the value of Qk decreases with decrease in liner stiffness and with an increase 

in support installation delay. 

Introducing Eqn. 15 and Eqn. 16 into Eqn. 6,Eqn. 8 and Eqn. 13 gives the extended 

convergence law by Barlow with 3 displacement sequences: 
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 Pre-displacement (x<xf): 

 
 (   )         ( )       

 ( )           ( )  
Eqn. 17 

 

 Post-face pre-liner displacement (xf<x<xs): 

 
 (   )           ( )       

 ( )           ( )  
Eqn. 18 

 

 Post-liner displacement (x≥xs): 

 
 (   )  

         ( )            
 ( ) 

     (        ( )) 
          ( )  

Eqn. 19 

 

Figure 5 shows a displacement plot using Barlow’s equations for both an unlined and a 

lined case. The two curves are identical up to the point of liner installation at a distance to 

face of around 2 meters. The support then decreases the displacement development, as 

can be seen in Figure 5. 

 

Figure 5: Displacement development for an unsupported and supported tunnel 
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2.2.3 Modification by Sellner (2000) 

Sellner (2000) in his doctoral thesis proposed a modification of the support parameter K to 

overcome shortcomings of Barlow’s formulation. Based on a series of numerical 

simulations with varying rock masses and support parameters he developed a correction 

factor y for the calculation of K (see Eqn. 20 and Eqn. 21). 

 

 
     

 

 
 Eqn. 20 

 
    (

         

    
)
 

 Eqn. 21 

 

where: 

Kmod  modified value of K 

A, E  constants for support 

σsidewall stress acting on the tunnel wall 

UCSm unconfined compressive strength of the rock mass 

 

Sellner’s modification factor increases the support parameter K for any rock mass with a 

small factor of utilisation and decreases K with increasing factor of utilisation, as it can be 

seen in Figure 6. 

 

 

Figure 6: Value of the modification factor y for the support parameter K (taken from 

Sellner (2000)) 
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3 Numerical model setup 

The program used for the numerical calculations in this thesis was FLAC3D from Itasca 

Consulting Group Inc. FLAC3D is a three-dimensional explicit finite-difference program 

specially designed for investigating geotechnical problems. 

The dimensions of the model for the full-face excavation calculations are 30m in height 

and width (x- and z-axis) and 70m in length (y-axis) (see Figure 7). The radius of the 

tunnel is 5 meters. The spacing of the mesh in y-direction was set to 1 meter so that it 

corresponded to the chosen round length of also 1m.  

 

 

Figure 7: Numerical Model setup 

The tunnel was divided into cross sections every meter (corresponding to the longitudinal 

mesh spacing and the round length). Every cross section had 3 measuring points along its 

perimeter (see Figure 8) and during the tunnel advance the displacements in x-,y- and z-

direction were calculated for every measuring point in each cross section.  
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Figure 8: Cross section with measuring points 

Some test calculations were necessary to determine the required length for the model so 

that a cross section in the middle of the model will reach its final displacement. Final 

displacement was reached when there was no increase in the displacement with 

advancing tunnel face. 

For calculations with supported tunnels the setup was equal except for the tunnel length. 

Since the final displacement of a supported tunnel is less than of an unsupported, a model 

length of 50 meters fulfilled the above stated displacement criterion. The shortening of the 

model was done to reduce calculation time. 

 

The support was installed one round length behind the face. The support was modelled as 

an elastic material with no failure limit. 

 

For the rock mass Mohr-Coulomb constitutive model was used in the calculations 

assuming linear elasticity and perfect plasticity; hydrostatic stress conditions were 

assumed. 

In order to reduce calculation time significantly, the axial symmetry of the entire problem 

was used. A symmetry boundary along the x- and z-axis was defined. 

 

Since FLAC3D is a finite difference program, it uses approximations to solutions to 

differential equations. The computation of these approximations is an iterative process, 

therefore it is essential to define an equilibrium criterion. Itasca’s recommended criterion is 

a ratio between maximum unbalanced force and total applied forces smaller than 10-5. To 

get a more accurate result while maintaining a reasonable calculation time the equilibrium 

criterion was altered to a maximum ratio of 10-6. 
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3.1 Sequential Excavation 

For the calculations with sequential excavation a different model setup was used. Due to 

the more complex geometry, the mesh was generated with the program ABAQUS/CAE 

(Dassault Systèmes Simulia Corp.) and then imported into FLAC3D. The use of a model 

with only a quarter of the tunnel was not possible, therefore it was changed to a model 

with the dimensions of 30m in x- direction and a height of 60m and a symmetry plane 

along the y-z-plane (see Figure 9). The length was set to 80 meters to fulfill the 

displacement criterion described in section 3. The tunnel radius was again 5 meters. 

 

Figure 9: Numerical model setup - sequential excavation 

Like in the full-face excavation, the face advanced with 1 meter per excavation step. The 

cross section was divided into two parts, the top and the bench/invert. The top had a 

height of 6 meters at the tunnel axis and the bench/invert height was 4 meters (see Figure 

10). The distance between the top and the bench/invert excavation faces varied and was 
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set to 5, 10 and 20 meters. The installation of the support was done one round length 

behind the face advance for each segment. The support parameters were the same as for 

the full-face excavation. 

 

 

Figure 10: Cross-section - sequential excavation 
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4 Numerical Analysis 

To investigate the influence of supports on the displacement development one needs to 

examine a supported and an unsupported tunnel with exactly equal geological and 

geotechnical parameters. This can only be provided with a numerical analysis. 

 

The analysis focused only on the time-independent part of the displacement development, 

since the tunnel lining doesn’t have much influence on the time-independent 

displacements. No creep function has been implemented in the numerical model and in 

the convergence law, the displacements due to creep were neglected by setting the time-

dependent function parameters (m and T, see Chapter 2.1.2) to m = 0. 

4.1 Calibration 

Before performing the numerical analysis a testing of the setup was performed to see if it 

corresponds to the analytical solution by Sulem et al. (1987) and Barlow (1986) (see 

Chapter 2).  

4.1.1 Modification of the support parameter K 

When Barlow developed his formulation of the support parameter K (see Chapter 2.2.2) 

tunnel displacement was measured as relative displacement (convergence 

measurements). Now geodetic measurements have replaced the convergence 

measurements and give the user the displacements separately for each point. The 

numerical setup used in this thesis also shows absolute displacements. 

Therefore Barlow’s function of the effect of the tunnel lining has to be modified.  

Eqn. 11 was slightly modified to take the different measurement method into account:   
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where: 

ps resistance developed by the lining 

Ks ring stiffness of the support 

ΔC1 support displacement 

a radius of the tunnel 

 

This modification changed the function for the support parameter K (Eqn. 14) to the 

following form: 

 
  

  

    
 Eqn. 23 

where: 

p0 initial stress acting on the rock mass 

 

Eqn. 23 is the new formulation of Barlow’s support parameter K for absolute displacement 

measurements. 

 

4.1.2 Results 

The calibration was done with a rock mass that only exhibits elastic behaviour during the 

procedure. Table 1 shows the material properties of the rock mass. The in-situ stress σ0 

was set to 18.75 MPa which represents an overburden of around 750 meters. 

 

Table 1: Elastic material properties 

E [MPa] K [MPa] G [MPa] v [-] phi [°] c [MPa] 

1000 666,666 400 0,25 35 5 

 

With the closed form solution by Feder & Arwanitakis (1976), the combination of rock 

mass and overburden was checked if plastic zones occur. 

 

The support was modelled as a shotcrete lining with a Young’s modulus of 4000 MPa, a 

Poisson’s ratio of 0.25 [-] and a thickness of 20 cm (see Table 2). 

 

 
  ( (   ))     

   

 
 Eqn. 22 
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Table 2: Support parameters 

E [Mpa] v [-] t[m] 

4000 0,25 0,2 

 

Figure 11 and Figure 12 show the comparison between the numerical results and the 

analytical function by Sulem et al. (1987) and Barlow (1986).  

 

Figure 11: Comparison between convergence law and numerical results - unsupported 
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Figure 12: Comparison between convergence law and numerical results – supported 

As it can be seen both the unsupported as well as the supported tunnel displacements 

almost perfectly fit to the convergence law, especially in the displacements behind the 

face. 

However, the convergence law reaches its final displacement at an infinite distance to the 

face which is not realistic, since no tunnel is infinitely long. To overcome this problem and 

obtain an even better fit with the FLAC3D results, the convergence law displacement 

function (C(x,t)) was normalised by the displacement at 98% of the maximum 

displacement. This was accomplished by applying following equation: 
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 (   )  

 (   )

   (   )
     (   ) Eqn. 24 

 

where  

 (   ) modified displacement function 

C98(x,t) displacement at 98% of the maximum displacement 

Cmax(x,t) maximum displacement at infinite distance to the face 

 

Figure 13 and Figure 14 show the now improved fitting between the modified convergence 

law and the numerical results. 

 

 

Figure 13: Comparison between modified convergence law and numerical results – 

unsupported 
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Figure 14: Comparison between modified convergence law and numerical results – 

supported 

4.2 Calculations 

Barlow’s only used linear elastic material behaviour in his calculations. Results shown in 

Chapter 4.1.2 match well with his formulation and linear elastic numerical simulations. 

However rock mass rarely behaves only in a linear elastic way, therefore the calculations 

of this thesis were performed using Mohr-Coulomb material law (linear elastic – perfectly 

plastic). 

 

Three rock mass types (RM 1 to 3) were chosen to investigate the effect of the support. 

The material parameters are listed in Table 3. 

 

Table 3: Rock mass parameters 

RM E [Mpa] K [Mpa] G [Mpa] v [-] φ [°] c [Mpa] 

RM1 2000 1333,33 800 0,25 27 0,5 

RM2 300 200 120 0,25 35 0,03 

RM3 150 100 60 0,25 25 0,07 
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Unfortunately RM2 and RM3 were too “weak” for the numerical setup, meaning FLAC3D 

couldn’t find a state of equilibrium, which fulfilled the chosen equilibrium criterion. The 

effect of the support could be investigated with RM1 and three different initial stress states 

were used (ST 1 to 3). Table 4 gives the values of the different stress states and their 

corresponding overburden. 

 

Table 4: Stress states and corresponding overburden 

stress state σ0 [Mpa] 
overburden 
(aprox.) [m] 

ST1 2,7 100 

ST2 6,75 250 

ST3 13,5 500 

 

 

As it can be seen in Figure 15 and Figure 16 the fitting between the numerical results and 

the convergence law are not as good as they were with the linear elastic material. 

Especially the support’s effect on the displacement development diverges significantly 

between the numerical simulation and Barlow’s formulation (Figure 16). 

 

The plausibility of the obtained results from FLAC3D was checked with the two-

dimensional finite element program Phase2 (rocscience inc.). The maximum displacement 

for the same material parameters was about the same in both programs, therefore the 

results from the FLAC3D-analysis were considered plausible.  
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Figure 15: Comparison RM1 with convergence law (stress state 2) – unsupported 

 

Figure 16: Comparison RM1 with convergence law (stress state 2) – supported 
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Figure 15 and Figure 16 show that the formulations by Sulem et al. (1987) and Barlow 

(1986) don’t hold true for plastic behaviour of the rock mass. The aim of this thesis 

though, was not to establish a new convergence law, but to adjust the parameters of the 

existing formulation to arrive at a good fitting to rock masses with plastic behaviour. 

 

The following parameters were changed in order to obtain a better fitting between the 

FLAC3D results and the convergence law: X, Qk, Cpf and K. 

 

 X is the time-independent fitting parameter (see Eqn. 3 and Eqn. 4). The proposed 

value of X in Eqn. 4 works as a good approximation. 

 

 Qk describes the influence of the support on the displacements ahead of the point 

of its installation (see Eqn. 15 and Eqn. 16). Sellner (2000) proposed a value of Qk 

of 0.04. 

 

 Cpf is the time-independent displacement function ahead of the face (see Eqn. 7). 

In this work the exponent of Eqn. 7 (value of 1.2) was modified to fit the pre-

displacements 

 

 The effect of the support is represented by K (see chapter 2.2.2). The value of K, 

proposed by Barlow (1986) and modified in chapter 4.1.1, holds true for elastic 

behaviour, but is far from accurate for plastic deformation. For a better fitting of the 

supported displacement curves, K (Eqn. 23) was multiplied by the factor K* 

 

In Table 5 the changed fitting parameters are listed for each stress state. Also the 

corresponding plastic radius rp and the fitting parameter C, which governs the final 

displacement, are shown in Table 5 

 

Table 5: Fitting parameters RM1 

RM stress state C X Qk K* exp. of Cpf rp 

RM1 

1 -11,3 5,5 0,02 3 2 7,7 

2 -67,46 8 0,06 6 3 12,02 

3 -252,4 12 0,09 7 4 17,54 
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As can be seen in Figure 17 for the unsupported and Figure 18 for the supported case, 

the fitting between the function C(x,t) and the numerical results is now almost perfect. The 

effect of the support for stress state 2 is 6 times higher than the proposed value of K 

according to Eqn. 23.  

  

 

Figure 17: Comparison RM1 with fitted convergence law (stress state 2) – unsupported 
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Figure 18: Comparison RM1 with fitted convergence law (stress state 2) – supported 

Based on the findings from RM1 a parameter study of the rock mass parameters was 

carried out. Friction angle phi (RM1_phi), Young’s modulus E (RM1_E) and cohesion c 

(RM1_c) were changed according to the values in Table 6. Note that FLAC3D requires to 

enter the elastic moduli in terms of bulk modulus K and shear modulus G. Therefore a 

change of Poisson’s ratio n was not performed because the change of E already resulted 

in different values of K and G. 

 

Table 6: Rock mass parameters 

RM E [Mpa] K [Mpa] G [Mpa] v [-] φ [°] c [Mpa] 

RM1 2000 1333,33 800 0,25 27 0,5 

RM1_phi 2000 1333,33 800 0,25 35 0,5 

RM1_E 6000 4000 2400 0,25 27 0,5 

RM1_c 2000 1333,33 800 0,25 27 2 
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For each “new” rock mass (RM1_phi, RM1_E and RM1_c) the same stress states (see 

Table 4) as for RM1 were applied. The results of this study are listed in Table 7. 

 

Table 7: Fitting parameters – parameter study 

 
 
 

RM1_c in stress state 1 did not develop any plastic deformation (as indicated by a plastic 

radius equalling the tunnel radius) so only the parameters dictating the pre-displacements 

(Qk and Cpf) were slightly changed. Note that a changed Young’s modulus, as represented 

by the rock mass RM1_E did not change the support parameter K. Therefore the results 

of RM1_E are not displayed in the following graphs. 

 

Figure 19 shows the support parameter K in relationship with the plastic radius for the 

different rock masses. The three solid lines represent the value of K proposed by Barlow 

for the three stress states. Barlow’s value of K is constant for every plastic radius or set of 

rock mass parameters. The difference between the Barlow’s value and the K values 

obtained from the numerical simulations varies for every stress state but as Figure 20 

shows, the multiplication factor of K, K*, increases with increasing plastic radius. But the 

highest K*-value was obtained with RM1_phi, although this rock mass doesn’t have the 

largest plastic radius. 

RM stress state C X Qk K* exp. Of Cpf rp K

1 -11.3 5.5 0.02 3 2 7.7 -0.039

2 -67.46 8 0.06 6 3 12.02 -0.031

3 -252.4 12 0.09 7 4 17.54 -0.018

1 -9.11 5 0.02 2.5 2 6.52 -0.033

2 -40.3 6.5 0.04 5.5 2.5 8.71 -0.029

3 -134.4 9 0.1 7.5 3 11.07 -0.020

1 -3.78 5.5 0.02 3 2 7.7 -0.039

2 -22.5 8.5 0.04 6 3 12.02 -0.031

3 -84.12 12 0.08 7 4 17.54 -0.018

1 -7.46 4.2 0.02 1 1.5 5 -0.013

2 -22.25 5 0.02 2 2 6.34 -0.010

3 -70.56 6 0.03 3 3 8.52 -0.008

RM1

RM1_phi

RM1_E

RM1_c
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Figure 19: Relationship between plastic radius and support parameter K 

The curve fitting parameter X increases almost linearly with increasing plastic radius (see 

Figure 21). 

 

The support’s influence ahead of its point of installation Qk showed a similar behaviour, 

although until a plastic radius of 7.7m the value was constant and beyond this point it 

increased. But again, the maximum plastic radius didn’t cause the highest value of Qk but 

rock mass RM1_phi did (see Figure 22). 

 

The relationship between the plastic radius and the exponent of the time-independent pre-

displacement function Cpf is almost linear, with the exponent of Cpf starting at a value of 

1.5 and a maximum value of 4 (see Figure 23). 
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Figure 20: Relationship between plastic radius and the multiplier of the support’s effect K* 

 

Figure 21: Relationship between plastic radius and curve fitting parameter X 
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Figure 22: Relationship between plastic radius and the support’s influence ahead of its 

point of installation Qk 

 

Figure 23: Relationship between plastic radius and the exponent of the time-independent 

pre-displacement function 
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These results clearly show that the convergence law, and especially Barlow’s extension 

for the effect of the support, only holds true for elastic conditions. With the proposed value 

for K by Barlow the decrease in displacements due to the installation of a support system 

is grossly underestimated for plastic rock mass conditions. Figure 20 shows that the 

greater the plastic radius is, the bigger the effect of the support is, because more load is 

transferred from the rock mass to the tunnel lining. But the investigation of rock mass 

RM1_phi also showed that the plastic radius isn’t the only factor governing the support 

parameter K. 

 

Based on the results of the FLAC3D simulations a function was developed for calculating 

the K* value. A quadratic function, shown in Eqn. 25, approximates the relationship 

between plastic radius, initial stress and K* in a proper way. 

 

 

                     
       

           Eqn. 25 

 

where 

a = -9.6116 

b = -0.6707 

c =  2.9968 

d = -0.0717 

e = -0.2062 

f =   0.2097 

 

 

Figure 24 gives a graphical representation of the quadratic formula for K*. The circles are 

the values obtained from the numerical analyses. The results from Eqn. 25 should be 

handled with care and provides a satisfying result only for a limited range of input 

parameters. For certain parameter combinations the equation results in negative values 

for K*. A negative K* value would result in a displacement increase due to the installation 

of a support, which is not realistic.  
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Figure 24: 3D plot of the K* formula 

 

4.3 Shortcomings of the analysis 

The above stated investigations do have some drawbacks. Full-face excavation in 

conventional tunnelling is rather the exception than the rule. 

Also the simple constitutive law used for the modelling of the support should be 

considered as a shortcoming of this analysis. Basically the used material law for the 

shotcrete has no failure criterion and therefore theoretically allows the tunnel lining to take 

loading and exhibit displacements up to infinity. Furthermore the time-dependent stiffness 

development of the shotcrete was neglected and instead a reduced Young’s modulus of 4 

GPa was used, which is an approximate mean value that should also cover the creep and 

shrink behaviour of the shotcrete. 

 

Both points mentioned above result in an underestimation of the final displacements and 

an overestimation of the support capability. 
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4.4 Sequential excavation analysis 

As described in chapter 3.1 calculations using a numerical model with sequential 

excavation were performed to see if the effect of the support parameter changes 

significantly compared to the values obtained with the full-face calculations. 

 

The rock mass used was again RM1 (see Table 3) and also the stress states (Table 4) 

and the support parameters (Table 2) were the same as in the previous numerical 

simulations. The distance between the top excavation and the bench excavation was set 

to 10 meters for the first set of calculations. The results of these simulations are listed 

under the name RM1_10 in Table 8. As it can be seen in Table 8 the results of the full-

face excavation and the sequential excavation are almost the same.  

 

Table 8: Comparison full-face excavation and sequential excavation 

RM stress state C X Qk K* exp. of Cpf rp 

RM1 

1 -11,3 5,5 0,02 3 2 7,7 

2 -67,46 8 0,06 6 3 12,02 

3 -252,4 12 0,09 7 4 17,54 

RM1_10 

1 -10, 7 5,5 0,02 2,5 2 7,7 

2 -67,46 8,5 0,06 6 3 12,02 

3 -191 12 0,09 7 4 17,54 

 

To investigate the influence of the distance between the two excavation steps, two more 

simulations with a distance between the top and the bench of 5 meters (RM1_5) and 20 

meters (RM1_20) were carried out. As it can be seen in Table 9 this had almost no 

influence on the total displacement (as indicated by the factor C) but did change the value 

of K* slightly.  

 

Table 9: Comparison of the results for different differences between top and bench 

excavation 

RM stress state C X Qk K* exp. of Cpf rp 

RM1 3 -252,4 12 0,09 7 4 17,54 

RM1_5 3 -190,2 10 0,09 5 4 17,54 

RM1_10 3 -191 12 0,09 7 4 17,54 

RM1_20 3 -192,2 12 0,08 4 4 17,54 
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Furthermore another calculation was carried out with a slightly different support setup. 

The shotcrete applied to the top excavation was modified to represent a more realistic 

behaviour. The first 30 cm of lining above the invert of the top heading were modelled with 

a shotcrete with a reduced Youngs’ modulus to ¼ of the initial value. This resulted in a 

small reduction of the support parameter K* as can be seen in Table 10. RM1_10_w 

represents the results obtained from the adjusted shotcrete setup. 

 

Table 10: Comparison of the results for different shotcrete line-up 

RM stress state C X Qk K* exp. of Cpf rp 

RM1 3 -252,4 12 0,09 7 4 17,54 

RM1_10 3 -191 12 0,09 7 4 17,54 

RM1_10_w 3 -191 12 0,09 6 4 17,54 

 

Overall the sequential excavation analysis showed only a slight decrease of the factor K 

compared to the values obtained from the full face excavation analysis.  
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5 Conclusion 

The aim of the work was to obtain a better knowledge on the interaction between tunnel 

and the ground with respect to displacement magnitude and development. The numerical 

calculations presented in this thesis confirmed that the convergence law proposed by 

Sulem et al. (1987) and Barlow (1986) provide satisfying results of the displacement 

development and the effect of the support only for a rock mass with elastic stress-strain 

behaviour. As soon as plastic deformation occurs in a rock mass, the convergence law 

differs significantly from the results obtained from the numerical calculations. 

With the chosen numerical setup it could be shown, that the size of the plastic radius has 

a major influence on the convergence law parameters, especially on the influence of the 

support on the displacement development, represented mainly by the parameter K. 

Nonetheless, the results of this thesis do have a limited validity, due to the simplifications 

in the numerical setup. Further research work is needed to overcome these limitations in 

order to predict the displacements of a supported tunnel more realistically. A first 

approach could be the investigation of different lining thicknesses. Since the tunnel lining 

is modelled as a linear elastic material with no failure criterion and a reduced stiffness, 

further investigations should focus on an implementation of a more sophisticated 

constitutive model for the shotcrete.  

To further improve results, an aim should also be to represent real excavation scenarios in 

the numerical model, especially by adjusting the setup for sequential excavation. 
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