
Christoph Hechenblaikner

Automated Cryptanalysis of New Authenticated
Ciphers

Master Thesis

Graz University of Technology

Institute for Applied Information Processing and Communications
Head: Univ.-Prof. Dipl.-Ing.Dr.techn. Reinhard Posch

Advisor: Dipl.-Ing.Dr.techn. Florian Mendel
Assessor: Dipl.-Ing.Dr.techn. Florian Mendel

Graz, October 2014

ii

iii

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008;
Genehmigung des Senates am 1.12.2008

iv

v

Abstract

In a standard cryptanalytic process, preliminary analysis of ciphers based on search
tools plays an important role, since it allows the cryptanalyst to get an overview over
properties of a cipher and gives indication for potential weaknesses in cipher components.
Even though there exist tools to perform this preliminary analysis using various analysis
methods, the effort a cryptanalyst has to invest into setting up the environment for those
tools is enormous. This is mainly due to the fact, that certain chains of tools have to
be set up in order to obtain valid and useful results when each of those tools requires an
own representation of the analysed cipher. So a lot of effort has to go into establishing
these tool representations.

Especially in a context of cryptographic competitions, where a potentially large set of
ciphers needs to be analysed, this effort is significant, which results in the need for a
degree of automation in the process.

This thesis introduces a framework that allows cryptanalysts to conduct an automated
preliminary analysis on a potentially very high number of cipher designs when focus-
ing on designs for authenticated encryption. The framework automatically parses the
C-reference implementation, delivered in the submission to cryptographic competitions,
into an abstract cipher representation. This representation can be combined with a tool
specific adapter to transform the abstract cipher representation into the tool represen-
tation needed. This process works independent of the cipher given as input and can
therefore be automatically applied to many different submissions. This saves the crypt-
analysist time, which can be used to conduct in deep dedicated analysis methods and
construct attacks based on the preliminary results. This leads to a potentially higher
overall analysis degree of ciphers submitted to cryptographic competitions.

The framework introduced, was demonstrated using three cipher submissions to CAE-
SAR competition (NORX, MORUS and KETJE) and one toolchain using methods for
differential characteristics search and validation.

Key words: cryptanalysis, preliminary analysis, authenticated ciphers, automated anal-
ysis, differential cryptanalysis

vi

vii

Acknowledgements

Firstly, I would like to take the chance to thank my advisor, Florian Mendel, for his great
work in advising, helping and encouraging me in different phases of the thesis as well as
for his commitment and drive to make me benefit the most from this thesis. His patience,
advice and guidance has enormously helped on the way of completing this thesis.

I would like to thank my girlfriend Julia, who has greatly supported me during the time
working on this thesis and still supports me in everything I do. Without her, this would
have not been possible.

Thank you to my mother, Katharina, for all her support during my studies, reaching a
very important milestone in the completion of this thesis.

And finally, I’d like to thank my father, Georg, whose life and legacy has greatly inspired
me in pursuing my current paths.

Christoph Hechenblaikner

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Introduction to Cryptography . 2
1.3 Cryptographic Competitions . 4
1.4 Problems of Cryptographic Competitions 5
1.5 Overview . 7

2 Authenticated Encryption 9
2.1 Conventional Cryptographic Systems . 9

2.1.1 Basics and Primitives . 9
2.1.2 Differences . 13

2.2 Authenticity in Symmetric Cryptographic Systems 14
2.2.1 Generic Composition . 14
2.2.2 Dedicated Authenticated Encryption Ciphers 16
2.2.3 Drawbacks and Limitations . 16

2.3 Goals of Dedicated Authenticated Encryption Schemes 16
2.4 CAESAR Challenge . 18
2.5 Design Principles and Approaches . 19

2.5.1 The Sponge Construction . 19
2.5.2 The Duplex Construction . 21
2.5.3 The Monkey Duplex Construction 21

2.6 Attacks . 23
2.7 Analysed Ciphers . 23

2.7.1 NORX . 23
2.7.2 MORUS . 28
2.7.3 KETJE . 28

3 Cryptanalysis 29
3.1 Goals of Cryptanalysis . 29
3.2 Analysis Methods . 31

3.2.1 Differential Cryptanalysis . 31
3.2.2 Impossible Differential Cryptanalysis 40

ix

x CONTENTS

3.2.3 Linear Cryptanalysis . 40
3.3 Analysis Methods for AE . 43

3.3.1 Goals . 43
3.3.2 Concepts and Tools . 45

3.4 Classic Analysis Workflow . 49
3.4.1 Toolchains . 51
3.4.2 Problems . 51

4 Automated AE Analysis 53
4.1 Problem Description . 53
4.2 The Idea . 55
4.3 The Automated Analysis Workflow . 57

4.3.1 Using the Framework . 58
4.3.2 Application Setting . 59

4.4 Goals . 59
4.5 Supported Tools . 60

4.5.1 Extended IAIK CodingTool . 60
4.5.2 NLTool . 63
4.5.3 STP . 64

4.6 Used Tools and Libraries . 65
4.6.1 Transcompilers . 65
4.6.2 The ROSE Compiler Framework 66

5 Automated Analysis Framework 73
5.1 CipherAnalyzer . 73

5.1.1 Components . 73
5.1.2 Procedure . 74
5.1.3 CipherTranslator . 74

5.2 Process . 74
5.3 Components . 75
5.4 Transformations . 76

5.4.1 Inlining . 76
5.4.2 Fixing Compound Statements . 79
5.4.3 Handle Rotations . 80
5.4.4 Splitting . 86
5.4.5 Example . 90

5.5 Translation to other Formats . 100
5.5.1 CodeTransformer . 101
5.5.2 CodeTranslator . 105
5.5.3 Analysis Code . 113

5.6 Customization / Extension . 114
5.7 Application and Results . 114

5.7.1 Analysis Types . 115
5.7.2 Results . 115

CONTENTS xi

6 Conclusion and Future Work 119
6.1 Scope and Limitations . 120
6.2 Future Work . 121

xii CONTENTS

List of Figures

1.1 Basic setting to define cryptographic goals 3
1.2 Development of first round submissions since 1998. 6
1.3 First round vs. second round submissions since 1998. 7
1.4 Setting for differential cryptanalysis. 8

2.1 Basic principle of symmetric encryption. 10
2.2 Basic structure of an authenticated encryption cipher. 17
2.3 The basic sponge construction. 20
2.4 The basic duplex construction. 21
2.5 The monkey duplex construction. 22
2.6 Overview over the NORX authenticated cipher. 25
2.7 Application of G(a, b, c, d) to different parts of the state S. 25

3.1 Basic setting when attacking the cipher TOY 30
3.2 Internal structure of the example cipher. 34
3.3 Idea of the concept of differential characteristics. 39
3.4 A differential characteristic over multiple rounds of a function f 40
3.5 Cipher with masks to select bits involved in the linear equations. 42
3.6 Attack setting in a forgery attack. 44
3.7 Development of a state collision. 45
3.8 The construction of a row vector of the generator matrix. 46
3.9 Verification process of a characteristic in a cipher using SAT solvers. . . . 50

4.1 Example of the tools used in a standard analysis workflow. 54
4.2 Applying n tool chains to establish a preliminary cipher analysis. 55
4.3 Schematic illustration of the preliminary analysis framework. 56
4.4 Basic transformation of cipher representations. 57
4.5 Overview over input and output items to the framework. 58
4.6 Principle of continuous preliminary analysis of ciphers using a cluster server. 59
4.7 Basic structure of a source-to-source or analyser. 66
4.8 The basic components of the ROSE framework. 68

5.1 Overall picture of the process implemented by the framework. 75

xiii

5.2 Steps of transformation to standard form 77
5.3 Interaction between the two main components of the framework. 101

List of Tables

1.1 Cryptographic competitions over the last 16 years. 4

2.1 Different proposed instances of NORX. 24
2.2 NORX capacities and rates for different word sizes of it. 25

3.1 Substitution S[x] . 34
3.2 The calculated Difference Distribution Table of the Substitution S. 38

5.1 Results NORX forgery . 116
5.2 Results NORX round . 116
5.3 Results MORUS . 116
5.4 Results KETJE . 117

xiv

List of Symbols

� right shift of bitstrings

≫ right rotation of bitstrings

� left shift of bitstrings

≪ left rotation of bitstrings

DK(C) C is decrypted with the key K

EK(P) P is encrypted with the key K

AES Advanced Encryption Standard

AST abstract syntax tree

CAESAR Competition for Authenticated Encryption: Security, Applicability, and Ro-
bustness

IR intermediate representation

NIST National Institute of Standards and Technology

SHA-3 Secure Hash Algorithm 3 (Keccak)

xv

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Protecting digital information and securing global communication taking place over po-
tentially insecure channels such as the internet has become more important than ever.
Millions of people communicate using the internet (an arguably rather insecure channel)
every day and exchange critical information over this network. The goal of IT-Security
and Cryptography (or Cryptology) is to provide tools to protect this information and
provide a framework for secure communication as well as to prevent any potential at-
tacker from influencing on an ongoing communication. This is necessary to ensure the
right for secrecy of information and privacy of the communication partners.

Besides just ensuring secrecy of data in a communication, factors such as guaranteeing
a certain origin of information or making sure the information has not been altered on
it’s way state major goals of cryptography in practical applications. What is the value
of critical data transmitted over an insecure channel securely, when the recipient cannot
make sure it was created or sent by the intended communication partner? And what is
the value in the trust to a certain communication partner if it cannot be ensured the data
has not been manipulated by someone else on it’s way? Consider the practical example
of a system that delivers medical reports from doctors or hospitals to patients over the
internet. Even if the communication takes place in a fashion that provides secrecy of
data while being transmitted, a patient cannot be sure that the report was issued by
the intended medical professional or hospital and has no proof that the data has not
been manipulated by anyone in transit. Therefore, such information can be considered
worthless without additional mechanisms taking care of those concerns.

Requirements like these raise the need for other cryptographic goals beyond the obvious
secrecy of data. So information security manifests itself in various ways, caused by the
wide variety of different applications.

1

2 CHAPTER 1. INTRODUCTION

Besides confidentiality of data, authenticity and integrity state a standard requirement
that has to be fulfilled in every communication. In applications where symmetric cryptog-
raphy is used, a variety of mechanisms have been developed to meet these requirements
based on combining known symmetric primitives. In general the need for having con-
fidentiality, authenticity and integrity in every communication raises the requirement
of encryption schemes taking care of all of them in one primitive. Such primitives are
represented by authenticated encryption ciphers.

The wide field of application for these authenticated ciphers come with high require-
ments towards security, speed as well as properties regarding their implementation in
hardware and software. In order to establish a high quality of authenticated ciphers,
new authenticated encryption schemes need to be found that address future needs in this
area.

Cryptographic competitions have proven themselves as excellent tools for finding such
new designs as well as to gain deep analysis by the cryptologic community. The CAESAR
competition states such a challenge with the goal of identifying a portfolio of new strong
authenticated ciphers. Changes in the number and quality of submissions to such compe-
titions reveal major problems related to analytical effort in order to provide a sufficient
analysis on the submitted designs. Therefore, an automated way of performing prelim-
inary analysis of cipher designs in general (and authenticated ciphers in this particular
case) would state a major advantage for such competitions.

This thesis introduces a framework for performing such an automated analysis especially
designed to meet the requirements of cryptanalysis of new authenticated encryption
schemes. It therefore allows cryptanalysts to easily conduct a preliminary automated
cryptanalysis to a wide range of ciphers using various tools. This results in a much lower
effort for cryptanalyst to establish a preliminary analysis and therefore enables them to
spend more time on conducting targeted dedicated analysis to specific components of
design. This enables them to deal with changing circumstances related to cryptographic
challenges and creates an environment that allows deeper custom analysis and therefore
higher confidence in the cryptographic schemes.

1.2 Introduction to Cryptography

This section gives a very brief overview of cryptography and it’s main goals. Techniques
of how to establish these goals will be explained in later chapters of this thesis.

When talking about cryptography and it’s definition, one generally has to distinguish
between three terms often used interchangeably:

a) Cryptology names the overall study of communications over potentially insecure
channels and all problems and challenges related to it [28].

1.2. INTRODUCTION TO CRYPTOGRAPHY 3

b) Cryptography names the study of creating systems that solve the problem of secur-
ing a communication over an insecure channel [28]. Other sources, such as [21], define
it as the study of mathematical techniques for fulfilling the basic cryptographic goals.

c) Cryptanalysis deals with analysing and especially breaking of such systems [28].

All of these terms are related to the security of data and fundamental methods of how
to establish, analyse and proof it. All of them describe how a communication can be
protected from potential attackers at certain levels.

To explain the basic goals of cryptography, assume the communication illustrated in
Figure 1.1. Two users, Alice and Bob, want to communicate (exchange messages) over a
potentially insecure channel (e.g. the internet). Further, assume an attacker Eve, who
wants to intercept and attack the communication. The basic goals of cryptography are
now protecting this communication in various ways.

Figure 1.1: Basic setting to define cryptographic goals. Alice wants to communicate with
Bob in the presence of an attacker Eve.

In general we can state the following basic goals of cryptography [21]:

1. Confidentiality is the basic goal of keeping information from all but those ex-
plicitly authorized to have it. The terms secrecy and privacy are often used to
describe confidentiality. This could, for example, be protecting the used communi-
cation media or the information transmitted in a way such that it cannot be read
by unauthorized users. In modern cryptography, this goal is realized by encrypting
data with a secret key under the assumption that only those authorized to read
the message have access to this key. The information transmitted, is useless to
anyone except for those in possession of the secret key. So Alice would encrypt the
message using a secret key, and share this key as well as the encrypted data with
Bob. Eve, not in possession of the key, cannot gain any information from reading
the encrypted message.

2. Integrity states the basic goal of being able to detect altering of messages when
transported from the sender to the receiver. This means that any manipulation of

4 CHAPTER 1. INTRODUCTION

Year Competition Primitive
1998 Advanced Encryption Standard Block Cipher
2005 eSTREAM Stream Cipher
2008 SHA-3 Hash Function
2014 PHC Password Hashing Scheme
2014 CAESAR Authenticated Cipher

Table 1.1: Cryptographic competitions over the last 16 years [2].

the message can be detected by the receiver without any additional communication
channel in place. If Eve would intercept and change the message on it’s way from
Alice to Bob, Bob could detect it and for example ignore the message.

3. Authenticity names the identification of either entities taking part in a commu-
nication or the transmitted information itself. Therefore, two types of authenticity
can be distinguished here:

a) Entity Authentication: In this case the partners entering a communication iden-
tify each other and make sure they are communicating with whom they think
they do (Alice can prove that she is talking to Bob and vice versa).

b) Data Origin Authentication: Data transmitted during such a communication
should be authenticated. (Bob can ensure that the message was sent with
certain characteristics intentionally from Alice). Note that this implies data
integrity (changing data means changing the source of data)

4. Non-Repudiation addresses the desire of communication partners to proof that
certain actions were previously committed in a communication. Assume Alice and
Bob digitally sign a contract over the internet. At a later point both of them want
to prove that the other one has signed the contract or in other words, prevent the
other party from denying it.

1.3 Cryptographic Competitions

In the course of the past 16 years, cryptographic competitions in symmetric key cryptog-
raphy have established as an excellent form of collecting and evaluating cryptographic
primitives in various forms. Starting with the AES Competition in 1998, various compe-
titions were hold by different organizations to establish standards or recommendations.
Some of those challenges and the type of cryptographic primitive called for are listen in
Table 1.1 in chronological order.

In general all cryptographic competitions follow the same idea and the same process /
phases. In a call for submissions, the hosting organisation calls the cryptographic com-
munity to submit proposals for a new cryptographic primitive. The submissions and

1.4. PROBLEMS OF CRYPTOGRAPHIC COMPETITIONS 5

the developed ciphers have to comply with basic rules and requirements defined by the
organization to ensure alignment of the submissions with the overall goal motivating the
competition. In most cases this motivation is based on practical problems with existing
primitives or acts as a response to current threats or attacks compromising important
security measures. The cryptographic community then submits designs alongside with
reference implementations and security and performance analysis. After all proposals
have been submitted, the research community conducts cryptanalysis on the submissions
in order to either break weak designs or provide deep analysis of good submissions. This
usually filters the submitted ciphers quite well as this takes place in several rounds of
publishing attacks. After several (predefined) rounds, the organization running the com-
petition selects a portfolio of winner primitives (of defined size). In some competitions,
these winners are then standardized as for example in case of NIST’s AES or SHA-3
competition. Other competitions do not drive standardisation even though finalists of
such competitions might be standardised by other organisations.

1.4 Problems of Cryptographic Competitions

A trend that can be observed in those cryptographic competitions is the heavily increas-
ing number of submissions. Figure 1.2 illustrates the increasing number of first round
submissions to the before discussed competitions. It can be seen that the submissions
have increased about 367% from 15 to 55 submission between 1998 (AES) and 2014
(CAESAR). Even though this development can be generally seen as very positive, there
are problems related to it. The huge analytical effort needed to provide a preliminary
level of cryptanalysis has become enormous. In addition, the general quality of submis-
sions increased significantly. This means a larger number of submissions require deep
analysis, since none of them can be broken early in the competition. This effect of more
submissions and higher submission quality results in a strong rise of the cryptanalytic
effort needed to provide good analysis of all ciphers.

Figure 1.3 shows the number of first-round and second-round candidates of the AES,
SHA-3 and CAESAR competition (ongoing). It can be observed, that in earlier com-
petitions, the number of submissions went down relatively fast, due to broken schemes
and discovered weaknesses (AES: 60%, SHA-3: 73%). In contrast to that, the CAESAR
candidates have only gone down by seven (12 %) in the first six months (about the time
of a usual round) and it is not expected to fall much lower. Therefore, the cryptographic
community now needs to provide in-depth analysis of 48 instead of 5 (AES) or 14 (SHA-3)
ciphers which states an incredible workload on the community.

Even though there are automatic tools available to analyse parts of the proposed primi-
tives in various ways, the application of such analysis tools is still linked to a lot of manual
effort. This effort mainly results from the different in- and output file formats, algorithm
representation and interface structures that analysis tools rely upon. Figure 1.4 illus-

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Development of first round submissions to cryptographic competitions since
1998 [2].

trates this situation. Assume a cryptanalyst wants to apply n tools to analyse a primitive.
In this case she would have to create

• n representations of the algorithm (e.g. different languages, formats, etc.) based
on the original reference implementation and the specification.

• n input format representations.

• n procedures for conducting the analysis based on the different interfaces of the
tools (e.g. c-interface, command line etc.)

This results in a huge overhead to set up a toolchain as illustrated in Figure 1.4 and
establish a preliminary level of cryptanalysis to base dedicated analysis methods on.

This thesis introduces an automated framework that takes as an input the submission
reference implementation and transforms the proposed algorithm into an abstract format.
The framework further provides mechanisms to easily transform this abstract represen-
tation into any representation format needed in the toolchain of such an analysis. This
transformation into the abstract representation as well as the transformation in other
formats is performed fully automatic and is therefore intended to perform automatic pre-
liminary cryptanalysis on a large number of cryptographic submissions while providing
the possibility to easily extend the framework with new tools or advanced transforma-
tions. We refer to Chapters 4 and 5 for further information on this principle and the
framework itself.

1.5. OVERVIEW 7

Figure 1.3: Development of first round vs. second round submissions in cryptographic
competitions. [2].

1.5 Overview

The goal and scope of this thesis is to create a basic framework that allows to conduct au-
tomated analysis on authenticated cipher submissions using various analysis tools. The
remainder of this thesis is organized as follows. Chapter 2 provides a basic understand-
ing of what authenticity and integrity mean, how they are achieved in symmetric and
asymmetric cryptographic systems and how dedicated designs achieve the given goals.
Further, it gives a short introduction to design principles of dedicated authenticated ci-
phers and introduces the three selected submissions to the CAESAR competition, which
were used to demonstrate the framework presented in this thesis.

Chapter 3 illustrates basic methods and principles of cryptanalysis and particularly those
relevant to authenticated ciphers. Further it introduces the reader to the goals and dif-
ferent types of cryptanalysis as well as tools that can be used to perform certain subtasks
in the analysis process. In addition, it describes typical workflows during analysis of au-
thenticated ciphers, points out potential problems and how an automated workflow for
conducting an automated analysis can help solve them.

Chapter 4 introduces an automated analysis workflow that can perform a fully automatic
preliminary cryptanalysis based on submission documents to the CAESAR competition.
It explains the basic tasks, goals and challenges of performing such an automated analysis
and states examples for some of the formats and frameworks used in this process.

Chapter 5 finally describes the components and processes of the implemented automated
analysis framework, shows how it accomplishes the tasks and goals and overcomes the
challenges stated in Chapter 4 and describes how it was applied to the three selected

8 CHAPTER 1. INTRODUCTION

Figure 1.4: Typical setting for applying different cryptanalysis tools to a cryptographic
primitive.

CAESAR submissions. Further, it shows customization possibilities and how new tools
can be easily integrated into the framework to extend it.

Finally, Chapter 6 provides an overview of the solutions provided by this framework and
the results gained from the conducted analysis. It discusses the results, their current
scope in this thesis and limitations at this point. Further, an overview of next tasks in
the development of an automated analysis framework is provided and directions of future
work are discussed.

Chapter 2

Authenticated Encryption

This chapter provides an overview of authenticated ciphers. To understand the idea, prin-
ciples and basic structures of this type of cryptographic primitive, a short introduction
to conventional cryptographic systems, their basic components as well as their weak-
nesses and drawbacks regarding authenticity of data and entities is provided. Further,
this chapter provides an overview of existing symmetric authenticated ciphers as well as
a short introduction to the CAESAR competition. After providing a short introduction
to relevant design approaches of authenticated ciphers, it gives a short description of the
cipher designs addressed and analysed in this thesis.

2.1 Conventional Cryptographic Systems

This section provides a brief overview of the principles and goals of today’s conventional
cryptographic systems. It provides a short introduction to how those basic goals are
achieved and why new cryptographic primitives, such as authenticated encryption, are
desired.

2.1.1 Basics and Primitives

Conventional cryptographic encryption systems solve the problems stated in Chapter 1
using two main categories of primitives: symmetric and asymmetric cryptography.

Symmetric Cryptography

Symmetric cryptographic systems assume a shared secret key among the participants of
a communication over an insecure channel. This means that the key has been exchanged
between the two entities in a way such that both are in possession of the key and can trust

9

10 CHAPTER 2. AUTHENTICATED ENCRYPTION

its secrecy. Participants use the same secret key KS to encrypt and decrypt data. Thus,
these systems are called symmetric. All primitives used in order to fulfill the basic goals
and requirements of cryptography are based on such a symmetric approach for encrypting
and decryption data with the same key. Even though multiple keys might be used in
a communication to achieve different goals, only one key should be used to perform a
particular sub-task in such a system. For example, two different (symmetric and secret)
keys KC and KA should be used for ensuring confidentiality (KC) and authenticity (KA)
in a communication in order to ensure the claimed security of the system. Figure 2.1
illustrates the basic process of encrypting a message using symmetric encryption.

Figure 2.1: Basic principle of symmetric encryption. P ... plaintext, C ... ciphertext, K
... secret shared key, E ... encryption, D ... decryption

The basic operations in symmetric cryptographic systems are:

• Encryption: A plaintext message M is encrypted using a key K resulting in a
ciphertext C. The information contained in the message M cannot be extracted
from the ciphertext without applying decryption with the same key K.

C = EK(M) (2.1)

• Decryption: A ciphertext message C, which was encrypted using the key K, is de-
crypted using the same key K resulting in the plaintext messageM . This operation
forms the inverse to the encryption operation.

M = DK(C) = DK(EK(M)) (2.2)

In symmetric cryptographic systems, the basic cryptographic goals are fulfilled in the
following way:

• Confidentiality: In symmetric cryptographic systems, the goal of confidentiality
is reached by assuming two parties share a secret key that is used to encrypt
messages. Anyone not being in possession if the secret key shall not be able to
intercept and read encrypted messages. In such systems, the distribution of keys

2.1. CONVENTIONAL CRYPTOGRAPHIC SYSTEMS 11

among all participants states one of the major challenges that this assumption relies
on.

• Authenticity and Integrity: The goals of authenticity and integrity are com-
monly accomplished using so called Message Authentication Codes (MACs). It
has to be noted that these mechanisms only provide a certain level of data-origin
authentication rather than an identity authentication of the sender. We refer to
Chapter 1 for more information about the different types of authenticity. In Sec-
tion 2.2, further information on authenticity in symmetric systems is provided.

• Non-Repudiation: Non-repudiation (preventing the denial of committed actions)
cannot be solved using symmetric primitives alone. Since a key is shared among
various participant in a communication, it can never be assured that a certain
action was committed by a specific member of the group. In practice, a trusted
third party is needed for tracking commitment and prove actions of participants at
a later point.

Asymmetric Cryptography

Asymmetric cryptographic systems, in contrast to the previously described symmetric
approaches, rely upon the principles of two keys being present for each participant of
a communication. This keypair consists of a public key Kpu and a private key Kpr,
which belong together and are generated at the same time. In contrast to symmetric
systems, only the private key Kpr has to be kept secret and is not shared among users.
The public key Kp is considered public information and can be freely distributed over
insecure channels.

Asymmetric cryptographic systems address the problem of not being able to easily dis-
tribute symmetric secret keys is an easy way. When using symmetric encryption, the
participants need to exchange or agree on a secret key before the secure communication
takes place. A secure channel for either protecting keys transmitted or protecting the
key agreement process is needed. In reality this is a very difficult requirement to fulfill,
since the establishment of such a channel states a goal of the whole process in the first
place. So the problem is reduced to establishing a secure channel for less data or shorter
time. In some cases this might not be possible using only symmetric cryptography.

Asymmetric cryptographic systems now solve this problem by being able to distribute
public keys over a potential insecure channel. Therefore, the need for a secure channel
is shifted towards the problem of verifying that the received public key belongs to the
intended communication partner. Since now two keys are involved, the operation set is
larger than in the symmetric case.

The basic operations in asymmetric cryptographic systems are:

• Encryption: A plaintext message M is encrypted for user A with his/her public
key KpuA resulting in a ciphertext CA. The information contained in the message

12 CHAPTER 2. AUTHENTICATED ENCRYPTION

M cannot extracted from the ciphertext without applying decryption with user A’s
private key KprA . Note that the ciphertext CA can not be decrypted by a key other
than KprA and therefore is encrypted for user A.

CA = EKpuA
(M) (2.3)

• Decryption: A ciphertext message CA, which was encrypted with user A’s public
key KpuA , is decrypted with user A’s corresponding private key KprA resulting
in the plaintext message M . This operation forms the inverse to the encryption
operation.

M = DKprA
(CA) = DKprA

(EKpuA
(M)) (2.4)

• Signing: A message M is signed by user A by applying the previously discussed
decryption operation to the messageM using his / her private keyKprA resulting in
the signature value SA. This signing can only be performed by a user in possession
of the corresponding private key. Therefore, this operation proves that a specific
user applied the operation to a message.

SA = DKprA
(M) (2.5)

• Signature Verification: A signature value SA, signed by user A, is verified by ap-
plying the before mentioned encryption operation on SA using the public key of A
resulting in MA. If MA = M holds for a known message M , the message M must
have been signed using A’s private key.

MA = EKpuA
(SA) = EKpuA

(DKprA
(M)) (2.6)

In asymmetric cryptographic systems, the basic cryptographic goals are fulfilled in the
following way:

• Confidentiality: In asymmetric cryptographic systems, confidentiality is estab-
lished encrypting data with the public key Kpu of the communication partner and
using the own private key Kpr to decrypt message encrypted with the correspond-
ing public key. Rather than relying on the presence of a commonly shared and
secret symmetric key, in such a cryptographic system public keys used for encryp-
tion are publicly shared over insecure channels. The problem of having to establish
a common secret key is now shifted towards verifying that the public key received
really corresponds to the private key of the communication partner and has not
been altered by an attacker (public key authenticity). This verification can be per-
formed using various kinds of methods, where the most common is represented by
digital certificates and PKIs.

• Authenticity: In an asymmetric cryptographic system, identity authenticity can
be established by signing messages or data blocks. Under the general assumption

2.1. CONVENTIONAL CRYPTOGRAPHIC SYSTEMS 13

that a users private key is only accessible to him/her and the public key can be
verified to belong to the user’s identity, the above mentioned signing and verification
operations ensure this identity authenticity.

• Non-Repudiation: Since every participant in an asymmetric cryptographic sys-
tem is in possession of a private/public - keypair, no common key is shared between
entities within the system. Thus, non-repudiation can be ensured using digital sig-
nature schemes. A message signed by user A can always be proven to be signed
by A through the verification operation and only A can sign messages due to the
possession of the private key KprA .

2.1.2 Differences

Symmetric and asymmetric cryptographic systems show various differences in underlying
principles as well as characteristics in an application scenario. The following lists some
of the most important differences:

• Underlying principles:

– In general, asymmetric cryptography is based on mathematical trapdoor-one-
way functions and number theoretical problems. A trapdoor-one-way-function
is thereby define as a function f(x) that is very easy to calculate when gen-
erally being very hard (or resource intensive) to invert. This means that
y = f(x) is very easy to calculate when x = f−1(y) is generally infeasible to
calculate. Further, such functions provide a trapdoor which is defined as in-
formation that softens the inversion of f(x) and turns it into an easy problem.
Therefore, calculating x = f−1(y) is very hard without and very easy with
the trapdoor. In such systems, the encryption is linked to calculating the
function value, when the decryption is linked to solving the inversion-problem
of the function and the trapdoor is given as the private key. In this case
the public key represents the parameters of the one-way-function f when the
private key represents the trapdoor to solving the inversion problem under
the parameters defined by the public key. Candidates for such functions are:
prime multiplication / factorization, modular exponentiation / logarithm
calculation or squaring / square root calculation in finite fields.

– Symmetric ciphers are, on the other hand, based on principles which combine
a message M and a symmetric key K to a value C in a way, such that it is
infeasible to unveil M from C without the knowledge of K. Approaches of
such non-linear combinations are based on elements like Feistel structures [21]
or Substitution-Permutation-Networks [21].

• Speed: Asymmetric encryption schemes are, due to the nature of their underlying
problems, extremely slow compared to symmetric schemes. Symmetric ciphers

14 CHAPTER 2. AUTHENTICATED ENCRYPTION

are on the other hand very fast and very efficient to implement in hardware and
software, which makes them very attractive for practical applications.

• Key-Length: Keys of asymmetric cryptographic systems are usually significantly
longer that those of symmetric encryption while providing the same level of security.

• Fulfillment of cryptographic goals: As mentioned earlier, not all cryptographic
goals can be met using symmetric encryption without any additional mechanisms.
The goal of ensuring non-repudiation can not be fulfilled in an symmetric systems
without having a trusted third party in place. Further, identity authenticity cannot
be ensure by symmetric schemes in constrast to asymmetric systems.

Especially, the big differences in speed and key-length between the two types of systems
often suggest combinations of them referred to as hybrid encryption schemes. These
schemes use principles of both types to ensure fast primitives as well as short key-lengths.
A simple example of such a combination is key-wrap [26]. In this technique, a symmetric
cipher is used to encrypt data, but asymmetric encryption is used to wrap (protect) the
symmetric key used.

2.2 Authenticity in Symmetric Cryptographic Systems

As discussed earlier, asymmetric cryptographic systems are capable of providing identity
and data authenticity under basic assumptions. In areas where symmetric cryptography
is required, data authenticity has to be ensured using additional mechanisms and prim-
itives (Note that identity authenticity can not be ensured in such systems). Systems
ensuring both, confidentiality and authenticity, can categorized into the following two
groups.

2.2.1 Generic Composition

An approach of creating such a cryptographic mechanism is combining two symmetric
primitives: an encryption scheme and a MAC. A MAC is a keyed hash function h that
takes as input a message M and a secret key K and calculates the MAC-value as T =
h(M,K) = hK(M), where T is referred to as the authentication tag. If the messageM ||T
is transmitted during a communication the receiver can verify integrity and authenticity
by simply calculating TX = hK(M) based on the message and the shared secret key.
If TX = T holds, the message has not been altered in transport and the data was
authenticated by someone in possession of the shared secret key.

Since authenticated encryption has the goal of delivering confidentiality as well as in-
tegrity and authenticity, an encryption primitive has to be combined with such a MAC.
In general, there exist three approaches for this combination. The following briefly de-

2.2. AUTHENTICITY IN SYMMETRIC CRYPTOGRAPHIC SYSTEMS 15

scribes them and their security level. All the statements made about the security level
rely on the assumption of secure symmetric encryption schemes as well as MACs.

• Encrypt-And-Mac: A message M is encrypted using an encryption key KE to
ensure confidentiality of the message. Further, a MAC value T is calculated from
M using the authentication key KA to ensure authenticity and integrity of the
transmitted message. Both operations (encryption and MAC) are applied to the
transmitted message M itself and are combined to the resulting ciphertext C.

C ′ = EKE
(M) (2.7)

T = hKA
(M) (2.8)

C = C ′||T (2.9)

Security: This combination is generally considered insecure. Even though it pro-
vides authenticity (directly linked to strength of MAC scheme), it lacks confiden-
tiality. This is due to the fact that the value T = hKA

(M) leaks information about
the plaintext (e.g. repeats). Since hKA

needs to be deterministic by definition, it
reveals information about the plaintext and therefore breaks confidentiality. Even
though plaintext integrity is ensured using the MAC, ciphertext integrity is not
established using this method. This means that it does not detect or prevent the
case of an attacker finding an altered ciphertext decrypting to M . [5]

• Mac-Then-Encrypt: When following this approach, the before-mentioned chain-
ing of operation takes place by first calculating the MAC value (T) of the message
M , and then applying encryption on the message and the authentication tag.

T = hKA
(M) (2.10)

C = EKE
(M ||T) (2.11)

(2.12)

Security: This combination now considers the before-mentioned leak of plaintext
information to the authentication tag T and counteracts by encrypting it. Even
though confidentiality can be fixed this way, it does still not provide ciphertext
integrity and therefore shows the same problem as the encrypt-and-mac method.
[5]

• Encrypt-Then-Mac: In this method, a messageM is encrypted using an encryp-
tion key KE (confidentiality). The output of this encryption process is then used
as input for the MAC operation using the authentication key KA resulting in the
authentication tag T . The two operations are now chained while encryption being
first.

C ′ = EKE
(M) (2.13)

T = hKA
(C ′) (2.14)

C = C ′||T (2.15)

16 CHAPTER 2. AUTHENTICATED ENCRYPTION

Security: This combination provides confidentiality, authenticity and ciphertext
integrity and can therefore be considered secure [5]. Possible combination of secure
encryption schemes and MACs combined in this way are AES-CBC (confidentiality)
and AES-CMAC or HMAC-SHA1 (authenticity) [5].

2.2.2 Dedicated Authenticated Encryption Ciphers

Besides the above stated combination of encryption and MACs, dedicated authenticated
encryption schemes have been developed over the years. ISO/IEC 19772:2009 standard-
ises the following designs (mostly block cipher modes-of-operations) [14] [15]:

• GCM

• OCB

• KeyWrap / SIV

• CCM

• EAX

2.2.3 Drawbacks and Limitations

The before discussed solutions for adding authenticity to symmetric encryption sys-
tems show major drawbacks causing the need for new authenticated encryption schemes.
Methods combining symmetric primitives and MACs have to use multiple primitives to
ensure authenticity and confidentiality. Therefore, the security of the system relies on
the security of two different components. Further, this makes such schemes relatively
slow and demands for two different symmetric keys to not show potential vulnerabilities.

The described dedicated designs of authenticated ciphers show good properties in terms
of performance, single-pass design, only rely on a single underlying primitive and only use
one key. Single-pass designs name primitives, that do not imply a second path branching
of the input of the cipher to calculate the authenticity tag separately. Although these
designs state a major improvement compared to previously described solutions, they still
show some drawbacks.

In particular for the block cipher mode GCM, a relatively high number of weak keys [23]
and problematic cyclic properties [27] justify the need for new schemes improving these
properties.

2.3 Goals of Dedicated Authenticated Encryption Schemes

Authenticated encryption has the goal of providing one cryptographic primitives that
ensures confidentiality, integrity as well as data authenticity in a symmetric cryptographic
system. As shown in previous chapters, symmetric encryption is not capable of providing
this using standard symmetric primitives. The disadvantages of methods combining

2.3. GOALS OF DEDICATED AUTHENTICATED ENCRYPTION SCHEMES 17

symmetric ciphers with MACs and weaknesses of existing dedicated schemes (as discussed
in Section 2.2.3) raise new needs for dedicated authenticated ciphers.

As discussed before in detail, primary goals of dedicated authenticated encryption
schemes are to provide confidentiality as well as data authenticity and integrity, when
only using one key and primitive.

Besides these basic goals, practical applications demand for an additional requirement:
Associated Data. Authenticated ciphers shall be able to ensure data authenticity on a
part of the sent message (the associated data) that is actually not encrypted. Figure 2.2
illustrates the concept of such a cipher, named AEAD - Authentic Encryption with As-
sociated Data. Such a cryptographic system takes as input the plaintext message M and
an encryption key K as well as authenticated data AD and outputs the ciphertext C and
an authentication tag T . Even though T authenticates P and AD, C does not contain
the encrypted representation of AD.

Figure 2.2: Basic structure of an authenticated encryption cipher. P ...plaintext,
C...ciphertext, K...secret key used for encryption and authentication, AD...associated
data, SN ...secret message number (optional), T ...authentication tag

A very popular example to justify the need for the support of authenticated data is en-
crypted network traffic. In computer networking, data packets are exchanged between
clients on different networks. These packets contain, besides the actual data exchanged,
header information that is needed by different protocols to ensure a reliable transporta-
tion of the packets. This header information is read by network devices (routers, switches,
etc.) to make sure the packet arrives at it’s intended destination. If this network transfer
now needs to be secured, the encryption can only be applied to the packet data and not
it’s header information, since this needs to be read by devices in transit to deliver the
packet. Even though confidentiality is not a requirement for this header information,
the receiver might want to ensure integrity and authenticity on this header information.
Therefore, it might be treated as associated data resulting in the desired authenticity
and integrity.

18 CHAPTER 2. AUTHENTICATED ENCRYPTION

This sums up to form the four main requirements of a AEAD schemes:

• Confidentiality of the plaintext encrypted using the cipher. Nobody should be
able to extract information from the encrypted message without the corresponding
secret key.

• Integrity of sent data. It must not be possible for an attacker to alter transmitted
messages without the receiver detecting it.

• Authenticity of transmitted ciphertext. It has to be ensured, that the data re-
ceived was sent by the communication partner sharing a secret key.

• Authenticity of appended associated data. It must not be possible for an
attacher to alter attached associated data event though this data is not encrypted.

Further, there exist certain requirements regarding the implementation of these primitives
such as:

• Only one key shall be required to ensure both, confidentiality and authenticity.

• The design shall be single-pass.

• The cipher shall show good properties for implementing it in hardware.

• The performance of the cipher has to be considered.

2.4 CAESAR Challenge

In order to find, analyse and select new dedicated authenticated cipher designs fulfilling
the before mentioned requirements for the next decade, the international cryptologic
research community initiated a new cryptographic competition for authenticated ciphers
called CAESAR (Competition for Authenticated Encryption: Security, Applicability, and
Robustness). The goal of this competition is to find a new portfolio of AEAD encryption
schemes showing advantages over AES-GCM. Even though standards committees might
show interest in this portfolio and standardize parts of it, the CAESAR challenge itself
does not drive standardisation of any cipher [1].

The requirements in the CAESAR - call for submission requests authenticated cipher
designs in the form of a cipher specification, security goals and security analysis parts.
Further, a C reference implementation for a specified interface has to be provided. As in
every cryptographic competition, the cryptographic community examines the different
submission with the goal of breaking weak designs and establishing deep analysis on
robust designs. The CAESAR committee will then select a portfolio of winner designs
and provide justification for their decisions [1].

There were 55 ciphers submitted to the competition in the first round. At the time
of writing, only 7 of those ciphers have been broken or withdrawn in about 6 months

2.5. DESIGN PRINCIPLES AND APPROACHES 19

of analysis time. This generally indicates the high quality of the submitted ciphers.
The general trend of increased quality of submitted ciphers and a higher number of
submissions to cryptographic competitions in general, dramatically increases the need
for automated analysis methods and tools. We refer to Section 1.3 for more general
information about cryptographic competitions and the problem addressed by automatic
analysis methods.

The submissions of the competition are generally categorized by [18]:

• Maintype ∈ {Block Cipher, Permutation, Other}

• Subtype ∈ {Unmodified AES, N-round AES, AES-like, Other Block Cipher, Sponge
Construction Based, FSR, ARX, LRX}

• Parallelizable ∈ {Fully, Partly, No}

• Online ∈ {Fully, Partly, No, Nonce MR}

• Nonce Misuse Resistance ∈ {MAX, MAX Online, LCP+X, A+N, None}

• Inverse Free ∈ {Yes, No, N/A}

2.5 Design Principles and Approaches

Many different designs have been submitted to the CAESAR challenge. The variety of
design principles ranges from new block cipher modes of operation over sponge construc-
tions and ARX / LRX ciphers to feedback shift registers or variants of AES.

Since this thesis focuses on three submissions based on the sponge construction, the basic
design principles are described here.

2.5.1 The Sponge Construction

In general, the sponge constructions is a cryptographic structure that can be used to
construct various cryptographic primitives such as MACs, hash functions, block ciphers,
stream ciphers, pseudo random number generators and authentic encryption ciphers [10].
It is a simple iterated construction for forming a variable input-length, variable output-
length function F based on a fixed input/output length transformation function f . f
operates on a fixed size state S consisting of two parts, c the so called capacity, and r
the rate. The size of S is called width and defined by b = c+ r [6].

The sponge construction performs it’s operation in three phases [6]:

1. Initialization Phase: In this phase, the state S is initialized to zero and the input
I is padded and cut into blocks of size r.

20 CHAPTER 2. AUTHENTICATED ENCRYPTION

2. Absorbing Phase: In this phase the construction absorbs the input message. This
is done by XORing the first r bits of the current state Si with the current padded
input block Ii (size of r due to padding in step 1). After this, the transformation
function f is applied to Si, resulting in the state Si+1. This procedure is repeated
until all the padded input blocks have been absorbed into the state S.

3. Squeezing Phase: In this phase, parts of S are squeezed out of the state Si
and form parts of the output message O. After r bits have been extracted, the
transformation function f is applied to the state. This procedure is repeated until
an output message O of desired length has been extracted.

Figure 2.3 illustrates the basic structure of the sponge construction.

Note that the capacity part of the state is never directly manipulated through the absorb-
ing or squeezing phase. So no parts of the input message I are XORed to the capacity of
the state and no parts of the capacity are extracted in the squeezing phase. Although the
capacity is part of the in- and output of the transformation function f . Further, the steps
of this basic construction might vary depending on the application (and cryptographic
primitive formed using the sponge construction). The basic design described here was
initially intended to be used as a basic structure for a hash function which corresponds
to the above described phases [6]. A sponge construction is dependent on the following
parameters:

• r: the rate of the state S

• c: the capacity of the state S

• f : the transformation function

• pad: the applied padding operation

Figure 2.3: The basic sponge construction. [10]

2.5. DESIGN PRINCIPLES AND APPROACHES 21

2.5.2 The Duplex Construction

The duplex construction states a very similar structure to the sponge construction de-
scribed before. The main difference between the two principles is that the sponge con-
struction absorbs the full input length in the absorption phase and extracts the whole
output message in the squeezing phase. In contrast to that, the duplex construction
features an operation, in which the injection of an input block and extraction of an out-
put block is performed in one step. Thus, a duplex construction supports the operation
duplexing(σi, l), where σi donates the ith input block and l represents the number of
requested output bits. This operation returns a bit string Zi with length |Zi| = l [10].
As explained before, σi is injected into and Zi is extracted from the rate r of the internal
state S. Between the injection and extraction, the transformation function f is applied
to S. Figure 2.4 illustrates this process [6]. The duplex construction is dependent on the
same parameters as the sponge construction, while only the phases of execution (injection
/ extraction) are different.

Note that the maximum value of l is defined by the size of the rate r. Further, the duplex
construction has no defined phases such as absorption or squeezing and the value of the
output Zi depends on all messages σ0 . . . σi−1 previously injected into the rate. The
construction therefore can be seen as obtaining an internal state dependent on message
parts injected [10].

Figure 2.4: The basic duplex construction [6].

2.5.3 The Monkey Duplex Construction

The monkey duplex construction now provides a way of how a duplex construction can
be used to construct an authenticated cipher. In the previous structures discussed,

22 CHAPTER 2. AUTHENTICATED ENCRYPTION

the initialisation of the state was performed setting it to a fixed value (zero). Since in
authenticated encryption, the values need to be dependent on the secret key, the monkey-
duplex construction defines a way of initializing the state to be key dependent. Therefore,
the operation initialize(K,N) is defined and initializes the state, where K names the
secret key, and N is a nonce unique to this encryption process. As in every nonce based
construction, the uniqueness of the pair (K,N) is required to ensure security of the
cipher. Unlike the duplex construction, the monkey duplex construction supports two
types of round transformation calls for initialisation and regular state transformation.
These two calls vary in number of iterations of f applied to the state. The structure
of the monkey duplex construction is illustrated in Figure 2.5. [7] The monkey duplex
construction is dependent on the parameters:

• r: the rate of the state S

• c: the capacity of the state S

• f : the transformation function

• pad: the applied padding operation

• lkey: the length of the key

• lnonce: the length of the unique nonce

• ninit: the iteration number of f after
the initialization. Thus, the function
f is applied ninit time after the state
has been initialized.

• nduplex: the iteration number between
duplex operations.

This structure can be used to construct authenticated cipher schemes. Therefore, the
ciphertext produced during encryption is donated by the output Zi, whereas the authen-
tication tag is represented by the state after the last transformation.

Figure 2.5: The monkey duplex construction. [7]

2.6. ATTACKS 23

2.6 Attacks

When analysing or attacking authenticated ciphers, one has to distinguish between two
basic types of attacks / goals of the analysis:

• key recovery: In this kind of attack, the goal is to reveal the secret key used for
encryption and authentication (or parts of it).

• forgery: In a forgery attack, an attacker tries to break authenticity of the scheme.
Therefore, this type of attack does not aim for revealing the secret key, but tries
to forge authenticity of a message. Assume a message M is encrypted using an
authenticated encryption scheme with the key K resulting in the ciphertext C and
the authentication tag T . The goal of this attack now is to efficiently find and / or
construct a message M ′ or ciphertext C ′ resulting in the same authentication tag
T . In this case an attacker can break authenticity since the same authentication
tag is delivered for different messages or ciphertexts.

The analysis methods in the scope of this thesis all aim towards forgery of messages. This
is based on the assumption that the examined schemes (based on their design principles)
provide a high level of security against key recovery attacks. Further, analysis with
the goal of being able to forge messages is much more specific to this special form of
encryption schemes and differs from standard cryptanalysis.

2.7 Analysed Ciphers

This thesis performs cryptanalysis using an automated analysis framework for three
submissions to the CAESAR competition. This section describes these ciphers and their
structure. Note that all further explanation and details about the performed analysis
and the created automated analysis framework will relate to NORX. Hence, NORX is
described in detail and we mainly refer to the submission documents of the other ciphers
MORUS and Ketje.

2.7.1 NORX

NORX is a design based on the previously described MonkeyDuplex construction with
arbitrary degree of parallelism and authentication tag length. NORX uses operations
like shifts, AND, XOR and rotations. The addition operation is avoided due to hard-
ware implementation benefits and easy application of cryptanalysis methods. Figure 2.6
illustrates the basic structure of NORX. We refer to [4] for a detailed specification.

The authors propose five different instances of NORX, which differ in word size (W),
number of rounds (R) for the transformation function FR and parallelism degree (D).
Table 2.1 defines the proposed combinations.

24 CHAPTER 2. AUTHENTICATED ENCRYPTION

W 64 32 64 32 64
R 4 4 6 6 4
D 1 1 1 1 4

Table 2.1: Different proposed instances of NORX based on word size (W), round number
(R) and parallelism degree (D).

The authenticated cipher can be run in two different modes:

a) Encryption Mode: Input to this mode is a 4W bit key K, a 2W bit nonce N and
an input message M = H||P ||T consisting of:

• a header H

• a plaintext payload P

• a trailer T

It outputs a ciphertext C (only the payload P is encrypted) and an authentication
tag A authenticating the whole message M .

b) Decryption Mode: Input to this mode is a 4W bit key K, a 2W bit nonce N and
an input message M = H||C||T consisting of:

• a header H

• a ciphertext payload C

• a trailer T

• an authentication tag A authenticating M

It outputs P (the plaintext payload) if the verification verify(H,T,C,A) is successful
and an error symbol otherwise.

Even though NORX can be configured to process data in parallel, the following descrip-
tion is based on the sequential case (parallelism parameter D = 1).

Basic Representation and Principles

In NORX, the state is represented as a concatenation of 16 statewords S =
S0||S1||S2||...||S15, which are arranged as a 4x4 matrix. The NORX state consists of
a rate of ten statewords S0...S9, where the capacity accounts for the remaining six state-
words S10...S15. The resulting values of rate and capacity of the state in the different
versions of NORX are listed in Table 2.2.

The transformation function (round function) of the MonkeyDuplex construction, as
described in Section 2.5.3, is donated by the function F and FR donates R applications
of F to its input state S.

2.7. ANALYSED CIPHERS 25

Figure 2.6: Overview over the NORX authenticated cipher.

NORX64 NORX32
b 1024 512
r 640 320
c 384 192

Table 2.2: NORX capacities and rates for different word sizes of it.

The round function

The round-function F is defined by applying the transformation G(a, b, c, d) eight times
to different words of the state. These eight applications of G are graphically illustrated
in Figure 2.7. It is split up into four column steps as well as four diagonal steps.

G(S0, S4, S8, S12) , G(S1, S5, S9, S13) (2.16)
G(S2, S6, S10, S14) , G(S3, S7, S11, S15) (2.17)
G(S0, S5, S10, S15) , G(S1, S6, S11, S12) (2.18)
G(S2, S7, S8, S13) , G(S3, S4, S9, S14) (2.19)

Figure 2.7: Application of G(a, b, c, d) to different parts of the state S. [4]

26 CHAPTER 2. AUTHENTICATED ENCRYPTION

The function G(a, b, c, d) is defined in Equations 2.20 to 2.27. As mentioned before,
NORX avoids additions. Instead, an addition A+B is approximated by A⊕B ⊕ ((A ∧
B)� 1) (based on the identity A+B = (A⊕B) + ((A ∧B)� 1)).

a←− (a⊕ b)⊕ (a ∧ b)� 1 (2.20)
d←− (a⊕ d) ≫ r0 (2.21)

c←− (c⊕ d)⊕ (c ∧ d)� 1 (2.22)
b←− (b⊕ c) ≫ r1 (2.23)

a←− (a⊕ b)⊕ (a ∧ b)� 1 (2.24)
d←− (a⊕ d) ≫ r2 (2.25)

c←− (c⊕ d)⊕ (c ∧ d)� 1 (2.26)
b←− (b⊕ c) ≫ r3 (2.27)

Basic Operations

This describes the process on encrypting and decrypting/verifying a message as well as
initializing the state. The basic operations are:

• Padding: NORX generally usesmulti-rate padding to pad input data and messages
to a multiple of the rate r. This is necessary since data is only injected (extracted)
into (from) the rate of the state.

• Domain-Separation: To omit symmetric properties and prevent the application
of sliding attacks, NORX facilitates domain separation by injecting domain specific
constants before certain operations are conducted. This constant is injected into
S15 of the state (capacity).

• Initialization: The initialisation is basically the process of establishing an initial
state S dependent on the nonce N and the key K. The NORX-Initialisation takes
place in three steps:

1. Basic Setup: The state is initialized to a set of constant values dependent on
parts of the key K, the nonce N and defined constants. We refer to [4] for a
detailed description of the process.

2. Parameter Integration: In this step, the previously described parameters D,
R, W and |A| are injected into one word of S. After the integration the round
function is applied R times.

S14 ←− S14 ⊕ ((R� 26)⊕ (D � 18)⊕ (W � 10)⊕ |A|) (2.28)

S ←− FR(S) (2.29)

2.7. ANALYSED CIPHERS 27

3. Finalisation: Finally, a domain constant v, which depends on the operation
performed after the initialisation (see [4] for the domain separation constants
of different operations) is integrated into the state and the round function is
applied R times.

S15 ←− S15 ⊕ v (2.30)

S ←− FR(S) (2.31)

• Message Processing:

1. Header Processing: The header data H is padded to a multiple of r resulting
in padr(H) = H0||H1||H2||...||HnH−1 with |Hi| = r ∀i ∈ {0, ..., nH − 1}. Each
of theses blocks Hi is split up into r/W = 10 words Hl = hl,0||...||hl,9 with
|hi| = W ∀i ∈ {0, ..., 9} and injected into the state in one step.

Sj ←− Sj ⊕ hl,j , for 0 ≤ j ≤ 9 (2.32)
S15 ←− S15 ⊕ v (2.33)

S ←− FR(S) (2.34)

2. Payload Processing: The payload data P is padded to a multiple of r resulting
in padr(P) = P0||P1||P2||...||PnP−1 with |Pi| = r ∀i ∈ {0, ..., nP − 1}. Each of
theses blocks Pi is split up into r/W = 10 words Pl = pl,0||...||pl,9 with |pi| =
W ∀i ∈ {0, ..., 9}. The payloadblock Pl is then encrypted to a ciphertextblock
Cl = cl,0||...||cl,9 by injecting plaintext blocks and extracting ciphertext blocks.

Sj ←− Sj ⊕ pl,j , for 0 ≤ j ≤ 9 (2.35)
cl,j ←− Sj (2.36)

S15 ←− S15 ⊕ v (2.37)

S ←− FR(S) (2.38)

3. Ciphertext Processing: The ciphertext data C is padded to a multiple of r
resulting in padr(C) = C0||C1||C2||...||CnC−1 with |Ci| = r ∀i ∈ {0, ..., nC−1}.
Each of theses blocks Ci is split up into r/W = 10 words Cl = cl,0||...||cl,9
with |ci| = W ∀i ∈ {0, ..., 9}. The ciphertextblock Cl is then decrypted to
a plaintextblock Pl = pl,0||...||pl,9 by extracting plaintextblocks and injecting
ciphertext blocks.

pl,j ←− Sj ⊕ cl,j , for 0 ≤ j ≤ 9 (2.39)
Sj ←− cl,j (2.40)

S15 ←− S15 ⊕ v (2.41)

S ←− FR(S) (2.42)

28 CHAPTER 2. AUTHENTICATED ENCRYPTION

Note that this operation is substantially different from the payload processing
operation since now, state words are extracted and used for decryption while
the ciphertext received overwrites the rate of the state in order to produce
and equal state as at the same point during the encryption.

4. Trailer Processing: The trailer data T is padded to a multiple of r resulting
in padr(T) = T0||T1||T2||...||TnT−1 with |Ti| = r ∀i ∈ {0, ..., nT − 1}. Each
of theses blocks Ti is split up into r/W = 10 words Tl = tl,0||...||tl,9 with
|ti| = W ∀i ∈ {0, ..., 9} and injected into the state in one step.

Sj ←− Sj ⊕ hl,j , for 0 ≤ j ≤ 9 (2.43)
S15 ←− S15 ⊕ v (2.44)

S ←− FR(S) (2.45)

• Tag Handling:

1. Tag Generation: To generate the authentication tag A after H, P and T
have been processed, the round function F is again applied R times. The |A|
least significant bits of the rate of the resulting state S (S0||...||S9) is set as
authentication tag A.

2. Tag Verification: To verify a received authentication tag A′, an authentication
tag A based on the received data (H, C, T) is generated during the decryption
process using the same tag generation process as stated before. If A′ = A holds
the tag A′ can be verified. It is important that while performing verification,
no information is leaked to a potential attacker.

2.7.2 MORUS

MORUS names an authenticated cipher based on sponge constructions operating on a
relatively large state of 640 or 1280 bits. It supports keys of length 128 and 256 bits
when using a round transformation only based on XOR, Shifts and AND operations. For
detailed information about MORUS, we refer to the submission document in [29].

2.7.3 KETJE

Ketje is a sponge based authenticated cipher design facilitating the MonkeyDuplex con-
struction. It supports relatively small states sizes of 200 and 400 bits with a rate of
8% of the state. The basic permutation is derived from KECCAK [8], where a tunable
number of rounds are supported. For detailed information about KETJE, we refer to the
submission document in [9].

Chapter 3

Cryptanalysis

This chapter is going to introduce the basic ideas and principles of different kinds of
cryptanalysis with a focus on differential cryptanalysis. In general, cryptanalysis names
the study of mathematical techniques with the goal of breaking cryptographic systems
or finding weaknesses that reduce their security level [21].

So when cryptography, as defined in Chapter 1, names the study of creating systems
that solve cryptologic problems, cryptanalysis names the discipline of breaking such sys-
tems. There exist various different ways and techniques of how to conduct cryptanalysis
to different cryptographic primitives. This chapter gives a short overview of common
approaches and provide a more detailed understanding of the technique applied in the
scope of this thesis: differential cryptanalysis.

3.1 Goals of Cryptanalysis

As mentioned before, the overall goal of cryptanalysis is to break a cryptographic prim-
itive or find a way to lower it’s security level. Although, cryptanalysis can have various
different and diverse goals dependent on the component or system attacked.

In general one can distinguish between two basic types of attacks on a cryptographic
system:

• Passive: An attacker observes the system, but does not take any actions of influ-
encing the cipher or device executing the cryptographic primitive.

• Active: An attacker actively influences a system in it’s execution in order to attack
it.

When performing an attack, we further have to distinguish between various attack models
based on the degree of information an attacker has about inputs / outputs to the cipher
under attack [21] [28]:

29

30 CHAPTER 3. CRYPTANALYSIS

• Ciphertext-Only Attack: The attacker tries to recover the key when only having
access to the ciphertext generated by the cipher attacked.

• Known-Plaintext Attack: The attacker has a set of plaintexts and corresponding
ciphertexts (Ci, Pi) for the cipher under attack.

• Chosen-Plaintext Attack: The attacker can define plaintexts and is able to
obtain the corresponding ciphertexts.

• Adaptive-Chosen-Plaintext Attack: Is a chosen-plaintext attack where the
chosen plaintexts might depend on ciphertexts previously obtained from the cipher
under attack.

• Chose-Ciphertext Attack: The attacker chooses the ciphertext and is able to
obtain the corresponding plaintext to it.

• Adaptive-Chosen-Ciphertext Attack: Is a chosen-ciphertext attack where the
chosen ciphertexts might depend on plaintexts previously obtained from the cipher
under attack.

Note that even though an attacker can gain different information in different attack mod-
els, all considerations happen under the basic assumption of Kerckhoff’s Principle [21].
Besides other assumptions, this states that the whole cryptographic system is assumed to
be known to an attacker. A cryptographic systems must be secure, if everything but the
used secret key is public. Systems hiding their specification must be considered insecure.

To explain the basic idea and goals of cryptanalysis, let’s assume a cipher TOY (definition
publicly available), which encrypts messages blocks Mi of size W using a key K of size
2W resulting in a ciphertext C of size W . This simple cipher is illustrated in Figure 3.1.
In the following, the operation CKi = EKi(P) donates the encryption of a message P
with a certain key Ki.

Figure 3.1: Basic setting when attacking the cipher TOY. |C| = W, |P | = W, |K| = 2W
.

An attacker (or cryptanalyst) now tries to break this system by revealing it’s secret key

3.2. ANALYSIS METHODS 31

in any of the above mentioned attack models. To keep it simple, let’s assume a known
plaintext attack. So the attacker knows at least one pair of ciphertext and corresponding
plaintext (C0, P0).

The simplest way to attack the cipher is to perform a so called brute-force attack. Here the
attacker would try all 22W different values of the secret keyK (Ki where i ∈ {0, ..., 2W−1}
and perform an encryption operation on the known plaintext P0 resulting in CKi =
EKi(P0). If CKi = C0 holds, then Ki is a candidate for the key K. This candidate
can be verified using an additional plaintext/ciphertext pair. Therefore, two plaintext /
ciphertext pairs are required in this attack to recover the right secret key.

This form of attack is of course practically infeasible, since the attacker needs to per-
form 22W encryption operations (worst case) which should take an extremely long time
(dependent on the key length 2W). As an example assume a cipher with a key length of
2W = 128 bits. An attacker would need to calculate 2128 ≈ 3.4 · 1038 encryption opera-
tions. When assuming an attacker conducts this attack in hardware that can calculate
2 · 107 encryption operations per second, the attack would take (worst case)

3.4 · 1038

3.15569 · 107 · 2 · 107
= 5, 387 · 1037 (3.1)

years.

The goal of cryptanalysis now is to find a method of breaking TOY that requires less
(and as few as possible) operations than brute-force na < 22W .

3.2 Analysis Methods

Different approaches for reaching this goal have been established in the history of cryp-
tography and cryptanalysis. Methods reach from pure statistical analysis of ciphertext,
usage of certain symmetric properties of ciphers to methods that evaluate inner states of
ciphers and therefore narrow down the potential key-space.

In this thesis, three of the most important analysis methods - differential, linear and
impossible differential cryptanalysis - are described. All these methods exploit statistical
properties of the cipher under attack in different forms. The focus in this case lies on
differential cryptanalysis, since this forms the method used to demonstrate the automated
analysis framework in this thesis (see Chapter 4 and 5).

3.2.1 Differential Cryptanalysis

The basic idea of differential cryptanalysis is to analyse a cipher not using concrete values
known x(such as for example a value for P or C), but using differential values of such
known parameters. A difference is a relational measure between two values of the same

32 CHAPTER 3. CRYPTANALYSIS

variable or parameter with respect to a certain operation. For example if two plaintext
values P1 and P2 in the above described cipher are given, the difference with respect to
the XOR operation can be calculated as 4P = P1 ⊕ P2. The operation used for the
construction of such differences can be chosen according to the requirements. Different
common types of operations are explained below.

Differential cryptanalysis is, in general, a chosen plaintext attack. So the attacker is able
to encrypt arbitrary plaintexts Px and obtain the corresponding ciphertext Cx.

Types of Differentials

The term differential can almost be applied to any operation Ξ applied to two different
values of the same parameter within a cipher. The type of differential in the cipher is
chosen according to the characteristics and properties that can be exploited or used. The
following forms of differentials are very common:

• XOR Differences: Here the difference is stated as applying the bit-wise XOR oper-
ation (for each bit i) on the input values as illustrated below.

4x = x1 ⊕ x2 ⇔4xi = x1i ⊕ x2i (3.2)

• Modular Differences: Here the difference is calculated by applying the modular
subtraction operation on two words x1 and x2 as illustrated below.

4x = x1 − x2 mod n | n = 2W − 1 (3.3)

• Signed Differences: In this type of difference, three different states (−1, +1, 0) are
distinguished for each bit instead of two (as with XOR differences). Therefore, it
is defined on a bit level as described below.

4xi =

0 , x1i = x2i
−1 , x1i > x2i
+1 , x1i < x2i

⇔ x2i − x1i (3.4)

• Multi-Bit Conditions: Here, differences in a single bit are calculated using condi-
tions based on other bits in the words. This dependency on up to n bits from a
condition function f is illustrated below.

4xi = f(x10 , . . . , x1n−1 , x20 , . . . , x2n−1) (3.5)

3.2. ANALYSIS METHODS 33

Behaviour of Differentials

This section briefly gives an overview of how differentials behave when being applied to
different operations often found in the construction of ciphers. This section covers the
behaviour of XOR differences, since they are used in analysis methods further discussed
in this thesis. In all of the following examples, x1 and x2 donate two different values of
the same parameter where 4x = x1⊕x2 is their difference (in this case according to the
XOR operation). Further, 4xo states the difference after the operation has been applied.

• Shifts, Rotations and Bit Reordering: When applying change to the bit-order
differentials propagate with a probability of 1 as well, since only the same bits in
the two components are changes, their relation is left unchanged, since the same
permutation is applied to both components the same way. So the permutation
is applied to the difference. Equation 3.6 illustrates this in a generic operation
permute that can be replaced with any bit permutation.

4xo = permute(x1)⊕ permute(x2) = permute(x1 ⊕ x2) = permute(4x) (3.6)

• Linear Maps: The same applies for linear maps as illustrated in 3.7 (L state the
application of a linear map).

4xo = L(x1)⊕ L(x2) = L(x1 ⊕ x2) = L(4x) (3.7)

A very important property of differentials in the context of linear maps is that they
are invariant to the application of the XOR operation with constants. This means
that differences propagate through this type of operation with a probability of 1
according to Equation 3.8.

4xo = (x1 ⊕K)⊕ (x2 ⊕K) = x1 ⊕ x2 = 4x (3.8)

This property is especially important since keys in ciphers are often added this way.
This property therefore allows the investigation of cipher properties after such a
key addition.

• Non-Linear Maps: For non-linear maps, the situation is quite disparate. Here
an input difference to this non-linear map is transformed in a way, so that the
output of the map can not be determined only dependent on the differential. This
is the case, since the same difference can be produced using varying pairs of values
and the map might behave unequal for each of those values. Therefore, an input
difference can propagate to various output differences with a certain probability.
This is expressed using the Difference Distribution Table, as shown in an example
later.

Example and Procedure

To explain the basic idea of differential cryptanalysis on a fairly easy example (adapted
from [17]), let’s refine the specification of TOY and look at it’s internal structure. Fig-

34 CHAPTER 3. CRYPTANALYSIS

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S[x] 6 4 c 5 0 7 2 e 1 f 3 d 8 a 9 b

Table 3.1: Substitution S[x]

ure 3.2 shows the internal structure of the cipher. It is a Substitution-Permutation-
Network (SP-Network). This ciphers generally consist of non-linear substitution layers
(e.g. S-boxes) and linear permutation (of diffusion) layers. In this simple example, no
permutation layer is present and the cipher consists of the XOR operation of messages
with a key, as well as an S-Box performing the substitution. As it can be seen in Figure
3.2, the key is split into two sub-keys K = K1||K2. Those sub-keys are XORed to the
message encrypted before and after the substitution using the S-Box. This substitution
is simply implemented as a lookup table as illustrated in Table 3.1.

Figure 3.2: Internal structure of the example cipher.

Lets assume a bit-length of W = 4 in this scenario resulting in a key length of |K| =
2W = 8 bit and a block length of |P | = |C| = W = 4 bit. In this example a known-
plaintext attack is conducted to 3.10) with the goal of revealing the secret key K in
less operations (and in a smarter way) than brute-force using differential cryptanalysis.
Further, in this example XOR-differences and the following plaintext / ciphertext pairs
were used:

P1 = 5 −→ C1 = F (3.9)
P2 = A −→ C2 = 0 (3.10)

The cipher design sets a pretty bad situation for a cryptanalyst, since even though two
pairs of P (P1 and P2) and C (C1 and C2) are known we cannot determine the value
of u or v internal to the cipher, since these values are fully dependent on the key. No
statement about K1, K2 and the internal variables v and u can be made.

So the goal at this stage has to be to gain further information about v and u in order to
reveal information about the secret key K. If we were able to determine specific values
for v (v1 or v2) and u (u1 or u2) the key could immediately be revealed by calculating
K1 = u1 ⊕ P1 = u2 ⊕ P2 and K2 = v1 ⊕ C1 = v2 ⊕ C2.

3.2. ANALYSIS METHODS 35

This is where differential cryptanalysis states a huge advantage. A very important ob-
servation can be made when taking a look at the differences of the two plaintext pairs
after the key has been added to them.

u1 = P1 ⊕K1 (3.11)
u2 = P2 ⊕K2 (3.12)

4u = u1 ⊕ u2 = (P1 ⊕K1)⊕ (P2 ⊕K1) = P1 ⊕ P2 = 4P (3.13)

As it can be seen, the sub-key K1 has no influence on the value of 4u (the differential
of u) anymore. Even though we can not determine the concrete values of u1 and u2, we
have significant information about it’s differential behaviour.

The same procedure can be applied to the given ciphertext difference4C and the internal
variable 4v as shown below.

C1 = v1 ⊕K2 ⇔ v1 = C1 ⊕K2 (3.14)
C2 = v2 ⊕K2 ⇔ v2 = C2 ⊕K2 (3.15)

4v = v1 ⊕ v2 = (C1 ⊕K2)⊕ (C2 ⊕K2) = C1 ⊕ C2 = 4C (3.16)

At this point, we know the differences 4u and 4v before and after the substitution
S[x]. Since u and v themselves cannot be calculated, the attack proceeds in the direc-
tion of narrowing down the set of possible values for v and u based on the information
known through the differences of plaintext-and ciphertext-pairs. Since information be-
fore and after S[x] is present, it seems reasonable to further investigate properties of this
substitution.

Differential Distribution Table (DDT)

One important property of such substitutions used in differential cryptanalysis is ex-
presses in the differential distribution table. It is based on the observation, that input
differences to a substitution can result in a set of output differences with a distinct
probability. In the context of differential cryptanalysis, this property is used to obtain
additional information about variables within a cipher when differential properties are
given.

In a substitution every possible input value is mapped to another fixed output value as
illustrated in Table 3.1. Therefore, without knowing the concrete value of input / output
no information about the output / input is available to an attacker. But the situation
changes, when observing which input differences map to which output differences.

36 CHAPTER 3. CRYPTANALYSIS

First, we have to note that every input difference 4i = i1 ⊕ i2 to such an S-Box can
be constructed in different ways using different values for i1 and i2. For example, the
difference 4i = 0x01 can be constructed by either i1 = 0x01, i2 = 0x00 or i1 = 0x11,
i2 = 0x01.

Secondly it has to be stated, that an input difference 4i can map to various output
differences dependent on which values i1 and i2 were used to construct it. Therefore,
4i only maps to a specific 4out with a certain probability pi,o. Note that all input
differences need to map to some output difference, where some combinations might be
impossible (p = 0). Thus, the sum over the probabilities of all output differences for a
specific input difference has to be 1.

What is now specific about each substitution is which input differences 4i can possibly
map to a specific output difference 4o with a certain probability. Among those possible
combinations, some will occur with a significantly high or low probability p leaking very
significant and important information. More specific, the constraints on which input
differences can map to which output differences limit the possible concrete values for
input and output occurring within the cipher. So if a specific 4u and 4v are given for
an S-Box, the constraints on the differential propagation through the S-Box narrow down
the set of possible values for u and v and are therefore very useful for an attacker.

To this point, we have only been able to establish statements regarding difference for
some points within the cipher. Our goal was to reveal specific values for u and v in
order to discover the key K. The information leaked through the DDT of the S-Box now
establishes a connection between differential relations / behaviour and the set of possible
values for u and v. This information will be used to break the cipher in the following.

Note that it is impossible to create an S-Box not showing the discussed properties. If an
attacker is able to construct a certain input and output difference at an S-Box in a cipher,
it leaks information which can be used in an attack. Thus, the goal of cipher designs is
to make it difficult to determine the differences for input and output at a certain S-Box
with sufficient high probability.

The IN-Set of a substitution names the set of input variables, in which a given input
difference can be injected and which causes a given difference at the output of the sub-
stitution. We can define the IN-Set of an input difference 4X and an output difference
4Y as illustrated in Equation 3.17.

IN(4X,4Y) = {X : S[X]⊕ S[X +4X] = 4Y } (3.17)

The information about differential behaviour regarding input- and output-differences of a
substitution / non-linear map is summarized in a so called Difference-Distribution-Table.
The values at each position X/Y of the table can be calculated as the size of the IN-Set
at this specific position as shown below.

DDT (X,Y) = ||IN(X,Y)|| (3.18)

3.2. ANALYSIS METHODS 37

Table 3.2 shows the DDT of the substitution S, where Code Example 3.1 shows a simple
Java code of calculating this DDT for arbitrary non-linear maps, where the map can be
passed as parameter to the function. Further, Code Example 3.2 shows how the DDT
was calculated for the given substitution S in TOY.

Code Example 3.1: Function calculating the DDT
1 public static int [][] calculateDDTofSBOX(HashMap <Integer , Integer > sbox)

{
3 // defining result

int [][] result = new int[sbox.size()][sbox.size()];
5

// iterating over all inputs
7 for (int in = 0; in < sbox.size(); in++)

{
9 // iterating over all outputs

for (int out = 0; out < sbox.size(); out++)
11 {

// iterating over all states of the SBOX
13 int currentCount = 0;

for (int x = 0; x < sbox.size(); x++)
15 {

// calculating reference value
17 int sboxInput = x^in;

int sboxOutput = sbox.get(sboxInput).intValue () ^ sbox.get(x).intValue ();
19

//if result matches: incrementing counter
21 if(sboxOutput == out)

{
23 currentCount ++;

}
25 }

27 // inserting result into code
result[out][in] = currentCount;

29 }
}

31
return result;

33 }

Code Example 3.2: Function used to define the S-Box and calculate the DDT
1 public static void main(String [] args)

{
3 HashMap <Integer , Integer > sBox = new HashMap <Integer , Integer >();

sBox.put(0, 6);
5 sBox.put(1, 4);

sBox.put(2, 12);
7 sBox.put(3, 5);

sBox.put(4, 0);
9 sBox.put(5, 7);

sBox.put(6, 2);
11 sBox.put(7, 14);

sBox.put(8, 1);
13 sBox.put(9, 15);

sBox.put(10, 3);
15 sBox.put(11, 13);

sBox.put(12, 8);
17 sBox.put(13, 10);

sBox.put(14, 9);
19 sBox.put(15, 11);

21 int [][] ddt = calculateDDTofSBOX(sBox);

23 for (int i = 0; i < ddt.length; i++)
{

25 for (int j = 0; j < ddt.length; j++)
{

27 System.out.print(ddt[j][i] + " & ");
}

29 System.out.println ();
}

31 }

38 CHAPTER 3. CRYPTANALYSIS

in / out 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 16 - - - - - - - - - - - - - - -
1 - - 6 - - - - 2 - 2 - - 2 - 4 -
2 - 6 6 - - - - - - 2 2 - - - - -
3 - - - 6 - 2 - - 2 - - - 4 - 2 -
4 - - - 2 - 2 4 - - 2 2 2 - - 2 -
5 - 2 2 - 4 - - 4 2 - - 2 - - - -
6 - - 2 - 4 - - 2 2 - 2 2 2 - - -
7 - - - - - 4 4 - 2 2 2 2 - - - -
8 - - - - - 2 - 2 4 - - 4 - 2 - 2
9 - 2 - - - 2 2 2 - 4 2 - - - - 2
a - - - - 2 2 - - - 4 4 - 2 2 - -
b - - - 2 2 - 2 2 2 - - 4 - - 2 -
c - 4 - 2 - 2 - - 2 - - - - - 6 -
d - - - - - - 2 2 - - - - 6 2 - 4
e - 2 - 4 2 - - - - - 2 - - - - 6
f - - - - 2 - 2 - - - - - - 10 - 2

Table 3.2: The calculated Difference Distribution Table of the Substitution S.

Using DDT Characteristics

By facilitating this DDT, we know which input differences can map to which output
differences with what probability. This will now be used to break the cipher TOY.

In a previous step, we discovered the relations for input difference 4u and output differ-
ence 4v to the S-Box S illustrated in Equation 3.13 and 3.16.

Since we have two different plaintext / ciphertext pairs given, we can calculate the values
of this differences as shown below.

4u = P1 ⊕ P2 = 0x5⊕ 0xA = 0xF (3.19)
4v = C1 ⊕ C2 = 0xF⊕ 0x0 = 0xF (3.20)

If we now take a look at the value in the DDT for this input difference 4u and output
difference 4v we can see, that only 2 possible values of u exist. These concrete values
can be calculated using the IN-Set of Equation 3.17. Thus, the internal state u ∈ {7, 8}.
Revisiting the relation u1 = P1 ⊕K1 ⇔ K1 = P1 ⊕ u1 we can obtain 2 different values
for K1. Therefore, the number of possible sub-keys for K1 (4 bit) just reduced from 24

to 2.

The cipher is broken, since we are efficiently able to reduce the possible keys for this
cipher (independent from which keys are used). Note that the same procedure can be
applied for the sub-key K2.

3.2. ANALYSIS METHODS 39

Real world ciphers typically have more rounds to prevent attacks like this. To perform
an attack similar to the one described before, an attacker would need to identify both
input and output differential at a specific S-Box in the cipher. Therefore, differential
characteristics with a high probability over several rounds of a cipher need to be found.
The term differential characteristic is explained in the following section.

In general differential cryptanalysis is a chosen-plaintext attack, so an attacker can en-
crypt arbitrary plaintext messages to construct internal differences. The goal of the
attacker is to construct differences in a way, so that the input and output differences
of a certain substitution (the last S-Box involved most of the time) can be determined
to conduct an attack. The goal of the cipher designer is to construct the cipher in a
way, so that these input / output differences can only be established with low probabil-
ity. This comes down to the problem of mitigating differential characteristics with high
probabilities as discussed and explained later in this chapter.

Further, note that all calculations of IN-Sets and DDT, are invariant to the used key
K = K1||K2, and therefore only has to be performed once in order to break all future
keys used for this cipher.

Differential Characteristics

In general, a differential characteristic names the propagation of a difference - as defined
in Section 3.2.1 - over certain rounds of transformations. To illustrate this concept,
consider a function f transforming an input into an output as illustrated in Figure 3.3
and Equation 3.21 to 3.22. Now assume the input difference 4a at the input of the
function as well as the output difference of it as 4b. Since the input difference 4a results
in the output difference4b, we call the pair4a f→4b a differential characteristic. Please
note that, as discussed in Section 3.2.1, this characteristic might only hold with a certain
probability 0 ≤ p ≤ 1.

Figure 3.3: Idea of the concept of differential characteristics.

f : {0, 1}m −→ {0, 1}m (3.21)
f(a) = b (3.22)

40 CHAPTER 3. CRYPTANALYSIS

In practice, characteristics over more than one round of such a (potentially non-linear)
function f are interesting. Such a differential over R rounds of the function f would be

donated by 4x0
fR

→
p
4xR. This multi-round-characteristic is illustrated in Figure 3.4.

Figure 3.4: A differential characteristic over multiple rounds of a function f .

3.2.2 Impossible Differential Cryptanalysis

Impossible Cryptanalysis states a sub-form of differential cryptanalysis following a
slightly different approach. Rather than trying to narrow down the key-space in the
demonstrated way by finding differential trails with a high probability throughout ci-
phers, this type of attack aims towards finding impossible differential characteristics in a
cipher. This means the goal is to find characteristics that propagate through the cipher
with probability p = 0 and derive statements and information about the cipher and it’s
secret components (keys) from this.

The basic idea is based on finding a differential trail 4X −→ 4Y over several rounds
of the cipher with probability p = 0. This means one has to calculate all possible ways
of how 4X can propagate through the rounds and find a point where all branches show
a probability of p = 0 to propagate to 4Y . A common way to attack a cipher using
impossible differential is to find impossible characteristics 4X −→ 4Y to a certain
internal point in the cipher and propagate values of C1 and C2 (ciphertexts) under a
certain key assumption Ki to that point starting from the other side resulting in C1k and
C2k . If at the defined point, the impossible differential proofs that 4Ck = C1k ⊕ C2k

is impossible at this point, the attacker knowns that the key assumption Ki was wrong
and can cross this candidate off the list. This way, the last sub-key can be attacked
separately and the key-space can be narrowed down relatively efficient.

3.2.3 Linear Cryptanalysis

Besides differential cryptanalysis, linear cryptanalysis is the analysis most widely used
method to analyse ciphers and cryptographic primitives. The basic goal of this analysis
is to find a set of linear equations describing or approximating a cipher and then solving

3.2. ANALYSIS METHODS 41

this system of equations in order to reveal the secret key K. Linear cryptanalysis takes
place in two main steps:

1. Find a description / approximation of the cipher through a set of linear equations
(with a high probability)

2. Solve this set of equations to recover (parts of) the secret key K using known
plaintext / ciphertexts pairs (Pi, Ci)

In contrast to differential cryptanalysis, linear cryptanalysis is a known-plaintext attack
rather than a chosen-plaintext attack.

To conduct the attack, a set of equations in the general form, illustrated in Equation 3.23,
is required and directly reveals the secret key. It relates bits of the W sized words P , C
and K.

P [0]⊕ . . .⊕ P [W − 1]⊕ C[0]⊕ . . .⊕ C[W − 1] = K[0]⊕ . . .⊕K[W − 1] (3.23)

As it can be seen in Equation 3.23, the equation relates selected bits of the plaintext,
ciphertext and used key. Therefore, the equation can be written as a selection of bits of
each of these parameters, related to each other. This selection of bits can be represented
by the multiplication of a column vector x containing the variables bits and a mask
m filtering / selecting bits to be part of the equation (as illustrated in Equation 3.24).
Equations 3.26 to 3.29 show an example of this notation.

x =

x[0]
x[1]
...

x[W − 1]

 m =

m[0]
m[1]
...

m[W − 1]

ᵀ

(3.24)

(3.25)
e.g.: P [0]⊕ P [1]⊕ P [3]⊕ C[2]⊕ C[3] = K[0]⊕K[3] (3.26)

⇔ α · P ⊕ β · C = γ ·K (3.27)
(3.28)

⇔

1
1
0
1

ᵀ

·

P [0]
P [1]
P [2]
P [3]

⊕

0
0
1
1

ᵀ

·

C[0]
C[1]
C[2]
C[3]

 =

1
0
0
1

ᵀ

·

K[0]
K[1]
K[2]
K[3]

 (3.29)

Of course, non-linear parts of ciphers (such as S-Boxes) cannot be described in linear
equations. Thus, such components have to be linearised or approximated so that they
can be described in linear equations. This means that the goal of the cryptanalyst is, to
find an equation α · x = β · S[x] that matches the behaviour of the real S-Box with a
significant probability.

42 CHAPTER 3. CRYPTANALYSIS

When applying linear cryptanalysis to the previously introduced example, the relations
stated in Equations 3.30 to 3.32 can be derived (adapted from [17]).

α · P = (α · u)⊕ (α ·K1) with probability p1 (3.30)
α · u = (β · v) with probability p2 (3.31)

β · v = (β · C)⊕ (β ·K2) with probability p3 (3.32)

Equations 3.30 and 3.32 result of the XOR operations u = P ⊕ K1 and C = v ⊕ K2.
The probability of these equations to match is actually 1, since they describe a linear
operation. Therefore, p1 = p3 = 1. Equation 3.31 represents an approximation of the
used S-Box S. So this is a linear expression describing a non-linear operation and will
not be valid for all possible values, and thus 0 < p2 < 1. The usage of variables and
masks is illustrated in Figure 3.5.

Figure 3.5: Cipher with masks to select bits involved in the linear equations.

The goal of the cryptanalyst is, to create an approximation for the non-linear operation
that has a significant probability. The worst case for an attacker (and the best for a
designer) is a probability of 1/2. In this case, the approximation matches half of the
time, which results in the least degree of information for an attack. Thus, the goal of
the approximation of any non-linear operation is to find masks α and β, that produce a
probability of the approximation p = 1

2 ± ε where |ε| is maximised. We call ε the bias.
The probability of the approximation can be easily determined by simply counting the
matches between α · u and β · v = β · S[u] over all possible input values u.

Note that significantly small probabilities are also good from a cryptanalytic point of
view, since if α · u = β · v has a low probability p, the relation α · u ⊕ 1 = β · c has the
probability p∗ = 1− p , which is therefore high. So both forms of values showing a high
bias ε resulting in an advantageous situation for an attacker.

If we combine Equation 3.30 to 3.32 and order the equations (all key-dependent parts to
the right hand side) and cancelling terms we can obtain.

(α · P)⊕ (β · C) = (α ·K1)⊕ (β ·K2) (3.33)

3.3. ANALYSIS METHODS FOR AE 43

This fully describes the approximated cipher with a probability p2 resulting from the
approximation of the non-linear operation. Therefore, the first phase of the attack has
been completed.

As a next step, we use this description to conduct an actual attack and reveal the secret
key. Please note that the right hand side of Equation 3.33 is unknown due to the unknown
sub-keys K1 and K2. Nevertheless, the left hand side expression is known since it’s a
known-plaintext attack.

The goal now is to determine the value of the right hand side of the equation by calculating
the left hand side for a huge number N of plaintext/ciphertext pairs. Since the left hand
side can be calculated (for N pairs) and we know the probability of the equation to
hold, we can establish the value of the right hand side (∈ {0, 1}) with a probability of
p2. The better the approximation is (larger bias ε), the more likely the equation will
hold and we can calculate the value of the right hand side using a large enough set of
plaintext/ciphertext pairs. To proceed, we simply evaluate the left hand side for all N
known pairs and count the occurrences of 1 and 0 as result. Either one of these values
occurring more often (assuming N is large enough) is taken as assumption for the right
had side value with probability p2.

Therefore, one bit of the key can be determined. This procedure can be repeated in a
similar way to attack the remaining bits of the key.

3.3 Analysis Methods for AE

This section discusses some basic type of analysis used to perform cryptanalysis on au-
thenticated ciphers. This will focus on ciphers such as discussed in Chapter 2 and con-
cepts based on a sponge construction as defined in the scope of this thesis.

3.3.1 Goals

As mentioned in earlier chapters, there are mainly two types of attacks on authenticated
ciphers:

a) Key Recovery Attacks: Goal of this attack is to break confidentiality of ciphers
and reveal the secret key K.

b) Forgery Attacks: Goal of this attack is to break authenticity of a cipher by being
able to force a message - i.e. produce two ciphertext messages C and C ′, resulting
in the same authentication tag A. So authenticity is not fulfilled and the cipher is
broken.

Since all considered ciphers are based on a design, that initializes the state based on the
key and a nonce, recovering the key is dependent on finding good differential character-

44 CHAPTER 3. CRYPTANALYSIS

istics over the - typically high amount of - initialization rounds of the round transforma-
tions. Based on the assumptions of all designs providing good protection against finding
such characteristics the analysis methods described here mainly focus on forgery attacks.

In a forgery attack on the ciphers, an attacker is able to manipulate a ciphertext C,
transmitted over an insecure channel. So the attacker has no influence on the key K but
only on the ciphertext C and the used nonce N . The goal of authenticity fulfilled by
the cipher is to detect any changes that the attacker would apply to C by detecting a
wrong authentication tag A. The goal of the attacker is to change C into C ′ 6= C, that
produces the same A when decrypted. Therefore, the receiver of the message would not
detect the tampering of the data. Figure 3.6 illustrates this attack setting.

Figure 3.6: Attack setting in a forgery attack.

Conducting a forgery attack is mainly done by searching for internal differential charac-
teristics, that cause the internal state to collide at certain positions within the cipher.
The following describes certain techniques and tools of how to find such characteristics.

The goal of a forgery attack is to construct or find ciphertexts C and C ′ resulting in
the same authentication tag A. Considering the sponge construction, this comes down
to finding collisions in the internal state of the cipher. This means finding a differential
characteristic over R rounds that produces differences of zero in the state at the end.
So, a non-zero difference 4S0 = S0 ⊕ S′0 at the beginning resulting in a zero difference
4SR = SR ⊕ S′R after R rounds. This is illustrated in Figure 3.7.

This case represents a collision of the state solely based on properties of the round function
f . The differences 4S0 could be injected into the state S0 by the given ciphertexts C
and C ′ used for the attack. The above described scenario requires the whole state to
collide after certain rounds, which is very unlikely to happen in practice, since the ciphers
are designed to prevent this. But given the fact that after some round, the state can be
manipulated (at parts) using the injected ciphertext, only certain parts of the state need
to collide.

3.3. ANALYSIS METHODS FOR AE 45

Figure 3.7: Development of a state collision.

3.3.2 Concepts and Tools

This section gives an overview of different methods and concepts of analysing authenti-
cated encryption schemes as well as tools to perform such an analysis.

Coding Theory

One way of finding such collisions in internal states is to leverage known algorithms for
finding low-weight codewords in linear codes. To do this, the problem of finding colliding
states, or in general, differences matching certain conditions has to be mapped to finding
codewords of a linear code. This is based on the assumption that finding codewords
showing certain properties in a linear code is generally easy. Further, is uses a linearised
model of the cipher in order to be able to apply these techniques.

A linear code C is defined by its generator matrix G. The rows of this generator matrix
form a basis and therefore span a vector space of that specific code. So the linear code is
formed as the row space of the generator matrix G. All linear combination of this base
vectors form elements in that vector space and therefore are valid codewords.

This matrix can be used to create codewords ci from arbitrary input vectors v as shown
below.

ci = v ·G⇔
(
ci0 . . . cin−1

)
=
(
vi0 . . . vin−1

)
·

 G0,0 · · · G0,n−1
...

. . .
...

Gn−1,0 · · · Gn−1,n−1

 (3.34)

The generator matrix can be described in a so called standard form as shown in Equa-
tion 3.35. Here the matrix consists of a part that has the form of an identity matrix
Ik and an arbitrary part P . Note that every generator matrix can be brought into this

46 CHAPTER 3. CRYPTANALYSIS

standard format.

G =
(
Ik|P

)
(3.35)

Algorithms such as [12], perform an efficient search for low-weight codewords in such
linear codes. The problem of finding differential characteristics showing defined properties
can be shifted towards finding codewords with certain properties. It has to be noted, that
the problem of finding minimum weight codewords is NP-hard. Although probabilistic
algorithms, such as [12], find codewords with low Hamming weight relatively efficient in
practise.

A generator matrix G (or a vector space) has to be defined representing differential
behaviour of the cipher.

Figure 3.8: The construction of a row vector of the generator matrix.

This process can be summarized in four steps:

1. Linearisation: Since a cipher is non-linear by design, it has to be linearised to
be represented by a linear code. Using the example of NORX, the only non-linear
operation in the round-function is the approximation of the word-wise addition as
x = (a ⊕ b) ⊕ ((a ∧ b) � 1). This operation can be linearised in various ways,
showing varying differential behaviours. In the analysis performed in the scope of
this thesis, this operation is linearised as x = a⊕ b.

2. Creation of Linear Code: In this step the generator matrix G of a linear code is
constructed. Here, a row of the generator matrix is equivalent to the propagation
of a difference (of size n) through round transformation f . These differences are
concatenated to form a row vector gi = gi0 || . . . ||giR = 4xi0 || . . . ||4xiR of G with
size |gi| = n · (R+ 1)., where R donates the considered rounds of the analysis. This
process is illustrated in Figure 3.8. To form a basis for a vector space and therefore
form a linear code, the matrix needs to have n linearly independent row-vectors
(rows) forming this basis. The values for the input differences 4xi0 can be chosen
as forming an identity matrix In as the first part of G. This guarantees linear
independence of the input differences and force G to be in standard form. So for
each row gi0 of G, two n-sized codewords X1 and X2 with 4xi0 = X1 ⊕ X2 =
1||0 . . . 0 � i | 0 ≤ i ≤ n − 1 are created. The propagation of 4xi0 through the
rounds of f forms the remaining elements of gi (characteristics).

3.3. ANALYSIS METHODS FOR AE 47

3. Enforce Collision: In the third step, the existences of collisions is enforced.
Therefore, certain parts of the found codewords are required to be 0. Since the
codewords equal differential characteristics in the cipher state, parts of the state
show difference 0, which is a partial collision. Therefore, a number of bits n of the
state can be forced to 0. If too many bits are forced to 0, no code word might be
found. In order to apply a forgery attack on NORX, the whole capacity c of the
state needs to be forced to zero (c ≤ n ≤ |S|). This is needed, since no ciphertext
word is ever injected into the capacity (see Section 2.5.2). Therefore, a collision
in these parts of the state cannot be enforced by injecting appropriate messages /
ciphertexts. At least the capacity has to collide to find an internal collision. Of
course, the more state bits collide in the characteristic the better, but forcing to
many state bits to zero in this type of search might result in invalid characteristics
or none at all.

4. Search for Codewords: The final step of the process is to apply the mentioned
search algorithms and find codewords of the defined code. The codewords of this
cipher are equivalent to characteristics over multiple rounds R of the cipher. Of all
possible codewords in the space defined by G, these algorithm finds those with low
Hamming weight hw(c). In this context, low Hamming weight is treated as rough
criteria for a high probability of the characteristic to hold in practice, since this
indicates a low probability of the linearisation distorting the characteristic. If the
codewords are sparse, ones in the characteristic will less likely propagate through
a part of the cipher that was changed due to linearisation which results in a lower
probability of the linearisation generating wrong characteristics.

Note that this method relies on the linearisation of a cipher. This means that the search
space for potentially found codewords is narrowed down and characteristics found using
that model might not be valid in reality. Although it allows the application of advanced
algorithms and general purpose tools for coding theory (non-specific to cryptography).

The tasks of the described process can be executed using various different tools providing
support for the above mentioned algorithms. In this thesis - as it will be explained in
later chapters - the IAIK Coding Tool [22] was used to perform this tasks. It offers
great support for search algorithms, forcing states bits to zero and generator matrix
representation and generation.

SAT Solvers

Another very popular approach to find such characteristics is using SAT-Solvers. In
general, SAT solvers are tools that aim to solve the Boolean Satisfiability Problem. The
problem is determining if a Boolean equation f(x1, x2, . . . , xn) | x1, . . . xn ∈ {0, 1} is
satisfiable and can therefore evaluate to 1 as well as finding the set of variables that
satisfies it. This problem has many applications and is known to be a NP-complete

48 CHAPTER 3. CRYPTANALYSIS

problem. As an example, one could consider the Boolean functions:

f1(x1, x2, x3) = (x1 ∨ x3) ∧ (x1 ∨ x2) (3.36)
f2(x1, x2, x3) = (x1) ∧ (x1 ∧ x2) (3.37)

While it can be easily seen, that f1 is satisfiable by using the value set (x1, x2, x3) =
(1, 1, 1), f2 cannot be satisfied, since it would require x1 to be 1 in the first term and
0 in the second. So no set of values (x1, x2, x3) can be found so that f2 evaluates to 1.
SAT solvers implement heuristic algorithms for find solutions to this hard problem.

In cryptography, ciphers can be expressed as a system of Boolean equations, where the
plaintext-, ciphertext- and key-bits are represented as Boolean variables. A SAT solver
can now verify or disprove the satisfiability of this equation system. Besides the cipher
description itself, various other constraints can be expressed in Boolean expressions as
well and added to the system. These constraints will be considered by the SAT solver.
The input to the SAT solver has to be a set of Boolean equations (mostly in CNF).

Besides plain SAT solvers certain constraint solvers exist to make these processes eas-
ier. A constraint solver (such as STP [3]), do not require the user to enter a Boolean
description of the equations to solve, but equations can be expressed using higher level
operations such as additions, subtractions, XORs or bit-shifts. The constraint solver
then transforms this input into Boolean equations and applies a SAT solver to it.

In the context of differential cryptanalysis, SAT solvers can be used in the following ways:

• Search for Characteristics: Given a differential description of a cipher in
Boolean equations (differential behaviour of subcomponents is modelled), a SAT
solver can search for variable-values satisfying the equations and can therefore also
find differential characteristics for a cipher. In this case, constraints to the differ-
ential characteristics are simply modelled as additional equations in the system.
In [16] this method was applied to find differential characteristics for NORX using
SAT solvers. Note that this provides a much larger search space compared to the
coding theory approach described earlier, since not only solutions matching the
linearised model are considered.

• Proof Security Bounds: In this application, a SAT solver is used to prove certain
security bounds of a cipher. If a cryptanalysist has found certain relations to
express the security bound of cipher, they can be formulated as Boolean functions
and passed to the SAT-solver in order to proof / validate it.

• Check Characteristics: As explained in earlier chapters, differential characteris-
tics only hold with a certain probability. Further, characteristics might have been
discovered using linearised models of the cipher and therefore have to be checked
against its non-linear description. SAT solvers can do just that by checking if a
given or found characteristic can satisfy the description as Boolean functions of a
cipher. To check such a characteristic 4S = 4S0||4S1|| . . . ||4SR, one defines two

3.4. CLASSIC ANALYSIS WORKFLOW 49

separate but identical descriptions of the R round cipher as illustrated in Figure
3.9 with the inputs I1 and I2 and the outputs O1 and O2. These inputs and out-
puts are treated as separate variables in the Boolean equation system passed to
the SAT-Solver. Note that these two descriptions are already given in the form of
Boolean equations. Next, a list of constraints enforcing the relations between the
states of the two described ciphers as the differentials have to be defined. Each
of these constraints defines that the differences of the states of the two described
ciphers must be equal to the corresponding part of the differential characteristic.
So the constraint co would define that S′0⊕S′′0 has to be equal to 4S0. To describe
the presence of the whole characteristic, R different constraints are defined:

c0 : S0 ⊕ S′0 = 4S0 (3.38)
c1 : S1 ⊕ S′1 = 4S1 (3.39)

... (3.40)
cR : SR ⊕ S′R = 4SR (3.41)

After all equations for both descriptions and the constraints have been added, the SAT
solver can be applied to the resulting system of equations. If the equations system is
satisfiable, the characteristic is correct.

Dedicated Tools

Besides the mentioned general purpose tools (SAT, CodingTool etc.), there also exist a
variety of dedicated tools to perform cryptanalysis. Most of these tools support various
different features including calculating probabilities of differentials in ciphers, searching
for characteristics as well as many other analysis features. Three of those tools are:

• IAIK NLTool [20]

• ARXTools [19]

• YAARX [11]

3.4 Classic Analysis Workflow

This section gives a short overview of the classical (with respect to the automated concept
introduced in this thesis) workflow of how to use tools previously described to analyse
new designs. As mentioned in earlier chapters the main goal of analysis dealt with in
this thesis is to forge the authentication tag A of an authenticated cipher. Further, as
described in the methodology section of this chapter, using differential cryptanalysis to
create such forgeries is based on finding differential characteristics over various rounds of
these ciphers causing collisions of the internal state.

A cryptanalysis would therefore conduct such an analysis in the following steps:

50 CHAPTER 3. CRYPTANALYSIS

Figure 3.9: Verification process of a characteristic in a cipher using SAT solvers.

1. Preliminary Analysis: Apply different tools and techniques to find colliding
(partially colliding) differences over the targeted number of rounds. An analyst
would try various different ways and different tools with varying parameters to get
a preliminary analysis and a feeling or intention for where potential weaknesses of
a cipher might be. As an example, a coding theory based tool as well as a SAT-
solver search could be started with varying parameters such as state bits forced
to collide or number of rounds. All found characteristics, even though they might
prove invalid later on, contribute to provide an understanding of towards where to
conduct further - manual and dedicated - analysis.

2. Validation: The characteristics found in the previous step have to be validated
using other tools. This might be based on assumptions or simplifications (linearisa-
tion) that took place in order to make the search for characteristics easier or feasible
in the first place. For example, a cryptanalyst might use a dedicated tool or a SAT-
solver to describe the cipher and prove the validity of found characteristics. The
result of this tells whether the found trail is valid or invalid.

3. Dedicated Analysis: Based on the found characteristics and the gained under-
standing of the characteristics of the cipher under investigation, the cryptanalysis

3.4. CLASSIC ANALYSIS WORKFLOW 51

now tries to target weaknesses of the cipher in order to create good characteristics
and force collisions in an efficient way. This turns out to be very complex and
requires dedicated and manual effort as well as a high cryptanalytic expertise to
find vulnerabilities. This might be done using various tools with adapted cipher
descriptions and own, targeted analysis code. For example, the description of the
cipher as Boolean equations - for use in a SAT solver - can be adapted or special
conditions can be added etc.

4. Attack: In this step, based on the results from the previous step, an actual attack
is performed on the cipher, limitations and potential of the attack as well as it’s
impact is evaluated.

3.4.1 Toolchains

As seen before, different tools are used in the workflow of performing an attack on a
proposed cipher design. Hereby, we can generally distinguish two kinds of tools:

a) Analysis Tools: In this operational mode, tools search for characteristics in a certain
form. Based on different techniques, the goal is to find a candidate characteristic
showing specific properties defined on beforehand. It takes as input a description
of the cipher in the required format as well as a search configuration defining basic
parameters. It outputs a candidate characteristic found according to the requirements.

b) Validation / Verification Tools: In this mode, tools try to validate found charac-
teristics. Therefore, they take the characteristic as well as a cipher description in an
arbitrary format as an input, and output a verification result ∈ {valid, invalid}.

Note that most tools can potentially be operated in both modes and therefore strictly
separating between analysis and verification tools is not possible. For example, a SAT-
solver can be used both to search for characteristics and verify them using different cipher
descriptions and additional conditions.

3.4.2 Problems

As described in this chapter, the cryptanalysis process of ciphers is mainly done following
an analysis process that still requires a lot of effort from the cryptanalyst to establish a
preliminary analysis using various different tools. Nevertheless this part of the process
ensures a broad understanding and indication for where potential weaknesses of a cipher
might be. The main work in performing this preliminary analysis goes into establishing
different forms of cipher representations used by different tools. Especially in an envi-
ronment like cryptographic competitions, where a large number of ciphers needs to be
analysed, this effort increases dramatically. This motivates the need for automation of
this process in any form.

52 CHAPTER 3. CRYPTANALYSIS

Chapter 4

Automated AE Analysis

This chapter describes what an automated preliminary analysis framework can look like,
which problems it addresses, how it is used and what challenges the implementation
of such a framework implies. Further, it explains what design principle it follows and
illustrates its potential extensions and applications. In Chapter 5, the implemented
framework and it’s components and processes are explained in detail.

4.1 Problem Description

As discussed in Chapter 3, tools - such as analysis and verification tools - are commonly
chained together in order to reach the analysis goal. Further, it can be observed, that all
of those available tools operate on very different representation of the cipher analysed.
For example, a coding theory based tool takes the generator matrix of the cipher (or at
least it’s round function) as a description, while a SAT-solver requires the cipher specified
as a system of Boolean equations. Other tools have specific formats of how algorithms
and functions are defined. Representations of results and parameters widely vary among
tools. Figure 4.1 illustrates an example workflow showing how many different formats
and representations are needed in order to use one tool to find characteristics (NLTool in
this case) and validate the result (using a SAT-solver here). Note that this represents one
of many different analysis paths running in parallel to conduct preliminary analysis and
gain an overview of the cipher’s characteristic. It might be necessary to have multiple
such trails running in parallel to gain some insights in the security of a cipher.

Cryptanalysts face the huge problem of having to put a large amount of work into im-
plementing different cipher representations for every tool in every mode of operation,
defining parameters and input/output formats and writing analysis code in many differ-
ent formats and languages. Figure 4.1 shows an example where a cryptanalysis need to
define:

53

54 CHAPTER 4. AUTOMATED AE ANALYSIS

Figure 4.1: Example of the tools used in a standard analysis workflow.

• Two cipher representations: NLTool
(C-code), CVC (input language SAT
solver) representing Boolean equa-
tions

• An adapter for the input / output for-
mats of the different tools (or manual
translation)

• Configuration files for search (NL-
Tool) and verification (SAT)

• Analysis Code executing search and
verification: terminal commands or
Script for NLTool, C-code or terminal
commands (scripts) for SAT-solver

This common scenario might have to be extended to n different such tool chains resulting
in significant overhead to perform preliminary analysis. This scenario is illustrated in
Figure 4.2.

Cryptographic Competitions

Since in cryptographic competitions a large number of ciphers require external analysis
through the analysis process, the increasing number of submissions as well as the in-
creased quality of submissions, as illustrated in Chapter 1, magnify the effort going into
the preliminary analysis-step. Therefore, especially in the context of such a competition,
this raises the need for an automated preliminary analysis framework that handles step
one of the before mentioned workflow and lets cryptanalysis focus on designing and per-
forming dedicated analysis techniques and attacks. Such a framework, that can facilitate

4.2. THE IDEA 55

Figure 4.2: Applying n tool chains to establish a preliminary cipher analysis.

various different tools, makes it very easy to integrate tools and works on arbitrary ci-
phers without adaptation due to automated cipher specification parsing as introduced in
this thesis.

4.2 The Idea

The idea of the automated analysis framework is based on being able to automatically
perform the stated preliminary analysis of a variety of different submissions to a crypto-
graphic competition. The framework analyses general properties of the cipher and tries
to find indicators for potential weaknesses as well as candidates for characteristics, while
operating on a low cryptanalytic level. As mentioned before, this can only be done by ap-
plying and combining various different tools and toolchains. The framework must allow
easy integration of different tools to be used for both analysis and verification following
the definition in Chapter 3. This basic idea of taking various cipher definitions as input
and applying different tools to perform preliminary analysis is illustrated in Figure 4.3.

At it’s core, the idea is based on being able to automatically create an abstract represen-
tation Γ of ciphers and algorithms submitted to cryptographic competitions as well as
being able to transform Γ to the different representation formats used by different tools.
This is needed as a basis for performing automated analysis, since different representa-
tion formats are required to run different tools without adapting their implementation. A
possible solution to this problem would be defining an abstract cipher definition language
and implementing transformations to the different input formats used during analysis.
However, this thesis explores a solution of achieving this goal without any additional
description or definition of the cipher.

56 CHAPTER 4. AUTOMATED AE ANALYSIS

Figure 4.3: Schematic illustration of the preliminary analysis framework.

To implement an automated framework performing preliminary analysis, an abstract
representation of the analysed cipher needs to be created. This forms the basis for
translation to the representations used by other tools throughout the process. In order
to get to such a representation when only using elements given in the submission, it
is important to identify a submission component that can be used as a basis for its
construction. The submission consists of two main components:

a) Specification: The design specification is represented as a paper describing basic
design principles, the cipher design itself as well as security claims and preliminary
cryptanalysis on the scheme. It is usually submitted in the form of a pdf document in a
non-standardized form. Therefore, this component, even though containing the cipher
definition, is not suitable for the task of creating an abstract cipher representation.

b) Reference Implementation: Submissions to competitions usually also contain a
reference implementation of the proposed cipher in a defined format and language.
This mainly serves two goals:

• A reference implementation allows the cryptographic community to test the ci-
pher and gain practical understanding of how it operates. This overcomes poten-
tial ambiguities in the textual definition of the cipher and helps to immediately
understand the cipher design.

• Further, in many cryptographic competitions (especially for symmetric cryp-
tography) properties like performance or memory consumption of the proposed
primitives play a major role in the evaluation and ranking of the submissions.
Therefore, the evaluators have to be provided with an implementation that al-
lows the application of performance tests for benchmarking on all candidates.
Commonly, researches can submit optimised implementations of their ciphers -
for different platforms - sometime after the submission deadline for that purpose.

This implementation is commonly delivered in the language C, while defined interfaces

4.3. THE AUTOMATED ANALYSIS WORKFLOW 57

need to be implemented so that performance tests can be run automatically. In recent
cryptographic competitions, the eBACS system has been used as a benchmarking tool
for submissions using distributed environment in order to reach coverage of many
architectures and systems [13]. This submission component forms a good basis for
creating an abstract cipher representation.

Therefore, the framework takes the definition of a cipher given by it’s reference imple-
mentation in C-code as an input, transforms it to an abstract cipher representation and
implements adapters to easily transform it into representations needed by different tools
used during analysis. This basic process is illustrated in Figure 4.4.

Figure 4.4: Basic transformation of cipher representations within the framework using
adapters to transform the abstract representation into formats needed by different tools.

4.3 The Automated Analysis Workflow

The framework introduced in this thesis mainly addresses the first step in the classical
analysis process as introduced in Chapter 3. So preliminary analysis of the different
ciphers as well as the creation of the basic cipher representation used for further ded-
icated analysis is performed by the framework. It can be applied to various different
cipher submissions at the same time. Therefore, cryptanalysts can focus on conducting
dedicated analysis on ciphers showing exploitable properties such as characteristics with
high probability. The scanning for such properties as well as applying standard tools
using various different cipher representations is automatically handled by the framework
.The following illustrates the usage of it from a cryptanalyst’s perspective.

58 CHAPTER 4. AUTOMATED AE ANALYSIS

4.3.1 Using the Framework

In order to start an automated analysis process, the user of the framework would provide
the following items as input as illustrated in Figure 4.3:

• Reference Implementation: This names the reference implementation in C,
contained in the submission. The user might have to make short annotations in
the code to enable automated generation of the abstract representation Γ. This is
discussed in detail in Chapter 5.

• AT/VT: A set of n analysis and verification tools to be used by the framework.
As mentioned earlier, some tools can perform both operations (analyse / verify) in
different modes.

• Adapters: This names a set of n adapters, transforming the abstract cipher rep-
resentation Γ into the representations used by the specific tool. So for every tool
used in combination with the framework, an adapter has to be implemented once.

• Analysis Code: The code defining the steps of the analysis. Note that it uses
the framework to perform the analysis and defines the toolchain. This code can be
reused for the same analysis procedure independent from which cipher is analysed.

Figure 4.5: Overview over input and output items to the framework.

The output of the system are the following as illustrated in Figure 4.5:

• Report: A report describing the search and verification process. This illustrates
which characteristics were found, what properties they have and if they could be
verified. Further, it gives information about the covered part of the search space
and used parameters.

• Results: The results mainly consist of candidate characteristics, found during the

4.4. GOALS 59

analysis. They can be used to point out directions of further dedicated analysis
and attacks.

• Base Representations for different tools: As mentioned earlier, a base repre-
sentation of the cipher for each of the used tools is generated. Besides being used
for the preliminary analysis, these form the basis for further dedicated analysis
and provide the cryptanalyst with a basic description that can be adapted to spe-
cific needs. For example, a cryptanalyst might take this base representation and
conduct an attack based on properties delivered by the preliminary analysis.

4.3.2 Application Setting

A very likely application scenario of the framework is not running the analysis procedure
on local machines, but on a cluster. After the cryptanalyst submits x ciphers to the soft-
ware running on the cluster, it would run different search and verification steps according
to the analysis code and return the above mentioned output. The idea here is that the
software would continuously run on the server, perform it’s procedure with a setting that
does not terminate and report results back to the cryptanalyst on a regular basis. Since
algorithms used for searching characteristics mostly rely on heuristic and randomized
approaches, this would ensure a coverage of a great portion of the search space with
continuous feedback to the cryptanalyst. This setting is illustrated in Figure 4.6.

Figure 4.6: Principle of continuous preliminary analysis of ciphers using a cluster server.

4.4 Goals

When the automated framework was first designed, the following basic goals were iden-
tified to ensure high benefit to the cryptanalyst using the framework as well as a high
level of flexibility for future task and use cases:

60 CHAPTER 4. AUTOMATED AE ANALYSIS

a) Abstract Cipher Representation: Finding an abstract representation format that
can be used to represent different kinds of analysed ciphers as well as to perform
operations on it and allow the implementation of adapter is essential to the design of
the framework. It should be easily possible for a cryptanalyst, to implement adapters
for newly integrated tools without deep knowledge of the abstract representation and
independent of the cipher analysed.

b) Automated Parsing: The tool should be able to automatically parse reference
implementation code given in submissions to competitions into the abstract represen-
tation Γ. Although, it should not be dependent on a specific structure of the code
itself. The cryptanalyst should be able to annotate the code and therefore configure
the automated parsing and interpretation.

c) Extendibility: The framework should be very easy to extend in terms of adding
new tools and implementing the adapters necessary to include them into an analy-
sis. Therefore, well defined interfaces and a modular structure of the framework are
required. It should be easy to integrate different kinds of tools, even beyond the
described types of analysis and verification tools.

d) Combination of Tools: Cryptanalysts shall be able to easily combine different kinds
of tools in analysis code. Therefore, besides the representation being transformed
to different formats, parameters to different tools, input and results must be easily
combinable.

e) Demonstration: A basic version of the framework shall be implemented in this
thesis to prove the viability of such a framework and demonstrates it’s benefits and
potential.

We refer to Chapter 5 more more detail on how these goals are met in the implementation
of the automated framework.

4.5 Supported Tools

In the following section, the tools supported in the framework developed in the thesis
are presented and shortly explained. The tools themselves implement analysis principles
described in Chapter 3. We will describe the basic formats for input / output and cipher
representations they use and how the analysis is conducted.

4.5.1 Extended IAIK CodingTool

As mentioned in earlier chapters, the IAIK Coding Tool [22] was used to perform a
preliminary analysis part using the coding theory approach described in Chapter 3. The
tool itself supports the creation of the required generator matrix G as well as for searching
for low-weight codewords and the data structures needed to perform this task and hold

4.5. SUPPORTED TOOLS 61

data. In this thesis, the framework was extended in order to support automated creation
of this generator matrix based on an arbitrary C++11 closure representing the round
function. Therefore, a closure or function pointer to the round function can be passed to
the extended tool which then performs an automated preliminary analysis following the
previously described approach. The workflow of this procedure is as follows:

1. The round function of a reference implementation of the cipher analysed is passed
to the function as a closure or function pointer. The tool input forms a vector
of such closures or function pointers. This way, several different sub-rounds can
be explicitly added. The state differences between each of the passed sub-rounds
will be included in G and therefore considered in the search. So if, for example,
sub-rounds of the original round transformations Si+1 = f(Si) are interesting, the
round can simply be split in two parts as closures for Si+1 = f2 ◦ f1(Si). The tool
will consider differences for the intermediate state value in the search and results.

2. The tool constructs a generator matrix G in standard form. This is done by con-
structing the i-th row gi by forming differentials of the form (1||0 . . . 0) � i | 0 ≤
i ≤ n − 1 at the beginning of the cipher and propagating the differential through
the specified number of rounds R, when each intermediate value is appended to the
row.

3. In the code-shortening step, the tool forces a defined number of state bits to be zero
by transforming G to a corresponding form. This is done using simple Gaussian
elimination.

4. As a next step, the tool searches for low-weight codewords in the linear code defined
by G using probabilistic algorithms from coding theory applications, as discussed
in Chapter 3.

5. Once such a codeword is found, it calls a method of a defined callback passing
the found characteristic as well as it’s Hamming weight. The callback can then
try to validate / verify the characteristic using another tool or simply check if the
Hamming weight of the found word is interesting or relevant for the analysis. If
the callback returns true, the word is considered verified. The tool then calls one
of two other callback methods dependent on if the word could be verified. These
methods tell the tool whether to store the found word or not.

6. In it’s final step, the tool returns a collection class holding all found codewords /
characteristics as well a value indicating if they could be verified. This collection
class further allows the generation of a LATEX- report containing the results.

Code Example 4.1 shows an analysis code performing the coding analysis on 0 < R ≤ 4
rounds with various different parts of the state forced to collide. First, it generates the
closures for two sub-rounds (columnG and diagonalG) based on the functions F1 and F2
from the NORX implementation as described in Chapter 2. Then it iterates over the
target rounds as well as the number of state bits forced to zero and calls the method

62 CHAPTER 4. AUTOMATED AE ANALYSIS

runCodingTheoryAnalysis to perform the analysis. The object resultSeries holds the
results and is used to generate the LATEXreport.

Code Example 4.1: Application example of the adapted / extended CodingTool to per-
form coding analysis on NORX.

1 #include <iostream >
#include "LowWeightSearch.h"

3 #include "CodeMatrix.h"
#include "Logger.h"

5 #include "CipherAnalyzer.h"
#include "StateAdapter.h"

7 #include <tuple >
#include <stddef.h>

9
//norx includes

11 #include "src/ciphers_linearized/norx/norx6441/ref/norx.c"

13 int main(int argc , const char* argv [])
{

15 //NORX --
//1-4 rounds of round function , 64 bit state words , 16 word state size

17 std::cout << "Starting analysis of NORX" << std::endl;

19 // creating vector of sub round functions
std::vector <function <void(uint64_t *)>> norxRoundSubFunctions;

21
// adding parts of the round function as closures

23 auto columnG = [](uint64_t* state){F1(state);};
auto diagonalG = [](uint64_t* state){F2(state);};

25 norxRoundSubFunctions.push_back(columnG);
norxRoundSubFunctions.push_back(diagonalG);

27
CodingTheoryAnalysisResultSeries resultSeries("norx_analysis");

29
// performing coding theroy analysis for 1 to 4 rounds

31 for (int roundoption = 1; roundoption <= 4; ++ roundoption)
{

33 // creating 64 bit norx cipheranalyzer
CipherAnalyzer <uint64_t > norx("norx", 16, roundoption , norxRoundSubFunctions);

35
// performing coding theory analysis and forcing 7-16 state words (6 words = c->always forced to 0)

37 for (int tozero = 7; tozero <= 16; ++ tozero)
{

39 // creating callbacks
std::function <bool(std::vector <bool >, uint64_t)> verificationCallback = [](std::vector <bool >

characteristic , uint64_t weight)
41 {

if(weight < 300)
43 {

return true;
45 }

else
47 {

return false;
49 }

};
51

std::function <bool(std::vector <bool >, uint64_t)> shouldStoreVerifiedCallback = [](std::vector <bool >
characteristic , uint64_t weight)

53 {
return true;

55 };

57 std::function <bool(std::vector <bool >, uint64_t)> shouldStoreNotVerfiedCallback = [](std::vector <bool >
characteristic , uint64_t weight)

{
59 return false;

};
61

// running codingtheory analysis
63 norx.runCodingTheoryAnalysis(tozero , verificationCallback ,shouldStoreVerifiedCallback ,

shouldStoreNotVerfiedCallback , &resultSeries);
}

65 Logger :: logMessage("done with NORX ...");
resultSeries.writeToLatexFile ();

67 }
// ---

69 }

4.5. SUPPORTED TOOLS 63

The code internally creating G and performing the analysis (CipherAnalyzer.h) is pub-
licly available and the steps are documented in code. Note that the original version of
the IAIK Coding Tool was adapted for this purpose.

4.5.2 NLTool

As briefly described in Chapter 3, the IAIK NLTool is a dedicated tool for performing
cryptanalysis on symmetric primitives. It supports various functionalities including the
search for characteristics, validation of characteristics as well as characteristic probability
calculation.

It operates on an own cipher representation format written in C. This format model is
constructed from different forms of steps performed in the cipher. There are different
types of steps such as LinearStep, BitsliceStep or CarryStep for operations involving
carry bits such as modular additions. Each of these steps describes a certain function
modelled as template parameter within the step. Functions can be implemented as special
methods in a defined class. Different steps are added to the cipher description using the
Add() method to form the cipher representation. Code Example 4.2 gives an example of
such a description. In can be noted that used variables must be added beforehand. This
examples illustrated the approximation of the addition used in NORX as described in
Chapter 2.

a = (a⊕ b)⊕ ((a ∧ b)� 1) (4.1)

Code Example 4.2: NLTool representation of the NORX approximation of the addition
process.

1 #include "functions.h"

3 test::test(int steps , int N)
{

5 // defining codewords
CodeWord a = AddConditionWord("a", 1, 0, 1);

7 CodeWord b = AddConditionWord("b", 1, 0, 2);
CodeWord temp1 = AddConditionWord("temp1", 1, 0, 3);

9 CodeWord temp2 = AddConditionWord("temp2", 1, 0, 4);
CodeWord temp3 = AddConditionWord("temp3", 1, 0, 5);

11
//a XOR b

13 Add(new BitsliceStep <XOR2 >(N, a, b, temp1));

15 //a AND b
Add(new BitsliceStep <AND2 >(N, a, b, temp2));

17
//a AND b << 1

19 temp3 = temp2 ->Shl(1);

21 //a = (a XOR b) XOR ((a AND b) << 1)
Add(new BitsliceStep <XOR2 >(N, temp1 , temp3 , a));

23 }

This representation can be adapted in order to perform dedicated cryptanalysis. The
goal of the automated framework in this case is to provide a basic representation which
adoptions can be based upon.

64 CHAPTER 4. AUTOMATED AE ANALYSIS

The tool is then started using the command line with specific parameters defining the
mode of operations and input files. The input file is structured in a way so that added
CodeWords correspond to a variable declared in a grid model. The 3rd and 4th parameter
in the Add() call represent the row and column in that input / output format grid.

4.5.3 STP

STP (Simple Theory Prover) is a constraint solver over the space of bit-vectors and single
dimension arrays. It takes as input, equations and expressions describing a certain theo-
rem and uses SAT solvers internally to figure out if this theorem is satisfiable. Therefore,
the theorem can be defined in a high level language supporting operations such as con-
catenation, extraction, shifting, addition, multiplication signed modulo / division as well
as bitwise Boolean operations and many more. So it provides a convenient, high level for-
mat to express such input equations, translates them to a low-level CNF representation
needed by SAT solvers and proves their satisfiability or constructs counterexamples. The
convenience in the input language lies in the rich set of available high level operations as
well as rich data structures which make it very easy to express complex theorems.

Applied to cryptographic problems, STP can be used just like a SAT-solver (explained
in Chapter 3) with a high level input language.

STP supports the different input languages CVC, SMT-LIB1 and SMT-LIB2. These are
file format inputs that define a syntax of how to declare variables and operations on
them. Further, it provides a C-interface that allows an easy way to express theorems and
prove them. In this thesis, this interface is used to define cipher descriptions and obtain
a theorem / set of equations that allows the verification of characteristics. However, we
want to note that SAT or constraint solvers can also be used to search for characteristics
for the cipher definition.

The C-interface works on the basic type Expr, which names every possible expression
within STP. Further, for every supported operation it provides a function taking input
expressions and returning the resulting expressions. After the whole theorem has been
expressed in a system of equations (most likely equalities of Expr statements), it can be
queried for validation returning if the expression could be validated. Queries can be,
of course, applied to various components of a cipher description (or the corresponding
expressions) separately (e.g. for each state word). If all expressions are valid, the whole
system of expressions / equations is valid.

Code Example 4.3 gives an example of a STP description of the approximation of the
addition operation used in NORX, as illustrated in Chapter 2 using the C-interface.

a = (a⊕ b)⊕ ((a ∧ b)� 1) (4.2)

4.6. USED TOOLS AND LIBRARIES 65

Code Example 4.3: STP representation of the NORX approximation of the addition
operation

1 Expr test(int N)
{

3 // creating handle
VC handle = vc_createValidityChecker ();

5
// defining expression for input

7 Expr a = vc_varExpr(handle , "a", vc_bvType(handle , N));
Expr b = vc_varExpr(handle , "b", vc_bvType(handle , N));

9
//a XOR b

11 Expr temp1 = vc_bvXorExpr(handle , a, b);

13 //a AND b
Expr temp2 = vc_bvAndExpr(handle , a, b);

15
//(a AND b) << 1

17 Expr temp3 = vc_bvLeftShiftExpr(handle , 1, temp2);

19 //(a XOR b) XOR ((a AND b) << 1)
Expr result = vc_bvXorExpr(handle , temp1 , temp3);

21
return result;

23 }

4.6 Used Tools and Libraries

This section shortly describes and explains some important components and libraries
used to establish the framework.

4.6.1 Transcompilers

A transcompiler, or also called source-to-source compiler or source-to-source translator,
is a compiler that transforms code of one programming language into code of another pro-
gramming language or format. In contrast to a conventional compiler, which transforms
code into a language with a reduced abstraction level, both source and destination lan-
guage have about the same abstraction level when using a transcompiler. Transcompilers
usually consist of a frontend used to read and parse code from the source language, and
a backend transforming it into the target language. So called source-to-source analysers,
as used in this thesis, feature a software component that allows analysis and manipu-
lation of the parsed code representation before being compiled to the target language.
Figure 4.7 illustrates this principle. Between the frontend and the backend, the code is
represented in a so called intermediate representation (IR). The design and capabilities
of this IR are heavily dependent on the used transcompiler.

Transcompilers themselves are mostly used to port algorithms to other languages due
to implementation constraints. Source-to-source translators on the other hand (among
others) have two main applications:

• Code analysis: The structure of source-to-source translators offers great capa-
bilities for program analysis that can be performed on the IR. Although this is

66 CHAPTER 4. AUTOMATED AE ANALYSIS

Figure 4.7: Basic structure of a source-to-source or analyser.

very dependent on the capabilities and complexity of the used IR, possible analysis
types involve cycle detection, software verification, software security analysis, loop
analysis, performance analysis as well as data flow analysis and many more. As an
example, a source-to-source translator could be used to parse C-code and detect
unwanted cycles in the program flow [24].

• Code manipulation: In this application scenario, existing code can be manipu-
lated or new code can be selectively injected into the IR before the application of
the backend. Therefore, arbitrary modification can be applied to the source code
(in it’s intermediate representation) even automatically. This involves performance
optimization, automated unit test generation or interface generation. Statements
(such as log messages) can be, for example, injected at the end of each method
matching certain criteria or statements and function calls can be easily manipu-
lated or interchanged [24]. In this mode the source-to-source translator acts a lot
like a weaver known from modern aspect-oriented programming languages.

In the framework introduced in this thesis, such a source-to-source translator is used
to automatically parse cipher representations from source code into an abstract (yet
powerful) IR, perform modifications on the source code to bring it to an simple standard
form and implement adapters to transform the modified IR to input formats used by
different tools. For detailed information on this process, we refer to Chapter 5.

4.6.2 The ROSE Compiler Framework

The ROSE compiler infrastructure is a tool developed by the Lawrence Livermore Na-
tional Laboratory with the goal of providing a framework for standard compiler features
to non-compiler experts. It supports frontends and backends for various different pro-
gramming languages, a very powerful IR as well as various features for manipulating,
analysing and constructing parts of the IR. Among many other features, it provides high
level, mid level as well as low level interfaces for construction of code in the IR, program
and data flow analysis features as well great tools for automated optimization of source
code [24,25].

Rose itself is written in C++, so the translator code performing the IR analysis or

4.6. USED TOOLS AND LIBRARIES 67

manipulation has to be written in C++ as well. Even though ROSE consists of an
extremely large number of different components, the following were used during the
tasks performed in this thesis as illustrated in Figure 4.8.

• The intermediate representation SAGE III states the core of the ROSE frame-
work. It is parsed from the input code by the fronted and preserves and contains a
great variety of different informations such as positions of elements in the original
code, comments or performance relevant information. The intermediate presenta-
tion itself and it’s features are described later in this section.

• The SageInterface states an interface for manipulating and transforming parts
and nodes of the IR. It is used for all transformations and optimizations on it.
For example, an existing loop in the source code can be located and unrolled or
optimized according to the users needs with this interface.

• The SageBuilder interface is used to create elements of the IR from scratch. If not
only existing structures need to be transformed, but a completely new one needs
to be injected, this interface is used. It can, for example, be used to construct a
new method body including return type and parameter list.

• The QueryEngine is an interface providing rich query operations to the IR. It
allows to query for certain structures in the IR and therefore prevents expensive
traversal of the IR data structures in order to find relevant elements. For example,
this is used to locate all assign operations in the source code (or parts of it) matching
certain criteria (such as e.g. left hand side is an integer variable).

• The Translation Code guides the procedure of tranlating the code. It invokes the
frontend to create the IR, calls the components (such as SageInterface, SageBuilder
or QueryEngine) to work on the code represented by the IR, and calls the backend
to transform it to the target code.

The function and interaction of these components is shown in a very simple example in
Code Example 4.4. The shown code uses the frontend to obtain an IR representation
and invokes a query for all for statements in the intermediate representation using the
QueryEngine. It then iterates over all found for statements and prints their line of
occurrence in the original source code. Further, it uses the SageInterface to attach a
comment to each for statement. In the last part, it calls the backend to invoke translation
back to source code.

Code Example 4.5 shows a simple input program (source code) to that translation code.
It can be seen that two for statements are present in that code.

Code Example 4.5 illustrates the output of this translation code. It can be seen that it
correctly detected the for statements and printed their line in the source code.

Code Example 4.5 shows the resulting target code with the comments attached to the
for statements. This code was generated from the IR using the backend.

68 CHAPTER 4. AUTOMATED AE ANALYSIS

Figure 4.8: The basic components of the ROSE framework.

Code Example 4.4: Simple translation code using the described components to find for
loops in an input source code

1 #include "rose.h"

3 int main (int argc , char** argv)
{

5 // 1) invoke frontend to get IR
SgProject* project = frontend(argc , argv);

7 ROSE_ASSERT (project != null);

9 //2) invoking a query for loops and perform operations
// getting all for loops in project

11 Rose_STL_Container <SgNode*> loopsInFunction = NodeQuery :: querySubTree(project , V_SgForStatement);

13 // iterating over for loops
Rose_STL_Container <SgNode *>:: iterator it = loopsInFunction.begin();

15 while(it != loopsInFunction.end())
{

17 SgForStatement* forStatement = isSgForStatement (*it);
std::cout << "found for loop at: " << forStatement ->get_file_info ()->get_line () << std::endl;

19
// attaching comment to for statement

21 SageInterface :: attachComment(forStatement , "this comment was attached");
it++;

23 }

25 //3) call the backend to transform back to source code
return backend(project);

27 }

Code Example 4.5: Input code to the simple example. Two for loops are present.
1

int main ()
3 {

for(int i = 0; i < 10; ++i)
5 {

i = i + 100;
7 for(int j = 0; j < i; ++j)

{
9 j = j + 5;

if(j > 100)
11 return i+j;

}

4.6. USED TOOLS AND LIBRARIES 69

13 }

15 return 0;
}

Code Example 4.6: Output of the simple example
[100%] Built target cipherTranslator

2 found for loop at: 4
found for loop at: 7

4 demo@ubuntu :~/ cipherTranslator/_build$

Code Example 4.7: Target code generated with the backend from the manipulated IR

2 int main()
{

4 // this comment was attached
for (int i = 0; i < 10; ++i) {

6 i = (i + 100);
// this comment was attached

8 for (int j = 0; j < i; ++j) {
j = (j + 5);

10 if (j > 100)
return i + j;

12 }
}

14 return 0;
}

This states a very simple example of how the different components can be applied to
analyse and transform input code. In this case, the translation code as well as the source
and target code is written in C++.

The SAGE III Intermediate Representation

The SAGE III intermediate representation is the one used by ROSE to represent source
code parsed. It allow transformations and modifications in an abstract format as well as
providing the basis for translating into other languages. The intermediate language is
based on SAGE++ developed at the University of Indiana. It is an IR with full support
for object oriented languages including features like templates, AST (abstract syntax
tree) visualizations, full support for C, C99, UPC, C++, Fortran 66, Fortran 77, Fortran
90/96, Fortran 2003 and many more. It preserves information about the location of nodes
in the source code, comments and preprocessor directives, allows easy copying of parts of
the IR as well as automated correctness checks on parts of the AST, easy manipulation
and an AST to string interface allowing easy generation of strings based on parts of the
IR [24].

The IR is AST-based and enhanced with a lot of meta-information about the source code
the AST was parsed from.

70 CHAPTER 4. AUTOMATED AE ANALYSIS

Basic Interfaces and Transformations

This section provides an overview of some important operations and transformations
supported by the ROSE framework. It shows the variety of different features that the
framework in combination with the IR provides. We refer to [24] and [25] for detailed
information and tutorials on the available features:

• AST Traversal: ROSE supports various different methods for traversing the
IR / AST. In addition to the standard tree traversal methods (post / pre / sim-
ple) it provides a structure to inherit AST attributes during a traversal as well
as nested traversals. This allows to perform manual transformations on the AST
(which don’t use any of the other transformation interfaces) very efficiently.

• AST Query: ROSE provides an own query engine, that can be used to efficiently
query the IR or parts of it using an easy query language. It can query for specific
types of nodes or lets users implement custom callback methods to filter query
results. Predefined queries make it easier to query for complex IR-node types (e.g.
query for methods / functions with certain numbers of arguments etc.).

• Loop Optimization: ROSE contains a powerful and automated transformation
interface (within SageInterface) dedicated to loops. It supports automated loop
interchange, loop blocking, loop fusion, loop unrolling as well as an automated
optimization part to transform loop-IR representations. These methods operate
automatically, detect boundaries and iterations in loops and perform the transfor-
mation accordingly.

• AST Transformation: The SageInterface components allow easy and high level
manipulation of the AST. It operates on found (traversal, query etc.) nodes of
the IR and allows to manipulate parts of the IR in various different ways. For
example, it allows adding comments, splitting expressions statements, in-lining of
function- or method-calls as well as outlining parts of the code in own methods
or classes. Even though lower level interfaces for manipulating the IR exist for
complex tasks, the SageInterface allows easy and straightforward implementation
of commonly used transformations. In Chapter 5, this interface is heavily used to
transform source code from reference implementation in order to bring it into a
standardized form to be able to translate it to arbitrary tool representations.

• AST Generation: The SageBuilder interface provides functionality to build own
parts of the IR from scratch and inject it into the parsed source code (using the
SageInterface class). It offers methods for creating virtually any programming
language component present in the supported source languages. Therefore, it allows
users to create whole functions, methods or classes including implementation code
in the IR and inject it into the parsed program at arbitrary positions. Chapter 5
shows examples of how this was used to create code blocks used in different tool
input formats.

4.6. USED TOOLS AND LIBRARIES 71

• Program Analysis: Besides the capabilities to manipulate parts of the existing
IR or create new ones, ROSE supports a huge variety of analysis methods. This
ranges from call-graph analysis, class hierarchy analysis, control flow analysis, data-
flow analysis or dependence analysis. For all these types, ROSE provides various
methods to perform subtasks commonly used and partially automatic and prede-
fined analysis tools (such as an automated creation of a call and class hierarchy
graph etc.).

In the next chapter, we show how an automated analysis framework based on the prin-
ciples and techniques described in this chapter was implemented. It gives an overview of
the implemented components, processes and transformations and illustrates the different
steps using the implementation of NORX.

72 CHAPTER 4. AUTOMATED AE ANALYSIS

Chapter 5

Automated Analysis Framework

This chapter finally introduces the architecture, design and implementation of the au-
tomated preliminary analysis framework. It describes the structure of the software, it’s
components and the process of conducting an analysis inside the framework. All of the
transformations and processes are illustrated using NORX. Further, it describes the chal-
lenges, limitations and future work and shows how it can be extended to customize its
behaviour and include other tools.

As mentioned in earlier chapters, the framework implemented in the scope of this thesis
consists of two main parts. Firstly, the IAIK CodingTool was extended in order to
be able to automatically search for potential characteristics. Secondly, and automated
transformation framework was implemented using ROSE with the goal of being able to
perform automated transformation of cipher representations.

In the following, the two components are explained in detail. Note that in this chapter,
the term source function refers to the function passed as an input to the transformation,
whereas target function names the transformed function.

5.1 CipherAnalyzer

CipherAnalyzer names the component performing a coding theory based search for code-
words using the IAIK Coding Tool as briefly discussed in Chapter 4. In this chapter, the
basic procedure and components of this extended tool are briefly discussed.

5.1.1 Components

The extended tool has two main components:

73

74 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

1. CipherAnalyzer: Builds up the generator matrix for the linearised model of the
analysed cipher, performs code-shortening and searches for codewords.

2. CodingTheoryAnalyzerDelegate: A delegate interface (abstract class) that im-
plements delegate methods used by the CipherAnalyzer to verify found codewords
and determine which codewords to store in the results.

The two objects interact through CipherAnalyzer calling the delegate methods of an in-
stance implementing the CodingTheoryAnalyzerDelegate methods and processing found
codewords based on the return type. The delegate never calls any CipherAnalyzer meth-
ods and will in practise most likely be implemented by the class running the analysis code.

5.1.2 Procedure

The procedure of conducting a coding theory based search follows the exact pro-
cedure described in Section 4.5.1. The basic external analysis code of this
tool has already been explained, so this part will focus on the internals of the
CipherAnalyzer::runCodingTheoryAnalysis method. The method firstly defines a call-
back closure used to build up a generator matrix row. It then calls CodeMatrix::Build
of the CodingTool, which then invokes the callback for each row of the generator
matrix. The callback method builds the generator matrix row as discussed in Sec-
tion 4.5.1. After code shortening has been applied to a defined number of state bits
(passed to the method) the tool starts the search for characteristics by calling the
lowWeightSearch.ChanteatChabaud method. After the found word has been verified by
the callback, it is added to the external results object. For detailed information, we refer
to the in-code documentation as the code is publicly available.

5.1.3 CipherTranslator

CipherTranslator names the part of the software handling transformations of cipher rep-
resentations. It takes as an input a reference implementation in C, parses it into an IR
(as described in Chapter 4), applies certain transformations on it to bring it to a stan-
dard form and finally allows the implementation of adapters to transform it into other
representations used by the analysis tools.

5.2 Process

In general the implementation facilitates the ROSE compiler framework for parsing code
into an IR and uses the functions within the IR to bring it to a standard form. Instead
of the backend, it uses a component that allows users to implement adapters in order to
parse the IR into other cipher representation formats. Therefore, the ROSE backend is

5.3. COMPONENTS 75

not used but might be facilitated in future extensions of the framework. Figure 5.1 illus-
trates the basic process using terms related to transcompilers as introduced in Chapter
4.

Figure 5.1: Overall picture of the process implemented by the framework.

5.3 Components

The translation framework mainly consists of three components:

• TranslationUtils: This static components implements all tools and transforma-
tions used by the framework. It features all transformations applied by the frame-
work. Besides transformation methods, it implements methods for querying the
IR-AST for certain specific elements, inserting needed elements into it as well as
many other features that might be required in an analysis process. The method
transformFunctionToStandardForm can be used to transform any function into the
desired standard form, which will be described later in Section 5.4.

• CodeGenerationUtils: This class implements utility methods used to generate
template code in order to perform a translation.

• CodeTransformer: This class is responsible for leading the transformation to an-
other format. It traverses the function in standard form and uses the implementa-
tion of a specific ToolTranslator to transform statements. Further, it injects the
transformed statements into a target function to create the transformed code.

• ToolTranslator: This component is responsible for setting the target environment
and providing the translation of certain statements to the target language. For
example, it would setup a special function representing a round function in the
target format and translate occurrences of XOR operations in the source code to
the string representing an XOR in the target format.

• AnalysisCode: This component is individually implemented by a user facilitating
the other components. This analysis code is used to transform cipher representa-
tions, search for characteristics (e.g. using the tool introduced in Section 5.1) and
verify found characteristics.

76 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

5.4 Transformations

The CipherTranslator part of the framework performs several transformations on the
input code after parsing (IR) in order to transform it into a so called standard form.
This standard form is defined by two criteria:

a) Operation isolation: Only one of the supported operations is allowed in an assign-
ment per line of code. For example, the expression

a = (a⊕ b)� 7 (5.1)

(not in standard form) would equal

temp1 = a⊕ b (5.2)
a = temp1 << 7 (5.3)

in standard form. So only one assignment to a variable resulting from one binary op-
eration (taking two operands) is allowed per line. This is required since the framework
tries to transform as small portions of the input code as possible at a time, resulting
in easier implementations of the adapters performing this task.

b) Function isolation: No function calls are allowed within the source function in
standard form. So all operations must be performed within this function, not relying
on external code. Since the framework transforms a finite set of operations in the
cipher, it must be able to find boundaries for what to transform, which justifies this
property of the standard form.

c) Statement singularity: No operators applying multiple operations at once in the
background shall be present. This applies to elements such as compound or over-
loaded operators and enforces a kind of canonical representation of operations. This
is required in order to limit the complexity of the framework. Considering overloading
or complex background definitions of operations would exceed the scope of this tool.

The transformation into such a format is performed in several steps internally as il-
lustrated in Figure 5.2. This section explains the different transformation steps and
illustrates them using NORX as an example.

5.4.1 Inlining

The first operation performed aims towards function isolation. In functions to be trans-
formed, various calls to other functions or macros are made. This does not align with the
desired standard form, since it makes it very difficult to parse all operations / expressions
in the function in order to transform it into another representation format required by
other tools.

5.4. TRANSFORMATIONS 77

Figure 5.2: Steps of transformation to standard form

The inlining detects calls to functions or macros and integrates their definition in the
function. Therefore, the call to a function is substituted with the real operations per-
formed in the function. This ensures function isolation, since all external operations are
integrated into one function.

As a simple example, take the function test illustrated in Code Example 5.1. It calls
the function int op(int x, int y) to perform a certain calculation.

Code Example 5.1: Input code for the inlining transformation
1 int test(int a, int b)

{
3 a = a ^ b;

5 // calling external function
b = op(a, b);

7
return a + b;

9 }

11 int op(int a, int b)
{

13 int temp = a ^ b;
return temp ^ 16;

15 }

After applying the inlining operation, the steps performed in the call of op are integrated
into the original function an not dependent on any external code any more as illustrated
in Code Example 5.2.

78 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

Code Example 5.2: Code after inlining was applied to function
1 int function(int a, int b)

{
3 a = a ^ b;

5 // inlined code
int temp = a ^ b;

7 b = temp ^ 16;

9 return a + b;
}

In ROSE, inlining of a function call is supported using the SageInterface::doInline
method. This is used in the method inlineStatementsInFunction, implemented in
TranslationUtils and is illustrated in Code Example 5.3. It issues a query to obtain
all function calls within the function. Then, it iterates over the list of function calls and
invokes the inlining method to inline them recursively. If the process could be completed
successfully, it returns true and the method quits the inner loop, rescans for function
calls and starts the inlining process again. This construct of two loops prevents errors
/ assertions due to trying to inline a function call already processed recursively and
therefore not valid anymore.

After all function calls have been inlined, some ROSE methods are called that cleanup
the IR nodes manipulated and check the IR.

Code Example 5.3: Method for inlining all function calls in a source function using the
ROSE framework.
void TranslationUtils :: inlineStatementsInFunction(SgFunctionDeclaration* function , SgProject* project)

2 {
bool astWasModified = false;

4 int inlineCount = 0;

6 // inlining function calls
do

8 {
// resetting indicator variable

10 astWasModified = false;

12 // querying for all assings
Rose_STL_Container <SgNode*> functionCalls = NodeQuery :: querySubTree(function ,V_SgFunctionCallExp);

14
// getting iterator

16 Rose_STL_Container <SgNode *>:: iterator it = functionCalls.begin();

18 // iterating over function calls
while(astWasModified == false && it != functionCalls.end())

20 {
// getting current function call and make sure it is one

22 SgFunctionCallExp* currentFunctionCall = isSgFunctionCallExp (*it);
ROSE_ASSERT(currentFunctionCall != null);

24
std::cout << "found function call " << currentFunctionCall ->getAssociatedFunctionSymbol ()->get_name ()

<< std::endl;
26

// inlining function call recursively
28 astWasModified = doInline(currentFunctionCall , true);

30 if(astWasModified == true)
std::cout << "Sucessfully inlined function and modified the ast" << std::endl;

32
// incrementing iterator

34 it++;
}

36 }
while(astWasModified == true && inlineCount < 100);

38
// cleaning up

40 // Call function to postprocess the AST and fixup symbol tables

5.4. TRANSFORMATIONS 79

FixSgProject (* project);
42

// Rename each variable declaration
44 // renameVariables(project);

46 // Fold up blocks
flattenBlocks(project);

48
// Clean up inliner -generated code

50 cleanupInlinedCode(project);
}

5.4.2 Fixing Compound Statements

Compound statements, in this case, name operators of programming languages combining
two operations in one operator. An example for this would be common operators like
a-=b, a+=b or a&=b. These statements do not violate operation isolation or function
isolation, but do not align with operation singularity. Such operations make it very hard
to parse and transform code, since the complexity of the algorithm and the number of
different cases requiring consideration rises significantly. Therefore, these statements are
not allowed in the standardised form and have to be substituted with their canonical
representations. For example, the line int i &= 4; would be replaced with int i = i &
4;. The method handling compound statements in this framework is illustrated in Code
Example 5.4.

The method forms a query to obtain all compound assignment IR-nodes within the
target function, iterates over these statements and extracts their left hand side and right
hand side expression. Afterwards it distinguishes between the different possible types of
compound assignments and constructs a new (and equal) expression in canonical form
using the left and right hand side expressions. Finally, it uses the SageBuilder interface
to build the new operation and inserts it into the IR using the SageInterface component.

Code Example 5.4: Code fixing compound statements using the ROSE interface.
1 void TranslationUtils :: fixCompountAssignStatementInFunction(SgFunctionDeclaration* function)

{
3 std::cout << "Searching and fixing compound assign statements" << std::endl;

5 // getting all compound statements
Rose_STL_Container <SgNode*> compoundAssignStatements = NodeQuery :: querySubTree(function , V_SgCompoundAssignOp);

7
Rose_STL_Container <SgNode *>:: iterator iter;

9 for(iter = compoundAssignStatements.begin(); iter != compoundAssignStatements.end(); iter ++)
{

11 SgCompoundAssignOp* compoundOp = isSgCompoundAssignOp (*iter);
ROSE_ASSERT(compoundOp != null);

13
// getting copy of node for later replacement

15 SgCompoundAssignOp* compoundOpCopy = SageInterface :: deepCopy(compoundOp);

17 //std::cout << "Fixing expression: " << compoundOpCopy ->unparseToCompleteString () << std::endl;

19 // getting left and right component
SgExpression* lhs = compoundOpCopy ->get_lhs_operand ();

21 SgExpression* rhs = compoundOpCopy ->get_rhs_operand ();

23 // std::cout << "Detected sub expressions - lhs: " << lhs ->unparseToCompleteString () << " rhs: " << rhs ->
unparseToCompleteString () << std::endl;

25 // defining variable to write expression to
SgExpression* newExpression;

27

80 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

// handling different cases of compound element
29 if(isSgAndAssignOp(compoundOp))

{
31 newExpression = SageBuilder :: buildAndOp(lhs , rhs);

}
33 else if(isSgDivAssignOp(compoundOp))

{
35 newExpression = SageBuilder :: buildDivideOp(lhs , rhs);

}
37 else if(isSgExponentiationAssignOp(compoundOp))

{
39 newExpression = SageBuilder :: buildExponentiationOp(lhs , rhs);

}
41 else if(isSgIntegerDivideAssignOp(compoundOp))

{
43 newExpression = SageBuilder :: buildIntegerDivideOp(lhs , rhs);

}
45 else if(isSgLshiftAssignOp(compoundOp))

{
47 newExpression = SageBuilder :: buildLshiftOp(lhs , rhs);

}
49 else if(isSgRshiftAssignOp(compoundOp))

{
51 newExpression = SageBuilder :: buildRshiftOp(lhs , rhs);

}
53 else if(isSgMinusAssignOp(compoundOp))

{
55 newExpression = SageBuilder :: buildSubtractOp(lhs , rhs);

}
57 else if(isSgModAssignOp(compoundOp))

{
59 newExpression = SageBuilder :: buildModOp(lhs , rhs);

}
61 else if(isSgMultAssignOp(compoundOp))

{
63 newExpression = SageBuilder :: buildMultiplyOp(lhs , rhs);

}
65 else if(isSgPlusAssignOp(compoundOp))

{
67 newExpression = SageBuilder :: buildAddOp(lhs , rhs);

}
69 else if(isSgXorAssignOp(compoundOp))

{
71 newExpression = SageBuilder :: buildBitXorOp(lhs , rhs);

}
73

// creating new assign statement
75 SgAssignOp* newOperation = SageBuilder :: buildAssignOp(lhs , newExpression);

77 std::cout << "Fixing Compounds: " << compoundOp ->unparseToCompleteString () << " was replaced with " <<
newOperation ->unparseToCompleteString () << std::endl;

79 // replacing old expression with newly created one
SageInterface :: replaceExpression(compoundOp , newOperation);

81 }
}

5.4.3 Handle Rotations

A major drawback of the approach of parsing reference implementations into an ab-
stract cipher representation is the fact, that certain operations used in the ciphers might
not be natively supported by the programming language of the reference implementa-
tion. Therefore, the designer needs to construct it using other operations, and more
importantly the framework needs to pay attention to it and detect and transform these
compound operations back. This is based on the assumption, that tool input formats
might support the operations and they can therefore be directly translated. This problem
results from the different operation sets of different programming languages or formats
and can not be prevented following the given approach.

5.4. TRANSFORMATIONS 81

The only compound operation needed in the work done in this thesis - due to the ci-
phers considered - is the rotation operation. Since C (reference implementation) does
not support rotations, they are constructed using two shift operations. The following
expressions are used when a donates the variable shifted, x states the number of bits
shifted, N donates the word size (so |x| = N) and ≫ and ≪ donate the left and right
rotation. The operation simply shifts x in the corresponding direction (all shifted in bits
will be zero) and adds the circular behaviour of the rotation by calculating the remaining
(the shifted in) bits by simply shifting a by N − x into the other direction.

x = a≫ x ⇔ x = (a� x)⊕ (a� (N − x))⇔ x = (a� x) ∨ (a� (N − x)) (5.4)
x = a≪ x ⇔ x = (a� x)⊕ (a� (N − x))⇔ x = (a� x) ∨ (a� (N − x)) (5.5)

Either the OR or XOR operation can be used to combine the two shift operations.

These four constructs need to be detected by the operation and treated as rotations in
all following processes. The framework handles this by not changing the code itself, but
annotating all compound operations with a comment defining its real operation. There-
fore, any rotation would not be changed in the code, but annotated in an appropriate
way. All further processes check for this annotation and treat the code line accordingly.
The method detecting and annotating rotations is shown in Code Example 5.5.

Code Example 5.5: Code detecting rotations using a query calling a specified callback
method and handling them accordingly by annotation.
void TranslationUtils :: handleRotationStatementsInFunction(SgFunctionDeclaration* function)

2 {
Rose_STL_Container <SgNode*> expressions = NodeQuery :: querySubTree(function , V_SgExpression);

4 Rose_STL_Container <SgNode*> rotationExpressions = NodeQuery :: queryNodeList(expressions , &
queryRotationOperationSolver);

6 std::cout << "Found " << rotationExpressions.size() << " rotation expressions" << std::endl;

8 Rose_STL_Container <SgNode *>:: iterator iter;
for(iter = rotationExpressions.begin(); iter != rotationExpressions.end(); iter ++)

10 {
SgExpression* exp = isSgExpression (*iter);

12 std::cout << "handling rotation " << exp ->unparseToCompleteString () << std::endl;

14 // checking if rotation top level element is binary operation
SgBinaryOp* rotation = isSgBinaryOp (*iter);

16 ROSE_ASSERT(rotation != null);

18 // creating indicator comments
std:: string indicator = COMPOUNT_STATEMENT_ANNOTATION;

20 std:: string comment = "@ROT";

22 // determining direction of shift / rotation
SgBinaryOp* shiftExpression = isSgBinaryOp(rotation ->get_lhs_operand ());

24 if(isSgRshiftOp(shiftExpression))
{

26 comment = comment + "R(";
}

28 else if(isSgLshiftOp(shiftExpression))
{

30 comment = comment + "L(";
}

32
ROSE_ASSERT(shiftExpression != null);

34
//std::cout << "The type of the shifted thing is " << shiftExpression ->get_lhs_operand ()->sage_class_name ()

<< std::endl;
36 //std::cout << "The type of the shift thing is " << shiftExpression ->get_rhs_operand ()->sage_class_name ()

<< std::endl;

82 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

38 SgExpression* expr = shiftExpression ->get_lhs_operand ();
// checking argument

40 ROSE_ASSERT(expr != null);

42 //shift expression can be variable or integer , determining and adapting comment accordingly
SgIntVal* shiftIndex = isSgIntVal(shiftExpression ->get_rhs_operand ());

44 if(shiftIndex != null)
{

46 comment = comment + expr ->unparseToCompleteString () + ", " + boost:: lexical_cast <std::string >(
shiftIndex ->get_value ()) + ")";

}
48 else if(isSgVarRefExp(shiftExpression ->get_rhs_operand ()))

{
50 comment = comment + expr ->unparseToCompleteString () + ", " + isSgVarRefExp(shiftExpression ->

get_rhs_operand ())->get_symbol ()->get_name () + ")";
}

52 else
{

54 std::cout << "Could not identify rotation variable , going to next one..." << std::endl;
continue;

56 }

58 // attaching comment to rotation statement
SageInterface :: attachComment(rotation , indicator);

60 SageInterface :: attachComment(rotation , comment);
}

62 }

It uses a query with the provided callback function queryRotationOperationSolver to
find rotation statements, iterates over the list of detected rotations, determines the type
and operands of it and adds the annotations as comments to the statement.

The callback method detects rotations by specifically searching for AST-tree structures
representing the operations stated before when covering multiple cases of elements in-
volved in the rotation definition. If it detects that a node (passed to the method) repre-
sents a rotation, it returns the node itself (in a vector). This rotation detection method,
as well as the callback function, are shown in Code Example 5.6.

Code Example 5.6: Callback method and rotation detection method.
NodeQuerySynthesizedAttributeType TranslationUtils :: queryRotationOperationSolver(SgNode* astNode)

2 {
//node must not be null

4 ROSE_ASSERT(astNode != 0);
NodeQuerySynthesizedAttributeType returnType;

6
if(detectRotation(astNode) == true)

8 {
returnType.push_back(astNode);

10 }

12 return returnType;
}

14
bool TranslationUtils :: detectRotation(SgNode* astNode)

16 {
// checking top level operation

18 if(isSgBitOrOp(astNode) != null || isSgBitXorOp(astNode) != null)
{

20 //std::cout << "Detected OR in expression " << orOp ->unparseToCompleteString () << std::endl;

22 SgBinaryOp* orOp = isSgBinaryOp(astNode);
ROSE_ASSERT(orOp != null);

24
// getting operats

26 SgExpression* leftOperand = orOp ->get_lhs_operand ();
SgExpression* rightOperand = orOp ->get_rhs_operand ();

28
// checking if negated rotation directions are given

30 if((isSgRshiftOp(leftOperand) && isSgLshiftOp(rightOperand)) || (isSgLshiftOp(leftOperand) && isSgRshiftOp(
rightOperand)))

{
32 int test = astNode ->depthOfSubtree ();

5.4. TRANSFORMATIONS 83

34 //std::cout << "Structure of shifts fits" << std::endl;

36 SgBinaryOp* shortShift = null;
SgBinaryOp* longShift = null;

38
//the thing that is shifted

40 SgExpression* shiftedExpression = null;

42 //the value used for shifting
SgExpression* shiftExpression = null;

44
int leftDepth = leftOperand ->depthOfSubtree ();

46 int rightDepth = rightOperand ->depthOfSubtree ();

48 bool leftContainsArrayRef = NodeQuery :: querySubTree(leftOperand , V_SgPntrArrRefExp).size() == 0 ? false
: true;

bool rightContainsArrayRef = NodeQuery :: querySubTree(rightOperand , V_SgPntrArrRefExp).size() == 0 ?
false : true;

50
//std::cout << "left: " << leftOperand ->unparseToCompleteString () << " depth: " << boost:: lexical_cast <

std::string >(leftDepth) << " arrayref in there: " << boost:: lexical_cast <bool >(leftContainsArrayRef) << std::
endl;

52 //std::cout << "right: " << rightOperand ->unparseToCompleteString () << " depth: " << boost::
lexical_cast <std::string >(rightDepth) << " arrayref in there: " << boost:: lexical_cast <bool >(
rightContainsArrayRef) << std::endl;

54 // determining short shift
if((leftContainsArrayRef == false && leftDepth == 1) || (leftContainsArrayRef == true && leftDepth ==

2))
56 {

shortShift = isSgBinaryOp(leftOperand);
58 }

else if((rightContainsArrayRef == false && rightDepth == 1) || (rightContainsArrayRef == false &&
rightDepth == 2))

60 {
shortShift = isSgBinaryOp(rightOperand);

62 }

64 // determining long shift
if((leftContainsArrayRef == false && leftDepth == 4) || (leftContainsArrayRef == true && leftDepth ==

5))
66 {

longShift = isSgBinaryOp(leftOperand);
68 }

else if((rightContainsArrayRef == false && rightDepth == 4) || (rightContainsArrayRef == true &&
rightDepth == 5))

70 {
longShift = isSgBinaryOp(rightOperand);

72 }

74 // checking long and short assignment result
if(longShift == null || shortShift == null || longShift == shortShift)

76 return false;

78 //std::cout << "Detected short shift side as " << shortShift ->unparseToCompleteString () << std::endl;
//std::cout << "Detected long shift side as " << longShift ->unparseToCompleteString () << std::endl;

80
// checking short shift

82 shiftedExpression = shortShift ->get_lhs_operand ();
shiftExpression = shortShift ->get_rhs_operand ();

84
// saving type of shiftexpression

86 SgType* shiftExpressionType = shiftedExpression ->get_type ();

88 //std::cout << "shifted expression: " << shiftedExpression ->unparseToCompleteString () << " type " <<
shiftedExpression ->sage_class_name () << " shift expression: " << shiftExpression ->unparseToCompleteString () <<
" type " << shiftExpression ->sage_class_name () << std::endl;

90 // checking operands
if(shiftedExpression == null || shiftExpression == null)

92 return false;
if(isSgVarRefExp(shiftedExpression) == null && isSgValueExp(shiftedExpression) == null &&

isSgPntrArrRefExp(shiftedExpression) == null)
94 return false;

if(isSgVarRefExp(shiftExpression) == null && isSgValueExp(shiftExpression) == null && isSgPntrArrRefExp
(shiftedExpression) == null)

96 return false;

98 // checking long expression
// checking shifted item

100 if(longShift ->get_lhs_operand () != shiftedExpression)
{

84 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

102 if(longShift ->get_lhs_operand ()->unparseToCompleteString ().compare(shiftedExpression ->
unparseToCompleteString ()) != 0)

{
104 std::cout << longShift ->get_lhs_operand ()->unparseToCompleteString () << " type " << longShift ->

get_lhs_operand ()->sage_class_name () << " NOT EQUAL "
<< shiftedExpression ->unparseToCompleteString () << " type " << shiftedExpression ->

sage_class_name () << std::endl;
106 return false;

}
108 }

110 // checking that child is minus operation
SgSubtractOp* subOp = isSgSubtractOp(longShift ->get_rhs_operand ());

112 if(subOp == null)
return false;

114

116 //std::cout << "Detected subtract op " << subOp ->unparseToCompleteString () << std::endl;
// std::cout << "rhs " << subOp ->get_rhs_operand ()->unparseToCompleteString () << " of type "

<< subOp ->get_rhs_operand ()->sage_class_name () << " get type " <<
118 // subOp ->get_rhs_operand ()->get_type ()->unparseToCompleteString () << "depth " <<

boost:: lexical_cast <std::string >(subOp ->get_rhs_operand ()->depthOfSubtree ()) << std::endl;

120
//std::cout << "Before detection of shift type " << std::endl;

122
// performing queries on subtree to detect type of shifted expression

124 Rose_STL_Container <SgNode*> integerInSubtree = NodeQuery :: querySubTree(subOp ->get_rhs_operand (),
V_SgIntVal);

Rose_STL_Container <SgNode*> variableExpressionsInSubtree = NodeQuery :: querySubTree(subOp ->
get_rhs_operand (), V_SgVarRefExp);

126 Rose_STL_Container <SgNode*> arrayRefExpressionsInSubtree = NodeQuery :: querySubTree(subOp ->
get_rhs_operand (), V_SgPntrArrRefExp);

//case 1 shifted value is integer
128 if(integerInSubtree.size() == 1)

{
130 SgIntVal* subtractIntVal = isSgIntVal(integerInSubtree.at(0));

SgIntVal* shiftIntVal = isSgIntVal(shiftExpression);
132

if(shiftIntVal == null)
134 return false;

136 if(subtractIntVal ->get_value () != shiftIntVal ->get_value ())
return false;

138 }
//case 2 shifted value is variable

140 else if(variableExpressionsInSubtree.size() == 1)
{

142 // checking if it is a variable Reference
SgVarRefExp* varRef = isSgVarRefExp(variableExpressionsInSubtree.at(0));

144 ROSE_ASSERT(varRef);

146 // converting shiftexpression , if it is not a varref , the expression is not a rotation
SgVarRefExp* shiftVarRefExpression = isSgVarRefExp(shiftExpression);

148 if(shiftVarRefExpression == null)
return false;

150 //
// std::cout << "Found varref: " << varRef ->unparseToCompleteString () << std::

endl;
152 //

// std::cout << "Comparing variable " << varRef ->unparseToCompleteString () << "
of type " << varRef ->sage_class_name () << " with variable " <<

154 // shiftExpression ->unparseToCompleteString () << " of type " <<
shiftExpression ->sage_class_name () << std::endl;

156 //must be variable , comparing
if(varRef ->get_symbol () != shiftVarRefExpression ->get_symbol ())

158 {
// std::cout << "Not equal" << std::endl;

160 return false;
}

162 }
else if(arrayRefExpressionsInSubtree.size() == 1)

164 {
SgPntrArrRefExp* refExpr = isSgPntrArrRefExp(arrayRefExpressionsInSubtree.at(0));

166 ROSE_ASSERT(refExpr);

168 SgPntrArrRefExp* shiftPntrRefExpr = isSgPntrArrRefExp(shiftExpression);
if(shiftPntrRefExpr == null)

170 return false;

172 if(refExpr != shiftPntrRefExpr)
return false;

5.4. TRANSFORMATIONS 85

174 }

176 // searching for multiplies in subtree
Rose_STL_Container <SgNode*> multiplies = NodeQuery :: querySubTree(subOp ->get_lhs_operand (),

V_SgMultiplyOp);
178 if(multiplies.size() == 0)

{
180 //std::cout << "Detected const value shift " << shortShift ->unparseToCompleteString () << std::endl;

182 SgIntVal* bitSize = isSgIntVal(subOp ->get_lhs_operand ());
if(bitSize == null)

184 return false;

186 if(! isPowerOfTwo(bitSize ->get_value ()))
return false;

188 }
else if(multiplies.size() == 1)

190 {
SgMultiplyOp* multOp = isSgMultiplyOp(multiplies.at(0));

192 ROSE_ASSERT(multOp != null);

194 //std::cout << "Detected multiply op " << multOp ->unparseToCompleteString () << " right type " <<
multOp ->get_rhs_operand ()->sage_class_name () << std::endl;

SgExpression* leftMultOp = multOp ->get_lhs_operand ();
196 SgExpression* rightMultOp = multOp ->get_rhs_operand ();

198

200 Rose_STL_Container <SgNode*> sizeOfs = NodeQuery :: querySubTree(multOp , V_SgSizeOfOp);
Rose_STL_Container <SgNode*> ints = NodeQuery :: querySubTree(multOp , V_SgIntVal);

202
if(sizeOfs.size() != 1 || ints.size() == 0)

204 {
std::cout << "sizeofs: " << boost:: lexical_cast <std::string >(sizeOfs.size()) << " ints: " <<

boost:: lexical_cast <std::string >(ints.size()) << std::endl;
206 return false;

}
208

SgSizeOfOp* sizeOfOp = null;
210 SgIntVal* intValOp = null;

212 // getting size of operation used in rotation
sizeOfOp = isSgSizeOfOp(sizeOfs.at(0));

214
// getting integer multiplicator

216 Rose_STL_Container <SgNode *>:: iterator iter;
for(iter = ints.begin(); iter != ints.end(); iter ++)

218 {
SgIntVal* intNode = isSgIntVal (*iter);

220 if(! isSgSizeOfOp(intNode ->get_parent ()))
{

222 intValOp = intNode;
}

224 }

226 ROSE_ASSERT(sizeOfOp != null);
ROSE_ASSERT(intValOp != null);

228
if(intValOp ->get_value () != 8)

230 return false;

232 //std::cout << "found sizeOfOp " << sizeOfOp ->unparseToCompleteString () << " and intValOp " <<
intValOp ->unparseToCompleteString () << std::endl;

234 if(sizeOfOp ->get_operand_expr () != shiftedExpression)
{

236 if(sizeOfOp ->get_operand_expr ()->unparseToCompleteString ().compare(shiftedExpression ->
unparseToCompleteString ()) != 0)

{
238 return false;

}
240 }

}
242

return true;
244 }

}
246

return false;
248 }

86 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

5.4.4 Splitting

In this step, operation isolation is ensured for the statements in the function. Therefore,
statements, expressions and operations in the source code are split. Splitting names the
process of extracting minimal parts of an expression into an own expression to generate
multiple small statements from a potentially large one. So the statement

declare x = (a⊕ b⊕ c) (5.6)

is split into small declarations with one operation per line resulting in

declare x, delcare temp (5.7)
temp1 = a⊕ b (5.8)
x = temp1⊕ c (5.9)

ROSE supports splitting of parts of expressions in its SageInterface component by
calling the method splitExpression. It takes an expression and extracts it from the
containing statements, determines its type and moves it to an own temporary variable.
The framework searches for all expressions and binary operations at a certain level of the
AST and splits them in order to establish the standard format required.

Code Example 5.7 shows the method used to detect elements to split and perform the
splitting. It first obtains all expressions in the target function and detects if they are
relevant to splitting by filtering it via the querySplittableExpressionsSolver method
shown in Code Example 5.8. Further, it splits all those expressions by calling the split
operation.

After the expressions have been split, the method queries for all binary operations relevant
to splitting via the querySplittableOperationSolver callback method and splits those
elements as well. Note that this is performed in a while loop, since the operation might
have to be applied in several steps to ensure correct splitting of complex expression.

Code Example 5.7: Code detecting operations and expressions to split and performing
the splitting using the split method.
void TranslationUtils :: splitOperationsInFunction(SgFunctionDeclaration* function)

2 {
// getting expressions to split (like functions etc.)

4 Rose_STL_Container <SgNode*> expressions = NodeQuery :: querySubTree(function , V_SgExpression);
Rose_STL_Container <SgNode*> splitExpressions = NodeQuery :: queryNodeList(expressions , &
querySplittableExpressionsSolver);

6
// splitting expressions

8 split(splitExpressions , "exprTemp");

10 // splitting operations until no slittable element can be found any more
int splitContainerSize = 0;

12
// needed for temp variable naming

14 int transformationRound = 0;

16 do
{

18 // getting operations to split (XOR , AND , etc.)
Rose_STL_Container <SgNode*> operations = NodeQuery :: querySubTree(function , V_SgBinaryOp);

5.4. TRANSFORMATIONS 87

20 Rose_STL_Container <SgNode*> splitOperations = NodeQuery :: queryNodeList(operations , &
querySplittableOperationSolver);

22 // getting size of operations to split as break condition variable
splitContainerSize = splitOperations.size();

24
// splitting operations

26 split(splitOperations , "binaryOpTemp" + boost:: lexical_cast <std::string >(transformationRound));
transformationRound ++;

28
} while (splitContainerSize != 0);

30 }

32
void TranslationUtils ::split(Rose_STL_Container <SgNode*> toSplit , std:: string tempVarName)

34 {
// checking size of stuff to split

36 if(toSplit.size() == 0)
std::cout << "Nothing to split" << std::endl;

38
// resetting counter for temp variables

40 int tempVariableCounter = 0;

42 // iterating over elements and splitting
Rose_STL_Container <SgNode *>:: iterator iter;

44 for (iter = toSplit.begin(); iter != toSplit.end(); iter ++)
{

46 // getting operation
SgExpression* op = isSgExpression (*iter);

48 ROSE_ASSERT(op != null);

50 // creating unique name
tempVariableCounter = tempVariableCounter + 1;

52 std::cout << "splitting: " << op->unparseToString () << std::endl;

54 // splitting expression
std:: string tempVariableName = tempVarName + boost:: lexical_cast <std::string >(tempVariableCounter);

56 SageInterface :: splitExpression(op, tempVariableName);
}

58 }

Code Example 5.8 shows the callback methods used to detect expressions relevant for
splitting. The method querySplittableExpressionsSolver is executed by a NodeQuery
to identify expressions relevant for splitting. The method only classifies an expression as
valid for splitting if :

• The nodes sub-AST has a depth greater than zero. This indicates that it’s a non-
trivial operation with operands.

• The node is no dereference operation (e.g. S[4]).

• The node is no binary operation. Binary operations will be split separately.

• There are no binary expressions except for pointer dereference operation in the
sub-AST. These will be split later and automatically split the expression itself.

The method checks for these conditions and adds the node to the results (to be split).

The method querySplittableOperationSolver detects operations relevant for splitting.
It ignores annotated operations (e.g. rotations) since they represent one operation and
are not meant to be split. The method now searches for the binary operations on the
lowest level of the node’s sub-AST. For example, in the operation

x = (a⊕ b) ∧ (a⊕ c) (5.10)

the method searches for the expressions a⊕ b and a⊕ c rather than for the ∧ operation.

88 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

These operations show a small sub-tree depth, since their children are either values or
pointer dereference operations (arrays etc.). Therefore, such expressions can’t be assign
operations and their parent must not be an assign operator or initializer. If their parent
is an assign operator or initializer, then the operation is either not the one on the lowest
AST level, or the line is already in standard form. To determine if the operation is on
the lowest AST level, it checks the depth of the subtree in combination with information
on if array dereferences occur in the sub tree . These dereference operations have a depth
of one. Therefore, the target operation is allowed to have a subtree depth of one if no
dereferences are present, and two if there are.

The method filters all nodes not matching this criteria and returns it to the calling
component.

Code Example 5.8: Callback methods for detecting expressions and operations relevant
to splitting.
NodeQuerySynthesizedAttributeType TranslationUtils :: querySplittableExpressionsSolver(SgNode* astNode)

2 {
//node must not be null

4 ROSE_ASSERT(astNode != 0);
NodeQuerySynthesizedAttributeType returnType;

6
// iterating over parents to find annotation that would not allow splitting

8 bool isAnnotated = isSystemAnnotatedInParents(astNode);
if(isAnnotated)

10 {
//std::cout << "Skipping statement" << astNode ->unparseToCompleteString () <<" due to annotation" << std::

endl;
12 return returnType;

}
14 else

{
16 //std::cout << "Found no annotation for node" << std::endl;

}
18

20 //node has to be operation , filter this in upper query
SgExpression* exp = isSgExpression(astNode);

22 ROSE_ASSERT(exp != null);

24 // getting depth of subtree from that ast node
int depth = exp ->depthOfSubtree ();

26
if(depth >= 1 && !isSgPntrArrRefExp(astNode) && !isSgBinaryOp(astNode))

28 {
//std::cout << "Found relevant expression: " << astNode ->unparseToCompleteString () << " with depth " <<

boost:: lexical_cast <std::string >(depth) << std::endl;
30

Rose_STL_Container <SgNode*> subBinaryExpressions = NodeQuery :: querySubTree(astNode , V_SgBinaryOp);
32 Rose_STL_Container <SgNode*> subPntrRefExpressions = NodeQuery :: querySubTree(astNode , V_SgPntrArrRefExp);

//std::cout << "Found binary ops in subtree " << boost:: lexical_cast <std::string >(subBinaryExpressions.size
()) << std::endl;

34 if(subBinaryExpressions.size() == 0 || subBinaryExpressions.size() == subPntrRefExpressions.size())
{

36 std::cout << "No binary operations in subtree ... splitting" << std::endl;
returnType.push_back(astNode);

38 }
}

40
return returnType;

42
}

44
NodeQuerySynthesizedAttributeType TranslationUtils :: querySplittableOperationSolver(SgNode* astNode)

46 {
//node must not be null

48 ROSE_ASSERT(astNode != 0);
NodeQuerySynthesizedAttributeType returnType;

50
// iterating over parents to find annotation that would not allow splitting

52 bool isAnnotated = isSystemAnnotatedInParents(astNode);
if(isAnnotated)

5.4. TRANSFORMATIONS 89

54 {
//std::cout << "Skipping statement" << astNode ->unparseToCompleteString () <<" due to annotation" << std::

endl;
56 return returnType;

}
58 else

{
60 //std::cout << "Found no annotation for node" << std::endl;

}
62

64 //node has to be operation , filter this in upper query
SgBinaryOp* op = isSgBinaryOp(astNode);

66 ROSE_ASSERT(op != null);
SgPntrArrRefExp* ptnrArrayRefExpr = isSgPntrArrRefExp(astNode);

68
if(! isSgAssignOp(astNode) && !isSgAssignOp(astNode ->get_parent ()) && !isSgAssignInitializer(astNode ->get_parent
()))

70 {
// getting depth of subtree from that ast node

72 int depth = op->depthOfSubtree ();

74 //if binary operation , depth is one and not an arrayref: we have the canonical operation we wanna split
if(depth == 1 && ptnrArrayRefExpr == null)

76 {
//std::cout << "Found operation with depth 1: " << op->unparseToString () << std::endl;

78 returnType.push_back(astNode);
}

80 //if depth is two , it could be that the second ast tree level is caused by array refs e.g. S[4], therefore
filter those

else if(depth == 2)
82 {

//std::cout << "Found operation with depth 2: " << op->unparseToString () << " checking if second level
caused by array ref" << std::endl;

84 Rose_STL_Container <SgNode*> arrayPointerRefs = NodeQuery :: querySubTree(astNode , V_SgPntrArrRefExp);
if(arrayPointerRefs.size() != 0)

86 {
//std::cout << "Second level caused by array ref , we can split this" << std::endl;

88 returnType.push_back(astNode);
}

90 }
else

92 {
std::cout << "Found operation " << astNode ->unparseToCompleteString () << " with depth " <<

94 boost:: lexical_cast <std::string >(astNode ->depthOfSubtree ()) << " and type " << astNode ->
sage_class_name () << " not splitting this" << std::endl;

}
96 }

else
98 {

//std::cout << "Found expression: " << astNode ->unparseToCompleteString () << " as assign on child of assign
" << std::endl;

100 }

102 return returnType;
}

The split method, shown in Code Example 5.7, performs the actual splitting of ex-
pressions. It takes a list of elements to split as well as a string defining the name of
the temporary variables needed to outline elements. Since various of those temporary
variables are required, it holds an iteration count and appends the counter to the passed
string for naming.

The final operation of splitting transforms the input code to the standard format needed
for transformation. The IR of the source function has now been normalized such that
the conversion to other representation formats can take place in the adapters, which was
the goal of these transformations.

90 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

5.4.5 Example

This section shows the various transformation steps applied to the implementation of
NORX. Code Example 5.9 shows the untransformed round function. It can be seen that
it heavily uses macros to perform the core operations (G, U).

Code Example 5.10 shows the round function after the inlining, it can be seen that all
macro calls have been inlined into the round function. It does therefore not depend on
any external code anymore.

Code Example 5.11 shows the same round function after the compound statements have
been fixed. It can be seen that they have been substituted by their canonical expression.

Code Example 5.12 shows the round function after the rotations have been detected and
annotated. It can be seen that the rotations have not been altered, but their type and
parameters have been detected and an annotation has been added to their comments.
This annotation will be detected by further steps and indicates treatment as one operation
defined by the annotation.

Code Example 5.13 shows the round function after splitting. All operations have been
split. This represents the round function in standard form that can be used for further
processing and transformation.

Code Example 5.9: The NORX round function before any transformation.
1 /* The nonlinear primitive */

#define U(A, B) (((A) ^ (B)) ^ (((A) & (B)) << 1))
3

/* The quarter -round */
5 #define G(A, B, C, D) \

do \
7 { \

(A) = U(A, B); (D) ^= (A); (D) = ROTR((D), R0); \
9 (C) = U(C, D); (B) ^= (C); (B) = ROTR((B), R1); \

(A) = U(A, B); (D) ^= (A); (D) = ROTR((D), R2); \
11 (C) = U(C, D); (B) ^= (C); (B) = ROTR((B), R3); \

} while (0)
13

// @roundfunction
15 /* The full round */

static NORX_INLINE void F(norx_word_t S[16])
17 {

/* Column step */
19 G(S[0], S[4], S[8], S[12]);

G(S[1], S[5], S[9], S[13]);
21 G(S[2], S[6], S[10], S[14]);

G(S[3], S[7], S[11], S[15]);
23 /* Diagonal step */

G(S[0], S[5], S[10], S[15]);
25 G(S[1], S[6], S[11], S[12]);

G(S[2], S[7], S[8], S[13]);
27 G(S[3], S[4], S[9], S[14]);

}

Code Example 5.10: The NORX round after the inlining transformation was applied.
// @roundfunction

2 /* The full round */

4 inline static void F(norx_word_t S[16UL])
{

6 /* Column step */
do {

8 S[0] = ((S[0] ^ S[4]) ^ ((S[0] & S[4]) << 1));

5.4. TRANSFORMATIONS 91

S[12] ^= S[0];
10 S[12] = ((S[12] >> 8) | (S[12] << sizeof(S[12]) * 8 - 8));

S[8] = ((S[8] ^ S[12]) ^ ((S[8] & S[12]) << 1));
12 S[4] ^= S[8];

S[4] = ((S[4] >> 19) | (S[4] << sizeof(S[4]) * 8 - 19));
14 S[0] = ((S[0] ^ S[4]) ^ ((S[0] & S[4]) << 1));

S[12] ^= S[0];
16 S[12] = ((S[12] >> 40) | (S[12] << sizeof(S[12]) * 8 - 40));

S[8] = ((S[8] ^ S[12]) ^ ((S[8] & S[12]) << 1));
18 S[4] ^= S[8];

S[4] = ((S[4] >> 63) | (S[4] << sizeof(S[4]) * 8 - 63));
20 }while (0);

do {
22 S[1] = ((S[1] ^ S[5]) ^ ((S[1] & S[5]) << 1));

S[13] ^= S[1];
24 S[13] = ((S[13] >> 8) | (S[13] << sizeof(S[13]) * 8 - 8));

S[9] = ((S[9] ^ S[13]) ^ ((S[9] & S[13]) << 1));
26 S[5] ^= S[9];

S[5] = ((S[5] >> 19) | (S[5] << sizeof(S[5]) * 8 - 19));
28 S[1] = ((S[1] ^ S[5]) ^ ((S[1] & S[5]) << 1));

S[13] ^= S[1];
30 S[13] = ((S[13] >> 40) | (S[13] << sizeof(S[13]) * 8 - 40));

S[9] = ((S[9] ^ S[13]) ^ ((S[9] & S[13]) << 1));
32 S[5] ^= S[9];

S[5] = ((S[5] >> 63) | (S[5] << sizeof(S[5]) * 8 - 63));
34 }while (0);

do {
36 S[2] = ((S[2] ^ S[6]) ^ ((S[2] & S[6]) << 1));

S[14] ^= S[2];
38 S[14] = ((S[14] >> 8) | (S[14] << sizeof(S[14]) * 8 - 8));

S[10] = ((S[10] ^ S[14]) ^ ((S[10] & S[14]) << 1));
40 S[6] ^= S[10];

S[6] = ((S[6] >> 19) | (S[6] << sizeof(S[6]) * 8 - 19));
42 S[2] = ((S[2] ^ S[6]) ^ ((S[2] & S[6]) << 1));

S[14] ^= S[2];
44 S[14] = ((S[14] >> 40) | (S[14] << sizeof(S[14]) * 8 - 40));

S[10] = ((S[10] ^ S[14]) ^ ((S[10] & S[14]) << 1));
46 S[6] ^= S[10];

S[6] = ((S[6] >> 63) | (S[6] << sizeof(S[6]) * 8 - 63));
48 }while (0);

do {
50 S[3] = ((S[3] ^ S[7]) ^ ((S[3] & S[7]) << 1));

S[15] ^= S[3];
52 S[15] = ((S[15] >> 8) | (S[15] << sizeof(S[15]) * 8 - 8));

S[11] = ((S[11] ^ S[15]) ^ ((S[11] & S[15]) << 1));
54 S[7] ^= S[11];

S[7] = ((S[7] >> 19) | (S[7] << sizeof(S[7]) * 8 - 19));
56 S[3] = ((S[3] ^ S[7]) ^ ((S[3] & S[7]) << 1));

S[15] ^= S[3];
58 S[15] = ((S[15] >> 40) | (S[15] << sizeof(S[15]) * 8 - 40));

S[11] = ((S[11] ^ S[15]) ^ ((S[11] & S[15]) << 1));
60 S[7] ^= S[11];

S[7] = ((S[7] >> 63) | (S[7] << sizeof(S[7]) * 8 - 63));
62 }while (0);

/* Diagonal step */
64 do {

S[0] = ((S[0] ^ S[5]) ^ ((S[0] & S[5]) << 1));
66 S[15] ^= S[0];

S[15] = ((S[15] >> 8) | (S[15] << sizeof(S[15]) * 8 - 8));
68 S[10] = ((S[10] ^ S[15]) ^ ((S[10] & S[15]) << 1));

S[5] ^= S[10];
70 S[5] = ((S[5] >> 19) | (S[5] << sizeof(S[5]) * 8 - 19));

S[0] = ((S[0] ^ S[5]) ^ ((S[0] & S[5]) << 1));
72 S[15] ^= S[0];

S[15] = ((S[15] >> 40) | (S[15] << sizeof(S[15]) * 8 - 40));
74 S[10] = ((S[10] ^ S[15]) ^ ((S[10] & S[15]) << 1));

S[5] ^= S[10];
76 S[5] = ((S[5] >> 63) | (S[5] << sizeof(S[5]) * 8 - 63));

}while (0);
78 do {

S[1] = ((S[1] ^ S[6]) ^ ((S[1] & S[6]) << 1));
80 S[12] ^= S[1];

S[12] = ((S[12] >> 8) | (S[12] << sizeof(S[12]) * 8 - 8));
82 S[11] = ((S[11] ^ S[12]) ^ ((S[11] & S[12]) << 1));

S[6] ^= S[11];
84 S[6] = ((S[6] >> 19) | (S[6] << sizeof(S[6]) * 8 - 19));

S[1] = ((S[1] ^ S[6]) ^ ((S[1] & S[6]) << 1));
86 S[12] ^= S[1];

S[12] = ((S[12] >> 40) | (S[12] << sizeof(S[12]) * 8 - 40));
88 S[11] = ((S[11] ^ S[12]) ^ ((S[11] & S[12]) << 1));

S[6] ^= S[11];
90 S[6] = ((S[6] >> 63) | (S[6] << sizeof(S[6]) * 8 - 63));

}while (0);

92 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

92 do {
S[2] = ((S[2] ^ S[7]) ^ ((S[2] & S[7]) << 1));

94 S[13] ^= S[2];
S[13] = ((S[13] >> 8) | (S[13] << sizeof(S[13]) * 8 - 8));

96 S[8] = ((S[8] ^ S[13]) ^ ((S[8] & S[13]) << 1));
S[7] ^= S[8];

98 S[7] = ((S[7] >> 19) | (S[7] << sizeof(S[7]) * 8 - 19));
S[2] = ((S[2] ^ S[7]) ^ ((S[2] & S[7]) << 1));

100 S[13] ^= S[2];
S[13] = ((S[13] >> 40) | (S[13] << sizeof(S[13]) * 8 - 40));

102 S[8] = ((S[8] ^ S[13]) ^ ((S[8] & S[13]) << 1));
S[7] ^= S[8];

104 S[7] = ((S[7] >> 63) | (S[7] << sizeof(S[7]) * 8 - 63));
}while (0);

106 do {
S[3] = ((S[3] ^ S[4]) ^ ((S[3] & S[4]) << 1));

108 S[14] ^= S[3];
S[14] = ((S[14] >> 8) | (S[14] << sizeof(S[14]) * 8 - 8));

110 S[9] = ((S[9] ^ S[14]) ^ ((S[9] & S[14]) << 1));
S[4] ^= S[9];

112 S[4] = ((S[4] >> 19) | (S[4] << sizeof(S[4]) * 8 - 19));
S[3] = ((S[3] ^ S[4]) ^ ((S[3] & S[4]) << 1));

114 S[14] ^= S[3];
S[14] = ((S[14] >> 40) | (S[14] << sizeof(S[14]) * 8 - 40));

116 S[9] = ((S[9] ^ S[14]) ^ ((S[9] & S[14]) << 1));
S[4] ^= S[9];

118 S[4] = ((S[4] >> 63) | (S[4] << sizeof(S[4]) * 8 - 63));
}while (0);

120 }

Code Example 5.11: The NORX round after inlining and the handling of compound
expressions.
// @roundfunction

2 /* The full round */

4 inline static void F(norx_word_t S[16UL])
{

6 /* Column step */
do {

8 S[0] = ((S[0] ^ S[4]) ^ ((S[0] & S[4]) << 1));
S[12] = S[12] ^ S[0];

10 S[12] = ((S[12] >> 8) | (S[12] << sizeof(S[12]) * 8 - 8));
S[8] = ((S[8] ^ S[12]) ^ ((S[8] & S[12]) << 1));

12 S[4] = S[4] ^ S[8];
S[4] = ((S[4] >> 19) | (S[4] << sizeof(S[4]) * 8 - 19));

14 S[0] = ((S[0] ^ S[4]) ^ ((S[0] & S[4]) << 1));
S[12] = S[12] ^ S[0];

16 S[12] = ((S[12] >> 40) | (S[12] << sizeof(S[12]) * 8 - 40));
S[8] = ((S[8] ^ S[12]) ^ ((S[8] & S[12]) << 1));

18 S[4] = S[4] ^ S[8];
S[4] = ((S[4] >> 63) | (S[4] << sizeof(S[4]) * 8 - 63));

20 }while (0);
do {

22 S[1] = ((S[1] ^ S[5]) ^ ((S[1] & S[5]) << 1));
S[13] = S[13] ^ S[1];

24 S[13] = ((S[13] >> 8) | (S[13] << sizeof(S[13]) * 8 - 8));
S[9] = ((S[9] ^ S[13]) ^ ((S[9] & S[13]) << 1));

26 S[5] = S[5] ^ S[9];
S[5] = ((S[5] >> 19) | (S[5] << sizeof(S[5]) * 8 - 19));

28 S[1] = ((S[1] ^ S[5]) ^ ((S[1] & S[5]) << 1));
S[13] = S[13] ^ S[1];

30 S[13] = ((S[13] >> 40) | (S[13] << sizeof(S[13]) * 8 - 40));
S[9] = ((S[9] ^ S[13]) ^ ((S[9] & S[13]) << 1));

32 S[5] = S[5] ^ S[9];
S[5] = ((S[5] >> 63) | (S[5] << sizeof(S[5]) * 8 - 63));

34 }while (0);
do {

36 S[2] = ((S[2] ^ S[6]) ^ ((S[2] & S[6]) << 1));
S[14] = S[14] ^ S[2];

38 S[14] = ((S[14] >> 8) | (S[14] << sizeof(S[14]) * 8 - 8));
S[10] = ((S[10] ^ S[14]) ^ ((S[10] & S[14]) << 1));

40 S[6] = S[6] ^ S[10];
S[6] = ((S[6] >> 19) | (S[6] << sizeof(S[6]) * 8 - 19));

42 S[2] = ((S[2] ^ S[6]) ^ ((S[2] & S[6]) << 1));
S[14] = S[14] ^ S[2];

44 S[14] = ((S[14] >> 40) | (S[14] << sizeof(S[14]) * 8 - 40));
S[10] = ((S[10] ^ S[14]) ^ ((S[10] & S[14]) << 1));

46 S[6] = S[6] ^ S[10];
S[6] = ((S[6] >> 63) | (S[6] << sizeof(S[6]) * 8 - 63));

48 }while (0);

5.4. TRANSFORMATIONS 93

do {
50 S[3] = ((S[3] ^ S[7]) ^ ((S[3] & S[7]) << 1));

S[15] = S[15] ^ S[3];
52 S[15] = ((S[15] >> 8) | (S[15] << sizeof(S[15]) * 8 - 8));

S[11] = ((S[11] ^ S[15]) ^ ((S[11] & S[15]) << 1));
54 S[7] = S[7] ^ S[11];

S[7] = ((S[7] >> 19) | (S[7] << sizeof(S[7]) * 8 - 19));
56 S[3] = ((S[3] ^ S[7]) ^ ((S[3] & S[7]) << 1));

S[15] = S[15] ^ S[3];
58 S[15] = ((S[15] >> 40) | (S[15] << sizeof(S[15]) * 8 - 40));

S[11] = ((S[11] ^ S[15]) ^ ((S[11] & S[15]) << 1));
60 S[7] = S[7] ^ S[11];

S[7] = ((S[7] >> 63) | (S[7] << sizeof(S[7]) * 8 - 63));
62 }while (0);

/* Diagonal step */
64 do {

S[0] = ((S[0] ^ S[5]) ^ ((S[0] & S[5]) << 1));
66 S[15] = S[15] ^ S[0];

S[15] = ((S[15] >> 8) | (S[15] << sizeof(S[15]) * 8 - 8));
68 S[10] = ((S[10] ^ S[15]) ^ ((S[10] & S[15]) << 1));

S[5] = S[5] ^ S[10];
70 S[5] = ((S[5] >> 19) | (S[5] << sizeof(S[5]) * 8 - 19));

S[0] = ((S[0] ^ S[5]) ^ ((S[0] & S[5]) << 1));
72 S[15] = S[15] ^ S[0];

S[15] = ((S[15] >> 40) | (S[15] << sizeof(S[15]) * 8 - 40));
74 S[10] = ((S[10] ^ S[15]) ^ ((S[10] & S[15]) << 1));

S[5] = S[5] ^ S[10];
76 S[5] = ((S[5] >> 63) | (S[5] << sizeof(S[5]) * 8 - 63));

}while (0);
78 do {

S[1] = ((S[1] ^ S[6]) ^ ((S[1] & S[6]) << 1));
80 S[12] = S[12] ^ S[1];

S[12] = ((S[12] >> 8) | (S[12] << sizeof(S[12]) * 8 - 8));
82 S[11] = ((S[11] ^ S[12]) ^ ((S[11] & S[12]) << 1));

S[6] = S[6] ^ S[11];
84 S[6] = ((S[6] >> 19) | (S[6] << sizeof(S[6]) * 8 - 19));

S[1] = ((S[1] ^ S[6]) ^ ((S[1] & S[6]) << 1));
86 S[12] = S[12] ^ S[1];

S[12] = ((S[12] >> 40) | (S[12] << sizeof(S[12]) * 8 - 40));
88 S[11] = ((S[11] ^ S[12]) ^ ((S[11] & S[12]) << 1));

S[6] = S[6] ^ S[11];
90 S[6] = ((S[6] >> 63) | (S[6] << sizeof(S[6]) * 8 - 63));

}while (0);
92 do {

S[2] = ((S[2] ^ S[7]) ^ ((S[2] & S[7]) << 1));
94 S[13] = S[13] ^ S[2];

S[13] = ((S[13] >> 8) | (S[13] << sizeof(S[13]) * 8 - 8));
96 S[8] = ((S[8] ^ S[13]) ^ ((S[8] & S[13]) << 1));

S[7] = S[7] ^ S[8];
98 S[7] = ((S[7] >> 19) | (S[7] << sizeof(S[7]) * 8 - 19));

S[2] = ((S[2] ^ S[7]) ^ ((S[2] & S[7]) << 1));
100 S[13] = S[13] ^ S[2];

S[13] = ((S[13] >> 40) | (S[13] << sizeof(S[13]) * 8 - 40));
102 S[8] = ((S[8] ^ S[13]) ^ ((S[8] & S[13]) << 1));

S[7] = S[7] ^ S[8];
104 S[7] = ((S[7] >> 63) | (S[7] << sizeof(S[7]) * 8 - 63));

}while (0);
106 do {

S[3] = ((S[3] ^ S[4]) ^ ((S[3] & S[4]) << 1));
108 S[14] = S[14] ^ S[3];

S[14] = ((S[14] >> 8) | (S[14] << sizeof(S[14]) * 8 - 8));
110 S[9] = ((S[9] ^ S[14]) ^ ((S[9] & S[14]) << 1));

S[4] = S[4] ^ S[9];
112 S[4] = ((S[4] >> 19) | (S[4] << sizeof(S[4]) * 8 - 19));

S[3] = ((S[3] ^ S[4]) ^ ((S[3] & S[4]) << 1));
114 S[14] = S[14] ^ S[3];

S[14] = ((S[14] >> 40) | (S[14] << sizeof(S[14]) * 8 - 40));
116 S[9] = ((S[9] ^ S[14]) ^ ((S[9] & S[14]) << 1));

S[4] = S[4] ^ S[9];
118 S[4] = ((S[4] >> 63) | (S[4] << sizeof(S[4]) * 8 - 63));

}while (0);
120 }

Code Example 5.12: The NORX round after inlining, compound expression handling
and rotation detection.
// @roundfunction

2 /* The full round */

4 inline static void F(norx_word_t S[16UL])
{

94 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

6 /* Column step */
do {

8 S[0] = ((S[0] ^ S[4]) ^ ((S[0] & S[4]) << 1));
S[12] = S[12] ^ S[0];

10 S[12] =
/* @compoundOperation */

12 /* @ROTR(S[12], 8) */
((S[12] >> 8) | (S[12] << sizeof(S[12]) * 8 - 8));

14 S[8] = ((S[8] ^ S[12]) ^ ((S[8] & S[12]) << 1));
S[4] = S[4] ^ S[8];

16 S[4] =
/* @compoundOperation */

18 /* @ROTR(S[4], 19) */
((S[4] >> 19) | (S[4] << sizeof(S[4]) * 8 - 19));

20 S[0] = ((S[0] ^ S[4]) ^ ((S[0] & S[4]) << 1));
S[12] = S[12] ^ S[0];

22 S[12] =
/* @compoundOperation */

24 /* @ROTR(S[12], 40) */
((S[12] >> 40) | (S[12] << sizeof(S[12]) * 8 - 40));

26 S[8] = ((S[8] ^ S[12]) ^ ((S[8] & S[12]) << 1));
S[4] = S[4] ^ S[8];

28 S[4] =
/* @compoundOperation */

30 /* @ROTR(S[4], 63) */
((S[4] >> 63) | (S[4] << sizeof(S[4]) * 8 - 63));

32 }while (0);
do {

34 S[1] = ((S[1] ^ S[5]) ^ ((S[1] & S[5]) << 1));
S[13] = S[13] ^ S[1];

36 S[13] =
/* @compoundOperation */

38 /* @ROTR(S[13], 8) */
((S[13] >> 8) | (S[13] << sizeof(S[13]) * 8 - 8));

40 S[9] = ((S[9] ^ S[13]) ^ ((S[9] & S[13]) << 1));
S[5] = S[5] ^ S[9];

42 S[5] =
/* @compoundOperation */

44 /* @ROTR(S[5], 19) */
((S[5] >> 19) | (S[5] << sizeof(S[5]) * 8 - 19));

46 S[1] = ((S[1] ^ S[5]) ^ ((S[1] & S[5]) << 1));
S[13] = S[13] ^ S[1];

48 S[13] =
/* @compoundOperation */

50 /* @ROTR(S[13], 40) */
((S[13] >> 40) | (S[13] << sizeof(S[13]) * 8 - 40));

52 S[9] = ((S[9] ^ S[13]) ^ ((S[9] & S[13]) << 1));
S[5] = S[5] ^ S[9];

54 S[5] =
/* @compoundOperation */

56 /* @ROTR(S[5], 63) */
((S[5] >> 63) | (S[5] << sizeof(S[5]) * 8 - 63));

58 }while (0);
do {

60 S[2] = ((S[2] ^ S[6]) ^ ((S[2] & S[6]) << 1));
S[14] = S[14] ^ S[2];

62 S[14] =
/* @compoundOperation */

64 /* @ROTR(S[14], 8) */
((S[14] >> 8) | (S[14] << sizeof(S[14]) * 8 - 8));

66 S[10] = ((S[10] ^ S[14]) ^ ((S[10] & S[14]) << 1));
S[6] = S[6] ^ S[10];

68 S[6] =
/* @compoundOperation */

70 /* @ROTR(S[6], 19) */
((S[6] >> 19) | (S[6] << sizeof(S[6]) * 8 - 19));

72 S[2] = ((S[2] ^ S[6]) ^ ((S[2] & S[6]) << 1));
S[14] = S[14] ^ S[2];

74 S[14] =
/* @compoundOperation */

76 /* @ROTR(S[14], 40) */
((S[14] >> 40) | (S[14] << sizeof(S[14]) * 8 - 40));

78 S[10] = ((S[10] ^ S[14]) ^ ((S[10] & S[14]) << 1));
S[6] = S[6] ^ S[10];

80 S[6] =
/* @compoundOperation */

82 /* @ROTR(S[6], 63) */
((S[6] >> 63) | (S[6] << sizeof(S[6]) * 8 - 63));

84 }while (0);
do {

86 S[3] = ((S[3] ^ S[7]) ^ ((S[3] & S[7]) << 1));
S[15] = S[15] ^ S[3];

88 S[15] =

5.4. TRANSFORMATIONS 95

/* @compoundOperation */
90 /* @ROTR(S[15], 8) */

((S[15] >> 8) | (S[15] << sizeof(S[15]) * 8 - 8));
92 S[11] = ((S[11] ^ S[15]) ^ ((S[11] & S[15]) << 1));

S[7] = S[7] ^ S[11];
94 S[7] =

/* @compoundOperation */
96 /* @ROTR(S[7], 19) */

((S[7] >> 19) | (S[7] << sizeof(S[7]) * 8 - 19));
98 S[3] = ((S[3] ^ S[7]) ^ ((S[3] & S[7]) << 1));

S[15] = S[15] ^ S[3];
100 S[15] =

/* @compoundOperation */
102 /* @ROTR(S[15], 40) */

((S[15] >> 40) | (S[15] << sizeof(S[15]) * 8 - 40));
104 S[11] = ((S[11] ^ S[15]) ^ ((S[11] & S[15]) << 1));

S[7] = S[7] ^ S[11];
106 S[7] =

/* @compoundOperation */
108 /* @ROTR(S[7], 63) */

((S[7] >> 63) | (S[7] << sizeof(S[7]) * 8 - 63));
110 }while (0);

/* Diagonal step */
112 do {

S[0] = ((S[0] ^ S[5]) ^ ((S[0] & S[5]) << 1));
114 S[15] = S[15] ^ S[0];

S[15] =
116 /* @compoundOperation */

/* @ROTR(S[15], 8) */
118 ((S[15] >> 8) | (S[15] << sizeof(S[15]) * 8 - 8));

S[10] = ((S[10] ^ S[15]) ^ ((S[10] & S[15]) << 1));
120 S[5] = S[5] ^ S[10];

S[5] =
122 /* @compoundOperation */

/* @ROTR(S[5], 19) */
124 ((S[5] >> 19) | (S[5] << sizeof(S[5]) * 8 - 19));

S[0] = ((S[0] ^ S[5]) ^ ((S[0] & S[5]) << 1));
126 S[15] = S[15] ^ S[0];

S[15] =
128 /* @compoundOperation */

/* @ROTR(S[15], 40) */
130 ((S[15] >> 40) | (S[15] << sizeof(S[15]) * 8 - 40));

S[10] = ((S[10] ^ S[15]) ^ ((S[10] & S[15]) << 1));
132 S[5] = S[5] ^ S[10];

S[5] =
134 /* @compoundOperation */

/* @ROTR(S[5], 63) */
136 ((S[5] >> 63) | (S[5] << sizeof(S[5]) * 8 - 63));

}while (0);
138 do {

S[1] = ((S[1] ^ S[6]) ^ ((S[1] & S[6]) << 1));
140 S[12] = S[12] ^ S[1];

S[12] =
142 /* @compoundOperation */

/* @ROTR(S[12], 8) */
144 ((S[12] >> 8) | (S[12] << sizeof(S[12]) * 8 - 8));

S[11] = ((S[11] ^ S[12]) ^ ((S[11] & S[12]) << 1));
146 S[6] = S[6] ^ S[11];

S[6] =
148 /* @compoundOperation */

/* @ROTR(S[6], 19) */
150 ((S[6] >> 19) | (S[6] << sizeof(S[6]) * 8 - 19));

S[1] = ((S[1] ^ S[6]) ^ ((S[1] & S[6]) << 1));
152 S[12] = S[12] ^ S[1];

S[12] =
154 /* @compoundOperation */

/* @ROTR(S[12], 40) */
156 ((S[12] >> 40) | (S[12] << sizeof(S[12]) * 8 - 40));

S[11] = ((S[11] ^ S[12]) ^ ((S[11] & S[12]) << 1));
158 S[6] = S[6] ^ S[11];

S[6] =
160 /* @compoundOperation */

/* @ROTR(S[6], 63) */
162 ((S[6] >> 63) | (S[6] << sizeof(S[6]) * 8 - 63));

}while (0);
164 do {

S[2] = ((S[2] ^ S[7]) ^ ((S[2] & S[7]) << 1));
166 S[13] = S[13] ^ S[2];

S[13] =
168 /* @compoundOperation */

/* @ROTR(S[13], 8) */
170 ((S[13] >> 8) | (S[13] << sizeof(S[13]) * 8 - 8));

S[8] = ((S[8] ^ S[13]) ^ ((S[8] & S[13]) << 1));

96 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

172 S[7] = S[7] ^ S[8];
S[7] =

174 /* @compoundOperation */
/* @ROTR(S[7], 19) */

176 ((S[7] >> 19) | (S[7] << sizeof(S[7]) * 8 - 19));
S[2] = ((S[2] ^ S[7]) ^ ((S[2] & S[7]) << 1));

178 S[13] = S[13] ^ S[2];
S[13] =

180 /* @compoundOperation */
/* @ROTR(S[13], 40) */

182 ((S[13] >> 40) | (S[13] << sizeof(S[13]) * 8 - 40));
S[8] = ((S[8] ^ S[13]) ^ ((S[8] & S[13]) << 1));

184 S[7] = S[7] ^ S[8];
S[7] =

186 /* @compoundOperation */
/* @ROTR(S[7], 63) */

188 ((S[7] >> 63) | (S[7] << sizeof(S[7]) * 8 - 63));
}while (0);

190 do {
S[3] = ((S[3] ^ S[4]) ^ ((S[3] & S[4]) << 1));

192 S[14] = S[14] ^ S[3];
S[14] =

194 /* @compoundOperation */
/* @ROTR(S[14], 8) */

196 ((S[14] >> 8) | (S[14] << sizeof(S[14]) * 8 - 8));
S[9] = ((S[9] ^ S[14]) ^ ((S[9] & S[14]) << 1));

198 S[4] = S[4] ^ S[9];
S[4] =

200 /* @compoundOperation */
/* @ROTR(S[4], 19) */

202 ((S[4] >> 19) | (S[4] << sizeof(S[4]) * 8 - 19));
S[3] = ((S[3] ^ S[4]) ^ ((S[3] & S[4]) << 1));

204 S[14] = S[14] ^ S[3];
S[14] =

206 /* @compoundOperation */
/* @ROTR(S[14], 40) */

208 ((S[14] >> 40) | (S[14] << sizeof(S[14]) * 8 - 40));
S[9] = ((S[9] ^ S[14]) ^ ((S[9] & S[14]) << 1));

210 S[4] = S[4] ^ S[9];
S[4] =

212 /* @compoundOperation */
/* @ROTR(S[4], 63) */

214 ((S[4] >> 63) | (S[4] << sizeof(S[4]) * 8 - 63));
}while (0);

216 }

Code Example 5.13: The NORX round in standard form.
// @roundfunction

2 /* The full round */

4 inline static void F(norx_word_t S[16UL])
{

6 /* Column step */
do {

8 norx_word_t binaryOpTemp01 = (S[0] ^ S[4]);
norx_word_t binaryOpTemp02 = (S[0] & S[4]);

10 norx_word_t binaryOpTemp11 = (binaryOpTemp02 << 1);
S[0] = (binaryOpTemp01 ^ binaryOpTemp11);

12 S[12] = S[12] ^ S[0];
S[12] =

14 /* @compoundOperation */
/* @ROTR(S[12], 8) */

16 ((S[12] >> 8) | (S[12] << sizeof(S[12]) * 8 - 8));
norx_word_t binaryOpTemp03 = (S[8] ^ S[12]);

18 norx_word_t binaryOpTemp04 = (S[8] & S[12]);
norx_word_t binaryOpTemp12 = (binaryOpTemp04 << 1);

20 S[8] = (binaryOpTemp03 ^ binaryOpTemp12);
S[4] = S[4] ^ S[8];

22 S[4] =
/* @compoundOperation */

24 /* @ROTR(S[4], 19) */
((S[4] >> 19) | (S[4] << sizeof(S[4]) * 8 - 19));

26 norx_word_t binaryOpTemp05 = (S[0] ^ S[4]);
norx_word_t binaryOpTemp06 = (S[0] & S[4]);

28 norx_word_t binaryOpTemp13 = (binaryOpTemp06 << 1);
S[0] = (binaryOpTemp05 ^ binaryOpTemp13);

30 S[12] = S[12] ^ S[0];
S[12] =

32 /* @compoundOperation */
/* @ROTR(S[12], 40) */

34 ((S[12] >> 40) | (S[12] << sizeof(S[12]) * 8 - 40));

5.4. TRANSFORMATIONS 97

norx_word_t binaryOpTemp07 = (S[8] ^ S[12]);
36 norx_word_t binaryOpTemp08 = (S[8] & S[12]);

norx_word_t binaryOpTemp14 = (binaryOpTemp08 << 1);
38 S[8] = (binaryOpTemp07 ^ binaryOpTemp14);

S[4] = S[4] ^ S[8];
40 S[4] =

/* @compoundOperation */
42 /* @ROTR(S[4], 63) */

((S[4] >> 63) | (S[4] << sizeof(S[4]) * 8 - 63));
44 }while (0);

do {
46 norx_word_t binaryOpTemp09 = (S[1] ^ S[5]);

norx_word_t binaryOpTemp010 = (S[1] & S[5]);
48 norx_word_t binaryOpTemp15 = (binaryOpTemp010 << 1);

S[1] = (binaryOpTemp09 ^ binaryOpTemp15);
50 S[13] = S[13] ^ S[1];

S[13] =
52 /* @compoundOperation */

/* @ROTR(S[13], 8) */
54 ((S[13] >> 8) | (S[13] << sizeof(S[13]) * 8 - 8));

norx_word_t binaryOpTemp011 = (S[9] ^ S[13]);
56 norx_word_t binaryOpTemp012 = (S[9] & S[13]);

norx_word_t binaryOpTemp16 = (binaryOpTemp012 << 1);
58 S[9] = (binaryOpTemp011 ^ binaryOpTemp16);

S[5] = S[5] ^ S[9];
60 S[5] =

/* @compoundOperation */
62 /* @ROTR(S[5], 19) */

((S[5] >> 19) | (S[5] << sizeof(S[5]) * 8 - 19));
64 norx_word_t binaryOpTemp013 = (S[1] ^ S[5]);

norx_word_t binaryOpTemp014 = (S[1] & S[5]);
66 norx_word_t binaryOpTemp17 = (binaryOpTemp014 << 1);

S[1] = (binaryOpTemp013 ^ binaryOpTemp17);
68 S[13] = S[13] ^ S[1];

S[13] =
70 /* @compoundOperation */

/* @ROTR(S[13], 40) */
72 ((S[13] >> 40) | (S[13] << sizeof(S[13]) * 8 - 40));

norx_word_t binaryOpTemp015 = (S[9] ^ S[13]);
74 norx_word_t binaryOpTemp016 = (S[9] & S[13]);

norx_word_t binaryOpTemp18 = (binaryOpTemp016 << 1);
76 S[9] = (binaryOpTemp015 ^ binaryOpTemp18);

S[5] = S[5] ^ S[9];
78 S[5] =

/* @compoundOperation */
80 /* @ROTR(S[5], 63) */

((S[5] >> 63) | (S[5] << sizeof(S[5]) * 8 - 63));
82 }while (0);

do {
84 norx_word_t binaryOpTemp017 = (S[2] ^ S[6]);

norx_word_t binaryOpTemp018 = (S[2] & S[6]);
86 norx_word_t binaryOpTemp19 = (binaryOpTemp018 << 1);

S[2] = (binaryOpTemp017 ^ binaryOpTemp19);
88 S[14] = S[14] ^ S[2];

S[14] =
90 /* @compoundOperation */

/* @ROTR(S[14], 8) */
92 ((S[14] >> 8) | (S[14] << sizeof(S[14]) * 8 - 8));

norx_word_t binaryOpTemp019 = (S[10] ^ S[14]);
94 norx_word_t binaryOpTemp020 = (S[10] & S[14]);

norx_word_t binaryOpTemp110 = (binaryOpTemp020 << 1);
96 S[10] = (binaryOpTemp019 ^ binaryOpTemp110);

S[6] = S[6] ^ S[10];
98 S[6] =

/* @compoundOperation */
100 /* @ROTR(S[6], 19) */

((S[6] >> 19) | (S[6] << sizeof(S[6]) * 8 - 19));
102 norx_word_t binaryOpTemp021 = (S[2] ^ S[6]);

norx_word_t binaryOpTemp022 = (S[2] & S[6]);
104 norx_word_t binaryOpTemp111 = (binaryOpTemp022 << 1);

S[2] = (binaryOpTemp021 ^ binaryOpTemp111);
106 S[14] = S[14] ^ S[2];

S[14] =
108 /* @compoundOperation */

/* @ROTR(S[14], 40) */
110 ((S[14] >> 40) | (S[14] << sizeof(S[14]) * 8 - 40));

norx_word_t binaryOpTemp023 = (S[10] ^ S[14]);
112 norx_word_t binaryOpTemp024 = (S[10] & S[14]);

norx_word_t binaryOpTemp112 = (binaryOpTemp024 << 1);
114 S[10] = (binaryOpTemp023 ^ binaryOpTemp112);

S[6] = S[6] ^ S[10];
116 S[6] =

/* @compoundOperation */

98 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

118 /* @ROTR(S[6], 63) */
((S[6] >> 63) | (S[6] << sizeof(S[6]) * 8 - 63));

120 }while (0);
do {

122 norx_word_t binaryOpTemp025 = (S[3] ^ S[7]);
norx_word_t binaryOpTemp026 = (S[3] & S[7]);

124 norx_word_t binaryOpTemp113 = (binaryOpTemp026 << 1);
S[3] = (binaryOpTemp025 ^ binaryOpTemp113);

126 S[15] = S[15] ^ S[3];
S[15] =

128 /* @compoundOperation */
/* @ROTR(S[15], 8) */

130 ((S[15] >> 8) | (S[15] << sizeof(S[15]) * 8 - 8));
norx_word_t binaryOpTemp027 = (S[11] ^ S[15]);

132 norx_word_t binaryOpTemp028 = (S[11] & S[15]);
norx_word_t binaryOpTemp114 = (binaryOpTemp028 << 1);

134 S[11] = (binaryOpTemp027 ^ binaryOpTemp114);
S[7] = S[7] ^ S[11];

136 S[7] =
/* @compoundOperation */

138 /* @ROTR(S[7], 19) */
((S[7] >> 19) | (S[7] << sizeof(S[7]) * 8 - 19));

140 norx_word_t binaryOpTemp029 = (S[3] ^ S[7]);
norx_word_t binaryOpTemp030 = (S[3] & S[7]);

142 norx_word_t binaryOpTemp115 = (binaryOpTemp030 << 1);
S[3] = (binaryOpTemp029 ^ binaryOpTemp115);

144 S[15] = S[15] ^ S[3];
S[15] =

146 /* @compoundOperation */
/* @ROTR(S[15], 40) */

148 ((S[15] >> 40) | (S[15] << sizeof(S[15]) * 8 - 40));
norx_word_t binaryOpTemp031 = (S[11] ^ S[15]);

150 norx_word_t binaryOpTemp032 = (S[11] & S[15]);
norx_word_t binaryOpTemp116 = (binaryOpTemp032 << 1);

152 S[11] = (binaryOpTemp031 ^ binaryOpTemp116);
S[7] = S[7] ^ S[11];

154 S[7] =
/* @compoundOperation */

156 /* @ROTR(S[7], 63) */
((S[7] >> 63) | (S[7] << sizeof(S[7]) * 8 - 63));

158 }while (0);
/* Diagonal step */

160 do {
norx_word_t binaryOpTemp033 = (S[0] ^ S[5]);

162 norx_word_t binaryOpTemp034 = (S[0] & S[5]);
norx_word_t binaryOpTemp117 = (binaryOpTemp034 << 1);

164 S[0] = (binaryOpTemp033 ^ binaryOpTemp117);
S[15] = S[15] ^ S[0];

166 S[15] =
/* @compoundOperation */

168 /* @ROTR(S[15], 8) */
((S[15] >> 8) | (S[15] << sizeof(S[15]) * 8 - 8));

170 norx_word_t binaryOpTemp035 = (S[10] ^ S[15]);
norx_word_t binaryOpTemp036 = (S[10] & S[15]);

172 norx_word_t binaryOpTemp118 = (binaryOpTemp036 << 1);
S[10] = (binaryOpTemp035 ^ binaryOpTemp118);

174 S[5] = S[5] ^ S[10];
S[5] =

176 /* @compoundOperation */
/* @ROTR(S[5], 19) */

178 ((S[5] >> 19) | (S[5] << sizeof(S[5]) * 8 - 19));
norx_word_t binaryOpTemp037 = (S[0] ^ S[5]);

180 norx_word_t binaryOpTemp038 = (S[0] & S[5]);
norx_word_t binaryOpTemp119 = (binaryOpTemp038 << 1);

182 S[0] = (binaryOpTemp037 ^ binaryOpTemp119);
S[15] = S[15] ^ S[0];

184 S[15] =
/* @compoundOperation */

186 /* @ROTR(S[15], 40) */
((S[15] >> 40) | (S[15] << sizeof(S[15]) * 8 - 40));

188 norx_word_t binaryOpTemp039 = (S[10] ^ S[15]);
norx_word_t binaryOpTemp040 = (S[10] & S[15]);

190 norx_word_t binaryOpTemp120 = (binaryOpTemp040 << 1);
S[10] = (binaryOpTemp039 ^ binaryOpTemp120);

192 S[5] = S[5] ^ S[10];
S[5] =

194 /* @compoundOperation */
/* @ROTR(S[5], 63) */

196 ((S[5] >> 63) | (S[5] << sizeof(S[5]) * 8 - 63));
}while (0);

198 do {
norx_word_t binaryOpTemp041 = (S[1] ^ S[6]);

200 norx_word_t binaryOpTemp042 = (S[1] & S[6]);

5.4. TRANSFORMATIONS 99

norx_word_t binaryOpTemp121 = (binaryOpTemp042 << 1);
202 S[1] = (binaryOpTemp041 ^ binaryOpTemp121);

S[12] = S[12] ^ S[1];
204 S[12] =

/* @compoundOperation */
206 /* @ROTR(S[12], 8) */

((S[12] >> 8) | (S[12] << sizeof(S[12]) * 8 - 8));
208 norx_word_t binaryOpTemp043 = (S[11] ^ S[12]);

norx_word_t binaryOpTemp044 = (S[11] & S[12]);
210 norx_word_t binaryOpTemp122 = (binaryOpTemp044 << 1);

S[11] = (binaryOpTemp043 ^ binaryOpTemp122);
212 S[6] = S[6] ^ S[11];

S[6] =
214 /* @compoundOperation */

/* @ROTR(S[6], 19) */
216 ((S[6] >> 19) | (S[6] << sizeof(S[6]) * 8 - 19));

norx_word_t binaryOpTemp045 = (S[1] ^ S[6]);
218 norx_word_t binaryOpTemp046 = (S[1] & S[6]);

norx_word_t binaryOpTemp123 = (binaryOpTemp046 << 1);
220 S[1] = (binaryOpTemp045 ^ binaryOpTemp123);

S[12] = S[12] ^ S[1];
222 S[12] =

/* @compoundOperation */
224 /* @ROTR(S[12], 40) */

((S[12] >> 40) | (S[12] << sizeof(S[12]) * 8 - 40));
226 norx_word_t binaryOpTemp047 = (S[11] ^ S[12]);

norx_word_t binaryOpTemp048 = (S[11] & S[12]);
228 norx_word_t binaryOpTemp124 = (binaryOpTemp048 << 1);

S[11] = (binaryOpTemp047 ^ binaryOpTemp124);
230 S[6] = S[6] ^ S[11];

S[6] =
232 /* @compoundOperation */

/* @ROTR(S[6], 63) */
234 ((S[6] >> 63) | (S[6] << sizeof(S[6]) * 8 - 63));

}while (0);
236 do {

norx_word_t binaryOpTemp049 = (S[2] ^ S[7]);
238 norx_word_t binaryOpTemp050 = (S[2] & S[7]);

norx_word_t binaryOpTemp125 = (binaryOpTemp050 << 1);
240 S[2] = (binaryOpTemp049 ^ binaryOpTemp125);

S[13] = S[13] ^ S[2];
242 S[13] =

/* @compoundOperation */
244 /* @ROTR(S[13], 8) */

((S[13] >> 8) | (S[13] << sizeof(S[13]) * 8 - 8));
246 norx_word_t binaryOpTemp051 = (S[8] ^ S[13]);

norx_word_t binaryOpTemp052 = (S[8] & S[13]);
248 norx_word_t binaryOpTemp126 = (binaryOpTemp052 << 1);

S[8] = (binaryOpTemp051 ^ binaryOpTemp126);
250 S[7] = S[7] ^ S[8];

S[7] =
252 /* @compoundOperation */

/* @ROTR(S[7], 19) */
254 ((S[7] >> 19) | (S[7] << sizeof(S[7]) * 8 - 19));

norx_word_t binaryOpTemp053 = (S[2] ^ S[7]);
256 norx_word_t binaryOpTemp054 = (S[2] & S[7]);

norx_word_t binaryOpTemp127 = (binaryOpTemp054 << 1);
258 S[2] = (binaryOpTemp053 ^ binaryOpTemp127);

S[13] = S[13] ^ S[2];
260 S[13] =

/* @compoundOperation */
262 /* @ROTR(S[13], 40) */

((S[13] >> 40) | (S[13] << sizeof(S[13]) * 8 - 40));
264 norx_word_t binaryOpTemp055 = (S[8] ^ S[13]);

norx_word_t binaryOpTemp056 = (S[8] & S[13]);
266 norx_word_t binaryOpTemp128 = (binaryOpTemp056 << 1);

S[8] = (binaryOpTemp055 ^ binaryOpTemp128);
268 S[7] = S[7] ^ S[8];

S[7] =
270 /* @compoundOperation */

/* @ROTR(S[7], 63) */
272 ((S[7] >> 63) | (S[7] << sizeof(S[7]) * 8 - 63));

}while (0);
274 do {

norx_word_t binaryOpTemp057 = (S[3] ^ S[4]);
276 norx_word_t binaryOpTemp058 = (S[3] & S[4]);

norx_word_t binaryOpTemp129 = (binaryOpTemp058 << 1);
278 S[3] = (binaryOpTemp057 ^ binaryOpTemp129);

S[14] = S[14] ^ S[3];
280 S[14] =

/* @compoundOperation */
282 /* @ROTR(S[14], 8) */

((S[14] >> 8) | (S[14] << sizeof(S[14]) * 8 - 8));

100 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

284 norx_word_t binaryOpTemp059 = (S[9] ^ S[14]);
norx_word_t binaryOpTemp060 = (S[9] & S[14]);

286 norx_word_t binaryOpTemp130 = (binaryOpTemp060 << 1);
S[9] = (binaryOpTemp059 ^ binaryOpTemp130);

288 S[4] = S[4] ^ S[9];
S[4] =

290 /* @compoundOperation */
/* @ROTR(S[4], 19) */

292 ((S[4] >> 19) | (S[4] << sizeof(S[4]) * 8 - 19));
norx_word_t binaryOpTemp061 = (S[3] ^ S[4]);

294 norx_word_t binaryOpTemp062 = (S[3] & S[4]);
norx_word_t binaryOpTemp131 = (binaryOpTemp062 << 1);

296 S[3] = (binaryOpTemp061 ^ binaryOpTemp131);
S[14] = S[14] ^ S[3];

298 S[14] =
/* @compoundOperation */

300 /* @ROTR(S[14], 40) */
((S[14] >> 40) | (S[14] << sizeof(S[14]) * 8 - 40));

302 norx_word_t binaryOpTemp063 = (S[9] ^ S[14]);
norx_word_t binaryOpTemp064 = (S[9] & S[14]);

304 norx_word_t binaryOpTemp132 = (binaryOpTemp064 << 1);
S[9] = (binaryOpTemp063 ^ binaryOpTemp132);

306 S[4] = S[4] ^ S[9];
S[4] =

308 /* @compoundOperation */
/* @ROTR(S[4], 63) */

310 ((S[4] >> 63) | (S[4] << sizeof(S[4]) * 8 - 63));
}while (0);

312 }

5.5 Translation to other Formats

The second part of the process fulfilled by the framework handles the translation of the
standardised IR into other cipher representation formats. The input to the process is the
IR resulting from the application of the transformation steps described in the previous
section. The output forms the final representation of the cipher in the format of a specific
tool.

Two classes are mainly responsible for handling the transformation of the IR to other
tool representations as illustrated in Figure 5.3.

• CodeTransformer: This component traverses the target function in the IR line
per line. It queries the responsible ToolTranslator for representations of dif-
ferent operations and expressions in the target language / representations. The
ToolTranslator returns a string representation for each of the commands, which
the CodeTransformer inserts as command in the correct line of the target code
(output).

• ToolTranslator: This component is responsible for setting up the basic environ-
ment of the target representation (e.g. classes, files, etc.). Further, it is responsible
for providing a string representation of different operations in the target language
when the corresponding method is called. The interface ToolTranslator defining
the different methods has two methods for setting up and completing the trans-
lation: setupTranslation and completeTranslation. All other methods handle
different operations such as occurrences of XOR, AND or SHIFT operations and
return a string representing the operation in the target language (e.g. NLTool
description language).

5.5. TRANSLATION TO OTHER FORMATS 101

Figure 5.3: Interaction between the two main components of the framework.

To perform a transformation, the following steps are required:

1. A class implementing ToolTranslator is initialized and it’s setupTranslation
method is called to setup the target representation template / structure.

2. This method returns an IR element representing the function where the translated
code of the target function shall be placed. This is needed in further steps to inject
the new statements.

3. A CodeTransformer instance is created passing the previously created
ToolTranslator instance. This sets up everything necessary to start the transfor-
mation.

4. Finally, the CodeTransformer::transformFunction method is called to start trans-
forming. It traverses the IR representation of the source function, calls the corre-
sponding transformation functions on the ToolTranslator object and injects the
returned string representation at the right position in the target function.

5.5.1 CodeTransformer

Code Example 5.14 shows the code for the CodeTransformer implementation. The class
inherits from the ASTSimpleProcessing class, which allows traversing the code by calling
the traverse method. When a node is found during traversing the AST, the method
visit is called on the object to handle it. The transformation process is started by
calling the transformFunction method. It creates an anchor statement needed to keep

102 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

track of the position to insert new code in the function, and starts the traversal of the
passed function.

The implementation of the visit method distinguishes three main types of nodes: oper-
ations, variable declarations and compound statements. It calls internal handle methods
for all three types.

The handle methods determine the type of operation and call the corresponding method
in the configured ToolTransformer object.

After the transformation has been performed by the translator, the statements are in-
serted into the target function.

Code Example 5.14: CodeTransformer.cpp
#include "CodeTransformer.h"

2 #include <boost/lexical_cast.hpp >
#include <boost/algorithm/string.hpp >

4 #include "TranslationUtils.h"

6
CodeTransformer :: CodeTransformer(ToolTranslator* transformator)

8 {
_nameCount = 0;

10 _translator = transformator;
}

12
void CodeTransformer :: transformFunction(SgFunctionDeclaration* function , SgFunctionDeclaration* destinationFunction

)
14 {

std::cout << "-------------------Starting Transformation -----------------------------------" << std::endl;
16

// setting target function
18 _targetFunction = destinationFunction;

20 // creating anchor statement
createAnchorStatement ();

22
// traversing roundfunction statements

24 this ->traverse(function , preorder);

26 // removing anchor statement
removeAnchorStatement ();

28 }

30 void CodeTransformer :: createAnchorStatement ()
{

32 // getting function body
SgBasicBlock* functionBody = _targetFunction ->get_definition ()->get_body ();

34
// defining anchor dummy declaration

36 _anchorDeclaration = SageBuilder :: buildVariableDeclaration("anchor", SageBuilder :: buildIntType ());
SageInterface :: appendStatement(_anchorDeclaration , functionBody);

38 }

40 void CodeTransformer :: removeAnchorStatement ()
{

42 //TODO: find way to delete anchor statement while keeping other instructions

44 // removing anchor statement
// functionBody ->remove_statement(_anchorDeclaration);

46 // SageInterface :: removeStatement(_anchorDeclaration , true);
}

48
void CodeTransformer ::visit(SgNode *n)

50 {
SgAssignOp* assign = isSgAssignOp(n);

52 SgVariableDeclaration* varDecl = isSgVariableDeclaration(n);
if(assign || varDecl)

54 {
std::cout << "found node " << n->unparseToCompleteString () << " of type " << n->sage_class_name () << std::

endl;
56

SgNode* variable;
58 SgNode* operationNode;

5.5. TRANSLATION TO OTHER FORMATS 103

60 //if var is
if(assign)

62 {
variable = assign ->get_lhs_operand ();

64 operationNode = assign ->get_rhs_operand ();
}

66 else
{

68 // extracting name from subtree
Rose_STL_Container <SgNode*> name = NodeQuery :: querySubTree(varDecl ,V_SgInitializedName);

70 ROSE_ASSERT(name.size() != 0);
variable = name.at(0);

72
// adding variable declaration

74 std:: string variableDeclaration = _translator ->declareVariable(variable ->unparseToString ());
addStatementToTargetFunction(variableDeclaration);

76
// extracting AssignInitializer from subtree

78 Rose_STL_Container <SgNode*> assignInitializers = NodeQuery :: querySubTree(varDecl , V_SgAssignInitializer
);

80 //if no assign initializer present , it is just a declaration , returning
if(assignInitializers.size() == 0)

82 {
return;

84 }

86 operationNode = assignInitializers.at(0);
}

88
// getting binary operation

90 Rose_STL_Container <SgNode*> opsInOperationSubtree = NodeQuery :: querySubTree(operationNode , V_SgBinaryOp);
ROSE_ASSERT(opsInOperationSubtree.size() != 0);

92
// getting pointer ref expressions

94 Rose_STL_Container <SgNode*> pntrRefsInSubtree = NodeQuery :: querySubTree(operationNode , V_SgPntrArrRefExp);

96 // calculating real binary ops
int binaryOpsWithoutPntrRefs = opsInOperationSubtree.size() - pntrRefsInSubtree.size();

98
// extracting (first if compound) binary expression

100 SgBinaryOp* operation = isSgBinaryOp(opsInOperationSubtree.at(0));
ROSE_ASSERT(operation != null);

102
// defining transformed operation string to be filled

104 std:: string transformedOperation = "";

106 //must be compound statement
if(binaryOpsWithoutPntrRefs > 1)

108 {
// handling compound statement

110 transformedOperation = handleCompoundOperation(variable , operation);
}

112 else
{

114 // handling binary operation
transformedOperation = handleBinaryOperation(variable , operation);

116 }

118 // adding transformed statement if not empty
if(transformedOperation.compare("") != 0)

120 {
addStatementToTargetFunction(transformedOperation);

122 }
}

124 }

126 void CodeTransformer :: atTraversalEnd ()
{

128 std::cout << "Traversal end..." << std::endl;

130 // calling delegate method
_translator ->completeTranslation ();

132 }

134 std:: string CodeTransformer :: handleCompoundOperation(SgNode* variable , SgNode* operation)
{

136 std:: string returnValue = "";

138 //this must be a rotation or compound operation
// making sure it’s annotated

140 if(! TranslationUtils :: isSystemAnnotatedInParents(operation))

104 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

{
142 std::cout << "rotation seems to be not annotated ..." << operation ->unparseToCompleteString () << std::endl;

return "";
144 }

146 std:: string operationDescriptionString = TranslationUtils :: getCompoundOperationString(operation);

148 // rotation
if(boost:: starts_with(operationDescriptionString , "@ROT"))

150 {
// determining direction of rotation

152 if(boost:: starts_with(operationDescriptionString , "@ROTR"))
{

154 // getting operands
Rose_STL_Container <SgNode*> rightShifts = NodeQuery :: querySubTree(operation , V_SgRshiftOp);

156 ROSE_ASSERT(rightShifts.size() != 0);

158 // casting element to right shift operation
SgRshiftOp* rightShift = isSgRshiftOp(rightShifts.at(0));

160
// calling translator to handle this

162 returnValue = _translator ->handleRrotationOperation(variable , rightShift ->get_lhs_operand (), rightShift
->get_rhs_operand ());

}
164 else if(boost:: starts_with(operationDescriptionString , "@ROTL"))

{
166 // getting operands

Rose_STL_Container <SgNode*> leftshifts = NodeQuery :: querySubTree(operation , V_SgLshiftOp);
168 ROSE_ASSERT(leftshifts.size() != 0);

170 // casting element to right left operation
SgLshiftOp* leftShift = isSgLshiftOp(leftshifts.at(0));

172
// calling translator to handle this

174 returnValue = _translator ->handleLrotationOperation(variable , leftShift ->get_lhs_operand (), leftShift ->
get_rhs_operand ());

}
176 else

{
178 std::cout << "!!COULD NOT DETECT ROTATION DIRECTION !!" << std::endl;

return "";
180 }

182 }

184 return returnValue;
}

186
std:: string CodeTransformer :: handleBinaryOperation(SgNode* variable , SgBinaryOp* operation)

188 {
std:: string returnValue = "";

190
//this is a normalized operation

192 ROSE_ASSERT(operation != null);

194 if(SgBitXorOp* op = isSgBitXorOp(operation))
{

196 returnValue = _translator ->handleXorOperation(variable , op);
}

198 else if(SgBitAndOp* op = isSgBitAndOp(operation))
{

200 returnValue = _translator ->handleAndOperation(variable , op);
}

202 else if(SgLshiftOp* op = isSgLshiftOp(operation))
{

204 returnValue = _translator ->handleLshiftOperation(variable , op);
}

206 else if(SgRshiftOp* op = isSgRshiftOp(operation))
{

208 returnValue = _translator ->handleRshiftOperation(variable , op);
}

210 else if(SgAddOp* op = isSgAddOp(operation))
{

212 returnValue = _translator ->handleAddOperation(variable , op);
}

214 else
{

216 std::cout << "You need to implement handling for operation type " << operation ->get_type ()->
unparseToCompleteString () << std::endl;

}
218

return returnValue;
220 }

5.5. TRANSLATION TO OTHER FORMATS 105

222 void CodeTransformer :: addStatementToTargetFunction(std:: string statement)
{

224 SageInterface :: addTextForUnparser(_anchorDeclaration , "\n" + statement , AstUnparseAttribute :: e_before);
}

5.5.2 CodeTranslator

This section shows how the translation process was applied to NORX in order to trans-
form it’s code into an NLTool representation. This representation is given as a C++
class with the cipher description in it’s constructor. The transformation will create the
class and a method representing the round function. Further, it will create a constructor,
which takes the number of rounds R as a parameter, creates the state words and calls
the round method R times.

To perform this task, the class NLToolTranslator was implemented. This class inherits
from ToolTranslator and implements the corresponding virtual methods. Code Exam-
ple 5.15 shows the source file of this class.

The method setupTranslation takes a function (in IR standardised form) as an input
and sets up the target representation structure accordingly. It adapts all types of pa-
rameters passed to the round function to the target type ConditionWord and builds a
function definition with the same parameters plus the round number as integer. The
function is given a name passed in the method. It then generates the header file of the
class for the NLTool using the boost template engine and a predefined template. The
templates for source and header file are illustrated in Code Example 5.16 and 5.17. The
method then saves the created function declaration. This declaration is used to inject
transformed statements. The final function code will be written to the target code file
upon completion of the process.

The methods translating special operations or expressions are implemented facilitating
template definitions for different types. For example, the declareVariable method is
implemented as obtaining a template from getFormatterForAddingConditionWord, and
completing the template using the passed variable name. It returns the statement as a
string.

As seen in the previous section, the CipherTransformer takes the returned string and
injects it into the target function. This takes place for each statement in the standard
form of the source function.

The method completeTranslation is called upon completion of the process. It creates
the target folder structure and writes the template code for the source file using the
template shown in Code Example 5.17 and the string obtained from the transformed
target function.

Code Example 5.18 and 5.19 show the output code of this procedure. It can be seen that
the NLTool class was created and the code was properly transformed to the format.

106 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

Code Example 5.15: NLToolTranslator.cpp
#include "NLToolTranslator.h"

2 #include <boost/lexical_cast.hpp >
#include <CodeGenerationUtils.h>

4

6 #define null NULL

8 NLToolTranslator :: NLToolTranslator ()
{

10 _tempVarCounter = 0;
}

12
// interface methods

14 SgFunctionDeclaration* NLToolTranslator :: setupTranslation(SgProject* project , std:: string cipherName ,
SgFunctionDeclaration* sourceFunction)

{
16 // resetting counter

_tempVarCounter = 0;
18

// setting name
20 _cipherName = cipherName;

22 // getting global scope of project
SgGlobal* globalScope = SageInterface :: getFirstGlobalScope(project);

24
// getting existing parameter list of round function

26 SgFunctionParameterList* parameterList = sourceFunction ->get_parameterList ();
SgInitializedNamePtrList parameterArgsList = parameterList ->get_args ();

28
// adapting types of all existing target function parameters parameters

30 parameterList = CodeGenerationUtils :: adaptAllTypesOfParameters(parameterList , "ConditionWord");

32 // adding round number parameter
SgInitializedName* roundNumberParameterArgument = SageBuilder :: buildInitializedName(ToolTranslator ::
ROUND_NUMBER_PARAMETER_NAME , SageBuilder :: buildIntType ());

34 SageInterface :: appendArg(parameterList , roundNumberParameterArgument);

36 // building function
std:: string roundFunctionName = _cipherName + "_round";

38 _targetFunction = SageBuilder :: buildDefiningFunctionDeclaration(SgName(roundFunctionName), SageBuilder ::
buildVoidType (), parameterList , globalScope);

40 // creating folder
std:: string folderName = "NLTool";

42 boost:: filesystem ::path folderPath = CodeGenerationUtils :: createFolder(folderName);

44 // creating header file
std:: string headerName = _cipherName + ".h";

46 boost:: filesystem ::path headerPath = folderPath / boost:: filesystem ::path(headerName);

48 // getting formatters from templates
boost:: format headerTemplateFormat = getFormatterForTemplateHeaderFile ();

50
// extracting signature of round function (without trailing void and curly brackets)

52 std:: string roundFunctionSignature = _targetFunction ->unparseToString ().erase (0,5);
roundFunctionSignature = roundFunctionSignature.erase(roundFunctionSignature.length () - 2,
roundFunctionSignature.length ());

54
// completing and writing header file

56 std:: string headerTemplate = (headerTemplateFormat % _cipherName % roundFunctionSignature).str();
CodeGenerationUtils :: writeStringToFile(headerTemplate ,headerPath);

58
// prepending main function to global scope

60 SageInterface :: appendStatement(_targetFunction , globalScope);

62 return _targetFunction;
}

64
void NLToolTranslator :: completeTranslation ()

66 {
// creating folder

68 std:: string folderName = "NLTool";
boost:: filesystem ::path folderPath = CodeGenerationUtils :: createFolder(folderName);

70
// creating source files

72 std:: string sourceName = _cipherName + ".cpp";
boost:: filesystem ::path sourcePath = folderPath / boost:: filesystem ::path(sourceName);

74
// getting formatter for source file

76 boost:: format sourceTemplateFormat = getFormatterForTemplateSourceFile ();

5.5. TRANSLATION TO OTHER FORMATS 107

78 // constructing function signature (without trailing void)
std:: string roundFunctionString = _targetFunction ->unparseToCompleteString ().erase (0,6);

80
// completing and writing source file

82 std:: string sourceTemplate = (sourceTemplateFormat % _cipherName % roundFunctionString).str();
CodeGenerationUtils :: writeStringToFile(sourceTemplate , sourcePath);

84
// removing temporary function definition

86 SageInterface :: removeStatement(_targetFunction , false);

88 std::cout << "-----completed translation ----" << std::endl;
}

90
std:: string NLToolTranslator :: declareVariable(std:: string name)

92 {
std::cout << "Declaring variable " << std::endl;

94
boost:: format formatter = getFormatterForAddingConditionWord(true);

96 std:: string addCall = (formatter % name % name % 0 % _tempVarCounter).str();
_tempVarCounter ++;

98
return addCall;

100 }

102
std:: string NLToolTranslator :: handleXorOperation(SgNode* targetVariable , SgBitXorOp* xorOperation)

104 {
std::cout << "Transforming XOR" << std::endl;

106
boost:: format formatter = getFormatterForOperationWithParameters (3);

108 std:: string xorCall = (formatter % "XOR2" % xorOperation ->get_lhs_operand ()->unparseToCompleteString () %
xorOperation ->get_rhs_operand ()->unparseToCompleteString () % targetVariable ->

unparseToCompleteString ()).str();
110

return xorCall;
112 }

std:: string NLToolTranslator :: handleAndOperation(SgNode* targetVariable , SgBitAndOp* andOperation)
114 {

std::cout << "Transforming AND" << std::endl;
116

boost:: format formatter = getFormatterForOperationWithParameters (3);
118 std:: string andCall = (formatter % "AND2" % andOperation ->get_lhs_operand ()->unparseToCompleteString () %

andOperation ->get_rhs_operand ()->unparseToCompleteString () % targetVariable ->
unparseToCompleteString ()).str();

120
return andCall;

122 }

124 std:: string NLToolTranslator :: handleAddOperation(SgNode* targetVariable , SgAddOp* addOperation)
{

126 std::cout << "Transforming ADD" << std::endl;

128 boost:: format formatter = getFormatterForOperationWithParameters (3);
std:: string andCall = (formatter % "ADD2" % addOperation ->get_lhs_operand ()->unparseToCompleteString () %

130 addOperation ->get_rhs_operand ()->unparseToCompleteString () % targetVariable ->
unparseToCompleteString ()).str();

132 return andCall;
}

134
std:: string NLToolTranslator :: handleLshiftOperation(SgNode* targetVariable , SgLshiftOp* leftShiftOperation)

136 {
std::cout << "Transforming LShift" << std::endl;

138
return targetVariable ->unparseToCompleteString () + " = " + leftShiftOperation ->get_lhs_operand ()->
unparseToCompleteString () + "->Shl("+

140 leftShiftOperation ->get_rhs_operand ()->unparseToCompleteString () + ");";
}

142
std:: string NLToolTranslator :: handleRshiftOperation(SgNode* targetVariable , SgRshiftOp* rightShiftOperation)

144 {
std::cout << "Transforming RShift" << std::endl;

146
return targetVariable ->unparseToCompleteString () + " = " + rightShiftOperation ->get_lhs_operand ()->
unparseToCompleteString () + "->Shr("+

148 rightShiftOperation ->get_rhs_operand ()->unparseToCompleteString () + ");";
}

150
std:: string NLToolTranslator :: handleRrotationOperation(SgNode* targetVariable , SgNode* shiftedExpression , SgNode*

shiftIndexExpression)
152 {

std::cout << "Transforming Rrotation" << std::endl;
154

108 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

return targetVariable ->unparseToCompleteString () + " = " + shiftedExpression ->unparseToCompleteString () + "->
Rotr("+

156 shiftIndexExpression ->unparseToCompleteString () + ");";
}

158
std:: string NLToolTranslator :: handleLrotationOperation(SgNode* targetVariable , SgNode* shiftedExpression , SgNode*

shiftIndexExpression)
160 {

std::cout << "Transforming Lrotation" << std::endl;
162

return targetVariable ->unparseToCompleteString () + " = " + shiftedExpression ->unparseToCompleteString () + "->
Rotl("+

164 shiftIndexExpression ->unparseToCompleteString () + ");";
}

166

168 boost:: format NLToolTranslator :: getFormatterForOperationWithParameters(int numberOfParameters)
{

170 std:: string formatString = "Add(new BitsliceStep <%1%>(";
for(int i = 2; i <= numberOfParameters; ++i)

172 {
formatString = formatString + "%" + boost:: lexical_cast <std::string >(i) + "%, ";

174 }
formatString = formatString + "%" + boost:: lexical_cast <std::string >(numberOfParameters + 1) +"%));";

176
return boost:: format(formatString);

178 }

180 boost:: format NLToolTranslator :: getFormatterForAddingConditionWord(bool isSubword)
{

182 // AddConditionWord ("F", i, 5 + i * 3 + 0, 0, SUBWORD);
std:: string formatString = "ConditionWord %1% = AddConditionWord (\"%2%\" ," + ToolTranslator ::
ROUND_NUMBER_PARAMETER_NAME + ", %3% , %4%";

184 if(isSubword == true)
{

186 formatString = formatString + ", SUBWORD";
}

188 formatString = formatString + ");";

190 return boost:: format(formatString);
}

192
boost:: format NLToolTranslator :: getFormatterForTemplateHeaderFile ()

194 {
boost:: filesystem ::path headerTemplatePath("../ inputs/templates/nltool/nltool_template_header.h");

196 std:: string headerFileTemplate = CodeGenerationUtils :: readStringFromFile(headerTemplatePath);

198 // std::cout << "Read template header " << headerFileTemplate << std::endl;

200 return boost:: format(headerFileTemplate);
}

202

204 boost:: format NLToolTranslator :: getFormatterForTemplateSourceFile ()
{

206 boost:: filesystem ::path sourceTemplatePath("../ inputs/templates/nltool/nltool_template_source.cpp");
std:: string sourceFileTemplate = CodeGenerationUtils :: readStringFromFile(sourceTemplatePath);

208
//std::cout << "Read template source " << sourceFileTemplate << std::endl;

210
return boost:: format(sourceFileTemplate);

212 }

Code Example 5.16: The template for the NLTool header file.
/*

2 * auto generated cipher representation
*/

4
#ifndef %1%_H_

6 #define %1%_H_

8 #include "hash.h"

10 class %1%: public Hash
{

12 public:
%1%(int N);

14 void %2%;
};

16
#endif // %1%_H_

5.5. TRANSLATION TO OTHER FORMATS 109

Code Example 5.17: The template for the NLTool source file.
#include "%1%.h"

2
// //////////////////////////// class %1% //////////////////////////////

4
%1%::%1%(int N, int R) :

6 Hash(N)
{

8
}

10
void %1%::%2%

Code Example 5.18: The header file of the resulting tool representation of NORX.
1 /*

* auto generated cipher representation
3 */

5 #ifndef Norx_H_
#define Norx_H_

7
#include "hash.h"

9
class Norx: public Hash

11 {
public:

13 Norx(int N, int R);
void Norx_round(class ConditionWord S[16UL],int roundNumber);

15 };

17 #endif // Norx_H_

Code Example 5.19: The source file of the resulting tool representation of NORX.
#include "Norx.h"

2
// //////////////////////////// class Norx //////////////////////////////

4
Norx::Norx(int N, int R) :

6 Hash(N)
{

8
}

10
void Norx:: Norx_round(class ConditionWord S[16UL],int roundNumber)

12 {
ConditionWord binaryOpTemp01 = AddConditionWord("binaryOpTemp01",roundNumber , 0 , 0, SUBWORD);

14 Add(new BitsliceStep <XOR2 >(S[0], S[4], binaryOpTemp01));
ConditionWord binaryOpTemp02 = AddConditionWord("binaryOpTemp02",roundNumber , 0 , 1, SUBWORD);

16 Add(new BitsliceStep <AND2 >(S[0], S[4], binaryOpTemp02));
ConditionWord binaryOpTemp11 = AddConditionWord("binaryOpTemp11",roundNumber , 0 , 2, SUBWORD);

18 binaryOpTemp11 = binaryOpTemp02 ->Shl(1);
Add(new BitsliceStep <XOR2 >(binaryOpTemp01 , binaryOpTemp11 , S[0]));

20 Add(new BitsliceStep <XOR2 >(S[12], S[0], S[12]));
S[12] = S[12]->Rotr (8);

22 ConditionWord binaryOpTemp03 = AddConditionWord("binaryOpTemp03",roundNumber , 0 , 3, SUBWORD);
Add(new BitsliceStep <XOR2 >(S[8], S[12], binaryOpTemp03));

24 ConditionWord binaryOpTemp04 = AddConditionWord("binaryOpTemp04",roundNumber , 0 , 4, SUBWORD);
Add(new BitsliceStep <AND2 >(S[8], S[12], binaryOpTemp04));

26 ConditionWord binaryOpTemp12 = AddConditionWord("binaryOpTemp12",roundNumber , 0 , 5, SUBWORD);
binaryOpTemp12 = binaryOpTemp04 ->Shl(1);

28 Add(new BitsliceStep <XOR2 >(binaryOpTemp03 , binaryOpTemp12 , S[8]));
Add(new BitsliceStep <XOR2 >(S[4], S[8], S[4]));

30 S[4] = S[4]->Rotr (19);
ConditionWord binaryOpTemp05 = AddConditionWord("binaryOpTemp05",roundNumber , 0 , 6, SUBWORD);

32 Add(new BitsliceStep <XOR2 >(S[0], S[4], binaryOpTemp05));
ConditionWord binaryOpTemp06 = AddConditionWord("binaryOpTemp06",roundNumber , 0 , 7, SUBWORD);

34 Add(new BitsliceStep <AND2 >(S[0], S[4], binaryOpTemp06));
ConditionWord binaryOpTemp13 = AddConditionWord("binaryOpTemp13",roundNumber , 0 , 8, SUBWORD);

36 binaryOpTemp13 = binaryOpTemp06 ->Shl(1);
Add(new BitsliceStep <XOR2 >(binaryOpTemp05 , binaryOpTemp13 , S[0]));

38 Add(new BitsliceStep <XOR2 >(S[12], S[0], S[12]));
S[12] = S[12]->Rotr (40);

110 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

40 ConditionWord binaryOpTemp07 = AddConditionWord("binaryOpTemp07",roundNumber , 0 , 9, SUBWORD);
Add(new BitsliceStep <XOR2 >(S[8], S[12], binaryOpTemp07));

42 ConditionWord binaryOpTemp08 = AddConditionWord("binaryOpTemp08",roundNumber , 0 , 10, SUBWORD);
Add(new BitsliceStep <AND2 >(S[8], S[12], binaryOpTemp08));

44 ConditionWord binaryOpTemp14 = AddConditionWord("binaryOpTemp14",roundNumber , 0 , 11, SUBWORD);
binaryOpTemp14 = binaryOpTemp08 ->Shl(1);

46 Add(new BitsliceStep <XOR2 >(binaryOpTemp07 , binaryOpTemp14 , S[8]));
Add(new BitsliceStep <XOR2 >(S[4], S[8], S[4]));

48 S[4] = S[4]->Rotr (63);
ConditionWord binaryOpTemp09 = AddConditionWord("binaryOpTemp09",roundNumber , 0 , 12, SUBWORD);

50 Add(new BitsliceStep <XOR2 >(S[1], S[5], binaryOpTemp09));
ConditionWord binaryOpTemp010 = AddConditionWord("binaryOpTemp010",roundNumber , 0 , 13, SUBWORD);

52 Add(new BitsliceStep <AND2 >(S[1], S[5], binaryOpTemp010));
ConditionWord binaryOpTemp15 = AddConditionWord("binaryOpTemp15",roundNumber , 0 , 14, SUBWORD);

54 binaryOpTemp15 = binaryOpTemp010 ->Shl(1);
Add(new BitsliceStep <XOR2 >(binaryOpTemp09 , binaryOpTemp15 , S[1]));

56 Add(new BitsliceStep <XOR2 >(S[13], S[1], S[13]));
S[13] = S[13]->Rotr (8);

58 ConditionWord binaryOpTemp011 = AddConditionWord("binaryOpTemp011",roundNumber , 0 , 15, SUBWORD);
Add(new BitsliceStep <XOR2 >(S[9], S[13], binaryOpTemp011));

60 ConditionWord binaryOpTemp012 = AddConditionWord("binaryOpTemp012",roundNumber , 0 , 16, SUBWORD);
Add(new BitsliceStep <AND2 >(S[9], S[13], binaryOpTemp012));

62 ConditionWord binaryOpTemp16 = AddConditionWord("binaryOpTemp16",roundNumber , 0 , 17, SUBWORD);
binaryOpTemp16 = binaryOpTemp012 ->Shl(1);

64 Add(new BitsliceStep <XOR2 >(binaryOpTemp011 , binaryOpTemp16 , S[9]));
Add(new BitsliceStep <XOR2 >(S[5], S[9], S[5]));

66 S[5] = S[5]->Rotr (19);
ConditionWord binaryOpTemp013 = AddConditionWord("binaryOpTemp013",roundNumber , 0 , 18, SUBWORD);

68 Add(new BitsliceStep <XOR2 >(S[1], S[5], binaryOpTemp013));
ConditionWord binaryOpTemp014 = AddConditionWord("binaryOpTemp014",roundNumber , 0 , 19, SUBWORD);

70 Add(new BitsliceStep <AND2 >(S[1], S[5], binaryOpTemp014));
ConditionWord binaryOpTemp17 = AddConditionWord("binaryOpTemp17",roundNumber , 0 , 20, SUBWORD);

72 binaryOpTemp17 = binaryOpTemp014 ->Shl(1);
Add(new BitsliceStep <XOR2 >(binaryOpTemp013 , binaryOpTemp17 , S[1]));

74 Add(new BitsliceStep <XOR2 >(S[13], S[1], S[13]));
S[13] = S[13]->Rotr (40);

76 ConditionWord binaryOpTemp015 = AddConditionWord("binaryOpTemp015",roundNumber , 0 , 21, SUBWORD);
Add(new BitsliceStep <XOR2 >(S[9], S[13], binaryOpTemp015));

78 ConditionWord binaryOpTemp016 = AddConditionWord("binaryOpTemp016",roundNumber , 0 , 22, SUBWORD);
Add(new BitsliceStep <AND2 >(S[9], S[13], binaryOpTemp016));

80 ConditionWord binaryOpTemp18 = AddConditionWord("binaryOpTemp18",roundNumber , 0 , 23, SUBWORD);
binaryOpTemp18 = binaryOpTemp016 ->Shl(1);

82 Add(new BitsliceStep <XOR2 >(binaryOpTemp015 , binaryOpTemp18 , S[9]));
Add(new BitsliceStep <XOR2 >(S[5], S[9], S[5]));

84 S[5] = S[5]->Rotr (63);
ConditionWord binaryOpTemp017 = AddConditionWord("binaryOpTemp017",roundNumber , 0 , 24, SUBWORD);

86 Add(new BitsliceStep <XOR2 >(S[2], S[6], binaryOpTemp017));
ConditionWord binaryOpTemp018 = AddConditionWord("binaryOpTemp018",roundNumber , 0 , 25, SUBWORD);

88 Add(new BitsliceStep <AND2 >(S[2], S[6], binaryOpTemp018));
ConditionWord binaryOpTemp19 = AddConditionWord("binaryOpTemp19",roundNumber , 0 , 26, SUBWORD);

90 binaryOpTemp19 = binaryOpTemp018 ->Shl(1);
Add(new BitsliceStep <XOR2 >(binaryOpTemp017 , binaryOpTemp19 , S[2]));

92 Add(new BitsliceStep <XOR2 >(S[14], S[2], S[14]));
S[14] = S[14]->Rotr (8);

94 ConditionWord binaryOpTemp019 = AddConditionWord("binaryOpTemp019",roundNumber , 0 , 27, SUBWORD);
Add(new BitsliceStep <XOR2 >(S[10], S[14], binaryOpTemp019));

96 ConditionWord binaryOpTemp020 = AddConditionWord("binaryOpTemp020",roundNumber , 0 , 28, SUBWORD);
Add(new BitsliceStep <AND2 >(S[10], S[14], binaryOpTemp020));

98 ConditionWord binaryOpTemp110 = AddConditionWord("binaryOpTemp110",roundNumber , 0 , 29, SUBWORD);
binaryOpTemp110 = binaryOpTemp020 ->Shl(1);

100 Add(new BitsliceStep <XOR2 >(binaryOpTemp019 , binaryOpTemp110 , S[10]));
Add(new BitsliceStep <XOR2 >(S[6], S[10], S[6]));

102 S[6] = S[6]->Rotr (19);
ConditionWord binaryOpTemp021 = AddConditionWord("binaryOpTemp021",roundNumber , 0 , 30, SUBWORD);

104 Add(new BitsliceStep <XOR2 >(S[2], S[6], binaryOpTemp021));
ConditionWord binaryOpTemp022 = AddConditionWord("binaryOpTemp022",roundNumber , 0 , 31, SUBWORD);

106 Add(new BitsliceStep <AND2 >(S[2], S[6], binaryOpTemp022));
ConditionWord binaryOpTemp111 = AddConditionWord("binaryOpTemp111",roundNumber , 0 , 32, SUBWORD);

108 binaryOpTemp111 = binaryOpTemp022 ->Shl(1);
Add(new BitsliceStep <XOR2 >(binaryOpTemp021 , binaryOpTemp111 , S[2]));

110 Add(new BitsliceStep <XOR2 >(S[14], S[2], S[14]));
S[14] = S[14]->Rotr (40);

112 ConditionWord binaryOpTemp023 = AddConditionWord("binaryOpTemp023",roundNumber , 0 , 33, SUBWORD);
Add(new BitsliceStep <XOR2 >(S[10], S[14], binaryOpTemp023));

114 ConditionWord binaryOpTemp024 = AddConditionWord("binaryOpTemp024",roundNumber , 0 , 34, SUBWORD);
Add(new BitsliceStep <AND2 >(S[10], S[14], binaryOpTemp024));

116 ConditionWord binaryOpTemp112 = AddConditionWord("binaryOpTemp112",roundNumber , 0 , 35, SUBWORD);
binaryOpTemp112 = binaryOpTemp024 ->Shl(1);

118 Add(new BitsliceStep <XOR2 >(binaryOpTemp023 , binaryOpTemp112 , S[10]));
Add(new BitsliceStep <XOR2 >(S[6], S[10], S[6]));

120 S[6] = S[6]->Rotr (63);
ConditionWord binaryOpTemp025 = AddConditionWord("binaryOpTemp025",roundNumber , 0 , 36, SUBWORD);

122 Add(new BitsliceStep <XOR2 >(S[3], S[7], binaryOpTemp025));

5.5. TRANSLATION TO OTHER FORMATS 111

ConditionWord binaryOpTemp026 = AddConditionWord("binaryOpTemp026",roundNumber , 0 , 37, SUBWORD);
124 Add(new BitsliceStep <AND2 >(S[3], S[7], binaryOpTemp026));

ConditionWord binaryOpTemp113 = AddConditionWord("binaryOpTemp113",roundNumber , 0 , 38, SUBWORD);
126 binaryOpTemp113 = binaryOpTemp026 ->Shl(1);

Add(new BitsliceStep <XOR2 >(binaryOpTemp025 , binaryOpTemp113 , S[3]));
128 Add(new BitsliceStep <XOR2 >(S[15], S[3], S[15]));

S[15] = S[15]->Rotr (8);
130 ConditionWord binaryOpTemp027 = AddConditionWord("binaryOpTemp027",roundNumber , 0 , 39, SUBWORD);

Add(new BitsliceStep <XOR2 >(S[11], S[15], binaryOpTemp027));
132 ConditionWord binaryOpTemp028 = AddConditionWord("binaryOpTemp028",roundNumber , 0 , 40, SUBWORD);

Add(new BitsliceStep <AND2 >(S[11], S[15], binaryOpTemp028));
134 ConditionWord binaryOpTemp114 = AddConditionWord("binaryOpTemp114",roundNumber , 0 , 41, SUBWORD);

binaryOpTemp114 = binaryOpTemp028 ->Shl(1);
136 Add(new BitsliceStep <XOR2 >(binaryOpTemp027 , binaryOpTemp114 , S[11]));

Add(new BitsliceStep <XOR2 >(S[7], S[11], S[7]));
138 S[7] = S[7]->Rotr (19);

ConditionWord binaryOpTemp029 = AddConditionWord("binaryOpTemp029",roundNumber , 0 , 42, SUBWORD);
140 Add(new BitsliceStep <XOR2 >(S[3], S[7], binaryOpTemp029));

ConditionWord binaryOpTemp030 = AddConditionWord("binaryOpTemp030",roundNumber , 0 , 43, SUBWORD);
142 Add(new BitsliceStep <AND2 >(S[3], S[7], binaryOpTemp030));

ConditionWord binaryOpTemp115 = AddConditionWord("binaryOpTemp115",roundNumber , 0 , 44, SUBWORD);
144 binaryOpTemp115 = binaryOpTemp030 ->Shl(1);

Add(new BitsliceStep <XOR2 >(binaryOpTemp029 , binaryOpTemp115 , S[3]));
146 Add(new BitsliceStep <XOR2 >(S[15], S[3], S[15]));

S[15] = S[15]->Rotr (40);
148 ConditionWord binaryOpTemp031 = AddConditionWord("binaryOpTemp031",roundNumber , 0 , 45, SUBWORD);

Add(new BitsliceStep <XOR2 >(S[11], S[15], binaryOpTemp031));
150 ConditionWord binaryOpTemp032 = AddConditionWord("binaryOpTemp032",roundNumber , 0 , 46, SUBWORD);

Add(new BitsliceStep <AND2 >(S[11], S[15], binaryOpTemp032));
152 ConditionWord binaryOpTemp116 = AddConditionWord("binaryOpTemp116",roundNumber , 0 , 47, SUBWORD);

binaryOpTemp116 = binaryOpTemp032 ->Shl(1);
154 Add(new BitsliceStep <XOR2 >(binaryOpTemp031 , binaryOpTemp116 , S[11]));

Add(new BitsliceStep <XOR2 >(S[7], S[11], S[7]));
156 S[7] = S[7]->Rotr (63);

ConditionWord binaryOpTemp033 = AddConditionWord("binaryOpTemp033",roundNumber , 0 , 48, SUBWORD);
158 Add(new BitsliceStep <XOR2 >(S[0], S[5], binaryOpTemp033));

ConditionWord binaryOpTemp034 = AddConditionWord("binaryOpTemp034",roundNumber , 0 , 49, SUBWORD);
160 Add(new BitsliceStep <AND2 >(S[0], S[5], binaryOpTemp034));

ConditionWord binaryOpTemp117 = AddConditionWord("binaryOpTemp117",roundNumber , 0 , 50, SUBWORD);
162 binaryOpTemp117 = binaryOpTemp034 ->Shl(1);

Add(new BitsliceStep <XOR2 >(binaryOpTemp033 , binaryOpTemp117 , S[0]));
164 Add(new BitsliceStep <XOR2 >(S[15], S[0], S[15]));

S[15] = S[15]->Rotr (8);
166 ConditionWord binaryOpTemp035 = AddConditionWord("binaryOpTemp035",roundNumber , 0 , 51, SUBWORD);

Add(new BitsliceStep <XOR2 >(S[10], S[15], binaryOpTemp035));
168 ConditionWord binaryOpTemp036 = AddConditionWord("binaryOpTemp036",roundNumber , 0 , 52, SUBWORD);

Add(new BitsliceStep <AND2 >(S[10], S[15], binaryOpTemp036));
170 ConditionWord binaryOpTemp118 = AddConditionWord("binaryOpTemp118",roundNumber , 0 , 53, SUBWORD);

binaryOpTemp118 = binaryOpTemp036 ->Shl(1);
172 Add(new BitsliceStep <XOR2 >(binaryOpTemp035 , binaryOpTemp118 , S[10]));

Add(new BitsliceStep <XOR2 >(S[5], S[10], S[5]));
174 S[5] = S[5]->Rotr (19);

ConditionWord binaryOpTemp037 = AddConditionWord("binaryOpTemp037",roundNumber , 0 , 54, SUBWORD);
176 Add(new BitsliceStep <XOR2 >(S[0], S[5], binaryOpTemp037));

ConditionWord binaryOpTemp038 = AddConditionWord("binaryOpTemp038",roundNumber , 0 , 55, SUBWORD);
178 Add(new BitsliceStep <AND2 >(S[0], S[5], binaryOpTemp038));

ConditionWord binaryOpTemp119 = AddConditionWord("binaryOpTemp119",roundNumber , 0 , 56, SUBWORD);
180 binaryOpTemp119 = binaryOpTemp038 ->Shl(1);

Add(new BitsliceStep <XOR2 >(binaryOpTemp037 , binaryOpTemp119 , S[0]));
182 Add(new BitsliceStep <XOR2 >(S[15], S[0], S[15]));

S[15] = S[15]->Rotr (40);
184 ConditionWord binaryOpTemp039 = AddConditionWord("binaryOpTemp039",roundNumber , 0 , 57, SUBWORD);

Add(new BitsliceStep <XOR2 >(S[10], S[15], binaryOpTemp039));
186 ConditionWord binaryOpTemp040 = AddConditionWord("binaryOpTemp040",roundNumber , 0 , 58, SUBWORD);

Add(new BitsliceStep <AND2 >(S[10], S[15], binaryOpTemp040));
188 ConditionWord binaryOpTemp120 = AddConditionWord("binaryOpTemp120",roundNumber , 0 , 59, SUBWORD);

binaryOpTemp120 = binaryOpTemp040 ->Shl(1);
190 Add(new BitsliceStep <XOR2 >(binaryOpTemp039 , binaryOpTemp120 , S[10]));

Add(new BitsliceStep <XOR2 >(S[5], S[10], S[5]));
192 S[5] = S[5]->Rotr (63);

ConditionWord binaryOpTemp041 = AddConditionWord("binaryOpTemp041",roundNumber , 0 , 60, SUBWORD);
194 Add(new BitsliceStep <XOR2 >(S[1], S[6], binaryOpTemp041));

ConditionWord binaryOpTemp042 = AddConditionWord("binaryOpTemp042",roundNumber , 0 , 61, SUBWORD);
196 Add(new BitsliceStep <AND2 >(S[1], S[6], binaryOpTemp042));

ConditionWord binaryOpTemp121 = AddConditionWord("binaryOpTemp121",roundNumber , 0 , 62, SUBWORD);
198 binaryOpTemp121 = binaryOpTemp042 ->Shl(1);

Add(new BitsliceStep <XOR2 >(binaryOpTemp041 , binaryOpTemp121 , S[1]));
200 Add(new BitsliceStep <XOR2 >(S[12], S[1], S[12]));

S[12] = S[12]->Rotr (8);
202 ConditionWord binaryOpTemp043 = AddConditionWord("binaryOpTemp043",roundNumber , 0 , 63, SUBWORD);

Add(new BitsliceStep <XOR2 >(S[11], S[12], binaryOpTemp043));
204 ConditionWord binaryOpTemp044 = AddConditionWord("binaryOpTemp044",roundNumber , 0 , 64, SUBWORD);

Add(new BitsliceStep <AND2 >(S[11], S[12], binaryOpTemp044));

112 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

206 ConditionWord binaryOpTemp122 = AddConditionWord("binaryOpTemp122",roundNumber , 0 , 65, SUBWORD);
binaryOpTemp122 = binaryOpTemp044 ->Shl(1);

208 Add(new BitsliceStep <XOR2 >(binaryOpTemp043 , binaryOpTemp122 , S[11]));
Add(new BitsliceStep <XOR2 >(S[6], S[11], S[6]));

210 S[6] = S[6]->Rotr (19);
ConditionWord binaryOpTemp045 = AddConditionWord("binaryOpTemp045",roundNumber , 0 , 66, SUBWORD);

212 Add(new BitsliceStep <XOR2 >(S[1], S[6], binaryOpTemp045));
ConditionWord binaryOpTemp046 = AddConditionWord("binaryOpTemp046",roundNumber , 0 , 67, SUBWORD);

214 Add(new BitsliceStep <AND2 >(S[1], S[6], binaryOpTemp046));
ConditionWord binaryOpTemp123 = AddConditionWord("binaryOpTemp123",roundNumber , 0 , 68, SUBWORD);

216 binaryOpTemp123 = binaryOpTemp046 ->Shl(1);
Add(new BitsliceStep <XOR2 >(binaryOpTemp045 , binaryOpTemp123 , S[1]));

218 Add(new BitsliceStep <XOR2 >(S[12], S[1], S[12]));
S[12] = S[12]->Rotr (40);

220 ConditionWord binaryOpTemp047 = AddConditionWord("binaryOpTemp047",roundNumber , 0 , 69, SUBWORD);
Add(new BitsliceStep <XOR2 >(S[11], S[12], binaryOpTemp047));

222 ConditionWord binaryOpTemp048 = AddConditionWord("binaryOpTemp048",roundNumber , 0 , 70, SUBWORD);
Add(new BitsliceStep <AND2 >(S[11], S[12], binaryOpTemp048));

224 ConditionWord binaryOpTemp124 = AddConditionWord("binaryOpTemp124",roundNumber , 0 , 71, SUBWORD);
binaryOpTemp124 = binaryOpTemp048 ->Shl(1);

226 Add(new BitsliceStep <XOR2 >(binaryOpTemp047 , binaryOpTemp124 , S[11]));
Add(new BitsliceStep <XOR2 >(S[6], S[11], S[6]));

228 S[6] = S[6]->Rotr (63);
ConditionWord binaryOpTemp049 = AddConditionWord("binaryOpTemp049",roundNumber , 0 , 72, SUBWORD);

230 Add(new BitsliceStep <XOR2 >(S[2], S[7], binaryOpTemp049));
ConditionWord binaryOpTemp050 = AddConditionWord("binaryOpTemp050",roundNumber , 0 , 73, SUBWORD);

232 Add(new BitsliceStep <AND2 >(S[2], S[7], binaryOpTemp050));
ConditionWord binaryOpTemp125 = AddConditionWord("binaryOpTemp125",roundNumber , 0 , 74, SUBWORD);

234 binaryOpTemp125 = binaryOpTemp050 ->Shl(1);
Add(new BitsliceStep <XOR2 >(binaryOpTemp049 , binaryOpTemp125 , S[2]));

236 Add(new BitsliceStep <XOR2 >(S[13], S[2], S[13]));
S[13] = S[13]->Rotr (8);

238 ConditionWord binaryOpTemp051 = AddConditionWord("binaryOpTemp051",roundNumber , 0 , 75, SUBWORD);
Add(new BitsliceStep <XOR2 >(S[8], S[13], binaryOpTemp051));

240 ConditionWord binaryOpTemp052 = AddConditionWord("binaryOpTemp052",roundNumber , 0 , 76, SUBWORD);
Add(new BitsliceStep <AND2 >(S[8], S[13], binaryOpTemp052));

242 ConditionWord binaryOpTemp126 = AddConditionWord("binaryOpTemp126",roundNumber , 0 , 77, SUBWORD);
binaryOpTemp126 = binaryOpTemp052 ->Shl(1);

244 Add(new BitsliceStep <XOR2 >(binaryOpTemp051 , binaryOpTemp126 , S[8]));
Add(new BitsliceStep <XOR2 >(S[7], S[8], S[7]));

246 S[7] = S[7]->Rotr (19);
ConditionWord binaryOpTemp053 = AddConditionWord("binaryOpTemp053",roundNumber , 0 , 78, SUBWORD);

248 Add(new BitsliceStep <XOR2 >(S[2], S[7], binaryOpTemp053));
ConditionWord binaryOpTemp054 = AddConditionWord("binaryOpTemp054",roundNumber , 0 , 79, SUBWORD);

250 Add(new BitsliceStep <AND2 >(S[2], S[7], binaryOpTemp054));
ConditionWord binaryOpTemp127 = AddConditionWord("binaryOpTemp127",roundNumber , 0 , 80, SUBWORD);

252 binaryOpTemp127 = binaryOpTemp054 ->Shl(1);
Add(new BitsliceStep <XOR2 >(binaryOpTemp053 , binaryOpTemp127 , S[2]));

254 Add(new BitsliceStep <XOR2 >(S[13], S[2], S[13]));
S[13] = S[13]->Rotr (40);

256 ConditionWord binaryOpTemp055 = AddConditionWord("binaryOpTemp055",roundNumber , 0 , 81, SUBWORD);
Add(new BitsliceStep <XOR2 >(S[8], S[13], binaryOpTemp055));

258 ConditionWord binaryOpTemp056 = AddConditionWord("binaryOpTemp056",roundNumber , 0 , 82, SUBWORD);
Add(new BitsliceStep <AND2 >(S[8], S[13], binaryOpTemp056));

260 ConditionWord binaryOpTemp128 = AddConditionWord("binaryOpTemp128",roundNumber , 0 , 83, SUBWORD);
binaryOpTemp128 = binaryOpTemp056 ->Shl(1);

262 Add(new BitsliceStep <XOR2 >(binaryOpTemp055 , binaryOpTemp128 , S[8]));
Add(new BitsliceStep <XOR2 >(S[7], S[8], S[7]));

264 S[7] = S[7]->Rotr (63);
ConditionWord binaryOpTemp057 = AddConditionWord("binaryOpTemp057",roundNumber , 0 , 84, SUBWORD);

266 Add(new BitsliceStep <XOR2 >(S[3], S[4], binaryOpTemp057));
ConditionWord binaryOpTemp058 = AddConditionWord("binaryOpTemp058",roundNumber , 0 , 85, SUBWORD);

268 Add(new BitsliceStep <AND2 >(S[3], S[4], binaryOpTemp058));
ConditionWord binaryOpTemp129 = AddConditionWord("binaryOpTemp129",roundNumber , 0 , 86, SUBWORD);

270 binaryOpTemp129 = binaryOpTemp058 ->Shl(1);
Add(new BitsliceStep <XOR2 >(binaryOpTemp057 , binaryOpTemp129 , S[3]));

272 Add(new BitsliceStep <XOR2 >(S[14], S[3], S[14]));
S[14] = S[14]->Rotr (8);

274 ConditionWord binaryOpTemp059 = AddConditionWord("binaryOpTemp059",roundNumber , 0 , 87, SUBWORD);
Add(new BitsliceStep <XOR2 >(S[9], S[14], binaryOpTemp059));

276 ConditionWord binaryOpTemp060 = AddConditionWord("binaryOpTemp060",roundNumber , 0 , 88, SUBWORD);
Add(new BitsliceStep <AND2 >(S[9], S[14], binaryOpTemp060));

278 ConditionWord binaryOpTemp130 = AddConditionWord("binaryOpTemp130",roundNumber , 0 , 89, SUBWORD);
binaryOpTemp130 = binaryOpTemp060 ->Shl(1);

280 Add(new BitsliceStep <XOR2 >(binaryOpTemp059 , binaryOpTemp130 , S[9]));
Add(new BitsliceStep <XOR2 >(S[4], S[9], S[4]));

282 S[4] = S[4]->Rotr (19);
ConditionWord binaryOpTemp061 = AddConditionWord("binaryOpTemp061",roundNumber , 0 , 90, SUBWORD);

284 Add(new BitsliceStep <XOR2 >(S[3], S[4], binaryOpTemp061));
ConditionWord binaryOpTemp062 = AddConditionWord("binaryOpTemp062",roundNumber , 0 , 91, SUBWORD);

286 Add(new BitsliceStep <AND2 >(S[3], S[4], binaryOpTemp062));
ConditionWord binaryOpTemp131 = AddConditionWord("binaryOpTemp131",roundNumber , 0 , 92, SUBWORD);

288 binaryOpTemp131 = binaryOpTemp062 ->Shl(1);

5.5. TRANSLATION TO OTHER FORMATS 113

Add(new BitsliceStep <XOR2 >(binaryOpTemp061 , binaryOpTemp131 , S[3]));
290 Add(new BitsliceStep <XOR2 >(S[14], S[3], S[14]));

S[14] = S[14]->Rotr (40);
292 ConditionWord binaryOpTemp063 = AddConditionWord("binaryOpTemp063",roundNumber , 0 , 93, SUBWORD);

Add(new BitsliceStep <XOR2 >(S[9], S[14], binaryOpTemp063));
294 ConditionWord binaryOpTemp064 = AddConditionWord("binaryOpTemp064",roundNumber , 0 , 94, SUBWORD);

Add(new BitsliceStep <AND2 >(S[9], S[14], binaryOpTemp064));
296 ConditionWord binaryOpTemp132 = AddConditionWord("binaryOpTemp132",roundNumber , 0 , 95, SUBWORD);

binaryOpTemp132 = binaryOpTemp064 ->Shl(1);
298 Add(new BitsliceStep <XOR2 >(binaryOpTemp063 , binaryOpTemp132 , S[9]));

Add(new BitsliceStep <XOR2 >(S[4], S[9], S[4]));
300 S[4] = S[4]->Rotr (63);

int anchor;
302 }

5.5.3 Analysis Code

Code Example 5.20 shows the code used to take the input C reference implementation
and transform it to a NLTool cipher description. The project uses the ROSE frontend
method to parse the input code, tests the generated IS (AST) and fix preconditions
assumed by the framework. Afterwards it uses the findRoundFunction method to find
the annotated input method (annotation: @roundfunction as comment) in the input
source. If the method can be found, it calls transformFunctionToStandardForm to apply
the transformations discussed earlier in this chapter. It creates an NLToolTranslator and
a CodeTransformer instance (starting at line 48) and calls the corresponding methods to
start the code transformation. The method calls the ROSE backend method on line 60
to output the transformed version of the input code. This step is not required since the
transformation is performed independent from the ROSE backend.

Code Example 5.20: The code used to perform the transformation
1 // ROSE translator example: identity translator.

//
3 // No AST manipulations , just a simple translation:

//
5 // input_code > ROSE AST > output_code

7 #include "rose.h"
#include <string >

9 #include <AstInterface_ROSE.h>
#include "CommandOptions.h"

11 #include "LoopTransformInterface.h"
#include "TranslationUtils.h"

13 #include "NLToolTranslator.h"
#include "CodeTransformer.h"

15 #include "CodeGenerationUtils.h"
#include "boost/lexical_cast.hpp"

17
#define null NULL

19

21 int main (int argc , char** argv)
{

23 //std::cout << "argc: " << boost:: lexical_cast <std::string >(argc) << " argv: " << *argv << "argv +1: " << *(argv
+ 1) << std::endl;

25 if(SgProject :: get_verbose () > 0)
printf("In main()");

27
// Build the AST used by ROSE

29 SgProject* project = frontend(argc , argv);
ROSE_ASSERT (project != null);

31
// Run internal consistency tests on AST

33 AstTests :: runAllTests(project);

35 // fixing preconditions (main function present etc.)

114 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

TranslationUtils :: establishInputPreconditions(project);
37

// finding round function
39 SgFunctionDeclaration* roundFunction = TranslationUtils :: findRoundFunction(project);

if(roundFunction != null)
41 {

std::cout << "found round function " << roundFunction ->get_name () << " at " << roundFunction ->get_file_info
()->get_line () << " in " << roundFunction ->get_file_info ()->get_filename () << std::endl;

43
// bringing function in standard form

45 TranslationUtils :: transformFunctionToStandardForm(roundFunction , project);

47 // creating Transformator
NLToolTranslator nlToolTranslator;

49 SgFunctionDeclaration* targetFunction = nlToolTranslator.setupTranslation(project , "Norx", roundFunction);
CodeTransformer transformer (& nlToolTranslator);

51 transformer.transformFunction(roundFunction , targetFunction);
}

53 else
{

55 std::cout << "could not find round function , aborting ..." << std::endl;
return 0;

57 }

59 // transforming modified ast back to source code
return backend(project);

61 }

5.6 Customization / Extension

The framework allows easy customization in terms of the integration of new tools as well
as adoption of the transformation process. If additional transformation steps need to be
applied, they can simply be performed before / after the standard format is established.
These transformations can facilitate functions of the TransformationUtils class or use
the ROSE framework methods directly. Although, it is important that the source code
is in standard form before being transformed using the introduced mechanisms. To
integrate new tools all we need to do is to implement a ToolTranslator class for that
tool. Note that this is independent of the analysed cipher and will process any cipher
reference implementation.

5.7 Application and Results

This section describes the application of the introduced framework on three submissions
of the CAESAR competition in order to demonstrate it’s function. It shortly describes
the setting and goals of the analysis types and shows their results.

This example illustrates the usage of a toolchain consisting of a differential characteristic
search using the extended CodingTool (described in Section 4.5.1), as well as a verification
of the found characteristics using the IAIK NLTool (described in Section 4.5.2). Based
on the steps and techniques described in Chapter 4 and Chapter 5, the framework parses
the reference implementation of the ciphers into an abstract representation format and
transforms it into the representations needed by the two tools in this toolchain. The
analysis code then performs the characteristic search and verifies found code words using

5.7. APPLICATION AND RESULTS 115

the other tool. Note that this analysis code can be used to analyse arbitrary ciphers,
since the representations required for the tools are generated automatically.

5.7.1 Analysis Types

The following briefly describes the different types of analysis, used for the demonstration
of the automated analysis framework on the three cipher candidates:

a) Forgery Analysis The goal of this first forgery analysis is to find sparse and colliding
state characteristics over several round that might allow conducting a forgery attack.
Since the message words of the considered ciphers are injected into the rate of the
state, the goal is to find colliding capacity parts before and after a certain amount of
rounds R. To model this property, code shortening (in the context of a coding theory
analysis) as described in Section 4.5.1, is applied on the generator matrix G. The
capacity of the state is therefore forced to zero before and after the application of R
round transformations.

b) Round Analysis In this basic analysis, the goal is to find sparse and valid char-
acteristics over certain rounds of the cipher. Since the tool used for characteristic
search in this toolchain is based on a coding theory analysis, random words of the
state are forced to zero in order to narrow down the search space for the heuristic
search algorithms. The information gained in such an analysis could, for example,
later be used to construct attacks on the initialisation rounds.

5.7.2 Results

This section presents the results of the conducted analysis using the framework introduced
in this thesis. It shows the hamming weight of the found characteristics over certain
rounds R with a certain amount of state-bits s forced to zero. Note that these results
only provide a demonstration of the introduced automated framework and has therefore
only been performed with very small computational resources. The performance can be
easily improved by conducting a more resource intense analysis. Further note that the
introduced framework performs preliminary analysis and does therefore not claim high
quality results as discussed earlier. Note that in the following tables, - donates weights
of such a high value, not relevant to the analysis any more. Those values have been
removed from the tables to improve the overall readability.

NORX

Since the focus of this thesis lies on the cipher NORX, both of the before mentioned
analysis forms were performed to demonstrate the possibilities of the discussed toolchain.
Since the rate of NORX is 6 state words, 768 (= 2 · 4 · 64) bits were forced to zero at

116 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

the correct positions. Table 5.1 shows the result of this analysis in form of the Hamming
weights of found characteristics over different rounds of the round transformation.

R 1 2 3 4 5 6
s = 768 432 919 1417 1902 2398 2912

Table 5.1: NORX: The Hamming weight of the found (and verified) characteristics over
different rounds R and s state bits forced to zero.

Table 5.2 shows the results of the round analysis performed on NORX.

s / R 1 2 3 4 5 6 7 8 9 10
0 12 893 1381 1880 - - - - - -
64 12 888 1381 1868 - - - - - -
128 12 900 1397 1868 - - - - - -
192 12 901 1388 1880 - - - - - -
256 15 906 1386 1869 - - - - - -
320 15 892 1399 1872 - - - - - -
384 15 908 1396 1894 - - - - - -

Table 5.2: NORX: The Hamming weight of the found (and verified) characteristics over
different rounds R and s state bits forced to zero.

MORUS and KETJE

For the two ciphers, MORUS and KETJE, only the round analysis was performed over
several rounds R and with several state words s forced to zero. Table 5.3 illustrates the
results of the round analysis performed on MORUS, while Table 5.4 shows the results
for a similar analysis on KETJE.

s / R 1 2 3 4 5 6 7 8
0 3 6 11 19 32 53 3784 -
64 3 6 11 19 32 53 89 -
128 3 6 11 19 32 60 3784 -
192 3 6 11 19 32 71 3843 -
256 3 6 13 29 65 3092 3784 -
320 3 7 13 29 65 3150 3872 -
384 3 6 13 29 65 3184 3843 -

Table 5.3: MORUS: The Hamming weight of the found (and verified) characteristics over
different rounds R and s state bits forced to zero.

5.7. APPLICATION AND RESULTS 117

s / R 1 2 3 4 5 6 7 8 9 10
0 21 84 640 823 1143 2984 - - - -
16 21 115 593 823 1143 3013 - - - -
32 24 183 692 864 1143 2934 - - - -
48 37 85 652 842 1143 3149 - - - -
64 23 85 680 823 1143 3149 - - - -
80 22 85 891 813 1143 3149 - - - -
96 31 96 891 719 1147 3149 - - - -

Table 5.4: KETJE: The Hamming weight of the found (and verified) characteristics over
different rounds R and s state bits forced to zero.

118 CHAPTER 5. AUTOMATED ANALYSIS FRAMEWORK

Chapter 6

Conclusion and Future Work

In this thesis, we introduced an automated framework for applying preliminary analysis
on arbitrary authenticated ciphers. The framework takes a reference implementation
- as typically delivered in the submission to a cryptographic competition - as input
and performs an analysis using multiple tool chains fully automated. The framework
parses the reference implementation, constructs an abstract cipher representation based
on the code, brings it to a standard form and allows a user to implement adapters in
order to transform it to any representation used by an analysis tool. The cryptanalyst
using the framework implements the required adapters, writes code defining the analysis
procedure, and can apply the analysis on an arbitrary number of different ciphers without
any additional effort. This analysis can form the basis for further dedicated and more
advanced analysis methods.

Since the focus of all analysis methods considered in this thesis is the analysis of authen-
ticated ciphers, we introduced the basics of cryptography, described it’s basic goals and
introduced the reader to common techniques of how to ensure authenticity in symmetric
cryptography. Further, we discussed the disadvantages of current solutions and showed
the need for new dedicated authenticated cipher designs. Design approaches for con-
structing authenticated ciphers were discussed with a special focus on three submissions
to the CAESAR competition. A detailed description was provided for the submission of
the cipher NORX, since it was used to demonstrate the framework and it’s components
throughout the thesis.

We show the need for such an automated framework, especially in the context of recent
and past cryptographic competitions, and gave scenarios of application as well as po-
tential use cases. We described which steps cryptanalysis involve today, which effort is
linked to the steps and how the automated framework can help to significantly reduce
the effort of cryptanalysts going into preparing an automated framework for preliminary
analysis.

The framework can perform this step of the analysis process fully automated on a po-

119

120 CHAPTER 6. CONCLUSION AND FUTURE WORK

tentially large number of ciphers. This allows cryptanalysts to focus on designing and
conducting dedicated cryptanalysis and attacks on primitives resulting in a generally
higher quality of a large number of ciphers analysed.

We described the basics of cryptanalysis in general and different methods used to conduct
it when focusing on methods used by tools implemented in the scope of this thesis. The
focus of the methods here lies on the preliminary analysis of new authenticated cipher
schemes using differential cryptanalysis. We further introduced how common analysis
tools operate in order to find differential characteristics or verify found ones and explained
how these tools can be combined in a toolchain to obtain useful results.

In addition, the integrated tools, the used framework and libraries as well as the design,
architecture and procedures inside the tool were explained in detail. We showed how it
is possible to construct such a framework solely based on a reference implementation,
how the implemented algorithm is represented in an abstract format and which steps and
transformations are required to allows it’s translation to different cipher representations.
We further show, how new tools can be easily integrated into the framework and how
cryptanalyst can perform custom transformations and modifications on the abstract ci-
pher representation based on the implemented functionality and the feature set provided
by the framework facilitated underneath.

The results section of the thesis finally shows how the automated analysis framework was
applied to three submissions of the CAESAR competition. We performed an automated
preliminary analysis and facilitated a demonstration toolchain based on three tools used
for the search and verification of differential characteristics. Therefore, we were able
to demonstrate the viability of an easily extendible framework performing automated
preliminary cryptanalysis on arbitrary authenticated encryption ciphers only operating
on a C-reference implementation of the ciphers.

6.1 Scope and Limitations

It is essential to highlight that the goal of the implemented automated framework is to
perform preliminary analysis. This means it applies different methods and tools to give
a cryptanalyst hints into which direction potential dedicated analysis methods might
be promising based on the results. So the results might, for example, show potential
weaknesses in a certain components of the analysed cipher and a dedicated analysis could
explore and possibly exploit these weaknesses. The framework or analysis performed does
not raise the claim of providing usable differential characteristics to break ciphers. Rather
it provides a tool that allows cryptanalysts to perform a preliminary analysis on a large
set of ciphers to obtain information about the cipher and obtain indications for potential
weaknesses. Therefore, the characteristics found by the framework will only act as a
preliminary indicator rather than differentials useful for an attack.

6.2. FUTURE WORK 121

6.2 Future Work

The goal of the framework implementation at this stage was to proof the feasibility of
such a automated preliminary analysis framework. Therefore, this leaves space for future
work and improvement potentially leading to great benefit for cryptanalysts. These
improvements include:

• Application to other cryptographic
primitives (this work focuses on au-
thenticated encryption)

• Enable additional features for imple-
mented tools (e.g. search instead of
verify for SAT solvers)

• Extension to support other languages

• Add support for additional tools to
search and verify characteristics.

• Actively support control flow struc-
tures in source functions

• Use the backend of the ROSE-
framework to transcompile to other
languages

• Enable the framework to search /
verify characteristics in a distributed
computing environment

• Improve program architecture for
running on cluster structures

• and many more

The source code for all tools implemented during this thesis is available online and further
development of the framework is highly anticipated and supported by the author.

122 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] CAESAR call for submissions, final (2014.01.27). http://competitions.cr.yp.to/
caesar-call.html. Accessed: 13.09.2014.

[2] Cryptographic competitions. http://competitions.cr.yp.to/. Accessed:
16.09.2014.

[3] Simple theorem prover. http://stp.github.io/stp/. Accessed: 19.10 .2014.

[4] J. Aumasson, P. Jovanovic, and S. Neves. NORX: parallel and scalable AEAD. In
M. Kutylowski and J. Vaidya, editors, ESORICS 2014, volume 8713 of Lecture Notes
in Computer Science, pages 19–36. Springer, 2014.

[5] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. Journal of Cryptology, 21:469–
491, 2008.

[6] G. Bertoni, J. Daemen, M. Peeters, and G. Assche. Cryptographic sponge functions.
Submission to NIST (Round 3), 2011.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. Assche. Permutation-based encryption,
authentication and authenticated encryption. Directions in Authenticated Ciphers,
2012.

[8] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak specifications. http:
//keccak.noekeon.org/, 2009.

[9] G. Bertoni, J. Daemen, M. Peeters, G. V. Assche, and R. V. Keer. CAESAR
submission: KETJEv1. 2014.

[10] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Duplexing the sponge:
single-pass cryption and other applications. In Selected Areas in Cryptography, pages
320–337. Springer, 2012.

[11] A. Biryukov and V. Velichkov. Automatic search for differential trails in ARX
ciphers. In J. Benaloh, editor, CT-RSA 2014, volume 8366 of Lecture Notes in
Computer Science, pages 227–250. Springer, 2014.

123

http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/
http://stp.github.io/stp/
http://keccak.noekeon.org/
http://keccak.noekeon.org/

124 BIBLIOGRAPHY

[12] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words
in a linear code: Application to mceliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory, 44(1):367–378,
1998.

[13] Ecrypt. eBACS: ECRYPT Benchmarking of Cryptographic Systems. http://bench.
cr.yp.to/. Accessed: 05.10 .2014.

[14] E. Fleischmann, C. Forler, and S. Lucks. Mcoe: A family of almost foolproof on-
line authenticated encryption schemes. In Fast Software Encryption, pages 196–215.
Springer, 2012.

[15] ISO/IEC. Information technology – security techniques – authenticated encryption.
In Information technology – Security techniques – Authenticated Encryption, 2009.

[16] P. Jovanovic, S. Neves, and J. Aumasson. Analysis of NORX. IACR Cryptology
ePrint Archive, 2014:317, 2014.

[17] L. R. Knudsen and M. Robshaw. The block cipher companion. Springer, 2011.

[18] S. Kölbl, M. M. Lauridsen, C. Rechberger, and T. Tiessen. Authenticated encryption
zoo. https://aezoo.compute.dtu.dk/doku.php. Accessed: 05.10 .2014.

[19] G. Leurent. Arxtools: A toolkit for arx analysis. In The Third SHA-3 Candidate
Conference, 2012.

[20] F. Mendel, T. Nad, and M. Schläffer. Finding SHA-2 characteristics: Searching
through a minefield of contradictions. In D. H. Lee and X. Wang, editors, ASI-
ACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages 288–307.
Springer, 2011.

[21] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied Cryp-
tography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1996.

[22] T. Nad. The codingtool library. workshop on tools for cryptanalysis 2010. http:
//www.iaik.tugraz.at/content/research/krypto/codingtool/. Accessed: 05.10
.2014.

[23] G. Procter and C. Cid. On weak keys and forgery attacks against polynomial-based
MAC schemes. In S. Moriai, editor, FSE 2013, volume 8424 of Lecture Notes in
Computer Science, pages 287–304. Springer, 2013.

[24] D. Quinlan, C. Liao, T. Panas, R. Matzke, M. Schordan, R. Vuduc, and Q. Yi.
Rose user manual: A tool for building source-to-source translators draft user man-
ual. http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf. Accessed:
29.09.2014.

[25] D. Quinlan, M. Schordan, R. Vuduc, Q. Yi, T. Panas, C. Liao, and J. J. Willcock.
Rose tutorial:a tool for building source-to-source translators. http://rosecompiler.
org/ROSE_Tutorial/ROSE-Tutorial.pdf. Accessed: 29.09.2014.

http://bench.cr.yp.to/
http://bench.cr.yp.to/
https://aezoo.compute.dtu.dk/doku.php
http://www.iaik.tugraz.at/content/research/krypto/codingtool/
http://www.iaik.tugraz.at/content/research/krypto/codingtool/
http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
http://rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf
http://rosecompiler.org/ROSE_Tutorial/ROSE-Tutorial.pdf

BIBLIOGRAPHY 125

[26] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap prob-
lem. In Advances in Cryptology-EUROCRYPT, pages 373–390. Springer, 2006.

[27] M. O. Saarinen. Cycling attacks on gcm, GHASH and other polynomial macs and
hashes. In A. Canteaut, editor, FSE 2012, volume 7549 of Lecture Notes in Computer
Science, pages 216–225. Springer, 2012.

[28] W. Trappe and L. C. Washington. Introduction to Cryptography with Coding Theory
(2Nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2005.

[29] H. Wu and T. Huang. The Authenticated Cipher MORUS. http://competitions.
cr.yp.to/, 2014.

http://competitions.cr.yp.to/
http://competitions.cr.yp.to/

	Introduction
	Motivation
	Introduction to Cryptography
	Cryptographic Competitions
	Problems of Cryptographic Competitions
	Overview

	Authenticated Encryption
	Conventional Cryptographic Systems
	Basics and Primitives
	Differences

	Authenticity in Symmetric Cryptographic Systems
	Generic Composition
	Dedicated Authenticated Encryption Ciphers
	Drawbacks and Limitations

	Goals of Dedicated Authenticated Encryption Schemes
	CAESAR Challenge
	Design Principles and Approaches
	The Sponge Construction
	The Duplex Construction
	The Monkey Duplex Construction

	Attacks
	Analysed Ciphers
	NORX
	MORUS
	KETJE

	Cryptanalysis
	Goals of Cryptanalysis
	Analysis Methods
	Differential Cryptanalysis
	Impossible Differential Cryptanalysis
	Linear Cryptanalysis

	Analysis Methods for AE
	Goals
	Concepts and Tools

	Classic Analysis Workflow
	Toolchains
	Problems

	Automated AE Analysis
	Problem Description
	The Idea
	The Automated Analysis Workflow
	Using the Framework
	Application Setting

	Goals
	Supported Tools
	Extended IAIK CodingTool
	NLTool
	STP

	Used Tools and Libraries
	Transcompilers
	The ROSE Compiler Framework

	Automated Analysis Framework
	CipherAnalyzer
	Components
	Procedure
	CipherTranslator

	Process
	Components
	Transformations
	Inlining
	Fixing Compound Statements
	Handle Rotations
	Splitting
	Example

	Translation to other Formats
	CodeTransformer
	CodeTranslator
	Analysis Code

	Customization / Extension
	Application and Results
	Analysis Types
	Results

	Conclusion and Future Work
	Scope and Limitations
	Future Work

