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Abstract

This thesis deals with the recovery of dense depth information from thermal (far
infrared spectrum) and optical (visible spectrum) images using computational stereo
techniques. Systems which originally employ optical and thermal cameras separately
could benefit from the obtained depth information based on the inherent stereo setup
and without the need for additional hardware. However, the large differences in the
characteristics of cross-spectral images make this task significantly more difficult
than for the common optical stereo case. As a result no method has been proposed
in previous work which is able to solve the considered problem. In this work we
therefore investigate if a solution can be achieved by utilizing novel approaches as
well as methods suggested in literature.

A modular framework based on a common taxonomy of stereo algorithms is im-
plemented as a basis for the conducted experiments. The most crucial aspect is
the definition of robust matching cost measures which are able to describe local
similarities between the cross-spectral images. Furthermore powerful optimization
techniques prove to be essential for the computation of valid depth estimates.

We implement, test and evaluate state-of-the-art robust matching cost methods
and compare their performance with novel approaches. The influence of combina-
tions with different types of optimization techniques is also investigated. Tests are
performed on simulated as well as real cross-spectral stereo data, including both
still images and video sequences. A qualitative evaluation and a comparison with
standard optical stereo results shows that through the introduced approaches very
coarse but largely valid dense depth estimates can indeed be achieved. We obtain
best results by using distances between dense descriptors based on histograms of
unsigned oriented image gradients (HOG and DAISY descriptors) as a matching
cost in combination with semi-global matching optimization. In all our experiments
this approach outperforms methods which have previously been suggested for use
in such a scenario like mutual information or dense local self-similarity descriptors.
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Kurzfassung

Die vorliegende Arbeit befasst sich mit der Rekonstruktion von dichter Tiefeninfor-
mation aus Wärmebildern (langwelliges Infrarot-Spektrum) und optischen Bildern
(sichtbares Spektrum) unter Verwendung von stereoskopischen Berechnungsmetho-
den. Systeme, welche optische Bilder und Wärmebilder ursprünglich getrennt einset-
zen, könnten basierend auf einer vorhandenen Stereo-Anordnung ohne zusätzlichen
Hardwareaufwand von der resultierenden Tiefeninformation profitieren. Die Aufga-
be wird jedoch aufgrund der stark unterschiedlichen Bildeigenschaften im Vergleich
zu üblichen rein optischen Stereo-Anordnungen stark erschwert. Infolgedessen wur-
de bisher noch keine Lösungsmethode für das beschriebene Problem vorgestellt. In
dieser Arbeit wird daher untersucht, ob eine Lösung des Problems durch die An-
wendung von sowohl neuartigen Methoden als auch in der Literatur vorgeschlagenen
Ansätzen erreicht werden kann.

Als Basis für die durchgeführten Untersuchungen wird ein modulares Framework
basierend auf einer allgemeinen Systematik für Stereo-Algorithmen implementiert.
Der wichtigste Aspekt ist die Definition von robusten Vergleichsmaßen, welche in der
Lage sind, lokale Ähnlichkeiten zwischen den betrachteten spektral unterschiedlichen
Bildern zu beschreiben. Darüber hinaus erweisen sich leistungsfähige Optimierungs-
methoden als wesentlich für die Berechnung von gültigen Tiefenschätzungen.

Aktuelle robuste Vergleichsmaße werden implementiert, getestet und ihre Leistung
mit neuartigen Methoden verglichen. Zusätzlich werden die Auswirkungen der Kom-
bination mit verschiedenen Optimierungsmethoden untersucht. Für die Durchfüh-
rung der Tests werden simulierte und tatsächlich spektral unterschiedliche Stereo-
Daten verwendet, wobei sowohl Bilder als auch Videosequenzen berücksichtigt wer-
den. Eine qualitative Evaluierung und ein Vergleich mit rein optischen Stereo-
Ergebnissen zeigt, dass durch die vorgestellten Ansätze tatsächlich eine grobe aber
weitgehend gültige dichte Tiefenabschätzung erzielt werden kann. In den durch-
geführten Experimenten werden die besten Ergebnisse durch Distanzen zwischen
Deskriptoren basierend auf Histograms of unsigned oriented Image Gradients (HOG
und DAISY Deskriptoren) als Vergleichsmaß in Kombination mit Semi-Global Mat-
ching Optimierung erreicht. Dieser Ansatz liefert dabei bessere Resultate als in der
Literatur für dieses Szenario vorgeschlagene Methoden wie Mutual Information oder
Local Self-Similarity Deskriptoren.
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Introduction 1

Chapter 1

Introduction

1.1 Motivation

Depth from Stereo Vision The perception of depth has been an important
topic in the fields of computer vision for several decades. It has been the focus of
very active research and a number of different approaches for the recovery of depth
information of observed scenes have been investigated [48][49]. A very attractive and
popular approach is computational stereo, which was originally inspired by binocular
stereopsis utilized in the human visual system [50]. It is based on the perception of
depth from observing a scene from two slightly different points of view. In contrast
to active methods for depth recovery like radar, laser range finders or structured light
techniques which may offer greater accuracy, the computational stereo method is a
completely passive method for depth recovery. It is suitable in almost all application
domains and apart from two cameras does not rely on additional special equipment.
Depth information provided by computational stereo methods is commonly used to
enhance the performance of many systems in application areas including:

• Robotic navigation and manipulation
• Obstacle detection and avoidance in autonomous vehicles
• Object/Person detection and tracking
• Industrial quality inspection
• Intelligent driver assistance

An introduction to the basic principles of computational stereo will be given in
Section 1.3.

Cross-Spectral Stereo Vision The performance of standard optical camera sys-
tems can be severely affected by environmental conditions like low lighting, shadows,
smoke and dust or when objects of interest have an appearance similar to the back-
ground [14]. A method to overcome such problems is to use camera systems opera-
ting in different parts of the electromagnetic spectrum. For example infrared images,
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often called thermal images, are independent of visible light illumination and sha-
dows, are relatively robust to dust and smoke and can often distinguish objects which
look similar to the background in the visible spectrum. However, thermal images
are often affected by ambient temperature and can offer difficulty in identifying ob-
jects with a similar temperature to the background (ambient temperature). As a
result an attractive solution is the combination of both optical and thermal images
in many common sensing and surveillance scenarios. In this way the advantages
and complementary nature of both modalities can be exploited and the individual
drawbacks can be largely compensated.
Numerous practical applications in both civil and military scenarios make use of
this concept, including many of the areas listed in the previous paragraph (e.g.
[47][14][11][12]). One possibility is to simply alternate between the use of optical
and thermal cameras, for example to switch from optical to thermal imagery for
night- or low-light-vision. More sophisticated approaches use both modalities si-
multaneously when the circumstances permit it and employ sensor fusion methods
to combine the information acquired from the different images [14]. However, at
the same time the inherent stereo setup resulting from the use of the two cameras
is hardly ever exploited or a separate optical stereo setup is used to recover desi-
red depth information. In fact the cross-spectral stereo setup often even forms a
problem for sensor fusion and registration algorithms [32]. The direct recovery of
depth information from the cross-spectral stereo setup could be used to improve
applications such as obstacle avoidance or object detection and tracking approaches
without the need for additional hardware which might be important for mobile sen-
sing platforms/applications.

In the literature, the terms multi-spectral, cross-spectral or multi-modal are often
used to generally refer to the use of systems combining images acquired in different
spectral bands. In this work we will use the term cross-spectral for the combination
of standard optical (visible) and thermal (infrared) images. Details on thermal
imagery are given in the next section.

1.2 Infrared Imaging

Infrared radiation can be loosely defined as electromagnetic radiation with a wave-
length longer than visible light and shorter than microwave radiation [36]. For the
purpose of infrared imaging this loose definition needs to be refined and subdivided
into several sub bands. The categorization utilized is based on sensor technology
and atmospheric transmission properties and is summarized in Table 1.1. We can
see the denomination of the different sub bands of the infrared spectrum and their
respective wavelengths, bounded at the lower end by the visible spectrum.
Example images of a human head captured at different wavelengths are depicted in
Figure 1.1, indicating the structures and features that are visible in the different
spectral bands. Finer details can be seen in the visible and near infrared bands but
shadows and specular reflections are also present. The mid- and long-wavelength
infrared bands capture main facial features irrespective of the lighting conditions.
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Spectral band Spectral wavelength in µm
Visible light 0.4-0.78

Near infrared (NIR) 0.78-1.0
Short-wavelength infrared (SWIR) 1-3
Mid-wavelength infrared (MWIR) 3-5
Long-wavelength infrared (LWIR) 8-12

Table 1.1: General spectral bands based on sensor technology and atmospheric
transmission [45].

Figure 1.1: Images of a human head at different infrared wavelengths [1].

Practical applications of infrared imaging often use sensors sensitive in the long-
wavelength band (LWIR), also called far infrared or thermal imaging. In this band
the effects of reflections on objects are minimized and captured images mainly re-
gister emissions from the observed scene, independent of visible light illumination
[22]. In this work we will consider images taken in the far infrared spectrum and will
use the term infrared (IR) as referring to this specific band. Figure 1.2 shows two
examples of outdoor images captured with our cross-spectral stereo setup consisting
of an uncooled far infrared camera and a standard camera operating in the visible
spectrum. The significant differences in the image characteristics can be seen clearly.
Most optical texture details, shadows and specular reflections from the visible spec-
trum are not present in thermal images, while other features like thermal signatures
can only be seen in the far infrared images.
Originally image processing on infrared images proved to be difficult due to the low
resolution and high noise of early infrared cameras. However, in recent years impro-
vements in sensor technology have allowed for images of higher quality and, while
still expensive, good quality infrared cameras are likely to become more affordable
in the near future.
Further details on infrared radiation and fundamentals of sensor technologies can
be found in [36] and [45].
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Figure 1.2: Examples of far infrared (left) and corresponding visible grayscale out-
door images (right).

1.3 Computational Stereo

Computational stereo is generally defined as the recovery of the 3D structure of a
scene from two images taken from different points of view [2][10]. It is based on the
fact that a point in the 3D scene is projected to different points in the two images.
Given that these two corresponding points in the images can be identified and the
relative camera positions are known, it is possible to reconstruct the coordinates
of the original point in 3D space. Of course this concept is restricted to points
which are actually visible in both images. It can be extended to consider more than
two views of the scene, which is known as multi-view stereo. In this work we will
only consider the standard two-view stereo case using cameras in a horizontal setup.
Trying to solve the computational stereo problem involves three main stages [10]:

1. Calibration and rectification:
The camera parameters are determined and the input images are prepared for
the correspondence stage (Section 1.3.1).

2. Correspondence:
Corresponding points in the images are searched for (Section 1.3.2).

3. Reconstruction:
Depth information is computed from the determined correspondences and the
camera parameters (Section 1.3.3).

The processing-pipeline relationship of these three stages is outlined in Figure 1.3
with respect to two images taken from a standard horizontal stereo setup (left and
right images). These aspects of computational stereo are further discussed in the
following subsections.
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Figure 1.3: The computational stereo pipeline.

1.3.1 Calibration and Rectification

Calibration is used to determine the intrinsic and extrinsic parameters of a stereo
camera setup. The intrinsic parameters of each camera include the focal length, the
principal point, the skew coefficient and lens distortion coefficients. The extrinsic
parameters of the stereo setup describe the relative positions of the cameras to each
other. These are generally represented by a rotation matrix and a translation vector
(see R and t in Figure 1.4).
A number of different methods to perform calibration exist, however the most com-
mon for use in stereo applications are usually based on control points from several
images of a calibration target with known geometry (e.g. [59], see also Figure 4.4
in Section 4.1.2). A detailed explanation of the respective parameters and their
computation can be found in [23] and [58].

Calibration is essential for both the correspondence and the reconstruction step. To
understand its importance for the correspondence step, we first have to examine
the well-known concept of epipolar geometry. The epipolar geometry is used to
describe the relationship between corresponding image points in a stereo setup. As
an example we assume that a point p in 3D space is projected to a point x0 in the
left image and x1 in the right image (see Figure 1.4). We can see that the points
p, x0, x1 and the camera centers c0 and c1 are coplanar. This plane, called the
epipolar plane, can therefore be defined by the three points p, c0 and c1. Another
way of defining the epipolar plane is to use the ray which is projected from one of
the camera centers through the respective image point and the baseline, which is
the connection between the two camera centers c0 and c1. The baseline intersects
the two image planes at the epipoles e0 and e1 respectively. More detail on the
underlying geometry can be found in [23].
The main benefit for computational stereo algorithms that can be drawn from the
epipolar geometry is the resulting constraint for the search for corresponding points.
As can be seen in Figure 1.4, the epipolar plane intersects the image planes at the
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epipolar lines l0 and l1. If we now have to find a point x1 in the right image which
corresponds to a given point x0 in the left image, we can restrict the search range
to only include all points lying on the epipolar line l1. This simplifies the search for
correct point matches and significantly reduces the computational complexity.
However, searching for corresponding points along arbitrary epipolar lines in two
images is not convenient in practical applications. This problem can be solved by
first warping the images, such that epipolar lines correspond to aligned horizontal
scanlines of the images (i.e. horizontal image axes). In this way the correspon-
dence search is confined to corresponding rows in the two warped input images (see
Figure 4.6 for an example). The process of warping the input images is called recti-
fication and the transformations necessary for rectification can be computed using
the parameters previously determined in the calibration step [37][20]. The resulting
virtually modified stereo setup has a so called standard rectified geometry [50] (see
Figure 1.5). In addition to the rectification process, lens distortion effects of the two
cameras can be removed using the previously determined distortion coefficients.

Figure 1.4: Epipolar geometry of a general stereo setup [50].

1.3.2 Correspondence

Assuming a pair of rectified stereo images as input, the correspondence step aims
to identify the points in the corresponding rows of the two images which are pro-
jections of the same point in the 3D scene. The difference in x-coordinates of the
corresponding points in both images is called disparity. Equation 1.1 shows this
relationship between coordinates of corresponding points x0 = (x0, y0) in the left
and x1 = (x1, y1) in the right image, where d is the disparity and y0 = y1.

x1 = x0 − d (1.1)
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The correspondence search is usually not carried out over complete image rows
but restricted to the maximum disparity range occurring in the image pair. After
calculating disparity values over the two images, a so-called disparity map can be
created. The disparity values are inversely proportional to the actual 3D depth
of the scene points thus objects closer to the cameras yield larger disparity values
(usually displayed brighter in visualizations of disparity maps, see Figure 1.3).

Generally a fundamental distinction between sparse and dense correspondence has
to be made. Sparse stereo correspondence algorithms are based on the matching of
sparse features which have to be extracted from the input images first. Disparity
values are then only calculated at these feature points. Many early stereo algorithms
were based on this concept due to the reduced computational complexity but also to
limit correspondences to the ones with high reliability [50]. Of course, this relies on
the assumption that corresponding highly reliable features can indeed be extracted
from both images. Furthermore, the incorporation of additional constraints on the
disparities, like smoothness constraints, is hard for sparse features. The resulting
sparse disparity values can be useful for certain applications but many modern
scenarios require dense disparity information. Even though dense disparity maps can
be interpolated from sparse matches, this represents a hard problem on its own and
therefore the majority of current correspondence algorithms directly compute dense
disparity maps [50][10][44][35]. The aim of this work is the creation of dense disparity
maps where disparities are calculated for every image pixel and we will focus our
investigations on the direct computation using dense correspondence algorithms.

In practice, solving the correspondence problem and identifying corresponding
images points is the most challenging part of computational stereo algorithms and no
general solution exists [10]. This is due to the ambiguity of potential correspondences
in optical images, caused by e.g. lack of texture, repetitive patterns, radiometric
differences and partial occlusions. In general solving the correspondence problem
is seen as a computational optimization problem and many commonplace optimi-
zation techniques are employed for this task in state-of-the-art approaches [44][50].
The difficulty of correspondence search is further increased significantly if images of
different spectra are considered, as is the topic of this work. Thus the main focus of
this thesis lies on the correspondence problem and its solution across cross-spectral
image pairs.

1.3.3 Reconstruction

The purpose of the reconstruction step is the computation of actual 3D structural
information from the previously computed disparity values. Given the stereo setup
in standard rectified geometry (Figure 1.5) which is achieved through calibration
and rectification, the depth Z of a 3D point p in the scene can be calculated very
simply using similar triangles:

Z = f
B

d
(1.2)

where f is the focal length, B is the baseline and d is the disparity x0 − x1.
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Figure 1.5: Stereo setup in standard rectified form (cf. [10]).

1.4 Problem Definition and Methodology

After this introductory chapter we can now refine the problem definition considered
in the present thesis. Our goal is to recover dense depth information from cross-
spectral stereo pairs (e.g. Figure 1.2), using dense stereo correspondence algorithms.
Considering the possible application areas which motivate this goal, the need for
computational efficiency becomes apparent. A desired algorithm would therefore
(a) be able to actually produce valid dense depth estimates from cross-spectral stereo
and (b) be computationally efficient (ideally being able to operate in real-time or
near real-time).

Due to the challenging nature of the problem it has to be stated that we will focus
on the creation of coarse depth estimates of a scene and do not attempt to produce
highly accurate disparity maps of the kind that is required for applications such as
image-based rendering or 3D model building.

Our general methodology in investigating the specified problem can be roughly des-
cribed as follows. We will begin by implementing a general dense stereo correspon-
dence framework as a basis for our experiments. We will then review, implement and
test state-of-the-art correspondence methods which are able to deal with standard
radiometric differences in optical stereo images. In the next step we will review, im-
plement and test state-of-the-art correspondence methods which have been proposed
to deal with extreme radiometric differences or actual cross-spectral stereo pairs. Fi-
nally we will implement and test novel correspondence methods for cross-spectral
stereo and compare them with the state-of-the-art.
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1.5 Thesis Outline

In Chapter 2 we will begin with a detailed review of general dense stereo corres-
pondence algorithms and state-of-the-art robust methods in this field. We will
then move to current research concerning cross-spectral stereo methods and their
abilities and limitations. From the insights gained in this review we will then
be able to select and define our own approaches more precisely. In Chapter 3
we will describe our implemented cross-spectral stereo framework and our chosen
approaches. This is followed by testing and evaluation in Chapter 4, using different
types of test data and setups. Finally we will summarize our conclusions in Chapter
5 and give an outlook on possible future work.

In a supplementary chapter (Appendix A) we will move away from our main to-
pic of far-infrared-optical (cross-spectral) stereo and complement our work by also
investigating the properties of the near-infrared-optical stereo case, represented by
the i2iReader data of the ’MobiTrick’ project at Graz University of Technology. We
will apply the stereo methods and insights gained in the main part of the thesis to
examine the suitability of different stereo methods in this scenario.
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Chapter 2

Literature Review

In this chapter we will first provide a detailed review of general stereo correspondence
algorithms for standard stereo applications. As a next step we will focus on robust
correspondence measures for images with radiometric differences. Finally we will
discuss cross-spectral stereo correspondence and the current research in this field.

2.1 Dense Stereo Correspondence Algorithms

In Section 1.3 we have given a short overview of the different parts of a general
computational stereo algorithm. It can be stated that the calibration and recons-
truction steps based on epipolar geometry are generally well understood and do not
present major difficulties in stereo vision [44]. In contrast, the correspondence pro-
blem cannot be solved unambiguously and remains a topic of very active research.
From this point on we will therefore assume the availability of a calibrated stereo
setup1, providing rectified input images to be able to focus on stereo correspondence
algorithms which create a dense disparity map as an output.

In [44] Scharstein and Szeliski proposed a general taxonomy and provided an ex-
cellent review and evaluation of dense stereo correspondence algorithms. Together
with this publication they also released stereo test data sets with ground truth data
and an evaluation framework, freely available online at the Middlebury stereo vision
website [43]. Since the publication of Scharstein and Szeliski’s work it has become
a main reference for the evaluation of dense stereo correspondence algorithms and
the vast majority of newly proposed algorithms report their results on this evalua-
tion framework allowing for easy and direct performance comparison. However, the
Middlebury test data sets were created under very controlled conditions generally
leading to very clean and high-quality images. This leads to the fact that the perfor-
mance of algorithms on noisy real-world images taken in uncontrolled environments
is often not evaluated and remains somewhat unclear.

1It should be noted that cross-spectral calibration presents its own specific difficulties. We will
detail our practical method for cross-spectral calibration in Section 4.1.2.
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An online evaluation and current ranking of all algorithms tested on the Middlebury
framework is available at the Middlebury stereo vision website [43].

In this work and our implemented stereo framework we also adopt the general taxo-
nomy proposed by [44] and reviewed in [50] and will therefore describe it as follows
in more detail. According to [44] most stereo correspondence algorithms can be split
into four steps:

1. Matching cost computation
2. Cost aggregation
3. Disparity computation/optimization
4. Disparity refinement and post-processing

Depending on the specific use and combination of these steps, correspondence algo-
rithms can be generally classified into local and global methods. Local and global
methods differ in the way that the final disparity values are computed and the type
of constraints that are applied. More details on this classification will be made clear
in the subsequent discussion.

Before starting with the matching cost computation, one image is defined as the
reference image and the other one as the match image. The disparity values are
computed with respect to the defined reference image, resulting in a final output
disparity map which holds disparity values for each pixel of the reference image.

2.1.1 Matching Cost Computation

Matching costs are used to describe the similarity between two considered pixels in
the left and right stereo images. This can be done by doing a purely pixel-based
comparison, for example by calculating the squared or absolute difference of the
pixel intensity values. However, such simple measures are very ambiguous, sensitive
to noise and radiometric differences and therefore always have to be combined with
local cost aggregation or global disparity optimization methods which enforce addi-
tional smoothness constraints.
Other types of matching costs implicitly describe pixels of interest using their local
image neighborhoods and then use these local support areas for matching, making
the cost computation more robust. Examples include traditional methods like nor-
malized cross correlation, non-parametric measures like rank and census transforms
[57] or local feature descriptors [53]. We will review robust matching cost measures
in more detail in Section 2.2.

Matching costs are usually computed for all possible pixel pairings within a given
maximum disparity range along an image row. The resulting costs for all rows can
be stored in a three-dimensional matching cost volume, also termed Disparity Space
Image (DSI) [44][4]. Positions in the DSI are indexed by (x, y, d), where (x, y) are
the 2D coordinates of the reference image pixel and d is the disparity. Each point in
the DSI holds the computed cost of matching a pixel at (x, y) in the reference image
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with a pixel (x − s · d, y) in the match image. The parameter s can take the values
±1 and depends on whether the left or the right image is defined as the reference
image. In Figure 2.1 the three-dimensional structure of the DSI is visualized for
images of size W ×H and a disparity range of [dmin, dmax]. Figure 2.2 illustrates the
concept of the DSI on an example. In this example we compute the matching costs
using the sum of absolute differences of a local window and the disparity results
by a simple Winner-Takes-All (WTA) selection (see Section 2.1.3). In Figure 2.2
the left and right input images as well as the resulting disparity map can be seen.
The enlarged slices through the DSI at different y-coordinates are shown beneath,
their positions are indicated by the three dashed lines in the images. Dark values
in the DSI slices represent low matching costs and the computed disparity results
are indicated in green. It can be seen that textureless regions cause large patches of
ambiguous low matching costs which causes WTA to select wrong values.

Figure 2.1: Structure of the three-dimensional DSI matching cost volume [40].

Figure 2.2: Examples of horizontal slices through a DSI computed from the Midd-
lebury ’Teddy’ images.
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Ideally a corresponding pair of pixels (the true match) would yield the minimum
matching cost of all considered pairings. However, in practical applications this
is often not the case which makes the subsequent processing/optimization steps
necessary.

2.1.2 Cost Aggregation

Cost aggregation is mainly used in local methods and is done by summing or ave-
raging over a local support region in the DSI matching cost volume. In this way a
local smoothness assumption is made, which helps to compensate for outliers and
ambiguous matching cost values. Usually aggregation in the DSI is done in a two-
dimensional way at fixed disparity, however also three-dimensional aggregation is
possible to better support slanted surfaces [44].
The simplest and fastest way of aggregation at fixed disparities is done using square
windows with equal or Gaussian weights. A disadvantage of these simple methods is
the aggregation across disparity discontinuities, which leads to a blurring of dispa-
rity jumps. More advanced methods use shiftable windows, windows with adaptive
sizes or windows with adaptive weights, where weights and sizes are usually adapted
to input image colors/intensities and distance to the pixel of interest. See [50] and
[54] for a review and evaluation of cost aggregation methods.

2.1.3 Disparity Computation/Optimization

Disparity Computation/Optimization is the process of determining the disparity
values for every pixel in the disparity map using the previously computed and op-
tionally aggregated matching costs.

Winner-Takes-All

Local methods enforce local smoothness constraints in the cost aggregation step and
then use the simplest and fastest way of disparity computation by selecting for each
pixel the disparity with the minimum matching cost. This approach is also called
Winner-Takes-All (WTA). However, WTA approaches do not cope well with locally
ambiguous regions in the input images, e.g. bland areas and repetitive patterns, or
in general with unreliable matching cost values [44].

Global Energy Minimization

Global methods on the other hand often omit the cost aggregation step and perform
a more sophisticated disparity optimization procedure. These methods are less sen-
sitive to locally ambiguous regions and weak matches. Many global methods define
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an energy minimization framework to find the optimal disparity function D(x, y) in-
side the DSI. The optimal disparity function corresponds to a (local) minimum of an
energy function E(D), consisting of a data term Ed(D) and a weighted smoothness
term Es(D) [44][50].

E(D) = Ed(D) + λEs(D) (2.1)

The data term is based on the previously computed matching costs:

Ed(D) =
∑

(x,y)

DSI(x, y, D(x, y)) (2.2)

The smoothness term Es(D) is used to enforce additional smoothness constraints
and is often restricted to only consider the difference of disparities of adjacent pixels,
however the layout of the considered neighborhood can vary [50]:

Es(D) =
∑

(x,y)

ρ(D(x, y) − D(x + 1, y)) + ρ(D(x, y) − D(x, y + 1)) (2.3)

In this formulation ρ is a monotonically increasing function of the difference in dis-
parities. Additionally, these terms can be modified to consider intensity edges in the
input images and thus lower the smoothness cost for high intensity gradients. This
is motivated by the observation that often disparity jumps coincide with intensity
gradients in the input images.
In recent years numerous methods have been developed to minimize energy func-
tions of this form based on regularization and Markov random fields (e.g. Graph
Cuts (GC) or loopy belief propagation), but the details on this topic are beyond the
scope of this work and we refer to additional sources [50][51][8][7][31].
Global methods based on such energy minimization frameworks have proven to pro-
duce very accurate results on the Middlebury stereo benchmark [43]. However, a
drawback is the relatively high computational complexity which makes them less
attractive for real-time or near real-time applications [35].

Dynamic Programming

Dynamic Programming (DP) is a different method to optimize the disparity values
and is not a truly global optimization method as described in the previous para-
graph [50]. Dynamic programming splits the 2D optimization problem into several
independent 1D optimizations, making the process more computationally efficient.
For each horizontal scanline a minimum cost path is calculated through the corres-
ponding horizontal slice of the DSI, taking into account matching costs, smooth-
ness and ordering constraints and explicit occlusion costs. Drawbacks of dynamic
programming methods are the obvious lack of vertical or inter-scanline constraints
and the right choice of occlusion costs. However, optimized dynamic programming
implementations can operate in real-time and are therefore attractive for certain
applications were computational efficiency is more important than high accuracy
[50]. More details on dynamic programming will be given in Chapter 3.



16 Literature Review

Semi-Global Matching

The method of Semi-Global Matching (SGM) was first introduced in [26]. It ap-
proximates the global two-dimensional smoothness constraints applied by truly glo-
bal methods by evaluating at each pixel a cumulative cost function from several
one-dimensional paths at once. In this way many of the drawbacks of dynamic pro-
gramming are removed and good results can be obtained more efficiently than with
global energy minimization methods. More details on semi-global matching will also
be given in Chapter 3.

2.1.4 Disparity Refinement and Post-Processing

The last step of Scharstein and Szeliski’s taxonomy is disparity refinement and
post-processing. For applications like image-based rendering a sub-pixel refinement
of the discrete disparity values may be performed but we do not consider this step in
our applications. Other post-processing steps include so called cross-checking, were
the calculated disparity map is compared with results when reference and match
image are switched. In this way occlusions (i.e. pixels that are only visible in
the original reference image) can be identified and inconsistent disparity values can
be discovered and invalidated [19]. Further post-processing steps can include simple
median filtering or speckle removal, where small patches of isolated disparity outliers
are removed [27].

2.2 Stereo with Radiometric Differences

After having reviewed the general structure and different building blocks of common
dense stereo correspondence algorithms, we will now focus on the robustness of
correspondence algorithms concerning differences in input images. Since our aim
is to find stereo correspondences in cross-spectral images, which can be seen as
the most extreme case of radiometric differences, we will first review common
robust approaches in which radiometric differences and noise are being dealt with.
Radiometric differences in standard stereo images can occur due to noise, differences
in lighting, exposure or other camera settings and are very common in real-world
applications.
An extensive review and evaluation of robust matching cost measures is provided
by Hirschmueller and Scharstein in [28]. We will structure the first part of this
section according to Hirschmueller and Scharstein’s classification in preprocessing
steps and parametric and non-parametric matching costs.
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2.2.1 Preprocessing Methods

A number of different filter techniques can be used to reduce the amount of ra-
diometric differences in two stereo images. The filters are applied to the input
images followed by standard matching cost measures like absolute intensity diffe-
rences. Table 2.1 summarizes the filter techniques described in [28] and lists their
respective effects regarding the compensation of radiometric differences. Except
for the gradient magnitude filter all listed filters can merely remove local intensity
offsets which makes them unsuitable for more complex radiometric differences.

Name Method Effect
Mean filter subtraction of mean in-

tensity of local window
from pixel of interest

Removal of local inten-
sity offset

Laplacian of Gaussian
(LoG)

Gaussian convolution
and Laplacian operator
(i.e. smoothed second
derivative)

Removal of noise and lo-
cal intensity offset

Background subtraction
by bilateral filtering

subtraction of bilateral
filtered image from origi-
nal image

Removal of local inten-
sity offset without blur-
ring of edges

Gradient magnitude computation of image
gradient (first derivative)
magnitude

Reduction to edge infor-
mation

Table 2.1: Preprocessing methods for the removal of radiometric differences as des-
cribed in [28].

2.2.2 Robust Parametric and Non-Parametric Matching

Costs

Hirschmueller and Scharstein [28] compared several types of matching cost measures
which are based on local image windows and robust to different types of radiometric
differences. These can be split into parametric and non-parametric matching costs.

Parametric Matching Costs

• Zero mean sum of absolute differences (ZSAD):
Before computing the sum of absolute differences for the two compared local
windows, the mean of each window is subtracted from each pixel. This removes
local intensity offsets of the whole window.

• Normalized cross correlation (NCC):
Computing the normalized cross correlation between two windows results in a
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matching cost which is robust to image gain changes and can handle Gaussian
noise.

• Zero mean normalized cross correlation (ZNCC):
The zero mean normalized cross correlation is the only parametric matching
cost which is robust to both gain changes and intensity offsets within the
window.

Non-Parametric Matching Costs

• Rank transform [57]:
Before matching the rank transform computes the rank of the central pixel of
a local image window with respect to the intensity values of all pixels within
the window. Subsequently the rank values can be matched using standard
pixelwise measures like absolute differences.

• Census transform [57]:
The Census transform also creates an intensity ordering similar to rank but
additionally stores the positions and relative rank of all pixels within the image
window in a bit string. This gives it more discriminative power than the rank
transform. The matching cost is then computed by calculating the Hamming
distance between the compared bit strings. Both the rank and the census
transform are robust to all types of radiometric differences which preserve the
intensity ordering within the windows.

Hirschmueller and Scharstein [28] performed experiments on images of the Middle-
bury set with simulated and real radiometric differences. Depending on the type of
radiometric manipulation very good results were achieved by the census transform,
ZNCC and bilateral background subtraction with subsequent intensity difference
matching.

However, while many of the presented robust matching costs can handle simple
radiometric differences in standard stereo pairs well, their robustness is restricted
to certain types of image transformations. The extreme differences in cross-spectral
images do in general not conform to these restrictions which leads to the assumption
that these methods cannot be successfully applied in this case. Nevertheless for
comparison we will show their performance on images with complex radiometric
differences in Chapter 4.

In addition to the methods mentioned above for matching cost computation in the
presence of radiometric differences a mutual information based method was also
investigated in [28]. We will discuss this method in detail in Section 2.2.3.
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2.2.3 Mutual Information

Window-Based Mutual Information

In current applications and literature Mutual Information (MI) has emerged as a
very popular method to measure similarities in images with complex intensity re-
lationships. Mutual information is originally based on information theory and was
first successfully applied by Egnal [15] as a window-based dense stereo correspon-
dence measure. The similarity of two image windows wl and wr is measured by
considering the marginal entropies of their intensity values (H(wl) and H(wr)) and
their joint entropy H(wl, wr).

MI(wl, wr) = H(wl) + H(wr) − H(wl, wr) (2.4)

where the entropies can be calculated from the respective intensity probability dis-
tributions, for example using the intensity histograms of the image windows. As the
name suggests, mutual information measures the information that is shared by two
random variables. In this case the discrete random variables being the image pixel
intensities and MI measuring the statistical co-occurrence of pixel intensities.
Egnal [15] demonstrated the robustness of MI to radiometric differences and pro-
posed an application to real cross-spectral stereo applications. However, no expe-
riments to support this were conducted on real cross-spectral data as is studied in
this thesis.

One drawback of window-based MI methods is the dependence on the matching
window size. For small windows, the statistical power of the probability distributions
is low due to the small sample size which leads to false matches. Larger windows
can avoid this problem but result in stronger blurring of disparity discontinuities.
Fookes et al. [17][18] proposed approaches based on adaptive window sizes and
the incorporation of hierarchical prior probabilities to improve the performance of
MI-based correspondence. They also compared MI to other matching costs like
ZSAD, NCC, ZNCC and rank and showed that, while MI gives worse results on
standard stereo pairs, it performs well on images with simulated extreme radiometric
differences where all other methods fail. For their experiments Fookes et al. [17][18]
applied different intensity transforms to one image to simulate multi-spectral stereo
data. Figure 2.3 shows a result from [18]. Here the left image of the standard stereo
pair is unchanged while a complex non one-to-one intensity transformation is applied
to the right image intended to simulate multi-spectral data. The resulting disparity
map based on ZNCC matching costs and WTA disparity computation shows that
this method fails in this scenario. Fookes’ window-based MI method is able to
produce a valid disparity map in which the general structure of the scene and the
different objects and depth levels are well represented. Due to their results Fookes
et al. [17][18] recommended MI for use in multi-spectral stereo applications but
again did not provide any results on real multi-spectral data. Also, their definition
of multi-spectral remains unclear, as for example results for combinations of visible
spectrum and near infrared will differ significantly from results on combinations of
visible and far infrared spectra.
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Figure 2.3: Results from [18] on simulated multi-spectral data using both ZNCC
and hierarchical window-based MI.

Energy Minimization and Mutual Information

To avoid the problems of window-based MI methods, Kim et al. [30] adapted the
formulation of MI to fit into a global energy minimization framework. They ap-
proximated MI as a data term by using Taylor expansion to be able to convert it
into a sum over pixels. Using this method operating over the complete images and
not windows, an iterative solution can be achieved using energy minimization me-
thods like graph cuts. For details regarding the conversion of MI into a global data
term and optimization via graph cuts we refer to Kim et al’s paper [30]. Kim et al.
showed very good results for images from the Middlebury data set including com-
plex non one-to-one intensity transformations. An example from [30] is displayed
in Figure 2.4. Here also the left input image remains unchanged while an intensity
transformation is applied to the right image. When compared to the ground truth,
the proposed method proves to provide valid and relatively accurate results in this
scenario of synthetically altered images simulating extreme radiometric differences.

Figure 2.4: Results from [30] on a synthetically altered Middlebury ’Tsukuba’ image
pair using MI and Graph Cuts (GC).

Using the same representation of MI as a data term, Hirschmueller proposed in [26]
and later refined in [27] a much faster hierarchical optimization method using semi-
global matching. He also showed good results on synthetically altered stereo pairs.
Figure 2.5 shows Hirschmueller’s results on Middlebury test images with intensity
transformations. As in the previous examples the right image is synthetically altered
to demonstrate the robustness of the proposed method. A comparison to the ground
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truth at a subjective level shows the good performance of Hirschmueller’s approach.

Figure 2.5: Results from [26] on a synthetically altered Middlebury ’Teddy’ image
pair using Hierarchical MI (HMI) and Semi-Global Matching (SGM).

The demonstrated results of both window-based and global MI methods on images
with complex intensity relationships naturally make MI interesting for the applica-
tion on real cross-spectral stereo pairs. In Section 2.3 we will review the existing
previous work that has applied MI in real cross-spectral applications.

2.2.4 Dense Local Feature Descriptors

All matching cost measures discussed so far are based directly or indirectly on the
relationship between pixel intensity values of the two stereo images. A different type
of approach which we will consider in this work is the matching of dense local image
features that are first extracted from the images and then compared using distances
between their feature descriptors.
This method was originally used to match sparse image features in wide-baseline
stereo applications (e.g. using SIFT [38]). Recently Tola et al. [52][53] proposed an
efficient feature descriptor called DAISY for wide-baseline stereo which is suitable for
dense correspondence computation. They also showed good results for short-baseline
stereo and demonstrated robustness concerning image brightness and contrast as
well as image resolution and quality. Similar to very popular feature descriptors like
SIFT [38], DAISY describes feature points by using weighted histograms of local
oriented gradients. However, it can be computed much more efficiently than SIFT,
making it more suitable for dense stereo correspondence.

We will investigate the suitability of DAISY and other types of local feature descrip-
tors for dense cross-spectral stereo matching, introducing necessary modifications of
the original descriptors where necessary. Details on this will be discussed in Chapter
3.
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2.3 Cross-Spectral Stereo

In the previous section we have reviewed the types of matching costs that are com-
monly used to deal with different types of radiometric differences up to extreme
synthetic image intensity transforms simulating cross-spectral images. Now we will
focus on the previous work that has been done on real cross-spectral stereo corres-
pondence.
It has to be stated that to date only very little work has been done on the direct
recovery of depth information from cross-spectral stereo images [32][33][55]. This
might in part be due to the fact that until recently the availability of uncooled far
infrared cameras with relatively good quality (in terms of resolution and signal-to-
noise ratio) to the wider academic research community was limited [22].

Some very interesting work was done by Krotosky and Trivedi [33], who investigated
the use of cross-spectral stereo for pedestrian detection and tracking. To motivate
their approach they first analyzed the performance of state-of-the-art dense stereo
methods on real cross-spectral images. More precisely they applied Hirschmueller’s
hierarchical MI method discussed in Section 2.2.3 to optical stereo images, infrared
stereo images, synthetically altered optical stereo images with complex non one-to-
one relationships and finally real cross-spectral stereo images. A selection of their
results is shown in Figure 2.6. It can be seen that on infrared stereo images and
synthetically altered optical images good disparity estimates were achieved, correctly
depicting the scene structure and the different depths of the objects in the scene.
Furthermore these disparity maps proved to be consistent with the results on the
unmodified optical stereo pairs (first row in Figure 2.6). This is in accordance with
the results shown in the original papers [26][30] and in Section 2.2.3. However,
when applied to real cross-spectral data the method completely failed to produce
valid disparity estimates (e.g. last row in Figure 2.6). Krotosky and Trivedi analyzed
the reason for this in detail and showed that in cross-spectral stereo images there
exists no global intensity transform that can be easily identified. This means that
infrared and optical intensities are very uncorrelated and the MI energy term cannot
be effectively minimized since good and bad matches produce similarly large values.

After gaining this insight, Krotosky and Trivedi returned to window-based MI me-
thods to estimate disparities in cross-spectral images. Their aim was the registration
of people at different depths in surveillance scenes using a cross-spectral stereo setup
[33]. They solved the problem by first extracting regions of interest (i.e. people)
by foreground extraction in the optical and intensity thresholding in the thermal
image and then finding disparities between these foreground regions. This was done
using a sliding correspondence window matching using mutual information and a
disparity voting method. Good results were shown for the successful registration of
previously extracted people but no depth information for any other objects in the
scene was obtained.
Very recently Torabi and Bilodeau [55] described a very similar approach to the
same problem but replaced mutual information by Local Self-Similarity (LSS) as a
correspondence measure. LSS was originally proposed in [46] for object detection,



Literature Review 23

retrieval and action recognition in visually differing scenes. Torabi and Bilodeau
reported a better performance of LSS than MI for this task and also suggested pos-
sible future work on the use of LSS as a correspondence measure for dense depth
computation. We will investigate this idea and discuss LSS in more detail in Chap-
ter 3. In a different type of application LSS has also been used to successfully align
image patches in cross-spectral imagery [5].

Figure 2.6: Results from [33]: Performance of MI as an energy minimization term
on stereo setups combining different modalities.
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Cross-Spectral Image Registration For the sake of completeness we will also
shortly mention the topic of multi-modal or multi-spectral image registration as the
computation of correspondences is also an issue here and a considerable amount of
work has been done in this field. Main applications of image registration or alignment
include medical imaging, remote sensing or long distance and overhead surveillance
applications. Many of these applications assume a global affine transform between
the images and are not designed to deal with more complex local transformations.
Non-rigid registration methods can deal with locally varying geometric distortions
by calculating transformation models based on a sparse number of matched features,
but are more computationally expensive [61]. While it might be possible to adapt
certain non-rigid registration methods to estimate disparity values of complex stereo
scenes, the benefit of this is not apparent since they are designed for a very different
type of application. We will restrict our investigations to established dense stereo
correspondence methods taking advantage of the epipolar constraint and estimating
disparities for every pixel.
For an analysis of previously used registration techniques in stereo scenes with ob-
jects at different depths and their limitations we refer to [32].

2.4 Summary

In this chapter we have reviewed the structure and building blocks of dense stereo
correspondence algorithms and have considered common methods which are used
by state-of-the-art algorithms. We have also discussed robust techniques that are
commonly used to deal with standard and extreme radiometric differences in stereo
image pairs. Finally he have presented an overview of previous work that used real
cross-spectral stereo data and inferred depth information from this setup.

Several approaches have shown to produce good results on simulated cross-spectral
stereo data, i.e. synthetically altered optical stereo pairs [15][18][30][26]. Applica-
tions that have used actual cross-spectral data have simplified the matching task by
only considering certain regions of interest [33][55].
As a conclusion of our review, at the time of writing it appears that there exists
no method that has been shown to produce dense depth estimates of a scene from
real cross-spectral stereo images. However, some methods like window-based MI or
LSS matching have shown relatively good performance for simplified applications
and therefore justify further investigation.

We will now continue in the following chapter with a discussion of our implemented
cross-spectral stereo framework, starting with the selection of already reviewed and
also novel matching cost measures.
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Chapter 3

Implementation of a
Cross-Spectral Stereo
Correspondence Framework

This chapter describes our implementation of a complete dense stereo correspon-
dence framework for both standard and cross-spectral stereo images. In the first
section we will discuss and justify the selection of the implemented methods and
give implementation details in the subsequent sections.

3.1 Selection of Methods

3.1.1 Matching Cost Computation

The crucial requirement to the solution of our problem of dense cross-spectral cor-
respondence is to find matching cost metrics which are able to measure similarities
between cross-spectral images as reliably and efficiently as possible. We have seen
in our review in Chapter 2 that matching costs which are used for standard stereo
pairs in state-of-the-art algorithms are unsuitable for this task. Methods that have
shown promising results are window-based Mutual Information (MI) [33][18][15] and
Local Self-Similarities (LSS) [55]. We therefore implement variants of both of these
methods in our framework to investigate performance on real dense cross-spectral
stereo.
In addition we investigate novel matching cost measures for this task based on a
prior visual analysis of our cross-spectral stereo data as shown in Figure 1.2. While
there is clearly no direct relation between pixel intensity values as is exploited by
standard stereo algorithms, obvious similarities exist on a higher level considering
objects and object boundaries. Many corresponding object boundaries and edge
fragments appear in both spectra, enabling a human observer to easily match cor-
responding objects in the images. From this observation we motivate our approach
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of using statistical local shape features based on image gradient orientations as a
dense correspondence measure. This concept is also used for dense wide-baseline ste-
reo by the DAISY descriptor of [52][53] mentioned in Section 2.2.4. Experiments in
[52] and [53] showed that DAISY outperforms other local feature descriptors such as
SIFT and SURF [3] in terms of both speed and accuracy. However, in cross-spectral
images the orientations of image gradients do not correspond unambiguously be-
cause bright regions in the optical image can be dark in the thermal image and vice
versa. As a result we have to base similarity on unsigned gradient orientations which
allows for bright-dark intensity changes being also matched to dark-bright intensity
changes of the same orientation. The restriction to unsigned gradient orientations
was also suggested for a different type of application by Dalal and Triggs [13], who
proposed a dense descriptor of Histograms of Oriented Gradients (HOG) for human
detection. Their goal was the creation of a descriptor optimized for “dense robust
coding of spatial form” [13]. Dalal and Triggs showed that for their purpose of hu-
man detection unsigned gradient orientations give better results due to the range of
different backgrounds and clothing colors. Dense HOG descriptors can be computed
efficiently (see Section 3.2) and we include them in our implementation to test their
performance in the very different task of describing cross-spectral similarity.
It has to be noted that the dense descriptors LSS, DAISY and HOG are precom-
puted for each image before the actual correspondence search. Similarity is then
measured by computing either the L1 or L2 distance between the descriptors.

In addition to the matching cost measures we consider for cross-spectral stereo, we
also implement and test standard matching cost measures as described in Section
2.2.2. This allows for a verification of the correct functionality of our complete cor-
respondence algorithms on standard stereo data. Furthermore a direct comparison
on real or simulated cross-spectral data can be made to demonstrate the limitations
of traditional robust matching cost measures. In combination with this we also
implement the preprocessing methods described in Section 2.2.1.

To summarize, the following list gives an overview of the matching cost measures
included in our implementation:

• Absolute Differences (AD) [28]
• Sum of Absolute Differences (SAD) [28]
• Zero mean Sum of Absolute Differences (ZSAD) [28]
• Normalized Cross Correlation (NCC) [28]
• Zero mean Normalized Cross Correlation (ZNCC) [28]
• Rank transform and AD [57]
• Census transform and Hamming distance [57]
• Mutual Information (MI) [15][18]
• Local Self-Similarity descriptors (LSS) and L1/L2 distance [46][55]
• DAISY descriptors and L1/L2 distance [52][53]
• HOG descriptors and L1/L2 distance [13]

These measures can be combined with the preprocessing steps [28]:
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• Mean filter
• Laplacian of Gaussian filter (LoG)
• Background subtraction by bilateral filtering
• Gradient magnitude computation

3.1.2 Cost Aggregation

We implement different cost aggregation methods to investigate their influence on
the performance of local as well as global correspondence methods. We only consi-
der aggregation at constant disparity, i.e. aggregation is performed separately on
each vertical slice of the Disparity Space Image (DSI). The simplest aggregation me-
thods consist of a rectangular window of fixed size with equal or Gaussian weighted
contributions of the matching costs within the window. More advanced methods
use adaptive weights, multiple windows or windows with adaptive shapes based on
pixel intensities and distances in the input images. While significantly improving
the performance of local correspondence methods, most of these approaches are
computationally expensive [54]. Recently Rhemann et al. [42] proposed a very fast
method using adaptive weights for cost aggregation based on guided image filtering
[24]. They reported very good results on the Middlebury test data [43] and real-
time capability. For this reason we also implement this method in our framework
to test its applicability to our various matching costs. Furthermore we implement a
fast aggregation method based on adaptively weighted vertical windows which was
proposed in [56] for use in combination with dynamic programming.

Overview of the cost aggregation methods included in our implementation:

• Rectangular window with equal weights
• Rectangular window with Gaussian weights
• Rectangular window with adaptive weights using guided filtering [42]
• Vertical window with adaptive weights based on pixel intensity and distance

[56]

3.1.3 Disparity Computation/Optimization

In addition to the chosen matching cost the disparity result of correspondence algo-
rithms depends heavily on the disparity computation/optimization method [44][28].
Compared to standard stereo images, cross-spectral images can be expected to pro-
duce more ambiguous or false matches as well as weaker correct matches. Weaker
correct matches can be caused by the difficulty of matching cost metrics to cope with
naturally different appearance in the different spectra. False or ambiguous matches
can occur due to the increased presence of bland areas as well as the visibility of
features and patterns in one spectrum which are absent in the respective other spec-
trum (e.g. see Figure 1.2 and Figure 2.6). It is therefore important to investigate
how different optimization techniques can compensate for these difficulties.
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The simplest method we implement is the Winner-Takes-All (WTA) method. Here
the disparity producing the minimum matching cost is chosen.
The next, somewhat more advanced method is a dynamic programming approach
which enforces additional constraints along the image rows and is computationally
efficient. We also test a variation of dynamic programming introduced by [44] called
scanline optimization which in contrast to traditional dynamic programming does
not explicitly account for occlusions and does not enforce the ordering constraint.
Furthermore we include a variation of Hirschmueller’s semi-global matching [26][27]
which is also computationally efficient and provides a better approximation of global
disparity smoothness constraints than dynamic programming.
Finally we also test the performance of global optimization based on graph cuts on
our calculated matching costs [51]. We include graph cuts in our framework to see
if significantly better results can be obtained in this way even at the cost of longer
runtimes.

Overview of the disparity computation/optimization methods included in our im-
plementation:

• Winner-Takes-All (WTA)
• Dynamic Programming (DP) [4][44]
• Scanline Optimization (SO) [44]
• Semi-Global Matching (SGM) [26][27]
• Graph Cuts (GC) [51]

3.1.4 Disparity Refinement and Post-Processing

Our main goal is to investigate the basic ability of the previously described methods
to create valid dense disparity maps, independently of possible post-processing en-
hancement. However, to be able to detect occlusions and remove grossly invalid
disparity regions in our final results we include the following post-processing steps
in our framework:

• Left-right consistency check (cross-check) [19]
• Speckle removal [27]

3.1.5 The Complete Correspondence Algorithm

In our framework all methods of the different building blocks described above can be
combined in any combination to form the complete correspondence algorithm. This
includes combinations which can be seen as unusual considering current literature
on the topic (e.g. [50][28]). For example window-based methods like ZNCC or MI
are usually only used in local methods with WTA disparity computation. However,
we also experiment with using these window-based matching costs in combination
with global disparity optimization methods.
Figure 3.1 shows a schematic diagram of our complete dense stereo framework. The
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program takes as an input either a single stereo pair of still images or alternatively
two video files taken by the left and right cameras. In case of video input, the
program automatically extracts and processes video frames at a desired frame rate
starting at the desired frame number. All input images are converted to standard
8-bit grayscale intensity images. The input images or video frames are then rectified
using the previously computed calibration data. The calibration process utilized for
our application will be described in detail in Section 4.1.2. If the input images are
already rectified, this step is omitted. After an optional preprocessing step the pre-
viously described core components of the correspondence algorithm matching cost
computation, cost aggregation and disparity computation/optimization are execu-
ted. The optionally post-processed disparity map is saved as a single output image
or as a frame in an output video file. The maximum disparity range is stretched to
the full 8-bit grayscale range for improved visualization.

Figure 3.1: Schematic diagram of our implemented dense stereo correspondence
framework.
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3.2 Implementation

In this section we will provide details regarding our implementation of the different
components we selected for our dense stereo correspondence framework.
Our complete framework is written in C++ and is based on the functionality provi-
ded by version 2.1 of the Open Source Computer Vision library (OpenCV)1 [9][34].

3.2.1 Preprocessing

The filters used in the preprocessing step (see Sections 2.2.1 and 3.1) are straight-
forward to implement and we base our implementation on the description given by
Hirschmueller and Scharstein in [28].

3.2.2 Matching Cost Computation

Standard Methods

We implement the selected standard matching cost measures (see Sections 2.2.2
and 3.1) as defined by Hirschmueller and Scharstein in [28]. For the respective
mathematical definitions we therefore refer to [28].

Mutual Information

We implement a window-based MI correspondence measure as described in [15]. The
MI between a window in the left image wl and a window in the right image wr can
be calculated using the entropies of the intensity values of the windows as shown in
Equation 2.4. As in [15] this equation can be expressed in terms of the joint and
marginal probability density distributions of the intensity values:

MI(wl, wr) =
∑

(wl,wr)

p(wl, wr) log

(

p(wl, wr)

p(wl)p(wr)

)

(3.1)

The joint probability distribution function p(wl, wr) can be calculated from the 2D
histogram h(wl, wr) of the intensity values of the two windows

p(wl, wr) =
1

N
h(wl, wr), (3.2)

where the 2D intensity histogram h(wl, wr) is simply computed by splitting the
possible intensity range (in our case 255 for standard 8-bit grayscale images) into
n bins and filling a n × n matrix with the occurrence-count of the corresponding
intensity pairs. The histogram is normalized by the number of pixels in one window

1http://opencv.willowgarage.com (May 2011)
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N . The marginal probability distribution functions p(wl) and p(wr) can then be
computed by summing over the rows and columns of the joint distribution function
respectively. Before further processing the calculated MI values are normalized so
that maximum MI values are converted to minimum matching cost values and vice
versa.

In addition to the basic window-based MI method we also implement a variation of
the approach proposed by Fookes et al. [17][18] which we discussed in our review in
Section 2.2.3. As described in Section 2.2.3 small windows lead to a low statistical
power of the probability distribution functions. Fookes et al. showed that this pro-
blem can be reduced by including global prior probabilities into the MI computation.
The joint probability distribution function of two image windows is then computed
as follows:

p(wl, wr) = λpwindow(wl, wr) + (1 − λ)pprior(wl, wr) (3.3)

The joint probability distribution of the windows pwindow(wl, wr) is computed as
described above. The prior probabilities pprior(wl, wr) are computed using the joint
probability distribution of the intensities of the complete input images. As in [17][18]
we also combine this concept with a hierarchical matching approach using a two-level
Gaussian pyramid to improve the accuracy of prior probabilities and enhance speed.
In the first stage the correspondence search is performed on the downscaled images
with a relatively large window size, in the second stage the full-sized images are
used. The result of the first stage allows for a refinement of the prior probabilities
for the second stage as the corresponding intensity values for the global 2D histogram
are then computed using pixels shifted by the disparity result from the first stage.
Furthermore the disparity search range in the second stage can be restricted to an
interval centered on the disparity results from the first stage. Fookes et al. [17][18]
use a simple WTA disparity computation in their approach, combined with a so-
called 2D match surface. This 2D match surface is used to enforce uniqueness of
matching cost minima and left-right consistency constraints but we do not include
this method in our implementation. Also in contrast to the original implementation
in [17][18] we use fixed window sizes and no adaptive windows.
In our evaluation we will investigate how the basic window-based MI matching
method combined with disparity optimization methods performs in comparison with
our implemented version of a hierarchical method using WTA as proposed by Fookes
et al.

Local Self-Similarity Descriptors

Our implementation of a Local Self-Similarity (LSS) descriptor is based on the paper
of Shechtman and Irani [46] who first proposed this similarity measure for object
detection and recognition, image retrieval and action recognition. The aim of LSS
is to measure the internal geometric structure of local similarities within one image
and then use descriptors for matching these self-similarities across images. The LSS
descriptor associated with a pixel p in an image is computed as follows. A small
image patch (e.g. 5x5 pixels) centered on the pixel p is compared to all patches in
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a larger surrounding region (e.g. 40x40 pixels) by sliding the patch over the region
and computing the Sum of Squared Differences (SSD). The SSD values are then
normalized and transformed into a so-called correlation surface Sp as per [46] using
Equation 3.4.

Sp(x, y) = exp

(

−
SSDp(x, y)

max(varnoise, varauto(p))

)

(3.4)

In the denominator used for normalization varnoise is a constant value representing
the level of image noise and has to be selected empirically for best results. varauto

corresponds to the structure and contrast of the image patch and is computed as
the variance of the differences of all patches within a radius of one pixel around the
central patch. The descriptor is then constructed from the correlation surface Sp

by creating a log-polar grid centered at p and binning the correlation values into
this grid. Each bin is assigned the maximum correlation value of all pixels within
the grid cell. Finally the descriptor is linearly stretched to the interval [0, 1] for
additional normalization.
For their application in [46] Shechtman and Irani use ensembles of dense LSS des-
criptors to match whole image regions between images. To make the descriptor
ensembles more discriminative, they discard descriptors that are classified as non-
informative. One type of non-informative descriptors are descriptors in bland or
homogeneous regions which represent high self-similarity everywhere. These descrip-
tors are identified using a specific sparseness-measure of the descriptor values. The
second type of non-informative descriptors represent salient image patches where all
self-similarity values lie below a given threshold.
Torabi and Bilodeau [55] recently applied LSS descriptors to a simplified dense stereo
correspondence problem as seen in our review in Section 2.3. They use window-based
matching to find corresponding regions of interest in cross-spectral images. In [55]
the ensembles of LSS descriptors are composed of the informative LSS descriptors
within the matching windows, the final matching cost between LSS descriptors is
computed by using the L1 distances.
In our work we investigate the use of LSS descriptors as a truly dense stereo corres-
pondence measure for cross-spectral stereo. We compute LSS descriptors for every
image pixel and compute dense matching costs (via L1 or L2 distances) which can
be applied to our disparity optimization methods. We also experiment with filte-
ring non-informative descriptors as described above and the resulting effect on the
disparity computation (see Chapter 4).
Figure 3.2 shows three enlarged examples of informative LSS descriptors computed
at corresponding locations in infrared and optical stereo images using our imple-
mentation. The descriptors in this example are computed using a 5x5 pixel image
patch and a 35x35 pixel surrounding region (marked as white squares in Figure
3.2), the log-polar grid is divided into 4 radial and 12 angular intervals resulting in
a descriptor of size 48. It can be seen that despite significant differences in pixel
intensities in the two images, on a qualitative level the LSS descriptors appear to
describe the similar local layout structure in both images relatively well.
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Figure 3.2: Examples of corresponding informative LSS descriptors extracted from
infrared (left) and optical (right) images.

DAISY Descriptors

We implement the DAISY descriptor as proposed by Tola et al. [52][53] and based
on a sample implementation provided by the authors2. The DAISY descriptor uses
efficiently computed histograms of oriented gradient norms to describe local image
regions. As a first step H so-called orientation maps are computed from the input
images which hold the norm of the image gradients at each pixel with the respec-
tive orientation. The gradient orientations are quantized to distinguish H different
orientations. As per the original sample implementation we use centered gradient
filters of the form [−1, 0, 1] and [−1, 0, 1]T on Gaussian smoothed input images for
the computation of image gradients. The contribution of the image gradients to the
quantized orientations is then computed from the results of these filtering steps as

Gθ = cos(θ)
∂I

∂x
+ sin(θ)

∂I

∂y
, (3.5)

where Gθ is the orientation map with the orientation angle θ and ∂I
∂x

and ∂I
∂y

represent
the image gradients in directions x and y respectively. The orientation maps are
then convolved with Gaussian kernels of Q different scales to create H ×Q convolved
orientation maps. These Gaussian convolutions can be computed very efficiently and
result in convolved orientation maps where each pixel holds a Gaussian weighted
aggregation of neighboring oriented image gradients. The DAISY descriptor itself
is constructed by reading and concatenating values from the convolved orientation
maps. The values are sampled around the central pixel in concentric circles at T

angular directions where the level of Gaussian smoothing (i.e. the level of convolved
orientation maps) depends on the distance from the central pixel. The principal
layout of a DAISY descriptor can be seen in Figure 3.3 with Q = 3 and T =
8. The crosses represent locations where the individual histograms are created by

2http://cvlab.epfl.ch/∼tola/daisy.html (June 2011)
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sampling values from the convolved orientation maps for each of the H orientations.
The circles around the sampling points represent the standard deviations of the
respective Gaussian kernels. The final descriptor size can be given as (Q×T +1)×H,
the distance of the outermost sampling points to the center is determined by the
parameter R. Normalization for robustness against varying gradient magnitudes due
to local radiometric differences is performed by either normalizing each histogram
separately or the whole descriptor to L2 unit norm. For an analysis of the advantages
of this particular layout and a comparison with other descriptors like SIFT and
SURF we refer to [53].
As discussed in Section 3.1 for the use in cross-spectral stereo we have to modify
the DAISY descriptor to only use unsigned gradient orientations. This means that
instead of 360◦ we only quantize 180◦ into H intervals and compute the orientation
maps using the absolute value of the image gradients. To enable direct comparison
our framework allows for a simple switch between signed and unsigned gradient
orientation.
For computing the matching cost between two DAISY descriptors we use the L1 or
L2 distance between the descriptor values.

Figure 3.3: Layout of a DAISY descriptor [53].

HOG Descriptors

Our implementation of dense Histogram of Oriented Gradient (HOG) descriptors
is a variation of the approach proposed in the original paper by Dalal and Triggs
[13] for person detection. Similar to the previously described DAISY descriptor the
HOG descriptor is based on histograms of oriented gradients in a local region around
the pixel of interest. Here a rectangular block centered on the pixel of interest is
divided into n × n cells and for each cell a histogram of oriented gradients is compu-
ted. The histogram values of all cells are then concatenated to represent the HOG
descriptor. For the computation of image gradients we use centered gradient filters
[−1, 0, 1] and [−1, 0, 1]T which is also recommended by Dalal and Triggs. The image
gradient orientations are then quantized into H intervals and the magnitudes of the
oriented gradients are binned into the intervals for each cell. To increase invariance
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to differing gradient magnitudes due to local radiometric differences we normalize
the whole descriptor to L2 unit norm. Again we include both signed (0◦ to 360◦)
and unsigned (0◦ to 180◦ for cross-spectral stereo matching) gradient orientations.
The final HOG descriptor size is given as n × n × H and the matching cost between
two HOG descriptors is computed using the L1 or L2 distance.
Dense HOG descriptors for every image pixel can be computed efficiently by using
integral histograms. Similar to the DAISY descriptor computation we first create
orientation maps for all H orientations. From these orientation maps we then cal-
culate integral orientation map histograms. The histograms for every cell in the
image can be calculated efficiently in constant time from the integral orientation
map histograms [41]. This approach allows for a fast descriptor computation but
prevents the use of spatial weighting (e.g. Gaussian) of the image gradients within
one descriptor.

3.2.3 Cost Aggregation

Aggregation with Constant Weights

Our simplest and fastest implementation of a cost aggregation method is based on
rectangular windows with constant weights. We include aggregation using a box
filter with equal weights as well as a Gaussian weighted filter which can both be
computed efficiently by convolution with the vertical slices of the DSI matching cost
volume.

Aggregation with Vertical Windows and Adaptive Weights

We implement the adaptive aggregation method proposed by Wang et al. [56] for
use in combination with dynamic programming optimization. Wang et al. perform
adaptive cost aggregation along vertical windows only (i.e. single image columns)
to achieve computational efficiency while increasing inter-scanline consistency and
reducing the typical streaking effects of dynamic programming methods [50]. The
weights of the matching costs in the vertical image windows of size 1 × n are adap-
tively computed by taking geometric distance as well as pixel intensity differences
in both input images into account.
In the following formulation from [56] we assume the left input image to be the
reference image and denote the vertical window around the pixel of interest p(x, y)
in the left image as wl and around the potential match q(x − d, y) at disparity d in
the right image as wr. The aggregated matching cost in the DSI is then computed
as

DSI(p, d) =

∑

k∈wl,k′∈wr

v(p, k)v′(q, k′)DSI(k, d)

∑

k∈wl,k′∈wr

v(p, k)v′(q, k′)
, (3.6)
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where the pixels k and k′ are the corresponding pixels in the vertical windows and
v(p, k) and v′(q, k′) are the respective weight masks for the left and right window.
The weight masks v(p, k) and v′(q, k′) are computed in the same way and we state
the equation for v(p, k) as

v(p, k) = exp

(

−

(

∆cpk

γc

+
∆gpk

γg

))

, (3.7)

where ∆cpk is the absolute difference of intensity values of p and k and ∆gpk re-
presents the geometrical distance. The weighting constants γc and γg have to be
adjusted empirically for best results.
Wang et al. [56] achieve real-time performance for this aggregation method by
implementation on a GPU.

Aggregation with Adaptive Weights by Guided Filtering

We finally implement the very fast adaptive aggregation method recently proposed
by Rhemann et al. [42] based on guided filtering. Rhemann et al. use a square
filter window with adaptive weights that preserves edges and therefore disparity
discontinuities to aggregate the matching costs in each vertical slice of the DSI. The
fast filtering with adaptive weights is achieved by using a guided filter as introduced
by He et al. in [24]. In this approach the adaptive filter weights do not have to be
calculated explicitly but filtering can be implemented very efficiently using sequential
summation by box filtering and integral images. For details on efficient guided
filtering we refer to [24]. Rhemann et al. present a sample MATLAB implementation
of their approach3 which uses the guided filter implementation provided by He et
al. We also adopt this implementation of guided filtering for our cost aggregation
implementation. According to [24] the resulting filter weights Wi,j can be expressed
explicitly as

Wi,j =
1

|w|2
∑

k:(i,j)∈wk

(

1 +
(Ii − µk)(Ij − µk)

σ2
k + ǫ

)

, (3.8)

where I is the so-called guidance image which is the stereo reference image in our
application. µk and σk are the mean and the variance of I in the image window wk

centered at pixel k. |w| represents the number of pixels in the window wk and ǫ is
a smoothness parameter.
The edge preserving property of the guided filter is explained in [24] by considering
a simple 1D step-edge. The terms (Ii − µk) and (Ij − µk) in Equation 3.8 have the
same sign if the pixels Ii and Ij lie on the same side of the edge resulting in a large
numerator and averaging weight. On the other hand, if Ii and Ij lie on different

sides of the edge the term
(

1 + (Ii−µk)(Ij−µk)

σ2

k
+ǫ

)

is small resulting in a low averaging

weight of this pixel pair. The parameter ǫ controls the averaging strength, leading
to an unweighted low-pass filter if σ2

k ≪ ǫ [24].

3http://www.ims.tuwien.ac.at/research/costFilter (July 2011)
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3.2.4 Disparity Computation/Optimization

Before the optionally aggregated matching costs in the DSI are processed by the
disparity computation/optimization algorithms, they are linearly normalized to a
specified range. This allows for a more general application of the disparity optimi-
zation methods and an easier selection of optimization parameters, considering the
different nature and ranges of our various raw matching costs.

Winner-Takes-All

The Winner-Takes-All (WTA) disparity computation is the simplest and fastest
method and can be implemented by simply selecting the disparity with the lowest
matching cost for each pixel.

Dynamic Programming

Our implementation of a Dynamic Programming (DP) optimization method is ba-
sed on Bobick and Intille’s work [4] as well as Scharstein and Szeliski’s [44] modified
version of this approach which is included in the Middlebury stereo benchmark im-
plementation [43].
The goal of DP optimization is to find the minimum cost path through each ho-
rizontal DSI slice separately (i.e. as described in Section 2.1.3 the 2D disparity
optimization problem is split into separate 1D optimization problems which can
be solved efficiently). Our implementation processes each horizontal DSI slice and
computes the minimum cost path through the slice while taking matching costs,
occlusion costs and the ordering constraint into account. During the computation
of the cost path a point in the DSI slice can take on three different states: matched
(M), diagonal occlusion (D) and vertical occlusion (V)4. A point in matched state
M is considered visible in both images and is charged the matching cost of the res-
pective pixel pair. A point in state D is only visible in the left image and occluded
in the right image and thus marks a diagonal gap in the disparity path. State V
represents visibility in the right image and occlusion in the left image and marks
vertical disparity jumps in the DSI slice. Points in the occluded states D and V are
assigned fixed occlusion costs in the cost path computation. In this way occlusions
are handled explicitly by the DP optimization. The DP approach also enforces the
ordering constraint which means that corresponding pixels must appear in the same
order in the left and right image. This constraint can be violated in scenes with very
narrow foreground objects but can in general be assumed to hold in the majority of
scenes [4]. Due to the ordering constraint a valid cost path can only traverse through
the DSI slice using a limited number of legal moves between the described states.
From state M a path is allowed to either move horizontally to state M, vertically
to state V or diagonally to state D. From state V a path can only move vertically

4Here the terms ’vertical’ and ’diagonal’ refer to directions within the DSI slice and not in the
original images.
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to state V or horizontally to state M. From state D a path can move diagonally to
state D or horizontally to state M. For a more detailed explanation of the possible
moves and cost paths we refer to [4].
The actual computation of the minimum cost path is executed in two stages. In
the first stage the DSI slice is traversed from left to right, accumulating the mi-
nimum cost of all valid paths to every point. Only the overall minimum cost and
the previous state transition is known at each point. In the second stage the final
minimum cost path is backtracked from the rightmost column of the DSI slice. For
images of dimensions W × H with a maximum disparity range of |d| the complete
DP optimization algorithm can be computed in O(W × H × |d|) [4].
Drawbacks of DP approaches are the lack of vertical constraints as well as the de-
pendency on the chosen occlusion costs. To reduce horizontal streaking effects in
the disparity map caused by the lack of vertical constraints we apply the method
proposed by Scharstein and Szeliski [44]. An additional smoothness cost is charged
at transitions from state D to M and from state V to M. This smoothness cost is
set to be dependent on intensity gradients in the reference image to bias disparity
jumps to coincide with intensity edges. The basic smoothness cost is multiplied with
a penalty factor if the intensity gradient magnitude lies below a given threshold.
As in [44] we fill the detected diagonal occlusion areas in the disparity map with the
closest disparity values from the left.
To illustrate the different states M, D and V as described above we display an
example DSI slice in Figure 3.4. Similar to Figure 2.2 the displayed slice is taken at
y = 200 from the DSI of the Middlebury ’Teddy’ image pair computed via simple
absolute differences. The green line represents the minimum cost path (i.e. the dis-
parity values) computed by our DP approach. In this example the detected diagonal
occlusion areas are not filled for clearer display. The arrows indicate examples of
continuous regions of the respective states in the minimum cost path.

Figure 3.4: Illustration of DP states on a sample DSI slice.

Scanline Optimization

Scanline Optimization (SO) is very similar to traditional DP approaches and was
proposed by Scharstein and Szeliski [44]. We also include this method based on the
implementation in the Middlebury stereo benchmark [43] as an alternative to our
DP optimization.
SO performs the same optimization of a cost path through each separate DSI slice
as DP but does not explicitly take occlusions into account or enforce the ordering
constraint. The cost of a cost path is computed using only the matching costs in
the DSI slice and a smoothness cost. While traversing the DSI slice from left to
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right all possible disparity jumps between adjacent columns are allowed. Disparity
jumps are charged a smoothness cost which again depends on the image gradient
magnitude of the reference input image. As noted in [44] the result of this method
is equivalent to a WTA disparity computation if the smoothness cost is removed.
The computational complexity of the SO implementation can be given as O(W ×
H × |d|2) for images of dimensions W × H and a maximum disparity range of |d|.
The fact that in contrast to DP optimization all possible disparity jumps are allowed
results in a factor |d|2 instead of |d|.

Semi-Global Matching

Our implemented Semi-Global Matching (SGM) optimization is based on Hirsch-
mueller’s original papers [26][27] and on the modified version which is available in
the OpenCV library [9][34]. In contrast to DP optimization which optimizes a 1D
problem for every scanline separately, SGM approximates a full 2D optimization by
considering several 1D cost paths simultaneously at each pixel. As in [27] the opti-
mization problem can be formulated as the search for a function of disparity values
D through the DSI which minimizes an energy function E(D). This is similar to the
global energy functions described in Section 2.1.3. Equation 3.9 defines the energy
function:

E(D) =
∑

p

(

DSI(p, Dp) +
∑

q∈Np

P1T [|Dp − Dq| = 1]

+
∑

q∈Np

P2T [|Dp − Dq| > 1]
) (3.9)

In this formulation p denotes the current pixel of interest and q represents a pixel in
the neighborhood Np of p. The first term of Equation 3.9 represents the matching
cost at pixel p at the respective value of the disparity function (denoted as Dp). The
second term contributes a smoothness penalty P1 for small disparity jumps (1 pixel)
for all pixels in the neighborhood of p. The last term adds a smoothness penalty P2

for disparity jumps larger than 1 pixel. The operator T [] returns 1 if its argument
is true and false otherwise.
The energy function E(D) can be efficiently minimized using the SGM approach
introduced by Hirschmueller [26][27] as follows. The overall cost for every pixel p

at every disparity d is computed by summing the minimum cumulative cost paths
Lr(p, d) in 1D from all directions r around the pixel. In our implementation we use
8 directions r (i.e. the eight cardinal directions) but the use of 16 directions is also
possible [27]. The minimum cost of a path Lr(p, d) from direction r ending in p can
be computed recursively as
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Lr(p, d) =DSI(p, d) + min
(

Lr(p − r, d),

Lr(p − r, d − 1) + P1,

Lr(p − r, d + 1) + P1,

min
i

Lr(p − r, i) + P2

)

(3.10)

which corresponds to the formulation in Equation 3.9 for this path. The overall cost
S(p, d) at the pixel p and disparity d is then defined as

S(p, d) =
∑

r

Lr(p, d) (3.11)

The final disparity function D is determined by simply selecting at each pixel the
disparity d yielding the lowest value of S(p, d).
For images of dimensions W ×H with a maximum disparity range of |d| the complete
optimization algorithm can be efficiently implemented with a complexity of O(W ×
H × |d|). For further details including an analysis of the computational complexity
we refer to [26] and [27].

We base the SGM optimization in our framework on the implementation available
in the OpenCV library [9][34]. However, this implementation is originally designed
to match local image blocks using sampling-invariant intensity differences. We the-
refore extract only the optimization-core of the OpenCV implementation and use it
for pixel-wise optimization of our different matching costs.

Graph Cuts

For our experiments with iterative global disparity optimization via Graph Cuts
(GC) we use the energy minimization library (MRF library) released together with
a survey paper on energy minimization methods for Markov random fields by Szeliski
et al. [51]. The MRF library is available online5 and includes contributions from
several authors [8][7][31]. We use the supplied stereo matcher frontend and adapt it
for use with our different matching cost measures.
In Section 2.1.3 we have already given a short description of how global energy
minimization methods are used to find local minima of energy functions of the form

E(D) = Ed(D) + λEs(D) (3.12)

with a data term Ed(D) and a smoothness term Es(D) depending on the disparity
function D (i.e. the labelling of pixels with disparity values). The data term consists
of the matching cost values as defined in Equation 2.2. In the used MRF framework
of [51] the smoothness term for stereo correspondence is defined as

Es(D) =
∑

{p,q}∈N

wpqV (|Dp − Dq|) (3.13)

5http://vision.middlebury.edu/MRF (July 2011)
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where p and q are adjacent pixels in the considered pixel-neighborhood N (here a
standard 4-connected neighborhood). The smoothness cost function V (∆D) is a
nondecreasing function of the disparity differences at p and q and wpq are multipli-
cative weights for each considered pair. As per [51] the smoothness cost function
V (∆D) is defined as

V (∆D) = min(|∆D|k, Vmax) (3.14)

with k ∈ {1, 2}. The weights wpq of the smoothness term can be increased if the
image gradient magnitude lies below a given threshold.
In our experiments we use the default expansion-move graph cut algorithm of the
MRF library due to its good overall performance reported in [51]. For details on
energy minimization for Markov random fields and graph cuts in particular we refer
to the respective literature [51][8][7][31][50].

Comparison of Optimization Methods

To illustrate the different properties of the implemented disparity optimization tech-
niques described above, Figure 3.5 shows sample results on the ’Teddy’ image pair of
the Middlebury dataset. We use grayscale input images of size 450x375 pixels with
a disparity range of 64 pixels and compute the matching costs via simple absolute
differences. The shown disparity maps are computed with reference to the left image
and limited by the maximum disparity range with respect to the left image border.
The top row of Figure 3.5 displays the input images and the available ground truth.
The middle row shows disparity computation results using WTA with prior cost
aggregation using a square box filter as well as a guided filter. The rightmost result
in the middle row is created using SO optimization and vertical aggregation with
adaptive weights. The bottom row shows results of DP optimization with the verti-
cal aggregation method as well as SGM and GC optimization without any prior cost
aggregation. In Figure 3.5 the problems of WTA methods in bland and textureless
regions can be seen clearly. The cost aggregation via guided filtering gives better
results in comparison to simple aggregation via box filters and disparity discontinui-
ties are preserved well. However, our experiments indicated that the performance
of the guided filter aggregation depends heavily on the structure of the matching
cost values in the DSI. We verified this observation by varying the matching costs
and truncation values used in the sample MATLAB implementation provided with
the original paper [42]. In this way we achieved results very similar to the ones in
our own implementation. However, we could only reproduce the very good results
reported in [42] by using the exact setup of the sample implementation (i.e. color
images, matching costs and truncation values and postprocessing steps). For the
result in Figure 3.5 we truncated the absolute differences before the guided filtering.
Furthermore it can be seen that the SO and DP optimization methods can deal
better with bland regions but despite vertical adaptive aggregation lead to the men-
tioned horizontal streaking artifacts. The SGM and GC based optimization methods
can overcome textureless regions and do not create artifacts like DP and SO. Our
used SGM optimization gives smoother results while the GC results appear blockier
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Figure 3.5: Example of disparity optimization results on the Middlebury ’Teddy’
image pair.

but preserve discontinuities slightly better. However, in this example in combina-
tion with absolute differences all implemented optimization methods have problems
with the homogeneous region at the top right of the images. It has to be noted that
this is just a qualitative example and we achieve better results by using e.g. the
census transform matching cost. Also the optimization results naturally depend on
the selected parametrization which we adjust here to achieve best results illustrating
the different overall properties of the optimization methods.
The optimization runtimes of our SO and DP implementations are approximately
4 seconds and 2 seconds respectively on a standard laptop (2.4GHz Intel Core i5
CPU). The SGM optimization takes 1 second while the iterative GC algorithm takes
approximately 30 seconds and five iterations until convergence.
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3.2.5 Post-Processing

Left-Right Consistency Check

The left-right consistency check (or cross-check) is often used by local WTA-based
methods to detect occlusions and disparity outliers [19][10]. Hirschmueller also per-
forms a cross-check in his semi-global matching algorithm [26][27]. Two disparity
maps for left-right and right-left matching are computed and compared. If disparity
values differ by more than a given small threshold they are considered as invalid and
marked as such. This is mostly the case in occluded image regions but can also be
caused by other types of inconsistent matches. The detected invalid regions in the
disparity map can be interpolated from adjacent valid disparities (e.g. as in [27])
but we do not include this interpolation step in our implementation.

Speckle Removal

Speckle removal is performed to remove isolated patches of invalid disparity values
which can be caused by ambiguous matching costs [27]. We utilize the speckle
removal method available in the SGM implementation of the OpenCV library [9][34].
The disparity map is segmented into patches, where the disparity values within one
patch are allowed to differ by a given value. Patches smaller than a given threshold
are considered as disparity outliers and removed. Again as a possible refinement
step the invalid regions can be interpolated as in [27].

3.3 Summary

In this chapter we have described our implemented dense stereo correspondence
framework. We have given details on the building blocks of the framework and have
discussed our implementation of the various methods that can be used in the different
stages. Our framework allows for a wide range of combinations of matching cost
measures, aggregation methods and disparity optimization methods. In this way
we are able to perform extensive experiments to test and evaluate the performance
of the different combinations on different types of test data, providing valuable
information concerning our investigations towards a method for dense cross-spectral
correspondence. In the next chapter we will describe our experiments in detail and
will provide a discussion and evaluation of our results on both simulated and real
cross-spectral stereo images.
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Chapter 4

Results and Evaluation

In this chapter we describe our tests and evaluation of our implemented dense stereo
algorithms on different types of test data. It has to be noted that before beginning
with the actual evaluation we verified the correct functionality of the algorithms
on standard optical stereo images. This was done to remove possible errors in our
implementation and we will not describe this process in detail here.
In the first step of the evaluation we perform tests on simulated cross-spectral stereo
data, i.e. standard stereo images with complex intensity transformations. This is
a common approach to gain insight into the robustness of matching cost measures
in the absence of real cross-spectral data as seen in our review in Sections 2.2.3
and 2.3. Furthermore this allows for a comparison of the results from the simulated
cross-spectral tests with results from real cross-spectral data.
In the second step of the evaluation we focus on the main problem of our work,
stereo correspondence between real cross-spectral images.
In the following section we will give an overview of the used test data sets and
describe our method of acquisition and preparation of real cross-spectral stereo data.
Subsequently we will move to the actual evaluation procedure and describe and
discuss our results in detail.

4.1 Test Data

4.1.1 Standard Stereo Data

For the verification of the correct functionality of our algorithms as well as for the
simulated cross-spectral stereo tests we use publicly available and commonly used
stereo data. In particular we use images from the Middlebury data set [43] and
from the CMU JISCT data set1. Figure 4.1 shows the respective left images of the
used stereo pairs. The Middlebury ’Teddy’ image pair (top left) is of size 450x375
pixels with a disparity range of 64 pixels. The Middlebury ’Tsukuba’ data (top

1http://vasc.ri.cmu.edu/idb/html/jisct/index.html (June 2011)
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right) is of size 384x288 pixels with a relatively small disparity range of 16 pixels.
As mentioned previously the used Middlebury data represents images taken in a
controlled environment with low noise. The bottom row in Figure 4.1 shows the
’Parkmeter’ (left) and ’Shrub’ (right) images from the CMU data set. These images
of outdoor scenes are slightly noisier than the Middlebury images and are both of
size 512x480 pixels with a disparity range of 32 pixels.

Figure 4.1: Standard stereo test data.

4.1.2 Cross-Spectral Stereo Data

Data Acquisition

In contrast to various standard stereo data sets consisting of pre-rectified image pairs
which are provided online by academic institutions (e.g. Middlebury [43], CMU) real
cross-spectral stereo data is currently not readily available. For this reason we set
up a custom cross-spectral stereo rig to gather suitable test and evaluation data.
Our cross-spectral stereo rig consists of a Miricle 307k uncooled far infrared camera
with a spectral response of 8µm-12µm and an optical camera of type Visionhitech
VC57WD-24. Both cameras provide resolutions of 640x480 pixels. We experimented
with static stereo setups for indoor use as well as mobile setups for outdoor data
collection. In our test and evaluation process we will focus mainly on outdoor data
due to the fact that most possible application areas (see Section 1.1) are based
on real-world noisy outdoor scenarios. Furthermore the often very homogeneous
temperature profile of our air conditioned laboratory rooms showed to make the
acquisition of thermal images with sufficient contrast and detail for dense stereo
difficult. Figure 4.2 depicts the different mobile cross-spectral stereo setups we
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utilized for data collection. We experimented with the use of a four-wheeled trolley
(Figure 4.2 left) with the cameras mounted at a baseline of approximately 10cm.
However, the mounting possibilities of the cameras proved to be too unstable during
mobile operation leading to low quality data and bad image alignment. As a result
we switched to a more advanced mobile platform and achieved much better results
by using an electric powered mobile robot of type Mobile Robots Pioneer 3-AT. For
a first data acquisition phase we equipped the robot with our cross-spectral stereo
camera pair (infrared left and optical right) with a baseline of 30cm (Figure 4.2
center). In a second phase we added an additional optical stereo camera pair with
the same baseline (Figure 4.2 right) to be able to directly compare the cross-spectral
results with standard stereo results of the same scenes. Figure 4.3 shows the final
dual stereo setup on our mobile robot in the laboratory (left) and during a data
collection run on Cranfield University Campus (right).

Figure 4.2: Different mobile cross-spectral stereo setups.

Figure 4.3: The four-camera dual stereo setup on our mobile robot.
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We used a laptop mounted on the mobile robot to capture synchronized video input
from the stereo camera pair using a custom-made capture software utilizing the
OpenCV library [9][34]. For the acquisition of four video inputs from the dual
stereo setup we resorted to the use of two laptops, requiring a subsequent manual
synchronization of the two separate stereo data videos. Overall we collected more
than two hours of cross-spectral stereo video data of real-world outdoor scenes.
This includes data taken at different times of day (morning/afternoon) and under
different weather conditions (sunny/cloudy).

Calibration

In Section 1.3.1 we have already described the concept of calibrating a stereo setup
and rectifying the input images. A very common method is as we have seen the
use of several images of a planar calibration target of known geometry at different
orientations. For standard stereo rigs often a black and white checkerboard pattern
with known pattern size is used. Calibration procedures like [59] use the corners
extracted from the pattern in all image pairs to compute the camera parameters.
Implementations for camera calibration are available for example in form of the
Caltech Camera Calibration Toolbox for MATLAB [6] or the corresponding imple-
mentation in the OpenCV library [9][34]. These solutions are mainly based on the
work of Zhang [59][60] and Heikkilae and Silven [25].
To be able to apply common calibration methods to a cross-spectral stereo setup
a calibration pattern which is visible in both spectra is needed. To solve this pro-
blem we use a metal board on which a checkerboard pattern is marked with adhesive
tape. Before taking the series of calibration images we heat up the calibration board
using a commonplace blow-dryer or a high-power halogen lamp. The different tem-
peratures of the materials of the board and the tape allow for thermal images with
reasonable detail which can be used in the calibration process. The temperature has
to be adjusted with care because a too hot or cold board can result in images with
thermal halos or too little detail respectively. Figure 4.4 shows example images of
our cross-spectral calibration board (top) and a standard optical calibration board
(bottom). The standard optical calibration board was used to calibrate the separate
optical stereo camera setup we used for comparison of our results. It has to be noted
that the images in Figure 4.4 are an example of the best quality we could achieve
for our cross-spectral calibration images. In general the generation of cross-spectral
calibration images with sufficient accuracy and quality in both spectra turned out
to be much more challenging than taking calibration images for standard optical
cameras.
To perform the calibration of both cross-spectral and standard stereo setups we use
the Caltech Camera Calibration Toolbox for MATLAB [6]. The toolbox provides a
graphical user interface in which the outer corner points of the calibration pattern in
each image have to be marked manually for initialization followed by an automatic
extraction of the inner corners. The implementation available in the OpenCV library
provides a fully automatic corner detection feature which performs well for standard
optical stereo calibration patterns. However, the corners in our cross-spectral cali-
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bration images are in general too indistinct for fully automatic operation and require
the manual initialization step. Subsequently the calibration toolbox for MATLAB
performs calculation and optimization of both intrinsic and extrinsic parameters of
the stereo setup based on the extracted image corners. Figure 4.5 shows the recons-
tructed configuration of the cross-spectral stereo rig as part of the final dual stereo
setup on our mobile robot. The shown configuration is computed from the extrinsic
stereo parameters determined in the calibration. The two cameras are displayed in
red on the left and the reconstructed positions of the used calibration board can be
seen on the right (distances are given in millimeters). A detailed documentation of
the calibration procedure and parameters of the used toolbox is available online [6].

Figure 4.4: Cross-spectral (top) and standard optical (bottom) stereo calibration
boards.

Figure 4.5: Cross-spectral stereo setup reconstructed from extrinsic parameters.



50 Results and Evaluation

The intrinsic and extrinsic parameters of the stereo rigs computed in the calibration
procedure are saved and used by our implemented stereo correspondence framework
to rectify and undistort the input stereo data. Figure 4.6 shows an example of a
cross-spectral input image pair before and after rectification. To illustrate the effect
of the rectification the images are overlaid with sparse horizontal scanlines. It can
be seen that in the raw input images (top) corresponding points in the scene do
not lie on corresponding scanlines. After rectification and undistortion (bottom)
corresponding points in the scene lie on the same horizontal scanlines. On the right
of Figure 4.6 a zoomed region of the example images is shown where this result can
be seen more clearly.

Figure 4.6: Example of a cross-spectral image pair before (top) and after (bottom)
rectification.
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4.2 Simulated Cross-Spectral Stereo

4.2.1 Methods and Parameters

For an initial assessment of the robustness of the implemented matching cost mea-
sures we perform tests on synthetically altered optical stereo images. We have seen
in Sections 2.2.3 and 2.3 that this method is commonly applied in literature to
demonstrate invariance of matching cost measures to radiometric differences or to
simulate cross-spectral stereo data.
We perform the tests on the data shown in Section 4.1.1 and transform the left
images of the stereo pairs as

I∗ = 255
∣

∣
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π
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)∣
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∣

∣

, (4.1)

where I represents the intensity values of the original image and I∗ the transformed
intensity values. This non one-to-one intensity transformation is very similar to the
one used by Fookes et al. [17][18].

In the following we present the results of our tests on the simulated cross-spectral
images in three steps. In a first step the standard robust parametric and non-
parametric matching cost measures ZSAD, ZNCC, rank and census as described in
Section 2.2.2 and in [28] are applied to the transformed image pairs. We use win-
dows of size 11x11 pixels for the computation of the window-based matching costs
and a 7x7 local region for the Census transform.
In the second step we investigate the effect of different basic preprocessing methods
as described in Section 2.2.1 and in [28] in combination with standard robust mat-
ching costs.
Finally we consider the more advanced and also novel robust matching cost mea-
sures as selected in Section 3.1 and described in Section 3.2.2. For our hierarchical
MI method based on the work of Fookes et al. [17][18] we use windows of size 15x15
pixels and 16 histogram bins to compute the probability distribution functions. As
recommended in [18] we select a value of λ = 0.4 which defines the weight of prior
probabilities and probabilities of the local windows (see Section 3.2.2). Furthermore
we restrict the disparity search range in the second stage of the hierarchical compu-
tation to half of the original range, centered on the results of the first stage.
For our standard MI method we use the same basic parameters as for the hierar-
chical method. However, we also test a value of λ = 1 which means that no prior
probabilities are taken into account, making it equivalent to the window-based MI
method proposed by Egnal [15].
For the computation of LSS descriptors we use patches of 5x5 pixels, surrounding
regions of 35x35 pixels and a log-polar grid with 4 radial and 12 angular bins. For
the DAISY descriptors we use unsigned gradient orientations and the parameters2

R = 5, Q = 3, T = 4 and H = 8 (see Section 3.2.2 and [53]). In our tests we

2Note: Through additional testing and evaluation these parameter values were improved from
the ones stated in the version of this thesis submitted to Cranfield University. The present results
and conclusions are based on this improved set of parameters.
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achieve better results by normalizing the complete descriptor instead of each his-
togram separately. For the dense HOG descriptors we use local windows of 18x18
pixels split into 3x3 histogram cells and bin the unsigned gradient orientations into
9 intervals. The matching costs between the respective descriptors are computed by
the L1 distances for LSS and HOG and the L2 distances for DAISY descriptors.

In the presented tests on the simulated cross-spectral data the disparity values are
computed using WTA to display the robustness of the matching cost measures in-
dependently of more advanced disparity optimization methods. The matching costs
are aggregated using a box filter of size 11x11 with equal weights to smoothen the
disparity values and filter outliers. Only for the hierarchical MI implementation we
omit the cost aggregation as in [18]. It has to be noted that our main focus lies on
the basic ability of the matching costs to produce valid disparity maps. We therefore
accept inaccuracies and blurring at disparity discontinuities in favor of an overall
valid dense disparity map.
In the following we show only a selection of our results but similar results were
achieved for all of the considered images presented in Section 4.1.1. Here we discuss
the Parkmeter and Shrub stereo pairs as an example of real-world outdoor scenes.
Figure 4.7 shows the original stereo pairs and their respective disparity maps com-
puted using ZNCC as a reference. Figure 4.8 shows the left images of the stereo
pairs after transforming the intensity values as defined in Equation 4.1.

Figure 4.7: Unmodified Parkmeter and Shrub stereo pairs and respective disparity
maps.
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Figure 4.8: Transformed left images of the Parkmeter and Shrub stereo pairs.

4.2.2 Performance Comparison

In the first step as described above we test the matching costs ZSAD, ZNCC, rank
and census on the simulated cross-spectral data. Figure 4.9 shows the resulting
disparity maps for the Parkmeter stereo pair. It can be seen that none of the
methods can cope with the complex intensity transformation and all fail to produce
valid disparity values. This is an expected result as the limitations of the intensity
transformations which these methods are invariant to are not met by the applied
transformation.

Figure 4.9: Disparity maps of standard robust matching cost methods for the trans-
formed Parkmeter stereo pair.

In the next step we investigate if the shown results of standard matching cost me-
thods can be improved by the preprocessing steps described in Section 2.2.2. Figure
4.10 shows the disparity results for the transformed Parkmeter stereo pair using
ZNCC after application of the preprocessing methods. It can be seen that mean
filtering, Laplacian of Gaussian (LoG) filtering and background subtraction by bila-
teral filtering (BilSub) are not able to compensate for the complex intensity trans-
formation. This is due to the fact that these methods are designed to only remove
local intensity offsets as described in Section 2.2.1 and in [28]. It is notable that the
computation of the image gradient magnitude and the subsequent ZNCC computa-
tion leads to a valid disparity map with relatively few artifacts as shown in the last
row in Figure 4.10. The basic gradient magnitude information of the images appears
to offer enough invariance to the complex intensity transform to yield largely unique
ZNCC matching cost minima.
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Figure 4.10: Intensity transformed and preprocessed Parkmeter stereo images and
the respective disparity maps computed using ZNCC.
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Finally we move to the more advanced robust matching cost measures MI, LSS,
DAISY and HOG. Figures 4.11 and 4.12 show the disparity results of these methods
for the transformed Parkmeter and Shrub stereo pairs. In both figures the top left
image shows the disparity map computed using our hierarchical MI method based
on the work of Fookes et al. [17][18] and described in Section 3.2.2. The center and
right images in the top row show results computed with our standard MI method
using different values of λ. It can be seen that the results in the center image are
very similar to the result of the hierarchical MI implementation. The bottom left
image shows the results using distances between dense LSS descriptors as a mat-
ching cost and the bottom center image shows the results using DAISY descriptors.
Finally the bottom right image shows the results using distances between dense
HOG descriptors. The slightly different sizes of the computed disparity maps are a
consequence of the border handling we employ for the different matching costs.
It can be seen in Figures 4.11 and 4.12 that all methods are able to produce largely
valid disparity maps using simple WTA disparity computation. However, different
levels of artifacts and disparity outliers are present in the results. The MI methods
perform better on the Shrub than on the Parkmeter stereo pair and it can be seen
that the consideration of prior probabilities, even in the non-hierarchical methods,
can reduce the amount of disparity outliers. These results of our window-based MI
implementations are in accordance with the results reported in the respective litera-
ture (Section 2.2.3, [15][17][18]). In the disparity maps computed using LSS several
small artifacts can be seen, especially in the areas of very fine repetitive texture in
the Shrub images. DAISY also introduces some disparity outliers in these regions
but produces good results otherwise. The dense HOG descriptors show a relatively
constant performance and provide good results for both image pairs. However, they
also result in a noticeable blurring of disparity discontinuities.

Performance Comparison Summary

We have seen in our experiments on simulated cross-spectral stereo data (i.e. optical
images with complex intensity transformations) that standard robust matching cost
measures like ZSAD, NCC, ZNCC, rank and census transform cannot cope with
this scenario. Furthermore common preprocessing steps for the compensation of
standard radiometric differences prove to be unsuitable for this task. Only the
computation of image gradient magnitudes showed to create input images which
can be matched by robust matching cost measures like ZNCC. The tests of more
advanced and novel matching cost measures like MI, LSS, DAISY and HOG showed
their ability to produce valid matching cost values with the potential for optimization
by common disparity optimization techniques.
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Figure 4.11: Results of advanced robust matching cost methods for the transformed
Parkmeter stereo pair.

Figure 4.12: Results of advanced robust matching cost methods for the transformed
Shrub stereo pair.
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4.3 Real Cross-Spectral Stereo

4.3.1 Methods and Parameters

In this section we will now focus on our ultimate goal of computing dense stereo
correspondences between real cross-spectral images. We have seen in the previous
section that several different matching cost methods are able to produce valid results
on simulated cross-spectral images. Based on these results we will further investigate
the performance of MI, LSS, DAISY and HOG matching cost measures on real
cross-spectral images. We also include ZNCC in combination with prior gradient
magnitude computation due to the results achieved in Section 4.2. However, as
already discussed in Section 2.3 real cross-spectral images present a much more
challenging problem than the synthetically altered optical images considered so far.
Figure 4.13 shows an example of a cross-spectral image pair taken with our stereo
setup and Figure 4.14 shows the corresponding disparity maps computed using the
selected matching costs and WTA as in the previous section. It can be seen that
none of the methods can provide matching costs which are unambiguous enough
for simple WTA disparity computation. As a result no dense disparity map which
is consistent with the structure and depth of the scene can be computed. This
fact also becomes clear by analyzing the DSI matching cost volume. Figure 4.15
shows examples of horizontal slices through the DSI at y=100 and y=300, here the
matching cost values are linearly stretched for better visualization. The positions of
the DSI slices are also indicated by the horizontal lines in Figure 4.13. This example
shows that in general the matching costs are able to produce notable minima around
prominent scene features present in both spectra (e.g. body of person, concrete
pillars). However, homogeneous regions and regions which appear very differently
in both spectra (e.g. details present in one spectrum and not in the other) produce
ambiguous values and wrong minima in the DSI. Figure 4.15 illustrates the different
structure of the various matching costs and how they are affected by the described
problematic image regions.

Figure 4.13: Cross-spectral stereo example scene.
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Figure 4.14: Results on cross-spectral images using WTA disparity computation.

Figure 4.15: Example DSI slices of different matching costs computed from cross-
spectral images.
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These observations also indicate why approaches considering only regions of inter-
est (e.g. people) [33][55] for cross-spectral window-based disparity estimation work
well. For example the approach of Torabi and Bilodeau [55] (see Section 2.3 and
Section 3.2.2) uses filtered LSS descriptors for a sliding-window disparity voting to
register people in cross-spectral stereo images. They consider only informative LSS
descriptors which are determined by the criteria proposed in [46] and mentioned in
Section 3.2.2. Figure 4.16 illustrates the regions which yield informative LSS des-
criptors according to these criteria on the sample scene shown in Figure 4.13. It can
be seen that in both spectra many informative descriptors are located around the
prominent scene features mentioned above, especially on the depicted person. These
regions also largely correspond to the valid disparity values that can be recovered
using WTA as shown in Figure 4.14. The approach in [55] relies on the assumption
that a sufficient number of informative descriptors are available in both spectra for
the window matching which is true for the selected region of interest (i.e. person).
However, large regions of the whole scene yield descriptors classified as uninforma-
tive which of course makes a dense disparity estimation of the scene more difficult.

Figure 4.16: Regions of filtered informative LSS descriptors (white) on thermal (left)
and optical (right) images.

In consideration of the observed weak matching cost values we investigate how the
implemented optimization methods can be utilized to improve the results and if the
computation of a valid dense disparity map is indeed possible. As already stated
in Section 3.1.5 the combination of window-based matching cost methods like MI
or ZNCC with advanced disparity optimization techniques can be seen as quite
uncommon as these optimization techniques are usually applied to purely pixel-
based matching costs [50][28][44]. However, as we have seen in our review in Section
2.3, state-of-the-art robust pixel-based matching cost and disparity optimization
methods fail at the problem of cross-spectral stereo. Also our experiments have
shown that robust window-based matching costs like MI fail in combination with
simple WTA disparity computation. This motivates our approach of investigating
the performance of all implemented matching cost measures in combination with
disparity optimization methods.

Before we present and discuss results on a number of different test scenes we will in
the following describe our chosen methods and parameters. For the window-based
matching costs MI and ZNCC we use large windows of 21x21 pixels to increase
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discriminative power. For the MI method we use prior probabilities but due to the
larger window size we only weight them with 30% (λ = 0.7). For the matching costs
computed via HOG, DAISY and LSS descriptors the same settings as described in
the previous section (Section 4.2.1) are used. We also experimented with different
layouts, sizes and distance measures for all descriptors. For example for the LSS
descriptor computation we also tested the use of larger local regions (correlation
surfaces) of 45x45 pixels and 55x55 pixels and tried different log-polar as well as
rectangular grid arrangements. However, we could not achieve consistently better
results than with the selected parameters. The same parameters for all methods
were also used for the results shown in Figure 4.14. The implemented hierarchical
MI method is less suitable for combination with our disparity optimization methods
and due to the observed similar results we will only consider the standard window-
based MI method in combination with the disparity optimization methods.
Regarding the implemented disparity optimization methods we manually tuned all
parameters of each method in combination with the different matching costs (for
the respective parameters see also 3.2.4). In the absence of ground truth data we
used a number of sample scenes for the parameter tuning and tried to qualitatively
minimize the amount of artifacts and disparity outliers while aiming for disparity
maps consistent with the objects and depth levels in the scenes. Additionally we
used the corresponding disparity maps computed from the standard optical stereo
pair as a visual reference. After setting the parameters we kept them constant for
our experiments and the results shown in the following discussions.
We found in our experiments that the results of Scanline Optimization (SO) were
mostly similar to or slightly worse than the results using traditional Dynamic Pro-
gramming (DP) optimization. For this reason and due to their very similar nature
we will show and discuss only the results of DP optimization in the presented test
scenarios. Figure 4.17 shows an example of the results of SO and DP optimization
applied to the HOG matching costs for the scene shown in Figure 4.13. Occlusions
detected in the DP method are filled with the nearest disparity values from the left.

Figure 4.17: Disparity maps of SO (left) and DP (right) optimization methods using
HOG matching costs.

We also compared the performance of Semi-Global Matching (SGM) optimization
and global disparity optimization via Graph Cuts (GC) on the different compu-
ted matching costs. Depending on the matching cost we found that the used GC
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optimization often lead to extreme smoothing and very blocky results. Trying to
avoid this by varying parameters or reducing the smoothness weight however re-
sulted in excessive artifacts. SGM produced smoother and more stable results on
our test data but in general lead to a number of small patches of disparity outliers.
However, these outliers can be reduced by post-processing steps like cross-checking
and speckle removal. Figure 4.18 shows an example of GC and SGM optimization
without any post-processing for the sample scene shown in Figure 4.13 and HOG
matching costs. This example illustrates the best results we could achieve with the
used GC optimization. However, depending on the scene the GC optimization took
between three and four minutes to compute the results for a disparity range of 96
pixels while SGM optimization took approximately 1.5 seconds. In the following
we will therefore present and discuss our results using SGM optimization in com-
bination with the implemented post-processing steps. Cross-checking is applied to
detect occlusions and inconsistent disparities and speckle removal is used to remove
isolated disparity outliers. Pixels marked as occlusions or invalid disparities are set
to zero in the result images.

Figure 4.18: Disparity maps of GC (left) and SGM (right) optimization methods
using HOG matching costs.

In addition to the optimization methods we investigated the use of the implemented
cost aggregation methods (see Section 3.2.3). The adaptive vertical cost aggregation
method showed to improve the results of SO and DP optimization and we utilized it
in all our tests with a window size of 1 × 31 pixels. We also considered the weighted
cost aggregation method using guided filtering on our matching costs. However,
as already discussed at the end of Section 3.2.4 this aggregation method showed
to be very sensitive to the structure of the matching costs. We experimented with
different scalings and truncation values of the matching cost values but could not
achieve improved results through this aggregation method. In the shown results
using SGM optimization a simple Gaussian weighted cost aggregation (size 11x11,
σ = 2.2) to smoothen the disparity maps is applied.
To remove noise in the input images we use a 3x3 median filter as a preprocessing
step which showed to slightly improve results.
In the following subsection we will now present and discuss our test results on a
selection of different scenes taken with our mobile cross-spectral stereo setup. All
input images are of size 640x480 pixels and we use a disparity range of 96 pixels
for all shown experiments. It has to be noted that due to the setup of the stereo
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rig on our mobile robot the position of the cameras is very close to the ground. As
a result the maximum disparity of scene points on the ground close to the robot
have a true disparity larger than the considered disparity range. Furthermore the
ground regions in most of our scenes present extremely homogeneous regions in the
thermal (and also optical) images causing a large amount of false disparities. In the
subsequent discussion we will therefore concentrate on the recovered disparities of
the main structure and objects of the scene and put less focus on disparity outliers
in the described homogeneous ground regions.
The shown disparity maps are computed with reference to the left input image (the
thermal image) and limited by the maximum disparity range with respect to the left
image border.
We also present the disparity maps computed from the images taken with our sepa-
rate optical stereo setup for comparison. It has to be noted that due to the limited
mounting possibilities of these additional cameras and the vibrations caused by the
moving robot the alignment of the images in several scenes is imperfect. Further-
more the quality of the images captured by the used optical cameras in terms of
contrast and noise is relatively low. The DAISY descriptor turned out to cope well
with these problems and therefore we apply it in standard mode (signed gradient)
with parameters R = 5, Q = 3, T = 4 and H = 8 which are also shown to give good
results for standard stereo in [53].

4.3.2 Performance Comparison

Still Images

We discuss the performance of the different matching costs in combination with DP
and SGM disparity optimization on six different test scenes. The first scene (’Scene
1’) is the previous example scene shown in Figure 4.13. This scene was taken with
our first cross-spectral setup on the mobile robot and therefore no optical stereo
results are available for comparison. The cross-spectral input images of the other
five scenes (’Scene 2’ - ’Scene 6’) are shown in Figure 4.19. The left column displays
the images from the left thermal camera and the right column the images from the
right optical camera. Additionally Figure 4.20 shows the optical stereo images of
the respective scenes taken with the separate optical stereo setup. The computed
disparity maps for the test scenes using the considered matching cost methods gra-
dient magnitude and ZNCC, MI, LSS, DAISY and HOG are shown in Figures 4.21
- 4.26. The left column of the figures shows the results using DP optimization and
the right column using SGM optimization.
As already noted, ground-truth data is not available for our cross-spectral test data
to allow for a quantitative comparison of matching performance. We therefore qua-
litatively evaluate the different methods by assessing the ability to recover the basic
scene structure and the amount of obvious disparity outliers, also considering the
invalid disparities removed by the left-right cross-check which are set to zero (i.e.
black). For comparison the results obtained from the standard optical stereo images
are shown in the respective first row of each figure for Scenes 2 to 6.
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Figure 4.19: Cross-spectral stereo images of the discussed test scenes.
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Figure 4.20: Optical stereo images of the discussed test scenes.
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It can be seen in all scenes and for all matching cost methods that in a qualitative
comparison SGM gives much better results which are more consistent with the ob-
jects and depth levels of the scenes than DP. The characteristic horizontal streaking
artifacts of DP are clearly visible, distorting the results depending on the respective
scene and matching cost. Only on the optical image pairs the DP optimization per-
forms well and produces results of similar quality to SGM. This demonstrates the
importance of the additional 2D smoothness constraints of SGM for dealing with
the weak and ambiguous matching costs of cross-spectral images. The exclusively
horizontal 1D constraints of DP optimization appear to be too weak to create results
of good quality which are consistent over different scenes. While the results using
DP optimization still provide some insight into the performance and robustness of
the different matching costs, we focus mainly on the analysis of the results computed
through SGM.
In Scene 1, which has relatively good contrast and details in both spectra, all mat-
ching cost methods are able to produce disparity maps which are largely consistent
with the structure and depth of the scene. A different amount of artifacts and in-
valid disparities are present in the results but the contours and depth levels of the
main objects (person, shrubs, concrete pillars) are discernible in all methods. It has
to be noted that the nature of the implemented matching costs which all rely on
local image regions leads to a blurring of disparity discontinuities. This is further
increased by the relatively strong smoothness constraints which have to be applied
for valid results. However, as already stated we accept these inaccuracies in favor of
an overall valid dense disparity estimation.
In the results for Scenes 2 to 6 the different characteristics of the matching costs can
be seen more clearly. The straightforward method of gradient magnitude computa-
tion with ZNCC matching turns out to perform well in recovering main objects, in
most scenes even doing better than MI and LSS. However, ZNCC also introduces a
considerable amount of artifacts in some scenes. The person in Scene 4 and the car
in Scene 6 are distorted by artifacts and invalid disparities. Furthermore the DP
optimization performs particularly bad here.
The window-based MI method results in significant artifacts in most scenes, for
example the person in Scene 4 and the trees in Scene 5 cannot be recovered at all.
Similarly LSS produces large regions of invalid disparities leading to inconsistent
results. While the results for Scene 1 are still acceptable, many of the details and
the structure in the other scenes are lost.
Both the DAISY and HOG matching costs successfully recover the basic structure
of all scenes. DAISY appears to preserve shape details slightly better and results in
less blurring of disparity discontinuities. However, several small speckles of invalid
disparities are present in the results (e.g. Scene 6). HOG gives slightly more stable
and smooth disparity maps but leads to a stronger blurring of object borders (i.e.
object fattening). This effect can be seen well for the persons depicted in Scenes 2
to 4.
Apart from Scene 5 all results of DAISY and HOG in combination with SGM opti-
mization appear to be largely in accordance with the results from the optical stereo
images. In Scene 5 the difficulties of cross-spectral stereo correspondence are high-
lighted when considering the input images. The rightmost tree can be seen clearly in
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the optical input image but even for a human observer is hardly distinguishable from
the background in the thermal image. As a result no method is able to successfully
recover the disparity values for this problematic region.

Figure 4.21: Results for Scene 1
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Figure 4.22: Results for Scene 2
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Figure 4.23: Results for Scene 3
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Figure 4.24: Results for Scene 4
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Figure 4.25: Results for Scene 5
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Figure 4.26: Results for Scene 6
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Video Sequences and Temporal Consistency

In our experiments on still cross-spectral images of various different scenes we have
found that HOG and DAISY matching costs with SGM optimization produce better
and more consistent results than all other implemented methods. To now further
investigate the properties of these two methods we also test them on a number of
cross-spectral video sequences. In this way we examine the temporal consistency
of the results and if the disparity maps change in accordance with a moving scene.
Figures 4.27-4.30 each show six sample frames extracted from four different cross-
spectral video sequences and the respective disparity results using HOG and DAISY
matching costs in combination with SGM.
In Video 1 (Figure 4.27) the robot is moving slightly and a car passes by. The shown
frames are extracted in intervals of one second. It can be seen that for both HOG
and DAISY the car and its changing distance are recovered well. In the video a
flickering of the disparity values appears between some consecutive frames but the
overall depth of the car is largely consistent as can be seen in the shown sample
frames. The results for HOG appear more stable and smoother, better representing
the true shape of the car. Also the trees in the background are picked up by the
disparity computation for both methods.
Figure 4.28 shows frames extracted from Video 2 also with an interval of one second.
Here the robot is stationary and a person walks through the scene. The rough shape
and the distance of the person is identified well and is consistent with the changing
scene for both HOG and DAISY. The cars in the background are also recovered well.
The disparity maps for HOG appear smoother with a more compact representation
of the person’s body.
Video 3 (Figure 4.29) shows frames with an interval of 0.25 seconds displaying a
person walking away from the stationary robot. In this sequence DAISY performs
slightly better than HOG, more accurately representing the shape of the body and
producing less invalid disparities on the background wall.
Video 4 (Figure 4.30) represents a relatively complex scene in 1.66 second intervals
where the robot moves over a bumpy surface and people are walking by. The main
objects of the scene can be distinguished roughly by both HOG and DAISY and
their disparity fits with the structure of the scene. However, in row four of Figure
4.30 an ’outlier-frame’ can be seen where the consistency is temporarily lost but
is recovered again in the subsequent frames. Here again HOG appears to produce
more stable disparity maps with more compact objects than DAISY.

Considering the results obtained from the video sequences a possible area of future
investigation would be the integration of temporal information into the disparity
computation. The integration of disparity values from adjacent frames might be
exploited to stabilize the computed results (e.g. see [39]).
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Figure 4.27: Result frames from Video 1 using HOG and DAISY matching costs
with SGM.
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Figure 4.28: Result frames from Video 2 using HOG and DAISY matching costs
with SGM.
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Figure 4.29: Result frames from Video 3 using HOG and DAISY matching costs
with SGM.
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Figure 4.30: Result frames from Video 4 using HOG and DAISY matching costs
with SGM.
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Performance Comparison Summary

Overall it can be said that the implemented approach of combining robust local
matching costs with disparity optimization methods can indeed achieve valid but
coarse dense disparity estimates from cross-spectral stereo. From our experiments
and a qualitative evaluation we find that the investigated matching cost methods
differ noticeably in their ability to produce valid disparity estimates and in the
stability and consistency of the results over different scenes. The approach of using
dense descriptors based on histograms of unsigned oriented gradients (HOG/DAISY)
as a matching cost in combination with SGM optimization gives best and most
consistent disparity results on our cross-spectral data. Tests on different video se-
quences show that on many scenes these matching costs give good results which are
largely consistent with the rough structure and depth of the scenes changing in time.
Artifacts most often occur in regions which are hard to match such as the ground
or the sky. In many cases the novel use of HOG as a stereo matching cost results
in more stable disparity maps and more compact (i.e. blob-like) representations of
objects. However, in some scenes DAISY yields less artifacts and preserves object
boundaries in more detail and with less blurring. For an accurate comparison of the
performances of HOG and DAISY matching costs a quantitative comparison based
on ground-truth data would be necessary. In this context also the effects of exhaus-
tive tuning of descriptor and disparity optimization parameters and post-processing
steps have to be considered. Finally an important aspect is the intended area of ap-
plication and the respective requirements (more compact and stable objects versus
less boundary blurring).

4.3.3 Runtime

In the previous section we have presented comparative results on the performance
of the different matching cost methods. We will now shortly discuss the runtime
of our implementation of the different matching costs used in the experiments. In
general it has to be noted that we did not optimize our implementation regarding
runtime but focused on the tuning for best disparity results. As a consequence the
following discussion represent only a coarse guideline for comparing the runtimes of
the different methods.
The window-based MI computation is the slowest of our matching cost implemen-
tations since 2D histograms for each window pair have to be computed for the es-
timation of the joint probability distribution. This high computational complexity
is also reported by Egnal [15] and he suggests a possible speed-up by memoriza-
tion during the computation of probabilities. However, we did not investigate this
proposition and thus our MI computation based on Egnal’s [15] and Fookes’ [18]
descriptions takes approximately six minutes on our test laptop (2.4GHz Intel Core
i5 CPU) for the considered parameters (640x480 pixels with 96 disparity levels and
21x21 windows).
For the ZNCC computation we use a basic window-based approach without opti-
mization as described in [28] leading to a matching cost computation runtime of
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approximately two minutes on the test data. However, this could be reduced si-
gnificantly and made independent of the matching window size by fast correlation
techniques as in [16].
The computation of dense LSS descriptors for every image point in our implemen-
tation takes approximately 30 seconds per image. Here the main workload lies in
the computation of the correlation surfaces where each small image patch has to be
compared to its surrounding region in a sliding window approach. This could also
be accelerated by fast SSD computation techniques. The computation of the imple-
mented dense DAISY and HOG descriptors for each image takes roughly 0.5 and
0.8 seconds respectively. For these methods the most time in our implementation is
spent on the distance calculation when creating the Disparity Space Image (DSI),
taking approximately 5 seconds. However, the simple operations in this step can be
optimized and could also be massively parallelized.
A naive implementation of the left-right cross-check shown with the SGM optimi-
zation doubles the overall runtime as two disparity maps have to be computed.
This can be avoided by reusing the stored matching costs in the DSI (e.g. see
[40]). In combination with SGM optimization Hirschmueller [26][27] also proposes
an approximated cross-check to avoid repeated optimization computations.

4.4 Summary

In this chapter we have described our tests of the implemented stereo correspon-
dence framework using different types of test data and discussed the results of our
experiments. Before an evaluation can be performed a fundamental prerequisite is
the acquisition of real cross-spectral stereo data and we have given details on our
utilized methods for this task in Section 4.1.2. Subsequently we have presented
results on simulated cross-spectral stereo data in Section 4.2, showing the failure
of standard robust matching cost methods. Our implementation of more advanced
robust matching cost methods MI, LSS, DAISY and HOG as well as ZNCC after
gradient computation proved to be able to deal with the simulated cross-spectral
data and produced largely valid results. A comparison with results on real cross-
spectral data confirmed that this scenario presents a more difficult problem regarding
the computation of dense disparity maps and requires new robust approaches. We
therefore combined the robust matching costs with different cost aggregation and
disparity optimization techniques. In Section 4.3.2 we have discussed the results of
our evaluation of these approaches on various cross-spectral test scenes. We have
shown that the use of descriptors based on histograms of unsigned oriented gradients
(HOG/DAISY) as a matching cost in combination with SGM optimization allows
for a valid dense disparity estimation on different scenes, outperforming the other
investigated methods in both quality and consistency of results. This was further
confirmed by examining the performance of HOG and DAISY on cross-spectral vi-
deo sequences. Both methods yield very similar results with HOG appearing more
stable on a subjective level considering all performed tests. However, for a more
accurate distinction a quantitative evaluation considering application relevant test
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data is essential.
We have also given an overview of the runtime requirements of our implementation
in Section 4.3.3. Both the dense HOG and DAISY descriptors in combination with
SGM optimization can be computed efficiently although the implementation is not
capable of real-time operation.
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Chapter 5

Summary

In this thesis we have studied the problem of recovering dense depth information
from cross-spectral (i.e. optical and thermal) input images using computational ste-
reo techniques. Solving the stereo correspondence problem for cross-spectral images
is significantly more difficult than for standard optical images due to the extreme
differences in image characteristics. The arguably most popular method in litera-
ture for computing correspondences in images with extreme radiometric differences
is Mutual Information (MI). Window-based MI approaches as well as pixel-based
approaches in combination with global optimization methods have been shown to
produce very good results on simulated cross-spectral stereo images, i.e. optical
image pairs with complex intensity transformations [18][26][30]. However, it has
been shown in [33] that state-of-the-art pixel-based MI methods fail at real cross-
spectral images due to the lack of correlation between global intensity values. As
a result other approaches have simplified the problem definition by using window-
based MI and only computing disparity values for certain predetermined salient re-
gions of interest in cross-spectral stereo images (e.g. people) [33]. The same concept
has also been shown to work well by replacing MI with Local Self-Similarities (LSS)
[55] as a matching cost.
In view of the fact that currently no solution appears to exist for the given pro-
blem we investigated in this work if the computation of dense disparity values for
whole images is possible. We have implemented a general framework for dense ste-
reo correspondence computation to be able to test and evaluate the suitability and
performance of numerous existing and novel approaches on both simulated and real
cross-spectral data. We summarize our obtained findings in the following.

5.1 Conclusions

Based on experiments on simulated cross-spectral stereo images it becomes clear
that common preprocessing methods and robust matching cost measures (ZSAD,
ZNCC, rank, census) designed for standard radiometric differences in optical stereo
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images fail in the presence of extreme image intensity differences. Notably only the
raw computation of image gradient magnitudes as a preprocessing step allows for
valid results with standard robust matching costs like ZNCC. Also window-based
MI performs well which is in accordance with the results reported in literature. The
further matching cost approaches for the novel use in dense cross-spectral stereo cor-
respondence, LSS, unsigned DAISY and HOG descriptors also perform well in this
scenario. The selection of these methods is based on a visual analysis of commonali-
ties between cross-spectral images. While intensity values obviously differ strongly,
local shape features which are visible in both modalities usually correspond well and
therefore motivate our choice. LSS descriptors encode local correlation-based self-
similarities while DAISY and HOG describe local shape based on statistical image
gradient representations. The choice of DAISY and HOG is also supported by the
observed good performance of ZNCC on simple image gradient magnitudes.

For our tests on real cross-spectral images we collect data using a custom cross-
spectral stereo rig mounted on a mobile robot. The tests on cross-spectral data show
that this case presents a more challenging problem than simulated cross-spectral ste-
reo due to the naturally more complex differences in the input images. The increased
amount of bland regions in thermal images and the difference in appearance of fea-
tures result in weaker and more ambiguous matching cost values. Here a simple local
WTA disparity computation approach cannot produce valid disparity maps, inde-
pendent of the considered matching cost method. We therefore combine the robust
local matching cost measures with disparity optimization techniques and achieve a
significant improvement in performance. In a qualitative evaluation Semi-Global
Matching (SGM) turns out to give very good results over all matching costs me-
thods. Graph Cuts (GC) achieves similar results but depends heavily on parameter
tuning and results in significantly longer runtimes. Scanline Optimization (SO) and
Dynamic Programming (DP) lead to the characteristic horizontal streaking artifacts
due to the lack of additional vertical constraints which prove to be particularly im-
portant in this case of very ambiguous matching cost values.
We perform a test series on different cross-spectral scenes and qualitatively eva-
luate the disparity maps computed from each matching cost method in combination
with DP and SGM optimization. For the evaluation we also take reference results
acquired with a separate standard optical stereo rig into account. In our experi-
ments dense HOG and DAISY descriptors as matching costs outperform the other
methods in terms of both validity of disparity values as well as consistency over dif-
ferent scenes. Further tests on cross-spectral video sequences confirm these results.
HOG descriptors tend to produce more stable disparity maps with more compact,
blob-like objects while DAISY results in less blurring of object boundaries. Howe-
ver, due to the similar results of HOG and DAISY descriptors the intended area of
application (e.g. obstacle avoidance, object tracking) as well as additional parame-
ter tuning and post-processing would have to be taken into account to select and
optimize the more appropriate method.

In summary it can be said that through extensive experiments and investigations
of new approaches we could achieve a coarse estimation of dense disparity maps
from cross-spectral stereo. In all considered tests the combination of dense des-
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criptors based on histograms of unsigned gradient orientations with SGM disparity
optimization outperforms methods using MI or LSS matching costs which have been
suggested in previous work for use in such a scenario. Notably the novel use of dense
HOG descriptors for stereo correspondence leads to very good results. Although the
implemented methods of HOG and DAISY matching are currently not capable of
real-time operation they are based on computationally efficient descriptors and offer
several possibilities for runtime optimization.

5.2 Further Work

A recommendable next step would be a further testing of the implemented ap-
proaches on additional cross-spectral data taken in application-relevant environ-
ments. The acquisition of ground truth data would be essential for an accurate
quantitative evaluation of results and would also be necessary for a better tuning
of the parameters of all methods (i.e. enabling an automatic exhaustive parame-
ter sweep). In combination with this an improved cross-spectral camera calibration
procedure would be desirable to allow for a more accurate calibration and a simpler
and faster data acquisition. A fully automatic method possibly including an active
infrared calibration target would of course be an extremely useful tool.

Aside from possible performance improvements regarding the quality of the disparity
estimation, an interesting aspect would be the possible reduction of runtime through
optimization techniques. Investigations on a possible speed-up through specialized
hardware could also be considered.

Ultimately the integration of the proposed approach of using HOG or DAISY in
combination with SGM into a real test environment would be needed to judge its
usefulness in real-world applications. For example it would be interesting to see if
the disparity results can actually be used to improve the performance of obstacle
avoidance for mobile robots or object detection and tracking applications. However,
it has to be stated that based on the current results a possible practical use in critical
scenarios which require high reliability and speed (e.g. automotive, military) seems
unlikely.
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Appendix A

i2iReader Near-Infrared-Optical
Stereo

In this supplementary chapter we perform and discuss additional experiments on
data taken at the Institute for Computer Vision and Graphics at Graz University
of Technology. In contrast to the main part of this thesis which focuses on far-
infrared-optical cross-spectral stereo, this data represents the near-infrared-optical
stereo case. We apply the implemented stereo framework and the insights gained in
the main part of the thesis to analyze the properties of near-infrared-optical stereo
data and the differences to far-infrared-optical stereo.
The considered stereo test data is captured using an EFKON i2iReader camera,
courtesy of the Institute for Computer Vision and Graphics. This hardware has
been developed within the Austrian FFG project ’MobiTrick’ (8258408) under the
FIT-IT program and is designed for license plate recognition in traffic enforcement
applications. Although the camera is not originally designed for stereo applications,
the inherent stereo setup allows for an estimation of depth information. The Mobi-
Trick project could make use of the computed depth information and therefore we
investigate which of the implemented stereo methods could be suitable for such a
task.

A.1 i2iReader Test Data

The i2iReader houses one Near-Infrared (NIR) and one optical camera in an inte-
grated unit. The relative positions of the two cameras are fixed with a relatively
short baseline of approximately 4cm, resulting in a low disparity resolution and a
respective uncertainty of results with increasing depth. The cameras are not aligned
but rotated towards each other such that the optical axes intersect in front of the
objects of typically considered scenes. This results in an inverted disparity between
captured images, i.e. scene points with a larger distance to the cameras yield larger
disparity values and vice versa. For the rectification of the input images already



86 i2iReader Near-Infrared-Optical Stereo

available calibration data is used.
To investigate the suitability of different stereo methods for i2iReader NIR-optical
stereo matching we capture images of different indoor test scenes (Figure A.1). The
considered rectified images are of size 535x290 pixels with a maximum disparity of
16 pixels.

Figure A.1: i2iReader test scenes.

In a visual analysis of the test scenes it becomes clear that the near-infrared (NIR)
and optical images have relatively similar image characteristics. This is in contrast
to both the simulated (Section 4.2) and real (Section 4.3) far-infrared-optical stereo
cases, where the differences between the images are much more extreme. In the NIR
images some details and textures are less distinct than in the optical images (e.g.
the tiger and the poster on the left in Scene 1) and in some areas contrast is poorer.
However, other parts of the scenes appear sharper and in more detail than in the
optical images and effects of overexposure and saturation are reduced (e.g. books
on the right in Scene 3). Contrast inversion effects between the NIR and the optical
images appear only very limited, one example can be seen well on the shirt of the
person in Scene 3. In addition to these properties, bland and textureless regions in
the test images present challenges for stereo matching.
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A.2 Methods and Parameters

Considering the image characteristics observed on the i2iReader test data we inves-
tigate which of the implemented robust matching cost methods (Section 3.1) are
able to produce valid disparity maps in this scenario. In the following we discuss
experiments using the Zero mean Sum of Absolute Differences (ZSAD), Zero mean
Normalized Cross Correlation (ZNCC), census, rank, window-based Mutual Infor-
mation (MI), Local Self-Similarity descriptors (LSS), DAISY descriptors and HOG
descriptors. We also include LoG filtering as a preprocessing step in combination
with Sum of Absolute Differences (SAD) since it gave slightly better results than
the other implemented preprocessing methods (Section 2.2.1) in our experiments.
For ZSAD, ZNCC and rank we use window sizes of 11x11 pixels, for census we
use 7x7 pixels and for MI 15x15 pixels. Prior probabilities with a weight of 30%
(λ = 0.7) are included in the MI computation. For the computation of LSS descrip-
tors we use patches of 5x5 pixels, surrounding regions of 35x35 pixels and a log-polar
grid with 4 radial and 12 angular bins. In our experiments with DAISY and HOG
descriptors the use of signed gradients (0◦ − 360◦) turned out to give better results
than the use of unsigned gradients (0◦ − 180◦). A reason for this is the limited
amount of contrast inversion in the NIR images with the consequence that resulting
errors due to signed gradient orientations are being outweighed in the overall scene
by the increased discriminative power of the descriptors. We therefore show results
of signed gradient orientations for HOG descriptors of 18x18 pixels split into 3x3
cells with 9 orientation intervals and DAISY descriptors with parameters R = 5,
Q = 3, T = 4 and H = 8.
In a first step we perform tests with Winner-Takes-All (WTA) disparity computa-
tion to assess the performance of the different matching cost methods independently
of more advanced disparity optimization methods. We combine the WTA compu-
tation with cost aggregation using a 11x11 box filter. In the seconds step we apply
Semi-Global Matching (SGM) to compute the disparities from the matching costs
due to the good performance of this method shown in Chapter 4. In both steps we
apply left-right cross-checking and speckle removal, pixels labeled as invalid are set
to zero in the result images.

A.3 Performance Comparison

Figures A.2-A.5 show the disparity maps computed in our test run. As mentioned
in Section A.1 the disparity values are inverted, i.e. objects closer to the camera are
displayed darker and vice versa. In the absence of ground truth data we attempt
a qualitative comparison based on the computed disparity maps. However, due to
the limited test data and the partly similar results a reliable analysis is hard and
we will therefore only provide a rough interpretation of the available results.
First of all it can be observed that in contrast to the far-infrared-optical stereo case
(Section 4) here also robust standard matching cost methods like census or ZNCC
can produce valid results. Furthermore it can be seen clearly that, considering the
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results for all scenes, SGM leads to significantly better and more stable results than
WTA. The bland image regions combined with the observed image characteristics
and quality cause simple WTA to produce large regions of inconsistent or invalid
disparities.
Overall it appears that ZNCC, census, DAISY and HOG perform slightly better
than the other considered matching costs. SAD with prior LoG filtering and
ZSAD produce particularly bad results for Scene 3 and MI struggles with the
bland regions in Scenes 2 and 3. The performance of LSS is consistent but
produces relatively heavy blurring. Details and object borders in the scenes are
preserved best by census and rank (e.g. tiger in Scene 1) but rank introduces
noticeable disparity artifacts in Scene 2. ZNCC, DAISY and HOG produce stable
and smooth disparity results over all scenes but introduce more blurring than census.



i2iReader Near-Infrared-Optical Stereo 89

Figure A.2: Results for Scene 1 (WTA)

Figure A.3: Results for Scene 1 (SGM)
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Figure A.4: Results for Scene 2 (WTA)

Figure A.5: Results for Scene 2 (SGM)
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Figure A.6: Results for Scene 3 (WTA)

Figure A.7: Results for Scene 3 (SGM)
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A.4 Practical Application Considerations

With regard to a possible application in the MobiTrick project also implementation
details of the stereo algorithms would have to be considered. This is due to the fact
that eventually the stereo matching should be performed on an embedded system as
part of the integrated i2iReader camera unit. While DAISY and HOG descriptors
can be computed relatively efficiently, correlation-based standard robust matching-
costs like ZNCC and non-parametric costs like census are already commonly applied
in such environments and have been implemented to operate in real-time (e.g. [16]).
In combination with fast census matching variations of SGM which are suitable for
implementation in embedded systems with general purpose processors have been
proposed recently [21][29].
It has to be noted that additional test data would be necessary for a more reliable
assessment of the performance of the different matching costs in this specific scenario.
Data taken from the actual area of application (i.e. traffic enforcement) would be
important in this context.

A.5 Summary

In this chapter we have described additional experiments on near-infrared-optical
stereo data taken by the EFKON i2iReader cameras of the Institute for Computer
Graphics and Vision. Even though the current camera setup is not optimized for
stereo applications, depth estimates can be achieved and might be exploited in the
MobiTrick project.
Tests on indoor scenes show that in contrast to far-infared-optical stereo in the
near-infared-optical stereo case also standard robust matching costs can produce
valid disparity maps. On the considered test images the use of optimization tech-
niques like SGM shows to be essential for good results.
In a rough qualitative comparison the matching costs ZNCC, census, DAISY and
HOG appear to produce the most consistent disparity results. Census preserves ob-
ject borders best while ZNCC, DAISY and HOG produce smoother disparity maps
with stronger blurring.
Regarding an integration into the MobiTrick project, matching costs like census or
ZNCC might be preferred due to their known suitability for embedded implementa-
tions. Furthermore, suitable variations of SGM have recently been proposed for such
applications. For a more thorough assessment of the applicability of the different
matching cost methods additional data from the actual area of application would
be necessary.
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