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Abstract

The present work deals with the recognition of human movements by means of low-cost
inertial sensors. Simple activities such as standing, sitting, walking, running, walking
on stairs, etc. are examined on the basis of different devices, such as Smartphone and
Smartwatch, worn at various locations on the body. Inertial data, i.e. accelerations and
angular velocities, of known activities are needed to train a classifier which then should
be able to predict unknown data. These measured data must be processed in a suitable
manner to obtain therefrom so-called features which serve as input for the classifier.

In this work, the suitability of a Smartphone for activity recognition is established first.
Based on this, several features are selected as the input variables of the C4.5 decision tree
preferred in this work. User-specific and speed-dependent activities are examined as well
as the real-time capability. Several classifiers are compared and, finally, an algorithm
for determining the current sensor position is presented.

The use of coordinates in the local level frame and a self-defined body-fixed frame con-
tributes to the improvement of activity recognition. The evaluation of the created clas-
sifiers yields good results for all activities. Although the analysis of test data shows
not such high accuracies, they are still satisfactory. The user-specific activities upstairs
and downstairs are the hardest to detect, whereas all other activities can be predicted
robustly.
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Kurzfassung

Die vorliegende Arbeit befasst sich mit der Erkennung von menschlichen Bewegun-
gen mittels low-cost Inertialsensoren. Einfache Aktivitäten wie Stehen, Sitzen, Gehen,
Laufen, Stiegen steigen usw. werden auf Basis unterschiedlicher Geräte, wie Smart-
phone und Smartwatch, die an verschiedenen Positionen am Körper getragen wurden,
untersucht. Inertialdaten, d.h. Beschleunigungen und Winkelgeschwindigkeiten, von
bekannten Aktivitäten werden benötigt, um einen Klassifikator zu trainieren, der dann
im Stande sein soll, aktuelle Daten auszuwerten. Diese Messdaten müssen auf geeignete
Weise bearbeitet werden, um daraus sogenannte Features zu erhalten, die als Input für
den Klassifikator dienen.

In dieser Arbeit wird zuerst die Eignung eines Smartphones für die Aktivitätserkennung
festgestellt. Basierend darauf werden verschiedene Features als Eingangsgrößen des in
dieser Arbeit bevorzugten C4.5 Entscheidungsbaumes gewählt. Benutzerspezifische und
geschwindigkeitsabhängige Aktivitäten werden untersucht, sowie die Echtzeitfähigkeit
getestet. Mehrere Klassifikatoren werden miteinander verglichen und schließlich ein
Algorithmus zur Bestimmung der aktuellen Sensorposition vorgestellt.

Die Verwendung von Koordinaten im lokalen Horizontsystem und einem selbst definierten
körperfixierten System trägt zur Verbesserung der Aktivitätserkennung bei. Die Evaluie-
rung der erstellten Klassifikatoren liefert für alle Aktivitäten gute Ergebnisse. Die
Analyse mit Testdaten zeigt zwar nicht so hohe Genauigkeiten, diese sind immer noch
zufriedenstellend. Die benutzerspezifischen Aktivitäten Stiegen hinauf und Stiegen hi-
nunter sind am schwierigsten zu detektieren, während alle anderen Aktivitäten robust
prädiziert werden können.
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1 Introduction

1.1 Motivation

Human Activity Recognition (AR) is an approach of monitoring human movements.
Various activities such as walking, sitting, standing, running, cycling, falling down, etc.
are to be detected to thereby obtain information, especially for Ambient Assisted Living
(AAL). The EU runs a research program on AAL which has the aim of enhancing the
living quality of elderly people by using Information and Communication Technologies.
The constant and increased ageing in Europe induces challenges for the states’ finance
and health system, but also affords an “opportunity to live a long and better life after
working life-time”[2]. Therefore, the main interest lies in developing platforms for AAL.
In cause of the large number of devices, services, functionalities and the evaluation
aspects to be compared, the EvAAL competition - Evaluating AAL Systems through
Competitive Benchmarking - was launched [1]. For several years this competition takes
place once a year, where an indoor positioning including AR has to work in real-time.

Thus, the field of applications for AR has a wide variety [22]: Healthcare and Assisted
Living for elderly people aims to detect potentially dangerous situations in a person’s
life to start an automated call for external help, for example when a person has fallen.
Employing long-term monitoring to detect changes or unusual patterns in a person’s
daily life that may indicate early symptoms of diseases like Alzheimer’s is another class of
utilization. The more popular usage of AR systems consists of motivating and promoting
people to maintain a more active and therefore healthy life by, e.g., showing them how
many calories they burned each day through performing dynamic activities [52].

AR currently works via image-based techniques, but also inertial sensors and combined
methods. The expected rise of people owning Smartphones and growing of willingness
to use Smartwatches, which include inertial sensors as well, increases the interest in
research in this direction.
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1 Introduction

1.2 Problem statement

The aim of this thesis is the analysis and development of algorithms for AR with low-
cost sensors. The AR should be studied by a medium-priced Inertial Measurement Unit
(IMU) and finally evaluated and tested with low-cost inertial sensors from a Smartphone
or Smartwatch. In this context, the effect of individual sensor locations shall be inves-
tigated. In addition, a classification algorithm for the detection of the sensor’s current
body position is to be developed. In the future, AR should be possible on a Smartphone
in real-time. Moreover, an intent is to use the AR result as support for a Pedestrian
Dead Reckoning (PDR) algorithm.

1.3 Methodology

An AR system mainly consists of a classifier that gets as an input a vector of attribute
values, called features and outputs a class, the activity. Features are extracted from
inertial data that have been recorded during the performance of activities from a device.
After a preprocessing, e.g., rotation into a different coordinate system, the data are
divided into sections, called windows, and on the basis of the data points within this
window a statistical value is calculated, e.g. the mean value, which represents one feature.
A classifier usually has to be trained on labelled data, where the activity is known. Once
a classifier was built and tested with training data, it can be used to predict unknown
data.

1.4 Thesis Outline

This thesis includes another five chapters. Chapter 2 presents the state of the art in the
field of AR. Different aspects to be considered are summarized and works on AR with
inertial sensors and Smartphones respectively Smartwatches are presented. Chapters 3
contains background information that is important for the understanding of the sensors
and algorithms that appear in this thesis. The development of the AR system and
the procedure in the course of the definition of desired activities up to the evaluation
of classification results is discussed in Chapter 4. In Chapter 5, various investigations
are carried out: from the suitability of low-cost sensors via user-specific activities and
different classifiers to the design of an algorithm to determine the current sensor location.
Chapter 6 draws conclusions, that have been made in this thesis, and provides an outlook
for future work.
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2 State of the art

First research on Activity Recognition (AR) using accelerometers date back to the 1990s
[17], when advanced hardware technology opened the possibility of wearing lightweight
sensing-, computing- and display-equipment by a single person [22]. Since the develop-
ment of small, lightweight and inexpensive Micro-Electro-Mechanical Systems (MEMS)
inertial sensors, investigations regarding AR are increasing strongly.

In the past decade the use of MEMS-based Inertial Measurement Units (IMUs) for AR
has been studied in several research projects. The increasing availability of inertial
sensors such as accelerometers in consumer products, like smart phones, and the big
potential of applications have attracted interest to AR as a promising research topic.

2.1 Various aspects

It depends on the final application what kind of sensors have to be used to fulfil the
requirements of the desired system. Application examples have already been discussed
in Chapter 1. In the context of designing a Human Activity Recognition (HAR) system,
as it is described in the previous section, many aspects have to be encompassed:

Recognized activities Plenty of different activities have been studied in related work
[22]:

• Human motion activities like walking, sitting, lying, walking on stairs or standing.

• Activities of Daily Living (ADL) such as dressing, bathing, toileting.

• Instrumental Activities of Daily Living (IADL) like food preparation, using the
phone or shopping.

• Sports activities: cycling, callisthenics, running or rowing.

• Short-term activities (gestures) such as open the door or pulling the handbrake.

Depending on the activities, that should be recognized from an AR system, different
types of sensors come into consideration. Activities related to human motion require the

3



2 State of the art

usage of sensors related to motion, while for activities related to social interactions, like
talking on the phone or attending a meeting, other kinds of sensors - that would be for
example a microphone - might be required [39].

Types of sensors Besides accelerometers, which are the most commonly used sensors
in related work, a wide range of different sensors has been employed for recognizing
activities: physiological sensors like skin conductivity, heart rate and body temperature
sensors, microphones, light sensors, humidity and barometric sensors, gyroscopes, video
data or Radio-frequency identification (RFID) tag readers. These are just a few which
are mentioned by Huynh [22]. There have been much more sensors in use yet.

Location of measurement devices Most researches on AR have used accelerometers
in multiple locations of the body. There exists recent work where high recognition rates
have been achieved by using several sensors in one single location [8]. Bao and Intille [6]
observed that an accelerometer placed on the thigh or hip were the two most powerful to
distinguish between their set of 20 activities including human motion activities, ADLs
and IADLs. Based on this result, the research on IMUs placed on the hip [18, 15] or
near the pelvic region [45], or Smartphones carried in a user’s pocket or on the waist
[27, 52, 44, 4, 24, 59] - the most convenient location (at least for men) - has grown.

Data set The quantity of data and the constraints when collecting them is different in
each work. While most of the researchers collect their own data, there already exist online
databases where data sets are made available to the public for further research [18]. The
number of used subjects to collect data varies pretty much from one person - mostly the
researcher himself - to a few tens of persons where the aim is to get a more realistic and
representative data set. Another criterion to take into account are the conditions under
which the data was collected [39]. Laboratory conditions are distinguished from semi-
naturalistic and naturalistic conditions. The (self-)reporting of the performed activities
poses quite a challenge and requires special auxiliary devices or software.

Feature extraction methods To obtain sufficient information to describe the performed
activity, the signal is processed by windowing with some overlap. The window length
in related work varies from 1 second [59] up to 10 seconds [27, 33]. In order to receive
quantitative measures, statistical methods are used to extract features [28] in order
to find useful hidden information and eliminate the noise in the raw data from data
collection process or sensors [3].

4



2 State of the art

The used sensor and its location designate the features to compute. Bin Abdullah et al.
[3] grouped all features used by HAR researchers using a Smartphone into four categories:

1. Magnitude-based features rest upon the magnitude values of sensors and are mainly
based on the raw values from sensors (x-axis, y-axis, z-axis, axes means, axes
standard deviation, axes minimum, axes maximum, axes min minus max, axes
max minus min, kurtosis, average absolute difference, zero crossing rate and 75%
percentile).

2. Frequency-based features are based on the frequency values of sensors where the
most commonly used feature is from Fast Fourier Transformation (FFT): frequency
domain entropy, maximum frequency, FFT energy, FFT mean and FFT standard
deviation.

3. Correlation features where correlations between axes or between features are used.

4. Other features that are not in the previous categories. Khan et al. [23] used
autoregressive coefficient and signal magnitude area for their kernel discriminant
analysis.

In order to enable an accurate and reliable system that works in real time with long
battery life, the required feature computation should be studied. The often large set of
features at the beginning should be reduced to fulfil the requirements of the system [39].
Some feature selection techniques are:

• Linear Discriminative Analysis [57].

• Feature Subset Selection [57].

• Forward and backward sequential search algorithms [42].

• Evaluation of information gain from attribute and correlation-based feature subset
selection [36].

Learning algorithms AR is based on machine learning techniques. A supervised learn-
ing algorithm has to be trained on labelled data, i.e., the output is known and aims to
generate a classifier. A classifier is a system that gets as an input a vector of feature
values and outputs a single discrete value, the class [38].

The effort of labelling the data can be avoided by using unsupervised approaches. These
imply the construction of models from unlabelled data, where groups of similar exam-
ples are discovered which is called clustering [22]. Semi-supervised learning has been
implemented in relatively few approaches. It can be applied when parts of the available
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data are labelled, while for other parts no labels exist [22]. The most commonly used
supervised learning methods are [28]:

• Decision Trees [6, 49, 13, 27, 33, 59, 36]

• Bayesian methods (mostly Bayesian Network (BN) and Naive Bayes (NB)) [6, 5,
13, 33, 59, 36]

• Instance-Based-Learning (e.g. k-Nearest Neighbour (k-NN)) [6, 33, 44, 59, 36]

• Support Vector Machine (SVM) [44, 4, 7, 24]

• Artificial Neural Network (ANN) [27, 33, 44, 59, 58]

• Classifier Ensembles (e.g. bagging, boosting, stacking) [45, 7]

Evaluation methods The majority of researchers use the cross validation technique
to compare the performance of classifiers. Therefore the features are divided into a
training and a test set, the classifier learns from the training set, and the classification
performance of the trained classifier on the test set is evaluated. Commonly these steps
are repeated with different partitioning into training- and test set, where the results
are averaged [22]. This kind of evaluation provides better estimates of the classifier
performance especially in case of a limited data set. The classification results are usually
stated by the classifier accuracy. But this kind of evaluation metrics doesn’t provide
a detailed interpretation, hence precision and recall for every activity are the favoured
quantities. An extensive presentation of the results can be given by the confusion matrix
where each column shows the instances in a predicted class, while each row displays the
instances in an actual class. All other evaluation parameters can be calculated from it.
A detailed description on evaluation methods is given in Section 3.3.2.

The results depend on the performed tests as well as on the type of model. Lockhart
and Weiss [33] define three types of models: impersonal, personal and hybrid models.
They differ in which people were taken for the creation of models and the model used
for activity prediction. The authors conclude that personalized models perform best
whereas impersonal models perform much worse, because they cannot effectively distin-
guish between certain activities which are user-specific.

Besides the above mentioned aspects further requests come along regarding design of an
HAR system such as real-time capability, low energy consumption or unobtrusiveness.
In the following chapters particular efforts on AR related to the present work are given.
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2.2 Activity Recognition using inertial sensors

One type of inertial sensors, namely accelerometers, have been used most often in re-
lated work. Earliest works in AR using accelerometer concentrated on using multiple
accelerometers placed on several parts of the subject’s body. The work of Bao and Intille
[6] in 2004 - now counting more than 1500 citations [19] - contributed significantly to the
field of AR. Five bi-axial accelerometers worn on the user’s ankle, hip, wrist, arm and
thigh were used to collect data from 20 users, who were performing daily activities such
as watching TV, brushing teeth, and working at the PC. Time- and frequency domain
features along with several classifiers such as C4.5 Decision Tree, decision table, IBL and
NB were used. The Decision Tree classifier showed the best performance with an overall
accuracy of 84%.
Other research also applying five accelerometers placed on various body locations was
made by Mannini and Sabatini [35], Krishnan and Panchanathan [26] and Foerster and
Fahrenberg [16]. Some of them tried to distinguish between postures and movements us-
ing data collected by ten to thirty volunteers. Tapia et al. [50] incorporated an additional
heart monitor observing a slight increase in performance.

Some researchers examined the use of combining accelerometer and other types of sensors.
One work of using a single tri-axial accelerometer in addition with an image sensor worn
at the subject’s waist to recognize nine activities comes from Cho et al. [11]. Choudhury
et al. [12] made use of a device containing seven different sensors: accelerometer, mi-
crophone, visible light photo transistor, visible+IR light sensor, humidity/temperature
sensor, compass and barometer. The aim was to identify the activities sitting, stand-
ing, walking, ascending and descending stairs and moving up and down in an elevator.
Parkka et al. [41] utilized twenty different sensors to recognize daily human movements
and sports activities.

Furthermore, tests were carried out using only one accelerometer for recognizing activi-
ties. Long et al. [34] collected data in a naturalistic way from twenty-four users wearing
an accelerometer on the waist while performing activities like walking, running, jogging,
cycling and other sports. The orientation of the sensor was irrelevant. Lee et al. [30]
chose the left waist as a location for the tri-axial accelerometer. Five users were per-
forming the activities sitting, lying, standing, walking and running. Ravi et al. [45] used
a single device including an accelerometer to collect data from two users. Eighteen dif-
ferent classifiers were compared especially classifier ensembles like bagging and boosting
algorithms.

There is also several work based on the use of IMUs where accelerometers and gyro-
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scopes are combined. Frank et al. [18] used an Xsens IMU to receive acceleration and
angular velocity and benefited from the provided attitude information to rotate them
from sensor frame to global frame. The device was mounted on the user’s belt while he
was performing the activities sitting, standing, walking, running, jumping, falling and
lying. Nineteen features were computed which are mainly based upon signals in the body
frame associated with the human body (z-axis towards the head, xy-plane orthogonal
to it, see Chapter 3.2), four different classification algorithms (all Bayesian techniques)
were tested and the best one achieved recalls and precisions between 93 and 100% except
for falling. Florentino-Liano et al. [15] utilized the database provided from [18] for gen-
erating a hierarchical dynamic model with hidden Markov Models. This classification
algorithm delivered higher recalls and precisions than the previous work and was sup-
posed to be computationally less expensive. Susi et al. [49] presented an algorithm for
the detection of quasi-static instants from handheld MEMS devices. A decision-tree clas-
sifier, able to detect activities typical for mobile phone users (phoning, texting, walking
with swinging hand or carrying the device in a bag) with probability bigger than 90% was
designed. Furthermore they investigated if the use of quasi-static instants for detecting
pedestrian’s step would be possible. Bancroft et al. [5] developed a foot mounted device
which combines IMU and GPS measurements. They aimed at classifying the environ-
ment (indoor, outdoor), activities like stationary, crawling, walking or biking, and the
vertical movement (level, up or down elevator, up or down stairs). With the use of NB
probabilistic models they received excellent results for activity classification, whereas
environment classification was less reliable because of the shading of GPS signals.

2.3 Activity Recognition using Smartphones

The use of widely-available mobile devices like cell phones for AR was considered by
several researchers. Instead of taking advantage of the sensors included in the cell
phones, a separate device was used to measure the signals which were sent via a wireless
connection to the mobile phone for processing. Gyorbiro et al. [20] used the MotionBand
- including accelerometer, magnetometer and gyroscope - attached to the dominant wrist,
hip or ankle to collect data from human motion as well as gesture activities. The data
was transmitted via a Bluetooth connection to a smart phone carried by the user. Lester
et al. [31] achieved an accuracy rate of 90 % in classifying common human movement.
Instead of using a cell phone they collected the data with an external accelerometer-based
device worn attached to the wrist, waist or shoulder. Lara and Labrador [29] designed
a mobile application for real-time HAR using the Android platform called Vigilante.

8



2 State of the art

They employed a Bluetooth chest sensor strap to measure acceleration and physiological
signals like heart rate and skin temperature. Using time and frequency-domain features
and the C4.5 Decision Tree classifier they accomplished 96.8 % accuracy in recognizing
5 activities.

In recent years many researchers used cell phones to collect data for AR. The advan-
tage is that they are unobtrusive and do not require additional equipment. Brezmes
et al. [9] examined the use of a conventional mobile phone equipped with an accelerom-
eter to recognize human movements in real time. Additionally he laid the focus on
the activities stand-up, sit-down and falling. All computations are executed on the
phone whereupon an own model has to be trained for each user. Yang [56] made use
of orientation-independent features extracted from acceleration magnitude to predict
human motion activities. Moreover this work inferred physical activity diaries from clas-
sification models. Miluzzo et al. [37] integrated several sensors available in Smartphones
such as microphone, GPS, accelerometer, camera and Bluetooth into their system. It
should automatically infer people’s sensing presence and share it through social network
portals such as facebook. Data from ten users was collected to build a model by a C4.5
Decision Tree classifier which had difficulty to differ sitting and standing activities.

Anguita et al. [4] implemented an adaption of the standard SVM to predict human
motion activities including walking upstairs and downstairs which received recall values
from 72 to 79 %. Kwapisz et al. [27] combined these two activities in order to receive
higher accuracies. Wu et al. [54] used the iPod Touch which includes the same sensors as
the iPhone to record data from 16 users wearing the device in an armband for jogging and
in the front shorts pocket for sitting, walking and stair climbing. They were instructed
to perform these activities at normal and brisk paces. The researchers tested several
classifiers whereas the k-NN performed best and received benefits when adding gyroscope
measurements to the accelerometer readings. Dernbach et al. [13] discovered the benefits
of using both accelerometer and gyroscope as well but they failed in identifying complex
activities such as cooking and cleaning besides simple ones. A promising new service
called Actitracker was developed byWeiss et al. [52] which is a Smartphone-based activity
monitoring service with the aim of helping people to maintain proper health. Assuming
that the subject carries the phone in the trouser pocket, five activities standing, walking,
jogging, stairs (up or down), and sitting/lying down are identified using an impersonal
model initially. After the completion of a simple training phase, a personal model is
generated automatically which improves recognition rate significantly. Currently they
are using only accelerometers but are planning to include gyroscopes.

9
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2.4 Activity Recognition using Smartwatches

The idea of using the wrist as a position for a device to record data and use it for AR was
picked up by some researchers several years ago. With the rise of Smartwatches, which
are equipped with functionalities in addition to the traditional display of time, there is
nothing to stand in the way of the permanent monitoring of activities.

Yang et al. [58] used a tri-axis accelerometer mounted on the dominant wrist to iden-
tify eight common domestic activities. They performed a data pre-processing step to
separate static and dynamic activities and a feature subset selection to remove redun-
dant information. Using a neural classifier, they obtained an overall accuracy of 95
%. Chernbumroong et al. [10] incorporated an accelerometer sensor in a sport watch
to recognize five daily living activities, i.e. walking, running, sitting, standing and ly-
ing. When comparing the two classifiers Decision Tree and ANN, the Decision Tree
performed better with 94 % accuracy. Both studies indicate that the use of an on the
wrist-worn accelerometer is often not enough to detect more complex activities. Fur-
thermore, activities involving upper body movements by can be distinguished mainly
thereby [6].

The online AR system eWatch by Maurer et al. [36] embedding accelerometer, light
sensors, microphone and a micro-controller in one device can be worn as a sports watch
and is used to recognize six primary activities like walking, standing, sitting, running,
ascending and descending stairs. Comparing four types of classifiers, the accuracy and
computational costs of the Decision Tree were in a good balance. The overall accuracy
was 92.5 % and the execution time for feature computation and classification was less
than 0.3 ms.

A final, important work to be mentioned is from Bieber et al. [8]. They examined the
capabilities of the sensors provided by Smartwatches and showed the requirements on
them to detect activity and inactivity as well as sleep phases and heart rate, when the
Smartwatch is held to the chest. A new measurement quantity, the activity unit, which
is described in detail in Section 4.5.1, is introduced.
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This chapter includes detailed information about inertial sensors, the coordinate systems
used in this work and classification techniques.

3.1 Inertial Sensors

Inertial sensors measure acceleration and angular velocity and are usually part of Iner-
tial Measurement Units (IMUs) which contain three-axis accelerometers and gyroscopes.
They are grouped into two categories which differ in the frame of reference in which
the sensors operate - stable platform and strapdown systems. IMUs form the main part
of inertial navigation systems (INS) which are self-contained and independent from ex-
ternal disturbances or weather. INS serve to determine position, velocity and attitude
of a moving object relative to a known starting point, position and orientation, called
dead reckoning, and are used among others in aircraft, spacecraft, missiles, submarines,
robotics and image stabilization.

Since the development of small, lightweight and inexpensive Micro-Electro-Mechanical
Systems (MEMS) inertial sensors are used in Smartphones for example to re-orient the
screen as a user moves the device or for gesture recognition functions.

In the following paragraphs the functionality and different types of inertial sensors (based
on [21],[51]) are presented.

Accelerometers The principle of accelerometers basically lies in measuring the forces
acting upon a proof mass. Generally there exist two types of sensor architectures: open-
loop and closed-loop. On the one hand external forces acting on the sensor, the specific
force, cause a displacement of the proof mass which is measured by open-loop accelerom-
eters. On the other hand the proof mass stays in a state of equilibrium as closed-loop
accelerometers generate a force that opposes the specific force.

Besides the division concerning the sensor architecture there exist different forms of
construction or design: mechanical and "solid-state" accelerometers. The first consist of
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a proof mass suspended in a case and confined to a zero position by springs or pendulums.
The deflection of the proof mass is measured using a pickoff mechanism like a mechanical
scale or an optical detector and is proportional to the specific force acting along the
input axis. Solid-state accelerometers can be subdivided into various categories including
surface acoustic wave, silicon, vibratory and quartz devices, and constitute sensors which
are small, reliable and rugged.

Gyroscopes Gyroscopes, or briefly gyros, sense the angular rate of turn about some
defined axis. Traditionally two types are distinguished: mechanical gyros, which can
be sub-grouped into rotational and vibratory gyroscopes, and optical ones, which can
be split into Ring Laser Gyros (RLG) and Fiber Optic Gyros (FOG). Mechanical gyros
operate in gimbaled platforms and optical ones in analytical systems. Rotational gyro-
scopes principally consist of a rotational-symmetric body such as a wheel mounted on
two gimbals and spinning at high speed. The gravity field of the earth has no effect
on the wheel because it is suspended with minimal friction symmetrical to its centre of
mass. The spinning wheel tends to maintain the spin axis in inertial space. If external
forces are acting on the gimbals, the wheel remains at its global orientation and only
the angles between the gimbals change. The rotations of the gimbal frames relating to
the spin axes can be measured using angle pick-offs. Optical gyroscopes make use of the
Sagnac effect, where the light paths of two laser beams travelling in opposite direction
around an enclosed ring differ in length when the ring is rotated around the axis orthog-
onal to the light path. This difference can be measured in two ways. The resonator
principle utilizes the standing wave that stays fixed in space when the path length is
chosen appropriately and is used in RLGs. The interferometric principle is based upon
a recombination of the laser beams, which are interfered due to the phase shift when
leaving the ring coil. The resulting intensity depends on the angular velocity which can
be measured there from. This principle is used in FOGs.

Magnetometer A magnetometer is a sensory device for measuring magnetic flux den-
sities which are given in units of Tesla (T). It determines the direction to the magnetic
north pole, whereby the angle between the Earth’s magnetic field and a certain axis of
the vehicle or device, where the sensor is attached to, can be calculated. Magnetometers
are usually used together with accelerometers and gyroscopes to contribute the direction
to the north pole.
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MEMS inertial sensors MEMS are miniaturized components which combine logic ele-
ments and micro-mechanical structures in a chip usually made of silicon. The structures
may be less than one micron and thanks to the miniaturization they can be produced
cheaply and in high volume. They are rugged, low weight, have a low power consump-
tion and a short start-up time. The main disadvantage is that MEMS inertial sensors
cannot match the accuracy of sensors manufactured using traditional techniques.

Errors In traditional as well as in MEMS inertial sensors errors may occur, in the
worst case systematic sensor errors. A bias of the accelerometer leads to an offset in the
data and a bias in the rotation rate causes a drift. Low-cost inertial sensors lie in the
lowermost accuracy class.

3.2 Coordinate Systems

When measuring acceleration and angular rate with three-axis inertial sensors the coor-
dinates refer to a three-dimensional coordinate system associated with the sensor, called
sensor frame (SF), the origin of which is situated within the object.

Another important frame is the local-level frame (LLF). Its origin is defined anywhere
on or near the earth’s surface, called topocentre, and its axes are, e.g., pointing to
north (xLLF ), to west (yLLF ) and to local zenith (up, zLLF ), thus it is defined as a
right-handed reference frame. In the literature, there exist right-handed and left-handed
systems, with the z-axis either pointing local downwards or upwards. To avoid mistakes,
it should carefully be defined if a right-handed or left-handed system is used.

The parameters for describing the attitude of the object in the SF relative to the LLF
are the rotation-angles about the three axes, named roll, pitch and yaw.

The third and final coordinate system which is used in this work is the so-called body
frame (BF), which is fixed to the subject’s body. Its centre of mass is approximately
situated at the waist and the directions of the axes, relative to the body, are forward
(xBF ), left (yBF ) and up (zBF ).

Florentino-Liano et al. [15] proposed an algorithm to transform the coordinates from the
SF to the defined BF. The assumptions for doing this are that the sensor is placed in
a fixed location near the waist, e.g., on a belt or in the trouser pocket and that it does
not move except for a few millimetres during the signal recordings. In periods where
there is no linear acceleration (i.e., no movement of the body), the orientation of the SF
in relation to the LLF can be determined. The roll and pitch angles can be calculated
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with the following formulas:

roll = arctan
(
αS

y

αS
z

)
(3.1)

pitch = arcsin

 −αS
x√

(αS
x )2 + (αS

y )2 + (αS
z )2

 , (3.2)

where αS
i is the mean acceleration of axis i in the sensor frame.

When the subject is standing in an upright position for a few seconds, the LLF can
be equalized with the BF, whereupon small deviations are negligible as they are in
the magnitude order of the measurement errors. Therefore the above estimated values
describe the inclination of the sensor in relation to the BF. The yaw angle is not required,
because it is irrelevant in which direction the subject is moving. The aim is to use the
norm, a vertical component (the z-coordinate) and a horizontal component, derived from
x- and y-coordinate, which is independent from the yaw angle. Therefore the reduced
rotation matrix from SF to BF can be introduced with the yaw angle assumed to be
zero:

RBF
SF (roll, pitch) =


cos(pitch) sin(roll) sin(pitch) cos(roll) sin(pitch)

0 cos(roll) − sin(roll)
− sin(pitch) sin(roll) cos(pitch) cos(roll) cos(pitch)

 (3.3)

Under the assumption that the sensor position does not vary over time, the rotation
matrix stays constant and can be applied to the measured signals which are given in the
SF.

To obtain coordinates in the LLF in general for an arbitrary posture of the body, i.e.,
while performing different activities, a Kalman-filter-based estimation can be applied.
Considering the basic observation equation

zk = Hkxk + vk, (3.4)

where xk represents the parameters and zk and vk represent the measurements and the
observation noise, roll and pitch angles are calculated with the formulas (3.1) and (3.2)
and put into the measurement vector zk. Furthermore they are used for the rotation of
angular rates delivered from the gyro, which are interpreted as derivations of roll and
pitch angles, also included in the measurement vector zk:

zk =
[
roll, ˙roll, pitch, ˙pitch

]T
= xk. (3.5)

The state vector xk includes the same quantities as the measurement vector. Therefore
the design matrix Hk is simply the identity matrix. The transition matrix in the dynamic
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model

xk+1 = Φkxk + wk (3.6)

is built under the assumption of a uniform motion, as carried out in [21, chap. 13.4]. The
parameters in the measurement and system noise have to be adjusted in order to get
reliable results. The estimated roll and pitch angles are then used in a rotation matrix
with the same structure as in Eq. (3.3) to rotate the accelerations measured in the SF
into the LLF.

An overview of the introduced coordinate frames is given in Fig. 3.1.

Figure 3.1: Coordinate frames - SF, LLF, BF.
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3.3 Classification Techniques

AR is based on machine learning techniques. Depending on the availability of labelled
data (i.e., the output is known) different algorithms are distinguished [28].

• Supervised learning algorithms are trained on labelled data with the aim of learning
a general rule to map input to output and generate a classifier.

• Unsupervised learning, called clustering, is carried out if the features have no labels,
for example when labelling the data is not feasible. Sometimes it is used to discover
hidden patterns in data and therefore detect new classes.

• In semi-supervised learning both labelled and unlabelled features are combined to
generate an appropriate classifier.

The labelled data which are used for supervised learning are called training set. For
testing the generated classifier a part of the data set may be used as test set. More
details on the evaluation of classifiers is given in Section 3.3.2. The following chapter
includes detailed information about some classifiers whereupon the focus is directed on
those who have been used in this work.

3.3.1 Classifiers

Some of the most commonly used supervised learning methods, as stated by Labrador
and Yejas [28], will be explained briefly below. Decision Trees (DT), k-Nearest Neighbour
(k-NN), Support Vector Machine (SVM) and Naive Bayes (NB) are treated. The section
on DTs is based on Quinlan [43] and is very detailed as these are used as the main
classifiers in the present work.

Decision trees

A DT is a classifier with a special structure containing

• leafs, which correspond to classes,

• decision nodes, specifying a test to be carried out on a single feature of an instance,
with

• one branch and subtree for each possible outcome of the test [43].

It can be used for classifying an instance by starting at the root node of the tree and
moving through it by means of its feature values until a leaf is reached.
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Construction The process of generating a DT from a training set is based on the
original idea from Hoveland and Hunt in the late 1950s. Their divide and conquer method
for the construction of a DT from a training set T involving the classes {C1, C2, . . . , Ck}
distinguishes three possibilities [43]:

• T contains instances, all belonging to a single class Cj → the DT is a leaf,

• T contains no instances → the DT is a leaf but the class must be determined from
information other than T ,

• T contains instances belonging to a mixture of classes → idea of refining T into
subsets of instances which belong to single classes. A test, based on a feature,
is chosen with one ore more exclusive outcomes {O1, O2, . . . , On}. Thereby T is
separated into n subsets where the subset Ti contains all instances in T which have
the outcome Oi as a test result. This procedure is repeated successively to each
subset of the training set until the subsets consist of instances of the same class or
with a reasonable number, the default minimum is 2.

Example The construction process is illustrated by an exemplary data set “weather”
whose objective is to estimate the likelihood of playing golf based on given weather
conditions. The four features of 14 instances in the training set are given in Tab. 3.1.
Each instance either belongs to class Play or Don’t Play. Since there are instances in the
hole set T belonging to different classes, the algorithm splits it into subsets. Under the
assumption that outlook has been chosen as test feature, it has three outcomes (sunny,
overcast and rainy) building three subsets Ti, stated in Tab. 3.1. The second group is
the only one including instances with one class, hence the other two subsets are further
divided using the test humidity and windy, as can be seen in Fig. 3.2.

Figure 3.2: Constructed decision tree for the example “weather”.
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Table 3.1: Small training set “weather”.

subset Outlook Temp (◦F) Humidity (%) Windy? Class
x1 x2 x3 x4 y

T1

sunny 75 70 true Play
sunny 69 70 false Play
sunny 80 90 true Don’t Play
sunny 85 85 false Don’t Play
sunny 72 95 false Don’t Play

T2

overcast 72 90 true Play
overcast 83 78 false Play
overcast 64 65 true Play
overcast 81 75 false Play

T3

rainy 71 80 true Don’t Play
rainy 65 70 true Don’t Play
rainy 75 80 false Play
rainy 68 80 false Play
rainy 70 96 false Play

This is not the only way to split the data into subsets. Two questions arise: What is the
justification for taking for example outlook as the first test feature? Why not inspect all
possible trees?

The reason is that the tree-building process does not intend to find any partition of the
data set, but to construct a tree with predictive power and with as few blocks as possible
[43]. Moreover the problem of finding the smallest tree is NP-complete. Therefore DT
algorithms are non-backtracking, greedy algorithms, where the impacts of alternative
choices are not analysed. Nevertheless a criterion has to be found by which is decided
what test is applied.

Gain (ratio) criterion There exist many implementations of DTs, for example Clas-
sification and Regression Tree (CART) systems from Breiman, or ID3 and C4.5 from
Quinlan. Hunt recommended an entry via information theory, so the ID3 algorithm uses
the so-called gain criterion. There is one statement of the information theory [43]: “The
information conveyed by a message depends on its probability and can be measured in
bits as minus the logarithm to base 2 of that probability.” This leads to a definition as it
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is given in Eq. 3.7:

H(S) = −
k∑

j=1
P (sj) · log2 P (sj). (3.7)

The information entropy H(S) of a set S is defined as the average number of information
needed to determine the class of an instance in S. P (sj) describes the probability of the
information “message” and can be computed with

P (sj) = |{x ∈ S|y = Cj}|
|S|

, (3.8)

which is the number of instances in S, which belong to class Cj divided by the number
of all instances in set S. The instances have the form (x, y) = (x1, x2, x3, ..., xp, y) where
xa is the value of the ath feature of the instance x and y is the corresponding class label.
If T is partitioned with n outcomes (O1, . . . , On) because of test (feature) a, the required
information by using this test is

H(T |a) =
n∑

i=1

|Ti|
|T |
·H(Ti), with Ti = {x ∈ T |xa = Oi} . (3.9)

The gained information IG by using the test a to partition the set T is calculated with
the quantity

IG(T, a) = H(T )−H(T |a), (3.10)

that measures the information relevant to classification. The gain criterion finds the test
which maximizes the information gain.

In the C4.5 Decision Tree algorithm, the criterion has been refined and extended by the
intrinsic value IV , which shows the potential information achieved by splitting T into n
subsets:

IV (T, a) = −
n∑

i=1

|Ti|
|T |
· log2

( |Ti|
|T |

)
(3.11)

Thus the information gain ratio IGR relates the information apparently helpful for
classification to that one generated by the split:

IGR = IG

IV
. (3.12)

Based on this criterion the classification tree is created, namely it is used to evaluate a
set of tests, which may take one of the forms [43]:

• “standard” test on a discrete feature, with one outcome and branch for each pos-
sible value.
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• binary test on a continuous feature, with outcomes A ≤ Z and A > Z, where the
feature value A is compared to a threshold Z.

In the second case, the training set T is sorted on the finite values of feature A,
{v1, v2, . . . , vm}. Any threshold between vi and vi+1 divides the values into {v1, v2, . . . , vi}
and {vi+1, vi+2, . . . , vm}. So there are only m − 1 possible values for the threshold and
they are either chosen as the midpoint of each interval

Zi = vi + vi+1
2 , (3.13)

or, as the C4.5 algorithm does, as the largest value of A not exceeding the midpoint
above, ensuring that all threshold values appear in the data set.

Overfitting A learning algorithm is said to overfit relative to a simpler one if it is more
accurate in fitting known data but less accurate in predicting new data. In cases where
learning was performed too long or where the training dataset is small, the performance
on the training set still increases while it becomes worse on unknown data. There are
two common approaches to avoid overfitting of training data [25]:

• stop the training algorithm before it reaches a point at which it perfectly fits the
training data, or

• prune the DT.

The second approach is slower but more reliable.

k-Nearest Neighbour (k-NN)

k-NN is an instance-based learning algorithm which requires less computation time du-
ring the training phase than eager-learning algorithms (like DTs) but more computation
time during the classification process [25]. The principle of this classifier is that instances
within a dataset with similar properties will be located close to each other. This algo-
rithm interprets every instance as a point in a n-dimensional space where each feature
corresponds to one dimension. The relative distance between the k nearest instances and
the query instance is measured using distance metrics such as the Euclidian, Hamming
or Chebychev distance. The most frequent class label of the k nearest instances is then
identified as the class of the query instance.
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Support Vector Machine (SVM)

A SVM constructs a hyperplane or set of hyperplanes in a high-dimensional space, which
linearly separates data of two different classes. The hyperplanes are constituted by so-
called support vector points and the solution is only a linear combination of these. They
are part of the training data that lie on the hyperplane’s margin, other points of the
training dataset are ignored. Hence, the number of training instances is unimportant as
well as the number of features in relation to the size of the training set. The maximum
margin allows the SVM algorithm to select one of the candidate hyperplanes. When the
data can not be separated linearly, they are mapped into a higher-dimensional space,
where the separating hyperplane is defined. Multi-class problems must be reduced to a
set of multiple binary classification problems [25].

Naive Bayes (NB)

NB is a special kind of Bayesian Network (BN). It is a simple probabilistic classifier
based on Bayes’ rule with strong independence assumptions between the features, i.e.,
it naively assumes that the value of a particular feature is unrelated to the presence or
absence of any other feature, where the class variable is given.

The following formula describes the probability model over a dependent class variable
C conditional on several feature variables F1 through Fn using Bayes’ rule:

p(C|F1, F2, . . . , Fn) = p(C)p(F1, F2, . . . , Fn|C)
p(F1, F2, . . . , Fn) (3.14)

The numerator corresponds to the joint probability which can be further subdivided into
conditional probabilities

p(C)p(F1, F2, . . . , Fn|C) = p(C,F1, F2, . . . , Fn) (3.15)

= p(C)p(F1|C)p(F2|C,F1) . . . p(Fn|C,F1, . . . , Fn−1)

Assuming the conditional independence of features Fi and Fj (i, j = 1, . . . , n, i 6= j) it
simplifies to

p(C)p(F1, F2, . . . , Fn|C) = 1
Z
p(C)

n∏
i=1

p(Fi|C). (3.16)

The denominator Z = p(F1, F2, . . . , Fn), called evidence, is constant because it does not
depend on C and the feature values Fi are given. The NB classifier combines this model
with a decision rule, for example picks the most probable hypothesis, the class C, where
the model is maximized.
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Despite the naive design, NB classifiers have worked quite well when tested on actual
datasets and only require a small amount of training data to estimate the parameters
(means and variances) necessary for classification, linear to the number of features [53].

3.3.2 Evaluation

For the evaluation of a classifier the entire dataset is split into a training and a test
set. The classifier learns from the training set whereas the test set is presented to the
classifier without labels, i.e. without the ground-truth which then predicts the class of
each instance.

Partitioning the data set is a critical issue. It may occur that instances are concentrated
in a particular feature space subregion, then the classifier performance would not be
reflected by the evaluation metrics [28]. For this reason a k-fold cross validation is
preferred. Thereby the dataset is split into k equally-sized parts, where one part is used
for testing and the k − 1 parts for training. This procedure is repeated k times, so that
each fold is used as test set once. The validation results are averaged over the iterations.
A 10-fold cross validation is commonly used. The selection of data samples should be
done in stratified manner, so that the class distribution in the test set is similar to the
training set.

The evaluation results can be presented in a confusion matrix Mn×n, where n is the
number of classes. Mij is the number of instances that are belonging to class i (the
ground-truth) and were classified as class j. An example is given in Tab. 3.2.

Table 3.2: Example for a confusion matrix with three classes

Classification output

G
ro
un

d
tr
ut
h apple cherry banana

apple 30 3 2
cherry 2 25 0
banana 4 2 27

In a binary classification problem with two classes there are four parameters that can
be defined and computed from the confusion matrix.

• True Positives (TP): the number of positive instances (i.e., relating to the consi-
dered class) classified as positive (that means correctly).

• True Negatives (TN): the number of negative instances (i.e., relating to the disre-
garded class) classified as negative (correctly).
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• False Positives (FP): the number of negative instances classified as positive (i.e.,
incorrectly classified as the considered class).

• False Negatives (FN): the number of positives instances classified as negative (i.e.,
incorrectly classified as the disregarded class).

These quantities can be generalized for problems with n classes, whereat an instance is
positive according to a class, e.g., apple and negative in line with all other classes except
for apple. For better understanding see Tab. 3.3.

Table 3.3: Definition of True Positives (TP), True Negatives (TN), False Negatives (FN) and
False Positives (FP) considering class apple, number of instances in brackets.

Classification output

G
ro
un

d
tr
ut
h

apple others
apple TP (30) FN (5)
others FP (6) TN (54)

Various metrics can be calculated when combining these parameters [28]. The most
important are:

• Accuracy
is the most standard quantity to show the overall classification performance con-
sidering all k classes and is defined through the number of correctly classified
instances (situated in the diagonal of the confusion matrix Mij) compared to the
total number of instances:

Accuracy =

k∑
i=1

Mii

k∑
i=1

k∑
j=1

Mij

(3.17)

• Precision (or Positive Predictive Value)
is the ratio of correctly classified instances relating to a specific class to the total
number of instances classified as this class:

Precision = TP

TP + FP
. (3.18)

• Recall (or True Positive Rate, Sensitivity, Hit Rate)
is the ratio of correctly classified instances relating to a specific class to the total
number of instances belonging to this class:

Recall = TP

TP + FN
. (3.19)
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In addition to these, there exist, e.g., the classification error, the F-measure which
combines precision and recall, the False Positive Rate and the False Negative Rate.

Comparison of classifiers In order to choose the most accurate classifier, a 5×2-fold
cross validation with a paired t-test is suggested ([28],[14]). Thus, five replications of a 2-
fold cross validation are performed, where the dataset is randomized for each replication
before it is partitioned into two equal-sized sets. This can be achieved by using different
seeds for the random number generator. When comparing two classification algorithms, a
statistical paired t-test can be applied. The null hypothesis is that both algorithms have
the same accuracy or error rate. Defining p(j)

i as the difference between the accuracies
(or error rates) of both classifiers in the i-th iteration and j-th fold, the test statistic t̃
of the t-test is defined as:

t̃ = p
(1)
1√

1
5

5∑
i=1

s2
i

, (3.20)

with s2
i = (p(1)

i − p̄)2 + (p(2)
i − p̄)2 as the variance of the i-th iteration and p̄ = p

(1)
i +p

(2)
i

2 .
t̃ is approximately Student-t distributed with 5 degrees of freedom.
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In the following chapter, the individual steps are explained, which were necessary in
order to perform AR. First, the desired activities, the used equipment and the data
recording are described in detail. Then the explanation of the data processing follows
including feature calculation. The final step consists in the selection of the features and
the actual classification. All calculations were performed in MATLAB, version R2012b.

4.1 Activities

The activities which were desired to recognize are human motion activities. They are
listed below. The abbreviations used in several graphics and tables in this work are
stated in brackets.

• Walking on level ground or merely walking (WA)

• Walking downstairs or in short downstairs (DS)

• Walking upstairs or briefly upstairs (US)

• Running (RU)

• Standing (ST)

• Sitting (SI)

• Lying (LY)

Depending on the location of the measurement device, not all activities have been used
in each investigation in Chapter 5. In addition, the motion activities were performed
in fast and slow manner. The abbreviations are then extended by a letter “F” or “S”,
e.g. walking fast is shortened by WAF. In the first essential investigation, two addi-
tional activities were examined, which were furthermore disregarded because they were
considered too specific:

• Jumping (JU)

• Falling (FA)
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4.2 Measurement Devices

AR was investigated on the basis of a medium-priced IMU, the Xsens MTi-G, and
evaluated and tested with low-cost sensors, Smartphone Samsung Galaxy Nexus and
Smartwatch Omate TrueSmart. The three devices are explained in more detail below.

Figure 4.1: Xsens MTi-G with marked sensor axes.

Xsens The MTi-G is an integrated GPS and IMU with a Navigation and Attitude
and Heading Reference System (AHRS) processor manufactured by Xsens Technologies
[55]. It includes a miniature GPS receiver, MEMS inertial sensors and an additional
3D magnetometer and pressure sensor. The MTi-G provides 3D position and velocity
estimated by sensor fusion using a real-time Kalman filter. In addition, 3D orientation
estimates, as well as 3D acceleration, 3D angular rate, 3D earth-magnetic field data and
static pressure are delivered. The 3D data are expressed in coordinates of a right-handed
coordinate frame, the sensor frame (SF), which is aligned to the housing of the device,
see Fig. 4.1. The units for acceleration and angular rate output are m/s2 respectively
rad/s. The output unit for the Magnetic field is an arbitrary unit normalized to earth
field strength. The orientation between the SF and the local level frame (LLF) is output
as Euler angles roll, pitch and yaw. The default sampling frequency of 100 Hz is retained
in this work.

Smartphone The Samsung Galaxy Nexus is a touch-screen Smartphone co-developed
by Google and Samsung Electronics with Android 4.0 as operating system. It was
released in 2011 and includes an accelerometer as well as a gyroscope and magnetometer,
for example, for rotating the screen and as a compass. The coordinate axes of the sensors
are aligned with the housing and are defined as in Fig. 4.2.
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Figure 4.2: Smartphone Samsung Galaxy Nexus with marked sensor axes.

According to a survey in 2014, approximately 72 % of mobile phone users in Austria
currently own a Smartphone. In 2010, there were only 32 % [46]. It is expected that the
number will continue to rise and almost everyone will own a Smartphone with comparable
and more sensors in the coming years.

A short application for Android, called SensorTest, shows the current inertial sensor
data on the display. A further application, called CombinedWrite, enables the sensor
data readout and storage. It delivers three files containing the inertial sensors output,
the WiFi data and GPS positions with UTC time stamps. The inertial sensor signals
are output with approximately 28 Hz. A screenshot of the two applications is given in
Fig. 4.3.

Smartwatch The Omate TrueSmart is a Smartwatch developed by Omate and has been
funded by crowd funding via Kickstarter. It is a standalone Smartwatch based on An-
droid and can be used to make calls, navigate and use Android applications independent
of the user’s Smartphone, although it may also be used as a second screen of the phone.
It includes sensors that are comparable to those of the Smartphone Samsung Galaxy
Nexus. The coordinate axes are defined as in Fig. 4.4 and the applications described
above can be applied in the same way. The output frequency is 100 Hz for the inertial
sensors.

The willingness to use a Smartwatch is growing. Two out of five people in Germany
would carry a Smartwatch [47]. For 25 percent of German interviewees the collection
of sports, health and fitness values is the most important application, followed by the
function as a classical clock (20 percent) and the ability to make phone calls (11 percent)
[48].
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(a) SensorTest (b) CombinedWrite

Figure 4.3: Applications for readout and storage of sensor data on Android.

Figure 4.4: Smartwatch Omate TrueSmart with marked sensor axes.

The three devices are hereinafter referred to as Xsens, Smartphone or Nexus, and Smart-
watch or Omate.
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4.3 Data Collection

Various experiments were carried out where one subject was wearing one or two of
the described devices on a specific location on the body. Most of the measurements
were done by the author Karin Wisiol, in the following referred to as Karin, one set of
training and testing data was collected by Thomas Moder, hereinafter called Thomas.
The subjects performed different activities in a semi-naturalistic way inside the campus
of Steyrergasse 30. A second person was manually labelling the activities by recording
the start and stop times in UTC. More detailed information on training data collection
is given hereafter.

Xsens/Smartphone on the belt Xsens and Smartphone were placed on a fixed location
on the belt on the right part of Karin’s body. Both devices were attached firmly to
ensure a stable position at the body. To facilitate a synchronization of the data, GPS
time stamps were recorded additionally. A second Smartphone with internet connection
was used to display the actual UTC time for taking handwritten notes of the time
epochs when the activity started and ended. The data set was collected within 2 days
(18.04.2014 and 21.04.2014) and contains about 1.5 hours of activity data. In addition
to the seven contemplated activities, jumping and falling were registered.

Smartphone in the hand in front of body About 20 minutes of inertial sensor data each
were collected by Thomas (15.07.2014) and Karin (18.07.2014) holding the Smartphone
in the right hand in front of the body in breast height while they were performing
four activities (standing, walking, upstairs, downstairs). The aim was to find differences
between several persons and to provide an AR model to be used as a support of a 3D
indoor positioning algorithm with pedestrian dead reckoning based on Bayes filtering
[38].

Smartphone in right hand in front of body and Smartwatch on left wrist An ad-
ditional data set was recorded by Karin (28.07.2014), where the four just mentioned
activities plus running were carried out at different speeds - fast and slow, using the
Smartphone in the right hand in front of body and the Smartwatch on the left wrist.

Smartwatch on left wrist Wearing the Smartwatch on the left wrist, five activities
(standing, walking, upstairs, downstairs, running) were performed and recorded within
15 minutes on 10.09.2014 by Karin. The arm was swinging in a natural way without
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carrying any objects in the hands. It was not considered to register other static activities
like sitting or lying since such activities are very difficult to relate with an arbitrary wrist
position.

Smartphone in trouser pocket Around half an hour of data, wearing the Smartphone
in the right trouser pocket, was collected by Karin on 07.08.2014. The certainly most
common location on the body was chosen to record signals from the activities standing,
walking, upstairs, downstairs, running, sitting, and lying since this part of the body
reflects the motion and position in the best way.

Smartphone at different body locations To examine the effects of different sensor
positions on the body, an additional measurement was carried out by Karin (01.08.2014).
While walking, the Smartphone was located either in the hand in front of the body, in
the hand swinging, in the trouser pocket or in the jacket’s interior pocket. The idea was
to incorporate a classifier, before the actual activity recognition, which determines the
sensor position and due to this takes the appropriate classification model.

4.4 Data Preprocessing

To synchronize the collected data from Smartphone and Xsens a common time unit
had to be found. Xsens provides time stamps in the format [year,month,day,decimal

seconds of day] whereas the Smartphone delivers UTCmilliseconds. MATLAB’s built-
in function datenum generates the whole and fractional number of days from a fixed,
preset date (January 0, 0000) which served as a common format.

The ground-truth which includes time stamps and activity labels was transcribed to
Excel in order to import its data automatically with MATLAB. The time stamps were
converted to the new time format as well.

The start and stop times were adapted by examining the time series of the norm of the
collected acceleration data graphically. Thereby the particular segments of the staircase
could be separated to enable an exact differentiation between the favoured activities.
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4.5 Feature Computation

The calculation of the norm of the three-dimensional measurements is the most common
and meaningful way of feature computation as the sensor orientation in reference to the
body and surrounding is unknown.
As walking on stairs (upstairs and downstairs) and walking on level ground (walking)
turns out to be difficult to distinguish, the collected accelerometer data were transformed
from sensor frame to local level frame (LLF) using a Kalman filter to estimate roll and
pitch for each epoch [38].
A differentiation between static activities like standing, sitting and lying is possible by
using features in the body frame (BF). A detailed description on these transformations
is given in Section 3.2. At the beginning of each series of measurements, the subject’s
first activity was standing for at least five seconds. The accelerometer measurements in
this time period could be used to approximately calculate a mean value for roll and pitch
and take them to transform all measurement data of the test series into the defined BF.

The following components were used as a basis for feature computation (the abbrevia-
tions a, ω and m stand for acceleration, angular velocity and magnetic flux density):

• Norm (‖a‖, ‖ω‖, ‖m‖),
where e.g. ‖a‖ =

√
a2

x + a2
y + a2

z,

• Horizontal Component in BF (aB
xy, ωB

xy),
where axy =

√
a2

x + a2
y,

• Vertical Component in BF (aB
z , ωB

z ),

• Horizontal Component in LLF (aLL
xy ),

• Vertical Component in LLF (aLL
z ).

The duration of human activities is relatively long (about seconds or minutes) whereas
the sampling rate of the sensor is very high (up to 100 Hz). To obtain sufficient infor-
mation to describe the performed activity, a single sample on a specific time instant is
not suitable. Hence, a time window basis instead of a sample basis is used to recognize
activities. In order to receive quantitative measures, statistical methods are used to
extract features [28] (e.g., the mean value).

To provide adequate information about the activity, the approximate duration of one
step (around 1 second) is used as a guideline for a window length. The samples within
each window are used to extract one value for each type of feature. Corresponding to
the sampling frequency of each device, different window lengths are used, see Tab. 4.1.
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The chosen sizes of the windows allowed fast computation of Fourier coefficients using
Fast Fourier Transformation (FFT). In addition, features are computed every quarter
second, i.e., at 4 Hz, so their windows overlap each other.

Table 4.1: Different window sizes used in this work.

Device Sampling frequency
[Hz]

Window
[samples]

Seconds Overlap

Xsens 100 128 1.28 80.47 %
Smartphone 28 16 0.57 56.25 %

32 1.14 78.13 %
64 2.28 89.06 %
128 4.56 94.53 %

Smartwatch 100 64 0.64 60.94 %
128 1.28 80.47 %
256 2.56 90.23 %

Based on the components mentioned above, features were computed in the time and
frequency domain: maximum value (MAX), mean (MEAN), standard deviation (STD),
root mean square (RMS), interquartile range (IQR), main frequency component (MFC)
[18], amplitude of MFC, arc tangent of the ratio of vertical and horizontal component,
and the so called Activity Unit (AU) [8]. Hereafter, a more detailed description of the
extracted features is given.

4.5.1 Activity Unit

This feature was introduced as a new measurement quantity by some researchers from
Fraunhofer IGD who study AR on Smartwatches [8]. They consider the acceleration
sensor as the most important for AR. The AU defines the mean acceleration of the
sensor in the three-dimensional space per second. It describes the acceleration force and
is given in m/s3. In contrast to the jerk, the AU denotes the difference of the current
acceleration to the average acceleration. It is defined as follows:

AU = 1
N

N∑
n=1

√
(x(n)− xmean(n))2 + (y(n)− ymean(n))2 + (z(n)− zmean(n))2 (4.1)

The variables x(n), y(n) and z(n) are the sensor values of the nth sample of the window
with length N . xmean, ymean and zmean describe the averaged sensor values of each axis
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which are determined by a moving average (ymean and zmean are analogue):

xmean(n) = xmean(n− 1) · a+ x(n) · (1− a), (4.2)

where x(n) is the current sensor value, a is an absolute average factor (a = 0.95) and
xmean(n) is the calculated average. Considering the mean acceleration of each axis for
the AU value allows one to ignore the constant sensor offset and the constant gravity
influence [8].

The computation can be executed in any reference frame, because it is independent from
axis orientation. The AU was not only computed with acceleration values but also with
angular rates (ω) and magnetic flux density (m) to test for possible benefits.

4.5.2 Maximum, Mean, Standard deviation, root mean square, interquartile
range

The next features have also been used by Frank et al. [18]. They are computed on the
basis of the above mentioned components, in the following formulas denoted as u, e.g.,
the horizontal component of the angular rate in the BF. A detailed description is given
in the list below:

• MAX
It is the largest element of the set of all values in the sampling window:

MAX(u) = max({u(1), . . . , u(N)}). (4.3)

u(k) is the kth sample within the window with a size of N .

• MEAN
The averaged value of the elements (u) within the window is defined as

MEAN(u) = ū = 1
N

N∑
k=1

u(k). (4.4)

• STD
The standard deviation is commonly defined as:

STD(u) = σ(u) =

√√√√ 1
N

N∑
k=1

(u(k)− ū)2 (4.5)

• RMS
The Root Mean Square is given by:

RMS(u) =

√√√√ 1
N

N∑
k=1

u(k)2 (4.6)
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• IQR
The definition of the interquartile range is:

IQR(u) = Q3 −Q1 (4.7)

with Q1 as the 25th percentile or first quartile and Q3 as the 75th percentile or
third quartile. The 25th percentile is the value below which 25 percent of the
samples in the window can be found.

4.5.3 Main frequency component and its amplitude

The frequency-domain features are obtained by using the Short Time Fourier Transform
(STFT). The assumption for this technique is that a non stationary signal can be consid-
ered as stationary for short time periods. After the elimination of the mean value of the
samples in the window, the short time series is multiplied by a window with the same
size as the time series, more precisely a Hann window which is recommended, because it
is satisfactory in 95 % of cases and has good frequency resolution and reduced spectral
leakage [40]. Zero padding is used to obtain a high sampling rate in the spectrum. Then
the FFT algorithm is applied to get the Fourier coefficients X(k):

X(k) =
N−1∑
n=0

x(n)e
−2πikn
N , 0 ≤ k ≤ N − 1, (4.8)

where x(n) are the discrete data points multiplied with the Hann window and N is
the window size respectively the time series length. Because of the symmetry of the
coefficients only the first half has to be considered. The absolute values are built and
scaled receiving the values Y . The amplitude spectrum in dB is calculated via

Y [dB] = 20 log10(Y + 10−6), (4.9)

where the smallest possible value will be -120 dB. The continuous frequency is generated
with the formula

fk = fs
k

L
, (4.10)

where fs is the sampling frequency as listed in Tab. 4.1, k is the index of the Fourier
coefficient and L is the total length of the sampled signal (including the zeros from
padding). The frequency with the highest amplitude is the MFC. Both values, amplitude
and frequency, are used as features.
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4.5.4 Arc Tangent of z/xy

In order to distinguish between walking on stairs and walking on level ground, a new
idea was produced of building the ratio of the vertical and horizontal component of
acceleration in the LLF and calculate a virtual slope angle by applying the arc tangent.

4.5.5 Nomenclature

The just described features were provided with own names to facilitate handling, because
they are calculated for different basis components, frames and sensors. The nomenclature
is primarily dependent on the sensor, i.e., the name starts with the letter

• a, for acceleration (a stands for accelerometer),

• g, for angular velocity (g stands for gyroscope),

• m, for magnetic flux density (m stands for magnetometer).

Secondary, the name depends on the frame and basis component. For example the mean
value of the vertical component of acceleration in the LLF is “a_l9”. The “l” stands for
LLF. A complete listing is given in Tab. 4.2.

Table 4.2: Feature nomenclature, dependent on the frame.

Feature
Norm BF LLF
‖ · ‖ xy z xy z

AU _0 - - - -
MAX _n1 _b1 _b8 _l1 _l8
MEAN _n2 _b2 _b9 _l2 _l9
STD _n3 _b3 _b10 _l3 _l10
RMS _n4 _b4 _b11 _l4 _l11
IQR _n5 _b5 _b12 _l5 _l12
MFC _n6 _b6 _b13 _l6 _l13
ampl(MFC) _n7 _b7 _b14 _l7 _l14
atan(z/xy) - - _l15

The AU is enqueued in the first column where the norm-features are, although it belongs
to an own category independent of the frame and calculated with the components of each
axis.
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The features are generally numbered consecutively. For the LLF and BF the numbering
beginning at the horizontal components continues on the vertical ones. The arc tangent-
feature is only calculated in the LLF.

Furthermore, features in the LLF were computed only for accelerometer data and those
in the BF only for accelerometer and gyroscope data. Norm-features were calculated for
all three measurements. An overview is given in the following Tab. 4.3:

Table 4.3: Feature nomenclature, different sensors. The * stands for all numbers that appear
in Tab. 4.2.

Norm BF LLF

Accelerometer a_n* a_b* a_l*
Gyroscope g_n* g_b* -
Magnetometer m_n* - -

For the investigation of the feature distribution and for comparison, 2D-plots were cre-
ated in order to identify clouds where the feature values of common activities are con-
centrated. Two examples are given in Fig. 4.5.

(a) (b)

Figure 4.5: 2D comparison of features - examples, (a) clearly visible clouds of acceleration
features, (b) no clearly identifiable clouds of magnetometer features.

4.6 Feature Selection and Classification Process

The whole classification procedure including the selection of features, building the clas-
sifier and evaluating it has been carried out with the use of the widespread machine
learning tool WEKA (Waikato Environment for Knowledge Analysis) in the version 3.7.
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This software is written in Java and is freely available under the GNU General Public Li-
cence. It is possible to call the WEKA library directly from MATLAB. Thereby, WEKA
classes and methods can be used beside MATLAB functions.

Other machine learning tools are for example ELKI, KNIME or RapidMiner, which are
also open-source. MATLAB itself includes classification tools as well but less extensive.
The C4.5 Decision Tree, for example, is not implemented.

There are several reasons for the use of WEKA. Besides the above mentioned points
WEKA includes a variety of classifiers and the possibility to perform Correlation-based
Feature Selection (CFS). Moreover, many recent work exist using this software, e.g.
Labrador and Yejas [28] used WEKA in combination with an own designed library
MECLA in their application Vigilante. Other researchers have also created a mobile
version of WEKA (Mobile Weka) to work on Android platforms [32]. Some example
screen-shots are given in Fig. 4.6.

(a) Menu (b) Classification settings (c) Generated model

Figure 4.6: Mobile Weka App on Android.

In the present work, the C4.5 Decision Tree, called J48 in WEKA, has been chosen as
the main classifier. As part of the investigations also other classifiers have been studied
and mutually evaluated (see chapt. 5.7). All of them have been used with the default
settings. A short list of the classification names and settings can be seen in Tab. 4.4.
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Table 4.4: Nomenclature and description of used classifiers.

nomenclature WEKA classifier description

C4.5 J48 C4.5 Decision Tree learner (implements C4.5 revision 8),
as default pruned

NB NaiveBayes standard probabilistic Naive Bayes (NB) classifier
SVM SMO sequential minimal optimization algorithm for support

vector classification
k-NN Ibk k-nearest-neighbours (k-NN) classifier

WEKA methods have been used to generate and evaluate classifiers using training sets as
well as to predict new instances (samples without labels). An instance is a realization of
an object with the features and the class as attributes. In the course of the investigations,
several combinations of feature-groups (as stated in Tab. 4.3) were tried out and the
CFS of WEKA was applied.
The classifiers were evaluated using 10-fold cross validation, showing the recall values and
confusion matrices. For the comparison of different classifiers a 5×2-fold cross validation
with a paired t-test has been applied. More information on the evaluation of classifiers
is given in Section 3.3.2.

A short overview on the most important WEKA classes which were used in this work
are stated in Tab. 4.5.

Table 4.5: Most important WEKA classes and methods used in this work.

class method description

weka.classifiers buildClassifier generates a classifier
classifyInstance classifies the given test instance

weka.core.Instances randomize shuffles the instances in the set so that they are
ordered randomly

stratify select and sort the instances according to its class
values for a stratified cross-validation afterwards

trainCV, testCV creates the training and test set for one fold of a
cross-validation on the dataset

attribute, returns an attribute resp.
classAttribute the class attribute

weka.classifiers.Evaluation crossValidateModel performs a cross validation for a classifier on a set
of instances

evaluateModel evaluates the classifier on a given set of instances
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This chapter comprises the particular investigations that are made in this work. First,
the suitability of low-cost sensors is investigated. Based on this, various window lengths
and feature subsets are compared, user-specific and speed-dependent activities are ex-
amined carefully. Furthermore, the real-time capability is tested and different classifiers
are compared with each other. The latter investigation has the aim to determine the
actual sensor location on the body.

The abbreviations for the activities used in this chapter are listed in Section 4.1. In the
occurring figures and tables, Smartphone and Smartwatch are referred to as Nexus and
Omate.

5.1 Ability of Smartphone for AR

Before using the low-cost sensors, like a Smartphone and Smartwatch, by themselves,
AR should be investigated on the basis of a medium-priced IMU, the Xsens, in order to
generally determine the suitability.

Xsens and Smartphone have been mounted together on the belt as described in Section
4.3. Fig. 5.1 shows the time series of the acceleration of each axis for the Xsens and
the Smartphone (Nexus), given in the SF. It can be seen that a comparison of the two
devices in this context is not possible. The sensors have been attached to the body in
different orientations and that is why the values for each axis, for example, the activity
sitting (see Fig. 5.1, black rectangles) do not correlate. Furthermore, a replication of
the measurements would not deliver the same results as the orientation would definitely
change when the device would be mounted on the belt again.
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Figure 5.1: Comparison of Xsens and Nexus, acceleration of all three axes in SF.

For this reason, the measurements are transformed into the LLF as described in Chapter
3.2. The horizontal and vertical component (aLL

xy and aLL
z ) are of special interest and

can be compared, see Fig. 5.2. It is noticeable that the amplitudes generated by the
Xsens appear larger in some cases and differences occur especially in static activities.
The reasons can be found in the sensitivity and (in)stability caused by the bias of the
Smartphone sensors. The Kalman filter works as best as the signal allows, because the
time series of the acceleration norm (Fig. 5.3) shows the same behaviour as the vertical
component in the LLF (Fig. 5.2), which definitely includes the largest accelerations, see
the cyan rectangles in the figures.

Especially for “low”-motion activities like standing, sitting and lying, where the linear
acceleration and angular rate are close to zero, the information depends only on the
acceleration due to gravity [15]. If the orientation of the body relative to the LLF
is known, the gravity is reflected in particular axes. Therefore the signals are also
transformed into the BF.
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Figure 5.2: Comparison of Xsens and Nexus, acceleration of all three axes in LLF.

Figure 5.3: Nexus, total acceleration (norm).
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Figure 5.4: Comparison of Xsens and Nexus, acceleration of all three axes in BF.

In Fig. 5.4, where the time series of acceleration in the BF are given, rectangles are
drawn, to which special attention is paid. In standing position (magenta rectangles) the
gravity totally acts on the vertical axis of the BF (aB

z in blue), in contrast, when the
subject is lying (cyan rectangles), the gravity is mirrored in the horizontal plane (aB

xy in
black). Furthermore, it can be seen that the x and y axes do not match between the
devices because of the missing yaw angle needed for the rotation matrix, however, the
horizontal component curves show the same run. That is the reason why only vertical
and horizontal components are used as a basis for feature computation.

After the calculation of the features with 128 respectively 28 samples per window, their
temporal variation can be illustrated. In Fig. 5.5, for example, the time series of the
RMS of the acceleration norm (a_n4) is displayed. Although Xsens and Smartphone
distinguish recognizable, it can be shown that both devices are able to carry out AR.
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Figure 5.5: Comparison of Xsens and Nexus, time series of the feature a_n4 (RMS of the
acceleration norm).

A separate issue is the magnetometer. The measured data can not be compared in
the form in which they are presented, see Fig. 5.6, but if a common factor is applied,
the curves appear similar to each other, as Fig. 5.7 shows. Apart from the fact that
the units do not match, the exemplary feature 2D-plot (Fig. 5.8) shows no separable
clouds, which would identify various activities. Additionally, the measured field strength
is strongly influenced by electronic devices or other magnetic objects in the vicinity. For
these reasons, the magnetometer data is not used in the following for AR.

Figure 5.6: Comparison of Xsens and Nexus, time series of the feature m_n2 (Mean of the
norm of magnetometer data).
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Figure 5.7: Comparison of Xsens and Nexus, time series of the feature m_n2 (Mean of the
norm of magnetometer data) - with applied scale factor.

(a) Xsens (b) Nexus

Figure 5.8: Comparison of Xsens and Nexus, 2D-plots of magnetometer-based features. Note
the different x-axis scaling!

With the calculated features, a classifier, more particularly a C4.5 Decision Tree, is
generated, which is evaluated with a 10-fold cross validation. Different feature groups
are used to make any differences identifiable. The recall values for each Xsens and
Smartphone (Nexus) are shown in Table 5.1.
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Table 5.1: Recall values of 10-fold cross validation of C4.5 Decision Tree classifier, different
feature subsets comparing Xsens and Nexus.

Feature subsets norm+LLF+BF norm+LLF norm
a_n*, g_n*, a_l*, a_b*, g_b* a_n*, g_n*, a_l* a_n*, g_n*

XXXXXXXXXXActivity
Device

Xsens Nexus Xsens Nexus Xsens Nexus

DS 95.2 % 96.0 % 91.4 % 97.5 % 92.7 % 89.3 %
FA 87.4 % 80.2 % 75.7 % 77.7 % 68.5 % 75.2 %
JU 97.4 % 94.1 % 100.0 % 96.6 % 98.3 % 99.2 %
LY 100.0 % 99.8 % 96.6 % 90.8 % 95.9 % 90.9 %
RU 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 %
SI 100.0 % 100.0 % 98.2 % 87.6 % 97.7 % 88.3 %
ST 100.0 % 100.0 % 98.8 % 98.7 % 99.1 % 98.8 %
US 96.7 % 94.5 % 94.5 % 93.0 % 87.5 % 84.0 %
WA 99.5 % 99.1 % 99.1 % 99.1 % 98.2 % 97.8 %

Weighted Avg. 99.6 % 99.4 % 97.8 % 94.2 % 97.2 % 93.7 %

Adding LLF and BF features, the accuracy increases. In all three cases, the overall
accuracy of the Smartphone is below the Xsens, but always above 93 %, which is more
than satisfactory. The activity falling has by far the worst recall values. Furthermore, it
is striking that downstairs and upstairs are more difficult to detect than other activities,
both in case of the Smartphone as well as the Xsens. These circumstances may also be
observed in the feature 2D-plots in Fig. 5.9.

(a) Xsens (b) Nexus

Figure 5.9: Comparison of Xsens and Nexus, exemplary 2D-plot of BF features.

This study shows that sensor data in LLF and BF contribute significantly to the improve-
ment in accuracy. Because of their impracticality, magnetometer data are not used in the
following. The activities jumping and falling were considered too specific respectively
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complex for first experiments with AR within this thesis. Therefore they are no longer
dealt with in the next investigations. The conclusion is that the Smartphone Samsung
Galaxy Nexus is suitable for AR.

5.2 Variation of the window size

In the second study, the effect of the window length on the recognition accuracy is
examined. Both the outcome of the cross validation and the hit rate of predicted data
are considered. Three different training datasets are investigated:

• Smartphone in hand in front of the body,

• Smartphone in trouser pocket and

• Smartwatch on the wrist.

In all cases, norm and LLF features in combination with a C4.5 Decision Tree are used.

5.2.1 Smartphone in the hand in front of the body

The change in the window size has an effect on the distribution of the features as can be
seen in Fig. 5.10. The higher the window size is the closer they are to each other. An
exception in this case is the size 128 corresponding to a period of approx. 4.5 seconds,
see Fig. 5.10. Looking at the recall results of a 10-fold cross validation (Tab. 5.2), it is
quite evident that the accuracy increases with the size of the window and reaches almost
100 % with 64 and 128 samples. This is clear because the windows overlap more with
increasing size and the features calculated from these take similar values to each other.

Table 5.2: Recall values of 10-fold cross validation of C4.5 Decision Tree classifier, Smartphone
in the hand in front of body, different window sizes, norm and LLF features (acceleration
and angular rate).

# samples/window DS ST US WA Weighted Avg.

16 89.6 % 100.0 % 83.9 % 98.0 % 98.2 %
32 96.7 % 100.0 % 97.1 % 99.7 % 99.7 %
64 100.0 % 100.0 % 100.0 % 99.7 % 99.9 %

128 100.0 % 100.0 % 100.0 % 99.9 % 99.9 %

If the classifiers, which are generated using different window sizes, are applied to test
data, the results look different to the cross validation results, see Fig. 5.11.
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(a) window size=16 (b) window size=32

(c) window size=64 (d) window size=128

Figure 5.10: Comparison of different window sizes, Smartphone in the hand in front of the
body, 2D-plot of the features a_0 and a_n5.

Thereby, a sequence of activities was performed, whose transition times were recorded
which are marked by black lines.

When using a window size of 128 samples, the activities walking and upstairs are confused
with each other and also upstairs with downstairs. In various areas, even less than 50 %
are predicted correctly. 50 % is the probability, as the chance of playing at dice, which
should be achieved at least. In comparison, a very small window size of only 16 samples
provides better results. However, the activity upstairs is correctly recognized only to the
half and the other half as downstairs. In the other cases similar good results are obtained.
Incidentally, in the test series a staircase was passed, which has a small platform in the
middle. This means that for about a second the activity of walking was performed which
is quite visible in the figures, for example in Fig. 5.11(a) and 5.11(b).
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5.2.2 Smartphone in trouser pocket

With the Smartphone in the trouser pocket, similar results are observed. The feature
clouds are getting more compact and the accuracy observed by cross validation increases
with growing window size, see Fig. 5.12 and Tab. 5.3. In this case, also running and
static activities such as sitting and lying were recorded. Fig. 5.12 reveals that two point
clouds are available for the activity lying in the course of the training data recording,
because the subject was lying on the back and on the side.

If the DTs which are created on the basis of different window sizes are applied to test data,
similar conclusions can be drawn as with the Smartphone in the hand in front of the body.
Looking at Fig. 5.13 on page 51, the smallest window size causes inaccuracies in some
cases over 50 %. With the highest window size (128 samples) walking can practically not
be identified and downstairs only by about 37 %. Comparing the two middle window
sizes, it is noticeable that there are a few inaccuracies at standing, whereas walking is
quite well recognized. In deciding on the best size, the focus is directed to downstairs
and upstairs. If one wants to get at least 50 % correctly predicted data, the decision is
made in favour of the window size of 32 samples which corresponds to approximately
1.14 seconds.

A second test series was performed including static activities and the predicted results
are displayed in Fig. 5.14 on page 52. The transitions between activities are greyed out
and are not taken into account for prediction accuracy, as shown in the figures. Because
such transitions are not present in the training data, they are of course difficult to be
recognized. It is interesting that they are detected as upstairs or walking. Apart from
that, the static activities can be very well predicted in all cases. In the border areas,
there appear inaccuracies that become bigger with the increase of the window size which
is logical as more activities are smeared together.

Table 5.3: Recall values of 10-fold cross validation of C4.5 Decision Tree classifier, Smartphone
in trouser pocket, different window sizes, norm and LLF features (acceleration and angular
rate).

# samples/
window

DS LY RU SI ST US WA Weigh. Avg.

16 85.8 % 100.0 % 100.0 % 100.0 % 100.0 % 83.4 % 94.6 % 97.2 %
32 96.7 % 99.9 % 100.0 % 100.0 % 100.0 % 94.0 % 97.6 % 99.0 %
64 99.1 % 100.0 % 100.0 % 100.0 % 100.0 % 97.8 % 99.6 % 99.8 %

128 98.7 % 100.0 % 100.0 % 100.0 % 100.0 % 100.0 % 99.8 % 99.9 %
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(a) window size=16 (b) window size=32

(c) window size=64 (d) window size=128

Figure 5.12: Comparison of different window sizes, Smartphone in trouser pocket, 2D-plot of
the features a_l11 and a_l14.
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5.2.3 Smartwatch on left wrist

(a) window size=64 (b) window size=128

(c) window size=256

Figure 5.15: Comparison of different window sizes, Smartphone in trouser pocket, 2D-plot of
the features a_l8 and g_n1.

With the Smartwatch on the wrist it does not behave differently than with the Smart-
phone. Here, however, only three different window sizes are tested. Exemplary feature
2D-plots are shown in Fig. 5.15 and the recall results are stated in Tab. 5.4. The
prediction of a test series is shown in Fig. 5.16. There is not much difference between 64
and 128 samples. Using 256 samples results in major confusions. Downstairs is almost
not detected. Since for the Smartphone 32 samples were selected, i.e., approximately
1.14 seconds, the decision is made for a similar size, namely 1.28 seconds. These are 128
samples per window with a sampling rate of 100 Hz.
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Table 5.4: Recall values of 10-fold cross validation and C4.5 Decision Tree, Smartwatch on
wrist, different window sizes, norm and LLF features (acceleration and angular rate).

# samples/window DS RU ST US WA Weighted Avg.

64 97.8 % 100.0 % 100.0 % 90.2 % 99.3 % 99.3 %
128 99.1 % 100.0 % 100.0 % 97.5 % 99.7 % 99.8 %
256 100.0 % 100.0 % 100.0 % 100.0 % 99.9 % 100.0 %

(a) window size=64

(b) window size=128

(c) window size=256

Figure 5.16: Prediction of test series ST-WA-US-WA-ST-WA-DS-WA-ST collected with
Smartwatch on the wrist using a classifier trained with features generated with different
window sizes.
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5.3 User-specific activities

This chapter examines, how the data and the classification results change, when different
people perform the same activities while holding the Smartphone in the hand in front
of the body. Right from the data collection, there was the impression that Thomas
moves very smoothly, both on stairs and on level ground. In contrast, Karin moves
herself upstairs more impulsively and drops herself downwards. Some feature 2D-plots
are given in Fig. 5.17. Visually, the feature-clouds of activities are more clearly separable
with Karin’s data.

(a) Thomas, a_0 and a_l14 (b) Karin, a_0 and a_l14

(c) Thomas, a_n6 and a_n7 (d) Karin, a_n6 and a_n7

Figure 5.17: Comparison of two different people, 2D-plots of different features.

Tab. 5.5(a) shows the recall values of a 10-fold cross validation using the C4.5 Decision
Tree. Norm and LLF features from acceleration and angular rate data and a window size
of 32 samples are used. Three classifiers are generated - with the data from Thomas, from
Karin and from both of them. The second column in the table contains the number of
decision rules, i.e., the number of nodes in the constructed trees. In the case of Thomas,

55



5 Investigations

26 rules are created, where an overall accuracy of 97.7 % can be achieved. That is
2 % less than with Karin, for whom only 10 rules are needed. Combining both data
sets yields an overall accuracy located in the middle of both. To reach an accuracy of
98.3 %, much more nodes are created than with the separate data. The recall value for
downstairs is even smaller than with Thomas’ data, namely “only” 90 %.

The corresponding confusion matrices of the cross validation results are shown in Tab.
5.5(b) to 5.5(d). The amount of instances is approximately the same for both subjects.
For Thomas, mainly upstairs and walking are confused with each other. In 10 cases
upstairs is considered as downstairs. This uncertainty is also reflected in the results of
the mixed data (Tab. 5.5(d)).

Table 5.5: Evaluation results of 10-fold cross validation of C4.5 Decision Tree classifier, Smart-
phone in hand in front of body, different users, norm and LLF features (acceleration and angular
rate), window size=32.

(a) Recall values

Person #rules DS ST US WA Weighted Avg.

Thomas 26 93.5 % 99.8 % 77.1 % 98.0 % 97.7 %
Karin 10 96.7 % 100.0 % 97.1 % 99.7 % 99.7 %
Thomas & Karin 45 90.0 % 100.0 % 82.9 % 98.7 % 98.3 %

(b) Confusion Matrix, Thomas

a b c d ← classified as

158 0 8 3 a = DS
0 1890 0 3 b = ST
10 0 138 31 c = US
2 0 26 1364 d = WA

(c) Confusion Matrix, Karin

a b c d ← classified as

117 0 2 2 a = DS
0 2331 0 0 b = ST
1 0 166 4 c = US
2 0 2 1416 d = WA

(d) Confusion Matrix, Thomas & Karin

a b c d ← classified as

261 0 27 2 a = DS
0 4222 0 2 b = ST

21 0 290 39 c = US
1 0 36 2775 d = WA

Lockhart and Weiss [33] define three types of models in their work: impersonal, personal
and hybrid models. If test data, from which activities need to be predicted, are taken
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from Karin, the model with her training data is a personal model. If, however, the
classifier is taken, which was created with Thomas’ data, it is an impersonal model. A
DT with mixed data is called hybrid model.

(a) Training data: Thomas - impersonal model

(b) Training data: Karin - personal model

(c) Training data: Thomas & Karin - hybrid model

Figure 5.18: Prediction of test series ST-WA-US-WA-DS-WA-ST collected with Smart-
phone in the hand in front of the body from Karin using classification models trained with
data from different persons (Thomas; Karin; Thomas & Karin).

In order to assess the impact of such models, a test series was carried out with Karin.
The results are depicted in Fig. 5.18. There are activities, such as standing and walking,
where the model makes almost no difference. While walking on stairs, especially up,
clear differences can be seen.
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As the authors in [33] conclude, a personalized model performs best whereas an imper-
sonal model works much worse, because it cannot effectively distinguish between certain
activities which are user-specific. It can be deduced that both downstairs and upstairs
must be user-specific activities.

5.4 Different feature subsets

In the previous studies, norm and LLF features were used as input for the classifier. In
this chapter the effects of different combinations of feature-groups, as stated in Tab. 4.3
on page 36, will be studied. The training data to be examined are:

• Smartphone in the hand in front of the body (Karin, Thomas),

• Smartphone in trouser pocket and

• Smartwatch on left wrist.

5.4.1 Smartphone in the hand in front of the body

The training data collected by Thomas respectively Karin were evaluated using eight
different combinations of feature-groups, reaching from the acceleration norm features
up to all computed features of acceleration and angular rate. If there are more than 30
features, also a Correlation-based Feature Selection (CFS) is applied to the groups in
order to reduce the amount of features by not significantly reducing the accuracy. In
some cases, the overall accuracy even increases.

In Tab. 5.6, the recall values for different feature-group combinations are given. The
amount of features and the number of rules in the DT are stated additionally. The worst
result, considering primary the overall accuracy and secondary the amount of features, is
marked in red. The best result is coloured in green. With Thomas’ data the accuracies
range from 97.4 to 98.1 %. The trees have about 25 to 30 nodes. In contrast, the results
when using Karin’s data differ barely. Accuracies from 99.5 to 99.7 % are reached. The
amount of rules varies from 10 to 12.

The confusion matrices of the worst and best results are given in Tab. 5.7.
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Table 5.7: Confusion matrix of worst (left, red) and best (right, green) classification evaluation
result (see Table 5.6), Smartphone in the hand in front of the body, Thomas and Karin, window
size=32.

(a) Thomas: a_n*

a b c d ← classified as

154 0 10 5 a = DS
0 1891 0 2 b = ST

14 0 134 31 c = US
4 0 28 1360 d = WA

(b) Thomas: CFS(a_n*, g_n*, a_l*)

a b c d ← classified as

162 0 4 3 a = DS
0 1890 0 3 b = ST
5 0 143 31 c = US
1 0 23 1368 d = WA

(c) Karin: CFS(a_n*, g_n*, a_l*)

a b c d ← classified as

117 0 2 2 a = DS
0 2331 0 0 b = ST
1 0 160 10 c = US
2 0 2 1416 d = WA

(d) Karin: a_n*, g_n*

a b c d ← classified as

117 0 4 0 a = DS
0 2331 0 0 b = ST
1 0 166 4 c = US
2 0 2 1416 d = WA

It can be seen that the activities walking, upstairs and downstairs are confused at most.
The worst result of Karin is better than the best of Thomas. This is an indication that
there are persons whose activities can be classified better or worse, all this practically
independent of the choice of features.

5.4.2 Smartphone in trouser pocket

Tab. 5.8(a) shows the classification results for data collected with the Smartphone
located in the trouser pocket using different feature subsets. In almost all cases the
activities running, sitting and standing are reproduced to 100 %. Lying with 99.9 to
100 % is just as well. The worst result (red) in matters of the weighted average (last
column) is received by using the remaining features after CFS applied to norm features
of acceleration and angular rate data. The recall value for the activity upstairs is about
68 % only.

Looking at the corresponding confusion matrix (Tab. 5.8(b)), it can be observed that
nearly a third of the true upstairs instances are classified as walking. In contrast, the
best result (green, Tab. 5.8(a) and Tab. 5.8(c)) with 96.4 % recall value for downstairs
and 97.7 % for upstairs is achieved by using all kinds of features, including norm, LLF
and BF features.
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The DT for this configuration primary includes BF features, as can be seen in Fig. 5.19.
Thus, using the specially defined coordinate system, climbing stairs seems to be under
control. This conclusion is, however, immediately contradicted.

Figure 5.19: C4.5 DT built using all kinds of features (norm, LLF, BF) corresponding to green
result in Tab. 5.8, Smartphone in trouser pocket, window size=32.

In Fig. 5.20, the predictions of a test set with the activity-sequence ST-WA-DS-WA-US-
WA-ST using the worst and best classifier are shown. Indeed, the activity upstairs is
reproduced better by the best classifier as well as walking, but the activities downstairs
and standing have better recall values using the worst classifier. The DTs do not properly
reproduce the activities of the test data. There are many possible reasons for that:

• The number of training data is too small. Variations in the gait depending on mood,
physical condition, clothing, or other circumstances are not adequately covered.
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• The features are selected inadequately.

• A DT is not suitable for this kind of activities in connection with such features.

The conclusion is that it is necessary to carry out further investigations regarding features
and classification trees.

(a) CFS(a_n*, g_n*)

(b) a_n*, g_n*, a_l*, a_b*, g_b*

Figure 5.20: Prediction of test series ST-WA-US-WA-DS-WA-ST collected with Smart-
phone in trouser pocket using worst and best classifier (Tab. 5.8).

5.4.3 Smartwatch on left wrist

The evaluation results in form of recall values using different groups of features in the
case of Smartwatch on the wrist is given in Tab. 5.9.
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In contrast to the previous studies, neither a worst nor a best result is emerging in this
investigation. They all perform equally well. It is noticeable, that in all cases a tree with
only four rules is generated. Overall, in the eight cases only three different trees occur,
which are shown in Fig. 5.21 on the previous page.

(a) a_n1 and a_n3 (b) a_n1 and a_b1

(c) a_b8 and a_b10 (d) a_l8 and g_n1

Figure 5.22: Exemplary feature 2D-plots showing the dividing rules used in the C4.5 Decision
Trees in Fig. 5.21. Features from Smartwatch training set, window size=128.

The numerical values, that appear as rules in the trees to separate the individual activ-
ities, are shown as black lines in the feature 2D-plots of Fig. 5.22. The feature-clouds
of the individual activities are well separable. The remaining features for classification
are limited to a_n1, a_n3, g_n1, a_l8, a_b1, a_b8 and a_b10. Their denomination is
declared in Tab. 4.3 and 4.2 in Chapter 4.5.5.

If these DTs are used for prediction of test data, the results hardly differ. The predicted
data using norm and LLF features for the tree is shown in Fig. 5.16(b) on page 54. Tree
(a) and (c) of Fig. 5.21 deliver exactly the same result, while in (b) 50 % instead of 59%
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of downstairs are recognized correctly.

The conclusion is, that no clear statement can be made concerning the selection of feature
subsets. For certain sensor positions different features are better or worse. Overall, all
combinations provide good results. Solely, the activities downstairs and upstairs are
difficult to detect, as shown by test data.

5.5 Activities performed with different speed

This study shows, on the one hand, that activities at different speeds yield different
results, and on the other hand, the Smartphone in the hand in front of the body is
compared to the Smartwatch on the wrist.

Again, norm and LLF features are taken as input for the DT classifiers. There will be
chosen those window sizes that were selected in the previous studies.

Fig. 5.23 shows four exemplary feature 2D-plots, where features of activities performed
in slow and fast manner are represented (the abbreviations are extended by a letter “F”
or “S”, e.g., walking fast is shortened byWAF). The data were recorded with Smartphone
and Smartwatch each and are compared with each other in the figure. On the left side
the data of the Smartphone are shown, on the right side the results of the Smartwatch.
It is noticeable that both datasets differ significantly from one another.

The Smartphone was held in the right hand in front of the body. During running the
arm is moved back and forth in a natural way, resulting in the Smartphone constantly
changing its location in relation to the body. Accelerations occur in the horizontal plane
of the LLF, so the RMS of the acceleration (a_l4) for running reaches larger values, see
Fig. 5.23(a). The linear acceleration is therefore greater than the angular variation. The
Activity Units of acceleration and angular rate are given in Fig. 5.23(c). Visually, slow
and fast performed running can be separated very well. The feature-clouds of the other
activities overlap partially.

The Smartwatch was worn on the left wrist, the arm naturally swinging when walking,
either on stairs or on level ground. While running, the arm is bent and moved back and
forth as with the Smartphone. Therefore, there occur larger differences in the feature
plots, see Fig. 5.23(b) and 5.23(d). Unlike the Smartphone, the clouds of the slow and
fast performed activities may be separated visually in Fig. 5.23(d). Only walking fast
(WAF) and upstairs fast (USF) overlap each other for the most part.
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(a) Smartphone: a_l4 and a_l11 (b) Smartwatch: a_l4 and a_l11

(c) Smartphone: a_0 and g_0 (d) Smartwatch: a_0 and g_0

Figure 5.23: Comparison of Smartphone in hand in front of body and Smartwatch on wrist,
speed dependent activities, exemplary feature 2D-plots.

Looking at the 10-fold cross validation result of the DT on the basis of the Smartphone
(Nexus) data in Tab. 5.10, it can be seen that the speed-dependent activities can be
recognized to at least 73.9 %, in most cases over 90 %. Walking fast (WAF) and upstairs
fast (USF) are confused most often in the classification process. The same applies to the
Smartwatch (Omate) wherein comparatively less instances are mapped incorrectly. The
Smartwatch receives better overall accuracy as the Smartphone, namely 99 %, for almost
all activities the recall value is higher than with the Smartphone, as can be extracted
from 5.10(b).
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Table 5.10: Evaluation results 10-fold cross validation of C4.5 Decision Tree classifier, dataset
with slow and fast performed activities, Smartphone (hand in front of the body, Nexus) and
Smartwatch (Omate), norm+LLF features (acceleration and angular rate), window size=32.

(a) Confusion matrix, speed dependent activities, Nexus

a b c d e f g h i ← classified as
82 0 0 0 0 2 0 0 0 a = DSF
1 178 0 0 1 2 6 8 3 b = DSS
0 0 196 0 0 0 0 0 0 c = RUF
2 0 0 357 0 0 0 0 0 d = RUS
0 0 0 0 3144 0 0 0 0 e = ST
0 3 0 0 0 105 0 34 0 f = USF
0 8 0 0 0 0 233 2 5 g = USS
0 3 0 0 0 37 3 629 6 h = WAF
0 2 0 0 0 2 4 4 874 i = WAS

(b) Recall values, speed dependent ac-
tivities

Nexus Omate

# rules 56 30

DSF 97.6 % 97.4 %
DSS 89.4 % 99.5 %
RUF 100.0 % 100.0 %
RUS 99.4 % 99.7 %
ST 100.0 % 100.0 %
USF 73.9 % 87.9 %
USS 94.0 % 94.0 %
WAF 92.8 % 97.9 %
WAS 98.6 % 99.0 %

Weighted Avg. 97.7 % 99.0 %

In a further step, the speed dependent activities are merged together, so there remain
only speed independent classes, for example, walking (WAS + WAF = WA). The feature
2D-plots are displayed in Fig. 5.24(a) and 5.24(c). If the dataset is further extended with
other training data, which were recorded with independence of speed, the feature-clouds
melt slightly together which can be seen in Fig. 5.24(b) and 5.24(d).
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(a) Smartphone, combined data (b) Smartphone, combined & training data (18.07.)

(c) Smartwatch, combined data (d) Smartwatch, combined & training data (10.09.)

Figure 5.24: Comparison of Smartphone in the hand in front of the body and Smartwatch on
the wrist, exemplary feature 2D-plots, (a) and (c): combined data (speed independent activities,
e.g. WAS+WAF=WA), (b) and (d): combined data extended by other training data.

These four datasets are now evaluated using 10-fold cross validation after building a DT
classifier each. The recall values are illustrated in Tab. 5.11. It is noticeable that for
Omate less rules in the tree are required, while even higher accuracies are achieved. In
the extended data set, there are generally more rules produced in the tree, the overall
accuracy remains approximately the same. The individual recall values change in both
directions, better and worse, mainly with walking, upstairs and downstairs.
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Table 5.11: Recall values of 10-fold cross validation of C4.5 Decision Tree classifier, dataset
with speed independent activities, Smartphone (hand in front of body, Nexus) and Smartwatch
(Omate), norm+LLF features (acceleration and angular rate), window size=32.

(a) combined activites (speed independent)

Nexus Omate

# rules 52 25

DS 89.8 % 97.7 %
RU 99.8 % 100.0 %
ST 100.0 % 100.0 %
US 83.6 % 94.0 %
WA 96.1 % 99.0 %

Weighted Avg. 97.4 % 99.2 %

(b) combined activites + other training data

Nexus Omate

added data 18.07.14 10.09.14
# rules 79 50

DS 83.7 % 99.2 %
RU 99.6 % 100.0 %
ST 99.9 % 100.0 %
US 79.1 % 91.4 %
WA 98.0 % 98.7 %

Weighted Avg. 97.5 % 99.1 %

The three models, built from speed dependent, combined and extended data, for Smart-
phone and Smartwatch each, are applied to a test series. The time series of the predicted
activities are illustrated in Fig. 5.25 respectively in Fig. 5.26.

The analysis of the predicted Smartphone data, given in Fig. 5.25, yields that the activity
standing is correctly classified to 84 to 94 % and walking to 93 to 100 %. Upstairs
reaches only 27 % at speed independent data, in the combined data only 8 %, but in
the extended data 43 %. Downstairs deteriorates by a half with the combination of slow
and fast performed activities into independent activities to 42 %. With the addition of
other training data it gets better again, to 89 %.

The predicted Smartwatch data in Fig. 5.26 show no differences for the activity standing,
which is on average correctly recognized to 98 %. Walking is best reproduced with the
combined data. The best result for upstairs, although only 26 %, is achieved with the
extended data. 76 % of downstairs instances are correctly classified with the separated
data according to speed. The combined data cause only 33 % correctly classified in-
stances of downstairs, while 57 % accuracy can be achieved with the extended data. For
each activity another model fits best.
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(a) Nexus, speed dependent

(b) Nexus, combined data

(c) Nexus, extended data

Figure 5.25: Prediction of test series ST-WA-US-WA-DS-WA-ST collected with Smart-
phone in the right hand in front of the body using classification models containing speed
dependent and independent activities.
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(a) Omate, speed dependent

(b) Omate, combined data

(c) Omate, extended data

Figure 5.26: Prediction of test series ST-WA-US-WA-ST-WA-DS-WA-ST collected with
Smartwatch on the left wrist using different classification models containing speed dependent
and independent activities.

In this study, no clear pattern for a best model emerges, there is no clear improvement
or deterioration in the evaluation results and the predicted data.

The conclusion is that, under cross validation results, all classifiers provide overall accu-
racies better than 97 %, but with test data emerge different results. They are poor and
non-satisfying in case of downstairs and upstairs. Possible reasons for that have already
been given in Chapter 5.4.2. Standing and walking reach a sufficiently high accuracy.
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5.6 Real-time capability

This investigation according real-time capability is carried out to show that AR per-
formed on a Smartphone may be possible in real-time.

A test data set was selected and the computation time of the prediction of its instances,
together with preprocessing and feature computation, was determined. The AR algo-
rithm was repeated ten times in order to get statistical values. The notebook used
for the calculation is a Lenovo Thinkpad Edge E530 with Intel Core i3-2350M CPU at
2.3 GHz, 4 GB RAM, and 64-bit operating system Windows 7. The used software is
MATLAB, in the version R2012b.

Table 5.12: Real-time measurement, computation time, averaged values from 10 repetitions.

min max mean median

prearrangement & preprocessing 694 ms 1087 ms 824 ms 736 ms
feature computation 7 ms 41 ms 7 ms 7 ms
feature computation & prediction 20 ms 65 ms 21 ms 21 ms

As can be taken from Tab. 5.12, the prearrangement and preprocessing step requires
824 ms on average and is executed only once at the beginning of each entire AR process.
The time for feature computation is approximately 7 ms. The maximum value of 41 ms
is reached at the very first step, where the Kalman filter, which is used to estimate roll
and pitch angles for the transformation into the LLF, has to go through 32 iterations for
the Smartphone or 128 for the Smartwatch. From the second instance, whose activity
is to be predicted, there are only 7 respectively 25 iterations to be made, because the
time window is shifted by a quarter second and overlaps on the most samples. The total
time for feature computation and prediction covers 20 to 65 ms. Since there are made
predictions only every quarter second, i.e. every 250 ms, the averaged 21 ms lie within
this time window and amount to only 8.4 % of it.

The Smartphone used in this work includes a 1.2 GHz dual-core ARM Cortex-A9 CPU,
1 GB RAM, and operating system Android 4.3.

Based on these data, it can be assumed that AR can be carried out in real-time, even on
the Smartphone. If this is not the case, it would be possible to outsource the classification
process to a server and transmit the signal data and predicted activities via an interface.
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5.7 Different classifiers

The C4.5 Decision Tree classifier, used in this work, should also be compared with other
classifiers. Based on the training data set of Smartphone in the trouser pocket, classifiers
C4.5 Decision Tree, Naive Bayes (NB), Support Vector Machine (SVM) and k-Nearest
Neighbour with 10 neighbours (10-NN) are considered.

For comparison of different classifiers a 5×2-fold cross validation is applied. Five different
seeds are used for the random number generator, which is needed to randomize the data,
more details in Chapter 3.3.2. The overall accuracies and their averaged value are
determined and the classifier with the highest mean accuracy is compared to the others
by applying a paired t-test with significance level α = 0.05. The null hypothesis H0

states that the chosen classifier has the same accuracy as the other one compared to it.
If H0 is rejected, their accuracy is different.

These investigations were carried out with three different feature subsets. The obtained
accuracy and hypothesis test results are shown in Tab. 5.13. Using only norm features
or norm and LLF features, the C4.5 Decision Tree classifier achieves the highest overall
accuracy. In the first case, it is more accurate than NB and SVM, but comparable to
10-NN. With the LLF features in addition, C4.5 Decision Tree outperforms all other
classifiers. If all 59 features are used including norm, LLF and BF features, the SVM
performs best and is significantly better than the other classifiers.

Kotsiantis et al. [25] give a good overview of the characteristics, advantages and disad-
vantages of the individual classifiers. An important characteristic of the C4.5 Decision
Tree is comprehensibility. The algorithm is easy to understand and has a good combina-
tion of computational speed and error rate. The performance degrades with problems
that require diagonal partitioning of the instances. The feature space is always divided
orthogonal to the axis of one feature and parallel to the others, whereby hyper-rectangles
appear as resulting regions.
In contrast, SVMs can handle multi-dimensions and continuous features very well. A large
sample size improves the performance, but the interpretability is poor.
Bayesian Networks as the NB are not adapted for data containing huge amount of fea-
tures, although they provide short computation time and little storage.
Large computational time and storage are required by k-NNs which are sensitive to ir-
relevant features. Furthermore, the accuracy depends on the number of instances in the
training dataset, the probability for each feature, and the number of considered neigh-
bours k. Therefore, the feature selection process is essential for it.
It is important to know, that no learning algorithm is generally better in performance
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Table 5.13: Overall accuracies of 5×2-fold cross validation of various classifiers using different
seeds si, paired t-test with significance level α = 0.05, null hypothesis H0: accuracy of best
classifier (bold marked) and other classifiers is the same. Smartphone in trouser pocket, different
feature subsets.

(a) norm features (#=16)

feature subset classifier s1 s2 s3 s4 s5 Avg. −2.57 ≤ t̃ ≤ 2.57 test decision

a_n*, g_n* C4.5 97.4% 97.6% 97.6% 97.6% 97.4% 97.5% - -
NB 88.6% 88.6% 88.8% 88.8% 88.6% 88.7% -11.23 H0 rejected
SVM 80.1% 79.9% 80.1% 80.2% 80.5% 80.2% -26.65 H0 rejected
10-NN 97.3% 97.6% 97.3% 97.6% 97.6% 97.5% -0.49 H0 accepted

(b) norm+LLF features (#=31)

feature subset classifier s1 s2 s3 s4 s5 Avg. −2.57 ≤ t̃ ≤ 2.57 test decision

a_n*, g_n*, C4.5 98.5% 98.7% 98.6% 98.3% 98.8% 98.6% - -
a_l* NB 93.0% 93.4% 93.1% 93.3% 93.1% 93.2% -7.51 H0 rejected

SVM 84.2% 84.2% 84.4% 84.3% 84.5% 84.3% -33.34 H0 rejected
10-NN 95.8% 95.7% 95.9% 95.9% 96.1% 95.9% -9.95 H0 rejected

(c) norm+BF+LLF features (#=59)

feature subset classifier s1 s2 s3 s4 s5 Avg. −2.57 ≤ t̃ ≤ 2.57 test decision

a_n*, g_n*, C4.5 99.0% 99.0% 99.1% 99.1% 99.1% 99.1% -6.01 H0 rejected
a_b*, g_b*, NB 99.3% 99.2% 99.3% 99.2% 99.2% 99.3% -2.87 H0 rejected
a_l* SVM 99.8% 99.8% 99.8% 99.8% 99.8% 99.8% - -

10-NN 99.4% 99.4% 99.5% 99.3% 99.4% 99.4% -16.27 H0 rejected

than other algorithms. The algorithm, that appears to be the most accurate for the
particular classification problem, must be selected.
So, overall it is a good decision to take the C4.5 Decision Tree as the classifier in this
work.

5.8 Detection of the sensor’s current body position

A final study of this thesis is the design of a classifier which can be used to determine
the sensor position on the body. The aim is to select the appropriate classifier for AR
depending on the determined sensor position. The actual location of the Smartphone on
the body is determined during the activity walking, because the movement of the body
affects certain body parts differently. The analysed positions are: hand in front of the
body (HFB), hand swinging (HSW), trouser pocket (TP) and jacket pocket (JP). The
activity standing (ST) is added additionally, on the one hand as a control to determine
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whether the person is actually walking or not, and on the other hand, because the
programmed algorithm requires at least 5 seconds of this activity to estimate a first
orientation in the processing of training data. But this information will not be used,
because the sensor position was constantly changing during the recording of the training
data and thus can not be assumed to be stable and fixed. Moreover, the determination
should be possible without knowledge of the orientation of the device. Therefore, only
norm features are used as input for the classifier.

The evaluation results of the 10-fold cross validation of the C4.5 Decision Tree are
displayed in Tab. 5.14. The recall values of the sensor positions are in the range of 97.8
to 99.8 %. Standing is detected to 100 %. From the confusion matrix one can see that
sometimes hand swinging is confused with trouser pocket. This makes sense, since the
movement has a direct effect on these areas.

Table 5.14: Evaluation results of 10-fold cross validation of C4.5 Decision Tree classifier, Smart-
phone at different body locations, norm features (acceleration and angular rate), window size=32.

(a) Recall values

# rules 15

HFB 99.8 %
HSW 98.8 %
JP 99.4 %
ST 100.0 %
TP 97.8 %

Weighted Avg. 99.1 %

(b) Confusion matrix

a b c d e ← classified as

640 1 0 0 0 a = HFB
0 984 0 0 12 b = HSW
0 2 665 0 2 c = JP
0 0 0 486 0 d = ST
0 16 0 0 698 e = TP

The built classification tree is shown in Fig. 5.27. It contains 15 nodes with rules dividing
the feature spaces into areas including only instances of the same class. The first four
dividing rules are illustrated as black lines in the feature 2D-plots in Fig. 5.28. g_0 and
a_n1 separate standing and hand in front of body from the other classes. Jacket pocket
can be restricted with g_0 and a_n2. The separation of the two remaining classes is
more complex and uses norm features from acceleration as well from angular rate.

Finally, it can be stated that it would be possible to perform sensor position recognition
before the actual AR.
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Figure 5.27: C4.5 Decision Tree built using norm features, corresponding to result in Tab. 5.14,
for distinguishing between different body location of the Smartphone.

(a) g_0 and a_n1 (b) g_0 and a_n2

Figure 5.28: Exemplary feature 2D-plots showing the dividing rules used in the C4.5 Decision
Trees in Fig. 5.27. Features from Smartphone at different body locations training set, window
size=32.
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In this thesis, the C4.5 Decision Tree was used as a classifier in almost all investigations.
The evaluation of the results was based on a 10-fold cross validation and the prediction
of test data. The various conclusions that were made in this thesis are described in the
following.

It could be demonstrated that the Smartphone, as a representative low-cost sensor, is
suitable for Activity Recognition, because it can be compared with the capabilities of
the Xsens, although of course leads to greater errors. In addition, it should be noted
that magnetometer data should better not be used as feature input, since they strongly
depend on surrounding electronic devices and magnetic metals. Features on the basis
of local-level frame and body frame coordinates contribute to recognition accuracy, but
need to be treated with caution because one can only rely on them if reliable data of the
activity standing are available in the beginning of the recording and the device stays in
place on the body. The conditions are described in more detail in Chapter 3.2.

Further investigations have shown that a window size covering a duration of approxi-
mately one second was the best choice for the Activity Recognition system, as it was
designed in this work. When comparing two persons it was demonstrated that personal
models perform best in the presence of user-specific activities, like walking downstairs or
upstairs. If not, impersonal or hybrid models are sufficient. Accuracies of 90 % and 79 %
for upstairs and downstairs with the personal model applied to test data were considered
satisfactory. Moreover, it depends on the user whether and how well the user-specific
activity is detected.

The comparative analysis of different feature subsets provided an overall accuracy of
99.7 % for the training data set with the Smartphone in the hand in front of the body,
99.6 % with the Smartphone in the trouser pocket and 99.9 % with the Smartwatch on the
left wrist, each with a different combination of features. But there arose contradictions
between the cross validation results of training data and the predicted activities of test
data. The prediction results were generally acceptable, but the hardest to detect were
the activities downstairs and upstairs.
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The investigation of additional training data, which cover two extreme contrasts of
speeds, namely fast and slow, showed that an insufficient amount of training data has
been recorded. The joined data are more representative. They reached lower accura-
cies with cross validation and even with the predicted data a deterioration was visible,
namely at downstairs and upstairs. Walking and standing were equally well recognized
in all cases. Possible reasons for these contradictory and poor results may be:

• the training data did not adequately cover variations in the gait depending on
mood, physical condition, clothing, or other circumstances,

• the features may have been selected inadequately,

• a C4.5 Decision Tree was perhaps not suitable for this special kind of activities in
connection with such features.

In future studies it is definitely necessary to carry out further investigations, regarding
features and classification methods, and to collect training data of activities that were
performed with all possible speeds, and from different days, so that there are covered as
many physical variations as possible.

The prediction of one single instance needed only 20 ms for the calculation with a
notebook. Since the features for classification were calculated each quarter second, this
is more than sufficient in order to realize a real-time application on a Smartphone.

The comparison of several classifiers on the basis of the data set with the Smartphone
in the trouser pocket showed that the C4.5 Decision Tree generally outperforms other
classifiers, taking into account the selected activities and features.

Potential applications for Activity Recognition (AR) in the field of navigation could be,
for example, the support of a Pedestrian Dead Reckoning (PDR) system, where the
activity information, more precisely whether walking on level ground or on stairs, could
be useful in the reduction of errors within step length estimation. Furthermore, it has
been shown to be useful in 3D indoor positioning with PDR based on Bayes (particle)
filtering, see [38]. Activity information contributes to the estimation of the height and
to the determination of the 2D position by constraining the possible particle space.

Conversely, it would be possible to incorporate the current location of the person as an
information in the AR. In the kitchen, the activity of lying would be unlikely whereas
it would be normal in the bedroom. On the one hand, this could increase the accuracy
of AR algorithm, on the other hand, it would be an indicator of the distress of a person
which could trigger a call for help.
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