

Reimar Klotz B.Sc.

Redesign einer Drei-Stufen Halbbrücke

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

Masterstudium Elektrotechnik

eingereicht an der

Technischen Universität Graz

Betreuer

Ass.-Prof. Dr. Klaus Krischan

Dr. Kennith Leong

Für König und Königin

EIDESSTATTLICHE ERKLÄRUNG AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master's thesis.

Datum / Date

Unterschrift / Signature

Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit dem Thema der Verbesserung einer bestehenden 3L-NPC-Halbbrücke. Im Zuge der Arbeit werden die Funktionsweise und die Eigenschaften dieser Halbbrückentopologie behandelt, was die Themen Schaltzustände, Schaltstrategien, parasitäre Einflüsse und Kommutierungverhalten beinhaltet. Infolgedessen werden die Ergebnisse der diversen Simulationen vorgestellt, welche unter anderem Aufschluss über die Verlustverteilung, Lastabhängigkeit und Einflüsse der Schaltstrategie liefern. Darauffolgend werden die Ergebnisse der Schaltungsanalyse präsentiert, in der auf die Aspekte Schaltverhalten und parasitäre Komponenten eingegangen wird. Im Anschluss wird das Optimierungskonzept dargelegt, welches bei der Planung und Umsetzung der verbesserten Schaltung herangezogen wurde. In weiterer Folge wurden die Messergebnisse der verbesserten Schaltung vermessen, und diese mit den Ergebnissen der bestehenden Schaltung verglichen. Den Abschluss der Arbeit bildet die Interpretation der Ergebnisse und eine Vorstellung von weiterführenden Verbesserungsmöglichkeiten.

Abstract

This master thesis deals with the improvement of a three level NPC inverter. The first part focuses on the functionality and characteristics of the inverter topology, containing a discussion on switching states, switching strategy, parasitic influences and commutation behaviour. The following section discusses the results of a series of simulations to evaluate power loss behaviour, load dependences and the influence of different switching strategies. Next the results of several measurements that including the evaluation of the switching behaviour and parasitic impedances in the pre existing inverter circuit are presented; furthermore an optimisation concept for the new inverter is developed. This concept is applied in the planning and implementation of the inverter. Subsequently the newly developed inverter circuit is evaluated through a series of measurements and compared with the pre existing inverter. The concluding remark covers the interpretation of the results as well as recommendations on further possible improvements.

Inhaltsverzeichnis

1	Verw	Verwendete Formelzeichen							
2	Abkü	Abkürzungsverzeichnis							
3	Einle	Einleitung							
4	Aufg	abenstellung	5						
5	3L-NPC Schaltung								
	5.1	Einleitung	6						
	5.2	Allgemein	8						
	5.3	Arbeitsbereiche	9						
	5.4	Schaltung	11						
	5.5	Schaltzustände	12						
		5.5.1 Allgemein	12						
		5.5.2 Zustandsarten	12						
		5.5.3 Relevante Schaltzustände	13						
	5.6	Schaltstrategien	19						
		5.6.1 Allgemein	19						
		5.6.2 Sicherer Arbeitsbereich	19						
		5.6.3 Schalten	20						
	5.7	Parasitäre Schaltungskomponenten	25						
	5.8	Kommutierung	$\overline{27}$						
	0.0	5.8.1 Allgemein	$\frac{1}{27}$						
		582 Kommutierungskreise	$\frac{-}{27}$						
	59	Stellerung	30						
	0.0	5.0.1 Allgemein	30						
		5.0.2 Trägerspannungsvergleich	30 31						
		5.9.3 SHE-PWM	36						
6	Simu	lationen	38						
-	6.1	Konventionelle Schalthandlung	38						
	6.2	PWM-Verhalten	43						
	6.3	Wirkungsgrad	43						
	64	Mittlere Verlustverteilung	 44						
	6.5	Maximale Bauteilverluste	45						
	6.6	Effektivwert der Ausgangsspannung	$\frac{10}{47}$						
	6.7	Minimale Kondensatorspannung	$\frac{1}{47}$						
	6.8	Schaltverhalten hei konstanter Scheinleistung am Ausgang	11 18						
	0.0	Schartverhalten ber konstanter Schermeistung am Ausgang	ŦŪ						
7	Schal	tung M1 4	19						
	7.1	Ersatzschaltbild	49						
		7.1.1 Aufbau M1	49						
	7.2	Parasitäre Komponenten	51						
	7.3	Messung der Steuersignale	52						

8	Optir	mierung	56
	8.1	Allgemein	. 56
	8.2	Layout	. 56
	8.3	Kondensatoren im Leistungsteil	. 56
	8.4	Komponentenwahl	. 57
		8.4.1 Wahl der MOSFETs	. 57
		8.4.2 Wahl der SiC-Dioden	. 58
	8.5	Treiber	58
	8.6	Bootstrapping	59
	8.7	Kühlung	59
	8.8	3-Phason Auslagung	60
	8.0	Vorriogolungslogik	60
	0.9		00
9	Aufb	au M2	63
	9.1	PWM-Schaltverhalten	. 63
	9.2	Ursachen der Verzerrungen	. 65
	9.3	Thermisches Verhalten	. 66
	94	Anmerkung	66
	0.1		00
10	Scha	ltungsvergleich	68
	10.1	Parasitäre Komponenten	68
	10.2	Schaltverhalten	. 68
	D ' 1		
11	Diski	Ission & Ausblick	12
	11.1		. 72
	11.2	Schaltung	. 72
	11.3	Grundlegende Aspekte der Optimierung	. 74
12	Zusa	mmenfassung	75
	Lasa		
13	Anha	ing	76
	13.1	Konventionelle Schalthandlung	. 76
	13.2	Simulation GeckoCIRCUIT	78
		13.2.1 Aufbau	. 78
		13.2.2 GeckoSCRIPT-Code	84
		13.2.3 Simulation Wirkungsgrad	. 88
		13.2.4 Simulation Mittlere Verlustverteilung	. 90
		13.2.5 Simulation Maximale Bauteilverluste	94
		13.2.6 Konstante Impedanz	101
	13.3	Energieinhalt einer Kapazität	102
	13.0	Barochnung der parasitären Komponenten	102
	12.4	Messung der parasitären Komponenten	102
	10.0 19.6	Messlenf mustionen	104
	13.0	Messkonngurationen	105
		13.0.1 Schwingverhalten am Gate M1	105
		13.0.2 Steuersignalverlaute im Leerlaut M1	. 105
		13.6.3 Asymmetrie der Steuersignale M1	105
		13.6.4 Temperaturverhalten M1	105
		13.6.5 Messung der Ausgangsgrößen bei kleinen Kapazitäten im Leistungsk	\mathbf{reis}
		M2	. 106

13.6.6 Messung der Zeitverläufe für verschiedene Lastwiderstände M2			106		
13.6.7 Messung der Effektivwerte für verschiedene Lastwiderstände .			106		
13.6.8 Messung des Schaltverhaltens von M1 und M2			107		
13.6.9 Temperaturverhalten M2			108		
13.7 Ansteuerung			109		
13.7.1 dSpace Signalprozessorsystem DS1104			109		
13.7.2 Ansteuerung M1			109		
13.7.3 Ansteuerung M2			109		
13.8 Dimensionierung der Einschaltverzögerung			114		
13.9 Modifikationen M2 \ldots	•	•	115		
13.9.1 Externe Beschaltung des Optokopplers	•	•	115		
13.9.2 Einfügen von Stabilisierungskondensatoren für die Treiber		•	115		
13.9.3 Zusätzliche Kapazitäten für den Leistungskreis	•	•	115		
13.10 Ermittlung der Schaltzeiten	•	•	118		
13.11 Schaltplan M2 \ldots	•	•	121		
13.12 Layout M2 \ldots	•	•	123		
13.13 Bauteilliste M2	•	•	125		
13.14 Schaltung M1.1	•	•	126		
13.15 Layout M1	•	•	127		
13.16 Schaltung M1.2	•	•	128		
13.17 Bauteilliste M1	•	•	129		
Abbildungsverzeichnis			130		
Tabellenverzeichnis			134		
Literaturverzeichnis 13					

1 Verwendete Formelzeichen

ρ	Spezifischer Widerstand	$rac{mm^2\Omega}{m}$
R	Widerstand	Ω
L	Induktivität	Н
C	Kapazität	F
C_{OSS}	Ausgangskapazität MOSFET ($C_{GD} + C_{DS}$)	F
\boldsymbol{A}	Fläche	mm^2
l	Länge	m
b	Breite	m
h	Höhe	m
N	Anzahl der Pulse im Halbzyklus	
lpha	Schaltwinkel	0
μ	Magnetische Permeabilität	$\frac{V \cdot s}{A \cdot m}$
μ_0	Permeabilität des Vakuums	$\frac{V \cdot s}{A \cdot m}$
μ_r	Relative Permeabilität	$\frac{V \cdot s}{A \cdot m}$
<u>Z</u>	Komplexe Impedanz	Ω
Z	Betrag der Impedanz	Ω
X	Blindwiderstand	Ω
ω	Kreisfrequenz	$\frac{1}{s}$
d	Tastverhältnis	
f_{sw}	Schaltfrequenz	S
f_{out}	Modulaktions frequenz	$\frac{1}{s}$
η	Wirkungsgrad	
t_v	Verriegelungszeit	S

T_{sw}	Schaltperiodendauer	S
t	Zeit	\mathbf{S}
E	Elektrische Energie	Ws
E_{OSS}	Elektrische Energie in C_{OSS}	Ws
P_{off}	Elektrische Verlustleistung im ausgeschalteten Zustand	W
P_{on}	Elektrische Verlustleistung im eingeschalteten Zustand	W
P_{sw}	Elektrische Verlustleistung beim Schalten	W
P_{in}	Eingangswirkleistung	W
P_{out}	Ausgangswirkleistung	W
S_{out}	Ausgangsscheinleistung	VA
Q_{out}	Ausgangsblindleistung	Var
$U_{out,rms}$	Effektivwert der Ausgangsspannung	V
$I_{out,rms}$	Effektivwert des Ausgangsstromes	А
$U_{C1,min}$	Minimale Kondensatorspannung von C_1	V

2 Abkürzungsverzeichnis

ESB	Ersatzschaltbild
ESL	Äquivalente Serieninduktivität (engl. Equivalent Series Inductance)
ESR	Äquivalenter Serienwiderstand (engl. Equivalent Series Resistance)
EV	Einschaltverzögerung
Η	Schaltzustand Hoch
IK	Irrelevante Kommutierung
KK	Keine Kommutierung
M1	Erster Schaltungsentwurf
M2	Zweiter Schaltungsentwurf
M2.1	Zweiter Schaltungsentwurf in originaler Konfiguration
M2.2	Zweiter Schaltungsentwurf mit zusätzlichen Leistungskapazitäten
M_s	Modulationssignal
N	Schaltzustand Null
RK	Relevante Kommutierung
SB	Schaltbild
SOA	Sicherer Arbeitsbereich (engl. Save Operating Area)
T	Schaltzustand Tief
T_s	Trägersignal
ÜΗ	Übergangszustand Hoch
$\ddot{U}T$	Übergangszustand Tief
ZS	Zustand

3 Einleitung

Das hier behandelte Thema fällt in den Bereich der Leistungselektronik, welches ein Teilgebiet der Elektrotechnik darstellt. Die Leistungselektronik behandelt primär die Umformung von elektrischer Energie unter Verwendung von Leistungshalbleitern [12][20].

Seine Anfänge nahm dieser Bereich nach der Entdeckung der Ventilwirkung eines Lichtbogens, in dessen Folge 1902 der erste Quecksilberdampf-Gleichrichter entwickelt wurde. Durch die Entwicklung dieses Stromrichterventils entstand auch der Begriff Stromrichtertechnik. Ab dem Jahre 1925 ermöglichte eine verlustarme Steuerung einen Durchbruch in der Antriebstechnik. In weiterer Folge kam es 1958 erstmals zum Einsatz von Halbleiterbauelementen, welche durch geringes Gewicht, kleinen Platzbedarf, hohen Wirkungsgrad und Zuverlässigkeit zunehmend an Bedeutung gewannen. Durch diese neuen Bauelemente folgte schließlich auf den Begriff der Stromrichtertechnik die Bezeichnung Leistungselektronik [20][12][18].

Wie einige Gebiete der Elektrotechnik, entwickelte sich auch dieser Bereich in immer schnellerem Tempo weiter, so konnten durch den Fortschritt zusehends neue Einsatzgebiete erschlossen werden. Dies führte dazu, dass die Leistungselektronik eine Schlüsseltechnologie darstellt, die in vielen Bereichen zum Einsatz kommt [20].

Ein Teilgebiet der Leistungselektronik befasst sich mit dem Themengebiet der Halbbrücken (HB), welches sich mit der Umformung von elektrischer Energie beschäftigt. In den nachfolgenden Kapiteln wird eine dieser HB-Topologien - die 3L-NPC-Topologie - genauer untersucht [20].

4 Aufgabenstellung

Das Ziel dieser Masterarbeit ist es, eine bestehende dreistufige Halbbrücke, welche weiterführend mit M1 bezeichnet wird, zu verbessern. Diese weiterentwickelte Halbbrücke wird in weiterer Folge als M2 bezeichnet.

Aufgaben:

1. Vermessung der Schaltung M1

- Ermittlung des Schaltverhaltens
- Ermittlung der parasitären Impedanzen

2. Entwicklung von Steuerstrategien

- Vorstellung einiger Steuerstrategien
- Implementierung einer Steuerstrategie

3. Entwicklung einer optimierten 3L-NPC Halbbrücke

- Entwicklung einer Optimierungskonzepts
- Entwicklung einer Sicherheitslogik
- Planung, Aufbau und Testen der Schaltung M2

4. Vermessung der Schaltung M2

- Ermittlung des Schaltverhaltens
- Ermittlung der parasitären Impedanzen

5. Dokumentation

5 3L-NPC Schaltung

5.1 Einleitung

Der Ausdruck 3L-NPC steht für *Three Level - Neutral Point Clamped* und bezeichnet eine dreistufige Halbbrücken-Topologie. So hat man bei der 3L-NPC Halbbrücke (HB) die Möglichkeit zwischen den drei Schaltzuständen Hoch, Tief und Null zu schalten.

Der Bereich der mehrstufigen HB ist relativ jung, erst 1980 wurde durch die Arbeit von Akira Nabae [2] die erste NPC-Topologie vorgestellt. Diese Erfindung gab den Anstoß für ein erhöhtes wissenschaftliches Interesse an dem Bereich, worauf eine Serie von Weiterentwicklungen folgte. Durch die Vorteile dieser Topologie wurde in den 90er Jahren eine Reihe weiterer Mehrstufen-HB-Topologien vorgestellt, wobei die originale 3L-NPC-Topologie, unter Verwendung des gleichen Prinzips, auch auf eine höhere Anzahl an Stufen angewendet wurde [11].

Der grundsätzliche Vorteil einer mehrstufigen HB ist, dass dadurch ein besseres Angleichen an eine angestrebte Sollwertkurve erreicht werden kann [20][16]. Weiters kommt es aufgrund der Topologie zu einer kleineren Spannungsbelastung der einzelnen Schaltungskomponenten [16].

Im Weiteren gesehen besitzt die 3L-NPC-Topologie zwei Schaltungstypen, den NPCund den ANPC-Typ. Diese Typen besitzen verschiedene Schaltungsvarianten, welche Unterschiede in der Verschaltung und den verwendeten Komponenten aufweisen können, jedoch dieselbe Funktionsweise besitzen.

Betrachtet man nun die zwei, in Abb. 5.1 dargestellten Schaltungstypen, erkennt man, dass sich diese lediglich durch die Komponenten zwischen Punkt A und B unterscheiden.

Abbildung 5.1: Schaltungstypen

Beim NPC-Typ wird zwischen den Punkten A und B immer eine Diode geschaltet, was eine einfache Realisierung erlaubt.

Eine aufwändigere Variante ist der ANPC-Typ (Active NPC), bei welchem ebenfalls zwischen den Punkten A und B eine Diode vorgesehen ist. Der Unterschied besteht

jedoch darin, dass parallel zur Diode ein Halbleiterschalter platziert wird. Bei dieser Schaltungsvariante des ANPC-Typs wird der Schalter und die Diode über ein Bauteil (MOSFET) verwirklicht. Der Hauptvorteil dieses Schaltungstyps ist, dass durch das Schalten des Halbleiterschalters die Leitungsverluste über die Dioden verringert werden können. Eine für die Steuerung günstige Tatsache ist, dass bei diesem Schaltungstyp mehrere Null-Zustände existieren [5]. In der NPC-Schaltung kann ein universaler (somit für beide Stromrichtungen geltender) Null-Zustand, durch Schalten der beiden Schalter S_{1a} und S_{2a} erreicht werden. Im Gegensatz dazu existieren beim ANPC-Typ drei Möglichkeiten in einen universalen Nullzustand zu wechseln: Erstens durch Schalten von S_{D1} und S_{1a} , zweitens durch Schalten von S_{D2} und S_{2a} , und drittens durch Schalten von S_{1a} und S_{2a} (mit optionalem Schalten von S_{D1} und S_{D2}).

Bei der 3L-NPC-HB handelt es sich um den am weitesten verbreiteten Mehrstufen-HB. Er wird vor allem im mittleren bis hohen Leistungsbereich eingesetzt [16].

5.2 Allgemein

Abbildung 5.2: ESB einer 3L-NPC Halbbrücke

Um vereinfacht die Funktionsweise der HB darzulegen, betrachten wir zunächst Abbildung 5.2. Die HB wird in diesem ESB durch das Zusammenschalten von zwei Kondensatoren und einem Schalter S realisiert. Versorgt wird die Schaltung durch eine Gleichspannungsquelle U_{zk} (Zwischenkreisspannung). Den Ausgang der Schaltung bilden die Klemmen K+ und K0, an welche die Last angeschlossen wird. Die positive Ausgangsspannung wird von K+ nach K0 definiert, welche ebenfalls der positiven Stromrichtung i_a entspricht.

Für die erste Betrachtung wird die Last als rein ohmsch definiert. Befindet sich der Schalter auf der Position "1" liegt eine positive Spannung - U_{C1} - an der Last an, diese bewirkt einen positiven Stromfluss, der den Kondensator C_1 entlädt und C_2 auflädt. Dies bewirkt, dass die Kondensatorspannung an C_2 ansteigt und an C_1 abfällt. In der Schalterstellung "0" liegt keine Spannung an der Last an, wodurch es zu keinem Stromfluss durch die Last kommt, und sich die Kondensatorspannungen folglich nicht verändern. In der letzten möglichen Schalterstellung "-1" liegt die Last an einer negativen Spannung (U_{C2}) an, was zum Entladen des Kondensators C_2 und einem Aufladen von C_1 führt.

Für die zweite Annahme wird die Last als indukiv angenommen, und das Verhalten eines gewissen Stromflusses in Abhängigkeit vom Schalterzustand betrachtet. Wird der Schalter auf die Position "1" gelegt, liegt über U_{C1} an der Last eine positive Spannung an. Bei einer positiven Stromrichtung wird der Kondensator C_1 entladen und C_2 über die Gleichspannungsquelle geladen. Fließt negativer Strom, wird der Kondensator C_1 geladen und C_2 entladen. Wird auf die Schalterstellung "0" geschaltet, wird die Last kurz geschlossen und es kann der entsprechende Strom fließen. Dieser Schaltzustand hat keine Auswirkungen auf die Kondensatorspannungen. In der letzten Situation befindet sich die Schalterstellung auf "-1", wodurch an den Klemmen die Kondensatorspannung U_{C2} anliegt. Fließt der Strom in positive Richtung, wird der Kondensator C_2 geladen und C_1 über die ideale Gleichspannungsquelle entladen. Analog dazu wird der Kondensator C_1 bei negativer Stromrichtung geladen und C_2 entladen.

Zusammenfassend: In den Schalterstellungen "1" und "-1" werden die Kondensatoren C_1 bzw. C_2 bei positivem Ausgangsstrom ent- bzw. geladen, bei negativem Ausgangsstrom umgekehrt. In Schalterstellung "0" bleibt der Ladezustand beider Kondensatoren unverändert.

5.3 Arbeitsbereiche

Bevor genauer auf die Schaltung eingegangen wird, müssen zuallererst die Arbeitsbereiche definiert werden. Für die Last wird ein allgemeines Modell einer elektrischen Maschine (motorischer und generatorischer Betrieb) verwendet, welches aus einer Serienschaltung aus Widerstand, Induktivität und einer induzierte Spannung U_{1h} besteht. Das Modell der elektrischen Maschine mit den dazugehörigen Zählpfeilen sind in Abb. 5.3 veranschaulicht.

Abbildung 5.3: Allgemeines Modell einer elektrischen Maschine

Grundsätzlich gibt es zwei Arbeitsbereiche, welche die Schaltung annehmen kann. Erstens den motorischen Betrieb, in welchem die HB eine Last speist, zweitens den generatorischen Betrieb, in welchem die HB über die Ausgangsklemmen gespeist wird. Zusätzlich wird der Kurzschlussbetrieb, der einen Grenzfall zwischen motorischem und generatorischem Betrieb darstellt, als ein eigener Betriebsbereich behandelt. Dieser tritt auf, wenn die Lastklemmen kurzgeschlossen werden. Für die Vereinfachung wird der Kurzschlusspfad als ideal (Widerstand und Induktivität sind Null) angenommen.

Für die Darstellung wird im zweidimensionalen kartesischen Koordinatensystem für die Abszissenachse die Klemmenspannung U_1 und für die Ordinatenachse der Klemmenstrom i_1 aufgetragen. Die Ordinatenachse stellt hierbei den Kurzschlussbetrieb dar.

Abbildung 5.4: Arbeitsbereiche der Halbbrücke

I Quadrant: In diesem Quadranten liegt an den Klemmen der HB eine positive Spannung an, welche durch die Schalterstellung (Schaltmodell Abb.5.2) "1" erzeugt wird. Durch den positiven Ausgangsstrom, wird über die Last der Kondensator C_1 entladen - motorischer Betrieb.

II Quadrant: In diesem Bereich wird an den Lastklemmen eine negative Spannung geschaltet (Schalterstellung "-1"). Fließt ein positiver Ausgangsstrom, wird über die Lastklemmen der Kondensator C_2 geladen - generatorischer Betrieb.

III Quadrant: Liegt wiederum eine negative Klemmenspannung (Schalterstellung "-1") an, und fließt ein negativer Ausgangsstrom, wird der Kondensator C_2 entladen - motorischer Betrieb.

IV Quadrant: In diesem Quadranten liegt an die Lastklemmen eine positive Spannung (Schalterstellung "1") an und es fließt ein negativer Ausgangsstrom welcher den Kondensator C_1 lädt - generatorischer Betrieb.

Kurzschlussbetrieb: Wird die HB in die Schalterstellung "0" geschaltet, sinkt, unabhängig von der Stromrichtung, die Klemmenspannung auf Null (laut getroffener Idealisierung). In vielen Anwendungen strebt man im Betrieb einen sinusförmigen Stromfluss an. Weicht man zusehends von dieser Form ab, kann es beim Betrieb einer elektrischen Maschine zu unerwünschten Effekten kommen (Zusatzverlust, Bildung von Gegenmomenten), welche den Gesamtwirkungsgrad (Wirkungsgrad der HB und der elektrischen Maschine) reduzieren können. Um dies zu vermeiden wird eine niedere Stromwelligkeit angestrebt. Im Betrieb wird die HB für die Ausgangsspannung ein PWM-Muster erzeugen, welches einen solchen verzerrten sinusförmigen Wechselstrom in der elektrischen Maschine hervorruft.

5.4 Schaltung

Abbildung 5.5: Prinzipieller Schaltungsaufbau einer 3L-NPC HB

Bei der in Abbildung 5.5 gezeigten Schaltung handelt es sich um eine Schaltungsvariante der 3L-NPC-Topologie, die im Groben dem verwendeten Aufbau entspricht. Grundsätzlich besteht die HB aus sechs Dioden und mindestens vier Halbleiterschaltern, wobei für die untersuchten Schaltungen ebenfalls MOSFETs als Halbleiterschalter verwendet wurden. Ein Unterschied, der zur realen Schaltung besteht, ist, dass für die Schalter S_1 und S_2 jeweils zwei MOSFETs verwendet wurden, auf die noch später eingegangen wird.

5.5 Schaltzustände

5.5.1 Allgemein

Die Halbbrückenschaltung besitzt vier Halbleiterschalter aus denen sich, im Bezug auf die möglichen Gatesignale, insgesamt $2^4 = 16$ verschiedene Schaltzustände ergeben. Diese Kombinationsmöglichkeiten lassen sich grob in vier Zustandskategorien einteilen, welche unterschiedliche Eigenschaften aufweisen.

Zwischen folgenden Zustandsarten kann unterschieden werden:

- Erlaubte Zustände
- Übergangszustände
- Unerwünschte Zustände
- Verbotene Zustände

Diese Zustände werden in folgender Zustandstabelle den möglichen Schalterstellungen zugeordnet.

Nr.	Zustandsart	S1	S1a	S2a	S2
1	Erlaubter Zustand	0	0	0	0
2	Unerwünschter Zustand	0	0	0	1
3	Übergangszustand	0	0	1	0
4	Erlaubter Zustand	0	0	1	1
5	Übergangszustand	0	1	0	0
6	Unerwünschter Zustand	0	1	0	1
7	Erlaubter Zustand	0	1	1	0
8	Verbotener Zustand	0	1	1	1
9	Unerwünschter Zustand	1	0	0	0
10	Unerwünschter Zustand	1	0	0	1
11	Unerwünschter Zustand	1	0	1	0
12	Unerwünschter Zustand	1	0	1	1
13	Erlaubter Zustand	1	1	0	0
14	Unerwünschter Zustand	1	1	0	1
15	Verbotener Zustand	1	1	1	0
16	Verbotener Zustand	1	1	1	1

 Tabelle 1: Zustandstabelle

5.5.2 Zustandsarten

Verbotene Zustände: Diese Zustände führen unter normalen Betriebsbedingungen zur Zerstörung der HB durch erhöhten Stromfluss - Kurzschluss. Es sind folgende Zustände dieser Art möglich:

Im Schalterzustand Nr. 8 wird über die Diode D_1 der Kondensator C_2 entladen, was durch die hohen Kapazitäten und Spannungen zwangsweise zu einer Zerstörung führt. Analog dazu wird im Zustand Nr. 15 der Kondensator C_1 entladen. Der letzte und gravierendste Schaltzustand ist Nr. 16, bei dem ein kompletter Kurzschluss an der Spannungsquelle und somit auch über die beiden Kapazitäten erzeugt wird.

Unerwünschte Zustände: Diese Zustände haben grundsätzlich keine zerstörerische Wirkung, jedoch führen sie zu erhöhter Bauteilbelastung. Die ungünstigsten Situationen ergeben sich in den Schalterstellungen Nr. 12 und Nr. 14 (Tabelle 1), in denen an einem Halbleiterschalter die volle Zwischenkreisspannung anliegt, was durch falsche Dimensionierung schnell zur Zerstörung der Bauteile führt. Folglich sind diese Schaltzustände nach Möglichkeit zu vermeiden.

Übergangszustände: Wie der Name schon sagt, werden diese Zustände primär für Zustandswechsel verwendet. Es gibt jedoch auch Situationen in denen diese Zustände die bevorzugte Freilaufstellung darstellen.

Erlaubte Zustände: Sind die in den meisten Fällen anzustrebenden Betriebszustände. Es existieren jedoch spezielle Betriebszustände, bei denen man Vorsicht walten lassen muss. In Tabelle 1 sind alle möglichen Schaltzustände mit der dazugehörigen Zustandsart aufgelistet.

Um das Schaltverhalten genauer zu verstehen, werden die relevanten Zustände "Erlaubter Zustand" und "Übergangszustand" im nächsten Abschnitt noch detaillierter betrachtet.

5.5.3 Relevante Schaltzustände

Für die Betrachtungen der Schaltzustände werden mehrere Vereinfachungen getroffen. So werden die Kondensatoren und die Spannungsquelle als ideal angenommen. Der MOSFET wird vereinfacht als eine Zusammenschaltung von idealem Schalter und Diode betrachtet. Die Dioden werden ebenfalls als idealisiert angenommen und erlauben nur einen Stromfluss von Anode zu Kathode mit einem bestimmten Spannungsabfall.

Für die allgemeine Beschreibung der Zustände wird an den Ausgangsklemmen K0 und K+ das Modell der elektrischen Maschine geschaltet (vorgestellt in Kapitel 5.3). In weiterer Folge werden alle möglichen Lastsituationen für die relevanten Schaltzustände betrachtet, und diese den drei genannten Arbeitsbereichen zugeordnet. Der Übersichtlichkeit halber wurden die nicht relevanten Komponenten einer Schaltung nicht eingezeichnet.

Zustand Nr.1 - A für Auszustand:

Abbildung 5.6: Auszustand

In dieser Konfiguration sind alle Halbleiterschalter offen.

- a) Kommt es zu einem positiven Stromfluss wird der Kondensator C_2 , über die parasitären Dioden D_{S2} und D_{S2a} , geladen. Im gleichen Zug muss, für die Erhaltung der Maschenregel U_{zk} , U_{C1} und U_{C2} , C_1 über die Gleichspannungsquelle entladen werden (Abb. 5.6a) - generatorischer Betrieb (2. Quadrant)
- b) Fließt ein negativer Strom über die Last wird der Kondensator C_1 , über die parasitären Dioden D_{S1} und D_{S1a} , geladen, wodurch sich C_2 über die Spannungsquelle entlädt (Abb. 5.6b) generatorischer Betrieb (4. Quadrant).

Zustand Nr. 4 - T für Tief:

Abbildung 5.7: Low

Durch das Schalten der unteren beiden Schalter S_2 und S_{2a} liegt eine Spannung von $-\frac{U_{zk}}{2}$ (U_{C2}) an den Lastklemmen an.

- a) Kommt es zu einem positiven Stromfluss, wird der Kondensator C_2 durch die an den Lastklemmen angeschlossene elektrische Maschine geladen, wodurch im Gegenzug C_1 über U_{zk} entladen werden muss (Abb. 5.6b). In dieser Situation befindet sich die Schaltung im generatorischen Betrieb (2. Quadrant).
- b) Fließt der Strom in die negative Richtung, wird der Kondensator C_1 geladen und C_2 entladen. Die Schaltung befindet sich im motorischen Betrieb (3. Quadrant).

Zustand Nr. 13 - H für Hoch-Stellung:

Abbildung 5.8: Hoch-Stellung

Hier sind nur die beiden oberen Schalter S_1 und S_{1a} geschlossen.

- a) Ist die Stromrichtung positiv, wird der Kondensator C_2 geladen und C_1 entladen (Abb. 5.8a) motorischer Betrieb (1. Quadrant).
- b) Fließt der Strom in die negative Richtung, wird der Kondensator C_1 über die an den Klemmen angeschlossene elektrische Maschine geladen, und C_2 über die Spannungsquelle U_{zk} entladen (Abb. 5.8b) generatorischer Betrieb (4. Quadrant).

Zustand Nr. 7 - N für Nullzustand:

Abbildung 5.9: Nullzustand

Bei diesem Zustand sind die beiden inneren Schalter, S_{1a} und S_{2a} geschlossen, was dazu führt, dass keine äußere Spannung (Kondensatorspannung) an den Klemmen anliegt. Im Realen kommt es durch den Stromfluss, welcher durch die elektrische Maschine verursacht wird, zu einer niederen Spannung an den Ausgangsklemmen (für $i_1 \neq 0$). Diese Ausgangsspannung wird im Wesentlichen durch den Stromfluss, der Diodenkennlinie, den $R_{DS(on)}$ -MOSFET-Widerstand, sowie den parasitären Parametern definiert.

- a) Treibt die elektrische Maschine einen positiven Strom, bildet die Diode D_1 den Kurzschlusspfad (Abb. 5.9a) Kurzschlussbetrieb.
- b) Fließt ein negativer Strom, prägt sich dieser über die Diod
e D_2 (Abb. 5.9b) aus - Kurzschlussbetrieb.

Die Ladung der Kapazitäten werden in beiden Fällen nicht beeinflusst.

Zustand Nr. 3 - ÜT für Übergang Tief-Stellung:

Abbildung 5.10: Übergang Tief-Stellung

In diesem Schaltzustand ist nur der Schalter S_{2a} geschlossen.

- a) Fließt ein Strom in positive Richtung, wird der Kondensator C_2 über die elektrische Maschine geladen und C_1 entladen generatorischer Betrieb (2. Quadrant).
- b) Kann sich ein negativer Strom ausprägen, kann dieser über die Diod
e \mathbb{D}_2 fließen - Kurzschlussbetrieb.

Zustand Nr. 5 ÜH für Übergang Hoch-Stellung:

Abbildung 5.11: Übergang Hoch-Stellung

In diesem Zustand ist lediglich der Halbleiterschalter S_{1a} geschlossen.

a) Ist die Stromrichtung positiv, besitzt der Strom
 einen Freilaufpfad über die Diode D_1 - Kurzschlussbetrieb. b) Wird der Strom als negativ angenommen, wird C_1 über die elektrische Maschine geladen und C_2 entladen - generatorischer Betrieb (4. Quadrant).

Nr.	Schaltzustand	Stromrichtung	GK^1	$G\ddot{U}^2$	EK ³	$\mathrm{E}\ddot{\mathrm{U}}^4$	FP^5
1	А	positiv	C_2	$D_{S2a},$	C_1	$D_{S2a}, D_{S2},$	
				D_{S2}		U_{zk}	
2	А	negativ	C_1	$D_{S1a},$	C_2	$D_{S1a}, D_{S1},$	
				D_{S1}		U_{zk}	
3	ÜΤ	positiv	C_2	D_{S2}, S_{2a}	C_1	$D_{S2}, S_{2a},$	
						U_{zk}	
4	ÜΤ	negativ					D_2, S_{2a}
5	Т	positiv	C_2	S_2, S_{2a}	C_1	S_2, S_{2a}	
6	Т	negativ	C_1	S_2, S_{2a}	C_2	S_2, S_{2a}	
7	ÜH	positiv					D_1, S_{1a}
8	ÜH	negativ	C_1	D_{S1}, S_{2a}	C_2	$D_{S1}, S_{1a},$	
						U_{zk}	
9	N	positiv					D_1, S_{1a}
10	Ν	negativ					D_2, S_{2a}
11	Н	positiv	C_2	S_1, S_{1a}	C_1	$S_1, S_{1a},$	
						U_{zk}	
12	Н	negativ	C_1	S_1, S_{1a}	C_2	$S_1, S_{1a},$	
						U_{zk}	

 1 Geladener Kondensator 2 Geladen über 3 Entladener Kondensator 4 Entladen über 5 Freilauf pfad

Tabelle 2: Erweiterte Zustandstabelle für die relevanten Schaltzustände

Nr.	Schaltzustand	Stromrichtung	Arbeitsbereiche
1	А	positiv	generatorischer Betrieb 2. Quadrant
2	A	negativ	generatorischer Betrieb 4. Quadrant
3	ÜΤ	positiv	generatorischer Betrieb 2. Quadrant
4	ÜΤ	negativ	Kurzschlussbetrieb
5	Т	positiv	generatorischer Betrieb 2. Quadrant
6	Т	negativ	motorischer Betrieb 3. Quadrant
7	ÜH	positiv	Kurzschlussbetrieb
8	ÜΗ	negativ	generatorischer Betrieb 4. Quadrant
9	N	positiv	Kurzschlussbetrieb
10	N	negativ	Kurzschlussbetrieb
11	Н	positiv	motorischer Betrieb 1. Quadrant
12	Н	negativ	generatorischer Betrieb 4. Quadrant

Tabelle 3: Erweiterte Zustandstabelle für die Zuordnung der Arbeitsbereiche

5.6 Schaltstrategien

5.6.1 Allgemein

Dieser Abschnitt behandelt die grundlegende Steuerung der HB bei gleichzeitiger Einhaltung der sicheren Arbeitsweise. Es werden hier kurz die sicherheitskritischen Faktoren behandelt und daraus mögliche Schaltbedingungen definiert, welche einen sicheren Betrieb garantieren. In weiterer Folge werden die herkömmlichen Schaltstrategien erläutert, und im Anschluss eine neu abgewandelte Strategie präsentiert.

5.6.2 Sicherer Arbeitsbereich

Um sicherzustellen, dass sich bei der HB zu keinem Zeitpunkt eine kritische Situation ergibt, müssen mehrere Faktoren berücksichtigt werden, welche schlussendlich die möglichen Schaltstrategien bestimmen.

Für den Betrieb werden nur die relevanten Schaltzustände "Erlaubte Zustände" und "Übergangszustände" herangezogen, da alle übrigen Zustände negative bzw. destruktive Situationen erzeugen.

Soll von einem Zustand in den nächsten gewechselt werden muss sichergestellt werden, dass zu keinem Zeitpunkt eine kritische Situation auftritt. Zu berücksichtigen ist, dass ein Halbleiterschalter nicht unendlich schnell schalten kann, und dadurch gewisse Zustandsänderungen nicht anzustreben sind. Dies ist der Fall, da hierdurch kurzzeitig gewisse Schalter aus- und andere einschalten werden, wodurch sich für die HB kritische Fälle ergeben können. Als Beispiel sei hier die Zustandsänderung von Hoch (H) auf Null (N) H \rightarrow N genannt. Kommt es zum Zustandswechsel kann es vorkommen, dass kurzzeitig der Schalter S_1 noch nicht geöffnet ist und S_{2a} bereits leitet. Dies bedeutet, dass es kurzfristig zu einem Kurzschluss des Kondensators C_1 kommt (Zustand Nr. 15), was zur Zerstörung von Komponenten führen kann. Dieses Beispiel zeigt auf, dass nicht alle Zustandsänderungen durchgeführt werden dürfen da sich ansonsten kurzzeitig potenziell zerstörerische Situationen ergeben können. Berücksichtigt man diese Sicherheitsaspekte, ergeben sich für den Betrieb der HB die in Abb.:5.12 dargestellten Zustände mit den erlaubten Zustandsänderungen.

Abbildung 5.12: Erlaubte Zustandsänderungen

Für die Einhaltung dieser Sicherheitsaspekte können folgende drei Bedingungen genannt werden:

- 1. Nur sechs Zustände sind möglich ("Erlaubte Zustände" und "Übergangszustände")
- 2. Jede Zustandsänderung muss abgeschlossen sein bevor eine neue Zustandsänderung durchgeführt werden kann
- 3. Es sind nur 18 Zustandsänderungen (siehe Abb.:
5.12 von den insgesamt 30((n-1)n)erlaubt

Ein kritischer Faktor, der durch diese Bedingungen nicht ausgeschlossen werden kann, ist, dass sich die einzelnen Kapazitäten (Abb. 5.5 C_1 und C_2) zu weit laden bzw. entladen. Weicht die Kondensatorspannung zusehends vom angestrebten Wert $\frac{U_{zk}}{2}$ ab, kommt es durch das Ungleichgewicht zu einer erhöhten Spannungsbelastung an den Halbleiterschaltern. Wird dem nicht durch entsprechendes Dimensionieren bzw. Schalten der Kapazitäten Rechnung getragen, müssen die HB-Komponenten auf eine höhere Spannung ausgelegt werden. Überschreitet eine Kondensatorspannung jedoch den Wert der Zwischenkreisspannung, kommt es neben der hohen Spannungsbelastung auf der einen Seite zu einer negativen Spannung am gegenüberliegenden Kondensator. Die maximale auftretende negative Spannung wird zwar durch die Dioden D_1/D_{S1} bzw. D_2/D_{S2} auf einen kleinen Wert beschränkt, diese kann jedoch ausreichen um die Elektrolytkondensatoren zu beschädigen. Dies führt zwangsweise zu einer Verkürzung der Lebensdauer und damit verbunden zu einer frühzeitigen Zerstörung der Kapazität.

5.6.3 Schalten

Im folgenden Abschnitt soll der Schaltbetrieb der HB betrachtet werden. Aus den fünf Zuständen H,ÜH,N,ÜT und T ergeben sich acht aktive Zustandsänderungen, welche wiederum zu zwei sinnvollen Schaltstrategien führen. Es kann zwischen *konventionellem* Schalten und *gesteuertem* Schalten unterschieden werden:

- 1. Konventionelles Schalten
- 2. Gesteuertes Schalten (Erarbeiteter Optimierungsansatz)

Konventionelles Schalten

Beim *konventionellen* Schalten wird zwischen den Zuständen Hoch, Null und Tief gewechselt. Dies kann aufgrund der anfangs behandelten Bedingungen nur über die jeweiligen Übergangszustände erfolgen, da es sonst zum Kurzschluss einer der Kondensatoren kommen kann.

Die naheliegende Schaltfolge ist in Tab. 4 abgebildet.

Nr.	von Zustand	über Zustand	nach Zustand
1	N	ÜΗ	Н
2	Н	ÜΗ	Ν
3	N	ÜΤ	Т
4	Т	ÜΤ	Ν

 Tabelle 4: Konventionelles Schalten

Gesteuertes Schalten

Eine bessere Schaltstrategie bietet das hier vorgestellte gesteuerte Schalten, bei der für die Steuerung zwischen zwei Situationen unterschieden werden muss. Im ersten Zustand wechselt die HB zyklisch vom generatorischem Betrieb in den Kurzschlussbetrieb, wobei in konventioneller Weise geschaltet wird. Befindet sich jedoch die Schaltung im zweiten Zustand, in welchem die HB abwechselnd in den motorischen Betrieb und den Kurzschlussbetrieb schaltet, wird eine alternative Schaltstrategie verwendet.

Der Ausgangspunkt der Schaltstrategie liegt darin, dass im zweiten Zustand das Schalten vom Übergangszustand zum Nullzustand keine Änderung bewirkt, da beide einen Kurzschlussbetrieb darstellen, und folglich "eingespart" werden können. Um dies genauer zu erklären betrachten wir nochmals Tab. 2 und Tab. 3.

Man erkennt, dass im ÜH-Zustand der Strom bei positiver Richtung über die Diode D_1 fließt, was in der Nullstellung ebenfalls der Fall ist. Die analoge Situation tritt bei den Zuständen ÜT und N in negativer Stromrichtung auf, wo der Stromfluss für beide Zustände über die Diode D_2 fließt.

Folglich kann im zweiten Zustand bei der Schalthandlung $N \mapsto \ddot{U}H \mapsto H$ bzw. $H \mapsto \ddot{U}H \mapsto N$ auf die Zustandsänderung auf N verzichtet werden ($H \leftrightarrow \ddot{U}H$), da $\ddot{U}H$ bereits einen Kurzschlussbetrieb darstellt. Analog dazu kann im zweiten Zustand bei der Schalthandlung $N \mapsto \ddot{U}T \mapsto T$ bzw. $T \mapsto \ddot{U}T \mapsto N$ ebenfalls der Zustand N ausgespart werden ($T \leftrightarrow \ddot{U}T$), da der Zustand $\ddot{U}T$ bereits einen Kurzschlussbetrieb darstellt.

Abbildung 5.13: Verlustbetrachtung konventionelles Schalten

Um die Vorteile dieser Schaltart zu erläutern wird im folgenden Absatz das konventionelle Schalten und das gesteuerte Schalten gegenübergestellt. Diese Gegenüberstellung wurde mithilfe einer Reihe von LTSpice- (Kapitel 13.1) und GeckoCIRCUIT-Simulationen (Kapitel 13.2) ermittelt. Für diesen Zweck wird beispielhaft die Schaltfolge N \leftrightarrow ÜH \leftrightarrow H im zweiten Zustand (Schalten zwischen motorischem Betrieb und Kurzschlussbetrieb) betrachtet. Analog dazu verhält sich die Schaltung bei der Schaltfolge N \leftrightarrow ÜT \leftrightarrow T im zweiten Zustand. Für die Verlustbetrachtung werden die Vorgänge im Halbleiterschalter S_{2a} näher untersucht.

Im Schaltzustand N sind die beiden Schalter S_{1a} und S_{2a} geschlossen, wodurch die entsprechenden parasitären Kapazitäten entladen sind. Wechselt man nun in den Übergangszustand ÜH, wird der Schalter S_{2a} geöffnet, was keinerlei Auswirkungen auf die restliche Schaltung hat, da sich die HB nach wie vor im Kurzschlussbetrieb (über D_1) befindet (Tabelle 2). Wird in den Zustand H geschaltet, muss der Strom vom Kurzschlusspfad (Lastklemmen, D_1) kommutieren. Ein Teil des Laststroms kommutiert auf den Pfad Lastklemmen- C_1 , der andere Teil auf den Pfad Lastklemmen- C_2 - U_{zk} . Des Weiteren führt die Kommutierung im Zusammenspiel mit den MOSFET-Kapazitäten und den parasitären Induktivitäten zu einem Einschwingvorgang. Dieser Vorgang kann

kurzzeitig dazu führen, dass die Ausgangsspannung Werte größer der Kondensatorspannung C_1 annehmen kann. Nach dem Einschwingvorgang, in welchem die parasitären MOSFET-Kapazitäten C_{S2a} und C_{S2} teilweise ge- und entladen werden, stellt sich für C_{S2a} und C_{S2} näherungsweise eine Spannung von $\frac{U_{zk}}{2}$ ein. Im Zuge der Zustandsänderung $H \mapsto \ddot{U}H$ wird der Schalter S_1 geöffnet und der Laststrom kommutiert in den Kurzschlusspfad (Lastklemmen- D_1). Aufgrund dessen bricht die Spannung an den Lastklemmen auf eine kleine negative Klemmenspannung ein. Die Serienschaltung der beiden parasitären Kapazitäten S_2 und S_{2a} , ist vor der Schalthandlung $H \mapsto UH$ auf die Zwischenkreisspannung geladen. Wird nun in den Ubergangszustand geschaltet, liegt an dieser Serienschaltung nur mehr die Kondensatorspannung C_2 an (Vernachlässigung der Klemmenspannung), was zur Folge hat, dass sich diese beiden MOSFET-Kapazitäten auf jeweils etwa die Spannung $\frac{C_2}{2}$ entladen (Abb. 5.13b). Wechselt man nun in den Zustand N wird der Schalter S_{2a} geschlossen, wodurch sich der parasitäre Kondensator rasch über den MOSFET entladen kann. Durch die schnelle Entladung entstehen im MOSFET kurzzeitig hohe Verluste, welche in Wärme umgesetzt werden.

Nr.	von Zustand	über Zustand	nach Zustand	Stromrichtung
1	ÜΗ	-	Н	positiv
2	Ν	ÜΗ	Н	negativ
3	Н	-	ÜΗ	positiv
4	Н	ÜΗ	N	negativ
5	N	ÜΤ	Т	positiv
6	ÜΤ	-	Т	negativ
7	Т	ÜΤ	N	positiv
8	Т	-	ÜΤ	negativ

 Tabelle 5: Gesteuertes Schalten

Beim gesteuerten Schalten kommt es ebenfalls zum wiederholten Laden und Entladen der Kapazitäten C_{S1a} und C_{S2a} . Befindet sich die Schaltung jedoch im zweiten Zustand wird für den Kurzschlussbetrieb lediglich in den Übergangszustand geschaltet, wodurch die Drain-Source-Kapazitäten der MOSFETs S_{1a} und S_{2a} nicht über Halbleiterschalter entladen werden. Dadurch kann die HB mit dieser Steuerstrategie aus Sicht der Verluste idealer schalten, da die im Kondensator gespeicherte Energie nicht zur Gänze verloren geht. Für diese Steuerstrategie werden in weiterer Folge einige Abhängigkeiten aufgezeigt.

- Ein gewichtiger Faktor ist der angesprochene Zustand, in dem die HB betrieben wird. Befindet sich die HB zeitlich zusehends im zweiten Zustand, kann das *gesteuerte* Schalten immer stärker seinen Wirkungsgradvorteil ausspielen.
- Der zweite Punkt ist die Drain-Source-Kapazität (von C_{S1a} bzw. C_{S2a}) die der MOSFET bei einer gegeben Schaltanordnung besitzt. Ist sie größer, kann mehr Energie in dieser gespeichert werden, wodurch höhere Verluste anfallen. Umgekehrt kann bei der Wahl der Komponenten, beim gesteuerten Schalten und vorwiegend motorischem Betrieb, die Drain-Source-Kapazität stärker vernachlässigt werden.

- Ein ebenfalls wichtiger Aspekt ist die Schaltfrequenz. Ist diese groß und befindet sich die HB überwiegend im zweiten Zustand, werden beim konventionellen Schalten häufig die Drain-Source-Kapazitäten C_{S1a} und C_{S2a} über den entsprechenden MOSFET entladen. Dies führt zu hohen Verlusten, welche durch das gesteuerte Schalten vermieden werden können.
- Ein weiterer Punkt ist die Zwischenkreisspannung. Ist sie höher steigt ebenfalls die in der Drain-Source-Kapazität gespeicherte Energie, welche quadratisch mit der Spannung 13.3 (an der Kapazität) steigt.

Fazit:

Die Verwendung der vorgestellten Schaltstrategie hat, nach einer Reihe von Simulationen die Erwartungen bestätigt. So konnte gezeigt werden, dass die HB bei teilweise motorischem Betrieb einen systematischen Wirkungsgradvorteil gegenüber dem *konventionellen* Schalten aufweist. In den Simulationen konnten unter den gewählten Bedingungen, Verbesserungen des Wirkungsgrades bis in den Prozentbereich beobachtet werden. Weiterführend scheint das *gesteuerte* Schalten ebenfalls eine starke Verminderung der maximalen Belastung der Halbleiterschalter zu bewirken.

5.7 Parasitäre Schaltungskomponenten

Allgemein

Will man nun das Verhalten der Schaltung genauer beschreiben ist es unumgänglich die parasitären Komponenten zu berücksichtigen.

Resistive Komponenten

Jede Verbindung, in der für uns üblichen Umgebung, verursacht einen Widerstand. Dieser ist in erster Linie von den Parametern Leitungslänge, Querschnitt und Material abhängig. Ein weiterer Faktor, der beim hochfrequenten Schalten immer mehr zum Tragen kommt ist der Skin-Effekt [10]. Fließt nun ein Strom in der Schaltung, kommt es durch den Widerstand zu Verlusten, welche den Wirkungsgrad der HB herabsetzen.

Induktive Komponenten

Bei induktiven Leitungsgrößen wird die Energie im magnetischen Feld gespeichert [12]. Durch diese Speicherwirkung kommt es beim Schalten zu erhöhten Verlusten, welche zum Teil in der HB umgesetzt werden.

Kapazitive Komponenten

Wie bei der Induktivität besitzt auch die Kapazität eine Speicherwirkung, hier wird jedoch die Energie über das elektrische Feld gespeichert [12]. Analog dazu wird auch hier ein Teil dieser gespeicherten Energie in der HB in Form von Verlusten umgesetzt.

ESB mit parasitären Komponenten

Abbildung 5.14: ESB mit parasitären Komponenten

Für die folgende Betrachtung der Kommutierung wurde das in Abb. 5.14 dargestellte ESB gewählt, welches ebenfalls für die Charakterisierung des bestehenden Aufbaus verwendet wurde.

5.8 Kommutierung

5.8.1 Allgemein

Im Allgemeinen versteht man unter dem Begriff der Kommutierung die Übergabe des Stromes von einem Pfad auf den nächsten, wobei während der Kommutierungsphase in beiden Pfaden Strom fließt [19].

5.8.2 Kommutierungskreise

In diesem Abschnitt werden alle relevanten Schalthandlungen mit der dazugehörigen Strompolarität auf das Kommutierungsverhalten untersucht. Das Ziel ist, die Relevanz der einzelnen parasitären Induktivitäten für das jeweilige Schalten bei unterschiedlichen Betriebszuständen zu ermitteln. Eine Annahme, die getroffen wird ist, dass die parasitäre Induktivität L_{pQ} als groß angenommen wird, wodurch sich während der Kommutierung der Strom nicht ändern kann.

 $\mathbf{H} \mapsto \mathbf{\ddot{U}H}, \mathbf{I=pos.}$ von Pfad: L_{pC1}, L_{pH}, L_{pS1} nach Pfad: L_{pD1}

 $\mathbf{H} \mapsto \mathbf{\ddot{U}H}, \mathbf{I}=\mathbf{neg}.$ von Pfad: L_{pS1} nach Pfad: L_{pDS1}

 $\ddot{\mathbf{U}}\mathbf{H} \longmapsto \mathbf{N}, \mathbf{I}=\mathbf{pos}.$ Keine Änderung

 $\begin{array}{l} \mathbf{\ddot{U}H} \longmapsto \mathbf{N}, \ \mathbf{I=neg.} \\ \text{von Pfad: } L_{pS1a}, L_{pDS1}, L_{pH}, L_{pC1}, L_{pCH} \\ \text{nach Pfad: } L_{pS2a}, L_{pD2}, L_{pCT} \end{array}$

 $\mathbf{N} \longmapsto \mathbf{\ddot{U}H}, \mathbf{I} = \mathbf{pos}.$ Keine Änderung

 $\mathbf{N} \mapsto \mathbf{\ddot{U}H}, \mathbf{I}=\mathbf{neg.}$ von Pfad: $L_{pS2a}, L_{pD2}, L_{pCT}$ nach Pfad: $L_{pS1a}, L_{pDS1}, L_{pH}, L_{pC1}, L_{pCH}$

 $\begin{array}{l} \mathbf{\ddot{U}H}\longmapsto\mathbf{H, I=pos.} \\ \text{von Pfad: } L_{pD1} \\ \text{nach Pfad: } L_{pS1}, L_{pH}, L_{pC1} \end{array}$

 $\mathbf{\ddot{U}H} \longmapsto \mathbf{H}, \mathbf{I=neg.}$ von Pfad: L_{pDS1} nach Pfad: L_{pS1}

 $\mathbf{T} \longmapsto \mathbf{\ddot{U}T}, \mathbf{I}=\mathbf{pos}.$ von Pfad: L_{pS2} nach Pfad: L_{pDS2} $\mathbf{T} \mapsto \mathbf{\ddot{U}T}, \mathbf{I}=\mathbf{neg.}$ von Pfad: L_{pS2}, L_{pT}, L_{pC2} nach Pfad: L_{pD2}

 $\begin{array}{l} \mathbf{\ddot{U}T} \longmapsto \mathbf{N}, \, \mathbf{I} = \mathbf{pos.} \\ \text{von Pfad: } L_{pCT}, L_{pC2}, L_{pT}, L_{pS2}, L_{pS2a} \\ \text{nach Pfad: } L_{pCH}, L_{pD1}, L_{pS1a} \end{array}$

 $\mathbf{\ddot{U}T} \longmapsto \mathbf{N}, \mathbf{I}=\mathbf{neg}.$ Keine Änderung

 $\mathbf{N} \mapsto \mathbf{\ddot{U}T}, \mathbf{I}=\mathbf{pos.}$ von Pfad: $L_{pCH}, L_{pD1}, L_{pS1a}$ nach Pfad: $L_{pCT}, L_{pC2}, L_{pT}, L_{pS2}, L_{pS2a}$

 $\mathbf{N} \mapsto \mathbf{\ddot{U}T}, \mathbf{I}=\mathbf{neg}.$ Keine Änderung

 $\mathbf{\ddot{U}T} \longmapsto \mathbf{T}, \mathbf{I}=\mathbf{pos.}$ von Pfad: L_{pDS2} nach Pfad: L_{pS2}

 $\mathbf{\ddot{U}T} \longmapsto \mathbf{T}, \mathbf{I}=\mathbf{neg.}$ von Pfad: L_{pD2} nach Pfad: L_{pC2}, L_{pT}, L_{pS2}

Um das Verhalten bei den einzelnen Schalthandlungen zu beschreiben, wird hier der Schaltvorgang in drei Arten unterteilt: Keine Kommutierung (KK), Irrelevante Kommutierung (IK) (hierbei findet die Kommutierung nur zwischen Schalter S_1 bzw. S_2 auf D_{S1} bzw. D_{S2} statt) und Relevante Kommutierung (RK).

Nr.	Zustandsänderung	Strompolorität	Kommutierungsart
1	$H \longmapsto \ddot{U}H$	positiv	RK
2	$\mathrm{H} \longmapsto \mathrm{\ddot{U}H}$	$\operatorname{negativ}$	IK
3	$\ddot{\mathrm{U}}\mathrm{H}\longmapsto\mathrm{N}$	$\operatorname{positiv}$	KK
4	$\ddot{\mathrm{U}}\mathrm{H}\longmapsto\mathrm{N}$	$\operatorname{negativ}$	RK
5	$N \longmapsto \ddot{U}H$	$\operatorname{positiv}$	KK
6	$N \longmapsto \ddot{U}H$	$\operatorname{negativ}$	RK
7	$\ddot{\mathrm{U}}\mathrm{H}\longmapsto\mathrm{H}$	$\operatorname{positiv}$	RK
8	$\ddot{\mathrm{U}}\mathrm{H}\longmapsto\mathrm{H}$	$\operatorname{negativ}$	IK
9	$T \longmapsto \ddot{U}T$	positiv	IK
10	$T \longmapsto \ddot{U}T$	negativ	RK
11	$\ddot{\mathrm{U}}\mathrm{T}\longmapsto\mathrm{N}$	positiv	RK
12	$\ddot{\mathrm{U}}\mathrm{T}\longmapsto\mathrm{N}$	negativ	KK
13	$N \longmapsto \ddot{U}T$	positiv	RK
14	$N \mapsto \ddot{U}T$	negativ	KK
15	$\ddot{\mathrm{U}}\mathrm{T}\longmapsto\mathrm{T}$	positiv	IK
16	$\ddot{\mathrm{U}}\mathrm{T}\longmapsto\mathrm{T}$	negativ	RK

 Tabelle 6:
 Kommutierungstabelle

Man erkennt, dass von den 16 Schalthandlungen nur acht eine relevante Kommutierung nach sich ziehen.
5.9 Steuerung

5.9.1 Allgemein

Die Aufgabe einer HB besteht im Allgemeinen darin, eine über die Schaltperiode gemittelte Spannung mit sinusförmigem Verlauf und variabler Grundfrequenz zu erzeugen. Durch die Filterung dieser gepulsten Spannung nähert sich auch der resultierende Stromverlauf der Sinusform an [20].

Bei der Betrachtung der Steuerverfahren muss grundsätzlich zwischen geregeltem und gesteuertem Verfahren unterschieden werden.

Bei den gesteuerten Verfahren werden die Schaltzeitpunkte über einen Algorithmus, ohne Kenntnis der elektrischen Größen gesteuert (Offline-Verfahren). Im Gegensatz dazu werden beim geregelten Verfahren die Schaltzeitpunkte unter Berücksichtigung der elektrischen Größen gebildet (Online-Verfahren). Ein entscheidender Vorteil dieses Verfahrens ist die Unempfindlichkeit gegenüber Parameteränderungen, welche unter Inkaufnahme eines größeren Aufwandes realisiert wird.

Die HB kann im Idealen (unter Vernachlässigung der Lade- bzw. Entladevorgänge) drei Ausgangsspannungen erzeugen: $\frac{U_{zk}}{2}$, 0, $-\frac{U_{zk}}{2}$. Die Sollwerte der Ausgangsspannungen können somit nur über die Mittelwerte der Schaltperiode realisiert werden.

$$\overline{u_{out}} = \frac{1}{T_{sw}} \int_{t}^{t+T_{sw}} u_{out}(\tau) d\tau \tag{1}$$

Die Auflösung der Mittelwerte ist jedoch an gewisse Grenzen gebunden. Eine dieser Beschränkungen ist durch die Einschalt- und Ausschaltzeit bedingt, welche die Halbleiterschalter benötigen, um eine Schalthandlung durchzuführen. Ein weitere Begrenzung entsteht durch die Verriegelungszeit.

Grundsätzlich kann jedoch über Erhöhung der Schaltfrequenz die Sollwertkurve exakter nachgebildet werden, was zu einer Reduzierung der Oberschwingungen führt. Damit kann erreicht werden, dass die Verluste in der Maschine vermindert werden. Ein Nachteil ist, dass sich mit steigender Frequenz gleichzeitig die Schaltverluste in den Halbleiterschaltern erhöhen. Die Folge davon ist ein verringerter Wirkungsgrad und ein damit verbundener erhöhter technischer Aufwand, welcher sich auf Volumen und Kosten der HB niederschlägt. Für die Projektierung muss folglich ein Kompromiss zwischen Wirkungsgrad der HB und der elektrischen Maschine, unter Berücksichtigung der Kosten, gefunden werden [20]. Für die Erzeugung von Wechselspannungen mit einstellbarer Spannung und Frequenz bestehen folgende Möglichkeiten der Steuerung [20]:

- Grundfrequenztaktung (Blocktaktung)
- Schwenksteuerung
- Pulsweitenmodulation (PWM)

Grundfrequenztaktung

Bei diesem Verfahren kommt es außer bei der Taktumschaltung zu keinen weiteren Schaltvorgängen innerhalb der Periode der Ausgangsspannung [12]. Die Kurvenform verändert sich nicht mit der Spannung und der Frequenz. Die Steuerung der Amplitude der Ausgangsspannung wird über die Höhe der Gleichspannung gesteuert [20].

Schwenksteuerung

Bei der Schwenksteuerung wird ebenfalls nur einmal pro Periode umgeschaltet. Die Ausgangskurvenform und damit verbunden der Effektivwert kann dabei jedoch durch den Steuerwinkel verändert werden [12].

\mathbf{PWM}

Bei den meisten leistungselektronischen Aufgaben wird heute die Pulsweitenmodulation eingesetzt [20]. Die Ausgangsspannung wird hier über Schaltvorgänge innerhalb der Periode realisiert. Es ist ersichtlich, dass die Wahl der Schaltzeitpunkte maßgebend die Faktoren Effektivwert, Grundschwingung und Oberschwingungsgehalt der Ausgangsspannung beeinflussen [12].

5.9.2 Trägerspannungsvergleich

Bei der Steuerung der 3L-NPC-HB wurde, für die Modulation des PWM-Musters, ein mehrstufiges Trägerverfahren (*Multilevel Carrier-Based PWM*) eingesetzt.

Die Erzeugung der Schaltfunktion erfolgt über den Vergleich des Modulationssignals M_S mit zwei hochfrequenten Trägersignalen T_S .

Für das Modulationssignal M_S wurde ein Sinussignal verwendet, und für den Träger ein Dreiecksignal. Des Weiteren wurde die Taktzahl $\left(\frac{f_{sw}}{f_{out}}\right)$ als ganzzahlig und größer als 10 definiert, woraus sich eine synchrone Taktung ergibt [20].

Abbildung 5.15: PWM-Signalspannungen

Aus den in Abbildung 5.15 ersichtlichen Signalen wird nun über den Vergleich das Schaltmuster generiert. Zum Einen wird das Modulationssignal mit dem positiven Trägersignal verglichen. Ist das Modualionssignal größer/gleich dem Trägersignal, wird S_1 eingeschaltet und S_{2a} ausgeschaltet. Wird diese Bedingung nicht erfüllt, wird S_1 ausgeschaltet und S_{2a} eingeschaltet. Analog dazu wird S_2 eingeschaltet und S_{1a} ausgeschaltet, sobald das Modualionssignal kleiner/gleich dem negativen Trägersignal ist. Trifft dies nicht zu, wird S_2 ausgeschaltet und S_{1a} ausgeschaltet.

Unter Vorgabe eines bestimmten Modulationssignals bestehen grundsätzlich mehrere Freiheitsgrade, welche herangezogen werden können, um den Verlauf des Ausgangssignals zu optimieren. Unter Umständen muss ebenfalls das Konzept für die Erzeugung des Schaltmusters angepasst werden.

Dabei bestehen folgende Freiheitsgrade bei der Erzeugung der PWM-Muster:

- 1. Trägerfrequenz: Über die Trägerfrequenz kann maßgebend die Qualität des Ausgangssignals eingestellt werden.
- 2. Trägerform: Für das Trägersignal können verschiedenste Signalarten herangezogen werden, jedoch werden in den meisten Fällen Dreiecks- und Sägezahnsignale verwendet.
- 3. Trägeroffset: Über die Veränderung der Trägeroffsets kann unter anderem systematisch die Spannungszeitfläche verändert werden.
- 4. Amplitude des Trägers: Ein weiterer Freiheitsgrad besteht in der Veränderung der Amplituden der Trägersignale Modulationsgrad.
- 5. Phasenverschiebung des Trägersignals: Der am häufigsten verwendete Optimierungsansatz für mehrstufige HB ist jedoch die Optimierung mittels Phasenverschiebung der Trägersignale (*Phase-shifted PWM*) [24].
- 6. Modifikation des Modulationssignals: Ein anderer Ansatz besteht darin, das Modulationssignal an sich zu verändern, um ein besseres Verhalten zu erzielen [1].

Über die beschriebenen Vergleiche ergeben sich für das gegebene Modulations- und Trägersignal (hier $f_{out} = 50Hz, f_{sw} = 500Hz$) die in Abbildung 5.16 gezeigten Zustandswechsel.

Abbildung 5.16: PWM-Zustandswechsel

In der Schaltung M2 wurde eine analoge Einschaltverzögerung für alle Halbleiterschalter konzipiert, welche es ermöglicht, für die Steuerung lediglich die erlaubten Zustände (Tabelle 1) vorzugeben, und dennoch sicher zu schalten. Auf diese Weise wird sichergestellt, dass der Zustandswechsel zwischen den erlaubten Zuständen stets über die entsprechenden Übergangszustände erfolgt. Genauer wird in Kapitel 8.9 darauf eingegangen.

Nr.	Zustand	S1	S_{1a}	S_{2a}	S2
1	Н	1	1	0	0
2	Ν	0	1	1	0
3	Т	0	0	1	1

Tabelle 7: Zuordnung der Ausgänge zu den Schaltzuständen

Aus den in Abbildung 5.16 ersichtlichen Zustandsänderungen über der Zeit, ergeben sich für die einzelnen Steuerkanäle, unter Zuhilfenahme von Tabelle 7, folgende Verläufe.

Abbildung 5.17: PWM-Signale für die einzelnen Halbleiterschalter

Digitale Realisierung

Die Steuerung der Schaltung kann, über folgenden Programmablaufplan realisiert werden, in welchem über zwei if-Abfragen die einzelnen Halbleiterschalter gesteuert werden.

Abbildung 5.18: Programmablaufplan Trägerverfahren 3L-HB

5.9.3 SHE-PWM

Eine weitere Methode für die Erzeugung der Steuersignale bietet SHE-PWM (*Selective Harmonic Elimination*). Dadurch können gezielt niedere harmonische Anteile in der Ausgangsspannung unterdrückt werden [6][7][14].

Als besonders vorteilhaft erweist sich die Steuervariante bei höheren Leistungen, welche zu erhöhten Schaltverlusten führt, wodurch es zur Limitierung der Schalthandlungen pro Zeiteinheit kommt [3][13].

In dieser Situation bietet das Trägerverfahren unzureichende Ergebnisse, welche durch SHE-PWM maßgebend verbessert werden können [9].

Besteht beim Ausgangssignal einer HB eine Viertelschwingungs- und Halbschwingungssymmetrie wie in Abbildung 5.19 gezeigt, können folgende Annahmen getroffen werden. Der Wert N gibt die Anzahl der Pulse in einem Viertelzyklus an [17][23].

Abbildung 5.19: Einphasige Ausgangsspannung eines 3L-HB mit SHE-PWM [23]

Ein periodisches Signal kann man im Allgemeinen als eine Summe von Sinus- und Kosinusfunktionen mit einer Konstante anschreiben.

$$U_{out} = a_0 + \sum_{n=1}^{\infty} a_n \sin(n\omega t) + \sum_{n=1}^{\infty} b_n \cos(n\omega t) \qquad n = 1, 2, 3...$$
(2)

Durch die Symmetrie ergeben sich für die geradzahligen Harmonischen, für b_n und a_0 Null [17].

$$U_{out}(\omega t) = \sum_{n=1}^{\infty} a_n sin(n\omega t) \qquad n = 1, 3, 5... \qquad (3)$$

$$a_n(\alpha_1, \alpha_2, \dots, \alpha_{N-1}, \alpha_N) = \frac{2U_{zk}}{n\pi} \sum_{k=1}^N (-1)^{k+1} \cos(\alpha_k) \qquad n = 1, 3, 5...$$
(4)

Für die Schaltwinkel α gilt:

$$0 < \alpha_1 < \alpha_2 < \dots < \alpha_{N-1} < \alpha_N < \frac{\pi}{2} \tag{5}$$

36

Durch die richtige Wahl der N Schaltwinkel α_{N-1} ergibt sich die Möglichkeit, N-1 harmonische Anteile gezielt zu eliminieren (dies geschieht über Nullsetzen im Gleichungssystem). Zusätzlich muss ein Modulationsgrad m für das Gleichungssystem (6) gewählt werden. Aus diesen Zusammenhängen ergibt sich folgendes nichtlineares Gleichungssystem [23].

$$m = \frac{a_1}{\frac{U_{zk}}{2}} = \frac{4}{\pi} \sum_{k=1}^{N} (-1)^{k+1} \cos(\alpha_k)$$
(6)

$$0 = \frac{a_n}{\frac{U_{zk}}{2}} = \frac{4}{n\pi} \sum_{k=1}^{N} (-1)^{k+1} \cos(n\alpha_k)$$
(7)

6 Simulationen

Um das Verhalten der Schaltung genauer nachvollziehen zu können, wurde eine Reihe von Simulationen durchgeführt.

6.1 Konventionelle Schalthandlung

Um die Vorzüge von gesteuertem Schalten gegenüber konventionellem Schalten zu belegen, wurde beispielhaft eine Lastsituation betrachtet. In dieser Situation wurde die Schalthandlung $H \leftrightarrow \ddot{U}H \leftrightarrow N$ für eine ohmsch-induktive Last untersucht, welche mittels der Software LT-Spice simuliert wurde. Das Ziel war das Verhalten der Schaltung in einer Lastsituation zu ermitteln, in welcher das gesteuerte Schalten vorteilhaft erschien. Aus dem Verhalten konnten nun die einzelnen Zusammenhänge abgeleitet werden, welche das gesteuerte Schalten als überlegen erscheinen lässt. Genaueres zum verwendeten Modell findet man im Anhang unter 13.1.

Im Modell erfolgt der Wechsel zwischen den drei Zuständen über das entsprechende ansteuern der Schalter S_1 und S_{2a} . Da der Schalter S_{1a} bei dieser Schalthandlung immer leitet, wurde dieser über die Reihenschaltung von Widerstand und Induktivität nachgebildet. Für die Abbildung des Schalters S_2 wurde eine Parallelschaltung aus Diode und Kondensator gewählt, da dieser während der Schalthandlung immer offen bleibt. Da sich die Schalter S_{1a} und S_2 bei den betrachteten Zuständen nicht verändern, werden diese auch bei den Steuersignalen nicht aufgeführt.

Abbildung 6.20: Verlauf von Steuerspannungen, Laststrom und Ausgangsspannung bei der Schalthandlung $H \leftrightarrow \ddot{U}H \leftrightarrow N$

Abb. 6.20: Im Schaltzustand H liegt, nach einem kurzen Einschwingvorgang, eine konstante Spannung an den Lastklemmen an, welche einen steigenden Stromfluss verursacht. Beim Schalten auf den Zustand ÜH kommutiert der Strom vom Schalter S_1 auf die Diode D_1 , was an den Lastklemmen einen leicht negativen Spannungsabfall verursacht. Durch die fehlende Lastspannung sinkt der Strom in weiterer Folge. Nach zehn Mikrosekunden im Übergangszustand, in dem nur der Schalter S_{1a} leitet, wird in den Nullzustand gewechselt, was keinen Einfluss auf den Stromfluss hat. Nach 980 Mikrosekunden wird vom Null- zum Übergangszustand gewechselt, in welchem die Schaltung zehn Mikrosekunden verharrt. Wird nun vom ÜH- in den H-Zustand gewechselt, kommutiert der Strom von der Diode D_1 auf den Schalter S_1 . Durch das Zusammenspiel von Kommutierung und parasitären Komponenten, im Pfad S_1 , kommt es kurzzeitig zu einem Einschwingvorgang, welcher zu Überspannungen an den Lastklemmen führt.

Abbildung 6.21: Schalthandlung $H \mapsto \ddot{U}H$

Abb. 6.21: Im Zustand H liegt an der Drain-Source-Kapazität von S_{2a} die halbe Zwischenkreisspannung an. Wechselt man nun vom Zustand H in den Übergangszustand, kommutiert der Strom von S_1 nach D_1 , wodurch sich die Spannung, an den Lastklemmen, auf einen kleinen negativen Wert reduziert. Durch den Kurzschlussbetrieb liegt nun näherungsweise die Spannung von C_2 an den in Serie geschalteten Drain-Source-Kapazitäten C_{2a} und C_2 an, was dazu führt, dass sich diese bei der Zustandsänderung $H \mapsto \ddot{U}H$ teilweise entladen. Die Spannung an der Kapazität C_{2a} kann somit, für den Zustand $\ddot{U}H$, auf $\frac{U_{zk}}{4}$ abgeschätzt werden. Sind die Drain-Source-Kapazitäten klein, und kann in der Diode D_2 ein Leckstrom fließen, kann sich C_{2a} über die Diode merklich entladen und C_2 entsprechend geladen werden.

Abbildung 6.22: Schalthandlung $\ddot{U}H \mapsto N$

Abb. 6.22: Nach der Verriegelungszeit, in welcher sich die Drain-Source-Kapazität C_{2a} teilweise entladen kann, wird in den Zustand N geschaltet. Hierfür wird der Schalter S_{2a} geschlossen, was dazu führt, dass die Drain-Source-Kapazität schnell über S_{2a} entladen wird. Durch die resultierende Stromspitze kommt es zu einer Leistungsspitze, welche den MOSFET belastet. Die in der Kapazität S_{2a} gespeicherte Energie (Kapitel 13.3) wird hierbei in Wärme umgesetzt. Im Gegensatz zum konventionellen Schalten wird beim gesteuerten Schalten in dieser Lastsituation nicht in den Nullzustand gewechselt. Dadurch wird beim gesteuerten Schalten die in der Drain-Source-Kapazität C_{2a} gespeicherte Energie nicht im Schalter in Wärme umgesetzt.

Abbildung 6.23: Schalthandlung $\ddot{U}H \mapsto H$

Für den Zustandswechsel N \mapsto H, muss zuerst vom Nullzustand in den Zustand ÜH gewechselt werden. Im Nullzustand ist die Drain-Source-Kapazität S_2 nahezu auf die Kondensatorspannung C_2 geladen, wodurch beim Übergang auf den Zustand ÜH die Drain-Source-Kapazität S_2 nicht mehr geladen werden kann.

Abb. 6.23: Wird nun vom Übergangszustand ÜH auf den Zustand H geschaltet, kommutiert der Strom vom Kurzschlusspfad über die Diode D_1 in den Pfad über S_1 . Durch das Zusammenwirken von Kommutierung und parasitären Komponenten kommt es zu einer kurzzeitigen Überspannung an den Lastklemmen, welche ebenfalls die Drain-Source-Kapazität S_{2a} kurzfristig auf eine höhere Spannung lädt.

6.2 PWM-Verhalten

Folgende Simulationsergebnisse wurden über GeckoCIRCUIT ermittelt. Die Schaltung basierte auf dem parasitären ESB (5.14), und wurde über das Trägerverfahren angesteuert. Genauere Angaben zur Schaltung bzw. Durchführung finden sich im Anhang (Kapitel 13.2).

Die in den folgenden Abschnitten präsentierten Simulationsergebnisse stellen lediglich einen Auszug der Ergebnisse dar, die gesamten Resultate sind im Kapitel 13.2) wiedergegeben.

6.3 Wirkungsgrad

Um eine Aussage über den Wirkungsgrad treffen zu können, wurde bei gleichbleibender Last, die Schaltfrequenz verändert.

Abbildung 6.24: Wirkungsgradvergleich für gest./konv. Schalten und verschiedene Ausgangsfrequenzen

Betrachtet man nun Abb. 6.24 können aus den Kurvenverläufen mehrere Schlüsse gezogen werden.

Durch Steigerung der Schaltfrequenz sinkt der Wirkungsgrad, was primär auf die zusätzlichen Schaltverluste zurückzuführen ist. Ebenfalls wird der hergeleitete Vorteil vom gesteuerten Schalten gegenüber dem konventionellen Schalten bestätigt, der in jedem Arbeitspunkt einen höheren Wirkungsgrad aufweist. Wie zu erwarten, sinkt beim gesteuerten Schalten der Wirkungsgrad mit steigender Schaltfrequenz weniger stark als beim konventionellen Schalten, wodurch bei steigenden Schaltfrequenzen der Unterschied im Wirkungsgrad immer markanter wird.

Ein weiterer Effekt der zu berücksichtigen ist, ist der, dass durch Steigerung der Ausgangsfrequenz der Wirkungsgrad reduziert wird. Der Grund liegt darin, dass mit steigender Ausgangsfrequenz der Blindanteil steigt, was zu einer Phasenverschiebung zwischen den Grundfrequenzanteilen von Ausgangsstrom und Ausgangsspannung führt. Damit verbunden arbeitet die HB zusehends im generatorischem Betrieb, was vor allem in den inneren Schaltern (S_{1a} und S_{2a}) und in den Dioden zu höheren Verlusten führt.

6.4 Mittlere Verlustverteilung

Da zwischen *konventionellem* und *gesteuertem* Schalten, im Bezug auf Verlustleistungsverteilung, kaum Unterschiede bestehen, wird repräsentativ für diese Betrachtung der Verlustverteilung das *konventionelle* Schalten herangezogen.

Abbildung 6.25: Mittlere Bauteilverluste für *konventionelles* Schalten bei einer Ausgangsfrequenz von 25Hz

Abbildung 6.26: Mittlere Bauteilverluste für *konventionelles* Schalten bei einer Ausgangsfrequenz von 100Hz

Betrachtet man Abb. 6.25 und 6.26 können mehrere Tendenzen aufgezeigt werden. Anzumerken ist, dass die Verluste welche in den parasitären Widerständen entstehen, nicht in den Kennlinien eingetragen wurden.

Ein wichtiger Faktor für die Auslegung der Schaltung ist die Ermittlung der Verlustverteilung. Wie aus der Simulation hervorgeht, werden vor allem die Komponenten S_{1_A}/S_{2_A} , S_{1a}/S_{2a} und D_1/D_2 belastet, welche entsprechend ausgelegt werden müssen. Für die zwei betrachteten Ausgangsfrequenzen scheinen die Schalter S_{1a}/S_{2a} durchgehend am stärksten belastet zu werden. Erwähnenswert ist, dass mit steigender Schaltfrequenz die Verluste von S_{1_A}/S_{2_A} und S_{1a}/S_{2a} zu sinken scheinen. Dieses Verhalten resultiert unter Anderem aus der Verriegelungszeit, welche bei höheren Schaltfrequenzen zu kleineren Spannungszeitflächen, und infolgedessen zu kleineren Ausgangsleistungen führen. Markant ist ebenfalls der Unterschied bei den Verlusten, welche bei höheren Ausgangsfrequenzen einheitlich sinken. Begründet werden kann dies durch kleinere Spannungszeitflächen in einer Halbschwingung, wodurch die entsprechenden Stromamplituden ebenfalls sinken - und damit verbunden die Verluste.

6.5 Maximale Bauteilverluste

Abbildung 6.27: Maximale Bauteilverluste für *konventionelles* Schalten bei einer Ausgangsfrequenz von 25Hz

Abbildung 6.28: Maximale Bauteilverluste für *konventionelles* Schalten bei einer Ausgangsfrequenz von 100Hz

Vergleicht man die beiden Abb.6.27 und 6.28 erkennt man, dass beim *konventionellen* Schalten die maximalen Verluste in den Halbleiterschaltern umgesetzt werden. Ebenso fällt auf, dass an den Halbleiterschaltern annähernd gleiche maximale Verluste auftreten. Anzumerken ist ebenfalls, dass die maximale Belastung der Halbleiterschalter bei niederer Ausgangsfrequenz größer wird, was wiederum auf die resultierende Asymmetrie der Kondensatorspannungen und den höheren Strömen zurückzuführen ist.

Abbildung 6.29: Maximale Bauteilverluste für *gesteuertes* Schalten bei einer Ausgangsfrequenz von 25Hz

Abbildung 6.30: Maximale Bauteilverluste für *gesteuertes* Schalten bei einer Ausgangsfrequenz von 100Hz

Im Gegensatz zum konventionellen Schalten tritt beim gesteuerten Schalten eine asymmetrische max. Belastung der Halbleiterschalter auf, welche ausnahmslos kleiner ist. Die bemerkenswertesten Verbesserung können in den Halbleiterschaltern S_{1_A}/S_{2_A} und S_{1a}/S_{2a} beobachtet werden.

6.6 Effektivwert der Ausgangsspannung

Abbildung 6.31: Effektivwert der Ausgangsspannung

Abb. 6.31: Beim Betrachten des Effektivwertes der Ausgangsspannung $U_{out,rms}$ konnte kein relevanter Unterschied zwischen gesteuertem und konventionellem Schalten festgestellt werden. Bei steigender Schaltfrequenz kann ein stetiger Abfall der Spannung $U_{out,rms}$ beobachtet werden, welcher durch den Verlust von Spannungszeitfläche, durch zusätzliche Schalthandlungen, begründet werden kann. Ebenso kann bei höheren Ausgangsfrequenzen ein geringerer Abfall der Ausgangsspannung in Abhängigkeit von der Schaltfrequenz beobachtet werden. Der Grund hierfür liegt bei der Vergrößerung der Spannungszeitflächen im generatorischen Betrieb (genaueres dazu im Kapitel 9.2).

6.7 Minimale Kondensatorspannung

Abbildung 6.32: Minimale Kondensatorspannung von C_1

Abb.: 6.32: Wird durch die HB ein im mittel der Schaltfrequenz sinusförmiger Kurvenverlauf der Ausgangsspannung erzeugt, an der eine ohmsch-induktive Last geschaltet wird, können sich die Kondensatoren bei niederen Ausgangsfrequenzen periodisch stärker entladen. Anmerkung: Im Punkt $f_{out}=200$ Hz für $f_{sw}=25$ Hz kann ein unüblicher Sprung bei mehreren elektrischen Größen beobachtet werden. Die Überprüfung der Simulation ergab jedoch keinen Fehler.

6.8 Schaltverhalten bei konstanter Scheinleistung am Ausgang

Um das Verhalten der Schaltung bei konstanter Ausgangsscheinleistung für verschiedene Phasenverschiebungen zu beschreiben, wurde das im Anhang (13.2.6) genauer beschriebene Verfahren benutzt. Hierbei sei berücksichtigt, dass an den Ausgangsklemmen wiederum eine ohmsch-induktive Last geschaltet wurde.

Abbildung 6.33: Wirkungsgrad bei konstanter Scheinleistung

Abb.: 6.33: Bei Betrachtung der Kennlinie erkennt man, dass bei zunehmend induktiver Last und gleicher Ausgangsscheinleistung der Wirkungsgrad immer weiter abnimmt. Für diese definierten Randbedingungen waren nur marginale Unterschiede zwischen gesteuertem und konventionellem Schalten zu erkennen, was auf die verhältnismäßig niedere Schaltfrequenz ($f_{sw}=1$ kHz) zurückzuführen ist. Aus diesem Grund wird für die Verlustverteilung lediglich das gesteuerte Schalten dargestellt.

Abbildung 6.34: Relative mittlere Verlustleistung in Funktion von der Phasenverschiebung

Durch die Erhöhung des induktiven Anteils verändert sich im Null-Zustand der Strom weniger stark, was zur Folge hat, dass verhältnismäßig höhere Verluste an den Bauteilen S_{1a}/S_{2a} und D_1/D_2 auftreten.

7 Schaltung M1

7.1 Ersatzschaltbild

Bei der in Abb. 7.35 gezeigten Schaltung handelt es sich um eine modifizierte Variante der 3L-NPC-HB. Der Unterschied besteht darin, dass zwei MOSFETs (S_{1_B}/S_{2_B}) und Dioden (D_3/D_4) zur herkömmlichen Schaltung hinzugefügt wurden, um das ungünstige Schaltverhalten der parasitären Dioden S_{1_A}/S_{2_A} zu beseitigen. Um zu verhindern, dass ein Strom über diese Diode fließen kann, werden zum Leistungs-MOSFET (S_{1_A}/S_{2_A}) , jeweils ein gegensätzlich gepolter Niederspannungs-MOSFET in Reihe geschaltet. Dadurch wird erreicht, dass der Stromfluss über die parallel geschalteten Dioden (D_3/D_4) fließt. Für beide Schaltungen M1 und M2 wurde das hier gezeigte Schaltungskonzept verwendet.

Abbildung 7.35: Reale Schaltung für M1 und M2

Für die Schalter S_{1_A} und S_{2_A} wurden jeweils MOSFETs mit hoher Sperrspannung (CoolMOS) und für S_{1_B} und S_{2_B} jeweils MOSFETs für niedere Sperrspannung (OptiMOS) verwendet. Die MOSFETs S_{1_A}/S_{2_A} übernehmen primär die Aufgabe eines Schalters, wodurch an ihnen der Großteil der Leistung abfällt. Dem entgegen stehen die Schalter S_{1_B}/S_{2_B} welche lediglich die Funktion haben einen Stromfluss in den parasitären Dioden von S_{1_A}/S_{2_A} zu verhindern.

7.1.1 Aufbau M1

Für die erste Schaltung liegen zwei Varianten vor, M1.1 ist die ursprüngliche Schaltungsvariante welche in Abb. 13.82 vorzufinden ist. In der zweiten Variante wurde durch die eingeschränkten Ansteuerungsmöglichkeiten die Bootstrap-Schaltung überbrückt. Die entsprechende Schaltung wird in Abb. 13.85 gezeigt. Gesteuert wurde der Aufbau über ein Matlab/Simulink-Modell welches über ein dSpace-System (DS1104) die Ausgänge der Schnittstelle D-Sub DD-50 beeinflusst (genaueres unter Kapitel 13.7.2). Zur Trennung der Steuerlogik wurden Optokoppler verwendet, welche wiederum die Gate-Treiber steuerten.

Abbildung 7.36: Schaltung M1

Zur Versorgung der HB kamen drei bzw. fünf (durch das Überbrücken der Bootstrap-Schaltung werden zwei zusätzliche DC/DC-Wandler benötigt) DC/DC-Wandler zum Einsatz. Versorgt wurde die Schaltung über 15VDC mittels zweier Sicherheitsbuchsen. Das Layout zur Schaltung befindet sich in Abb. 13.83 und 13.84. Die Bestückungsliste befindet sich in Tabelle 29 im Anhang.

Anmerkung

Die Schaltmöglichkeiten werden durch die Bootstrap-Schaltung (in M1.1) dahingehend eingeschränkt, dass lediglich die Halbleiterschalter S_{1a} und S_2 völlig frei geschaltet werden können.

Nr.	Verbindung	Länge	Breite	Dicke	$Widerstand^1$	Induktivität ²
		[mm]	[mm]	$[\mu m]$	$[\Omega]$	[nH]
1	Gate S_{1_A}	63,76	0,7	35	0,04424	72,16
2	Gate S_{1_B}	$75,\!86$	0,7	35	0,0526	88,47
3	Gate S_{1a}	56, 19	0,7	35	0,039	62,17
4	Gate S_{2a}	55, 19	0,7	35	0,0383	60,87
5	Gate S_{2_A}	67,9	0,7	35	0,0471	77,69
6	Gate S_2_B	80.66	0,7	35	0,0559	95,06

7.2 Parasitäre Komponenten

¹Berechnung über Formel (25) ²Berechnung über Formel (27)

Tabelle 8: Abschätzung der parasitären Komponenten vom Treiber zum Gate

Nr.	$Bezeichnung^1$	Länge	Breite	Dicke	$Widerstand^2$	Induktivität ³
		[mm]	[mm]	$[\mu m]$	$[\Omega]$	[nH]
1	pН	25,7	6	35	0,0021	17,98
2	рТ	10	6	35	0,0008	7,76
3	pLast	10/56, 19/5, 18/9, 73	6/4/3/2	35	0,0106	53
4	рсH	5	6	35	0,0004	13
5	pcT	5	6	35	0,0004	13
6	pC1	10	-	35	0,00001	10
7	pC2	10	-	35	0,00001	10
8	pS1a	19	2,3	35	0,00402	14,64
9	pS2a	11,8/6,4	2,3/3	35	0,003538	11,457
10	pD1	10/20	2,3/6	35	0,00374	17,39
11	pD2	$11,\!93/4,\!8/20$	2,3/3/6	35	0,00492	20,6
12	pQ	91	6	35	0,00736	7.149
13	pDS1	9	2,3	35	0,00191	6,723
14	pDS2	13	2,3	35	0,00275	9,715
15	pS1	$7,\!45/10,\!21$	2/2,3	35	0,00734	22,91
16	pS2	17	3	35	0,00275	10,1

¹Bez. laut SB (Abb.:5.14) ²Ber. über Formel (25) ³Ber. über Formel (27)

Tabelle 9: Abschätzung der parasitären Komponenten im Leistungskreis

Für genauere Angaben zur Vorgehensweise bei der Ermittlung der parasitären Komponenten siehe Abschnitt 13.4. Aus den oberen zwei Tabellen erkennt man, dass sowohl der Steuerkreis als auch der Leistungskreis starke Asymmetrien aufweisen. Des Weiteren sind die parasitären Anteile verhältnismäßig hoch, was zu höheren Verlusten und Überspannungen führen kann.

Um die Relevanz der angenäherten Parameter zu ermitteln, wurde eine Referenzmessung durchgeführt, Details findet man im Kapitel 13.5. Die Auswertung der Referenzmessung ergab, dass der Widerstand um den Faktor 3,5 höher war als angenähert. Für die Induktivität ergab sich jedoch eine relativ genaue Abschätzung, welche lediglich 20% über dem berechneten Wert lag.

7.3 Messung der Steuersignale

Abbildung 7.37: Spannungsverläufe am Gate bei $U_{zk} = 0$

In Abb.: 7.37 sind die Einschaltflanken und Ausschaltflanken am Gate-Ausgang VOA des Treibers TR1, bei $U_{zk}=0$ dargestellt. Für die Messung *nahe am Treiber* wurde direkt am Treiberausgang VOA (TR1, Pin 10), und für *nahe am MOSFET* unmittelbar am Gate-Pin von S_{1-A} gemessen.

Das hier abgebildete Verhalten ändert sich jedoch rapide, sobald die Zwischenkreisspannung höhere Werte annimmt. Der Grund liegt in der bei höheren Drain-Source-Spannungen stark verminderten Gate-Source-Kapazität, welche sich um den Faktor tausend reduziert (bei den verwendeten Komponenten).

Über die Gate-Source-Kapazität in Kombination mit den parasitären Leitungsimpedanzen (von MOSFET-Gate zu Treiberausgang) liegt eine RLC-Reihenschaltung vor, welche beim Aussteuern des Treiberausgangs zu einem Einschwingvorgang führt. Die Folge sind Überspannungen welche den Leistungshalbleiter mit relativ kleinen Spannungen zerstören können. Maßgebend sind dabei die im Gate-Kreis vorliegenden parasitären Komponenten und die Gate-Source-Kapazität.

Abbildung 7.38: Gatespannung für unterschiedliche Zwischenkreisspannungen

Ein solcher Einschwingvorgang wird in Abb. 7.38 dargestellt. Genaueres zur Messung findet man im Kapitel 13.6.1 im Anhang. Aus den Kurven ist ersichtlich, dass die auftretenden Spannungsspitzen stark von den Zwischenkreisspannungen abhängig sind. Begründet werden kann dies durch die Verkleinerung der Gate-Source-Kapazität bei steigender Zwischenkreisspannung, was zu schnelleren Stromänderungen und in weiterer Folge zu einem ausgeprägteren Schwingverhalten führt. Sind diese Spannungsspitzen zu hoch, können sie zur Zerstörung der Leistungshalbleiter führen.

Abbildung 7.39: Steuersignalverläufe im Leerlaufbetrieb

Die in Abb. 7.39 gezeigten Verläufe zeigen das Steuersignal am Optokoppler, am Treibereingang und am Treiberausgang. Einzelheiten zur Messung finden sich im Kapitel 13.6.2. Zu erkennen ist, dass es zu Zeitverzögerungen bei der Ansteuerung kommt. Zum Einen variiert diese Verzögerungszeit, zum Anderen bestehen tendenzielle Zeitunterschiede beim Ein- und Ausschalten. Um nun Verzerrungen bei der Ansteuerung durch unterschiedliche Ein- und Ausschaltverzögerung zu kompensieren, kann dies bei der Ansteuerung berücksichtigt werden.

Nr.	Schalthandlung	Verzögerungszeit
		$[\mu s]$
1	Einschalten	0.674
2	Ausschalten	0.446

Tabelle 10: Gemessene Verzögerungszeiten

Abbildung 7.40: Steuersignalverläufe im Leerlaufbetrieb

Die in Abb. 7.40 ersichtlichen Zeitverläufe zeigen einen synchronen Impuls aller vier Steuerkanäle am Eingang des Optokopplers. Hierbei fällt auf, dass es zu einer relativ großen Zeitverschiebung (ca. 1 μ s) zwischen den einzelnen Signalen kommt. Wird das Steuersystem weiterhin genutzt, muss dieser Effekt bei der Festlegung der Vierregelungszeit berücksichtigt werden. Genaueres zu Messaufbau findet man im Kapitel 13.6.3.

Die Messung des Schaltverhaltens wird in einem späteren Vergleich mit der Schaltung M2 behandelt.

8 Optimierung

8.1 Allgemein

Das Ziel dieser Optimierung ist es eine im Hinblick auf ihre elektrischen und thermischen Eigenschaften verbesserte HB zu konzipieren. Es wurde jedoch darauf verzichtet die in Abb. 7.35 gezeigte Schaltungsvariante zu ändern. Ein weiteres Hauptaugenmerk wurde auf die Entwicklung einer Verriegelungslogik gelegt. Für die Verwirklichung des Ziels wurden folgende Punkte berücksichtigt:

- 1. Verbindungstechnik
- 2. Kühlung
- 3. Parasitäre Komponenten
- 4. Passive Komponenten
- 5. Aktive Komponenten

Das Layout der Schaltungen M1 (Kapitel 13.15) und M2 (Kapitel 13.12) ist im Anhang hinterlegt.

8.2 Layout

Eine der aussichtsreichsten Möglichkeiten der Schaltungsverbesserung bestand in der Reduzierung der Leitungsimpedanzen, wobei vor allem auf den Kommutierungskreis geachtet wurde. Der wichtigste Aspekt war die Anordnung der Komponenten im Layout, hier wurde versucht die Leistungskomponenten kompakt anzuordnen, um möglichst kurze Verbindungen zu erreichen.

Durch die kritischen Eigenschaften der Schaltung M1 wurde ein weiteres Hauptaugenmerk auf den Gatekreis gelegt. Dem wurde durch Verwendung von SMD-Widerständen, breiteren Leitungen und kleineren Leitungslängen Rechnung getragen. Ebenso wurde die Dicke der einzelnen Leitungen verdoppelt (Kupferstärke von 35μ m auf 70μ m).

Da das Ermitteln der äußeren Ströme (Pfad S_1/D_3 und S_2/D_4 Abb. 7.40) sehr erstrebenswert erschien, wurde im neuen Layout die Möglichkeit vorgesehen diesen direkt über eine Stromzange zu messen.

8.3 Kondensatoren im Leistungsteil

Bei der Wahl der Kondensatoren C_1 und C_2 wurde versucht die zwei in M1 verbauten Kondensatoren durch jeweils mehrere zu ersetzen. Der Grund dafür war die Annahme, dass durch mehrere kleine Kondensatoren der Wert für ESR und ESL verbessert werden kann, was zwangsweise zu weniger Verlusten und einem besseren

Kommutierungsverhalten führt. Bei M2 wurde deshalb eine Kombination aus Elektrolytkondensator und SMD-Folienkondensatoren eingesetzt. Ein weiterer, wenn auch nicht so gewichtiger Grund, lag in der Reduzierung der Schaltungsabmessungen. Da nicht von Anfang an eine genaue Zwischenkreisspannung vorgegeben war, wurden der maximale Spannungsbereich der Kondensatoren C_1 und C_2 auf jeweils 700V festgelegt.

8.4 Komponentenwahl

8.4.1 Wahl der MOSFETs

Bei der Suche nach den passenden Halbleiterschaltern wurden zwei Einschränkungen festgelegt. Erstens wurden für die Halbleiterschalter wiederum MOSFETs verwendet, welche für die angestrebten höheren Schaltfrequenzen vorteilhafte Eigenschaften aufweisen, und einen direkten Vergleich der Schaltungen zulassen. Zweitens wurden nur N-Kanal MOSFETs im Spannungsbereich 500V-700V der Firma Infineon berücksichtigt, um eine überschaubare Anzahl an Komponenten zu erhalten.

Nach einer Recherche, die sich im Primären auf die Quellen [22] und [8] stützte, kamen für die Schalter S_1 , S_{1a} , S_{2a} und S_2 nur die Produktfamilien CoolMOS C6 und CoolMOS C7 in Frage.

Für die Wahl der richtigen Bauteile bestehen verschiedenste Ansätze, einer davon ist die Entscheidung über eine Serie von Simulationen zu treffen. Da hierfür jedoch auf ausreichend genaue Modelle zurückgegriffen werden muss, um relevante Daten zu gewinnen, und dies bei weitem den zeitlichen Rahmen dieser Arbeit sprengen würde, wurden folgende Näherungen herangezogen.

Für den einfachen Vergleich der Halbleiterschalter wurden die Verluste wie in der Quelle [8] beschrieben berechnet.

$$P_{off} = 0 \tag{8}$$

$$P_{on} = I^2 \cdot R_{DS(on)} \cdot d \tag{9}$$

$$P_{sw} = f_{sw} \cdot E_{OSS} \tag{10}$$

Die in der Formel (8) getroffene Näherung legt fest, dass die Halbleiterschalter im offenen Zustand einen unendlich hohen Widerstand besitzen. Die Leitungsverluste (9) wurden über den Stromfluss, das Tastverhältnis und den Nominalwert des entsprechenden MOSFETs bestimmt. Für die Ermittlung der Schaltverluste (10) wurden die Faktoren Schaltfrequenz und Energieinhalt der Ausgangskapazität herangezogen. E_{OSS} zeigt wiederum eine starke Abhängigkeit von der Drain-Source-Spannung.

Unter der Berücksichtigung der jeweiligen PWM-Muster ergab sich für niedere Schaltfrequenzen (im Bereich bis maximal 20kHz) ein klarer Vorteil hin zu $R_{DS(on)}$ optimierten Varianten von C6 und C7. Vorteile im Bezug auf die Verluste zeigte vor allem die Produktfamilie C7, welche noch niedrigere Werte für $R_{DS(on)}$ erreicht. Das diesbezüglich optimale Ergebnis erzielte in dieser Betrachtung das Bauteil XXX65R045C7.

Die Entscheidung über die Leistungshalbleiter wurde jedoch schlussendlich einheitlich zugunsten des MOSFET IPW60R190C6 gefällt. Die Gründe liegen zum Einen bei den sehr hohen Kosten der C7 Serie, zum Anderen bei der Verfügbarkeit des Schalters.

Nr.	Kenngröße	SPA11N60CFD	IPW60R190C6	IPW65R045C7	GeckoCIRCUIT
		(M1)	(M2)		Paramerter
1	V_{DS}	600V	$650\mathrm{V}$	700V	-
2	$R_{DS(on),max}$	$440 \ m\Omega$	190 $m\Omega$	$45 \ m\Omega$	$140 \ m\Omega$
3	$I_{D,cont}$	11A	20,2A	18A	_
4	Q_{gs}	9nC	7,6nC	23nC	-
5	Q_{rr}	$0.7\mu C$	$6.9\mu C$	$13\mu C$	_
6	$Preis^1$	1,59€	3,49€	14,6€	_

Vergleich der Leistungshalbleiter:

¹digikey.de 14.11.2014

 Tabelle 11: CoolMOS-Parameter

8.4.2 Wahl der SiC-Dioden

Bei der Wahl der Dioden D_1 , D_2 , D_3 und D_4 (siehe Abb. 7.35) wurden wiederum SiC-Dioden der Firma Infineon verwendet. Es wurde jedoch von der 3^{th} -Generation auf die 5^{th} -Generation gewechselt, welche eine optimierte Sperrverzögerungsladung besitzt (IDH10G65C5).

Vergleich der SiC-Dioden:

Nr.	Kenngröße	IDH12SG60C	IDH10G65C5	GeckoCIRCUIT
		(M1)	(M2)	Paramerter
1	V_{DS}	600V	650V	-
2	V_F	1,8V	1,5V	0.6V
3	Q_C	19nC	15nC	-
4	I_F	12A	10A	-
5	$Preis^1$	6,36€	6,06€	-

¹Einzelpreis laut digikey.de 14.11.2014

 Tabelle 12:
 SiC-Dioden-Parameter

8.5 Treiber

Der in M1 eingesetzte Treiber wurde ebenfalls in der Schaltung M2 eingesetzt, wobei jedoch darauf geachtet wurde, den Abstand zu dem jeweiligen Gate klein zu halten. Der Grund für diese Entscheidung lag darin, dass in der Schaltung M1 es des Öfteren zur Zerstörung der Halbleiterbauelemente kam, was auf die hohen parasitären Induktivitäten zurückzuführen war. Eine Messung, die dieses ausgeprägte Schwingverhalten beim Schalten am Gate belegt, finden sich in Abb. 7.38. Durch Reduzierung der Leitungsinduktivität kann dieses Verhalten maßgebend verbessert werden. Näheres zum Schwingverhalten beim Schalten findet sich in Quelle [8].

Ein weiterer Aspekt welcher bei der Konzipierung der neuen Schaltung berücksichtigt wurde, ist die Spannungsversorgung des Treiberkreises zu verbessern. Hierfür wurden einerseits die Treiberkondensatoren der einzelnen Ausgänge größer dimensioniert, wodurch die Versorgungsspannung für den Treiberausgang beim Schalten stabilisiert wird. Andererseits wurde versucht die Leitungsimpedanz zwischen Treiberkondensatoren am Ausgang, Treiber und Gate zu verbessern.

8.6 Bootstrapping

In der Schaltung M1 war eine Bootstrap-Schaltung implementiert welche sich beim Testen bzw. Messen als hinderlich erwies. Um nun beim neuen Konzept ungehindert schalten zu können, wurde die Bootstrap-Schaltung im neuen Entwurf nicht mehr vorgesehen.

8.7 Kühlung

Im ersten Schaltungsaufbau wurden für die verwendeten Halbleiterkomponenten TO-220 Gehäuse verwendet. Die SiC-Diode (D_1, D_2, D_3, D_4) waren an einem größeren Kühlkörper befestigt, und die Halbleiterschalter S_1 und S_{1a} bzw. S_2 und S_{2a} jeweils an Kleineren.

Abbildung 8.41: Temperaturverteilung beim Schaltvorgang H \leftrightarrow N bei M1 $\overline{P_{out}} \approx 350W$

In der GeckoCIRCUIT-Simulation (siehe 6.2) wurde eine ohmsch-induktive Last für mehrere Ausgangsfrequenzen betrachtet, wodurch das Modell sowohl motorische als auch generatorische Zustände einnahm. Durch Steigerung der Ausgangsfrequenz wurde der generatorische Anteil im Betrieb vergrößert, wodurch gewisse Tendenzen bei der Verlustverteilung in den verschiedenen Betriebszuständen aufgezeigt werden können. So wird ein großer Teil der Verluste, in allen Betriebszuständen, in den inneren Schaltern (S_{1a} und S_{2a}) umgesetzt, welche folglich thermisch besonders berücksichtigt werden mussten. Ebenfalls stark belastet werden die äußeren Schalter S_1 und S_2 im motorischen Betrieb. Konträr verhält sich dies bei den Dioden D_1 und D_2 , welche vor allem im generatorischen Betrieb stark belastet werden. Es wurde davon ausgegangen, dass die HB primär im motorischen Betrieb arbeitet, wodurch vor allem die Halbleiterschalter bei der thermischen Auslegung berücksichtigt wurden.

Die in Abb. 8.41 gezeigte Temperaturverteilung, beim Schalten zwischen den Zuständen H und ÜH, zeigt die mangelnde thermische Auslegung der HB. Die im motorischen Betrieb primär belasteten Komponenten werden unzureichend und die schwach beanspruchten Bauteile gut gekühlt. Ein weiterer Aspekt ist die Tatsache, dass die verwendeten SiC-Dioden als sehr robuste Komponenten gelten und daher als weniger kritisch betrachtet werden können.

Nr.	Bezeichnung	Schaltung	Gekühlte	Thermischer
			Komponenten	Widerstand
1	SK 480	M1	S_1, S_{1a}	$10,1 \ ^{\circ}C/W$
2	SK 480	M1	S_2, S_{2a}	10,1 ° C/W
3	SK 480	M1	D_1, D_2, D_3, D_4	8,14 ° C/W
4	SK 573	M2	S_1, S_{1a}, S_2, S_{2a}	$3,5 \ ^{\circ}C/W$
5	575102B00000G	M2	D_1	16,8 ° C/W
6	575102B00000G	M2	D_2	16,8 ° C/W
7	575102B00000G	M2	D_3	16,8 ° C/W
8	575102B00000G	M2	D_4	16,8 ° C/W

Vergleich des thermischen Widerstands für die verschiedenen Kühlkörper:

Tabelle 13: Thermische Widerstände der Kühlkörper

Im neuen Konzept wurde für die Halbleiterschalter ein größerer, und für die SiC-Dioden jeweils kleinere Kühlkörper vorgesehen. Des Weiteren wurde für den Gehäusetyp der Halbleiterbauelemente ein TO-247-Gehäuse gewählt, welches ebenfalls ein besseres Temperaturverhalten aufweist.

8.8 3-Phasen Auslegung

Um einen Dreiphasenaufbau in einem späteren Zeitpunkt zu ermöglichen, mussten die zwei D-Sub DD-50 dSpace Ausgänge auf drei aufgeteilt werden. Dafür wurde ein eigener Zwischenstecker entworfen (genaueres Anhang unter 13.7.3). Um eine einfache Möglichkeit der Verbindung/Steuerung mit anderen Steuersystemen (z.B über Mikrocontroller) vorzusehen, wurde eine 8-Stift-Steckverbindung verwendet.

8.9 Verriegelungslogik

Um in der Schaltung sicherzustellen, dass nur in "erlaubte Zustände" und "Übergangszustände" geschaltet werden kann, wurde eine Logik-Schaltung konzipiert. Folglich ist nur ein Ansteuern über die Zustände H,ÜH,N,ÜL,L und A möglich.

Nr.	Bez.	S_1	S_{1a}	S_{2a}	S_2
1	А	0	0	0	0
2	ÜΤ	0	0	1	0
3	Т	0	0	1	1
4	ÜΗ	0	1	0	0
5	Ν	0	1	1	0
6	Н	1	1	0	0

 Tabelle 14:
 Erlaubte Ausgangszustände

Um nun lediglich die in Tabelle 14 dargestellten Ausgangszustände zu ermöglichen, wurden mittels boolescher Algebra folgende logische Formeln formuliert.

$$S_{1_out} = S_1 \wedge S_{1a} \wedge \overline{S_{2a}} \wedge \overline{S_2} \tag{11}$$

$$S_{1a_out} = \left(\overline{S_1} \land S_{1a} \land \overline{S_{2a}} \land \overline{S_2}\right) \lor \left(\overline{S_1} \land S_{1a} \land S_{2a} \land \overline{S_2}\right) \lor \left(S_1 \land S_{1a} \land \overline{S_{2a}} \land \overline{S_2}\right) = \left(\overline{S_1} \land S_{1a} \land \overline{S_2}\right) \lor \left(S_1 \land S_{1a} \land \overline{S_{2a}} \land \overline{S_2}\right)$$
(12)

$$S_{2a_out} = \left(\overline{S_1} \land \overline{S_{1a}} \land S_{2a} \land \overline{S_2}\right) \lor \left(\overline{S_1} \land \overline{S_{1a}} \land S_{2a} \land S_2\right) \lor \left(\overline{S_1} \land S_{1a} \land S_{2a} \land \overline{S_2}\right) = \left(\overline{S_1} \land \overline{S_{1a}} \land S_{2a}\right) \lor \left(\overline{S_1} \land S_{1a} \land S_{2a} \land \overline{S_2}\right)$$
(13)

$$S_{2_out} = \overline{S_1} \wedge \overline{S_{1a}} \wedge S_{2a} \wedge S_2 \tag{14}$$

Die Logik-Schaltung ermöglicht es nur die gewünschten Zustände für die Ansteuerung zu erlauben, es besteht jedoch immer noch die Möglichkeit unerwünschte bzw. zerstörerische Zustandsänderungen durchzuführen (siehe Kapitel 5.6.2).

Um unerwünschte und zerstörerische Zustandsänderungen zu verhindern, wurde zusätzlich eine Einschaltverzögerung (EV) für alle Steuersignale nachgeschaltet. Diese wurde über einen Widerstand, eine Diode und einen Kondensator realisiert. Die Dimensionierung der EV kann dem Anhang in Kapitel 13.8 entnommen werden.

Die dazugehörige Folgezustandstabelle befindet sich in Tabelle 15. Die Häkchen (\checkmark) symbolisieren hierbei eine für die Schaltung unproblematische Zustandsänderung. Eine problematische Zustandsänderung wird mittels eines Kreuzes (\times) angezeigt.

Nr.	von ZS^1	nach ZS	HB mit	HB mit Logik-Schaltung
			Logik-Schaltung	und EV^2
1	А	А	\checkmark	\checkmark
2	А	N	\checkmark	\checkmark
3	А	ÜΤ	\checkmark	\checkmark
4	А	Т	\checkmark	\checkmark
5	А	ÜΗ	\checkmark	\checkmark
6	А	Н	\checkmark	\checkmark
7	N	А	\checkmark	\checkmark
8	N	N	\checkmark	\checkmark
9	N	ÜΤ	\checkmark	\checkmark
10	N	Т	×	\checkmark
11	Ν	ÜΗ	\checkmark	\checkmark
12	N	Н	×	\checkmark
13	ÜΤ	А	\checkmark	\checkmark
14	ÜΤ	N	\checkmark	\checkmark
15	ÜΤ	ÜΤ	\checkmark	\checkmark
16	ÜΤ	Т	\checkmark	\checkmark
17	ÜΤ	ÜH	\checkmark	\checkmark
18	ÜΤ	Н	×	\checkmark
19	Т	А	\checkmark	\checkmark
20	Т	N	X	\checkmark
21	Т	ÜΤ	\checkmark	\checkmark
22	Т	Т	\checkmark	\checkmark
23	Т	ÜH	X	\checkmark
24	Т	Н	×	\checkmark
25	ÜH	А	\checkmark	\checkmark
26	ÜH	Ν	\checkmark	\checkmark
27	ÜH	ÜΤ	\checkmark	\checkmark
28	ÜΗ	Т	X	\checkmark
29	ÜΗ	ÜΗ	\checkmark	\checkmark
30	ÜH	Н	\checkmark	\checkmark
31	H	A	\checkmark	\checkmark
32	Н	Ν	×	\checkmark
33	Н	ÜΤ	×	\checkmark
34	Н	Т	×	\checkmark
35	Н	ÜΗ	\checkmark	\checkmark
36	Н	Н	\checkmark	\checkmark

 1 **Z**ustand 2 **E**inschalt**v**erzögerung

 ${\bf Tabelle \ 15:} \ {\rm Folgezustandstabelle}$

9 Aufbau M2

Beim Design der Schaltung wurde das Layout-Programm Altium Designer verwendet. Der originale Schaltplan (Kapitel 13.11) und das dazugehörige Layout (Kapitel 13.12) befinden sich im Anhang. Für die HB-Schaltung wurden nachträglich einige Modifikationen durchgeführt welche in Kapitel 13.9 aufgeführt sind.

9.1 PWM-Schaltverhalten

Um das Verhalten der Schaltung bei unterschiedlichen Lastverhältnissen zu ermitteln, wurde eine ohmsch-induktive Last an die HB geschaltet. Der Widerstand wurde in weiterer Folge schrittweise verringert.

Abbildung 9.42: PWM-Muster Trägerspannungsvergleich M2.2

Aus den oben genannten Punkten werden nun die Zeitverläufe von drei Arbeitspunkten

mit sehr unterschiedlichen Leistungsfaktoren, betrachtet. Bei den drei Zeitverläufen (Abb. 9.42) handelt es sich um den Stromfluss in die Bauteile $S_1 + D_3$, die Ausgangsspannung und den Ausgangsstrom. Genaueres zur Messkonfiguration ist im Kapitel 13.6.6 im Anhang aufgeführt.

Betrachtet man den Kurvenverlauf des Ausgangsstromes, erkennt man den durch die hohe Induktivität sehr sinusförmigen Stromverlauf. Des Weiteren stellt man fest, dass bei Reduzierung des Widerstands die Phasenverschiebung zwischen Ausgangsspannung und Ausgangsstrom zunimmt, wodurch sich die HB zunehmend im generatorischem Betrieb befindet. Dadurch bedingt, wird der entsprechende Kondensator, in diesem Fall der Leistungskondensator C_1 , am Beginn der positiven Halbschwingung geladen. Auf den generatorischen folgt der motorische Betrieb, in welchem der Leistungskondensator C_1 , in der positiven Halbschwingung der Ausgangsspannung, entladen wird.

Eine Folge dieses Verhaltens ist, dass bei der durchgeführten Messung, im stark ohmschen Lastbereich, der Effektivwert der Ausgangsspannung bei sinkendem Widerstand zuerst absinkt. Wird der ohmsche Anteil weiter verkleinert, kommt es durch den generatorischen Betrieb zu einer Erhöhung des Effektivwertes (Abb. 9.43). Angaben zur Messdurchführung zu den in Abb. 9.43 und 9.44 dargestellten Ergebnissen findet man in Kapitel 13.6.7 mit einigen weiteren Messergebnissen.

Abbildung 9.43: Effektivwert der Ausgangsspannung M2.2

Betrachtet man den Wirkungsgrad der Schaltung in Abb. 9.44, erkennt man, dass mit steigender Phasenverschiebung der Wirkungsgrad sinkt. Dieses Ergebnis wird teilweise durch steigende Scheinleistungen, und damit verbundenen steigenden Stromflüssen beeinflusst, was einer Herabsetzung des Wirkungsgrades bei steigender Phasenverschiebung gleichkommt. Tendenziell jedoch sinkt mit zunehmend induktiver Last der Wirkungsgrad, welcher maßgebend von den Diodenspannungen $(D_1 \text{ und } D_2)$ und den Leitungsverlusten der Halbleiterschalter $(S_{1a} \text{ und } S_{2a})$ bestimmt wird.

Abbildung 9.44: Wirkungsgrad in Funktion vom Phasenverschiebungswinkel M2.2

9.2 Ursachen der Verzerrungen

Im Betrieb der HB kommt es zwangsweise zu einer Verzerrung der Ausgangsgrößen. Das Ziel ist es jedoch diese, unter Berücksichtigung des Gesamtwirkungsgrads, so gering wie möglich zu halten. Nachfolgend werden einige relevante Faktoren aufgelistet - Reihung nach Geltung.

- 1. Verriegelungszeit: Durch die prinzipiell notwendige Verriegelungszeit kommt es ebenfalls zur Verzerrung der Spannungszeitflächen am Ausgang. Allgemein gesprochen muss ein Zustandswechsel zwischen den Zuständen H,N und T immer über die entsprechenden Übergangszustände erfolgen. Der Übergangszustand besitzt jedoch keinen eindeutigen Betriebszustand, und kann einmal als generatorischer Berieb oder als Kurzschlussbetrieb wirken (Näheres in Tabelle 3). Will man vom motorischen Betrieb in den Kurzschlussbetrieb schalten wirkt der Ubergangszustand wie der Kurzschlussbetrieb, wodurch in diesem Fall die Verzögerungszeit keine Auswirkung auf die Spannungszeitfläche hat. Wird jedoch ein Zustandswechsel vom generatorischen Betrieb zum Kurzschlussbetrieb durchgeführt, befindet man sich im Übergangszustand im generatorischen Betrieb. Erst nach Ablauf der Verriegelungszeit wird in den Nullzustand, und somit in den Kurzschlussbetrieb geschaltet. Eine Folge davon ist, dass die HB sich länger im generatorischen Betrieb und kürzer im Kurzschlussbetrieb befindet als durch die Ansteuerung vorgegeben, dies wiederum stellt eine Verzerrung der Spannungszeitfläche dar.
- 2. Kondensatorspannung: Wie in den Abbildungen 9.42 und 13.75 ersichtlich ist, kommt es im Betrieb zu mehr oder weniger starken Schwankungen der Kondensatorspannungen. Durch diese Änderungen werden zwangsweise die Spannungszeitflächen der Ausgangsspannung beeinflusst, was zu einer Verzerrung des Stromes beiträgt.
- 3. **Steuerung**: Die HB wird durch Matlab/Simulik unter Verwendung des digitalen I/O-Peripherieblocks über das dSpace-System angesteuert. Dieser verwendete Peripherieblock zeigt sehr beschränkte Eigenschaften sowohl in Bezug auf die maximale Schaltfrequenz als auch auf die Auflösung des PWM-Signales. Um diese Beschränkungen zu minimieren, muss folglich eine Alternative gefunden werden. Eine Möglichkeit, die sich hierbei anbietet, ist der Einsatz des
PWM-Peripherieblocks, welcher das dSpace-System ebenfalls zur Verfügung stellt, und welcher weit höhere Auflösungen und Schaltfrequenzen zulässt.

- 4. Asymmetrie der Steuersignale: Beim Ansprechen der einzelnen Halbleiter kommt es zu Verzögerungen der Steuersignale. Durch diese kann es zu Asymmetrien bei der Ansteuerung kommen, welche das PWM-Muster beeinflussen.
- 5. Schalten: Beim Schalten kommt es unausweichlich zu Übergangsstationen, in denen der Halbleiterschalter, im klassischen Sinne, nicht sperrt oder leitet. Durch dieses Verhalten kommt es zu Verzerrungen der Spannungszeitflächen.

9.3 Thermisches Verhalten

Bei dieser Betrachtung waren zwei Aspekte von vorrangigem Interesse, die Temperaturverteilung welche auf die Verlustverteilung schließen lässt, und die maximalen Chiptemperaturen. Für die Betrachtung wurde die HB über einen längeren Zeitraum betrieben, bis sich ein thermisch stabiler Zustand einstellte. Genaueres zur Messung ist in Kapitel 13.6.9 angeführt.

Abbildung 9.45: Temperaturverteilung bei $P_{out} = 576, 8W$

Betrachtet man Abb. 9.45a erkennt man den primären Kühlkörper mit den vier angebrachten Leistungshalbleitern. In Abb. 9.45b ist die hintere Platinenseite mit den vier einzelnen IC-Gehäusen für die SiC-Dioden ersichtlich.

Vergleicht man die beiden Abbildungen miteinander, erkennt man, dass vor allem die Halbleiterschalter belastet werden. Die größte Belastung wirkt hierbei auf die inneren Schalter S_{1_A} bzw. S_{2_A} . Betrachtet man nun die Leistungsdioden, ist ersichtlich, dass vor allem die Bauteile D_1 bzw. D_2 Verluste erzeugen. Eine kaum erwähnenswerte Erwärmung kann an den Dioden D_3 bzw. D_4 festgestellt werden. Alles in allem scheint die Verlustverteilung mit den simulierten Ergebnissen übereinzustimmen.

9.4 Anmerkung

1. Die Umsetzung der Steuerung in Matlab/Simulink über die I/O-Peripherieblöcke weist große Limitierungen im Bezug auf die Auflösung und die Ausgangsfrequenz

auf. Aus diesem Grund wird für eine Weiterentwicklung der Steuerung dringend geraten die durch das dSpace-System zur Verfügung gestellten PWM-Peripherieblöcke in Simulink zu nutzen.

- Bei der Konzeptionierung der Logik-Schaltung wurde ein Fehler begangen, was zur Folge hatte, dass diese überbrückt werden musste. Über die Realisierung des Trägerverfahrens (Kapitel 13.7.3) wurde jedoch softwaretechnisch die Logik-Schaltung implementiert.
- 3. Für alle vier Einschaltverzögerungen wurde eine mittlere Verriegelungszeit von $5\mu s$ eingestellt.
- Beim Einstellen der Verriegelungszeit, über die Veränderung der einzelnen Trimmer-Widerstände (TR1, TR2, TR3, TR4), konnten maximale sporadische Abweichungen von bis zu 1μs vom mittleren eingestellten Wert gemessen werden.

10 Schaltungsvergleich

10.1 Parasitäre Komponenten

Die parasitären Komponenten der Schaltung M1 konnten, bedingt durch die einfache Geometrie, über eine Näherungsformel abgeschätzt werden. Bei der Schaltung M2 konnte dieser Ansatz jedoch nicht mehr verwendet werden, da hier die Geometrie zu komplex ist.

In der Schaltung M1 wurden die angenäherten parasitären Komponenten über eine direkte Messung evaluiert. In der Schaltung M2 ist jedoch eine solche Messung nicht mehr möglich, da die parasitären Komponenten bei Weitem geringer sind, und damit verbunden die Messergebnisse zu stark verfälscht werden.

Dem letzten Ansatz dem nachgegangen wurde, war die Ermittlung bestimmter parasitärer Komponenten über die Auswertung des Schaltverhaltens. Über diesen Ansatz konnten jedoch keine verwertbaren Ergebnisse erzielt werden.

10.2 Schaltverhalten

Für den Vergleich des Schaltverhaltens wurden beide Schaltungen an die selbe ohmsch-indukive Last angeschlossen. Bei der Schaltung M2 wurde jedoch zwischen zwei Schaltungsvarianten unterschieden, welche sich durch die Kapazität der Leistungskondensatoren unterscheiden. In der Variante M2.0 wurden jeweils Elektrolytkondensatoren mit 200μ F verwendet, und für M2.1 wurden zusätzliche Kapazitäten von jeweils 1mF installiert. Genaueres zu den Hintergründen findet sich im Kapitel 13.9.3.

Geschaltet wurde lediglich der Halbleiterschalter S_1 (S_{1a} =ON, S_{2a} =OFF, S_2 =OFF), wobei der Kondensator C_2 kurzgeschlossen wurde. Die Zwischenkreisspannung wurde nach jeder Messung schrittweise erhöht. Genaueres zum Messaufbau findet sich in Kapitel 13.6.8.

Bevor Aussagen über das Verhalten getroffen werden können, muss berücksichtigt werden, dass für die Ermittlung der Schaltzeit, vor allem bei niederen Zwischenkreisspannungen, hohe Abweichungen auftreten. Der Hauptgrund liegt bei den verwendeten Messgeräten, welche für höhere Spannungen und Ströme ausgelegt sind, und folglich im niederen Messbereich höhere Fehler aufweisen. Dies führt im unteren Messbereich zu stärker verrauschten Signalen was bei der Auswertung zu größeren Fehlern führt.

Bei der Auswertung wird das Verhalten des Halbleiterschalters S_1 ermittelt, wobei zwischen Einschalt- und Ausschaltvorgang unterschieden wird. Beim Ausschalten kommt es zu einem relativ stetigen Absinken des Stromes, was eine einfachere Ermittlung der Schaltzeiten und Verluste zulässt. Im krassen Gegensatz dazu kommt es beim Einschalten zu einem starken Einschwingvorgang. Durch dies bedingt, ist es kaum möglich eine fundierte Aussage über die Einschaltverluste und die Einschaltzeiten abzugeben. Ein weiterer Aspekt, der berücksichtigt werden muss besteht darin, dass beim Einschalten die parasitäre Drain-Source-Kapazität über den Halbleiterschalter entladen wird. Diese Entladung führt beim Einschalten zu zusätzlichen Verlusten, welche durch Messung von Strom und Spannung nicht ermittelt werden können. Umgekehrt verhält es sich beim Ausschalten, hier wird durch die Messung der elektrischen Größen nicht ausschließlich die Ausschaltleistung gemessen, da ein Teil der Energie in der Drain-Source-Kapazität gespeichert wird.

Für die Ermittlung der Schaltzeiten wurde ein Auswerteskript geschrieben (Details zum Code findet man unter 13.10) welcher die Anstiegszeit zwischen 20%-80% heraus misst, und in diesem Bereich ebenfalls die Leistung und Energie ermittelt.

Abbildung 10.46: Ausschaltzeit

Für die Ermittlung der Schaltzeiten kann ausschließlich das Ausschaltverhalten herangezogen werden, da hier im Stromfluss kaum Einschwingvorgänge auftreten, welche die Auswertung verfälschen. Für die Bewertung werden die Schaltzeiten für niedere Ausgangsleistungen nicht berücksichtigt, da diese Ergebnisse einen größeren Fehler aufweisen. Betrachtet man nun die in Abb. 10.46 gezeigten Schaltzeiten im relevanten Bereich, erkennt man, dass in der optimierten Schaltung stets schneller ausgeschaltet wird.

Abbildung 10.47: Einschaltzeit

Wie erwähnt kann das Einschaltverhalten (Abb. 10.47), bedingt durch das ausgeprägte Einschwingverhalten, nicht für die Bewertung der Schaltzeit herangezogen werden. Sie

bildet jedoch ein Maß für die zeitliche Dauer des Einschwingvorgangs. Man erkennt bei Betrachtung der Punkte von M1, dass es hier zu einem sehr gedämpften Einschwingvorgang kommt, was auf relativ große parasitäre Widerstände zurückzuführen ist. Vergleicht man dieses Verhalten mit dem von M2, so erkennt man ein ausgeprägteres Einschwingen, welches mit zunehmender Zwischenkreisspannung, und damit einhergehenden Erhöhung der Ausgangsleistung, immer weiter abnimmt.

Abbildung 10.48: Maximale Ausschaltleistung

Betrachtet man Abb. 10.48, erkennt man, dass die maximale Ausschaltleistung, vor allem im unteren Ausgangsleistungsbereich, für die Schaltung M1 tendenziell kleiner ist.

Abbildung 10.49: Ausschaltverluste

Für die Berechnung der Schaltverluste (Abb. 10.49) wurde nun näherungsweise das Produkt aus Strom, Spannung und der Ausschaltzeit, in den 20%-80%-Grenzen, als die Ausschaltverluste definiert. Diese Näherung ist zulässig da nur ein verhältnismäßig kleiner Teil der Energie in Drain-Source-Kapazität gespeichert werden kann. Laut Datenblättern kann im relevanten Spannungsbereich lediglich eine Energie um die $10^{-7}J$ in der Drain-Source-Kapazität gespeichert werden.

Vergleicht man nun die Ausschaltverluste für die verschiedenen Schaltungen, erkennt man tendenziell niedere Schaltverluste für M2.

Abbildung 10.50: Maximale Überspannungen am Halbleiterschalter S_1

Bei den betrachteten Lastverhältnissen, und bei kurzgeschlossener Kapazität C_2 , konnten am Schalter S_1 keine signifikanten Überspannungen beobachtet werden. Ebenso konnten keine markanten Unterschiede zwischen den einzelnen Schaltungen ausgemacht werden.

11 Diskussion & Ausblick

11.1 Schaltstrategie

Sehr verheißungsvolle Ergebnisse konnten bei der entwickelten Schaltstrategie gesteuertes Schalten vorgezeigt werden. Die analytisch hergeleiteten und simulativ bestätigten Ergebnisse zeigen gegenüber dem konventionellen Schalten klare Vorteile im Bezug auf den Wirkungsgrad. Ebenso deuten einige Simulationsergebnisse darauf hin, dass durch diese Schaltstrategie teils geringere maximale Bauteilbelastungen auftreten. Vorteile bietet die Strategie ausschließlich im motorischem Betrieb, wobei vor allem bei höheren Schaltfrequenzen der Wirkungsgrad verbessert werden kann. Durch die Eigenheit dieser Schaltstrategie muss für die entsprechende Ansteuerung zwischen motorischem und generatorischem Betrieb unterschieden werden. Eine Möglichkeit besteht darin, den Stromfluss unter Kenntnis des Schaltzustands zu messen. Existiert keine Möglichkeit der Strommessung, kann über die genaue Information der Lastverhältnisse die Betriebsart abgeschätzt werden und dadurch gesteuert geschaltet werden. Für diese Art der Realisierung ist es jedoch notwendig, eine zusätzliche Einschalt- und Ausschalt-Routine zu implementieren. Da die Aufgabestellung die Ausarbeitung einer Steuerung der Halbbrücke vorsah, und die Abschätzung der Betriebsart zu unsicher erschien, wurde das konventionelle Schalten in der Schaltung implementiert. Aus diesem Grund bleibt die Bestätigung der analytisch hergeleiteten und simulativ bestätigten Ergebnisse messtechnisch unverifiziert, und sollte im Rahmen einer weiterführenden Arbeit untersucht werden.

11.2 Schaltung

Die Abschätzung der parasitären Impedanzen ergab im bestehenden Aufbau sehr hohe und asymmetrische Werte für die Halbbrücke. Bei der Evaluierung der neuen Schaltung konnten aufgrund der niederen parasitären Impedanzen und komplexen Geometrie keine Werte ermittelt werden. Jedoch ist davon auszugehen, dass diese wesentlich kleiner sind als die im bestehenden Aufbau. Begründet werden kann dies durch die allgemeine Verkürzung der Leitungslänge und Vergrößerung der Leitungsbreite und Kupferdicke, was zwangsweise zu einer beachtlichen Reduzierung der parasitären Impedanzen führen muss.

Wird das Schaltverhalten der zwei Schaltungen verglichen, kann man ein schnelleres Schalten und damit einhergehende niedere Schaltverluste in der entwickelten Schaltung feststellen. Ebenso wurde durch die Wahl $R_{DS(on)}$ -optimierter MOSFETs ein überlegenes Leitungsverhalten aller Halbleiterschalter erzielt. Darüber hinaus wurden für die neu konzipierte Schaltung günstigere SiC-Dioden verwendet, welche eine niedere Vorwärtsspannung und Sperrverzögerungsladung aufweisen. Unter dem thermischen Gesichtspunkt konnte für die angenommen ohmsch-induktive Last eine markante Verbesserung erzielt werden, welche durch adäquate Kühlung der entsprechenden Komponenten erreicht wurde.

Eine Anregung für eine weiterführende Verbesserung ist, unterschiedliche MOSFET-Typen für die inneren und äußeren Schalter vorzusehen. Der Hintergrund für diese Überlegung ergibt sich aus den unterschiedlichen Anforderungen für die jeweiligen Schalter. Betrachtet man die inneren Schalter, so muss primär auf das Schaltverhalten,

 $R_{DS(on)}$ -Widerstand und auf die Eigenschaften der intrinsischen Diode geachtet werden. Im Gegenzug muss bei den äußeren Schaltern, in dieser Topologie, in erster Linie das Schaltverhalten und der $R_{DS(on)}$ -Widerstand berücksichtigt werden. Daraus lässt sich folgern, dass lediglich für die inneren Schalter die intrinsischen Dioden wichtig sind, und dadurch bedingt, unterschiedliche Halbleiterschalter vorteilhaft erscheinen. Darüber hinaus kann eine niedere Vorwärtsspannung der intrinsischen Diode zu negativen Effekten führen. Befindet sich die Schaltung im generatorischen Betriebszustand, wird der entsprechende äußere Schalter mit Strom durchflossen. Ist der Stromfluss und der $R_{DS(on)}$ -Widerstand des MOSFET groß genug, fließt ein Teil des Stromes über die intrinsische Diode, wodurch beim Ausschalten eine Sperrverzögerungsladung fließen muss, welche Verluste erzeugt. In Anbetracht der Umstände, dass die Schaltung, durch die Topologie bedingt, tendenziell für größere Schaltfrequenzen eingesetzt wird, ist ein solcher inverser Stromfluss über die intrinsischen Diode zu vermeiden. Erreicht werden kann dies durch Verwendung von $R_{DS(on)}$ -optimierten MOSFETs mit hoher Vorwärtsspannung für die intrinsische Diode. Ein für diesen Fall günstiger Trend ist, dass $R_{DS(on)}$ -optimierte MOSFET tendenziell unvorteilhafte Eigenschaften für die intrinsische Diode aufwiesen, was in diesem Fall die Komponentenwahl erleichtert.

Für den optimierten Aufbau wurde eine Verriegelungslogik konzipiert, welche sicherstellt, dass keine ungewollten Schalthandlungen durchgeführt werden können. Diese gewährleistete, dass lediglich in die "relevanten" Zustände geschaltet werden konnte, und die Zustandsänderungen zwischen den drei Stufen immer über die Übergangszustände erfolgten. Ein negativer Effekt der in den Einschaltverzögerungen beobachtet werden konnte, sind relativ hohe Schwankungen in der Verriegelungszeit, welche den minimal einstellbaren Wert auf ca. 1,5 μ s beschränkt. Eine Anregung für eine weiterführende Optimierung wäre, das letzte verbleibende Sicherheitsrisiko für die Schaltung in der Sicherheitslogik zu berücksichtigen. Verhindert werden müsste dabei, dass die Spannungen an den Leistungskondensatoren zu hohe/niedere Werte annehmen können, wodurch die Halbleiterschalter und die Leistungskondensatoren zerstört werden können.

Die Steuerung der dSpace-Schnittstelle erfolgte über in Matlab/Simulink bereitgestellte Peripherieblöcke. In der optimierten Schaltung erfolgte die Ansteuerung über die I/O-Peripherieblöcke, welche jedoch Limitierungen bei der Schaltfrequenz und Auflösung der PWM-Muster aufwiesen. Aus diesem Grund sind für eine weiterführende Optimierung die PWM-Peripherieblöcke in Matlab/Simulink zu verwenden, welche diesbezüglich wesentlich bessere Eigenschafen aufweisen.

Abschließend werden nochmals einige weiterführende Optimierungsmöglichkeiten aufgezeigt. Eine Möglichkeit besteht darin, die Gatewiderstände weiter zu verringern, um ein idealeres Schaltverhalten zu erreichen. Wird ein neues Schaltungslayout vorgesehen, liegt es nahe, das Layout weiter zu verkleinern und damit die parasitären Komponenten zu minimieren. Große Verbesserungen können durch Steigerung der Kupferdicke, Streichung der Leitungsschleifen für die Strommessung, kompaktere Anordnung und Änderung der Gehäusetypen erzielt werden. Ein weiterer wichtiger Punkt, der bereits für die Optimierung behandelt wurde, ist die weitere Minimierung von ESR und ESL für die Leistungskondensatoren, über Parallelschaltung von Kondensatoren. Des Weiteren sind für die Schaltung ausreichende Kondensatorkapazitäten vorzusehen, um ungünstige Ladezustände vermeiden zu können und Verzerrungen des Ausgangsstromes zu minimieren.

11.3 Grundlegende Aspekte der Optimierung

Für die Erarbeitung eines weiterführenden Schaltungskonzepts sollen hier nochmals einige grundlegende Zusammenhänge für die Auslegung aufgezeigt werden.

Der erste Schritt ist die Definition der Zwischenkreisspannung. Anhand der gewonnenen Ergebnisse muss damit gerechnet werden, dass kurzfristig in etwa die Halbe Zwischenkreisspannung an den einzelnen Halbleiterschaltern anliegt. Durch die unterschiedlichen Durchbruchsspannungen der verschiedenen Halbleiterschalter kann hierdurch schon eine Richtungsentscheidung vorgegeben werden. Ist diese Spannungsbelastung für die vorgesehenen Halbleiterschalter dennoch grenzwertig, kann unter Umständen, die Verwendung eines Entlastungsnetzwerks (*snubber-Glied*) vorgesehen werden.

Ein gewichtiger Faktor ist die Schaltfrequenz, anhand derer ebenfalls Aussagen zur Konzeptionierung getroffen werden können. Tendenziell sind für höhere Schaltfrequenzen MOSFETs zu bevorzugen, da diese ein vorteilhaftes Schaltverhalten aufweisen. Ist jedoch die Schaltfrequenz verhältnismäßig gering liegt die Verwendung von IGBTs näher. Ein ebenfalls wichtiger Faktor, der mit steigender Schaltfrequenz an Bedeutung gewinnt, ist die Sperrverzögerungsladung. Diese kann durch die richtige Wahl der Komponenten reduziert werden, sodass für die Diodenwahl SiC-Dioden verwendet werden können. Bei den Halbleiterschaltern (MOSFETs) existiert ebenfalls die Möglichkeit diesbezüglich optimierte Varianten zu verwenden. Ebenso ist die Art der Steuerung von der Schaltfrequenz abhängig.

Im Anbetracht der Vielzahl von Abhängigkeiten wird vereinfacht der Faktor Betriebsart und Stromamplitude für die richtungsweisende Aussage über Schaltungstyp, Schaltungsvariante und Art der verwendeten Halbleiterschalter herangezogen. Tendenziell ist für hohe Stromamplituden der Schaltungstyp ANPC zu bevorzugen. Der Grund liegt darin, dass bei hohen Strömen beim NPC-Schaltungstyp hohe Verluste auftreten, welche durch Verwendung des ANPC-Schaltungstyps minimiert werden können. Die konträre Empfehlung kann bei kleinen Strömen abgegeben werden, da beim NPC-Schaltungstyp kaum Verluste in den Dioden $(D_1 \text{ und } D_2)$ umgesetzt werden, und sich dadurch der Mehraufwand kaum zu lohnen scheint. Befindet sich die Halbbrücke größtenteils im generatorischen Betrieb, werden naturgemäß die Dioden stärker belastet. Wird die Schaltung jedoch größtenteils motorisch betrieben fällt ein überwiegender Teil der Verluste an den Halbleiterschaltern ab. Ein weiterer Trend ist, dass bei hohen Stromamplituden am Ausgang zusehends die Leitungsverluste der Halbleiterschalter in den Vordergrund treten. Eine Konsequenz ist, dass in diesem Bereich tendenziell eher IGBT als Leistungsschalter verwendet werden, was wiederum die maximale Schaltfrequenz und somit die verwendete Steuerungsmethode bestimmt. In einem solchen Szenario scheint die Verwendung von SHE-PWM vorteilhaft zu sein.

12 Zusammenfassung

Die Masterarbeit beschäftigt sich mit der Verbesserung einer bestehenden Drei-Stufen-Halbbrücke. In Rahmen dieser Arbeit wurde ein bestehender Aufbau vermessen, daraus eine neue Schaltung entwickelt und diese wiederum vermessen.

Der erste Schritt besteht darin, die Grundlagen dieser Halbbrückentopologie zu erarbeiten. Zu diesem Zweck wird zunächst in knapper Form die geschichtliche Entwicklung der Leistungselektronik behandelt. Nach Darlegung von verschiedenen 3L-NPC-Schaltungstypen wird genauer auf die Funktionsweise der Schaltung eingegangen. Dies umfasst die Bewertung aller Schaltzustände, die Behandlung von Sicherheitsaspekten und die genaue Betrachtung der relevanten Zustände. Weiterführend werden ebenfalls die Einflüsse der parasitären Komponenten, sowie das komplexe Kommutierungsverhalten untersucht. Nach Herleitung der Funktionalität wird in kurzen Zügen die *konventionelle* Schaltstrategie für die Halbbrücke behandelt. Darauf folgt die Vorstellung des *gesteuerten* Schaltens, einer im Rahmen der Masterarbeit entwickelten Schaltstrategie analytisch mit dem *gesteuerten* Schalten verglichen. In weiterer Folge wird das für die Steuerung der Schaltung verwendete Trägerverfahren behandelt. Darüber hinaus wird ebenfalls eine zweite Steuerstrategie SHE-PWM vorgestellt.

Im zweiten Schritt wird eine Serie von Simulationen durchgeführt. Zunächst wird eine Lastsituation genauer betrachtet, in welcher *konventionell* geschaltet wird. Aus den gewonnenen Ergebnissen können nochmals simulativ der prinzipielle Vorteil für den motorischen Betrieb bestätigt werden. Weiterführend wird die gesamte Schaltung modelliert und entsprechend mit dem Trägerverfahren gesteuert. Aus den gewonnenen Ergebnissen können genauere Informationen über das Verhalten der Schaltung gewonnen werden. So können unter anderem Faktoren wie Wirkungsgrad, Verlustverteilung, maximale Spannungsbelastung und Lastabhängigkeit ermittelt werden, welche wiederum in die Realisierung einfließen. Jede dieser Simulationen wird sowohl für *konventionelles* als auch *gesteuertes* Schalten durchgeführt, wodurch die Vorteile der entwickelten Schaltart nochmals gezeigt werden.

Im dritten Schritt wird der bestehende Aufbau der Schaltung vermessen, ein Optimierungskonzept entworfen, und daraus eine neue Schaltung entwickelt, welche wiederum vermessen wird. Zunächst wird der bestehende Aufbau analysiert, was unter anderem die Ermittlung des Schaltverhaltens und der parasitären Komponenten beinhaltet. Aus den analytisch, simulativ und messtechnisch ermittelten Faktoren wird ein Optimierungskonzept für eine neue Schaltung erarbeitet. In diesem Konzept wird unter anderem thermische und elektrische Aspekte berücksichtigt, sowie eine eigene Verriegelungslogik erarbeitet, um einen fehlerfreien Betrieb sicher zu stellen. Die resultierende Schaltung wird in weiterer Folge wiederum auf das Schaltverhalten untersucht, und mit der bestehenden Schaltung verglichen. Unter anderem wird bei der Vermessung der Wirkungsgrad und das Temperaturverhalten der Schaltung untersucht.

13 Anhang

13.1 Konventionelle Schalthandlung

Für die Simulation wurde das Programm LT-Spice verwendet. Für die Modellierung der Schalthandlung $H \longleftrightarrow N$ wurde die in Abb. 13.51 dargestellte Schaltung verwendet.

Abbildung 13.51: LT-Spice-Modell für die Schalthandlung $H \longleftrightarrow N$

Die gewählten konstanten Komponentenparameter sind in Tabelle 16 abgebildet.

Nr.	Bauteil	Bauteilart	Wert
1	R1	Lastwiderstand	30Ω
2	R2, R5, R7	Widerstand	0.001Ω
3	R6, R8, R9	Widerstand	0.01Ω
4	R3	Widerstand	0.1Ω
5	R4	Widerstand	0.019Ω
6	V1, V2, V5	Widerstand Quelle	0.1Ω
7	V5	${ m Gleichspannung squelle}$	330V
8	V1, V2	${ m Gleichspannung squelle}$	$165\mathrm{V}$
9	L1	Lastinduktivität	40mH
10	L2	Induktivität	80nH
11	L3	Induktivität	$20 \mathrm{nH}$
12	L4	Induktivität	3nH
13	C1, C2, C3	Parasitäre MOSFET-Kapazität	$30, 60, 90, 120 \mathrm{nF}$

Tabelle 16: Bauteilparameter LT-Spice

In der Schaltung wurden zwei verschiedene Typen von Dioden (Tabelle. 17) verwendet, welche in der Standardbibliothek zur Verfügung gestellt werden.

Nr.	Bauteil	Diodenkennung	Hersteller
1	D3, D4, D5	1N4148	OnSemi
2	D1, D2	UPSC600	Microsemi

Für die Steuerung der Schalter S1 und S2a wurden die Spannungsquellen V3 bzw. V4 verwendet. Die entsprechende Konfiguration (für die *PULSE* Einstellung) findet man in der nachfolgenden Tabelle (13.4)

	Bauteil	V3	V4
Nr.	Parameter		
1	Vinitial[V]	0	0
2	Von[V]	1	1
3	Tdelay[s]	0	0.00101
4	Trise[s]	0.1μ	0.1μ
5	Tfall[s]	0.1μ	0.1μ
6	Ton[s]	1m	0.98m
7	Tperiod[s]	2m	2m

Tabelle 18: Konfiguration der Steuerspannungen

13.2 Simulation GeckoCIRCUIT

13.2.1 Aufbau

Für die Ermittlung des Schaltverhaltens wurde die in Abb.: 13.52 ersichtliche Schaltung verwendet.

Abbildung 13.52: GeckoCIRCUIT-Schaltung

Die konstanten Parameterwerte sind in der Tabelle 19 aufgelistet.

Nr.	Bauteil	Größe	Wert
1	R.Last	Lastwiderstand	$13,89\Omega$
2	L.Last	Lastinduktivität	76,6mH
3	L.Q, L.H, L.S1, L.DS1, L.D1,	Parasitäre Induktivitäten	$60\mu\mathrm{H}$
	L.S1a, L.S2a, L.D2, L.DS2, L.S2		
	L.T		
4	R.10, R.11, R.12, R.14, R.13,	Parasitäre Widerstände	$1m\Omega$
	R.18, R.15, R.16, R.17		
5	MOSFET.S1_A,	ON-Widerstand MOSFET	$140m\Omega$
	MOSFET.S2_A, MOSFET.S1a,		
	MOSFET.S2a		
6	MOSFET.S1_A,	OFF-Widerstand MOSFET	$10M\Omega$
	MOSFET.S2_A, MOSFET.S1a,		
ļ	MOSFET.S2a		050 TT
7	MOSFET.S1_A,	Spannung an der intrinsischen	650mV
	MOSFET.S2_A, MOSFET.S1a,	Diode in Durchlassrichtung	
	MOSFET.S2a		40.0
8	MOSFET.SI_A,	ON-Widerstand Diode	$40m\Omega$
	MOSFET.S2_A, MOSFET.S1a,		
0	MOSFEI.52a MOSEET.CL	OFF Widenster J Die Je	1000 MO
9	$\begin{bmatrix} MOSFEI.SI_A, \\ MOSEET S2 & MOSEET S1_2 \end{bmatrix}$	OFF-widerstand Diode	10001/132
	$ \begin{array}{c} \text{MOSFET.S2}_\text{A}, \text{MOSFET.S1a}, \\ \text{MOSFET S2} \end{array} $		
10	MOSFET S1_B	ON-Widerstand MOSEET	1.8mO
	MOSFET S2 B	Give Widerstand WOST LT	1,011.32
11	MOSFET S1_B	OFF-Widerstand MOSFET	$10M\Omega$
	MOSFET.S2 B		1010122
12	MOSFET.S1 B.	Spannung an der intrinsischen	7mV
	MOSFET.S2 B	Diode in Durchlassrichtung	
13	MOSFET.S1 B,	ON-Widerstand Diode	$100m\Omega$
	MOSFET.S2 ^B		
14	MOSFET.S1 B,	OFF-Widerstand Diode	$1000M\Omega$
	MOSFET.S2_B		
15	U.1	Zwischenkreisspannung	660V
16	C.1, C.2	Kondensatorkapazität	1mF
17	C.1, C.2	Kondensatorspannung bei	330V
		Beginn der Simulation	

Tabelle 19:	Schaltungsparameter
-------------	---------------------

Für die bessere Beschreibung der Halbleiterbauelemente wurden verschiedene Parameterfunktionen eingebunden (Tabelle 20). So wurde für die SiC-Dioden eine Spannungs-Strom-Kennlinie hinterlegt. Um die von der Spannung abhängigen SiC-Diode- und MOSFETs-Kapazitäten zu modellieren wurden, ebenfalls aus den entsprechenden Datenblättern Kurven entnommen, und im Programm eingebunden.

Nr.	Bauteil	Bauteilart	FW ¹	FA ²	Quelle
1	D.S1, D.1, D.S2,	SiC-Diode	U_D^3	I ⁴	Datenblatt IDH10G65C
	D.2				
2	C.DS1, C.DS2,	SiC-Diode-Kapazität	C^{5}	U ⁶	Datenblatt IDH10G65C
	C.D1, C.D2				
3	C.S1_B,	MOSFET-Kapazität	C	U	Datenblatt BSC014N06NS
	$C.S2_B$				
4	C.S1_A,	MOSFET-Kapazität	C	U	Datenblatt IPx60R160C6
	$C.S2_A$				

 1 **F**unktions**w**ert 2 **F**unktions**a**rgument 3 Diodenspannung 4 Diodenstrom 5 Kapazität 6 Spannung

 Tabelle 20:
 Eingebundene Parameterfunktionen

Die PWM-Steuerung erfolgte über das Trägerverfahren mittels Sinus-Dreiecksvergleich. Der Modulationsgrad [4] $(m = \frac{\widehat{M_s}}{\widehat{T_s}})$ wurde konstant mit eins gewählt, und es wurde keine Phasenverschiebung zwischen den einzelnen Trägersignalen vorgegeben.

Die Realisierung der Steuerung erfolgte über den Java Custom Code Control Block in welchem über mehrere if-Abfragen die Eingänge miteinander verglichen wurden, und entsprechend die Ausgänge geschaltet wurden. Der entsprechende Code für gesteuertes und konventionelles Schalten wird nachfolgend angeführt.

Code für den Java Custom Code Control Block für das gesteuerte Schalten:

```
if(xIN[0] \ge xIN[1] \&\& xIN[0] \ge 0)
ł
// H
yOUT[1] = xIN[3];
yOUT[2] = xIN[3];
yOUT[3] = 0;
yOUT[4] = 0;
}
if(xIN[0] < xIN[1] \&\& xIN[0] > 0 \&\& xIN[4] >= 0)
{
// HÜ
yOUT[1] = 0;
yOUT[2] = xIN[3];
yOUT[3] = 0;
yOUT[4] = 0;
if(xIN[0] < xIN[1] \&\& xIN[0] > 0 \&\& xIN[4] < 0)
{
// N
yOUT[1] = 0;
yOUT[2] = xIN[3];
yOUT[3] = xIN[3];
yOUT[4] = 0;
}
```

```
if (xIN[0] \le xIN[2] \&\& xIN[0] \le 0)
{
// T
yOUT[1] = 0;
yOUT[2] = 0;
yOUT[3] = xIN[3];
yOUT[4] = xIN[3];
}
if (xIN[0] > xIN[2] \&\& xIN[0] \le 0 \&\& xIN[4] \ge 0)
{
// N
yOUT[1] = 0;
yOUT[2] = xIN[3];
yOUT[3] = xIN[3];
yOUT[4] = 0;
{
// ÜT
yOUT[1] = 0;
yOUT[2] = 0;
yOUT[3] = xIN[3];
yOUT[4] = 0;
}
return yOUT;
```

Nr.	Bezeichnung	Größe
1	xIN[0]	Eingang Sinussignal
2	xIN[1]	Eingang Trägersignal positiv
3	xIN[2]	Eingang Trägersignal negativ
4	xIN[3]	Eingang EIN-Wert
5	xIN[4]	Eingang Laststrom
6	xOUT[1]	Ausgang Steuersignal S1
7	xOUT[2]	Ausgang Steuersignal S1a
8	xOUT[3]	Ausgang Steuersignal S2a
9	xOUT[4]	Ausgang Steuersignal S2

Tabelle 21: Zuordnung Ein- und Ausgänge des Java Custom Code Control Block für das
gesteuerte Schalten

Code für den Java Custom Code Control Block für das konventionelles Schalten:

```
 \begin{array}{l} \mathrm{if}(x\mathrm{IN}[0]>=x\mathrm{IN}[1] \ \&\& \ x\mathrm{IN}[0]>0) \\ \{ \\ // \ \mathrm{H} \\ \mathrm{y}\mathrm{OUT}[1]=x\mathrm{IN}[3]; \\ \mathrm{y}\mathrm{OUT}[2]=x\mathrm{IN}[3]; \\ \mathrm{y}\mathrm{OUT}[3]=0; \\ \mathrm{y}\mathrm{OUT}[4]=0; \end{array}
```

```
}
\operatorname{if}(\operatorname{xIN}[0] < \operatorname{xIN}[1] && \operatorname{xIN}[0] > 0)
{
// N
yOUT[1] = 0;
yOUT[2] = xIN[3];
yOUT[3] = xIN[3];
yOUT[4] = 0; \}
if (xIN[0] \le xIN[2] \&\& xIN[0] \le 0)
{
// T
yOUT[1] = 0;
yOUT[2] = 0;
yOUT[3] = xIN[3];
yOUT[4] = xIN[3];
}
if (xIN[0] > xIN[2] \&\& xIN[0] <= 0)
{
// N
yOUT[1] = 0;
yOUT[2] = xIN[3];
yOUT[3] = xIN[3];
yOUT[4] = 0;
}
return yOUT;
```

Nr.	Bezeichnung	Größe
1	xIN[0]	Eingang Sinussignal
2	xIN[1]	Eingang Trägersignal positiv
3	xIN[2]	Eingang Trägersignal negativ
4	xIN[3]	Eingang EIN-Wert
5	xOUT[1]	Ausgang Steuersignal S1
6	xOUT[2]	Ausgang Steuersignal S1a
7	xOUT[3]	Ausgang Steuersignal S2a
8	xOUT[4]	Ausgang Steuersignal S2

Tabelle 22: Zuordnung Ein- und Ausgänge des Java Custom Code Control Block für das
konventionelles Schalten

Die mittels Java Custom Code Control Block ermittelten Schaltmuster steuern nun jeweils eine Spannungsquelle (Abb.:13.53 Bauteil: U.2, U.3, U.4, U.5). Um sicherzustellen, dass sich die HB zu jedem Zeitpunkt im sicheren Arbeitsbereich befindet, wurden diese gesteuerten Spannungsquellen mit einer Einschaltverzögerung verbunden.

Abbildung 13.53: Einschaltverzögerung GeckoCIRCUIT

Beim Spannungssprung der gesteuerten Spannungsquellen wird über den jeweiligen Widerstand der Kondensator geladen. Erreicht die Kondenstorspannung den vorgegebenen Schwellwert von 0,7V wird der entsprechende Halbleiterschalter geschaltet. Ändert sich der Wert der gesteuerten Spannungsquellen von Hoch (1V) auf Null wird der Kondensator sofort über die Diode entladen (die Diodenspannung in Vorwärtsrichtung wurde mit 1mV definiert).

Für die Automatisierung der Simulation wurde GeckoSCRIPT verwendet. Es bietet nicht nur die Möglichkeit eine Vielzahl von Simulationsparameter, über ein Skript zu ändern, sondern ermöglicht es ebenfalls (über vorgefertigte Funktionen) verschiedenste mathematische Operationen durchzuführen.

Um Verzerrungen durch die Einschwingvorgänge zu vermeiden, wurden sieben Perioden der Ausgangsfrequenz simuliert, und jeweils nur die letzte Periode für die Berechnung berücksichtigt.

Für die Berechnung der mittleren Wirkleistung (für Eingang, Ausgang, MOSFETs und Dioden) wurde die bereitgestellte Funktion getSignalAvg() im GeckoSCRIPT verwendet.

Der Wirkungsgrad wurde über das Verhältnis von mittlerer Ausgangsleistung zu Eingangsleistung über eine Periodendauer des Modulationssignals bestimmt.

$$\eta = \frac{P_{out}}{P_{in}} \tag{15}$$

Die Berechnung des Effektivwertes der Ausgangsspannung erfolgte über die bereitgestellte Funktion getSignalRMS().

13.2.2 GeckoSCRIPT-Code

Der Code-Abschnitt für die Automatisierung der Simulation und Berechnung der verschiedenen Parameter:

double[] L Last = $\{0.0766\};$ double[] R Last = $\{13.89\};$ double[] f out = $\{25, 50, 100, 200\};$ double[] f sw = $\{1000.2000.3000.4000.5000.6000.7000.8000.9000.10000.11000.12000.13000.14000.$ 15000, 16000, 17000, 18000, 19000, 20000; int count = 0; double t start = 0;double U zk = 0;double var1 = 0; double var2 = 0; int spalten = f out.length; int zeilen = f sw.length; double[][] I THD out = new double[zeilen][spalten]; double[][] U_RMS_out = new double[zeilen][spalten]; double[|||] U min C1 = new double[zeilen][spalten];double[][] U max S = new double[zeilen][spalten]; $double[[[]] U_max_Sa = new double[zeilen][spalten];$ double[|||] P m out = new double[zeilen][spalten];double[[]] P m in = new double[zeilen][spalten];double[][] P m ges = new double[zeilen][spalten];double[|||] P m DS1 = new double[zeilen][spalten];double[|||] P m DS2 = new double[zeilen][spalten];double[][] P_m_D1 = new double[zeilen][spalten]; $double[][] P_m_D2 = new double[zeilen][spalten];$ double[][] P m S1 A = new double[zeilen][spalten];double[][] P m S1 B = new double[zeilen][spalten];double[][] P m S1a = new double[zeilen][spalten];double[][] P m S2a = new double[zeilen][spalten];double[|||] P m S2 A = new double[zeilen][spalten];double[][] P m S2 B = new double[zeilen][spalten];double[][] P_max_out = new double[zeilen][spalten]; double[][] P max in = new double[zeilen][spalten];double[][] P max DS = new double[zeilen][spalten];

```
double[|||] P max D = new double[zeilen][spalten];
double[][] P max S A = new double[zeilen][spalten];
double[][] P max S B = new double[zeilen][spalten];
double[][] P max Sa = new double[zeilen][spalten];
writeOutputLn("Simulation wird gestartet");
for (int j = 0; j < f out.length; j++)
ł
for (int i = 0; i < f sw.length; i++)
count = count + 1;
set Tend(7/f \text{ out}[j]);
setParameter("SIGNAL.Sin","f",f out[j]);
setParameter("SIGNAL.Drei","f",f_sw[i]);
setParameter("L.Last","L",L Last[0]);
setParameter("R.Last", "R", R Last[0]);
U zk = getParameter("U.1","uDC");
writeOutputLn("L Last = " + L Last[0] + "\t R Last = " +
R Last[0] + "' t f sw = " + f sw[i] + "' t f out = " + f out[j]);
runSimulation();
t start = 6/f out[j];
//Mittelwerte bilden
//InOut
P m out[i][j] = getSignalAvg("P out",t start,get Tend());
P m in[i][j] = getSignalAvg("P in",t start,get Tend());
//Dioden
P m DS1[i][j] = getSignalAvg("P DS1",t start,get Tend());
P m DS2[i][j] = getSignalAvg("P DS2",t start,get Tend());
P m D1[i][j] = getSignalAvg("P D1",t start,get Tend());
P m D2[i][j] = getSignalAvg("P D2",t start,get Tend());
//MOSFET
P m S1 A[i][j] = getSignalAvg("P S1 A",t start,get Tend());
P_m_S1_B[i][j] = getSignalAvg("P_S1_B",t_start,get_Tend());
P m S1a[i][j] = getSignalAvg("P S1a",t start,get Tend());
P_mS2a[i][j] = getSignalAvg("P_S2a",t_start,get_Tend());
P m S2 A[i][j] = getSignalAvg("P S2 A",t start,get Tend());
P m S2 B[i][j] = getSignalAvg("P S2 B",t_start,get_Tend());
P m ges[i][j] = P m in[i][j] P m out[i][j];
//Maximalwerte ermitteln
//InOut
P max out[i][i] = getSignalMax("P out",t start,get Tend());
P_{max_in[i][j]} = getSignalMax("P_in",t_start,get_Tend());
//Dioden
var1 = getSignalMax("P DS1",t start,get Tend());
var2 = getSignalMax("P DS2",t start,get Tend());
if (var1 \ge var2)
P_{\max}DS[i][j] = var1;
```

else $P \max DS[i][j] = var2;$ var1 = getSignalMax("P D1",t start,get Tend());var2 = getSignalMax("P_D2",t_start,get_Tend()); if $(var1 \ge var2)$ $P \max D[i][j] = var1;$ } else $P_{\max}D[i][j] = var2;$ } //MOSFET var1 = getSignalMax("P S1 A",t start,get Tend()); var2 = getSignalMax("P_S2_A",t_start,get_Tend()); if $(var1 \ge var2)$ $P_{max}S_A[i][j] = var1;$ } else P max S A[i][j] = var2;} var1 = getSignalMax("P_S1a",t_start,get_Tend()); var2 = getSignalMax("P S2a",t start,get Tend()); if $(var1 \ge var2)$ ł $P_{\max}Sa[i][j] = var1;$ } else ł $P \max Sa[i][j] = var2;$ var1 = getSignalMax("P S2 B",t start,get Tend()); var2 = getSignalMax("P_S1_B",t_start,get_Tend()); if $(var1 \ge var2)$ ł $P_{\max}S_B[i][j] = var1;$ } else P max S B[i][j] = var2;} //THD I THD out[i][j] = getSignalTHD("I out",t start,get Tend()); //RMS U_RMS_out[i][j] = getSignalRMS("U_out",t_start,get_Tend());

```
//C1 \min
U min C1[i][j] = getSignalMin("U_C1",t_start,get_Tend());
//U S max
var1 = getSignalMax("U_S1a",t_start,get_Tend());
var2 = getSignalMax("U S2a",t start,get Tend());
if (var1 > = var2)
{
U max Sa[i][j] = var1;
}
else {
U_{\max}Sa[i][j] = var2;
}
var1 = getSignalMax("U_S1",t_start,get_Tend());
var2 = getSignalMax("U_S2",t_start,get_Tend());
if (var1 > = var2)
{
U_{\max}S[i][j] = var1;
}
else {
U_{max}S[i][j] = var2;
}
```

Die einzelnen Leistungen (P_in, P_out, P_S1_A, P_S1_B, P_S1a, P_S2a, P_S2_A, P_S2_B, P_DS1, P_DS2, P_D1, P_D2) wurden über die entsprechende Multiplikation von Strom und Spannung vorgegeben.

Abbildung 13.54: Wirkungsgradvergleich konventionelles und gesteuertes Schalten

Abbildung 13.55: Wirkungsgradvergleich konventionelles und gesteuertes Schalten

13.2.4 Simulation Mittlere Verlustverteilung

Abbildung 13.56: Relative mittlere Verlustverteilung für konventionelles Schalten

Abbildung 13.57: Relative mittlere Verlustverteilung für gesteuertes Schalten

Abbildung 13.58: Mittlere Verlustverteilung für konventionelles Schalten

Abbildung 13.59: Mittlere Verlustverteilung für gesteuertes Schalten

13.2.5 Simulation Maximale Bauteilverluste

Abbildung 13.60: Maximale Bauteilverluste für konventionelles Schalten

Abbildung 13.61: Maximale Bauteilverluste für gesteuertes Schalten

Abbildung 13.62: Maximale Verluste an S1_A bzw. S2_A für gest. und konv. Schalten

Abbildung 13.63: Maximale Verluste an S1_B bzw. S2_B für gest. und konv. Schalten

Abbildung 13.64: Maximale Verluste an D_1 bzw. D_2 für gest. und konv. Schalten

Abbildung 13.65: Maximale Verluste an S_1 bzw. S_2 für gest. und konv. Schalten

Abbildung 13.66: Maximale Verluste an D_{S1} bzw. D_{S2} für gest. und konv. Schalten

13.2.6 Konstante Impedanz

Um das Verhalten der HB bei konstanter Scheinleistung zu ermitteln, wurde das Modell wie gehabt gesteuert bzw. ausgewertet. Die Schaltfrequenz wurde hierbei konstant mit 1kHz definiert. Für die Ansteuerung werden die Parameter für L_{Last} und R_{Last} , unter Vorgabe von Z und φ ermittelt. Dies geschieht über die nachfolgend hergeleiteten Formeln.

$$\underline{Z} = R + jX \tag{16}$$

$$Z = \sqrt{R^2 + X^2} \tag{17}$$

$$X_L = \omega L \tag{18}$$

$$\omega = 2\pi f \tag{19}$$

$$\varphi = \arctan\left(\frac{Im(\underline{Z})}{Re(\underline{Z})}\right) \tag{20}$$

$$\varphi = \arctan\left(\frac{X}{R}\right) \qquad \longmapsto \qquad X = R \cdot \tan(\varphi)$$

$$Z^{2} = R^{2} \cdot \tan(\varphi)^{2} + R^{2} \qquad \longmapsto \qquad Z^{2} = R^{2} \cdot \left(1 + \tan(\varphi)^{2}\right)$$

$$R = \sqrt{\frac{Z^{2}}{1 + \tan(\varphi)^{2}}} \qquad (21)$$

$$X = \sqrt{Z^2 - \frac{Z^2}{1 + \tan(\varphi)^2}}$$
(22)

$$L = \frac{1}{2\pi f} \cdot \sqrt{Z^2 - \frac{Z^2}{1 + \tan(\varphi)^2}}$$
(23)

Aus diesen Formeln wurden die ersten Lastparameter bei verschiedenen Lastwinkeln und fixer Ausgangsfrequenz berechnet, wobei S als 1000 VA definiert wurde. Nach der Simulation aller Arbeitspunkte wurden die naturgemäß stark abweichenden Ausgangsscheinleistungswerte hergenommen um Z in den jeweiligen Punkten proportional zu kompensieren. Dadurch konnte bereits nach der ersten Iteration eine relativ konstante Ausgangsscheinleistung in allen Punkten erreicht werden. Für die Frequenz wurde die jeweilige angestrebte Ausgangsfrequenz herangezogen, was einer
groben Näherung der Ausgangsgrößen gleichkommt. Die Werte sind daher als Richtwerte zu betrachten und sollen lediglich Tendenzen aufzeigen.

	-	
Nr.	L_{Last}	R_{Last}
	[mH]	$[\Omega]$
1	0	66,783102767820950
2	42,137430069022	$49,\!404381310095510$
3	73,747310109931	$40,\!128847257413120$
4	86,534694710330	27,185676118260960
5	75,869124013549	13,761136890078285
6	44,083545351212	3,710896484546451

 Tabelle 23:
 Ermittelte
 Lastparameter

13.3 Energieinhalt einer Kapazität

Grundgleichung für die gespeicherte Energie im Kondensator[15][12].

$$E = \frac{C \cdot U^2}{2} \tag{24}$$

13.4 Berechnung der parasitären Komponenten

Für die Berechnung des parasitären Widerstands wurden zunächst die Abmessungen der Leitungen herausgemessen. Über Leitungslänge, Leitungsquerschnitt und den Leitwert ρ , welcher mit $1, 7 \cdot 10^{-2}$ angenommen wurde, wurde über die Formel (25) der parasitäre Widerstand ermittelt.

$$\rho = \frac{R \cdot A}{l}
R = \frac{\rho \cdot l}{A}$$
(25)

Für die Abschätzung der Induktivität wurde die in [21] erwähnte Formel verwendet, wobei für die Berechnung die Permeabilitätszahl μ_r mit einem Wert von 1 angenommen wurde.

$$\mu = \mu_0 \cdot \mu_r \tag{26}$$

$$u = \frac{l}{b} \qquad \omega = \frac{h}{b}$$

$$A = \sqrt{1 + u^2} \qquad B = \sqrt{1 + \omega^2} \qquad C = \sqrt{u^2 + \omega^2} \qquad D = \sqrt{1 + \omega^2 + u^2}$$

$$E = ln\left(\frac{1+D}{C}\right) \qquad F = ln\left(\frac{\omega+D}{A}\right) \qquad G = ln\left(\frac{u+D}{B}\right)$$

$$L_{p} = \frac{2 \cdot \mu \cdot l}{\pi} \left[\frac{\omega^{2}}{24 \cdot u} \left(ln \left(\frac{1+B}{\omega} \right) - E \right) + \frac{1}{24 \cdot u \cdot \omega} \left(ln \left(\omega - B \right) - F \right) \right. \\ \left. + \frac{\omega^{2}}{60 \cdot u} \left(D - C \right) + \frac{\omega^{2}}{24} \left(ln \left(\frac{u+C}{\omega} \right) - G \right) + \frac{\omega^{2}}{60 \cdot u} \left(\omega - B \right) \right. \\ \left. + \frac{1}{20 \cdot u} \left(B - D \right) + \frac{u \cdot E}{4} - \frac{u^{2}}{6 \cdot \omega} \cdot \arctan \left(\frac{\omega}{u \cdot D} \right) + \frac{u \cdot E}{4} - \frac{\omega}{6} \cdot \arctan \left(\frac{u}{\omega \cdot D} \right) \right. \\ \left. + \frac{G}{4} - \frac{1}{6 \cdot \omega} \cdot \arctan \left(\frac{u \cdot \omega}{D} \right) + \frac{1}{24 \cdot u \cdot \omega} \left(ln \left(u - A \right) - G \right) + \frac{u}{20 \cdot \omega^{2}} \left(A - D \right) \right. \\ \left. + \frac{1}{60 \cdot \omega^{2} \cdot u} \left(1 - A - B + D \right) + \frac{u}{20} \left(C - D \right) + \frac{u^{3}}{24 \cdot \omega^{2}} \left(ln \left(\frac{1+A}{u} \right) - E \right) \right. \\ \left. + \frac{u^{3}}{24 \cdot \omega} \left(ln \left(\frac{\omega + C}{u} \right) - F \right) + \frac{u^{3}}{60 \cdot \omega^{2}} \left(1 - A + u + C \right) \right] \right]$$

Die Ermittlung der parasitären Induktivitäten erfolgte über die Formel (27), welche über die Vorgabe der Leitungslänge (l), Leitungsbreite (b) und der Kupferstärke (h) angenähert wurde. Der Leitungswiderstand wurde über die Formel (25) mittels der drei genannten Faktoren (l,b,h) ermittelt. Für die Durchkontaktierungen wurde grob eine Induktivität von 1nH und ein Widerstand von $5\mu\Omega$ veranschlagt. Ebenso wurde für die Sicherung mit $L_{pQ} = 10$ nH und $R_{pQ} = 0.25$ m Ω abgeschätzt.

13.5 Messung der parasitären Komponenten

Vermessen wurde das Leitungsstück von der Bananenbuchse X3 bis zum Drain-Pin von S_{1_A} (siehe Schaltung 13.82), welches sich aufgrund seiner räumlichen Ausdehnung anbietet. Gemessen wurde mit und ohne Sicherung, wobei für die Verbindung ohne Sicherung ein massiver Kurzschlussbügel verwendet wurde.

Für die Berechnung der Abschätzung mussten die Abmessungen der Leitungsstrecke herausgemessen werden.

Nr.	Länge	Breite	Dicke	Widerstand	Induktivität
	[mm]	[mm]	$[\mu m]$	$[\Omega]$	[nH]
1	15	2,3	35	0.00316	9.3
2	2	5	35	0,00019	0.35
3	40	6	35	0,00324	25,06

Tabelle 24: Abschätzung der parasitären Komponenten für die Strecke B_{zk+} - Drain S_{1_A}

Für die Abschätzung der parasitären Parameter ergab sich für den Streckenwiderstand R_{pB+S1_ab} ein Wert von 6,6 m Ω . Für die Streckeninduktivität L_{pB+S1_ab} ergab sich ein Wert von 34,729 nH. Die Verbindung über den Kurzschlussbügel wurde wegen seiner Abmessungen vernachlässigt.

Widerstandsmessung

Für die Widerstandsmessung wurde die 4-Leitertechnik verwendet. Für die Strom- und Spannungsmessung wurde das Fluke 87 eingesetzt. Gemessen wurde bei einem Stromfluss von 2,5A.

Gemessene Werte: $R_{pB+S1_gem} + R_{Sicherung} = 23,036m\Omega$ $R_{pB+S1_gem} = 22,918m\Omega$ $R_{Sicherung} = 1,0777m\Omega$ Berechneter Wert: $R_{pB+S1_ab} = 6,6 \text{ m}\Omega$

(Leiterbahnwiderstand mit Sicherung) (Leiterbahnwiderstand ohne Sicherung) (Leiterbahnwiderstand der Sicherung)

Messung der Induktivität

Die Messung der Induktivität erfolgte über das Messgerät Agilen U1733C. Hierbei wurden im ersten Schritt die Verbindungskabel kurzgeschlossen und die Induktivität bei einer Prüffrequenz von 100kHz gemessen. Danach wurden die Verbindungskabel mit der Prüfstrecke verlötet und wiederum gemessen. Durch die Differenz der beiden Messpunkte wird auf die Induktivität geschlossenen. Durch die Abmessungen der Sicherung wurde darauf geschlossen, dass deren Induktivität dominant ist, woraufhin mit und ohne Sicherung (Verbindung über den Kurzschlussbügel) gemessen wurden.

Gemessene Werte:	
$L_{pB+S1 \ gem} + L_{Sicherung} = 80nH$	(Leiterbahninduktivität mit Sicherung)
$L_{pB+S1}_gem = 29nH$	(Leiterbahninduktivität ohne Sicherung)

 $L_{Sicherung} = 51nH$ Berechneter Wert: $L_{pB+S1\ ab} = 34,729nH$

(Leiterbahninduktivität der Sicherung)

13.6 Messkonfigurationen

13.6.1 Schwingverhalten am Gate M1

Bei dieser Messung wurde in der Schaltung M1.2 zwischen den Zuständen H und ÜH geschaltet. Für die Messung wurden die Klemmen K0 und X4 über eine Verbindung kurzgeschlossen. Für den Schalter S_1 wurde ein Tastverhältnis von 0,8 mit einer Schaltperiodendauer von 50 μ s eingestellt. An die Ausgangsklemmen wurde eine ohmsch-induktive Last mit R_{Last} =82,63 Ω und L_{Last} =3,77mH angeschlossen. Die Spannung wurde von R_5 -Pin (Seite S_1) direkt zum Treiber-Pin 11 gemessen. Gemessen wurde über das Oszilloskop "Wave Runner 625Zi" unter Verwendung von zwei "Lecroy PP008" Tastköpfen.

13.6.2 Steuersignalverläufe im Leerlauf M1

Bei der Messung wurden drei Signale im Pfad S_1 der Schaltung M1.2 bei $d = \frac{1}{2}$, $T_{sw}=40\mu$ s und $U_{zk}=0$ gemessen. Die Gatespannung wurde von R_5 -Pin (Seite S_1) direkt zum Treiber-Pin 11 (TR1) gemessen. Die Messung der Treibereingangsspannung erfolgte direkt über die IC-Pins 1 und 4 des Treibers TR1. Das Optokoppler-Steuersignal (Eingangsspannung Optokoppler) wurde über die IC-Pins 2 und 3 gemessen. Die Messungen wurden mittels des Oszilloskops "Wave Runner 625Zi", unter Verwendung von drei "Lecroy PP008" Tastköpfen, durchgeführt.

13.6.3 Asymmetrie der Steuersignale M1

Bei der Messung der Steuersignale wurde an den Eingängen der Optokoppler (OK1, OK2, OK3, OK4), jeweils an den IC-Pins 2 und 3, die Spannung gemessen. Der Lastkreis wurde hierbei nicht versorgt ($U_{zk} = 0$). Angesteuert wurde die Schaltung über vier synchrone Rechtecksignale, durch Verwendung der DAC-Kanäle des dSpace-Systems. Die Messung erfolgte über das Oszilloskop "Wave Runner 625Zi" unter Verwendung von vier "Lecroy PP008" Tastköpfen.

13.6.4 Temperaturverhalten M1

Die HB wurde zwischen den Zuständen H und ÜH geschaltet. Für die Messung wurden die Klemmen K0 und X4 über eine Verbindung kurzgeschlossen. Folglich lag die volle Zwischenkreisspannung an den Lastklemmen an. Der Schalter S_1 wurde hierfür mit einer Schaltfrequenz T_{sw} =50 μ s mit einem Tastverhältnis von 0,8 betrieben. An den Ausgangsklemmen war eine Impedanz mit L_{Last} =5,213mH und R_{Last} =148 Ω angeschlossen, welche periodisch an die Zwischenkreisspannung mit 280V geschaltet wurde. Die HB wurde für diese Aufnahme nur kurz betrieben (<2min). Die optische Messung erfolgte über die Thermokammer FLIR T420.

13.6.5 Messung der Ausgangsgrößen bei kleinen Kapazitäten im Leistungskreis M2

Für die in Abb. 13.75 dargestellte Messung wurde folgende Konfiguration getroffen. Die Steuerung der HB erfolgte über das im Kapitel 13.7.3 beschriebene Simulink-Modell, mit der Konfiguration: $f_{out} = 50Hz$ und $f_{sw} = 6,25kHz$. An den Ausgangsklemmen wurde ein Impedanz mit den Werten $R_{Last} = 142,75\Omega$ und $L_{Last} = 6,78mH$ angeschlossen. Die HB wurde mit einer Zwischenkreisspannung von 330V betrieben. Gemessen wurde über das Oszilloskop "Wave Runner 625Zi" unter Verwendung der Stromzange "Lecroy CP031" und der Spannungsprobe "Lecroy ADP305".

13.6.6 Messung der Zeitverläufe für verschiedene Lastwiderstände M2

Die Messung der in Abb. 9.42 gezeigten Zeitverläufe wurden unter folgenden Bedingungen durchgeführt. Die Steuerung der HB erfolgte über das in Kapitel 13.7.3 beschriebene Simulink-Modell. In dieser Messung wurde unter gleichbleibender Steuerkonfiguration ($f_{out} = 50Hz$, $f_{sw} = 6, 25kHz$) und Lastinduktivität ($L_{Last} = 42, 91mH$), der Widerstand in drei Schritten reduziert. Die Zeitverläufe mit den Farben Blau, Grün und Rot ergaben sich über die jeweiligen Lastwiderstände 65, 38 Ω , 11, 13 Ω , 4 Ω . Die Messung erfolgte über das Oszilloskop "Wave Runner 625Zi" unter Verwendung von zwei Stromzangen des Typs "Lecroy CP031" und einer Spannungsprobe "Lecroy ADP305". Die in der Legende angegeben Werte von Scheinleistung und Phasenwinkel wurden über den in Abschnitt 13.6.7 beschriebenen Aufbau ermittelt.

13.6.7 Messung der Effektivwerte für verschiedene Lastwiderstände

Um die Effektivwerte der Größen Strom, Spannung und Wirkleistung für den Aus- und Eingang zu ermitteln, wurde das Messgerät NORMA 5000 verwendet. Die Steuerung der HB erfolgte über das in Kapitel 13.7.3 beschriebene Simulink-Modell. In dieser Messung wurden unter gleichbleibender Steuerkonfiguration ($f_{out} = 50Hz$, $f_{sw} = 6,25kHz$) und Lastinduktivität ($L_{Last} = 42,91mH$), die Widerstände in 17 Schritten reduziert. Die dazugehörigen Widerstandswerte der Last sind:

 $\begin{array}{l} R_{Last} {=} [117, {31}; \ 105, {34}; \ 89, {4}; \ 80, {19}; \ 65, {38}; \ 42, {75}; \ 33, {55}; \ 26, {85}; \ 19, {91}; \ 16, {144}; \ 13, {36}; \\ 11, {13}; \ 10, {08}; \ 9, {4}; \ 8, {33}; \ 7, {13}; \ 4]\Omega \end{array}$

Die Berechnung des Wirkungsgrades erfolgte über Formel (15).

Die Näherung der Ausgangsscheinleistung S_{out} wurde über folgende Formel berechnet:

$$S_{out} = U_{out,rms} \cdot I_{out,rms} \tag{28}$$

Die Abschätzung der Phasenverschiebung wurde über nachstehende Formel ermittelt:

$$\varphi = \arccos\left(\frac{P_{out}}{S_{out}}\right) \tag{29}$$

Aus der genäherten Phasenverschiebung wurde die Blindleistung, über folgende Formel ermittelt:

$$Q_{out} = S_{out} \cdot \sin(\varphi) \tag{30}$$

Ergänzend sind in Abb. 13.67 die Verläufe der Effektivwerte der Ausgangsleistungen und des Ausgangsstroms dargestellt.

Abbildung 13.67: Leistungen und Ausgangsstrom PWM M2.2

13.6.8 Messung des Schaltverhaltens von M1 und M2

Für die Ermittlung des Schaltverhaltens wurde für drei HB-Konfigurationen die selbe Messung durchgeführt. Für diese wurde der Lastkondensator C_2 über eine Verbindung $(B_{zk-}/B_{out-}$ bzw. X4/K0) kurzgeschlossen, wodurch die volle Zwischenkreisspannung an C_1 anliegt. Geschaltet wurde zwischen den Zuständen H und ÜH, mit einem Tastverhältnis von 0,8 und einer Periodendauer von 80 μ s für S_1 . An die Ausgangsklemmen wurde eine ohmsch-induktive Last mit R_{Last} =150,59 Ω und L_{Last} =4,708mH angeschlossen.

Für jede HB-Konfiguration wurden mehrere Messungen mit unterschiedlichen Zwischenkreisspannungen durchgeführt. Gemessen wurde die Spannung am Halbleiterschalter S_1 und der Stromfluss über S_1 und D_3 . Die Messung selbst wurde über das Oszilloskop "Wave Runner 625Zi" unter Verwendung der Stromzange "Lecroy CP031" und einer Spannungsprobe "Lecroy ADP305" durchgeführt.

13.6.9 Temperaturverhalten M2

Die Steuerung der HB erfolgte über das in Kapitel 13.7.3 beschriebene Simulink-Modell. Gemessen wurde über die Thermokamera FLIR T420, unter der Steuerkonfiguration: $f_{out} = 50Hz$, $f_{sw} = 6,25kHz$. An den Lastklemmen war eine Impedanz mit $R_{Last} = 29,38$ und $L_{Last} = 42,91mH$ angeschlossen, und die Zwischenkreisspannung betrug 330V. Bei der Messung wurde die HB lediglich passiv gekühlt, und so lange betrieben, bis keine Temperaturveränderung mehr ausgemacht werden konnte. Dafür wurde die Schaltung ca. 25 Minuten betrieben bis die Temperaturaufnahmen gemacht wurden.

13.7 Ansteuerung

13.7.1 dSpace Signalprozessorsystem DS1104

Das verwendete dSpace-System DS1104 besteht aus einer Signalprozessorkarte, mit mehrere Peripheriebaugruppen (DAC, ADC, PWM-Einheit, Dig I/O, usw.) und den entsprechenden Bibliotheken für Matlab/Simulink die den Zugriff auf diese Baugruppen ermöglichen. Durch diese Baugruppen können in Matlab/Simulink, über das Signalprozessorsystem, die Ausgänge der D-Sub DD-50 Schnittstelle gesteuert werden. Über die Schnittstelle wurde wiederum die HB angesprochen.

Anmerkung: Die Ausgänge der einzelnen Peripheriegruppen besitzen fixe vorgegebene Pinbelegungen.

13.7.2 Ansteuerung M1

Für die Ansteuerung der Schaltung M1 wurden in Matlab/Simulink die DAC-Kanäle (DS1101DAC_Cx) verwendet. Die Zuordnung der Kanäle erfolgte über die in der Tabelle 25 ersichtlichen Art und Weise.

Nr.	Signal	Channel	Pin
1	S1	1	31
2	GND	-	32
3	S1a	3	14
4	GND	-	15
5	S2a	5	46
6	GND	-	47
7	S2	7	29
8	GND	-	30

Tabelle 25: Auszug der Pinbelegung der Schnittstelle D-Sub DD-50

13.7.3 Ansteuerung M2

Für die Ansteuerung einer drei Phasen 3L-NPC-HB wurden nun $3 \cdot 4 = 12$ Steuerkanäle benötigt. Die in der Schaltung M1 verwendeten D/A-Kanäle boten jedoch nur die Möglichkeit 8 Ausgänge zu steuern. So wurden die digitalen I/O-Kanäle (DS1104BIT_OUT_Cx) verwendet, welche theoretische 20 Bit ansteuern können.

Implementierung des Trägerverfahrens M2

Das Trägerverfahren wurde über Matlab/Simulink mittels des in Abb. 13.68 gezeigten Modells realisiert. Das Modulations- und Trägersignal, welches über die "*Sine Wave"*und "*Repeating Sequence"*-Blocks erfolgte, wurden mit dem PWM-Subsystem verbunden.

Abbildung 13.68: Trägermodulation in Matlab/Simulink

Das PWM-Subsystem wird in 13.69 gezeigt. Über dieses wird das Träger- und Modulationssignal, über drei if-Abfragen, miteinander verglichen. Der Vergleich ergibt drei mögliche Zahlen (1,0,-1) welche die drei Zustände H,N und T darstellen.

Abbildung 13.69: PWM-Block von Abb.13.68

Im DEMUX-Subsystem (Abb. 13.70) wird den Zahlen 1,0 und -1 (welche für die Zustände H,N und T stehen), über den *"Index Vector"*-Block, die entsprechenden Ausgangsmustern der einzelnen Schalter zugewiesen. Es ist anzumerken, dass durch diesen DEMUX-Block lediglich die drei Ausgangsstellungen möglich sind. Durch diese Art der Realisierung wird softwaretechnisch sichergestellt, dass nur diese drei Zustände möglich sind.

Die einzelnen Signale für die Schalter werden danach dem I1-Subsystem (Abb. 13.71) übergeben, welche über den "MASTER BIT OUT"-Block die I/O-Peripheriebaugruppe ansteuert.

Abbildung 13.70: DEMUX-Block von Abb.13.68

Abbildung 13.71: I1-Block von Abb.13.68

Zwischenstecker M2

Da nun pro D-Sub DD-50 Schnittstelle 10 Steuerkanäle zur Verfügung gestellt werden, und drei HB angesteuert werden sollen, wurde für die Aufteilung der Signale ein Zwischenstecker benötigt.

Nr.	Signal	Block-Bit	DD-50-Pin	DD-50-Port	8-Stift-Stecker-Pin
1	S1	0	12	А	5
2	S1a	2	28	А	2
3	S2a	4	44	А	7
4	S2	6	11	А	5
5	S1	8	27	А	5
6	S1a	10	43	А	2
7	S2a	12	10	А	7
8	S2	14	26	А	5
9	GND	-	13/25/45	А	1/3/6/8
10	S1	1	12	В	5
11	S1a	3	28	В	2
12	S2a	5	44	В	7
13	S2	7	11	В	5
14	GND	-	13/25/45	В	1/3/6/8

Tabelle 26: Verbindungen Zwischenstecker

Im Layout wurden über die D-Sub DD-50-Schnittstelle einmal acht bzw. vier Steuersignale übertragen, und auf die drei gewählten 8-Stift-Steckverbindungen aufgeteilt.

Γ.					
	1	2	3	4	
	5	6	7	8	
4					

Abbildung 13.72: 8-Stift-Steckverbindung (Buchse)

Abbildung 13.73: Layout Zwischenstecker M2

13.8 Dimensionierung der Einschaltverzögerung

Da der Treiber über einen Schmitt-Trigger-Eingang verfügt konnte durch die Wahl von Widerstand und Kapazität die EV festgelegt werden. Die Versorgungsspannung U_0 betrug hierbei näherungsweise 5V.

$$U_c = U_0 \cdot (1 - e^{-\frac{t}{\tau}}) \tag{31}$$

Nr.	Level	Spannung
		[V]
1	Logik U_{High}	$>0,7\cdot U_0$
2	Logik U_{Low}	$0 < 0, 3 \cdot U_0$

Tabelle 27: Hysterese Treiberlogik

$$0, 7 \cdot U_0 = U_0 \cdot (1 - e^{-\frac{t_v}{\tau}}) \qquad \longmapsto \qquad 0, 3 = e^{-\frac{t_v}{\tau}})$$
$$e^x = a \qquad \left| \cdot \ln \qquad \longmapsto \qquad \ln(e^x) = \ln(a) \qquad \longmapsto \qquad x = \ln(a) \qquad (32)$$
$$-\frac{t_v}{t_v} = \ln(0.3) \qquad \longmapsto \qquad \tau = -\frac{t_v}{t_v} \qquad \longmapsto \qquad R \cdot C = -\frac{t_v}{t_v}$$

$$\frac{v}{\tau} = ln(0.3) \qquad \longmapsto \qquad \tau = -\frac{t_v}{ln(0.3)} \qquad \longmapsto \qquad R \cdot C = -\frac{t_v}{ln(0.3)}$$

$$C = -\frac{t_v}{ln(0.3) \cdot R} \tag{33}$$

Die maximale Verriegelungszeit t_{v_max} wurde mit 10µs gewählt, und die Kapazität wurde mit 22nF definiert. Daraus ergab sich ein variabler Widerstand mit maximal 500 Ω .

13.9 Modifikationen M2

Bei der entwickelten Schaltung wurden einige nachträgliche Modifikationen durchgeführt, welche in diesem Abschnitt behandelt werden.

13.9.1 Externe Beschaltung des Optokopplers

Für den Betrieb des eingesetzten Optokopplers mussten nachträglich Pullupwiderstände in die Schaltung eingefügt werden.

Die in Abb. 13.74 gezeigte Schaltung von Widerständen $(R = 360\Omega)$ wurde nachträglich an die Ausgänge des Optokopplers geschaltet.

13.9.2 Einfügen von Stabilisierungskondensatoren für die Treiber

Schon bei niederen Lasten konnten starke Rückwirkungen vom Lastkreis auf den Steuerkreis ausgemacht werden. Durch die hohen Stromänderungen im Leistungskreis, wurden im Steuerkreis Spannungen induziert. Besonders negativ äußerte sich dies durch mehrfaches Ein- und Ausschalten des Treibers während des Einschaltvorgangs. Das größte Problem bestand darin, dass die Kapazität der EV durch die Rückwirkungen entladen wurden. Hierdurch wurde der MOSFET ausgeschaltet und erst nach der eingestellten Verzögerungszeit wieder eingeschaltet.

Das Datenblatt des Treibers gibt keine Empfehlung über eine Kapazität an den Versorgungspins der Treibereingänge ab. Das Problem konnte durch jeweils einen zusätzlichen Stabilisierungskondensator (47 μ F) direkt an den Versorgungspins des Treibers beseitigt werden.

13.9.3 Zusätzliche Kapazitäten für den Leistungskreis

Die anfängliche Auslegung der Schaltung sah für die Elektrolytkondensatoren im Leistungskreis eine Kapazität von jeweils 200μ F vor. Durch schrittweise Steigerung der Belastung der HB, stellte sich ab einem gewissen Punkt heraus, dass die Kapazitäten zu klein gewählt wurden. Aus diesem Grund wurden in der HB jeweils 1mF an zusätzlicher Kapazität geschaltet. Für die weiterführende Betrachtung muss eine Unterscheidung zwischen den zwei Schaltungsvarianten getroffen werden. Aus diesem Grund wird die originale Schaltung mit M2.0 bezeichnet, und die erweiterte Variante (mit den zusätzlichen Kapazitäten) mit M2.1 definiert.

Ausgangsgrößen bei verhältnismäßig kleinen Leistungskondensatoren

Um die physikalischen Auswirkungen der Schaltung, bei kleinen Leistungskondensatoren $(C_1 \text{ und } C_2)$ zu demonstrieren, werden die Ausgangsgrößen von Strom und Spannung in Abb.: 13.75 dargestellt.

Abbildung 13.75: Ausgangsgrößen mit kleinen Leistungskondensatoren (2x200 μ F) $P_{out} \approx 120W$

Das Erste was bei der Betrachtung der Ausgangsspannung auffällt, ist, dass diese im Laufe einer Halbperiode stark absinkt. Durch dieses Absinken kommt es beim Polaritätswechsel zu einer entsprechend höheren Spannungsbeanspruchung am Beginn der Halbschwingung. Der Grund liegt darin, dass beim Entladen eines Leistungskondensators der jeweils andere geladen wird (überwiegend motorischer Betrieb). Diese Spannungsänderung hat wiederum mehrere Auswirkungen auf die Schaltung. Zum Einen werden die Halbleiterschalter dadurch stärker belastet, was unter Umständen bei der Auslegung der Schaltung berücksichtigt werden muss, zum Anderen trägt dies zu einer nicht gewollten Verformung der Ausgangsspannung bei, was zu einer ungewollten Verzerrung des Ausgangsstromes führt. Ein solches Verhalten kann vor allem im vorwiegend motorischen Betrieb beobachtet werden. Genaueres zur Messkonfiguration findet sich in Kapitel 13.6.5.

13.10 Ermittlung der Schaltzeiten

Die Parameter für die Ermittlung des Schaltverhaltens wurden über folgendes Skript im Matlab realisiert:

```
Num = { '00' '01' '02' ... };
CH = {'Cls1000' 'C2s1000' 'C3s1000' 'C4s1000'};
                                                       % Iin-, US2, Iout, Uout
dat = '.dat';
dt = 5e-11;
T = 5e - 5;
d = 0.2;
Tp = T/dt;
[Bf, Af] = butter(2,0.02); %Butterworth-Filter definieren
for i=1:1:length(num)
    try
    close(figure(i-1));
    end
    for j=1:1:length(CH)
    % Jeder Datensatz C1-C4 wird geladen und danach bearbeitet
    file=[CH{j},num{i},dat];
    fid=fopen(file);
    daten=textscan(fid, '%f %f', 'HeaderLines', 2, 'Delimiter', '
       ', 'MultipleDelimsAsOne', 1);
    fclose(fid);
    format long
    data\{j\} = [daten\{:\}];
    end
    %Phasenverschiebung
    % aus Messdaten 3,85ns~77 i voreilend
    data{1}(:,2) = circshift(data{1}(:,2),77);
    data{3}(:,2) = circshift(data{3}(:,2),77);
    P S2 = data{1}(:,2).*data{2}(:,2);
    % Berechnung der Uzk
    k=100;
    for s=1:1:k
    Uzk sum(s) = sum(data{2}((s*Tp/k):(Tp+(s*Tp/k)),2))/Tp;
    end
    Uzk nom(i) = median(Uzk sum)/d;
    % Berechnung der US2 max
    US2 max(i) = max(data{2}(:,2));
    % Berechnung der P out max
    P out max(i) = max(data{3}(:,2).*data{4}(:,2));
    % Berechnung der P_m_out
    k=100;
    for s=1:1:k
    P(s) = sum(data{4}((s*Tp/k):(Tp+(s*Tp/k)),2).*data{3}((s*Tp/k):(Tp+(s*Tp/k)),2).*data{3}((s*Tp/k):(Tp+(s*Tp/k)),2).*data{3}((s*Tp/k)))
       (s*Tp/k)),2))/Tp;
    end
    P m out(i) = median(P(s));
```

```
for s=1:1:k
I(s) = sum(data{3}((s*Tp/k):(Tp+(s*Tp/k)),2))/Tp;
end
I m out(i) = median(I(s));
```

```
% Finde Schaltzeitpunkte
XX = find(data{2}(:,2)>0.5*Uzk_nom(i));
X pos(1,i) = XX(1);
                                               % OFF1
X_pos(2,i) = XX(find(diff(XX)>1000));
                                               % ON1
X pos(3,i) = XX(find(diff(XX)>1000)+1);
                                              % OFF2
X pos(4,i) = XX(length(XX));
                                              % ON2
% Finde I off1
X1 = X_{pos}(1, i) - 20000;
X2 = X_{pos}(1,i) + 20000;
p = 10\overline{0}0;
Ion = median(filter(Bf,Af,data{1}(X1-p:X1+p,2)));
U on 1 = median(data{4}(X1-p:X1+p,2));
Ioff = median(filter(Bf,Af,data{1}(X2-p:X2+p,2)));
X = find(filter(Bf,Af,data{1}(X1:X2,2))>(Ion*0.8));
X = X(length(X)) + X1;
X = find(filter(Bf,Af,data{1}(X1:X2,2))>(Ion*0.2));
X_2 = X (length(X)) + X1;
t_{sw}(1,i) = (X_2-X_1) * dt;
P_max(1,i) = max(P_S2(X1:X2));
P_m1(1,i) = sum(P_S2(X1:X2))/40000; %Mittel über 2 µs
P_m2(1,i) = sum(P_S2(X_1:X_2))/(X_2-X_1);
I \text{ on}(i) = Ion;
% Finde I off2
X1 = X_{pos}(3, i) - 20000;
X2 = X_{pos}(3, i) + 20000;
p = 50\overline{0};
Ion = median(filter(Bf,Af,data{1}(X1-p:X1+p,2)));
U on 2 = median(data{4}(X1-p:X1+p,2));
Ioff = median(filter(Bf,Af,data{1}(X2-p:X2+p,2)));
X = find(filter(Bf,Af,data{1}(X1:X2,2))>(Ion*0.8));
X = X(length(X)) + X1;
X = find(filter(Bf,Af,data{1}(X1:X2,2))>(Ion*0.2));
X = X(length(X)) + X1;
tsw(2,i) = (X_4-X_3) * dt;
P_{max}(2,i) = max(P_{S2}(X1:X2));
P m1(2,i) = sum(P S2(X1:X2))/40000; %Mittel über 2 μs
P_m2(2,i) = sum(P_S2(X_3:X_4))/(X_4-X_3);
```

```
X1 = X pos(2, i) - 20000;
X2 = X_{pos}(2, i) + 20000;
p = 500;
Ioff = median(filter(Bf,Af,data{1}(X1-p:X1+p,2)));
Ion = median(filter(Bf,Af,data{1}(X2-p:X2+p,2)));
X = find(filter(Bf,Af,data{1}(X1:X2,2))>(Ion*0.2));
X = X(1) + X1;
X = find(filter(Bf,Af,data{1}(X1:X2,2))<(Ion*0.8));</pre>
X = X(length(X)) + X1;
X = find(filter(Bf,Af,data{1}(X_5:X2,2)<(Ion*0.2)));</pre>
X_55 = X(1) + X_5;
tsw(3,i) = (X_6-X_5)*dt;
tsw_off(1,i) = (X_55-X_5)*dt;
P_max(3,i) = max(P_S2(X1:X2));
P_m1(3,i) = sum(P_S2(X1:X2))/40000; %Mittel über 2 µs
P_m2(3,i) = sum(P_S2(X_5:X_6))/(X_6-X_5);
Pm3(1,i) = sum(PS2(X5:X55))/(X55-X5);
% Finde I on2
X1 = X pos(4, i) - 20000;
X2 = X pos(4, i) + 20000;
p = 50\overline{0};
Ioff = median(filter(Bf,Af,data{1}(X1-p:X1+p,2)));
Ion = median(filter(Bf,Af,data{1}(X2-p:X2+p,2)));
X = find(filter(Bf,Af,data{1}(X1:X2,2))>(Ion*0.2));
X 7 = X(1) + X1;
X = find(filter(Bf,Af,data{1}(X1:X2,2))<(Ion*0.8));</pre>
X = X(length(X)) + X1;
X = find(filter(Bf,Af,data{1}(X 7:X2,2)<(Ion*0.2)));</pre>
X_77 = X(1) + X_7;
tsw(4,i) = (X_8-X_7)*dt;
tsw_off(2,i) = (X_77-X_7)*dt;
P \max(4,i) = \max(\overline{P} S2(\overline{X}1:X2));
P m1(4,i) = sum(P S2(X1:X2))/40000; %Mittel über 2 μs
P_m2(4,i) = sum(P_S2(X_7:X_8))/(X_8-X_7);
P_m3(2,i) = sum(P_S2(X_7:X_77))/(X_77-X_7);
A = data\{1\};
                  % Iin-
B = data\{2\};
                % US2
C = data{3};
                  % Iout
D = data\{4\};
                  % Uout
```

13.11 Schaltplan M2

Abbildung 13.76: Schaltplan M2 1/2

Abbildung 13.77: Schaltplan M2 2/2

Abbildung 13.78: Layout M2 oben (Maßstab 1:1)

Abbildung 13.79: Layout M2 oben mit Overlay (Maßstab $1{:}\frac{4}{5})$

Abbildung 13.80: Layout M2 unten (Maßstab 1:1)

Abbildung 13.81: Layout M2 unten mit Overlay (Maßstab $1{:}\frac{4}{5})$

13.13 Bauteilliste M2

Nr.	Anzahl	Bezeichnung	Beschreibung	Bauteilkennung
1	4	IPW60R190C6	C6-CoolMOS 650V 20.2A	S1, S1a, S2a, S2
			$190\mathrm{m}\Omega$	
2	2	BSC014N06NS	OptiMOS 60V 100A 1,45m Ω	$S1_B, S2_B$
3	4	IDH10G65C5	5^{th} Generation thinQ!	D1, D2, D5, D6
			SiC-Schottky Diode	
4	4	575102B00000G	Kühlkörper klein TO-220	/
5	1	SK573 100	Kühlkörper groß 10cm	/
			Fischer	
6	2	AduM3223BRWZ	Treiber	Dr1, Dr2
7	4	RE-1515S	DC/DC-Wandler 15V-15V	W2, W3, W4, W5
8	1	RE-1505S	DC/DC-Wandler 15V-5V	W1
9	8	ECA2VM101	Elektrolytkondensator	$\begin{bmatrix} C11, & C12, & C13, \\ C14, & C21, & C22 \end{bmatrix}$
			350 VDC 100μ F	$\begin{bmatrix} C14, & C21, & C22, \\ C22, & C24 \end{bmatrix}$
10	0	HCMC 2010 TD1C		C23, C24
10	2	HSMS-2810-TRIG	Schottky-Diode Dual	SD1, SD2
11	1	ACSL 6400 00TE	Ar Optokoppler 2.5.5V	OV1
11	1	ACSL-0400-001E	4x Optokoppier 3-5.5 v	
		W SL 8W	2.54mm	
13	1	74AC04SC	Inverter 4x 14 SOIC	IN
14	2	74HC11D	3x 3 AND Gatter SOIC 14	AND1, AND2
15	1	74AC32SC	2x OR SOIC 14	OR
16	4	3296Y-1-501LF	Trimmer BOURNS 25	TR1, TR2, TR3,
			umdreh 500ohm	TR4
17	4	C1206C223J5GACTU	SMD 1206 Kondensator $50V$	$EV_C1, EV_C2,$
			22nF	EV_C3, EV_C4
18	1	Fuseholder OGD	Sicherungshalter	SH
19	2	MAL203850479E3	Elektrolytkondensator $47\mu F$	nachträgliche
	-		35 V	Montage
20		35PX22MEFC5X11	Elektrolytkondensator $22\mu F$ 35V	C1
21	6	12065C105KAT2A	Keramikkondensator 1206	C2, C3, C4, C5
			SMD 50V $1\mu F$	
22	6	C322C104K5R5TA	Keramikkondensator $0.1 \mu F$	nachträgliche
			50V	Montage
23	6	SLB4-I/90 4mm	Winkelbuchsen rot/schwarz	Bzk-, Bzk+, Bout-,
				Bout+, B-, B+
$\parallel 24$	4	ERA8AEB131V	SMD-Widerstände 1206	RinA, RinB, RinC,
- 25			0.25 W 130\2	RinD
$\parallel 25$	4	ERA8AEB131V	1206 SWD-Widerstande 1206	nachtragliche Mantaga
26	<u></u> ງ	CDCW19069D90 INFA IF	U.20W 30UM SMD Widerstände 1900	D montage
∠0		URU W 12002K20JNEAIF	$\int \frac{1200}{1200}$	$ \operatorname{rg52}_{B}, \operatorname{rg51}_{B} $
27	4	MC0125W120612D66	SMD Widerstände 1906	Drco A Drc1 A
∥ ∠(4	W100123 W 120010R00	$\begin{array}{c} 1200 \\ 0.125W & 8.60 \end{array}$	$\left \begin{array}{c} \operatorname{Rgo2}_{A}, \operatorname{Rgo1}_{A}, \\ \operatorname{RgS2}_{B} \operatorname{RgS1}_{D} \end{array} \right $
28	20	C1812V104KDRACTU	Keramikkondensator 1819	11202a, $11201a$
	20		$0.1\mu\text{F}$ 1000V	$ $ $^{010}, 010, 020, 020$ $ $
U				

Tabelle 28: Bestückungsliste M2

Abbildung 13.82: Schaltung M1.1

Abbildung 13.83: Layout M1 oben (Maßstab 1:1)

Abbildung 13.84: Layout M1 unten (Maßstab 1:1)

Abbildung 13.85: Schaltung M1.2

13.17 Bauteilliste M1

Nr.	Anzahl	Bezeichnung	Beschreibung	Bauteilkennung
1	4	SPA11N60CFD	C3-CoolMOS 600V 11A	S_1A, S1a S2a
			$440 \mathrm{m}\Omega$	S_2A
2	2	BSZ067N06LS3 G	OptiMOS 60V 20A	S_1B, S_2B
			$6,7\mathrm{m}\Omega$	
3	4	IDH12SG60C	3^{th} Generation thinQ!	D_1, D_2, D_3, D_4
			SiC-Schottky Diode	
4	2	Heatsink SK480	Kühlkörper klein	/
5	2	Heatsink SK480	Kühlkörper groß	/
6	2	AduM3223BRWZ	Treiber	TR1, TR2
7	2/4	RE-1515S	DC/DC-Wandler	W2, W3, (W4,
			15V-15V	W5)
8	1	RE-1505S	DC/DC-Wandler	W1
			15V-5V	
9	2	382LX102M500B082V	Kondensator 500VDC	C_{14}, C_{15}
			1mF	
10	2	N4148	Diode Bootstrap	D_5, D_6
11	4	SFH6720T	Optokoppler	OK1, OK2,
				OK3, OK4
12	1	DD-50 Male	D-Sub DD-50	XDD
			Steckverbindung	
13	4	SFR16S0006808JA500	Metallschichtwiderstand	R_1, R_2, R_3, R_4
<u> </u>			0.5W 6,8 Ω	
14	4	CFR50J680R	Kohleschichtwiderstand	R_5, R_6, R_7, R_8
			0.5W 680 Ω	
15	6	SLB4-I/90 4mm	Winkelbuchsen	X1, X2, X3, X4,
			rot/schwarz	K0, K+
16	1	Fuseholder OGD	Sicherungshalter	SH1
$\parallel 17$	6	50YXJ1M5X11	Elektrolytkondensator	$C_1, C_3, C_5, C_7,$
			1μ F	$C_9, C_1 1$
18	4	C322C104K5R5TA	Keramikkondensator	$C_2, C_4, C_6, C_8,$
			$\mid 0.1 \mu F 50 V$	C_2, C_7

Tabelle 29: Bestückungsliste M1

Abbildungsverzeichnis

5.1	Schaltungstypen	6
5.2	ESB einer 3L-NPC Halbbrücke	8
5.3	Allgemeines Modell einer elektrischen Maschine	9
5.4	Arbeitsbereiche der Halbbrücke	10
5.5	Prinzipieller Schaltungsaufbau einer 3L-NPC HB	11
5.6	Auszustand	14
5.7	Low	14
5.8	Hoch-Stellung	15
5.9	Nullzustand	16
5.10	Übergang Tief-Stellung	17
5.11	Übergang Hoch-Stellung	17
5.12	Erlaubte Zustandsänderungen	20
5.13	Verlustbetrachtung konventionelles Schalten	22
5.14	ESB mit parasitären Komponenten	26
5.15	PWM-Signalspannungen	32
5.16	PWM-Zustandswechsel	33
5.17	PWM-Signale für die einzelnen Halbleiterschalter	34
5.18	Programmablaufplan Trägerverfahren 3L-HB	35
5.19	Einphasige Ausgangsspannung eines 3L-HB mit SHE-PWM [23]	36
6.20	Verlauf von Steuerspannungen, Laststrom und Ausgangsspannung bei der Schalthandlung H \leftrightarrow ÜH \leftrightarrow N	39
6.21	Schalthandlung $H \mapsto \ddot{U}H$	40
6.22	Schalthandlung ÜH \mapsto N	41
6.23	Schalthandlung ÜH \mapsto H	42
6.24	Wirkungsgradvergleich für gest./konv. Schalten und verschiedene Ausgangsfr	requenzen

43

6.25	Mittlere Bauteilverluste für <i>konventionelles</i> Schalten bei einer Ausgangsfreque von 25Hz	enz 44
6.26	Mittlere Bauteilverluste für <i>konventionelles</i> Schalten bei einer Ausgangsfreque von 100Hz	enz 44
6.27	Maximale Bauteilverluste für $konventionelles$ Schalten bei einer Ausgangsfreq von 25Hz	uenz 45
6.28	Maximale Bauteilverluste für $konventionelles$ Schalten bei einer Ausgangsfreq von 100Hz	uenz 45
6.29	Maximale Bauteilverluste für $gesteuertes$ Schalten bei einer Ausgangsfrequenz von 25Hz	2 46
6.30	Maximale Bauteilverluste für $gesteuertes$ Schalten bei einer Ausgangsfrequenz von 100Hz	2 46
6.31	Effektivwert der Ausgangsspannung	47
6.32	Minimale Kondensatorspannung von C_1	47
6.33	Wirkungsgrad bei konstanter Scheinleistung	48
6.34	Relative mittlere Verlustleistung in Funktion von der Phasenverschiebung	48
7.35	Reale Schaltung für M1 und M2	49
7.36	Schaltung M1	50
7.37	Spannungsverläufe am Gate bei $U_{zk} = 0$	52
7.38	Gatespannung für unterschiedliche Zwischenkreisspannungen	53
7.39	Steuersignalverläufe im Leerlaufbetrieb	54
7.40	Steuersignalverläufe im Leerlaufbetrieb	55
8.41	Temperatur verteilung beim Schaltvorgang H \leftrightarrow N bei M 1 $\overline{P_{out}}\approx~350W$	59
9.42	PWM-Muster Trägerspannungsvergleich M2.2	63
9.43	Effektivwert der Ausgangsspannung M2.2	64
9.44	Wirkungsgrad in Funktion vom Phasenverschiebungswinkel M2.2	65
9.45	Temperatur verteilung bei $P_{out} = 576, 8W$	66
10.46	Ausschaltzeit	69
10.47	Einschaltzeit	69
10.48	Maximale Ausschaltleistung	70

10.49	Ausschaltverluste	70
10.50	Maximale Überspannungen am Halbleiterschalter S_1	71
13.51	LT-Spice-Modell für die Schalthandlung $H \longleftrightarrow N$	76
13.52	GeckoCIRCUIT-Schaltung	78
13.53	Einschaltverzögerung GeckoCIRCUIT	83
13.54	Wirkungsgradvergleich $konventionelles$ und $gesteuertes$ Schalten	88
13.55	Wirkungsgradvergleich $konventionelles$ und $gesteuertes$ Schalten	89
13.56	Relative mittlere Verlustverteilung für konventionelles Schalten	90
13.57	Relative mittlere Verlustverteilung für gesteuertes Schalten	91
13.58	Mittlere Verlustverteilung für konventionelles Schalten	92
13.59	Mittlere Verlustverteilung für gesteuertes Schalten	93
13.60	Maximale Bauteilverluste für konventionelles Schalten	94
13.61	Maximale Bauteilverluste für gesteuertes Schalten	95
13.62	Maximale Verluste an S1_A bzw. S2_A für gest. und konv. Schalten	96
13.63	Maximale Verluste an S1_B bzw. S2_B für gest. und konv. Schalten	97
13.64	Maximale Verluste an D_1 bzw. D_2 für gest. und konv. Schalten	98
13.65	Maximale Verluste an S_1 bzw. S_2 für gest. und konv. Schalten	99
13.66	Maximale Verluste an D_{S1} bzw. D_{S2} für gest. und konv. Schalten	100
13.67	Leistungen und Ausgangsstrom PWM M2.2	107
13.68	Trägermodulation in Matlab/Simulink	110
13.69	PWM-Block von Abb.13.68	111
13.70	DEMUX-Block von Abb.13.68	112
13.71	I1-Block von Abb.13.68	112
13.72	8-Stift-Steckverbindung (Buchse)	113
13.73	Layout Zwischenstecker M2	114
13.74	Nachträgliche Beschaltung des Optokopplers über Pullupwiderstände	115

13.75	Ausgangsgrößen mit kleinen Leistungskondensatoren (2x200 μ F) $P_{out} \approx$	
	120W	116
13.76	Schaltplan M2 $1/2$	121
13.77	Schaltplan M2 $2/2$	122
13.78	Layout M2 oben (Maßstab 1:1)	123
13.79	Layout M2 oben mit Overlay (Maßstab $1:\frac{4}{5}$)	123
13.80	Layout M2 unten (Maßstab 1:1)	124
13.81	Layout M2 unten mit Overlay (Maßstab $1:\frac{4}{5}$)	124
13.82	Schaltung M1.1	126
13.83	Layout M1 oben (Maßstab 1:1)	127
13.84	Layout M1 unten (Maßstab 1:1)	127
13.85	Schaltung M1.2	128

Tabellenverzeichnis

1	Zustandstabelle	12
2	Erweiterte Zustandstabelle für die relevanten Schaltzustände	18
3	Erweiterte Zustandstabelle für die Zuordnung der Arbeitsbereiche	18
4	Konventionelles Schalten	21
5	Gesteuertes Schalten	23
6	Kommutierungstabelle	29
7	Zuordnung der Ausgänge zu den Schaltzuständen	33
8	Abschätzung der parasitären Komponenten vom Treiber zum Gate	51
9	Abschätzung der parasitären Komponenten im Leistungskreis	51
10	Gemessene Verzögerungszeiten	54
11	CoolMOS-Parameter	58
12	SiC-Dioden-Parameter	58
13	Thermische Widerstände der Kühlkörper	60
14	Erlaubte Ausgangszustände	60
15	Folgezustandstabelle	62
16	Bauteilparameter LT-Spice	77
17	Verwendete Dioden in LT-Spice	77
18	Konfiguration der Steuerspannungen	77
19	Schaltungsparameter	79
20	Eingebundene Parameterfunktionen	80
21	Zuordnung Ein- und Ausgänge des Java Custom Code Control Block für das gesteuerte Schalten	81
22	Zuordnung Ein- und Ausgänge des Java Custom Code Control Block für das konventionelles Schalten	82
23	Ermittelte Lastparameter	102
24	Abschätzung der parasitären Komponenten für die Streck e B_{zk+} - Drain S_{1_A}	104

25	Auszug der Pinbelegung der Schnittstelle D-Sub DD-50	109
26	Verbindungen Zwischenstecker	113
27	Hysterese Treiberlogik	114
28	Bestückungsliste M2	125
29	Bestückungsliste M1	129

Literaturverzeichnis

- A. M. Trzyadlowsk. »Nonsinusoidal modulating functions for three-phase inverter«. In: *Power Electronics, IEEE Transactions on* 4 (July 1989), S. 331–338. DOI: 10.1109/63.39122.
- [2] A. Nabae, I. Takahashi, and H. Akagi. »A new neutral point clamping PWM inverter«. In: *Industry Applications, IEEE Transactions* IA-17 (September/October 1981), S. 518-523. DOI: 10.1109/TIA.1981.4503992.
- [3] Damoun Ahmadi u.a. »A Universal Selective Harmonics Elimination Method for High Power Inverters«. In: Power Electronics, IEEE Transactions on 26.10 (2011), S. 2743-2752. DOI: 10.1109/TPEL.2011.2116042.
- Steffen Bernet. Selbstgeführte Stromrichter am Gleichspannungszwischenkreis.
 Berlin und Heidelberg: Springer Berlin Heidelberg, 2012. ISBN: 978-3-540-23656-6.
 DOI: 10.1007/978-3-540-68861-7.
- [5] D. Floricau1, G. Gateau2, A. Leredde2, R. Teodorescu3. »The Efficiency of Three-level Active NPC Converter for Different PWM Strategies«. In: *Power Electronics and Applications, 2009. EPE '09. 13th European Conference* (2009), S. 1–9.
- [6] F. G. Turnbull. »Selected harmonic reduction in static dc-ac inverters«. In: Communication and Electronics, IEEE Transactions on 83 (1964), S. 374–378. DOI: 10.1109/TCOME.1964.6541241.
- H. S. Patel and R. G. Hoft. »Generalized harmonic elimination and voltage control in thyristor inverters: Part I—harmonic elimination«. In: *Industry Applications*, *IEEE Transactions* IA-9 (1973), S. 310–317. DOI: 10.1109/TIA.1973.349908.
- [8] Hancock J., Stueckler F., Vecino E. CoolMOSTM C7: Mastering the Art of Quickness: A Technology Description and Design Guide: Application Note AN 2013-04. April 2013.
- J. Sun, S. Beineke, H. Grotstollen. »DSP-Based Real-Time Harmonic Elimination of PWM Inverters«. In: Power Electronics Specialists Conference, PESC '94 Record., 25th Annual IEEE (1994), S. 679–685. DOI: 10.1109/PESC.1994.349664.
- [10] Josef Lutz. Halbleiter-Leistungsbauelemente: Physik, Eigenschaften, Zuverlässigkeit. 2. Aufl. Berlin und Heidelberg: Springer Berlin Heidelberg, 2012. ISBN: 978-3-642-29795-3. DOI: 10.1007/978-3-642-29796-0.
- [11] Mallikarjuna G D, Naik R L, Suresh H. Jangamshetti. »Performance Analysis of Three Level Inverter for L & LCL Filters Connected To Grid«. In: International Journal Of Scientific & Engineering Research (2012).
- [12] Manfred Michel. Leistungselektronik: Einführung in Schaltungen und deren Verhalten. 4. Aufl. Berlin und Heidelberg: Springer Berlin Heidelberg, 2008. ISBN: 978-3-540-75610-1. DOI: 10.1007/978-3-540-75611-8.
- [13] Mohamed Azab. »Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization«. In: Journal of Electrical Engineering & Technology (2011), S. 334–341. DOI: 10.5370/JEET.2011.6.3.334.

- [14] Hasmukh S. Patel und R. G. Hoft. »Generalized Techniques of Harmonic Elimination and Voltage Control in Thyristor Inverters: Part II — Voltage Control Techniques«. In: Industry Applications, IEEE Transactions IA-10 (Sep/Oct 1974), S. 666-673. DOI: 10.1109/TIA.1974.349239.
- [15] Prof. Dr. Suchaneck. »Grundlagen der Elektrotechnik I«. In: (WS 2005/2006).
- [16] Qunjing Wang u. a. »Analysis and Comparison of Conduction Losses in Neutral-Point-Clamped Three-Level Inverter with PWM Control«. In: Electrical Machines and Systems, 2007. ICEMS. International Conference (2007), S. 143-148.
- [17] R. Rajaram, K. Palanisamy, Sudha Ramasamy, Prabhu Ramanathan. »Selective Harmonic Elimination in PWM Inverter Using Fire Fly and Fire Works Algorithm«. In: International Journal of Innovative Research in Advanced Engineering 2349-2163 (September 2014).
- [18] Dierk Schröder. *Leistungselektronische Bauteile*. 2. Aufl. Berlin und Heidelberg: Springer Berlin Heidelberg, 2006. ISBN: 978-3-540-28728-5.
- [19] Dierk Schröder. Leistungselektronische Schaltungen. 3. Aufl. Berlin und Heidelberg: Springer Berlin Heidelberg, 2012. ISBN: 978-3-642-30103-2. DOI: 10.1007/978-3-642-30104-9.
- Joachim Specovius. Grundkurs Leistungselektronik: Bauelemente, Schaltungen und Systeme. 5. Aufl. Wiesbaden: Vieweg+Teubner Verlag, 2011. ISBN: 978-3-8348-1647-4. DOI: 10.1007/978-3-8348-8270-7.
- [21] Stefan-Peter Weber. Effizienter Entwurf von EMV-Filtern für leistungselektronische Geräte unter Anwendung der Methode der partiellen Elemente. 08.05.2007.
- [22] Steiner Alois, Catly Johnald. 600V CoolMOSTM P6: 600V Superjunction MOSFET for Server, Telecom, PC Power and Consumer: Application Note AN 2012-11-01. November 2012.
- [23] Wang shi, Cungang Hu, Qunjing Wang. »An Online Optimization Approach to SHEPWM Applied to NPC Inverter«. In: *Electrical Machines and Systems, 2008. ICEMS 2008. International Conference* (2008), S. 1665–1668.
- [24] Young-Min Park u. a. »A simple and reliable PWM synchronization and phase-shift method for cascaded H-bridge multilevel inverters based on a standard serial communication protocol«. In: Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE (2006,), S. 988–994. DOI: 10.1109/IAS.2006.256645.