
Jan PÖSCHKO

Optimization of a
Purlin Punching Process

MASTER THESIS

written to obtain the academic degree of a Master of Science (MSc)

Master programme Mathematical Computer Science

Graz University of Technology

Advisor: Dipl.-Ing. Dr.techn. Univ.-Doz. Johannes HATZL

Institute of Optimization and Discrete Mathematics (Math B)

Graz, October 2012

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

. .
(date)

. .
(signature)

Abstract

In the production of purlins (structural members of roof constructions), screw holes of
different diameters are punched into sheet metal. This is done by a punching machine
“on the fly,” allowing the metal to move faster when there are longer distances between
punches.
We present a mixed-integer linear program expressing the following combinatorial

optimization problem: Find an equipment of the punching machine with punches of
certain diameters and determine a set of machine stops and respective punched holes
to minimize the number of machine stops and distribute them equally.
Although a simplified variant of the problem is a specialization of the NP-hard

hitting set problem, we show that it can be solved in polynomial time using dynamic
programming. However, the simplifications and the worst-case time behavior of this
approach render it inefficient for practical use.
Therefore, we propose efficient heuristics using randomly generated machine config-

urations with static punch positions and a greedy approach to solve the underlying
hitting set problem. In a second step, the punch positions are relaxed to account for
possible adjustments that can be made to the machine during the process. Moreover,
the waste of metal resulting in the beginning of the process is minimized using similar
considerations.
We evaluate our algorithm by comparing its results to known optimal solutions of

both test cases from practice and randomly generated hole patterns.
The algorithm was designed and implemented for two commissioning companies and

is in actual use in manufactories all over the world, saving both time and material in
the production process.

Contents

Acknowledgements ix

Symbols and Definitions xi

1. Introduction 1

2. Problem Description 5
2.1. Production Process . 5
2.2. Punching Machine . 7
2.3. Decisions Constituting a Solution . 8

3. Mathematical Model 9
3.1. Parameters and Variables . 9
3.2. Constraints . 13
3.3. Optimization Objectives . 17
3.4. Practical Parameter Choices . 22
3.5. Mixed-Integer Linear Programs . 27

4. Computational Complexity 33
4.1. Bipartite Graph Formulation . 34
4.2. NP-Completeness . 36
4.3. Related Problems and Approximations 37
4.4. Dynamic Programming Solution . 39

5. Algorithm for Fixed Configurations 45
5.1. Determining Equipments . 47
5.2. Distances in the Pattern . 48

i

Contents

5.3. Generating Configurations . 50
5.4. Constructing the Hole-Position Graph 55
5.5. Punching Plan by Hitting Set Heuristics 57
5.6. Overall Algorithm . 60
5.7. Implementation Details . 62

6. Heuristics for Dynamic Configurations 63
6.1. Assignments and Positions of Punches 63
6.2. Combining Punching Steps . 68
6.3. Moving Punching Steps . 71
6.4. Reducing Waste . 74
6.5. Overall Improvements . 75

7. Computational Results 77
7.1. Performance of Exact Methods . 78
7.2. Test Cases . 82
7.3. Fixed Machine Configurations . 84
7.4. Dynamic Configurations . 87
7.5. Impact of Dynamic Heuristics . 88
7.6. Number of Generated Configurations 90
7.7. Weight of Waste Minimization . 93

8. Concluding Remarks 95

A. Additional Algorithms 97

B. Mathematical Models in AMPL 99
B.1. Full Model . 99
B.2. Model for Fixed Machine Configurations 102

C. Dynamic Program in Python 105

D. Selected Solutions 109

Bibliography 113

ii

List of Figures

1.1. Photo of purlins . 1
1.2. Photos of the production process of purlins 3

2.1. Schema of the production process of purlins 5
2.2. Example of a hole pattern . 6
2.3. The punching machine primarily considered in this work 7
2.4. Solution to a given pattern of holes . 8

3.1. Linearizations of the continuous cost function c(d) = 1
d 19

3.2. Waste resulting in the beginning of the punching process 21

4.1. Bipartite graph corresponding to a punching problem 34
4.2. Recursion tree of the dynamic program 43

5.1. Distance between two holes n, m mapped to a distance between two
punches j, k . 49

5.2. Simple hole pattern . 50
5.3. Machine positions resulting from a fixed machine configuration 55

6.1. Combining two punching steps . 69
6.2. Moving a punching step . 71
6.3. Splitting punching steps in the beginning of the process and moving

them to the right to minimize waste 74
6.4. Improving a punching plan by dynamic machine movements 76

7.1. Simple hole pattern examined in analysis of exact method 79

iii

List of Figures

7.2. Number of integer and continuous variables in the resulting mixed-
integer linear program . 80

7.3. Computation time to solve the resulting mixed-integer linear program 81
7.4. Histogram of the number of holes in the 300 test cases 82
7.5. Histograms of the number of distinct hole types and the number of

distinct blocks in the 300 test cases . 82
7.6. Distribution of holes in each block of the 300 test cases 83
7.7. Histogram of the number of potential machine positions for the 300 test

cases . 85
7.8. Results using fixed machine configurations on 300 test cases from practice 86
7.9. Results using dynamic machine configurations on 100 random test cases 88
7.10. Impact of dynamic heuristics on 300 test cases from practice 89
7.11. Running time of the different phases in the algorithm among 300 test

cases from practice . 90
7.12. Results and execution time depending on the number of generated con-

figurations . 92
7.13. Results depending on the weight λw of waste optimization 94

D.1. A simple pattern . 109
D.2. Pattern containing asymmetrical holes with respect to the x-axis . . . 110
D.3. Pattern with symmetry axis above the x-axis 110
D.4. Pattern with three different hole types containing pairs of holes close to

each other in y-direction . 111
D.5. Very dense pattern . 111

iv

List of Tables

3.1. Parameters describing the hole pattern 9
3.2. Parameters describing constraints to the punching machine 10
3.3. Decision variables . 11

5.1. Common variables in algorithms . 46

7.1. Overview of computational results . 78
7.2. Examined choices regarding the number of generated configurations . 91

v

List of Algorithms

4.1. Solving the simplified punching problem with density constraint using
dynamic programming . 43

5.1. Overview of the algorithm to solve the punching problem 46
5.2. Equipments of punches with tools . 48
5.3. Computing the distances of hole types in the hole pattern 49
5.4. Generating fixed configurations by assigning static positions to punches 51
5.5. Possible machine positions for a given fixed machine configuration . . 58
5.6. Hitting set for a given position-hole graph 59
5.7. Solving the punching problem with fixed machine configuration 61

6.1. Assignments of punches to holes of given types 64
6.2. Determining positions of punches punching a set of holes in an assign-

ment A to the punches . 66
6.3. Combining punching steps using dynamic x-movements 70
6.4. Moving punching steps to distribute machine stops more equally . . . 73
6.5. Improving a solution . 75
6.6. Overview of the proposed algorithm to solve the punching problem with

heuristics utilizing dynamic machine movements 75

A.1. Testing whether a given (partial) fixed configuration C is feasible . . . 97
A.2. Normalizing relative punch positions 97
A.3. Costs of a punching plan S . 98
A.4. Punching plan for a given configuration 98
A.5. Testing whether the relative punch positions s′′j are reachable from the

positions s′j . 98

vii

Acknowledgements

I would like to express my deep gratitude to Dr. Johannes Hatzl, my research advi-
sor, for his patient guidance, enthusiastic encouragement and useful critiques of this
research work. I am indebted to Dr. Eranda Dragoti-Çela, Dr. Elisabeth Gassner,
and Dr. Bettina Klinz, for their contributions to this project.
I would also like to extend my thanks to Stephan Putz and the staff of Zeman

Bauelemente Produktionsgesellschaft for enabling and supporting this work.
Finally, I wish to thank my family and friends for their support and encouragement

throughout my studies.

Jan Pöschko
Graz, October 2012

ix

Symbols and Definitions

Symbol Explanation Definition

∅ empty set or empty function
Z set of integers {. . . ,−1, 0, 1, . . . }
N set of nonnegative integers {0, 1, 2, . . . }
R set of real numbers
R+

0 set of nonnegative real numbers {z ∈ R | z ≥ 0}
[x, y] set of real numbers ≥ x and ≤ y {z ∈ R | x ≤ z ≤ y}
|x| absolute value of a real number or size

of a set
bxc the largest integer not greater than x max{n ∈ Z | n ≤ x}
degG v degree of vertex v in graph G
Img f the image of a function f : X → Y {f(x) | x ∈ X}
f−1 the inverse function of f : X → Y f−1 : Y → X

At transposed matrix of A = (aij)ij (aij)ji
n! the factorial of n

∏n
k=1 k

(si)1≤i≤I tuple of elements (s1, . . . , sI)⊗
1≤i≤I Si Cartesian product of a family of sets

Si, 1 ≤ i ≤ I
{(si)1≤i≤I | si ∈ Si}

O(f(n)) functions asymptotically not greater
than f(n) up to constant factors

(see Definition 4.2)

P polynomial-time problems on a deter-
ministic Turing machine

(see Definition 4.6)

NP polynomial-time problems on a nonde-
terministic Turing machine

(see Definition 4.7)

x.y attribute named y of object x (see Definition 5.7)

xi

CHAPTER 1

Introduction

“Why socks? They only create holes!”
(Albert Einstein)

In this thesis, we deal with the optimization of a punching process of purlins. Purlins
are structural members of roof constructions, typically linked to other parts of the
roof by screws in pre-made holes (see Figure 1.1). Punching these holes is a central
part of the manufacturing process of purlins, apart from folding and cutting the metal.
Speeding up this process is the main objective of this work. At the same time, metal
going to waste in the production process can be minimized.

Figure 1.1: Photo of purlins.

1

1. Introduction

This project was commissioned by Usitec Systemtechnik GmbH1 and Zeman Bauele-
mente Produktionsgesellschaft2 to the Institute of Optimization and Discrete Math-
ematics (Math B) at Graz University of Technology. The project was carried out
with help from university staff. It involved modeling the practical problem, finding an
algorithmic solution, and implementing it in C++.

Related work Much work has been done in the field of combinatorial optimization
dealing with practical problems of industry. While we give a short outline of a few
examples here, more information on the topic can be found in the book by Pardalos
and Korotkikh [2003].
The cutting stock problem arises, for instance, when cutting rolls of paper of fixed

width to rolls of various-sized widths with minimum waste. It can be formulated as a
linear program and solved using delayed column-generation [Gilmore and Gomory,
1961, 1963]. In the one-dimensional case, branch-and-bound methods and dynamic
programming can be used; modern algorithm reach optimality for practical problem
sizes [Carvalho, 1998;Goulimis, 1990]. Branch-and-bound and dynamic programing
are used in this thesis, too, to solve the presented mathematical model exactly and to
examine the complexity of the punching problem.
The vehicle routing problem asks for a cost-minimizing way of servicing a number

of customers with a fleet of vehicles [Dantzig and Ramser, 1959]. It is related to
the NP-hard problems of job shop scheduling and the traveling salesman problem.
An overview of exact and heuristic algorithms was compiled by Laporte [1992]. The
punching problem is related to the set covering problem, another NP-hard problem.
Recent applications of vehicle routing include a large-scale approximation algorithm
by Krumke et al. [2008] to optimize the routing of service units of the German Au-
tomobile Club (ADAC).
Inventory problems involve decisions on how much of a good to keep in stock, affect-

ing the limits and profitability of future decisions. For instance, the question might be
how much water to release from a dam for electricity. The problem might also involve
production such as how much wheat to plant per year [Arrow, Karlin, and Scarf,
1958]. An overview of inventory theory is given by Hillier and Lieberman [2010].
As most combinatorial optimization problems are too hard to be solved exactly, they

are often solved heuristically. Variousmetaheuristics such as simulated annealing, tabu
search, and genetic algorithms are described by Glover and Kochenberger [2003].
In this thesis, we examine a novel optimization problem that cannot be reduced to

existing problems directly. However, we draw ideas from random optimization [Li and
Rhinehart, 1998] and local search [Glover and McMillan, 1986], for instance, as
well as general principles from mathematical modeling, graph theory, and dynamic
programming.

1Usitec Systemtechnik GmbH, Eisenstraße 35, A-4400 Steyr
2Zeman Bauelemente Produktionsgesellschaft mbH, St. Lorenzen 39, A-8811 Scheifling

2

(a) Coil. (b) Punching machine.

(c) Cutter. (d) Folder.

Figure 1.2: Photos of the production process of purlins.

Organization of this thesis The production process and the punching machine are
described in greater detail in chapter 2. Basically, the production of purlins starts
with metal running from a coil (see Figure 1.2a); holes are punched into the metal by
a punching machine (see Figure 1.2b); finally, the metal is cut (see Figure 1.2c) and
folded (see Figure 1.2d).
A mathematical model of the problem of estimating a time-optimal punching plan

is shown in chapter 3. Finding an appropriate objective function was part of our work
in this project and is presented in this chapter as well as methods to solve the resulting
mixed-integer linear program.
In chapter 4, we examine the computational complexity of the punching problem.

After discussing related work on the NP-hard set cover problem, we prove that a
simplified variant of the punching problem is efficiently solvable using a graph theoretic
approach and dynamic programming.
Although having polynomial time and space requirements in the number of holes,

the dynamic programming approach is inefficient and too limited in its assumptions
for practical use, which is why we develop faster heuristics. Our approach is divided
into two chapters. Chapter 5 deals with fixed machine configurations where punches
have static positions, and chapter 6 describes heuristics to improve punching plans
utilizing dynamic movements of punches.
After demonstrating the computational intractability of solving the mixed-integer

3

1. Introduction

linear program directly, we evaluate our algorithm by comparing it to optimal solutions
to both hole patterns from practice and randomly generated test samples in chapter 7.
Moreover, we discuss the impact of different heuristics and evaluate different parameter
choices.
Finally, we briefly describe our conclusions, limitations of this thesis, and possible

future work in chapter 8.
Some extra material is included in the appendix of this thesis. Formal definitions

of some algorithms that would clutter the main part are given in appendix A. The
implementation of the described mathematical model from chapter 3 in the AMPL
modeling language is included in appendix B. Furthermore, an implementation of the
dynamic programming solution from chapter 4 in Python is presented in appendix C.
We do not include the implementation of our main algorithm in C++ because of its
length. Instead, we visually depict a selection of patterns and solutions in appendix D.

The resulting program is in actual use in various factories equipped by Zeman Baule-
mente Produktionsgesellschaft, located in countries such as India, Iran, and Poland.
Because it helps save time and material in the production process, the whole project
was deemed a success by the commissioning companies.

4

CHAPTER 2

Problem Description

In this chapter, an overview of the production process is given in section 2.1, including
details of the punching machine in section 2.2 and an overview of the decisions that
have to be taken when solving the punching problem in section 2.3.

2.1. Production Process

In the industrial production of steel purlins, metal running from a loop, a so-called coil,
is drawn by a feed roller and processed in several consecutive steps (see Figures 1.2
and 2.1).

1. Holes are punched into the metal. These holes later serve as perforations for
screws that link different purlins in roof constructions. A given pattern deter-
mines where holes are desired for each purlin.

2. Coming from a single coil with a length in the order of a hundred meters, the
metal is cut into pieces with a length of a few meters. Each piece yields a single
purlin.

3. The metal is rolled or cold-formed into so-called C-, U-, or Z-shapes (see Fig-
ure 1.1). Even though the metal is usually only a few millimeters thin, the shape
of the purlins results in very high stability.

coil

punching machinecutterfolder

feed roller

Figure 2.1: Schema of the production process of purlins.

5

2. Problem Description

y

x

Figure 2.2: Example of a hole pattern consisting of three repetitions of the same
block of holes. Higher x-coordinates represent positions running later
from the coil. Different hole types are represented by different shapes
(circles and squares, respectively), although in practice they are usu-
ally all round and differ only in diameter. The x-axis and the y-axis
are scaled differently to provide a clearer picture.

Usually, the whole coil is processed in a single turn called a batch. A typical batch
consists of several different types of purlins regarding their hole patterns, with several
repetitions each.

The punching machine performs so-called flying punching, that is, it moves along
with the metal within its mounting for a short period of time while performing the
punch, before moving back to its initial position. Even though the object being moved
in the process is the metal, it is considered to be the fixed part with the punching
machine moving over it. This yields a more concise model, as the positions of the
holes are the same in the given pattern and during the process.

Let the direction in which the metal moves be called the x-direction, where higher
coordinates correspond to positions running later from the coil. Consequently, figures
of hole patterns will have holes being punched earlier further to the left. Furthermore,
let the y-direction be oriented orthogonal to the x-direction in the standard way, that
is, positive y-positions are to the left when viewed in positive x-direction.

Example 2.1. An example pattern illustrating the coordinate system is shown in
Figure 2.2. Depicted are three repetitions of the same block of holes. However, in
practice the number of repetitions is much higher, usually in the range of 60 to 100.
Two different hole types occur in the pattern.

As suggested in the example, holes typically appear symmetrically with respect to
the x-axis in practical patterns. There are some exceptions, though, as depicted in
Figures D.2 and D.3.

The holes in the pattern can have different shapes and diameters, determining their
type. As the number of distinct types is very low and the exact shape and diameter
does not influence the punching process, these two characteristics can be abstracted
to a finite set of types.

6

2.2. Punching Machine

y

x

1

2

3

4

5

6

7

8

9

10

11

12

Figure 2.3: The punching machine primarily considered in this work. The
punches are numbered from 1 to 12 sorted with descending x- and
y-coordinates. Punches are moveable in both x- and y-direction with
restrictions on their positions and distances. Punches 5 to 8 form the
double stamp; the pairs of punches 5/7 and 6/8 are linked together
statically each, that is, their respective y positions are the same in
each punching step and their distances in x-direction remain constant
throughout the process.

2.2. Punching Machine

The punching machine primarily dealt with in this work consists of six pairs of punches.
To simplify notation, let a pair of two punches be called a stamp. To conform with
existing practice, the punches are numbered 1 to 12 in reverse x-direction, that is, the
position of punch i is not smaller than that of punch j for i < j.

Each punch is equipped with a certain tool, corresponding to a certain type of hole.
This equipment has to be determined before the process starts and stays constant
throughout the whole batch. There might be a restriction on which tools can be
assigned to each punch.

The two central stamps (punches 5 to 8) are linked together statically, forming the
so-called double stamp; the other stamps—two to the left, two to the right—can be
moved in x-direction relative to the double stamp between consecutive punching steps,
with a certain upper limit on the distance being moved. The center of the machine
is defined as the x-position of punches 7 and 8, with relative positions being defined
as the distances of stamps to this center. Consequently, the relative position of the
double stamp stays constant. An illustration of the punching machine is shown in
Figure 2.3.

There are limitations on the maximum distances of punches 1 and 12 to the center
of the machine, and there has to be a certain minimum distance between all pairs of
punches. This can be generalized to minimum and maximum distances between each
pair of punches.

The y-positions of the punches are dynamic as well. The only restrictions are that
there has to be a certain minimum distance between the two punches of a stamp, and
that the the y-positions of two corresponding punches of the double stamp must be
equal.

7

2. Problem Description

x

d1 d2 d3 d4 d5 d6 d7 d8

Figure 2.4: Solution to a given pattern of holes. Different colors denote different
punching steps. The pattern of holes is shown at the top. Depicted
below are the positions of the punches in each step, where active
punches are drawn bold and are connected to their respective punched
holes by dotted lines. At the bottom the machine positions are shown
again with the distances di between consecutive steps.

2.3. Decisions Constituting a Solution

Given a hole pattern and the characteristics of the punching machine, the optimization
goal is to find

1. an equipment of the machine with tools,
2. a mapping from the given holes to punches that punch them, and
3. a sequence of positions of the individual punches

with the principal objective of minimizing the number of machine stops and distribut-
ing them equally. The reasoning behind this is that small movements of the machine
take longer, as it cannot accelerate that fast. Especially, consecutive punching steps
at the same position have to be avoided whenever possible, as the machine has to stop
completely for a while in that case.
An equipment of the machine is given by an assignment of tools (corresponding to

different hole types) to punches. Each hole has to be punched exactly once throughout
the whole batch. The positions of the punches relative to the machine center have to
be determined because they are dynamic and can be changed after each punching step.
A formal definition of the corresponding mathematical model is given in chapter 3.

Example 2.2 (Example 2.1 continued). Given the pattern depicted in Figure 2.2, a
possible solution would be to equip punches 1, 2, 9, and 10 with the square hole type
and punches 3 to 8, 11, and 12 with the circle hole type. The mapping from holes to
punches and the positions of the punches in each of the nine punching steps are shown
in Figure 2.4.

8

CHAPTER 3

Mathematical Model

In this chapter, the punching problem is introduced formally. The parameters and
decision variables are described in section 3.1. The constraints on these variables are
shown in section 3.2 and eventually formulated as a mixed-integer linear program.
Optimization objectives are discussed in section 3.3 resulting in the formal definition
of the central step and speed punching problems as mixed-integer linear programs.
The parameter choices arising in practice as given by the commissioning companies

are presented in section 3.4. We also give a short introduction to general methods for
solving mixed-integer linear programs in section 3.5.
Adding to that, an implementation of the mathematical program in the AMPL mod-

eling language [Fourer, Gay, and Kernighan, 2002] can be found in appendix B.1.

3.1. Parameters and Variables

The parameters in Table 3.1 describe the pattern to be punched.

Table 3.1: Parameters describing the hole pattern.

Parameter Explanation

xn ∈ R x-position of hole n
yn ∈ R y-position of hole n
znt ∈ {0, 1} 1 if hole n requires tool t, 0 otherwise

Example 3.1 (Examples 2.1 and 2.2 continued). The first block of length 72000 in
the pattern shown in Figure 2.2 can be described using the following parameters,

9

3. Mathematical Model

where tool 1 corresponds to the circle and tool 2 to the square hole types. All x- and
y-coordinates are specified in tenth of millimeters.

n xn yn zn1 zn2

1 350 −500 1 0
2 350 500 1 0
3 6050 −500 0 1
4 6050 500 0 1
5 11750 −1000 1 0
6 11750 1000 1 0
7 35650 0 1 0

n xn yn zn1 zn2

8 36350 0 1 0
9 60250 −500 1 0

10 60250 500 1 0
11 65950 −1000 0 1
12 65950 1000 0 1
13 71650 −1000 1 0
14 71650 1000 1 0

The parameters in Table 3.2 describe constraints to the punching machine as out-
lined in section 2.2. The corresponding constraints are described formally in section 3.2
by eqs. (3.13) and (3.15) to (3.19), and typical values of these parameters are presented
in section 3.4.

Table 3.2: Parameters describing constraints to the punching machine.

Parameter Explanation

Tjt ∈ {0, 1} 1 if tool t can be assigned to punch j, 0 otherwise
j the reference punch relative to which punch movements are

measured
X maximum x-movement of a punch relative to the reference

punch j between consecutive punching steps
Xjk minimum x-distance between punch j and punch k
Xjk maximum x-distance between punch j and punch k
Y jk minimum y-distance between punch j and punch k
Y jk maximum y-distance between punch j and punch k
V j minimum y-position of punch j
V j maximum y-position of punch j

We introduce decision variables defined in Table 3.3.

10

3.1. Parameters and Variables

Table 3.3: Decision variables.

Variable Explanation

sij ∈ R the absolute x-position of punch j in punching step i
sij ∈ R the relative x-position of punch j in step i (relative to the

machine center)
vij ∈ R the y-position of punch j in step i
ujt ∈ {0, 1} 1 if tool t is assigned to punch j, 0 otherwise
hijn ∈ {0, 1} 1 if hole n is punched by punch j in step i, 0 otherwise
aij ∈ {0, 1} 1 if punch j punches any hole in step i, 0 otherwise
ai ∈ {0, 1} 1 if any punch punches any hole in step i, 0 otherwise

The variables sij and sij account for dynamic x-movements of the punches and are
related through

sij = sij − sij , (3.1)

that is, the relative position of a punch j is the difference of its absolute position to
the position of the reference punch j.
The variables ujt determine the equipment of the machine with different tools. This

equipment remains constant throughout the whole process, so it does not depend on
the step i.
The variables hijn describe the punching plan by stating which hole gets punched

by which punch in what step. The binary variables aij and ai depend on hijn through
the following relations. As each punch j cannot punch more than one hole in a single
turn i, the relation

aij =
∑
n

hijn ∀i, j

holds. As ai has to be 1 if a single aij has to be 1 and has to be 0 if all aij are 0, the
two constraints

ai ≥ aij ∀i, j

ai ≤
∑
j

aij ∀i, j

have to be fulfilled. The variables ai can be used to quantify the actual number of
punching steps.

Example 3.2 (Examples 2.1, 2.2 and 3.1 continued). The first six punching steps
in the solution shown in Figure 2.4 can be described using the following values of
variables.

11

3. Mathematical Model

i→ 1 2 3 4 5 6
si1 = si2 11750 46700 71650 94100 118700 143650
si3 = si4 6050 42050 65950 89450 114050 137950
si5 = si6 350 36350 60250 83750 108350 132250
si7 = si8 −350 35650 59550 83050 107650 131550
si9 = si,10 −6750 29250 53150 78050 101950 125500
si,11 = si,12 −7850 28150 52050 72350 98550 123250

vi,1 1000 1000 1000 1000 1000 1000
vi,2 −1000 −1000 −1000 −1000 −1000 −1000
vi,3 500 1000 1000 1000 1000 1000
vi,4 −500 −1000 −1000 −1000 −1000 −1000
vi,5 500 0 500 1000 0 500
vi,6 −500 −1000 −500 −1000 −1000 −500
vi,7 500 0 500 1000 0 500
vi,8 −500 −1000 −500 −1000 −1000 −500
vi,9 1000 1000 1000 500 1000 1000
vi,10 −1000 −1000 −1000 −500 −1000 −1000
vi,11 1000 1000 1000 500 1000 1000
vi,12 −1000 −1000 −1000 −500 −1000 −1000
hijn h1,1,6 h2,5,8 h3,1,14 h4,5,20 h5,5,22 h6,1,28

= h1,2,5 = h2,7,7 = h3,2,13 = h4,6,19 = h5,7,21 = h6,2,27

= h1,3,4 = 1 = h3,3,12 = h4,9,18 = 1 = h6,3,26

= h1,4,3 = h3,4,11 = h4,10,17 = h6,4,25

= h1,5,2 = h3,5,10 = h4,11,16 = h6,5,24

= h1,6,1 = h3,6,9 = h4,12,15 = h6,6,23

= 1 = 1 = 1 = 1

Each column represents a single punching step. As the considered punching machine
consists of pairs of punches with identical x-positions, si,2j−1 = si,2j holds. The values
of hijn are very sparse, so only the variables having value 1 are shown here, with all
others having value 0.
Note that the relative punch positions sij can be calculated using the absolute

positions sij through equation (3.1).
The equipment of the machine is given by the values of ujt as follows. The punches

12

3.2. Constraints

having the circle hole type (corresponding to tool 1 as in Example 3.1) induce

u11 = u21 = u51 = u61 = u71 = u81 = u11,1 = u12,1 = 1,

while the punches having the square hole type (tool 2) induce

u32 = u42 = u92 = u10,2 = 1,

with all other values of ujt being 0.
To elaborate further on this example, consider punching step i = 2, for instance. The

two holes 8 and 7 are punched by the punches 5 and 7, respectively (h258 = h277 = 1).
Thus, their x- and y-positions have to be equal, that is,

s25 = x8 = 36350 v25 = y8 = 0
s27 = x7 = 35650 v27 = y7 = 0.

Furthermore, the tools of the punches must match the hole type (which is 1 in both
cases), that is,

u51 = z81 = 1 u52 = z82 = 0
u71 = z71 = 1 u72 = z72 = 0.

3.2. Constraints

Using the variables described in the previous section, the punching problem can be
formalized by constraints discussed in this section.
In addition to potential other constraints, all indices are bounded by 1 ≤ i ≤ I,

1 ≤ j ≤ J , 1 ≤ n ≤ N , and 1 ≤ t ≤ T . Although the exact optimal number I∗ of
punching steps is not known a priori, it can be assumed that in each step at least one
hole is punched and therefore I∗ ≤ N holds. If it turns out that less punching steps
are needed, hijn can simply be set to 0 for i > I∗. Let such a step i be called an empty
punching step.
Determining a good upper bound for I∗ a priori could speed up the process of finding

an optimal solution, as the number of binary decisions regarding hijn is reduced. We
examine this in section 7.1. Without any other bound, I∗ = N can be chosen in any
case.

Quadratic formulation

A direct formulation of the requirement that active punches are on correct x-positions
would be ∑

n

xnhijn = sij ∀i ∀j ∈ Ai (3.2)

13

3. Mathematical Model

where
Ai = {j | ∃n : hijn = 1}

is the set of active punches in step i. The variable hijn is 1 only in a step i where
punch j punches hole n, so the sum on the left side becomes xn then. The x-position
of punch j in this step is given by sij and has to equal the x-position of the punched
hole. For inactive punches there is no corresponding restriction on their x-position.
Analogously, the y-position of active punches must equal the y-position of their

punched hole, that is,∑
n

ynhijn = vij ∀i ∀j ∈ Ai. (3.3)

Furthermore, active punches must have tools corresponding to their punched holes,
that is, ∑

n

znthijn = ujt ∀i ∀j ∈ Ai ∀t. (3.4)

However, this model still involves sets Ai of active punches that are used to restrict
other indices. The sets Ai depend on the result (namely hijn), so are not suitable for a
classic mixed-integer programming formulation of the problem. That can be avoided
by introducing additional binary variables aij ∈ {0, 1} expressing the decision whether
a punch j is active in step i. Using these variables, eqs. (3.2) to (3.4) can be rewritten
as ∑

n

xnhijnaij = sijaij ∀i ∀j∑
n

ynhijnaij = vijaij ∀i ∀j∑
n

znthijnaij = ujtaij ∀i ∀j ∀t

with the additional constraint∑
i

∑
j

hijnaij = 1 ∀n

which expresses the requirement that each hole is punched by an active punch ex-
actly once. However, this formulation involves products of variables and is therefore
quadratic but not linear.

Linear formulation

To get a linear model, another approach has to be taken to formulate the requirement
that hijn can only be 1 if the active punch j in step i has the correct position and tool
to punch hole n.

14

3.2. Constraints

We use the auxiliary variable hijn ≥ 0 with the underlying idea that it shall be 0
only if punch j can punch hole n in step i. This is somehow the negation of hijn,
although hijn does not have to be binary, not even integer.
We can enforce the idea

hijn

= 0 only if punch j can punch hole n in step i

> 0 otherwise (or nevertheless)

regarding the x-position by demanding

hijn ≥ |xn − sij | ∀i ∀j ∀n. (3.5)

This ensures that hijn = 0 only if xn = sij . Similarly, we get

hijn ≥ |yn − vij | ∀i ∀j ∀n (3.6)

to ensure that hijn = 0 only if the y-position of an active punch j in step i is correct,
that is, yn = vij . Furthermore,

hijn ≥ |znt − ujt| ∀i ∀j ∀n ∀t (3.7)

ensures that active punches are equipped with the correct tools.
Using the auxiliary variable hijn ≥ 0 we want to ensure that hijn = 1 only if

hijn = 0. This can be done in the standard way of expressing “if-then-relations” in
mixed-integer linear programs [Smith and Taşkın, 2008]. Using an upper bound M
on hijn, we introduce another auxiliary (binary) variable

h′ijn =

0 only if hijn = 0

1 otherwise (or nevertheless)

with the constraint

hijn ≤Mh′ijn ∀i ∀j ∀n. (3.8)

Now if hijn > 0, the variable h′ijn has to be 1. The upper bound M which applies
anyway is no actual restriction on hijn. If hijn = 0, the variable h′ijn can be chosen to
be either 0 or 1. By the additional constraint

hijn ≤ 1− h′ijn ∀i ∀j ∀n (3.9)

we ensure that hijn is 0 whenever hijn > 0 and thereby h′ijn = 1. Conversely, hijn can
only be 1 if hijn = 0 which means that punch h can punch hole n in step i.

15

3. Mathematical Model

A safe choice for the upper bound M ≥ hijn results from the maximum dimensions
of the hole pattern, that is,

M = 2 max
n

max{|xn| , |yn| , 1}, (3.10)

because it must be possible to choose hijn greater than any differences between any
two reasonable x- and y-positions (see eqs. (3.5) and (3.6)). In the rather unrealistic
case where xn = yn = 0 for all n it shall still be possible to choose hijn = 0 to account
for eq. (3.7).
To ensure that every hole is punched exactly once, we demand∑

i

∑
j

hijn = 1 ∀n. (3.11)

Note that this can be relaxed to
∑
i

∑
j hijn ≥ 1 equivalently, requiring that each hole

is punched at least once, because multiple punches of the same hole can simply be
ignored. Although a hole should not actually be punched several times as this can
make it “floppy,” repeated punches in the theoretical solution do not have to be carried
out and are irrelevant to the minimization problem. This relaxation might be useful
when solving the model in practice.
Finally, we relate hijn to aij using the restriction

aij =
∑
n

hijn ∀i ∀j. (3.12)

Machine constraints

In addition to the previous constraints regarding the positions of punches related to
the holes they punch, the following general machine constraints have to be fulfilled.
Punches have to be equipped with feasible tools, that is,

ujt ≤ Tjt ∀j ∀t, (3.13)

and each punch has to be assigned exactly one tool,∑
t

ujt = 1 ∀j. (3.14)

Regarding dynamic movements of the punches, the x-distances between punches
must be within their limits, that is,

Xjk ≤ sij − sik ≤ Xjk ∀i ∀j ∀k, (3.15)

as well as the y-distances between punches,

Y jk ≤ vij − vik ≤ Y jk ∀i ∀j ∀k, (3.16)

16

3.3. Optimization Objectives

and the individual y-positions,

V j ≤ vij ≤ V j ∀i ∀j. (3.17)

The x-movements of the punches are restricted by

|sij − si−1,j | ≤ X ∀i > 1 ∀j. (3.18)

The relative positions of punches are coupled to the reference punch through

sij = sij − sij ∀i ∀j. (3.19)

Note that restrictions of the form A ≥ |B| involving absolute values can easily be
reformulated in a strictly linear way using the two constraints

A ≥ B
A ≥ −B.

To ensure that there is no empty punching step followed by a non-empty step, we
add the constraints

ai ≤ ai−1 ∀i > 1 (3.20)
ai ≥ aij ∀i ∀j (3.21)
ai ≤

∑
j

aij ∀i. (3.22)

All relevant constraints can be summed up in the following definition.

Definition 3.3 (Punching constraints). Let N , I ≤ N , J , T , and 1 ≤ j ≤ J be inte-
gers. By punching constraints we denote the constraints given by eqs. (3.5) to (3.22).

3.3. Optimization Objectives

There are two optimization objectives: the speed of the process and the resulting
waste. They can be used to formulate the mathematical models discussed throughout
this thesis, the step and the speed punching problem.

Speed

The speed of the process varies according to the distances the metal moves between
consecutive punching steps (movements). During longer movements, it can accelerate
more without losing precision. Contrarily, small movements slow down the process
significantly. As the total movement of the metal is constant—it is given the length of
the whole batch—maximizing individual movements implies minimizing the number
of stops.

17

3. Mathematical Model

Although the effective speed of the machine is not given formally in practice, it is
assumed to be faster when movements are distributed more equally. Designing an
appropriate objective function was part of our work during this project.
Let the time, or more abstractly, the costs, needed to perform a movement of dis-

tance d be denoted by c(d) with a function c : R+
0 → R ∪ {∞}. Then favoring equally

distributed movements specifically implies

c (d1) + c (d2) ≥ 2c
(
d1+d2

2

)
,

that is, splitting a distance d1 + d2 into two equal movements does not yield higher
costs than any other splitting. This means that c is a midpoint-convex function. Addi-
tionally demanding c to be Lebesgue-measurable implies that c is convex [Donoghue,
1969, p. 12].
There are several reasonable choices for convex cost functions:
1. Assuming that the speed v of the machine is inversely proportional to the square

of the moved distance d,
v(d) = 1

d2 ,

results in the time
c(d) = d

v(d) = 1
d
, (3.23)

a convex function for d > 0 with c(0) =∞. This accounts well for the fact that
zero-movements (the machine performing two consecutive punching steps in the
same position) are to be avoided if somehow possible.
In an implementation, dealing with values of∞ can be circumvented by choosing
an appropriate upper bound for the total costs as the value of c(0), which is
particularly possible when all occurring coordinates and distances are integer.

2. To get a linear objective function, 1
d can be approximated by a piecewise linear

function, thereby also avoiding values of ∞. Given δr, 0 ≤ r ≤ R, a possible
choice would be a function of the form

c(d) = 1
δ0

+
R∑
r=1

σrdr (3.24)

with slopes

σr =

1
δr
− 1
δr−1

δr−δr−1
1 < r ≤ R

1
δ1
− 1
δ0

δ1
r = 1

and the “fragmentation”

d =
R+1∑
r=1

dr,

where 0 ≤ d1 ≤ δ1 and 0 ≤ dr ≤ δr − δr−1 for 1 < r ≤ R and dr ≥ dr+1 for
0 ≤ r ≤ R. An illustration of this linearization is shown in Figure 3.1.

18

3.3. Optimization Objectives

c

dδ1

1
δ1

δ2

1
δ2

δ3 δR

1
δR

1
δ0

Figure 3.1: Linearizations of the continuous cost function c(d) = 1
d . The piece-

wise linear function from eq. (3.24) is shown in bold black, while the
piecewise constant function from eq. (3.25) is shown in dotted gray.

3. Similarly, a piecewise constant function of the form

c(d) =

1
δ1

0 ≤ d < δ1

. . .

1
δR

δR−1 ≤ d < δR

0 d ≥ δR

(3.25)

can be used to approximate 1
d (see Figure 3.1).

4. If all that matters is minimizing the number of stops of the machine, the simple
specialization

c(d) = 1
can be chosen.

Eventually, the costs of all movements di between step i− 1 and step i, 2 ≤ i ≤ I,
can be summed up to yield overall costs

c =
∑
i≥2

c(di).

The presented objective functions can be used to formulate the following mathe-
matical models that are discussed throughout the rest of this thesis.

Definition 3.4 (Step punching problem). By the step punching problem we denote
an optimization problem of the form

min
∑
i

ai

subject to punching constraints.

19

3. Mathematical Model

Remark. This is equivalent to

min
(

1 +
∑
i≥2

c(di)
)

with c(di) = 1,

assuming that there is at least one punching step.
Remark. Minimizing the number of punching steps is a very natural objective in prac-
tice, as each stop of the machine needs a significant amount of time.

Definition 3.5 (Speed punching problem). Let δr > 0 for 0 ≤ r ≤ R. In the speed
punching problem, we use the objective function

min
∑
i≥2

c(di),

where c is the piecewise linear function from (3.24). This can be formulated as

min
∑
i≥2

(1
δ0

+
∑
r≥1

σrdir

)
subject to punching constraints and the additional constraints

σr =
1
δr
− 1

δr−1

δr − δr−1
∀r > 1

σ1 =
1
δ1
− 1

δ0

δ1
0 ≤ dir ≤ δr − δr−1 ∀i > 1 ∀r > 1
0 ≤ di1 ≤ δ1 ∀i > 1

di ≥
∑
r≥1

dir ∀i > 1

di = sij − si−1,j ∀i > 1.

Remark. As the objective function in Definition 3.5 is minimized and the slopes σr are
decreasing and negative, dir ≤ di,r+1 is induced.
Remark. If the number I∗ of non-empty punching steps is smaller than the provided
upper bound I (which is usually set to N), there are I − I∗ empty punching steps i
in which hijn = 0 is set. For these steps, there is no effective restriction on the x- and
y-positions of the punches: Looking at eq. (3.9), h′ijn can be set to 1 as hijn = 0 is
fulfilled anyway, and therefore hijn can be set to its upper boundM in eq. (3.8). Then
there is no restriction on sij and vij imposed by eqs. (3.5) and (3.6). Consequently, it
is feasible to set sij such that the machine movements di satisfy

di > δR for i > I∗.

Therefore, it can be assured that empty punching steps do not contribute costs to the
objective function.

20

3.3. Optimization Objectives

start of patternfirst hole

position xl of first hole at first punch

relative position s1k
of first stamp while punching first hole

waste

minimum distance c2 machine center to mounting

distance c1
mounting to feed roller

Figure 3.2: Waste resulting in the beginning of the punching process.

Waste

Waste results in the beginning of the process, where a certain amount of metal is
needed between the feed roller and the punching machine and thereby the first hole
in the pattern (see Figure 2.1), even when the length of metal before the first hole as
given in the pattern is shorter.
Let c1 denote the distance between the mounting of the punching machine and the

feed roller, and let c2 denote the minimum distance between the center of the machine
and the end of the mounting. Furthermore, let xl be the position of the first hole (with
respect to its x-position) in the first punch (with respect to the sequence of punches),
and s1k be the relative position of the punch k punching this hole (see Figure 3.2).
Then the resulting waste is given by

w = c1 + c2 + s1k − xl.

As xl is the sum of the absolute machine position s1j and the relative position s1k of
punch k during the first punch, this can be rewritten as

w = c1 + c2 − s1j . (3.26)

Thus, waste only depends on the absolute position s1j in the first punching step
(apart from an additive constant), and can be minimized by maximizing s1j .

21

3. Mathematical Model

Combining Speed and Waste

The values c and w of the objective functions for speed and waste, respectively, can be
combined to yield a single objective function. As the absolute values of (time) costs
and waste are hard to relate to each other, we relate each of them to the whole set of
solutions before combining them. That is, given a set of solutions S = {Si}1≤i≤n with
costs ci and waste wi each, we define the overall objective function to be the convex
combination

fS(c, w) =

(1− λw) c−min ci
max{(max ci −min ci), 1}

+ λw
w −minwi

max{(maxwi −minwi), 1}
, (3.27)

where 0 ≤ λw ≤ 1 is the “weight” of the optimization of waste.
This combination is especially useful “a posteriori” to find the best solution in a

given set of solutions. However, this is not available in many cases and hard to deal
with in theory; thus, we focus on the simpler version of only minimizing speed costs.
In practice, speed plays a more crucial role than waste (λw is often chosen < 0.1), and
waste can often be optimized using local heuristics after optimizing for speed globally
(see section 6.4), as it only depends on the beginning of the process. The influence of
the parameter λw is discussed in greater detail in section 7.7.

3.4. Practical Parameter Choices

In this section, some practical parameter choices as given by the commissioning compa-
nies regarding constraints on the punching machine are presented, as well as previous
variants of the punching problem.

Punching Machine

The punching machine primarily considered in this work consists of twelve punches
indexed from 1 to 12, with 2j−1 denoting punches with higher y-positions and 2j de-
noting the corresponding lower punches for 1 ≤ j ≤ 6. The double stamp is comprised
by the punches 5 to 8 (see Figure 2.3).
Pairs of punches always have the same x-positions, that is,

X2j−1,2j = X2j−1,2j = 0.

The distances between other pairs of stamps are restricted by the width of the stamps
(typically 1100 for ordinary stamps and 1800 for the double stamp) and the maximum
distance from the machine center to the outer stamps (typically 14000). By the triangle
inequality

Xjk ≥ Xjl +X lk

22

3.4. Practical Parameter Choices

(the minimum distance between two punches j and k is at least the sum of the mini-
mum distances to another punch l) and

Xjk ≤ Xjl +X lk,

this results in

X =

0(2) 1100(2) 2200(2) 2900(2) 4000(2) 5100(2)

0(2) 1100(2) 1800(2) 2900(2) 4000(2)

0(2) 700(2) 1800(2) 2900(2)

0(2) 1100(2) 2200(2)

0(2) 1100(2)

0(2)

(3.28)

and

X =

0(2) 12550(2) 13650(2) 14350(2) 26900(2) 28000(2)

0(2) 12550(2) 13250(2) 25800(2) 26900(2)

0(2) 700(2) 13250(2) 14350(2)

0(2) 12550(2) 13650(2)

0(2) 12550(2)

0(2)

, (3.29)

where we use the shorthand notion

A(2) =

A A

A A

 (3.30)

to denote quadruples of entries in the matrices, resulting from the equivalence of
punches of a single stamp with respect to their x-positions. As

sij − sik = −(sik − sij) ≤ −Xkj ,

the lower halves of the matrices are given by

Xjk = −Xkj and Xjk = −Xkj for j > k.

The maximum x-movement between consecutive punching steps is typically given
by

X = 4000.

Example 3.6 (Example 3.2 continued). We demonstrate that the result shown in
Example 3.2 complies with the constraints regarding x-positions and x-movements as
given by eqs. (3.15) and (3.18).

23

3. Mathematical Model

• Considering the first punching step (i = 1), the x-positions of the punches are

(s1j)j =
(
11750(2) 6050(2) 350(2) −350(2) −6750(2) −7850(2)

)
.

Note that two punches 2j − 1 and 2j making up a stamp always have the same
x-positions, which is why we use the shorthand notation from eq. (3.30) again,
where in the case of row vectors it is supposed to mean a(2) = (a a).
The distances s1j − s1k of the punches comply with eq. (3.15) as

X ≤ (s1j − s1k)jk =

0(2) 5700(2) 11400(2) 12100(2) 18500(2) 19600(2)

−5700(2) 0(2) 5700(2) 6400(2) 12800(2) 13900(2)

−11400(2) −5700(2) 0(2) 700(2) 7100(2) 8200(2)

−12100(2) −6400(2) −700(2) 0(2) 6400(2) 7500(2)

−18500(2) −12800(2) −7100(2) −6400(2) 0(2) 1100(2)

−19600(2) −13900(2) −8200(2) −7500(2) −1100(2) 0(2)

≤ X

holds. For instance, the distance between punch 1 and punch 3 is

X13 = 1100 ≤ s11 − s13 = 5700 ≤ 12550 = X13.

• Furthermore, the x-movements of the relative positions sij in steps j = 1 and
j = 2 comply with eq. (3.18). By eq. (3.1) we get

(s1j)j =
(
12100(2) 6400(2) 700(2) 0(2) −6400(2) −7500(2)

)
(s2j)j =

(
11050(2) 6400(2) 400(2) 0(2) −6400(2) −7500(2)

)
and thereby

−X = −4000 ≤

(s2j − s1j)j =
(
−1050(2) 0(2) −300(2) 0(2) 0(2) 0(2)

)
≤ 4000 = X.

For each pair of punches, there is a minimum y-distance of the two punches (typi-
cally 820). Moreover, the corresponding punches of the double stamp must have the
same y-position. Apart from that, there are no constraints on the y-positions relative

24

3.4. Practical Parameter Choices

to each other. This results in

Y =

0 820
0

0 820
0

0 820 0
0 0

0 0 820
0 0

0 820
0

0 820
0

, (3.31)

where all empty entries mean −∞. There are no upper bounds on the y-distances
between punches except for the double stamp (being 0), so as for the lower halves
of X and X, Y = −Y t holds, that is,

Y =

0
−820

0
−820

0 0
−820 0 0

0 0
0 −820 0

0
−820 0

0
−820 0

, (3.32)

where all empty entries mean ∞.
Usually, punches cannot cross the x-axis to an arbitrary extent, resulting in a min-

imum y-position
V 2j−1 = −500

for the upper punches and a maximum y-position

V 2j = 500

25

3. Mathematical Model

for the lower punches. The other bounds can be set to V 2j = −∞ and V 2j−1 =∞.

Example 3.7 (Example 3.2 continued). We demonstrate that the result shown in
Example 3.2 complies with the constraints regarding y-positions as given by eqs. (3.16)
and (3.17).
• Considering the first punching step (i = 1), the y-positions of the punches are

(v1j)j = (1000,−1000, 500,−500, 500,−500,
500,−500, 1000,−1000, 1000,−1000).

Obviously,
v1,2j−1 − v1,2j ≥ 820

holds for all 1 ≤ j ≤ 6 and, considering the double stamp,

v15 = v17 and v16 = v18

holds, so
Y ≤ (v1j − v1k)jk ≤ Y

as required by eq. (3.16) is fulfilled.
• The limits on the y-positions given by eq. (3.17) are kept as well, as

vi,2j−1 ≥ −500 = V 2j−1

and

vi,2j ≤ 500 = V 2j

holds for all 1 ≤ j ≤ 6.

The reference punch can be equivalently chosen to be either 7 or 8. Let us choose

j = 7

here.
In most cases, there are no restrictions on the set of tools that can be assigned to a

punch, resulting in
Tjt = 1

for all tools t in the pattern.

Variants

Previous versions of the punching machine had less capabilities which can also be
modeled by adjusting parameters correspondingly.

26

3.5. Mixed-Integer Linear Programs

Static y-positions In a previous version of the punching machine, the punches were
not dynamically movable in y-direction at all, but had to be set to a fixed y-position
throughout the whole batch. This can be modeled by ignoring all y-related parameters;
for instance, by setting them to

yn = Y jk = Y jk = V j = V j = 0,

and incorporating the actual yn into the tool specifications.

Static x-positions When the punches are not movable in x-direction, one can simply
set

X = 0.

This was the case in the very first version of the punching machine, where the relative
x-positions of the punches were set at the beginning and remained constant throughout
a batch.

Inter-dependent double stamp There was a version of the machine where the pun-
ches 7 and 8 could only punch when the punches 5 and 6, respectively, also punched.
While this cannot be expressed directly using the described model, pairs of holes
having the same x-distance as the double stamp can be detected and grouped to
a single hole punchable by an “artificial” double punch. This can be done for all
occurring combinations of hole types with the best solution being chosen in the end.

3.5. Mixed-Integer Linear Programs

The step punching problem (Definition 3.4) and the speed punching problem (Def-
inition 3.5) consist of a linear objective function and linear equality and inequality
constraints with some variables (namely ujt, hijn, h′ijn, aij , ai) being restricted to
values in {0, 1}. Thus, these problems can be formulated as so-called mixed-integer
linear programs.

Definition 3.8 (Mixed-integer linear program). Let A ∈ Rm×n be a matrix, c ∈ Rn,
b ∈ Rm vectors, I ⊆ {1, . . . , n} a set of indices, and x ∈ Rn a vector of variables. Then
the corresponding (canonical) mixed-integer linear program (MILP) is a problem of
the form

(P) min ctx

subject to Ax = b (3.33)
x ≥ 0 (3.34)
xj ∈ Z ∀j ∈ I. (3.35)

The solution space of a MILP is the set of vectors x satisfying the conditions given
by eqs. (3.33) to (3.35).

27

3. Mathematical Model

If no variables have integrality constraints (I = ∅) the MILP is a (regular) linear
program (LP). If all variables must be integers (I = {1, . . . , n}) the MILP is said to
be an integer linear program (ILP).
The LP relaxation of a MILP (P) is the program (P) with I set to ∅, that is, with

the integrality constraints of all variables being removed.

Remark. Programs involving inequality constraints of the form
n∑
j=1

aijxj ≥ bi

such as the punching problems can be converted to canonical MILPs by introducing
“slack variables” si ≥ 0 and adding constraints

n∑
j=1

aijxj − si = bi.

Variables xj unrestricted in sign can be rewritten to restricted variables x+
j , x

−
j ≥ 0

using the constraint
xj = x+

j − x
−
j

as shown by Papadimitriou and Steiglitz [1982, p. 28f.].

While regular linear programs can be solved in polynomial time [Karmarkar,
1984; Khachiyan, 1979] and the simplex method [Dantzig and Thapa, 1997] solves
them efficiently, solving general MILPs exactly is NP-hard. This follows directly from
the fact that the special case of 0-1 integer programming (deciding whether there
exists a feasible solution to Ax = b when all variables xj are binary) is NP-hard
already [Karp, 1972]. Interestingly, when the number n of variables is fixed, integer
programming is solvable in polynomial time; n appears in the exponent of the time-
bounding polynomial, though [Lenstra, 1983]. NP-hardness is defined and discussed
in greater detail in section 4.2.
Given the theoretical complexity of integer linear programming, it is still of inter-

est to search for solutions “intelligently” even if that might take a long time. We
shortly outline the methods of branch-and-bound, cutting planes, and their combina-
tion branch-and-cut here.

Branch-and-Bound

Branch-and-bound was proposed by Land and Doig [1960] and consists of two general
steps.

1. In the branching step, the solution space S is partitioned into several subproblems
S = S1 ∪ S2 ∪ · · · ∪ SK . Obviously, the optimal solution in S can be determined
from the solutions of the subproblems through

z∗ = min{ctx | x ∈ S} = min
k∈{1,...,K}

z∗k

28

3.5. Mixed-Integer Linear Programs

with the individual solutions

z∗k = min{ctx | x ∈ Sk}.

By successively branching the solution space, an enumeration tree of subproblems
emerges.

2. In the bounding step, the enumeration tree is pruned using bounds on the optimal
objective value within a branch, that is,

zk ≤ z∗k ≤ zk.

Such bounds can be used in several ways.
a) Pruning by optimality: If zk = zk, then the optimal value z∗k = zk = zk is

known and there is no need to subdivide Sk into smaller subsets.
b) Pruning by bound: If zk > zj for some j 6= k, then zk cannot be the optimal

solution z∗ of the whole problem, so the branch needs not be examined
further.

c) Pruning by infeasibility: If Sk = ∅, there is no need to subdivide Sk further,
either.

In the case of (mixed) integer linear programming, branching can naturally be done
on integer variables, while bounds result from LP relaxations. Given a solution x0 to
the LP relaxation of (P), we consider a component x0

i , i ∈ I, that is not integral. If
there is no such component, x0 is already the optimal solution of the (non-relaxed)
MILP. Otherwise, we split (P) into the two subproblems

(P1) min ctx

subject to Ax = b

x ≥ 0
xj ∈ Z ∀j ∈ I

xi ≤
⌊
x0
i

⌋
and

(P2) min ctx

subject to Ax = b

x ≥ 0
xj ∈ Z ∀j ∈ I

xi ≥
⌊
x0
i

⌋
+ 1.

If xi is a binary variable, the two cases boil down to xi = 0 and xi = 1.
In each case, solving the LP relaxation of (Pk) yields a lower bound zk on the

respective objective value z∗k, as the relaxed problem can not have a worse objective

29

3. Mathematical Model

value than (Pk) itself. Upper bounds result from feasible solutions x satisfying the
integrality constraints (3.35).
There are several ways to “walk” through the enumeration tree and to choose

branching variables. Dakin [1965] suggests branching in a depth-first manner which
is memory-efficient. If storage is not critical, branching from the subproblem with the
lowest lower bound (best-first search) seems reasonable, although that might not even
outperform depth-first search in parallel computations [Clausen and Perregaard,
1996]. Recent work includes applications to nonconvex quadratic programming [Bu-
rer and Vandenbussche, 2008] and adaptations for specific problems such as the
maximum diversity problem [Martí and Reinelt, 2011].

Cutting Planes

Cutting planes were first used by Dantzig, Fulkerson, and Johnson [1954] for
the traveling salesman problem and generalized by Gomory [1958]. They share with
branch-and-bound the idea of solving the relaxed linear program of a MILP and in-
troducing additional constraints. The difference is the kind of linear constraint being
added, though. Instead of splitting the problem into several branches, cutting planes
slightly modify the problem without excluding integer feasible points. That way, the
optimal integer solution remains the same.
We give a brief outline of Gomory cuts here, while detailed explanations can be

found in the original work of Gomory [1958, 1960] or the book by Papadimitriou
and Steiglitz [1982, p. 326ff.].
For simplicity, we only deal with the case of integer linear programs here, that is,

all variables shall be integer. The case of I ({1, . . . , n} is discussed in the book by
Wolsey [1998], for instance.
When solving the LP relaxation of (P) with a primal simplex algorithm [Dantzig

and Thapa, 1997], an equation in the final tableau is of the form

xi +
∑
j /∈B

aijxj = bi, (3.36)

where B is the basis and i ∈ B. Suppose a variable is not integer, that is, xi /∈ Z. As
x ≥ 0 and the integer part fulfills baijc ≤ aij , the relation∑

j /∈B
baijcxj ≤

∑
j /∈B

aijxj

holds. Inserting this into (3.36) yields

xi +
∑
j /∈B
baijcxj ≤ bi.

As x is integer, the left-hand side of this equation is integer, so

xi +
∑
j /∈B
baijcxj ≤

⌊
bi
⌋

(3.37)

30

3.5. Mixed-Integer Linear Programs

follows. Subtracting (3.37) from (3.36) yields∑
j /∈B

(aij − baijc)xj ≥ bi −
⌊
bi
⌋
.

This can be formulated using a slack variable s as

−
∑
j /∈B

(aij − baijc)xj + s =
⌊
bi
⌋
− bi.

Because of its construction, adding this constraint to (P) does not exclude integer
points. Furthermore, the tableau remains dual feasible. This is utilized in the frac-
tional dual algorithm to solve ILPs by successively adding Gomory cuts and applying
the dual simplex algorithm.
Gomory [1958, 1960] showed that, using a certain row selection strategy and the

lexicographic version of the dual simplex algorithm, the fractional dual algorithm
terminates in a finite number of steps, either finding an integer solution or reporting
that there is no feasible integer solution to (P).
However, convergence speed and numerical stability might still be an issue with

Gomory cuts, which is why problem-specific cutting planes are often used in practice.
For instance, Grötschel, Martin, and Weismantel [1996] apply cutting planes to
the Steiner tree packing problem arising in very-large-scale integration (VLSI) design.
Also notable are intersection cuts in disjunctive programming as introduced by

Balas [1979]. An overview of these methods is given by Belotti et al. [2010]. A
survey of cutting plane methods in general is presented by Marchand et al. [2002].

Branch-and-Cut

The methods of branch-and-bound and cutting planes can be combined to the so-called
branch-and-cut method. The traveling salesman problem (TSP) was one of the first
problems to be approached using branch-and-cut [Grötschel and Holland, 1991;
Padberg and Rinaldi, 1991]. An overview of the topic is given by Mitchell [2002],
for instance.
Branch-and-cut can be outlined as the following iterative process.
1. Maintain a list of open MILPs with corresponding lower bounds on their objective

value (the active nodes) initialized to the given MILP (P).
2. Select an active node and solve its LP relaxation.
3. If the solution is not integer, add cutting planes to the relaxation.
4. Prune the enumeration tree as described in section 3.5, deleting correspond-

ing active nodes if their lower bounds cannot beat the feasible objective value
achieved so far.

5. Partition the solution space and add corresponding active nodes.

31

3. Mathematical Model

This method has been successfully applied to a wide range of combinatorial opti-
mization problems [Caprara and Fischetti, 1997; Jünger,Reinelt, and Thienel,
1995] and is also employed in many solvers such as MINTO [Nemhauser, Savels-
bergh, and Sigismondi, 1994], SCIP [Achterberg, 2009], GUROBI [Gurobi Op-
timization, Inc. 2012], and CPLEX [ILOG CPLEX Division, 2007].
Despite recent progress in this area, the number of integer variables in the punching

problem is still too large to be solved exactly in practice (see section 7.1), which is
why we develop heuristics in chapters 5 and 6. However, we use CPLEX to compute
exact solutions of very small instances of the punching problem to evaluate the quality
of our heuristic results in sections 7.3 and 7.4.

32

CHAPTER 4

Computational Complexity

In this chapter, we analyze the computational complexity of the step punching prob-
lem. We focus on a simplified version with a fixed machine configuration, which
corresponds to setting X = 0. Furthermore, holes shall have distinct x-positions and
a single hole type. Thus, we deal with the following problem.

Definition 4.1 (Simplified punching problem). The simplified punching problem with
J punches (SPPJ) is defined as follows. Given a set of N holes {x1, . . . , xN} and the
relative positions sj of punches j, 1 ≤ j ≤ J , determine the minimum number I of
machine positions si, 1 ≤ i ≤ I, such that all holes can be punched from them, that
is,

I⋃
i=1
{si + sj | 1 ≤ j ≤ J} ⊇ {x1, . . . , xN}. (4.1)

Remark. In the previous definition, si + sj corresponds to the absolute position of
punch j in punching step i. Equation (4.1) demands that the x-positions of all holes
are covered by these punch positions.

As described in section 4.1, this problem can be formulated using bipartite graphs
as well. It is related to known NP-hard problems as described in section 4.3, which
is why we give a short introduction to NP-hardness in section 4.2. However, as we
show in section 4.4 using dynamic programming, the simplified punching problem is
solvable in polynomial time (in the number of holes) under the additional assumption
that the number of holes in each interval of machine length is limited.
Despite the restriction to the simplified version of the punching problem, the prin-

ciples discussed in this chapter should be generalizable to problems with overlapping
y-positions of holes and several different hole types.
To analyze the asymptotic behavior of algorithms in this thesis, we use the following

notation as described by Knuth [1976].

33

4. Computational Complexity

x1 x2 x3 x4 x5 x6

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

holes

machine positions

Figure 4.1: Bipartite graph corresponding to a punching problem SPP3 with
three punches. Holes are at positions x1, . . . , x6, while machine posi-
tions are at s1, . . . , s13.

Definition 4.2 (O-notation). Let f : N → N be a function. Then O(f(n)) denotes
the set of all functions g : N → N such that there exist positive constants C and n0
with

|g(n)| ≤ Cf(n) for all n ≥ n0.

This definition can easily be generalized to multivariate functions. To conform with
existing practice, we write

g(n) = O(f(n))

when we formally mean g(n) ∈ O(f(n)).

4.1. Bipartite Graph Formulation

The relations between holes and machine positions in SPPJ can be represented in a
bipartite graph

G = ({x1, . . . , xN}] {s1, . . . , sI}, E)

with edges
E = {{xn, si} | ∃1 ≤ j ≤ J : xn = si + sj} ,

that is, there is an edge between a hole xn and a machine position si if and only if xn
can be punched from si by any punch. An example is shown in Figure 4.1.

Remark. To simplify notation, we use x-coordinates (that is, real numbers) to identify
vertices corresponding to both holes and machine positions. The two sets of vertices
should still be distinct, that is, a vertex xn corresponding to a hole should be different
from a vertex si corresponding to a machine position even when their values as real
numbers are the same. There are two ways to deal with this formal problem:
• We simply “de-identify” xn 6= si for all n, i.

34

4.1. Bipartite Graph Formulation

• Equivalently, we could demand sj 6= 0 for all 1 ≤ j ≤ J to ensure xn 6= si. This
can be done without loss of generality, as changing all relative punch positions
from sj to sj + ε for some ε only affects the values of the resulting machine
positions (si = xn − sj for some n, j), but not their number (which is the
decisive quantity in SPPJ).

However, this is not a real issue in our conclusions.

Note that the degree degG(si) of a machine position vertex si in G is the num-
ber of holes that can be punched simultaneously from that position, while the de-
gree degG(xn) of a hole vertex xn is J (the number of punches) for all n.

Hitting Sets

The problem of minimizing the number of machine positions in SPPJ corresponds to
finding a minimum hitting set in G by the vertices {s1, . . . , sI}, which is defined as
follows.

Definition 4.3 (Hitting set problem). Let G = (U] V,E) be a bipartite graph with
a distinguished set V of vertices. The hitting set problem is to find the minimum
cardinality of a subset V ′ ⊆ V such that every vertex u ∈ U is covered by a vertex
in V ′, that is,

∀u ∈ U ∃v′ ∈ V ′ : {u, v′} ∈ E.

In the decision variant of the hitting set problem, we are also given a number k and
ask if there exists a hitting set of cardinality not greater than k.

Although the hitting set problem is NP-hard [Karp, 1972], this formulation can be
used to develop heuristics for solving the general case (see chapter 5). It is particularly
useful when there are only two punches. In this case, the underlying hitting set problem
can be solved efficiently as follows.

Two Punches

Considering the case of two punches (J = 2), they can be assumed to be placed at
relative positions

s1 > 0 > s2 (4.2)

without loss of generality.
Note that the vertices of G can be ordered, as they all represented x-coordinates of

either holes or machine positions.

Proposition 4.4. The graph G induced by SPP2 is cycle-free.

Proof. To each hole vertex xn there are exactly two incident edges, namely from the
machine position vertices xn− s1 < xn and xn− s2 > xn. Conversely, to each machine

35

4. Computational Complexity

position vertex si there are at most two incident edges, namely from the hole vertices
si + s1 > si and si + s2 < si. (All inequalities hold because of (4.2).) Thus, if a
vertex v in G is connected to two vertices v1 < v2, then

v1 < v < v2 (4.3)

holds.
Now let C be a cycle in G and consider its smallest (“leftmost”) vertex v in C. As C

is a cycle, v has to be connected to two vertices v1, v2 in C. Assume without loss of
generality that v1 < v2 holds, which in turn implies (4.3), a contradiction to v being
the smallest vertex in C.

Corollary 4.5. G is a union of paths, as G is cycle-free and the degree of every vertex
in G is not greater than 2.

Remark. This is not necessarily true when J ≥ 3. As shown in Figure 4.1, there is a
cycle (x3, s8, x5, s10, x4, s9, x3).

Note that the minimum hitting set in a path

(v1, v2, . . . , vr−1, vr) (4.4)

is simply given by {v2, . . . , vr−1}.

Theorem 1. SPP2 can be solved using O(N) time and space.

Proof. The graph G can be constructed in O(N) time using O(N) space. A minimum
hitting set in G is given by the union of minimum hitting sets of the paths in G. To
solve SPP2, we only have to sum up the lengths (r − 2) of the minimum hitting sets
{v2, . . . , vr−1} in individual paths of the form (4.4) in G, which can be done in linear
time.

4.2. NP-Completeness

We leave an extensive definition and discussion of NP-complete problems to the book
of Garey and Johnson [1979]. In this context, we only mention a few important
definitions as given by Papadimitriou and Steiglitz [1982, p. 342ff.].

Definition 4.6 (P). A recognition problem P is said to be in the class P if there exists
an algorithm A that decides P in polynomial time.

Definition 4.7 (NP). A recognition problem P is said to be in the class NP if there
exists a polynomial p and an algorithm A (the certificate-checking algorithm) such
that a string x is a yes instance of P if and only if there exists a string c(x) (the
certificate) with |c(x)| ≤ p(|x|) and the property that A with input c(x) returns yes
after at most p(|x|) steps.

36

4.3. Related Problems and Approximations

Remark. It is crucial that both the size of the certificate and the running time of the
certificate-checking algorithm are polynomial in the size of the input x. Without loss
of generality, both can be assumed to be bounded by the same polynomial p.

The notions of algorithms, their input, output, and running time are based on
the concept of Turing machines introduced by Turing [1936]. Intuitively speaking,
problems in NP are (potentially) hard to solve, but solutions are easy to verify given
a corresponding certificate. Problems in NP are particularly interesting because they
can be reduced to a subclass of problems. This was first approached by Karp [1972].

Definition 4.8 (Polynomial-time reductions and transformations). A problem P1
polynomially reduces to P2 if there exists a polynomial-time algorithm A1 for P1 that
uses as a subroutine “at unit cost” an algorithm A2 for P2.
A problem P1 polynomially transforms to P2 if there is a polynomial-time reduction

from P1 to P2 with just one call of the subroutine for P2 at the end of the algorithm
for P1.

Definition 4.9 (NP-hardness). A problem P is said to be NP-hard if all problems in
NP polynomially transform to P .

Remark. An NP-hard problem does neither have to be in NP itself (such as the halting
problem introduced by Turing [1936]) nor does it have to be a recognition problem
(such as the hitting set problem).

Definition 4.10 (NP-completeness). A recognition problem P is said to be NP-
complete if P is in NP and P is NP-hard.

Due to polynomial-time reductions to NP-complete problems, if any NP-complete
problem can be solved in polynomial time, all problems in NP can. However, the ques-
tion whether NP equals P is still open [Fortnow, 2009]. The majority of researchers
believes NP 6= P, though [Gasarch, 2012], and looking for efficient algorithms to solve
NP-hard problems seems rather hopeless.

4.3. Related Problems and Approximations

As stated in section 4.1, the simplified punching problem can be reduced to the hitting
set problem in bipartite graphs, which is NP-hard. This is in turn equivalent to the
following set cover problem.

Definition 4.11 (Set cover problem). Given a set of elements U (the universe) and
a set S of n sets S = {S1, . . . , Sn} with

U =
n⋃
i=1

Si,

the set cover problem (SC) is to find the smallest number k of sets that still cover U ,
that is, U =

⋃
i∈K Si with a set K ⊆ {1, . . . , n} and |K| = k.

37

4. Computational Complexity

The equivalence to the hitting set problem in a bipartite graph G = (U] V,E) can
be seen by relating

U = U , V = S = {S1, . . . , Sn},

and edges representing the inclusion of elements in sets, that is,

E = {{u, Si} | u ∈ U, u ∈ Si} .

The minimum set cover corresponds to the minimum hitting set by vertices in V .
The set cover problem can be formulated as the integer linear program (see sec-

tion 3.5)

(SC) min
∑
S∈S

xS

subject to
∑
S:u∈S

xS ≥ 1 ∀u ∈ U (4.5)

xS ∈ {0, 1} ∀S ∈ S.

In this program, xS reflects the decision whether set S should be part of the cover.
Equation (4.5) ensures that every element u ∈ U is covered by at least one set in the
cover [Vazirani, 2001, p. 108f.].
The ILP formulation (SC) is particularly interesting because it yields an approxi-

mation algorithm for SC. By relaxing the integer condition of the variables 0 ≤ xS ≤ 1
in (SC) and solving the corresponding linear program (SCR) in polynomial time, we
get a fractional cover of U . Lovász [1975] proved that the integrality gap of this
relaxation is the nth harmonic number defined by

Hn =
n∑
k=1

1
k
≤ lnn+ 1,

that is, the optimal value z of (SC) is bound by the optimal value z′ of (SCR) through

z ≤ Hnz
′.

This yields a logn-approximation algorithm for SC, where the approximation ratio of
an algorithm is defined as follows [Papadimitriou and Steiglitz, 1982, p. 409].

Definition 4.12 (Approximation algorithm). Let P be a minimization problem with
positive cost function c, and let A be an algorithm returning a feasible solution fA(I)
for each instance I of P . Denote the optimal solution for instance I by f∗(I). Then
A is called an ε-approximation algorithm if

c(fA(I)− c(f∗(I))
c(f∗(I)) ≤ ε

for all instances I of P .

38

4.4. Dynamic Programming Solution

The fractional cover resulting from the relaxed linear program (SCR) can be turned
into an approximate feasible cover for (SC) via randomized rounding as described by
Raghavan and Tompson [1987]. Using conditional probabilities, this can be turned
into a deterministic algorithm [Young, 1995].
However, Lovász [1975] already presented a greedy algorithm that achieves the

same Hn approximation ratio by choosing the set that contains the largest number of
uncovered elements at each stage.
There is little hope that there is a significantly better approximation algorithms, as

the following lower bounds on the approximation ratio have been proven. Lund and
Yannakakis [1994] showed that set covering cannot be approximated to within a ratio
of 1

2 log2 n in polynomial time, unless NP has quasi-polynomial time algorithms (which
is believed not to be a case, although this is a stronger assumption than NP 6= P).
Feige [1998] improved this bound to (1− o(1)) lnn. Raz and Safra [1997] showed a
lower bound of c lnn under the weaker assumption that NP 6= P. Alon,Moshkovitz,
and Safra [2006] improved the constant c further.
Consequently, the greedy algorithm seems like a reasonable approach to the set cov-

ering problem, which is why we make use of it in the heuristics presented in chapter 5.

4.4. Dynamic Programming Solution

Even though the general hitting set problem is NP-hard, we show that its special case
of the simplified punching problem is solvable in polynomial time under an additional
assumption. We already proved this for two punches (see Theorem 1). In this section,
we present a solution to the general case. However, to simplify notations, we only
formulate the case of three punches (J = 3) here. Still, the presented algorithm can
easily be generalized to an arbitrary (yet constant) number J of punches.
Without loss of generality, let s1 = b (the right punch), s2 = 0 (the middle punch),

and s3 = −a (the left punch). Furthermore, we assume that the holes are sorted in
ascending order, that is, x1 < x2 < · · · < xN . Note that there are no equal positions
because the holes are given as a set according to Definition 4.1.
The additional assumption regards the number of holes in each interval of the size

of the machine, a+ b. This number shall be bounded by a constant C, that is,

|{x1, . . . , xN} ∩ [z, z + a+ b]| ≤ C (4.6)

for each start z of an interval of length a+ b. This can be interpreted as a constraint
on the “density” of the given hole pattern.

Definition 4.13 (Simplified punching problem with density constraint). The simpli-
fied punching problem with J punches and density C (SPPJ,C) is defined as SPPJ
with the additional constraint given by (4.6).

Remark. When the hole positions x1, . . . , xN are integers, constraint (4.6) is fulfilled
with C = a+ b+ 1.

39

4. Computational Complexity

We present a solution of SPP3,C using dynamic programming. The crucial data
that is constructed is the number of punching steps that are needed to punch all holes
up to n ∈ {1, . . . , N} and a set S of holes > n that are punched as well together with
holes ≤ n. Specifically, the algorithm builds up values

ASn , n ∈ {1, . . . , N}, S ⊆ {x1, . . . , xN}

representing the minimum number of punching steps to punch holes {1, . . . , n}, and
each hole m ∈ S is punched in a punching step together with at least one hole k ≤ n.
This implies that the position of the rightmost hole in S can be xn + a+ b at most,

maxS ≤ xn + a+ b. (4.7)

Thus, all holes in S lie within an interval [xn, xn +a+ b], so S is actually restricted by

S ⊆ {x1, . . . , xN} ∩ [xn, xn + a+ b].

Therefore, the size of S is limited by |S| ≤ C because of (4.6).
Additionally, we distinguish the punches that punch the “last” hole n in dynamic

programming. That is, we introduce variables

LSn , MS
n , RSn

analogously to ASn with the additional constraint that hole n is punched by the left,
middle, or right punch, respectively.
The initial conditions are

A∅0 = 0, (4.8)

as an empty set of holes can be punched in 0 steps, and

LS0 = MS
0 = RS0 =∞ for any S, (4.9)

as there can be no restrictions on holes being punched by certain punches when there
are no holes punched. Furthermore,

LSn = MS
n = RSn =∞ for maxS > xn + a+ b (4.10)

by (4.7).
When there is no particular restriction on the punch being used to punch hole n,

the number of needed punching steps until hole n is given by the minimum over any
assigned punch to hole n,

ASn = min{LSn ,MS
n , R

S
n} (4.11)

with an arbitrary set S of additional holes.
Now consider LSn . When the current hole n is restricted to use the left punch, the

punching of n cannot be performed together with another hole < n. When reducing

40

4.4. Dynamic Programming Solution

the case to the punching AS′n−1 of all holes up to hole n − 1, we only have to decide
which holes in S shall be punched together with a punch happening in the process of
AS
′

n−1. We do this by enumerating all possible subsets S′ ⊆ S. The rightmost hole that
can be punched in the process of punching the holes up to hole n − 1 is at position
xn−1 + a+ b, so we can restrict S′ to the interval

In−1 = [xn−1, xn−1 + a+ b].

When punching the hole at xn with the left punch, the holes at xn + a and xn + a+ b
are punched as well, so we can exclude them from further restrictions. For shorter
notation, let

X(p) = {p− a, p, p+ b}

denote the set of hole positions punchable from position p. This results in

LSn = min
S′⊆S∩In−1

1︸︷︷︸
current step

punching X(xn + a)

+ A
S′\X(xn+a)
n−1︸ ︷︷ ︸

holes punched until n− 1

+ F (S \ (S′ ∪X(xn + a)))︸ ︷︷ ︸
remaining holes

, (4.12)

where F (T) is defined as the minimum number of punching steps for punching all
holes in T ⊆ {x1, . . . , xN}.
The function F (T) can be computed by full enumeration of all assignments f(t)

from holes t ∈ T to punches j ∈ {1, 2, 3}, that is,

F (T) = min
f :T→{1,2,3}

∣∣∣{t− sf(t) | t ∈ T}
∣∣∣ . (4.13)

Note that t − sf(t) is the machine position when punching a hole at position t with
a punch f(t) at relative position sf(t). The value of F ({x1, . . . , xN}) would be the
solution to the whole problem SPP3,C computed in exponential time. However, we
only apply F to sets of size at most C in our algorithm, which needs constant time.
When the current hole n is restricted to use the middle punch, the punching might

be performed together with a previous hole at position xn − a punched by the left
punch. Therefore, we consider the minimum number L′ of steps to punch all holes
up until xn − a, where the hole at position xn − a is punched by the left punch and
all remaining holes from position xn − a to xn−1 are punched as well. To simplify
notation, we define

index(z) =

k if xk = z

0 otherwise

to be the (index of the) hole at position z. Furthermore, let

range(z, n) = [z, xn−1] ∩ {x1, . . . , xN}

41

4. Computational Complexity

be the set of x-positions of holes before hole n with x-position at least z. Then L′ can
be expressed as

L′ = L
S′∪range(xn−a,n)
index(xn−a) .

With the rest being similar to LSn , this results in

MS
n = min

S′⊆S∩In−1
min

{
1 +A

S′\X(xn)
n−1 + F (S \ (S′ ∪X(xn))),

L
S′∪range(xn−a,n)
index(xn−a)︸ ︷︷ ︸

hole at xn − a with left punch,
rest punched until xn−1

+F (S \ (S′ ∪X(xn)))
}
. (4.14)

Note that when there is no hole at position xn−a to punch the current hole n with in a
single step, index(xn− a) = 0 and therefore L′ =∞ by eq. (4.9). Then, the minimum
is achieved by the first of the two expressions, assuming correctly that hole n has to
be punched in a separate step from the holes up to n− 1.
Likewise,

RSn = min
S′⊆S∩In−1

min
{

1 +A
S′\X(xn−b)
n−1 + F (S \ (S′ ∪X(xn − b))),

M
S′∪range(xn−b,n)
index(xn−b)︸ ︷︷ ︸

hole at xn − b with middle punch

+F (S \ (S′ ∪X(xn − b))),

L
S′∪range(xn−a−b,n)
index(xn−a−b)︸ ︷︷ ︸

hole at xn − a− b with left punch

+F (S \ (S′ ∪X(xn − b)))
}

(4.15)

expresses the fact the a hole can be punched in a new step or with the right punch
together with a hole punched by the left or middle punch.
The solution to SPPJ,C is simply given by A∅N , the minimum number of punching

steps to punch all holes {x1, . . . , xN} with no extra holes.
Algorithm 4.1 outlines the whole dynamic programming approach, incorporating

eqs. (4.8), (4.9), (4.11), (4.12), (4.14) and (4.15). It uses recursive calls to proxy the
underlying variables LSn ,MS

n , RSn that are used to cache known results in order to avoid
repeated computations. An implementation of the algorithm in Python is presented
in appendix C.

Proposition 4.14. Algorithm 4.1 terminates.

Proof. On each invocation of L, M, R, the functions A, M, or L are potentially called
with parameter n reduced by at least 1. The function F can obviously be computed
in finite time. Calling A will potentially invoke L, M, or R with the same value of n,
but then n will be reduced by at least 1. Thus, the depth of the recursion tree (see
Figure 4.2) is bounded by 2n, and the algorithm terminates by (4.8) or (4.9) in each
branch.

42

4.4. Dynamic Programming Solution

Algorithm 4.1: Solving the simplified punching problem with density constraint using
dynamic programming.
1: Initialize LSn , MS

n , RSn to null
for all n ∈ {1, . . . , N} and all S ⊆ {x1, . . . , xN} ∩ [xn, xn + a+ b].

function A(n, S)
3: if n = 0 ∧ S = ∅ then

return 0 . eq. (4.8)
5: else

return min{L(n, S),M(n, S),R(n, S)} . eq. (4.11)
7: function L(n, S)

if maxS > xn + a+ b then
9: return ∞ . eq. (4.10)

if LSn = null then
11: if n = 0 then

LSn ←∞ . eq. (4.9)
13: else

LSn ← min
S′⊆S∩In−1

1 + A(n− 1, S′ \X(xn + a)) + F (S \ (S′ ∪X(xn + a)))

. eq. (4.12)
15: return LSn

Use eqs. (4.14) and (4.15) to define M(n, S) and R(n, S) analogously.
17: return A(N, ∅)

A∅
N

L∅
N

A∅
N−1

L∅
N−2 M∅

N−2 R∅
N−2

M∅
N

A∅
N−1 L

range(xN−a,N)
index(xN−a)

AS′
index(xN−a)−1

∀S′ ⊆ range(xN − a,N)

R∅
N

A∅
N−1 L

range(xN−b,N)
index(xN−b)

...

∀S′ ⊆ . . .

M
range(xN−a−b,N)
index(xN−a−b)

...

∀S′ ⊆ . . .

...

A∅
0, L

S
0 , M

S
0 , R

S
0

Figure 4.2: Recursion tree of the dynamic program. The algorithm starts with
calculating A∅N by recursive calls to the computation of L∅N , M∅N ,
and R∅N . It continues down to its leaves containing values for A∅0,
LS

0 , MS
0 , and RS

0 .

43

4. Computational Complexity

Proposition 4.15. Algorithm 4.1 performs at most N2C writes to LSn , MS
n , RSn , each

(such as in lines 12 and 14).

Proof. No computed value is ever overwritten due to the initialization to null (line 1)
and writes only happening when a value is null (line 10). Thus, the number of writes
is bound by the number of distinct values of n and S, which is at most N2C , as S is
a subset of a set with a maximum of C elements.

Theorem 2. SPPJ,C can be solved in O(N12CC logC) time and O(N2C) space.

Proof. When a function in Algorithm 4.1 is called and no write to LSn , MS
n , or RSn

occurs, only basic comparisons and calculations are performed, so the function is
computed in constant time, assuming that the sets S are stored in a sorted way so
that the maximum can be computed efficiently.
When a write happens, at most 2C subsets S′ ⊆ S are iterated through. For each of

them, a recursive call happens, which in turn either runs in constant time or is covered
by this analysis when a write happens. Furthermore, the function F (T) as given by
eq. (4.13) has to be computed, where |T | ≤ |S| ≤ C. In this computation, 3|T | ≤ 3C
assignments f : T → {1, 2, 3} from holes to punches are iterated through, and in each
case a list of |T | ≤ C values has to sorted in C logC time to obtain the size of the
corresponding set of machine positions.
Considering that there are at mostN2C writes by Proposition 4.15, the total running

time of Algorithm 4.1 is

N2C2C3CC logC = N12CC logC. (4.16)

The space required to store LSn , MS
n , and RSn is obviously of size O(N2C).

Corollary 4.16. SPPJ,C is in P for fixed J and C.

Remark. The complexity of the simplified punching problem without density constraint
is still an open question as well as the complexity of the original (un-simplified) punch-
ing problem.

We implemented the dynamic program in Python (see appendix C) and it performs
quite fast indeed. However, there are two major limitations to the relevance of this
result for solving practical problem instances.
• The simplified version does not take holes with identical x-positions, different
y-positions, and different hole types into account.
• The worst-case computation time is rather long due to the factor 12C in (4.16).

Therefore, we propose a heuristic approach to solve the punching problem in practice
in the following chapters.

44

CHAPTER 5

Algorithm for Fixed Configurations

As both the speed and the step punching problem are inefficient to solve exactly in
a reasonable amount of time, we propose heuristics targeted towards finding good
solutions to practical problem instances as given by the commissioning companies.
The core part of our algorithm computes a punching plan for a given (fixed machine)

configuration, that is,
• a fixed equipment of the punches with tools and
• fixed relative x-positions assigned to all punches, which corresponds to disabling
their dynamic x-movement by setting X = 0.

As outlined in chapter 4, the resulting punching problem is related to the hitting
set problem and can be viewed from a graph-theoretic viewpoint. By considerations
described in section 4.3, the problem is reasonable to approximate using greedy heuris-
tics.
Therefore, our heuristic approach to the punching problem with fixed machine con-

figuration consists of the following parts.
1. A set of “plausible” fixed machine configurations is determined by

a) generating all feasible equipments, as described in section 5.1,
b) determining distances of hole types in the punching plan (section 5.2), and
c) mapping some of these distances on machine configurations (section 5.3).

2. Given a fixed configuration, a corresponding bipartite graph of holes and machine
positions is constructed, as described in section 5.4.

3. Using heuristics described in section 5.5, a solution to the underlying hitting set
problem is generated, which corresponds to minimizing the machine stops in the
punching plan.

The best resulting punching plan is chosen. An overview is given in Algorithm 5.1.
When dynamic machine configurations are taken into account, additional heuristics

45

5. Algorithm for Fixed Configurations

Algorithm 5.1: Overview of the algorithm to solve the punching problem.
1: Generate a set E of equipments.

Generate a set C of configurations using distances occurring in the pattern.
3: for all configurations C ∈ C do

Determine a corresponding punching plan SC .
5: Choose the plan SC with minimum costs.

can be employed to further improve the results generated by the approach using fixed
configurations. These additions are presented in chapter 6.
Throughout this chapter and the next, we will use variables described in Table 5.1.

Table 5.1: Common variables in algorithms.

Variable Explanation

zn the tool required for hole n (so that znzn = 1)
Hj set of holes n that can be potentially punched by punch j

regarding restrictions on the assigned tool and y-position
(that is, Tj,zn = 1 and V j ≤ yn ≤ V j)

Tj set of types zn of holes n ∈ Hj that can be punched by
punch j

T set of all hole types occurring in the pattern
C = (tj , sj)j a fixed machine configuration consisting of types tj and po-

sitions sj of the individual punches j
C a set of configurations C
N a subset N ⊆ {1, . . . , N} of holes

Example 5.1 (Example 3.1 continued). In the given hole pattern shown in Figure 2.2,
two hole types occur: circles (type 1) and squares (type 2). The variable zn is set
according to the types assigned to individual holes.

n→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
zn 1 1 2 2 1 1 1 1 1 1 2 2 1 1

Holes of both types have y-positions in the [V j , V j]-range for all punches, which
includes the interval [−500, 500] in any case (see the given positions in Example 3.1
and the machine parameter values as given by eqs. (3.31) and (3.32) in section 3.4).
Assuming that there are no additional constraints on the tools that can be assigned

to the individual punches by Tjt, the set of possible types is

Tj = {1, 2}

46

5.1. Determining Equipments

for all punches j. As each punch can punch every hole when assigned the corresponding
tool, the set of potentially punchable holes is

Hj = {1, . . . , N}

for all punches j.

Asymptotic analysis To analyze our proposed algorithm theoretically, we examine
its asymptotic runtime and memory requirements. In this analysis, J is the number of
punches, N is the number of holes, and T is the number of distinct tools (hole types).
Note that

T ≤ J ≤ N.

The numbers T and J are treated as constants in our analysis, as the number of
punches is fixed (J = 12 in practice) and there cannot be more distinct hole types
than punches in a feasible pattern.
Furthermore, the maximum number Ny of holes with the same y-position is impor-

tant for the analysis of our algorithm. While Ny could be as high as N in theory, in
practice it is very low, usually not being higher than 6.
Remark. Elementary operations such as comparisons, additions and multiplications are
assumed to run in constant time. To simplify the analysis, primitive set operations
(inclusion, deletion, and test for inclusion of a single element) are assumed to run in
constant time as well; in theory, they could contribute a logarithmic factor in the worst
case, whereas other implementations allow for an amortized constant analysis [Knuth,
1998].

Besides theoretical considerations, a practical evaluation of our algorithm is pre-
sented in chapter 7. Some minor algorithms that would only clutter the main part of
this chapter (and the following) are specified formally in appendix A.

5.1. Determining Equipments

When generating configurations, all feasible equipments can be iterated through, as
the number of distinct hole types is very limited in practice. We deem an equipment
feasible if
• the punches are assigned allowed tools (as restricted by the parameter Tjt),
• the punches are only assigned types of holes that they can punch with regards

to their y-positions (limited by the parameters V j , V j), and
• all hole types are represented in the equipment.

This results in the following procedure to determine feasible equipments (see Algo-
rithm 5.2).
For each punch j, we consider the types zn of all holes n that are within the y-range

of j (that is, V j ≤ yn ≤ V j) and that can be punched by j (Tjzn = 1; see line 9). All

47

5. Algorithm for Fixed Configurations

such possible types zn are stored in a set Tj (line 10) and all corresponding holes are
included in a set Hj (line 11).
Punches might not be used at all in the process, especially when no holes are within

their y-range. In this case, an arbitrary allowed type t for punch j (that is, Tjt = 1)
is chosen (line 13).
Equipments are finally formed by picking a possible type for each punch j. There-

fore, the Cartesian product
⊗
j Tj represents the set of possible equipments. Finally,

this set is filtered to ensure that all hole types T are represented in the equipment,
that is, only equipments E that include all types in T are considered (line 14). The
resulting set of feasible equipments is denoted by E .

Algorithm 5.2: Equipments of punches with tools.
1: function Equipments

for j ← 1, J do
3: T ← ∅ . set of all hole types in the given pattern

Tj ← ∅ . set of possible types for punch j
5: Hj ← ∅ . set of holes potentially punched by punch j

for n← 1, N do
7: Set zn such that znzn = 1. . the tool required for hole n

T ← T ∪ {zn}
9: if Tjzn = 1 ∧ V j ≤ yn ≤ V j then

Tj ← Tj ∪ {zn} . include type zn in possible types
11: Hj ← Hj ∪ {n} . include hole n in punchable holes

if Tj = ∅ then
13: Tj ← {(any t with Tjt = 1)} . assign any allowed type

when no holes in reach
return

{
E ∈

⊗
j Tj | ∀t ∈ T : t ∈ E

}
. generate all possible combinations of types and

filter them so that each hole type is represented at least once

Example 5.2 (Example 5.1 continued). As

Tj = T = {1, 2} and Hj = {1, . . . , N}

for all punches j, the resulting set of equipments is the set of tuples that contain at
least one 1 and at least one 2, that is,

E = {(tj)j | tj ∈ {1, 2},∃j : tj = 1, ∃j : tj = 2}.

5.2. Distances in the Pattern

Configurations where tools (hole types) occur at distances that are also present in the
hole pattern are likely to enable punching of several holes in a single step, which is a
crucial objective in both the step and the speed punching problem.

48

5.2. Distances in the Pattern

hole n
at position xn

hole m
at position xm

xm − xn
punch j punch k

Figure 5.1: Distance between two holes n, m mapped to a distance between two
punches j, k.

Particularly, given two punches j, k and respective hole types tj , tk, we want to
find the set of distances Djk of corresponding holes that can be punched together (see
Algorithm 5.3). This can be done by stepping through all pairs of holes n, m and
taking the following constraints into account (line 5).
• Hole n must have hole type tj (that is, zn = tj) and must be punchable by

punch j with regards to limits on its y-position (n ∈ Hj).
• Hole m must have hole type tk (zm = tk) and must be punchable by punch k
(m ∈ Hk).
• The x-distance between holes n and m must be a feasible x-distance for the
punches j and k (Xkj ≤ xm − xn ≤ Xkj).

An illustration of this mapping from the distance between two holes to the distance
of two punches is shown in Figure 5.1. Note that we allow the distance xm− xn to be
negative when punch k is placed to the left of punch j.
To ensure that each punch can be inserted somewhere even when there is no cor-

responding distance in the hole pattern, the minimum and maximum distances Xjk,
Xjk between two punches are always included in the set of relevant distances (line 2).

Algorithm 5.3: Computing the set of distances from holes of type tj to tk occurring
in the hole pattern, punchable by punches j and k, respectively.
1: function Pattern-Distances(j, k, tj , tk)

Djk ← {Xkj , Xkj} . include minimum and maximum distance
between j and k regardless of given pattern

3: for n← 1, N do
for m← 1, N do

5: if zn = tj ∧ zm = tk ∧ n ∈ Hj ∧m ∈ Hk ∧Xkj ≤ xm − xn ≤ Xkj

then
Djk ← Djk ∪ {xm − xn}

7: return Djk

Example 5.3 (Examples 2.1, 3.1, and 5.2 continued). Considering the punches j = 3
and k = 1 with types t1 = 2 and t3 = 1, we are interested in the distances between
holes punchable by them at the same time. The minimum and maximum distances of
the punches are Xkj = X13 = 1100 and Xkj = X13 = 12550, respectively, as given by
eqs. (3.28) and (3.29).

49

5. Algorithm for Fixed Configurations

hole 1
at x1 = 0

of type z1 = 3

hole 2
at x2 = 700

of type z2 = 3

hole 3
at x3 = 1500
of type z3 = 2

hole 4
at x4 = 2500
of type z4 = 1

Figure 5.2: Simple hole pattern.

Therefore, the punches can potentially punch together hole 5 at position x5 = 11750
and hole 3 at x3 = 6050, as

X13 = 1100 ≤ x5 − x3 = 11750− 6050 = 5700 ≤ 12550 = X13.

The same holds true for hole 6 and hole 4. This is visible in Figure 2.4, where these
holes are punched together in the first step. Furthermore, hole 15 at x15 = 72350 and
hole 11 at x11 = 65950 can be punched together by the punches 3 and 1, as

X13 = 1100 ≤ x15 − x11 = 72350− 65950 = 6400 ≤ 12550 = X13.

Again, the same holds for hole 16 and hole 12. There are no other combinations of holes
that are within the limits on the distance between punch 1 and punch 3. Therefore,

D31 = {5700, 6400}

in this case.

Example 5.4. In the simple hole pattern depicted in Figure 5.2, the following feasible
distances occur, assuming punches 1, 2, 3 with types 1, 2, 3 that can punch the
corresponding holes with regards to y-restrictions:

D12 = {−1000}
D13 = {−2500,−1800}
D21 = {1000}
D23 = {−1500,−800}
D31 = {1800, 2500}
D32 = {800, 1500}.

5.3. Generating Configurations

For each equipment in the set E of feasible equipments of the machine (see section 5.2),
several fixed configurations are constructed. We do this by considering distances be-
tween two hole types that occur in the given hole pattern and including these distances
in the configuration.
To generate configurations given an equipment E = (tj)j of punches j with tools tj ,

we consider all permutations σ of the punches and fix the positions of the punches

50

5.3. Generating Configurations

Algorithm 5.4: Generating fixed configurations by assigning static positions to
punches.
1: function Filter-Configurations(C, n)

return set of ≤ n random elements of C
3: function Configurations

E ← Equipments . get assignments and set z and H
5: C ← ∅ . resulting set of configurations

(punches with types and positions)
for all E = (tj)j ∈ E do

7: CE ← ∅ . overall set of fixed punch positions for assignment
for all σ ∈ permutations(1, J) do

9: Ĉ ← ∅ . empty configuration
Ĉσ1 ← (tσ1 , 0) . assign position 0 to punch σ1

11: Cσ,1 ← {Ĉ} . start with configuration where punch σ1 is at 0
for k̃ ← 2, J do

13: k ← σk̃ . current punch
Cσ,k̃ ← ∅ . new positions including current punch

15: for all j̃ ← 1, k̃ − 1 do
j ← σj̃ . punch j is the “predecessor” of k

17: Djk ← Pattern-Distances(j, k, tj , tk)
for all d ∈ Djk do

19: for all C ∈ Cσ,k̃−1 do
(tj , sj)← Cj . type and position

of the predecessor j
in the existing configuration C

21: C ′ ← C
C ′k ← (tk, sj + d) . insert punch k at position sj + d

23: if Is-Configuration-Feasible(C ′) then
Cσ,k̃ ← Cσ,k̃ ∪ {C ′}

25: Cσ,k̃ ← Filter-Configurations(Cσ,k̃, Lstep)
CE ← CE ∪ Filter-Configurations(Cσ,J , Lpermutation)

27: C ← C ∪ Filter-Configurations(CE , Lequipment)
C ← Filter-Configurations(C, Lall)

29: return {Normalize-Positions(C) | C ∈ C}

51

5. Algorithm for Fixed Configurations

after each other in the order of σ. Given a new punch k, we consider all already fixed
punches j as “predecessors.” For each of them, we determine all distances from holes
of type tj to holes of type tk such that these holes can be punched in a single step by
the punches j and k, respectively. Then we add punch k at each of these distances
(see Algorithm 5.4).
Specifically, we construct configurations CE for each equipment E = (tj)j ∈ E as

determined by Algorithm 5.2. For each permutation σ of the punches, we construct
configurations by iteratively adding punches in the given order σ. That is, we start
with an empty configuration ∅ (no punches fixed yet; line 9) and place the first punch σ1
at position 0 (line 10). Let Ĉ be the resulting configuration.
Let Cσ,r denote the set of already constructed configurations for permutation σ after

adding r punches, where we start with Cσ,1 = {Ĉ} (line 11). Then, we step through
all remaining punches k in the order of the permutation σ; that is, we consider k = σk̃
for k̃ ∈ {2, . . . , J}. We add punch k to all existing configurations in Cσ,k̃−1 at distances
occurring in the given hole pattern.
To achieve this, we step through all potential predecessors j = σj̃ (for j̃ ∈ {1, . . . , k̃−

1}) of punch k and consider the set of distances Djk from holes punchable by j to holes
punchable by k (line 17), as determined by Algorithm 5.3.
For each distance d and each existing configuration C ∈ Cσ,k̃−1, we construct a new

configuration C ′ by adding punch k at distance d from the predecessor j, which results
in position sj + d (line 22) assuming (tj , sj) = Cj are type and position of punch j
in C. The new configuration C ′ is added to Cσ,k̃ (line 24) provided that it is feasible.
Although punches are added sequentially at feasible distances to their predecessors,

constraints on the x-distances to other punches might get violated during the course.
Thus, we have to check whether a generated (partial) configuration is feasible with
regards to the x-positions of the punches. This can simply be done by stepping through
all pairs of punches j, k and testing whether their x-distance sj − sk is feasible, that
is,

Xjk ≤ sj − sk ≤ Xjk (5.1)

as constrained by (3.15) (see Algorithm A.1 in appendix A).
Note that neither the fact that the configuration is partial (not necessarily all

punches are part of it yet) nor that it is not “centered” at the reference punch j
yet impose a problem when checking differences between the positions of the (already
fixed) punches.
To limit the number of generated configurations to a reasonable amount, the set of

configurations is filtered randomly at several points in the algorithm, reducing it to
sizes specified by parameters Lstep, Lpermutation, Lequipment, and Lall.
• By adding a single punch (a step in the permutation σ), no more than Lstep

configurations are added (line 25).
• For each permutation σ, a maximum of Lpermutation configurations are kept
(line 26).

52

5.3. Generating Configurations

• For each equipment (tj)j , a maximum of Lequipment configurations are kept
(line 27).
• Altogether, no more than Lall configurations are generated (line 28).

At each of these points, the set of generated configurations is limited to a maximum
number of L... random elements (line 2). Possible choices of these parameters and
their impact on the results are discussed in section 7.6.
The positions sj assigned to punches resulting from this procedure are “relative”

in the sense that an arbitrary punch σ1 is assigned position 0 and all other punches
are positioned relative to σ1. For the sake of consistency, we can simply relate them
to the reference punch j by subtracting sj from each of them. Specifically, given a
configuration C = (tj , sj)j , we construct a normalized configuration C ′ by positioning
punch j at

s′j = sj − sj (5.2)

(see Algorithm A.2).

Example 5.5 (Example 5.4 continued). Consider the pattern depicted in Figure 5.2
and an equipment

E = (1, 2, 3)

of a punching machine with three punches. According to Algorithm 5.4, we step
through all permutations of these punches. Consider

σ = (1, 2, 3),

for instance. This permutation is stepped through in the algorithm.

1. Punch σ1 = 1 is placed at position 0 in a (partial) configuration Ĉ = ((1, 0))
specified by the type and position of its punches. This is included in the set

Cσ,1 = {Ĉ} = {((1, 0))}.

2. Then we add the second punch k = σk̃ = 2. Punch j = σ1 = 1 is chosen as the
predecessor of k = 2. Given D12 = {−1000}, punch 2 is added at distance −1000
from punch 1 to all existing configurations Cσ,k̃−1 = Cσ,1 (which is only one
configuration in this case), so we get the new set of configurations

Cσ,2 = {((1, 0), (2,−1000))}.

3. Finally, we add punch k = 3 with predecessors 1 or 2. The relevant distances are
D13 = {−2000,−2500} and D23 = {−1000,−1500}. Starting with Cσ,3 = ∅, we
step through the predecessors j, the occurring distances Djk, and the existing
configurations Cσ,2. For the single configuration C = ((1, 0), (2,−1000)) in there,
we add punch 3 at the corresponding distance to j, resulting in

Cσ,3 = {((1, 0), (2,−1000), (3,−1800)), ((1, 0), (2,−1000), (3,−2500))}.

53

5. Algorithm for Fixed Configurations

The set Cσ,J = Cσ,3 is added to CE , which is eventually added to the overall set C of
configurations.
To normalize positions, let us assume the reference punch is j = 2 in this case.

Then C is be modified to

{((1, 1000), (2, 0), (3,−800)), ((1, 1000), (2, 0), (3,−1500))}

through normalization as given by eq. (5.2).
Note that these two configurations are suited perfectly for punching the pattern

depicted in Figure 5.2.

An asymptotic analysis of the proposed algorithm to generate fixed machine config-
urations yields the following result.

Proposition 5.6. The set of plausible configurations resulting from Algorithm 5.4
can be generated in O(T JJ2J !N2) time using O(T 2J2N2) space.

Proof. The set of O(T J) equipments can be determined in O(JNT +T J) time (Algo-
rithm 5.2).
For each equipment, J ! permutations of the punches are considered, with J2 loops

through pairs of punches (Algorithm 5.4). The pattern distances can be cached using
O(J2T 2N2) time and memory (Algorithm 5.3). For each of the O(N2) distances D, at
most Lstep configurations are tested for feasibility, which can be done in O(J2) time.
The normalization of at most Lall configurations is finally done in O(J) time.
Altogether, we get a time requirement of

O(JNT + J2T 2N2 + T JJ !J2N2LstepJ
2 + LallJ) = O(T JJ2J !N2),

given that Lstep and Lall are constant and assuming J ≥ 2.
The space required is O(T 2J2N2) for the pattern distances. Equipments do not

have to be stored but can be enumerated “on the fly.” Each configuration needs O(J)
space, so at most

O(J max{Lstep, Lpermutation, Lequipment, Lall}) = O(J)

space is needed to store all configurations.

Remark. In practice, the N2 factor does not really emerge, because there are far less
relevant distances occurring between two hole types in the pattern, especially as only
distances up to certain limits Xjk, Xjk are considered. For all practical purposes, the
algorithm performs as if it were linear in N .

54

5.4. Constructing the Hole-Position Graph

punch
3

pu
nc
h 2

pu
nc
h
11

2

3 punch
3

punch
3 pu

nc
h
1

pu
nc
h
2

4
5

6

p1

p2

p3

holes

machine positions

Figure 5.3: Machine positions resulting from a fixed machine configuration and
a hole pattern with three different hole types circle (type 1), square
(type 2), and rhombus (type 3). Holes 1, 2, 3 can be punched together
in a single step p1, while holes 5 and 6 are too close together so they
have to be punched in separate steps p2 and p3 with the same x-
position of the machine.

5.4. Constructing the Hole-Position Graph

Given a fixed configuration C, we try to find a punching plan that makes few machine
stops. Minimizing the number of machine stops is obviously crucial to both the step
punching problem (Definition 3.4) and the speed punching problem (Definition 3.5).
We do this by constructing a bipartite graph of holes and machine positions as already
introduced in chapter 4 and propose heuristics to solve the hitting set problem therein.
As the relative positions sij = sj of all punches (relative to the reference punch j)

are fixed through all steps i, there is a unique absolute machine position from which
each hole n can be punched by a given punch j (if at all), namely xn − sj .
However, there might be machine positions from which several holes can be punched,

but not in a single step; for example, when there are two holes with the same x-
positions and types. In that case, we speak of distinct machine positions (although
their x-positions are identical) with different sets of punchable holes (see Figure 5.3).
Let the set of all resulting machine positions be P. This set P joined with the

set of holes N = {1, . . . , N} can be interpreted as the vertices of a bipartite graph
G = (P] N , E), where each vertex p ∈ P is connected to another vertex n ∈ N if n
can be punched from p.
This graph G is similar to the bipartite graph introduced in chapter 4 with the only

differences being that in the underlying punching problem
• holes might have the same x-positions and
• there might be several different hole types.

As there might be several machine positions at the same x-position, we cannot use it
to identify machine positions. Therefore, we use objects of type Position representing

55

5. Algorithm for Fixed Configurations

machine positions containing the following attributes.
• p ∈ R: their x-position,
• punches ⊆ {1, . . . , J}: the set of active punches at this machine position,
• n : punches→ {1, . . . , N}: a mapping from punches to punched holes, and
• pos : {1, . . . , J} → R: the relative positions of the punches.

The attributes pos is not necessary to identify a machine position and is simply set to
the static relative position of a punch in this phase of the algorithm. However, it is
used at a later point when dynamic machine configurations come into play.

Definition 5.7 (Object/attribute notation). To simplify notation, we write x.y to
denote the attribute named y of an object x. Objects are considered equal if and only
if all their attributes are equal.

In the case of Position objects p, p.p denotes their x-position, p.punches the set of
active punches at p, p.n the mapping to punched holes, and p.pos the relative positions
of the punches. Furthermore, we write Position(p, n) to denote the creation of an
object of type Position with attributes p and n set to the specified values.
Note that, as p.n is a function from active punches to their respective punched holes

at position p, the image Img p.n of this function is the set of all punched holes in this
step.

Example 5.8. Consider the hole pattern depicted in Figure 5.3 and three punches 1,
2, 3 that can punch hole types 1, 2, 3, respectively. Assuming that holes 2 and 3 are
far enough from each other that they can be punched together by punches 2 and 3,
that is,

Y 23 ≤ y2 − y3 ≤ Y 23

as demanded by (3.16), there is a single machine position p1 from which the holes 1,
2, 3 can be punched. As depicted in Figure 5.3, the attribute p1.n mapping punches
to punched holes at this machine position is set to

p1.n(1) = 2, p1.n(2) = 3, p1.n(3) = 1.

The set of active punches is

p1.punches = {1, 2, 3}

and the set of punched holes is given by

Img p1.n = {1, 2, 3}.

Contrarily, holes 5 and 6 are too close to each other so that they have to be punched
in separate punching steps with machine positions p2 and p3. The attribute p2.n is set
to

p2.n(1) = 5, p2.n(3) = 4,
while p3.n is set to

p3.n(2) = 6, p3.n(3) = 4.

56

5.5. Punching Plan by Hitting Set Heuristics

To determine the set of machine positions P, we start with an empty set and add
machine positions as we iterate through all holes n and punches j (see Algorithm 5.5).
For each combination, we test if punch j can punch hole n (see line 5), that is,
• punch j has the correct tool to punch hole n (zntj = 1) and
• hole n is on a feasible y-position for punch j (V j ≤ yn ≤ V j).

The resulting machine position p = sij (the absolute position of the reference punch j
in step i) from which j can punch n is given by p = xn − sj (line 6) because of

xn = sij = sij + sij = sij + sj

by eq. (3.1). We consider the set P of existing machine positions in P at x-position p.
If there are none (line 18), we simply add a new machine position where punch j
punches hole n.
Otherwise, we have to take restrictions on the y-positions of the existing punches

and the new punch j into account. Iterating through all existing machine positions
q ∈ P , we consider the set K of all punches k active in q that are “y-compatible” with
the new punch j punching hole n, that is,

Y jk ≤ yn − yq.n(k) ≤ Y jk

(line 9). If all the existing punches are compatible to the new punch j, that is,
K = q.punches, we can simply add j to q, provided that j is not active in q yet
(line 10). Otherwise, we construct a new machine position at p with all the compatible
punches K punching their respective holes and the new punch j being added (line 13).
Once the machine positions P are determined, the graph containing the punched

holes as well is simply given by

G = (P ∪ {1, . . . , N}, E)

with edges
E = {{p, n} | p ∈ P, n ∈ Img p.n}

between machine positions p and holes n if and only if n can be punched from p.

5.5. Punching Plan by Hitting Set Heuristics

As examined in chapter 4, the problem of finding a punching plan with a minimum
number of punching steps is related to the hitting set problem in the resulting graph
of holes and machine positions. As stated in section 4.3, greedy algorithms perform
well on the hitting set problem, which is why we propose such an approach to the
punching problem with fixed machine configuration as well.
The idea is to start with an empty punching plan, to step through the holes in a

given order σ, and to choose a machine position pn to punch each hole n from such
that the resulting costs after adding pn to the punching plan are minimal. In case of

57

5. Algorithm for Fixed Configurations

Algorithm 5.5: Possible machine positions for a given fixed machine configuration.
1: function Construct-Positions(C = (tj , sj)j)

P ← ∅
3: for n← 1, N do

for j ← 1, J do
5: if zntj = 1 ∧ V j ≤ yn ≤ V j then

p← xn − sj
7: P ← {q ∈ P | q.p = p}

for all q ∈ P do
9: K ← {k ∈ q.punches | Y jk ≤ yn − yq.n(k) ≤ Y jk}

. set of punches that are y-compatible
with the new punch j punching n

if j /∈ q.punches ∧K = q.punches then
. all already-assigned punches are
y-compatible with the new punch

11: q.n(j)← n
q.punches← q.punches ∪ {j}

13: else
q ← Position(p, q.n|K) . restrict active punches

to possible punches
15: q.n(j)← n

q.punches← K ∪ {j}
17: P ← P ∪ {q}

if P = ∅ then . create a completely new position
when there are no existing punching steps at this position

19: q ← Position(p, j 7→ n)
q.punches← {j}

21: P ← P ∪ {q}
for all p ∈ P do

23: p.pos← (sj)j . set the static machine positions (to be changed later)
return P

58

5.5. Punching Plan by Hitting Set Heuristics

a tie, that is, several machine positions result in the same costs, we choose a machine
position that allows a maximum number of other holes being punched as well. The
latter criterion is inspired by the hitting set algorithm proposed by Chvatal [1979].
As shown in Algorithm 5.6, vertices corresponding to holes are removed from the

graph as they are punched, which is why we operate on a copy G′ of G (line 3). By
removing already-punched holes from the graph, the degree degG′(p) of a machine
position vertex p is reduced and equals the number of unpunched holes that can still
be punched from p (line 8).

Algorithm 5.6: Hitting set for a given position-hole graph.
1: function Greedy-Plan(G, σ)

S ← ∅ . set of machine stops
3: G′ ← G . remaining graph

for ñ← 1, N do
5: n← σñ

for all p ∈ NeighborsG′(n) do
7: cp ← Plan-Costs(S ∪ {p})

dp ← degG′(p) . number of remaining (non-assigned) holes
that can be punched from position p

9: p̃← arg minp(cp,−dp) . choose position with minimum costs
and (in case of a tie) maximum number

of other non-assigned holes
S ← S ∪ {p̃}

11: for all m ∈ NeighborsG′(p̃) do . punch all holes
that can be punched from p̃ (including hole n)

Remove vertex m from G′.
13: return S

The costs of a punching plan are determined by summing up the costs arising be-
tween any two consecutive punching steps. Therefore, the machine positions have to
be sorted in ascending order with regards to their x-position p (see Algorithm A.3.
Any reasonable cost function c(d) that assigns the costs to an individual movement d

of the machine can be chosen (see section 3.3). A choice of c(d) = 1 would simply
result in the minimization of the number of punching steps.
After constructing the graph as described in section 5.4, several special orderings σ

are taken into account:
1. σ̂, the x-ordered set of holes, and
2. σ̃, the holes ordered by their degree in the graph G, that is, by the number of

machine positions from which they can be punched.
Each ordering is used in both directions, resulting in a set Σ of four orderings. For
every ordering σ, a punching plan Sσ is determined using the greedy approach, and
the plan with the minimum costs is chosen (see Algorithm A.4).

59

5. Algorithm for Fixed Configurations

Proposition 5.9. A punching plan for a given static configuration can be determined
with O(JNJ

y N) time and space.

Proof. Given a static machine configuration C at a fixed machine position p, there are
not more than NJ

y possible mappings from the punches to holes. This is the maximum
size of the set P in Algorithm 5.5. Therefore, the machine positions can be generated
in O(NJNJ

y) time.
A hole n can be punched by any of the J punches, inducing J different machine

positions with the above limit of NJ
y possible mappings from punches to holes as above.

Therefore, |NeighborsG(n)| ≤ O(JNJ
y) holds. Furthermore, |NeighborsG(p)| ≤ J holds

for a position p, so Algorithm 5.6 can be implemented to run in O(NJNJ
y) time if the

costs for a punching plan are updated incrementally as more holes are punched.
The graph G needs O(NJNJ

y) space and the resulting punching plans Sσ require
O(NJ) space each.

5.6. Overall Algorithm

The algorithms in sections 5.1 to 5.5 can be combined to yield the overall algorithm
solving the punching problem with fixed machine configuration, as already outlined in
Algorithm 5.1.

1. A set C of plausible configurations is generated.
2. For each configuration C ∈ C, a punching plan SC is determined using the fixed

configuration C.
3. A punching plan SC∗ with minimum costs is chosen.
Algorithm 5.7, a more formal version of Algorithm 5.1, also shows the final relation

of the punching plan defined by the set of Positions and the actual decision variables
in the punching problem.
• The equipment ujt follows from the types tj in the chosen configuration C =

(tj , sj)j (line 8).
• The relative punch positions sij in each punching step i are stored in the pos
attribute of Position objects (line 12).
• The absolute punch positions sij can be calculated from sij and the machine

positions p (line 12).
• The punched holes hijn follow from the images Img p.n of the functions p.n that

map active punches to their punched holes, as well as the depending variables
aij (line 16).
• The y-positions are forced for active punches as they have to match the y-
positions yn of their punched holes (line 15). For an inactive punch j, we choose
an arbitrary position with the following constraints (line 18).
– The y-position has to be within the limits [V j , V j].

60

5.6. Overall Algorithm

Algorithm 5.7: Solving the punching problem with fixed machine configuration.
1: function Punching-Problem

C ← Configurations
3: for all C = (tj , sj)j ∈ C do

SC ← Punching-Plan(C) . determine a punching plan
for fixed configuration C

5: C∗ ← arg minc∈C Plan-Costs(SC), S∗ ← SC∗

Initialize ujt, hijn, aij to 0.
7: for j ← 1, J do

ujtj ← 1
9: i← 1 . number of punching step

for all p ∈ S∗ do
11: for j ← 1, J do

sij ← p.pos(j), sij ← sij + p.p
13: if j ∈ Img p.n then . punch j is active in this step

n← p.n(j) . hole punched by punch j
15: vij ← yn . y-position of the punched hole

hijn ← 1, aij ← 1
17: else

Y ← [V j , V j] ∩
⋂
j′∈Img p.n[Y jj′ + yp.n(j′), Y jj′ + yp.n(j′)]

19: vij ← (arbitrary y-position ∈ Y)
i← i+ 1

– The y-distances to all active punches j′ ∈ Img p.n have to be feasible. The
minimum distance between j and j′ is given by Y jj′ , the maximum is Y jj′ ,
and punch j′ is positioned at the y-position y′p.n(j′) of its punched hole. This
yields the range ⋂

j′∈Img p.n
[Y jj′ + yp.n(j′), Y jj′ + yp.n(j′)]

for punch j.
Summing up the asymptotic analysis of the proposed algorithms, we conclude with

the following overall time and space requirements.

Theorem 3. The punching problem can be solved in O(T JJ2J !N2 + JNJ
y N) time

using O(T 2J2N2 + JNJ
y N) space.

Proof. Combining the results from Proposition 5.6 and 5.9 (as in Algorithm 5.7) yields

O(T JJ2J !N2 + Lall(JNJ
y N + J4N))

time and
O(T 2J2N2 + LallJN

J
y N)

space. The result follows from treating Lall as constant.

61

5. Algorithm for Fixed Configurations

5.7. Implementation Details

For simplicity, some aspects in the implementation of the algorithm are not described
formally in this chapter, but only mentioned briefly here.
• As pointed out in the proof of Proposition 5.9, the plan costs should not be
calculated globally from scratch on each invocation of Plan-Costs, but can
rather be updated locally with each added, changed, or removed punching step.
• Because holes typically appear in pairs with equal x-coordinates and types, a
preprocessing step can group such holes together and introduce artificial com-
bined hole types that are assigned to pairs of punches. Thereby, the number of
holes as well as the number of punches that has to be dealt with is reduced by
half. Of course, this only works when there are not too many asymmetrical hole
types that require the punches of each stamp to be dealt with separately.
• To speed up the process of finding the best equipment of the machine with tools
(see Algorithm 5.7), the hole pattern can be reduced to a few repetitions of
each block of holes. After choosing a configuration C∗, the full pattern can be
optimized.

62

CHAPTER 6

Heuristics for Dynamic Configurations

After solving the punching problem for a fixed machine configuration, dynamic x-
movements of the punches can be taken into account as well. We propose two heuristics
to improve punching plans.

1. Individual punching steps are combined when possible, as described in sec-
tion 6.2.

2. Machine stops are moved so that they are distributed more equally, as described
in section 6.3. Similar heuristics that can be used to reduce the resulting waste
are outlined briefly in section 6.4.

Some general methods needed for both heuristics are introduced in section 6.1. The
heuristics are connected by repeatedly applying them after each other, as outlined in
section 6.5.

6.1. Assignments and Positions of Punches

When improving a punching plan, we essentially reassign holes to other punches or
punching steps and adjust punch position. Naturally, a central part of this is to
determine possible assignments of punches to a given subset N ⊆ {1, . . . , N} of holes
such that the hole types are matched by the given tools of the punches. Assuming
that the implied positions of the punches are feasible as well, this allows all holes in N
to be punched in a single punching step.
An assignment can be defined as an injective function

A : N → {1, . . . , J}.

Then the image of the function, ImgA, is the set of active punches at this step, and
the pre-image A−1(j) of an active punch j is the hole n that is punched by punch j.

63

6. Heuristics for Dynamic Configurations

Assignments of punches to holes

Assignments can be determined by incrementally building up a set A while stepping
through the holes in a given subset N ⊆ {1, . . . , N} (see Algorithm 6.1). Starting with
the set of an empty assignment A = {∅} (line 2), we construct new sets An for each
hole n ∈ N depending on the previous assignments A. Given a hole n and an existing
assignment A ∈ A, we check for each punch j the following conditions (line 7).
• Punch j is not used in A yet (j /∈ ImgA).
• Punch j can punch hole n according to its type (zn = tj) and according to its
y-position (n ∈ Hj).

If these conditions are met, we can add j punching hole n to the assignment A (line 8)
and include it in the resulting set An (line 9), which eventually replaces A. Finally,
only feasible configurations shall be generated, which is why we filter the assignments
where each punch j is positioned at the x-position of the assigned hole A−1(j) using
Algorithm A.1.

Algorithm 6.1: Assignments of punches to holes of given types.
1: function Hole-Assignments(N , (tj)j)

A ← {∅}
3: for all n ∈ N do

An ← ∅ . empty assignment (function)
5: for all A ∈ A do

for j ← 1, J do
7: if j /∈ ImgA ∧ zn = tj ∧ n ∈ Hj then . punch j is not used yet

and can punch hole n
A(n)← j . punch j punching hole n in existing assignment

9: An ← An ∪ {A}
A ← An

11: return {A ∈ A | Is-Configuration-Feasible((tj , xA−1(j))j∈ImgA)

Example 6.1. Consider a set N = {1, 2} of two holes with types z1 = 2, z2 = 1 and
an equipment (tj)j = (1, 1, 2) of three punches, so that punches 1 and 2 can punch
hole 2, while punch 3 can punch hole 1. We want to find feasible assignments A of
punches to holes such that the holes in A can be punched in a single punching step.
Enumerating the holes n ∈ N as in Algorithm 6.1, we construct the following sets

of assignments.
1. For n = 1, we start by setting A1 to ∅. Considering the existing assignment
A = ∅ ∈ A (an empty function), we test which punches j /∈ ImgA can punch
hole 1, which is punch 3 in this case. Therefore, we add the function value
A(1) = 3 to A and include A in A1, resulting in

A1 = {A} = {1 7→ 3}

64

6.1. Assignments and Positions of Punches

which is then assigned to A.
2. For n = 2, we consider the existing assignment A = (1 7→ 2) ∈ A. Now, j = 1

and j = 2 can punch hole 2. In each case, we add j punching hole 2 to A,
resulting in

A = A2 = {(1 7→ 3, 2 7→ 1), (1 7→ 3, 2 7→ 2)}.

Relative positions of punches

While an assignment answers the question, which hole is punched by which punch, the
question of where the punching machine can be positioned to do that still remains.
Specifically, we are interested in a machine position s and relative punch posi-

tions (sj)j given
• an assignment A of punches to a subset of holes;
• relative positions (s′j)j∈P in the previous punching step (before the holes in A

should be punched), where P = ∅ if there is no previous step;
• relative positions (s′′j)j∈N in the following punching step;
• an interval [a, b] of possible machine positions (restricted by the previous and
following punching step, for instance); and
• a “preferred” machine position α.

The machine position s is chosen in [a, b] as close to α as possible such that the
following constraints are met.
• The absolute positions of active punches are fixed and restrict the absolute posi-
tions of all other punches through the minimum and maximum distances between
punches (parameters Xjk, Xjk).
• The relative positions of all punches are restricted by the maximum x-movement

after the previous punching step and before the next punching step (parame-
ter X).

To compute the new relative punch positions sj (see Algorithm 6.2), consider the
set A′ = ImgA of active punches in the assignment A, and let sa = xA−1(a) be the
absolute x-position of each active punch a ∈ A′ (line 4). Then the interval Rj of
possible absolute positions of each punch j is restricted by sa and the constraints on
the x-distances between punch j and active punch a, that is,

Rj ⊆
⋂
a∈A′

[Xja + sa, Xja + sa] (6.1)

holds (line 7), which follows from

Xja ≤ sj − sa ≤ Xja ∀sj ∈ Rj

as given by eq. (3.15). Furthermore, the interval Rj of possible relative positions of
each punch j is restricted by

Rj ⊆ [Xjj , Xjj] (6.2)

65

6. Heuristics for Dynamic Configurations

Algorithm 6.2: Determining positions of punches punching a set of holes in an as-
signment A to the punches, given previous relative positions (s′j)j and following posi-
tions (s′′j)j of the punches, a possible interval [a, b] of machine positions and a preferred
machine position α.
1: function Punch-Positions(A, (s′j)j∈P , (s′′j)j∈N , [a, b], α)

A′ ← ImgA . set of active punches
3: for all a ∈ A′ do

sa ← xA−1(a) . absolute x-position of active punch a
5: R← [a, b] . possible range of absolute machine positions

for j ← 1, J do
7: Rj ←

⋂
a∈A′ [Xja + sa, Xja + sa] . possible range of

absolute positions of punch j, taking into account
minimum and maximum x-distances to the active punches a ∈ A′

Rj ← [Xjj , Xjj] . possible range of relative
positions of punch j to the reference punch j

9: if j ∈ P then
Rj ← Rj ∩ [s′j −X, s′j +X] . take maximum

relative x-movement after previous punching step into account
11: if j ∈ N then

Rj ← Rj ∩ [s′′j −X, s′′j +X] . take maximum
relative x-movement before next punching step into account

13: R← R ∩ (Rj −Rj)
if R = ∅ then

15: return ∞, ∅ . no feasible positions to punch A
s← (closest point to α in R) . the chosen machine position

17: for j ← 1, J do
Rj ← Rj ∩ (Rj − s) . possible relative positions of punch j

19: sj ← (center of Rj)
return s, (sj)j . machine position and

resulting relative positions of punches

66

6.1. Assignments and Positions of Punches

(line 8). Additionally, the difference to the previous and following relative position (s′j
and s′′j , respectively) of punch j (if any) must not exceedX, that is, the two constraints

Rj ⊆ [s′j −X, s′j +X] ∀j ∈ P (6.3)
Rj ⊆ [s′′j −X, s′′j +X] ∀j ∈ N (6.4)

apply (lines 10 and 12). To translate restrictions on the absolute and relative positions
of individual punches j to an interval R ⊆ [a, b] of possible machine positions, note
that

sj = s+ sj

(the absolute position of a punch j is the machine position s changed by its relative
position sj) and therefore

R ⊆ Rj −Rj (6.5)

(line 13). To compute R, we start with [a, b] and iterate through all punches j to apply
eqs. (6.1) to (6.5). If we end up with an empty interval R = ∅, it is not possible to
find a feasible machine position to punch the assignment A (line 15).
Otherwise, we choose the machine position to be in R and closest to α (line 16).

Finally, the relative positions of all punches j have to be set, using the restrictions Rj
and Rj in combination with the machine position s. The interval of possible relative
positions is given by

Rj ∩ (Rj − s).

Within this interval, any value can be chosen as relative position sj , so we simply
choose the center (line 19) with the intention that this might leave the relative position
rather flexible for further adjustment in neighboring punching steps.

Example 6.2 (Example 6.1 continued). Consider the set of two holes examined in
Example 6.1 with positions x1 = 100, x3 = 400 and an assignment

A = (1 7→ 3, 2 7→ 1)

of holes to punches. Furthermore, let the distances between punches in this simplified
punching machine with reference punch j = 2 be constrained by

X =

0 100 200
−200 0 100
−400 −200 0

 and X =

0 200 400
−100 0 200
−200 −100 0

and the maximum x-movement of X = 70 between consecutive punching steps. As-
sume there is a punching step with relative punch positions

(nj)j = (100, 0,−100)

after the examined step, but no punching step before (P = ∅).

67

6. Heuristics for Dynamic Configurations

The set of active punches is A′ = ImgA = {1, 3} with absolute x-positions s1 = 400
and s3 = 100. For j = 1 and j = 3, the range of possible absolute positions consists
of this single position, that is,

R1 = {400} and R3 = {100}.

For punch j = 2, the restrictions on the distances to punches 1 and 3 have to be taken
into account. Inserting into (6.1), we get

R2 = [X21 + s1, X21 + s1] ∩ [X23 + s3, X23 + s3]
= [−200 + 400,−100 + 400] ∩ [−100 + 100, 200 + 100] = [200, 300].

The ranges of positions relative to the reference punch 2 are

R1 = [100, 200] ∩ [30, 170] = [100, 170]
R2 = {0}
R3 = [−200,−100] ∩ [−170,−30] = [−170,−100]

by (6.2) and (6.4). Consequently, the range of all possible machine positions is

R =
⋂
j

(Rj −Rj) = [230, 300] ∩ [200, 300] ∩ [200, 270] = [230, 270].

Let us assume that the punching step after the examined step is at machine po-
sition b = 500. There is no step before, so the interval of a-priori possible machine
positions is given by [a, b] = [−∞, 500]. Assuming that we want to place the machine
position as far to the left as possible, we set α = −∞. Therefore, we choose the
machine position

s = 230.

The relative punch positions are set to

s1 = 170
s2 = 0
s3 = −130

in accordance with Rj , Rj , and s.

6.2. Combining Punching Steps

A crucial part of our heuristics to improve a punching plan is to attempt to combine
pairs of punching steps into a single step. This obviously reduces the number of
punching steps and creates “room” for distributing the punching steps more equally,
thereby helping with both the step and the speed punching problem.

68

6.2. Combining Punching Steps

x

(a) Punching steps pi−1, pi, pi+1, pi+2 before combining.

x

(b) Punching steps after combining pi and pi+1 into a single step p.

Figure 6.1: Combining two punching steps.

To combine punching steps, we iterate through all consecutive pairs pi, pi+1 of steps
and try to punch all punched holes

N = Img pi.n ∪ Img pi+1.n

in one step (see Algorithm 6.3). Here, the image Img pi.n of the mapping of punches
to holes is the set of punched holes in step pi.
All possible assignments A ∈ A of punches to the holes in N are considered, un-

til the first assignment yields a feasible combination of the two punching steps (see
section 6.1).
The surrounding punching steps pi−1 (if i > 1) and pi+2 (if i < |S| − 1) have to be

taken into account as well. The relative positions of the punches in the potentially
new punching step p have to be chosen such that the positions in pi−1 and pi+2 are
reachable from p, that is, within the limit imposed by parameter X.
The preferred x-position of the new punching step p is at the center a+b

2 between
a = pi−1.p and b = pi+1.p to create a close-to-equal distribution of machine positions.
At the bordering punching steps, it is −∞ (for the leftmost steps with i = 1) and ∞
(for the rightmost steps with i = |S| − 1), respectively, in order to move the step “as
far outside” as possible.
The details of choosing the punch positions are encapsulated by the function Punch-

Positions defined in Algorithm 6.2. If corresponding positions can be determined,
the new combined position p is inserted in the punching plan instead of pi and pi+1
(line 19). The corresponding assignment p.n of holes to punches is simply given by
the inverse A−1 of the assignment A ∈ A of punches to holes.

69

6. Heuristics for Dynamic Configurations

Algorithm 6.3: Combining punching steps using dynamic x-movements.
1: function Combine-Steps(S, (tj)j)

for all consecutive steps pi, pi+1 ∈ S do
3: N ← Img pi.n ∪ Img pi+1.n . set of holes punched in step pi or pi+1

A ← Hole-Assignments(N , (tj)j)
5: if i > 1 then

(s′j)j ← pi−1.pos, a← pi−1.p
7: else

(s′j)j ← ∅, a← −∞
9: if i < |S| − 1 then

(s′′j)j ← pi+2.pos, b← pi+2.p
11: else

(s′′j)j ← ∅, b←∞
13: for all A ∈ A do

s, (sj)j ← Punch-Positions(A, (s′j)j , (s′′j)j , [a, b], a+b
2)

. determine punch positions punching A at once,
with an absolute machine position

between the previous and next punch
15: if s <∞ then

p← Position(s,A−1)
17: p.punches← ImgA

p.pos← (sj)j
19: Insert p between pi and pi+1 in S.

Delete pi and pi+1 from S.
21: break . stop iterating through assignments A ∈ A

return S

Example 6.3 (Example 6.2 continued). Assume that the holes 1 and 2 from Ex-
ample 6.2 are punched in separate steps p1, p2. Assuming that there is a third
hole punched in a step p3 at position b = p3.p = 500 with relative punch positions
(s′′j)j = (100, 0,−100), we set a = −∞ as we want to move the combined punching
step as far to the left as possible in order to increase the distance to p3. In the course
of Algorithm 6.3, the assignment

A = (1 7→ 3, 2 7→ 1)

is considered. Algorithm 6.2 is executed as outlined in the previous example with a
desired machine position of α = a+b

2 = −∞, yielding a machine position of s = 230
for the combined punching step p.

Example 6.4. An illustration of the combine heuristic using practical machine pa-
rameters as described in section 3.4 is shown in Figure 6.1. By applying Algorithm 6.3,
all holes punched in the second and third punching step pi, pi+1 are punched together
in a single step p.

70

6.3. Moving Punching Steps

(a) Punching steps pi−2, pi−1, pi, pi+1, pi+2 before moving pi.

(b) Punching steps after moving pi to the center between pi−1 and pi+1.

(c) Punching steps after moving pi to the center between pi−2 and pi−1.

Figure 6.2: Moving a punching step.

6.3. Moving Punching Steps

To improve the result further, we attempt to move punching steps such that they are
more equally distributed, which is especially important in the speed punching problem.
In other words, we try to make the machine movements between consecutive punching
steps (the differences between absolute machine positions) as large as possible, while
still punching the same set of holes in each step. This can potentially be achieved by
using dynamic movements of the individual punches to change the absolute machine
position (the absolute position sij of the reference punch j) while all active punches
remain at their respective absolute positions.
Specifically, we successively pick a number Lmove of punching steps pi with minimum

distance to their following step pi+1 and try to move pi so that the distance becomes
bigger (see Algorithm 6.4). Usually, Lmove can be chosen as high as N so that all
punching steps are considered for movement. The assignment A = pi.n−1 of punches
to holes in step pi shall remain the same. We propose three different strategies, creating
a set S of alternative punching plans.

1. Keep pi between pi−1 and pi+1 and try to improve the punching plan by dynamic
x-movements of the punches (line 7).

2. Move pi between pi−2 and pi−1 (line 16). In this case, the relative punch positions

71

6. Heuristics for Dynamic Configurations

in pi+1 must be “reachable” directly from pi−1 (as restricted by parameter X).
3. Analogously to 2, move pi between pi+1 and pi+2 (line 25). Again, the relative

punch positions in pi+1 must be reachable directly from pi−1.
Obviously, we have to check whether a set of relative positions (s′j)j is reachable

from another set of relative positions (s′′j)j . This can be done by simply iterating
through all punches j and testing whether

∣∣∣s′j − s′′j ∣∣∣ ≤ X. (6.6)

If this is not the case for any punch j, the positions are not reachable from each other
(see Algorithm A.5).
For each of the three strategies r ∈ {1, 2, 3}, a new feasible punching plan Sr might

arise, which is included in S then. As for the combine steps (see section 6.2) we use
the function Punch-Positions defined in Algorithm 6.2 to determine the best punch
positions given an assignment of the punches to holes. The preferred position is the
center between the new surrounding steps of step pi. This results in a machine position
sr and relative punch positions (srj)j for each strategy r. A new punching plan Sr
is constructed by removing the step pi from S and inserting a new step p at machine
position sr and with relative punch positions (srj)j into the plan.
The strategy S∗ in S ⊆ {S, S1, S2, S3} resulting in the least costs is chosen to replace

the existing punching plan S (if better than S; line 28).
By these means, we iteratively replace the punching plan by a better one (with

respect to the cost function). Punching steps that are attempted to being improved but
cannot be moved effectively are included in a set U excluded from further investigation
(line 30 and 4).

Example 6.5. Consider the punching plan depicted in Figure 6.2a. The punching
step pi has the smallest distance to its successor pi+1.

1. We consider moving the step to the center between pi−1 and pi+1, resulting in a
punching plan S1 (see Figure 6.2b).

2. Moving the step between pi−2 and pi−1 results in a punching plan S2 (see Fig-
ure 6.2c). This is possible under the assumption that the relative x-positions of
the punches in step pi+1 are directly reachable from pi−1, which is obviously the
case here as they remain constant.

3. Moving the step between pi+1 and pi+2 is not possible, because the assignment
A of punches to holes has to remain the same, but the punches punching the two
holes in pi cannot be moved to the left of the machine center, so the machine
center cannot be to the right of the holes.

As depicted in Figure 6.2, the distribution of machine movements is most balanced in
plan S2 resulting in the least costs, so S∗ = S2 is chosen.

72

6.3. Moving Punching Steps

Algorithm 6.4: Moving punching steps to distribute machine stops more equally.
1: function Move-Steps(S)

U ← ∅ . set of punching steps unsuccessfully attempted to improve
3: for k ← 1, Lmove do

pi ← (step pi in S \ U with minimum distance to next step pi+1)
5: A← pi.n−1 . assignment of punches to holes

S ← {S} . set of alternative punching plans
7: s1, (s1j)j ← Punch-Positions(A, pi−1.pos, pi+1.pos, pi−1.p, pi+1.p,

pi−1.p+pi+1.p
2) . keep current step pi between pi−1 and pi+1

if s1 <∞ then . move successful
9: S1 ← S

Remove pi from S1.
11: p← copy pi

p.pos← (s1j)j , p.p← s1
13: Insert p into S1 between pi−1 and pi+1.

S ← S ∪ {S1}
15: if Is-Reachable(pi−1.pos, pi+1.pos) then

s2, (s2j)j ← Punch-Positions(A, pi−2.pos, pi−1.pos, pi−2.p, pi−1.p,
pi−2.p+pi−1.p

2) . move current step pi before previous step pi−1
17: if s2 <∞ then

S2 ← S
19: Remove pi from S′.

p← copy si
21: p.pos← (s2j)j

p.p← p2
23: Insert p into S2 between pi−2 and pi−1.

S ← S ∪ {S2}
25: (Analogue procedure for moving pi after next step pi+1.)

S∗ ← arg minS′∈S Plan-Costs(S′)
27: if S∗ 6= S then

S ← S∗ . replace the punching plan with the improved one
29: else

U ← U ∪ {pi} . remember unsuccessful attempt to improve step pi
31: return S

73

6. Heuristics for Dynamic Configurations

first machine position: −350

(a) Start of punching plan without waste-minimizing heuristics.

first machine position: 14350

(b) Start of punching plan with waste-minimizing heuristics.

Figure 6.3: Splitting punching steps in the beginning of the process and moving
them to the right to minimize waste.

6.4. Reducing Waste

In addition to minimizing the costs representing the time needed for the punching
problem, waste can be minimized by modifying the move improve step to maximize
the machine position in the first punching step, as stated in eq. (3.26). We only have
to set c = ∞ in the call to the function Punch-Positions (see Algorithm 6.2) in
order to move the first punching step as far to the right as possible.
This is facilitated by the fact that maximizing machine movements is not important

in the beginning of the process, as the first punches are performed while the metal
is not rolling from the coil. Thus, we can safely ignore other improvement heuristics
within a given length from the beginning of the hole pattern. Moreover, we can even
split punching steps where several holes are punched into individual steps, as this
might make it easier to move the steps to the right by reducing the constraints on
active punch positions. This can be done by reassigning punches to individual holes
as described in Algorithm 6.1.

Example 6.6 (Example 2.2 continued). The start of the pattern given in Figure 2.4
is depicted in Figure 6.3a without applying heuristics to minimize waste.
As shown in Figure 6.3b, when applying these heuristics, the punching steps in the

beginning of the process are split up (the first two in this case), as it might be easier

74

6.5. Overall Improvements

to move them to the right individually. All resulting five punching steps are modified
so that punches further to the left punch the respective holes in order to move the
punching steps to the right.
Obviously, the absolute machine position in the first punching step is increased to

its maximum (14350), thereby minimizing the resulting waste.

6.5. Overall Improvements

In the overall improvement heuristics (dynamic heuristics) for a static punch plan,
the combine and move heuristics are applied repeatedly after each other a number
of Limprove times, as depicted in Algorithm 6.5. This allows improvements from one
phase to be utilized in the respective other.

Algorithm 6.5: Improving a solution.
1: function Improve(S, (tj)j)

for k ← 1, Limprove do
3: S ← Combine-Steps(S, (tj)j)

S ←Move-Steps(S)
5: return S

The heuristics can be integrated in the algorithm for fixed machine configurations
by applying them on each generated punching plan. Thus, Algorithm 5.1 is modified
into Algorithm 6.6. In Algorithm 5.7, this corresponds to adding
SC ← Improve(SC , (tj)j)

after line 4.

Algorithm 6.6: Overview of the proposed algorithm to solve the punching problem
with heuristics utilizing dynamic machine movements.
1: Generate a set E of equipments.

Generate a set C of configurations using distances occurring in the pattern.
3: for all configurations C ∈ C do

Determine a corresponding punching plan SC .
5: Improve the plan SC using dynamic machine movements.

Choose the plan SC with minimum costs.

Example 6.7 (Example 2.2 continued). The punching plan presented in Example 2.2
results from applying our improvement heuristics (without waste-minimizing heuris-
tics). A comparison of this plan to the original plan without utilizing dynamic machine
movements is shown in Figure 6.4.
While the static plan (Figure 6.4a) uses 19 machine stops, the resulting dynamic plan

(Figure 6.4b) only uses 9 stops. Obviously, the machine movements are distributed
more equally.

75

6. Heuristics for Dynamic Configurations

x

(a) Punching plan before dynamic improvements.

x

(b) Punching plan after dynamic improvements.

Figure 6.4: Improving a punching plan by dynamic machine movements.

Proposition 6.8. The improvement of a solution using combine and move steps needs
O(J4N) time.

Proof. In the combine step (Algorithm 6.3), there are at most N punching steps and
no more than J2 possible assignments of the holes punched in two steps to the punches.
For each assignment, there is an overhead of O(J) time (Algorithm 6.1). Determining
the new punch positions (Algorithm 6.2) takes O(J2) time.
In the move step (Algorithm 6.4), we calculate punch positions in O(J2) time and

determine whether punch positions are reachable from others in O(J) time. The plan
costs can be updated locally in constant time. This is repeated Lmove = N times.
Altogether, the improvement needs

O(NJ2(J + J2) +NJ2) = O(J4N)

time.

76

CHAPTER 7

Computational Results

In this chapter, we present evaluations and computational results of the proposed
methods to solve the punching problem. First, we show that the mixed-integer linear
program presented in chapter 3 is inefficient to use directly for practical problem
instances (see section 7.1). Exact methods can only be used to optimize the punching
plans for very small hole patterns with additional restrictions. This establishes the
need for heuristics to solve the problem.
To evaluate the quality of our algorithm described in chapters 5 and 6, we compare

its results to known optimal solutions of specific test cases. To make this comparison
as meaningful as possible, a set of representative 300 test cases comprised by hole
patterns occurring in practice is used, which were provided by the commissioning
companies. The characteristics of these test cases are presented in section 7.2.
However, calculating optimal solutions is a hard problem which can only be solved

for very small instances. This is why we split the evaluation in two parts:
1. The “core” part of the algorithm which computes the punching plan for a fixed

machine configuration (as described in chapter 5) is evaluated using the test
cases from practice in section 7.3.

2. The overall algorithm including the heuristics to account for dynamic x-move-
ments is evaluated using randomly generated test cases that are small enough
for being solved exactly in section 7.4.

To be able to calculate exact solutions within reasonable time, we disable the pun-
ches 1, 2, 5, and 6 in these two evaluation scenarios. Apart from this restriction, we
use the machine parameters described in section 3.4.
To examine the impact of the dynamic heuristics utilizing dynamic x-movements of

the punches described in chapter 6, we compare the results using fixed machine con-
figurations from chapter 5 to the results after applying these heuristics in section 7.5.
There are many parameters to our algorithm that can be used to tune the quality

77

7. Computational Results

of the results and its running time. Among them are
• the number of fixed machine configurations generated (see section 5.3) and
• the weight of the optimization of waste (see section 3.3).

We evaluate the influence of these choices on running time and quality of the results
in sections 7.6 and 7.7, respectively.
All evaluation scenarios are summarized in Table 7.1.

Table 7.1: Overview of computational results, including the examined hole pat-
tern(s) and the number J of punches considered.

Sec. Description Hole pattern(s) Punches

7.1 performance of exact method 1 manually constructed 12
7.3 greedy heuristic for fixed ma-

chine configuration compared
to exact solutions

300 from practice
with reduced repetitions

10

7.4 overall algorithm including
dynamic heuristics compared
to exact solutions

100 random test cases 10

7.5 impact of dynamic heuristics 300 from practice 12
7.6 influence of number of gener-

ated configurations
300 from practice 12

7.7 influence of weight of waste-
minimization

300 from practice 12

All computations are performed on a single core of an Intel R© CoreTM 2 Quad
CPU (Q6600) running at 2.40 GHz with 8 GB of memory. Its operating system is
Debian 6.0.6 with Linux kernel 2.6.32. We use ILOG CPLEX 11.0 [ILOG CPLEX
Division, 2007] and ILOG AMPL 10.1 [Fourer, Gay, and Kernighan, 2002].
Our algorithm was implemented in C++ and compiled using gcc 4.4.5 [Stallman

and the GCC Developer Community, 2008].

7.1. Performance of Exact Methods

To decide whether solving the mixed-integer linear program presented in chapter 3 is
computationally tractable, we examine its application to a very simple hole pattern
using the machine constraints stated in section 3.4.
Because of numerical instabilities with the piecewise linear objective function in the

speed punching problem, we use a piecewise constant objective function as defined in

78

7.1. Performance of Exact Methods

x1 = 0

x2 = 5000

x3 = 30000

x4 = 35000

x5 = 60000

x6 = 65000

x7 = 90000

x8 = 95000
. . .

Figure 7.1: Simple hole pattern examined in analysis of exact method. It consist
of several repetitions of a block of two holes.

eq. (3.25), where we choose

(δr)r = (1, 50, 100, 250, 500, 1000, 2500, 5000, 10000, 20000, 60000, 120000). (7.1)

Therefore, zero-movements are assigned costs 1
1 = 1 and movements < 50 have

costs 1
50 . Movements of 120000 or more are assigned costs 0.

The examined pattern consists of R repetitions of a block of length 40000 two holes
positioned at x1 = 0 and x2 = 5000 with y-coordinates y1 = y2 = 0 and the same hole
type, resulting in N = 2R holes (see Figure 7.1).
This pattern can simply be punched with a punching plan S∗ of R steps using

punch 1 for even and punch 3 for odd holes, for instance. The assigned costs

c(S∗) = R− 1
δ11

are optimal, as all R − 1 movements are 30000 and thereby larger than δ10 = 20000;
at the same time, there cannot be a punching plan with a movement of δ11 = 60000
or more, as this would create a “gap” of ≥ δ11 −X1,12 = 32000 where no hole can be
punched; however, in every interval of this length there are at least two holes in the
pattern.
Because the maximal machine length spanning from punch 1 to punch 12 is X1,12 =

28000 as given by (3.29), not more than two holes can be punched at the same time,
so the optimal number of punching steps is

I∗ = R = N

2 .

Our algorithm finds an optimal solution for a number of repetitions R up to 100 within
a fraction of a second.
Contrarily, this is not the case when using CPLEX to solve the corresponding mixed-

integer linear program, which is implemented in the AMPL modeling language and
presented in appendix B.1.
There are several parameters to CPLEX that can accelerate finding a solution.
• As mentioned in section 3.2, the number I∗ of optimal punching steps is not

known a priori. A safe estimate to limit the number I of considered steps is the
number N of holes. To examine the influence of the “tightness” of I, we also try
setting I to the optimal number I∗ = N

2 of steps.

79

7. Computational Results

0

3000

6000

9000

12000

15000

va
ri
ab

le
co
u
n
t

1 2 3 4 5 6 7 8 9
repetitions R

I = N , integer I = I∗, integer
I = N , continuous I = I∗, continuous

Figure 7.2: Number of integer and continuous variables in the resulting mixed-
integer linear program, depending on the a-priori bound I on the
number of machine stops.

• An allowed relative tolerance ε for optimizing integer variables (MIP gap) can be
specified. Given an integer solution S and a non-integer solution S resulting in a
lower bound c(S) on the objective value c(S∗) of the optimal integer solution S∗,
CPLEX stops its optimization process when

c(S)− c(S) ≤ ε (1 + c(S)) .

We examine settings of ε ∈ {0.1, 0.5, 1}. Setting ε = 1 corresponds to neglecting
the objective function and only trying to find a feasible integer solution.

When solving the model directly, the number of variables is very high, even with
tight bounds on the number of steps (see Figure 7.2). While there are 85 integer
variables (including binary variables) for one repetition of the pattern (R = 1), there
are already 1913 integer variables for R = 5. For a practical instance size of R = 60,
the problem has an intractably high number of 260688 integer variables. When an
“uninformed” bound of I = N on the number of resulting punching steps is chosen,
the number of variables is twice as high, as can be expected.
The high number of variables is also reflected in the computation time to solve the

program (see Figure 7.3). Even with a tight bound of I = I∗ and a MIP gap of
ε = 0.5, only instances up to R = 3 repetitions of the two holes can be solved within
30 minutes.
Apparently, it is already hard to find any integer-feasible solution to the program.

Even with a MIP gap of ε = 1, instances with more than 7 repetitions cannot be
solved efficiently. The choices of I and the MIP gap do not seem to have a significant
impact on the tractability of solving the program.

80

7.1. Performance of Exact Methods

0

100

200

300

400

500

600

ti
m
e
(s
ec
on

d
s)

1 2 3 4 5 6 7
repetitions R

1800+

I = N , gap 0.1 I = I∗, gap 0.1

I = N , gap 0.5 I = I∗, gap 0.5

I = N , gap 1 I = I∗, gap 1

Figure 7.3: Computation time to solve the resulting mixed-integer linear pro-
gram, depending on the a-priori bound I on the number of machine
stops and the MIP gap. Computation times longer than 30 minutes
are depicted by upward arrows.

We also look at the relaxed version of the mixed-integer linear program where all
variables are allowed to be continuous to examine the integrality gap of the model.
This relaxation allows the variables h′ijn to assume values slightly lower than 1. These
variables are used to ensure that a punch is at the correct position and is equipped with
the correct tool when punching a hole through (3.8) and the bounds on the related
variables hijn, hijn through eqs. (3.5) to (3.7) and (3.9). However, when 0 < h′ijn < 1,
the constraint (3.8) can be fulfilled while hijn is not 0. At the same time, hijn can be
set to 1− h′ijn > 0 in accordance with (3.9), allowing “partial punching” of holes even
though the used punch is not feasible for the punched hole. As a consequence, active
punches can be positioned at almost arbitrary positions, resulting in sufficiently high
machine movements to yield costs of 0. Therefore, this model of the punching problem
has a very high integrality gap, which might be a reason for the long computation times
to solve it. Finding special cutting planes as described in section 3.5 could help with
this problem.

As finding exact solutions using CPLEX—even with high optimality gaps and re-
gardless of the chosen bound I on the number of punching steps—is almost impossible
for simple problem instances such as the analyzed pattern depicted in Figure 7.1, we
conclude that only a heuristic approach can reliably generate solutions to practical
problem instances within reasonable time.

81

7. Computational Results

0

20

40

60

#
te
st

ca
se
s

500 1000 1500
number of holes

Figure 7.4: Histogram of the number of holes in the 300 test cases.

0

50

100

#
te
st

ca
se
s

1 2 3 4 5
number of distinct hole types

142
117

28
7 6

(a) Number of distinct hole types.

0

100

200

#
te
st

ca
se
s

1 2 3 4 5 6 7 8
number of distinct blocks

279

5 5 5 2 2

(b) Number of distinct blocks.

Figure 7.5: Histograms of the number of distinct hole types and the number of
distinct blocks in the 300 test cases.

7.2. Test Cases

A representative sample of 300 test cases was provided by the commissioning companies
to design and test our algorithm with data from practice. In this section, a short
characterization of these test cases is given.
The number of holes in each pattern is in the order of a few hundreds up to a

thousand, with a few patterns having 1200 or even 1600 holes (see Figure 7.4).
In most test cases (142 out of 300), there is only one type of holes. Two distinct

hole types are common as well (117 test cases), whereas a few test cases have three,
four, or five different hole types (see Figure 7.5a).
All patterns consist of several repetitions of one or more blocks of holes. In the

majority of cases (279), there is a single block repeated up to 60 times. In the rest of
the cases, up to eight distinct blocks appear (see Figure 7.5b).
To give a clearer picture of how these blocks of holes look like, Figure 7.6a shows the

blocks of all 300 patterns combined into one plot by “overlaying” them. Apparently,
holes are concentrated at the beginning, end, and the middle of each block. This
becomes even more obvious when looking at the histogram of x-positions (relative to
the block the length) in Figure 7.6b. A few patterns contain holes that are not placed
symmetrically with respect to the x-axis (see Figures D.2 and D.3, for instance).

82

7.2. Test Cases

y

x25% 50% 75% 100%

−1000

1000

(a) All blocks in the 300 test cases plotted together. The x-axis is scaled
relatively to the length of each block. Every hole is plotted with an opacity
of 10%, so darker areas depict regions with more holes. Different shapes
correspond to different hole types.

0

100

200

300

400

500

600

700

#
h
ol
es

in
al
l
te
st

ca
se
s

25% 50% 75% 100%
x

(b) Histogram of the x-positions of the holes (relative to the block length) in
the distinct blocks of all 300 test cases.

Figure 7.6: Distribution of holes in each block of the 300 test cases.

83

7. Computational Results

7.3. Fixed Machine Configurations

To evaluate the algorithm dealing with fixed machine configurations (as described in
chapter 5), we solve the underlying hitting set problem, which can be described as
follows. Given a set of possible machine positions covering a set of holes each, find
a subset of machine positions that cover all holes such that the resulting costs are
minimum.
This is similar to the simplified punching problem (Definition 4.1) discussed in chap-

ter 4. However, we want to be able to assign arbitrary costs to each movement of the
machine (a difference between machine positions) instead of only minimizing the num-
ber of machine stops.
Formally, the problem can be expressed as the following linear integer program.

Given are binary parameters Pin specifying whether hole n ∈ {1, . . . , N} can be
punched from machine position i ∈ {1, . . . , I} and costs cij resulting between ma-
chine positions i and j.
Binary decision variables pij ∈ {0, 1}, i < j, express whether position i is chosen

and is followed by position j, thereby creating a “connected path” through machine
positions. Additionally, special start and end variables p̂i ∈ {0, 1} and p̃i ∈ {0, 1} are
needed to describe where the path starts and ends.
The objective is to minimize the costs of the path, that is,

min
∑
i,j:i<j

cijpij . (7.2)

The following constraints ensure that a valid path through the positions is chosen.
There has to be exactly one start, that is,∑

i

p̂i = 1, (7.3)

and one end, that is, ∑
i

p̃i = 1. (7.4)

The number of incoming and outgoing edges has to be the same in each vertex, that
is,

p̂i +
∑
k:k<i

pki =
∑
j:i<j

pij + p̃i ∀i. (7.5)

Note that in an optimal solution, this sum is either 1 (if machine position i is used)
or 0 otherwise. Because the objective function is increased when a vertex is visited
more than once in a path, values of (7.5) higher than 1 do not occur in an optimal
solution.

84

7.3. Fixed Machine Configurations

0

20

40

#
te
st

ca
se
s

0 100 200 300 400 500 600
number of potential machine positions

Figure 7.7: Histogram of the number of potential machine positions for the 300
test cases.

Finally, we express that every hole has to be punches (covered) by a visited position
through the constraint

∑
i

Pin

(∑
j:i<j

pij + p̃i

)
≥ 1 ∀n. (7.6)

The integer linear program

(P) min
∑
i,j:i<j

cijpij

subject to eqs. (7.2) to (7.6)
pij ∈ {0, 1} ∀i, j

p̃i, p̂i ∈ {0, 1} ∀i

can be implemented in the AMPL modeling language and can be solved exactly using
CPLEX. See appendix B.2 for the full AMPL code of this model.
To be able to solve (P) exactly in reasonable time, we have to reduce the size of the

test cases. By reducing the number of repetitions of the blocks in each pattern from
typical values of 60 to a maximum of 3, we retain the basic structure of the holes in
the pattern, so the solutions and objective values are still representative.
We solve each problem using the algorithm described in chapter 5 and consider the

fixed machine configuration that leads to the best solution. Then, the corresponding
machine positions are constructed using Algorithm 5.5. The numbers of generated
potential machine positions are shown in Figure 7.7. For most test cases, around a
hundred machine positions are generated.
The costs of a movement d between two machine positions p1 and p2 > p1 are chosen

to be
c(d) = 1

d
= 1
p2 − p1

as described in section 3.3, eq. (3.23).

85

7. Computational Results

1

2

3

4

5

ra
ti
o

c A c∗
of

ob
je
ct
iv
e
va
lu
es

100 200
test case

(a) Ratio cA

c∗ of the resulting objective
value cA and the determined optimal
objective value c∗.

1

1.25

1.5

ra
ti
o

s A s∗
of

m
ac
h
in
e
st
op

s

100 200
test case

(b) Ratio sA

s∗ of the resulting number of
machine stops sA and the number of
machine stops s∗ in the optimal solu-
tion.

Figure 7.8: Results using fixed machine configurations on 300 test cases from
practice. Ratios are sorted in descending order.

Machine movements of 0 (resulting from two consecutive identical machine positions)
have to be dealt with specially. They are assigned significantly high costs (greater
than the number of holes N in the pattern) so that the number of zero-movements is
apparent from the overall costs of a punching plan.
To evaluate our algorithm A, we compare the resulting objective value cA to the

optimal objective value c∗ obtained by CPLEX. The ratio
cA
c∗

determines how “bad” our results are compared to the optimal solution.
The results are shown in Figure 7.8a. For 243 problem instances out of the 300

(81%), the ratio of the resulting objective value and the calculated optimal objective
value is below 2.0. The majority of results (64.7%) are even within a 150% bound of
the optimal value.
In most cases, our algorithm produces the same number of zero-movements as in the

optimal solution. Only for three instances, our algorithm results in zero-movements
where the optimal solutions has none. Consequently, the ratio of the objective values
is incomparably high, which is why these instances are not depicted in Figure 7.8a.
Because this is only a part of the overall algorithm, the resulting costs are not the

only important criterion in this step. Equally important is the resulting number sA of
machine stops, and it turns out that our algorithm performs very well in this regard
when compared to the number s∗ of stops in the optimal solution.
The ratio sA

s∗ of the number of machine stops in our result and in the optimal

86

7.4. Dynamic Configurations

solution for each problem instance is shown in Figure 7.8b. Only in two cases this
ratio is above 1.5. For almost half of the problems (145), the number of machine stops
is the same as in the optimal solution, and in three cases it is even lower.
A central aspect of our algorithm is execution speed. Although in most cases,

solving the integer program using CPLEX is quite fast, there are cases in which it
takes very long. For two problem instances, CPLEX did even not solve the program
within several hours, so it is not possible to compare our results to the optimal values
in these cases. The two patterns are similar to the one depicted in D.5 where many
holes have equal x-positions, differing only in their y-positions.
Adding more holes up to practical instance sizes would increase the running time of

CPLEX even more, thereby rendering the integer programming approach impractical.
In contrast to that, our algorithm finds solutions within seconds of time for every

problem instance. While the problems were reduced in size for this analysis in order
to find optimal solutions, the execution times of our algorithm are still representative
because the time required is polynomial in the number of holes (see Theorem 3).

7.4. Dynamic Configurations

As the practical problems are too large for being solved exactly even after drastically
reducing the number of blocks (see section 7.3), we generate 100 random test cases to
evaluate our overall algorithm including the heuristics utilizing dynamic x-movements
of the punches. This has the additional benefit of not only evaluating the algorithm
against a given set of problem instances but examining its “average” behaviour as well.
The test cases are generated by placing N = 6 holes with
• x-coordinates randomly distributed in the range [0, 100000],
• y-coordinates drawn randomly from {500, 1000}, and
• hole types drawn randomly from {14, 18},

which are typical situations in practice as well.
The choice of N = 6 is motivated by the results in section 7.3 as patterns with six

holes are solvable within reasonable time, while larger patterns seem rather impossible
to solve. As in section 7.3, exact solutions are computed using the AMPL model given
in appendix B.1 and CPLEX. The same objective function as specified by eq. (7.1) is
used.
The results of the comparison are shown in Figure 7.9. For 85 out of 100 problems,

our solution cA is within a 150% bound of the optimal solution c∗. In 68 cases it is
even equally good (see Figure 7.9a).
The results regarding the number of machine stops are even better. In 94 cases, this

number sA is the same as s∗ in the optimal solution or even lower. Even in the worst
case, sA is not more than four thirds of s∗ (see Figure 7.9b).

87

7. Computational Results

1

1.5

2

2.5
ra
ti
o

c A c∗
of

ob
je
ct
iv
e
va
lu
es

20 40 60 80
random test case

(a) Ratio cA

c∗ of the resulting objective
value cA and the determined optimal
objective value c∗.

0.7

0.8

0.9

1

1.1

1.2

1.3

ra
ti
o

s A s∗
of

m
ac
h
in
e
st
op

s

20 40 60 80
random test case

(b) Ratio sA

s∗ of the resulting number of
machine stops sA and the number of
machine stops s∗ in the optimal solu-
tion.

Figure 7.9: Results using dynamic machine configurations on 100 random test
cases. Ratios are sorted in descending order.

7.5. Impact of Dynamic Heuristics

To evaluate the heuristics utilizing dynamic x-movements of the punches described
in chapter 6, we compare the resulting punching plans after applying these dynamic
heuristics to the “static plans” from chapter 5. Again, we use the set of 300 test cases
from practice.
Given the resulting objective value cA of the overall algorithm (including dynamic

heuristics) and the objective value cS of the corresponding static punching plan, we
examine the ratio cA

cS
(see Figure 7.10a). For almost all test cases (282), the costs cA

after applying dynamic heuristics is 50% or less of the costs before. For the major-
ity (219) it is even less than a third. Only a few test cases are resistant to dynamic
heuristics, mostly because the hole patterns are rather simple and the static solution
is already sufficiently good.
A similar picture emerges for the number of machine stops. We examine the ratio sA

sS
of the resulting number of machine stops sA with dynamic heuristics and the number
of machine stops cS without them (see Figure 7.10b). For almost half of the test
cases (143), the number of machine stops is reduced by half, which is mostly due to
the combine heuristic from section 6.2.
Nevertheless, the impact of dynamic heuristics on the running time of the algo-

rithm are moderate. We compare the times spent in the following four phases of the
algorithm:

1. the generation of configurations, as described in section 5.1 and 5.3;

88

7.5. Impact of Dynamic Heuristics

100 200
test case

0

0.2

0.4

0.6

0.8

1

ra
ti
o

c A c S
of

ob
je
ct
iv
e
va
lu
es

(a) Ratio cA

cS
of the resulting objective

value cA with dynamic heuristics and
the objective value cS without them.

100 200 300
test case

0

0.2

0.4

0.6

0.8

1

ra
ti
o

s A s S
of

m
ac
h
in
e
st
op

s

(b) Ratio sA

sS
of the resulting number of ma-

chine stops sA with dynamic heuristics
and the number of machine stops sS

without them.

Figure 7.10: Impact of dynamic heuristics on 300 test cases from practice. Ratios
are sorted in descending order.

2. solving the underlying hitting set problem using a greedy algorithm, as described
in section 5.5;

3. applying the combine heuristic from section 6.2;
4. applying the move heuristic from section 6.3.
As the sole average of execution times over all test cases might not include all

underlying information, we use box plots [McGill, Tukey, and Larsen, 1978] to
visualize results in this and the following sections. Box plots include the following
information.
• A box represents the data points within the first and third quartile.
• A line inside the box represents the median.
• A cross depicts the average of the data.
• So-called “whiskers” extend to the last data point within a 1.5-multiple of the
inner quartile range (IQR, the difference between third and first quartile).
• Outliers are shown as additional dots, if applicable.

As depicted in Figure 7.11, dynamic heuristics account for approximately half of the
running time of the overall algorithm on average. A positive feature of the combine
andmove heuristics is that their time behavior does not highly depend on the structure
of the hole pattern, but mostly on the number of considered punching steps. This is
reflected in the fact that there are less outliers regarding computation time compared
to the generation of configurations and the greedy phase, which can be seen as the
averages are closer to the median.

89

7. Computational Results

0

3

6

9

ti
m
e
(s
ec
)

configurations greedy combine move

phase in algorithm

Figure 7.11: Running time of the different phases in the algorithm among 300 test
cases from practice. The phases are the generation of configurations,
the greedy algorithm to solve the underlying hitting set problem, and
the combine and move dynamic heuristics. Box plots are used to
depict the quartiles and averages of data (outliers not shown).

7.6. Number of Generated Configurations

As our algorithm generates a set of fixed machine configurations and calculates a
punching plan for each of them, the results strongly depend on the number of generated
configurations. Recall from section 5.3 that there are several points in the generation
of configurations at which this number is reduced from what is theoretically available
to what is practicably tractable, configurable by individual parameters.
• By adding a single punch to a configuration, no more than Lstep configurations

are added.
• For each permutation of punches, a maximum of Lpermutation configurations are
kept.
• For each equipment (tj)j , a maximum of Lequipment configurations are kept
• Altogether, no more than Lall configurations are generated.

We examine a set of choices l as given in Table 7.2 and their influence on the set
of 300 test cases from practice.
For each of these settings, we evaluate the resulting costs, machine stops, and exe-

cution time of our algorithm (see Figure 7.12). As in section 7.3, we use the objective
function

c(d) = 1
d

as costs for each movement d of the machine (see section 3.3).
The results show that for many test cases, a small number of configurations is

already enough to yield good results. As shown in Figure 7.12a, the median of the
costs decreases only slightly when the number of generated configurations is raised
from 100 to 10000. At the same time, the average costs decrease from around 50
to 35.
Special attention has to be given to results with infinite costs, resulting from zero-

movements of the machine (two consecutive stops at the same position). As they

90

7.6. Number of Generated Configurations

Table 7.2: Examined choices regarding the number of generated configurations.

l Lstep Lpermutation Lequipment Lall

1 1 1 1 1
2 1 1 1 10
3 1 1 1 50
4 1 1 1 100
5 1 1 4 2000
6 2 4 8 2000
7 2 5 10 5000
8 1 1 4 10000
9 2 4 8 10000
10 10 20 40 10000

would distort the visualization of results, they are depicted separately in Figure 7.12a.
However, zero-movements do not occur often and without significantly correlating to
the number of generated configurations.

Another measure of the quality of results is the number of machine stops in a
punching plan (see Figure 7.12b). As for the costs, they are not affected significantly
by the number of generated configurations in many cases. However, for some “hard”
cases, generating more configurations is crucial, as the reduction of top outliers for
larger settings l in Figures 7.12a and 7.12b suggests.

As can be expected, the execution time is proportional to the overall number Lall of
generated configurations. Their distribution among test cases is very skewed, though.
While it is not much higher than a minute for 75% of the test cases even for 10000
configurations with the setting l = 10, there are a few test cases that take a very long
time to solve and that increase the average over all test cases even above the third
quartile (see Figure 7.12c).

Therefore, the maximum execution time is particularly interesting, because it should
be within reasonable limits even for the worst case. As shown in Figure 7.12c, it ranges
from 250 seconds for l = 1 up to almost one hour for l = 7. The time limit for each
problem instance in practice is around ten minutes.

Informed by these results, a reasonable tradeoff between the quality of results and
execution time has to be made. Considering the limits on computation time in practice,
we choose the setting l = 5 as the default setting in our implementation delivered to
the commissioning companies.

91

7. Computational Results

108 91 2 3 4 6 75
l

0

50

100

150c

7 7 3 2 3 0 1 1 0 1∞

(a) Costs (outliers not shown). Infinite costs are excluded from the analysis
but their number of occurrences is printed on top.

108 91 2 3 4 6 75
l

0

300

600

900

1200s

(b) Number of machine stops.

108 91 2 3 4 6 75
l

0

100

200

ti
m
e
(s
ec
)

(c) Execution time of the algorithm (outliers not shown).

108 91 2 3 4 6 75
l

0

3000

m
ax

ti
m
e
(s
ec
)

(d) Maximum execution time of the algorithm among all test cases.

Figure 7.12: Results and execution time depending on the setting l of generated
configurations. Box plots are used to depict the quartiles, averages,
and outliers of the data.

92

7.7. Weight of Waste Minimization

7.7. Weight of Waste Minimization

A critical parameter to our algorithm is the “weight” λw of the optimization of waste
opposed to the cost function c that measures the time needed for the punching pro-
cess, as introduced in section 3.3 by eq. (3.27). It mainly influences two parts of the
algorithm.

1. The equipment of the machine is chosen rather towards minimizing the waste in
the beginning for larger values of λw (see Algorithm 5.1).

2. For values λw > 0, the waste-decreasing movement of the first punching step as
described in section 6.4 is enabled.

As shown in Figure 7.13, the waste-decreasing movement heuristic has the larger
influence. Even for very small values of λw > 0, waste is reduced significantly (see
Figure 7.13c). Increasing λw further only has a small influence on the resulting waste.
The biggest change besides λw being 0 or not comes with λw being set greater than 0.5,
when waste has higher priority than the cost function so the machine configuration is
chosen primarily upon its influence on the start of the process.
The reason that waste does not disappear even for λw = 1 is that even with this

setting, the configuration needed to eliminate waste (which requires the leftmost punch
punching the first hole) might not be among the configurations considered in our
algorithm. However, this only happens in very rare cases.
The influence of λw on the speed of the punching process is rather small. Only in a

few edge cases, the number of machine stops increases slightly (see Figure 7.13b), while
the cost function remains almost unchanged (see Figure 7.13a). Likewise, changing λw
has no influence on the execution time of the algorithm. Therefore, setting λw to a
small value around 0.1 seems reasonable in practice.

93

7. Computational Results

0 0.1 0.25 0.5 0.75 0.9 1
λw

0

30

60

90

120

150c

3 3 3 3 3 3 4∞

(a) Costs (outliers not shown). Infinite costs are excluded from the analysis
but their number of occurrences is printed on top.

0 0.1 0.25 0.5 0.75 0.9 1
λw

0

200

400

600

800

1000

1200s

(b) Number of machine stops.

0 0.1 0.25 0.5 0.75 0.9 1
λw

0

10000

20000

w

(c) Waste. Notable are the “jumps” at λw = 0 and λw = 0.5.

Figure 7.13: Results depending on the weight λw of waste optimization. Box
plots are used to depict the quartiles, averages, and outliers of the
data.

94

CHAPTER 8

Concluding Remarks

In this thesis, we introduce a novel problem arising in industry that has not been stud-
ied before. We develop a corresponding mathematical model and study its complexity.
We show that a simplified variant with additional constraints is solvable in polynomial
time using a graph-theoretic approach and dynamic programming. However, due to
the simplification and an inefficient worst-case behavior, this does not help with prac-
tical problem instances. Consequently, we present a heuristic algorithm to calculate
solutions efficiently. Our computational results suggest that the generated solutions
are close to optimal solutions. Particularly, good punching plans are determined in
short time for practical problem instances.

Limitations Still, there are some limitations to the proposed algorithm in this thesis.
• While we present a mixed-integer program (see chapter 3), a dynamic program-
ming approach (see section 4.4), and heuristics (see chapters 5 and 6) to solve
the punching problem and show that only the latter is useful in practice, we
do not attempt a “hybrid” approach, that is, solving some partial problems us-
ing integer programs while still relying on heuristics. A modified and extended
dynamic programming approach could be examined as well.
• Extensive refinements of the mixed-integer programs and the corresponding
solver CPLEX is beyond the scope of this thesis. For instance, finding appro-
priate cutting planes (see section 3.5) could significantly speed up the process of
finding an optimal or close-to-optimal solution.
• The precise speed of the examined punching machine and its actual relation to
the movements between consecutive punching steps is not known. The objective
functions presented in section 3.3 and used throughout this thesis arose through
feedback from the commissioning companies regarding the visual appearance of
punching plans without measuring the resulting speed of the process directly.

95

8. Concluding Remarks

Future work While the problem can be considered solved from a practical point of
view, there are several theoretical questions that would still be interesting to investi-
gate in the future.
• The computational complexity of the general punching problem is not proven.
Although a polynomial reduction from the NP-complete hitting set problem
seems reasonable, this is still an open problem.
• While approximation bounds can probably not be given for the general case,
there might be special classes of instances where quality guarantees for our pro-
posed algorithm can be made. It would be interesting to search for criteria on
the hole pattern that allow for this.
• The heuristics to deal with dynamic movements of the punches are iteratively
applied to individual positions in order to improve the punching plan. It would
be interesting to investigate whether these improvements “converge” to a final
punching plan and under what circumstances this is optimal.

However, even with these theoretical questions still open, an implementation of the
proposed algorithm in C++ is successfully used by the commissioning companies in
various manufactories all over the world.

96

APPENDIX A

Additional Algorithms

In this appendix, some algorithms described in chapters 5 and 6 are defined formally.
Algorithm A.1 tests whether a given configuration is feasible with regards to the

x-distances between punches, as described by eq. (5.1) in section 5.3.

Algorithm A.1: Testing whether a given (partial) fixed configuration C is feasible.
1: function Is-Configuration-Feasible(C)

for j ← 1, J do
3: (tj , sj)← Cj

for k ← j + 1, J do
5: (tk, sk)← Ck

if not Xjk ≤ sj − sk ≤ Xjk then
7: return false

return true

Algorithm A.2 normalizes punch positions, as described by eq. (5.2).

Algorithm A.2: Normalizing relative punch positions in a configuration C so that the
reference punch j has position 0.
1: function Normalize-Positions(C)

(tj , sj)← Cj . tool and relative position of the reference punch j
in the given configuration C

3: C ′ ← ∅ . empty resulting configuration
for j ← 1, J do

5: (tj , sj)← Cj . tool and relative position of punch j
C ′j ← (tj , sj − sj) . add punch j at position sj − sj

to the resulting configuration
7: return C ′

97

A. Additional Algorithms

Algorithm A.3 shows how to compute the costs of a given punching plan, as men-
tioned in section 5.5.

Algorithm A.3: Costs of a punching plan S.
1: function Plan-Costs(S) . S is a multiset of Positions

S ← [s.p | s ∈ S]
3: Sort S in ascending order.

return
∑|S|−1
i=1 c(Si+1 − Si)

Algorithm A.4 determines a punching plan for a given fixed machine configuration C,
as described in section 5.5.

Algorithm A.4: Punching plan for a given configuration.
1: function Punching-Plan(C)

P ← Construct-Positions(C)
3: E ← {{p, n} | p ∈ P, n ∈ {1, . . . , N}, n ∈ Img p.n}

G← (P ∪ {1, . . . , N}, E)
5: σ̂ ← (1, . . . , N)

σ̃ ← (ordering of holes with ascending degree in G)
7: Σ← {σ̂, σ̃,Reversed(σ̂),Reversed(σ̃)}

for all σ ∈ Σ do
9: Sσ ← Greedy-Plan(G, σ)

σ∗ ← arg minσ Plan-Costs(Sσ)
11: return Sσ∗

Algorithm A.5 tests whether two sets of relative punch positions are reachable from
each other, as constrained by eq. (6.6) in section 6.3.

Algorithm A.5: Testing whether the relative punch positions s′′j are reachable from
the positions s′j .

1: function Is-Reachable((s′j)j , (s′′j)j)
for j ← 1, J do

3: if
∣∣∣s′j − s′′j ∣∣∣ < X then
return false

5: return true

98

APPENDIX B

Mathematical Models in AMPL

In this appendix, the mathematical models are formalized in the AMPL modeling
language.

B.1. Full Model

The “full” model is described in chapter 3 and implements the punching problem with
piecewise constant cost function as defined in (3.25). It is evaluated in section 7.1 and
used in section 7.4 to compare our algorithm to exact results.

param N_count ; # number o f ho l e s
2 param J_count ; # number o f punches

param T_count ; # number o f t o o l s
4 param I_bound ; # bound on number o f machine s t op s

6 set N := 1 . . N_count ; # se t o f ho l e s
set J := 1 . . J_count ; # se t o f punches

8 set T := 1 . . T_count ; # se t o f t o o l s
set I := 1 . . I_bound ; # se t o f machine s t op s

10
param x{n in N } ; # x−p o s i t i o n s o f ho l e s

12 param y{n in N } ; # y−p o s i t i o n s o f ho l e s
param z{n in N , t in T } ; # t o o l s o f ho l e s

14
param T_{j in J , t in T } ; # f e a s i b l e t o o l s f o r punches

16 param X ; # maximum x−movement a f t e r each s t ep
param X_lower{j in J , k in J } ; # minimum x−d i s t anc e s between

punches
18 param X_upper{j in J , k in J } ; # maximum x−d i s t anc e s between

punches

99

B. Mathematical Models in AMPL

param Y_lower{j in J , k in J } ; # minimum y−d i s t anc e s between
punches

20 param Y_upper{j in J , k in J } ; # maximum y−d i s t anc e s between
punches

param V_lower{j in J } ; # minimum y−p o s i t i o n s o f punches
22 param V_upper{j in J } ; # maximum y−p o s i t i o n s o f punches

param j_ref ; # re f e r ence punch
24

var s{i in I , j in J } ; # ab so l u t e punch p o s i t i o n s in each
s t ep

26 var s_rel{i in I , j in J } ; # r e l a t i v e punch p o s i t i o n s
var v{i in I , j in J } ; # y−p o s i t i o n s o f punches

28 var u{j in J , t in T} binary ; # t o o l s a s s i gned to punches
var h{i in I , j in J , n in N} binary ; # punch j punching ho l e n

in s t ep i
30 var h_neg{i in I , j in J , n in N} integer ; # au x i l i a r y

var h_if{i in I , j in J , n in N} binary ; # au x i l i a r y
32 var a{i in I , j in J} binary ; # punch j a c t i v e in s t ep i

var a_any{i in I} binary ; # any punch a c t i v e in s t ep i
34

param R ; # number o f l i n e a r i z a t i o n segments
36 param delta{r in 0 . . R } ; # l i n e a r i z a t i o n s t e p s o f co s t f unc t i on

38 param M := (max{n in N} x [n]) + 1000 + delta [R] ∗ I_bound ; #
upper bound on h_neg [i , j , n] ;

40 var d{i in 2 . . I_bound } ; # machine d i sp lacement s
var d_interval{i in 2 . . I_bound , r in 0 . . R} binary ; #

l i n e a r i z a t i o n i n t e r v a l
42

param costs_interval{r in 0 . . R} integer
44 = delta [R] / delta [r] ; # cos t s in i n t e r v a l

46 minimize costs :
sum{i in 2 . . I_bound} sum{r in 0 . . R} d_interval [i , r] ∗

costs_interval [r] ;
48

di s t ance i n t e r v a l s
50 subject to distance_interval{i in 2 . . I_bound , r in 0 . . R } :

d [i] >= delta [r] − d_interval [i , r] ∗ delta [r] ;
52

di s t ance d e f i n i t i o n
54 subject to distances{i in 2 . . I_bound } :

d [i] = s [i , j_ref] − s [i−1,j_ref] ;
56

punch on v a l i d x−po s i t i o n when punching
58 subject to x_pos_1{i in I , j in J , n in N } :

h_neg [i , j , n] >= x [n] − s [i , j] ;
60 subject to x_pos_2{i in I , j in J , n in N } :

100

B.1. Full Model

h_neg [i , j , n] >= s [i , j] − x [n] ;
62

punch on v a l i d y−po s i t i o n when punching
64 subject to y_pos_1{i in I , j in J , n in N } :

h_neg [i , j , n] >= y [n] − v [i , j] ;
66 subject to y_pos_2{i in I , j in J , n in N } :

h_neg [i , j , n] >= v [i , j] − y [n] ;
68

punch has co r r e c t t o o l when punching
70 subject to tools_1{i in I , j in J , n in N , t in T } :

h_neg [i , j , n] >= z [n , t] − u [j , t] ;
72 subject to tools_2{i in I , j in J , n in N , t in T } :

h_neg [i , j , n] >= u [j , t] − z [n , t] ;
74

coup l ing o f a u x i l i a r y " i f−then " v a r i a b l e s
76 subject to if_1{i in I , j in J , n in N } :

h_neg [i , j , n] <= M ∗ h_if [i , j , n] ; # => h_if = 1 i f h_neg > 0
78 subject to if_2{i in I , j in J , n in N } :

h [i , j , n] <= 1 − h_if [i , j , n] ; # => h = 0 i f h_neg > 0
80 # => h = 1 only i f h_neg = 0

82 # punch a c t i v e when punching any ho l e
subject to step{i in I , j in J , n in N } :

84 a [i , j] >= h [i , j , n] ;

86 # punch not a c t i v e when not punching any ho l e
subject to step_max{i in I , j in J } :

88 a [i , j] <= sum{n in N} h [i , j , n] ;

90 # every ho l e punched once
subject to holes_punched{n in N } :

92 sum{i in I , j in J} h [i , j , n] = 1 ;

94 # punches are equipped wi th f e a s i b l e t o o l s
subject to punches_feasible_tools{j in J , t in T } :

96 u [j , t] <= T_ [j , t] ;

98 # punches have e x a c t l y one t o o l each
subject to punches_one_tool_each{j in J } :

100 sum{t in T} u [j , t] = 1 ;

102 # x−d i s t anc e s between punches are f e a s i b l e
subject to x_distances{i in I , j in J , k in J } :

104 X_lower [j , k] <= s [i , j] − s [i , k] <= X_upper [j , k] ;

106 # y−d i s t anc e s between punches are f e a s i b l e
subject to y_distances{i in I , j in J , k in J } :

108 Y_lower [j , k] <= v [i , j] − v [i , k] <= Y_upper [j , k] ;

101

B. Mathematical Models in AMPL

110 # y−p o s i t i o n s o f punches are f e a s i b l e
subject to y_feasible{i in I , j in J } :

112 V_lower [j] <= v [i , j] <= V_upper [j] ;

114 # r e l a t i v e x−movements o f punches are f e a s i b l e
subject to x_movements_1{i in 2 . . I_bound , j in J } :

116 s_rel [i , j] − s_rel [i−1,j] <= X ;
subject to x_movements_2{i in 2 . . I_bound , j in J } :

118 s_rel [i−1,j] − s_rel [i , j] <= X ;

120 # re l a t i o n between a b s o l u t e and r e l a t i v e punch p o s i t i o n s
subject to abs_rel_positions{i in I , j in J } :

122 s_rel [i , j] = s [i , j] − s [i , j_ref] ;

124 # no empty punching s t ep
subject to no_empty_step{i in 2 . . I_bound } :

126 a_any [i] <= a_any [i−1] ;

128 # punching s t ep a c t i v e when any punch a c t i v e
subject to any_punch_min{i in I , j in J } :

130 a_any [i] >= a [i , j] ;
subject to any_punch_max{i in I } :

132 a_any [i] <= sum{j in J} a [i , j] ;

B.2. Model for Fixed Machine Configurations

The model for a fixed machine configuration is described in section 7.3 and is used to
evaluate the greedy hitting set heuristics described in section 5.5.

param N_count ; # number o f ho l e s
2 param I_count ; # number o f p o s s i b l e machine p o s i t i o n s

4 set N = 1 . . N_count ; # se t o f ho l e s
set I = 1 . . I_count ; # se t o f p o s s i b l e machine p o s i t i o n s

6
param P{i in I , n in N} binary ; # ho l e n can be punched from

machine po s i t i o n i
8 param c{i in I , j in I} >= 0 ; # cos t s between p o s i t i o n s i and j

10 var p{i in I , j in I : i < j} binary ; # po s i t i o n s i and j are
used

var p_first{i in I} binary ; # po s i t i o n i i s the f i r s t p o s i t i o n
12 var p_last{i in I} binary ; # po s i t i o n i i s the l a s t p o s i t i o n

14 minimize costs :
sum{i in I , j in I : i < j} c [i , j] ∗ p [i , j] ;

16

102

B.2. Model for Fixed Machine Configurations

every ho l e i s punched
18 subject to every_hole_punched{n in N } :

sum{i in I} (P [i , n] ∗ (sum{j in I : i < j} p [i , j] + p_last [i])) >=
1 ;

20
incoming = outgo ing edges a long path

22 subject to path {i in I } :
p_first [i] + sum{j in I : j < i} p [j , i] = sum{j in I : i < j} p [i , j]

+ p_last [i] ;
24

path has e x a c t l y one s t a r t
26 subject to path_start :

sum{i in I} p_first [i] = 1 ;
28

path has e x a c t l y one end
30 subject to path_end :

sum{i in I} p_last [i] = 1 ;

103

APPENDIX C

Dynamic Program in Python

In this appendix, an implementation of the dynamic program proposed in section 4.4
in Python is presented.

from itertools import chain , combinations , product
2

inf = float (’ i n f ’)
4

def subsets (S) :
6 " " "

I t e r a t o r through the s u b s e t s o f S .
8

Arguments :
10 S : i t e r a b l e conta iner o f e lements .

Returns :
12 i t e r a t o r o f s u b s e t s o f S .

" " "
14 S = list (S)

return (set (s) for s in chain . from_iterable (combinations (S , r)
16 for r in range (len (S)+1)))

18 def solve (x , a , b) :
" " "

20 So lve the s imp l i f i e d punching problem .

22 Arguments :
x : p o s i t i o n s o f ho l e s .

24 a : r e l a t i v e p o s i t i o n o f l e f t punch .
b : r e l a t i v e p o s i t i o n o f r i g h t punch .

26 Returns :
minimum number o f punching s t e p s to punch a l l h o l e s .

28 " " "
x = sorted (x)

105

C. Dynamic Program in Python

30 s_ = [−a , 0 , b]
_L , _M , _R = {} , {} , {}

32 _index = dict ((z , n) for n , z in enumerate (x))

34 def index (z) :
" " "

36 Index o f a ho l e p o s i t i o n z in x .
" " "

38 return _index . get (z , −1)

40 def holes_range (z , n) :
" " "

42 Range o f ho l e p o s i t i o n s >= z and be f o r e ho l e n .
" " "

44 z_index = index (z)
i f z_index < 0 :

46 return set ()
return set (x [z_index : n])

48
def F (T) :

50 " " "
Minimum number o f punching s t e p s to punch T, computed by

f u l l enumeration .
52 " " "

return min (len (set (t − s_ [f [t_index]] for t_index , t in
enumerate (T)))

54 for f in product ([0 , 1 , 2] , repeat=len (T)))

56 def A (n , S) :
" " "

58 Minimum s t e p s to punch a l l h o l e s u n t i l n and ho l e s in S .
" " "

60 i f n == −1 and not S :
return 0

62 return min ([L (n , S) , M (n , S) , R (n , S)])

64 def L (n , S) :
" " "

66 Minimum s t e p s when punching ho l e n wi th the l e f t punch .
" " "

68 i f S and max (S) > x [n] + a + b :
return inf

70 key = (n , frozenset (S))
i f key not in _L :

72 i f n == −1:
_L [key] = inf

74 else :
punched = set ([x [n] , x [n] + a , x [n] + a + b])

76 _L [key] = min (1 + A (n−1, S_ − punched) + F (S − S_

106

− punched)
for S_ in subsets (s for s in S i f n == 0 or s

<= x [n−1] + a + b))
78 return _L [key]

80 def M (n , S) :
" " "

82 Minimum s t e p s when punching ho l e n wi th the middle punch .
" " "

84 i f S and max (S) > x [n] + a + b :
return inf

86 key = (n , frozenset (S))
i f key not in _M :

88 i f n == −1:
_M [key] = inf

90 else :
punched = set ([x [n] − a , x [n] , x [n] + b])

92 _M [key] = min (min ([1 + A (n−1, S_ − punched) + F (S
− S_ − punched) ,
L (index (x [n] − a) , S_ | holes_range (x [n] − a ,

n)) + F (S − S_ − punched)
94]) for S_ in subsets (s for s in S i f n == 0 or s

<= x [n−1] + a + b))
return _M [key]

96
def R (n , S) :

98 " " "
Minimum s t e p s when punching ho l e n wi th the r i g h t punch .

100 " " "
i f S and max (S) > x [n] + a + b :

102 return inf
key = (n , frozenset (S))

104 i f key not in _R :
i f n == −1:

106 _R [key] = inf
else :

108 punched = set ([x [n] − a − b , x [n] − b , x [n]])
R [key] = min (min ([1 + A (n−1, S − punched) + F (S
− S_ − punched) ,

110 M (index (x [n] − b) , S_ | holes_range (x [n] − b ,
n)) + F (S − S_ − punched) ,

L (index (x [n] − a − b) , S_ | holes_range (x [n] −
a − b , n)) + F (S − S_ − punched)

112]) for S_ in subsets (s for s in S i f n == 0 or s
<= x [n−1] + a + b))

return _R [key]
114

return A (len (x) − 1 , set ())

107

APPENDIX D

Selected Solutions

In this appendix, we present a selection of the test cases described in section 7.2
and the solution generated by our algorithm described in chapters 5 and 6 using the
machine parameters as given in section 3.4. The number of repetitions of each block
of holes in the given patterns is reduced so that they fit on a page.
In Figures D.1 to D.5, different colors denote different punching steps. The pattern

of holes is shown at the top. Depicted below are the positions of the punches in
each step, where active punches are drawn bold and are connected to their respective
punched holes by dotted lines. At the bottom the machine positions are shown again
with the distances between consecutive steps.

0 1×105 2×105

x−500

0

500y

Figure D.1: A simple pattern.

109

D. Selected Solutions

0 1×105 2×105 3×105 4×105

x

−1500

−1000

−500

0

500

1000

1500y

Figure D.2: Pattern containing asymmetrical holes with respect to the x-axis.

0 5×104 1×105

x

−1000

−500

0

500

1000y

Figure D.3: Pattern with symmetry axis above the x-axis.

110

0 1×105 2×105 3×105

x−500

0

500y

Figure D.4: Pattern with three different hole types containing pairs of holes close
to each other in y-direction.

−1×104 0 1×104

x

−1500

−1000

−500

0

500

1000

1500y

Figure D.5: Very dense pattern.

111

Bibliography

Achterberg, T. (2009). “SCIP: solving constraint integer programs”. Mathematical
Programming Computation 1.1, pp. 1–41.

Alon, N., D. Moshkovitz, and S. Safra (2006). “Algorithmic construction of sets
for k-restrictions”. ACM Transactions on Algorithms 2.2, pp. 153–177.

Arrow, K. J., S. Karlin, and H. Scarf (1958). Studies in the Mathematical Theory
of Inventory and Production. Stanford Mathematical Studies in the Social Sciences.
Stanford, CA, USA: Stanford University Press.

Balas, E. (1979). “Disjunctive Programming”. In: Discrete Optimization II. Ed. by
P. L. Hammer, E. L. Johnson, and B. H. Korte. Vol. 5. Annals of Discrete
Mathematics. Elsevier, pp. 3–51.

Belotti, P., L. Liberti, A. Lodi, G. Nannicini, and A. Tramontani (2010). “Dis-
junctive Inequalities: Applications And Extensions”. In: Wiley Encyclopedia of Op-
erations Research and Management Science. Ed. by J. J. Cochran. John Wiley &
Sons.

Burer, S. and D. Vandenbussche (2008). “A finite branch-and-bound algorithm
for nonconvex quadratic programming via semidefinite relaxations”. Mathematical
Programming 113 (2), pp. 259–282.

Caprara, A. and M. Fischetti (1997). “Branch-and-Cut Algorithms”. In: Annotated
Bibliographies in Combinatorial Optimization. John Wiley & Sons, pp. 45–63.

113

Bibliography

Carvalho, J. M. V. de (1998). “Exact Solution of Cutting Stock Problems Using
Column Generation and Branch-and-Bound”. International Transactions in Opera-
tional Research 5.1, pp. 35–44.

Chvatal, V. (1979). “A greedy heuristic for the set-covering problem”. Mathematics
of Operations Research 4.3, pp. 233–235.

Clausen, J. and M. Perregaard (1996). “On the Best Search Strategy in Paral-
lel Branch-and-Bound – Best-First-Search vs. Lazy Depth-First-Search.” Annals of
Operations Research 11, pp. 1–17.

Dakin, R. J. (1965). “A tree-search algorithm for mixed integer programming prob-
lems”. The Computer Journal 8.3, pp. 250–255.

Dantzig, G. B., D. R. Fulkerson, and S. Johnson (1954). “Solution of a large-scale
traveling-salesman problem”. Operations Research 2, pp. 393–410.

Dantzig, G. B. and J. H. Ramser (1959). “The Truck Dispatching Problem”. Man-
agement Science 6.1, pp. 80–91.

Dantzig, G. B. and M. N. Thapa (1997). Linear Programming: 1: Introduction.
Springer Series in Operations Research. Springer.

Donoghue, W. F. (1969). Distributions and Fourier transforms. Vol. 32. Pure and
Applied Mathematics. Academic Press.

Feige, U. (1998). “A threshold of ln n for approximating set cover”. Journal of the
ACM 45.4, pp. 634–652.

Fortnow, L. (2009). “The status of the P versus NP problem”. Communications of
the ACM 52.9, pp. 78–86.

Fourer, R., D. M.Gay, and B. W.Kernighan (2002). AMPL: A Modeling Language
for Mathematical Programming. Duxbury Press.

Garey, M. R. and D. S. Johnson (1979). Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.

Gasarch, W. I. (2012). “Guest Column: The Second P =? NP Poll”. SIGACT News
43.2, pp. 53–77.

Gilmore, P. C. and R. E. Gomory (1961). “A Linear Programming Approach to the
Cutting-Stock Problem”. Operations Research 9.6, pp. 849–859.

Gilmore, P. C. and R. E. Gomory (1963). “A Linear Programming Approach to the
Cutting Stock Problem—Part II”. Operations Research 11.6, pp. 863–888.

Glover, F. and C. McMillan (1986). “The general employee scheduling problem:
an integration of MS and AI”. Computers & Operations Research 13.5, pp. 563–573.

114

Bibliography

Glover, F. and G. A. Kochenberger, eds. (2003). Handbook of Metaheuristics.
International Series in Operations Research & Management Science. Norwell, MA,
USA: Kluwer.

Gomory, R. E. (1958). “Outline of an algorithm for integer solutions to linear pro-
grams”. Bulletin of the American Mathematical Monthly 64, pp. 275–278.

Gomory, R. E. (1960). “An algorithm for the mixed integer problem”. In: Research
Memorandum, RM-2597, The RAND Corp. Santa Monica, CA, USA.

Goulimis, C. (1990). “Optimal solutions for the cutting stock problem”. European
Journal of Operational Research 44.2, pp. 197–208.

Grötschel, M. and O.Holland (1991). “Solution of large-scale symmetric travelling
salesman problems”. Mathematical Programming, Series A 51.2, pp. 141–202.

Grötschel, M., A. Martin, and R. Weismantel (1996). “Packing Steiner trees:
a cutting plane algorithm and computational results”. Mathematical Programming
72.2, pp. 125–145.

Gurobi Optimization, Inc. (2012). Gurobi Optimizer Reference Manual Version
5.0. Houston, TX, USA.

Hillier, F. S. and G. J. Lieberman (2010). Introduction to Operations Research.
9th ed. McGraw-Hill Higher Education.

ILOG CPLEX Division (2007). CPLEX 11.0 User’s Manual. Incline Village, NV,
USA.

Jünger, M., G. Reinelt, and S. Thienel (1995). “Practical Problem Solving with
Cutting Plane Algorithms in Combinatorial Optimization”. Combinatorial Opti-
mization. DIMACS Series in Discrete Mathematics and Computer Science 20.

Karmarkar, N. (1984). “A new polynomial-time algorithm for linear programming”.
In: Proceedings of the sixteenth annual ACM symposium on Theory of computing.
STOC ’84. New York, NY, USA: ACM, pp. 302–311.

Karp, R. (1972). “Reducibility among combinatorial problems”. In: Complexity of
Computer Computations. Ed. by R. Miller and J. Thatcher. New York, NY,
USA: Plenum Press, pp. 85–103.

Khachiyan, L. G. (1979). “A polynomial algorithm in linear programming”. Doklady
Akademii Nauk SSSR 244, pp. 1093–1096.

Knuth, D. E. (1976). “Big Omicron and big Omega and big Theta”. SIGACT News
8.2, pp. 18–24.

Knuth, D. E. (1998). Sorting and Searching. Vol. 3. The Art of Computer Program-
ming. Reading, MA, USA: Addison-Wesley, pp. 513–558.

115

Bibliography

Krumke, S., S. Saliba, T. Vredeveld, and S. Westphal (2008). “Approxima-
tion algorithms for a vehicle routing problem”. Mathematical Methods of Operations
Research 68.2, pp. 333–359.

Land, A. H. and A. G. Doig (1960). “An Automatic Method of Solving Discrete
Programming Problems”. Econometrica 28.3, pp. 497–520.

Laporte, G. (1992). “The Vehicle Routing Problem: An overview of exact and ap-
proximate algorithms”. European Journal of Operational Research 59.3, pp. 345–
358.

Lenstra, H. W. (1983). “Integer Programming in a Fixed Number of Variables”.
Mathematics of Operations Research 8, pp. 538–548.

Li, J. and R. R. Rhinehart (1998). “Heuristic random optimization”. Computers &
Chemical Engineering 22.3, pp. 427–444.

Lovász, L. (1975). “On the ratio of optimal integral and fractional covers”. Discrete
Mathematics 13.4, pp. 383–390.

Lund, C. and M. Yannakakis (1994). “On the hardness of approximating minimiza-
tion problems”. Journal of the ACM 41.5, pp. 960–981.

Marchand, H., A. Martin, R. Weismantel, and L. Wolsey (2002). “Cutting
planes in integer and mixed integer programming”. Discrete Applied Mathematics
123.1-3, pp. 397–446.

Martí, R. and G. Reinelt (2011). “Branch-and-Bound”. In: The Linear Order-
ing Problem. Vol. 175. Applied Mathematical Sciences. Springer Berlin Heidelberg,
pp. 85–94.

McGill, R., J. W. Tukey, and W. A. Larsen (1978). “Variations of Box Plots”.
The American Statistician 32.1, pp. 12–16.

Mitchell, J. E. (2002). “Branch-and-cut algorithms for combinatorial optimization
problems”. In: Handbook of Applied Optimization. Oxford, GB: Oxford University
Press, pp. 65–77.

Nemhauser, G. L., M. W. Savelsbergh, and G. C. Sigismondi (1994). “MINTO,
a Mixed INTeger Optimizer”. Operations Research Letters 15.1, pp. 47–58.

Padberg, M. and G. Rinaldi (1991). “A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems”. SIAM Review 33.1, pp. 60–
100.

Papadimitriou, C. H. and K. Steiglitz (1982). Combinatorial Optimization: Algo-
rithms and Complexity. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.

116

Bibliography

Pardalos, P. and V. Korotkikh (2003). Optimization and Industry: New Frontiers.
Vol. 78. Applied Optimization. Springer.

Raghavan, P. and C. D. Tompson (1987). “Randomized rounding: a technique for
provably good algorithms and algorithmic proofs”. Combinatorica 7.4, pp. 365–374.

Raz, R. and S. Safra (1997). “A sub-constant error-probability low-degree test, and
a sub-constant error-probability PCP characterization of NP”. In: Proceedings of
the twenty-ninth annual ACM symposium on Theory of computing. STOC ’97. New
York, NY, USA: ACM, pp. 475–484.

Smith, J. C. and Z. C. Taşkın (2008). “A Tutorial Guide to Mixed-Integer Program-
ming Models and Solution Techniques”. In: Optimization in Medicine and Biology.
Ed. by G. J. Lim and E. K. Lee. Boca Raton, FL, USA: Taylor and Francis, Auer-
bach Publications.

Stallman, R. M. and the GCC Developer Community (2008). Using the GNU
Compiler Collection. Boston, MA, USA.

Turing, A. (1936). “On Computable Numbers, with an Application to the Entschei-
dungsproblem”. Proceedings of the London Mathematical Society 42, pp. 230–265.

Vazirani, V. V. (2001). Approximation Algorithms. New York, NY, USA: Springer.

Wolsey, L. A. (1998). Integer Programming. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons.

Young, N. E. (1995). “Randomized rounding without solving the linear program”.
In: Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms.
SODA ’95. Philadelphia, PA, USA: SIAM, pp. 170–178.

117

	Acknowledgements
	Symbols and Definitions
	Introduction
	Problem Description
	Production Process
	Punching Machine
	Decisions Constituting a Solution

	Mathematical Model
	Parameters and Variables
	Constraints
	Optimization Objectives
	Practical Parameter Choices
	Mixed-Integer Linear Programs

	Computational Complexity
	Bipartite Graph Formulation
	NP-Completeness
	Related Problems and Approximations
	Dynamic Programming Solution

	Algorithm for Fixed Configurations
	Determining Equipments
	Distances in the Pattern
	Generating Configurations
	Constructing the Hole-Position Graph
	Punching Plan by Hitting Set Heuristics
	Overall Algorithm
	Implementation Details

	Heuristics for Dynamic Configurations
	Assignments and Positions of Punches
	Combining Punching Steps
	Moving Punching Steps
	Reducing Waste
	Overall Improvements

	Computational Results
	Performance of Exact Methods
	Test Cases
	Fixed Machine Configurations
	Dynamic Configurations
	Impact of Dynamic Heuristics
	Number of Generated Configurations
	Weight of Waste Minimization

	Concluding Remarks
	Additional Algorithms
	Mathematical Models in AMPL
	Full Model
	Model for Fixed Machine Configurations

	Dynamic Program in Python
	Selected Solutions
	Bibliography

