
Markus Bödenler

Parallel Computing for Optimal Control

RF Pulse Design

Master Thesis

Institute for Medical Engineering
Technical University of Graz

Kronesgasse 5/II
A-8010 Graz

Head of the Institute: Univ.-Prof. Dr.techn. Dipl.-Ing. Rudolf Stollberger

Supervisor: Dipl.-Ing. Christoph Aigner
Evaluator: Univ.-Prof. Dipl.-Ing. Dr.techn. Rudolf Stollberger

Graz, (January 15, 2016)

Danke, Mama und Papa

Danke, Nidi

Danke, Christoph und Prof. Stollberger

Danke, meinen Kollegen vom Institut für Medizintechnik der TU Graz

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources / resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

Abstract

In this work the inherent spatial parallelism of the full time dependent Bloch equation for

optimal control based RF pulse design is exploited to accelerate the optimization by means

of parallel computing. The major bottlenecks in the provided MATLAB framework are

implemented utilizing the MATLAB executable (MEX) interface using sequential C/C++

code, OpenMP CPU multi-threading and CUDA GPU-computing. The demonstrated

implementations lead to a significant reduction in computing time while maintaining the

high flexibility of the MATLAB environment. In particular, the CUDA implementation

allows for optimization times in the order of a few seconds making real-time optimization

and patient-specific design feasible. An evaluation of the generated RF pulses indicates no

significant loss in accuracy with respect to the MATLAB implementation.

Keywords: RF pulse design, optimal control, simultaneous multi-slice excitation, parallel

computing, general-purpose computing on graphics processing unit

Kurzfassung

Im Rahmen dieser Arbeit wird die örtliche Unabhängigkeit der Bloch Gleichung, zum

Design von HF-Pulsen mittels Optimal Control Ansatz, ausgenützt, um mit Hilfe von

Parallel Computing Methoden eine Beschleunigung der Optimierung zu erreichen. Die

berechungsintensiven Funktionen des zur Verfügung gestellten MATLAB Frameworks wer-

den unter Verwendung der MATLAB executable (MEX) Schnittstelle als sequenzielle C/C++,

OpenMP Multi-Threading und CUDA GPU Computing Versionen implementiert. Dies

führt zu einer signifikanten Reduktion der Optimierungsdauer unter Aufrechterhaltung der

hohen Flexibilität der MATLAB-Umgebung. Insbesondere reduziert die CUDA Imple-

mentierung die Optimierung auf einige Sekunden, wodurch patientenspezifisches Design,

in Echtzeit, ermöglicht wird. Eine Evaluierung der berechneten HF-Pulse zeigt keinen sig-

nifikanten Verlust an Genauigkeit gegenüber der Implementierung in MATLAB.

Schlüsselwörter: HF-Pulsdesign, Optimal Control, Simultaneous Multi-Slice Excitation,

Parallel Computing, General-Purpose Computing on Graphics Processing Unit

Contents

1. Introduction 2

1.1. Objective . 4

2. Background 5

2.1. Excitation problem and RF Pulse Design 5

2.1.1. Bloch Equation . 5

2.1.2. Single Slice Excitation . 6

2.1.3. Rectangular Pulses . 9

2.1.4. SINC Pulses . 10

2.1.5. SLR Pulses . 11

2.1.6. Simultaneous Excitation of Multiple Slices 13

2.1.7. OC Pulses . 18

2.2. Parallel Computing . 24

2.2.1. NVIDIA CUDA . 24

2.2.2. OpenMP . 31

3. Methods 33

3.1. Matlab Framework . 33

3.2. CMake Project Structure . 37

3.3. Thrust Library . 39

3.4. Sequential C/C++ Implementation . 40

Contents

3.5. Parallel CUDA C/C++ Implementation 48

3.6. Parallel OpenMP Implementation . 53

4. Results 55

4.1. Optimization Time . 55

4.2. Problem Size Dependency . 58

4.3. Single vs. Double . 60

4.3.1. Speed . 60

4.3.2. Accuracy . 62

4.4. CUDA Implementation Profiler Results . 67

4.5. CUDA Kernel Execution Time . 68

5. Discussion and Conclusion 70

Bibliography 78

Appendix 84

A. GPU Specifications . 84

B. CUDA Kernels . 85

B.1. applyHessGPU . 85

B.2. cn_blochGPU . 89

B.3. cn_adjointGPU . 91

vi

Index of Abbreviations

MRI Magnetic Resonance Imaging

RF radio frequency

SLR Shinnar-Le Roux

PM Parks-McClellan

FIR finite impulse response

TR repetition time

TE echo time

SMS simultaneous multi-slice

SNR signal to noise ratio

SENSE sensitivity encoding

CAIPIRINHA controlled aliasing in parallel imaging results in higher acceleration

EPI echo planar imaging

SAR specific absorption rate

PINS power independent number of slices

VERSE variable rate selective excitation

pTx parallel transmission

TSE turbo spin echo

OC optimal control

CG conjugate gradient

API application interface

MPI Message Passing Interface

OpenMP Open Multi-Processing

GPGPU general-purpose computing on graphics processing unit

CUDA Compute Unified Device Architecture

OpenCL Open Computing Language

SM streaming multiprocessor

SIMT Single-Instruction, Multiple-Thread

STL Standard Template Library

BLAS Basic Linear Algebra Subroutines

RMSE root-mean-square error

MAE mean absolute error

FLASH fast low angle shot

1. Introduction

We live in a highly parallel world. Numerous complex events are happening at the same

time, in parallel. The attempt to understand and to model real world phenomena is as

old as science itself. Realistic modelling and simulation of physics effects poses innumerous

problems, whose computational requirements are so demanding that it is infeasible to solve

them in reasonable time on a single computer [1]. In the age of information the increase in

computing performance is crucial. Over the last decades the vast majority of applications

are written as sequential programs expecting that each new generation of microprocessors

comes with an increase in computing performance. We now have reached a point where

this expectation is no longer strictly valid and parallelization techniques are essential to

maintain this increase [2]. Many problems provide an inherent parallelism one can exploit

to reduce computing time and thus parallel computing has become increasingly important

in the last decade. Parallel computing utilizes the divide and conquer principle and splits

a large-scale problem into smaller independent sub-problems that can be solved concur-

rently [3]. There exist a wide variety of available programming frameworks. The Message

Passing Interface (MPI) standard is a model used for distributed memory systems, e.g.,

computing cluster, where all interaction and data sharing must be done via message pass-

ing [2]. The OpenMP (Open Multi-Processing) framework is designed for shared memory

systems and consists of a set of compiler directives, environment variables and library

functions to express and control parallelism [4]. General-purpose computing on graphic

processing units (GPGPU) is the use of the graphics processing unit (GPU) for comput-

1. Introduction

ing problems originally performed on the central processing unit (CPU). Traditionally, the

hardware architecture of a GPU is designed to perform a massive amount of floating point

operations per video frame as required in video processing and advanced video games.

Therefore, the GPU architecture is highly specialized for parallel processing and even a

single heterogeneous platform (CPU-GPU system) provides remarkable enhancements in

computing performance, when the computational intensive parts are moved to the GPU

for execution [2]. One of the first applications of general-purpose computations on a GPU

was proposed to calculate large matrix-matrix products [5]. The Compute Unified Device

Architecture (CUDA) programming model enables the use of general-purpose computing

on NVIDIA GPUs [6]. A vendor independent platform is the OpenCL (Open Computing

Language) framework. GPU computing can be utilized in a broad range of applications

such as in Magnetic Resonance Imaging (MRI) [7, 8].

MRI is a noninvasive medical imaging modality and has a wide range of applications in

medical diagnosis. Selective radio frequency (RF) pulses, together with a slice selection

gradient, are used for spatial excitation of a distinct slice in the subject. During the design

process of RF pulses a main question arises: What RF pulse should be applied to reach

the desired magnetization profile? Due to the bilinearity of the Bloch equation it is very

difficult to obtain a closed-form solution for an arbitrary pulse excitation [9]. For small tip

angle excitation the RF envelope can be approximated sufficiently by the inverse Fourier

transform of the desired slice profile. As a result of the bilinearity of Bloch’s equation

this approximation only holds for small tip angles (< 30◦) but remains reasonable up to

excitations of 90◦ [10]. Therefore, the use of special techniques to reduce the resulting

excitation error becomes indispensable when an accurate slice profile, in combination with

large flip angles, is needed. Several methods have been proposed in the literature, e.g., the

Shinnar-Le Roux (SLR) selective excitation pulse design algorithm [11] or optimization

methods based on optimal control (OC) theory [12]. The SLR algorithm transforms the

problem of RF pulse design to the problem of digital filter design, which can be solved

using sophisticated digital filter design algorithms (e.g. Parks-McClellan algorithm [11]).

Optimal control methods optimize a proper modelled objective function with subject to the

3

1. Introduction

Bloch equation describing the evolution of the magnetization vector in an external mag-

netic field [12]. However, OC approaches usually suffer from high computational effort.

Recently, Aigner et al. proposed an efficient implementation of the OC approach applied

to simultaneous multi-slice pulse design [13]. In particular, they introduced a matrix-free

Newton-Krylov method using exact first- and second-order derivatives obtained by means

of adjoint calculus. In addition, they embedded the matrix-free Newton-Krylov method in

a Steihaug trust-region framework achieving global convergence to a local minimizer [14].

The numerical solution of this optimal control problem requires a discretization of the

Bloch equation, adjoint equation and objective function in the time and spatial domain.

In each spatial discretization point the Bloch and adjoint equation can be solved indepen-

dently and in parallel. This underlying parallelism makes the algorithm highly suited for

a parallel implementation.

1.1. Objective

The aim of this work is to exploit the intrinsic parallelism of the matrix-free trust-region

Newton-Krylov algorithm presented in the work, ”Efficient high-resolution RF pulse design

applied to simultaneous multi-slice excitation” [13], by means of parallel computing. The

major bottlenecks in the provided MATLAB framework are supposed to be identified and

implemented utilizing the MATLAB executable interface, while maintaining the high flex-

ibility of the MATLAB environment. Different parallel programming frameworks should

be applied, whereas the focus lies on general-purpose computing on graphic processing

units. These implementation methods are to be evaluated and compared with regard to

the achievable speedup in computing performance and accuracy of the obtained optimiza-

tion results depending on the underlying floating point precision.

4

2. Background

2.1. Excitation problem and RF Pulse Design

Selective RF pulses in conjunction with a slice selective gradient are used for excitation

of a distinct slice in the subject. During the design process of RF pulses a main question

arises: What RF pulse should be applied to reach the desired magnetization profile? The

impact of a general RF pulse on the magnetization profile can be calculated by solving the

Bloch equation and is called the forward problem of RF pulse design. The inverse problem

denotes the computation of a RF pulse shape B1(t) for a given target magnetization profile.

However, it is very difficult to obtain a closed-form solution for an arbitrary pulse excitation

due to the bilinearity of the Bloch equation and thus numerical techniques are used to find

an approximate solution [9].

2.1.1. Bloch Equation

The general behaviour of the magnetization vector M(t) in presence of an external magnetic

field B(t) is governed by the Bloch equation

dM(t)

dt
= γB(t)×M(t) + R(M(t)) , (2.1)

where γ denotes the gyromagnetic ratio. The relaxation term R(M(t)) is given by

R(M(t)) = −Mx(t)êx +My(t)êy

T2
− (Mz −M0)êz

T1
, (2.2)

2. Background

with equilibrium magnetization M0 and relaxation times T1 and T2. The vectors êx, êy

and êz are unit vectors in x, y and z directions, respectively. The external magnetic field

B(t) is composed of three components: the main static field B0, the time-dependent radio

frequency field B1(t) and the time-dependent gradient fields G(t). With only a static field

B0 present in longitudinal direction (z-axis) the net magnetization vector M is aligned along

this axis. The resonance frequency of the spins is the Larmor frequency of hydrogen atoms.

To create a signal in MRI a RF field B1(t) (at Larmor frequency) is applied for a short time

period to rotate M away from the z-axis and the transverse projection can be measured.

The shape of such a magnetic field is denoted as RF pulse. In the absence of applied

gradient fields all spins show the same resonance frequency and are tipped nonselectively.

A selective excitation can be attained when a gradient field is played concurrently with the

RF pulse. [10, 15]

2.1.2. Single Slice Excitation

A basic approach for selective excitation of a plane is to apply a constant magnetic field

gradient along the z-direction together with a RF pulse modulated by a function B1(t)

(RF pulse shape). This gradient field is commonly referred to as slice selection gradient

Gz, and varies the Larmor frequency linearly along the longitudinal direction resulting in a

different effective magnetic field Beff in each spatial point. Thus the Larmor frequency is a

function of z location ω(z). A RF pulse, tuned to a certain resonance frequency ω0, excites

those spins located in z direction with resonance frequency matching the frequencies of

B1(t). Spins with resonance frequencies outside the RF bandwidth remain unexcited and

the resulting excited slice is perpendicular to Gz. The slice thickness ∆z is proportional

to the RF bandwidth and reciprocally proportional to the amplitude of the slice selection

gradient. The location z0 of the slice is determined by the carrier frequency ω0 of the RF

pulse (see figure 2.1).

6

2. Background

For non-adiabatic RF pulses and in the on-resonance case the flip angle θ at time point τ

(pulse duration) is given by the area under the RF envelope B1(t) (equation 2.3).

θ(τ) = γ

∫ τ

t=0

B1(t)dt (2.3)

An ideal selective excitation pulse will lead to a slice profile with uniform flip angle in-slice

and zero flip angle out-of-slice, i.e., a rectangular profile. Such an ideal slice profile cannot

be reached in practice but effective approximations are available. [10, 15]

z

f

Gz2

Gz1

∆z

∆f1

∆f2

Figure 2.1.: The slice thickness ∆z is proportional to the RF bandwidth ∆f and inversely pro-

portional to the slice selection gradient Gz.

Small Tip Angle Approximation In the small tip angle case the approximationsMz ≈M0

and dMz/dt ≈ 0 are used to simplify the Bloch equation (Eq. 2.1). Furthermore, relaxation

effects are neglected because the RF pulse is short (i.e., T1, T2 >> τ) and a constant z-

gradient Gz is applied. Defining the complex transverse magnetization

Mxy = Mx + iMy , (2.4)

7

2. Background

the decoupled transverse components merge into a first-order linear differential equation

dMxy

dt
= −iγGzzMxy + iγB1(t)M0 . (2.5)

Solving equation 2.5 the magnitude of the transverse magnetization is given by

|Mxy(τ, z)| = γM0F1D

{
B1

(
t+

τ

2

)}∣∣∣
f=−(γ/2π)Gzz

, (2.6)

where B1(t) has a pulse duration from t = 0 to τ and f = −(γ/2π)Gzz denotes the fre-

quency at each z-position. Equation 2.6 states the Fourier transform relationship between

B1(t) and the slice profile. For small tip angles the Fourier transform is a sufficient de-

scription and B1(t) can be designed using the inverse Fourier transform of the desired slice

profile. For a detailed derivation of this relation the reader is referred to [10, Chapter 6.2.2].

The RF pulse of choice, for a rectangular slice profile, would be SINC-shaped and of infinite

duration, but this is not feasible in practice. This approximation only holds for small tip

angles (< 30◦) but remains reasonable up to excitations of 90◦. Above 90◦ severe excita-

tion error emerges. Figure 2.2 depicts the transverse magnetization response to a Hamming

windowed SINC-pulse with tip angles of 30◦, 90◦ and 150◦. [10, 15]

distance in mm

-8 -6 -4 -2 0 2 4 6 8

n
o
rm

a
liz

e
d
 m

a
g
n
e
ti
z
a
ti
o
n

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 M
x
(T)

M
y
(T)

(a) θ = 30◦

distance in mm

-8 -6 -4 -2 0 2 4 6 8

n
o
rm

a
liz

e
d
 m

a
g
n
e
ti
z
a
ti
o
n

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 M
x
(T)

M
y
(T)

(b) θ = 90◦

distance in mm

-8 -6 -4 -2 0 2 4 6 8

n
o
rm

a
liz

e
d
 m

a
g
n
e
ti
z
a
ti
o
n

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 M
x
(T)

M
y
(T)

(c) θ = 150◦

Figure 2.2.: Validity of the small tip angle approximation. Shows the transverse magnetization

components My (blue solid) and Mx (green dashed) in response to a Hamming win-

dowed SINC-pulse B1(t) at tip angles of θ = 30◦, 90◦ and 150◦. The Fourier approx-

imation holds for θ = 30◦. At θ = 90◦ and 150◦ excitation errors are noticeable (red

arrows).

8

2. Background

2.1.3. Rectangular Pulses

A rectangular or hard pulse is defined by

B1(t) = B1 RECT

(
t
τ
2

)
=

1 if |t| < τ
2

0 if |t| > τ
2

, (2.7)

where τ is the pulse duration (width) and B1 the amplitude. The flip angle θ is proportional

to the product of the width and amplitude of the pulse resulting in

θ = γB1τ . (2.8)

As a result from the small tip angle approximation the slice profile of a hard pulse is the

corresponding SINC function. A short pulse width results in a wide bandwidth of excited

spins. Therefore, hard pulses are used in the case of nonselective excitation. [15]

t
τ

B1

θ = γB1τ

Figure 2.3.: Hard pulse with amplitude B1 and pulse width τ . The flip angle is given by θ = γB1τ

9

2. Background

2.1.4. SINC Pulses

SINC pulses are widely used for selective excitation, saturation and refocusing. The math-

ematical description of the pulse shape is given by

B1(t) =

B1 SINC

(
πt
t0

)
≡ B1 t0

sin
(
πt
t0

)
πt

if −NLt0 ≤ t ≤ NRt0

0 elsewhere ,

(2.9)

where B1 is the RF peak amplitude (at t = 0), NR and NL are the number of zero crossings

to the right and left, respectively, and t0 is one half the width of the central lobe. The

Fourier transform of an infinitely long SINC pulse is the RECT function (eqiation 2.6). In

practice, the SINC pulse is truncated after a few side lobes. The greater the number of

side lobes, the better the approximation of the ideal magnetization profile. The truncation

of the SINC pulse leads to ringing effects in the slice profile. A window function (e.g

Hamming or Hanning window) is usually applied to the SINC pulse to smooth the slice

profile. Figure 2.4 shows a symmetric SINC pulse with and without Hamming window.

[15]

0 0.5 1 1.5 2 2.5

−0.2

0

0.2

0.4

0.6

0.8

1

time (ms)

n
or

m
al

iz
ed

am
p
li
tu

d
e

(a
.u

.)

SINC pulse

SINC pulse (Hamming)

Figure 2.4.: SINC pulse with (blue solid) and without (green dashed) Hamming window.

10

2. Background

2.1.5. SLR Pulses

In the case of large flip angles the small tip angle approximation does not provide a suf-

ficiently accurate slice profile (figure 2.2) and more sophisticated methods such as the

Shinnar-Le Roux transformation are required [11]. Originally, the SLR algorithm was lim-

ited to flip angles of 90◦ and 180◦, but Lee [16] generalized this approach to arbitrary flip

angles using an exact parameter relation. The SLR algorithm uses two key concepts: the

hard pulse approximation and the spin-domain representation of rotation (spinor notation).

The RF pulse B1(t) is approximated as a sequence of hard pulses with pulse width ∆t,

each resulting in a small rotation of the magnetization vector. Based on the spinor nota-

tion the total rotation of the magnetization vector can be described by two z-transform

polynomials AN(z) and BN(z). This is denoted as forward SLR transform. The polyno-

mials can be obtained by using filter design algorithms such as the Parks-McClellan (PM)

algorithm. The computation of the RF pulse from the filter polynomials is known as the

inverse SLR transform. Therefore, the SLR technique maps the RF pulse design problem

to a digital filter design problem. The basic workflow of RF pulse design via SLR transform

is illustrated in Figure 2.5.

B1(t) M(x, t)

Bloch

Equation

(
α −β∗

β α∗

) AN(z)
BN(z)

inverse SLR

forward SLR

several
assumptions

FIR filter
mapping

Figure 2.5.: Basic SLR workflow for optimized RF pulse design. A given RF pulse is mapped into

the corresponding filter polynomials AN (z) and BN (z) via the forward SLR trans-

form. The inverse SLR transform computes the RF pulse from the given polynomials.

11

2. Background

FIR filter design of AN(z) and BN(z) The transformation of RF pulse design to digital

filter design gives access to a wide range of sophisticated tools, e.g., the PM algorithm

(proposed in [11]) or finite impulse response (FIR) filter of least-square type. The desired

slice profile is approximated by a filter polynomial BN(z). The PM algorithm requires

the specification of the passband (in-slice) edge Fp and stopband (out-of-slice) edge Fs.

Additionally, the passband and stopband ripple amplitudes needs to be defined by δ1 and

δ2, respectively. Figure 2.6 depicts the key FIR filter parameters.

Figure 2.6.: Approximation of the target magnetization profile via FIR filter design with filter

parameters: in-slice ripple δ1, out-of-slice ripple δ2, passband edge Fp and stopband

edge Fs.[11]

Subsequently, the corresponding polynomial AN(z) is calculated from BN(z). The magni-

tude of AN(z) is given by

|AN(z)| =
√

1−BN(z)B∗N(z) . (2.10)

Pauly et al. [11] constrains AN(z) to be a minimum-phase polynomial and therefore an

analytic signal. Consequently, the minimum-phase AN(z) can be derived from

AN(z) = |AN(z)| exp(i H{log |AN(z)|}) , (2.11)

12

2. Background

where H{·} denotes the Hilbert transform operator. Given the polynomials AN(z) and

BN(z) the RF pulse is obtained by means of the inverse SLR transform. Pulses designed

with the SLR algorithm account for the nonlinearity of the bloch equation, but relaxation

effects are neglected. In addition, SLR pulses are sensitive to B1 inhomogeneities. Despite

its limitations the SLR algorithm found widespread use in large flip angle pulse design

[16–19].

2.1.6. Simultaneous Excitation of Multiple Slices

Multislice imaging is a standard technique for accelerating image acquisition. In traditional

multislice imaging, additional slices are acquired in one repetition period (TR) using single

slice excitation. A strategy to achieve further acceleration is to excite multiple slices

simultaneously. This technique is called simultaneous multi-slice (SMS) imaging. This

section gives a brief overview of the developments in SMS imaging. For a detailed review

the reader is referred to Ug̃urbil et al. [20] and Feinberg et al. [21].

Early work ...

The use of simultaneous multi-slice acquisition dates back to 1988. Müller proposed a

method that utilizes multifrequency selective RF pulses [22]. Such pulses are synthesized

in a way that each frequency component has an individual phase, and hence tagging each

slice by a unique phase information making the signals from each slice separable. Also in

1988 Souza et al. published a method for SMS acquisition using binary-encoded excitation

[23]. Encoding in the slice dimension is achieved by modulating the phase of each slice in

a binary pattern given by the Hadamard matrix.

... the step to parallel imaging ...

In 2001 Larkman and his co-workers proposed SMS imaging utilizing multicoil arrays,

13

2. Background

in conjunction with sensitivity encoding (SENSE) image reconstruction, to separate the

simultaneously acquired slices [24]. This technique is strongly dependent on the geometry of

the multicoil array, and suffers from reduced signal to noise ratio (SNR), whenever the coil

array sensitivities are similar in the excited slices. Breuer et al. presented the CAIPIRINHA

(controlled aliasing in parallel imaging resutls in higher acceleration) technique to reduce

the dependency of the coil array geometry by modifying the appearance of aliasing artefacts

during acquisition [25]. The phase of the individual slices in the RF excitation pulse is

modulated for each k-space line resulting in a shift of the simultaneously acquired slices

relative to each other (in phase encoding direction). In Figure 2.7 a shematic description

of a two-slice experiment is shown.

Figure 2.7.: Schematic description of a simultaneous two-slice CAIPIRINHA experiment without

(a) and with (b) phase modulation. Odd k-space lines (black lines) are excited with

a dual-band RF pulse with same phase (0,0) for both slices. Even k-space lines (grey

lines) are the result of excitation with different phases (0,π). The individual slices

are shifted with respect to each other in the superimposed image.[25]

14

2. Background

... the step to human brain imaging ...

The CAIPIRINHA technique is not directly applicable to single shot echo planar imag-

ing (EPI) due to the use of only one single excitation pulse. The use of SMS in single shot

EPI for human brain imaging was first proposed by Nunes et al. [26]. The in plane shift in

phase encoding direction is achieved by applying slice selection gradient blips concurrent

with the EPI phase encoding blips; this leads to undesirable voxel tilting artifacts. To

overcome the voxel tilt problem Setsompop et al. extended the method of Nunes et al. [26]

to the blipped-CAIPI technique using sign and amplitude modulated slice-select gradient

blips [27]. Figure 2.8 shows the pulse sequence diagram of a SMS single shot EPI sequence.

Figure 2.8.: Pulse sequence diagram for SMS single shot EPI. SMS excitation is achieved with a

multiband pulse consisting of 3 frequency bands and therefore exciting 3 slices along

the slice selection gradient axis. After the excitation a EPI readout follows (a). The

use of sign and amplitude modulated slice select gradient blips in blipped-CAIPI is

shown in (b).[21]

15

2. Background

... image reconstruction ...

Image domain SENSE reconstruction is directly applicable to SMS imaging [24]. However,

the k-space based GRAPPA reconstruction method is less straightforward to adapt. A

SENSE/GRAPPA combination technique can be used to reconstruct slice-aliased data,

but this method suffers from aliasing artifacts for CAIPIRINHA based data acquisition

[28]. Therefore, Setsompop et al. proposed the slice-GRAPPA algorithm in combination

with the blipped-CAIPI method [27]. The k-space data for each slice is estimated by apply-

ing a set of GRAPPA kernels to the slice-aliased k-space data. For each slice one GRAPPA

kernel set is needed, and the kernels are fitted from a prescan calibration dataset acquired

one slice at a time (see Figure 2.9).

Figure 2.9.: Basic overview of the slice-GRAPPA algorithm. The k-space data of the unaliased

slices is estimated by applying GRAPPA-like kernel sets to the k-space of the col-

lapsed slices. The kernels are fitted from a prescan calibration dataset acquired one

slice at a time. Image taken from [27].

16

2. Background

... RF power limitations ...

Conventional design of SMS pulses is based on the superposition of single slice sub-pulses

to a multifrequency RF pulse. Increasing the number of slices (frequency bands) result in a

linear increase in B1 peak amplitude and hence a quadratic scaling of RF peak power and

a linear overall RF power increase. For greater numbers of slices the B1 peak amplitude

will exceed the hardware specifications of RF coils and power amplifiers. Furthermore,

restrictions to the specific absorption rate (SAR) limit the use of such RF pulses. One

way to address the increase of RF power is the power independent number of slices (PINS)

method [29]. PINS pulses are generated by multiplication of an existing RF pulse by a Dirac

comb function or alternatively, by Fourier series expansion. The PINS technique makes the

RF power deposition independent of the number of slices. Likewise, variable rate selective

excitation (VERSE) reduces the SAR in SMS applications [30]. An alternative approach

is the use of parallel transmission (pTx) in combination with SMS excitation [31].

... recent developments

In 2015, Bilgic et al. introduced the wave-CAIPI 3D acquisition technique, using sinusoidal

gradients (wave gradients) during each kx encoding line [32]. This spreads the aliasing

evenly in all spatial directions, thus benefiting from 3D coil sensitivity distribution. In

addition, Gagoski et al. used the SMS wave-CAIPI acquisition method for turbo spin

echo (TSE) imaging [33]. Guerin et al. demonstrated a SMS-pTx method with explicit

control of local and global SAR [34]. Recently, Aigner et al. applied OC based pulse design

for efficient SMS pulse optimization [13]. The use of a penalty term, modelling the SAR

of the pulse, allows a trade-off between slice profile accuracy and RF power deposition,

yielding RF pulses with reduced B1 peak amplitude.

17

2. Background

2.1.7. OC Pulses

The small tip angle approximation is not a valid approximation of the slice profile for

large tip angles. Therefore, the use of optimization techniques, to increase slice profile

accuracy, is gaining importance. Conolly et al. formulated the selective excitation problem

as a dynamic optimization problem, with differential equations as constraints, i.e., as an

optimal control (OC) problem [12]. Optimal control approaches involve the solution of

the Bloch equation to model the evolution of the magnetization vector in presence of an

external magnetic field. Additionally, relaxation effects or other desirable constraints (e.g.,

RF power) can be incorporated in the design model. Due to its flexible formulation the

OC approach is increasingly used in MRI, in [12, 13, 35, 36].

2.1.7.1. Optimal Control Framework

In general, an optimal control is a minimizer to an objective function (i.e., a function of

state and control variables) with subject to the state equation. The sate equation is a set

of differential equations describing the paths of the control variables. In the context of

RF pulse design the state equation is governed by the Bloch equation (see Section 2.1.1).

Ignoring spatial field inhomogeneities, and for the on-resonance case, the matrix notation

of equation (2.1) in the rotating reference frame is given by

Ṁ(t, z) = A(u(t), z)M(t, z) + b(z),

M(0, z) = M0(z),

(2.12)

with

A(u(t), z) =

− 1
T2

γGz(t, z) γuy(t)B1

−γGz(t, z) − 1
T2

γux(t)B1

−γuy(t)B1 −γux(t)B1 − 1
T1

 and b(z) =

0

0

M0

T1

 . (2.13)

18

2. Background

The control u(t) = (ux(t), uy(t))
T denotes the RF pulse, Gz the slice selection gradient

and M0 the initial magnetization vector. The OC approach in [13] computes the optimal

control u(t), t ∈ [0, Tu], that is a minimizer to

min
(u,M) satisfying Eq. 2.12

J(u,M) =
1

2

∫ a

−a
|M(T, z)−Md(z)|22 dz +

α

2

∫ Tu

0

|u(t)|22 dt . (2.14)

To get a close fit to the desired slice profile the error function is modelled with the L2

norm of the error, at read-out time T > Tu, between the solution to the state equation

M(T, z) and the target magnetization Md(z) for all z ∈ [−a, a]. A quadratic penalty term

incorporates the SAR of the RF pulse in the design model, and the weighting parameter

α > 0 balances the trade-off between slice profile accuracy and SAR restriction.

2.1.7.2. Numerical Solution

Optimization problems can be solved iteratively using various numerical algorithms, and

a wide range of literature is available on this topic, e.g., [37] and [38]. In gradient based

optimization, there are two fundamental iterative approaches for moving from the actual

point uk to the iterate uk+1. One is the line search approach and the other is the trust

region strategy. The basic iteration step is given by

uk+1 = uk + skpk , (2.15)

where pk is the search direction and sk is the step size. Hence, two major issues arise: the

determination of the search direction pk and the choice of a suitable step size sk. Trust

region and line search methods differ from each other in the way they choose the direction

and step size from the actual iterate to the next.

19

2. Background

The trust region approach first chooses a maximum distance, the trust region radius, which

defines a region around the current iterate, the trust region. In this region the model is

trusted to be an acceptable representation of the objective. Then the step is chosen to be

a suitable minimizer to the model in this region. If a step is acceptable, the trust region

will be extended, and for non-acceptable steps the trust region will be reduced.

On the other hand, line search methods first generate a search direction and then they

attempt to find a suitable step size along this direction. The search direction can be

computed by various methods, such as gradient methods, Newton methods, Quasi-Newton

methods and Krylov methods (e.g. conjugate gradient (CG)).

Gradient Methods Gradient methods make use of first derivative information. They

compute for a given uk the gradient g(uk) of j(u) = J(u,M) and set the iterate uk+1 =

uk−skg(uk). One example for such a method is the steepest descent algorithm. It requires

just the calculation of the gradient g(uk) and no second derivative information is needed.

However, they usually suffer from slow convergence close to a minimizer.

Newton Methods In mathematical optimization, Newton methods are second-order meth-

ods and make use of second order derivative information, i.e., they compute the Hessian

H(uk) of j(u) at the actual point uk. Subsequently, one solve for the Newton step δu in

H(uk)δu = −g(uk) (2.16)

and update the iterate by uk+1 = uk + δu. Methods that use the Newton direction have

fast quadratic convergence to a local minimizer. The major drawback is the expensive

computation of the full Hessian H(uk) for practical applications. Additionally, when the

Hessian is not positive definite, H(uk) may not be invertible, i.e., the Newton direction

may not be defined.

20

2. Background

Quasi-Newton Methods This methods avoid the direct computation of the Hessian.

Instead they use an approximation of the Hessian, which is updated in each iteration,

and one method to calculate the updates is the BFGS algorithm. Due to the lack of

exact information Quasi-Newton methods lose the quadratic convergence but yet attain

superlinear rate of convergence.

Krylov Methods Krylov subspace methods, such as the CG method, are approaches for

solving large linear systems Ax = b. These methods require only the computation of

matrix-vector products per iteration. In Newton’s method a CG algorithm can be applied

to solve for the Newton step δu in equation 2.16. Consequently, only the computation of

the action of the Hessian H(uk)h for a given direction h per iteration is required and not

the individual elements of H(uk). This so-called matrix-free approach induces substantial

savings in computational effort and memory requirements.

2.1.7.3. Trust-Region Newton-CG Method

The optimal control problem in equation 2.14 can be solved iteratively using various nu-

merical algorithms. Aigner et al. present an efficient numerical algorithm to solve this

OC problem with subject to the full time-dependent Bloch equation [13]. The Newton

step in equation 2.16 is solved by applying the CG algorithm, thus, only the calculation

of the action of the Hessian, for a given direction, is needed. A direct application of the

Newton-CG method is not possible, as the Bloch equation is bilinear in the unknowns u

and M and therefore the optimization problem is not convex. Consequently, the Hessian

H(uk) may not be positive definite. To overcome this problem Aigner et al. embedded the

matrix-free Newton-CG method in a trust-region framework achieving global convergence

to a local minimizer. In addition, exact first and second order information is obtained by

using adjoint calculus.

21

2. Background

Adjoint Approach The gradient g(uk) and the action of the Hessian H(uk)h can be

determined exactly by means of adjoint calculus. The adjoint model, to the sate equation,

is given by

−Ṗ(t, z) = A(u(t), z)TP(t, z), 0 ≤ t < T

P(T, z) = M(T, z)−Md(z),

(2.17)

where A(u(t), z) is defined in equation 2.13, and the initial value P(T, z) is the difference

between the magnetization profile at M(T, z) and the target profile Md(z) at read-out

time T . The gradient of J is calculated exactly via forward integration and backward

integration of the state and the adjoint equation, respectively. This yields

g(uk) = αu(t) +

∫ a
−aM(t, z)A1P(t, z) dz
∫ a
−aM(t, z)A2P(t, z) dz

 , 0 ≤ t ≤ Tu (2.18)

with

A1 = γB1

0 0 0

0 0 −1

0 1 0

 and A2 = γB1

0 0 −1

0 0 0

1 0 0

 , (2.19)

where M(t, z) = (Mx(t, z),My(t, z),Mz(t, z)
T is the solution to the state equation (forward

in time) for u = uk and P(t, z) = (Px(t, z), Py(t, z), Pz(t, z)
T is the solution to the adjoint

equation (backward in time). In order to compute the action of the Hessian one needs to

solve the linearized state and adjoint equation. The linearized state equation is given by

δṀ(t, z) = A(uk, z)δM(t, z) + A′(h)M,

δM(0, z) = (0, 0, 0)T ,

(2.20)

with

A′(h) =

0 0 hy(t)

0 0 hx(t)

−hy(t) −hx(t) 0

 , (2.21)

22

2. Background

and the corresponding linearized adjoint model is given by

−δṖ(t, z) = A(uk, z)T δP(t, z) + A′(h)TP,

δP(T, z) = δM(T, z).

(2.22)

Integrating equation 2.20 yields δM, the directional derivative of M with respect to u.

Correspondingly, δP, the directional derivative of P with respect to u, can be obtained by

solving equation 2.22. Finally, the exact action of the Hessian can be obtained with

[H(uk)h](t) = αh(t) +

∫ a
−aδM(t, z)A1P(t, z) + M(t, z)A1δP(t, z) dz
∫ a
−aδM(t, z)A2P(t, z) + M(t, z)A2δP(t, z) dz

 . 0 ≤ t ≤ Tu

(2.23)

Discretization The numerical solution of the optimal control problem requires a dis-

cretization of the Bloch equation and objective function in time and spatial domain. In

[13] the time interval [0, T] is discretized by the time grid 0 = t0 < ... < tNt = T with

spacing ∆tm := tm − tm−1. The spatial domain [−a, a] is discretized by a spatial grid

−a = z1 < ... < zNz = a with spacing ∆zm := zm − zm−1. A Crank-Nicolson method

(finite difference method) is used for discretization of the Bloch equation. For a detailed

description of the discretization the reader is referred to [13] and the appendix therein.

An important consideration is that, in each point zi, the state and adjoint equation can

be solved independently. Consequently, a considerable enhancement in computing perfor-

mance should be achievable by means of this underlying parallelism. This is the point

where parallel computing comes into play.

23

2. Background

2.2. Parallel Computing

Parallel computing is an extensive research area in computer science and has become in-

creasingly important in the last decade. In parallel computing a large-scale problem is

divided into smaller independent sub-problems, which can be solved simultaneously. Par-

allelism can exist in a variety of forms: bit-level, instruction level, data and task parallelism.

This parallelism can be utilized either in a single computer, with multiple processing ele-

ments, or with multiple computers, e.g., cluster and grid computing systems. [3, 39]

There also exist a wide range of available programming frameworks. The Message Passing

Interface (MPI) standard is a model for distributed memory systems (e.g. clusters), where

all interaction and data sharing must be done via message passing [2]. OpenMP (Open

Multi-Processing) is based on compiler directives and supports shared memory systems

[40]. Both, MPI and OpenMP, are widley used in various applications of high performance

parallel computing. General-purpose computing on graphics processing unit (GPGPU)

is the use of the GPU for computing problems originally performed by the CPU. The

GPU architecture is highly specialized for parallel processing and even a single hetero-

geneous platform (CPU-GPU system) provides remarkable computing performance. For

NVIDIA GPUs the Compute Unified Device Architecture (CUDA) platform enables the

use of general purpose computing [6]. A vendor-independent framework for heterogeneous

platforms is OpenCL (Open Computing Language). Subsequently, a brief overview of the

CUDA and OpenMP application programming interfaces (API) is given. For a detailed

description the reader is referred to the NVIDIA CUDA programming guide [6] and to the

OpenMP application interface documentation [4], respectively.

2.2.1. NVIDIA CUDA

CUDA is a programming model developed by NVIDIA and provides compatibility with

programming languages such as C, C++ and Fortran. Given this accessibility programmers

are able to exploit the highly parallelism-supporting architecture of the GPU for parallel

computing tasks. The CUDA technology is proprietary to NVIDIA and limits applications

to CUDA capable GPUs.

24

2. Background

2.2.1.1. GPU Architecture

The hardware architecture of a multi-core CPU is designed to optimize sequential code

execution. The goal is to optimize performance of a small number of heavy-weighted

threads. The control unit allows the utilization of instruction level parallelism and out-of-

order execution while maintaining the appearance of sequential execution. Additionally, a

large proportion of chip area is dedicated to cache memory to reduce the data access and

instruction latencies. However, GPUs are designed to perform a massive amount of floating

point operations. Therefore, much more chip area is dedicated to floating point operations

(arithmetic logic units or ALUs) as to cache memory and control units (see figure 2.10).

The goal is to optimize performance for a thousands of threads by means of a throughput

orientated hardware design principle.

Figure 2.10.: CPU vs. GPU: The CPU is designed to minimize latency in a small number of

heavy-weighted threads. Therefore, most of the chip area is dedicated to the control

unit and cache memory. The GPU hides memory access latencies by focusing on

computationally intensive tasks and much more chip area is dedicated to floating

point calculations. [6]

A CUDA capable GPU is organized into streaming multiprocessors (SMs) and each SM

is composed of CUDA cores, which share the same control unit and instruction cache.

The number of cores in a SM differ from one architecture generation to another. For

25

2. Background

example, in NVIDIA’s latest Maxwell architecture a SM consists of 128 CUDA cores, more

specifically, a Geforce GTX 970 has 13 SMs with 128 CUDA cores each, resulting in a total

of 1664 cores. The hardware implementation of a multiprocessor is based on the Single-

Instruction, Multiple-Thread (SIMT) architecture, which was introduced by NVIDIA to

execute hundreds of threads concurrently. In a SM, 32 threads are grouped together to

form a warp and each thread within a warp must execute the same instruction (or otherwise

is disabled). When a SM is given a thread block for execution, it splits them into warps

and each warp is scheduled by a warp scheduler for execution.

One major issue in the past was the support for double-precision floating point calculations.

With the release of compute capability 1.3, NVIDIA introduced double-precision support-

ing GPUs to overcome this issue and enhanced this support with future chip releases. In a

heterogeneous system most applications will use the advantages of both CPU and GPU by

executing the sequential parts on the CPU and computationally heavy parts on the GPU.

To support this CPU/GPU interaction NVIDIA released the CUDA programming model

with a low level Driver API and a higher level Runtime API.

2.2.1.2. CUDA Programming Model

The CUDA programming model is designed for scalability. CUDA applications scale their

parallelism to GPUs with a variable number of cores. The programmer is guided to decom-

pose the problem into sub-problems that can be solved in parallel by a block of threads.

Each block is scheduled to an available SM, so that GPUs with a higher amount of SMs

will automatically execute the program faster than the GPU with fewer SMs. This enables

a scalability over a wide range of GPUs. For instance, suppose we have two GPUs, one

with 2 and the second with 4 SMs, and the problem is split into 8 blocks. For this setup

the corresponding block scheduling order is given in figure 2.11a.

26

2. Background

(a) (b)

Figure 2.11.: A problem is decomposed into independent sub-problems that can be solved by a

block of threads. All thread blocks are organized into a grid. In the case of (a) grid

and block are two-dimensional. Each block is sheduled automatically to a SM for

execution (b). This allows high scalability over a wide range of GPUs. [6]

In terms of CUDA programming the heterogeneous computing system consists of a host, the

CPU, and one or more devices, the GPUs. Both, host and device, have separate memory

spaces, which are referred to as host memory and device memory.

Kernel functions In CUDA C/C++ a kernel specifies a function that will be executed

by N threads in parallel. A kernel is defined via the __global__ declaration specifier

and can be called from the host using the <<<numBlocks, threadsPerBlock>>> execution

configuration syntax. This syntax sets the grid and block dimensions, which can either

be one-, two- or three-dimensional. The threadsPerBlock variable defines the number

27

2. Background

of threads that are grouped together in a block. The variable numBlocks describes the

number of blocks organized into a grid (see figure 2.11b). In order to distinguish between

the threads, each thread gets a unique index and can be addressed by predefined variables.

In addition, the __host__ keyword indicates a host function and the __device__ specifier

defines a device function. A host function is a traditional C/C++ function that can only

be called and executed on the host. On the contrary, device functions execute on the GPU

and can only be called from kernel or other device functions.

Thread hierarchy Another noteworthy extension to the C/C++ language is the prede-

fined struct variable threadIdx. This struct consists of 3 elements x, y and z, depending

on the block dimension, and identifies the threads within a block. The thread indices in

different blocks are the same, therefore, each block within the grid can be addressed via

blockIdx and the dimension of the block (number of threads) is given by the blockDim

variable. The grid dimension can be accessed by the gridDim structure. In devices with

compute capability 2.0 and higher the number of threads per block is limited to 1024.

Nevertheless, the maximum number of threads per kernel launch is equal to the number

of blocks times the number of threads per block, and the number of blocks in a grid is

usually dependent on the data size. Assume we have the two-dimensional grid with two-

dimensional blocks given in Figure 2.11a. The unique global thread index is calculated in

two steps:

1 int blockId = blockIdx.x + blockIdx.y * gridDim.x;
2 int threadId = blockId*(blockDim.x * blockDim.y)
3 + (threadIdx.y * blockDim.x) + threadIdx.x;

First we have to map the two-dimensional block index into a linear index given by blockID.

Second, the two-dimensional thread index is mapped into a global threadId. For example,

thread (3, 2) in block (1, 1) has a blockId of 4, resulting in a global thread index threadId

of 59. This is useful for mapping threads to tasks, as this provides a unique identifier for

all the threads launched by the kernel.

28

2. Background

2.2.1.3. CUDA Memory Model

In heterogeneous systems there are two separate memory spaces, the host and device

memory. To perform computations on the GPU, the programmer needs to transfer the

data from the host to the device and the results from the device back to the host. This

data transfers are usually slow and therefore they may be bottlenecks in the application.

In CUDA the programmer has access to various types of device memory: registers, global,

local, shared, constant and texture memory.

Registers Are directly located on the chip and thus can be accessed at high speed. The

memory is automatically allocated from the SM via register file (i.e. number of registers per

block); each thread has only access to its individual registers. On the Maxwell architecture

the register file size per SM is 256 KB.

Global memory Is the main GPU memory (e.g. 4 GB on the GeForce GTX 970) and

accessible from all threads in a grid for read and write operations. The __device__ keyword

declares a variable that resides on the device. In order to store data on the GPU, that

can communicate with the host, global memory can be allocated from the host using the

API function cudaMalloc() and cudaMemcpy() manages the data transfer between host

and device memory. Global memory is the slowest memory on the device, e.g., up to 1000

times slower than registers.

Local memory The compiler automatically places variables in local memory when they

do not fit into registers. Local memory is part of global memory, thus, slow in comparison

to registers, besides that, the behaviour is the same. The amount of local memory per

thread is limited to 512 KB for GPUs with compute capability 2.0 or higher.

29

2. Background

Shared memory Resides physically on the chip and therefore has much higher bandwidth

and much lower latency than local or global memory. The size of shared memory per SM

is limited to 96 KB in the Maxwell architecture and can be declared using the __shared__

keyword. A shared variable is private for each block and provides shared access for all

threads within a block, thus, allowing thread communication and cooperation in a block.

In order to provide race conditions the __syncthreads() function ensures that all data

from all threads is valid before threads read from shared memory, which can be written to

by other threads.

Constant memory Is a read-only type of memory. It is used for data that will not change

during a kernel execution and can be declared via the __constant__ specifier. Constant

variables are visible to all threads within a grid but only readable from the device. In order

to copy data from the host to constant memory the cudaMemcpyToSymbol function is used.

The available memory size is limited to 64 KB.

Texture memory Is another type of read-only memory and was originally designed for

conventional graphics applications. Texture memory is optimized for spatial locality and

therefore provides a performance benefit for nearby memory reads.

30

2. Background

2.2.2. OpenMP

Open Multi-Processing is a standardized API for parallel computing on shared memory

systems in C/C++ and Fortran. Basically, OpenMP consists of a set of compiler direc-

tives, environment variables and library functions to express and control parallelism. The

portable and scalable OpenMP programming model is based on the fork-join parallel de-

sign pattern. An OpenMP application starts with a master thread that forks a specified

number of slave threads by defining a parallel region. In this region the threads run concur-

rently and the work is shared among them. After execution of the parallel code section the

threads join back into the master thread, which continues the execution of the sequential

code. It is possible to define various parallel regions in an application, hence, the master

thread can fork and join repeatedly (see figure 2.12).

A

B

C

A

B

C

D

A

B

Parallel Task I Parallel Task II Parallel Task III

Master Thread

Figure 2.12.: A schematic illustration of the fork-join model. A master thread forks and joins

sequent parallel regions with various threads.

OpenMP directives In the OpenMP programming model, parallel code sections are spec-

ified via preprocessor directives, also referred to as pragmas. In C/C++, OpenMP uses

#pragma. The pragma omp parallel defines a parallel region and creates threads to per-

form the code enclosed in the construct in parallel. Each thread has an individual identifier,

which can be obtained using runtime library functions. Additionally, independent work is

assigned to one or all of the threads via work-sharing constructs. The loop constructs

omp for or omp do are used to distribute the loop iterations across threads that already

31

2. Background

exist in a parallel region. With the section construct it is possible to assign a set of

structured blocks to different threads. Each thread executes its corresponding independent

code block. The single construct specifies the enclosed code to be executed by one of the

thread (not necessarily the master thread) and the master construct marks the code block

to be executed only by the master thread.

OpenMP clauses The behaviour of a directive can be controlled by various clauses, and

each directive has its own set of valid clauses. For instance, the visibility of variables to

threads is specified using data sharing attribute clauses like shared or private. Shared

variables are visible and accessible to all threads, whereas, in the case of a private variable

each thread will have its own local copy that is used as a temporary variable.

Runtime routines The functions provided by the OpenMP runtime library are mainly

used to check and set runtime parameters. For example, omp_get_num_threads returns the

number of threads in a parallel region and omp_set_num_threads specifies the number of

threads. Additionally, there are functions for thread synchronisation and timing purposes.

Environment variables Specifies the runtime settings of an OpenMP application prior to

the execution. Modifications to environment variables are ignored after program launch,

even if modified by the program itself. However, the configuration of some environment

variables can be altered during execution by using suitable runtime routines or directive

clauses.

32

3. Methods

3.1. Matlab Framework

The optimal control framework, described in section 2.1.7.1, was implemented in MAT-

LAB (The MathWorks Inc., Natick, USA) using the Parallel Computing Toolbox. This

Matlab framework for efficient high-resolution RF pulse design is available on GitHub1

and contains two top-level m-files test_single.m and test_multi.m to compute the opti-

mal RF pulse (i.e. the control u) for the single-slice problem and the multi-slice problem,

respectively. First, the problem parameters are initialized in a structure d and likewise

the necessary parameters for the trust-region Newton-CG method in a structure tr. In

the next step the target magnetization profile is defined. In the case of multi-slice exci-

tation the center positions for all simultaneous slices are specified. These center positions

depend on the slice number and are different for an even or odd number of slices. Addition-

ally, an alternating phase shift may be incorporated to account for a CAIPIRINHA-based

excitation pattern and to reduce Gibbs ringing artifacts the target magnetization profile

is filtered with a Gaussian kernel before the optimization. Subsequently, the matrix-free

trust-region Newton-CG algorithm, implemented in tr_newton.m, computes the optimal

control u that is a minimizer to the objective function 2.14. A basic flowchart of this

optimization algorithm is depicted in figure 3.1.

1https://github.com/chaigner/rfcontrol/releases/v1.2

https://github.com/chaigner/rfcontrol/releases/v1.2

3. Methods

TR-Newton step

TR-CG step

input

d, tr, u0

init TR-Newton
parameter

set k=0

compute gradient
objfun.m

init TR-CG
parameter

set i=0

compute
action of Hessian
applyHess.m

neg. curvature?

step too large?

update CG step
set i=i+1

suff. decrease or
maxit reached?

compute actual
function decrease

objfun.m

compute predicted
function decrease
applyHess.m

suff. decrease?

accept step
update control u

compute gradient
objfun.m

step accepted
model good?

increase TR
radius

terminate
TR-Newton?

output
control u

go to boundary
of TR

go to boundary
of TR

step rejected
no decrease?

model bad?

decrease TR
radius

false

false

true

true

true

true

true true

true

true

false false

set du=0

false

false

false

false

Figure 3.1.: Basic flowchart of the matrix-free trust-region Newton-CG optimization algorithm.

34

3. Methods

In each Newton step the algorithm computes the gradient at the actual point g(uk) (see

equation 2.18) by a function call to objfun.m. Since the gradient evaluation is based on the

adjoint calculus the solution to the forward and adjoint model are required. The forward

integration of the Bloch equation is implemented in cn_bloch.m and the corresponding

integration of the adjoint equation is performed by cn_adjoint.m. It is important to note

that for each point zi the forward and adjoint model can be solved independently and in

parallel. Additionally, objfun.m computes the value J(uk) of the objective function and

the necessary information to evaluate the Hessian in the actual point. If one needs only

the value of the functional, objfun.m can be called with just one output argument, thus,

avoiding the integration of the adjoint model. Subsequently, the Newton update step δu

is obtained by applying a Steihaug CG algorithm [14] to equation 2.16. Each CG iteration

requires the computation of the action of the Hessian (equation 2.23) by invoking the

applyHess.m function, where the linearized state and adjoint equation are solved. After

completion of the CG algorithm the update step δu is verified to be an acceptable step,

hence, providing a sufficient decrease of the functional. If δu is accepted and the model is

good, the trust-region radius will be increased, and contrarily, if the step is rejected or the

model is bad, the trust-region will be reduced. The function tr_newton.m terminates as

soon as the gradient is smaller than the absolute tolerance tolN or the maximum number

of trust-region Newton iterations is reached, yielding the optimal control RF pulse.

For instance, the computation of an OC pulse, exciting a single slice of width ∆w = 5mm

and flip angle of θ = 90◦, terminates after 4 Newton iterations and a total number of 28

CG steps with gradient norm of |g| = 1.459× 10−7. This results in an overall optimization

time of approximately 30min using Matlab parfor with 4 workers using the GTX 970

workstation2. The results of the Matlab profiler, listing the number of function calls and

execution times of the individual functions, are shown in figure 3.2. The tr_newton.m

function calls in each Newton iteration the CG algorithm tr_cg.m contributing to 75.1%

of the total time.

2an overview of the hardware specifications is given in chapter 4. Results

35

3. Methods

(a) tr_newton.m

(b) tr_cg.m (c) objfun.m

Figure 3.2.: Results of the Matlab profiler for the computation of a single-slice OC pulse. The

applyHess.m, cn_adjoint.m and cn_bloch.m functions are the major bottlenecks

in the application (marked in red), and therefore making them target for performance

optimizations.

One step deeper, in the tr_cg.m function, for each of the 28 CG iterations the applyHess.m

function is called, which is accountable for almost the entire execution time. Furthermore,

in each Newton step applyHess.m is called, adding to a total number of 32 function calls.

Consequently, the applyHess.m function is one of the major bottlenecks in the computa-

tion, with a share of about 85.3% of total execution time. Another considerable bottleneck

36

3. Methods

is objfun.m with a contribution of 14.7% to the execution time. This function invokes,

for each gradient evaluation, the cn_bloch.m and cn_adjoint.m functions, which are re-

sponsible for almost the whole computation time. In addition, if objfun.m is called to

evaluate the objective function in a specific point only a call to cn_bloch.m is performed.

A gradient evaluation is performed once prior iteration start and once per Newton iteration

and thus resulting in a total of 5 times. Additionally, the computation of the functional

is performed 4 times contributing to a total number of 9 function calls. To summarize,

the major bottlenecks in the implementation are the applyHess.m, cn_adjoint.m and

cn_bloch.m functions, thereby making them target for performance optimizations.

Matlab Executable (MEX) The Matlab MEX interface provides a possibility to enhance

performance by calling subroutines written in C, C++ or Fortran. When compiled, the

binary MEX files are dynamically loaded, allowing the invokation of C, C++, or Fortran

code as if it were a Matlab function. Since the major bottlenecks in the implementation are

the applyHess.m, cn_adjoint.m and cn_bloch.m subroutines a considerable acceleration

by means of MEX files may be possible. Thus, in a first step, a sequential C/C++ version

of the three computationally intensive subroutines is implemented. In a further step, a

parallel version is implemented in CUDA and OpenMP to exploit the intrinsic parallelism

provided by the fact that for each spatial location the state and adjoint equation can be

solved independently.

3.2. CMake Project Structure

All different MEX file implementations are included in the RFcontrol project and the build

process is managed by the open-source software CMake to support cross-platform builds

for Windows and Linux operating systems. CMake is designed to generate standard build

files for the native build environment, such as Microsoft Visual Studio solution files on

37

3. Methods

Windows and makefiles on Unix. The RFcontrol project hierarchy is organized into header

libraries and source files for the associated MEX functions. A list of these files is given in

table 3.2. Depending on the implementation type the suffix CPU, GPU or OMP is attached

to the source files. Furthermore, to specify whether the application uses single or double

precision floating point format the sprec_ prefix or no prefix is attached, respectively. In

the following a brief description of the content of the header libraries is given.

Table 3.1.: List of files in the RFcontrol project.

header files source files

RF_control_helper.cuh applyHess.cu

basic_lin_algebra.cuh applyHess.cpp

config.h cn_bloch.cu

matlab_helper.h cn_bloch.cpp

dpara.h cn_adjoint.cu

cuda_utils.h cn_adjoint.cpp

checkRequiredDeviceMem

config.h Automatically generated configuration file by CMake. The RFcontrol project

settings are configured per CMake environment variables. The USE_DOUBLE_PRECISION

parameter defines the floating point precision per typedef of DType to float or double.

Before the build process CMake detects if the system has a CUDA capable device and the

CUDA_GPU_FOUND variable will be set accordingly. Additionally, CUDA error checking and

an occupancy based kernel launch can be enabled or disabled.

RF_control_helper.cuh Several subroutines needed in the optimal control framework to

solve the state and adjoint equation as well as the linearized state and adjoint model. All

functions are realized as host and device functions making them callable from both.

38

3. Methods

basic_lin_algebra.cuh Implements basic matrix and vector operations on the host and

device. Due to the three-dimensionality of the Bloch equation only 3× 3 matrix and 3× 1

vector operations are needed.

dpara.h Defines the structure dpara containing the model parameters.

matlab_helper.h Contains functions to manage the input and output of the MEX files

and to redirect the std::cout to the Matlab command window.

cuda_utils.h Includes CUDA error handling, kernel performance metrics and functions

to aid occupancy based kernel launch (CUDA 6.5 required).

3.3. Thrust Library

The RFcontrol project utilizes the Thrust library, a powerful library of parallel algorithms

and data structures, to manage the data transfers between the host and device. Thrust

is a C++ template library for CUDA imitating the Standard Template Library (STL)

and provides a high-level interface that is interoperable with CUDA C/C++ [41]. Since

CUDA Toolkit version 4.0 the Thrust library is already included and no separate instal-

lation is required. The key features of the Thrust library are data structures and parallel

primitives such as scan, sort and reduce, which can be combined together to implement

complex algorithms. Thrust provides two generic vector containers, thrust::host_vector

and thrust::device_vector. The host_vector is allocated in host memory and the

device_vctor resides in GPU device memory. These containers increase the readability

and re-usability of code by hiding CUDA memory allocation methods such as cudaMalloc,

cudaMemcpy and cudaFree. Thrust uses iterators, which can be thought of as pointers to

39

3. Methods

array elements, to access and operate on the vector containers. Unlike pointers, iterators

provide additional information like type of memory space of the underlying container. With

this Thrust tracks memory space and is able to determine whether to use a host or device

implementation of the called function. This is known as static dispatching. Additionally,

Thrust can be utilized with different device backend systems such as CUDA (default) or

OpenMP. One can change the global device system by adding specific options to the com-

piler, requiring no changes to the source code. Instead of applying a global system change

the thrust system can be accessed directly by defining a system-specific vector using the

desired backend system. It is also possible to re-tag an existing thrust iterator to a different

device system to operate on existent data structures.

3.4. Sequential C/C++ Implementation

In a first step a sequential version of the computational-heavy cn_bloch, cn_adjoint and

applyHess subroutines in the optimal control framework are implemented in C/C++. For

the sake of comparability, the sequential implementation is based on thrust::host_vector

containers, although this is not mandatory and the C++ standard template library could

be used as well.

Problem Dimensions The numerical computation of an OC pulse requires a discretiza-

tion of the state equation and objective function in time and spatial domain (described

in section 2.1.7.3). The spatial discretization results in a grid of size Nx and likewise the

time discretization in a grid of size Nt. The number of control points is specified with Nu.

Consequently, the size of the used data containers is a combination of this three problem

dimensions.

40

3. Methods

Read Input Data Every C program has a main() function. In Matlab MEX files the

routine mexFunction is used as entry point to the function. The following input parameters

are passed to mexFunction: the number of output (left-hand side) arguments nlhs, the

array of output arguments plhs, the number of input (right-hand side) arguments nrhs

and the array of input arguments prhs. Listing 3.1 shows how to retrieve input data from

the MEX interface.

Listing 3.1: Read input from MEX entry function.

1 void mexFunction(int nlhs, mxArray *plhs[],
2 int nrhs, const mxArray *prhs[]){
3 // ...
4 #define M0_IN prhs[1]
5 // ...
6

7 // init input parameter
8 // ...
9 DType* M0 = (DType*)mxGetData(M0_IN);

10 // ...
11 }

To provide better readability the pointer to the first element of the initial magnetization

prhs[1] is given the name M0_IN via a preprocessor macro. In order to retrieve a pointer

to real data from a mxArray the mxGetData function is used. This function returns a void

pointer, and one needs to cast the return value to the pointer type that underlies the data

type used by M0_IN. In this case DType represents a user defined data type, which can

either be double or float (typedef in config.h).

Prepare Output Data In MEX files a mxArray output argument is created by using

provided functions from Matlab. In listing 3.2 an 3×Nx ×Nt output matrix is generated

to store the computation result. Nx represents the number of spatial discretization points

and Nt the number of time points.

Listing 3.2: Prepare output from MEX entry function.

1 const mwSize mat_dims[3] = { 3, Nx, Nt };
2 plhs[0] = matCreateOutputArray(3, mat_dims);
3 DType* mat_output = (DType*)mxGetData(plhs[0]);

41

3. Methods

The matCreateOutputArray assigns a matrix with dimensions mat_dims to plhs[0]. In

order to write to the output array by a function the pointer to the first data element

mat_output is used.

Matlab vs. C/C++ Indexing It is important to note that Matlab and C/C++ allocate

multidimensional array memory in a different way. MATLAB allocates the memory as a

contiguous, one-dimensional block in column-major order, and contrarily, C/C++ stores

the same array in row-major order. If interfacing with MATLAB the preferred method of

accessing array elements is in column-major order by a linear index. If row-major indexing

is used, one needs to transpose the input and output data to switch from one order to the

other. Additionally, MATLAB array indexing starts with 1 and in C/C++ the first element

of an array is indicated with 0. The RFcontrol project uses two-dimensional and three-

dimensional arrays and the calculation of the linear index is realized with preprocessor

macros (listing 3.3).

Listing 3.3: Convert MATLAB 2D/3D index to a linear index.

1 // Convert Matlab 2D/3D index to linear index:
2 // Matrix(I,J,K) = Matrix(LIN_IDX)
3 // r ... number of rows
4 // c ... number columns
5 // for C index notation use Matrix[LIN_IDX - 1]
6

7 #define LIN_IDX_3D(I,J,K,r,c) (I+r*(J-1)+r*c*(K-1))
8 #define LIN_IDX_2D(I,J,r) (I+r*(J-1))

cn_blochCPU The cn_blochCPU MEX subroutine solves the Bloch equation 2.12 using

a Crank-Nicolson scheme. The numerical Crank-Nicolson method is a finite difference

method originally proposed to solve the heat equation. The wrapper function callCnBlochKernel

initializes the longitudinal relaxation term b(z) in equation 2.13 and calls cnBlochKernel.

Note, that the function hierarchy is organized into a kernel structure to provide better com-

parability with the parallel implementations. The cnBlochKernel computes in an outer

loop, iterating over each location z_ind = 0, 1,..., Nx-1, the temporal evolution of the

42

3. Methods

magnetization vector M starting from initial conditions M0 with RF pulse u, v and gradient

w. This temporal evolution is calculated in an inner loop iterating from time point k=1 to

k=Nt-1. In each time point the Bloch matrix Ak (equation 2.13) is updated using the setAk

function contained in the RF_control_helper.cuh header. Subsequently, in solveBloch

equation 2.12 is divided into basic linear algebra operations. The required Crank-Nicolson

steps are performed in cnStep, depicted in listing 3.4. The function takes as input param-

eters the Bloch matrix in the actual time point Ak, the structure d containing the problem

parameters and a boolean flag direction. The flag direction determines whether a step

in forward or backward direction is performed. If the direction flag is set to 1 the forward

step is calculated by adding a scaled version of Ak to the identity matrix, and if the flag is

equal to 0 the backward step is obtained by subtracting scale_Ak from the identity matrix.

The result of the Crank-Nicolson step is stored in cn_Ak.

Listing 3.4: Perform a Crank-Nicolson step (forward or backward in time).

1 template<typename TType>
2 __inline__ __host__ __device__
3 void cnStep(TType* Ak, TType* cn_Ak, dpara<TType>* d, bool direction){
4

5 TType identity_matrix[3 * 3] = {1, 0, 0,
6 0, 1, 0,
7 0, 0, 1 };
8 TType scale_Ak[3 * 3] = {};
9 TType time_step = *(d->dt)*0.5;

10 scalarMatrixMult3x3<TType>(Ak, &time_step, scale_Ak);
11 //direction == 1 --> forward in time
12 if (direction)
13 addMatrix3x3<TType>(identity_matrix, scale_Ak, cn_Ak);
14 // direction == 0 --> back in time
15 else
16 subtractMatrix3x3<TType>(identity_matrix, scale_Ak, cn_Ak);
17 }

cn_adjointCPU The solution to the adjoint equation 2.17 is obtained via the cn_adjointCPU

MEX subroutine. In the outer loop the cnAdjointKernel computes the adjoint magneti-

zation vector P starting from terminal conditions PT with the RF pulse u, v and gradient

w. The major difference to the cn_bloch implementation is that the inner loop iterates

over the time points in a rearward manner beginning with k = Nt-2. The magnetization

43

3. Methods

vector in time point k = Nt-1 is obtained from the terminal conditions PT by performing

a separate Crank-Nicolson step prior to the inner loop iterations. In each further time

step the transpose of the Bloch matrix is set with the setAkp1 function, and subsequently,

equation 2.17 is solved using the solveAdjoint function. As in solveBloch, the adjoint

equation is divided into basic linear algebra operations, and contrarily, no addVector3x1

operation is required due to the non-existent longitudinal relaxation term b(z).

applyHessCPU The MEX subroutine applyHessCPU implements the computation of the

action of the Hessian for a given direction. The wrapper function callApplyHessKernel

allocates host memory to store the results of the Hessian action in Hdu_host. The direction

of the Hessian action is obtained from the input arguments and stored to the host_vector

du_host. Prior to invocation of the applyHessKernel the first column of Hdu_host is

calculated by scalar multiplication of the cost control parameter d.alpha with the step

du_host. This operation is known as a SSCAL or a DSCAL computation for single- or

double-precision floating point format, respectively. SSCAL/DSCAL are functions in the

standard Basic Linear Algebra Subroutines (BLAS) library for C and Fortran, and listing

3.5 shows an approach to realize a SSCAL/DSCAL operation using the Thrust library.

Listing 3.5: SSCAL/DSCAL operation using thrust::transform iterator.

1 // compute first column of Hdu
2 // perform SSCAL/DSCAL res = scalar*x
3 using namespace thrust::placeholders;
4 thrust::transform(du_host.begin(), du_host.end(), Hdu_host.begin(),

(DType)*(d.alpha)*_1);

The thrust::transform applies the (DType)*(d.alpha)*_1 operation to each element of

the input vector defined by du_host.begin() and du_host_end() and stores the result to

the first column of Hdu_host. The thrust::placeholders namespace is used to allow an

inline implementation of an arithmetic function by using the _1 notation. Since the size of

du_host (Nu) is lower or equal to the number of time points Nt a zero-padding of du_host

to readout time is performed (listing 3.6). The thrust::fill primitive assigns the value

0 to the specified range du_host.begin()+ Nu, du_host.end() in the input sequence.

44

3. Methods

Listing 3.6: Zero-padding of du_host to readout time.

1 //zero padding du to readout time
2 du_host.resize(Nt - 1);
3 thrust::fill(du_host.begin() + Nu, du_host.end(), 0);

Subsequently, the applyHessKernel is invoked. In order to obtain the required information

for the computation of the application of the Hessian the linearized state equation 2.20 and

adjoint equation 2.22 is solved using the same method as described in cn_blochCPU and

cn_adjointCPU. In the following, the action of the Hessian is calculated by implementing

equation 2.23 as shown in listing 3.7.

Listing 3.7: Basic structure of the applyHessKernel.

1 template<typename TType>
2 void applyHessKernel(dpara<TType>& d, TType* N, TType* P,
3 TType* u, TType* v, TType* w, TType* du,
4 int Nt, int Nx, int Nu, TType* output){
5

6 // for each spatial location
7 for (int z_ind = 0; z_ind < Nx; z_ind++){
8

9 // solve linearized Bloch equation
10 // solve linearized adjoint equation
11

12 // action of the Hessian with:
13 // dNz, dMz --> solution to linearized state and adjoint equation
14 // N, P --> solution to state and adjoint equation
15 for (int ii = 0; ii < Nu; ii++){
16 output[(ii + Nu) + Nu*z_ind] = B1*(*d.dx)*
17 (dNz[LIN_IDX_2D(3,ii+1,3)-1]*P[LIN_IDX_3D(2,z_ind+1,ii+1,3,Nx)-1]-
18 dNz[LIN_IDX_2D(2,ii+1,3)-1]*P[LIN_IDX_3D(3,z_ind+1,ii+1,3,Nx)-1]+
19 N[LIN_IDX_3D(3,z_ind+1,ii+1,3,Nx)-1]*dMz[LIN_IDX_2D(2,ii+1,3)-1]-
20 N[LIN_IDX_3D(2,z_ind+1,ii+1,3,Nx)-1]*dMz[LIN_IDX_2D(3,ii+1,3)-1]);
21 }
22 }
23 }

For each z_ind=0, ..., Nx-1 the intermediate results are stored to the corresponding

column of output (equal to Hdu_host) resulting in a Nu × (Nx + 1) matrix. In a last step,

the temporary Hdu_host matrix is reduced to a single Nu × 1 column by computing the

sum of rows of the matrix. In parallel computing such an operation is known as reduction.

The Thrust library provides powerful primitives to perform reduction operations. The sum

45

3. Methods

of rows is calculated using thrust::reduce_by_key in conjunction with fancy iterators as

demonstrated in listing 3.8.

Listing 3.8: Calculate the sum of rows of Hdu_host using the Thrust library.

1 //row sum of Hdu using thrust reduce by key
2 thrust::host_vector<DType> row_sums(Nu);
3 thrust::reduce_by_key(
4 thrust::make_transform_iterator(
5 thrust::make_counting_iterator(0),
6 linear_index_to_row_index<int>(Nx+1)),
7 thrust::make_transform_iterator(
8 thrust::make_counting_iterator(0),
9 linear_index_to_row_index<int>(Nx+1))+((Nx+1)*Nu),

10 thrust::make_permutation_iterator(
11 Hdu_host.begin(),
12 thrust::make_transform_iterator(
13 thrust::make_counting_iterator(0),
14 (_1%(Nx+1))*(Nu)+_1/(Nx+1))),
15 thrust::make_discard_iterator(),
16 row_sums.begin(),
17 thrust::equal_to<int>(),
18 thrust::plus<DType>());

The reduce_by_key primitive sums values with equal keys (figure 3.3a). Each element

in the same row of Hdu_host is marked with its individual row number as key using

make_transform_iterator, make_counting_iterator and the linear_index_to_row_index

functor. Since the values in Hdu_host are stored in column major order an implicit

transposition is obtained with a make_permutation_iterator, iterating over the elements

as they were stored in row major order (figure 3.3b). The binary function plus<DType>

defines the operation which should be applied to the value with equal keys (checked with

equal_to<int>). All values with equal row index key are reduced to a single value forming

the sum of rows in the host_vector<DType> row_sums(Nu). The reduce_by_key primitive

returns the output keys, which are not required in this case. In order to ignore this output

without wasting memory capacity or bandwidth the make_discard_operator is used.

46

3. Methods

h11 h12
. . . h1(Nx+1)

h21 h22
. . . h2(Nx+1)

...
.

hNu1 hNu2
. . . hNu(Nx+1)

Nu−1 Nu−1 Nu−1 Nu−1

1 1 1 1

0 0 0 0

Nx + 1

NuHdu =

+

+

+

+

Nx+1∑

j=1

hNuj

...

Nx+1∑

j=1

h2j

Nx+1∑

j=1

h1j

(a) Sum along the rows of Hdu.

h11 h12
. . . h1(Nx+1) h21 h22

. . . h2(Nx+1) . . . hNu1 hNu2
. . . hNu(Nx+1)

h11 h21
. . . hNu1 h12 h22

. . . hNu2
. . . h1(Nx+1) h2(Nx+1)

. . . hNu(Nx+1)

0 0 . . . 0 1 1 . . . 1 . . . Nu − 1 Nu − 1 . . . Nu − 1

Nx + 1 Nx + 1 Nx + 1

Nu Nu Nu

Nx + 1 Nx + 1 Nx + 1

thrust::make permutation iterator()

HduT

Hdu

keys

MATLAB ordering (column major):

Implicit transposition (row major):

(b) Linear alignement of keys and elements of Hdu in memory.

Figure 3.3.: Illustration of the reduction (row sum) of the Hdu matrix using the Thrust primitive

reduce_by_key (a). Each element, located in the same row, is marked with its row

index as key (red numbers), and reduce_by_key sums all elements with equal keys.

Since the values of Hdu are stored in column-major order (MATLAB ordering) an

implicit transposition is obtained with a permutation_iterator, treating them as

they were stored in row-major order (b). After this implicit transposition each key

is assigned to the correct element.

47

3. Methods

3.5. Parallel CUDA C/C++ Implementation

The parallel CUDA C/C++ implementation exploits the parallelism provided by the fact

that for each spatial location z_ind=0,...,Nx-1 the state and adjoint equation can be

solved independently. In the following the main CUDA C/C++ principles used in the

RFcontrol project are outlined.

Data Transfer Host/Device An important part of each CUDA C/C++ application is the

data transfer between host and device. Normally, the CUDA API functions cudaMalloc,

cudaFree and cudaMemcpy are used for memory allocation and data transfer. The RFcon-

trol project uses the Thrust library to hide the use of CUDA API functions for memory

allocation and data transfer. The code snippet in listing 3.9 demonstrates the allocation

of device memory, and transfers the host data to the device.

Listing 3.9: Basic memory allocation and data transfer using Thrust containers.

1 // ...
2 //copy data to device
3 thrust::device_vector<DType> M0_dev(M0_host,M0_host+(3*Nx));
4 // get raw pointer
5 DType* M0 = thrust::raw_pointer_cast(M0_dev.data());
6

7 // CUDA C:
8 // DType* M0;
9 // cudaMalloc((void**)&M0,3*Nx*sizeof(DType));

10 // cudaMemcpy(M0,M0_host,3*Nx*sizeof(DType),cudaMemcpyHostToDevice);
11 // ...

The initial magnetization M0_host, residing in host memory space, is transferred to the

allocated device memory space M0_dev. Thrust device containers are not compatible with

user defined CUDA C kernels, but Thrust provides the option to obtain a raw pointer

pointing to the first element of the device data. This raw pointer can be passed as input

argument to user defined kernel functions. Note, that the suffixes _host and _dev denote

Thrust container variables located on host and device memory, respectively, and for raw

pointers no suffix is appended. In addition, to clarify the simplicity of the Thrust library

the CUDA C code is shown in the comments.

48

3. Methods

Kernel Launch In CUDA C/C++ a kernel invokation requires the parameters of the

execution configuration, the number of blocks per grid and the number of threads per

block, to be set. These execution arguments depend on the problem size. The outer loop

iterations in the cn_bloch cn_adjoint and applyHess routines , ranging from the locations

z_ind=0 to Nx-1, are fully independent from one another. Therefore, each loop iteration

can be executed by a parallel thread resulting in a total number of Nx needed threads for

parallelization. Listing 3.10 depicts the invokation of a CUDA kernel function.

Listing 3.10: Occupancy based kernel launch.

1 // ...
2 // determine execution config. to achieve high occupancy
3 int blocksPerGrid; int threadsPerBlock;
4 getKernelLaunchParameter(Nx,cnBlochKernel<DType>,
5 &blocksPerGrid,&threadsPerBlock);
6 // launch kernel
7 cnBlochKernel<DType><<<blocksPerGrid,threadsPerBlock>>>(...);
8 // ...
9

10 // cuda_utils.h
11 inline int getGridDim(int Nx, int threadsPerBlock){
12 return ((Nx + threadsPerBlock - 1) / threadsPerBlock);
13 }

Since high device occupancy is crucial for good performance the launch configuration pa-

rameters, blocksPerGrid and threadsPerBlock are determined in a way that optimal

occupancy is achieved. Occupancy is the ratio of the number of active warps per multipro-

cessor to the maximum number of warps that can be active on the multiprocessor at once

[6]. With CUDA 6.5 Nvidia included API functions to aid in occupancy calculations. The

function getKernelLaunchParameter calculates the number of threads per block depend-

ing on individual kernel characteristics and total number of spatial points. The number of

blocks per grid is returned by getGridDim. The use of the occupancy based kernel launch

feature is limited to CUDA 6.5 or higher. Downward compatibility is provided by means

of a fixed number of threads per block, which is defined per preprocessor macro. CMake

automatically checks for the installed CUDA version and sets the configuration variable

OCCUPANCY_BASED_LAUNCH accordingly.

49

3. Methods

Parallelization The kernel invocation shown in listing 3.10 launches a total number of

threads of blocksPerGrid times threadsPerBlock, which usually results in a higher number

of total threads than spatial discretization points Nx. The sole case for which the overall

thread number do not exceed the amount of locations is when Nx is an exact multiple of

threadsPerBlock. Listings 3.11 and 3.12 illustrate the difference between the parallel and

sequential implementation of the cnBlochKernel.

Listing 3.11: Sequential C/C++ code.

1 // sequential code version
2 template<typename TType>
3

4 void cnBlochKernel(...){
5 // outer loop
6

7

8 for(int z_ind=0;z_ind<Nx;z_ind++){
9 ...

10 // inner loop
11 for (int k=1;k<Nt;k++){
12 // solve Bloch equation
13 }
14 }
15 }

Listing 3.12: Parallel CUDA code.

1 // parallel CUDA code version
2 template<typename TType>
3 __global__
4 void cnBlochKernel(...){
5 // outer loop
6 int z_ind = blockIdx.x*blockDim.x
7 + threadIdx.x;
8 if (z_ind<Nx){
9 ...

10 // inner loop
11 for (int k=1;k<Nt;k++){
12 // solve Bloch equation
13 }
14 }
15 }

The parallel CUDA code is executed by each of the Nx threads replacing the sequential

for loop iterations. Each thread is identifiable by means of a linear index z_ind. The if

satement ensures that only Nx threads execute the enclosed code, which is the solution of

the Bloch equation in this case. The remaining threads stay idle and no code is executed.

Thus, when z_ind overshoots the Nx dimension of the data containers no memory is read or

written, preventing the occurrence of false memory operations or, even worse, segmentation

faults.

50

3. Methods

applyHessGPU In the GPU implementation the SSCAL/DSCAL and zero-padding oper-

ation, prior to the invocation of applyHessKernel, is performed on Thrust device_vector

containers and, beside that, no change in code is required (see listing 3.13).

Listing 3.13: SSCAL/DSCAL and zero padding on the GPU.

1 // ...
2 // compute first column of Hdu
3 // perform SSCAL/DSCAL res = scalar*x
4 using namespace thrust::placeholders;
5 thrust::transform(du_dev.begin(), du_dev.end(), Hdu_dev.begin(),
6 (DType)alpha[0] * _1);
7

8 //zero padding du to readout time
9 du_dev.resize(Nt - 1);

10 thrust::fill(du_dev.begin() + Nu, du_dev.end(), 0);
11 // ...

The Thrust library automatically distributes the computation to the GPU and executes

the parallel GPU implementation of transform and fill. Therefore, Thrust allows to

easily switch between CPU and GPU calculations depending on the underlying container

type. One important consideration in the CUDA implementation of the applyHessKernel

is the maximum kernel execution time. On Windows, the maximum run time of individual

kernels is limited to approximately 5 seconds. Exceeding this time the Windows watchdog

timer interferes and causes programs, using the primary GPU for computation and display,

to time out. Thus, to provide short kernel runtimes the applyHessKernel is split into

consecutive sub-kernels as shown in listing 3.14. Each sub-kernel requires the data of the

previous kernel. CUDA kernel calls are asynchronous, meaning that the control is returned

to the CPU as soon as the kernel is invoked. To ensure that all device operations have

finished, the cudaDeviceSynchronize API function is called subsequential to each sub-

kernel call. Due to limited device memory the container dMz is used to store the output

data of, both, solveLinStateEq and solveLinAdjointEq. Hence, prior to solution of the

linearized adjoint model dMz_dev is set to zero using thrust::fill.

51

3. Methods

Listing 3.14: Splitting of applyHessKernel into consecutive sub-kernels.

1 // ...
2 // solve linearized Bloch equation
3 solveLinStateEqKernel<DType><<<blocksPerGrid,threadsPerBlock>>>(...);
4 cudaDeviceSynchronize(); CUDA_CHECK_ERROR();
5 // calculate necessary information for Hessian action
6 setdNzKernel<DType><<<blocksPerGrid,threadsPerBlock>>>(...);
7 cudaDeviceSynchronize(); CUDA_CHECK_ERROR();
8 // set container to zero
9 thrust::fill(dMz_dev.begin(), dMz_dev.end(), 0);

10 // solve linearized adjoint equation
11 solveLinAdjointEqKernel<DType><<<blocksPerGrid,threadsPerBlock>>>(...);
12 cudaDeviceSynchronize(); CUDA_CHECK_ERROR();
13 // compute action of the Hessian
14 actionOfHessianKernel<DType><<<blocksPerGrid,threadsPerBlock>>>(...);
15 cudaDeviceSynchronize(); CUDA_CHECK_ERROR();
16 // ...

Subsequently, the sum of rows of the Hdu_dev matrix is needed to obtain the final result.

This is accomplished by means of a GPU version of the code snippet described in listing

3.8. If one exchanges the host container Hdu_host by a device container Hdu_dev Thrust

automatically invokes the parallel GPU version of the algorithm. Finally, the result is

transferred from the device to the host yielding the output argument of the MEX file

applyHessGPU.

CUDA Error Handling The CUDA_CHECK_ERROR() after kernel invocation checks if the

previous kernel launch was valid or if a CUDA error occurred. In the case of the occurrence

of an CUDA error, a Thrust system_error exception is thrown, defining the error category

and error message. In order to provide better performance for release builds this error

handling can be disabled via the CMake configuration variable CUDA_ERROR_CHECK. The

enclosed code in the CUDA_CHECK_ERROR() macro is only performed when CUDA error

handling is enabled, otherwise nothing is executed.

52

3. Methods

3.6. Parallel OpenMP Implementation

Alternatively, a vendor free method for a parallel implementation of the RFcontrol project

is the use of the OpenMP application programming interface. The intrinsic parallelism is

utilized by means of multithreading on the CPU. In what follows, a brief description of the

underlying OpenMP principles in the RFcontrol project is given.

Thrust Device Backend The Thrust library provides a possibility to change between

device backend systems. The default system is CUDA, but one can easily change the

system to OpenMP without major modifications to the source code. A global change of

the backend system can be achieved through compiler options. Instead of applying a global

system change, the Thrust system can be accessed directly by re-tagging an existing Thrust

iterator to the OpenMP backend system.

Listing 3.15: Change of the Thrust device backend system to OpenMP.

1 ...
2 // compute first column of Hdu
3 // perform SSCAL/DSCAL res = scalar*x
4 using namespace thrust::placeholders;
5 thrust::transform(
6 thrust::reinterpret_tag<thrust::omp::tag>(du_host.begin()),
7 thrust::reinterpret_tag<thrust::omp::tag>(du_host.end()),
8 thrust::reinterpret_tag<thrust::omp::tag>(Hdu_host.begin()),
9 (DType)*(d.alpha) * _1);

10 ...

The code snippet in listing 3.15 demonstrates the application of a Thrust backend system

change to the scalar vector multiplication described in preceding sections. The reinterpret_tag

routine returns a copy of an iterator and changes the corresponding system tag to omp. As

a result the transform primitive handles the passed containers as OpenMP device vectors

and therefore the OpenMP implementation is called.

53

3. Methods

Parallel Region OpenMP uses preprocessor directives (i.e. pragmas) to specify paral-

lel code sections. The pragma omp parallel for defines a parallel region and creates a

specific number of threads to distribute the enclosed for loop iterations among them. In

listing 3.17 the use of a parallel region is shown in the case of the cnBlochKernel.

Listing 3.16: Sequential C/C++ code.

1 // sequential code version
2 template<typename TType>
3 void cnBlochKernel(...){
4 // outer loop
5

6

7

8 for(int z_ind=0;z_ind<Nx;z_ind++){
9 ...

10 // inner loop
11 for (int k=1;k<Nt;k++){
12 // solve Bloch equation
13 }
14 }
15 }

Listing 3.17: Parallel OpenMP code.

1 // parallel OpenMP code version
2 template<typename TType>
3 void cnBlochKernel(...){
4 // outer loop
5 int threads=omp_get_max_threads();
6 omp_set_num_threads(threads);
7 #pragma omp parallel for
8 for(int z_ind=0;z_ind<Nx;z_ind++){
9 ...

10 // inner loop
11 for (int k=1;k<Nt;k++){
12 // solve Bloch equation
13 }
14 }
15 }

The maximum number of available threads is obtained by calling the runtime API func-

tion get_max_threads. This maximum number is determined by the used multi-core CPU.

Subsequently, the the number of forked threads is set to the obtained maximum by invo-

cation of the omp_set_num_threads runtime function. The computation of the outer loop

is shared between the forked CPU threads, whereby each individual thread identifier rep-

resents a loop iteration z_ind. After completion the forked threads join together in the

master thread yielding the temporal evolution of the magnetization vector. Likewise, the

outer loops in the cnAdjointKernel and applyHessKernel are parallelized. The calcula-

tion of the sum of rows of the Hdu matrix requires a re-tagging of the used iterators to

locally change the Thrust backend system to OpenMP.

54

4. Results

The results in this section are obtained by using two different test systems named after

their built-in GPU. The GTX 970 workstation uses a four-core 64 bit processor (Intel

i5-2500k) working at 3.3 GHz, 12 GB of RAM and a Nvidia GeForce GTX 970 with 4

GB device memory and 1664 CUDA cores. The Tesla workstation uses a six-core 64 bit

processor (Intel i7-3930) working at 3.2 GHz, 64 of GB RAM and a Tesla C2075 GPU with

6 GB device memory and 448 CUDA cores. For a detailed list of the GPU specifications

the reader is referred to the appendix and table A-1 therein.

The OC pulse used in this section was designed for an excitation of 6 simultaneous slices

of width ∆w = 5mm, a flip angle θ = 25◦ and a regularization parameter α = 1 × 10−4.

Relaxation effects were neglected in the optimization. The configuration parameters for

the trust-region Newton-CG algorithm are described and listed in [13].

4.1. Optimization Time

The median Q0.5 of the overall optimization time for the multi-slice OC pulse is shown in

table 4.1. The timings are listed for different implementation methods: sequential MAT-

LAB using for, MATLAB using parfor from the parallel computing toolbox, sequential

C/C++ code, OpenMP multi-threading with multi-core CPU and CUDA GPU computing.

The C/C++, OpenMP and CUDA implementations are realized by means of MEX files.

For each implementation a total number of 10 runs (i.e. optimizations) was performed on

the GTX 970 worksation. The number of locations Nx was set to 2048, 5001 and 10001.

4. Results

The temporal grid size Nt was fixed to 697, and the underlying floating point format was

set to double-precision.

Table 4.1.: Optimization times for different impelementation methods and varied Nx.

Implementation
Optimization Time (Q0.5) in s

Nx = 2048 Nx = 5001 Nx = 10001

MATLAB sequential 634.2 1645.2 3020.8

MATLAB parfor 447.9 540.4 913.4

sequential C/C++ 57.2 140.3 277.5

OpenMP 30.3 73.9 145.5

CUDA 1.6 3.2 5.9

The MATLAB parfor implementation shows significant fluctuations in the optimization

time. In all other methods the execution time varies in the order of sub-seconds, there-

fore, only the MATLAB parfor implementation is further investigated. Figure 4.1 shows

boxplots of the optimization times for different Nx values (10 runs per each value).

Nx 2048 Nx 5001 Nx 10001

n
o

rm
a

liz
e

d
 o

p
ti
m

iz
a

ti
o

n
 t

im
e

 i
n

 a
.u

.

0.85

0.9

0.95

1

1.05

1.1

Boxplot MATLAB parfor

Figure 4.1.: Boxplots of the optimization times for three different spatial discretization points

Nx. For each Nx value a total number of 10 runs was performed. The individual

optimization times are normalized to their corresponding median.

56

4. Results

Figure 4.2 illustrates the speedup of the different implementations with regard to the

MATLAB sequential method. The speedup is obtained from the data in table 4.1. The

median of the MATLAB sequential results is divided by the median of the corresponding

implementation method. The speedup factors differ in the order of three magnitudes, thus,

to provide large scale comparability the axis of ordinates is plotted on a logarithmic scale.

In addition, the speedup of the CUDA implementation regarding to the other methods is

shown in figure 4.3.

Nx 2048 Nx 5001 Nx 10001

s
p

e
e

d
u

p

100

101

102

103

1.4

3.0 3.3

11.1 11.7 10.9

21.0 22.3 20.8

399.6
519.4 510.0

Speedup to MATLAB (sequential)

MATLAB parfor

seq. C/C++

OpenMP

CUDA

Figure 4.2.: Speedup of the different implementations with regard to the MATLAB single-core

method for varying spatial discretization points Nx (using the GTX 970 workstation).

Nx 2048 Nx 5001 Nx 10001

C
U

D
A

 s
p

e
e

d
u

p

101

102

103

399.6

519.4 510.0

282.2

170.6
154.2

36.1

44.3 46.9

19.1

23.3 24.6

Speedup of CUDA implementation

MATLAB seq.

MATLAB parfor

seq. C/C++

OpenMP

Figure 4.3.: Speedup of the CUDA implementation with regard to different methods for varying

spatial discretization points Nx (using the GTX 970 workstation).

57

4. Results

4.2. Problem Size Dependency

The dependency of the optimization time on the spatial grid size Nx for the sequential

C/C++, OpenMP and CUDA implementation is shown in figure 4.2. The time values are

normalized to the total number of CG iterations resulting in the time per CG iteration.

The Nx values are increased in steps of 2000 until the device memory limit of the GTX

970 is reached. The Nx range of the CPU based methods is chosen equally to the GPU

range, although, higher values would be possible (limited only by the host memory). The

temporal grid size Nt is set to a constant value of 697 throughout the Nx alteration. The Nx

dependency of the CUDA implementation is depicted separately in figure 4.2. In addition,

a linear fit (least squares) is performed for each implementation and the r2 values, rounded

to four digits of precision, are listed.

spatial grid size Nx

 0 10000 20000 30000 40000 50000 60000

ti
m

e
 p

e
r

C
G

 i
te

ra
ti
o
n
 (

s
)

0

20

40

60

80

100

120

140

Nx dependency

CUDA (r2 = 0.9963)

seq. C/C++ (r2 = 1)

OpenMP (r2 = 1)

(a)

spatial grid size Nx

 0 10000 20000 30000 40000 50000 60000

ti
m

e
 p

e
r

C
G

 i
te

ra
ti
o
n
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5
Nx dependency

CUDA (r2 = 0.9963)

(b)

Figure 4.4.: Dependency of the optimization time on the spatial grid size Nx for the sequential

C/C++, OpenMP and CUDA implementation (a). Additionally, the Nx dependency

of the CUDA implementation is depicted in (b). The Nx parameter is incremented up

to the device memory limit of the GTX 970. A linear fit (least squares) is performed

and the r2 values are listed (rounded to four digits of precision).

58

4. Results

Considering the same OC pulse, the dependency of the optimization time (time per CG

iteration) on the temporal grid size is demonstrated in figure 4.2. The Nt values are

increased in steps of 697 until the device memory limit of the GTX 970 is reached and Nx

is fixed to 2001 throughout the Nx alteration. The data points corresponding to grid sizes

4 ·Nt and 11 ·Nt were removed from the data set due to rejection of the last two Newton

steps. Figure 4.2 shows an enlarged representation of the Nt dependency of the CUDA

implementation. Likewise, a linear fit (least squares) is performed for each implementation

and the r2 values, rounded to four digits of precision, are listed.

temporal grid size Nt

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ti
m

e
 p

e
r

C
G

 i
te

ra
ti
o
n
 (

s
)

0

20

40

60

80

100

120

140

160
Nt dependency

CUDA (r2 = 0.9838)

seq. C/C++ (r2 = 0.9916)

OpenMP (r2 = 0.9943)

(a)

temporal grid size Nt

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ti
m

e
 p

e
r

C
G

 i
te

ra
ti
o
n
 (

s
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Nt dependency

CUDA (r2 = 0.9838)

(b)

Figure 4.5.: Dependency of the optimization time on the temporal grid size Nt for the sequential

C/C++, OpenMP and CUDA MEX files (a). Additionally, the Nt dependency of

the CUDA implementation is depicted in (b). The Nt parameter is incremented up

to the device memory limit of the GTX 970. A linear fit (least squares) is performed

and the r2 values are listed (rounded to four digits of precision). The observations

corresponding to grid sizes 4 ·Nt and 11 ·Nt were removed from the data set due to

rejection of the last two Newton steps.

59

4. Results

4.3. Single vs. Double

4.3.1. Speed

The impact of the underlying precision of the floating point format on the optimization

time is illustrated in figure 4.6. A comparison of the achievable speedup with different im-

plementation methods for single-precision (float) and double-precision (double) floating-

point format is shown for the GTX 970 workstation in figure 4.6a and for the Tesla system

in figure 4.6c. For single-precision data, the CUDA implementation offers an acceleration

of about 1332 with regard to the MATLAB single-core implementation using the GTX 970

workstation. This is about 2.6 times faster than in the case of double-precision data. On

the Tesla workstation the CUDA implementation provides a significant speedup of about

2336 with regard to the sequential MATLAB implementation using single-precision float-

ing point format. All but the MATLAB parfor method, show an increase in speedup

for single-precision compared to double-precision floating point format. Figures 4.6b and

4.6d demonstrate the achievable speedup with the CUDA implementation regarding to the

other methods. In all cases the CUDA implementation offers a performance boost with

underlying single-precision floating point format. On the Tesla system, utilizing a six-core

i7-3930 CPU, the CUDA speedup regarding to the MATLAB parfor, sequential C/C++

and OpenMP implementation is not as high as on the GTX 970 workstation.

60

4. Results

single-precision double-precision

s
p
e
e
d
u
p

100

101

102

103

104

2.2
3.0

17.3

11.7

31.8

22.3

1331.6

 519.4

Speedup to MATLAB (sequential) float vs. double

MATLAB parfor

seq. C/C++

OpenMP

CUDA

(a) GTX 970

single-precision double-precision

C
U

D
A

 s
p
e
e
d
u
p

101

102

103

104

1331.6

 519.4
595.9

170.6

76.9

44.341.9

23.3

Speedup of CUDA implementation float vs. double

MATLAB seq.

MATLAB parfor

seq C/C++

OpenMP

(b) GTX 970

single-precision double-precision

s
p
e
e
d
u
p

100

101

102

103

104

5.1 5.1

44.1

25.5

122.4

 69.5

2325.5

 951.7

Speedup to MATLAB (sequential) float vs. double

MATLAB parfor

seq. C/C++

OpenMP

CUDA

(c) Tesla

single-precision double-precision

C
U

D
A

 s
p
e
e
d
u
p

101

102

103

104

2325.5

 951.7

459.8

188.1

52.7

37.3

19.0

13.7

Speedup of CUDA implementation float vs. double

MATLAB seq.

MATLAB parfor

seq C/C++

OpenMP

(d) Tesla

Figure 4.6.: Impact of the single-precision and double-precision floating point format on the

achievable speedup in optimization time. A comparision of the different implemen-

tations with regard to the MATLAB single-core method is illustrated in (a) for the

GTX 970 workstation and in (c) for the Tesla system. The speedup offered by the

CUDA implementation is shown in (b) for the GTX 970 workstation and in (d) for

the Tesla system. The grid sizes are fixed to Nx = 5001 and Nt = 697.

61

4. Results

4.3.2. Accuracy

This section illustrates the influence of the underlying data type, i.e., single-precision or

double-precision floating point, on the accuracy of the GPU optimization result. The

root-mean-square error (RMSE) for single-precision and double-precision floating point is

calculated for different temporal grid sizes Nt. The initial Nt value is 697 and the spatial

grid size Nx is set to 5001. The RMSE is obtained between the desired magnetization profile

Md and the resulting profile of the OC pulse after Bloch simulation M. Table 4.2 lists

the results for single- and double-precision data on the GTX 970 and Tesla workstation.

The RMSE values for single-precision and double-precision data on the GTX 970 system

are about the same as on the Tesla workstation and only the difference values between

RMSEs and RMSEd differ from each other marginally.

Table 4.2.: Root-mean-square error for single-precision data RMSEs and for double-precision

data RMSEd for different multiples of the temporal grid size Nt = 697. The RMSE is

obtained between the desired and simulated magnetization profile. The grid size Nx

is set to 5001.

Grid Size
RMSEs RMSEd |RMSEs −RMSEd|
in a.u. in a.u. in a.u.

G
T

X
97

0 Nt 11.6474× 10−3 11.6476× 10−3 1.4214× 10−7

4 Nt 10.7154× 10−3 10.7153× 10−3 0.3829× 10−7

8 Nt 10.6970× 10−3 10.6966× 10−3 4.2352× 10−7

T
es

la

Nt 11.6474× 10−3 11.6476× 10−3 1.3841× 10−7

4 Nt 10.7154× 10−3 10.7153× 10−3 0.3642× 10−7

8 Nt 10.6970× 10−3 10.6966× 10−3 4.2538× 10−7

62

4. Results

A comparison in accuracy of the GPU and MATLAB implementation is shown in table 4.3.

The slice profile RMSE of the GPU and MATLAB results is listed for single- and double-

precision data and for both workstations. Moreover, the mean absolute error (MAE)

between the GPU and MATLAB pulse is stated. The temporal grid size Nt is set to

697 and the spatial grid size Nx to 5001. The difference between RMSE for the GPU

and MATLAB result differs from each other marginally and lies in the order of machine

precision for single- and double-precision floating point. A difference plot of the OC pulses

obtained by means of the GPU and MATLAB implementation is shown in figure 4.7a for

single-precision and in figure 4.7b for double-precision floating point format.

Table 4.3.: Root-mean square error for the GPU implementation RMSEGPU and MATLAB im-

plementation RMSEMAT for single- and double-precision. The RMSE is obtained

between the desired and simulated magnetization profile. The grid sizes Nt and Nx

are set to 697 and 5001, respectively.

Data Type
RMSEGPU RMSEMAT |RMSEGPU −RMSEMAT |

in a.u. in a.u. in a.u.

G
T

X
97

0

single 11.6474× 10−3 11.6475× 10−3 5.1223× 10−8

double 11.6476× 10−3 11.6476× 10−3 3.4694× 10−17

T
es

la single 11.6474× 10−3 11.6475× 10−3 9.9652× 10−8

double 11.6476× 10−3 11.6476× 10−3 3.4694× 10−17

63

4. Results

Table 4.4.: Mean absolute error MAEu and difference in J between the GPU pulse and MATLAB

pulse. The grid sizes Nt and Nx are set to 697 and 5001, respectively.

Data Type
MAEu |J(uMAT,M(T))− J(uGPU,M(T))|
in a.u. in a.u.

G
T

X
97

0

single 6.9827× 10−7 2.9104× 10−11

double 1.3193× 10−15 5.4210× 10−20

T
es

la single 7.4633× 10−7 2.1828× 10−11

double 1.3389× 10−15 1.3553× 10−20

time (ms)

0 0.5 1 1.5 2 2.5

u
M

A
T
 -

 u
G

P
U
 (

a
.u

.)

×10-6

-5

-4

-3

-2

-1

0

1

2

3

4

5
Accuracy MATLAB vs. GPU (single)

(a) single-precision

time (ms)

0 0.5 1 1.5 2 2.5

u
M

A
T
 -

 u
G

P
U
 (

a
.u

.)

×10-14

-1.5

-1

-0.5

0

0.5

1
Accuracy MATLAB vs. GPU (double)

(b) double-precision

Figure 4.7.: Difference plot between the OC pulse obtained from the MATLAB uMAT and GPU

uGPU implementation for single- and double-precision using the GTX 970 worksta-

tion. The grid sizes Nt and Nx are set to 697 and 5001, respectively.

64

4. Results

(a) reconstructed excitation (double)

position (m)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

s
ig

n
a

l
(a

.u
.)

0

200

400

600

800

1000

1200

1400

1600
Slice Profile (double)

(b) measured slice profile (double)

(c) reconstructed excitation (single)

position (m)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

s
ig

n
a

l
(a

.u
.)

0

200

400

600

800

1000

1200

1400

1600
Slice Profile (single)

(d) measured slice profile (single)

(e) difference (a) − (c)

position (m)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

s
ig

n
a
l
(a

.u
.)

-100

-80

-60

-40

-20

0

20

40

60

80

100
Slice Profile Difference

(f) slice profile difference

Figure 4.8.: Reconstructed excitation (magnitude) obtained with a SMS pulse using (a) double-

precision and (b) single-precision optimization. Additionally, the difference between

(a) and (c) is shown in (e). The corresponding slice profile evaluations along the red

lines are depicted in the right column.

65

4. Results

The OC 6 SMS pulses optimized using single-precision and double-precision floating point

format are validated by means of experimental measurements using a cylindrical phan-

tom. The measurements were performed on a 3T MR scanner (Magnetom Skyra, Siemens

Healthcare, Erlangen, Germany) and a modified FLASH sequence. In order to visualize

the excitation pattern, the read-out gradient is changed from the frequency encoding axis

to the slice direction. The sequence parameters are: repetition time TR = 1000 ms, echo

time TE = 5 ms, field of view FoV = 300 × 300 mm, imaging matrix 512 × 512, slice

thickness THK = 5 mm and flip angle θ = 25◦. In the left column of figure 4.8 the recon-

structed excitations of the OC pulses optimized with double-precision and single-precision

are shown, and in addition, the difference between both reconstructed images is depicted.

The corresponding slice profile evaluations (along the red lines) are listed in the right

column of figure 4.8.

66

4. Results

4.4. CUDA Implementation Profiler Results

The computation of the single-slice OC pulse using the sequential MATLAB implementa-

tion leads to the profiler results summarized in figure 3.2. The former major bottlenecks

are implemented as CUDA MEX files applyHessGPU, cn_adjointGPU and cn_blochGPU

exploiting the underlying parallelism. The MATLAB profiler results of the CUDA imple-

mentation are listed in figure 4.9.

(a) tr_newton.m

(b) tr_cg.m (c) objfun.m

Figure 4.9.: Results of the Matlab profiler for the computation of a single-slice OC pulse. The

former major bottlenecks (marked in red) are implemented as CUDA MEX files

applyHessGPU.m, cn_adjointGPU.m and cn_blochGPU.m.

67

4. Results

4.5. CUDA Kernel Execution Time

The execution time of the applyHessGPU kernel for the Geforce GTX 970 and Tesla C2075

GPU is depicted in figure 4.10. The demonstrated timings are obtained from 10 executions

of the applyHessGPU kernel and the median values are listed. The spatial grid sizes Nx

are set to 2048, 5001 and 10001. As can be seen in the median values, the Tesla system

provides faster execution times for all three Nx sizes.

GTX 970 Tesla

e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

0

50

100

150

200

250

63.4

29.9

111.7

 70.6

224.7

148.7

applyHessGPU kernel time

Nx 2048

Nx 5001

Nx 10001

Figure 4.10.: Execution time of the applyHess CUDA kernel for different grid sizes Nx.

The Nvidia Visual Profiler provides the ability to examine CUDA kernel functions. Figure

4.11a shows the profiler results for the applyHessGPU MEX file utilizing the GTX 970 GPU.

The spatial grid size Nx is set to 10001. The light brown blocks represent the timings

required for CUDA memory transfer operations from the host to the device (HtoD) and

back from the device to the host (DtoH). The green blocks illustrate the time spent on

computation. The amount of time required for CUDA memory operations is about 114 ms,

whereas, almost all of the time is spent on HtoD memory transfers. The time performing

DtoH memory transfer operations is in the order of a few microseconds and is therefore

negligible. The time performing computation amounts to 68 ms. This implies that the

execution time of the applyHessGPU kernel is dominated by the HtoD memory transfers.

68

4. Results

Figure 4.11b depicts a zoomed version of the computation part in the kernel, where the

splitting of the applyHessGPU kernel in consecutive sub-kernels can be seen (described in

section 3.5).

(b)

(a)

(b)

Figure 4.11.: Nvidia Visual Profiler result of the applyHessGPU MEX file (a) for a spatial grid

size Nx of 10001. The light brown blocks show the time spent on memory transfer

operations from the host to the device (HtoD) and from the device to the Host

(DtoH). The green blocks represent the time spent on computation. A zoomed

version of the compute block is illustrated in (b). The applyHessGPU kernel is split

into consecutive sub-kernels.

69

5. Discussion and Conclusion

Implementation The numerical solution of the Bloch equation describes the evolution of

the magnetization vector in presence of an external magnetic field and requires a discretiza-

tion in time and spatial domain. The spatial domain [−a, a] is discretized by a spatial grid

−a = z1 < ... < zNx = a with spacing ∆zm := zm − zm−1. In each point zi the state and

adjoint equation can be solved independently. In standard serial code implementations

the temporal evolution of the magnetization vector has to be computed one after another

by iterating over each spatial point zi. However, the spatial independence allows a direct

application of parallel computing techniques to exploit the underlying parallelism.

The optimal control RF pulse design framework [13] was originally implemented entirely in

MATLAB using the parallel computing toolbox (parfor). The MATLAB profiler results

in figure 3.2 identifies the three subroutines cn_bloch.m, cn_adjoint.m and applyHess.m

as the major bottlenecks in the application. Therefore, they are primary targets for per-

formance optimization, which is achieved by means of the MATLAB executable interface.

Different implementation methods are applied to generate MEX files of the three compu-

tational demanding functions, beginning with a sequential C/C++ version and followed

by parallel versions implemented in OpenMP and CUDA.

The build process of the MEX files is embedded in the RFcontrol project utilizing CMake,

an open-source software supporting cross-platform builds for various operating systems.

CMake is designed to generate build files for the native build environment, like makefiles

on Unix and Microsoft Visual Studio solution files on Windows. The CMake framework

of the RFcontrol project provides a flexible option to configure the build process of the

MEX files via CMake environment variables. It allows the configuration of the data type

5. Discussion and Conclusion

to be used (single- or double-precision), CUDA error checking and occupancy based kernel

launch. In addition, the installed CUDA toolkit version is identified and CUDA capable

GPUs are detected automatically prior generation of the build file. If there is no CUDA

capable GPU available the building of the CUDA MEX files is disabled and only the CPU

based implementation methods are used.

Thrust Library The RFcontrol project is implemented by means of the Thrust library,

a powerful library of parallel algorithms and data structures, to handle data transfers be-

tween host and device [41]. Since CUDA toolkit version 4.0 the Thrust library is already

included and no separate installation is required. This straightforward accessibility is one

major advantage of the Thrust library. In order to provide comparability between the

implementation methods, the sequential C/C++ MEX files are working on Thrust host

containers, although this is not mandatory and the C++ STL library could be used as well.

Another advantage is the possibility to switch the device backend system (e.g. OpenMP)

with only minor adaptations of the source code. Furthermore, Thrust increases the read-

ability and usability of code by hiding CUDA specific memory allocation routines, such

as cudaMalloc, cudaMemcpy and cudaFree. A remarkable demonstration of the capability

of the Thrust library is shown in listing 3.8. The sum along the rows of the Hdu ma-

trix is calculated using the reduce_by_key primitive in conjunction with fancy iterators

like the transform_iterator. In order to overcome the column- vs. row-major mem-

ory alignment issue an implicit transposition of the Hdu matrix is achieved by means of a

permutation_iterator. As a result of this implicit transposition the reduce_by_key prim-

itive iterates over the elements in the Hdu matrix as they were stored in row-major order,

without any allocation of additional memory or memcpy operations. The reduce_by_key

primitive returns the used keys as output argument, which are not required in case of

reduction of the Hdu matrix. The discard_iterator is used to ignore the output keys

written to it without wasting memory capacity or bandwidth.

71

5. Discussion and Conclusion

Optimization Time A measure for the overall execution time was obtained by determin-

ing the median Q0.5 out of 10 optimization runs per implementation method (table 4.1). For

instance, the sequential MATLAB implementation terminates approximately after 27 min-

utes on the GTX 970 workstation using a spatial grid size Nx of 5001 and double-precision

floating point format. Just by implementing the subroutines with high computational ef-

fort as MEX files, using sequential C/C++ code, an optimization time of about 2 minutes

and 20 seconds is achieved. This implies a notable speedup of 11.7 without any utilization

of the underlying parallelism (figure 4.2). The CUDA implementation exploits the intrin-

sic parallelism and reduces the overall execution time to 3.2 seconds, which results in a

remarkable speedup of 519.4. If compared to the OpenMP MEX file solution utilizing an

Intel i5-2500k CPU (4 cores), the CUDA accelerated MEX files still offer a considerable

speedup of 20.3 (CUDA speedup in figure 4.3). On the Tesla workstation, which uses an

Intel i7-3930 CPU with 6 cores, the CUDA acceleration factor is still 13.7 (figure 4.6d).

As noted in section 4.1, the MATLAB parfor implementation shows significant fluctua-

tions in the optimization time, whereas, all other methods vary in the order of sub-seconds.

Therefore, only the MATLAB parfor implementation was further investigated and a box-

plot is illustrated in figure 4.1. For the sake of comparability the individual optimization

times are normalized to their corresponding median. As can be seen, the fluctuations de-

crease with increasing grid size Nx. A possible explanation is, that the operating system

is not idle throughout the optimization and may cause interferences, when all CPU cores

are utilized to full capacity. Therefore, one CPU core should always be dedicated to the

operating system to provide a certain robustness of the execution times.

Problem Size Dependency In the optimal control RF pulse design framework the prob-

lem size is defined by the number of spatial discretization points Nx, temporal discretization

points Nt and control points Nu. Consequently, the size of the used data structures is a

combination of this problem dimensions. The exploited parallelism lies in the Nx dimen-

sion, i.e., for each spatial discretization point the state and adjoint equation can be solved

72

5. Discussion and Conclusion

independently. On the contrary, the Nt dimension offers no parallelism, as for the tem-

poral evolution of the magnetization vector the previous time point is mandatory for the

computation. In section 4.2 the dependency of the optimization time on the grid sizes Nx

and Nt was investigated for the sequential C/C++, OpenMP and CUDA implementation

on the GTX 970 workstation. The Nx dependency is shown in figure 4.4, and the listed

r2 values close to 1 indicate a linear scaling of the optimization time with increasing grid

size Nx. Note, that the r2 values are not exactly 1, but rounded to four digits of precision,

in case of the sequential C/C++ and OpenMP method. As can be seen in figure 4.4b, the

last data point lies significantly above the linear least square fit. Since the Nx values are

increased up to the device memory limit of the GeForce GTX 970 almost the total amount

of device memory is occupied at this data point, and the impact of the memory issue1

could become noticeable. Particularly, the GTX 970 device memory is segmented into a

3.5 GB section and a 0.5 GB section, whereas the 0.5 GB part is not accessed as efficiently

as the main part. The Nt dependency is depicted in figure 4.5 and the r2 values close to

1 also indicate a linear scaling of optimization time with increasing temporal resolution.

However, this evaluation is not as straightforward as in case of the Nx dependency, because

an additional sampling of the slice selection gradient by the same factor is required. The

data points corresponding to a grid size of 4 ·Nt and 11 ·Nt were excluded from the data

set due to rejection of the last two Newton steps and therefore making them not suitable

for a comparison.

Single vs. Double: Speed The data type, to be used in the RFcontrol project, can be

configured to single-precision (float) and double-precision (double) floating point format

by setting the CMake variable USE_DOUBLE_PRECISION accordingly. Figure 4.6 shows the

impact of single- and double-precision on the achievable speedup. All but the MATLAB

parfor implementation show an increase in speedup when using the float data type.

MATLAB naturally operates on double-precision data and is not optimized for single-

1statement of NVIDIA on http://www.pcper.com

73

http://www.pcper.com/news/Graphics-Cards/NVIDIA-Responds-GTX-970-35GB-Memory-Issue

5. Discussion and Conclusion

precision performance, although it is possible to cast a variable of type double to a single

variable. This also explains why the speedup of the MATLAB parfor implementation is

reduced from 3.0 to 2.2 by switching from double to single on the GTX 970 worksta-

tion (see figure 4.6a). The GeForce GTX 970 is based on the second generation Maxwell

hardware architecture (GM 204 chip) and supports CUDA compute capability 5.2. The

double-precision performance of the Maxwell chip is 1/32 of single-precision performance.

Although the Tesla C2075 is based on the older Fermi architecture (compute capability 2.0)

the ratio of double-precision to single-precision performance is 1/2. Precisely, the GTX

970 and Tesla 2075 deliver 122 versus 515 GFLOPS for double-precision operations, re-

spectively. The benefits of this additional GFLOPS of the Tesla GPU can be seen in figure

4.10, where timings of the applyHessGPU MEX file are listed without embedding in the

algorithmic MATLAB framework. This and the six-core Intel i7-3930 CPU contribute to a

better overall performance of the Tesla workstation, for both single- and double-precision

floating point format.

Single vs. Double: Accuracy Table 4.2 lists the slice profile RMSE values for single-

and double-precision data. The RMSEs and RMSEd values are about the same and

the difference between them lies in the range of 4 times the numerical accuracy of single-

precision floating point format (≈ 1.19e-07 in MATLAB). For instance, using a temporal

resolution of 8 · Nt this difference is about 3.5 times above the numerical accuracy. If

one takes a closer look to the output of the trust-region Newton-CG algorithm in listing

5.1, the norm of the gradient |g| is close to the numerical accuracy of single-precision.

This results from an absolute tolerance of 1.2e-07 for the gradient norm in the Newton

step, which is in the order of single-precision accuracy. Consequently, the algorithm may

terminate at a slightly different local minimizer to the objective J for single- and double-

precision. Therefore, the values of J after termination of the algorithm are compared in

a further investigation. For single the value of J equals to 1.313229e-04 and in the case

of double J equals to 1.313141e-04 resulting in a difference of 8.729808e-09, which lies

74

5. Discussion and Conclusion

in the order of numerical accuracy. Hence, it follows that the results of J are equal in the

sense of numerical accuracy for single-precision floating point format. In a further step,

the absolute tolerance for the gradient norm is set to a value of 1.2e-06 for a repeated

evaluation of the RMSE differences. This change in absolute tolerance results in RMSE

differences in the order of one magnitude smaller than the values in table 4.2. In this

context, this implies no significant change in accuracy of the slice profile by switching from

single-precision to double-precision.

Listing 5.1: Output of the TR-Newton-CG algorithm with abstol=1.2e0-7.

1 Computing minimizer with alpha = 0.0001
2 Using GPU acceleration (single)
3 it J |g| flag rho dJa/dJm cgits
4 0 2.764e-03 4.649e-03
5 1 1.617e-04 5.049e-04 2 2.000e+00 9.671e-01 1
6 2 1.313e-04 3.393e-06 0 2.000e+00 1.002e+00 2
7 3 1.313e-04 1.459e-07 0 2.000e+00 9.985e-01 8
8 Elapsed time is 11.798seconds.
9 --

10 Computing minimizer with alpha = 0.0001
11 Using GPU acceleration (double)
12 it J |g| flag rho dJa/dJm cgits
13 0 2.764e-03 4.649e-03
14 1 1.617e-04 5.048e-04 2 2.000e+00 9.671e-01 1
15 2 1.313e-04 3.393e-06 0 2.000e+00 1.002e+00 2
16 3 1.313e-04 1.458e-07 0 2.000e+00 1.000e+00 8
17 Elapsed time is 23.2485 seconds.
18 --

In order to investigate the results of the OC pulses, optimized with single- and double-

precision floating point format, experimental measurements were performed using a cylin-

drical phantom. The reconstructed excitations and corresponding slice profile evaluations

(along the red lines) in figure 4.8 show no significant visual difference. Therefore, the

difference between the reconstructed excitation for double-precision and single-precision is

computed in figure 4.8e. The evaluation of the slice profile difference in figure 4.8f shows a

slight in-slice and out-off-slice error of less than 1%. Hence, no significant loss of accuracy

in the measured excitation is noticeable by changing the floating point format to single-

precision in the optimization.

75

5. Discussion and Conclusion

The comparison in accuracy of the GPU and MATLAB implementation in table 4.3 states

that the RMSEGPU and RMSEMAT values differ form each other marginally and the

difference between them lies in the order of the corresponding numerical accuracy (≈ 2.22

e-16 for double). The MAE values in table 4.4 of the control u are above the range of

numerical precision due to marginally differing termination criteria for single- and double-

precision. An investigation of the objective values J , after termination of the algorithm,

shows differences in the order of numerical accuracy (table 4.4). This implies no significant

change in accuracy of the optimization results by use of GPU accelerated MEX files.

CUDA Implementation Figure 4.9 summarizes the MATALB profiler results of the GPU

accelerated computation of the same single-slice OC pulse as used in figure 3.2. The former

major bottlenecks are implemented as CUDA MEX files applyHessGPU, cn_adjointGPU and

cn_blochGPU exploiting the provided parallelism. The total number of CG iterations and

function calls remains unchanged. However, the overall execution time of the tr_newton.m

function has been significantly reduced from former 1660.1 seconds to 5.7 seconds by means

of GPU accelerated MEX files. As can be seen in figure 4.9c, the self time and MATLAB

overhead becomes noticeable for optimization times in the order of a few seconds. In par-

ticular, in the objfun.m sub-routine the self time has a share of 60.3% of total execution

time.

The Nvidia Visual Profiler result of the applyHessGPU kernel using a grid size Nx of 10001

is illustrated in figure 4.11. A major part of execution time is spent on memory transfer

operations (114 ms), whereas the time spent on computation amounts to 68 ms resulting in

a compute to memory transfer ratio of about 0.6. Therefore, the amount of time perform-

ing compute operations is low relative to the amount of time required for CUDA memory

operations. As can be seen from the brown blocks in the kernel profile, the applyHessGPU

kernel is dominated by memory transfers from the host to the device (HtoD). Hence, for

best overall application performance it is important to minimize the data transfers be-

tween host and device. The RFcontrol framework is based on acceleration by means of

76

5. Discussion and Conclusion

MEX file implementation of the major bottlenecks. This outsourcing of computational

demanding sub-routines provides high flexibility as the main part of the algorithm remains

in the MATLAB programming language, which offers a high level of abstraction. How-

ever, this flexibility comes at the cost of increased HtoD data transfers, because each MEX

function call requires the results of previous computations making it difficult to minimize

data transfers. In the applyHessGPU kernel it was possible to reduce the data transfers

from the device back to the host (DtoH) to a minimum, because only the reduced Hdu

matrix, a vector with Nu elements, needs to be copied in DtoH direction. Possible op-

timizations could be the use of constant and texture memory for read-only data like the

target magnetization profile. In the former case, constant memory is limited to 64 KB,

and for instance, the target magnetization profile for a typical grid size Nx of 5001 re-

quires 3× 5001× sizeof(double) (≈ 117 KB) and therefore excluding the use of constant

memory. In the latter case, texture memory offers limited compatibility for double data.

Another possibility would be the use of shared memory blocking, due to the fast nature

of this memory type. In the RFcontrol project, with dynamic problem dimensions, this is

rather difficult to achieve without loss of parallelism, because in each location the solution

of the state and adjoint equation (inner loop) requires all time points Nt and the shared

memory per thread block is limited to 48 KB (GTX 970). The CUDA programming model

offers a wide variety of memory optimizations, but a detailed discussion of all the pos-

sibilities would be beyond the scope of this work, therefore, the reader is referred to the

CUDA C Best Practices Guide [42]. A zoomed version of the compute block in figure 4.11b

illustrates the splitting of the applyHessGPU kernel into consecutive sub-kernels in order to

prevent the interference of the Windows watchdog timer on the GTX 970 workstation (see

section 3.5). In order to overcome this problem, the use of two GPUs is recommended,

where one is dedicated to the display driver and the second only to compute purposes as

on the Tesla workstation.

The GPGPU application interface used in the RFcontrol project is NVIDIAs proprietary

CUDA programming model, restricting the application to CUDA capable GPUs. A vendor-

independent framework for GPGPU is OpenCL, an open standard from the Khronos Group

77

5. Discussion and Conclusion

[2]. However, given the access to CUDA capable GPUs and the fact that the method of

choice for GPU accelerated applications at our institute is CUDA C/C++ this program-

ming model was choosen for the GPGPU implementation.

Conclusion The demonstrated multi-platform implementation of the OC RF pulse de-

sign framework by means of parallel computing accelerated MATLAB executable files leads

to a significant reduction in computing time while maintaining the high flexibility of the

MATLAB environment. Above all, the remarkable speedup of the CUDA implementation

allows computation times in the order of a few seconds therefore making real-time opti-

mization and patient-specific design feasible. Moreover, even a higher acceleration without

significant loss in accuracy is possible by changing the underlying floating point format

from double-precision to single-precision. While the CUDA implementation requires a

CUDA capable NVIDIA GPU, the additional OpenMP implementation utilizes the intrin-

sic parallelism by means of CPU multi-threading and provides a considerable reduction

in optimization time independent from the built-in GPU. The feasibility of real-time op-

timization by means of CUDA accelerated OC RF pulse design method allows a direct

integration in a MR pulse sequence and may be part of future work.

78

Bibliography

[1] Foster I: Designing and Building Parallel Programs: Concepts and Tools for Parallel

Software Engineering. Addison-Wesley, 1995, p. 430.

[2] Kirk D and Hwu W: Programming massively parallel processors : a hands-on ap-

proach. 2010, p. 514.

[3] Almasi GS and Gottlieb A: Highly Parallel Computing. 2nd ed. Redwood City, CA,

USA: Benjamin-Cummings Publishing Co., Inc., 1994.

[4] OpenMP Application Program Interface. 2013.

[5] Larsen ES and McAllister D: “Fast matrix multiplies using graphics hardware”. In:

Proceedings of the 2001 ACM/IEEE conference on Supercomputing. ACM. 2001,

pp. 55–55.

[6] CUDA C Programming Guide. 2015.

[7] Freiberger M, Knoll F, Bredies K, Scharfetter H, and Stollberger R: The Agile Library

for Biomedical Image Reconstruction Using GPU Acceleration. Computing in Science

and Engineering 15 (2013), pp. 34–44.

[8] Knoll F, Bredies K, Pock T, and Stollberger R: Second Order Total Generalized

Variation (TGV) for MRI. 491 (2011), pp. 480–491.

[9] Tahayori B, Johnston LA, Mareels IMY, and Farrell PM: Revisiting the Bloch Equa-

tion through Averaging (2008), pp. 4121–4126.

Bibliography

[10] Nishimura DG: Principles of Magnetic Resonance Imaging. Standford University,

1996.

[11] Pauly J, Le Roux P, Nishimura D, and Macovski A: Parameter Relations for the

Shinnar-Le Roux Selective Excitation Pulse Design Algorithm. IEEE Transactions

on Medical Imaging 10(1) (1991), pp. 53–65.

[12] Conolly S, Nishimura D, and Macovski A: Optimal Control Solutions to the Magnetic

Resonance Selective Excitation Problem. IEEE Transactions on Medical Imaging MI-

5(2) (1986), pp. 106–115.

[13] Aigner CS, Clason C, Rund A, and Stollberger R: Efficient high-resolution RF pulse

design applied to simultaneous multi-slice excitation. Journal of Magnetic Resonance

(2015).

[14] Steihaug T: The Conjugate Gradient Method and Trust Regions in Large Scale Op-

timization. SIAM Journal on numerical analysis 20 (1983), pp. 626–637.

[15] Bernstein MA, King KF, and Zhou XJ: Handbook of MRI Pulse Sequences. Elsevier

Academic Press, 2004, p. 1040.

[16] Lee KJ: General parameter relations for the Shinnar-Le Roux pulse design algorithm.

Journal of Magnetic Resonance 186 (2007), pp. 252–258.

[17] Balchandani P, Pauly J, and Spielman D: Designing adiabatic radio frequency pulses

using the Shinnar–Le Roux algorithm. Magnetic Resonance in Medicine 64 (2010),

pp. 843–851.

[18] Grissom WA, McKinnon GC, and Vogel MW: Nonuniform and multidimensional

Shinnar-Le Roux RF pulse design method. Magnetic Resonance in Medicine 68

(2012), pp. 690–702.

[19] Ma C and Liang ZP: Design of multidimensional Shinnar–Le Roux radiofrequency

pulses. Magnetic Resonance in Medicine 73 (2015), pp. 633–645.

80

Bibliography

[20] Ugurbil K, Xu J, et al.: Pushing spatial and temporal resolution for functional and

diffusion MRI in the Human Connectome Project. NeuroImage 80 (2013), pp. 80–

104.

[21] Feinberg DA and Setsompop K: Ultra-fast MRI of the human brain with simultaneous

multi-slice imaging. Journal of Magnetic Resonance 229 (2013), pp. 90–100.

[22] Müller S: Multifrequency Selective rf Pulse for Multislice MR Imaging. Magnetic

Resonance in Medicine 6 (1988), pp. 364–371.

[23] Souza SP, Szumowski J, Dumoulin C, Plewes DP, and Glover G: SIMA: Simultaneous

Multislice Acquisition of MR Images by Hadamard-Encoded Excitation. Journal of

Computer Assisted Tomography 6 (1988), pp. 1026–1030.

[24] Larkman D, Hajinal JV, Herlihy AH, Coutts GA, Young IR, and Ehnholm G: Use

of Multicoil Arrays for Seperation of Signal from Multiple Slices SiSimultaneous

Excited. Journal of Magnetic Resonance Imaging 12 (2001), pp. 313–317.

[25] Breuer F, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, and Jakob PM:

Controlled Aliasing in Parallel Imaging Results in Higher Acceleration (CAIPIR-

INHA) for Multi-Slice Imaging. Magnetic Resonance in Medicine 53 (2005), pp. 684–

691.

[26] Nunes RG, Hajinal JV, Golay J, and Larkman DJ: “Simultaneous slice excitation

and reconstruction for single shot EPI”. In: Proc. ISMRM 14. 2006, p. 293.

[27] Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, and Wald LL:

Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar

imaging with reduced g-factor penalty. Magnetic Resonance in Medicine 67 (2012),

pp. 1210–1224.

[28] Blaimer M, Breuer FA, Seiberlich N, Mueller MF, Heidemann RM, Jellus V, Wiggins

G, Wald LL, Griswold MA, and Jakob PM: Accelerated volumetric MRI with a

SENSE/GRAPPA combination. Journal of Magnetic Resonance Imaging 24 (2006),

pp. 444–450.

81

Bibliography

[29] Norris DG, Koopmans PJ, Boyacioglu R, and Barth M: Power independent of number

of slices (PINS) radiofrequency pulses for low-power simultaneous multislice excita-

tion. Magnetic Resonance in Medicine 66 (2011), pp. 1234–1240.

[30] Hargreaves BA, Cunningham CH, Nishimura DG, and Conolly SM: Variable-rate

selective excitation for rapid MRI sequences. Magnetic Resonance in Medicine 52

(2004), pp. 590–597.

[31] Poser BA, Anderson RJ, Guérin B, Setsompop K, Deng W, Mareyam A, Serano P,

Wald LL, and Stenger VA: Simultaneous multislice excitation by parallel transmis-

sion. Magnetic Resonance in Medicine 71 (2014), pp. 1416–1427.

[32] Bilgic B, Gagoski BA, Cauley SF, Fan AP, Polimeni JR, Grant PE, Wald LL, and

Setsompop K: Wave-CAIPI for highly accelerated 3D imaging. Magnetic Resonance

in Medicine 73 (2015), pp. 2152–2162.

[33] Gagoski BA, Bilgic B, Eichner C, Bhat H, Grant PE, Wald LL, and Setsompop K:

RARE/Turbo spin echo imaging with simultaneous multislice Wave-CAIPI. Magnetic

Resonance in Medicine 73 (2015), pp. 929–938.

[34] Guérin B, Setsompop K, Ye H, Poser BA, Stenger AV, and Wald LL: Design of paral-

lel transmission pulses for simultaneous multislice with explicit control for peak power

and local specific absorption rate. Magnetic Resonance in Medicine 1953 (2014),

pp. 1946–1953.

[35] Xu D, King KF, Zhu Y, McKinnon GC, and Liang ZP: Designing multichannel,

multidimensional, arbitrary flip angle RF pulses using an optimal control approach.

Magnetic Resonance in Medicine 59 (2008), pp. 547–560.

[36] Vinding MS, Maximov II, Tošner Z, and Nielsen NC: Fast numerical design of spatial-

selective RF pulses in MRI using Krotov and quasi-Newton based optimal control

methods. Journal of Chemical Physics 137 (2012).

[37] Nocedal J and Wright S: Numerical Optimization. Springer Series in Operations

Research and Financial Engineering. Springer New York, 2006.

82

Bibliography

[38] Ruszczynski A: Nonlinear Optimization. Princeton University Press, 2011.

[39] Grama A: Introduction to Parallel Computing. Pearson Education. Addison-Wesley,

2003.

[40] Hoffmann S and Lienhart R: OpenMP: Eine Einführung in die parallele Program-

mierung mit C/C++. Informatik im Fokus. Springer Berlin Heidelberg, 2008.

[41] Hoberock J and Bell N: Thrust: A Parallel Template Library. 2010.

[42] CUDA C Best Practices Guide. 2015.

83

Appendix

A. GPU Specifications

Table A-1.: Summary of GPU specifications.

Specifications GTX 970 Tesla C2075

CUDA cores 1664 448

Base Clock 1050 MHz 1150 MHz

Device Memory 4 GB (3.5 GB)2 6 GB

Memory Bandwidth 224 GB/s 144 GB/s

Memory Interface GDDR5 GDDR5

FP32 (Peak) 3920 GFLOPS 1030 GFLOPS

FP64 (Peak) 122 GFLOPS 515 GFLOPS

Compute Capability 5.2 2.0

2The GTX 970 device memory is segmented into a 3.5 GB section and a 0.5 GB section, whereas the 0.5
GB part is not accessed as efficiently as the 4.5 GB part.

B. CUDA Kernels

B.1. applyHessGPU

Listing B-1: Invokation of the applyHessKernel in file applyHessGPU.cu.

1 extern "C" void callApplyHessKernel(dpara<DType>* dpara_host, DType* N_host, DType* P_host,
2 DType* u_host, DType* v_host, DType* w_host, DType* du_host,
3 int Nt, int Nx, int Nu,
4 DType* mat_output){
5

6 // allocate device vectors
7 thrust::device_vector<DType> Hdu_dev(Nu*(Nx + 1));
8 thrust::device_vector<DType> N_dev(N_host, N_host + (3 * Nx*(Nt - 1)));
9 thrust::device_vector<DType> P_dev(P_host, P_host + (3 * Nx*(Nt - 1)));

10 thrust::device_vector<DType> u_dev(u_host, u_host + Nt);
11 thrust::device_vector<DType> v_dev(v_host, v_host + Nt);
12 thrust::device_vector<DType> w_dev(w_host, w_host + Nt);
13 thrust::device_vector<DType> du_dev(du_host, du_host + Nu);
14

15 // copy dpara to device
16 thrust::device_vector<DType> xdis(dpara_host->xdis, dpara_host->xdis + Nx);
17 thrust::device_vector<DType> gamma(dpara_host->gamma, dpara_host->gamma + 1);
18 thrust::device_vector<DType> T1(dpara_host->T1, dpara_host->T1 + 1);
19 thrust::device_vector<DType> T2(dpara_host->T2, dpara_host->T2 + 1);
20 //thrust::device_vector<DType> M0c(dpara_host->M0c, dpara_host->M0c + 1);
21 thrust::device_vector<DType> B1c(dpara_host->B1c, dpara_host->B1c + 1);
22 thrust::device_vector<DType> G3(dpara_host->G3, dpara_host->G3 + 1);
23 thrust::device_vector<DType> relax(dpara_host->relax, dpara_host->relax + 1);
24 thrust::device_vector<DType> dt(dpara_host->dt, dpara_host->dt + 1);
25 thrust::device_vector<DType> alpha(dpara_host->alpha, dpara_host->alpha + 1);
26 thrust::device_vector<DType> dx(dpara_host->dx, dpara_host->dx + 1);
27

28 // compute first column of Hdu
29 // perform SSCAL/DSCAL res = scalar*x
30 using namespace thrust::placeholders;
31 thrust::transform(du_dev.begin(), du_dev.end(), Hdu_dev.begin(), (DType)alpha[0] * _1);
32

33 //zero padding du to readout time
34 du_dev.resize(Nt - 1);
35 thrust::fill(du_dev.begin() + Nu, du_dev.end(), 0);
36

37 // get raw pointer
38 DType* Hdu = thrust::raw_pointer_cast(Hdu_dev.data());
39 DType* N = thrust::raw_pointer_cast(N_dev.data());
40 DType* P = thrust::raw_pointer_cast(P_dev.data());
41

42 DType* u = thrust::raw_pointer_cast(u_dev.data());
43 DType* v = thrust::raw_pointer_cast(v_dev.data());
44 DType* w = thrust::raw_pointer_cast(w_dev.data());
45 DType* du = thrust::raw_pointer_cast(du_dev.data());
46

47 //init dpara with raw pointer
48 dpara<DType> d;
49 d.xdis = thrust::raw_pointer_cast(xdis.data());
50 d.gamma = thrust::raw_pointer_cast(gamma.data());
51 d.T1 = thrust::raw_pointer_cast(T1.data());
52 d.T2 = thrust::raw_pointer_cast(T2.data());
53 d.B1c = thrust::raw_pointer_cast(B1c.data());
54 d.G3 = thrust::raw_pointer_cast(G3.data());
55 d.relax = thrust::raw_pointer_cast(relax.data());
56 d.dt = thrust::raw_pointer_cast(dt.data());
57 d.alpha = thrust::raw_pointer_cast(alpha.data());
58 d.dx = thrust::raw_pointer_cast(dx.data());

59

60 thrust::device_vector<DType> dMz_dev(3*Nt*Nx);
61 thrust::device_vector<DType> dNz_dev(3*Nu*Nx);
62 thrust::device_vector<DType> dq_dev(3 * Nx);
63 DType* dMz = thrust::raw_pointer_cast(dMz_dev.data());
64 DType* dNz = thrust::raw_pointer_cast(dNz_dev.data());
65 DType* dq = thrust::raw_pointer_cast(dq_dev.data());
66

67 int numBlocks; int numThreads;
68 getKernelLaunchParameter(Nx, solveLinAdjointEqKernel<DType>, &numBlocks, &numThreads);
69 solveLinStateEqKernel<DType><<<numBlocks, numThreads >>>(d,N,u,v,w,du,Nt,Nx,Nu,dMz,dq);
70 cudaDeviceSynchronize(); CUDA_CHECK_ERROR();
71

72 setdNzKernel<DType> <<<numBlocks, numThreads >>>(dMz,Nt,Nx,Nu,dNz);
73 cudaDeviceSynchronize(); CUDA_CHECK_ERROR();
74

75 thrust::fill(dMz_dev.begin(), dMz_dev.end(), 0); CUDA_CHECK_ERROR();
76

77 solveLinAdjointEqKernel<DType><<<numBlocks, numThreads >>>(d,P,u,v,w,du,dq,Nt,Nx,Nu,dMz);
78 cudaDeviceSynchronize(); CUDA_CHECK_ERROR();
79

80 actionOfHessianKernel<DType> <<<numBlocks, numThreads >>>(d,dMz,dNz,P,N,Nt,Nx,Nu,Hdu);
81 cudaDeviceSynchronize(); CUDA_CHECK_ERROR();
82

83 //row sum of Hdu using thrust reduce by key
84 thrust::device_vector<DType> row_sums_dev(Nu);
85 thrust::reduce_by_key(
86 thrust::make_transform_iterator(thrust::make_counting_iterator(0),
87 linear_index_to_row_index<int>(Nx+1)),
88 thrust::make_transform_iterator(thrust::make_counting_iterator(0),
89 linear_index_to_row_index<int>(Nx+1))+((Nx+1)*Nu),
90 thrust::make_permutation_iterator(Hdu_dev.begin(),
91 thrust::make_transform_iterator(thrust::make_counting_iterator(0),
92 (_1%(Nx+1))*(Nu)+_1/(Nx+1))),
93 thrust::make_discard_iterator(),
94 row_sums_dev.begin(),
95 thrust::equal_to<int>(),
96 thrust::plus<DType>());
97

98 // transfer data to host
99 cudaMemcpy(mat_output, thrust::raw_pointer_cast(row_sums_dev.data()),

100 Nu*sizeof(DType), cudaMemcpyDeviceToHost);
101

102 return;
103 }

Listing B-2: setdNzKernel in file applyHessGPU.cu.

1 template<typename TType>
2 __global__ void setdNzKernel(TType* dMz, const int Nt, const int Nx, const int Nu, TType*

dNz){
3

4 int z_ind = blockIdx.x*blockDim.x + threadIdx.x;
5 if (z_ind < Nx){
6 for (int u_ind = 0; u_ind < Nu; u_ind++){
7 dNz[LIN_IDX_3D(1,u_ind+1,z_ind+1,3,Nu)-1] =
8 0.5*(dMz[LIN_IDX_3D(1,z_ind+1,u_ind+1,3,Nx)-1]+
9 dMz[LIN_IDX_3D(1,z_ind+1,u_ind+2,3,Nx)-1]);

10 dNz[LIN_IDX_3D(2,u_ind+1,z_ind+1,3,Nu)-1] =
11 0.5*(dMz[LIN_IDX_3D(2,z_ind+1,u_ind+1,3,Nx)-1]+
12 dMz[LIN_IDX_3D(2,z_ind+1,u_ind+2,3,Nx)-1]);
13 dNz[LIN_IDX_3D(3,u_ind+1,z_ind+1,3,Nu)-1] =
14 0.5*(dMz[LIN_IDX_3D(3,z_ind+1,u_ind+1,3,Nx)-1]+
15 dMz[LIN_IDX_3D(3,z_ind+1,u_ind+2,3,Nx)-1]);
16 }
17 }
18 }

Listing B-3: solveLinStateEqKernel in file applyHessGPU.cu.

1 template<typename TType>
2 __global__ void solveLinStateEqKernel(dpara<TType> d, TType* N,
3 TType* u, TType* v, TType* w, TType* du,
4 const int Nt, const int Nx, const int Nu, TType* dMz, TType* dq){
5

6 int z_ind = blockIdx.x*blockDim.x + threadIdx.x;
7

8 if (z_ind < Nx){
9 TType B1 = (*d.gamma)*(*d.B1c);

10 TType B3 = (*d.gamma)*(*d.G3)*d.xdis[z_ind];
11

12 TType dMz_new[3] = {};
13 TType dMz_old[3] = {};
14

15 TType bk[3] = {};
16 TType Ak[9] = {};
17 //solve linearized state equation
18 for (int k = 1; k < Nt; k++){
19 bk[0] = 0;
20 bk[1] = B1*N[LIN_IDX_3D(3,z_ind+1,k,3,Nx)-1]*du[k-1];
21 bk[2] = -B1*N[LIN_IDX_3D(2,z_ind+1,k,3,Nx)-1]*du[k-1];
22 setAk<TType>(Ak, &d, &u[k-1], &v[k-1], &w[k-1], &B1, &B3);
23

24 dMz_old[0] = dMz[LIN_IDX_3D(1,z_ind+1,k,3,Nx)-1];
25 dMz_old[1] = dMz[LIN_IDX_3D(2,z_ind+1,k,3,Nx)-1];
26 dMz_old[2] = dMz[LIN_IDX_3D(3,z_ind+1,k,3,Nx)-1];
27 solveBloch<TType>(Ak, &d, dMz_new, dMz_old, bk);
28

29 dMz[LIN_IDX_3D(1,z_ind+1,k+1,3,Nx)-1] = dMz_new[0];
30 dMz[LIN_IDX_3D(2,z_ind+1,k+1,3,Nx)-1] = dMz_new[1];
31 dMz[LIN_IDX_3D(3,z_ind+1,k+1,3,Nx)-1] = dMz_new[2];
32 }
33 dq[LIN_IDX_2D(1,z_ind+1,3)-1] = dMz_new[0];
34 dq[LIN_IDX_2D(2,z_ind+1,3)-1] = dMz_new[1];
35 dq[LIN_IDX_2D(3,z_ind+1,3)-1] = dMz_new[2];
36 }
37 }

Listing B-4: actionOfHessianKernel in file applyHessGPU.cu.

1 template<typename TType>
2 __global__ void actionOfHessianKernel(dpara<TType> d, TType* dMz, TType* dNz, TType* P,

TType* N,
3 const int Nt, const int Nx, const int Nu, TType* output){
4

5 int z_ind = blockIdx.x*blockDim.x + threadIdx.x;
6

7 if (z_ind < Nx){
8 TType B1 = (*d.gamma)*(*d.B1c);
9 for (int ii = 0; ii < Nu; ii++){

10 output[(ii+Nu) + Nu*z_ind] =
11 B1*(*d.dx)*(dNz[LIN_IDX_3D(3,ii+1,z_ind+1,3,Nu)-1]*P[LIN_IDX_3D(2,z_ind+1,ii+1,3,Nx)

-1] -
12 dNz[LIN_IDX_3D(2,ii+1,z_ind+1,3,Nu)-1]*P[LIN_IDX_3D(3,z_ind+1,ii+1,3,Nx)-1] +
13 N[LIN_IDX_3D(3,z_ind+1,ii+1,3,Nx)-1]*dMz[LIN_IDX_3D(2,z_ind+1,ii+1,3,Nx)-1] -
14 N[LIN_IDX_3D(2,z_ind+1,ii+1,3 Nx)-1]*dMz[LIN_IDX_3D(3,z_ind+1,ii+1,3,Nx)-1]);
15 }
16 }
17 }

Listing B-5: solveLinAdjointEqKernel in file applyHessGPU.cu.

1 template<typename TType>
2 __global__ void solveLinAdjointEqKernel(dpara<TType> d, TType* P,
3 TType* u, TType* v, TType* w, TType* du, TType* dq_in,
4 const int Nt, const int Nx, const int Nu, TType* dPz){
5

6 int z_ind = blockIdx.x*blockDim.x + threadIdx.x;
7

8 if (z_ind < Nx){
9 TType B1 = (*d.gamma)*(*d.B1c);

10 TType B3 = (*d.gamma)*(*d.G3)*d.xdis[z_ind];
11 TType Akp1[9] = {};
12 TType Ak[9] = {};
13 TType bkp1[3] = {};
14 TType bk[3] = {};
15 TType buffer_matrix[9];
16 TType dPz_new[3] = {};
17 TType dPz_old[3] = {};
18

19 TType dq[3] = {};
20 dq[0] = dq_in[LIN_IDX_2D(1,z_ind+1,3)-1];
21 dq[1] = dq_in[LIN_IDX_2D(2,z_ind+1,3)-1];
22 dq[2] = dq_in[LIN_IDX_2D(3,z_ind+1,3)-1];
23

24 setAk<TType>(Ak, &d, &u[Nt-2], &u[Nt-2], &w[Nt-2], &B1, &B3);
25 transposeMatrix3x3(Ak, Akp1);
26

27 bkp1[0] = 0;
28 bkp1[1] = -B1*P[LIN_IDX_3D(3,z_ind+1,Nt-1,3,Nx)-1]*du[Nt-2];
29 bkp1[2] = B1*P[LIN_IDX_3D(2,z_ind+1,Nt-1,3,Nx)-1]*du[Nt-2];
30

31 for (int ii = 0; ii < 3; ii++)
32 dPz_old[ii] = dq[ii] + (*d.dt)*0.5*bkp1[ii];
33

34 cnStep<TType>(Akp1, Ak, &d, 0);
35 inverseMatrix3x3<TType>(Ak, buffer_matrix);
36 matrixVectorMult3x3<TType>(buffer_matrix, dPz_old, dPz_new);
37

38 dPz[LIN_IDX_3D(1,z_ind+1,Nt-1,3,Nx)-1] = dPz_new[0];
39 dPz[LIN_IDX_3D(2,z_ind+1,Nt-1,3,Nx)-1] = dPz_new[1];
40 dPz[LIN_IDX_3D(3,z_ind+1,Nt-1,3,Nx)-1] = dPz_new[2];
41

42 for (int k = Nt - 3; k >= 0; k--){
43 bk[0] = 0;
44 bk[1] = -B1*P[LIN_IDX_3D(3,z_ind+1,k+1,3,Nx)-1]*du[k];
45 bk[2] = B1*P[LIN_IDX_3D(2,z_ind+1,k+1,3,Nx)-1]*du[k];
46

47 setAkp1<TType>(Ak, &d, &u[k], &v[k], &w[k], &B1, &B3);
48

49 dPz_old[0] = dPz[LIN_IDX_3D(1,z_ind+1,k+2,3,Nx)-1];
50 dPz_old[1] = dPz[LIN_IDX_3D(2,z_ind+1,k+2,3,Nx)-1];
51 dPz_old[2] = dPz[LIN_IDX_3D(3,z_ind+1,k+2,3,Nx)-1];
52

53 solveAdjoint<TType>(Ak, Akp1, &d, dPz_new, dPz_old, bk, bkp1);
54

55 dPz[LIN_IDX_3D(1,z_ind+1,k+1,3,Nx)-1] = dPz_new[0];
56 dPz[LIN_IDX_3D(2,z_ind+1,k+1,3,Nx)-1] = dPz_new[1];
57 dPz[LIN_IDX_3D(3,z_ind+1,k+1,3,Nx)-1] = dPz_new[2];
58 #pragma unroll
59 for (int ii = 0; ii < 9; ii++)
60 Akp1[ii] = Ak[ii];
61 #pragma unroll
62 for (int ii = 0; ii < 3; ii++)
63 bkp1[ii] = bk[ii];
64 }
65 }
66 }

B.2. cn_blochGPU

Listing B-6: Invokation of the cnBlochKernel in file cn_blochGPU.cu.

1 extern "C" void callCnBlochKernel(dpara<DType>* dpara_host,
2 DType* M0_host, DType* u_host, DType* v_host, DType* w_host,
3 int Nt, int Nx, DType* mat_output){
4

5 //copy data to device
6 thrust::device_vector<DType> M0_dev(M0_host,M0_host+(3*Nx));
7 thrust::device_vector<DType> u_dev(u_host, u_host+Nt);
8 thrust::device_vector<DType> v_dev(v_host, v_host+Nt);
9 thrust::device_vector<DType> w_dev(w_host, w_host+Nt);

10

11 // get raw pointer
12 DType* M0 = thrust::raw_pointer_cast(M0_dev.data());
13 DType* u = thrust::raw_pointer_cast(u_dev.data());
14 DType* v = thrust::raw_pointer_cast(v_dev.data());
15 DType* w = thrust::raw_pointer_cast(w_dev.data());
16 // copy dpara to device
17 thrust::device_vector<DType>xdis(dpara_host->xdis,dpara_host->xdis+Nx);
18 thrust::device_vector<DType>gamma(dpara_host->gamma,dpara_host->gamma+1);
19 thrust::device_vector<DType>T1(dpara_host->T1, dpara_host->T1 + 1);
20 thrust::device_vector<DType>T2(dpara_host->T2, dpara_host->T2 + 1);
21 thrust::device_vector<DType>M0c(dpara_host->M0c, dpara_host->M0c + 1);
22 thrust::device_vector<DType>B1c(dpara_host->B1c, dpara_host->B1c + 1);
23 thrust::device_vector<DType>G3(dpara_host->G3, dpara_host->G3 + 1);
24 thrust::device_vector<DType>relax(dpara_host->relax, dpara_host->relax+1);
25 thrust::device_vector<DType>dt(dpara_host->dt, dpara_host->dt + 1);
26

27 //init dpara
28 dpara<DType> d;
29 // get raw device pointer for passsing to kernel
30 d.xdis = thrust::raw_pointer_cast(xdis.data());
31 d.gamma = thrust::raw_pointer_cast(gamma.data());
32 d.T1 = thrust::raw_pointer_cast(T1.data());
33 d.T2 = thrust::raw_pointer_cast(T2.data());
34 d.M0c = thrust::raw_pointer_cast(M0c.data());
35 d.B1c = thrust::raw_pointer_cast(B1c.data());
36 d.G3 = thrust::raw_pointer_cast(G3.data());
37 d.relax = thrust::raw_pointer_cast(relax.data());
38 d.dt = thrust::raw_pointer_cast(dt.data());
39

40 // init long. relaxation term b
41 thrust::device_vector<DType> b_dev(3);
42 b_dev[0] = 0; b_dev[1] = 0; b_dev[2] = M0c[0] / T1[0] * relax[0];
43 DType* b = thrust::raw_pointer_cast(b_dev.data());
44

45 // init output M
46 thrust::device_vector<DType> M_dev(3*Nx*Nt);
47 DType* M = thrust::raw_pointer_cast(M_dev.data());
48

49 int blocksPerGrid; int threadsPerBlock;
50 getKernelLaunchParameter(Nx,cnBlochKernel<DType>,&blocksPerGrid,&threadsPerBlock);
51

52 cnBlochKernel<DType><<<blocksPerGrid,threadsPerBlock>>>(d M0,u,v,w,b,Nt,Nx,M);
53 CUDA_CHECK_ERROR();
54

55 cudaMemcpy(mat_output,M, 3*Nx*Nt*sizeof(DType), cudaMemcpyDeviceToHost);
56 return;
57 }

Listing B-7: cnBlochKernel in file cn_blochGPU.cu.

1 template<typename TType>
2 __global__ void cnBlochKernel(dpara<TType> d, TType* M0,
3 TType* u, TType* v, TType* w, TType* b,
4 const int Nt, const int Nx, TType* output){
5

6 int z_ind = blockIdx.x*blockDim.x + threadIdx.x;
7

8 if (z_ind < Nx){
9 TType B1 = (*d.gamma)*(*d.B1c);

10 TType B3 = 0;
11 TType Ak[9] = {};
12 TType Mz_new[3] = {};
13 TType Mz_old[3] = {};
14 B3 = (*d.gamma)*(*d.G3)*d.xdis[z_ind];
15 // set Mz(t=0) to M0
16 #pragma unroll
17 for (int ii = 1; ii <= 3; ii++)
18 output[LIN_IDX_3D(ii, z_ind + 1, 1, 3, Nx) - 1] =
19 M0[LIN_IDX_2D(ii, z_ind + 1, 3) - 1];
20

21 for (int k = 1; k < Nt; k++){
22 setAk<TType>(Ak,&d,&u[k-1],&v[k-1],&w[k-1],&B1,&B3);
23 #pragma unroll
24 for (int ii = 0; ii < 3; ii++)
25 Mz_old[ii] = output[LIN_IDX_3D(ii+1,z_ind+1,k,3,Nx)-1];
26 solveBloch<TType>(Ak, &d, Mz_new, Mz_old, b);
27 #pragma unroll
28 for (int ii = 0; ii < 3; ii++)
29 output[LIN_IDX_3D(ii+1,z_ind+1,k+1,3,Nx)-1] = Mz_new[ii];
30 }
31 }
32 }

B.3. cn_adjointGPU

Listing B-8: Invokation of the cnAdjointKernel in file cn_adjointGPU.cu.

1 extern "C" void callCnAdjointKernel(dpara<DType>* dpara_host, DType* PT_host,
2 DType* u_host, DType* v_host, DType* w_host,
3 int Nt, int Nx , DType* mat_output){
4

5 //copy data to device
6 thrust::device_vector<DType> PT_dev(PT_host, PT_host + (3*Nx));
7 thrust::device_vector<DType> u_dev(u_host, u_host + (Nt-1));
8 thrust::device_vector<DType> v_dev(v_host, v_host + (Nt-1));
9 thrust::device_vector<DType> w_dev(w_host, w_host + (Nt-1));

10 // get raw pointer
11 DType* PT = thrust::raw_pointer_cast(PT_dev.data());
12 DType* u = thrust::raw_pointer_cast(u_dev.data());
13 DType* v = thrust::raw_pointer_cast(v_dev.data());
14 DType* w = thrust::raw_pointer_cast(w_dev.data());
15 // copy dpara to device
16 thrust::device_vector<DType> xdis(dpara_host->xdis, dpara_host->xdis + (Nx));
17 thrust::device_vector<DType> gamma(dpara_host->gamma, dpara_host->gamma+1);
18 thrust::device_vector<DType> T1(dpara_host->T1, dpara_host->T1 + 1);
19 thrust::device_vector<DType> T2(dpara_host->T2, dpara_host->T2 + 1);
20 thrust::device_vector<DType> M0c(dpara_host->M0c, dpara_host->M0c + 1);
21 thrust::device_vector<DType> B1c(dpara_host->B1c, dpara_host->B1c + 1);
22 thrust::device_vector<DType> G3(dpara_host->G3, dpara_host->G3 + 1);
23 thrust::device_vector<DType> relax(dpara_host->relax, dpara_host->relax + 1);
24 thrust::device_vector<DType> dt(dpara_host->dt, dpara_host->dt + 1);
25 //init dpara
26 dpara<DType> d;
27 // get raw device pointer for passsing to kernel
28 d.xdis = thrust::raw_pointer_cast(xdis.data());
29 d.gamma = thrust::raw_pointer_cast(gamma.data());
30 d.T1 = thrust::raw_pointer_cast(T1.data());
31 d.T2 = thrust::raw_pointer_cast(T2.data());
32 d.M0c = thrust::raw_pointer_cast(M0c.data());
33 d.B1c = thrust::raw_pointer_cast(B1c.data());
34 d.G3 = thrust::raw_pointer_cast(G3.data());
35 d.relax = thrust::raw_pointer_cast(relax.data());
36 d.dt = thrust::raw_pointer_cast(dt.data());
37

38 // init output P
39 thrust::device_vector<DType> P_dev(3*Nx*(Nt-1));
40 DType* P = thrust::raw_pointer_cast(P_dev.data());
41

42 int blocksPerGrid; int threadsPerBlock;
43 getKernelLaunchParameter(Nx,cnAdjointKernel<DType>,&blocksPerGrid,&threadsPerBlock);
44

45 cnAdjointKernel<DType><<<blocksPerGrid,threadsPerBlock >>>(d,PT,u,v,w,Nt,Nx,P);
46 CUDA_CHECK_ERROR();
47

48 //Copy from GPU to mxArray
49 cudaMemcpy(mat_output, P, 3 * Nx*(Nt-1)*sizeof(DType), cudaMemcpyDeviceToHost);
50

51 return;
52 }

Listing B-9: cnAdjointKernel in file cn_adjointGPU.cu.

1 template<typename TType>
2 __global__ void cnAdjointKernel(dpara<TType> d, TType* PT, TType* u, TType* v, TType* w,
3 const int Nt, const int Nx, TType* output){
4

5 int z_ind = blockIdx.x*blockDim.x + threadIdx.x;
6

7 if (z_ind < Nx){
8 TType B1 = (*d.gamma)*(*d.B1c);
9 TType B3 = (*d.gamma)*(*d.G3)*d.xdis[z_ind];

10 TType Akp1[9] = {};
11 TType Ak[9] = {};
12 TType buffer_matrix[9];
13 TType Pz_new[3] = {};
14 TType Pz_old[3] = {};
15

16 setAkp1<TType>(Akp1, &d, &u[Nt-2], &u[Nt-2], &w[Nt-2], &B1, &B3);
17 cnStep<TType>(Akp1, Ak, &d, 0);
18 inverseMatrix3x3<TType>(Ak, buffer_matrix);
19 Pz_old[0] = PT[0+3*z_ind]; Pz_old[1] = PT[1+3*z_ind]; Pz_old[2] = PT[2+3*z_ind];
20 matrixVectorMult3x3<TType>(buffer_matrix, Pz_old, Pz_new);
21

22 #pragma unroll
23 for (int ii = 0; ii < 3; ii++)
24 output[LIN_IDX_3D(ii+1,z_ind+1,Nt-1,3,Nx)-1] = Pz_new[ii];
25

26 for (int k = Nt - 3; k >= 0; k--){
27 setAkp1<TType>(Ak, &d, &u[k], &v[k], &w[k], &B1, &B3);
28 #pragma unroll
29 for (int ii = 0; ii < 3; ii++)
30 Pz_new[ii] = output[LIN_IDX_3D(ii+1,z_ind+1,k+2,3,Nx)-1];
31 solveAdjoint<TType>(Ak, Akp1, &d, Pz_new, Pz_old);
32 #pragma unroll
33 for (int ii = 0; ii < 3; ii++)
34 output[LIN_IDX_3D(ii+1,z_ind+1,k+1,3,Nx)-1] = Pz_new[ii];
35 #pragma unroll
36 for (int ii = 0; ii < 9; ii++)
37 Akp1[ii] = Ak[ii];
38 }
39 }
40 }

List of Figures

2.1. The slice thickness ∆z is proportional to the RF bandwidth ∆f and inversely

proportional to the slice selection gradient Gz. 7

2.2. Validity of the small tip angle approximation. Shows the transverse magne-

tization components My (blue solid) and Mx (green dashed) in response to

a Hamming windowed SINC-pulse B1(t) at tip angles of θ = 30◦, 90◦ and

150◦. The Fourier approximation holds for θ = 30◦. At θ = 90◦ and 150◦

excitation errors are noticeable (red arrows). 8

2.3. Hard pulse with amplitude B1 and pulse width τ . The flip angle is given by

θ = γB1τ . 9

2.4. SINC pulse with (blue solid) and without (green dashed) Hamming window. 10

2.5. Basic SLR workflow for optimized RF pulse design. A given RF pulse is

mapped into the corresponding filter polynomials AN(z) and BN(z) via the

forward SLR transform. The inverse SLR transform computes the RF pulse

from the given polynomials. 11

2.6. Approximation of the target magnetization profile via FIR filter design with

filter parameters: in-slice ripple δ1, out-of-slice ripple δ2, passband edge Fp

and stopband edge Fs.[11] . 12

List of Figures

2.7. Schematic description of a simultaneous two-slice CAIPIRINHA experiment

without (a) and with (b) phase modulation. Odd k-space lines (black lines)

are excited with a dual-band RF pulse with same phase (0,0) for both slices.

Even k-space lines (grey lines) are the result of excitation with different

phases (0,π). The individual slices are shifted with respect to each other in

the superimposed image.[25] . 14

2.8. Pulse sequence diagram for SMS single shot EPI. SMS excitation is achieved

with a multiband pulse consisting of 3 frequency bands and therefore exciting

3 slices along the slice selection gradient axis. After the excitation a EPI

readout follows (a). The use of sign and amplitude modulated slice select

gradient blips in blipped-CAIPI is shown in (b).[21] 15

2.9. Basic overview of the slice-GRAPPA algorithm. The k-space data of the

unaliased slices is estimated by applying GRAPPA-like kernel sets to the k-

space of the collapsed slices. The kernels are fitted from a prescan calibration

dataset acquired one slice at a time. Image taken from [27]. 16

2.10. CPU vs. GPU: The CPU is designed to minimize latency in a small number

of heavy-weighted threads. Therefore, most of the chip area is dedicated to

the control unit and cache memory. The GPU hides memory access latencies

by focusing on computationally intensive tasks and much more chip area is

dedicated to floating point calculations. [6] 25

2.11. A problem is decomposed into independent sub-problems that can be solved

by a block of threads. All thread blocks are organized into a grid. In the

case of (a) grid and block are two-dimensional. Each block is sheduled

automatically to a SM for execution (b). This allows high scalability over a

wide range of GPUs. [6] . 27

2.12. A schematic illustration of the fork-join model. A master thread forks and

joins sequent parallel regions with various threads. 31

94

List of Figures

3.1. Basic flowchart of the matrix-free trust-region Newton-CG optimization al-

gorithm. 34

3.2. Results of the Matlab profiler for the computation of a single-slice OC pulse.

The applyHess.m, cn_adjoint.m and cn_bloch.m functions are the major

bottlenecks in the application (marked in red), and therefore making them

target for performance optimizations. 36

3.3. Illustration of the reduction (row sum) of the Hdu matrix using the Thrust

primitive reduce_by_key (a). Each element, located in the same row, is

marked with its row index as key (red numbers), and reduce_by_key sums

all elements with equal keys. Since the values of Hdu are stored in column-

major order (MATLAB ordering) an implicit transposition is obtained with

a permutation_iterator, treating them as they were stored in row-major

order (b). After this implicit transposition each key is assigned to the correct

element. 47

4.1. Boxplots of the optimization times for three different spatial discretization

points Nx. For each Nx value a total number of 10 runs was performed. The

individual optimization times are normalized to their corresponding median. 56

4.2. Speedup of the different implementations with regard to the MATLAB

single-core method for varying spatial discretization points Nx (using the

GTX 970 workstation). 57

4.3. Speedup of the CUDA implementation with regard to different methods for

varying spatial discretization points Nx (using the GTX 970 workstation). 57

4.4. Dependency of the optimization time on the spatial grid size Nx for the

sequential C/C++, OpenMP and CUDA implementation (a). Additionally,

the Nx dependency of the CUDA implementation is depicted in (b). The Nx

parameter is incremented up to the device memory limit of the GTX 970. A

linear fit (least squares) is performed and the r2 values are listed (rounded

to four digits of precision). 58

95

List of Figures

4.5. Dependency of the optimization time on the temporal grid size Nt for the

sequential C/C++, OpenMP and CUDA MEX files (a). Additionally, the

Nt dependency of the CUDA implementation is depicted in (b). The Nt

parameter is incremented up to the device memory limit of the GTX 970. A

linear fit (least squares) is performed and the r2 values are listed (rounded to

four digits of precision). The observations corresponding to grid sizes 4 ·Nt

and 11 ·Nt were removed from the data set due to rejection of the last two

Newton steps. 59

4.6. Impact of the single-precision and double-precision floating point format on

the achievable speedup in optimization time. A comparision of the different

implementations with regard to the MATLAB single-core method is illus-

trated in (a) for the GTX 970 workstation and in (c) for the Tesla system.

The speedup offered by the CUDA implementation is shown in (b) for the

GTX 970 workstation and in (d) for the Tesla system. The grid sizes are

fixed to Nx = 5001 and Nt = 697. 61

4.7. Difference plot between the OC pulse obtained from the MATLAB uMAT

and GPU uGPU implementation for single- and double-precision using the

GTX 970 workstation. The grid sizes Nt and Nx are set to 697 and 5001,

respectively. 64

4.8. Reconstructed excitation (magnitude) obtained with a SMS pulse using (a)

double-precision and (b) single-precision optimization. Additionally, the

difference between (a) and (c) is shown in (e). The corresponding slice

profile evaluations along the red lines are depicted in the right column. . . 65

4.9. Results of the Matlab profiler for the computation of a single-slice OC pulse.

The former major bottlenecks (marked in red) are implemented as CUDA

MEX files applyHessGPU.m, cn_adjointGPU.m and cn_blochGPU.m. 67

4.10. Execution time of the applyHess CUDA kernel for different grid sizes Nx. . 68

96

List of Figures

4.11. Nvidia Visual Profiler result of the applyHessGPU MEX file (a) for a spatial

grid size Nx of 10001. The light brown blocks show the time spent on

memory transfer operations from the host to the device (HtoD) and from

the device to the Host (DtoH). The green blocks represent the time spent

on computation. A zoomed version of the compute block is illustrated in

(b). The applyHessGPU kernel is split into consecutive sub-kernels. 69

97

List of Tables

3.1. List of files in the RFcontrol project. 38

4.1. Optimization times for different impelementation methods and varied Nx. . 56

4.2. Root-mean-square error for single-precision data RMSEs and for double-

precision data RMSEd for different multiples of the temporal grid size

Nt = 697. The RMSE is obtained between the desired and simulated mag-

netization profile. The grid size Nx is set to 5001. 62

4.3. Root-mean square error for the GPU implementation RMSEGPU and MAT-

LAB implementation RMSEMAT for single- and double-precision. The

RMSE is obtained between the desired and simulated magnetization pro-

file. The grid sizes Nt and Nx are set to 697 and 5001, respectively. 63

4.4. Mean absolute error MAEu and difference in J between the GPU pulse

and MATLAB pulse. The grid sizes Nt and Nx are set to 697 and 5001,

respectively. 64

A-1. Summary of GPU specifications. 84

	Introduction
	Objective

	Background
	Excitation problem and RF Pulse Design
	Bloch Equation
	Single Slice Excitation
	Rectangular Pulses
	SINC Pulses
	SLR Pulses
	Simultaneous Excitation of Multiple Slices
	OC Pulses

	Parallel Computing
	NVIDIA CUDA
	OpenMP

	Methods
	Matlab Framework
	CMake Project Structure
	Thrust Library
	Sequential C/C++ Implementation
	Parallel CUDA C/C++ Implementation
	Parallel OpenMP Implementation

	Results
	Optimization Time
	Problem Size Dependency
	Single vs. Double
	Speed
	Accuracy

	CUDA Implementation Profiler Results
	CUDA Kernel Execution Time

	Discussion and Conclusion
	Bibliography
	Appendix
	GPU Specifications
	CUDA Kernels
	[basicstyle=,keywordstyle=]|applyHessGPU|
	[basicstyle=,keywordstyle=]|cnblochGPU|
	[basicstyle=,keywordstyle=]|cnadjointGPU|

