
Peter Riegler-Nurscher, BSc

Tracking Patches of 3D Objects for 2D
Augmented Reality Training Algorithms

using LSD-SLAM

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Telematik

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dr. Vincent Lepetit

Institute for Computer Graphics and Vision

Graz, Austria, Jan. 2016

Abstract

3D Object detection is one of the major challenges in computer vision. Several methods

based on object parts have come up in this area over the last years. These methods rely

on many training samples of good quality. The following need for a simple and fast way

of collecting training samples led to this project.

We present a method for easy gathering of training samples for part based 3D object

detecting systems. The method tracks user selected object parts and stores them for later

training. It is also capable of handling multiple video sequences for collecting samples

under changing environmental conditions. The localization and tracking uses the recently

proposed LSD-SLAM system and operates under its given conditions.

Additionally a different part based 3D object detection method is presented and eval-

uated. It is based on 2D part detection by using the Viola Jones algorithm. The detected

parts are used to estimate the 3D position of the trained rigid object.

The implemented system and its resulting performance is compared with the existing

object detection approach from [2] which uses Convolutional Neural Networks.

iii

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

Kurzfassung

3D-Objekterkennung ist eine der größten Herausforderungen in der aktuellen Computer

Vision. Viele Methoden basierend auf repräsentativen Teilen der zu erkennenden Objekte

wurden in den letzten Jahren präsentiert. Diese Verfahren beruhen auf vielen und vor

allem qualitativ hochwertige Trainingsdaten. Die Notwendigkeit einer Möglichkeit zum

einfachen und schnellen Sammeln von diesen Trainingsdaten führte zu diesem Projekt.

Wir stellen eine Methode zum einfachen Sammeln von Trainingsbeispielen für 3D-

Objekterkennungsysteme basierend auf Objektteilen vor. Das Verfahren lokalisiert und

verfolgt von Benutzer ausgewählte Teile eines Objekts und speichert Abbildungen dieser

für einen späteren Trainingsvorgang. Das vorgestellte System ist in der Lage verschiedene

Videosequenzen, für das Sammeln von Trainingsdaten unter verschiedenen Umweltbedin-

gungen, zu bearbeiten und untereinander zu registrieren. Die Lokalisierung und Verfol-

gung der einzelnen Objektteile basieren auf dem vor kurzem veröffentlichten LSD-SLAM

System und operieren unter dessen Bedingungen.

Zusätzlich wird ein auf Objektteilen basierendes 3D-Objekterkennungssystem

vorgestellt und evaluiert. Die 2D-Teileerkennung dieses Systems nutzt den Viola Jones

Algorithmus. Die erfassten Teile werden für eine 3D-Positionsbestimmung des erfassten,

starren Objekts herangezogen.

Das implementierte System und seine Leistung wurden erfasst und mit dem unter [2]

vorgestelltem Objekterkennungsverfahren, welches auf gefalteten neuronalen Netzwerken

beruht, verglichen.

v

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

The text document uploaded to TUGRAZonline is identical to the presented master’s

thesis dissertation.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Master-

arbeit identisch.

Ort Datum Unterschrift

Acknowledgments

First and foremost I would like to thank my supervisor, Prof. Vincent Lepetit for his

guidance and encouragement, without which this project would not have been possible.

I also want to thank Mahdi Rad for his support and contribution to the evaluation of

my work.

I would also like to thank my colleagues and friends at home which brought balance

and happiness to my everyday life.

Last but not least I owe my deepest gratitude to my family for their moral support,

understanding and love during all times.

ix

Contents

1 Introduction 1

1.1 Thesis Outline . 3

2 Related Work 5

2.1 Tracking Methods . 5

2.2 Object Detection Methods . 9

3 Mathematical, Algorithmic and Software Background 13

3.1 Accurate Part based 3D Object Detection using Virtual Control Points . . 13

3.1.1 Part Training and Detection . 14

3.1.2 Control point Training and Detection 14

3.2 Camera Model and Camera Calibration . 15

3.3 Large-Scale Direct Monocular SLAM . 18

3.3.1 Tracking Frames . 20

3.3.2 Depth Map Estimation . 20

3.3.3 Map Optimization . 21

3.4 Robot Operating System . 21

3.5 Viola-Jones and Local Binary Patterns . 22

3.5.1 Features . 23

3.5.2 Learning Classificator . 24

3.5.3 The Cascade . 26

3.5.4 LPB . 27

3.6 Perspective-n-Point Problem . 28

3.6.1 P3P-Problem . 29

3.6.2 PnP in OpenCV . 31

xi

xii

4 Easily generating Training Data for Part-based 3D Detection 33

4.1 Tracking System . 33

4.1.1 Using LSD-SLAM for 3D Localization 35

4.1.2 Projection of Depth Values . 37

4.1.3 Point Filtering . 39

4.1.4 Graphical User Interface . 39

4.1.5 Selection of Depth Points . 40

4.1.6 3D Object Pose Estimation from Detected Parts 41

4.1.7 Video Registration for Multiple-Sequence Registration 42

4.1.8 Patch Extraction . 43

4.1.9 Collecting the Virtual Points . 44

4.1.10 Training Instructions . 44

4.2 Training System . 45

4.2.1 opencv createsamples . 45

4.2.2 opencv traincascade . 45

4.3 Detection System . 46

4.3.1 Two Stage Detection . 46

4.3.2 Additional Performance improvements 47

4.3.3 Adaptations to the PnP-Ransac Algorithm 48

5 Implementation 51

5.1 Tracking System . 51

5.1.1 Libraries . 52

5.2 Training System . 53

5.2.1 Using opencv createsamples . 53

5.2.2 Using opencv traincascade . 54

5.3 Detection System . 56

5.3.1 Camera Settings . 56

5.3.2 Augmentation . 56

5.4 Utility Tools . 56

6 Evaluation 59

6.1 Measured Results . 59

6.2 Discussion of the Results . 61

7 Conclusion 63

7.1 Future Work . 63

A Quick Start Guide 65

A.1 Installation . 65

A.1.1 Installation of ROS . 65

A.1.2 Compile the Binaries . 66

xiii

A.1.3 Install the uEye Camera Driver . 66

A.2 Camera Calibration . 66

A.3 Running the Trainer . 67

A.4 Starting the Detection . 68

Bibliography 69

List of Figures

1.1 Training sequence and testing sequence of an object 1

2.1 Classification of monocular tracking methods 6

2.2 Examples of fiducial markers in different environments 7

2.3 Examples of fiducial markers . 7

2.4 Cost volume Cr in DTAM. 8

2.5 Part Based Model example . 10

3.1 Virtual Points . 14

3.2 Architecture of CNN part-det . 14

3.3 Architecture of a CNN CNNcp-pred-j . 15

3.4 Checkerboard calibration pattern from different views. 16

3.5 Pinhole camera model of geometric camera calibration. 17

3.6 Radial distortions . 18

3.7 Large-Scale Direct Monocular SLAM: Example 19

3.8 Overview over the LSD-SLAM algorithm . 19

3.9 verview over the layers of the Viola-Jones algorithm 23

3.10 Example of rectangle HAAR features. 24

3.11 Integral image concept . 25

3.12 Selected HAAR features by AdaBoost: Example 26

3.13 Viola-Jones detection cascade . 27

3.14 Local Binary Patterns concept . 28

3.15 MB-LBP filtered images of two different faces 28

3.16 P3P-Problem . 29

4.1 Overall Concept . 34

4.2 Concept of the Tracking System . 35

xv

xvi LIST OF FIGURES

4.3 Point cloud and projections . 37

4.4 Color coded depth values (from lsd slam core). 38

4.5 Screenshot of the point cloud (from lsd slam core) 38

4.6 GUI Concept . 40

4.7 Examples of extracted patches . 44

4.8 Two Stage Detection . 47

4.9 Detected patches on calculator example . 47

4.10 Detected patches and corresponding ROIs on calculator example 48

4.11 Correspondences between 3D points and 2D points. (Incl. probabilities p

for selecting correspondence in RANSAC) 49

5.1 ROS topics: Publisher and subscriber. 53

5.2 OpenGL camera view model for perspective projection 57

5.3 3D Augmentation on calculator example . 57

5.4 3D and 2D Augmentation on calculator example 58

6.1 Extract from dataset calculator. 60

List of Tables

3.1 ROS commands . 22

4.1 LSD-SLAM message content . 36

6.1 Results: Average accuracy of part detection in pixel (n = 1500). 60

6.2 Results: False negative rate (n = 1500). 60

6.3 Results: False positive rate (n = 1500). 61

6.4 Results: Average run-time for objects with five parts (n = 300). 61

xvii

1
Introduction

Contents

1.1 Thesis Outline . 3

Figure 1.1: (a) The training sequence of an object. The user-selected parts are tracked over time
under different views. (b) The test sequence of the trained detector. The pose of the object is
augmented by a 3D box and an interesting 2D point is augmented by an arrow.

3D Object detection is one of the major challenges in computer vision. Its many use

cases in augmented reality, robot vision and many more and its difficulty makes it one of

the most researched areas in this field. 3D Object detection and tracking has undergone

significant improvements in recent years. Many approaches are based on edge detection

which is sensitive to clutter, while other approaches based on key points are sensitive to

occlusions. Still other methods rely on depth sensors which might fail on metallic surfaces

or outdoor scenes. Recently strong researched part based models try to cope with these

problems as good as possible.

Crivellaro et.al. proposed a method extending a part based approach by virtual control

points [2], to which the supervisor of this thesis also contributed. To overcome the issue

1

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

2 Chapter 1. Introduction

of occlusion, this approach uses 3D control points around an object part to estimate

the pose of it. Just one object part with its surrounding area has to be visible for the

pose calculation. It makes this approach very robust to occlusions, efficient and accurate.

The method has two detection stages, first the location of the object part is estimated,

afterwards the location of the surrounding control points is detected. Both steps use a

Convolutional Neural Network (CNN) which is trained using many sample images of the

object.

A main challenge for all of these methods is to gather satisfying and enough training

samples, to get good detection results. The work in [2] uses ARUCO (see Section 2.1) to

register the sample images and to extract patches from them. In ARUCO fiducial markers

are placed around the observed object. These markers are detected to calculate the pose

of the camera in each frame. After integrating some previous knowledge of the objects

structure, the parts can be tracked over time.

The drawbacks of this method are the need for printed physical markers and 3D knowl-

edge of the object parts. Therefore the main purpose of this work is to replace ARUCO

by a more convenient system for gathering the sample images.

We developed a method to extract image patches from user selected object parts, where

the user selects the parts via a graphical user interface anywhere and at any time within

a video stream. The method used for localisation and tracking is the LSD-SLAM system,

which was proposed and released under the GPLv3 license lately. Figure 1.1a shows the

tracking of the different parts over time. SLAM stands for Simultaneous Localization

and Mapping and provides us with localization information and also with a 3D point

cloud representation of the object and its environment. The system, which is developed

in the course of this thesis, is also capable of using different video sequences showing the

same object, these sequences are registered to each other by estimating their coordinate

transformations. The training sequences are captured from different views and under

different lightning conditions. If the object is movable, one can also use different scenes,

in which the object is placed, to get training samples against various backgrounds. Patches

of the object part, as well as its control points are taken for the training.

The gained patches can be handed over to the system proposed by Crivellaro et.al.

in [2]. Alternatively, the same patches can be used for training the detection method

proposed in our work:

Our detection system makes use of the Viola-Jones algorithm proposed in [35]. The

Viola-Jones object detection framework was originally designed for 2D face detection, but

we try to employ it for 3D object detection. We train one detector for each object part

from the gained patches. Due to different background scenes while capturing the training

observations, the influence of background is eliminated. Influence of lightning is inherently

reduced by the Viola-Jones method. The cascade structure of the used method makes it

very fast and even faster if it is tuned for our particular task.

The final step after training the object parts is to test the detectors. Each detector

tries to find its part within the image and the system estimates the pose of the rigid

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

Reference:

Viola, Paul and Jones, Michael (2001)
Rapid object detection using a boosted cascade of simple features

1.1. Thesis Outline 3

object from the position of the parts by solving a Perspective-n-Point problem. To show

the detection result, 3D and 2D augmentation is inserted into the scene. Figure 1.1b shows

a sequence of augmented images during the testing phase.

1.1 Thesis Outline

• Chapter 2 gives a background on previous proposed works in the area of 3D object

detection and tracking.

• In Chapter 3 important parts of the mathematical, algorithmic and software back-

ground, which are used in this work, are presented.

• The concepts of the system and subsystems implemented in this work are provided

in Chapter 4.

• Important details on the implementation are given in Chapter 5.

• The performance regarding accuracy, robustness and efficiency of different configu-

rations are provided in Chapter 6

• Finally, conclusions of the thesis and future works are presented in Chapter 7.

2
Related Work

Contents

2.1 Tracking Methods . 5

2.2 Object Detection Methods . 9

2.1 Tracking Methods

As part of our offline stage we need to track and collect 2D patches of the object which

represent the different parts over longer video sequences. The object parts might get

strongly transformed due to the camera movements, which is intended to capture many

different poses for the training stage. The tracking method on the other hand must be

able to deal with these circumstances.

Several differrent approaches have been proposed to track features, patches and other

salience points within a video sequence. Figure 2.1 by [32] shows the categories of monoc-

ular tracking.

One of the best known is the Kanade-Lucas-Tomasi feature tracker [29, 33]. In this

method the general feature detection approach is extended by a spatial component to

make the tracking more efficient. The tracker is based on three assumptions, brightness

constancy, small motion and spatial coherence. These assumptions show the weaknesses

and limitations of the tracker at the same time. The error shown in Equation 2.1 is

minimized in the KLT approach.

The correlation measurement for the moving features are the sum of the squared dif-

ferences. The equation includes a translation or affine model, represented by function f ,

which tries to model the motion δi from the features mj between two frames.

E =
∑
j

(It(f(mj ;pi + ∆i))− T (mj))
2 (2.1)

5

Reference:

Teichrieb, Veronica and do Monte Lima, Joao Paulo Silva and Apolinário, Eduardo Lourenço and de Farias, Thiago Souto Maior Cordeiro and Bueno, Márcio Augusto Silva and Kelner, Judith and Santos, Ismael HF (2007)
A survey of online monocular markerless augmented reality

Reference:

 ()

6 Chapter 2. Related Work

Markerless

Structure
from Motion

based
Model based

Texture
based

Optical flow
based

Edge based

Template
matching

Interrest point
based

Real-time
SfM

Mono SLAM

Marker
based

Tracking
methods

Figure 2.1: Classification of monocular tracking methods in different categories.[32]

Another drawback of the KLT tracker is the potential loss of all feature after a while. In

that case the tracking must be initialized again, which might be impossible due to strong

affine transformations. Moreover the features can drift over time due to accumulated

errors and the tracking positions can get incorrect.

Drifting can be avoided by using fiducial markers. Those are artificial high contrast

codes placed within the captured scene. The position of these fiducial markers is known

and therefore the camera position can be estimated, they can be detected efficiently using

simple thresholding approaches. Figure 2.2 shows different common fiducial marker layouts

and their usage in real time environments is visible in Figure 2.3. In recent years there have

been proposed fiducial marker systems like [9] which can also cope with partial occlusions

of markers.

On the downside, to track parts on the examined object each position relative to the

markers must be known, which requires previous knowledge of the physical dimensions of

the object (e.g. a 3D model). Of course, the markers must be placed within the physical

scene which might be difficult in some situations and might lead to inaccurate tracking

results. Due to this issues the currently used ARUCO system should be replaced by an

alternative system in the work of [2].

Reference:

Teichrieb, Veronica and do Monte Lima, Joao Paulo Silva and Apolinário, Eduardo Lourenço and de Farias, Thiago Souto Maior Cordeiro and Bueno, Márcio Augusto Silva and Kelner, Judith and Santos, Ismael HF (2007)
A survey of online monocular markerless augmented reality

Reference:

Garrido-Jurado, S and Muñoz-Salinas, Rafael and Madrid-Cuevas, Francisco José and Marín-Jiménez, Manuel Jesús (2014)
Automatic generation and detection of highly reliable fiducial markers under occlusion

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

2.1. Tracking Methods 7

Figure 2.2: Examples of fiducial markers in different environments.[9]

Figure 2.3: Examples of fiducial markers proposed in previous works.[9]

Reference:

Garrido-Jurado, S and Muñoz-Salinas, Rafael and Madrid-Cuevas, Francisco José and Marín-Jiménez, Manuel Jesús (2014)
Automatic generation and detection of highly reliable fiducial markers under occlusion

Reference:

Garrido-Jurado, S and Muñoz-Salinas, Rafael and Madrid-Cuevas, Francisco José and Marín-Jiménez, Manuel Jesús (2014)
Automatic generation and detection of highly reliable fiducial markers under occlusion

8 Chapter 2. Related Work

SLAM-Systems [5, 13, 23] provide a method to track points without 3D knowledge of

the object or any physical markers. These systems track features or whole pixel maps and

simultaneously calculate the current position of the camera using a single RGB camera.

The SLAM approach is based on the structure from motion principle and therefore requires

static scenes.

The proposed Parallel Tracking and Mapping (PTAM) [13] approach, tries to find

salient features within the frames and tracks their position over time. It introduced a

method to reduce the DOF per step by separating the camera pose calculation from the

feature point tracking. Both processes run in parallel while the camera pose must be

calculated fast and robust to get a good tracking experience, the mapping of the features

must be rich and accurate.

In our case, we need a more dense tracking of features, because it has to be possible

for the user to select any point within the image. Newcombe et al. proposed a dense

tracking and mapping system (DTAM) [23] which overcomes the limitations of sparse

feature points. Their system tracks the camera position with its 6 DOF and creates a

full dense depth map. The composition of the depth map can be seen in Figure 2.4.

In general the system tries to reduce the photometric cost volume Cr for one keyframe

based on an reference input image Ir with a camera pose Trw. The inverse depth d ranges

between ximin and ximax. Ten to hundreds of video frames indexed as m ∈ I(r) are used

to calculate the values for one cost volume thus also for one keyframe.

Figure 2.4: A keyframe r consists of a reference image Ir with pose Trw and data cost volume
Cr. Each pixel of the reference frame ur has an associated row of entries Cr(u) (shown in red)
that store the average photometric error or cost Cr(u; d) computed for each inverse depth d ∈ D
in the inverse depth range D = [ξmin; ξmax]. [23]

Formula 2.2 shows the calculation of a cost volume Cr which equals the average over

Reference:

 ()

Reference:

Klein, Georg and Murray, David (2007)
Parallel tracking and mapping for small AR workspaces

Reference:

Newcombe, Richard A and Lovegrove, Steven J and Davison, Andrew J (2011)
DTAM: Dense tracking and mapping in real-time

Reference:

Newcombe, Richard A and Lovegrove, Steven J and Davison, Andrew J (2011)
DTAM: Dense tracking and mapping in real-time

2.2. Object Detection Methods 9

the photometric error 2.3 from the overlapping images in I(r). The photometric error is

calculated between the reference image of the keyframe Ir and an overlapping frame Im.

A pixel u and a corresponding depth value are used in the function π to back-project to

a 3D point in the coordinate system of frame Im. This 3D point for its part is projected

into the image Im to get a gray-value for comparison with Ir(u).

Cr(u, d) =
1

|I(r)|
∑

m∈I(r)

‖ρr(Im,u, d)‖1 (2.2)

ρr(Im, u, d) = Ir(u)− Im(π(KTmrπ
−1(u, d))) (2.3)

The resulting depth values are filtered using total variation optimization to get natural

smoothed surfaces. These basic concepts are also used in the state of the art method LSD-

SLAM [5] proposed in 2014. It provides a semi-dense depth map and tracking in real time.

The system is capable of large-scale scenes and corrects accumulated drifts. Due to its

capabilities we decided to use LSD-SLAM for our tracking system. In Section 3.3 we give

an introduction into LSD-SLAM and its utilization.

2.2 Object Detection Methods

Over the recent years many different Object Detection methods have been proposed and

further advanced. In this section we discuss some representative works and further focus

on part based methods.

One of the most researched approaches relies on edges, see [11, 14, 21], but they are

sensitive to large occlusions and clutter. Other approaches are based on keypoints, like

[31, 34, 37], which are easier to match than edges, on the down side the use of keypoints

requires textured objects. Some methods using stereo information, like [24], have also

been proposed, but the requirement of a stereo configuration limits the possible use cases.

Methods based on regions have also been proposed, they join a 2D segmentation with

the 3D pose estimation problem, see [26, 27]. However partial occlusion are hard to handle

with this approaches.

In recent times, inexpensive 3D sensors, like the Kinect sensor, have entered the mar-

ket, they reveal many new approaches, like in [4, 15, 30], exploiting the resulting RGB-D

information. Our work focuses only on monocular images, which excludes these sensors.

Recently proposed part based models are based on using object parts and also their

relation among them. Many part based methods are inspired by the work of Feizenszwalb

et al. and the proposed Deformable Part Model [6]. These techniques focus mostly on

category rather than instance recognition. The Deformable Part Model (DPM) uses not

just local part informations of an object, but also its spatial arrangement. In principle the

approach is based on the Dalal-Triggs detector which uses a single filter on histogram of

oriented gradients (HOG) features. In addition to a coarse root filtering (Dalal-Triggs),

Reference:

Engel, Jakob and Schoeps, Thomas and Cremers, Daniel (2014)
LSD-SLAM: Large-Scale Direct Monocular SLAM

Reference:

 ()

Reference:

 ()

Reference:

Payet, Nadia and Todorovic, Sinisa (2011)
From contours to 3d object detection and pose estimation

Reference:

 ()

Reference:

 ()

Reference:

Felzenszwalb, Pedro F and Girshick, Ross B and McAllester, David and Ramanan, Deva (2010)
Object detection with discriminatively trained part-based models

10 Chapter 2. Related Work

a fine filtering on higher resolution and for each part individually, is performed. The

definition of the parts is based on an unsupervised manner and uses heuristics such as

high gradient energy. Figure 2.5 shows a single component person model with five parts.

Figure 2.5: Part Based Model example: Single component person model, defined by (a) a coarse
root filter, (b) several higher resolution part filters, and (c) a spatial model for the location of each
part relative to the root.[6]

Another part-based methods try to outperform DPM by using not only the

deformable parts model but also its underlying 3D geometry [25, 30]. Moreover the

proposed geometry-driven deformable part-based models inherently allow to infer the 3D

properties from a single 2D image.

To get 3D information about the object’s geometry the system cited in [30] is trained

with labeled RGBD images and follows a supervised manner, while the approach in [25]

uses CAD models to incorporate the geometry information. Payet and Todorovic proposed

a method based on image contours as basic feature and on higher level bag of boundaries

(BOB) to detect 3D objects [24]. By using contours instead of feature points there is no

need for interior textured objects as in many part-based methods required.

Lim et al. proposed a fine pose parts-based model (FPM) [20], also using CAD models

for fine pose estimations. The method reaches state-of-the-art in terms of accuracy by

increasing the number of training samples. The higher number of samples is achieved by

Reference:

Felzenszwalb, Pedro F and Girshick, Ross B and McAllester, David and Ramanan, Deva (2010)
Object detection with discriminatively trained part-based models

Reference:

 ()

Reference:

Shrivastava, Ashish and Gupta, Arpan (2013)
Building part-based object detectors via 3d geometry

Reference:

Pepik, Bojan and Stark, Michael and Gehler, Peter and Schiele, Bernt (2012)
Teaching 3d geometry to deformable part models

Reference:

Payet, Nadia and Todorovic, Sinisa (2011)
From contours to 3d object detection and pose estimation

Reference:

Lim, Joseph J and Khosla, Aditya and Torralba, Antonio (2014)
Fpm: Fine pose parts-based model with 3d cad models

2.2. Object Detection Methods 11

rendering many different views of the object thereby the number of real images can be very

low. Xiang et al. try to handle significant viewpoint changes in their recently proposed

work [37]. Thier improvement of the DPM is based on modeling the 3D aspect parts and

their relationship. So it is possible to predict the visibility and shape of these parts in any

viewpoint under different cases of self occlusion.

Reference:

Xiang, Yu and Song, Changkyu and Mottaghi, Roozbeh and Savarese, Silvio (2014)
Monocular multiview object tracking with 3d aspect parts

3
Mathematical, Algorithmic and Software Background

Contents

3.1 Accurate Part based 3D Object Detection using Virtual Con-

trol Points . 13

3.2 Camera Model and Camera Calibration 15

3.3 Large-Scale Direct Monocular SLAM 18

3.4 Robot Operating System . 21

3.5 Viola-Jones and Local Binary Patterns 22

3.6 Perspective-n-Point Problem . 28

3.1 Accurate Part based 3D Object Detection using Virtual

Control Points

The 3D object detection method proposed in our initial paper [2] is based on control points.

These virtual points are arranged around a salient point in 3D space, which are trained by

a 2D patch detection method. In the detection phase the main parts are searched and in a

second stage the virtual control points, as trained before, are detected in the surrounding

area. If just one part is visible, the pose of the object can be estimated from the control

points by solving a Perspective-n-Point problem. That makes this method very robust to

occlusions and also very efficient.

The training methods proposed in [2] for the detection of parts and also for detection of

the control points are convolutional neural networks (CNN). The orientation and location

of these points can be chosen randomly in general, but in practice an alignment along

the coordinate axes is a good choice. In Figure 3.1 an exemplary arrangement of control

points around the main point is shown.

13

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

14 Chapter 3. Mathematical, Algorithmic and Software Background

Figure 3.1: The formation of virtual control points around an part in 3 orthogonal directions.[2]

3.1.1 Part Training and Detection

The parts within the image are detected by a Convolutional Neural Network (CNN) [16].

It is trained by the collected patches of the parts which should be 32x32 pixel. The patches

are selected randomly around the center point, therefore our tracking system must extract

64x64 pixel sized patches to include all possible patches. The architecture of the CNN is

visible in Figure 3.2.

The training itself is done by optimizing the negative log-likelihood over the parameters

w of the CNN:

ŵ = arg min

NP∑
j=0

∑
q∈τj

−log softmax(CNNpart-det
w (q))[j] (3.1)

where q is an image patch, NP the number of parts and τj a training set made of image

patches centered on part j.

Figure 3.2: Architecture of CNN part-det for part detection. The last layer outputs the likelihoods
of the patch to correspond to each part or to the background.[2]

At run-time the CNN delivers clusters of large values around the center point of a

part. A gaussian smoothing is applied to filter the output and the local maximums of the

clusters are candidates for the location of parts.

3.1.2 Control point Training and Detection

After the detection of parts, the control points are evaluated. The training of the control

points is done again by a CNN, but with another architecture (see in Figure 3.3). The size

of the training patches is 64x64 and they should include the control points. The output

layer of the network is made of 2NV neurons, which predict the 2D locations of the control

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

Reference:

LeCun, Yann and Bottou, Léon and Bengio, Yoshua and Haffner, Patrick (1998)
Gradient-based learning applied to document recognition

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

3.2. Camera Model and Camera Calibration 15

points. NV stands for the number of control points of the part, which is usually 7.

For each part a CNN is trained by minimizing the squared loss of the predictions over

the parameter w:

ŵ = arg min
∑

(q,w)∈νj

∣∣∣∣∣∣w − CNNcp-pred-j
w (q)

∣∣∣∣∣∣2 (3.2)

where νj is a training set of image patches centered on part j and the 2D locations of

the control points are concatenated in a vector w.

Figure 3.3: Architecture of a CNN CNNcp-pred-j for predicting the projections of the control
points.[2]

At run-time the predictions {v̂jkl} for the control points around each part j are esti-

mated. The 2D uncertainty for these predictions is calculated by propagating the image

noise through the CNN.

Each control point provides a 3D-2D correspondence, so estimating the object pose

becomes a standard 3D pose estimation problem. Also a pose prior is used in form of a

Mixture-of-Gaussians. Details on the pose estimation process can be looked up in [2].

3.2 Camera Model and Camera Calibration

Camera calibration is a task to get the geometrics of a camera system, it’s important to

get correct and accurate results for both, the training and also the testing steps. In this

section we give a brief introduction into camera calibration.

The intrinsic calibration information consists usually of a calibration matrix K and

distortion coefficients. To get these information some real word, reference points must

be captured by the camera, usually a classical black-white chessboard, from different

poses, like the fiducial markers described in Section 2.1. Also 3D reference patterns

for more accuracy and sometimes 1D patterns are used. Then a homography between

the real object and the image is estimated, delivering the calibration information. The

checkerboard captured by the camera and already evaluated is visible in Figure 3.4.

The relation between the points on the real plane and the points on the captured

images can be described by a matrix P = K[R|t] (3x4 matrix) where R (3x3 matrix)

and t (3x1 vector) are the rotation and the translation of the camera. The values of the

matrix K stay the same over time for a specific camera-lense system and called intrinsic

parameters. The composition of the desired matrix K is shown in equation 3.3. The

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

16 Chapter 3. Mathematical, Algorithmic and Software Background

Figure 3.4: Checkerboard calibration pattern from different views.

values fx and fy are the focal lengths in x and y direction, cx and cy define the location

of the principal point within an image.

The matrix P consists of 6 extrinsic (3 DOF for rotation R and 3 DOF for translation

t) and 5 intrinsic parameters, 11 parameter in total, therefore at least 6 correspondences

are needed for its calculation. xy
w

 =

fx 0 cx
0 fy cy
0 0 1


XY
Z

 (3.3)

The set of corresponding points on the reference checkerboard and on the captured

images are used to compute P (e.g. by solving the linear system) where P = [KR|KRt] =

[M |Mt]. Once the matrix P is estimated a RQ decomposition breaks M , the left 3x3

matrix of P , into two 3x3 matrices M = AB. A is an upper triangular and B is an

orthogonal matrix (i.e. BTB = I), where A corresponds to the matrix K and B to the

rotation matrix R. The translation t can then be easily computed by t = M−1
4 · P4, P4

refers to the the last column of the matrix P. Figure 3.5 shows the pinhole camera model

and its parameters described in the previous paragraph.

Another elegant way to estimate K is by estimating the image of the absolute conic

Ω. The absolute conic is invariant to rigid transformations and bypasses the estimation of

the full homography P with its 11 DOF. Therefore it is possible to directly calculate the

intrinsic parameters. For more details, the reader is referred to [12, 38].

If distortion due to imperfect lenses occur the Brown-Conrady model is used. Equa-

Reference:

 ()

3.2. Camera Model and Camera Calibration 17

optical axis

image plane

world coordinate
center

Figure 3.5: Pinhole camera model of geometric camera calibration: The matrix P describes the
relation between the 3D world model and the 2D image coordinates. The camera center is donated
as C and its distance to the image plane is called focal length f . The optical axis pierces through
the image plane at the principal point [cu, cv]

tions 3.4 and 3.5 model the radial distortion using three coefficients k1, k2 and k3. The

effects of radial distortion, also referred to as barrel and pincushion distortion, are shown

in Figure 3.6. Tangential distortion occurs when the lense and the sensor are not parallel,

it can be resolved using equations 3.6 and 3.7. The number of parameters is limited to

three for each distortion as in the model used by OpenCV.

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6) (3.4)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6) (3.5)

xcorrected = x+ [2p1xy + p2(r2 + 2x2)] (3.6)

ycorrected = y + [p1(r2 + 2y2) + 2p2xy] (3.7)

Sometimes it is not possible to use reference patterns, e.g. footage recorded in the

past with no knowledge about the camera metrics, in that case self-calibration is used.

Calibration is done by just moving the camera, resulting in more parameters, a much

harder mathematical problem and often less accuracy.

18 Chapter 3. Mathematical, Algorithmic and Software Background

Figure 3.6: Radial distortions: (a) no distortion, (b) barrel and (c) Pincushion distortion

3.3 Large-Scale Direct Monocular SLAM

Large-Scale Direct Monocular SLAM (LSD-SLAM) is a SLAM System that uses direct

image alignment coupled with filtering-based estimation of semi-dense depth maps. In this

work LSD-SLAM replaces ARUCO as marker-less tracking system for the object parts.

The system is designed to cope with large scenes with large scale changes, drifting and

loop closures. Figure 3.7 shows an example scene of a building including its generated

depth maps and the resulting point cloud. The context in this section is based on the

paper [5].

The global map is represented by keyframes connected by similarity transformations.

The system incorporates scale changes of the environment and corrects accumulated drift.

As mentioned in Section 2.1 we use this SLAM-System for tracking of selected object

parts.

The algorithm consists of three components: tracking, depth map estimation and map

optimization as shown in Figure 3.8.

The tracking component estimates the current rigid body pose xi ∈ se(3) with respect

to the previously selected keyframe. The preceding frame is used for an initial guess of

the pose. To refine or replace the current keyframe, the depth map estimation uses the

set of tracked frames. The depth map is refined by many per-pixel small-baseline stereo

comparisons. If the pose changes are too big, a new keyframe is introduced.

When the current frame is replaced by a new one, it is embedded into the global

map by the map optimization part. This component also tries to find loop closures and

estimates scale-drifts by calculating a similarity transformation to existing keyframes.

The global map, a pose graph of keyframes, stores all gathered information. Whereby

a keyframe consists of a camera image Ii, an inverse depth map Di and the variance of

that depth map Vi. As mentioned before the semi-dense depth map and therefore also the

variance map include only values on image points with large gradient magnitudes.

Reference:

Engel, Jakob and Schoeps, Thomas and Cremers, Daniel (2014)
LSD-SLAM: Large-Scale Direct Monocular SLAM

3.3. Large-Scale Direct Monocular SLAM 19

Figure 3.7: LSD-SLAM example. Top: Accumulated point cloud of all key frames. Bottom:
Keyframes with color-coded semi-dense inverse depth maps.[5]

Figure 3.8: Overview over the LSD-SLAM algorithm.[5]

Reference:

Engel, Jakob and Schoeps, Thomas and Cremers, Daniel (2014)
LSD-SLAM: Large-Scale Direct Monocular SLAM

Reference:

Engel, Jakob and Schoeps, Thomas and Cremers, Daniel (2014)
LSD-SLAM: Large-Scale Direct Monocular SLAM

20 Chapter 3. Mathematical, Algorithmic and Software Background

3.3.1 Tracking Frames

For the actual tracking of a new frame Ij , starting from a keyframe Ki, the photometric

error is minimized to get the pose ξji between these two frames. The calculation of the

variance-normalized photometric error is illustrated in equation 3.8 (including 3.9 and

3.10) where ||.||δ designates the huber norm. The image intensity noise is assumed to be

Gaussian σ2
i . An image point p in 3D world coordinates and its inverse depth Di(p) are

projected into the new image using the ω -function. The minimization of the energy Ep
is accomplished using iteratively reweighted Gauss-Newton optimization.

Ep(ξij) =
∑
p∈ΩDi

∣∣∣∣∣
∣∣∣∣∣r2
p(p, ξij)

σ2
rp(p,ξij)

∣∣∣∣∣
∣∣∣∣∣
δ

(3.8)

with rp(p, ξij) = Ii(p)− Ij(ω(p, Di(p), ξij)) (3.9)

σ2
rp(p,ξij) = 2σ2

I +

(
∂rp(p, ξij)

∂Di(p)

)2

Vi(p) (3.10)

3.3.2 Depth Map Estimation

A new keyframe is created when the camera leaves the area of the existing map. dist(ξji),

shown in equation 3.11, is calculated from the pose ξji relative to the keyframe and thresh-

olded, where W is a diagonal matrix containing the weights.

dist(ξij) = ξTijWξij (3.11)

Once the threshold is exceeded, the current frame becomes the new keyframe and

the points are projected back from the previous one. After this initialization outliers are

removed, and the depth map is scaled to a mean inverse depth of one. The new created

keyframe is now used for further tracking of the frames.

All frames which don’t become keyframes are used for refinement of the depth map.

Many efficient small baseline stereo comparisons are performed leading to more accurate

depth values and additional new pixels.

Monocular SLAM is inherently scale-ambivalent, which means the absolute scale of

the world is not determinable. Unknown scale leads to scale-drift, one major source of

errors. To avoid this issue, LSD-SLAM scales all keyframes to a mean inverse depth of one

and a similarity transformation between the edges of the keyframes is estimated. For this

problem Engel et al. proposed a method called direct, scale-drift aware image alignment

on sim(3). In addition to the photometric residual rp, a depth residual rd is incorporated,

penalizing deviations in inverse depth between keyframes, resulting in a new error function

to minimize (see equation 3.12).

3.4. Robot Operating System 21

Ep(ξij) =
∑
p∈ΩDi

∣∣∣∣∣
∣∣∣∣∣r2
p(p, ξij)

σ2
rp(p,ξij)

+
r2
d(p, ξij)

σ2
rd(p,ξij)

∣∣∣∣∣
∣∣∣∣∣
δ

(3.12)

The system also searches for loop closures to improve the performance additionally.

If a loop closure is detected, the accumulated drifting from previous keyframes will be

corrected.

3.3.3 Map Optimization

The gathered depth information is continuously optimized using pose graph optimization.

The error function to minimize is shown in equation 3.13. W defines the world frame.

E(ξW1 ...ξWn) =
∑

(ξij ,Σij)∈E

(ξij ◦ ξ−1
Wi
◦ ξWj)

TΣ−1
ij (ξij ◦ ξ−1

Wi
◦ ξWj) (3.13)

3.4 Robot Operating System

The robot operating system [1, 28] is not an operating system in the traditional sense of

process scheduling and management, it is rather a set of libraries, tools and conventions

simplifying development of robot and robot related software on various platforms. It was

developed to provide standard tools needed in robotics and simplifying the development

processes by providing standard interfaces and by delivering drivers for hardware. ROS is

licenced under the standard three-clause BSD license1 and offers interfaces for C++ and

Python. The supported platform is Ubuntu and there is experimental stage under OS X

Android (NDK) and Gentoo Linux.

It is used by the LSD-SLAM system to gather camera images and transmit estimated

tracking and mapping information to a client system. Therefore the whole LSD-SLAM

core and client components run in a ROS environment providing a high level platform by

managing its communication.

The fundamental concepts of the ROS implementation are nodes, messages, topics,

and services [28]. A system implemented using ROS usually consists of several nodes, e.g.

the LSD-SLAM core, these nodes communicate by exchanging messages. The message

passing is based on a publisher-subscriber approach, where a publisher can feed several

subscribers with its messages. The messages are defined by the message IDL (Interface

Description Language) and sent out over a topic, e.g. camera image, which defines the

used channel. There can be several subscribers and also several publishers on the same

topic, while publishers and subscribers in general are not aware of each others existence.

The whole message passing system is anonymous and asynchronous, therefore it is easy to

record data and afterwards play it back over different channels. This offers high flexibility

1http://opensource.org/licenses/BSD-3-Clause
(accessed: Saturday 9th January, 2016)

Reference:

 ()

Reference:

Quigley, Morgan and Conley, Ken and Gerkey, Brian and Faust, Josh and Foote, Tully and Leibs, Jeremy and Wheeler, Rob and Ng, Andrew Y (2009)
ROS: an open-source Robot Operating System

22 Chapter 3. Mathematical, Algorithmic and Software Background

rosmake This tool is used to build ROS packages in cor-
rect order of their dependencies.

rosrun Rosrun allows to run an executable in an arbi-
trary package.

roslaunch Starts ROS nodes locally and remotely via SSH.

roscore This collection of nodes and programs are used
as basis for other ROS nodes to communicate.

rosnode Can be used to display debugging information
about nodes like publications subscriptions and
connections.
• rosnode ping Tests the connectivity to a

node.

• rosnode list Shows a list of active nodes.

• rosnode info Prints information about a
node.

• rosnode kill Kills a running node.

rxgraph Plots a graph of ROS nodes that are currently
running as well as ROS topics connecting them.
Figure 5.1 shows a graph of our running system.

Table 3.1: ROS commands

during debugging and also during service. ROS services are used to realise synchronous

transactions if needed. Other libraries provided by ROS and used in our system are

mentioned in Section 5.1.1.

Table 3.1 presents some of the main commands in ROS needed to run and debug our

system.

3.5 Viola-Jones and Local Binary Patterns

The Viola-Jones algorithm is a rapid object detection method motivated by the task of

face detection.

In this thesis, the Viola-Jones framework is used for the training and detection of the

object parts as an alternative to the proposed CNN in the paper [2].

This method allows to train a classifier for our tracked object parts and reduces the

influence of background by using different training environments. It also reduces the

influence of illumination and pose. Additionally, it can cope with many variations across

individuals. The last aspect is not so important for us, because the parts learned are not

changing their appearance.

Reference:

"Alberto Crivellaro and Mahdi Rad and Yannick Verdie and Kwang Moo Yi and Pascal Fua and Vincent Lepetit" (2015)
A Novel Representation of Parts for Accurate 3D Object Detection and Tracking in Monocular Images

3.5. Viola-Jones and Local Binary Patterns 23

In Figure 3.9 the structure of the Viola-Jones approach is visible. It shows the different

levels the algorithm goes through and one can conclude that the inner parts are more often

executed than the outer parts. This results in many feature comparisons on the lowest

level, which have to be executed very fast.

Three main concepts are combined in this approach, the image representation called

integral image, a classifier using AdaBoost and a method to combine complex classifiers

in a cascade structure. The content in this section is based on the publications [35] and

[18].

Figure 3.9: Overview over the layers of the Viola-Jones algorithm.[5]

3.5.1 Features

The features introduced by P. Viola and M. Jones are inspired by Haar basis functions.

These Haar features are very efficiently calculated, the value of one feature is the difference

between the sum over the pixels within the rectangular regions. In Figure 3.10 four features

are visible, the difference between the sum over the dark regions and the sum over the white

regions is estimated. The regions have the same size and shape and are small compared

to the image size.

For efficient calculation of the sums within the rectangles a representation, called

integral image, is introduced. Equation 3.14 shows the formula for calculating the integral

image from an input image.

ii(x, y) =
∑

x′≤x,y′≤y
i(x′, y′) (3.14)

The integral image can be computed in one pass over the image by additionally storing

Reference:

Viola, Paul and Jones, Michael (2001)
Rapid object detection using a boosted cascade of simple features

Reference:

Liao, Shengcai and Zhu, Xiangxin and Lei, Zhen and Zhang, Lun and Li, Stan Z (2007)
Learning multi-scale block local binary patterns for face recognition

Reference:

Engel, Jakob and Schoeps, Thomas and Cremers, Daniel (2014)
LSD-SLAM: Large-Scale Direct Monocular SLAM

24 Chapter 3. Mathematical, Algorithmic and Software Background

Figure 3.10: Rectangle HAAR features within the detection window. Two-rectangle features
are shown in (A) and (B). Figure (C) shows a three-rectangle feature, and (D) a four-rectangle
feature.[35]

cumulative row sums s(x, y) as shown in equations 3.15 and 3.16, with the initial values

of s(x,−1) = 0 and ii(−1, y) = 0 .

s(x, y) = s(x, y − 1) + i(x, y) (3.15)

ii(x, y) = ii(x− 1, y) + s(x, y) (3.16)

The sum of the pixels within one rectangle can then be easily calculated by four

reference points. For instance the sum for rectangle D visible in Figure 3.11 can be

computed as 4 + 1 − (2 + 3). The value at location 2 for example includes the sum over

the regions A and B.

3.5.2 Learning Classificator

Any machine learning approach can be used to learn a classification function using these

features. The Viola-Jones method uses AdaBoost to choose a set of features and to train

the actual classifiers. AdaBoost is used to boost the performance of a simple learning

algorithm by combining several instances of it. Over 180000 features are associated with

each image sub-window. This meta-algorithm is now used to select the most significant

features of the huge set of rectangle features. These simple but significant features are

combined to one classifier. The most significant features separate positive and negative

samples the best.

The algorithm proposed by Viola-Jones, shown afterwards, discards a vast majority of

Reference:

Viola, Paul and Jones, Michael (2001)
Rapid object detection using a boosted cascade of simple features

3.5. Viola-Jones and Local Binary Patterns 25

Figure 3.11: Concept of integral images.[35]

features to get an efficient classifier, by still delivering good detection performance.

• Initialize weights w1,i = 1
2m ,

1
2l for yi = 0, 1 respectively, where m and l are the

number of negatives and positives respectively.

• Given example images (x1, y1), ..., (xn, yn) where yi = 0, 1 for negative and positive

examples respectively.

• For t = 1, ..., T :

1. Normalize the weights,

wt,i ← wt,i∑n
j=1 wt,j

2. For each feature, j, train a classifier hj which is restriced to using a single

feature. The error is evaluated with respect to wt, εj =
∑

iwi|hj(xi)− yi|.

3. Choose the classifier, ht, with the lowest error εt.

4. Update the weights:

wt+1,i = wt,iβ
1−εi
t

where εi = 0 if example xi is classified correctly, εi = 1 otherwise, and βt = εt
1−εt .

• The final strong classifier is:

h(x) =

{
1
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise

Reference:

Viola, Paul and Jones, Michael (2001)
Rapid object detection using a boosted cascade of simple features

26 Chapter 3. Mathematical, Algorithmic and Software Background

where αt = log 1
βt

The OpenCV implementation of the Viola-Jones algorithm offers four different variants

of the AdaBoost algorithm: Discrete AdaBoost, Real AdaBoost, LogitBoost and Gentle

AdaBoost. The variants differ in the weighting of the samples and the formation of the

final classifier.

• Discrete AdaBoost is visible in the listing example above.

• In Real AdaBoost the error function is replaced by a probability value p(xi).

p(xi) = P (yi = 1|xi) and is chosen by calculating the weighted least squares error.

• LogitBoost is an adaptation based on logistic regression.

• Gentle AdaBoost fits an regression function by weighted least-squared of yi to xi.

It is chosen by minimizing
∑

iwt,i(yi − ht(xi))2

The first selected features for example at face detection are obviously in the eye and

eyebrow region, as visible in Figure 3.12. At this regions the shown features are very

significant in every face sample image.

Figure 3.12: The first and second features selected by AdaBoost.[35]

3.5.3 The Cascade

To reduce the computation time at the testing phase, a cascade of different classifiers is

built. This cascade starts with simple classifiers to reject big regions of the image followed

by increasingly complex classifiers for the remaining finer regions. The resulting cascade

(a degenerated decision tree) is visible in Figure 3.13. A negative outcome at any point

Reference:

Viola, Paul and Jones, Michael (2001)
Rapid object detection using a boosted cascade of simple features

3.5. Viola-Jones and Local Binary Patterns 27

within the cascade leads to a rejection of the evaluated sub-window. At training of the

cascade there is a trade-off between the number of stages, the number of features within

each stage and its threshold. For simplification each stage is trained by adding features

until the required detection and false positive rate is reached. If the overall detection rate

and false positive rate are reached no more stages are added.

Figure 3.13: Viola-Jones detection cascade: At every decision node a classifier is executed, if the
outcome is positive the branch ’T’ is taken and the next classifier is executed. If the outcome is
negative the checked sub-window is rejected and the branch ’F’ is taken. [35]

3.5.4 LPB

Further improvement of the Viola-Jones method was done by Liao et al. Their work uses

multi-scale block local binary patterns (MB-LBP) instead of the HAAR features. Training

and detection with LBP are several times faster than with HAAR features. The standard

Local Binary Patterns (LBP) operator, visible in Figure 3.14 (a), labels each pixel of an

image by thresholding its 3 x 3 neighborhood with itself resulting in a binary string. Figure

3.14 (b) shows the extended MB-LBP. The comparison between single pixels is simply

replaced with comparison between the average values of squared subregions resulting in

filters of size s. For example, the original LBP have a size of s = 3, resulting in a filter

size of 3 x 3.

Results of the LBP filter for different scales s in the example of faces are shown in

Figure 3.15.

The performance and results of the Viola-Jones and LBP approach in our scenario are

presented in Section 6.

Reference:

Viola, Paul and Jones, Michael (2001)
Rapid object detection using a boosted cascade of simple features

28 Chapter 3. Mathematical, Algorithmic and Software Background

Figure 3.14: Local Binary Patterns concept: (a) Basic LBP operator (b) 9x9 MB-LBP operator.
In each sub-region, average sum of image intensity is computed. These average sums are then
thresholded by that of the center block. [18]

Figure 3.15: MB-LBP filtered images of two different faces. (a) original images; (b) filtered by
3 x 3 MB-LBP; (c) filtered by 9 x 9 MB-LBP; (d) filtered by 15 x 15 MB-LBP. [18]

3.6 Perspective-n-Point Problem

The Perspective-n-Point camera pose detection, or PnP-Problem, tries to find the rotation

R and translation t of a camera by using 2D/3D point correspondences. For the PnP-

Problem, the intrinsic parameters, contained in the matrix K, are assumed to be known.

The 3D rotation is defined by 3 DOF, the same as the translation with its 3 DOF. This

leads to 6 DOF for the extrinsic camera pose and corresponding 6 parameters. Therefore,

in general three point correspondences are enough for solving the system, leading to a

P3P-Problem.

3.6. Perspective-n-Point Problem 29

However using just three points for the computation leads to four possible results,

where just two results are relevant. To remove this ambiguity a fourth correspondence has

to be added. Furthermore, to increase the accuracy of the result more correspondences (n

correspondences) can be added by using different algorithms for solving a PnP-problem.

3.6.1 P3P-Problem

In this section we present a method to solve the P3P-Problem using the distant-based

definition [36] in closed form. Figure 3.16 shows the configuration of the P3P-Problem

with its camera center C and the point correspondences between the 2D projections m1,

m2 and m3 of the 3D points M1, M2 and M3.

Figure 3.16: P3P-Problem between the 3D Points M1, M2 and M3 and their 2D projections on
the image plane m1, m2 and m3. The resulting rotation matrix R and the translation t represent
a transformation from 2D points to their corresponding 3D points.

From two known points Mi and Mj , e.g. M1 and M3, we can simply calculate the

distance dij . Furthermore we can estimate Θij from the known 2D points mi and mj . Af-

terwards using the law of cosines, one can set up the following equation with the unknowns

xi and xj :

d2
ij = x2

i + x2
j − 2xixjcosΘij (3.17)

The equation for the distance between two 3D points can be transformed into a function

fij depending on xi and xj :

fij(xi, xj) = x2
i + x2

j − 2xixjcosΘij − d2
ij = 0 (3.18)

30 Chapter 3. Mathematical, Algorithmic and Software Background

For the P3P problem we can set up three equations between the three points and their

enclosing angles:

f12(x1, x2) = 0 (3.19)

f13(x1, x3) = 0 (3.20)

f23(x2, x3) = 0 (3.21)

When solving this quadratic systems, we get the values for x1,x2 and x3. The sylvester

resultant simplifies this step. [3]

p1(x) = amx
m + am−1x

m−1 + ...+ a1x+ a0 (3.22)

p2(x) = bnx
n + bn−1x

n−1 + ...+ b1x+ b0 (3.23)

Syl(p1, p2) =



am · · · a0 0 · · · 0

0 am · · · a0

...

am · · · a0

bm · · · b0 0 · · · 0

0 bm · · · b0
...

bm · · · b0


(3.24)

p1 and p2 have a common root if the determinant(Syl(p1, p2)) = 0. The sylvester

resultant determinant(Syl(p1, p2)) delivers a polynomial only in one unknown. After

solving this polynomial one can easily estimate the other unknown by using one of the two

equations. Now we have estimated all xi and can use them to compute the corresponding

MC
i which represent the position of the 3D points in the camera coordinate system:

MC
i = xiA

−1mi (3.25)

Finally, one has to estimate the rotation R and the translation t from this set of 3D

points MC
i in camera coordinates. First the coordinates MC

i and MW
i are normalized by

subtracting its mean value resulting in NC
i and NW

i .

M
C

=
1

n

n∑
i=1

MC
i → NC

i = MC
i −M

C
(3.26)

M
W

=
1

n

n∑
i=1

MW
i → NW

i = MW
i −M

W
(3.27)

The rotation matrix R can be computed by maximizing following sum:

3.6. Perspective-n-Point Problem 31

max
R

∑
i

(NC
i)T · (RNW

i) (3.28)

This equation can be transformed using the theorem

vT · (Ru) = trace(RTuvT) (3.29)

Applying a Singular Value Decomposition on L we can calculate R.

∑
i

(NC
i)T ·(RNW

i) = trace(RT
∑
i

(NC
i)T ·NW

i) = trace(RTL) where L =
∑
i

(NC
i)TNW

i

(3.30)

R = arg max
R

trace(RTL) (3.31)

R = UVT where L = USV (3.32)

Finally the rotation matrix is used to estimate the translation T:

T = M
C −RM

W
(3.33)

Now we have a closed form solution for the P3P problem.

3.6.2 PnP in OpenCV

The OpenCV library provides a function to solve the PnP problem, it is called solvePnP .

The function can be fed with an initial guess and offers different algorithms to solve

the problem. One option is to use an iterative method based on Levenberg-Marquardt

optimization. Another option is called P3P, this method is based on the paper ”Complete

Solution Classification for the Perspective-Three-Point Problem” by Gao et al. [8] and the

function requires exactly four reference points. The last method available is called EPnP

(Efficient Perspective-n-Point Camera Pose Estimation) it is based on the work of F.

Moreno-Noguer, V. Lepetit and P. Fua [17]. It is a non iterative solution based on virtual

control points. Usually four virtual control points are introduced instead of calculating

the depth xi of the reference points in the camera coordinate system the coordinates of

these control points in the camera referential are estimated, which can be done in O(n).

This increases the speed for higher n compared to other approaches. Equation 3.34 shows

the weighting of the four control points.

pωi =
4∑
j=1

αijc
ω
j , with

4∑
j=1

αij = 1 (3.34)

32 Chapter 3. Mathematical, Algorithmic and Software Background

OpenCV also provides a version of solvePnP that uses the RANSAC algorithm (ran-

dom sample consensus), the function is called solvePnPRansac. RANSAC is an iterative

non-deterministic algorithm that means it delivers a reasonable result only with a certain

probability. It was proposed in [7]. The method is based on selecting random subsets

of the input data and computing a model based on this subset. The full input data is

afterwards back projected using the model. If the number of inliers is the highest so far,

the model is stored. This steps are repeated certain times, delivering finally a reasonable

good model. Following listing shows the pseudocode of the RANSAC algorithm.

Listing 3.1: Algorithm: RANSAC

1 loop 1 . . numIter

2 S = randomSubset (C)

3 T = getModel (S)

4 E = r e p r o j e c t (T,C)

5 N = numberOfIn l i e r s (E, con f id enceLeve l)

6 i f N > maxIn l i e r s

7 maxIn l i e r s = N

8 bes tSe t = S

9 end

In OpenCVs implementation it is possible to determine the number of iterations that

are run through. One can also define the threshold for the reprojection error to count as

inlier, and it is possible to select a minimum number of inliers that have to lay within

the model to be accepted. Further aspects concerning RANSAC are discussed in Section

4.3.3.

4
Easily generating Training Data for Part-based 3D Detection

Contents

4.1 Tracking System . 33

4.2 Training System . 45

4.3 Detection System . 46

This section describes the concept and design of the implemented system. The whole

system consists of three main parts. The first part is the tracking system which is used to

extract patches of the object from training video frames.

All these patches are fed into a training algorithm called the training system. In our

case we use a cascade trainer based on the Viola-Jones algorithm and LBPs. The last part

detects the object parts and estimates the pose within test videos in different environments

using the trained information from part two. Figure 4.1 shows the subsystems and their

transferred information.

4.1 Tracking System

To collect training data we have to track parts of an object over time to get there ap-

pearance from different poses and under different lightning conditions. The camera has

to be moved around the object by the user to capture patches of each part. Afterwards

the captured patches can be stored in different formats to be used by different training

systems.

To make the detection more robust, different video sequences from different environ-

ments can be used and combined to one training set for the same object. Therefore

the rigid transformation between the sequences is calculated to align the interest points

between these sequences. A training set, also called a project, contains all combined infor-

mation needed to train the system for one object and afterwards for running the detection

stage. The tracking system shown in Figure 4.2 consists of following parts:

33

34 Chapter 4. Easily generating Training Data for Part-based 3D Detection

Tracking System Training System

Detection System

Images Patches

Cascades

Augmented
Output

Images

Camera

Camera

Figure 4.1: Overall Concept of the implemented System including tracking, training and detection
subsystems.

• SLAM System: The SLAM System LSD-SLAM presented in Section [5] delivers

the depth information for keyframes and the tracking information for every frame.

It also delivers the gray values for each pixel and for every frame, while the depth

values are only computed for salient points. The aspects of the SLAM system in our

concept are discussed in Section 4.1.1

• GUI: The graphical user interface takes user input, more specifically, the initial

position of the parts and control instructions for the capturing.

• 3D-part pose estimation: This part is used to estimate the 3D position of each

part in the world coordinate system and is responsible for proper back projection

into the current frame.

• Video registration: If more than one video is used, the parts from previous video

sequences are used to estimate the rigid transformation between these videos. De-

tails are shown in Section 4.1.7. This transformation is used afterwards for further

mapping.

• Patch extraction: After the back projection of the parts, the patches for the cur-

rent frame can be cut-out and stored. Also if needed negative samples are recorded.

• Training instructions: Finally some training information has to be stored. Cur-

rently there are two training methods supported which need different instructions.

4.1. Tracking System 35

Tracking System

SLAM System
(LSD-SLAM)

GUI

3D part position estimation

Patch extraction

Video registration

Training instructions

Training System

Keyframes

Tracking
Frames

Figure 4.2: Concept of the Tracking System and its sub parts.

Each subpart of the tracking system is discussed in detail in following sections.

4.1.1 Using LSD-SLAM for 3D Localization

The SLAM system provides tracking and depth information. Properties and further infor-

mation to the LSD-SLAM system are previously discussed in Section 4.1.1. In this section

we focus on the usage of the SLAM system in our work.

The first frame captured by the system is also the first keyframe. It initializes the

world coordinate system, all descendent keyframes are placed within this reference. If the

camera moves further away from the initial view of the keyframe and hits a threshold, a

new keyframe is established. At the same time the refinement of the current keyframe is

finished and the deployment of its result is triggered. This leads to a delay of the mapping

which is inherent for structure from motion approaches and has to be considered.

The frames processed by the LSD-SLAM core are published over two different topics.

The keyframes are sent over lsd slam/keyframes and all other tracked frames are sent

over lsd slam/liveframes. The keyframes are held in an incoming queue with a size of

20 elements, whereas live frames are stored in a single slot. Therefore older messages are

dropped if they are not processed. This is due to the fact that keyframes hold important

depth values whereas the live frames just hold tracking information which can be dropped

if not used.

Each message provided by the SLAM System encapsulates one frame and contains

following information shown in table 4.1:

36 Chapter 4. Easily generating Training Data for Part-based 3D Detection

int32 id A ID number for the frame which is unique within the cur-
rent SLAM process.

float64 time This field stores a 64 bit timestamp for the frame.

bool isKeyframe This field is set true when the message contains a keyframe.

float32[7] camToWorld The position of the camera represented in world coordinate
system (= coordinate system of first keyframe). The simi-
larity transformation is represented with 4 values for rota-
tion and 3 values for translation.The rotation is represented
by a unit quaternion q = w + xi + yj + zk. The rotation
matrix then be calculated from the quaternion coefficients:

Q =

1− 2y2 − 2z2 2xy − 2zw 2xz + 2yw
2xy + 2zw 1− 2x2 − 2z2 2yz − 2xw
2xz − 2yw 2yz + 2xw 1− 2x2 − 2y2


The Sophus library is used to transform the quaternion and
the translation it into a 4x4 matrix.

float32 fx, fy, cx, cy These values represent the focal length in x and y direction
as well as the position of the principal point (cx,cy). This
information is needed for projection of 2D image points into
the 3D world coordinate system.

uint32 height, width The resolution of the captured frames defined by the inte-
ger values for height and width. These values are also the
resolution for the depth map.

pointcloud Each element of the depth map consists of following param-
eters:
• float idepth: The inverse depth for one pixel.

• float idepth var: The variance value for the inverse
depth.

• uchar color[4]: A color pixel as RGBA value. LSD-
SLAM delivers the images as grayscale images, there-
fore the values for RGB are the same.

The depth map has always width x height elements, but
the idepth values are not set for live frames. Not all idepth
values are estimated for a keyframe (semi-dense depth map),
these values are set to -1.

Table 4.1: LSD-SLAM message content

4.1. Tracking System 37

4.1.2 Projection of Depth Values

LSD-SLAM delivers a depth map with every keyframe estimated. The depth maps are

in direction of the view from which the keyframe was taken. To combine all depth maps

they have to be mapped into the same world coordinate system resulting in a point cloud.

This point cloud have to be stored and can be used to generate a new depth map from

any required view V . The mapping of the point cloud is shown in Figure 4.3.

Figure 4.3: A figure of the point cloud created from different keyframes and a projection of points
into a new view V .

For inserting the points from a keyframe KFi into the point cloud, the first step is to

project the 2D depth map coordinates into 3D coordinates of the corresponding keyframe.

This is done by using the intrinsic parameters of the camera which are provided with

every frame message but usually stay the same over time. Each point is represented by

its coordinate in the depth map (px2D , py2D) and its depth value d.

px3D =
px2D − cx

fx
· d (4.1)

py3D =
py2D − cy

fy
· d (4.2)

38 Chapter 4. Easily generating Training Data for Part-based 3D Detection

Figure 4.4: Color coded depth values drawn on the grayscale image(from lsd slam core).

Figure 4.5: Screenshot of the point cloud (from lsd slam core). The red pyramid shows the
current camera view. The green line depict the line of projection after selecting a point.

pKF =

px3Dpy3D
d

 (4.3)

After projecting the points into 3D coordinates, they are transformed into the world

reference. This is done by using the transformation TKF ∈ sim(3) of its keyframe.

p = TKF · pKF (4.4)

Further processing within the point cloud is discussed in Sections 4.1.3, 4.1.5 and 4.1.6.

4.1. Tracking System 39

4.1.3 Point Filtering

The points added to the point cloud are additionally filtered. The filtering is adapted from

the original LSD-SLAM viewer, which is implemented in KeyFrameDisplay.cpp.

Three criterias lead to rejecting a point. First the variance of the inverse depth is

tested. The multiplication of the variance by the depth value to the power of 4 must

not exceed a certain threshold (e.g. 1). This leads to a filtering of high variance points

scaled by the depth, where lower depth allows more variance. This value is additionally

multiplied by the squared scale to include the scaling of the current keyframe. For this

criteria a new threshold is defined.

Last, each of the eight surrounding neighbors is checked to see if the depth difference

to its center point exceeds a certain value proportional to its depth. If the number of these

neighbors exceeds a threshold (e.g. 5) the point is kept. This leads to a certain smoothing

of the points.

4.1.4 Graphical User Interface

The graphical user interface is an important part of the tracking system. It is used to

deliver monitoring information for the user and also to get user input for initializing the

tracking positions. Part of the monitoring information is the live video stream showed in

the main window. If a previous video sequence from the same object is already processed,

the next part to select by the user is shown in the bottom left corner. Figure 4.6 shows the

concept arrangement of elements for the GUI. One has to consider that selecting an object

part is only possible after the first depth map is received. Therefore the camera must be

moved around the object to initialize a new keyframe. Three modes are implemented to

select parts.

• Selecting a fixed size patch based on the next keyframe: In this mode, the user

presses a key to initialize the selection process. When the next keyframe is received,

the video stream stops and the user can click to select the object part.

• Selecting a flexible size patch based on the next keyframe: The user again presses

a key to start the selection. When the keyframe data arrives, the user clicks twice,

first to select the centre of the object part and then to select the size of the patch.

Some training methods don’t accept patches with different parts, or different sizes.

• Selecting independent of key frames: Now the user can click at any time to select the

object parts. Due to the delay of the mapping information the depth information

might not be available. This has to be considered and can be checked in the point

cloud viewer.

It is also possible to select the whole object before selecting its parts. The image

patches of the entire object are needed if the pre-detection step, described in Section

40 Chapter 4. Easily generating Training Data for Part-based 3D Detection

4.1.4, is performed during the test phase. This is done by freely clicking any time in the

object centre and dragging the mouse until the selection window fits the objects size.

Patch
preview

Figure 4.6: A concept of the GUI. The two windows are the point cloud viewer and the window
for the live video stream. The selected position at pclicked marks the centre point of the part to
track. The point is selected by clicking the left mouse button.

The GUI also includes a window for the point cloud. It is a 3D rendered space which

is freely navigable by mouse and keys and shows the selected parts as well as the current

camera view.

For multiple video sequences it is important that the system can match the same points

in different sequences. So, if other video sequences are already processed and marked, the

user gets a hint in form of a preview image of the next part to select. The user can skip

parts if they are, for example not visible any more and can also insert new parts which

were not visible in elapsed sequences.

4.1.5 Selection of Depth Points

As described in Section 4.1.4 the user manually clicks a point on the camera image to

select an object part. If the selection is based on a single key frame as described in the

first two modes, no projection of the point cloud is needed. In the case of free selection the

points have to be projected into the current view V of the camera to generate a new depth

map. Figure 4.3 shows also how the projection of the point cloud into a view V looks

like. In all cases we have access to a correct depth map afterwards. The depth map is not

filled or inpainted, it takes just the nearest depth values for the chosen location pclicked
within the map. More specifically, n nearest depth values are taken (e.g. n = 5) and a

4.1. Tracking System 41

weighted mean is calculated. The weights for the mean value computation are inversely

proportional to the distance to pclicked, as shown in Equation 4.5.

wi =
1

(xi − xclicked)2 + (yi − yclicked)2
(4.5)

The actual weighted mean is then calculated by

d =

∑n
i=1wi · di∑n
i=1wi

(4.6)

whereas some values are excluded. Values which have a high variance to the weighted

mean are excluded. The weighted variance s2 is defined as

s2 =

∑n
i=1wi · d2

i∑n
i=1wi

− d2
(4.7)

The threshold for outliers was defined by a value of two times the standard deviation

s.

4.1.6 3D Object Pose Estimation from Detected Parts

After the selection of the points, they must be tracked over the different video frames.

The position must be estimated using the points’ initial position within the first frame.

E.g. for a point pKF represented in coordinates of the key frame, the point pV in the

current view V can be calculated by

T = T−1
V ·TKF (4.8)

pV = T · pKF (4.9)

The inverse transformation T−1
V for the view V delivers correct results for the inverse

case. Afterwards the point pV has to be projected into the frames 2D coordinates. Trans-

formed versions of the equations used for creating 3D coordinates in Section 4.1.2 are

used.

p′x2D =
pVx · fx
pVz

+ cx (4.10)

p′y2D =
pVy · fy
pVz

+ cy (4.11)

As a result we get 2D coordinates (p′x2D , p′y2D) for the estimated point on the frame. This

coordinates are used afterwards to extract the patches for tracking.

This equations project also 180◦copies of the initial point pKF into the image. Also

the similar case of parts being viewed from their back sides must be avoided. They are

42 Chapter 4. Easily generating Training Data for Part-based 3D Detection

also projected into the image but deliver wrong results in most cases. To avoid all these

cases we set imaginary points around the point pKF . After transforming them, using the

equations above, we can check the orientation of these imaginary points. If these points

are ordered clockwise, they are also viewed correctly from the front. Anti-clockwise cases

are dismissed. To invert the transformation TV of the view V we use following lemmas:

• The multiplication of two rotation matrices results in a new rotation matrix

• The multiplication of two transformation matrices results in a new translation ma-

trix.

• A rotation matrix can be inversed by transposing it.

• There exists always an inverse of a transformation matrix.

We get following equation by using the lemmas and cancel out the scaling value:

T−1
similarity =


1/s2 0 0 0

0 1/s2 0 0

0 0 1/s2 0

0 0 0 1

 ·
 R −RT · t

0T 1

 (4.12)

4.1.7 Video Registration for Multiple-Sequence Registration

The system should be able to cope with different video sequences. For this reason the

different videos must be registered among each other to interchange information correctly.

The user selects points at the beginning of the first sequence in a particular order. This

order is followed in all subsequent videos as mentioned in Section 4.1.4. If at least four

matching parts are selected in two video sequences a transformation between them can be

computed. The resulting similarity transformation is used to select all virtual points in

the same way. The issue of selecting virtual points correctly is discussed in Section 4.1.9.

Listing 4.1 shows the algorithm for estimating a similarity transformation from two

point sets. The algorithm is based on the approach used in [22]. As input two point sets

A ∈ R3xn and B ∈ R3xn are fed into the algorithm. First the two point sets are shifted into

their mean values. The scaling value s is calculated from the vectors of eigenvalues λA
and λB for the matrices CA and CB (see line 3). Under perfect conditions the relationship

between two point sets s2 · λA = λB holds.

To get the rotation matrix R a singular value decomposition from the matrix H is

estimated (see line 5). Last, the translation vector t is calculated by estimating the

distance between the two rotated and scaled mean values (see line 11).

Listing 4.1: Algorithm: Video registration

1 Azero ← A−mean(A), Bzero ← B −mean(B)

2 CA ← 1
nAzeroA

T
zero, CB ← 1

nBzeroB
T
zero

4.1. Tracking System 43

3 s←
√

λA·λB
λA·λA

4 H ← 1
nAzeroB

T
zero

5 UΣV T = H

6 R← UV T

7 i f det (R) = −1 then

8 V ← [v1,v2,v3]

9 end

10 R← UV T

11 t← mean(B)− s ·R ·mean(A)

4.1.8 Patch Extraction

For the patch extraction we differ between two modes. In the first mode the area around

the main point pclicked is not transformed under different views. The size of each patch

stays the same (e.g. 32x32px) over time. This mode is used for most training methods.

In the second mode the 2D area including the part is transformed for different views, the

content of the patch stays the same and is distorted.

Additionally a linear sparsification factor f is introduced where 1 ≤ f <∞. It reduces

the number of extracted samples depending on the training method used. The OpenCV

cascade training approach needs less samples than available with the possible frame rate.

A sparsification factor of f = 10 or f = 7 is chosen to get good results therefore every

tenth or every seventh frame is used to extract patches. This allows the user to slow down

the camera movement around the object which avoids blurring and a failing of the SLAM

system by still not producing too much samples.

For some training methods the patch image must be normalized (e.g. for the CNN

approach used by [2]). This is done by estimating mean value and standard deviation for

linear image normalization:

meanc =

∑n
i=1 I(i)

n
(4.13)

stddevc =

∑n
i=1(I(i)−meanc)2

n
(4.14)

cnorm =
c−meanc
stddevc

(4.15)

To exploit all the image information, we extract negative samples from areas which

are not including parts. We differ between random selection or pattern based extraction

of negative patches. In the first case randomly selected patches are extracted, the number

of negative patches is defined dependent on the training method. The pattern based

approach selects patches on from an rectangular grid. In both cases it is also possible that

patches from other parts are used for negative samples. The negative patches have usually

44 Chapter 4. Easily generating Training Data for Part-based 3D Detection

the same size as the positive ones. To avoid overlapping of positive and negative patches,

a minimum spacing value is defined.

Figure 4.7: Examples of extracted patches for different objects.

4.1.9 Collecting the Virtual Points

As proposed in [2], virtual control points around the main parts are trained for 3D object

detection (as discussed in Section 3.1). The implemented approach aligns the points along

the coordinate axis of the current view when the point is selected. This view however

can change in different video sequences. If the virtual control points are selected always

through the current view, they are placed at various positions in different sequences. To

avoid this issue and to get consistent training information the videos must be registered.

After the video registration (see Section 4.1.7) the position of the virtual points can be

set according to pre-recorded locations. To avoid bigger inaccuracy from the video regis-

tration, the position of the control points is only estimated relative to its main point.

4.1.10 Training Instructions

The training instructions combine the information extracted from the video sequences.

Each training method needs different instructions. For the cascade training implemented

in OpenCV we need following files:

• Positive image samples.

• Negative image samples.

• List of positive samples.

• List of negative samples.

All the instructions called for the training are written into script files. After finishing the

tracking and saving all files, the training is started by using these script files. All details

regarding the training are discussed in the following Section 4.2.

4.2. Training System 45

4.2 Training System

In this section we discuss the training system and focus on the cascade training imple-

mented in our approach. The cascade training system in OpenCV is based on the Viola-

Jones algorithm described previously in Section 3.5 and is extended by LBPs. Before

starting the training, a set of samples has to be created. For this job, OpenCV provides the

tool opencv createsamples. After creating the samples, the tool opencv traincascade

is called, to start the actual training of the patches.

4.2.1 opencv createsamples

The tool opencv createsamples is used to create sets of training samples. The training

sets consist of positive and negative samples. A positive sample patch shows the part we

want to train, the negative sample shows an arbitrary patch which does not contain the

part. The OpenCV tool can create a set by combining just the captured samples or it can

create a much larger set by distorting the captured patches and create additional samples.

In the case of creating additional distorted samples, one can define the degree of distortion

by three angle values and a deviation value. The distortions then are randomly created

within this defined borders.

The accuracy of the resulting classifier highly depends on the number of samples. For

example, for the task of face recognition between 1000 and 5000 positive samples are used

for training. Instance recognition, as it is the case in this work, can use less samples due

to lower diversity of the patches.

4.2.2 opencv traincascade

After creating the training samples, one can start the actual training. This is done by the

tool opencv traincascade,

Before starting training stage, one has to also choose a feature type, which can be

selected between HAAR, LBP and HOG. The first two feature types are discussed in

Section 3.5. The different results depending on the selected feature type are shown in

Chapter 6.

The training is guided by three main parameters, the number of stages, the minimum

hit rate and the maximum false alarm rate.

The number of stages defines how many stages are trained for the cascade, this value

has a direct influence on the qualitative and quantitative result of the training.

The minimum hit rate defines how many samples of the set of positive samples must

be tagged ”positive” from the system within each stage. If the hit rate is reached, the

training stops.

The last parameter, the maximum false alarm rate, defines how many false positives

are allowed. On the one hand, a lower rate of false positives is better, but on the other

hand rejects more true positives.

46 Chapter 4. Easily generating Training Data for Part-based 3D Detection

Further details on how to use these parameters are discussed in Section 5.2.2.

One tricky part is the number of positive samples. Some positive samples are excluded

from the set due to negative outcomes. So each stage of training might exclude in the

worst case (1−minHitRate) · numPos positives from the set. To not run out of positive

samples a number of numPos = 0.9 · numPosOrig is suggested 1.

To further improve the result and reducing the false alarm rate, it can be wise to add

more negative samples captured in different environments. One can find many databases

of images online. Moreover the same set of negative images can be used for all objects

and patches.

While the entire training step might take a long time, its duration is mainly dependent

on the number of samples and the numer of stages. However the training is stopped when

the required hit rate is reached.

4.3 Detection System

The job of the detection system is to find all trained parts within an image and calculate

the pose of the object by solving the PnP problem. After the pose estimation the image is

augmented to validate the result. For 3D augmentation a mesh cube containing the object

is shown. As 2D augmentation the position of the object within the image is marked and

an interesting point is highlighted.

The input for the detection system are the trained cascade for each part and if available

the trained cascade for the whole object. As image source one can use a stored image or

video file and streams from webcams (IDS uEye cameras as well).

It has to be considered, that the images are distorted. The implemented system

processes the video stream from an IDS uEye camera with a fish eye lens. The camera

is first calibrated and during runtime every image is distorted with the estimated camera

parameters.

4.3.1 Two Stage Detection

The detection of the parts is carried out in two steps, as shown in Figure 4.8.

• First, the entire object is detected using the corresponding trained cascade. The

found 2D area within the image is extended by a certain factor and handed over to

the second step.

• The second step is to search for the trained object parts within the region estimated

in the first step. If the entire object was not detected in the first step, the entire

image is used for the part detection.

1http://answers.opencv.org/question/7141/about-traincascade-paremeters-samples-and-other/
(accessed: Saturday 9th January, 2016)

4.3. Detection System 47

This concept increases the run-time just by the run-time of one cascade detection but

decreases the runtime of all other cascades by the factor s = size(Image)
size(ROI) . Additionally the

number of false positive detected parts can be reduced, because big areas of the background

are skipped in the part detection step. The performance is especially increased for objects

with many parts.

Figure 4.8: Two Stage Detection:

In Figure 4.9 the 2D region of the detected entire object and the patches are visible.

Figure 4.9: 2D regions of the detected entire object and patches on calculator example. The part
centres are represented as dots.

4.3.2 Additional Performance improvements

Beside the reduction of the region of interest for the part detection by detecting the entire

object, we implement a second method to reduce the computation time based on the

assumption of only small changes between two consecutive image frames.

48 Chapter 4. Easily generating Training Data for Part-based 3D Detection

If a part is in the set of positive candidates, it is very likely that this part is in the

area around its previous location. The set of positive candidates is estimated by the

PnP-Ransac algorithm, described in the next Section 4.3.3.

The location of the region of interest for the part detection is based on the last positive

detected instance which lies no longer than n frames behind. For slower movements, n

can be smaller and the region of interest can be smaller as well. For faster movements it

is the opposite.

In Figure 4.10 the regions of interest around an object part are shown. For the depth

of the part history, n = 1 is chosen and the ROI size equals to 1.5 · partSize.

Figure 4.10: Detected patches and corresponding ROIs on calculator example.

4.3.3 Adaptations to the PnP-Ransac Algorithm

To estimate the position of the object from the 2D-3D correspondences we have to solve

the PnP problem (see Section 3.6). The results from the Viola Jones framework are

not perfect, therefore we use a Ransac approach, where the best detected candidates are

estimated. The best part-candidates are the basis for the pose calculation.

We altered the Ransac based PnP solver implemented in OpenCV, to increase the

performance of the pose estimation. In the classic Ransac approach, each sample is chosen

with equal probability (see Figure 4.11a)). If we take in to account that some samples

have lower confidence levels than others, the probability of selecting them randomly should

decrease for the ones with lower confidence.

Each 3D point is selected with equal probability and each of them has an associated

pool of 2D point candidates. The 2D candidates from the Viola-Jones detection are

selected from these pools. If a pool has many 2D candidates, the probability of selecting

a certain candidate is lower. This results in the fact that 2D-3D correspondences which

belong to sets of many false positives get chosen less likely. The concept is visible in Figure

4.3. Detection System 49

4.11b). The original Ransac algorithm from Listing 4.2 must be replaced by the algorithm

shown in Listing 4.3.

Figure 4.11: Correspondences between 3D points and 2D points. (Incl. probabilities p for
selecting correspondence in RANSAC). (a) Probabilities for selecting a 2D-3D correspondence in
the classic Ransac approach implemented in OpenCV. (b) Adapted probabilities: The 2D point 10
will be selected more likely than point 4 for example. (c) Sketch of the positions of 3D reference
points on an object. (d) Image with the detected 2D patches.

Listing 4.2: Algorithm: RANSAC implemented in OpenCV

1 loop 1 . . numIter

50 Chapter 4. Easily generating Training Data for Part-based 3D Detection

2 S = randomSubsetOfCorrespondences (C)

3 T = solvePnP (S)

4 E = r e p r o j e c t (T,C)

5 N = numberOfIn l i e r s (E, con f id enceLeve l)

6 i f N > maxIn l i e r s

7 maxIn l i e r s = N

8 bes tSe t = S

9 end

Listing 4.3: Algorithm: Optimized RANSAC

1 loop 1 . . numIter

2 S = randomSubsetUnique3DPoints (C) // This func t i on i s adapted

3 T = solvePnP (S)

4 E = r e p r o j e c t (T,C)

5 N = numberOfIn l i e r s (E, con f id enceLeve l)

6 i f N > maxIn l i e r s

7 maxIn l i e r s = N

8 bes tSe t = S

9 end

5
Implementation

Contents

5.1 Tracking System . 51

5.2 Training System . 53

5.3 Detection System . 56

5.4 Utility Tools . 56

This chapter explains the details of the implementation of the different subsystems.

All systems are implemented in C++ and use the OpenCV library.

5.1 Tracking System

The tracking system, including the LSD-SLAM system (details in Section 4.1), is a separate

ROS node and is called lsd slam trainer. One project, containing one object to train,

has a name, a project xml file and a working directory where the extracted information is

stored. This information consists of the extracted patches and training information.

The extracted patches are held in the main memory and stored to the hard drive when

demanded by the user (by pressing key ’x’). The tracking can be paused if the user wants

to stop the patch extraction by pressing the key ’p’.

Each part is addressed by number which is unique for one object over the whole

project, the part number. Also every video sequence has a unique video number. The

captured patches are named by a string containing the project name, the part number

and a consecutive number. Therefore each extracted patch can be uniquely identified.

[working directory]/positves/[project name]-[part number]-[patch-number].png

The XML project file contains following information:

• videos: Each project consists of several video sequences.

51

52 Chapter 5. Implementation

• number: A unique number for one video sequence.

• frameCount: The number of frames in this video sequence.

• parts: A list of parts in this video.

• camToWorld: The coordinate system of the part centre.

• x: The x - location of the part centre under the view camToWorld.

• y: The y - location of the part centre under the view camToWorld.

• depth: The depth of the part centre under the view camToWorld.

• numSamples: The number of collected samples of this part within this

video sequence.

• numNegativeSamples: The number of negative samples collected for

this part.

• referenceImages: A list of locations for reference images of each part. The refer-

ence image patch is shown in the user interface to illustrate the next part to select.

The project file must be accessible to the lsd slam trainer for each processed video

sequence of the same project/object. Each execution of the trainer adds one entry in the

video list. After the training step, the detector has also access to this xml-file. Therefore

the detector has access to the same information. The location of the part centres, for

example, are the ground truth for the PnP solver.

The communication between the lsd slam core, the camera system and the imple-

mented lsd slam trainer is based on ROS and uses a publisher subscriber logic. The

communication structure for the implemented system is shown in Figure 5.1.

The video stream from the camera is called /image raw and is published by

ueye manager. The training video stream can be captured for testing and debugging

reasons easily using the rosbag tool (see Section 3.4).

After the processing of the video stream, LSD-SLAM publishes the keyframes and

the tracked frames. The corresponding publisher are called /lsd slam/keyframes and

/lsd slam/liveframes.

The PointCloudViewer, as visible in Figure 4.5, is a Qt window based on QGLViewer.

The QGLViewer class provides a OpenGL environment where the camera is freely navigable

with use of the mouse in every direction.

For the ImageViewer we use the same basis, although it just presents 2D images. Using

for example a OpenCV window beside a Qt-window would lead to problems.

5.1.1 Libraries

The tracking and patch extraction system uses several software libraries besides the LSD-

SLAM system and the Robot Operating System:

5.2. Training System 53

Figure 5.1: ROS topics: Publisher and subscriber. The implemented training system is desig-
nated as trainer.

• Boost1 is used for the project handler, for threading and for string handling. Boost

provides a library for creating xml files from tree structures. The project informa-

tion is stored in those files (see above in this section). The threading is needed to

parallelise the tracking and patch storage.

• Qt2 provides several tools for efficient development of graphical user interfaces.

• Sophus3 is used by LSD-SLAM to handle vectorial data structures. Therefore the

tracking system must use Sophus to utilize the passed data from the SLAM system.

• OpenCV4 provides many implementations of computer vision algorithms. We use

this library for image preprocessing, for its data structures and mainly for its imple-

mentation of the Viola-Jones algorithm.

5.2 Training System

The training system utilizes the tools opencv createsamples and opencv traincascade,

provided by the OpenCV library. These tools are the core of the Viola-Jones training steps.

5.2.1 Using opencv createsamples

In Listing 5.1 the parameters for opencv createsamples are shown.

Listing 5.1: Usage of opencv createsamples

1 create sample s

2 [− i n f o <d e s c r i p t i o n f i l e n a m e >]

1http://www.boost.org/
2http://www.qt.io/
3https://github.com/strasdat/Sophus
4http://opencv.org/

54 Chapter 5. Implementation

3 [−img <image f i l e name >]

4 [−vec <vec f i l e name >]

5 [−bg <background f i l e name >]

6 [−num <number of samples = 1000>]

7 [−bgco lo r <background co lor = 0>]

8 [− inv] [− randinv] [−bgthresh <background co l o r th r e sho ld = 80>]

9 [−maxidev <m a x i n t e n s i t y d e v i a t i o n = 40>]

10 [−maxxangle <max x rota t i on ang l e = 1.100000>]

11 [−maxyangle <max y rota t i on ang l e = 1.100000>]

12 [−maxzangle <max z ro ta t i on ang l e = 0.500000>]

13 [−show [< s c a l e = 4.000000>]]

14 [−w <sample width = 24>]

15 [−h <sample he ight = 24>]

Our approach uses following configuration for the training set of a patch for the cal-

culator example:

opencv createsamples -info calculator-positives-0.dat -bg

calculator-negatives-0.dat -vec samples.vec -num 500 -bgcolor 0 -bgthresh

0 -maxxangle 1.1 -maxyangle 1.1 maxzangle 0.5 -maxidev 40 -w 30 -h 30

In this case, the description file passes a list of patch images to opencv createsamples,

where the location of the files and the positions of the positive samples within the image

are defined. If just one image is passed over, one can use the -img option where the

positive sample fills the whole image. It is also possible to define a background color to

define transparent areas using -bgcolor. Anyhow it should be considered, that the ratio

of the stated values for height to weight equals the one of the sample image.

If one uses more than one initial image and wants to create more distorted versions of

them, opencv createsamples must be called multiple times. Naotoshi Seo wrote a useful

script5 for that issue. After using the script, the resulting multiple output *.vec files must

be merged using the OpenCV tool mergevec.

5.2.2 Using opencv traincascade

The previously created sample sets are stored in the *.vec- file and are now passed over to

the training with additional negative samples (-bg). The result of the training is stored in

the given cascade directory (-data), where each stage is stored separately. So the training

can be stopped and started again without loosing the already trained data. All stages and

the final classifier are stored in xml- files which are used by the testing/detection part.

opencv traincascade accepts following parameters:

Listing 5.2: Usage of opencv traincascade

1 opencv t ra inca scade

5http://note.sonots.com/SciSoftware/haartraining.html

5.2. Training System 55

2 −data <cascade dir name>

3 −vec <vec f i l e name>

4 −bg <background f i l e name>

5 [−numPos <number o f po s i t i v e samp l e s = 2000>]

6 [−numNeg <number o f negat ive samples = 1000>]

7 [−numStages <number o f s tages = 20>]

8 [−preca l cVa lBufS i z e <p r e c a l c u l a t e d v a l s b u f S z i n M b = 256>]

9 [− preca l c IdxBu fS i z e <p r e c a l cu l a t e d i dx s b u f S z i n M b = 256>]

10 [−baseFormatSave]

11 −−cascadeParams−−
12 [− stageType <BOOST(d e f a u l t)>]

13 [− featureType <{HAAR(d e f a u l t) , LBP, HOG}>]

14 [−w <sampleWidth = 24>]

15 [−h <sampleHeight = 24>]

16 −−boostParams−−
17 [−bt <{DAB, RAB, LB, GAB(d e f a u l t)}>]

18 [−minHitRate <min h i t ra t e> = 0.995>]

19 [−maxFalseAlarmRate <m ax f a l s e a l a rm ra t e = 0.5>]

20 [−weightTrimRate <w e i g h t t r i m r a t e = 0.95>]

21 [−maxDepth <max depth of weak tree = 1>]

22 [−maxWeakCount <max weak tree count = 100>]

23 −−haarFeatureParams−−
24 [−mode <BASIC(d e f a u l t) | CORE | ALL

Different variants of the boosting algrotihm (-bt) can also be selected, as discussed in

Section 3.5.2. The tool distinguishes between Discrete AdaBoost (DAB), Real AdaBoost

(RAB), LogitBoost (LB) and Gentle AdaBoost (GAB).

The number of stages is defined by the parameter -numStages. It defines how many

stages are trained for the cascade (visible in Figure 3.13 in Chapter 3). This value directly

influences the resulting hit rate and false alarm rate, which further affects the overall

result.

The parameter -minHitRate defines how many of the positive samples must be de-

tected in each stage. A higher hit rate results in more positive detections, but leads to

more false detections in return. The overall hit rate is defined by multiplying the hit rates

of the single stages and is defined as hitRate = minHitRatenumStages.

The false alarm rate, passed by the parameter -maxFalseAlarmRate, defines the max-

imal number of false detections in each stage. Just as for the minimal hit rate the overall

false positive rate is defined as falseAlarmRate = maxFalseAlarmRatenumStages.

56 Chapter 5. Implementation

5.3 Detection System

The job of the detection system is to find the parts within the image, to estimate the pose

of the object and to augment the scene. As image source one can use stored images, stored

video sequences and webcams. Our training environment gets images from an IDS uEye

camera, which can not be loaded with the standard interfaces provided by OpenCV.

5.3.1 Camera Settings

The IDS uEye camera can be accessed over an API with its specification available in [10].

Beside the different access modes, one can define gain, saturation, brightness, shutter,

exposure time and white balance. Our observations showed that the white balance and

shutter time affected the result most. To cope with many different environment we used

the auto settings for white balance and shutter time from the camera. The auto gain

function don’t effect the detection result, it just improves the visibility for the user in dark

environments.

5.3.2 Augmentation

The augmentation of the scene, based on the estimated object pose, requires several known

parameters.

The parameters of the perspective projection in OpenGL can be defined with the

function gluPerspective. These parameters are the view angle in degrees, the aspect

ratio between width and height, the near and the far clipping plane.

The camera view model for perspective projection in OpenGL and its parameters are

shown in Figure 5.2.

The video stream of the camera is shown in the background of the augmentation.

This is done by an orthogonal projection, one can use the OpenGL function

setOrthogonalProjection.

The resulting augmentation is shown in Figure 5.3.

Additional to the 3D augmentation it is also possible to augment in 2D which must be

added within an orthogonal projection. Figure 5.4 shows additional 2D augmentation.

5.4 Utility Tools

This last section shows software and tools which were used to support the implementation

process:

• Qt Creator6 (Version 3.4) is a open source C++ IDE for development of Qt appli-

cations.

6http://www.qt.io/ide/

5.4. Utility Tools 57

Figure 5.2: OpenGL camera view model for perspective projection.

Figure 5.3: 3D Augmentation on calculator example.

• Git7 (Version 2.6.2) is used for backup and version controlling of the source code.

• Ubuntu8 (Version 14.04 LTS) was chosen as development platform. LSD-SLAM

was also implemented on Ubuntu and therefore it was relatively easy to deploy.

7http://git-scm.com/
8http://www.ubuntu.com/

58 Chapter 5. Implementation

Figure 5.4: 3D and 2D Augmentation on calculator example.

• MiKTeX9 (Version 2.9) The documentation was created in LATEX. TeXstudio 10

was used as editor.

9http://www.miktex.org/
10http://www.texstudio.org/

6
Evaluation

Contents

6.1 Measured Results . 59

6.2 Discussion of the Results . 61

This chapter shows the accuracy and performance of the implemented system.

The localization and tracking of the parts is based on LSD-SLAM and therefore the

accuracy and performance of the system is entirely dependent on the LSD-SLAM system.

The quantitative evaluation of LSD-SLAM is available in [5].

6.1 Measured Results

The accuracy of the implemented part detection system is compared with the proposed

approach by Crivellaro et.al. in [2] (referred to as CNN). Besides of LBP features, also

the accuracy of HAAR features is evaluated.

Several different objects where tested. Following results are based on the calculator

training and test set visibile in Figure 6.1.

The training as well as the testing data was captured with an IDS UI-1221LE-C-HQ

camera. The camera has an 1/3” Aptina CMOS chip, with max. 87.2 frames per second,

752px x 480px resolution and a global-shutter.

The run-time tests where executed on a PC with Intel R©CoreTM i5 CPU M430 2.27GHz

with 4GB RAM.

The accuracy of the different approaches is estimated by the 2D distance in pixel from

a manually labeled ground truth. The ground truth labels are set at the center of the

object parts. Additionally to the geometric error, the false-positive and false-negative

rates are estimated.

59

60 Chapter 6. Evaluation

Figure 6.1: Extract from dataset calculator.

CNN LBP HAAR

Average error (in pixel) 6.38 4.53 4.01

Standard deviation of error (in pixel) 3.28 3.01 2.60

Table 6.1: Results: Average accuracy of part detection in pixel (n = 1500).

CNN LBP HAAR

number of false-negatives 45 217 430

false-negative rate 0.03 0.14 0.29

Table 6.2: Results: False negative rate (n = 1500).

Table 6.1 shows the results of accuracy measurements. Column CNN shows the results

for the method proposed by Crivellaro et.al.. LBP shows the results for LBP-features

and HAAR the results for HAAR-features in our implemented detection method. The

measurements are based on a labeled dataset with 1500 entries.

In Table 6.2 one can see the false-negative rate for the different approaches. A false-

negative detected part has more influence than a false-positive detection. Because false-

positives are dismissed by the RANSAC step at the PnP solver. The false-positive rate is

shown in Table 6.3.

The run-time of the detection algorithm depends on many factors. In Table 6.4 we

present the results for our approach. We compare the case where the object is visible with

the case of an invisible object, e.g. the camera is pointed in a different direction or the

6.2. Discussion of the Results 61

CNN LBP HAAR

number of false-positives 30 198 1210

false-positive rate 0.02 0.13 0.81

Table 6.3: Results: False positive rate (n = 1500).

object visible object not visible

Average run-time (fps) 9.62 3.45

Standard deviation of run-time (fps) 1.94 0.15

Table 6.4: Results: Average run-time for objects with five parts (n = 300).

lightning conditions are very bad. In cases of a visible object, the run-time decreases due

to the improvements discussed in Section 4.3.2.

The tested object has five parts. A higher number of parts increases the run-time

linearly.

6.2 Discussion of the Results

In terms of the accuracy, our approach based on the Viola Jones algorithm performs better

compared to the approach based on convolutional neural networks. The HAAR features

deliver slightly more accurate results than LBP, this confirms results from many previous

works comparing features.

The false-negative rate indicates how many parts are not detected. The high false-

negative rate is the major drawback of the Viola Jones method. This leads to flickering

when not many parts are visible, due to the fact that at least four parts must be detected

to estimate the pose.

The false-positive rate can be compensated by the PnP RANSAC algorithm. False

positive detections are assessed as outliers and skipped. Whereby the very high false-

positive rate with HAAR features strongly decreases the run-time. This is reasoned by

the increased number of test models in the RANSAC approach.

The performance improvements by reducing the ROI for the part detection clearly

decrease the run-time, as visible in Table 6.4. According to run-time, the differences

between HAAR and LBP features can be neglected in our use-case. Although previous

works showed that LBP features can be estimated faster. The CNN approach tested on

different hardware and the results can not be compared reliable.

7
Conclusion

Contents

7.1 Future Work . 63

We present a method for easy collecting training samples for part based 3D detection

methods. The location and tracking is based on LSD-SLAM, a recently proposed SLAM

method. This allows accurate tracking with loop closures, without intense drifting.

The method we present is also capable of multiple video sequences which are registered

to each other. This allows the user to acquire object patches from different environments

without the issue of inconsistent coordinates.

As an alternative to the convolutional neural networks approach proposed in [2], we

implemented a part detection system based on the Viola Jones algorithm. To cope with

the false positives detected by the algorithm we adapted the RANSAC approach for the

PnP problem solving. Additionally, we implemented performance improvements to reduce

the run-time of the method.

The results show that the LBP features should be preferred over HAAR features due

to the better false-negative rate and the neglectable accuracy differences. They also show

that the convolutional neural networks approach delivers significantly better detection

rates. This makes CNN detection better suited for the following control point detection.

7.1 Future Work

There are some possibilities to improve the detection rates and also the run-time of the

presented approach by further improving the parameterization of the training.

Beside of adapting the parameters for the training of the Viola-Jones algorithm one

can include additional information: The approach of exploiting locality at the 2D part

detection stage can be extended to the 3D poses of the object. One can use a 3D pose model

which penalizes strong pose changes within consecutive frames and therefore excluding

63

64 Chapter 7. Conclusion

wrong poses. This approach is already proposed in previous works.

At the part detection step the constellation of the detected parts is not considered.

If the additional information, which is already available in the project file, is taken into

account, wrong constellations can be excluded before they are handed over to the PnP

Ransac solver.

The accuracy of the part detection can be increased if the part reference patches are

included in the detection pipeline. The position of these patches is known, and therefore

they can be used to increase the accuracy if their gradient images are matched on the

input frame with simple template matching. The accuracy increases especially for long

narrow objects, where the error can strongly enlarge.

To get better and automated augmentation, the object can be segmented in 3D space

from the point cloud. The segmentation can use the position of the parts to define roughly

the object borders. The resulting 3D hull can then be augmented over the object in the

detection system or can be used for various other applications.

A
Quick Start Guide

Contents

A.1 Installation . 65

A.2 Camera Calibration . 66

A.3 Running the Trainer . 67

A.4 Starting the Detection . 68

This chapter gives a quick introdcution on how to install and run the implemented

systems.

A.1 Installation

This section gives introductions on how to install the implemented software.

All systems where tested on Ubuntu 14.04 LTS.

The compilation of the ROS nodes (lsd slam core and lsd slam trainer) works with

the GNU Compiler Collection (GCC) v4.6. The compilation with GCC v4.8.4 (actual

version in Ubuntu 14.04) led to problems at run time.

A.1.1 Installation of ROS

1. Installation of rosinstall:

sudo apt-get install python-rosinstall

If python-rosinstall is not available one can use:

sudo apt-get install python-pip

sudo pip install -U rosinstall

2. Prepare the ros working space:

mkdir ∼/rosbuild ws

cd ∼/rosbuild ws

65

66 Chapter A. Quick Start Guide

rosws init . /opt/ros/indigo

mkdir package dir

rosws set ∼/rosbuild ws/package dir -t .

echo "source ∼/rosbuild ws/setup.bash" >> ∼/.bashrc
bash

cd package dir

3. Installation of ROS components:

sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu

$(lsb release -sc) main" > /etc/apt/sources.list.d/ros-latest.list’

sudo apt-key adv --keyserver hkp://pool.sks-keyservers.net --recv-key

0xB01FA116

sudo apt-get update

sudo apt-get install ros-indigo-desktop-full

sudo apt-get install liblapack-dev libblas-dev freeglut3-dev

libqglviewer-dev libsuitesparse-dev libx11-dev

A.1.2 Compile the Binaries

Copy the source files into the package dir directory and run:

rosmake lsd slam

A.1.3 Install the uEye Camera Driver

1. Download the latest driver from http://www.ueyesetup.com

2. Extract the ZIP archive

3. Run the driver installation script:

sudo sh ./ueyesdk-setup*.run

4. Connect the camera

5. Install the ROS uEye camera driver:

sudo apt-get install ros-indigo-ueye

A.2 Camera Calibration

The camera calibartion uses the calibration tool from PTAM. First, the calibration tool

must be downloaded and installed:

A.3. Running the Trainer 67

1. mkdir -p ∼/catkin ws/src

cd ∼/catkin ws/src

git clone https://github.com/ethz-asl/ethzasl ptam

cd ../

catkin make

2. Start capturing frames from the uEye camera:

roslaunch ueye nodelets.launch pixel clock:=20 frame rate:=40

color:=1

3. Run the camera calibrator:

∼/catkin ws/devel/lib/ptam/cameracalibrator /image:=/image raw

Following tutorial gives an introduction on how to calibrate a camera in PTAM:

http://wiki.ros.org/ethzasl ptam/Tutorials/camera calibration

4. Copy the five parameters of calibration (d1, d2, ..., d5), which is printed out to the

console with the following format:

Camera calib is <d1> <d2> <d3> <d4> <d5>

5. Create a new calibration file:

gedit <path to lsd slam>/lsd slam/lsd slam core/calib/ueyeCalib.cfg

6. Paste the following in this file and save the file:

<d1> <d2> <d3> <d4> <d5>

752 480

crop

640 480

A.3 Running the Trainer

Start the subsystems in following order:

1. roscore

2. roslaunch ueye nodelets.launch pixel clock:=20 frame rate:=40

3. rosrun lsd slam trainer trainer project:=calculator

dir:=/var/LSD TRAINER/calculator/ config:=Configuration.xml

The content and parameters of the configuration xml-file are discribed in the

sample file: Configuration.xml.

4. rosrun lsd slam core live slam /image:=image raw calib:=./calib/ueyeCalib.cfg

68 Chapter A. Quick Start Guide

A.4 Starting the Detection

The detector accepts following parameter:

Usage: ./Detector -c calib file -p project name -d project directory [-u

[camera number] | -v [camera number] | -i filename | -f src directory | -el

src directory | -e]

It can be choosen between different image sources:

-u uEye camera.

-v ordanary webcam.

-i stored image from hdd.

-f directory of stored images from hdd.

-el images from hdd, with additional ground truth for error evaluation.

Compile the detector and run it:

cmake .

make

./Detector -c ./calib/camera data ueye.xml -p calculator -d

/var/LSD TRAINER/calculator/ -u

BIBLIOGRAPHY 69

Bibliography

[1] About ROS. http://www.ros.org/about-ros/. Accessed: 2015-09-15. (page 21)

[2] Alberto Crivellaro, Mahdi Rad, Yannick Verdie, Kwang Moo Yi, Pascal Fua, and

Vincent Lepetit. A Novel Representation of Parts for Accurate 3D Object Detection

and Tracking in Monocular Images. In Proceedings of the International Conference

on Computer Vision, 2015. (page iii, v, 1, 2, 6, 13, 14, 15, 22, 43, 44, 59, 63)

[3] Vikas Dhiman, Julian Ryde, and Jason J Corso. Mutual localization: Two camera rel-

ative 6-dof pose estimation from reciprocal fiducial observation. In Intelligent Robots

and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 1347–1354.

IEEE, 2013. (page 30)

[4] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic. Model globally,

match locally: Efficient and robust 3d object recognition. In Computer Vision and

Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 998–1005. IEEE,

2010. (page 9)

[5] Jakob Engel, Thomas Schoeps, and Daniel Cremers. Lsd-slam: Large-scale direct

monocular slam. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,

editors, Computer Vision - ECCV 2014, volume 8690 of Lecture Notes in Computer

Science, pages 834–849. Springer International Publishing, 2014. ISBN 978-3-319-

10604-5. doi: 10.1007/978-3-319-10605-2 54. URL http://dx.doi.org/10.1007/

978-3-319-10605-2_54. (page 8, 9, 18, 19, 23, 34, 59)

[6] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Ob-

ject detection with discriminatively trained part-based models. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 32(9):1627–1645, 2010. (page 9, 10)

[7] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981. (page 32)

[8] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng. Complete

solution classification for the perspective-three-point problem. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 25(8):930–943, 2003. (page 31)

[9] S Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-Cuevas, and

Manuel Jesús Maŕın-Jiménez. Automatic generation and detection of highly reli-

able fiducial markers under occlusion. Pattern Recognition, 47(6):2280–2292, 2014.

(page 6, 7)

[10] IDS Imaging Development Systems GmbH. Benutzerhandbuch: uEye Software De-

velopment Kit (SDK). (page 56)

http://www.ros.org/about-ros/
http://dx.doi.org/10.1007/978-3-319-10605-2_54
http://dx.doi.org/10.1007/978-3-319-10605-2_54

70

[11] Chris Harris and Carl Stennett. Rapid-a video rate object tracker. In BMVC, pages

1–6, 1990. (page 9)

[12] Richard Hartley and Andrew Zisserman. Multiple View Geometry. Cambridge Uni-

versity Press, 2003. (page 16)

[13] Georg Klein and David Murray. Parallel tracking and mapping for small ar

workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and

ACM International Symposium on, pages 225–234. IEEE, 2007. (page 8)

[14] Georg Klein and David W Murray. Full-3d edge tracking with a particle filter. In

BMVC, pages 1119–1128, 2006. (page 9)

[15] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A scalable tree-based approach

for joint object and pose recognition. In AAAI, 2011. (page 9)

[16] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998. (page 14)

[17] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o (n)

solution to the pnp problem. International journal of computer vision, 81(2):155–166,

2009. (page 31)

[18] Shengcai Liao, Xiangxin Zhu, Zhen Lei, Lun Zhang, and Stan Z Li. Learning multi-

scale block local binary patterns for face recognition. In Advances in Biometrics,

pages 828–837. Springer, 2007. (page 23, 28)

[19] Rainer Lienhart, Alexander Kuranov, and Vadim Pisarevsky. Empirical analysis

of detection cascades of boosted classifiers for rapid object detection. In Pattern

Recognition, pages 297–304. Springer, 2003. (page)

[20] Joseph J Lim, Aditya Khosla, and Antonio Torralba. Fpm: Fine pose parts-based

model with 3d cad models. In Computer Vision–ECCV 2014, pages 478–493. Springer,

2014. (page 10)

[21] David G. Lowe. Fitting parameterized three-dimensional models to images. IEEE

Transactions on Pattern Analysis & Machine Intelligence, (5):441–450, 1991. (page 9)

[22] Daniel J Mirota, Hanzi Wang, Russell H Taylor, Masaru Ishii, Gary L Gallia, and

Gregory D Hager. A system for video-based navigation for endoscopic endonasal skull

base surgery. Medical Imaging, IEEE Transactions on, 31(4):963–976, 2012. (page 42)

[23] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. Dtam: Dense

tracking and mapping in real-time. In Computer Vision (ICCV), 2011 IEEE Inter-

national Conference on, pages 2320–2327. IEEE, 2011. (page 8)

BIBLIOGRAPHY 71

[24] Nadia Payet and Sinisa Todorovic. From contours to 3d object detection and pose

estimation. In Computer Vision (ICCV), 2011 IEEE International Conference on,

pages 983–990. IEEE, 2011. (page 9, 10)

[25] Bojan Pepik, Michael Stark, Peter Gehler, and Bernt Schiele. Teaching 3d geometry

to deformable part models. In Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference on, pages 3362–3369. IEEE, 2012. (page 10)

[26] Victor A Prisacariu and Ian D Reid. Pwp3d: Real-time segmentation and tracking of

3d objects. International journal of computer vision, 98(3):335–354, 2012. (page 9)

[27] Victor Adrian Prisacariu, Aleksandr V Segal, and Ian Reid. Simultaneous monocular

2d segmentation, 3d pose recovery and 3d reconstruction. In Computer Vision–ACCV

2012, pages 593–606. Springer, 2013. (page 9)

[28] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In

ICRA workshop on open source software, volume 3, page 5, 2009. (page 21)

[29] Jianbo Shi and Carlo Tomasi. Good features to track. In Computer Vision and Pat-

tern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Con-

ference on, pages 593–600. IEEE, 1994. (page 5)

[30] Ashish Shrivastava and Arpan Gupta. Building part-based object detectors via 3d

geometry. In Computer Vision (ICCV), 2013 IEEE International Conference on,

pages 1745–1752. IEEE, 2013. (page 9, 10)

[31] Iryna Skrypnyk and David G Lowe. Scene modelling, recognition and tracking with

invariant image features. In Mixed and Augmented Reality, 2004. ISMAR 2004. Third

IEEE and ACM International Symposium on, pages 110–119. IEEE, 2004. (page 9)

[32] Veronica Teichrieb, Joao Paulo Silva do Monte Lima, Eduardo Lourenço Apolinário,

Thiago Souto Maior Cordeiro de Farias, Márcio Augusto Silva Bueno, Judith Kelner,

and Ismael HF Santos. A survey of online monocular markerless augmented reality.

International Journal of Modeling and Simulation for the Petroleum Industry, 1(1),

2007. (page 5, 6)

[33] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. School of

Computer Science, Carnegie Mellon Univ. Pittsburgh, 1991. (page 5)

[34] Luca Vacchetti, Vincent Lepetit, and Pascal Fua. Stable real-time 3d tracking using

online and offline information. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 26(10):1385–1391, 2004. (page 9)

72

[35] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of

simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I–

511–I–518 vol.1, 2001. doi: 10.1109/CVPR.2001.990517. (page 2, 23, 24, 25, 26,

27)

[36] Yihong Wu and Zhanyi Hu. Pnp problem revisited. Journal of Mathematical Imaging

and Vision, 24(1):131–141, 2006. (page 29)

[37] Yu Xiang, Changkyu Song, Roozbeh Mottaghi, and Silvio Savarese. Monocular mul-

tiview object tracking with 3d aspect parts. In Computer Vision–ECCV 2014, pages

220–235. Springer, 2014. (page 9, 11)

[38] Zhengyou Zhang. Camera calibration. In G. Medioni and S.B. Kang, editors, Emerg-

ing Topics in Computer Vision, chapter 2, pages 4–43. Prentice Hall Professional

Technical Reference, 2004. (page 16)

	Introduction
	Thesis Outline

	Related Work
	Tracking Methods
	Object Detection Methods

	Mathematical, Algorithmic and Software Background
	Accurate Part based 3D Object Detection using Virtual Control Points
	Part Training and Detection
	Control point Training and Detection

	Camera Model and Camera Calibration
	Large-Scale Direct Monocular SLAM
	Tracking Frames
	Depth Map Estimation
	Map Optimization

	Robot Operating System
	Viola-Jones and Local Binary Patterns
	Features
	Learning Classificator
	The Cascade
	LPB

	Perspective-n-Point Problem
	P3P-Problem
	PnP in OpenCV

	Easily generating Training Data for Part-based 3D Detection
	Tracking System
	Using LSD-SLAM for 3D Localization
	Projection of Depth Values
	Point Filtering
	Graphical User Interface
	Selection of Depth Points
	3D Object Pose Estimation from Detected Parts
	Video Registration for Multiple-Sequence Registration
	Patch Extraction
	Collecting the Virtual Points
	Training Instructions

	Training System
	opencv_createsamples
	opencv_traincascade

	Detection System
	Two Stage Detection
	Additional Performance improvements
	Adaptations to the PnP-Ransac Algorithm

	Implementation
	Tracking System
	Libraries

	Training System
	Using opencv_createsamples
	Using opencv_traincascade

	Detection System
	Camera Settings
	Augmentation

	Utility Tools

	Evaluation
	Measured Results
	Discussion of the Results

	Conclusion
	Future Work

	Quick Start Guide
	Installation
	Installation of ROS
	Compile the Binaries
	Install the uEye Camera Driver

	Camera Calibration
	Running the Trainer
	Starting the Detection

	Bibliography

