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Semantic Segmentation with Deep Neural Networks

by Gerhard Neuhold, BSc

Semantic segmentation is about labeling each single pixel in an image with the category it

belongs to. There are several applications in a wide range of areas, like robotics, mapping

or medical image analysis, in which pixel-level labels are of primary importance. In recent

years, deep neural networks have shown impressive results and have become state-of-the-

art for several recognition tasks. In this thesis, we investigate into the use of deep neural

networks for the task of semantic image segmentation.

We adjust state-of-the-art fully convolutional networks, which are designed to label general

scenes, to the task of aerial image segmentation. In addition, we transfer the learned feature

representation from a large-scale image database of everyday objects for classification to

pixel-wise labeling of aerial images. Further, we perform a joint training of the deep neural

network and a conditional random field in an end-to-end fashion to reduce the errors

that are caused by both modules. Finally, we study semi-supervised learning techniques

to decrease the manual labeling effort, which is necessary to transfer learned features from

pre-trained classification models.

Our proposed semantic segmentation approach is evaluated on a large-scale aerial dataset

and improves the state-of-the-art accuracy. We are able to show promising results on two

internal aerial datasets used by the Microsoft Photogrammetry team. Our experimental

evaluation confirms that end-to-end training of the deep neural network and a conditional

random field improves the overall performance. Finally, we show that incorporating unla-

beled data to perform finetuning from pre-trained models decreases the manual labeling

effort.





Kurzfassung

Semantische Segmentierung bezeichnet die Zuordnung jedes einzelnen Bildpunktes zur

entsprechenden Objektkategorie. In verschiedensten Applikationen in einer Vielzahl von

Bereichen, wie zum Beispiel Robotik, Kartografie oder medizinische Bildanalyse, ist die

Klassifizierung auf Bildpunktebene von primärer Bedeutung. In den letzten Jahren haben

tiefe neuronale Netze beeindruckende Ergebnisse gezeigt und sind zum Stand der Technik

für unterschiedliche Erkennungsaufgaben geworden. In dieser Arbeit beschäftigen wir uns

mit tiefen neuronalen Netzen und deren Anwendung für die semantische Bildsegmentie-

rung.

Wir adaptieren Faltungsnetzwerke, welche für die Klassifizierung allgemeiner Szenen ent-

worfen wurden, für die Luftbildsegmentierung. Des Weiteren transferieren wir die gelernte

Repräsentation einer großen Bilddatenbank, bestehend aus Abbildungen von Alltagsge-

genständen, um die Klassifizierung von Luftbildern durchzuführen. In einem weiteren Ab-

schnitt bestimmen wir die freien Parameter eines tiefen neuronalen Netzes und eines grafi-

schen Modells in einem gemeinsamen Optimierungsverfahren. Dadurch werden gezielt jene

Fehler reduziert, welche aus beiden Methoden resultieren. Zuletzt werden halbüberwachte

Lerntechniken näher betrachtet, damit die Datenrepräsentation vortrainierter Klassifizie-

rungsmodelle mit weniger manuellem Aufwand auf neue Anwendungen übertragen werden

kann.

Unser vorgestellter Ansatz für die automatische semantische Segmentierung von Luftbil-

dern übertrifft die Genauigkeit bestehender Methoden. Des Weiteren können wir vielver-

sprechende Ergebnisse auf internen Datensätzen des Microsoft Photogrammetry Teams

zeigen. Unsere experimentelle Evaluierung bestätigt, dass das gemeinsame Training eines

neuronalen Netzes und eines grafischen Modells das Klassifizierungsergebnis verbessert.

Abschließend zeigen wir, dass die Einbeziehung nicht-markierter Daten in den Trainings-

prozess den manuellen Beschriftungsaufwand reduziert respektive die Genauigkeit des Mo-

dells erhöht.
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Chapter 1

Introduction

Contents

1.1 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 State-of-the-Art Image Labeling Methods . . . . . . . . . . . . . 5

1.4 Contributions of This Thesis . . . . . . . . . . . . . . . . . . . . . 6

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The first chapter gives an introduction to semantic image segmentation, explains what

the challenges are and presents a recipe of how to approach semantic segmentation. In

addition, a short introduction to deep learning is given before current state-of-the-art

methods are discussed. We conclude with a summary of our contributions and gave an

outline of this thesis.

1.1 Semantic Segmentation

1.1.1 Definition and Applications

Semantic segmentation is about automatically extracting information from images. The

goal is to assign a category label to each pixel in an image, or in other words, given an input

image, we want to know all visible objects, where they are at pixel-level and what category

they belong to. For that purpose, it is required to jointly solve localization, segmentation

and classification.

1
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(a) Image (b) Ground Truth (c) Result

Figure 1.1: Example of a semantic image segmentation algorithm.
Images taken from [1].

Figure 1.1 illustrates an example image and a semantic segmentation result created by the

method of [1]. The objective is illustrated by the ground truth image.

There exist many applications that require semantic information from images at pixel-

level, like in the fields of medical image analysis, robotics, surveillance and many more.

However, automatically extracting semantic information from images is a challenging task,

as we will describe in the next section.

1.1.2 The Challenges

Semantic segmentation is still an unresolved problem in computer vision. While recent

methods [2–8] show reasonable results, they are still not able to beat human-level perfor-

mance.

Humans are able to recognize objects with less effort, even if the objects change in view-

points, scale, illumination or when they are translated or rotated. Objects can even be

recognized when they are partially occluded from view. [9]

To automatically tackle these challenges using computers, state-of-the-art semantic seg-

mentation methods rely on machine learning techniques to learn the various representations

of objects from given images. Nevertheless, actual approaches have also their drawbacks.

To achieve the accuracy of state-of-the-art methods, pixel-level annotated images are re-

quired, which are limited for many applications or even not available [10, 11].

In addition, if we learn the object representation from a finite set of labeled images, the

model may achieve a satisfying performance on samples that look similar to those in the

training set, but there is no guarantee of the algorithm to generalize well on other images.

This problem is also known as the dataset-bias. [12]

For that reasons, semantic segmentation is still a hot topic in research.
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Figure 1.2: Recipe for semantic segmentation. Images taken from [5, 13].

1.1.3 Recipe for Semantic Segmentation

In the last section, we got an insight of the challenges to tackle. Next, we describe a

common recipe for semantic segmentation algorithms which is illustrated in figure 1.2.

First, a given image is represented in a feature space. The intention of a feature space is to

get a lower-dimensional representation of the original image. Second, a classifier is applied

to decide which category label each pixel belongs to. Since we deal with real-world data,

the classification results may be noisy or the estimated object boundaries do not coincide

with the input image. Therefore, a graphical model is finally applied to counteract these

inconsistencies.

In this thesis, we investigate into deep neural networks (DNNs) and conditional random

fields (CRFs) to implement these steps. We now continue with an introduction of deep

neural networks, before we describe the current state-of-the-art image segmentation meth-

ods.

1.2 Deep Neural Networks

In recent years, deep learning methods using neural networks have shown impressive results

in many fields, like in speech recognition [14, 15], natural language processing [14, 15] or

computer vision [2, 5, 14–18]. Deep neural networks are able to automatically learn low-

level and high-level representations from given data [19]. There is no need for hand-crafted

features, which often require expensive human efforts and expert knowledge.
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(a) Input images (b) Low-Level Features (c) High-Level Features

Figure 1.3: Low-level and high-level representation of images using deep neural net-
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Figure 1.4: Network architecture of one of the first CNNs which was used to perform
digits recognition. [21]

Examples of learned features are shown in figure 1.3. The visualized features demonstrate

the ability of the network to capture low-level features such as edges and corners, as well

as high-level features to model the complex composition of object categories. [19]

DNNs are built of several layers to represent the images at different levels of abstraction.

The architecture of one of the first deep learning methods, a convolutional neural network

(CNN) to recognize digits [21], is shown in figure 1.4.

The drawbacks of deep neural networks are high computational costs and the need for a

huge amount of data. The raise of computational power due to graphical processing units

and the availability of large-scale datasets lead deep learning methods to be state-of-the-art

for several recognition task [2, 5, 16–18].

It is an interesting insight that deep models like CNNs [21], which are used to extract

features at different levels of abstraction, are biologically inspired by the primary visual

cortex (V1) [22], where simple and complex cells respond to lower and higher level features

respectively.
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CNNs are also state-of-the-art to perform semantic image segmentation. The next section

describes the current best performing image labeling methods.

1.3 State-of-the-Art Image Labeling Methods

In recent years, the progress of deep learning methods improved the accuracy of image

labeling algorithms too. The current best performing semantic segmentation methods

[2–8] rely on CNNs. We summarize the different variants in this section.

Girshick et al. [2] and Hariharan et al. [3] use region proposals [23] to extract possible

object segments and apply a classification network (Krizhevsky et al. [16]) to assign

category labels to these regions.

Fully convolutional networks by Long et al. [4] make use of CNNs [21] to classify each pixel

in an image, but instead of applying a CNN for each output pixel, they compute the output

map more efficiently by applying the network convolutional. In addition, deconvolution

layers are added on top of the network to further refine the outputs.

More recent methods combine fully convolutional networks with CRFs [24]. For example,

Chen et al. [5] add a fully connected random field (Krähenbühl and Koltun [25]) on top

of a fully convolutional network. Another work of Zheng and colleagues [6] shows that the

mean-field approximation of a fully connected CRF can be implemented as stacks of CNN

layers. The layer-wise representation is added on top of the method proposed by Long et

al. [4] and end-to-end training is performed.

Since labeling images at pixel-level is an expensive task, studies [10, 11] also analyzed

weakly-supervised learning setups, in which images with image-level annotations are in-

corporated into the training process. Other work by [7] exploits bounding box annotations

to reduce the number of required pixel-level annotated images.

The previous methods described are tuned to detect everyday objects in images. In our

work, we also investigate into semantic segmentation of aerial images. The methods pro-

posed by [26, 27] rely on neural networks for aerial image labeling. However, they do

not apply them convolutional. Instead, they crop patches from images, which are then

classified by a neural network. Furthermore, they do not make use of large-scale datasets

like ImageNet [28] to perform a pre-training [19] of the neural network.

In this section, we gave an overview of state-of-the-art image segmentation methods. In

the next section, we will summarize the scientific contributions of this thesis.
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1.4 Contributions of This Thesis

In this section, we summarize the main contributions of this thesis.

Deep Neural Networks for Aerial Image Labeling

As listed in the previous section, many studies have been published to label general

scenes. We study how to adjust state-of-the-art semantic segmentation methods to

the task of aerial image labeling. We propose a modified network architecture that

is tuned to detect small-scaled objects present in low-resolution aerial images. In

addition, we give evidence that the feature representation learned from images of

everyday objects can be successfully transferred to the task of aerial image segmen-

tation. Our approach is able to improve the state-of-the-art on a large-scale aerial

image benchmark. Finally, we show promising results on two internal aerial image

datasets used by the Microsoft Photogrammetry team.

Structured End-to-end Learning

Fully convolutional networks are trained using a loss function that does not consider

dependence between adjacent pixels. For that reason, we study an approach to

perform structured end-to-end training of a fully convolutional network and a CRF.

In particular, we train the method proposed by Chen et al. [5] end-to-end, by using

the CRF representation of Zheng and colleagues [6]. Applying a joint training of a

deep neural network and a CRF allows to optimize for errors where both methods fail.

Our experimental evaluation shows that structured end-to-end learning increases the

performance compared to the decoupled approach by Chen and colleagues.

Semi-Supervised Transfer Learning

Labeling images at pixel-level is an expensive task and even finetuning from a pre-

trained ImageNet model typically requires a large amount of labeled data. For that

reasons, exploiting unlabeled data in the training process may be valuable for many

applications where labeled data is scarce. We study semi-supervised learning meth-

ods to make use of the huge amount of unlabeled data and our experiments reveal

that simple self-learning methods are able to increase the accuracy.

1.5 Outline

We start with related work and theory in chapter 2, which builds as a basis for the under-

standing of later chapters.
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In chapter 3, we define a probabilistic framework for semantic segmentation and introduce

fully convolutional networks. In addition, we describe the applied network architecture

and how to estimate the model parameters.

Structured prediction and end-to-end learning is covered in chapter 4. We first specify

the graphical model. Afterwards, we describe how to combine the CRF and the fully

convolutional network and, finally, discuss end-to-end training of both modules.

Chapter 5 focuses on semi-supervised transfer learning with CNNs. An explanation why

unlabeled data can help is provided and two self-learning methods are specified.

The experimental evaluations in chapter 6 reveal the qualitative and quantitative accuracy

of the proposed methods. We show promising results on various aerial imagery datasets

and verify that structured end-to-end learning and semi-supervised learning improves the

accuracy.

Finally, in chapter 7, we summarize our findings and give an outlook for possible future

research.
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In this chapter, we describe related work, which builds as a basis for the understanding

of later chapters. We start with machine learning basics and logistic regression. After-

wards, we discuss feedforward networks, convolutional neural networks (CNNs) and deep

networks, which are the base of our segmentation approach.

2.1 Definitions

Machine learning [13] is about automatically extracting patterns from given data to

further make predictions on future data. It is used in many fields, like computer vision

or speech recognition, where manually specifying data representations and carrying out

predictions is impracticable.

Generally speaking, one distinguishes between supervised and unsupervised machine

learning. The difference between these two lies in the existence of target labels. In the

9
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(a) Learning Process of Traditional Machine Learning (b) Learning Process of Transfer Learning

Figure 2.1: The learning processes differ between traditional machine learning and
transfer learning. Transfer learning re-uses already learned features from a source task

and transfers them to a target task. Images taken from [29].

case of supervised learning, the desired output values are given, whereas in unsupervised

learning the targets are not available. There also exist learning methods that make use of

labeled and unlabeled data, this is known as semi-supervised learning.

Depending on the required output of the task, further categorizations of supervised learning

algorithms can be made. Typically, we differentiate between classification and regres-

sion tasks. The goal of classification is to assign a category label, whereas in regression

the targets are specified via real numbers. Another important term is structured pre-

diction, which involves predicting multiple variables jointly, instead of scalar discrete or

real values.

Learning is the task to estimate the parameters of a machine learning model and can

be further divided into online learning and offline learning. Offline learning means

that all data samples can be used at once to estimate the model parameters, while online

learning uses a subset of the data in each update step.

For many applications it is expensive to label data. Therefore, it is beneficial to reduce the

number of required labeled samples by transferring already learned knowledge to a new

target task. This is known as transfer learning. Figure 2.1 shows the learning processes

of traditional machine learning and transfer learning. [29]

Since we are now familiar with basic machine learning concepts, we continue with intro-

ducing machine learning techniques that are used throughout this thesis. The goal of

semantic segmentation is to perform a pixel-level assignment of categories, thus we make

use of classification methods, in particular logistic regression.
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2.2 Logistic Regression

We now introduce a classifier that is known as logistic regression [13] and describe how to

perform inference as well as how to learn the model parameters. Later in this thesis we

will use logistic regression to classify each single pixel of an image.

2.2.1 Inference

In the context of machine learning, inference is the task of predicting unknowns based on a

given data sample and in the special case of classification, it is about assigning a category

label to a given feature.

Therefore, a classifier has to make a decision about the class a feature belongs to. A feature

might be an image or any other characterization that can be described in a feature space.

The feature space is typically a higher-dimensional space.

Logistic regression makes use of a hyperplane in feature space that represents the decision

boundary between one class and all other classes. Consequently, logistic regression is a

one-vs-all classifier and to perform a multi-class decision with K classes, one hyperplane

has to be specified for each class. The class separating boundary is given by

0 = wT
k φ(x), (2.1)

where the vector x represents a point in feature space, wk are the parameters of the

hyperplane separating class k from the rest, and φ(xn) defines a vector of basis functions

to enable a non-linear transformation of data samples into feature space. For reasons of

clarity, we define w0 to be the bias and φ0(xn) = 1.

Since binary classification is just a special case of multi-class classification, we herein

introduce the latter one.

In real world problems it is convenient to have an uncertainty measure, which amounts

to how well a given data sample belongs to a certain class. Logistic regression uses the

point-plane distance ak to quantify a specific class assignment. The further way from

the hyperplane a point lies, the more likely it corresponds to that class. The point-plane

distance ak is given by the linear combination of the model parameters wk and the basis

functions φ(xn).

ak = wT
k φ(xn) (2.2)
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To make use of probability theory, for example, to estimate the model parameters using

maximum likelihood, we need to specify a probability distribution for the point-plane

distance. The probability of a single sample xn belonging to class k is defined by the

normalized exponential [13]

p(Ck|xn,wk) = fk(xn,wk) =
exp(ak)

∑

k′ exp(ak′)
, (2.3)

which is also known as the softmax function. The exponential function and the sum in the

denominator ensure the function to be a valid probability distribution.

Since we now know how to estimate the probability of a specific class given a data sample,

the next step is to learn the model parameters from a given training set.

2.2.2 Parameter Estimation

For the reason that logistic regression is a probabilistic model, we can make use of maxi-

mum likelihood estimation (MLE) [13] to determine the parameters W . Given a training

set, MLE selects the values of the model parameters, so the likelihood p(y|X,W ) of a

given dataset {xn, yn} is maximized.

The data likelihood is given by

p(y|X,W ) =

N∏

n=1

p(yn|xn,W ), (2.4)

whereX is a matrix of input features with columns xn representing the single data samples,

y is a vector containing the corresponding classes labels with yn ∈ {1, . . . ,K}, W are the

model parameters where each wk specifies a single hyperplane, and n ∈ {1, . . . , N} denotes

the index of a single data sample. The probability of a data sample n belonging to class

k is then given by p(yn = k|xn,wk).

It is an important fact, that the data samples are assumed to be independent and identically

distributed, thus the underlying mathematics of many statistical methods simplify.

To ease learning and inference, the class affiliation yn ∈ {1, . . . ,K} is represented by a

one-of-k encoding. This means that the class labels are expressed by a binary vector yn

of length K, where the entries are constrained to be positive and to satisfy
∑K

k=1 ynk = 1.
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The data likelihood using the one-of-k encoding is specified by

p(Y |X,W ) =

N∏

n=1

K∏

k=1

p(Ck|xn,wk)
ynk . (2.5)

The probability of a single data sample belonging to class Ck is now given by a multi-

nomial distribution [13]. This is the reason why the multi-class variant is also known as

multinomial logistic regression [13].

We now show how to apply MLE to train a logistic regression model. First, we apply the

logarithm on the previously defined multinomial distribution in equation 2.5 and get the

log-likelihood function:

ln p(Y |X,W ) =

N∑

n=1

K∑

k=1

ynk ln p(Ck|xn,wk). (2.6)

To get an error measure of how well the estimated distribution matches the given dataset,

the maximization problem is turned into a minimization problem by changing the sign. To

make the objective function independent of the number of data samples N , we compute

the average negative log-likelihood. Consequently, the objective function to be minimized

is given by

L(W ) = − ln p(Y |X,W ) = −
1

N

N∑

n=1

K∑

k=1

ynk ln p(Ck|xn,wk), (2.7)

which is also known as the cross-entropy error [13].

Since the specified loss function L(W ) is non-linear with respect to the unknown model

parameters W , a closed-form solution is not available. However, we can rely on gradient

based optimization techniques [13] to set the model parameters according to

W ∗ = argminW L(W ).

The gradient of L(W ) with respect to the parameters belonging to a certain class k is

defined by

∇wk
L(W ) =

N∑

n=1

(

fk(xn,wk) − ynk

)

φn(xn). (2.8)

We will discuss gradient based optimization shortly but, first, we introduce the concept of

basis functions.
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Figure 2.2: The left plot shows the input space x and data samples from two classes
labeled red and blue. The right plot shows the same data points transformed into the
features space (φ1, φ2) together with the linear decision boundary in black. The black
curve in the left plot corresponds to the decision boundary in the input space. Image

taken from [13].

In this section, we showed a detailed derivation of the logistic regression classifier from a

probabilistic perspective because its understanding is important in many chapters through-

out this work.

2.2.3 Basis Functions

We already mentioned that basis functions can be used to perform a non-linear transforma-

tion of input features, but we did not explain why this is helpful to perform classification.

Basis functions allow the representation of input features to be changed. This is useful

if the input features are not linearly separable. By applying non-linear basis functions,

the resulting decision boundary will be linear in feature space φ(x) but non-linear in the

original space x. Figure 2.2 shows an example where the data samples can be separated

by a linear decision boundary in feature space but not in input space. [13]

In this thesis, we model the basis functions using neural networks [13]. To be more exact,

we use CNNs [21] to perform a non-linear transformation of input images into feature

space.

We will now continue with optimization before we discuss neural networks in more detail.
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2.3 Optimization

Optimization is about making a system as good as possible measured by an objective

function. In our case, we want to optimize machine learning models, so they best fit our

target task, namely pixel-level classification of images.

We will now first derive the objective function from another perspective, to see that the

maximum likelihood solution of logistic regression is equal to minimizing the distance

between the data and the model distribution. Later, gradient descent will be introduced,

which is used to optimize the objective function. Finally, we discuss overfitting, which

occurs when the model works well on the training set but not on new unseen data.

2.3.1 Objective Function

The goal of the training process is to select the model parameters, so that the produced

predictions match the true class labels as close as possible.

For that, we can make use of probability theory and specify our machine learning model

as the model distribution q(x) and the images with according class labels as the data

distribution p(x). The goal can now be reformulated by minimizing the distance between

the model distribution q(x) and the target distribution p(x). However, we do not have

access to all images of the target distribution p(x), but we have an approximation given

by labeled data (the training set).

The Kullback-Leibler divergence DKL(p||q) measures the distance between two distribu-

tions and is defined in equation 2.9. The equation shows that the Kullback-Leibler diver-

gence consists of the entropy H(p) and the cross-entropy H(p, q).

DKL(p||q) =
∑

x∈X

p(x) ln
p(x)

q(x)

=
∑

x∈X

p(x) ln p(x)−
∑

x∈X

p(x) ln q(x)

= −H(p) +H(p, q) ≥ 0

(2.9)

As a result of the Gibbs’ inequality, the Kullback-Leibler divergence is guaranteed to be

non-negative. Consequently, DKL(p||q) is equal to zero if and only if the probability values

p(x) and q(x) are equal for all elements x ∈X. [30]
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Therefore, to learn the model parameters, the goal is to minimize the Kullback-Leibler

divergence between the target distribution p(x) and the learned distribution q(x). Since

the entropy H(p) does not depend on the model parameters, it can be neglected. Only the

cross-entropy H(p, q) depends on the model parameters. Hence, the objective is defined

by minimizing the cross-entropy H(p, q), which is equal to the MLE solution of logistic

regression

L(W ) = − ln p(Y |X,W ) = −

N∑

n=1

K∑

k=1

ynk ln p(Ck|xn,wk). (2.10)

Knowing that the loss function is defined by the difference between the model and the data

distribution is an interesting insight, thus it allows us to measure how well the trained

model already fits our given training and test data.

2.3.2 Gradient Descent

A simple approach to find the minimum of a given objective L(W ) would be to try for

several values of W and then selecting the one that leads to the smallest function value

of L(W ). However, this is very inefficient. A better approach is to make steps in the

negative direction of the gradient ∇L(W ) at the actual function point W .

Gradient descent [13], or also known as steepest descent, can be used to find the model

parameters according to

W ∗ = argminW L(W ).

For that, the model parameters are iteratively updated using the following equation

W (τ+1) = W (τ) − α∇L(W (τ)), (2.11)

where α represents the step size of the update step. The model weights are updated until a

convergence criterion is satisfied, for example, the estimated loss L(W ) does not decrease

anymore.

In cases where a huge amount of training data is available, performing a single update step

using all samples is impossible because of memory limitations. Therefore, online learning

can be employed to update the model parameters. In an online setup, the gradient ∇L(W )
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is defined by a subset of N training samples.

∇L(W ) =

N∑

n=1

∇Ln(W ) (2.12)

If the function L(W ) is convex and a minimum is found, then it is guaranteed to be a

unique one. However, for non-convex functions it is not guaranteed anymore that the

found minimum is a global one.

A common optimization method to train CNNs is stochastic gradient descent (SGD) with

momentum [31]. SGD is an online version of gradient descent where either one or several

training samples are randomly selected to perform the update steps. The update rule of

SGD is defined by

V (τ+1) = µV (τ) − α∇Ln(W
(τ))

W (τ+1) = W (τ) + V (τ+1),
(2.13)

The momentum term V remembers previous updates and helps to escape local minima or

saddle points.

We now know the objective of our problem and how to optimize our model. Nevertheless,

during training, we optimize the objective using a finite training set, but the final goal is to

perform predictions on new unseen data, which are not covered by the objective function.

In the next section, we fill discuss overfitting, which describes the behavior when the model

works well on the training set but not on unseen data.

2.3.3 Overfitting

In machine learning, we estimate the model parameters using a finite set of training sam-

ples. However, since we are interested in a model that performs predictions on future data,

we need to ensure that the model generalizes well to unseen data. If a model performs

well on the training set but poor on unknown samples, then overfitting occurs. Common

approaches to avoid overfitting are early stopping, regularization and data augmentation.

[13]

Early Stopping

To measure if the model overfits, we can split the given dataset into train and test

sets. The test set is used to determine the performance on new unseen data and is
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not directly used to update the weights. Only the training set is used to modify the

parameters. During training, we compare the classification error on the training and

test and when the accuracy on the test set starts to decrease, then the training is

aborted to prevent overfitting. This procedure is known as early stopping. [13]

Regularization

In addition, to avoid overfitting a regularization term [13] is usually added to the loss

function. Typically, extreme parameter values are observed when overfitting occurs.

Thus, the norm of the weight values can be included into the loss function, so the

weights are favored to be in a reasonable range. The regularized objective to be

minimized is then given by the cross-entropy and the norm of the parameters.

L(W ) = − ln p(Y |X,W ) = −
N∑

n=1

K∑

k=1

ynk ln p(Ck|xn,wk) + λ‖W ‖22

The influence of the regularization term and, consequently, the ability of the model

to adapt to the training set can be controlled by the parameter λ.

Data Augmentation

Data augmentation is often employed to virtually increase the number of data sam-

ples for training. Augmenting data samples is done by randomly applying a pre-

defined set of transformations on the training data. For example, in image classifica-

tion, the data samples might be flipped or rotated randomly to increase the training

set size.

2.4 Feedforward Networks

In this chapter, we discuss feedforward networks, in particular multilayer perceptrons

(MLPs) which are the basis of CNNs, and show how to estimate the parameters.

2.4.1 Multilayer Perceptron

A MLP is a feedforward network [13] and consists of at least three connected layers,

whereby each layer comprises multiple neurons. A single neuron is of the form as specified

in equation 2.14, where h(.) denotes a non-linear activation function and φ(x) is a vector
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Figure 2.3: Network architecture of a 2-layer neural network with 3 input, 4 hidden and
2 output neurons. Image taken from [32].

of basis functions, which are weighted using the coefficients given in vector w.

f(x,w) = h

(
M∑

j=1

wjφj(x) + w0

)

(2.14)

We already described a model that fulfills the form of a single neuron, namely the logistic

regression classifier. The difference between logistic regression and a single neuron is that

neurons apply adaptive basis functions, whereas the logistic regression model makes use

of fixed basis functions.

MLPs are not limited to the task of classification, it is even possible to perform a regression

task by using a linear activation function in the output layer. [13]

A neural network puts together several neurons, so that each output of a neuron can be

the input of another neuron. The only restriction is that loops are not allowed. Therefore,

the graph which represents the connectivity, has to be directed and acyclic. An illustration

of a small neural network is shown in figure 2.3. The connections reflect which neurons

are the input of other neurons. The layer on the left side is called the input layer and is

usually clamped to given data. The middle layer is the hidden layer and adds additional

non-linearity to the neural network. The layer on the right side computes the output values

of the network. Based on the fact that a single neuron in a network takes inputs of several

other neurons, feedforward networks are able to apply many non-linear transformations to

represent the data in feature space. [13]

Until now, we only mentioned the softmax function as a non-linear activation function,

though there exist others as well, like sigmoid or hyperbolic tangent. In recent years, the

rectified linear activation function [16], which is defined as h(ak) = max(0,x), is often

used since it offers the required non-linearity as well as a fast computation compared to

sigmoid or hyperbolic tangent. Some activation functions are illustrated in figure 2.4.
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(a) Sigmoid (b) Hyperbolic Tangent (c) Rectified Linear Unit

Figure 2.4: This figure shows the sigmoid, hyperbolic tangent and rectified linear unit
activation functions. Images taken from [32].

The non-linearity is important, because otherwise the neural network would only reflect a

linear transformation of the input features, which could also be realized using a network

without hidden layers.

2.4.2 Parameter Estimation

To estimate the parameters of a feedforward network, we again apply MLE and re-use the

probabilistic model that we applied for logistic regression.

The difference between neural networks and linear models like logistic regression is that

neural networks use adaptive basis functions, which can be learned from data. Conse-

quently, also the gradients with respect to the parameters of the basis functions, or more

specifically the incoming neurons, have to be estimated using the chain rule as follows.

∇L(W ) =
1

N

N∑

n=1

K∑

k=1

(

fk(x
(n),W ) − y(n)

)

∇W fk(x
(n),W ). (2.15)

To implement the chain rule efficiently, the gradients are computed in a specified order,

namely from output layer to input layer. Because of that, the estimated gradients of the

preceding layers can be re-used by successive layers. This is also known as the backprop-

agation algorithm. [13]

The procedure to train a feedforward neural network is given in algorithm 1. We can again

apply gradient descent to estimate the parameters of the neural network.

Dropout: To reduce overfitting of feedforward networks, a method called dropout was

proposed by Krizhevsky et al. [16]. Dropout is used during training to randomly set the

output values of neurons to zero. For that reason, neurons cannot fully rely on the outputs

of other neurons and, as a result, they have to compensate the missing neurons.
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Algorithm 1 Training Feedforward Networks using Backpropagation [13]

Initialize weights W

while not converged do

Forward pass to compute p(Ck|X,wk) = fk(X,w)

Backward pass ∇L(W ) via chain rule to get the gradient for each weight

Update parameters W (τ+1) ←W (τ) − η∇L(W (τ))

end while

2.5 Convolutional Networks

A key property of images is that nearby pixels are more correlated than distant ones.

CNNs [21] exploit this property and can be applied more efficiently compared to fully

connected feedforward networks. We will now describe the basic concepts of CNNs and

further discuss different layer types.

2.5.1 Convolution

The two basic concepts, namely receptive field and weight sharing, enables this type of

network to be applied as convolution. We discuss them next.

Receptive Field: Standard feedforward networks do not restrict the number of input

neurons and typically comprise a large number of parameters. This can be problematic

with images. For example, if the input of a neural network is an image, then the network

contains a weight for each single pixel. This does not scale well to large images. CNNs

exploit that neighboring pixels contain more information of each other than distant ones

and, thus, restrict the input neurons to smaller regions. The restricted area is called

receptive field and is illustrated in figure 2.5(a). [32]

Weight Sharing: Another property of images is that the probability of a pattern occur-

ring in an image is mostly independent of its position. Thus, CNNs also share the weights

of the receptive fields over the whole image.

Convolution: Both concepts, receptive fields and weight sharing, lead to a more efficient

model because of the reduced number of parameters. In addition, evaluating the neurons

can be formulated as a convolution and computed efficiently on GPUs.
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(a) Receptive Field (b) Example Architecture

Figure 2.5: Figure 2.5(a) shows the receptive field and the generated output values.
Figure 2.5(b) shows a convolutional neural network with neurons arranged in three di-
mensions (width, height, depth). Each layer transforms a 3-dimensional blob into another
3-dimensional blob. Width and height corresponds to the dimensions of the input and

depth depends on the number of feature maps. Images taken from [32].

Figure 2.6: The figure shows a typical stage of a CNN in which convolution, non-linearity
and pooling layers are applied sequentially. Image taken from [33].

2.5.2 Layer Types

Another important aspect of CNNs are different layer types like pooling, non-linearity and

convolution, which can be stacked arbitrary on each other. Figure 2.6 illustrates a typical

stage of a CNN. We will describe these types next.

Convolution

The convolution layer computes the linear combination of input neurons and model weights.

If the network is applied to images, then the convolution is typically applied on a 3-

dimensional input blob which creates a 2-dimensional output blob. State-of-the-art net-

work architectures [16, 17] apply several filters per layer, so the resulting output feature

map consists of three dimensions again, as shown in figure 2.5(b).

Non-Linearity
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A non-linearity layer applies the activation function on the input layer. The same activation

functions as already described earlier, like sigmoid, hyperbolic tangent or rectified linear

unit, are typically applied.

Pooling

Pooling is applied to a restricted number of input neurons and usually a maximum, sum

or average is computed over that area. In addition, a step size (also called stride) can be

defined, so the resulting output map consists of less dimensions as the input layer. Pooling

introduces translation invariance, allows to reduce the dimensions of the feature space and

is able to decrease the computational costs.

2.6 Deep Neural Networks

In this section, we mention some other deep neural network variants and list state-of-the-

art convolutional network architectures [16, 17, 34], that are commonly used in computer

vision. Afterwards, we describe how present methods overcome the need of large-scale

datasets.

2.6.1 Deep Neural Network Variants

We have already introduced deep learning in chapter 1 and mentioned CNNs. Further-

more, there exist also other deep learning variants, like autoencoders [35], deep Boltzmann

machines [36] and deep belief networks [37].

However, taking a look at state-of-the-art image recognition methods [2, 4–6, 16], these

methods are hardly observed and, therefore, are not discussed here. In this thesis, we focus

on CNNs [21] with deep architectures.

2.6.2 Deep Convolutional Architectures

Actual state-of-the-art methods in image recognition [2, 4–6, 16] rely on CNNs with deep

architectures, like VGG [17], AlexNet [16] or GoogleLeNet [34].

These architectures have in common that they stack different layer types, like pooling,

convolution and non-linearity, but they vary in the kernel sizes, number of layers, or in the

order of layers. Figure 2.7 illustrates an example of a deep architecture.
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Figure 2.7: Illustration of the AlexNet [16]. The architecture consists of five convolu-
tional layers with subsequent non-linearity and pooling layers, and three fully connected

layers on top. Image taken from [33].

Compared to AlexNet [16], the VGG-16 architecture uses stacks of several convolution

layers with smaller filter kernels, instead of single layers with large filters. This reduces

the number of parameters while maintaining the same receptive field size. For example,

applying three convolutions with kernels of size 3 × 3 leads to the same receptive field as

filtering with one 7 × 7 kernel (assumed the feature maps are padded properly), but the

overall number of parameters to estimate reduces from 49 to 27. [17]

Due to the millions of parameters these networks comprise [16, 17, 34], they have a high

model complexity and are able to learn rich features [19, 38]. Nevertheless, they are also

prone to overfitting, which is compensated by training on large-scale datasets like ImageNet

[28].

For many applications labeled data is scarce or even not available. However, studies

[19, 38, 39] showed that the learned features from large-scale datasets can be re-used for

other tasks. This is achieved via transfer learning, which we will discuss next.

2.6.3 Feature Extraction and Finetuning

Learning representative features from large-scale datasets like ImageNet [28] and transfer-

ring them to other recognition tasks, like object detection or semantic segmentation, using

a smaller set of training samples, is important for several machine learning applications.

Transferring the learned feature representation helps to speed up the training process and

to improve generalization. [19, 38, 39]
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We will now discuss the different variants to perform transfer learning using pre-trained

models. Pre-trained models are publicly available and do not need to be trained from

scratch.

Feature Extraction

To perform feature extraction, the final layer of a pre-trained model has to be re-

moved. The remaining layers are then used as a feature extractor, where the new top

layer represents the feature vector. At training, feature vectors are extracted from

all training samples and, afterwards, a linear classifier, like linear support vector

machine (SVM) or Logistic Regression, is trained on that features. This method is

useful if only a few labeled samples are available. [38]

Finetuning

The second method also removes the last layer of the CNN but adds a new layer

that is designed for the target task (e.g. regression or classification). The resultant

network architecture is then jointly retrained using labeled samples. Usually, the

last layer has set a higher learning rate as the lower ones, because otherwise the rich

feature representation of lower-layers might be discarded. [19]

Feature Mapping

Feature Mapping is about transfer learning if the feature types of the source and the

target task differ.

Recent work [40] already successfully showed that a pre-trained ImageNet model can

be finetuned to perform object detection and semantic segmentation using RGB-D

images. For that, first, sets of feature channels are defined and each set is restricted

to have the same number of feature channels as the source model. Like in the case

of a pre-trained RGB ImageNet model, the number of channels is restricted to three.

Afterwards, at training, the network is first initialized using the pre-trained RGB

color model and further finetuned using the new data channels.

Even though the feature channels are different from the RGB color channels, finetun-

ing from a pre-trained ImageNet model works better as training the network from

scratch. The reason for that is because of other feature channels also contain similar

low-level and high-level dependencies, like edges or higher level object correlations

[40].
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2.7 Chapter Summary

In this chapter, we discussed related work and theory that is relevant for the understanding

of later chapters. The chapter started with an introduction of machine learning basics

before the logistic regression classifier was specified in detail. This classifier is fundamental

for feedforward networks because a single neuron is specified by a function form that is

equivalent to the one of logistic regression. We concluded this chapter with a description

of CNNs, which are a specialization of feedforward networks, and transfer learning using

pre-trained ImageNet models.
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In this chapter, we begin by defining a probabilistic framework for the task of semantic

segmentation, in which the probability of a label assignment for a single pixel is modeled

by a convolutional neural network (CNN). Afterwards, we describe a method to apply

CNNs more efficiently by transforming the architecture into a fully convolutional network.

Further, we propose a modified network architecture to improve the detection accuracy

for objects at small scales.

3.1 Probabilistic Framework

As we already know, the task of semantic image segmentation is to assign a category label

to each pixel of a given image. We can also formulate this as a classification problem, in

which we have given an image and the goal is to predict a class label for each pixel.

27
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To perform classification, it is useful to make use of probability theory. The probabilistic

view allows us to measure the uncertainty of predictions using probability values and to

learn the model parameters via maximum likelihood estimation (MLE).

For that reasons, we will now specify a probability distribution p(y|x) that estimates the

probability of a specific label assignment y given an input image x with M pixels.

p(y|x) =

M∏

m=1

p(ym|x). (3.1)

The probability p(y|x) represents the uncertainty of the joint label assignment and p(ym|x)

corresponds to a single label assignment ym to pixel xm. In this thesis, we make use of

CNNs to model the probability p(ym|x), in which the output units are given by a multi-

nomial logistic regression classifier. We already introduced the logistic regression classifier

in chapter 2 and showed the derivation from a probabilistic perspective. Therefore, inte-

grating the CNN into our probabilistic framework is straightforward.

In this chapter, the neighboring class labels ym are assumed to be independent and identi-

cally distributed. This simplifies training and inference because the joint distribution of the

complete assignment factorizes into a product of the individual probabilities (as specified

in equation 3.1). However, if one takes a closer look, it is obvious to see that neighboring

class labels are related because adjacent pixels that have similar color intensity are also

likely to be of the same class. For that reason, we study a structured approach, where the

conditional independence assumption of neighboring labels is relaxed, in chapter 4.

In this section, we defined semantic segmentation from a probabilistic perspective. This

allows us to measure the uncertainty of the predictions using probability values and to use

MLE to estimate the model parameters.

3.2 Parameter Estimation

Since we now know how to compute the probability of a label assignment given an image,

the next step is to infer the model parameters. In this section, we derive a learning

objective with respect to the model weights and estimate the gradient, so we can make

use of stochastic gradient descent (SGD) for optimization.

The goal of parameter estimation is to learn the unknown data distribution. The unknown

data distribution is approximately given by the labeled training images. We assume that

the given data samples are independent and identically distributed and, thus, the joint
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probability p(Y |X) of the training data is given by the product of the individual proba-

bilities p(y(n)|x(n)) for each image x(n).

p(Y |X) =

N∏

n=1

p(y(n)|x(n)) (3.2)

Substituting the probabilities for each single label y
(n)
mk and using the one-of-k encoding

scheme leads to the joint distribution given by

p(Y |X) =
N∏

n=1

M∏

m=1

K∏

k=1

p(Ck|x
(n))y

(n)
mk , (3.3)

where the matrix X contains the set of N input images and Y holds the corresponding

labels. For simplicity, we define that all training images are of equal size M .

Given the probability distribution of the data samples, the loss function can now be spec-

ified by the cross-entropy error function, which is

L(X,Y ,W ) = −
1

N

N∑

n=1

M∑

m=1

K∑

k=1

y
(n)
mk ln fmk(x

(n),W ), (3.4)

where y
(n)
mk is the target value given in the training data and fmk(x

(n),W ) is the softmax

output of the CNN for pixel m belonging to class k. We compute the average over all

training instances, so the objective is independent of the number of samples.

Since we now derived the objective function of the model parameters, the next step is to

compute the gradient and to define the optimization procedure.

The gradient of the objective is given by the difference of the estimated probability of our

model and the ground truth, scaled by the gradient determined using the chain rule.

∇wk
L(W ) =

1

N

N∑

n=1

M∑

m=1

(

fmk(x
(n),w) − y

(n)
mk

)

∇wk
fmk(xu,w). (3.5)

CNNs represent a non-linear mapping of input to output values. Therefore, a closed form

solution cannot be computed, but gradient based optimization methods can be applied to

minimize the objective function. In this work, we use SGD [31], which we already discussed

in chapter 2. The loss-function to be optimized is non-convex too and, as a consequence,

if a minimum is found, it is not guaranteed to be a global one [13]. Nevertheless, deep
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Figure 1. Fully convolutional networks can efficiently learn to
Figure 3.1: Fully convolutional networks perform end-to-end inference and learning at

pixel-level. Image taken from [4].

networks are less prone to stuck in local minima than shallow ones, and usually repeating

the training process several times leads to almost the same solutions [41].

In this section, we showed how to estimate the model weights using gradient based opti-

mization. Evaluating a CNN for each single label assignment ym can be quite computa-

tionally demanding. Therefore, we follow the approach by Long et al. [4] and convert the

CNN into a fully convolutional network to speed up the computation. We will discuss this

method in the next section.

3.3 Fully Convolutional Networks

A simple implementation to perform semantic segmentation with CNNs is to compute

the whole network for each output pixel but this is computationally expensive. Since the

receptive fields of each single output pixel overlap significantly, the CNN can be evaluated

much more efficiently using fully convolutional networks, as shown by Long et al. [4].

Currently, the best performing state-of-the-art semantic image segmentation methods [5–

8] rely on fully convolutional networks [4]. These networks are able to produce dense

pixelwise predictions of arbitrary sized inputs and can be trained end-to-end, pixels-to-

pixels. Furthermore, these networks build upon CNNs for image classification [16, 17, 34],

which allows to re-use the rich feature representations from pre-trained models [19] and to

further finetune them to the task of semantic image segmentation.
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Figure 2. Transforming fully connected layers into convolution
Figure 3.2: Transformation of a classification network into a fully convolutional network.
The fully connected layers have to be replaced by convolution layers with a kernel of size

1× 1. Image courtesy of [4].

Figure 3.1 illustrates end-to-end inference and learning with fully convolutional networks.

The forward pass computes the per-pixel class probabilities and the backward pass com-

putes the gradient of the loss function with respect to the model parameters. [4]

In the next section, we describe how to convert a CNN, that is designed for the task of

classification, to a fully convolutional one.

3.3.1 From Classification to Dense Prediction

A simple implementation to perform semantic segmentation with CNNs is to compute the

whole network for each output pixel, but this is computationally expensive. As shown

by Long et al. [4], when the receptive fields overlap significantly, the forward as well as

the backward passes could be applied more efficiently if the computation is performed

layer-by-layer over the complete image instead of patch-by-patch.

To convert a CNN to a fully convolutional network, the fully connected layers at the top

of the network have to be replaced by convolutional layers with a kernel size of 1 × 1. A

convolutional layer with a filter size of 1 × 1 is equal to a fully connected layer, but the

network can be applied to arbitrary sized input images. This is also represented in figure

3.2. [4]

We have now discussed how to improve the runtime by transforming a classification network

into a fully convolutional network. However, these networks produce coarse output maps,
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which are much smaller than the input image. To resolve this issue, we discuss some

methods in the next section.

3.3.2 Handling of Course Output Maps

The resultant output images of fully convolutional networks have a lower resolution than

the input image. This is because of the max-pooling layers that are applied with a stride

larger than one. To overcome this issue, several approaches exist. [4]

In [42] a method called shift-and-stitch is presented. They compute coarse output maps

at several positions of the input image. More precisely, if the downsampling factor of

the resultant predictions is equal to f , then the coarse output map is computed at every

position (x, y) ∈ {0, ..., f − 1} × {0, ..., f − 1}. Afterwards, the estimated predictions are

interlaced to get the final class assignments.

The method proposed by [4] makes use of deconvolution to refine the predictions. The

coarse output map is not just bilinear up-sampled by a fixed filter, instead, the upsampling

filter weights are learned from data.

Chen et al. [5] decrease the stride in upper max-pooling layers to reduce the downsampling

factor of the feature maps, but to retain the same receptive field, it is required to adapt

the filter sizes of subsequent layers. For example, if the stride of a max-pooling layer

gets decreased by a factor of two, then the kernel size of all subsequent layers has to be

doubled. Since the reduced stride increases the computational costs, they apply the hole

algorithm [43], which we will describe in the next section. Additionally, they perform a

bilinear upsampling of the coarse output map and apply a graphical model [24] to align

the predicted object boundaries to the edges seen in the input image.

In this work, we re-use the idea by Chen et al. [5]. This method achieves state-of-the-art

accuracy while being efficient in terms of runtime and memory. In the next section, we

describe the hole algorithm and in chapter 4 the graphical model.

3.3.3 Efficient Dense Evaluation

To speed up the computation in higher-level layers of the fully convolutional network, we

use the hole algorithm [43], as proposed by Chen et al. [5]

The idea of the algorithm is to apply the convolutions not in a dense manner, instead,

holes are incorporated to reduce the number of operations. This is done by increasing the
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Input stride

Output stride

Figure 3.3: Illustration of the hole algorithm. In this example, the kernel size is equal
to five, the input stride is two and the output stride is one. Image courtesy of [5].

input stride of the kernel, while the output stride remains the same. The hole algorithm

is illustrated in figure 3.3.

3.3.4 Receptive Field Tuning for Small-scaled Objects

The right selection of the network architecture is crucial for a semantic segmentation

algorithm because it has a significant influence to the accuracy. Recent studies achieved

the best results using the VGG-16 architecture. [4, 5, 17]

One drawback of the VGG-16 architecture is that it lacks in recognizing small-scaled

objects because of the max-pooling operations. Pooling layers reduce the dimensions of

the feature space, which leads to aliasing effects if the scale of the objects is too small.

Since we are also interested in performing semantic segmentation of aerial images, in which

objects may only be of a few pixels in size, we have to resolve this issue. Therefore, we

adjust the DeepLab-LargeFOV [5] architecture, which is based on the VGG-16.

The two modifications are: (1) The stride of the pool3 is set to one. (2) The hole

algorithm is applied to subsequent convolution layers from conv4 1 to fc6.

The modified architecture reduces the downsampling factor while maintaining the receptive

field and the computational efficiency. In addition, finetuning from a pre-trained image

classification model is still supported. In figure 3.4, we illustrate the results using the

DeepLab-LargeFOV and our modified architecture.
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(a) Input image (b) Ground truth

(c) DeepLab (d) Ours

Figure 3.4: The images illustrate the segmentation results using the DeepLab-LargeFOV
network and our proposed architecture. Figure 3.4(a) and 3.4(b) show the input image and
the ground truth annotation. Figure 3.4(c) shows the aliased results using the DeepLab
architecture and figure 3.4(d) shows our approach with the improved detection accuracy

at small-scaled objects.
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3.4 Chapter Summary

This chapter started with a definition of a probabilistic framework for semantic segmen-

tation, where we assumed neighboring pixels to be independent. The probabilistic view

allows us to perform inference and learning with tools provided by probability theory.

A simple approach to perform semantic image segmentation would be to evaluate a CNN

for each single output pixel, but this is computationally expensive. Therefore, we make

use of fully convolutional networks to overcome this issue.

In addition, we discussed methods to deal with coarse output maps generated by fully

convolutional networks. We provided a description of the hole algorithm, which allows a

more efficient evaluation of the network, and described a modified version of the DeepLab

architecture to reduce the aliasing effects at small-scaled objects.
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We already know that neighboring pixels tend to correlate with each other. However,

in the previous chapter, we assumed neighboring class labels to be independent to ease

learning and inference.

In this chapter, we perform structured prediction and learning, where we relax the inde-

pendence assumption of adjacent class labels. The goal of structured prediction is to infer

a joint label assignment for a given image, instead of scalar individual class labels for each

pixel. For that, we make use of graphical models, in particular conditional random fields

(CRFs) [24], to model the dependence between pixels.

Chen et al. [5] showed that applying the fully connected CRF by Krähenbühl and Koltun

[25] on top of a fully convolutional network leads to state-of-the-art accuracy. The proposed

method by Chen et al. is illustrated in figure 4.1.

The fully connected CRF [25] is able to capture fine edge details as well as global depen-

dencies. Figure 4.2 shows the confidences of the deep neural network (DNN) for the class

plane and how these are sequentially refined by the CRF.
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3: Model Illustration. The coarse score map from Deep Convolutional Neural Netw
Figure 4.1: Structured prediction with fully convolutional networks. A given input
image is passed through the neural network. Afterwards, the coarse score map has to be
rescaled to match the input image size. Finally, the fully connected CRF [25] is applied

to reduce alignment errors. Image courtesy of [5].

Image/G.T. DCNN output CRF Iteration 1 CRF Iteration 2 CRF Iteration 10

Figure 4.2: Illustration of the CRFs effectiveness. After each iteration the predictions
are better aligned with the underlying intensity values. Image courtesy of [5].

However, Chen et al. did not investigate into end-to-end learning of both modules. Train-

ing the model jointly has the benefit that both methods can interact with each other and,

hence, collectively minimize the objective function. Therefore, we propose an end-to-end

training, which allows to compensate for errors that are caused by both modules.

We now continue with a description of the probabilistic model, which respects the de-

pendency of adjacent labels, and discuss how to perform approximate inference. The last

section deals with parameter estimation of the graphical model and training the joint

model end-to-end.
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4.1 Probabilistic Framework

In this section, we redefine our probabilistic model from chapter 3 by considering the

conditional dependence of adjacent pixels. To model the dependency of nearby random

variables, we make use of CRFs [24].

The probability of a label assignment y given an input image x is now defined by

p(y|x) =
exp(−E(y,x))

∑

y′ exp(−E(y′,x))
, (4.1)

where the energy function E(y,x) is given by the sum over unary and pairwise terms:

E(y,x) =
∑

i

ψ(yi,x) +
∑

(i,j)∈E

ψ(yi, yj ,x). (4.2)

The unaries reflect the class uncertainty for each single pixel and are given by the fully

convolutional network, while the pairwise terms model the dependency between connected

pixels.

In this work, we follow the approach by Chen et al. [5] and model the pairwise terms as

proposed by Krähenbühl and Koltun [25]. The potentials ψ(yi, yj ,x) are defined by a label

compatibility function µ(yi, yj) and weighted feature kernels km(xi,xj), as given by

ψ(yi, yj ,x) = µ(yi, yj)
K∑

m=1

wm km(xi,xj). (4.3)

The compatibility function is defined by the Potts model µ(yi, yj) = δ[yi 6= yj ] [44], which

adds a penalty if the given class labels are different. The feature kernels are used to weight

the class compatibility via pixel-related information, like the distance between pixels or

color intensity.

The Potts model is simple and works well in practice, but it does not support a class specific

compatibility transform. For example, it is more likely for class bird and sky to be close

than cat and sky. For that reason, we will also explore to learn the class compatibilities

from data.

The feature kernels are defined in equation 4.4 and 4.5. The first kernel is a bilateral

filter [45], which considers the distance between the pixels and the intensity difference.

Consequently, minimizing the energy function encourages the predictions to be better
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aligned with the image gradients.

k1(xi,xj) = exp(−
‖pi − pj‖

2

2σ2α
−
‖Ii − Ij‖

2

2σ2β
) (4.4)

The second kernel, given in equation 4.5, adds a penalty if close by output variables are

assigned with different class labels. Therefore, this kernel hampers the existence of small

object blobs.

k2(xi,xj) = exp(−
‖pi − pj‖

2

2σ2γ
) (4.5)

Since neighboring pixels are not independent anymore, the joint probability of the label

assignments does not factorize into the individual probabilities as in chapter 3. Although,

one can easily verify that if the pairwise terms get removed in equation 4.2, the probability

defined in equation 4.1 becomes again a product of softmax functions and, thus, is equal

to the probability distribution as specified in equation 3.1. This also shows that logistic

regression is a special form of a CRF.

4.2 Structured Prediction

Since the output variables are not independent anymore, the inference task is to predict

a joint assignment of the class labels, instead of scalar ones, as in the previous chapter.

This is known as structured prediction.

4.2.1 Inference Tasks

The goal of structured prediction in semantic image segmentation is to infer a joint label

assignment y from a given image x. The typical inference tasks used in computer vision

are maximum a posteriori (MAP) and probabilistic inference, which are defined as follows.

[46]

Maximum A Posteriori Inference

Given: Dependency graph, parameterization, weight vector w and the observation x.

Goal: Find the state yMAP of maximum probability.

yMAP = argmaxy p(y|x,w). (4.6)
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Figure 4.3: This figure shows the difference between Probabilistic Inference and Max-
imum A Posteriori Inference. The task of the example provided is to classify buildings.
The images 4.3(a) and 4.3(b) show the input image and the corresponding ground truth
image. Image 4.3(c) shows the result using probabilistic inference, where probabilities
near zero and one are colored white and black respectively. Using MAP inference gives
the most probable label assignment yMAP , as shown in figure 4.3(d). Images taken from

[46].

Probabilistic Inference

Given: Dependency graph, parameterization, weight vector w and the observation x.

Goal: Find the marginal distributions for each random variable.

p(yi|x,w) =
∑

y\i

p(y|x,w), ∀i ∈ {1, . . . , N} (4.7)

The difference between these two methods is that the former estimates the mode of

p(y|x,w), whereas the latter computes the marginal probability p(yi|x,w) for each vari-

able yi. To see how these two methods differ qualitatively, figure 4.3 shows an example

where both solutions are provided. [46]

Even though MAP provides the best solution, we are interested in a possibility to trade-

off between precision and recall by varying an acceptance threshold. For that reason, we

compute the marginal probabilities for each class label instead of the MAP solution.
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4.2.2 Computational Complexity

Before starting with approximate inference, we shortly illustrate why exact inference is

intractable for the specified CRF.

It is well known that both inference problems, MAP and probabilistic inference, for general

graphs and factors are NP-hard [47]. The reason for NP-hardness is because of the sum

in the denominator of equation 4.1. It consists of all possible assignments to the output

space, which is exponentially in the number of output variables and, therefore, computing

the partition function is even for small models intractable.

Nevertheless, there are several classes of CRFs where exact inference is possible or ap-

proximate techniques can be applied [46]. For example, graph cut methods [48] can be

applied in polynomial time to solve exact inference if the random variables are binary and

the pairwise terms satisfy the submodularity condition

ψ(yi, yj ,x) + ψ(yj , yi,x) ≤ ψ(yi, yi,x) + ψ(yj , yj ,x). (4.8)

Because we are interested in the marginal probabilities rather than exact inference, we

make use of the mean-field approximation, as described next.

4.2.3 Mean-Field Approximation

Since inferring the exact marginal probabilities of the defined model is intractable, we have

to resort to an approximate inference method. Usually, variational or stochastic inference

methods are used, where the former approximates the structure of the probabilistic model

and the latter exploits sampling to compute the marginal probability values [24].

In this work, we use a variational method called the mean-field approximation [49, 50]

because it can be applied very efficiently to perform inference in fully connected models,

as proposed by Krähenbühl and Koltun [25], while still achieving state-of-the-art accuracy,

as shown by Chen et al. [5].

The mean-field approximation finds a fully-factored distribution q(y|x) =
∏

i qi(yi|x), that

is closest to the true distribution p(y|x) with respect to the Kullback-Leibler divergence

[30]. As a result, the mean-field approximation can be formulated as an optimization task,
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where the goal is specified as

q(y|x) = argminq∗DKL(q
∗||p) s.t. q∗(y|x) =

∏

i

q∗i (yi|x). (4.9)

As already discussed in chapter 2 in the context of learning probability distributions, the

Kullback-Leibler divergence [30] measures the distance between two given probability dis-

tributions. To perform the mean-field approximation, the Kullback-Leibler divergence is

used to measure the distance between the intractable distribution p(y|x) and the approx-

imate distribution q(y|x).

Minimizing the Kullback-Leibler divergence with respect to q∗(y|x) while constraining

q∗(y|x) and all q∗i (yi|x) to be valid distributions gives the update formula as specified in

equation 4.10. [25]

qi(yi|x) =
1

Zi
exp

{

− ψ(yi,x)−
∑

y′∈Y

µ(yi, y
′)

K∑

m=1

wm

∑

j 6=i

km(xi,xj)qj(y
′|x)

}

(4.10)

This update equation is used in the mean-field inference method given in algorithm 2.

Algorithm 2 Mean-field inference algorithm for fully connected CRFs [6, 25]

qi(yi|x)←
1
Zi

exp{−ψ(yi,x)} for all i ⊲ Initialization

while not converged do

q̃im(yi|x)←
∑

j 6=i km(xi,xj)qj(yj |x) for all m ⊲ Message Passing

q̌i(yi|x)←
∑K

m=1wmq̃im(yi|x) ⊲ Weighting Filter Outputs

q̂i(yi|x)←
∑

y′∈Y µ(yi, y
′)q̌i(y

′|x) ⊲ Compatibility Transform

q̆i(yi|x)← ψ(yi,x) + q̂i(yi|x) ⊲ Adding Unary Potentials

qi(yi|x)←
1
Zi

exp{−q̆i(yi|x)} ⊲ Normalization

end while

Each iteration of the mean-field algorithm consists of a message passing step, a compati-

bility transformation and an update of the local probability value. The local update and

the compatibility transformation run in linear time. Only the message passing step has a

quadratic runtime in the number of output variables because for each variable a weighted

sum over all other variables has to be computed. However, message passing can also be

performed by approximate high-dimensional filtering [25, 51] to reduce the computational

costs.
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4.2.4 Efficient Message Passing

Since message passing requires the computation of a sum for each variable over all other

variables, the computational complexity is quadratic. To make message passing more

efficient, we use the idea of Krähenbühl and Koltun [25]. They show that message passing

in a fully connected network can be reformulated as a convolution and, in the special case

where Gaussian feature kernels are used, they propose to use the permutohedral lattice

[51] to perform an efficient approximation in linear time.

We now describe why message passing in the specified fully connected model can be seen

as a convolution and, afterwards, we give more details about the permutohedral lattice.

The following equation shows the message passing step from algorithm 2 rewritten as a

convolution.

q̃im(yi|x) =
∑

j 6=i

km(xi,xj)qj(yj |x)

=
∑

j

km(xi,xj)qj(yj |x)− qi(yi|x)

= (km ∗ q(y|x))[xi]
︸ ︷︷ ︸

q̄im(yi|x)

− qi(yi|x)

(4.11)

The subtraction of qi(yi|x) is required since the convolution sums over all random variables,

whereas message passing does not include qi(yi|x).

As already mentioned, the permutohedral lattice [51] is used to perform the convolution

in linear time. The permutohedral lattice is a general method to rapidly solve equations

of the form

vi =
∑

j

exp(−
1

2
‖pi − pj‖

2)uj . (4.12)

It is easy to verify that this a more general form of the previously defined message passing

procedure, as shown in the following equation

q̄im(yi|x) =
∑

j

km(xi,xj)qj(yj |x)

=
∑

j

exp(−
1

2
‖pi − pj‖

2)qj(yj |x).
(4.13)

The processing steps of the permutohedral lattice to apply the high-dimensional Gaussian

filter can be summarized as follows. First, the input values x at positions p are embedded



Chapter 4. Structured Prediction and End-to-end Learning 45

Input Output

Splat Blur Slice

discuss each in turn.

Figure 4.4: The figure illustrates the three steps of the permutohedral lattice to perform
Gaussian filtering in features space. Image taken from [51].
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Figure 4.5: A high dimensional data structure is used to perform splatting, blurring
and slicing. In the splatting stage the position vectors are assigned to the predefined
vertices. The predefined vertices are then blurred using separable filters. At slicing, the
blurred values at the fixed points are used to interpolate the values belonging to the

output positions. Image taken from [51].

in feature space (splatting). Then, the values are blurred in feature space and, finally, the

output values are interpolated from the blurred feature space using the original positions

p (slicing). Figure 4.4 shows an example of a bilateral filter applied on a one-dimensional

input feature. [51]

Furthermore, the permutohedral lattice uses an efficient data structure to perform Gaus-

sian filtering. The data structure tiles the feature space with simplices along d + 1 axis.

The filter values are computed at the vertices of the simplices and interpolated along the

edges in between. An illustration of the high dimensional data structure is shown in figure

4.5. [51]

In addition, the separability of unit variance Gaussian kernels is exploited. Applying one

d-dimensional Gaussian filter kernel with unit variance is equivalent to make use of d one-

dimensional filters, but the runtime of applying a single one-dimensional filter reduces to

linear in the number of variables. To get unit variance kernels, a data whitening operation

is first performed in feature space. [51]

Because of using the permutohedral lattice, the approximate message passing is highly

efficient, even without using a GPU. In this work, we re-use the publicly available CPU
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compatibility function can also be optimized automatically

Figure 4.6: Figure illustrates the mean-field approximation as a stack of CNN layers.
Image taken from [6].

code [51], but to speed up the mean-field iterations and to reduce the amount of data that

has to be copied between CPU and GPU memory, we implemented a GPU version of the

splatting, blurring and slicing operations.

4.2.5 Layer-wise Representation

In this section, we take a closer look at the implementation of the mean-field approximation.

The mean-field approximation given in algorithm 2 can mostly be implemented using

standard layers of a convolutional neural network (CNN). Figure 4.6 shows a graphical

representation of the CNN layer stack. [6].

The initialization of the mean-field algorithm is implemented by a softmax layer. Message

passing is implemented by a specific layer, which applies the efficient approximation de-

scribed in the previous section. Weighting the filter outputs is achieved by a convolution

layer with a kernel of size 1 × 1, M input channels, where M is the number of feature

kernels, and one output channel for each class. It is beneficial to use one kernel weight

per category since each kernel performs differently depending on the class. Applying the

compatibility transform is done by another convolutional layer with a kernel of size 1× 1,

where the number of input and output channels are equal to L. The subtraction of unary

and pairwise potentials is represented by a simple element-wise addition layer. Finally, the

normalization is another softmax layer. [6].

One stack of CNN layers represents a single iteration of the mean-field inference algorithm.

Therefore, to perform several iterations, multiple stacks have to be added on top of each

other.

Implementing the mean-field inference as a stack of CNN layers allows to use a deep

learning framework to implement the CRF. As for fully convolutional networks, we use
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the popular deep learning framework Caffe [52] to implement the mean-field approximation

as a stack of CNN layers.

The last sections covered the inference task of the structured model. The next step is to

learn the parameters of the joint model.

4.3 Structured End-to-end Learning

The structured model, described in earlier sections, consists of several weights, which have

to be inferred from the training data. In this section, the estimation of these parameters

is discussed. In addition, the parameters of the CRF and CNN are trained jointly in an

end-to-end manner to collectively optimize the objective function. End-to-end training of

the deep neural network and the CRF allows to optimize for errors where both methods

fail.

The trainable parameters W of our specified model include the filter weights of the Gaus-

sian kernels, the class compatibilities and the neural network parameters.

As already known, the probability of a specific label assignment y given an image x using

the structured model is defined by

p(y|x) =
exp(−E(y,x))

∑

y′ exp(−E(y′,x))
. (4.14)

Again, we assume the training images to be identically and independent distributed. There-

fore, the joint distribution of all images is given by

p(Y |X) =
N∏

n=1

p(y(n)|x(n)). (4.15)

To estimate the parameters, we apply the maximum likelihood estimation (MLE) method

and compute the expected loss of the training samples, so that the objective does not

depend on the dataset size. Hence, we get the loss function, which is defined as follows.

L(W ) = − ln p(Y |X,W )

= −
1

N

N∑

n=1

ln p(y(n)|x(n))

= −
1

N

N∑

n=1

(

− E(y(n),x(n))− ln
∑

y′

exp(−E(y′,x(n)))

)

(4.16)
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The parameters that best fit the given training samples are given by

W ∗ = argminW L(W ).

Since L(W ) is a non-linear function as in the case of the unstructured model, we cannot

get a closed form solution. However, we can resort to gradient based optimization. The

gradient with respect to the parameters is specified as

∇wL(W ) =
1

N

N∑

n=1

(

p(y(n)|x(n)) − y(n)

)

∇wp(y
(n)|x(n)). (4.17)

Because the calculation of the gradient requires to infer the class probabilities p(y(n)|x(n))

for each training image, the exact computation of the gradient is intractable for the given

model. Nevertheless, we can again apply the same mean-field approximation method as

earlier to make the gradient estimation tractable.

Since we now know the gradient of the structured model, we can make use of an optimiza-

tion procedure to estimate the parameters.

To perform backpropagation of the gradients with respect to the parameters of the joint

CRF and CNN model, we follow the proposed method by Zheng et al. [6], where the CRF

iterations are represented via a stack of CNN layers.

Computing the gradients of the mean-field algorithm steps that are represented by common

neural network layers, like convolution or softmax, is done as usual. The only difference

has to be employed in the message passing layer, namely to get the gradients with respect

to the inputs of the Gaussian filter kernels, the blur kernels have to be applied in reverse

order. [6]

Since the gradients and the parameter updates are computed individually for each CRF

iteration, the parameters of the CRF have to be averaged after the parameter update, so

that all CNN layer stacks have the same weights again. [6]

To train the whole system end-to-end, the gradients of each CRF iteration with respect

to the parameters of the fully convolutional network have to be passed back to the CNN.

This is straightforward because the CRF layers that directly depend on the CNN outputs

are represented using standard convolutional network layers and, thus, backpropagation

can also be performed as usual.

In this section, we described how to estimate the parameters of the CRF and how to train

the whole system end-to-end. Using the fact that the mean-field iterations can be seen as a
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stack of CNN layers simplifies the parameter estimation of the CRF. Common deep neural

network layers can be re-used to perform the required forward and backward passes. The

only required modifications are the shared network parameters across the mean-field layer

stacks and the reverse applied blur kernels in the message passing layer.

4.4 Chapter Summary

This chapter started with a redefinition of the probabilistic framework defined in chapter

3 to consider the dependence of nearby pixels.

Afterwards, we specified the CRF that is used to model the neighbor relationships and

described how to add the CRF on top of the deep neural network. Since exact inference

of the specified model is intractable, we applied the mean-field approximation and the

permutohedral lattice to perform inference in linear time. Finally, we showed how to train

the parameters of the graphical model and the deep neural network end-to-end. For that,

we represent the mean-field algorithm as a stack of CNN layers, which allows us to perform

backpropagation as usual.
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As we already know, in many applications convolutional neural networks (CNNs) are first

pre-trained on the large-scale ImageNet dataset and then finetuned to a specific task of

interest. However, finetuning still requires a large number of labeled samples.

In this chapter, we want to address this issue by extending the finetuning process of fully

convolutional networks to make use of unlabeled data.

Since there are no studies published that rely on state-of-the-art semantic segmentation

methods in a semi-supervised setup, we explore self-learning to perform transfer learning

using labeled and unlabeled examples.

We start this chapter by discussing why unlabeled data helps, continue with a survey of

general semi-supervised learning approaches and, finally, introduce two semi-supervised

transfer learning approaches for the task of semantic segmentation.

51
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(a) Labeled Data (b) Supervised Learning (c) Semi-Supervised Learning

Figure 5.1: Illustration of how unlabeled data can help. Blue circles and red triangles
represent labeled samples, whereas green circles are unlabeled samples. Image courtesy

of [53].

5.1 How Can Unlabeled Data Help?

Before we start with an overview of existing semi-supervised learning methods, we discuss

the usefulness of unlabeled data.

Figure 5.1 shows three charts. The first contains the labeled training data, the second one

illustrates the estimated decision boundary with labeled data only and the third depicts the

improved decision boundary using additional unlabeled data. This example demonstrates

that unlabeled samples can be used to estimate the low density between classes and, hence,

to arrange the classification plane, so it better fits the given data samples. [53]

It is not guaranteed that incorporating unlabeled data always helps. In a more mathemat-

ical formulation one could say that the information in p(x) obtained by unlabeled data

has to contain information in the inference of p(y|x). [54]

To include unlabeled data, assumptions about the underlying data distribution have to be

made. For example, samples of the same class are assumed to be in the same cluster, or

the area between the classes to separate has a low density. If these assumptions do not

hold, unlabeled data may not help or even degenerate the accuracy of the learned model.

[54, 55]

Smoothness Assumption: ”If two points x1, x2 in a high-density region are close, then

so should be the corresponding outputs y1, y2.” [54]

In supervised learning it is assumed that the output varies smoothly with the distance. In

the semi-supervised setting the density of the inputs is considered too. The semi-supervised

smoothness assumption applies to both classification and regression.
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Cluster Assumption: ”If points are in the same cluster, they are likely to be of the same

class.” [54]

If one knows that the points of each class tend to form a cluster, then the unlabeled data

could provide useful information about the boundaries of each cluster. This assumption

could also be formulated as that the decision boundary between two classes should lie in

a low-density area.

Manifold Assumption: ”The (high-dimensional) data lie (roughly) on a low-dimensional

manifold.” [54]

If the high-dimensional data lies in a low dimensional manifold, then unsupervised methods

can be applied to reduce the number of dimensions. For example, this is useful for dis-

criminative methods where the distance between two points tends to become more similar

in higher dimensional feature spaces and, hence, less expressive.

5.2 Survey of Semi-Supervised Methods

This section gives an overview of existing semi-supervised learning methods. In particular,

generative models, self-learning, co-training and graph-based methods are discussed. [54,

56]

Generative Models [56] use unlabeled data to identify clusters and labeled samples to

determine the corresponding classes. To train a mixture model in a semi-supervised setting,

the EM algorithm [57] can be used. The difference to the EM algorithm in unsupervised

learning is to handle the labeled samples not as latent variables but rather setting the

proper labels, instead of summing of all possible values. An important fact is that the

cluster assumption has to be correct, because otherwise incorporating unlabeled data leads

to a degraded accuracy, as shown in figure 5.2.

Self-Learning [56] methods are able to learn new samples by itself. To perform self-

learning, a model is first trained on labeled data only. Further, the trained model is applied

on unlabeled samples and the resultant predictions are used to update the model. Making

predictions on unlabeled data and retraining the model is repeated until convergence. It

is also possible to use only the most confident samples or to weight each unlabeled sample

by the estimated confidence. Self-learning methods are simple to implement and can be

applied to almost all classifiers. A disadvantage of self-training methods is that mistakes

could reinforce themselves.
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Figure 5.2: If the assumption about the underlying model is wrong, higher likelihood
may lead to lower classification accuracy. The data samples illustrated in 5.2(a) are not
generated from two Gaussians. However, if they are assumed to be Gaussian the model
shown in 5.2(b) gets a higher probability as the one in 5.2(c), even if the accuracy in

5.2(c) is much better. [56]

Co-Training and Multi-view Learning [56] use different classifiers to teach each other

new samples. First, all classifiers are trained on labeled samples and, afterwards, the

predicted class labels on unlabeled data are used to retrain the learned models. Co-

training works because the classifiers are assumed to capture different features and, hence,

the methods are able to teach each other new training samples. As self-learning methods,

co-training methods are easy to implement and can be applied to existing classifiers. Co-

training and multi-view learning are less sensitive to mistakes than self-training.

Graph-Based Methods [56] employ a graph structure where labeled and unlabeled

samples are connected via edges. The edge weights of the graph determine if two samples

tend to have the same label. To estimate the edge weight, a similarity measure is required.

If two samples look similar, they are more likely to have the same class label. Graph-based

methods perform well if the estimated graph structure fits the task, but do badly if the

structure or weights do not reflect the underlying data distribution.

5.3 Semi-Supervised Transfer Learning

The last sections gave an overview of how unlabeled data can help and which types of semi-

supervised learning methods exist. The reader also already knows from previous chapters

how to train the parameters of a deep neural network in a fully supervised setting.

This section is about semi-supervised transfer learning. In particular, we study semi-

supervised transfer learning to finetune a deep neural network to the target task of seman-

tic image segmentation where labeling at pixel-level is expensive and, hence, extracting

additional information from unlabeled data is desired.
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We will now propose two self-learning variants to incorporate unlabeled data. These

methods can be easily integrated into the training process by extending the loss function

as described below.

To perform self-learning, we first extend the loss function of our deep neural network by

a regularization term, as shown in equation 5.1. The goal of this term is to minimize the

uncertainty on unlabeled data because if the uncertainty of predicted class labels is low,

the decision boundary is well placed between the classes. This is related to the cluster

assumption, which states that two classes are separated by an area that has low-density.

L(W ) = Ll(W ) + λLu(W )

= −
1

L

L∑

l=1

K∑

k=1

ylk ln p(Ck|xl,wk)− λ
1

U

U∑

u=1

K∑

k=1

huk ln p(Ck|xu,wk)
(5.1)

The first sum is defined over all labeled samples and the second one over unlabeled data.

The influence of unlabeled data is controlled by λ. The weight of the regularization term

is important since as we already know, unlabeled data can also harm the classification ac-

curacy. It is noted here that one could also add other regularization methods, for example,

co-training methods use the confidence values of other classifiers to regularize the train

loss.

The target values yl of the labeled samples are set to the ones given in the training data.

For unlabeled samples, we study two possible choices of their respective target values hu,

namely hard assignment and soft assignment.

Hard Assignment

Hard assignment, or also called pseudo-label [58], uses the class that has the highest

probability as target label.

hu = argmaxk p(Ck|xu,wk) (5.2)

We assume that the generated pseudo-label does not depend on the model param-

eters and, thus, the derivation of the regularization term with respect to the model

parameters has the same form as the one of labeled samples.

∇wk
Lu(W ) =

1

U

U∑

u=1

(

fk(xu,wk) − huk

)

∇wk
fk(xu,wk).
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Soft Assignment

Here, the target value is set to the estimated probability value.

hu = p(Ck|xu,wk) (5.3)

The previous assumption, that the target values are independent of the model pa-

rameters, cannot be made anymore because the gradient would be zero as shown

here

∇wk
Lu(W ) =

1

N

U∑

u=1

(

fk(xu,wk) − fk(xu,wk)
)

︸ ︷︷ ︸

=0

∇wk
fk(xu,wk).

However, if we relax the independence assumption, the second sum is now equal to

the entropy and this leads to the semi-supervised learning method called entropy

regularization [59]. We compute the gradient of the entropy with respect to the

parameters and get

∇wk
Lu(W ) =

1

N

U∑

u=1

(

fk(xu,wk)
(

ln fk(xu,wk)

−

K∑

j=1

fj(xu,wk) ln fj(xu,wk)
)
)

∇wk
fk(xu,wk). (5.4)

The different loss functions and proper derivations with respect to the model parameters

of both semi-supervised methods are shown in figure 5.3. As can be seen, soft assign-

ment leads to small parameter changes in areas where the model is unconfident about

the predicted class, whereas the gradient of the hard assignment leads to more significant

parameter updates.

The algorithm to perform semi-supervised transfer learning with deep neural networks is

given in algorithm 3. The first step is to initialize the model weights using a pre-trained

model (e.g. ImageNet). Afterwards, the model is continuously updated using the semi-

supervised learning loss given in equation 5.1. In the beginning, λ is set to zero to learn

the model using labeled data only, but λ will be increased when the model is accurate

enough to incorporate unlabeled samples. Updating the parameters is continued until the

loss (measured on a validation set) stops decreasing.



Chapter 5. Incorporating Unlabeled Data 57

0 0.5 1
0

5

10

15

Cross−Entropy Loss

L
(w

)

0 0.5 1
0

0.5

1

Soft Assignment

0 0.5 1
0

0.5

1

Hard Assignment

0 0.5 1
0

0.5

1

∂
 L

(w
) 

/ 
∂
 w

0

p(x)

0 0.5 1
−0.4

−0.2

0

0.2

0.4

p(x)

0 0.5 1
−0.5

0

0.5

p(x)

Figure 5.3: The plots show the difference between the cross-entropy loss and the two
proposed loss functions to incorporate unlabeled data. Compared to hard assignment,
soft assignment changes the model parameters less in areas where the model is uncertain

about the label the random variable belongs to.

Algorithm 3 Semi-Supervised Transfer Learning with CNNs

W (0) ←W Pre−trained ⊲ Initialize from a pre-trained model

while not converged do

p(Ck|X,wk)← fk(X,wk) for all k ⊲ Forward pass

L(W )← Ll(W ) + λLu(W ) ⊲ Compute loss

∇L(W )← ∇Ll(W ) + λ∇Lu(W ) ⊲ Backward pass

W ←W (τ) − η∇L(W ) ⊲ Update parameters

end while
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5.4 Chapter Summary

State-of-the-art methods use a pre-trained ImageNet model to initialize the weights of the

CNN and further apply transfer learning to the target task of semantic segmentation.

Since this finetuning step usually requires a large amount of labeled samples and annotating

images at pixel-level is expensive, we studied semi-supervised learning methods to reduce

the manual effort.

We proposed two self-learning methods to incorporate unlabeled data. The extension of

fully supervised CNNs is straightforward because only the loss function has to be extended.

Our empirical evaluations will show that incorporating unlabeled data can reduce the

manual effort of labeling data.
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We now turn to the last part of the thesis, the experimental evaluation of the proposed

methods. This chapter is organized as follows. At the beginning, the datasets used for

evaluation and the evaluation criteria are described. We continue by our implementation

details before we study the quantitative and qualitative results of the suggested approaches.

The chapter is completed with a runtime analysis of the CPU and GPU implementation.

The first experiment discussed herein is about applying fully convolutional networks to

the task of aerial image segmentation. The performance is measured on three different

datasets, where the first is the publicly available Toronto roads and buildings dataset [26]

and the latter two are internal datasets used by the Microsoft Photogrammetry team in

Graz. We perform a qualitative and quantitative evaluation on all three datasets. We show

that fully convolutional networks improve the state-of-the-art performance measured on

the Toronto datasets. In addition, we present promising segmentation results on internal

aerial datasets used by the Microsoft Photogrammetry team.
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(a) Buildings - RGB (b) Buildings - Labels (c) Roads - RGB (d) Roads - Labels

Figure 6.1: Example images of the Toronto roads and buildings dataset.

Further, we evaluate the end-to-end learning approach presented in chapter 4. Empirical

results verify the effectiveness of jointly training the deep neural network and the condi-

tional random field (CRF). In addition, we analyze the ability of the CRF to learn the

class compatibilities.

The last experiment in this chapter examines our semi-supervised transfer learning ap-

proach proposed in chapter 5. Different ratios of labeled vs. unlabeled data samples

are studied. The results confirm the usefulness of incorporating unlabeled data into the

training process.

6.1 Description of Datasets

In this section, the datasets used to evaluate our methods are described. All datasets

provide pixel-level annotated images for training and testing.

Toronto Roads and Buildings

The Toronto roads and buildings datasets [26] consist of aerial images with binary

label maps. The images of both datasets are of equal size and have a resolution of

1500×1500. A pixel in the image corresponds to one meter on the ground. The roads

and buildings datasets comprise 151 and 1171 images respectively. Some example

images and annotations are shown in figure 6.1.

Aerial Water Dataset

The aerial water dataset is an internal dataset used by the Microsoft Photogrammetry

team. This dataset contains aerial images with pixel-level annotated water masks.

The images are captured at five different areas: Barcelona, Bay Area, New York,

Orlando and Takamatsu. In addition to the red, green and blue color channels, this

dataset also provides the near-infrared (NIR) channel.
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(a) RGB (b) NIR (c) DSM (d) Ground Truth

Figure 6.2: Example images of the aerial multi-class dataset.

(a) Image (b) Ground Truth (c) Image (d) Ground Truth

Figure 6.3: Example images of the Pascal VOC 2012 segmentation dataset.

Aerial Multi-Class Dataset

This dataset comprises pixel-level labeled aerial images, where the classes water,

low vegetation, high vegetation, impervious surfaces, buildings and background are

annotated. It contains RGB and near-infrared images as well as a digital surface

model (DSM) (examples are shown in figure 6.2). The point of origin of the DSM is

defined by the digital terrain model (DTM).

Pascal VOC 2012 Segmentation Dataset

We use the Pascal VOC 2012 benchmark [60] to evaluate our structured end-to-

end and semi-supervised learning approaches. The dataset consists of pixel-level

annotated images with 20 foreground classes labeled. The training, validation and

testing splits contain 1,464, 1,449 and 1,456 images respectively. Moreover, we use

additional pixel-level annotations provided by [61] to get a total number of 10, 582

training images. Examples are shown in figure 6.3.

6.2 Evaluation Criteria

To quantitatively evaluate the performance of our proposed semantic image segmentation

methods two measures are used, precision vs. recall and intersection over union (IoU). Both
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methods are justified to be used for evaluation and each method has its own advantages.

Assessing segmentation results of aerial images is usually performed by the precision vs.

recall measure [26, 62], whereas studies evaluated on the Pascal VOC dataset make use of

use the IoU measure [60].

6.2.1 Precision vs. Recall

This method allows to trade-off between precision and recall by varying an acceptance

threshold. A higher threshold leads to more correctly classified pixels but reduces the

number of relevant instances that are retrieved.

Precision defines how many of the discovered class labels are correct:

Precision =
TP

TP + FP
(6.1)

Recall defines the number of correct labels that are actually found:

Recall =
TP

TP + FN
(6.2)

To compare different methods, we also report the break-even point where precision and

recall are equal.

Relaxed Precision and Recall: Since the ground truths of the publicly available roads

and buildings dataset are only accurate up to a few pixels [26], relaxed precision and recall

scores are computed. It is common practice to perform such a relaxation when evaluating

road detection systems [62]. The relaxed precision is given by the fraction of predicted

road pixels that are within p pixels of a true road pixel, and the recall represents the

fraction of true road pixels that are within p pixels of a predicted road pixel. In all our

experiments, in which precision and recall is used, p is set to 3 pixels.

6.2.2 Intersection over Union

The intersection over union score is often used to compare multi-class semantic segmenta-

tion methods [60]. The IoU measure is defined as follows

IoU =
TP

TP + FP + FN
. (6.3)
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Compared to precision and recall, the IoU score results in lower scores because it considers

true positives, false positives and false negatives. To evaluate the performance of multi-

class datasets, we first compute the IoU measure for each class separately and, afterwards,

compute the mean of all class scores.

6.3 Implementation Details

We now continue with the implementation details associated with all experiments.

Deep Learning Framework

We implemented the fully convolutional network as well as the CRF by extending the

publicly available Caffe framework [52]. The framework is also used by most state-

of-the art semantic image segmentation methods [4–6, 8]. The framework supports

GPU acceleration and cuDNN [63], which gives an additional performance boost

when running on NVIDIA GPUs. Since Caffe is officially only supported on Linux,

we first had to port the source code to Windows.

Data Preprocessing

For training and inference, we transform each single input channel to have zero-mean.

The mean values are estimated for each dataset and input channel independently on

the training set.

Training and Inference

During training we augment the data by randomly cropping and flipping patches

from labeled images. [16]

To optimize the objective function, stochastic gradient descent (SGD) is used. The

weight decay and momentum are set to 0.0005 and 0.9. The learning rate is dropped

by a factor of 10 after the number of iterations specified by the step size. The batch

size, learning rate, number of iterations and step size are model dependent and are

described in each experiment.

Finetuning from a pre-trained ImageNet model is done by replacing the top fully

connected layer. The learning rate of the new classification layer is set ten times

higher as the base learning rate used for all other layers. Finetuning is performed by

adapting all weights jointly.

Hyper-parameters are estimated using the training and validation sets to avoid an

adaptation of the model to the test set. For each hyper-parameter setting we first

train on the training set and test on the validation set. Afterwards, we select the
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best setup and train the final model using the data included in the training and

validation set. The final performance is measured on the test set.

To perform inference using the defined CRF, five mean-field iterations are applied.

6.4 Deep Neural Networks for Aerial Image Labeling

In this section, we show that state-of-the-art semantic image segmentation methods, which

are tuned to perform predictions on images of general scenes, can be successfully adjusted

to the task of aerial image labeling.

This section starts with aerial imagery related implementation details, before discussing

the results on various aerial datasets.

6.4.1 Tile-based Processing

Aerial images are typically larger in size and, as a consequence, inferring the class labels of

the whole image in one forward pass is impossible because of the GPU memory limitations.

To overcome this limitations, a tile-based processing is implemented. Each image is first

cropped into tiles and, afterwards, each individual patch is processed by the neural network.

After the class labels have been inferred, the image is reassembled. To reduce artifacts at

tile-borders, a padding is used, so the patches do overlap each other. The padding size

depends on the network architecture and on the dataset.

6.4.2 Additional Data Channels

Aerial imagery usually comprises additional data channels like NIR or a DSM. We also

perform transfer learning in such a setting. We already described in chapter 2 how to

map new features to a pre-trained RGB color model to enable transfer learning in such a

setting.

In addition to NIR and DSM, we feed the network with derivations of the RGB and NIR

channels, which are commonly used to perform pixelwise labeling of aerial images [64]:

Normalized Difference Vegetation Index (NDVI)

The spectral response of vegetation is characterized by radiance in the NIR channel,

much higher than in the bands of the visible spectrum. The lowest values are taken



Chapter 6. Experimental Evaluation 65

(a) RGB (b) NIR (c) NNN (d) NND

Figure 6.4: Examples of combined feature channels of the aerial multi-class dataset.

on in blue and red bands. The NDVI index combines the red and NIR bands to

better identify vegetation. [64]

NDV I =
NIR−RED

NIR+RED
(6.4)

Normalized Difference Water Index (NDWI)

Typically, water has a high reflectance in green but not in NIR, whereas vegetation

and soil have a high response in the NIR channel. According to this, water usually

has a positive NDWI index, while vegetation and soil have a negative one. Therefore,

the NDWI index allows to better discriminate these classes. [64]

NDWI =
GREEN −NIR

GREEN +NIR
(6.5)

In the following, we denote NNN as the combination of the NDVI, NDWI and NIR features,

and NND as the combination of the NDVI, NDWI and DSM features. Example images

with combined feature channels are shown in figure 6.4.

As can be seen in our evaluations, incorporating such domain knowledge additionally

improves the classification accuracy for certain classes.

6.4.3 Toronto Roads and Buildings

In this section, the results on the Toronto roads and buildings dataset are presented. We

compare our proposed method with the two best performing methods on this dataset

[26, 27].

The challenges on the Toronto roads and buildings dataset are given by detecting small-

scaled objects. State-of-the-art image segmentation methods based on fully convolutional

networks lack in recognizing very small objects due to the pooling operations in higher-level
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layers. As already discussed in chapter 3, we overcome this issue by reducing the stride of

the pool3 layer of the DeepLab-LargeFOV [5] network and applying the hole-algorithm to

subsequent layers. In addition, we upscale the input images by a factor of two to further

improve the accuracy in detecting small-scaled objects. The crop size of the patches during

training is set to 153×153 pixels and at inference to 257×257. Padding is set to 15 pixels.

To train the modified architecture, a pre-trained VGG-16 model [17] is used to initialize

the weights of the network. The classification layer, which is trained from scratch, will

be initialized with random values sampled from a Gaussian distribution with standard

deviation 0.01. The network is finetuned using the training and validation set for 90, 000

iterations, the step size is set to 30, 000 iterations and the learning rate is set to 0.001.

The right choice of the learning rate and the number of iterations is important because

they have a wide influence on the overall performance. To estimate these parameters,

we perform a grid search by first varying the learning rate and keeping the number of

iterations fixed. Afterwards, we fix the best found learning rate and search for the number

of training iterations. Due to memory limitations, only one patch is used in each update

step. The parameters of the CRF with w1 = w2 = 2, σα = 10 and σβ = σγ = 1 turned out

to work well on both datasets.

Model
Dataset

Roads Buildings

Volodymyr - Neural Network 0.8873 0.9150
Volodymyr - CRF 0.8904 0.9211
Volodymyr - Post-processing net 0.9006 0.9203

Saito and Aoki - Neural Network 0.8905 0.9241

Neural Network 0.9148 0.9558
Neural Network + CRF 0.9224 0.9584

Table 6.1: Comparison of our approach with previous released methods. The values are
the estimated precision-recall break-even points.

The final results of the proposed method are presented in table 6.1 and compared to

previous released studies by Volodymyr [26] and Saito and Aoki [27]. The table shows the

break-even points of the estimated precision and recall. The quantitative results verify

that state-of-the-art semantic segmentation methods, which are tuned for general scenes,

can be successfully adapted to the task of aerial image labeling.

Both competing methods apply neural networks too but with less network layers as we do.

Furthermore, they do not take advantage of the large-scale ImageNet dataset [28]. Our

empirical evaluation shows that using deep neural networks and finetuning a pre-trained

model to the task of aerial image segmentation pushes the state-of-the-art in aerial image
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(a) Image (b) Ground Truth

(c) Neural Network (d) Neural Network + CRF

Figure 6.5: Example results on the Toronto roads dataset.

labeling. Applying a CRF to refine the predictions of the network additionally increases

the overall performance.

Qualitative results of detected roads and buildings are shown in figure 6.5 and 6.6, respec-

tively. In general, roads and buildings are predicted well. Even if streets are occluded,

the neural network is able to predict them. Failures occur, for example, if the roads are

very small or at large paved areas like company or parking areas. The precision of the

predictions is very high. Improvements could be achieved by increasing the recall. Usually,

at intersections one is often able to see gaps. Applying a CRF on top of the neural network

leads to a small increase in accuracy. The visual results of the CRF show the typical effects
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(a) Image (b) Ground Truth

(c) Neural Network (d) Neural Network + CRF

Figure 6.6: Example results on the Toronto buildings dataset.

when applying mean-field inference, namely the confidence values are driven to either zero

or one. The influence of the CRF can be seen in areas where the confidences of the neural

network are neither near zero nor one.

Future work could comprise adding constraints to the predictions. For example, consider-

ing the typical outlines of buildings and roads could be beneficial because the predictions

are not perfectly aligned with them.
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6.4.4 Aerial Water Dataset

In this section, we evaluate our proposed architecture on the aerial water dataset. One of

the main challenges on the aerial water dataset is given by the high intra-class variability

of water. To overcome this, the dataset additionally comprises the NIR channel, which is

beneficial to detect water [64].

As in the previous experiment, we use the modified DeepLab-LargeFOV [5] network ar-

chitecture, which is tuned to detect small-scaled objects, but we do not upscale the input

images because water areas are typically large in size. During training, the crop size of

the patches is set to 306× 306 pixels and at inference to 514× 514 pixels. The padding to

crop the tiles is set to 30 pixels.

To train the modified architecture, a pre-trained VGG-16 model [17] is used to initialize the

weights of the network and the classification layer is initialized with Gaussian distributed

values and standard deviation 0.001. The network is finetuned using the training and

validation set for 45, 000 iterations, the step size is set to 15, 000 iterations and the learning

rate is set to 0.0001. At training, the batch size is set to three. The parameters of the

CRF with w1 = w2 = 3, σα = 50 and σβ = σγ = 3 lead to good results.

Model
Input Channels

RGB NNN RGB+NNN

Neural Network 0.9528 0.9695 0.9700
Neural Network + CRF 0.9595 0.9730 0.9700

Table 6.2: Accuracy on the Aerial Water dataset. The values are the precision-recall
breakeven points.

The final results of the water classifier are shown in table 6.2. Using a combination of

the NDVI, NDWI and NIR channels (NNN) leads to better results as compared to RGB

intensity. We also tried to combine both models by averaging the confidences of the RGB

and NNN model, but it did not lead to noticeable improvements, or even decreased the

accuracy slightly if a CRF is applied in addition.

Figure 6.7 shows images and corresponding predictions of the water classifier. Overall, the

precision is again very high. Improvements could be achieved by increasing the recall. The

classifier has problems on areas that are dissimilar to ones given in the training set. For

example, when the water or the surroundings of water look very different compared to the

labeled samples in the training set, then the classifier has a degraded performance. An

example is illustrated in figure 6.8, which shows a water fountain that is not detected by

classifier. Problems also arise at borders of the cropped tiles, but this could be prevented by
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(a) Image (b) Neural Network + CRF

(c) Image (d) Neural Network + CRF

(e) Image (f) Neural Network + CRF

Figure 6.7: Example results on the Aerial Water dataset using the RGB model.
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(a) Image (b) Ground Truth (c) Neural Network (d) CRF

Figure 6.8: Example results on the Aerial Water dataset using the RGB model.

increasing the overlap between tiles if the associated computational costs can be neglected.

Artifacts at border areas are also an indicator that the context is considered to classify

water and not only the colors itself. False negatives can be observed at very small rivers

or swimming pools. This can be improved by upscaling the images or by using aerial

images of higher resolution, but doing so would increase the computational costs too. The

confidence maps generated by the neural network are not well aligned with the image

gradients, but the refined results of the CRF are quite close beside the water bounds given

in the input images, as shown in figure 6.8.

Since most errors occur in areas that are dissimilar to ones given in the training set, this

indicates that the classifier has problems to generalize well on new areas. To overcome this

issue, domain adaptation methods, which allow models to adapt to new data distributions,

could be studied.

6.4.5 Aerial Multi-Class Dataset

So far, we have only tackled binary classification problems. In this experiment, we apply

the proposed method on the aerial multi-class dataset.

Since the images in this dataset have a high resolution and, hence, objects appear larger

as in the previous used datasets, we use the standard DeepLab-LargeFOV [5] architecture

without upscaling the input images. We saw that the architecture tuned for small-scaled

objects does not perform well on this dataset. This might be because of the decreased

receptive field, which goes along with reducing the stride in the pool3 layer, as we did in

the previous sections. The crop size of patches during training is set to 321 × 321 pixels

and at inference to 513× 513 pixels. The padding to crop the tiles is set to 30 pixels.

The network is again initialized using a pre-trained VGG-16 model [17] and the classifi-

cation layer is initialized with Gaussian distributed weights with standard deviation 0.01.
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The network is finetuned on the training and validation set for 150, 000 iterations, the step

size is set to 50, 000 iterations and the learning rate is set to 0.0001. At training, the batch

size is set to three. We set the parameters of the CRF to w1 = w2 = 5, σα = 50 and

σβ = σγ = 3. Since the predicted class boundaries of the DNN are not well aligned with

the given input image, the weights of the filter kernels are increased compared to previous

experiments.

The estimated accuracy of the neural network and the CRF are shown in table 6.3. In

addition to RGB and NIR, this dataset also includes a DSM. Thus, we also train a model

that makes use of NDVI, NDWI and the additional DSM channel.

We provide the accuracy for each class in table 6.4 and table 6.5, one table for the accuracy

of the neural network and one with additionally applying the CRF.

Measured by the mean IoU, the RGB model works overall slightly better than the NNN

(NIR, NDWI and NDVI) model. The NND (NDWI, NDVI and DSM) is on par with the

RGB model. Taking a closer look on the individual class accuracies, one can see that the

NND model, which additionally uses the DSM, performs better on impervious surfaces,

high vegetation and buildings, but shows degraded performance on other classes, where

height information is not expressive, which is as expected. The biggest improvement using

the DSM channel can be seen at buildings. Additionally, incorporating the NIR channel

improves the accuracy of the class water, as we have seen on the aerial water dataset.

Model
Input Channels

RGB NNN NND

Neural Network 0.8797 0.8633 0.8776
Neural Network + CRF 0.8884 0.8740 0.8886

Table 6.3: Accuracy on the Aerial Multi-Class dataset. The values represent the mean
IoU.

Classes
Input Channels

RGB NNN NND

Water 0.9793 0.9851 0.9825
Low Vegetation 0.7987 0.7743 0.7762
High Vegetation 0.9605 0.9604 0.9675
Impervious Surfaces 0.8587 0.8375 0.8665
Buildings 0.8891 0.8606 0.9327
Background 0.7918 0.7617 0.7400

Table 6.4: Accuracy of the neural network on the Aerial Multi-Class dataset. The values
represent the mean IoU.

Qualitative examples are presented in figure 6.9. The figure shows the results created by

the RGB model after applying the CRF. As already indicated by the quantitative results,
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Classes
Input Channels

RGB NNN NND

Water 0.9842 0.9874 0.9847
Low Vegetation 0.8119 0.7919 0.7968
High Vegetation 0.9627 0.9632 0.9716
Impervious Surfaces 0.8702 0.8528 0.8821
Buildings 0.8975 0.8737 0.9464
Background 0.8038 0.7752 0.7499

Table 6.5: Accuracy of the neural network and the CRF on the Aerial Multi-Class
dataset. The values represent the mean IoU.

the class water is detected pretty well. Taking a closer look on other classes, one can see

that the predicted boundaries are not well aligned to the objects present in the images.

This is contrastive to what we have seen in other experiments in this thesis. However, if

one neglects the errors made at boundaries, the accuracy is quite good.

A reason why the boundaries are not predicted is because of the model needs to decide

between several classes for each pixel and some categories are conflicting each other. For

example, if a tree occludes a road, then the classifier has to decide between one of these

categories, but the correct answer would be to assign both categories. Another explanation

could be that the dataset is labeled differently. As shown in figure 6.2, not all object

instances are labeled and, therefore, marked as unknown. Thus, problems may arise if the

classifier needs to assign labels to areas that are often labeled as unknown in the training

set. Such areas can be seen between buildings or in general between objects.

Further investigations should focus on the object boundaries that are not well aligned with

the intensities of given images. For example, a binary classifier could be trained for each

class separately. This should decrease the errors where the classes overlap each other. Or,

even better, a multioutput-multiclass classifier could be used, which reduces the need to

apply a deep neural network for each binary classification problem.

6.4.6 Transfer Learning using Pre-trained ImageNet Models

In this section, we show that the learned feature representation of images of general scenes

can be transferred to perform aerial image labeling. For that purpose, we train a binary

classifier on the aerial water dataset and compare the estimated loss during training.

The network architecture is a VGG-16 variant that is proposed by Chen et al. [5] and

called DeepLab-LargeFOV. To train the models from scratch, the network weights are

initialized using the suggested method by Xavier and Bengio [65]. The initialization is
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(a) Input image (b) Neural Network + CRF

(c) Input image (d) Neural Network + CRF

(e) Input image (f) Neural Network + CRF

Figure 6.9: Example results on the Aerial Multi-Class dataset using the RGB model.
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Figure 6.10: Comparison of the train progress by using a pre-trained ImageNet model
and training a model from scratch. Even, if the pre-trained model is trained on images of
general scenes, the learned features can be transferred to the task of aerial image labeling.

important, because otherwise training such a deep network may not be successful or has

to be done layer-by-layer [17].

Figure 6.10 shows a comparison of the train progress by using a pre-trained ImageNet

model and training a model from scratch. The pre-trained model starts with a lower loss

and converges faster to the minimum than the one that is trained from scratch. This

verifies that the learned feature representation from images of general scenes can also be

re-used to label aerial images.

6.5 Structured End-to-end Learning

In this section, we show the results using structured end-to-end learning. End-to-end

learning of the deep neural network and the CRF allows to optimize for errors that are

made by both modules.

We compare our end-to-end approach against the decoupled DeepLab version [5], in which

the deep neural network and the CRF are not trained end-to-end. The performance is

evaluated on the Pascal VOC 2012 benchmark.

We choose the DeepLab-LargeFOV [5] architecture because of its efficient runtime and

state-of-the-art accuracy. The crop size of patches during training is set to 321 × 321
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pixels and at inference to 513 × 513 pixels. The standard deviations of the filter kernels

are set to σα = 50 and σβ = σγ = 3.

Before the system is trained end-to-end, we first train the neural network parameters only.

Due to memory limitations, we choose a batch size of ten but increase the number of

iterations to 18, 000 to ensure the same number of epochs. The step size is set to 6, 000

and the learning rate is 0.001. The accuracy of the base deep neural network (DNN)

without applying a CRF on top is 65.27 and with a decoupled CRF is 67.66.

Finally, we train the whole system end-to-end. For that, we initialize the weights of the

Gaussian feature kernels to w1 = w2 = 5 and the compatibility weights to the Potts

model to ensure convergence. The batch size is set to one because of memory limitations.

The learning rate of the CRF parameters are set to 10e-10 and the one for the DNN to

10e-5. We update the model for additional 15, 000 iterations with a step size of 5, 000

iterations. The final accuracy of the end-to-end trained model is 68.23 and, thus, verifies

that end-to-end training can additionally improve the overall accuracy.

Model Mean IoU

Neural Network 65.27
Neural Network + CRF Decoupled 67.66
Neural Network + CRF End-to-end 68.23

Table 6.6: Comparison of end-to-end and decoupled training on the Pascal VOC 2012
validation dataset. The values represent the mean IoU.

The stepwise improvements from using a single neural network up to end-to-end learning

are shown in table 6.6. Qualitative results are illustrated in figure 6.11, which reveal the

advantage of training the whole system end-to-end, namely the predictions by the end-to-

end trained model contain more fine-grained structures. This is because of the estimated

loss through the CRF pushes more weight at object boundary regions.

It should be noted here that finding the right learning parameters, like the number of

iterations or different learning rates for convolutional layers and the CRF, is crucial to get

satisfying results.

Finally, we analyze the learned parameters of the CRF. Therefore, we train a model with

increased learning rate for the CRF layers to amplify the learned class compatibility weights

and plot the parameter values in figure 6.12. Taking a closer look, one sees that the

class compatibilities are not symmetric, which is obvious because, for example, images of

motorbikes frequently contain persons, whereas only some images of persons also comprise

motorbikes. An interesting insight is that the diagonal entries correlate with the number

of objects per class given in the training set. This is explainable because if a specific
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(a) Input image (b) Ground Truth (c) Neural Network (d) CRF Decoupled (e) CRF End-to-end

(f) Input image (g) Ground Truth (h) Neural Network (i) CRF Decoupled (j) CRF End-to-end

(k) Input image (l) Ground Truth (m) Neural Network (n) CRF Decoupled (o) CRF End-to-end

(p) Input image (q) Ground Truth (r) Neural Network (s) CRF Decoupled (t) CRF End-to-end

(u) Input image (v) Ground Truth (w) Neural Network (x) CRF Decoupled (y) CRF End-to-end

Figure 6.11: Example results on the Pascal VOC 2012 validation set.

class occurs more often, then the algorithm will make more errors at predicting this class.

Consequently, the probability of that class occurring with oneself decreases.

6.6 Semi-Supervised Transfer Learning

Finally, we analyze the proposed method to perform semi-supervised transfer learning from

a pre-trained ImageNet model to the target task of semantic segmentation.
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Figure 6.12: The learned class co-occurrence using the specified conditional random
field.

The performance is again evaluated on the Pascal VOC 2012 segmentation dataset. In

particular, we analyze the performance if 25, 50, and 75 percent of the labels are given,

the remaining samples are incorporated as unlabeled samples during training.

The network architecture in this experiment is again the efficient DeepLab-LargeFOV

architecture [5].

To perform semi-supervised learning, we follow the self-learning approach and first train

the model using labeled data only. Due to memory limitations, the batch size is set to ten

and the number of iterations are set to 4, 500, 9, 000 and 13, 500 to train the model with

25, 50, and 75 percent of the labeled training samples. The step size is set to a third of

the number of iterations and the learning rate is set to 0.001. The parameter λ, which

controls the influence of unlabeled data, is set to 1.0 in the case of hard assignment and

to 0.15 in the case of soft assignment.

To perform semi-supervised learning, we retrain the fully supervised models with the loss

function specified in chapter 5. We update the models with the same number of iterations

as given above and repeat this process until convergence. Experiments showed that usually

after two or three restarts the accuracy stops increasing.
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Model
Labeled Training Samples

25% 50% 75% 100%

Supervised - Standard Training 54.38 60.64 64.11 65.27
Supervised - Continued Training 56.04 61.71 64.79 66.27
Semi-Supervised - Soft Assignment 55.02 61.76 64.83 -
Semi-Supervised - Hard Assignment 57.16 62.80 65.04 -

Table 6.7: Comparison of the proposed semi-supervised transfer learning approaches on
the Pascal VOC 2012 validation dataset. The values represent the mean IoU.

We report the final results in table 6.7. The results of the model Supervised - Standard

Training are the ones using labeled data only. Semi-Supervised - Soft Assignment and

Semi-Supervised - Hard Assignment are the results using the proposed self-learning meth-

ods in chapter 5. Supervised - Continued Training are the results using labeled data only

but with continued training until the accuracy stops increasing.

Both self-learning variants are able to improve the accuracy by a small margin. Inter-

estingly, hard assignment achieves a higher accuracy compared to soft assignment. The

reason for that might be the more aggressive weight updates by hard assignment.

6.7 Runtime Performance

In many applications, like in aerial image segmentation, the runtime is critical since usually

a huge amount of data has to be processed.

In this section, the runtime of the DeepLab-LargeFOV [5] architecture is analyzed. We

first specify the utilized hardware and software before we present the performance values.

The runtimes of the GPU and CPU implementations are determined. The used GPU is a

NVIDIA Tesla K20Xm with 6GB memory and the CPU is a Xeon E5-2670 with 8 physical

and 16 logical cores. We utilize the public available Caffe [52] framework with activated

cuDNN [63] and Intel MKL support to test the performance of the DNN. For the CRF,

we use the public available code of the fully connected CRF [25].

The goal of the performance test is to measure the time required to infer the class labels

of a single image patch with 512× 512 pixels without reading and writing files.

On the GPU the DNN requires 0.6 seconds to infer the class labels of a given patch. Using

the CPU lasts approximately 11 seconds if multi-threading is activated and 33 seconds

using a single thread. The runtime on the CPU can be further reduced to approximately

3.8 seconds in average if five processes are started in parallel.
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The CPU implementation of the fully connected CRF requires approximately 0.6 seconds

on a CPU.

6.8 Chapter Summary

In this chapter, we started with a description of the datasets we used to benchmark our

proposed methods. In addition, we gave details about the implementation and evaluation

criteria.

The first experiment was about applying fully convolutional networks to the task of aerial

image labeling. We were able to increase the state-of-the-art on the Toronto roads and

buildings datasets and achieved promising results on two internal datasets used by the

Microsoft Photogrammetry team in Graz. Furthermore, we verified that the learned repre-

sentation from the large-scale dataset ImageNet can be successfully transferred to perform

semantic segmentation of aerial images.

We further analyzed end-to-end training of the proposed method by Chen et al. [5] and

were able to increase the performance by jointly training the deep neural network and the

CRF.

Finally, our semi-supervised transfer learning approach was measured by taking only a

subset of the training set as labeled samples and the remaining ones as unlabeled ones.

Our empirical results showed that incorporating unlabeled data increases the accuracy

against using labeled data only. Therefore, semi-supervised learning methods are able to

reduce the manual labeling efforts.

We concluded this chapter with a runtime analysis of our CPU and GPU implementation.



Chapter 7

Conclusions and Future Work

Contents

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

In this chapter, we will summarize our contributions and give an outlook for future research.

7.1 Conclusions

In this work, we showed that state-of-the-art fully convolutional networks [4], which are

tuned to detect general scenes, can be successfully adjusted to the task of aerial image

labeling. Based on the work of Chen et al. [5], we proposed a modified network architecture

to improve the accuracy at detecting small-scaled objects. In addition, we were able to

evince that the learned feature representations from the large-scale ImageNet dataset [28]

can be re-used to perform pixelwise classification of aerial images. We evaluated our

proposed method on the Toronto roads and buildings benchmark [26] and were able to

improve the state-of-the-art accuracy. Furthermore, we demonstrated promising results

on two internal aerial datasets used by the Microsoft Photogrammetry team.

To perform semantic segmentation, state-of-the-art methods [4–6] rely on fully convolu-

tional networks, but these networks do not consider dependence of adjacent pixels. To

overcome this issue, recent methods [5, 6] apply a conditional random field (CRF) on top

of the fully convolutional network to model the neighbor relationship. Chen et al. [5]

combined a fully connected CRF [25] and a fully convolutional network, but they did not

81
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investigate into end-to-end training of these components. End-to-end training allows to

reduce the errors that are caused by both modules. For that reason, we studied end-to-end

training and were able to increase the accuracy compared to the original work by Chen et

al. In addition, we saw that the CRF is able to learn the class co-occurrences from data.

State-of-the-art semantic segmentation methods make use of pre-trained ImageNet models

to first initialize the weights of the fully convolutional network and, afterwards, finetune

[19] to the target task using a labeled dataset. Because of finetuning usually requires a large

amount of labeled samples and annotating images at pixel-level is expensive, we studied

semi-supervised learning methods to reduce the manual annotation effort. In particular,

we adapted two self-learning methods [58, 59] to additionally exploit unlabeled data. The

extension of fully supervised convolutional neural networks (CNNs) to apply the proposed

methods is straightforward since only the loss function has to be extended. Our empirical

evaluations confirmed that unlabeled data is beneficial to reduce the manual labeling effort.

7.2 Future Work

As we saw in the experimental evaluations, there is room for improvements and major

challenges are still unresolved, like the huge manual effort to generate pixel-level annotated

images.

To reduce the need of pixel-level annotated images, we applied self-learning techniques.

Future work could comprise to delve into more sophisticated algorithms like graph-based

methods. In combination with structured prediction, these methods achieve promising

results compared to self-learning approaches, as shown by Li and Zemel [66].

To model the dependency of nearby class labels, we used a CRF with pairwise potentials

that are defined via Gaussian feature kernels. These simple kernels could be replaced by

more expressive models like CNNs to further improve the accuracy, as proposed by Liu et

al. [67].

Since the classifier is trained on a finite dataset, it is not guaranteed that the classifier

achieves the same accuracy on new samples. For example, in the case of aerial images,

the classifier is typically trained using a dataset that consists of a few areas of interest

and, as a result, the classifier has a degraded performance on new unseen areas that are

dissimilar to the given training samples. Therefore, it would be beneficial to investigate

into algorithms that facilitate classifiers to adapt to new areas. For example, by continuing

training with a few labeled samples, or fully automated in an unsupervised manner.
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In the case of multi-class aerial image labeling, our qualitative evaluation revealed that the

predicted object boundaries are not well aligned to the contours given in the input image.

Since classes like buildings have typical outlines, future work could also comprise adding

constraints to the contours of segmented objects.

In addition, aerial images are typically captured with an overlap, therefore, exploiting this

redundancy could be advantageous for semantic segmentation too.
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[1] Björn Fröhlich, Erik Rodner, and Joachim Denzler. Semantic segmentation with

millions of features: Integrating multiple cues in a combined random forest approach.

In Computer Vision–ACCV 2012, pages 218–231. Springer, 2013.

[2] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jagannath Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In Computer

Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 580–587.

IEEE, 2014.
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