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Abstract

In this thesis we present novel ways for solving Boolean relations. Solving a relation
means computing a deterministic function which characterizes a subset of the mapping
described by the relation. The goal is that for every input only a single (deterministic)
output is possible.

Modern approaches for solving this problem can be divided into those based on binary
decision diagrams and those based on satisfiability solving. In this work, we explore both
methods and implement improvements. These improvements aim at reducing the number
of input variables a function f , which is a solution for the relation, depends on. A lower
number of input variables means a smaller size of the combinational circuit implementing
f , which in prior solutions has not been satisfactory.

In the first approach, based on binary decision diagrams, we present two ways for
finding an exact and globally optimal solution for eliminating input variables. Previous
methods have found locally optimal solutions only. In the second approach we use sat-
isfiability solving for obtaining a resolution proof and furthermore Craig interpolation to
compute a circuit for f . As the interpolant is computed from the resolution proof, the
number of variables can be reduced by reducing this proof. We improve and generalize
existing proof reduction techniques.

We describe the two approaches in detail and analyze our experimental results.





Kurzfassung

In dieser Arbeit präsentieren wir neue Wege um Boole’sche Relationen zu lösen. Das
bedeutet, eine Funktion zu berechnen, die einen Teil der nicht-deterministischen Relation
charakterisiert, sodass es für jede Eingabe nur eine mögliche Ausgabe gibt.

Moderne Ansätze können in jene unterteilt werden, die auf Binären Entscheidungs-
diagrammen basieren und in jene, die auf Satisfiability-Solvern beruhen. In dieser Arbeit
untersuchen wir beide Methoden und implementieren Verbesserungen. Diese Verbesserun-
gen zielen darauf ab, die Anzahl der Variablen von denen eine Funktion f , welche eine
Lösung für die Relation darstellt, zu minimieren. Eine niedrigere Anzahl an Eingangsva-
riablen bedeutet eine kleinere kombinatorische Schaltung, die f implementiert. Besonders
die Schaltungsgröße ist in den bisherigen Methoden nicht zufriedenstellend.

Der erste Ansatz beruht auf Binären Entscheidungsdiagrammen: Wir präsentieren
zwei Methoden, um eine exakte und global optimale Lösung für die Minimierung der
Eingangsvariablen zu finden. Der zweite Ansatz nutzt Satisfiability-Solving um einen Re-
solutionsbeweis und in weiterer Folge Craig-Interpolation um eine Schaltung für f zu
erlangen. Die Interpolante wird anhand des Resolutionsbeweises berechnet. Daher ist es
möglich die Anzahl der Variablen zu minimieren, indem man den Beweis minimiert. Wir
verbessern und generalisieren existierende Beweisminimierungstechniken.

Wir beschreiben die beiden Ansätze im Detail und analysieren die Ergebnisse unserer
Experimente.
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Chapter 1

Introduction

Over the last decade, computers have become increasingly ubiquitous. Every day, we are in

contact with embedded computers in phones, cars, household appliances, etc. Computers

have enabled new venues for science and new business opportunities. They have changed

our leisure activities and the way we communicate. Programming computers correctly

is not an easy task and has become harder because of increasing concurrency and more

important because of increasing ubiquity of computer systems. Bugs plague almost every

implementation and the goal of computer science to become a well-founded engineering

discipline is still far from being reached.

The classical approach to correctness consists of massive testing. However, testing

often misses faults. By testing, one is unable to say whether the software follows its

specification perfectly or not. Therefore, formal methods [Flo67, Hoa69, QS82, CES86,

BCM+92, BCCZ99, CGJ+00, VHB+03] are gaining importance, as evidenced by the 2007

ACM Turing Award for Model Checking. In recent years there has been great progress

towards practical usability of software verification in particular. Microsoft, for example,

uses a “push-button tool” [BR02] to find bugs in hardware drivers. Using this approach,

one can be sure about the correctness (respectively faultiness) of certain aspects of the

software.

As of late, there has been a push away from seeing formal verification purely as a

method to validate programs after they have been written, including faults. A new

paradigm is slowly emerging that uses the techniques pioneered in the formal verifica-

tion world to the problem of a-priori assistance of the programmer in writing correct

programs. Automatic synthesis, or property synthesis [Chu62, PP06, SGF10, KMPS10,

HB11, HGK+13] is a typical example of this approach: it uses techniques from the model

checking world to automatically construct correct systems from their specifications. Syn-

thesis, however, still has significant problems, preventing it from being used in realistic

1



2 1. Introduction

situations.

One of them is solving large Boolean relations, which we will attack in this thesis. It

is a classical problem that has been addressed in the logic synthesis community [VOQ52,

Mcc56, Law64, BS89, WB91, DM94, HS96]. Logic synthesis should not be confused with

the property synthesis paradigm: Logic synthesis provides solutions to a sub-problem of

property synthesis. Preliminary research has shown that the standard solutions from logic

synthesis do not perform well in a property synthesis setting. Only small specifications

can be synthesized, and the resulting systems are orders of magnitude larger than manual

implementations [BGJ+07]. We apply novel techniques to achieve more efficient and

concise solutions.

One way to model the synthesis process is game theory [PP06]. We describe where

solving relations is necessary in this approach: The “game” is played between the en-

vironment and the system, which is synthesized. The environment moves by sending

arbitrary Boolean inputs to the system. The system receives them and has to counter

the environment by sending outputs back, while adhering to the rule set laid out by the

specification. The synthesis problem is to find a strategy for the system which allows

to counter any move by the environment, in order for the system to win eventually. A

specification typically allows for multiple system moves in a given game state. In other

words: the strategy is non-deterministic. The system is supposed to map Boolean inputs

to Boolean outputs in a deterministic way, however. Such a mapping is called a combi-

national circuit. In order to compute this circuit, we must pick which move to make in a

given state. The non-deterministic strategy is represented by a Boolean relation. Choos-

ing the moves means solving, or determinizing, this relation. The challenge is twofold:

On the one hand, we have to deal with large problem instances. On the other hand, we

want to solve the relation in such a way that the circuit is small in the end, where size is

typically measured in the number of logic gates needed. Current approaches do not scale

well to larger problem instances, as they are slow and yield systems which are orders of

magnitude larger than manual implementations.

Therefore, we pursue ideas which target the creation of small circuits. We describe

both exact solutions, which however turned out to be infeasible in practice, as well as an

approximative one, which improves over existing approaches without incurring additional

cost. The heuristic we employed in both cases was to find solutions which depend on few

input variables.

The exact approach is built on top of an existing determinization algorithm [BGJ+07]

based on binary decision diagrams (BDDs) [Ake78]. The previous technique computed a

solution based on local optima, in terms of the number of input variables. In our approach

we search for a globally optimal solution in two different ways:
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1. By explicitly enumerating combinations of variables one by one.

2. By adding circuitry to the combinational logic representing the relation, which im-

plicitly enumerates variable combinations.

We implemented both approaches in RATSY [BCG+10], but our experimental evaluation

revealed that these exact approaches are practically infeasible.

We then turned our attention to an approximative approach. We base this work on a

result by Jiang, Lin and Hung [JLH09], which shows that a relation can be solved using

Craig interpolation [Cra57]. Craig’s interpolation theorem states the following:

Theorem. Given two Boolean formulas A and B, with A∧B unsatisfiable, there exists a

Boolean formula I referring only to the common variables of A and B such that A→ I,

and I ∧B is unsatisfiable.

I is called the interpolant of A and B. Interpolants can be obtained by annotating

resolution refutation proofs obtained by Boolean satisfiability (SAT) solvers. Therefore,

we can take advantage of the progress made in the development of SAT solvers over the

course of the last two decades (e.g. [MMZ+01, SS96]).

While interpolation inherently only talks about the shared alphabet of A and B it

is possible to minimize the amount of variables in the interpolant by using a certain

interpolation system as described in [D’S10].

Our approach to reduce the size of the interpolant further, is to minimize the resolu-

tion refutation obtained by a SAT solver. Recent approaches [BIFH+09, FMP11, Gup12]

achieve up to 22.54% reduction of the number of proof vertices, by transforming the proof

graph after solve-time. We show that reduction of the proof graph does not necessarily

reduce the amount of variables in the interpolant, but in fact can increase it. Existing

techniques don’t take this into account, as their focus lies on proof reduction, rather

than on interpolant reduction. We present a way to prevent certain unfavorable trans-

formations, which lead to an increase in interpolant size. Our algorithms also improve

the existing techniques in terms of proof reduction. Furthermore, our approach is more

dynamic, in the sense that it can target either proof or interpolant reduction, based on

parametrization.

We implemented our techniques in a stand-alone tool written in Scala and provide

experimental evaluation comparing it to the best-performing algorithm from [Gup12],

which shows that our technique achieves better proof reduction. We furthermore evaluate

how many variables are removed from the final interpolant in both approaches. A metric,

which to our knowledge, has not been looked at so far.



4 1. Introduction

1.1 Organization of this Thesis

The thesis is split into the following chapters:

1. We provide the theoretical foundations and general terminology in Chapter 2. Top-

ics are Boolean functions and relations, logic representions such as BDDs and normal

forms as well as satisfiability solving and interpolation. We also give a brief intro-

duction to proof reduction, but in-depth treatment is provided only in Chapter 5.

2. We discuss previous work concerned with logic minimization in Chapter 3.

3. We describe our BDD-based approaches in Chapter 4 and the approach based on

interpolation in Chapter 5.

4. We conclude in Chapter 6, by looking back at our work and by providing an outlook

on possible future improvements.

A draft version of this thesis, which was submitted to the Austrian Marshall Plan Foun-

dation, is available at [Sch].



Chapter 2

Background

This chapter introduces the necessary preliminaries and establishes notation to understand

the relation determinization problem and the presented solutions. This thesis cannot be

a complete treatise of all the subjects involved. The interested reader can find further

and more detailed information in the referenced works.

2.1 Boolean Logic

Boolean logic lies at the heart of computing as we know it. Digital circuits implement

Boolean functions referred to as combinational logic. Boolean logic is two-valued: These

two truth values are false and true, represented by the set B = {0, 1} or sometimes

also {T,F}. A Boolean variable can be assigned either value of B. The Boolean space

is spanned by n Boolean variables ~x = (x1, . . . , xn) and written as Bn. The 2n members

(vertices) of Bn are called minterms. A minterm, in other words, is a total assignment

of truth values to the n Boolean variables.

2.1.1 Boolean Functions

A completely specified Boolean single-output function f : Bn 7→ B maps the

minterms of the Boolean space to either 0 or 1. The domain Bn is referred to as the

input space and the codomain as the output space, respectively.

In some applications it is not necessary to completely specify a Boolean function–it

doesn’t matter for some minterms whether they are mapped to 0 or 1. This condition

is called don’t care and represented by a dash “−”. A partial function is a function

which does not define a mapping for each member of the domain into the codomain. The

unmapped minterms of a partial Boolean function are treated as being mapped to −. Let

5



6 2. Background
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Figure 2.1: Three different ways of illustrating the same incompletely specified
Boolean function f(x1, x2, x3) = y.

B+ = B ∪ {−}. An incompletely specified Boolean single-output function is then

denoted as f : Bn 7→ B+. A simple such function, in three input variables and an output

variable, is depicted as a coloring of minterm vertices in Figure 2.1a. Another way of

representing such a function is as a Karnaugh map [Kar53] as can be seen in Figure 2.1b.

2.1.2 Boolean Relations

A more expressive way to describe Boolean mappings are Boolean relations. A relation

is a set of ordered pairs (x, y), where x is a member of the domain and y is a member of

the codomain. A Boolean relation R ⊆ X×Y (also written as R(X, Y )) is represented by

its characteristic function R : X×Y 7→ B, with X = Bn and Y = Bm. The input space

X is spanned by variables ~x = (x1, . . . , xn) and the output space Y by ~y = (y1, . . . , ym).

The characteristic function is defined, such that (x, y) ∈ R if and only if R(x, y) = 1 for

x ∈ X and y ∈ Y . Notice that in general, the output space can be of dimension m > 1.

The relations handled in this thesis typically have m = 1, as reasoning about such single-

output relations is easier. Section 2.4.1 presents a scheme for handling multiple-output

relations by breaking them down to single-output relations.

Notice also that with Boolean relations there is no need for the augmented set B+,

since relations—in contrast to functions—allow one-to-many mappings. A relation is said

to be total (in the input space), if and only if the set {x | ∃y. (x, y) ∈ R} is equal to Bn.

Otherwise it is a partial relation.

A typical way of representing a Boolean relation graphically is shown in Figure 2.1c.

The set of input space minterms is on the left-hand-side and the output space on the
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right-hand-side. If (x, y) ∈ R then x ∈ X and y ∈ Y are connected by an edge.

2.1.3 Terminology

Let f(x1, . . . , xn) be a completely specified Boolean single-output function andR(x1, . . . , xn, y)

a Boolean single-output relation. Then the set of minterms mapped to 0 is called the off-

set of f (and R respectively). The on-set is the set of minterms mapped to 1. The

formal definitions are as follows.

f 0 = {x ∈ Bn | f(x) = 0}, f 1 = {x ∈ Bn | f(x) = 1}}
R0 = {x ∈ Bn | R(x, 0) = 1}, R1 = {x ∈ Bn | R(x, 1) = 1}

For relations, there might be an overlap of the on-set and the off-set. Therefore, there is

another set defined which represents the minterms mapping to both 0 and 1. This set is

the dc-set and defined as R0 ∩R1. If f 1 = Bn then f is said to be a tautology or valid.

If f 0 = Bn then f is unsatisfiable, otherwise f 1 6= ∅ and f is satisfiable. A literal is a

variable or its complement, written as x or x, respectively. Lit~x = {x, x | x ∈ ~x} is the

set of literals over X. The negative and positive cofactors of f with respect to xi are

defined as

fxi=0 = fxi = f(x1, . . . , xi−1, 0, xi+1, . . . , xn),

fxi=1 = fxi = f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

A cube is a subset of the Boolean space, spanned by k ≤ n variables. If k = n, the cube

is a minterm. A substitution of a variable xi in f by a function g is written as f |xi=g.

2.2 Boolean Function Representations

There are many ways to represent Boolean functions. Common ones are truth tables,

propositional logic, disjunctive normal form, conjunctive normal form, circuit graphs, or

binary decision diagrams, to name just a few. All representations have certain benefits and

drawbacks and their applicability depends on the particular use case. The representations

can of course be converted between each other, but this might come at the cost of a jump

in representation size. We will describe the representations important to our applications.
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Name Notation Alternative Read as
Negation x ¬x not x

Conjunction x · y x ∧ y x and y
Disjunction x+ y x ∨ y x or y
Implication x→ y x implies y

Bi-implication x↔ y x ≡ y x bi-implies y

Table 2.1: Name and notation of the logic connectives.

2.2.1 Propositional Logic

Propositional logic is a formal system that lets us express propositions. A proposition is a

statement which is either false or true, such as “the streets are wet”. Propositional logic

allows to formalize every Boolean function (and therefore every Boolean relation, since

relations are represented by their characteristic functions).

2.2.1.1 Syntax and Notation

Propositional statements are constructed from a set of propositional symbols (variables)

X = {x, x1, x2, . . . , xn, y, z}, the Boolean constants {0, 1} and logic connectives { , ·,+,→
,↔}. Sometimes the alternative connectives given in Table 2.1 are used. We refer to the

variables occurring in a formula F as Var(F ). The following grammar in Backus-Naur

Form provides the rules for stating well-formed propositional logic formulas (wffs):

〈wff〉 ::= (〈wff〉) | 〈wff〉 | 〈wff〉 · 〈wff〉 |
〈wff〉+ 〈wff〉 | 〈wff〉 → 〈wff〉 |
〈wff〉 ↔ 〈wff〉 | 〈atom〉

〈atom〉 ::= 〈constant〉 | 〈propositional symbol〉
〈constant〉 ::= 0 | 1

〈propositional symbol〉 ::= x | x1 | . . . | xn | y | z

The symbol ≡ is used to denote logical equivalence. Following this definition, an example

for a propositional formula f is f ≡ ((x1 + (x1) · x2)→ ((x3)→ x4)).

We use the following precedence rules of the connectives for evaluating formulas.

Negation m Conjunction m Disjunction m Implication m Bi-implication

The rule a m b is read as “a has precedence over b”. Moreover, the binary connectives

·,+,↔ are left-associative, while → is right-associative.

For brevity, we sometimes drop either (consistently, such that there are no confuscions)
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Op Function On-set Off-set
f ≡ g f 1 = g0 f 0 = g1

· f ≡ g · h f 1 = g1 ∩ h1 f 0 = g0 ∪ h0
+ f ≡ g + h f 1 = g1 ∪ h1 f 0 = g0 ∩ h0
→ f ≡ g → h f 1 = g0 ∪ h1 f 0 = g1 ∩ h0
↔ f ≡ g ↔ h f 1 = (g0 ∪ h1) ∩ (g1 ∪ h0) f 0 = (g1 ∩ h0) ∪ (g0 ∩ h1)

(a) Set representation.

x y x x · y x+ y x→ y x↔ y
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1

(b) Truth table representation.

Table 2.2: Semantics of the logic connectives.

the conjunction or disjunction connective in between propositional symbols.

2.2.1.2 Semantics

To interpret a propositional statement, the semantics of the formalism must be defined.

The truth value of a formula f depends on its interpretation under some environment. An

environment is an assignment A : V 7→ B to the propositional symbols in f . The meaning

of the logic connectives can either be defined by operations on the on and off-sets of

the functions (Table 2.2a), or by the more typical means of a truth table (Table 2.2b),

enumerating the possible assignments.

2.2.1.3 Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) provide syntactic additions to propositional logic.

We use them to formalize and solve certain problems arising with Boolean functions and

relations. The syntax of QBF is propositional logic, augmented with the for all (∀) and

the exists (∃) quantifiers.

Definition 1. Let f(x, y) be a Boolean function, then the quantifiers are defined as

∀y. f(x, y) ≡ f(x, 0) · f(x, 1),

∃y. f(x, y) ≡ f(x, 0) + f(x, 1).

Quantified variables are called bound variables and unquantified variables are called

free variables. In both cases of Definition 1 y is bound, whereas x is free. It can be
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Name Notation read as
Universal quantification ∀x. f(x) True if f(x) is true for all choices of x

Existential quantification ∃x. f(x) True if f(x) is true for at least one choice of x

Table 2.3: Name and notation of quantifiers.

seen that every QBF can be rewritten to an equivalent propositional formula by formula

expansion.

2.2.2 Reduced Ordered Binary Decision Diagrams

An important data structure for representing Boolean formulas is the reduced ordered

binary decision diagram. It is a graph-based data structure and allows representation as

well as manipulation of Boolean functions. Typically its name is shortened to just binary

decision diagram, or BDD. The BDD data structure has been around since 1978 [Ake78],

but gained traction in 1986 when Bryant’s seminal paper “Graph-based algorithms for

Boolean function manipulation” [Bry86] was published. BDD-based approaches have been

very successful, especially in the field of logic synthesis and symbolic model checking. A

section dedicated to BDDs in Knuth’s “The Art Of Computer Programming” [Knu09]

hints at the importance and powerfulness of the data structure for combinatorial problems.

It is easiest to think of BDDs as a more compact representation of ordered binary

decision trees.

In the following, ordered binary decision trees are defined and notation is established.

Subsequently, two reduction rules on these trees are presented, whose application leads

directly to the DAG-structure of BDDs. Subsection 2.2.2.3 shows how BDDs in practice

are built in a more efficient manner. Subsection 2.2.2.4 provides information on how the

logic operations are implemented on the data structure.

2.2.2.1 Ordered binary decision trees

Let V be the set of propositional variables in the function that we want to encode as a

decision tree.

Definition 2 (Decision Tree). A decision tree (V,E) is a rooted, directed graph with a

set of vertices V and a set of edges E. There are two different types of vertices in V .

1. A non-terminal vertex v is labelled with a propositional variable var(v) ∈ V and

possesses a corresponding index argument index(v) ∈ {1, . . . , |V|}. Moreover, every

non-terminal vertex has two children low(v) and high(v) ∈ V . The edge from v to

low(v) is labelled 0 and the edge to high(v) is labelled 1.
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Figure 2.2: Equivalence of a BDD vertex and a 2-to-1 multiplexer.

2. The second type of vertices are terminal vertices. A terminal vertex v is labelled

with a constant value val(v) ∈ B and given the index (|V |+ 1).

An ordering is imposed on the tree by the conditions index(v) < index(low(v)) and

index(v) < index(high(v)). Every path starting in the root and ending in a terminal

vertex must adhere to the same ordering. A variable order relation typically is written as

x1 < x2, meaning that for all v1 ∈ {v ∈ V | var(v) = x1} and v2 ∈ {v ∈ V | var(v) = x2},
the condition index(v1) < index(v2) has to hold.

The semantics associated with this tree structure follows from Boole’s expansion

[Boo54] Theorem (also known as Shannon’s expansion [Sha49]).

Theorem 1 (Expansion Theorem [Boo54]). Let f(x1, . . . , xn) be a Boolean function, then

f(x1, . . . , xn) = (xi · fxi) + (xi · fxi).

The theorem allows to partition a function f into its sub-functions by cofactoring the

function. For a non-terminal vertex v, with var(v) = xi, it follows from the theorem

that the subtree rooted in low(v) represents the function fxi and the subtree rooted in

high(v) represents fxi . The tree rooted in v, therefore, represents f . This is written as

a triple f = (var(v), high(v), low(v)) = (xi, fxi , fxi). The triple is read as “if xi then fxi
else fxi”, or ite(xi, fxi , fxi) = xifxi + xifxi . Every such if-then-else triple (or vertex of the

tree) can be converted easily into a logically equivalent 2-to-1 multiplexer as is depicted

in Figure 2.2.

The variable xi is the decision variable, hence the name of the representation. The tree

is constructed by recursive application of Theorem 1, until there are no more variables

to cofactor the function with. This procedure inherently leads to 2|V| paths starting in

the root node and ending in the terminal vertices. The value of a terminal vertex is

determined by cofactoring f with the cube of the decisions made along the corresponding

path.
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(a) Node deletion.
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f0 f1

0 10 1

x
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(b) Node merging.

Figure 2.3: The two BDD reduction rules.

2.2.2.2 Reduced Ordered Binary Decision Diagrams

The compactness of BDDs comes from two reduction rules on ordered decision trees.

They allow for an efficient representation of Boolean functions and make it possible to

cope with the inherent exponential size. The tree becomes a directed acyclic graph due

to these rules:

1. Node deletion: Nodes which don’t influence the outcome of the function are

deleted. These are nodes for which both outgoing edges point to the same subgraph.

An application of the rule can be seen in Figure 2.3a.

2. Node merging: Isomorphic subgraphs only need to appear once in the data struc-

ture. The edges are “rewired” and may point to the same subgraph. The dangling

node causing the isomorphism finally gets removed. An application of the rule is

depicted in Figure 2.3b.

BDDs are the result of maximally (i.e. until rule application is no longer possible) reducing

an ordered binary decision tree. An ordered decision tree and the corresponding BDD,

after maximal rule application, can be seen in Figure 2.4. BDDs are canonical due to the

two reduction rules. This means that for a fixed variable order, two BDDs representing

the same Boolean function are isomorphic. In an implementation this means that every

function needs to be in memory only once and logical equivalence checks are reduced to

checking the equivalence of two pointers.

An important addition to BDDs are complement edges. The representation of a BDD

f and its complement ¬f are very similar. Therefore if f has been computed, but ¬f
is needed, the edge pointing to f gets the complement property. The benefits are less

memory consumption, constant time complementation (and check for complementation)

and uncomplicated application of De Morgan’s laws. These benefits outweigh the draw-

backs of more complicated case analyses when operating on BDDs, appearing due to the

complement property. For canonicity, complemented edges only occur on low edges.
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Figure 2.4: Ordered binary decision tree and BDD for the function f ≡ x1 x2 x3 +
x1x2 + x2x3, with variable order x1 < x2 < x3.

It should be noted, however, that in practice BDDs are not generated by reducing

ordered decision trees. They are rather built by combining smaller BDDs, starting from

the basic BDDs fi = xi for all variables xi ∈ V . The combination of two BDDs, let us say

f and g, can be through any of the binary Boolean operations. Therefore, an algorithm

able to compute f〈op〉g for any 〈op〉 is sought. Such an algorithm is Apply [Bry86] which

is described in the next section.

2.2.2.3 Construction of Binary Decision Diagrams

This section adheres to the descriptions in [Som99]. As stated, BDDs are constructed

via combination of smaller BDDs through some Boolean operation 〈op〉. The Apply

algorithm, as depicted in Algorithm 2.5, can be used to compute this combination for

every Boolean operation. It recursively forms the combination of two BDDs with the

same variable order. This construction follows directly from Theorem 1:

f〈op〉g = (x · (fx〈op〉gx)) + (x · (fx〈op〉gx)). (2.1)

Both f and g must adhere to the same variable ordering, with x being the top variable.

The functions f and g are cofactored with respect to x and the two simpler problems are

then solved recursively. In each recursion step, a vertex v is created with var(v) = x. The

children of v are high(v) = fx〈op〉gx and low(v) = fx〈op〉gx.
The cofactor of a BDD with respect to the top variable x is the high child when

computing the positive cofactor and the low child when computing the negative cofactor.

Apply is a prime example of dynamic programming. In order to achieve efficient

computation, it uses two data structures:

1. Unique table: This data structure is a dictionary of all BDD nodes of the program.
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Operation ite form
0 0

f · g ite(f, g, 0)
f · g ite(f, g, 0)
f f

f · g ite(f, 0, g)
g g

f ↔ g ite(f, g, g)
f + g ite(f, 1, g)

f · g ite(f, 0, g)
f ↔ g ite(f, g, g)
g ite(g, 0, 1)

g → f ite(f, 1, g)

f ite(f, 0, 1)
f → g ite(f, g, 1)

f + g ite(f, g, 1)
1 1

Table 2.4: The ite operator.

Two equivalent functions are represented by the same BDD node. Therefore, using

the unique table, equivalence checks are constant time operations. The table helps

to establish the canonicity of BDDs. It prevents nodes which would be deleted by

the merging rule from being created.

2. Computed table: The computed table is used to make the computation of Apply

more efficient. It is used as a cache of already computed functions and employed

to prevent repeated computations of the same function. Before each complex com-

putation, the table is queried to check whether the needed result has already been

stored.

The lattice of all Boolean two-argument operations expressed in their respective ite

form is depicted in Table 2.4. In the following, a recursion step of Equation 2.1, using the

ite operator, is illustrated. Again, x is the top-most variable.

ite(f, g, h) = f · g + f · h
= x · (f · g + f · h)x + x · (f · g + f · h)x

= x · (fx · gx + fx · hx) + x · (fx · gx + fx · hx)
= (x, ite(fx, gx, hx), ite(fx, gx, hx))

The recursion terminates in the cases ite(1, f, g) = ite(0, g, f) = f and ite(f, g, g) = g.

Algorithm 2.5 provides pseudo-code for Apply, without elaborating on FindOrAddUni-

queTable and InsertComputedTable.
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proc Apply (f, g, h)
if terminal case
return result

elif computed table has entry (f, g, h)
return result

else

x← top var(f, g, h)
f ′ ← Apply(fx, gx, hx)
g′ ← Apply(fx, gx, hx)
if f ′ = g′

return g′

R← FindOrAddUniqueTable(x, f ′, g′)
InsertComputedTable((f, g, h), R)
return R

Figure 2.5: Apply implementing the construction of a BDD from two BDDs for
any two-argument Boolean operator.

2.2.2.4 Operations on Binary Decision Diagrams

In the previous subsection we showed how to combine two BDDs via the Apply algorithm

for any Boolean operator. In order to describe the algorithm, we showed how to compute

the cofactor with respect to the top variable. If a BDD is cofactored with multiple

variables (a cube), the procedure is to compute the cofactor recursively starting with the

root node. Then a case distinction is made and if the BDD is to be cofactored with the

current node’s variable the incoming edges are reconnected to the children of that node.

In case there is no need to cofactor the current node, the recursion proceeds along towards

the leaves without changing the node.

Apply and cofactoring can directly be used to compute the existential and universal

quantifications of a BDD with respect to a single variable, by formula expansion (cf.

Section 2.2.1.3):

∀y. f ≡ fy · fy,
∃y. f ≡ fy + fy.

Another important operation is functional composition. The goal is to compute

f |xi=g = f(x1, . . . , xi−1, g, xi+1, . . . , xn),

with g being a function. This can be done by applying Theorem 1 and subsequent substi-
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tution of xi by g, resulting eventually in the computation of ite(g, fxi , fxi). The literature

describes an optimized algorithm for this computation of the functional composition of f

and g named Compose [Bry86, Som99]. A single satisfying assignment for the BDD can

be found with the GetSatAssignment algorithm. Finding a satisfying assignment is

equivalent to finding a path from root to the 1-sink with an even number of complemented

edges.

2.2.2.5 Variable Ordering

The variable order has a major influence on the size (the number of vertices) of a BDD.

The problem of finding an ordering such that the number of BDD vertices is bounded, was

proven to be NP-hard [BW96]. In practice, the problem is tackled by applying heuristics

such as presented in [Rud93, FMK91, ISY91, PS95, PSP96].

BDD reordering can either be applied at fixed positions in the program or dynamically.

In dynamic reordering, a reordering algorithm is applied as soon as the size of a BDD

exceeds a certain threshold.

Even though there are many ways to decrease the memory consumption of BDDs, ex-

cessive memory consumption is the primary problem when dealing with BDDs. Reorder-

ing algorithms may have trouble dealing with large instances. The authors of [HB11], for

example, describe how finding a good variable order takes up the major amount of work

in their computations.

2.2.3 Conjunctive Normal Form

Conjunctive normal form, or CNF, is a syntactic restriction of propositional logic. It has

the useful property that the resolution calculus can be applied to it. CNF, therefore, is

the representation used by SAT and QBF solvers.

The syntax of conjunctive normal form is a restriction of propositional logic to a

conjunction of disjunctions (“and of ors”) of literals. The following BNF defines it.

〈cnf〉 ::= (〈clause〉) · 〈cnf〉 | (〈clause〉)
〈clause〉 ::= 〈literal〉+ 〈clause〉 | 〈literal〉
〈literal〉 ::= 〈propositional symbol〉 | 〈propositional symbol〉

〈propositional symbol〉 ::= x1 | . . . | xn | . . .

The disjunctions are referred to as clauses. Clauses might also be referred to as sets

of literals. If it is clear that literals belong to a particular clause, the + connective is

dropped. We say that a clause C1 subsumes a clause C2, if C1 ⊆ C2.
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2.2.3.1 Tseitin’s Transformation

Every arbitrary propositional formula can be transformed into an equivalent CNF for-

mula, purely by application of syntactical rewrite rules. This might however lead to an

exponential blowup of the size of the formula. When applying a SAT or QBF solver it is

sufficient to have an equi-satisfiable CNF formula, however. Such a formula may contain

additional fresh variables, which do not affect the satisfiability of the original formula. An

equi-satisfiable formula in CNF can be obtained from an arbitrary propositional formula

by application of Tseitin’s transformation [Tse68]. The advantage of this method is that

the formula grows only polynomially. The transformation of an arbitrary propositional

formula F proceeds in two steps:

1. Every sub-formula F1�F2, with � ∈ {·,+,→,↔}, of F (sub-formula F1 in the unary

case) is recursively replaced by a fresh variable x. For every such replacement, a

conjunct (x ↔ F1 � F2) ((x ↔ F1) in the unary case) is added to the new formula

F ′.

2. Every conjunct of F ′ can be rewritten into CNF using a set of rules. These rules

are provided in Table 2.5 (Page 30). The final formula is a conjunction of CNF-sub-

formulas and therefore also in CNF.

2.2.4 Disjunctive Normal Form

Disjunctive normal form (DNF) is similar to CNF. It is the “or of ands” of literals. Its

BNF is the same as the one for CNF, but with all appearances of · and + swapped. Cubes

therefore take the place of clauses. A formula in DNF can be considered a set of cubes.

One reason for the usefulness of DNF is that it provides a straight-forward way to

represent the cover of a Boolean function. Covering a function is the problem of finding

cubes, such that the on-set minterms of a Boolean function are covered by the cubes.

Solving this problem is an essential task in logic minimization and has been extensively

studied throughout the years. An algorithm for finding a cover from a DNF will be

presented in the related work (Chapter 3).

2.3 Satisfiability Solving and Interpolation

Boolean satisfiability, or short SAT, is the problem of determining if there is a satisfying

assignment to the variables in a propositional logic formula F , which make it true.

The SAT problem for general propositional logic is usually reduced to the problem of

determining whether a CNF formula is satisfiable or not. An equi-satisfiable CNF formula
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is the result of applying Tseitin’s transformation (cf. Section 2.2.3.1). The reduction to

CNF allows for the application of the resolution calculus.

2.3.1 Resolution Calculus

The resolution rule is an inference rule deriving a new clause from two clauses containing

a complementary literal. The clauses C + x and D + x are the antecedents, x is the

pivot, and C +D is the resolvent. Res(C,D, x) denotes the resolvent of C and D with

the pivot x. The pivot variable must be the only variable appearing in opposed phases

between the two antecedents.

The resolution rule Res(C + x,D + x, x) is written as

C + x D + x

C +D
or

C +D

C + x D + x

Resolution can be regarded as existential quantification of the pivot variable in the

conjunction of the antecedents.

∃x. ((C + x) · (D + x)) ≡ ((C + x) · (D + x))x + ((C + x) · (D + x))x

≡ (1 ·D) + (C · 1)

≡ C +D

For a formula F in CNF, repeated application of the resolution rule, starting with the

clauses in F , yields a resolution proof for F .

Definition 3 (Resolution proof). A resolution proof R is a DAG (VR, ER, claR, pivR, sR).

VR is the set of proof vertices. ER ⊆ VR × VR is the set of edges. The proof consists of

initial vertices, which have in-degree 0 and internal vertices, which have in-degree 2. The

sink vertex sR ∈ VR is the only vertex of the proof with out-degree 0. Let v, v1, v2 ∈ VR,

then the edges (v1, v) ∈ ER and (v2, v) ∈ ER represent the resolution

claR(v) = Res(claR(v1), claR(v2), pivR(v)).

For all initial vertices v ∈ VR, claR(v) is a clause from the CNF formula.

The subscripts are dropped if clear from the context. For a vertex v1 ∈ VR with an

edge (v1, v), we write v+ if v1 contains the pivot in positive phase and v− if it contains

the pivot in negative phase. We say that vi ∈ VR is a parent of vj ∈ VR, if (vi, vj) ∈ ER.
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Figure 2.6: Resolution refutation of Equation 2.2.

Conversely, we call vj a child of vi. We say that vi is an ancestor of vj, if there is a path

from vi to vj. We denote the set of all paths from vi to vj by Paths(vi, vj) and a path as

a set of vertices. We say that vi dominates vj, if all paths from vj to the sink go through

vi.

A refutation is a resolution proof with cla(s) ≡ 0. This is usually expressed by the

2 symbol representing the empty clause. If every initial vertex of a proof is labelled

with a clause of F , and it is a refutation, then the proof is said to be a refutation of

F . Resolution is refutation-complete which means that the empty clause can always be

derived, if the formula is unsatisfiable. Example 1 shows a resolution refutation. Note,

that the + connectives are dropped in the figure.

Example 1. Figure 2.6 shows an example of the refutation of

F ≡ (x0) (x1x2) (x0x1) (x1x2) (x1) (2.2)

2.3.2 Satisfiability Solving

SAT solvers use a complete search algorithm to establish the satisfiability of a formula

F . The search space is a decision tree spanned by the variables in F . By assigning truth

values to the variables, the tree is explored. If for no leaf of the tree, representing full

assignments, it is possible to make the formula sat, the instance is unsatisfiable (unsat).

If for at least a single one there is a valid assignment, it is said to be satisfiable (sat).

Since SAT is a highly generic problem and therefore appears in many domains, much

effort has been put into finding an efficient solving algorithm. A first step was made in 1960

with the Davis-Putnam [DP60] procedure (DP). Subsequently there have been various

optimizations of the algorithm. The first improvement was the Davis-Putnam-Logeman-

Loveland [DLL62] procedure (DPLL) in 1962. Further significant enhancements came

only decades later in the late 1990s, resulting in the GRASP [SS96] and Chaff [MMZ+01]

SAT solvers, which improved the size (usually measured by the number of variables) of

the solvable instances by orders of magnitude.
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Due to the recent improvements to SAT solvers1, many new applications were made

possible. Examples for the application of SAT solvers range from model-checking, over

software package management, to cryptanalysis. For a more comprehensive overview, we

refer the reader to [MS08].

2.3.3 Proof Extraction

Modern SAT solvers are not just decision procedures for propositional logic formulas.

They are also able to produce resolution proofs (Definition 3). Initially resolution proofs

were needed for checking the correctness of a SAT solver’s implementation using an in-

dependent tool. The proofs act as a certificate when the result is unsat [ZM03] (it is

trivial to check the sat case, by assigning the variables with the values from the model).

Resolution proofs use excessive amounts of memory, however, and there has been a push

away from using resolution proofs to using clausal proofs as certificates [GN03, WHH14].

The technique in [ZM03] stores a trace of clauses during the solver run. Construction of

the resolution proof from this trace is straight-forward. The approach in [GN03] applies so-

called reverse unit propagation, to limit the amount of clauses, which need to be computed

during checking. While reverse unit propagation takes more time, it improves memory

usage. Recent improvements [WHH14] lead to more efficient checking. A (trimmed)

resolution proof can be emitted during checking of clausal proofs. A modern tool-chain

for this task would be Glucose [AS09] followed by DRAT-trim [WHH14].

We use resolution proofs for computation of Craig Interpolants [Cra57], which we will

describe in the next section.

2.3.4 Craig Interpolation

A Craig Interpolant is defined by Craig’s interpolation theorem.

Theorem 2 (Craig Interpolant [Cra57]). Given two Boolean formulas A and B, with A∧B
unsatisfiable, there exists a Boolean formula I referring only to the common variables of

A and B such that A→ I, and I ∧B is unsatisfiable.

Given a conjunction of A and B which is unsatisfiable, the steps involved in the

computation of the interpolant are as follows.

1. The SAT instance A ∧ B is solved. If necessary, it is transformed into CNF first.

Since A∧B is unsat, a resolution refutation is the result. The initial vertices of the

resolution refutation are labelled with clauses from A and B.

1For example [ES03, EB05], but we refer the reader to http://www.satcompetition.org/ for state-of-the-
art solvers and their improvements.

http://www.satcompetition.org/
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2. An interpolation system is employed, annotating each vertex of the proof with a

propositional formula, called a partial interpolant.

3. The annotation of the sink node is called the final interpolant I, which we are

interested in.

There exist three different systems for computing the interpolant from a resolution refu-

tation:

1. The symmetric system [Hua95, Kra97, Pud97],

2. McMillan’s system (regular and inverse) [McM03], and

3. the labelled interpolation system [DKPW10].

The latter system is a generalization of the first two, and therefore we will only describe

and work with the labelled system.

2.3.4.1 Labelled Interpolation System

This description of the labelled interpolation system follows the one in [DKPW10] closely.

We first define a labelling function, mapping the literals of the resolution proof, denoted

by Lit, to labels.

Definition 4 (Labelling function). Let S = {a, b, ab,⊥} be a set of labels, partially ordered

as defined by the Hasse diagram (S,<,t) depicted below. A labelling function L : V ×
Lit 7→ S maps all literals of a resolution proof R to a label from S. For a literal l ∈ Lit

and a vertex v ∈ V , L must satisfy

L(v, l) =

⊥, if l 6∈ cla(v).

L(v+, l) t L(v−, l), if v is internal and l ∈ cla(v).

ab

a b

⊥

A variable var(l) is called A-local if it appears only in Var(A) \ Var(B), B-local if it

appears only in Var(B) \ Var(A) and shared otherwise. A labelling function is supposed

to preserve locality, meaning that l has to be labelled a if var(l) is A-local and l must

be labelled b if var(l) is B-local. Shared variables, occurring both in A and B, might be

labelled a, b or ab.

Given a resolution proof and a labelling function, the labelled interpolation system is

defined inductively. The following inference rules define the labelled interpolation system

and show how resolution proofs can be used to compute partial interpolants.
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Figure 2.7: Labelled resolution proof annotated with partial interpolants.

Definition 5 (Labelled interpolation system). Let R be a resolution refutation and L be a

locality-preserving labelling function L. The labelled interpolation system Itp(L, P ) maps

vertices to partial interpolants (in brackets) as defined below.

Case 1. Initial vertex v with cla(v) = C:

C [{l ∈ C | L(v, l) = b}]
if C ∈ A,

C [¬{l ∈ C | L(v, l) = a}]
if C ∈ B

Case 2. Internal vertex v with cla(v) = C1 +C2, cla(v+) = C1 +x and cla(v−) = C2 +x:

C1 + x [I1] C2 + x [I2]

C1 + C2 [I3]

if L(v+, x) t L(v−, x) = a, I3 = I1 + I2,

if L(v+, x) t L(v−, x) = ab, I3 = (x+ I1) · (x+ I2),

if L(v+, x) t L(v−, x) = b, I3 = I1 · I2

Example 2. Let us continue Example 1 by applying the labelled interpolation system to

the resolution proof. F is split into A ≡ (x0)(x0x1)(x1x2) and B ≡ (x1)(x1x2). According

to this partitioning the literals are labelled by a locality-preserving labelling function. By

annotation of the initial vertices with partial interpolants and propagation according to

the rules from Definition 5 the result is the resolution proof depicted in Figure 2.7. The

labels of the literals are shown as their respective superscripts. The final interpolant I

corresponds to Itp(L)(2) = x2. It can be seen that it is a valid interpolant by checking

that A→ I and I ∧B is unsatisfiable.

Labelled interpolation systems support the elimination of non-essential (or periph-

eral [SDGC10]) variables from interpolants [D’S10], as stated by the following lemma.
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Lemma 1. Let L and L′ be locality preserving labelling functions for an (A,B)-refutation

R, where L(v, t) = a if claR(v) ∈ A and L(v, t) = b if claR(v) ∈ B for all initial vertices

of R. Then Var(Itp(L)(v)) ⊆ Var(Itp(L′)(v)) for all v ∈ VR.

For such labelling functions only the middle case (where the labels are merged to ab)

introduces a variable into the interpolant. Therefore eliminating such cases would allow

us to reduce the number of variables (our measure of size) of the interpolant. We will

describe our approach at this problem in Chapter 5.

2.4 Determinization of Boolean Relations

After introducing the fundamental background, we now turn to introducing existing ap-

proaches to relation determinization, which we base our work on.

Determinization of Boolean relations is the problem of finding a functional implemen-

tation ~f = (f1, . . . , fm) with fi : Bn 7→ B of a Boolean relation R ⊆ Bn × Bm. Every

fi is an unambiguous mapping from input variables ~x = (x1, . . . , xn) to output variables

~y = (y1, . . . , ym), such that

D =
m∧
i=1

(yi ≡ fi(~x))

characterizes a subset of R (if (x, y) ∈ D then (x, y) ∈ R, but not the other way

round). Therefore, D implies R. D is a deterministic relation compatible with the non-

deterministic relation R. In other words, this means that D is the relation after resolving

all the ambiguity (i.e. one-to-many mappings) of R. For each one-to-many mapping one

choice is picked—so to say—determinizing the relation.

To compute each fi the multiple-output case is reduced to the single-output case. We

present a scheme accomplishing this in the next subsection.

2.4.1 A Scheme for the Determinization of Multiple-output Rela-

tions

There exist multiple different schemes for the determinization of multiple-output relations

R ⊆ Bn × Bm. We will describe the method from [JLH09, Section 3.2.1]. The procedure

is reminiscent of Gaussian elimination and similarly proceeds in two steps: Forward

elimination and Back substitution. Let FI(y,R) be a functional implementation

of a single-output total relation R with output variable y. We present ways to compute

FI(y,R) next (existing work) and in Chapters 4 and 5 (our new approaches).
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1. Forward elimination: Let R(i) stand for ∃ym · · · ∃yi. R, for 2 ≤ i ≤ m. The

scheme first reduces the number of outputs by iterative existential quantification

and saves all the intermediate results:

R(m) = ∃ym. R
...

R(i) = ∃yi. R(i+1)

...

R(2) = ∃y2. R(3)

2. Back substitution: Thereafter, for each output yi, the functional implementation

fi is computed and the result substituted for yi.

f1 = FI(y1, R
(2))

...

fi = FI(yi, R|(i+1)
y1=f1,...,yi−1=fi−1

)

...

fm = FI(ym, R|y1=f1,...,ym−1=fm−1)

Compared to the procedure used in [BGJ+07], which needs O(m2) quantifications, this

procedure gets by with O(m) quantifications by saving the intermediate results. Single-

output relations are considered to be embedded in such a scheme throughout the thesis.

The reduction from multiple outputs to a single one makes it easier to analyze the cases

when trying to find a functional implementation.

The presented scheme takes care of reducing the number of outputs in order to compute

FI(y,R), but another precondition which says that R must be total is not necessarily

given. However, a single-output partial relation R(~x, y) can be totalized—by treating the

unmapped inputs as don’t cares—as presented in [JLH09, Formula 2]:

T (~x, y) = R(~x, y) + ∀y. ¬R(~x, y)

2.4.2 Extracting Circuits from Relations

We will now present ways for finding a functional implementation for a Boolean single-

output total relation. This solves an essential problem within property synthesis (cf.

Appendix A), that we are particularly interested in. Previous algorithms used BDDs for
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representing the relation, but more recently, an interpolation-based procedure has been

proposed, taking advantage of the improvements made to SAT solvers.

2.4.2.1 BDD-based: Building Circuits from Relations

Kukula and Shiple [KS00] present a way of coping with the potential non-determinism of a

multi-output relation R(~x, ~y) and are able to construct a circuit from such a relation. They

do so by adding parametric variables, which have the purpose of breaking up don’t care

conditions. The final result is a circuit representing RC(~x, ~p, ~y, v). They assume that the

input relation is represented by a free BDD. A free BDD is a BDD which allows different

variable orderings on different paths, thereby being more general than the definition of

BDDs presented in Section 2.2.2. Let us from now on just refer to BDDs.

On a high level, their approach constructs a circuit which adheres to the structure

of the BDD. For each BDD node representing an input variable xi, an input module is

built and for each node representing an output variable yi, an output module is built,

respectively. There is a 1-to-1 correspondence between BDD nodes and circuit modules.

Every edge of the BDD corresponds to two wires in the circuit: one incoming and one

outgoing signal connecting the modules corresponding to the nodes connected by the edge.

On top of that, additional circuitry is added, but we will describe their solution without

going into those details. The approach consists of three phases:

1. In the first phase, they gather information about whether there is a path to the 1

leaf for the current assignment to the input variables. They do so by propagating

signals from the 1 sink towards the root of the DAG and added to their circuit as

an auxiliary output.

2. In the second phase, they propagate the signals the other way (from the root towards

the leafs) and activate a single path toward the 1 leaf, if possible. At an input

module, the corresponding input variable is responsible for steering the path. At an

output module, a parametric input pi is responsible. At each module, they use the

information from Phase 1 to make a valid decision. If an outgoing signal becomes

active, the module connected to that signal becomes active as well.

3. In the third phase, they collect information along output modules corresponding to

the output variable yi. If any module chooses 1 for yi, the final output should be

1 and 0 otherwise. If none of the modules representing yi is active, they determine

the value by the parametric input pi. For this choice a 2-to-1 multiplexer (one per

output variable) is used, with the activation signals from Phase 2 acting as selectors.
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proc ExtractFunctionFromBDD (R, ~x, y)
R1 ← R(~x, 1)
R0 ← R(~x, 0)
R′1 ← R1 ·R0

R′0 ← R0 ·R1

foreach x ∈ ~x do

R′′1 ← ∃x. R′1
R′′0 ← ∃x. R′0
if R′′1 ·R′′0 = 0 then

R′1 ← R′′1
R′0 ← R′′0

f ← R′1
return f

Figure 2.8: Extraction of a function from a relation.

The authors prove the correctness of their construction [KS00, Theorem 1], showing that

R(~x, ~y)↔ RC(~x, ~p, ~y, 1).

This however is more general than is necessary for many applications, such as synthesis.

As was described in Section 2.4, for a functional implementation it would be sufficient, if

RC(~x, ~p, ~y, 1) would imply R(~x, ~y).

2.4.2.2 BDD-based: Specify, Compile, Run: Hardware from PSL

The next approach is a simplified version from [BGJ+07, Figures 2 and 3]. The version

we present assumes a single-output relation. Again, the relation is assumed to be in BDD

form. The algorithm was proposed to find a circuit implementation of a strategy for a

GR(1) game (cf. Appendix A) and is less general than the approach by Kukula and

Shiple, presented in the previous subsection. The algorithm takes a relation R ⊆ Bn×B,

the set of input variables ~x = {x1, . . . , xn} and the output variable y as arguments.

ExtractFunctionFromBDD as presented in Figure 2.8 first computes both the posi-

tive and the negative cofactors of R with respect to y. It then computes the strict cofactors

R′1 and R′0. If the relation is total in the input space, these expressions could be simplified

to R′1 ← R0 and R′0 ← R1, respectively.

The foreach loop is an optional extension. This extension aims at simplifying the

relation, by eliminating input variables. The inputs, which y does not depend on, do

not influence the output and should therefore not appear in a functional implementation

of R. To find these inputs, the algorithm iterates over the set of input variables and
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¬R(~x, 0) ¬R(~x, 1)R(~x, 1) ·R(~x, 0)

R(~x, 1)

R(~x, 0)

Figure 2.9: The set representation of a single-output total relation R(~x, y) split into
its cofactors.

existentially quantifies the input x of the current iteration in the strict cofactors R′1 and

R′0. The resulting BDDs represent the sets where x is fully expanded. It then checks, if

these sets intersect by computing the conjunction of the BDDs. If they do, the input x

has influence on y and cannot be eliminated. Otherwise, the algorithm updates R′1 and

R′0 and effectively eliminates x from the relation.

The functional implementation FI(y,R) (see Section 2.4) is finally the strict positive

cofactor of R with respect to y.

2.4.2.3 Interpolation-based: Interpolating functions from large Boolean relations

Jiang, Lin and Hung present a different approach [JLH09] to the determinization of

Boolean relations, namely using interpolation (cf. Section 2.3.4). They also split the

relation R(~x, y) into parts (¬R(~x, 0) and ¬R(~x, 1)), in a similar way as ExtractFunc-

tionFromBDD. They show that the conjunction of these parts is unsatisfiable. There-

fore, it is possible to obtain a resolution refutation from a SAT solver and use it to compute

a Craig interpolant. This interpolant turns out to be a functional implementation of the

relation.

Figure 2.9 illustrates a single-output total relation as it appears throughout this sec-

tion. When cofactoring R with respect to y three disjoint sets are distinguished:

1. SA is the set characterized by ¬R(~x, 0)

2. SB is the set characterized by ¬R(~x, 1)

3. The don’t care set is the conjunction of R(~x, 0) and R(~x, 1).

The authors of [JLH09] make use of the following proposition.

Proposition 1. A relation R(~x, y) is total if and only if the conjunction of ¬R(~x, 0) and

¬R(~x, 1) is unsatisfiable.
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The main result of their work is the following theorem and proof thereof. The proof

of the theorem immediately shows, how the interpolant maps the members of the three

involved sets to either 0 or 1 and thereby determinizes the relation.

Theorem 3 ([JLH09, Theorem 2]). Given a single-output total relation R(~x, y), the in-

terpolant I of the refutation of

¬R(~x, 0) · ¬R(~x, 1) (2.3)

with A = ¬R(~x, 0) and B = ¬R(~x, 1), corresponds to a functional implementation of R.

The interpolant maps every element of SA to 1, every element of SB to 0, and every

other element to either 0 or 1. Furthermore, let f be (y ≡ I). Then f → R and is a

functional implementation (FI(y,R)).

The interpolant, and therefore the mapping of the elements not in SA∪SB, depends on

the the resolution proof found by the SAT solver on the one hand and on the interpolation

system on the other hand. There are two trivial interpolants satisfying Theorem 3 which

can be obtained without interpolation, however. These are R(~x, 1) and ¬R(~x, 0) (used by

the algorithm presented in the previous section). The former is the weakest interpolant

and characterizes the largest set. The latter is the strongest interpolant and characterizes

the smallest set, as is depicted in Figure 2.9. The authors of [JLH09] claim that the trivial

interpolants often lead to a more complex circuit than the functional implementations

computed from a resolution refutation.

2.5 Resolution Proof Reduction

An optimization, similar as in Section 2.4.2.2 is made implicitly by Craig interpolation.

The interpolant I only depends on variables in the shared alphabet of A and B.

Minimizing the number of variables in the interpolant further, requires modification

of the resolution refutation. We present the following efficient proof post-processing tech-

niques that we improve and generalize in Chapter 5:

1. RecycleUnits: For every unit clause cla(u) (that is a clause consisting of a single

literal) the algorithm checks if a lause cla(v) in the proof has the unit clause as a

pivot. If it does, v gets replaced by u. Therefore, the resolutions of the literals in

cla(v) can potentially (barring merge literals) be spared.

2. RmPivots: This algorithm is based on the observation [Tse68] that a minimal

resolution proof has at most one resolution on the same pivot on every path from

root to sink. Therefore RmPivots analyzes the paths from sink to root and keeps
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track of the encountered pivots in a set σ. As soon as a second resolution on a pivot

p already in σ is found, the resolution step can be eliminated. The decision, which

of the two clauses is removed depends on the path chosen from the first insertion of

p. If the path containing the negative literal was chosen, the clause containing the

positive literal is discarded, and vice-versa.

The simplest version of this algorithm assumes that the proof is a tree. In gen-

eral however, a resolution proof can be a directed acyclic graph. The authors

of [BIFH+09] propose two solutions: Firstly, stopping the algorithm as soon as

a vertex with out-degree greater 1 is encountered. This is the approach the authors

chose. Secondly, they propose a more complicated approach involving dominator

analysis.

Fontaine et al. [FMP11] and Gupta [Gup12] independently published improvements

to this version of the algorithm. Most importantly they generalize it to directed

acyclic graphs, by computing the meet-over-all-paths for σ at vertices with out-

degree greater 1. We will give an in-depth description of these techniques and

present an optimization in Chapter 5.

Both RecycleUnits and RmPivots are part of a two-step process. First, the proof

is reduced by applying the described techniques. This might leave the proof in an in-

valid state, containing incorrect resolutions. The proof has to be corrected, such that it

is a valid resolution proof again. The algorithm performing these corrections is called

ReconstructProof [BIFH+09].

All these modifications of resolution proofs do not consider interpolation systems at

all. A smaller proof, that is one with less resolutions, is intuitively preferable for receiving

a smaller interpolant and in turn a simpler functional implementation via [JLH09]. Our

experiments (Section 5.3) show that less resolutions, lead to a smaller interpolant. We

will show in Chapter 5 how to also keep track of labelling information in σ, in order to

prevent certain unfavorable proof reductions.
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Negation:
x↔ y ≡ (x→ y) · (y → x)

≡ (x+ y) · (y + x)

Disjunction:
x↔ (y + z) ≡ (y → x) · (z → x) · (x→ (y + z))

≡ (y + x) · (z + x) · (x+ y + z)

Conjunction:
x↔ (y · z) ≡ (x→ y) · (x→ z) · ((y · z)→ x)

≡ (x+ y) · (x+ z) · ((y · z) + x)
≡ (x+ y) · (x+ z) · (y + z + x)

Implication:
x↔ (y → z) ≡ (x→ (y → z)) · ((y → z)→ x)

≡ (x+ (y → z) · ((y → z) + x)

≡ (x+ y + z) · ((y + z) + x)
≡ (x+ y + z) · ((y · z) + x)
≡ (x+ y + z) · (x+ y) · (x+ z)

Bi-implication:
x↔ (y ↔ z) ≡ (x→ (y ↔ z)) · ((y ↔ z)→ x)

≡ (x→ ((y → z) · (z → y)) · ((y ↔ z)→ x)
≡ (x→ (y → z)) · (x→ (z → y)) · ((y ↔ z)→ x)
≡ (x+ y + z) · (x+ z + y) · ((y ↔ z)→ x)
≡ (x+ y + z) · (x+ z + y) · (((y · z) + (y · z))→ x)
≡ (x+ y + z) · (x+ z + y) · ((y · z)→ x) · ((y · z)→ x)
≡ (x+ y + z) · (x+ z + y) · (y + z + x) · (y + z + x)

Table 2.5: Tseitin’s transformation [Tse68] for each logic connective (table taken
from [WM11])
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Related Work

This chapter aims at introducing existing techniques related to our work. We begin with

the well-studied subject of combinational logic minimization in Section 3.1. We present

classic minimization algorithms which tried to find an exact minimum implementation for

an incomplete Boolean function. We also give a brief overview of heuristic minimization

algorithms.

3.1 Combinational Logic Minimization

We briefly describe classic approaches to combinational logic minimization, following in

part the presentation of [DM94, Chapter 7]. Without loss of generality it is assumed

that the circuit is presented in disjunctive normal form. Due to the structure of DNF,

logic minimization is commonly referred to as two-level logic minimization. An extension

which generalizes the algorithms to more levels exists [Law64].

The goals of two-level logic minimization are to minimize the literals and conjunctions

(the focus might be on one or the other) of the circuit and in turn to minimize circuit

area. The first solutions [VOQ52, Mcc56] to the problem provided exact minimizations.

These approaches have some success in practical scenarios. In general, though, finding an

exact solution is computationally infeasible. Therefore the focus of later work changed to

finding heuristic solutions which yield an approximate minimization. One standard tool

implementing these minimization algorithms is the Espresso logic minimizer [BSVMH84].

The solutions initially only applied to incompletely specified Boolean functions. In-

teresting in the scope of this thesis is that very similar techniques can be applied to

the more general case of Boolean relations as well: [BS89] shows how to perform exact

minimization and [WB91] shows how to perform heuristic minimization. The following

description targets minimization of incompletely specified Boolean single-output functions
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(f : Bn 7→ B+).

3.1.1 Definitions

Logic minimization revolves around covering the minterms of a Boolean function by im-

plicants. Some definitions are in order:

Definition 6 (Implicant). An implicant of f is a cube c contained in f .

Definition 7 (Cover). A cover of f is a set of cubes that represents f .

Definition 8 (Minimum Cover). A minimum cover is a cover with minimum cardinality.

Definition 9 (Prime Implicant). A prime implicant is an implicant which is not contained

by another implicant of f .

Definition 10 (Essential Implicant). A prime implicant is essential if it is the only prime

implicant covering a specific minterm.

Definition 11 (Prime Cover). A prime cover is a cover consisting only of prime impli-

cants.

Let us look at an example in order to make the definitions clearer.

Example 3. Assume we are given an incompletely specified function

f ≡ x1x2x3y + x1x2x3y + x1x2x3y + x1x2x3y + x1x2x3y.

The function is depicted as a coloring of minterms in Figures 3.1a and 3.1b. In Figure 3.1a

f is covered by three implicants α, β and γ where β and γ are prime since they are not

contained by another implicant of f . Looking at α however, we see that there could be an

implicant covering the minterms x1x2x3 and x1x2x3 which would contain α. In Figure 3.1b

α is now prime as well.

In the first two figures α and γ are essential, while β may be discarded because the

only on-set minterm covered by β is already covered by γ (in Figure 3.1b also by α). Both

these covers are therefore not minimum.

In Figure 3.1c the example is changed slightly. Including the don’t care minterm in

the cover allows to find a single implicant covering the depicted function. This cover is

minimum.
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Figure 3.1: Example of covers and implicants. (→: x1, ↑: x2,↗: x3)

3.1.2 Exact Minimization

The first algorithm for exact minimization of logic circuits is the Quine-McCluskey algo-

rithm. The starting point was Quine’s Theorem:

Theorem 4 ([VOQ52, Theorem 1]). There exists a minimum cover for f that is prime.

Proof. A minimum cover which is not prime contains non-prime implicants. All such

implicants can be replaced by the prime implicants containing them without changing

the minimality property of the cover.

The benefit of Quine’s theorem is that it limits the search for a minimum cover to the

search for a minimum prime cover. Quine then proposed a prime implicant table to solve

the covering problem. A means for computing all prime implicants is the IteratedCon-

sensus procedure (based on the consensus operation), which we will not describe here,

however.

Definition 12 (Prime Implicant Table). A prime implicant table is a two-valued matrix

whose columns represent the prime implicants of the function and the rows represent the

minterms of the function. An entry aij of the matrix is 1 if the ith minterm is covered by

the jth prime implicant.

After setting up a prime implicant table it can be reduced by removing dominated rows

and columns. Note that essential implicants must remain in the cover. The reduction

may lead to a so-called cyclic core, which does not change by applying the reduction

rules. In order to solve the cyclic core, a solution was proposed by McCluskey [Mcc56]

which explores the cost of all possibilities. A better approach is to use branch and bound

(Petrick’s method) in order to prune some of the possibilities early by evaluating the cost

of a subset of primes with a lower bound before computing the exact cost. If the evaluated

cost is too high, the computation can be spared.
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The major problem of this solution is the construction of the prime implicant table

which might be exponential in size (both in the number of minterms and prime implicants).

Therefore, it might be impossible to set up the table to begin with. Furthermore, the

table covering problem is NP-complete.

By exploiting specific properties, such as unateness and complemented covers—moreover

divide and conquer strategies and again smart pruning—it is possible to make the exact

minimization approach practical to some extent.

3.1.3 Heuristic Minimization

Due to the described problems of exact approaches, heuristic approaches are favorable in

practice. They provide a way to get close to the minimum cardinality cover, but with

feasible computational effort. Heuristic approaches avoid computing the prime implicant

table and start with a cover of the function as provided by the represented formula. This

cover is then iteratively improved by applying operations on the cover. The common

operators are:

� Expand replaces implicants with prime implicants containing them.

� Reduce replaces prime implicants with non-prime implicants. The update must

result in a cover again.

� Reshape looks at pairs of implicants. One implicant is expanded and one is reduced

in such a way that the updated cover is valid.

� Irredundant removes redundant implicants from the cover.

Different tools may use the operators in different orders or use only a subset of them.

Espresso [BSVMH84] uses only Expand, Reduce and Irredundant (in that order).

Furthermore, implementation details of the operators may differ since they are based on

heuristics.

3.2 ABC

ABC [BM10] is a tool unifying synthesis and verification of combinational and sequential1

circuits. ABC offers a broad set of functions: For sequential logic synthesis it is necessary

to support functionality such as mapping of a circuit to standard cells, placement of these

and retiming of the circuit. On the verification side, techniques such as bounded model

1A sequential circuit is like a combinational circuit, but has memory. Therefore such circuits have
state, which changes either asynchronously, or synchronously following a clock.
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checking and satisfiability solving are provided among others. For a complete list of the

functionality we refer to www.eecs.berkeley.edu/~alanmi/abc/.

Internally ABC uses and-inverter-graphs graphs (AIGs) to represent circuits (combi-

national and with an extension also sequential ones) and implements various means for

operating on the representation. Operations like reduction, rewriting, restructuring and

balancing of the graph are available in ABC. In our case, these operations are helpful to

estimate the gate count and area of the circuit in a more realistic way, when benchmarking

the impact our minimization techniques have on circuit size.

www.eecs.berkeley.edu/~alanmi/abc/
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Chapter 4

Determinization of Boolean Relations Us-

ing BDDs

In this chapter we present the first contribution of this thesis to the problem of Boolean

relation determinization. First, we revisit the problem and describe our main idea behind

our approach in the following section. We then show that the size of the circuits (functions)

computed by ExtractFunctionFromBDD (Figure 2.8) depends on the order in which

the variables are picked by the “optimization loop”. We will refer to this order as variable

sequence, not to be confused with the variable order of a BDD. We demonstrate the order

dependency in a small example. As a result of this observation we present two solutions

for finding the function depending on the minimum number of variables, independent

of the variable sequence. Whereas ExtractFunctionFromBDD computes a locally

optimal solution, our new approaches search for the global optimum.

In our first approach we employ an explicit search (by enumerating variable subsets).

It is described in Section 4.3. In our second approach (Section 4.4) we add logic to the

circuit representing the relation, which finds the solution in an implicit search.

Finally, we evaluate our implementation on benchmarks from GR(1) synthesis (cf.

Appendix A). The performance impact, compared to ExtractFunctionFromBDD,

was more significant than expected, and we were only able to complete the runs on small

examples, with larger ones running into timeouts. The results for these small benchmarks

show that the local optimum equals the global optimum.

4.1 Problem Statement

As seen in Section 2.4, there are various methods readily available for solving relations. A

central problem remains however: Namely, the size of the resulting combinational circuit
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is unsatisfying. A metric for the circuit size is the number of logic gates. The goal set

therefore was to find a determinization that minimizes the eventual number of gates.

In our approach for attacking this problem we assume that a relation R ⊆ Bn × B
is given in BDD form. The sought-after functional implementation f : Bm 7→ B, with

m ≤ n, of R then is also in BDD form. Such a function can be converted to a circuit, by

replacing each BDD vertex with a 2-to-1 multiplexer (cf. Figure 2.2).

The circuit size, thus, is directly connected to the BDD size. The BDD size depends

on the following two parameters.

1. The variable order of the BDD, and

2. the represented function f , itself.

Finding a good variable order is a central problem for BDDs. It has been studied intensely

and there exist various heuristics for finding a good variable order (cf. Section 2.2.2.5).

As the problem of finding a good order can be considered solved (heuristically) the

focus of this thesis lies on the second parameter: the represented function. In many

applications, the function is fixed and therefore this parameter cannot be tweaked. In

the case of relation determinization, however, the freedom of relations can be exploited to

extract a function that may have a smaller BDD representation. The metric we employ

for measuring the size of a function is the number of variables the function depends on.

We call them support variables.

We illustrate in the following section that the extraction algorithm of [BGJ+07], which

we presented in Section 2.4.2.2 does, in general, not reduce the number of support variables

perfectly. Subsequently, we present two extraction algorithms which find an optimal

solution.

4.2 Cofactor Optimization is Sequence-Dependent

The following example show that the analysis of dependent variables (the loop in Ex-

tractFunctionFromBDD) only finds a locally optimal solution. We apply the al-

gorithm with two different variable sequences. The result are two different functional

implementations of the relation. One depending on two variables and another depend-

ing on a single variable only. The example is depicted in Figure 4.1 with the variable

elimination step simplified to universal quantification.

Example 4. Let R ⊆ Bn × B, with input variables ~x = {x1, x2, x3} and output variable
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y, be a relation with characteristic function

R(~x, y) ≡x1x2x3y + x1x2x3y + x1x2x3y + x1x2x3y+

x1x2x3y + x1x2x3y + x1x2x3y + x1x2x3y+

x1x2x3y + x1x2x3y + x1x2x3y + x1x2x3y

When applying ExtractFunctionFromBDD to R, ~x and y, the positive cofactor of

R with respect to y, R1, is initialized to

R1 ≡ x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 ≡ x1 + x1x2x3.

The negative cofactor of R with respect to y is R0. It is initialized to

R0 ≡x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

≡x1 + x1x2 + x1x2x3.

In subsequent steps R′1 is set to x1x2x3 and R′0 to x1x2 + x1x2x3.

The foreach loop may iterate over the input variables in different order. In this run

let us assume the sequence x1, then x2 and finally x3:

Iteration 1. In the first loop iteration x = x1. R′′1 is set to ∃x1. R′1 ≡ x2x3 and R′′0

to ∃x1. R′0 ≡ x2 + x2x3. The conjunction of R′′1 and R′′0 is unsatisfiable. Therefore

ExtractFunctionFromBDD updates R′1 and R′0 and eliminates x1 from the relation.

Iteration 2. In the second iteration x = x2. The algorithm assigns ∃x2. R′1 ≡ x3 to R′′1

and ∃x2. R′0 ≡ 1 to R′′0. The conjunction yields x3, therefore no update is made.

Iteration 3. The final iteration has x = x3 and R′′1 is ∃x3. R′1 ≡ x1x2. The algorithm

sets R′′0 to ∃x3. R′0 ≡ 1. The conjunction of R′′1 and R′′0 is x1x2 and again no update is

made and we exit the loop.

To summarize, the execution of the loop managed to eliminate one input variable—that

is x1—from the relation. The procedure yields the function f ≡ x2x3 implementing the

relation. A corresponding circuit, if converted from a BDD, consists of two 2-to-1 multi-

plexers.

We now compute the loop with reversed order of the input variables: First x3, then x2

and x1.

Iteration 1. The first iteration has x = x3. R′′1 is set to ∃x3. R′1 ≡ x1x2. R′′0 is set to

∃x3 R′0 ≡ x1. As R′′0 ·R′′1 ≡ 0, the relations are updated. Input variable x3 is eliminated.
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Figure 4.1: Example 4 in pictures.

Iteration 2. In the second iteration x = x2. ExtractFunctionFromBDD assigns

∃x2. R′1 ≡ x1 to R′′1 and ∃x2. R′0 ≡ x1 to R′′0. Again, the conjunction of R′′1 and R′′0

evaluates to 0 and x2 gets eliminated as well.

Iteration 3. In the final iteration x = x1. R′′1 gets assigned ∃x1. R′1 ≡ 1 and R′′0 gets

∃x1. R′0 ≡ 1. Therefore no further update is made.

This run of the loop eliminated both x2 and x3 from the relation. Finally, extracting the

function yields f ≡ x1, which can be implemented as a single 2-to-1 multiplexer when

converting the BDD.

In the second run, the two variables x2 and x3 have been eliminated from R, as opposed

to just x1 in the first run. This example illustrates that ExtractFunctionFromBDD

depends on the sequence in which the input variables are quantified and eliminated from

the relation. The example also shows that eliminating more variables might lead to a

smaller circuit implementation of the extracted function f and is therefore desirable.

4.2.1 Independence of Variables

An important notion used in the following approaches for determinizing the relation with

the minimum number of support variables is the independence of a relation from a cer-

tain set of variables. Proposition 2 states what it means for a relation to be indepen-

dent of a set of input variables. A similar condition is applied in ExtractFunction-

FromBDD [BGJ+07].

Proposition 2. We say that a single-output total relation R(~x, y) is independent of a set

of variables {x0, . . . , xl} ⊆ ~x, if and only if ∃y ∀x0 · · · ∀xl. R(~x, y) is valid.

The set of variables ~xind = {x0, . . . , xl}, for which Proposition 2 is valid, is said to be

R-independent. Otherwise, it is R-dependent. The set representing the R-dependent

variables is ~xdep = ~x \ ~xind.
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4.2.2 Determinization

We will now describe our methods for finding the maximum R-independent set ~xind. With

such a set, we can determinize a relation, such that it depends on the minimum number of

support variables. Such a functional implementation of R can be computed by removing

the set of independent variables ~xind = {x1, . . . , xl} using universal quantification of the

cofactors Ry and Ry. We get the following relations:

R0 = ∀x0 · · · ∀xl. R(~x, 0),

R1 = ∀x0 · · · ∀xl. R(~x, 1).

The functional implementations of R, with the minimum and maximum on-set, re-

spectively, are fmax ≡ R1 and fmin ≡ R0. The minimality and respectively maximality

properties of these functions can be seen in Figure 2.9 (Page 27).

Example 5. Let R ⊆ ~x× y be a relation over a set of input variables ~x = {x1, x2} and a

single output variable y with characteristic function

R(~x, y) ≡ x1x2y + x1x2y + x1x2y + x1x2y + x1x2y

We first determine that {x1} is an R-independent subset of ~x according to Section 4.2.1

(∃y∀x1. R(~x, y) ≡ 1). It is maximum, since for the only larger subset (i.e. {x1, x2})
Proposition 2 evaluates to false (∀x1, x2. R(~x, y) ≡ yy ≡ 0). In the second step, after

determining that {x1} is the maximum R-independent subset, we can determinize the

relation as described above. The computation of fmin proceeds as follows.

R0 ≡ ∀x1. R(~x, 0)

≡ ∀x1. (x1x2 + x1x2)

≡ x2

The resulting function fmin ≡ R0 ≡ x2. Let us now also compute fmax:

R1 ≡ ∀x1. R(~x, 1)

≡ ∀x1. (x1x2 + x1x2 + x1x2)

≡ x2

We see that fmax ≡ fmin ≡ x2 for this simple relation. We depict the example in Fig-
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Figure 4.2: The relation R of Example 5 and after universal quantification of x1.

ures 4.2a and 4.2b. Without analyzing for variable independence first,

fmax ≡ R(~x, 1) ≡ x1 + x2

would be a functional implementation depending on more variables and demand a more

complex circuit to implement it.

4.3 Explicit Solution

The first of two ways we present, to find a maximum R-independent subset, is an explicit

exhaustive search. Our algorithm enumerates all the subsets of the set of input variables of

R. For each subset it tests Proposition 2 until the maximum set, satisfying the condition,

is found.

The feasibility of this approach heavily depends on the nature of the relation, as a set

of size n has
(
n
k

)
= n!

(n−k)!k! subsets of size k (called k-combinations). Therefore, there are∑n
k=1

(
n
k

)
= 2n − 1 subsets in total.

A relatively straight-forward approach is to incrementally increase the size k of the

subsets starting with k = 1 and decrease the input space whenever a variable is determined

to be R-dependent. That is, a variable which is in none of the R-independent subsets of a

particular size. The hope for this approach is that there are many R-dependent variables.

This would lead to the number of candidate variables n decreasing and approaching the

size k of the subsets which are checked. In turn this would result in a pruning of the search

space. As soon as k ≥ n the algorithm has found at least one maximum subset. We present

pseudo-code for this algorithm in Figure 4.3. IndependentCombinations prunes the

R-dependent variables and also returns a maximum R-independent combination for the

current k.

With the information of the maximum R-independent set, the relation R can be
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proc Explicit(R, ~x)
candidates← ~x
n← |candidates|
k ← 1
while k ≤ n

(candidates, ~xind)← IndependentCombinations(candidates, k, R)
n← |candidates|
k ← k + 1

return ~xind

Figure 4.3: Approach for the incremental computation of the maximum set of R-
independent variables.

determinized such that its functional implementation depends on the minimum number

of input variables, as described above.

4.4 Logically Encoded Solution

Our second approach is to encode the selection of the variable combinations as a combi-

national circuit. This circuit is capable of generating all combinations of its first k inputs

at its outputs. Such a circuit is called combination network.

The purpose of the combination network is to act as a proxy between the inputs and

the combinational circuit representing the characteristic function of the relation which we

want to determinize. The combination network and the relation circuit are connected via

functional composition and this new logic circuit can be embedded in an argument for

variable independence, similar to the one presented in Proposition 2.

4.4.1 Combination Network

A combination network CN is a circuit with n primary inputs CN.in[0], . . . , CN.in[n− 1],

and n primary outputs CN.out[0], . . . , CN.out[n− 1]. Furthermore it employs selection

inputs CN.sel which encode a particular mapping from inputs to outputs. There is enough

freedom in the network in order to generate all combinations of its first k inputs at its

outputs. The network is comprised of several smaller building blocks, which we call

selection cells. The selection cells again consist of a decoder and swap cells. We will now

describe these blocks.
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Figure 4.4: Components of a combination network (flow from in to out).

4.4.1.1 Selection Cell

A selection cell is a circuit with an equal number of inputs and outputs. We call a selection

cell with m inputs (SCm.in) and m outputs (SCm.out) SCm. We may drop the subscripts if

clear from the context.

A selection cell utilizes dlog2me selector inputs SCm.sel. These selector bits are inter-

preted as the binary representation of an index 0 ≤ i ≤ m − 1. The functionality of a

selection cell can be split into two cases:

Case 1. The input with index i, selected by SC.sel, is propagated to the output with

index 0, that is SC.out[0]← SC.in[i]. The input with index 0 then takes i’s place and

gets propagated to output position i: SC.out[i]← SC.in[0].

Case 2. All other inputs with indices j 6= i and j 6= 0 are propagated from SC.in[j] to

SC.out[j].

The inner workings of SC are as follows. The circuit uses m− 1 swap cells SW0, . . . , SWm−2,

each with two inputs (SW.in[0] and SW.in[1]) and two outputs (SW.out[0] and SW.out[1])

and a decision input (SW.dec).1 The swap cells are connected in the following way:

Case 1. Swap cell SW0 has inputs SC.in[0] and SC.in[1].

Case 2. The inputs to the ith swap cell SWi, for 1 ≤ i ≤ m−2, are SWi.in[0]← SWi−1.out[0]

and SWi.in[1]← SC.in[i + 1].

The outputs of the selection circuit are defined as SC.out[i + 1]← SWi.out[1] for 0 ≤ i ≤
m− 2 and SC.out[0]← SWm−2.out[0].

1A swap cell can simply be constructed from two 2-to-1 multiplexers and an inverter. Such a circuit
can be seen in Figure 4.4a
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SC4.sel
0 1 2 3

0o 0i 1i 2i 3i
1o 1i 0i 1i 1i
2o 2i 2i 0i 2i
3o 3i 3i 3i 0i

Table 4.1: Example 6.

Finally, the m−1 decision signals—that is one per swap cell—are outputs of a dlog2me-
to-m decoder. These signals, therefore, are one-hot encoded: Swap cell SWi is activated

if the (i + 1)st output of the decoder is active (index 0 is left unused, as no swap has to

be performed, when the input with index 0 is selected). The input to the decoder are

the SC.sel signals. A 2-to-4 decoder with inputs SC.sel[0] and SC.sel[1] and outputs

SW1.dec, . . . , SW3.dec, for example, has the following minterms:

SW1.dec ≡ SC.sel[1] · SC.sel[0],

SW2.dec ≡ SC.sel[1] · SC.sel[0],

SW3.dec ≡ SC.sel[1] · SC.sel[0].

A selection cell as described, comprised of a decoder and swap cells, is depicted in Fig-

ure 4.4b. Example 6 is supposed to provide a feel for how a selection cell with 4 inputs

and outputs operates.

Example 6. The selection signal of SC4 is 2 bits wide and allows the choices 0, 1, 2 and

3. Case 0 maps input SC.in[0] (abbreviated as 0i) to output SC.out[0] (abbreviated as 0o).

Case 1 maps 0i to 1o (and 1i to 0o), and so on. There is a choice for the selection signal

to map the first input 0i to any of the outputs. Table 4.1 shows the input-output mappings

for all assignments of SC4.sel.

4.4.1.2 Construction of the Combination Network

Now, that the components of the combination network are defined, we will use them to

construct the network.

Every selection cell can, simply put, push the first input (SC.in[0]) to either of its

outputs. The basic idea is to employ k selection cells of increasing size connected in series,

so that the first k inputs of CN can be shifted to either output of CN. We will describe

the specific way of connecting the selection cells and illustrate the circuit behavior in an

example.

Case 1. The first selection cell (in direction of the information flow) is SCn−k+1. This cell



46 4. Determinization of Boolean Relations Using BDDs

SCn−k+1

SCn−k+2

SCn

in[0]

in[k− 2]

in[k− 1]

in[n− 1]

SCn.selSCn−k+2.selSCn−k+1.sel

out[0]

out[n− 1]

· · ·

...

...

...

CN

Figure 4.5: A combination network CN.

gets the inputs

SCn−k+1.in[0]← CN.in[k− 1],

...

SCn−k+1.in[n− k]← CN.in[n− 1].

Case 2. The inputs to the selection cells in the subsequent stages with 2 ≤ i ≤ k are

defined as follows.

SCn−k+i.in[0]← CN.in[k− i],

SCn−k+i.in[1]← SCn−k+i−1.out[0],

...

SCn−k+i.in[n− k + i− 1]← SCn−k+i−1.out[n− k + i− 2].

Each selection cell has the necessary selection signals (cf. Section 4.4.1.1), which results

in

M =
n∑

m=n−k+1

dlog2me

selection signals in total for the combination network. M is of the order O(k log n).

Finally, the outputs of CN are defined as CN.out[i]← SCn.out[i], for 0 ≤ i ≤ n − 1.

Every output signal CN.out[i] is a Boolean function and the whole combination network

is defined by a vector of functions (CN.out[0], . . . , CN.out[n− 1]). A combination network

as described above is depicted in Figure 4.5.
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Figure 4.6: Example 7.

4.4.1.3 Mechanics of a Combination Network

The mechanics of a combination network are as follows. A selection cell SCi is responsible

for the output position of input CN.in[n− i]. The values for the selection signals of the

selection cells define a mapping from input indices to output indices of the combination

network. The following example demonstrates how a combination network with n = 4

and k = 2 works.

Example 7. The combination network with 4 inputs and k = 2 consists of 2 selec-

tion cells: SC3 and SC4. The functionality of the network is to map the first pair (due

to k = 2) of inputs (i.e. (CN.in[0], CN.in[1]), which is abbreviated as (0i, 1i)) to any

pair of outputs. Analogous to the inputs written with a subscript i, the outputs are

sub-scripted with o. The 6(=
(
4
2

)
) pairs, the network should be able to produce, are:

(0o, 1o), (0o, 2o), (0o, 3o), (1o, 2o), (1o, 3o) and (2o, 3o). Figure 4.6 shows the respective choices

for the selection signals SC3.sel and SC4.sel and the resulting positions of the input sig-

nals 0i and 1i after application of the combination network with two stages. Looking

at the case with SC3.sel = 2 and SC4.sel = 2, first SC3 pushes 1i to SC4.in[3]. Then

SC4 propagates SC4.in[3] to 3o and input 0i to 2o. This results in (0i, 1i) ending up at

positions (2o, 3o).

The network, however, provides more freedom than necessary: SC3.sel = 0, SC4.sel = 1

would, for example, generate (0o, 1o) as well—if permuted. There are 3 · 4 = 12 possible

assignments to SC3.sel and SC4.sel for just 6 pairs.
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Figure 4.7: Depiction of input and output positions in a combination network with
4 inputs and k = 1 and k = 3.

4.4.1.4 Remark on the Symmetry of Choosing Elements

The combination network, as described in the previous sections, is not optimal because

it does not take advantage of the symmetry of the binomial coefficient: “Choosing k

of n elements” can also be regarded as “not choosing (n − k) elements”. Therefore, as

soon as k > bn/2c elements are to be picked, that should be regarded as not picking

(n−k) elements. Effectively, this means a combination network should consist of no more

than bn/2c selection cells. We will take advantage of this observation in the following

section, when using a combination network for cofactor optimization. Figure 4.7 shows

the symmetry in a combination network with n = 4 inputs when either picking k = 1

elements or not picking (n− k) = 3 elements.

4.4.1.5 Optimization of the Cofactors Using a Combination Network

We now explain how a combination network can be used to optimize the cofactors of a

relation R.

Given a combinational circuit representing the characteristic function of a relation

R(~x, y) with ~x = {x0, . . . , xn−1}, first we construct a combination network CN with k =

bn/2c stages is. Such a network is capable of producing all combinations of size smaller

n. We then connect CN to R via functional composition. Therefore, we compute the

characteristic function χCN =
∧n−1
i=0 CN.out[i] ↔ xi of CN. One way of computing the

functional composition of R and χCN is

R′ = ∃x0 · · · ∃xn−1.(χCN ·R).

R′(CN.in, CN.sel, y) is a relation of input variables CN.in, selector variables CN.sel and

the output variable y. Figure 4.8 depicts R′. After constructing R′, our approach for

finding the maximum R′-independent set of input variables consists of two steps:

1. We define a criterion, similar to Proposition 2, which says whether a subset of CN.in
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Figure 4.8: Relation R′ = ∃x0 · · · ∃xn−1.(χCN ·R).

of size k is R′-independent.

2. We search for the maximum subset, satisfying the independence criterion, with

binary search.

The criterion for R′-independence of a subset of input variables is as follows.

Proposition 3. A single-output total relation, augmented with a combination network,

R′(CN.in, CN.sel, y), is independent of a set of k input variables, if either formula of the

following case distinction is valid.

Case 1. k ≤ bn/2c

∃CN.sel[0] · · · ∃CN.sel[M − 1]

∀CN.in[k] · · · ∀CN.in[n− 1]

∃y
∀CN.in[0] · · · ∀CN.in[k− 1].R′(CN.in, CN.sel, y)

Case 2. k > bn/2c

∃CN.sel[0] · · · ∃CN.sel[M − 1]

∀CN.in[0] · · · ∀CN.in[k− 1]

∃y
∀CN.in[k] · · · ∀CN.in[n− 1].R′(CN.in, CN.sel, y)

Either case of Proposition 3 is very similar to Proposition 2. The main difference is

the inclusion of the selector signals in the criterion. The existential quantification of the

CN.sel signals allows for the necessary freedom in the mapping from inputs to outputs

in the combination network. Since all the adjustments in the combination network solely

depend on the selection signals, the existential quantification implicitly generates all the

k-combinations.
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The first case corresponds to choosing k elements and the second case to not choosing

(n− k) elements. The case distinction is made on the value of k. The difference between

the cases lies in the order of quantification over the CN.in signals. The innermost universal

quantification is over the signals checked for independence.

Now that we have the criterion, our goal is to find the maximum k for which Propo-

sition 3 is valid. To achieve this, we employ binary search. Let the function GetSatAs-

signment(f) (cf. Section 2.2.2.4) return an assignment to all the variables in f , such

that the assignment makes f true. Then the algorithm in Figure 4.9 finds the maximum

k and a satisfying assignment CN.sel0 to CN.sel which makes Proposition 3 valid.

4.4.1.6 Determinization of R

In addition to the maximum number of R′-independent variables kmax, The algorithm

in Figure 4.9 yields a satisfying assignment to the selector variables of the combination

network of R′. These pieces of information can be used to determinize R, such that R

depends on the minimum number of input variables.

Plugging CN.sel0 into R′ yields a circuit with inputs CN.in and output y. The mapping

from CN.in to the inputs of R becomes fixed. As we know kmax, we also know which inputs

R′ does (or does not) depend on. The R′-independent inputs can be removed by universal

quantification, as in Section 4.2.2.

We can finally compute the functional implementations of R. The optimized cofactors,

depending on the value of kmax, are as follows:

Case 1. kmax ≤ bn/2c

R0 = ∀CN.in[0] · · · ∀CN.in[kmax − 1].R′(CN.in, CN.sel0, 0)

R1 = ∀CN.in[0] · · · ∀CN.in[kmax − 1].R′(CN.in, CN.sel0, 1)

Case 2. kmax > bn/2c

R0 = ∀CN.in[kmax] · · · ∀CN.in[n− 1].R′(CN.in, CN.sel0, 0)

R1 = ∀CN.in[kmax] · · · ∀CN.in[n− 1].R′(CN.in, CN.sel0, 1)

Both fmin ≡ R0 and fmax ≡ R1 are functional implementations, with the minimum and

maximum on-sets, respectively, of R.
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proc BinarySearch(R′, CN.in, CN.sel, y)
kmax ← 0
upper ← n
lower ← 0
while lower ≤ upper
k ← b(upper + lower)/2c
qbf ← R′

I1 ← I2 ← {}
if k ≤ bn/2c
I1 ← {CN.in[0], . . . ,CN.in[k− 1]}
I2 ← {CN.in[k], . . . ,CN.in[n− 1]}

else

I1 ← {CN.in[k], . . . ,CN.in[n− 1]}
I2 ← {CN.in[0], . . . ,CN.in[k− 1]}

foreach x ∈ I1
qbf ← ∀x.qbf

qbf ← ∃y.qbf
foreach x ∈ I2
qbf ← ∀x.qbf

qbf ′ ← qbf
foreach x ∈ CN.sel
qbf ← ∃x.qbf

if qbf = 1
CN.sel0 ← GetSatAssignment(qbf ′)
kmax ← k
lower ← k + 1

else

upper ← k − 1
return (kmax, CN.sel0)

Figure 4.9: Binary search for the maximal k and a satisfying assignment to CN.sel.
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4.5 Implementation and Experimental Results

We implemented these methods as additions to the Marduk synthesis tool, which is part of

Ratsy [BCG+10]. The tool is able to synthesize combinational logic circuits from temporal

logic specifications given as GR(1) formulas (cf. Appendix A). Marduk itself is written in

Python and uses the CUDD library (for BDD operations) which is implemented efficiently

in C.

Both methods seem to be infeasible in practice. Besides toy examples, only the explicit

method is able to synthesize tiny industrial examples: It was possible to synthesize the

Genbuf01, Genbuf02 and Genbuf03 benchmarks2. The implicit method timed out when

computing the characteristic function of the combination network. Different reordering

methods, with and without dynamic reordering enabled, have been tried to no avail.

The working Genbuf benchmarks have a significant time penalty compared to the

greedy method which was described in Section 2.4.2.2. This additional runtime had to

be expected to some extent. The early pruning of the search space by elimination of the

dependent variables, however, did not seem to happen.

Furthermore we observed in our experiments that the heuristic search eliminates as

many variables as our exact methods for the small benchmarks we were able to complete.

2Genbuf is a buffer connected to 2 receivers and a variable number of senders—1, 2 and 3 in this case.
Certain constraints must be satisfied in order to adhere to the specification. An example is that every
request must be granted eventually (liveness).
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Determinization of Boolean Relations Us-

ing Interpolants

We will now present our improvements to relation determinization via interpolation. Sec-

tion 2.4.2.3 explains how circuits can be built from relations using interpolation.

Again, our goal is to minimize the size of the interpolant by reducing the number of

variables it depends on. To achieve this, we try to reduce the resolution refutation used

for the interpolant computation, similar as described in Subsection 2.5. We will generalize

existing techniques using an approach based on clause subsumption. Furthermore, we will

present an optimization to existing algorithms, leading to better proof reduction. Finally,

we will look the effect of proof reduction on interpolant computation.

Lemma 2, Lemma 3 (and the corresponding corollaries), Theorem 5 and Theorem 6,

as well as Examples 8, 12 and 13 have been contributed by Georg Weissenbacher. His

proofs can be found in Appendix B.

5.1 Proof Reduction via Clause Subsumption

We present a framework for proof reduction consisting of two steps: clause substitution

based on clause subsumption and proof correction. We will first define substitution for

resolution proofs (cf. Section 2.3.1).

Definition 13 (Clause substitution). Let R = (VR, ER, claR, pivR, sR) be a resolution

proof and let v1, v2 ∈ VR, such that v1 is not an ancestor of v2. The substitution of v2 by

v1 in R, denoted by R[v1 ← v2] is the directed acyclic graph G = (VG, EG, claG, pivG, sG),

with VG = VR \ {v1}, EG = ER \ {(u, v) | u = v1 ∨ v = v1} ∪ {(v, v2) | (v, v1) ∈ ER},
claG(v) = claR(v) and pivG(v) = pivR(v) for all v 6= v1 and sG = sR if v1 6= sR and v2

otherwise.

53
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A DAG R[v1 ← v2] might not be a valid resolution proof and might have to be

reconstructed. The transformation RestoreRes(G, v) can be used to restore the single

resolution step at vertex v.

Definition 14 (RestoreRes). Let G = (VG, EG, claG, pivG, sG). RestoreRes(G, v)

with v ∈ VG yields G if v is an initial vertex. For an internal vertex,

� if the resolution step is already valid in G, i.e. ∃(v+, v), (v−, v) ∈ EG with pivG(v) ∈
claG(v+) and pivG(v) ∈ claG(v−), RestoreRes(G, v) yields G′ with

claG′(u)
def
=

{
Res(claG(v+), claG(v−), piv(v)) if u = v

claG(u) otherwise

� otherwise the graph is corrected, by computing G′ = G[v ← u], where u is selected

such that (u, v) ∈ EG and var(pivG(v)) 6∈ claG(u) (there might be two choices for

u).

The procedure ReconstructProof(G) [BIFH+09] applies RestoreRes at each

vertex of the proof in a post-order (parents first) traversal. The result is a correct res-

olution proof R, where ∀(v1, v), (v2, v) ∈ ER.claR(v) = Res(claR(v1), claR(v2), pivR(v)).

Pseudo-code for ReconstructProof is provided in Figure 5.1a.

The following lemma states that after a series of substitutions based on clause sub-

sumption, followed by proof reconstruction, the sink clause might decrease in size.

Lemma 2. Let R be a resolution proof, and let π = {v1 7→ u1, . . . , vk 7→ uk} be a mapping

such that vi is not an ancestor of uj for 1 ≤ i, j ≤ k. If claR(ui) ⊆ claR(vi) for 1 ≤ i ≤ k,

then the proof P obtained by applying ReconstructProof to R[v1 ← u1] . . . [vk ← uk]

has sink sP with claP (sP ) ⊆ claR(sR).

Let us look at Example 8 which demonstrates proof reduction via subsumption.

Example 8. Consider the left proof in Figure 5.1b, in which the substitution is indicated

by 7→. The refutation on the right of Figure 5.1b shows the result of Reconstruct-

Proof after substituting x1x2 for x1x2x3. Figure 5.2 shows the intermediate proofs after

each application of RestoreRes.

The algorithm RecycleUnits presented in [BIFH+09] makes use of a special case

of clause subsumption. Given a proof R, a subsuming clause claR(w) with |claR(w)| = 1

and w ∈ VR, at vertex v ∈ VR which is not an ancestor of w, is found by checking

whether pivR(v) (pivR(w), respectively) equals claR(w). If that is the case, R is reduced

by computing R[v+ ← w] (R[v− ← w], respectively).
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proc ReconstructProof (G)
visited← ∅
Q← {v | v ∈ VG and v is initial}
while Q is not empty
v ← oldest element in Q
Q← Q \ {v}
if (v 6∈ visited
and ∀(u, v) ∈ EG.u ∈ visited)

or v is initial
visited← visited ∪ {v}
G← RestoreRes(G, v)
foreach (v, w) ∈ EG
Q← Q ∪ {w}

(a) ReconstructProof

2

x1

x1 x2 x2

x1 x2 x3 x1 x3

x2 x1 x2 x3 x1 x2

x1

7→

2

x1

x2 x1 x2

x1

(b) Reducing proof size

Figure 5.1: Proof correction and effect of substitution
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Figure 5.2: Step by step application of ReconstructProof after the substitution
in the left proof in Figure 5.1b, with invalid resolution steps highlighted.

5.1.1 Expansion Set

Tseitin [Tse68] first observed that a minimal tree-shaped proof is regular (Definition 15).

Definition 15 (Regular proof). A proof is regular, if on each path from sink to initial

vertex, every literal is resolved at most once.

Based on this observation, Bar-Ilan et al. presented the algorithm RmPivots in [BIFH+09]

for regularization of parts of a resolution proof. Both Fontaine et al. [FMP11] and

Gupta [Gup12] improve upon RmPivots, such that the algorithm works for proof DAGs

instead of just the tree parts of a proof. We will show how these algorithms fit into our

reduction framework using subsumption and present an optimization.

The way these algorithms work, is to compute an expansion set for each vertex v,

containing the literals resolved along a path from the sink s to v. This set is used to detect
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2

x1

x1 x2 x2

x1 x2 x3 x1 x3

x2 x1 x3 x1 x2

x1

67→

Figure 5.3: Invalid substitution according to Lemma 2

repeated resolutions on the same pivot along a path. In our framework, the expansion

set allows the detection of certain substitutions, which are not found when checking with

cla(v). The following example demonstrates this by showing that the precondition of

clause subsumption for substitutions in Lemma 2 is too strict. We will then proceed with

formulating the expansion set.

Example 9. Consider the proof in Figure 5.3. It is the same proof as in Figure 5.1b, with

the only difference, that the clause cla(v1) = x1 x2 x3 has been replaced by cla(v′1) = x1 x3.

Now, the substitution R[v′1 ← v2] with cla(v2) = x1 x2 is not valid according to Lemma 2

anymore, as cla(v2) 6⊆ cla(v′1). R[v1 ← v2] equals R[v′1 ← v2] and could be corrected in the

same way as before, however. This shows that the precondition of Lemma 2 is too strict.

Multiple formulations of the expansion set exist. The approach in [BIFH+09, RL in Al-

gorithm 3] does not work on DAGs. The two improved approaches, working on DAGs

as well, compute the meet-over-all paths at a vertex similar to the data flow equations

known from compiler optimization [ALSU06]. The formulation in [Gup12, ρ in Section 5]

constrains the set unnecessarily, by not allowing it to contain a literal in both its phases.

We will restate the formulation of [FMP11, safeLiterals in Algorithm 6], which does not

contain this restriction. The mapping σ : V 7→ 2Lit, is the solution of

σ(v) =

{
cla(v) if v has no children⋂

(v,w)∈E(σ(w) ∪ {rlit(v, w)}) otherwise
(5.1)

where rlit(v, w) is defined for (v, w) ∈ E as

rlit(v, w) = piv(w), if piv(w) ∈ cla(v) and piv(w) otherwise.

Let us revisit Example 9 taking into account expansion sets:

Example 10. We get σ(v′1) = {x1 x2 x3} and see that cla(v2) ⊆ σ(v′1). The expansion set

allows us to detect that R[v′1 ← v2] is a valid substitution, which we did not find via plain

clause subsumption.
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The following theorem improves Lemma 2 by using the expansion set for subsumption.

Theorem 5. Let R be a resolution proof, let σR be a solution of Equation 5.1 for R, and

let π = {v1 7→ u1, . . . , vk 7→ uk} be a mapping such that for all 1 ≤ i ≤ j ≤ k it holds that

a) no vertex vi is an ancestor of uj, and b) if vj is an ancestor of ui then σR(ui) ⊆ σR(vi).

If claR(ui) ⊆ (claR(vi) ∪ σR(vi)) for 1 ≤ i ≤ k, then applying ReconstructProof to

R[v1 ← u1] . . . [vk ← uk] yields a proof P with sink sP such that claP (sP ) ⊆ claR(sR).

5.1.2 Algorithms for Proof Reduction

As for the formulation of the expansion set, there exist several similar versions of the

algorithm for reducing (or partially regularizing) the proof. The different versions are

called RmPivots [BIFH+09], RPI [FMP11] and AllRmPivots [Gup12] (among other

minor variations).

In general they all work by building the expansion set iteratively in a bottom-up

(children first) traversal of the proof R. When encountering a vertex v, such that piv(v) ∈
σ(v) (or piv(v) ∈ σ(v)), the sub-proof rooted at v− (respectively v+) is pruned. This is a

valid transformation according to Theorem 5. The clause claR(v±), with v± the remaining

ancestor, subsumes σ(v). Therefore, in our framework we can do R[v ← v±] collapsing

the path. The precondition on the order of substitutions is fulfilled because of the children

first traversal.

Note that RmPivots is very efficient, as it only needs two passes over the proof graph.

One to reduce non-regular paths and another one to reconstruct the proof at the end. Its

run-time is therefore linear in the size of the proof. Figure 5.5a shows pseudo-code for

our version of the algorithm.

The following example shows the reduction of a redundant proof by applying RmPiv-

ots.

Example 11. Consider the left refutation in Figure 5.4, containing redundant resolution

steps.

Let v1, v2 and v3 be the vertices for which cla(v1) = p x2, cla(v2) = x1p and cla(v3) =

px3, and let v0 be such that cla(v0) = x0. We obtain σ(v1) = {p, p, x2, x3}, σ(v2) =

{p, p, x1, x3}, and σ(v3) = {p, x3} thus σ(v0) = {p, x0}. RmPivots detects repeated

resolution on p, applies the substitutions and after proof reconstruction yields the proof on

the right of Figure 5.4.

Our, and the formulation of [FMP11], improves over [Gup12] in the following way: The

expansion set in [Gup12] only contains a literal in the phase that was last encountered

(top-most). For the previous example this would mean that the expansion set for v0 only
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Figure 5.4: Application of RmPivots

contains {x0} leading to fewer detections of possible substitutions in a potential sub-proof

of v0.

Looking at Example 11 we noticed a further optimization. Given that two children

of v0 get pruned, and only v3 remains, σ(v0) should contain x3 as well. In general,

whenever σ(v) contains a literal in both of its phases (this can be interpreted as σ(v)

being subsumed by the tautological clause T), we should propagate that information to

all the first ancestors of v with out-degree greater than 1 (or to the initial vertices).

This keeps us from taking paths, which get removed, into account when computing σ for

ancestors of v. RmSubProof(G, v) takes care of this by transforming the graph G. It

does so by removing the sub-proof rooted in v ∈ VG until either an initial vertex or an

internal vertex with out-degree greater than 1 is encountered.

Definition 16 (RmSubProof). Let G = (VG, EG, claG, pivG, sG). RmSubProof(G, v)

with v ∈ VG yields G′ with VG′ = {w | w ∈ VG ∧ (∃P ∈ Paths(w, sG).v 6∈ P )}, EG′ =

{(v1, v2) | v1 ∈ VG′ ∧ (v1, v2) ∈ EG}, claG′(v) = claG(v) and pivG′(v) = pivG(v) for all

v ∈ VG′ and sG′ = sG.

We call the algorithm implementing the RmSubProof optimization RmPivots>

and give pseudo-code in Figure 5.5b.

5.1.3 More General Clause Subsumption

RmPivots and similar algorithms are very efficient by exploiting proof regularization

for reduction. Those algorithms may miss certain substitutions, leading to even smaller

proofs, however. RecycleUnits, on the other hand, limits substitutions to unit clauses.

Consider the following example where both algorithms miss valid subsumptions.
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proc RmPivots (R)
visited← ∅
Q← {sR}
while Q is not empty
v ← oldest element in Q
Q← Q \ {v}
if (v 6∈ visited
and ∀(v, u) ∈ ER.u ∈ visited)
visited← visited ∪ {v}
σ(v) =

⋂
(v,w)∈E(σ(w) ∪ {rlit(v, w)})

if pivR(v) ∈ σR(v)
R[v ← v−]

if pivR(v) ∈ σR(v)
R[v ← v+]

foreach (w, v) ∈ ER
Q← Q ∪ {w}

(a) RmPivots

proc RmPivots> (R)
visited← ∅
Q← {sR}
while Q is not empty
v ← oldest element in Q
Q← Q \ {v}
if (v 6∈ visited
and ∀(v, u) ∈ ER.u ∈ visited)
visited← visited ∪ {v}
σ(v) =

⋂
(v,w)∈E(σ(w) ∪ {rlit(v, w)})

if pivR(v) ∈ σR(v)
R[v ← v−]
R← RmSubProof(R, v+)

if pivR(v) ∈ σR(v)
R[v ← v+]
R← RmSubProof(R, v−)

foreach (w, v) ∈ ER
Q← Q ∪ {w}

(b) RmPivots>

Figure 5.5: Single-pass reduction algorithms

Example 12. Consider the refutation in Figure 5.6. Note that no pivots are eliminated

more than once along any of the paths, and none of the unit clauses are valid candidates

for substitutions, since their vertices violate the ancestor requirement of Definition 13.

Let v be the vertex with cla(v) = x1x3. Since σ(v) = {x1, x2, x3, x4}, v is subsumed by

x1x2 (as indicated by 7→ in the figure).

Searching for substitutions, which are not detected by RmPivots, is computationally

expensive, though. The straight-forward approach leads to checking all pairs of clauses.

RecycleUnits circumvents this by only checking unit clauses. The following result

allows us to reduce run-time and memory usage in the general case.

2

x4

x3 x3x4

x2 x3 x2x4

x4

x2

x2x1 x1x3 x1x4x1x27→

Figure 5.6: Proof, which cannot be reduced by RecycleUnits or RmPivots.
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if σ(v) 6= T and (v is initial or v has out-degree > 1)
pick u ∈ {w | claR(w) ⊆ σ(v)} according to Theorem 5
R← R[v ← u]

Figure 5.7: General subsumption

5.1.3.1 Limiting the Candidates for Subsumption

We noticed that σ increases monotonically and only at vertices with out-degree greater

than 1 might decrease in size (because of the set intersection). Given a chain of vertices

with out-degree 1, it is sufficient to check for subsumption at the top-most vertex of this

chain.1 The formalization of our result follows.

Proposition 4. If vi dominates vj then the following subset relations hold:

a) (cla(vj) \ cla(vi)) ⊆ σ(vj) and b) σ(vi) ⊆ σ(vj)

Corollary 1. Let R be a resolution proof, then cla(v) ⊆ σ(v) for all v ∈ VR that are

ancestors of sR.

The following corollary is a consequence of Proposition 4 (monotonic growth of σ) and

Corollary 1.

Corollary 2. Let R be a resolution refutation, and let ui, vi ∈ VR be such that cla(ui) ⊆
(cla(vi) ∪ σ(vi)). Then cla(ui) ⊆ σ(vj) for any vj ∈ VR dominated by vi.

Lemma 3. Let vj → vj+1 → . . . → vk be a path in a refutation R such that all vertices

vi have out-degree 1 and rlit(vi, vi+1) 6∈ σ(vk) (where j ≤ i < k). Further, let uk be

such that cla(uk) ⊆ (cla(vk) ∪ σ(vk)) and vj is not an ancestor of uk. Then applying

ReconstructProof to R[vk ← uk] or R[vj ← uk] yields the same refutation.

We apply RmPivots together with the more general search, to establish rlit(vi, vi+1) 6∈
σ(vk). The piece of code shown in Figure 5.7 can be added to RmPivots and RmPivots>

before the foreach loop to search for subsuming clauses.

5.2 Impact of Proof Reduction via Subsumption on In-

terpolation

Let us now look at the impact of proof reduction via subsumption on the computation of

interpolants using the labelled interpolation system (cf. Section 2.3.4.1). In general, the

1Such a chain of vertices corresponds to the internal representation of learned clauses in Min-
iSAT [ES03].
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Figure 5.8: Reduced proof size may increase number of variables in interpolant

intuition is that eliminating resolution steps, results in less variables in the interpolant.

There are certain cases, where proof reduction, might have a detrimental effect, however.

Such cases happen, when local resolutions get eliminated, and introduce non-local ones.

Consider the following example.

Example 13. Consider the refutation R with (x1), (x0 x1), (x1 x2) ∈ A and (x1 x2), (x1) ∈
B on the left of Figure 5.8. We use a labelled interpolation system (Definition 5) with

the labelling function L (Definition 4) from Lemma 1. Each vertex is annotated with

cla(v) [Itp(L,R)(v)] as described in Section 2.3.4.1, and the label L(v, t) of each literal

t ∈ cla(v) is indicated using a superscript. The shared variable x1 does not occur in

Itp(L,R)(s), since the literals
a
x1 and

a
x1 are peripheral (in other words, x1 is eliminated

locally within the A partition).

We obtain the proof P on the right of Figure 5.8 by applying RmPivots and Recon-

structProof to R. P is smaller than R, but the substitution has eliminated a peripheral

resolution step and Itp(L, P ) is forced to introduce x1 when we resolve on
ab
x1 and

b
x1.

Since the labelled interpolation system generalizes other systems, choosing another one

would not make a difference. From Lemma 1 we know that the labelling function we chose

results in the fewest variables in the interpolant. Therefore, any other labelling would also

have to introduce x1 into the interpolant.

We can address this issue by changing the subsumption condition. By propagating

label information in addition to the pivot literals in σ, we can detect substitutions as in

Example 13, which introduce variables, and refrain from executing them. We compute the

mapping ς : V × Lit 7→ S, containing the necessary information to make that decision,

in a similar manner as σ.

ς(v, t) =

{
⊥ if v = sRd

(v,w)∈E litlab(v, w, t) otherwise
(5.2)
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where

litlab(u, v, t) =

{
L(v+, var(t)) t L(v−, var(t)) if t = rlit(u, v)

ς(v, t) otherwise

Using this definition we can reformulate Theorem 5 with subsumption lifted to labels as

follows:

〈cla(u), L(u)〉 � 〈σ(v), ς(v)〉 def
= (cla(u) ⊆ σ(v)) ∧ (L(u) v ς(v))

Theorem 6. Let R be an (A,B)-refutation and let σR, ςR be solutions of the Equations 5.1

and 5.2 for R. Let π = {v1 7→ u1, . . . , vk 7→ uk} be a mapping such that for all 1 ≤ i ≤ j ≤
k it holds that a) no vertex vi is an ancestor of uj, and b) if vj is an ancestor of ui then

〈σR(ui), ςR(ui)〉 � 〈σR(vi), ςR(vi)〉. If 〈claR(ui), L(ui)〉 � 〈σR(vi), ςR(vi)〉 for 1 ≤ i ≤ k,

then applying ReconstructProof to R[v1 ← u1] . . . [vk ← uk] yields a proof P such

that Var(Itp(L, P )) ⊆ Var(Itp(L,R)).

We revisit Example 13 with the notion of labelled subsumption.

Example 14. Let v1 be the vertex with cla(v1) = x0x2 and v2 the vertex with cla(v2) =

x1x2 in Figure 5.8 and L as in Example 13. We get σ(v1) = {x0, x1, x2} and ς(v1) = {x0 →
a, x1 → b, x2 → b}. The subsumption check of Theorem 6 now fails: 〈cla(v2), L(v2)〉 6�
〈σ(v1), ς(v1)〉 and the substitution is suppressed. The proof does not change and the in-

terpolant does not increase in size.

5.3 Implementation and Experimental Results

We implemented RmPivots>, and Gupta’s AllRmPivots [Gup12] for comparison, in

a stand-alone tool written in Scala. Unfortunately we were not aware of [FMP11] at the

time and did not implement it. The results for that method should lie between Gupta’s

and our work, as their formulation of the extension set is less restrictive than Gupta’s,

and they do not seem to employ RmSubProof. The sources of our implementation are

available at https://bitbucket.org/mschlaipfer/proof-minimization under an MIT license.

For an efficient implementation, it is crucial to check the conditions of Theorem 5 and

Theorem 6 efficiently. We describe our optimizations in the following:

� We use watch literals [MMZ+01] to search for subsumptions. The approach is very

similar to the way Boolean constraint propagation is implemented in modern SAT

solvers. As we are interested in subsumption, rather than clauses becoming unit,

a single watch literal per clause is sufficient for our use case. The benefit of watch

https://bitbucket.org/mschlaipfer/proof-minimization
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literals is that clauses, which do not share any literals with the clause we want to

substitute, are not touched by the search at all. This outweighs the cost of additional

book keeping. At first, a watch literal is selected in each clause. This literal acts

as a pointer to the clause it is contained in. When looking for subsumptions for a

clause cla(v1), the literals in σ(v1) get set to F one by one. When a watch literal

gets assigned F, a new watch literal for all the clauses, which had the literal as a

watcher need to be found. When for a clause cla(v2) all literals have been assigned,

and it is not possible to find a fresh watch literal, v2 is a valid substitute for v1.

Note that a subsuming clause contains at most the same amount of literals as σ.

Thus at least one assignment must be to a watch literal resulting in detection of a

subsumption (if applicable).

Example 15. Consider the clause at vertex v in Example 12 and let the (partial)

watch literal list be as follows.

watch lit watched clauses
x1 x1x2, x1x3
x2 x2x3
x3 x3

The watch literal approach works by setting each literal in σ(v) = {x1, x2, x3, x4} to

F one by one. After assigning x1 = F, the watch literal list is as follows (where bold

font indicates assignment).

watch lit watched clauses
x1 -
x2 x2x3, x1x2
x3 x3, x1x3

After setting x2 = F we end up with the following list.

watch lit watched clauses
x1 -
x2 x1x2

x3 x3, x1x3, x2x3

After this step, we detect that the clause x1x2 is a valid substitute for v. Notice,

that the clause just containing x3 never had to be touched by the search so far. By

continuing the procedure (if we were interested in all the valid substitutes) the clauses

watched by x3 would be detected as a valid candidates as well. Both x2x3 and x3

would be ruled out by the ancestor condition of Theorem 5, avoiding the introduction

of a cycle.
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� In order not to introduce cycles, we keep track of ancestor information for each

vertex. However, we only need to store initial vertices and internal vertices with

more than one children. Other clauses are not considered for substitution, and

cannot introduce a cycle, as we know from Lemma 3.

� To fulfill the order restriction on substitutions (Theorem 5), we remove ancestor

clauses from the watch literal list. That is, when vertex v1 is substituted for vertex

v2, the ancestor clauses of v1 get removed from the watch literal list.

5.3.1 Experiments

We used benchmarks from the plain MUS track of the SAT11 competition (58 passing)

and single safety property examples from the 2013 Hardware Model Checking Competi-

tion (HWMCC) (83 passing), which we obtained by unrolling 10 times. We limited our

experiments to resolution refutations with more than 100 vertices that we were able to

construct within 1 minute. The largest proof comprised 290888 vertices. The experiments

were run on an Intel Xeon E5645 2.40GHz with a 16GB JVM memory limit.

We used two different techniques to obtain resolution refutations from the benchmark

SAT instances (cf. Section 2.3.3):

1. The reverse unit propagation approach presented in [GN03] (implemented in OCaml

by Georg Weissenbacher and based on MiniSAT 2.2 [ES03])

2. Online proof-logging [ZM03] (implemented in MiniSAT 1.14p)

We present our main results in Table 5.1. We see that our approach yields slightly

better proof reduction across the board, due to the less restrictive extension set and the

optimization in RmPivots>. Searching for subsuming clauses does not yield noticeable

improvements, however. We attribute this to the limitations encountered, when only doing

a single pass over the proof: A single pass implies not knowing about the exact contents

of σ after ReconstructProof. We need to be conservative and do not detect certain

valid substitutions. Experiments with computing a fix-point (ReconstructProof and

recomputation of σ after every substitution) yielded much better results, but this is not

applicable to large proofs.

In a partial run of our experiments, we measured the impact of suppressing certain

substitutions due to labelling information. For these benchmarks we also measured the

size of the interpolant in terms of its AIG representation, using ABC [BM10]2. We present

2 We apply the following ABC commands before measuring AIG size, in order to get rid of some
redundancy in the interpolant, for a more realistic approximation: strash; balance; fraig; refactor

-z; rewrite -z; fraig;
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ProofMin VarMin

HWMCC [Gup12] t0 t10 [Gup12] t0 t10
proof size (%) 17.66 18.44 18.44 17.66 18.02 18.02
vars (%) - - - 3.44 4.38 4.38
time (s) 1.98 2.03 12.27 0.87 1.01 10.44

MUS [Gup12] t0 t10 [Gup12] t0 t10
proof size (%) 9.57 10.14 10.15 9.57 9.74 9.75
vars (%) - - - 0.73 0.97 0.97
time (s) 2.26 2.52 11.22 0.76 0.95 9.00

(a) Obtained through [GN03].

ProofMin VarMin

HWMCC [Gup12] t0 t10 [Gup12] t0 t10
proof size (%) 10.60 11.44 11.60 10.60 11.32 11.47
vars (%) - - - 0.62 1.44 1.53
time (s) 3.91 4.28 11.21 0.74 0.87 10.10

MUS [Gup12] t0 t10 [Gup12] t0 t10
proof size (%) 7.72 8.26 8.30 7.72 7.94 7.98
vars (%) - - - 0.10 0.14 0.29
time (s) 0.84 1.49 8.12 0.46 0.72 6.22

(b) Obtained through [ZM03].

Table 5.1: We provide results for resolution refutations obtained through [GN03]
and online proof-logging [ZM03]. ProofMin denotes experiments with labelling
function L(v, t) = ab for all v ∈ V (i.e. ς is ignored leading to maximum proof
reduction, but an invalid interpolant). VarMin denotes experiments with locality-
preserving labelling function (with a random partition (A,B) and averaged over 10
runs). We compare AllRmPivots [Gup12] to RmPivots> without (t0) and with
(t10) a search for subsumed clauses (limited to at most 10 minutes). Size (%) is the
average reduction in proof vertices. Vars (%) is the average reduction in variables
in the final interpolant. Time (s) is the average run time.

these results in Table 5.2. While Theorem 6 guarantees that the number of variables does

not increase, we noticed an adverse effect of substitution suppression in our experiments.

Both, the number of variables and the size of the AIG improve, when not suppressing

substitutions because of ς. We ascribe this to not finding substitutions further up the

DAG (due to the optimization in RmPivots> when doing a substitution) which would

be better.



66 5. Determinization of Boolean Relations Using Interpolants

VarMin

HWMCC t0 t0ns
AIG size (%) 24.06 25.92
proof size (%) 18.01 18.44
vars (%) 4.70 5.13
time (s) 1.06 1.02

MUS t0 t0ns
AIG size (%) 27.33 29.61
proof size (%) 9.75 10.14
vars (%) 1.09 1.14
time (s) 1.05 0.97

Table 5.2: Results for a partial run of our benchmarks, obtained through [GN03].
Displayed are improvements in percent for VarMin (cf. Table 5.1). AIG size im-
provement is computed from the ands value of the print stats command of ABC.
t0 denotes RmPivots> without search for subsumptions and with suppression of
substitutions due to Theorem 6. t0ns denotes RmPivots> without search for sub-
sumptions and without suppression of substitutions. Note that the results for t0
differ slightly from Table 5.1 because of randomized labelling.



Chapter 6

Conclusion

In this thesis we presented various different approaches for the determinization of Boolean

relations. We started with revisiting the theoretical foundations, such as terminology of

Boolean logic, BDD and normal form representations of Boolean functions. We described

resolution proofs and how they can be used to compute Craig interpolants. We presented

various existing techniques for logic minimization and relation determinization—classical

as well as contemporary approaches. Building upon this work, we implemented three

methods, with the goal to improve circuit size by minimizing the number of input variables

the circuit depends on.

Two approaches are based on BDDs and compute the determinization with minimum

amount of variables. Our experiments showed that these exact approaches are computa-

tionally infeasible. Furthermore, the benchmarks that did not time out did not provide

better solutions than the existing approach.

The third approach we implemented, is based on determinization via interpolation.

Our goal was to build upon existing resolution proof reduction techniques. On the one

hand, we were able to improve the amount of proof reduction of existing techniques. On

the other hand, we also looked at the impact of these techniques in terms of interpolant

extraction.
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6.1 Future Work

We list various ideas which could improve our results.

6.1.1 BDD-based approach

� The implicit search presented in Section 4.4 might be improved by modelling it as a

QBF instance. There is a possibility that a QBF solver can solve such an instance

more efficiently. There are a couple of steps needed for making such a solution work.

The combination network and the relation, which are present as BDDs have to be

converted into an appropriate format. Furthermore, the conversion should entail

the transformation into CNF via Tseitin’s transformation. It might be possible to

use ABC in the process to some extent as it supports reading BLIF and writing

DIMACS. Additionally, the necessary quantifications must be added.

6.1.2 Interpolation-based approach

� A first step would be to have more sophisticated benchmarks. This means that

we would like to run experiments with larger proofs, but also to integrate our ap-

proaches with synthesis tools (or model checkers) in order to have the most realistic

instances available. We will use Glucose [AS09] and DRAT-trim [WHH14] to pro-

duce benchmarks in the future. After learning from our prototype implementation

in Scala, it would be good to rewrite the tool in a more performant language, like

C or C++ for faster runs and handling of larger benchmarks.

� Both RestoreRes and the general subsumption approach in Figure 5.7 poten-

tially allow for multiple valid substitutions for a vertex. We would like to find a

good heuristic for picking one. Right now, we choose the (locally, depending on

assignment order of the watch literals) smallest clause, which comes naturally with

the watch literal based search. Alternatives would be, to choose the clause which

has the smallest sub-proof or the smallest partial interpolant, among others. We

have not done sophisticated analysis to decide which one is best, yet.

� We think that most improvement is possible, by propagating more information dur-

ing analysis. Right now, changes due to ReconstructProof are not considered

during RmPivots and the substitutions have to be chosen very carefully due to

the conditions of Theorem 5. We would like to get closer to the information avail-

able due to fixpoint computation (ReconstructProof after every substitution),
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without actually performing it. A similar improvement should be made when con-

sidering labels (in ς). The information that is used to decide, whether to suppress

a substitution or not, is local to the respective resolution step. We see in Table 5.2,

that suppressing all resolution steps is not advisable, when trying to reduce the

interpolant as much as possible. We do not have a good enough understanding of

when to suppress and when to allow substitutions, yet.

� A further improvement to our technique could be to target the elimination of certain

variables, without aiming at reduction of the interpolant as such. One approach

could be to encode variable dependencies as a SAT instance, where dependency

means that certain variables get introduced if another variable gets removed from

the final interpolant. A straight-forward approach seems to result in a large instance,

though.

� Targetting SMT problems (as arise for example in [HB11]) with our method of

interpolant reduction is difficult because of non-uniform proofs, due to the different

decision procedures. For QF UF, however, a method exists to rewrite the proof

of the decision procedure [FGG+09] into a propositional proof. This is described

briefly in [Mcm08]. After rewriting, the labelling described in Lemma 1 can be

applied to a larger portion of the proof. Theory proofs of QF UF which would

need to be considered separately for variable minimization (or not at all) could be

brought into the framework of propositional interpolation and minimized using our

techniques.
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Appendix A

Generalized Reactivity(1) Synthesis

In the appendix we try to put relation determinization into context and introduce Gen-

eralized Reactivity(1) (GR(1) for short) synthesis. The benchmarks for the BDD based

solutions in Chapter 4 come from GR(1) synthesis. This description is based on [PP06]

and [SHB12].

Property synthesis, in general, is a paradigm for constructing correct systems. The

idea is to synthesize a system’s implementation directly from the specification, rather than

to write a program that adheres to the specification separately and to later verify it against

the specficiation. Synthesis allows the programmer to stop caring about implementation

details, that is how a system satisfies the specification, and rather allows to just care about

what a system’s properties must be in the end. GR(1) synthesis is concerned with the

synthesis of reactive systems. These systems can be seen as automata with Boolean input

variables I and Boolean output variables O. At every discrete time step an environment

provides inputs (i.e. values for I) and the system reacts by computing the output values.

Approaches to synthesizing reactive systems from temporal specifications have been

discouraging at first, since LTL synthesis is 2EXPTIME-complete [PR90]. Therefore,

in [PP06] the authors suggest to use only a subset of LTL—that is GR(1)—which can

be solved in time cubic in the size of the state space. It is claimed that this syntactic

restriction of LTL is sufficient to specify most systems (i.e. systems which are compassion-

free [PP06]).

GR(1) specifications are of the form ϕ ≡ ϕe → ϕs. Each ϕα, where α ∈ {e, s}, is a

conjunction of:

� ϕiα: A propositional formula which represents the initial states of the system/envi-

ronment.

� ϕtα: A formula which represents the possible transitions of the system/environment.
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It is of the form
∧
i G(Bi), where each Bi is a Boolean combination of variables

(I ∪ O) and next state variables expressed as X(v). If α = e, then v ∈ I, otherwise

v ∈ (I ∪ O).

� ϕgα: A formula which characterizes the winning condition for the system/environ-

ment. It is of the form
∧
i GF(Bi), where each Bi is a Boolean combination of

variables from (I ∪ O).

Solving GR(1) is modelled as deciding the winner of a 2-player game. ϕiα, ϕ
t
α, ϕ

g
α are

used to construct a game structure (GS). The following definition of the GS sticks to

the one provided in [PP06] closely.

Definition 17 (Game structure). A game structure is a 6-tuple (I,O,Θ, ρe, ρs, ϕ). I
and O are sets of Boolean input and respectively output variables of the game structure.

The input variables are controlled by the environment, whereas the output variables are

controlled by the system. Every minterm of the space spanned by (I ∪ O), is a state of the

game structure. The set of all states is denoted by Q. A state is written as (i, o), where

i ∈ AI is an assignment to the input and o ∈ AO is an assignment to the output variables.

AI and AO are the sets representing all possible assignments to I and O, respectively.

The initial states of the game structure are characterized by Θ ≡ ϕie ∧ ϕis. ρe(I,O, I ′) is

the transition relation of the environment. It relates a state q ∈ Q to possible next input

values i′—that is an assignment i′ ∈ AI. The primed variables are next state variables.

Every occurrence of X(v) is replaced by v′ for v ∈ (I ∪ O). The sets representing these

next state variables are I ′ and O′, respectively. ρs(I,O, I ′,O′) is the transition relation

of the system. It relates a state q ∈ Q and a next input i′ to all possible next outputs o′,

where o′ ∈ AO. The transition relations for the environment and system are given by ϕtα.

The winning condition of the game structure is defined as ϕ ≡ ϕge → ϕgs.

For such a game structure, a play σ is defined as a maximal sequence of states q0, q1, . . .

such that q0 satisfies Θ and each state qk is a successor of qk−1 (for k > 0). For a pair of

states (qk−1, qk), qk is a successor of qk−1 if (qk−1, qk) ∈ ρe ∧ ρs (that is, there is an edge

from qk−1 to qk in the joint transition relation). The game is played as follows: The game

starts in an initial state. From there the environment moves by providing a next state

input i′. The system reacts to the move by providing a next state output o′. Both moves

are supposed to be according to the respective transition relations ρα. This procedure

advances the play into the next state and the next round begins.

A play σ is winning for the system if it is infinite and every state of σ satisfies the

winning condition ϕ. Otherwise, a play is winning for the environment. The goal of the

system is to choose outputs, such that a play is winning for the system. It does so by

adhering to its strategy. The strategy is a partial Boolean function f : Q+ × AI 7→
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AO, mapping a finite sequence of states q0, . . . , qk, with k ≥ 0, and an input, provided

by the environment, to an output o′. For (qk, i
′) ∈ ρe the strategy provides o′, where

f(q0, . . . , qk, i
′) = o′, such that (qk, i

′, o′) ∈ ρs.

If a strategy makes all the plays starting in initial states of the GS winning for the

system, then it is called a winning strategy. If there exists a winning strategy, then the

game is winning for the system and the system is realizable—the strategy is a working

implementation of the system. Otherwise the environment is winning and the system is

unrealizable.

A.1 µ-Calculus

The algorithm [PP06] for extracting a strategy from a game structure is given as a µ-

calculus [Koz83] formula. The µ-calculus is employed to iteratively compute the set

of states from which there exists a winning strategy. The intermediate values of this

computation can be used to form a winning strategy.

The µ-calculus over game structures is defined as follows. Let v ∈ (I ∪ O) be a

Boolean variable and V = {X, Y, Z1, Z2, . . .} a set of relational variables. A relational

variable X ∈ V can be assigned a set of states P ⊆ Q. The BNF defining the syntax of

µ-calculus formulas is as follows:

〈ϕ〉 ::= v | ¬v | 〈ϕ〉 ∨ 〈ϕ〉 | 〈ϕ〉 ∧ 〈ϕ〉 | µX〈ϕ〉 | νX〈ϕ〉 | MX 〈ϕ〉.

A µ-calculus formula ϕ is interpreted as the set of states, written as JϕK ⊆ Q, where ϕ is

true. Formally, the semantic of µ-calculus formulas is as follows:

JvK = {q ∈ Q | v |= q}
J¬vK = {q ∈ Q | v 6|= q}
JXK = X ⊆ Q

Jϕ ∨ ψK = JϕK ∪ JψK

Jϕ ∧ ψK = JϕK ∩ JψK.

Let X be a free variable in ϕ. The notation for assigning a set of states P to X in ϕ is

JϕKX←P . Then the two fixpoint operators µ (least fixpoint) and ν (greatest fixpoint) are
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defined as

JµXϕK =
⋃
i

Qi, where Q0 = ∅ and Qi+1 = JϕKX←Qi

JνXϕK =
⋂
i

Qi, where Q0 = Q and Qi+1 = JϕKX←Qi .

Finally, the authors of [PP06] add a non-standard operator for computation on game

structures: The mixed-preimage operator MX. The formal definition of this operator is

JMX ϕK = {q ∈ Q | ∀i′. (q, i′) ∈ ρe → ∃o′. (q, i′, o′) ∈ ρs and (i′, o′) ∈ JϕK}.

Informally, the interpretation of this operator is that all states q, for which the system

can force the play into JϕK by choice of o′ after the environment has moved by choosing

i′, are included in JMX ϕK. Such states can be considered system-controlled.

A.2 Computation of the Strategy

A µ-calculus formula to solve GR(1) games, that is used compute a strategy, is given in

[PP06]. The formula characterizes all states from which there exists a winning strategy

for the system, when the winning condition is given as ϕ ≡ ∧m
i=1 GFJAi →

∧n
j=1 GFJGj .

Simplified, this condition means: “As long as the environment satisfies the environment

assumptions (JAi ), the system has to fulfill the system guarantees (JGj )”. The set of states

from which there exists a winning strategy is called the winning region, or short Win.

Win = νZ

n∧
j=1

µY

(
m∨
i=1

νX
((
JGj ∧MX Z

)
∨ (MX Y ) ∨

(
¬JAi ∧MX X

)))

Notice that the square brackets were dropped for better readability. When implemented,

every fixpoint corresponds to a loop. All the intermediate values for X, Y, Z from the loop

iterations, are saved and the information is used to construct the strategy.

� X: These are the states, where the environment violates an assumption and the

play stays in an X state.

� Y : These are the states, where the system can get closer to satisfying a guarantee.

� Z: These are the states, where a guarantee approach is completed, and the next

guarantee to approach is selected.

There are different ways to construct the strategy from these intermediate results: The

original approach [PP06] suggests creating three sub-strategies ρ3, ρ2 and ρ1, correspond-
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ing to X, Y and Z, respectively. Each sub-strategy is a transition relation containing the

valid moves when in a particular state. However, multiple moves might be possible.

In order to compute the final implementation of the circuit the strategy has to be

determinized at some point. Determinizing the strategy means that whenever multiple

moves for the system are possible, one has to be picked. That is, computing the functional

implementation of a Boolean relation, which then can be converted to a combinational

circuit (usually a circuit of 2-to-1 multiplexers, see Figure 2.2).
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Appendix B

Proofs

We present the proofs for Lemmas 2 and 3, as well as Theorems 5 and 6. The proofs are

contributed by Georg Weissenbacher.

Lemma 2. Let R be a resolution proof, and let π = {v1 7→ u1, . . . , vk 7→ uk} be a mapping

such that vi is not an ancestor of uj for 1 ≤ i, j ≤ k. If claR(ui) ⊆ claR(vi) for 1 ≤ i ≤ k,

then the proof P obtained by applying ReconstructProof to R[v1 ← u1] . . . [vk ← uk]

has sink sP with claP (sP ) ⊆ claR(sR).

Proof. By induction on the number of ancestors of sR (cf. the more general proof of

Theorem 5)

Lemma 3. Let vj → vj+1 → . . . → vk be a path in a refutation R such that all vertices

vi have out-degree 1 and rlit(vi, vi+1) 6∈ σ(vk) (where j ≤ i < k). Further, let uk be

such that cla(uk) ⊆ (cla(vk) ∪ σ(vk)) and vj is not an ancestor of uk. Then applying

ReconstructProof to R[vk ← uk] or R[vj ← uk] yields the same refutation.

Proof. We consider only the case that vk is an ancestor of sR, since vj and vk are oth-

erwise not visited by ReconstructProof. Since R is a refutation, cla(uk) ⊆ σ(vk)

(Corollary 1), and therefore cla(uk) ⊆ σ(vj) (Corollary 2). Since rlit(vi−1, vi) 6∈ σ(vk) for

j < i ≤ k and cla(uk) ⊆ σ(vk), we have rlit(vi−1, vi) 6∈ cla(uk) and rlit(w, vi) ∈ cla(w)

for w 6= vi−1 and (w, vi) ∈ E. Therefore, RestoreRes propagates vertex uk until vk is

reached (cf. Definition 14).

Theorem 5. Let R be a resolution proof, let σR be a solution of Equation 5.1 for R, and

let π = {v1 7→ u1, . . . , vk 7→ uk} be a mapping such that for all 1 ≤ i ≤ j ≤ k it holds that

a) no vertex vi is an ancestor of uj, and b) if vj is an ancestor of ui then σR(ui) ⊆ σR(vi).

If claR(ui) ⊆ (claR(vi) ∪ σR(vi)) for 1 ≤ i ≤ k, then applying ReconstructProof to

R[v1 ← u1] . . . [vk ← uk] yields a proof P with sink sP such that claP (sP ) ⊆ claR(sR).
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Proof. Because of condition a), R[v1 ← u1] . . . [vk ← uk] is cycle-free. Otherwise, there

must be a substitution vj 7→ uj introducing a cycle through uj. Since vj is not an ancestor

of uj in R, the cycle must visit an edge from ui to a successor of vi introduced by the

substitution vi 7→ ui. This is impossible, since vi is not an ancestor of uj. Condition b)

prevents that the substitution vi 7→ ui introduces a path from vj through a successor of

vi to sR along which not all literals in σ(vj) are eliminated.

The core of the proof is led by nested structural induction on the number of substitu-

tions and the number of ancestors of sR:

Outer base case (π = ∅). Applying ReconstructProof to R trivially results in a proof

P satisfying that claP (sP ) ⊆ (claR(sR) ∪ σR(sR)).

Outer induction step. The outer induction hypothesis is that for every vertex v in

R[v1 ← u1] . . . [vj ← uj], the literals in σR(v) are eliminated along every path from v to the

sink, and ReconstructProof yields a proof P with claP (sP ) ⊆ (claR(sR) ∪ σR(sR)) if

applied to R[v1 ← u1] . . . [vj ← uj].

Inner base case. Assume sR has no ancestors. If sR 6= vj+1, then sP = sR and

cla(sP ) = cla(sR). Otherwise, sP = uj+1 = π(sR), where uj+1 is the root of a sub-

proof of R such that no vi is an ancestor of uj+1 for 1 ≤ i ≤ j + 1. Therefore,

ReconstructProof leaves uj+1 and cla(uj+1) unmodified. The premise guarantees

that claR(ui+1) ⊆ (claR(sR) ∪ σR(sR)), and therefore claR(sP ) ⊆ (claR(sR) ∪ σR(sR)).

Condition b) warrants that the substitutions {vi 7→ ui | j+ 1 < i ≤ k} remain feasible.

Inner induction step. Consider the case that sR has n+ 1 ancestors. The case where

sR = vj+1 is equivalent to the base case above. Therefore, let sR 6= vj+1, and let

R+ and R− be the sub-proofs rooted at s+R and s−R, respectively. Each parent of s+R
has at most n ancestors, so by induction applying ReconstructProof to R+[v1 ←
u1] . . . [vj+1 ← uj+1] yields a proof P+ with sink s+P and claP+(s+P ) ⊆ (claR(s+R)∪σ(s+R)),

and similarly for R−. Since RestoreRes(sR) eliminates the literals rlit(s+R, sR) and

rlit(s−R, sR), applying RestoreRes to sR results in a proof P satisfying claP (sP ) ⊆
(claR(sR) ∪ σ(sR)).

Finally, the fact that σ(sR) = ∅ establishes claP (sP ) ⊆ claR(sR).

Theorem 6. Let R be an (A,B)-refutation and let σR, ςR be solutions of the Equations 5.1

and 5.2 for R. Let π = {v1 7→ u1, . . . , vk 7→ uk} be a mapping such that for all 1 ≤ i ≤ j ≤
k it holds that a) no vertex vi is an ancestor of uj, and b) if vj is an ancestor of ui then

〈σR(ui), ςR(ui)〉 � 〈σR(vi), ςR(vi)〉. If 〈claR(ui), L(ui)〉 � 〈σR(vi), ςR(vi)〉 for 1 ≤ i ≤ k,

then applying ReconstructProof to R[v1 ← u1] . . . [vk ← uk] yields a proof P such

that Var(Itp(L, P )) ⊆ Var(Itp(L,R)).

Proof. Given a sub-proof rooted at sR, applying ReconstructProof yields a sub-
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proof P such that cla(sP ) ⊆ σ(sR) (by Corollary 1 and the induction hypothesis of

the proof in Theorem 5). By lifting the proof of Theorem 5 to �, we derive L(sP ) v
ς(sR). Let sR be a vertex with ancestors s+R and s−R. By induction, 〈cla(s+P ), L(s+P )〉 �
〈σ(s+R), ς(s+R)〉, and similarly for s−R. Since ς(s+P , piv(sP )) v litlab(s+P , sP , piv(sP )) and

similarly for s−P and piv(sP ) (by Equation 5.2), we have (L(s+P , piv(sP ))tL(s−P , piv(sp))) v
(L(s+R, piv(sR)) t L(s−R, piv(sR))), and therefore Var(Itp(R,L)(sP )) ⊆ Var(Itp(R,L)(sR))

by Definition 5.
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