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Abstract

In this thesis we discuss the multi-platform compatibility of operating system kernels.
For this purpose we ported the SWEB operating system kernel from the x86 architec-
ture to the x86-64 architecture and to the ARM-v5 architecture. The reader will find
a detailed comparison of the x86 and x86-64 architecture from an operating system de-
velopment point of view. Afterwards we describe how we ported SWEB from x86 to
x86-64 in detail. We compare the ARM-v5 architecture to the x86 architecture and de-
scribe how we ported SWEB from x86 to ARM-v5. We ported SWEB to three different
ARM boards: the ARM Integrator C/P, the Gumstix Verdex and the Raspberry Pi.
To make SWEB a multi-platform compatible operating system, we analyze the Linux
and the Minix kernel and identify relevant design principles. Finally we will describe
how we applied these design principles to the SWEB kernel while merging four different
architecture branches.

Keywords: operating systems, multi-platform compatibility, Intel, x86, x86-64, IA-
32, IA-32e, ARM, ARM-v5, ARM-v7, Xen, ARM Integrator C/P, Gumstix Verdex,
Raspberry Pi
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Kurzfassung

Diese Arbeit behandelt die Multi-Plattform-Kompatibilität von Betriebssystemkerneln.
Zu diesem Zweck beschreiben wir, wie wir den SWEB-Betriebssystemkernel von der x86-
Architektur auf die x86-64-Architektur und die ARM-v5-Architektur portiert haben.
Dem Leser wird dazu ein detaillierter Vergleich der x86-Architektur und der x86-64-
Architektur, aus der Sicht der Betriebssystementwicklung, geboten. Daran anschlie-
ßend beschreiben wir im Detail wie SWEB portiert wurde. Wir vergleichen die x86-
Architektur außerdem mit der ARM-v5-Architektur und erklären wie wir SWEB auf
ARM-v5 portiert haben. Wir haben SWEB auf 3 verschiedene ARM Platinen portiert:
das ARM Integrator C/P, das Gumstix Verdex und das Raspberry Pi. Um SWEB Multi-
plattform-kompatibel zu machen, analysieren wir den Linux-Kernel und den Minix-
Kernel und identifizieren wichtige Entwurfsprinzipien. Abschließend beschreiben wir
wie wir diese Entwurfsprinzipien auf den SWEB-Kernel während der Zusammenführung
der verschiedenen Architekturentwicklungszweige angewandt haben.

Stichwörter: Betriebssysteme, Multi-Plattform-Kompatibilität, Intel, x86, x86-64, IA-
32, IA-32e, ARM, ARM-v5, ARM-v7, Xen, ARM Integrator C/P, Gumstix Verdex,
Raspberry Pi
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Chapter 1

Introduction

In this master thesis we describe characteristics of multi-platform operating systems and
how they can be used to make the SWEB kernel multi-platform compatible. Andrew S.
Tanenbaum states that operating systems are “huge, complex and long-lived” [Tan09].
An easy way to avoid writing such code several times is to write it once and run it on
various platforms. Of course, this influences the design of the kernel.

Linux started as an operating system for the Intel 386. Today it supports far more
architectures than any other operating system. In this thesis we explain why the Linux
kernel runs on so many platforms.

The Minix kernel originally was an operating system for the Intel 8086. The current
version of Minix supports the Intel 386 architecture and the ARM-v7 architecture. Both
are 32-bit platforms. We will figure out how the Minix kernel is abstracted to support
different platforms.

The family of all architectures based on the Intel 8086 is called the x86 architecture
family. The Intel 386 architecture (also called i386 or IA-32) is the first 32-bit extension
in the x86 architecture family. It allows switching from the 16-bit mode called “real
mode” to 32-bit mode called “protected mode”. The name “protected mode” comes
from the memory protection it provides. In 2003 AMD introduced AMD64 as the first
64-bit extension to the x86 architecture family. Intel decided to provide this extension in
their CPUs as well and released a very similar instruction set called Intel 64 (also known
as IA-32e or EM64T). As there are only very few differences between AMD64 and Intel
64 both architectures are commonly referred to as x86-64 or x64. In this thesis we will
use the term x86 for the x86 architecture family, and the terms x86-32 and x86-64 when
talking specifically about 32-bit x86 architectures respectively 64-bit x86 architectures.

The SWEB kernel is used at Graz University of Technology. Similar to the Minix kernel
it runs primarily on the x86 architecture. Some years ago SWEB had support for the
32-bit Xen paravirtualization as well, but as this code has not been maintained it is
currently not working. Recently the SWEB kernel has been ported to the ARM-v7
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architecture. As a part of this master thesis the SWEB kernel has been ported to the
x86-64 architecture and the ARM-v5 architecture. In this master thesis we will describe
the differences between the x86 and the x86-64 architectures as well as the x86 and
the ARM-v5 architecture. Furthermore, we will describe what changes in the SWEB
kernel were necessary to make SWEB a multi-platform compatible operating system by
merging the different architecture implementations together.

This master thesis is also intended to give the reader a good overview in porting oper-
ating systems to a new platform, especially the architectures we discuss in this work.
Therefore, we explained in detail how the operating system was ported to new archi-
tectures. We mention each step necessary to avoid typical pitfall scenarios and how to
solve them.

1.1 Motivation

SWEB is an operating system for educational purposes used at Graz University of Tech-
nology. Its initial development started in 2005. SWEB initially supported the x86
architecture only. Support for the Xen paravirtualization has been added in 2005 by
Andreas Weinberger [Wei05] and has been maintained until 2006 [Wei06]. Today the
code in the x86 branch and the Xen branch diverged and the Xen branch is not working
anymore.

In 2013 Alen Harbas started working on an ARM-v7 (Cortex-M4) port of SWEB called
aOS [Har13]. This port runs on a STM32f4Discovery board. It is the third archi-
tecture SWEB runs on. Right now we are working on emulation of this port using
qemu-system-arm. The ARM Cortex-M4 has no memory management unit and thus
aOS does not provide support for a memory management unit. Based on the experience
gained from this port we wrote a new ARM-v5 port for the ARM Integrator/CP board.
This port utilizes the ARM memory management unit and some of the hardware the
board provides.

As a part of this master thesis we implemented PAE on x86 and ported SWEB to
x86-64. x86-64 has 64-bit addresses and, therefore, brings new aspects to the hardware
abstraction in the operating system kernel. With SWEB virtually running on four differ-
ent architectures (x86, x86-64, ARM-v5/v7, Xen), maintaining all architecture branches
separately is significantly more effort than maintaining only one branch. Therefore,
we want to group the code all kernels share or could share, so that all architecture
branches differ only in an architecture dependent part of the code. Furthermore, we
want to minimize the code footprint of the architecture dependent code while preserving
its readability.

In order to accomplish this task we will take a look at other operating systems. The
Linux kernel, a monolithic kernel, runs on almost any architecture that has a memory
management unit, far more platforms than any other operating system. This is inter-
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esting, as one would expect that a micro-kernel operating system should be easier to
port than a monolithic kernel and thus support more architectures. In addition, Linus
Torvalds stated that the Linux kernel “isn’t written to be portable” [Tor99]. He rather
describes his approach as “trying to define a sane common architecture”. We will ex-
amine how this approach reflects in the Linux source code, and find out whether we can
apply similar design strategies to SWEB making it more platform independent.

The Minix kernel is a micro-kernel for educational purposes used at the VU University
Amsterdam. While Minix 1 and 2 supported a few different architectures, Minix 3
does not yet. The Minix 3 kernel is a complete redesign in order to make Minix 3 not
only usable for educational purposes but as a serious operating system on embedded
platforms as well [HBG+06]. It currently supports the x86 architecture and the ARM-
v7 architecture. The ARM-v7 support is still under development. We will find out how
Minix implements means of hardware abstraction and see if we can apply them to the
SWEB kernel.

1.2 Structure of this document

Chapter 2 analyzes and compares the multi-platform compatibility of the Linux kernel,
the Minix kernel and the SWEB kernel. Chapter 3 gives a comparison of the x86-32 and
the x86-64 with a focus on differences which matter when porting an operating system to
64 bits: virtual memory, interrupt and descriptor tables and the binary format. Chapter
4 describes porting SWEB to x86-64 in detail. We will then compare x86 and ARM-v5 in
Chapter 5, again from an operating system development point of view. In Chapter 6 we
describe how we ported SWEB to ARM-v5 including the three different ARM boards.
Chapter 7 explains improvements on the SWEB kernel to enhance its multi-platform
compatibility. Chapter 8 provides a conclusion and summarizes this work.
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Chapter 2

Multi-platform compatibility of
operating system kernels

In this chapter we examine the micro-kernel based operating system Minix 3.0 and
the monolithic Linux kernel in order to find out how they provide fundamentals for
multi-platform compatibility. On the one hand we aim for a small code footprint of
the architecture dependent code, on the other hand we want little redundant source
code. However, #ifdef constructs hinder the maintainability of the source code as
architectural changes spread over the whole project instead of a small part only. More
over source code readability is very important for an educational operating system and
#ifdef constructs worsen readability.

We analyze how the kernel design splits architecture dependent and architecture inde-
pendent code, how these parts interact and how this interface changes the way the rest
of the kernel is written. We analyze how data type usage influences multi-platform com-
patibility in the operating system kernels. We will take a look at the boot procedures
on different architectures and how much redundant source code exists in the project.

From the design of the Minix and the Linux kernel we extract design characteristics
responsible for multi-platform compatibility. In the last section of this chapter we ex-
amine which of the design characteristics we found are implemented in SWEB already
and which are not.
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2.1 The Minix kernel

The Minix kernel is a micro-kernel and as one would expect it has a low code footprint.
The code is divided into a main part residing in the root folder of the kernel, the arch

folder, which contains the architecture dependent part, and the system folder, which
contains implementations for the system calls. The architecture dependent code makes
about 60% of the kernel code, which splits up in 60% x86 code and 40% ARM-v7 code.
The folder structure of the Minix kernel is shown in Figure 2.1.

kernel

arch

earm

i386

system

Figure 2.1: Folder structure of the Minix kernel [Min14]

The proto.h header contains various function prototypes, some of them implemented
in the arch folder. That is, any architecture has to implement these functions. So the
design characteristic we found here is the separation of architecture dependent code into
an arch folder. All architectures have to provide functions which are prototyped in a
common interface. Then this common interface provides a header which is included by
the architecture independent source files.

In some details Minix deviates from this design. For instance, it contains a few #ifdef

constructs depending on the architecture defines __arm__ and __i386__. They are small
enough not to degrade the readability in case of the implementation of two architectures,
but it might when supporting a lot more different architectures, because the programmer
has to see through the architecture independent code for architecture dependent #ifdef
constructs.

The Minix kernel schedules upon timer interrupts using the switch_to_user function.
If no runnable process is found the system idles.

Throughout the kernel some C library functions are used. They are implemented in a
common folder the kernel shares with the user space. There are different implementations
for different architectures, but we do not count that as kernel code, as it is abstracted
code which provides the C library interface and the kernel design has no influence on it.

Data type usage can constrain multi-platform compatibility if bad assumptions are made.
For instance assuming that a pointer has 32 bits is a bad assumption, if you want to
support platforms with different pointer sizes. There are only a few lines of code in
Minix where such assumptions are made.
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We will take a look at a line from the implementation of the exec syscall in the file
do_exec.c:

a r c h p r o c i n i t ( rp , ( u32 t ) m ptr−>PR IP PTR , ( u32 t ) m ptr−>
PR STACK PTR, name) ;

The arch_proc_init function is implemented in the arch folder. rp is the address of the
calling process. name is the name of the program to execute. Both, the new instruction
pointer m_ptr->PR_IP_PTR and the new stack pointer m_ptr->PR_STACK_PTR are casted
to u32_t in order to match the signature of the arch_proc_init function:

void a r c h p r o c i n i t ( s t r u c t proc ∗pr , u32 t , u32 t , char ∗) ;

This might bring problems when porting Minix to a system with a different pointer size.
An interface change will be necessary and then all architecture implementations have to
be adapted to the new interface.

The boot procedure for ARM-v7 and x86 starts in both cases in the head.s file, which
of course differ, as they are written in different assembly languages. In both cases the
pre_init function is called. It parses the multiboot headers and sets up paging. Minix
uses an identity mapping while booting. It is set up in the pg_identity and maps the
upper half of the address space to the physical address space starting from zero. The
two files have about 50 lines in common, for instance the multiboot header parsing.
Afterwards the kmain function in the architecture independent code is called.

The function kmain contains the rest of the boot procedure, using functions from the
proto.h header, implemented in the architecture folders. It initializes the page directory,
the interrupt table and the syscall handlers. The assumption of having a page directory
leads to the fact that Minix won’t work on a platform without a paging mechanism
without a number of modifications in the architecture independent code.

Overall, the architecture folders i386 and earm have about 1200 common lines of code,
that is about 18% of the code in the i386 folder respectively about 35% of the code in
the earm folder.

2.2 The Linux kernel

Although the Linux kernel started as a Minix compatible kernel it design differs sig-
nificantly. The Linux kernel is a monolithic kernel. Today it comprises more than 12
million lines of code. The code is divided into several directories. An overview of the
Linux kernel folder structure is shown in Figure 2.2.

The arch folder contains architecture dependent code in terms of the CPU architecture.
Following the same design idea, driver code is placed in a drivers directory, implemented
independently from the CPU architecture. This way it is possible to implement the driver
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only once and use it on all different architectures. The CPU architecture dependent code
makes about 17% of the kernel code, that is about 2 million lines of code. These split
over 29 CPU architecture folders. The x86 folder does not only contain the source code
for the Intel 386 but for the whole x86 family including the x86-64. Even the xen-x86
support is implemented in that folder, because it runs on the same CPU architecture.

/

arch

arm

x86

...

xen

drivers

fs

init

kernel

...

Figure 2.2: Excerpt of the folder structure of the Linux kernel

If you compare the architecture folders you see that they have almost no source code in
common with any other architecture. This is great in terms of source code maintenance,
as with less duplicate code it is more unlikely to have to change code in several places
simultaneously. Inside the architecture folders there are sub folders for different plat-
forms based on this CPU architecture. Only device drivers for devices which are specific
to this single CPU can be found in the architecture folders or the platform sub folder.
The sub folder structure can be seen as a tree where a leaf is a specific platform and it
includes all code in its own branch. This is not true for all leaf folders but it gives a good
image of how code replication between platforms derived from the same architecture is
avoided.

Linus Torvalds stated that it is a basic design rule of the Linux kernel to avoid adding
new interfaces [Tor99]. This way the architecture independent code won’t be extended
by calls against the interface of a single architecture, which would cause problems for the
other architectures. System drivers are not part of the architecture dependent code and
thus can be added with less problems. Code that does not comply to this interface will
not be added to the Linux kernel. Furthermore, the Linux kernel has a kernel module
system to load additional kernel modules at runtime. This allows extending the kernel
without changing the kernel source code itself. Kernel modules have to implement the
interface defined by the kernel.

Many #ifdef constructs can be found in the Linux kernel, depending on architecture
defines like CONFIG_X86_PAE. This is a fast solution, which keeps the duplicate code
between different architectures minimal, but it also might weaken the readability, in
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particular for students new to operating system kernels. The used data types are not bit
size explicit, except for where the interface requires it. This is important as it enables
to use the same code on architectures with different pointer sizes.

Linux has a few different schedulers, which are implemented in the kernel/sched

folder. The boot procedure for x86 starts in the header.S, which contains the initial-
ization until calling the first main() function from the boot/main.c file. The main()

function initializes the basic hardware, virtual memory and finally uses the function
go_to_protected_mode() to turn on paging and jump to the protected mode entry
point read from the ELF header of the kernel binary.

Many files exist in different versions for different bit sizes or CPU instruction sets. In
case of the x86 architecture there are _32 files for the x86-32 (and PAE) implementation
and _64 files for the x86-64 implementation. PAE code is separated from the x86-32
code using #ifdef sections. The sub folder solution Linux uses in similar situations
keeps a better overview.

Just like Minix, Linux makes the basic assumption that an architecture has something
like the x86 page directory. However, there are forks of the Linux kernel which work on
architectures without a paging mechanism. They are maintained separately.

2.3 The SWEB kernel

The SWEB kernel is divided into two parts, the architecture dependent arch folder and
the architecture independent common folder. We already saw this design characteristic
in both the Minix kernel and the Linux kernel. The SWEB kernel is smaller than the
Linux kernel by several orders of magnitude, measured in lines of code. But compared
to the Minix kernel it has significantly more lines of code. The folder structure of the
SWEB kernel is shown in Figure 2.3.

The common folder contains about 90% of the total source code and is written in C++.
The SWEB kernel uses the ustl standard library. 40% of the common source code belong
to the ustl library. The ustl library uses C++ type abstractions like size_t to provide
architecture independent code.

Several locking mechanisms are implemented in the kernel and provide a convenient
object oriented interface. The Syscall class provides an abstraction for syscall handling.
Independent from how the syscall is implemented and whether it is implemented in the
architecture independent or in the architecture dependent code, it is passed through to
this method, which provides a common interface.

SWEB has an ELF32 binary loader inside the kernel. The idea of placing it in the
architecture independent code, is that loading ELF32 binaries should not depend on
which CPU architecture the kernel runs on. When the binary loader or a syscall require
loading data from the disk, SWEB uses the virtual file system layer which abstracts
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SWEB

arch

common

x86

xen

common

console

fs

kernel

mm

ustl

Figure 2.3: Folder structure overview of the SWEB kernel

the different file systems implemented. Both, the virtual file system layer and the file
system implementations are part of the architecture independent code, as the file system
format does not depend on the actual hardware. The file system implementations use
the interfaces of the architecture dependent hard disk drivers.

The SWEB Scheduler is currently called on every interrupt 0. The interrupt handler is
implemented in the architecture dependent code, whereas the Scheduler provides only
abstracted methods to manage and schedule threads.

While the ustl uses abstracted data types, SWEB in general does not. This is much like
Minix. In SWEB development, it has been considered a good practice to always use data
types containing the number of bits of the variable, like uint32 or uint8, since it makes
the programmer aware of how many bits a variable has. While this may be tolerable
on a 32-bit only operating system it produces a number of problems when porting to
64-bit operating systems. In particular, one should never cast pointers to a fixed size
integer type like uint32, as this makes it impossible to use the code without changes on
a platform with a different pointer size.

The arch source code contains a common interface for all architectures. Each imple-
mentation of an architecture is placed inside a different sub folder. At this point we
will only discuss the implementation of the x86 architecture, as it is the most compre-
hensive. Moreover, the xen architecture implementation is not working at the moment
and has been repaired partially while writing this thesis. The architecture dependent
code contains about 10% of the source code. It is written in C and in x86-asm partially.
The x86-asm code comprises the boot code, the code for interrupt handling and context
switching. In each case according C++ methods are called.
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The InterruptUtils class contains methods for interrupt handling. The ArchMemory

class provides an interface for the architecture independent code to manage virtual mem-
ory, for instance to initialize the page directory or to map or unmap pages. Currently
it contains only static methods. The ArchThreads class provides an interface for an
abstracted handling of a threads CPU registers.

Furthermore, the x86 architecture folder contains the driver implementations for an ATA
driver, an IDE driver, a serial port driver, a driver for the interrupt controller and more.
But there are also classes which are not really architecture dependent, for instance the
ArchCommon class. So, SWEB basically provides architecture abstraction in its design,
but it is only implemented rudimentarily. In Chapter 7 we present changes in the SWEB
kernel to enhance its architecture independency.
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Chapter 3

Comparison of x86 and x86-64

In this chapter we describe the x86 and x86-64 architectures from an operating system
developer’s point of view. The x86-64 architecture implements the whole x86 instruction
set and extends it by some new instructions. In 64-bit mode, however, there are a lot of
differences as most registers and instruction operands have been changed in their size.
x86-64 introduces the new long mode paging, which we will describe in detail. We will
take a closer look at the setup of the global descriptor table and the interrupt descriptor
table. Furthermore, we will explain what changed in the calling convention, in interrupt
handling and in the binary format.

3.1 32-bit paging

In 32-bit paging mode the memory management unit does address translation using one
or two levels of lookup tables. One level paging means having 4 MiB pages, whereas two
level paging means having 4 KiB pages.

The first lookup table is the page directory. Its 20-bit physical page number is stored in
upper 20 bits of the CR3 register. The lower 12 bits are used for changing the memory
management units’ behavior. The page directory contains 1024 entries of 4 bytes each.
That is, the page directory fits on a single 4 KiB page. The page directory maps the
first 10 bits of the virtual address either to a 4 MiB physical page or to a page table,
depending on the size bit in the page directory entry. These first 10 bits are called the
page directory index (PDI).

The page table is the second lookup table. It contains 1024 entries of 4 bytes each, just
as the page directory. And it has to be page aligned as well, as only a 20-bit physical
page number is stored in the page directory entry. The second 10 bits of the virtual
address are used as the page table index (PTI).

11



PDI (10 bit) Offset (22 bit)

32-bit virtual address

CR3
Page Directory

PDE 0

PDE 1
...

PDE #PDI
..
.

PDE 1023

4 MiB Page

Byte 0

Byte 1
...

Offset
...

Byte 4194303

Figure 3.1: Virtual address resolution in 32-bit 4 MiB paging mode ac-
cording to page 4-12 of the Intel manual [Int12]

When addressing a 4 MiB page the CPU takes the page directory physical page number
from the CR3 register and the page directory index from the virtual address to find the
page directory entry to this virtual address. The page directory entry contains the 10-bit
physical page number of the 4 MiB page. Combined with the lower 22 bits of the virtual
address this forms the physical address. The virtual address resolution for 4 MiB pages
is also shown in Figure 3.1.

PDI (10 bit) PTI (10 bit) Offset (12 bit)

32-bit virtual address

CR3
Page Directory

PDE 0

PDE 1
...

PDE #PDI
..
.

PDE 1023

Page Table

PTE 0

PTE 1
...

PTE #PTI
...

PTE 1023

Page

Byte 0

Byte 1
...

Offset
...

Byte 4095

Figure 3.2: Virtual address resolution in 32-bit 4 KiB paging mode accord-
ing to page 4-12 of the Intel manual [Int12]

In the case of 4 KiB pages the page directory entry is found the same way, but the page
directory now contains a 20-bit physical page number of a page table. The physical page
number can be extended with zeros to get the physical address, because the page table is
page aligned. The page table index leads to the page table entry. The page table entry
maps a 4 KiB virtual page to a 4 KiB physical page. Therefore, the page table entry
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contains a 20-bit physical page number of a 4 KiB page. Combined with the lower 12
bits of the virtual address this forms the physical address. The virtual address resolution
for 4 KiB pages is also shown in Figure 3.2.

The page directory entries and page table entries contain information on the memory
area they map. The present bit defines whether there is any mapping in the memory
area of this entry. The size bit only exists in the page directory and defines whether
this entry maps directly to a 4 MiB page or to a page table. The user space bit and the
writeable bit specify access rights on the page.

3.2 PAE paging

With physical address extension enabled the behavior of the memory management unit
differs from 32-bit paging mode in some details.

PDPTI (2 bit) PDI (9 bit) Offset (21 bit)

32-bit virtual address

CR3
PDPT

PDPTE 0

PDPTE 1

PDPTE 2

PDPTE 3

Page Directory

PDE 0

PDE 1
...

PDE #PDI
...

PDE 511

2 MiB Page

Byte 0

Byte 1
...

Offset
...

Byte 2097151

Figure 3.3: Virtual address resolution in PAE 2 MiB paging mode with
PDPTI=1 according to page 4-21 of the Intel manual [Int12]

To extend the usable physical address space, the physical page number fields in page
tables and page directories are extended by 4 bits. CPUs with physical address extension
allow at least 36-bit physical addresses. Depending on the CPU longer physical addresses
may be possible. The actual maximum value can be retrieved from the CPU. It is at
most 52 bits. We will further on only describe the 36-bit case, as it does only differ from
other cases in the lengths of some fields in the paging structs. The new layer in PAE
paging mode is the page directory pointer table.

The physical page number field of the page table entry had only 20 bits in 32-bit paging
mode, because the 12-bit offset from the virtual address was used, resulting in a 32-bit
physical address space. In PAE paging mode virtual addresses still have 32 bits, but the
physical address space has at least 36 bits. Therefore, the page table entry has to contain
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PDPTI (2 bit) PDI (9 bit) PTI (9 bit) Offset (12 bit)
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Figure 3.4: Virtual address resolution in PAE 4 KiB paging mode with
PDPTI=1 according to page 4-20 of the Intel manual [Int12]

a 24-bit physical page number. For this reason the page table entries are extended to 64
bits using 27 padding bits after the physical page number field. A page table should still
fit on a single page, thus the number of page table entries per page table are reduced
to 512. Thus one page table controls only 512 pages, that is 2 MiB. To address any
page table entry you need 9 bits. Hence the page table index part in the virtual address
is only 9 bits long. Having a 24-bit physical page number and 12 bits offset from the
virtual address we can construct any 36-bit physical address.

The same changes apply to the page directory. The page table page number field is
extended from 20 bits to 24 bits. In the case of large page mappings, a large page is only
2 MiB long in PAE paging mode. This is because the page table index and the offset
part of the virtual address together comprise only 21 bits and 221 bytes are 2 MiB.

In 32-bit paging mode the physical page number field in the page directory had 10 bits.
We now need to add 4 bits for the physical address extension and 1 bit as each large
page is half as long as in 32-bit paging mode and therefore, there are twice as many large
pages. Hence, the physical page number field is 15 bits long. Together with the 21 bits
from the virtual address as offset we can again construct any 36-bit physical address.
The virtual address resolution for 2 MiB pages in PAE paging mode is also shown in
Figure 3.3. As in the page tables, padding bits are added after the page number field.

As each page directory entry doubled in size, there are only 512 instead of 1024 page
directory entries. Each entry controls a region of 2 MiB size. Therefore, one page
directory controls 1 GiB of virtual address space.

Now we have 12 bits offset, 9 bits page table index (respectively 21 bits offset, in the
case of 2 MiB pages), 9 bits page directory index and 2 bits remain for a new layer in
address translation.
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The page directory pointer table is added as another layer to the virtual address transla-
tion. It has four entries, each 64 bits long. These four entries divide the virtual address
space into four 1 GiB regions. Each entry holds the physical address of the page directory
and additional information, like whether the entry is valid (present bit).

Figure 3.4 shows virtual address resolution in 4 KiB PAE paging mode.

3.3 x86-64 paging

x86-64 paging mode is an extension to PAE paging. PAE paging mode allowed to trans-
late 32-bit virtual addresses to physical addresses with 36 to 52 bits length, depending
on the hardware used. In x86-64 paging mode we can translate 48-bit virtual addresses
to physical addresses with 40 to 52 bits length. The actual maximum value can be re-
trieved from the CPU. We will further on only describe the 40-bit case, as it does only
differ from other cases in the lengths of some fields in the paging structs.

PML4I (9 bit) PDPTI (9 bit) Offset (30 bit)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
...

#PML4I
...

PML4E 511

PDPT

PDPTE 0

PDPTE 1
...

#PDPTI
...

PDPTE 511

1 GiB Page

Byte 0

Byte 1
...

Offset
...

1 GiB - 1

Figure 3.5: Virtual address resolution in x86-64 1 GiB paging mode ac-
cording to page 4-30 of the Intel manual [Int12]

All page number fields are extended by 4 bits, compared to the 36-bit case. The reserved
bits after the address are reduced accordingly. As the structure sizes do not differ from
PAE paging mode, we still have the following structure in virtual addresses: The last 12
bits are used as an offset inside the 4 KiB page. The next 9 bits are used as the page
table index. The next 9 bits are used as the page directory index. If the page directory
entry has the page size bit set, the 12 bits offset and the 9 bits page table index together
form the 21 bits offset for a 2 MiB page. Figure 3.6 shows virtual address resolution in
x86-64 paging mode with 2 MiB pages and Figure 3.7 show address resolution with 4
KiB pages.
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PML4I (9 bit) PDPTI (9 bit) PDI (9 bit) Offset (21 bit)
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Figure 3.6: Virtual address resolution in x86-64 2 MiB paging mode ac-
cording to page 4-29 of the Intel manual [Int12]

In either case, the next 9 bits form the page directory pointer table index. Thus, the page
directory pointer table is extended from 4 entries to 512 entries. Each page directory
pointer table entry now has a size bit too. If it is set, the 12 bits offset, the 9 bits
page table index and the 9 bits page directory index together form a 30-bit offset for
a 1 GiB page, provided that the CPU supports 1 GiB pages. Figure 3.5 shows virtual
address resolution in x86-64 paging mode with 1 GiB pages. The last 9 bits are used
as an index for the page map level 4, which is the newly introduced address translation
layer. It holds 512 page map level 4 entries, each pointing to a page directory page table,
managing a 512 GiB region.
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48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
...

#PML4I
..
.

PML4E 511

PDPT

PDPTE 0

PDPTE 1
...

#PDPTI
...

PDPTE 511

Page Directory

PDE 0

PDE 1
..
.

PDE #PDI
...

PDE 511

Page Table

PTE 0

PTE 1
...

PTE #PTI
...

PTE 511

4 KiB Page

Byte 0

Byte 1
...

Offset
...

Byte 4095

Figure 3.7: Virtual address resolution in x86-64 4 KiB paging mode ac-
cording to page 4-28 of the Intel manual [Int12]

3.4 Global descriptor table

Besides paging there is segmentation as another address translation mechanism. It is a
mapping from process and the type of memory access to a physical base address which
is added to the accessed address. In protected and long mode segmentation allows
access protection, for example a read only code segment or a segment which is not
accessible for user processes. An invalid access to a segment will produce a CPU fault,
i.e. a segmentation fault. Segments are defined using segment descriptors. Figure 3.8
shows the structure of a segment descriptor as described in the Intel manual in section
3.4.5 [Int12].

You can see that a segment descriptor has 64 bits. The lowest 16 bits form the lowest 16
bits of the segment limit. They are combined with the second segment limit field from
bits 48 to 51, resulting in a 20-bit segment limit. That is, the maximum segment limit
is 1 MiB. The segment limit defines where the segment ends. If the granularity bit is
set, the segment limit is read as multiples of 212, that is 4 KiB. Thus, the segment limit
can be defined in 4 KiB steps and the maximum segment limit is 4 GiB, which is the
full 32-bit address space. Memory accesses above the segment limit are not allowed and
produce a segmentation fault.
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Bits 16 to 39 together with bits 56 to 63 form the 32-bit base address. Whenever
accessing an address this base address will be added as an offset. The segment type
defines whether the segment is a code or a data segment, its expansion direction and
whether it is writeable. The descriptor type field defines whether this descriptor is a
system descriptor, for example an interrupt descriptor or a task state segment descriptor.
The descriptor privilege level defines from which ring this segment may be accessed. A
kernel segment descriptor has always privilege level 0, whereas a user space segment has
always privilege level 3. The segment present field is set if the segment is present. Bit
52 has no effect and can be used by the operating system. Bit 53 must be set to make a
32-bit code segment descriptor a 64-bit code segment descriptor. The operation size bit
selects whether 16-bit addresses or 32-bit addresses are used.

63

Base Address 31:24

56

Granularity55

Operation size: 0 = 16-bit; 1 = 32-bit54

64-bit code segment53

Available for system software52

Segment Limit 19:16

51

48

Segment present47

46
Descriptor Privilege Level

45

Descriptor Type: System = 0; Else = 144

43

Segment Type

40

39

Base Address 23:16

32 0

Base Address 15:00

15

16

Segment Limit 15:00

31

Figure 3.8: Structure of a segment descriptor
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The global descriptor table contains all segment descriptors. The first segment descriptor
in the global descriptor table is always the null descriptor, a descriptor with all bits set
to zero. Trying to access memory through this descriptor always throws a CPU fault.
This idea is similar to the idea of leaving the address range around 0x0 unused to detect
invalid accesses. A typical x86 global descriptor table can be seen in Figure 3.9.

Null Descriptor

Kernel Data Segment Descriptor

Kernel Code Segment Descriptor

User Data Segment Descriptor

User Code Segment Descriptor

Task State Segment Descriptor

Figure 3.9: Typical global descriptor table in an x86 operating system

The CPU has several registers for memory accesses. The code segment (CS) is used for
instruction fetches, the stack segment (SS) is used together with the stack pointer or the
base pointer and the data segment (DS) is used for most other accesses and the extra
segment (ES) which may be used for a compiler or operating system defined purpose.
Additional segments FS and GS were introduced later to provide more general purpose
segments. The operating system may use them if it needs a general purpose segment.

The segment descriptor is selected through the segment registers in the CPU. These
are 16-bit registers, consisting of the privilege level in the lowest two bits, an indicator
whether it references a local descriptor table or not and the descriptor table index in the
remaining upper 13 bits. That is, you can have up to 8192 segment descriptors in the
global descriptor table. The indicator bit will always be zero in case you use only the
global descriptor table. The privilege level will be 3 if the descriptor describes a user
level (ring 3) segment and it will be 0 if the descriptor describes a kernel level (ring 0)
segment.

In x86-64 mode the global descriptor table stays almost the same, but system descriptors
are expanded from 8 to 16 bytes. Although it is possible to mix both 8 byte and 16 byte
descriptors, there are hardly any use cases for it. If you expand each 8 byte descriptor
by an 8 byte null descriptor you can work with all descriptors as if they would have
16 bytes. Furthermore, x86-64 mode treats all segments except FS and GS as if they
would have base address zero and the maximum limit. For FS and GS no limit checks
are performed either. That is, all segments allow to address the whole physical address
space (see Intel manual section 3.2.4 [Int12]).While segments have been used on 16-bit
and even on 32-bit x86 systems to offset or limit memory accesses this is not possible in
x86-64 long mode anymore.
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The task state segment (TSS) is a special segment which can be used for hardware task
switching in x86 mode. It contains fields for most of the CPU registers defining the task
state. The CPU updates these fields by itself upon task switches. As each task has its
own task state segment they can switch between each other either completely without the
operating system or make task switching for the operating system much easier. Storing
most of the CPU registers but not all is a significant drawback as thread data might
get corrupted. Furthermore, there is a maximum of 8192 entries in the global descriptor
table. If using hardware task switching you will not be able to have more tasks than
that.

Most modern operating systems do not use hardware task switching. Linux removed
hardware task switching support, because you can not change what happens during a
hardware context switch and because hardware and software switching took the same
amount of time. [BC05]

Hardware task switching is not supported anymore in x86-64 mode. However, you still
have to define at least one task state segment descriptor in x86-64 mode, as the CPU
expects to find one. And in legacy stack switching mode this task segment is still used.
The format of the task state segment changed completely in x86-64 mode. Instead of
the CPU registers defining the task state it now contains stack pointers for the privilege
levels 0, 1 and 2 and 7 interrupt stack table pointers. Interrupt handlers can be set up
to always work on one of the interrupt stacks from this table. This way the operating
system can switch to a known working stack in case of a CPU fault to execute the CPU
fault handling properly. If an interrupt occurs and a thread uses the according interrupt
stack, then the operating system has to make sure that no interrupt using the same
interrupt stack may occur.

When using the x86 legacy stack switching mechanism the interrupt handler works on
the current stack or if there was a privilege change on the according stack from the task
state segment. This allows us to enable interrupts while handling interrupts. This can
be used for example in the case of syscalls or page faults.

3.5 Interrupt handling

The interrupt descriptor table defines what the CPU executes upon receiving an inter-
rupt. There are three different kinds of descriptors the interrupt descriptor table may
contain: the task gate descriptor which can be used for hardware task switching, the
interrupt gate descriptor and the trap gate descriptor which can be used for instance for
debugging. We will only discuss the interrupt gate descriptor in detail. The structure
of an interrupt gate descriptor can be found in Figure 3.10.

Upon interrupt i the CPU uses the descriptor defined in the i-th entry of the interrupt
descriptor table. The descriptor provides a segment selector for a code segment and an
interrupt handler address so that the CPU can execute code starting from that address.
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In x86-64 mode the interrupt gate descriptors are extended to 16 bytes as shown in
Figure 3.11. The upper 32 bits of the interrupt handler address are added as bits 64 to
95. Bits 96 to 127 of the interrupt gate descriptor are reserved. The previously reserved
bits 32 to 34 are now used as the index to the interrupt stack table.

When an interrupt occurs in x86 mode the stack pointer is only pushed to the stack if
the interrupt changes the privilege level. In either case the registers EFLAGS, CS, EIP
and the error code are pushed to the stack in this order. In x86-64 mode the stack
segment selector and the stack pointer are always pushed to the stack. Furthermore,
the stack segment register is set to NULL if the interrupt changes the privilege level. In
x86 mode the stack pointer for the interrupt handler is taken from the TSS segment.
In x86-64 mode it is either taken from the TSS segment or the interrupt stack table is
used, depending on the interrupt stack table field in the interrupt gate descriptor.

The interrupt stack table allows to provide certain interrupts always with a clean and
working stack even if the threads stack is not usable. However, nested interrupts will
lead to problems if two or more threads operate on the same stack.

As the stack segment and stack pointer (RSP) are pushed onto the stack upon an interrupt
in x86-64 mode, they are always popped from the stack upon interrupt return (IRET).
Another important change is the stack alignment. While in x86 mode the interrupt stack
frame was 4 byte aligned it is 8 byte aligned in x86-64 mode.
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Figure 3.10: Structure of an interrupt gate descriptor in x86 mode accord-
ing to page 6-15 of the Intel manual [Int12]. Some fields are required to be
always 1 respectively always 0, in order to avoid mixing interrupt descriptors
and other descriptors.
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Figure 3.11: Structure of an interrupt gate descriptor in x86-64 mode
according to page 6-23 of the Intel manual [Int12]
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3.6 Calling convention

If we have a function call in C the compiler has to translate this function call into assem-
bly language. The x86 call instruction takes only one parameter, the new instruction
pointer. The call instruction pushes the old instruction pointer to the stack. So the
CPU has no mechanism to pass arguments to a function. Therefore, we need a calling
convention, a standard way to pass arguments before executing the call instruction.

In this section we will describe the cdecl calling convention, which is used by many
C compilers when building x86-32 binaries. The x86-64 introduced two new calling
conventions, first the AMD64 ABI calling convention, second the Microsoft x64 calling
convention which is used by Microsoft only. We will only describe the AMD64 ABI
calling convention.

The ARM64 ABI calling convention defines how arguments of different sizes are passed.
As the compiler implements the calling convention we only have to implement it in as-
sembly language parts of the kernel. This includes parts where C and assembly language
parts of the kernel interact. In most cases we only want to pass values to general purpose
registers or retrieve general purpose register values. Therefore, we will only talk about
passing variables which fit into a general purpose register.

The cdecl calling convention has a simple approach. First it starts a new stack frame,
by pushing the ebp to the stack and setting the ebp to the current value of the esp

afterwards. Then the function arguments are pushed to the stack in opposite order,
that is from right to left. Now the call instruction is executed. The function finds the
arguments on the stack. If the function pushes variables to the stack it has to pop these
variables from the stack before returning. [Fog14]

When the functions returns using the ret instruction the return value should already be
stored in the eax register. The CPU then pops the instruction pointer from the stack.
Finally the caller has to clean up the stack. The stack frame now contains the function
arguments and the old ebp value. The function arguments are then popped from the
stack and the old ebp value is restored. Finally, the execution of the calling function is
continued.

Stack operations are slow compared to register operations. Therefore, the AMD64 ABI
calling convention uses a significantly different approach using registers to improve the
performance. The first six arguments are copied into the registers rdi, rsi, rdx, r8 and
r9. The remaining arguments are pushed in opposite order to the stack, just as in the
cdecl calling convention [MJAM13]. Then the call instruction is executed. The called
functions stores its return value in the rax register. The caller has to clean up the stack,
if any arguments have been pushed to the stack before.

The syscall convention used on x86 Linux or SWEB can also be used on x86-64. The
change in the calling convention even leads to a simplification. As the arguments are
not passed over the stack anymore, they do not have to be copied from the stack to the
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registers for the syscall. One can simply exchange the register values as expected by
the kernel or make the kernel syscall interface expect the arguments as defined in the
AMD64 ABI calling convention.

3.7 ELF Binary format comparison

The ELF binary format is the default format used by the gcc. Between the ELF32 and
ELF64 format only a few small differences exist. Therefore, we will first describe the
ELF32 binary format and afterwards point out where the ELF64 format differs.

The ELF32 binary format defines the unsigned 32-bit data types Elf32_Addr for ad-
dresses, Elf32_Off for file offsets and Elf32_Word as well as the signed 32-bit data type
Elf32_Sword and the unsigned 16-bit data type Elf32_Half. An ELF binary always
begins with the ELF header as shown in Listing 3.1. It starts with an ELF identification
string which consists of a magic number, the ELF class (ELF32 or ELF64) and further
information on how the binary should be parsed (i.e. parse integer values as MSB or
as LSB). The ELF header also stores the address of the execution entry point and the
location of the section headers and program headers in the binary. [Too93]

1 struct sELF32 Ehdr
2 {
3 uint8 e i d e n t [ EI NIDENT ] ;
4 E l f 3 2 H a l f e type ;
5 E l f 3 2 H a l f e machine ;
6 Elf32 Word e v e r s i o n ;
7 Elf32 Addr e en t ry ; // execut ion entry po int
8 E l f 3 2 O f f e p h o f f ; // program header o f f s e t
9 E l f 3 2 O f f e s h o f f ; // s e c t i o n header o f f s e t

10 Elf32 Word e f l a g s ;
11 E l f 3 2 H a l f e e h s i z e ;
12 E l f 3 2 H a l f e p h e n t s i z e ;
13 E l f 3 2 H a l f e phnum ; // program header count
14 E l f 3 2 H a l f e s h e n t s i z e ;
15 E l f 3 2 H a l f e shnum ; // s e c t i o n header count
16 E l f 3 2 H a l f e shs t rndx ;
17 } ;

Listing 3.1: ELF32 header as defined in SWEB

A program header as shown in Listing 3.2 defines where the binary code is located in the
binary and where in the virtual memory it has to be placed for execution. For virtual
memory areas where there is no data in the binary to load the size in memory p_memsz

will be greater than the size in file p_filesz.
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1 struct sELF32 Phdr
2 {
3 Elf32 Word p type ;
4 E l f 3 2 O f f p o f f s e t ; // o f f s e t in f i l e
5 Elf32 Addr p vaddr ; // v i r t u a l address
6 Elf32 Addr p paddr ;
7 Elf32 Word p f i l e s z ; // s i z e in f i l e
8 Elf32 Word p memsz ; // s i z e in memory
9 Elf32 Word p f l a g s ;

10 Elf32 Word p a l i g n ;
11 } ;

Listing 3.2: ELF32 program header as defined in SWEB

In order to load a byte for a certain virtual address x from the binary into virtual memory
the operating system has to search through all program headers. If a program header
has a virtual address smaller than x and x is in the range defined by the size in memory,
then this is the right program header. If it moreover is in the range defined by the size
in file, then the data can be loaded from the file. The position of the searched byte is
p_offset + x - p_vaddr. If the byte is not in the range defined by the size in file then
it is in the data segment or heap and it just has to be mapped without any data being
loaded into memory.

The ELF32 binary format can contain sections with additional information, like debug
information. A simple debugger format is the stabs format which provides symbol tables
to look up virtual addresses. It allows to tell what symbol belongs to a virtual address.
The Dwarf-2 debugger format is the default format used by gcc. It is more sophisticated
and provides better abstraction and thus can be used on various platforms. “DWARF is
also designed to be extensible to describe virtually any procedural programming language
on any machine architecture”. [Eag07]

The ELF64 binary format extends the types Elf64_Addr and Elf64_Off to 64 bits and
adds new data types for 64-bit unsigned and signed words. In order to avoid padding
some structs are reordered. The general structure and the way the data is loaded stays
the same. Unfortunately the stabs debugger format is not available for the ELF64 binary
format. Thus you have to switch to a different debugger format like Dwarf-2. [HI98]

Now that we have learned the differences between the x86-32 and the x86-64 architecture
we are able to port an operating system kernel to the x86-64 architecture. In the next
chapter we describe how we ported the SWEB kernel to the x86-64 architecture.
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Chapter 4

Porting SWEB from x86 to
x86-64

In the previous chapter we explained the differences between x86 and x86-64. In this
chapter we will go through the changes in the SWEB source code to port it to x86-64
step by step. Therefore, we will first implement the x86 physical address extension.
x86 with physical address extension enabled (x86-PAE) maps 32-bit virtual addresses to
36-bit physical addresses. The physical address extension leaves the boot up procedure
almost unchanged.

From x86 to x86-64 the boot up procedure changes significantly. We will first describe
how we changed the boot up procedure until the point where x86-64 paging is setup and
then how we extended PAE paging to x86-64 paging. x86-64 paging maps 48-bit virtual
addresses to 52-bit physical addresses. Finally we describe what we changed in the more
abstracted code after calling the C entry function.

Comparing the source code of the x86-64 port to the source code of the x86 version of
SWEB, we see that only small code changes were necessary. About 1500 lines of code
were removed and 1550 lines of code either added or modified. These 1500 lines are
divided into 450 lines of assembler code and 1050 lines of C++ code.

4.1 Implementing x86 physical address extension

The x86 physical address extension doubles the size of each page directory and page
table entry, allowing much longer physical addresses. This way each page directory and
page table may only contain 512 instead of 1024 entries in order to fit on a single page.
The first two bits of the virtual address are then used as an index to the new page
directory pointer table which provides up to 4 page directories, one for each gigabyte of
virtual address space.
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Thread UserProcess

Loader ELF File Structures

ArchMemory Paging Structure

Figure 4.1: Class diagram: Relation between UserProcess and paging
structure. Initially the paging structure of a process was stored in the Loader
class, now it is stored in the ArchMemory class.

Until now, the page directory page number of a users process was stored inside a member
variable in the Loader object of the UserProcess. The Loader lies in the common folder
which should not contain any architecture dependent code. The page directory page
number could be abstracted in this place and the abstracted code then moved to the
arch folder, where the architecture dependent code is. The class diagram in Figure 4.1
shows the relation between UserProcess class and the paging structure of the process
after this improvement. We will describe this in detail in Chapter 7.

In the 32-bit version of SWEB, the page number of the page directory page was stored
in a uint32 member variable. Now it is replaced by two variables: a pointer to the page
directory pointer table (page_directory_pointer_table_) and an array containing this
table. Just as page directories, page tables and pages have to be memory aligned to their
own size, the page directory pointer table has to be aligned to its size (32 bytes) too. The
KernelMemoryManager class implements the dynamic memory functions in the SWEB
kernel. Its implementation does not care about the alignment of an object. It may occur
that the object containing the page directory pointer table is not 32 byte aligned.

The g++ compiler provides variable attributes for memory alignment, but that has no
useful effect in this case. The variable will then be aligned relative to the beginning of
the object (or struct). But, if the object itself is not 32 byte aligned the member variable
will not be 32 byte aligned either. Looking at the next step towards x86-64 paging the
page directory pointer table will be extended from 32 bytes (4 pointers) to a full 4 KiB
page. Pages are always page aligned, so this problem will just disappear anyway.

Doubling the array size to 64 bytes is a quick and simple solution to this temporary prob-
lem. Therefore, we need the second variable to point to a 32-byte aligned memory loca-
tion within the 64 bytes array. The memory location is calculated by a bit mask opera-
tion (page_dir_pointer_table_space_ + 0x20) & ~0x1F. The bitwise and-operation
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with ~0x1F sets the last 5 bits of the address to zero. This is a round down to the next
32 byte aligned address. Therefore, we add 32 bytes to stay within the 64 byte array.

The paging data structures are basically just extended by 64 bits per entry in order to
provide space for the longer physical addresses. Page tables and page directories now
contain only 512 entries in order to fit on a single 4 KiB page.

Until now, upon process creation a page directory page was allocated and the second half
of the kernel page directory page copied to it. This way the (not user space accessible)
virtual address space from 2 GiB upwards was the same for all processes and the kernel.
Now this changed as one page directory manages only 1 GiB instead of the full 4 GiB
virtual address space. Thus with physical address extension enabled, we just set the first
two page directory pointer table entries to zero and copy the other two from the kernel
page directory pointer table.

The ArchMemory class provides methods for mapping pages and for resolving mappings.
In all cases we had to add the new layer and check whether a page directory is present.
The method mapPage maps a virtual page to a given physical page. In order to do so it
resolves the virtual address and checks whether a page directory is present, if it is not,
we allocate a physical page and map it in the page directory pointer table. Afterwards
the process is unchanged: If mapPage should map a large page, we just map it into the
page directory. Otherwise we check whether the page table is present. If it is not we
allocate a physical page and map it in the page directory. Afterwards the mapping is
set up in the according page table entry.

A little change in some thread functions as well as in the pageFaultHandler was nec-
essary. With 32-bit paging the CR3 register held the physical address of the page
directory. With PAE paging the CR3 register holds the physical address of the page
directory pointer table. If we change something in the mapping it might occur that
the according translation look aside buffer (TLB) entry is not invalidated properly. As
SWEB has no focus on optimization we simply invalidate the whole TLB. This helps
keeping the number of pitfalls for developers small. In order to invalidate the TLB we
just copy the value from the CR3 register to EAX and back to CR3 before the end of
a page fault. There might be some situations where this is not necessary, but in almost
all situation it is. Upon an update of the CR3 register the memory management unit
updates the memory mappings and flushes the TLB.

The space for the kernel page directory and the kernel page table is allocated in the bss
section of the kernel binary. Instead of the one kernel page directory we already have, we
need four to manage the same virtual address space and instead of four page table pages
we need eight page table pages. Additionally we need a 32 byte aligned 32 byte array
for the kernel page directory pointer table. The initialization of these data structures is
implemented in C functions in the file init_boottime_pagetables.cpp. First the four
page directory pointer table entries are set to present and the physical page numbers of
the four page directory pages we just allocated in the bss section.
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We set up a 1:1 mapping which will be used while booting and removed before the kernel
finished booting. As this was done by using 4 MiB pages we have to double the number
of mapped pages here in order to map the same amount of memory and maintain the
old behavior of SWEB. The kernel is also mapped to the virtual address 2 GiB. That is
what we need the eight page tables for, as this is not done using 4 MiB pages but 4 KiB
pages instead. eight page tables allow a kernel size of 16 MiB.

Afterwards the frame buffer is set up and the whole GiB from 3 GiB upwards in virtual
address space is mapped to the first GiB in physical memory. This will also be a
temporary thing. We will use 1 GiB pages for this when switching to x86-64 paging.

In 32-bit paging mode we already had the PSE bit (bit 4) of the CR4 enabled. The
PSE bit determines whether the page size bits of the page directory entries are enabled.
The PSE bit is ignored in PAE and x86-64 paging modes, so we can safely just ignore
it and not set it to any value. To enable PAE paging mode we have to set the PAE
bit (bit 5) of the CR4 register. The next time we modify the CR3 register the memory
management unit will switch to PAE paging mode.

So this is the final thing we do: Setting the CR3 register to the physical address of the
kernel page directory pointer table and enable PAE paging.

4.2 Booting a 64-bit kernel

To enter 64-bit long mode we have to first look at the boot up procedure. There are
several ways to enter 64-bit long mode. The first is to build a 64-bit kernel and use
a boot loader which supports booting directly into long mode. SWEB currently uses
GRUB Legacy 0.94 as its boot loader, which does not support this. Oracle developed a
modified version of GRUB [Ora13], capable of loading 64-bit kernels. To the best of our
knowledge, Solaris is the only operating system using this modified GRUB. Therefore,
we decided to stay with the old boot loader.

Two other variants require having an ELF32 part and an ELF64 part. Many elements of
those two variants overlap so we will explain them only once. The first variant is using
a 32-bit loader which loads the 64-bit kernel binary and then jumps to the 64-bit kernel
entry point. The second variant loads a 32-bit kernel binary which contains a 64-bit
kernel binary so we do not have to parse the 64-bit kernel binary.

4.2.1 32-bit loader - 64-bit kernel

The idea of this variant is to build a tiny 32-bit kernel which does nothing but parse and
load the ELF64 binary in order to jump to the 64-bit long mode [OsD14].

Both the loader binary and the kernel binary are still compiled using gcc and g++. We
added some compiler flags which will build the kernel binary in a way more suited to
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our needs. First is -ffreestanding. It tells the compiler that this binary will run in
an environment where “the standard library may not exist” [GCC13b]. It should always
be added when compiling an operating system kernel. Second is -mcmodel=kernel

[GCC13a].

The default model is -mcmodel=small. This model tries to produce small 16-bit or 32-bit
jumps. This allows executing code within the address space between 0 GiB and 2 GiB.
Using the kernel code model, the compiler links the binary in the negative 2 GiB of the
address space. That is the 2 GiB from the upper end of the address space downwards.
On 32-bit architectures the negative 2 GiB address space is equivalent to the upper 2
GiB address space.

There is also the medium code model which links the binary in the address space between
0 GiB and 2 GiB and the large model, both of which are even more cautious with
optimizing jumps. The large model is not implemented by gcc at all. Either way, using
a less restricted model slows down the code and makes it larger. Finally, we added
some flags which disable the red zone (a temporary data storage on the stack) as well
as the MMX, SSE2, SSE3 and 3D-Now extensions. They would all need some kind of
initialization, which is not implemented in SWEB.

Until now, SWEB was linked using the ld linker tool. We changed that to linking using
gcc. The gcc compiler provides more linking options, like the -mcmodel flag which we
already used for code compilation. When porting x86 code to x86-64 you might stum-
ble over the error message relocation truncated to fit: R X86 64 PC32 against

symbol when linking the kernel binary. When linking a 32-bit kernel binary in the neg-
ative 2 GiB address space, the kernel will start at 0x8000 0000. This address and all
addresses up to 0GiB will fit into 32 bits. When linking a 64-bit kernel binary in the
negative 2 GiB address space, the kernel will start at 0xFFFF FFFF 8000 0000. How-
ever, for this address we need 64 bits. The error message above tells us that with the
relocation to the negative 2 GiB address space some operation loses the first 32 bits of
the 64-bit address of the symbol. This should never occur in any code your compiler
produces. However, it may still happen. For example, if you have an instruction of the
form mov eax,dword[somesymbol], which should be mov rax,somesymbol instead or
a section in your linker script in which you reference a symbol from a different section
which resides too far away in memory but does not support 64-bit addressing. However,
if you compile the kernel in a way such that all sections lie within the first 32 bits, you
should not get relocation errors either.

The kernel loader is a significantly stripped down version of the old 32-bit kernel. It
parses the multiboot data structures provided by GRUB, the ELF64 kernel binary, sets
up paging and long mode and finally jumps into long mode. The first thing that changed
in the boot procedure is the x86-64 check. To check whether this mode is available we
first have to get the maximum input value for extended function CPUID information.
This is done by a CPUID.8000 0000h instruction. If the CPU supports long mode, the
eax register will have a value greater than 0x8000 0000 after execution of the CPUID
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instruction. Subsequently we check whether x86-64 long mode is available. This is done
by a CPUID.8000 0001h instruction. It will write whether x86-64 long mode is available
or not into the 29th bit of the edx register. If everything is alright, we will continue
booting the loader just as in the x86 version of SWEB.

The kernel loader is very simple. It checks the ELF64 headers for errors. If there are no
errors, it returns the lower 2 GiB address of the kernel entry point shifted by the offset
of the multiboot header. This is the physical address of the entry point. Before doing
a far jump to the entry point we still have to set up paging. We will leave that out for
now and explain it in the next section.

As the loader binary is 32-bit code you will probably not be able to compile a call far

or jmp far into it. So you cannot jump to a long mode 32-bit address provided in a
register. As a workaround you can generate the op code yourself and execute it. A more
beautiful workaround is to use retf. retf is executed when a function returns which
was called by a call far. It pops the 32-bit return address and the segment selector
from the stack and far jumps to that location. So we can just push the segment selector
to the stack and the 32-bit entry point address of the 64-bit kernel and far jump into
long mode by executing retf.

Until this point we have not yet parsed the multiboot remainder of the kernel binary.
Parsing it requires long mode as we want to place our kernel at -2 GiB, which is close to
the upper end of the 64-bit address space. After that, we will initialize paging properly
and boot the higher level parts of the kernel.

4.2.2 64-bit kernel linked into a 32-bit binary

The second approach we tried is more convenient when booting a 64-bit kernel: Linking
an ELF64 kernel binary into an ELF32 kernel binary using objcpy -O elf32-i386.
First we compile the ELF64 kernel as usual, but add a 32-bit code section to it. Our
entry point will be in this section. We will boot up as in the other variant until setting
up paging.

While booting we will set up a very simple memory model using one page map level 4,
which maps its first entry to a page directory pointer table. This page directory pointer
table maps its first entry to a kernel page directory, which maps its first entry to the
first two MiB of physical memory. We will cover how x86-64 paging is implemented in
the SWEB kernel in the next section.

To enable 64-bit paging mode we enable PAE paging mode first, and directly afterwards
set the long mode enable (LME) bit of the extended feature enables register (EFER) to
1. This is done by reading the model-specific registers, putting 0xC000 0080 into the
edx register and using the instruction rdmsr. The LME bit is the 7th bit. We set it to
1 and write it back to the model-specific registers using the instruction wrmsr.
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Before switching to long mode we have to set up a TSS segment and the new 64-bit
global descriptor table. We actually do not use the TSS segment, but x86-64 requires
to have one. On x86-64 each global descriptor table entry doubled in size. All base
addresses are required to be zero and all limits to maximum, that is all segments span
over the whole address space.

This approach allows us to jump directly from the 32-bit code to the 64-bit label, without
any workarounds: jmp LINEAR_CODE_SEL:(entry64-BASE).

4.3 x86-64 paging in SWEB

x86-64 paging is an extension to the PAE paging we already implemented. Physical
page numbers are generally extended from a minimum of 36 bits to at least 40 bits (and
maximum 52 bits) while the reserved bit fields behind them are shortened by 4 bits.
Apart from this, the old data structures did not change. 64-bit paging, as we implement
it, translates 48-bit virtual addresses to physical addresses1. The address resolution
mechanism has to be extended to handle 16 bits more than before. This is done by first
increasing the number of page directory pointer table entries from 4 to 512. It now uses
9 bits of the virtual address as an index instead of 2 bits as before. The remaining 9 bits
are mapped by a new mapping layer, the page map level 4. It is structured very similar
to the page directory pointer table. Page directory pointer table entries get the size bit
in turn, allowing to map a 1 GiB page, if the hardware supports it.

The two variables we introduced with PAE paging, the actual page directory pointer
table and the pointer to it, are now replaced by a single one, the page map level 4
physical page number.

In PAE mode, we set the first two page directory pointer table entries to zero and copy
the other two from the kernel page directory pointer table. As we have now introduced
the page map level 4, this moved to a higher level. One page map level 4 entry manages
a 512 GiB memory region. We only need 2 of these entries, one for user space starting
from 0x0 upwards and one for kernel space lying in the last 512 GiB memory region of
the virtual address space. This last entry is set to the same page directory pointer table
for all processes.

The data structures allocated in arch/loader/source/boot.s now have to be changed
too. We reserve memory for two page directories, two page directory pointer tables and
one page map level 4.

When setting up paging, we first set up the page map level 4. The first entry will point
to the first page directory pointer table, the last entry will point to the second page
directory pointer table.

1Please note that the x86-64 standard is designed to allow 64-bit virtual addresses and more recent
CPUs support virtual addresses longer than 48 bits already.
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Furthermore, we want a identity mapping of physical memory. An identity mapping
linearly maps a number of pages in virtual memory to the same number of pages in
physical memory. In 32-bit SWEB this mapping started at 0xC000 0000. Each virtual
page starting from 0xC0000 was mapped linearly to a physical page starting from 0x0.
In 64-bit SWEB it will start at 0xFFFF F000 0000 0000, that is page map level 4 entry
480. We can map this entry to the same page directory pointer table as entry 0 which
is only used while booting.

Second the page directory pointer tables are set up. We map the first entry, that is
the region from 0 GiB to 1 GiB of virtual memory, to the first page directory. We
will use it for an identity mapping the first GiB of physical memory to the first GiB
of virtual memory while booting. After booting, this identity mapping will only be
available starting from 0xFFFF F000 0000 0000.

In the second page directory pointer table we map index 510, that is the region between
-2 GiB and -1 GiB (0xFFFF FFFF 8000 0000) to the first GiB of physical memory. This
is done by mapping this entry to the first page directory.

Figure 4.2 shows the layout of the 64-bit virtual address space. Figure 4.3 shows how
the lower half is used and Figure 4.4 shows how the upper half is used in the SWEB
kernel.

Lower half, 247 bytes, 128 TiB
Reserved, 16 EiB −256 TiB

99.9985% of address space
Upper half, 247 bytes, 128 TiB

Figure 4.2: Virtual memory: Lower half and upper half

0 B

0x0

Code, Data

128 MiB

0x0800 0000

Stack

2 GiB

0x8000 0000

128 TiB - 1 B

0x7FFF FFFF FFFF

Figure 4.3: Virtual memory: Lower half layout in SWEB for an example
binary

−128 TiB

0xFFFF 8000 0000 0000

1:1 Mapping

−16 TiB

0xFFFF F000 0000 0000

Kernel

−2 GiB

0xFFFF FFFF 8000 0000 −1 B

0xFFFF FFFF FFFF FFFF

Figure 4.4: Virtual memory: Upper half layout in SWEB

In the first page directory all entries are 2 MiB pages which are identity mapped from
virtual to physical memory. The second page directory, which is mapped starting from
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-2 GiB, has only its first two entries set up. These two entries map the first 4 MiB of
physical memory, where GRUB loaded the kernel image into memory.

In case you want to use a frame buffer you have to map it at this point as well.

As we have changed memory mappings and segment descriptors to ones that use the -2
GiB offset we have to reload them before jumping to a label with offset -2 GiB.

After we have done that we will remove the first two page map level 4 entries (the entire
lower half of virtual memory). Now we can call the startup C-function.

4.4 Boot up procedure after C entry

The 32-bit version of SWEB uses the stabs debugger format for debug information.
While booting the stabs symbol table is parsed providing the kernel developers a simple
stack trace function. When porting to x86-64 we had to switch from this debugger
format to the newer Dwarf debugger format. Therefore, the stack trace function has to
be rewritten. SWEB currently provides no stack trace function in 64-bit mode. However,
debugging the 64-bit version with GDB is possible.

Many addresses had to be changed from the old 32-bit address to the new 64-bit ad-
dresses, especially the kernel location and the address of the identity mapping.

As we described in Section 3.5 the interrupt descriptor table changed its format and
thus we had to change its initialization. The interrupt descriptor table is initialized in
the InterruptUtils constructor. The interrupt gate descriptor struct was extended by
the new fields as can be seen in Listing 4.1.

1 struct GateDesc
2 {
3 uint16 o f f s e t l d l w : 16 ;
4 uint16 s e g m e n t s e l e c t o r : 16 ;
5 uint8 i s t : 3 ;
6 uint8 z e r o s : 5 ;
7 uint8 type : 4 ;
8 uint8 z e ro 1 : 1 ;
9 uint8 dpl : 2 ;

10 uint8 present : 1 ;
11 uint16 o f f s e t l d h w : 16 ;
12 uint32 o f f s e t h d : 32 ;
13 uint32 r e s e rved : 32 ;
14 } a t t r i b u t e ( ( p a c k e d ) ) ;

Listing 4.1: Interrupt gate descriptor struct
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The behavior when handling interrupts changed as well, as described in Section 3.5:
registers SS and RSP are always pushed onto the stack and the stack is 8-byte-aligned. If
there was a privilege change, which is the case upon switching from or to user processes,
the new SS register value is set to zero. Thus we have to set the SS to the according
data segment descriptor right after a context switch.

Although there is the new interrupt stack switching mechanism using the interrupt
stack table, we do not use it for any interrupt right now. The interrupt stack switching
mechanism could be utilized to provide a more stable environment upon CPU faults,
because the operating system does not have to rely on the stack of the thread. Figure
4.5 compares how the stack looks upon interrupt entry after a non maskable interrupt
(a CPU fault) and a normal interrupt.

SS

RSP

RFLAGS

CS

RIP

error codeRSP →

RSP + 8

RSP + 16

RSP + 24

RSP + 32

RSP + 40 SS

RSP

RFLAGS

CS

RIPRSP →

RSP + 8

RSP + 16

RSP + 24

RSP + 32

Figure 4.5: Stack when handling a CPU fault (left) vs. when handling an
interrupt (right), both in case of a privilege change

Interrupt handlers have assembly language entry points. Before calling the corresponding
interrupt handler implemented in C, all CPU registers are saved in a struct in the
current thread. In 32-bit SWEB the instructions pushad and popad where used in this
context. The pushad instruction pushes all registers on the stack, whereas the popad

instruction pops all registers from the stack. Both instructions have been removed
from the instruction set. Therefore, we implemented these two instructions using a
nasm macro. By saving all CPU registers in a struct in the current thread, we can
execute kernel code and restore the previous state of the CPU afterwards. As both,
the instructions to push the registers on the stack and the struct containing the register
values have changed, the according assembler routines had to be rewritten.

After these changes, the kernel is set up completely and will run in 64-bit mode.

4.5 64-bit user processes

In order to load and execute user processes, SWEB has the Minix file system layer
implemented in the kernel. User binaries can be stored on a Minix partition which will
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be mounted by the kernel. The 32-bit version of SWEB uses the ELF32 binary format
for both the kernel binary and user space binaries. The kernel binary is loaded by the
boot loader. For the user space binaries the 32-bit version of SWEB provides an ELF32
binary loader.

When porting SWEB to 64 bits the Minix file system layer as well as the underlying
IDE and ATA drivers worked with minimal changes.

In the 64-bit version of SWEB we use the ELF64 binary format. The ELF binary format
and the few differences between ELF32 and ELF64 are described in Section 3.7. The
32-bit Loader class contained the methods and structs for the ELF32 binary format.
Only a few source code changes were necessary to make the Loader work with the new
format.

As the calling convention changed, the interface between kernel space and user space
changed. First, the passing of arguments to a user space program is not done through
the stack anymore but through registers. Second, syscalls now take the arguments in
the registers according to the AMD64 ABI and pass them as is to the kernel.

With regard to multi-platform compatibility a types.h was added to provide one file
which contains all data type definitions.

4.6 Debugging 64-bit SWEB

As explained in the previous sections, the binary format of the kernel has changed from
ELF32 to ELF64 which is linked into an ELF32 binary. The debugger format of the
kernel has changed from stabs to Dwarf.

There are two convenient debugging methods for the 32-bit version of SWEB. First,
there is debugging using GDB. This works by starting SWEB with Qemu or Bochs with
GDB-stub enabled and then starting GDB, connecting it to the GDB-stub. Developers
may then debug the kernel with GDB. The second method is the stack trace which
allows printing the stack trace of a thread by calling the printStackTrace method of
the Thread object.

The stack trace method is used very often, as it does not influence timing as much as a
debugger does. Therefore, it allows searching for bugs which only occur with a certain
timing. Debugging gets a lot harder without this method. In order to provide a stack
trace functionality the kernel has to parse the gstabs2 symbol table from the kernel
binary during the boot process.

SWEB stores a sorted table in memory, which maps function pointers to function names.
In order to retrieve a function name for an instruction pointer p the table can be searched
for the first entry smaller than or equal to p. This entry maps to the name of the function
p points into.

37



A stack trace is generated using the instruction pointer (eip/rip) and the base pointer
(ebp/rbp). The instruction pointer is used to find out which function is currently being
executed. The base pointer points to the current stack frame. Each stack frame contains
the return address and the previous stack frame (the previous ebp/rbp value). The stack
trace is generated by iterating through this linked list of stack frames and storing all
return addresses. When the stack trace is printed the return addresses are translated to
function names using the symbol table we parsed previously.

The stabs debugger format is not available for ELF64 binaries. Therefore, parts of this
method have to be implemented from scratch in the 64-bit version of SWEB.

Debugging using GDB works in the 64-bit version of SWEB, but it has one important
limitation. As we linked the ELF64 binary named kernel64.x into an ELF32 binary
named kernel.x you have to decide what you want to debug. The kernel.x binary only
contains address and debug information which can be used before enabling long mode.
The kernel64.x binary only contains addresses and debug information for the kernel
in the higher half, starting at −2 GiB. Before long mode is enabled you won’t be able
to connect GDB using the kernel64.x binary to the Qemu or Bochs GDB stub. In the
32-bit version of SWEB Qemu was started in a stopped emulation mode for debugging.
The emulation was then continued through the GDB after it connected. Now this is not
possible anymore, because GDB may not be connected before long mode is enabled.

This makes this debugging method much less convenient as you have to connect GDB
while SWEB is already in the middle of the booting. If you want to debug a situation
which occurs while booting, you can easily miss the moment when to connect GDB.
Furthermore, breakpoints do not work until GDB is connected, that is you can’t set a
breakpoint right after long mode is enabled because you can’t connect GDB before that.

We will have to work on both methods to make them as convenient as in the 32-bit
version of SWEB.

4.7 Expected impact on education using SWEB 64-bit

SWEB is an operating system designed to be used in education. In context of the course
“Operating Systems” at the Graz University of Technology, students extend this oper-
ating system by small components. While designing and developing these components
design decisions have to be made. Until now there has only been the 32-bit variant. In
this chapter we talk about the design decisions and problems the students faced while
working with the 32-bit variant and how that changes when working with the 64-bit
variant. We also try to list expected new questions and problems. One major draw-
back is that the page directory, page table structure was already hard to understand
for undergraduates and the four level paging of the x86-64 makes this even harder to
understand.
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4.7.1 Multi threading

Part of the first assignment is to implement multi threading for user processes. The
students are required to implement the user threads in the kernel. The interface is
the POSIX pthread_create function. It starts a thread executing a given function
start_routine and an argument. As we have described in Section 3.6 the calling
convention changed. Instead of pushing the argument on the stack, students now have
to put it in the rdi register, which is easier as no stack offset calculation has to be done.

One important design decision is the placement of the stack. Currently stacks are only
one page in SWEB, but some students like to implement growing stacks. If a user
program accesses the next lower stack page this page should be mapped by the operating
system. On the other hand, new threads may start and need an address for their stack.
A common solution is to limit the stack to a certain maximum size and let it only grow
to that maximum. With a large 48-bit address space there is far more space for stacks
than before. Therefore, the maximum size can be significantly higher, resulting in less
headache about that design decision for the students.

Another design decision is to decide how to generate the thread ids. A simple approach
is to use a counter giving each thread a new thread id, incrementing this counter. Un-
fortunately, a 32-bit thread id overflows after a while, so you have to deal with thread
id reuse and handle thread ids that are still in use. A 64-bit thread id is very unlikely to
overflow - you would need to create 238 threads per second for one year in order to get an
overflow. Therefore, this can definitely neglected now and students could implement the
simple approach without any overflow handling. However, they still have to implement
stack reuse, as they would reach a stack position overflow much earlier.

In section 7.1, we will discuss how a platform independent implementation could abstract
the user process stack allocation, such that the 48-bit virtual address space is used on the
x86-64 architecture, while providing a uniform interface for user process stack allocation
on all architectures.

4.7.2 Fork

The fork syscall is another task of the first assignment. Part of this task is to iterate over
the page directory and copy it or mark it for copy on write. As the paging mechanism
was extended by the page directory pointer table and the page map level 4, students
would have to implement these two layers as well. Iterating over more additional layers
is conceptually harder. Programming errors in this code are very common. Students
will need significantly more time to solve and debug this task.

On the contrary, process id generation changes just like the thread id generation: a
simple counter without any overflow protection will suffice.
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4.7.3 Clock/Sleep

When implementing the clock or sleep syscalls many students use the time stamp
counter, which is a 64-bit value. When processing this value into a unit they can work
with, many students needed a 64-bit division which is not available on 32-bit x86 ar-
chitectures. A common workaround was to implement the division oneself or use 64-bit
division functions from open source software projects. The x86-64 supports 64-bit divi-
sion natively, so this task might get more straightforward as well.

4.7.4 Virtual memory

The main task of the second assignment is to implement swapping. In an environment
with only a few megabytes of memory physical pages are swapped out to the hard disk.
Part of this task is the implementation of a page replacement algorithm. While the two
new levels in the paging mechanism make the task more complex, there are now up to
14 ignored bits in the page table struct instead of 3. These ignored bits can be used
for information of the page replacement algorithm or for information regarding the page
(swapped out, copy on write, shared, etc.).

To find the swapped out pages on the hard disk many groups store the position on the
hard disk in the page base address field. As this field has more bits now, this simple
solution can no support much larger swap devices. Swapping of page tables might get
be more relevant now as each page table manages only 2 MiB instead of 4 MiB.

4.7.5 Shared memory

Shared memory is an additional task of the second assignment. On x86-32 it is regarded
as good practice to place the shared memory segments in the same memory area as the
stacks. Using a first fit strategy a virtual memory area can be reserved for a new stack
or a new shared memory segment. This is possible on x86-64 as well, but determining a
fixed region of the virtual memory as the shared memory region is also more tolerable
than in a 32-bit address space. Besides that, the aforementioned page table bits may be
used for information regarding shared memory as well.
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Chapter 5

Comparison of x86-32 and
ARM-v5

In this chapter we describe the ARM-v5 architecture compared to the x86 architecture
from an operating-system developer’s point of view. While the most popular CISC
(Complex Instruction Set Computer) architectures belong to the x86 architecture family,
the most popular RISC (Reduced Instruction Set Computer) architectures belong to the
ARM architecture family. The ARM-v5 architecture was developed in in the late 1990s.
Newer architectures like the ARM-v6 or the ARM-v7 provide backward compatibility
to the ARM-v5.

CPUs based on the same ARM architecture vary widely in their features. We initially
ported SWEB to the ARM Integrator/CP base board with an ARM926EJ-S CPU which
is an ARM-v5 CPU. The ARM926EJ-S CPU has a memory management unit, whereas
other ARM-v5 CPUs may have none. We will learn how ARM-v5 paging works, com-
pared to the x86 paging mechanism. We will point out differences in the most similar
paging scenarios, which is using 1 MiB on ARM and 4 MiB pages x86-32 respectively
using 4 KiB pages on both ARM and x86-32.

In C and C++ there is very little difference to programming on a CISC architecture like
the x86. Finally, we will take a look at differences regarding the calling convention and
interrupt handling.

In the following chapter we will use the knowledge we acquire in this chapter, on the
differences between the two architectures, to implement an ARM-v5 port of SWEB. This
ARM-v5 port will run emulated using qemu and on real hardware using a Raspberry Pi.
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5.1 ARM-v5 execution environment

The ARM architecture has 31 general purpose registers of which 16 registers are acces-
sible at any time, depending on the execution mode. The ARM Architecture Reference
Manual DDI 0100E [ARM00] lists seven different execution modes in chapter 2.2:

• User mode: normal program execution,

• system mode: a privileged mode for operating system tasks,

• supervisor exception mode: a protected mode for the operating system,

• abort exception mode: used for virtual memory (protection) faults,

• undefined exception mode: used for instructions not supported by the CPU1,

• interrupt mode and

• fast interrupt mode.

All modes have access to registers r0 to r15, which are mapped differently depending
on the execution mode. Registers r0 to r7 are always the same physical registers in
all modes. Registers r8 to r12 are the same physical registers in all modes, except for
the fast interrupt mode. In fast interrupt mode, these register identifiers are mapped to
separate physical registers. r13 and r14 are the same physical registers in user mode
and system mode, but all other modes have their own physical registers r13 and r14.
Finally, the register r15 is the same physical register in all modes.

The register r15 is the program counter register and can also be accessed in assembly
code using the alias pc. The pc register is the equivalent to the eip register of the x86-32
architecture. The register r14 respectively lr is used as the link register. When calling
a function this register holds the return address. The register r13 respectively sp is the
stack pointer register, equivalent to the esp register on the x86.

The current program status register (cpsr) is available in all execution modes. The
saved program status register (spsr) is available in all interrupt modes. The cpsr

register is equivalent to the eflags register on the x86 architecture. A comparison of
the two registers can be found in Figure 5.1. Both registers contain bits for arithmetic
operations and both registers contain an interrupt enable/disable bit. Both registers
contain bits to specify the execution mode: The eflags register contains bits to specify
the current privilege level, the cpsr register contains mode bits to specify the execution
mode.

1Undefined instruction exceptions facilitate execution of software which uses instructions not sup-
ported by the processor. The operating system can emulate the instruction in software and return from
the fault afterwards.
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EFLAGS register

0 Carry Flag

1 1

2 Parity Flag

3 0

4 Auxiliary Carry Flag

5 0

6 Zero Flag

7 Sign Flag

8 Trap Flag

9 Interrupt Enable Flag

10 Direction Flag

11 Overflow Flag

12

13
I/O Privilege Level

14 Nested Task

15 0

16 Resume Flag

15 Virtual-8086 Mode

16 Alignment Check

17 Virtual Interrupt Flag

18 Virtual Interrupt Pending

19 ID Flag

22

0

31

Connection between fields
with similar meaning

CSPR register

0

Mode Bits

4

5 Thumb Bit

6 Fast Interrupt Disable Bit

7 Interrupt Disable Bit

8

26

0

27 Q Flag

28 Overflow Bit

29 Carry Bit

30 Zero Bit

31 Negative Bit

Figure 5.1: Comparison of the x86 eflags and the ARMv5 cpsr register

5.2 Paging on ARM-v5

Chapter B3.3 of the ARM Architecture Reference Manual DDI 0100E [ARM00] explains
how the ARM memory management unit translates virtual to physical addresses. Similar
to x86 paging the ARM-v5 memory management unit supports address translation using
one or two levels of lookup tables. The ARM manual uses the terms first-level table and
second-level table, but in order to compare the two architectures we will try to use the
terms from Chapter 3, that is page directory and page table.

One level paging means having 1 MiB pages (called “sections” in the ARM manual),
whereas two level paging means having 1 KiB “tiny” pages, 4 KiB “small” pages or 64
KiB “large” pages. We will only discuss paging with 1 MiB pages and 4 KiB pages to
point out differences to the x86-32 architecture apart from the additional features.
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The page directory contains 4096 entries of each four byte. Thus the page directory has
a size of 16 KiB. The physical address of the page directory is stored in the translation
table base register (TTBR). The last 14 bits of the physical address are required to be
zero, that is the page directory has to be 16 KiB aligned. The first 18 bits allow to
address all 16 KiB frames in the 32-bit physical address space.

PDI (12 bit) Offset (20 bit)

32-bit virtual address

TTBR
Page Directory

PDE 0

PDE 1
...

PDE #PDI
.
..

PDE 4095

1 MiB Page

Byte 0

Byte 1
...

Offset
...

Byte 1048575

Figure 5.2: Virtual address resolution in 1 MiB paging mode according to
page B3-8 of the ARM manual [ARM00]

The page directory maps the first 12 bits of the virtual address either to a 1 MiB physical
page or to a page table, depending on the two type bits of the page directory entry. These
first 12 bits are called the page directory index (PDI).

The page table is the second lookup table. It contains 256 entries of each 4 bytes, that
is a page table has a size of 1 KiB. The page directory entry stores the 22-bit physical
base address of the page table. 22 bits allow to address all 1 KiB frames in the 32-bit
physical address space. Therefore, the page tables have to be 1 KiB aligned. The second
10 bits of the virtual address are used as the page table index (PTI).

When addressing a 1 MiB page the CPU takes the page directory physical page number
from the TTBR0 register and the page directory index from the virtual address, to find
the page directory entry to this virtual address. The page directory entry contains the
12-bit physical page number of the 1 MiB page. These 12 bits, combined with the lower
20 bits of the virtual address, form the physical address. The virtual address resolution
for 1 MiB pages is also shown in Figure 5.2.

In 4 KiB paging mode the page directory contains the 22-bit physical base address of a
page table instead of a 20-bit physical page base address for a 1 MiB page. The physical
base address can be extended with zeros, because the page table is 1 KiB aligned. Using
the 8-bit page table index we get the page table entry to the given virtual address. The
page table entry contains the 20-bit physical page number of the 4 KiB page. Together
with the lower 12 bits of the virtual address this forms the physical address. The virtual
address resolution for 4 KiB pages is also shown in Figure 5.3.
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PDI (12 bit) PTI (8 bit) Offset (12 bit)

32-bit virtual address

TTBR
Page Directory

PDE 0

PDE 1
...

PDE #PDI
..
.

PDE 4095

Page Table

PTE 0

PTE 1
...

PTE #PTI
...

PTE 255

Page

Byte 0

Byte 1
...

Offset
...

Byte 4095

Figure 5.3: Virtual address resolution in 4 KiB paging mode according to
page B3-14 of the ARM manual [ARM00]

Similar to the x86 page tables the ARM page tables contain bits for managing access
permissions on the according virtual memory area. Page directory and page table entries
have a 2-bit size field which specifies the page size. Size 0 means that this entry is
not present, other values select different sizes. A permission field allows to specify
permissions for privileged modes and user mode.

5.3 Interrupts

Similar to the interrupt descriptor table (IDT) of the x86 architecture the ARM-v5
architecture defines an interrupt vector table. The interrupt vector table is located at
address 0x0 and has a format similar to the x86 real mode interrupt vector table2, which
is a much simpler format than the x86 IDT.

The basic interrupt vector table contains 8 entries: Reset exception, undefined instruc-
tion exception, software interrupt, prefetch abort exception, data abort exception, in-
terrupt and fast interrupt. Depending on the CPU model and base board this can be
extended by more interrupts. The base board often comes with an interrupt controller
which enables devices to invoke certain interrupts from this table. Each entry of the
interrupt vector table is a 4 byte instruction. This instruction usually is a jump instruc-
tion (b, bl or blx) or a manipulation of the program counter in order to execute the
corresponding interrupt handler for the interrupt.

When an interrupt occurs the address of the next instruction (i.e. the return address)
is stored in the link register (lr) of the new execution mode. The mode bits in the

2The x86 real mode interrupt vector table lies at address 0x0, has 256 entries. Each entry is the
32-bit address of the corresponding interrupt handler.
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cpsr are changed to the new execution mode. In the case of a reset exception or a fast
interrupt the CPU disables fast interrupts in the cpsr register. Normal interrupts are
disabled in the cpsr any case. The cpsr value is then stored in the saved flags register
(spsr) of the new execution mode. The program counter is then set to the according
address in the interrupt vector table.

To return from an interrupt handler, the old cpsr value has to be restored from the spsr
register and the program counter set to the return address stored in the lr register.

5.4 Calling convention

Similar to the x86 call instruction the bl instruction takes only one parameter: the
new instruction pointer. Therefore, we need a convention how to pass arguments to a
function and how to get a functions return value. In this section we will describe the
ARM calling convention. As before, we will only talk about passing integer variables as
this is the only case we need for porting a simple operating system kernel from the x86
architecture to the ARM-v5 architecture.

Similar to the AMD64 ABI calling convention, the arguments are passed through the
registers. The ARM calling convention uses the registers r0 to r3 for the first four
integer arguments [ARM12]. The remaining integer arguments are passed to the called
function on the stack.

Next, the bl instruction is executed to jump to the called function. The CPU stores
the return address in the lr register and the address of the called function in the pc

register. The function may then read the function arguments from the registers r0 to
r3 and from the stack. The ARM calling convention defines the registers r4 to r11 to
be used for local variables. Thus the called function has to preserve these registers or
restore them before returning.

Returning from a function is typically done using the bx lr instruction. This instruction
branches to the return address stored in the lr register. The gcc uses the register r11

as the frame pointer (fp) register. It basically provides the same functionality as the
ebp on x86. A function generated by the gcc will typically push the registers pc, lr, sp
and fp onto the stack. The fp register is then set to the address where the pc is stored
on the stack. As a means of optimization the compiler may omit pushing all registers
onto the stack.

The syscall convention used on x86 Linux or Sweb can be used in a slightly modified
version on the ARM-v5 architecture. It uses six registers to pass six arguments to the
syscall. We can use registers r0 to r3 as in the ARM calling convention to pass four
arguments. If we want to pass another two arguments we can use registers r4 and r5, but
the user space syscall wrapper function has to prepare the registers for that. Therefore,
we have to store the current values of r4 and r5 on the stack and store the additional
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two arguments in these two registers. After the operating system handled the syscall,
we have to restore registers r4 and r5, before the user space syscall wrapper function
returns.

We now discussed the most important differences between the x86-32 architecture and
the ARM-v5 architecture from an operating-system developer’s point of view. In the
next chapter we describe how we ported the SWEB kernel to three ARM-v5 boards.
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Chapter 6

Porting SWEB from x86 to
ARM-v5

In the previous chapter we pointed out the differences between the x86 architecture and
the ARM-v5 architecture. Now we will describe the process how the SWEB source code
has been ported from x86 to ARM-v5.

Before that we want to compare the source code of the ARM-v5 port to the source code
of the x86 version of SWEB. About 2350 lines of code were removed and 400 lines of
code either added or modified. These 400 lines are divided into 60 lines of assembler
code and 340 lines of C and C++ code. 400 lines of code are about 1% of the SWEB
source code.

6.1 Compiling for ARM-v5

Building the SWEB kernel for the ARM-v5 architecture requires some changes in process
of the compilation and linking, which we will describe in this section.

SWEB uses CMake for managing the build process. It was necessary to extend the
CMake files slightly. We introduced a new CMakeLists.compiler file which is included
at the beginning of the CMakeLists.txt in the root folder in order to force CMake to
use the ARM cross compiler. The assembler files are not compiled using nasm as in the
x86 version of SWEB, but using GNU as instead.

The x86 variant of the SWEB kernel uses no libraries except the ones integrated in its
source code. On ARM, it was necessary to link the libgcc into the kernel binary because
of the reduced instruction set of the ARM-v5 architecture. Some instructions the SWEB
kernel uses are not implemented in hardware on the ARM-v5 architecture. For instance,
the x86 architecture provides a 32-bit integer division instruction, whereas the ARM-v5
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has no such instruction. In this case, the libgcc provides an implementation for a 32-bit
integer division.

When linking with the libgcc the compiler may throw an error because the implemen-
tation for raise is missing. raise is a function used in the implementation of C++
exceptions. We can simply fix that by adding an endless loop or a function causing a
CPU fault with that name, because there will be no C++ exceptions in the kernel.

If the kernel uses static or global objects, the function __aeabi_atexit might be needed
as well, as the libgcc may use __aeabi_atexit for clean up on exit. In this case it
matters even less than in the case of raise what that symbol __aeabi_atexit will
point to. The kernel does not exit, thus atexit functions would not be called anyway.
Implementing __aeabi_atexit as an endless loop might help finding accidental calls to
that function.

It is much easier to debug an operating system kernel if you can be sure what a stack
frame looks like. gcc optimizes function calls by omitting values from the stack frame
which are not necessary for returning from the function. In order to force gcc not to
alter the stack frame layout, we use the -mapcs compiler flag.

6.2 SWEB on the ARM Integrator/CP

On x86, SWEB boots using Grub. Grub loads the kernel binary into memory. The
ARM-v5 port expects to be loaded into memory as well. This can be done using a boot
loader. The first ARM port of SWEB runs on the ARM Integrator/CP board emulated
with qemu. qemu allows loading the kernel binary directly into memory just as Grub
would do.

The x86 version of SWEB uses a special debug port which allows printing debug messages
on the host console. This debug port is not available in the ARM version of qemu.
Therefore, we use one of the serial ports for that. This can also be used as a debug
console when working on real hardware. A serial cable connects the ARM board to
another computer. This other computer is then used to display the debug output of
SWEB.

The ARM Integrator/CP board has a number of memory-mapped device registers. Fig-
ure 6.1 shows an overview of memory-mapped devices in the physical address space (see
section 3.9.1 of the Integrator/CP manual [ARM02] and the qemu info mtree com-
mand). It is important to keep an eye on these addresses when activating paging. The
kernel should still be able to access these mapped registers.

On other ARM boards the addresses and devices differ, but they basically follow the
same structure: devices are mapped into physical address space and accessible through
memory-mapped I/O.
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RAM (128 MiB)0 MiB / 0x0

Core module control registers (8 MiB)256 MiB / 0x1000 0000

Counter / Timers (4 KiB)304 MiB / 0x1300 0000

Primary interrupt controller (8 MiB)320 MiB / 0x1400 0000

PL031 Real-time clock (4 KiB)336 MiB / 0x1500 0000

PL011/UART0 serial device (4 KiB)352 MiB / 0x1600 0000

PL011/UART1 serial device (4 KiB)368 MiB / 0x1700 0000

PL050 Keyboard controller (4 KiB)384 MiB / 0x1800 0000

PL050 Mouse controller (4 KiB)400 MiB / 0x1900 0000

PL181 MMC interface (4 KiB)448 MiB / 0x1C00 0000

...

Identity mapping of the RAM (128 MiB)2048 MiB / 0x8000 0000

...

PL110 LCD interface (4 KiB)3072 MiB / 0xC000 0000

SMC91C111 ethernet interface (16 B)3200 MiB / 0xC800 0000

Secondary interrupt controller (4 KiB)3232 MiB / 0xCA00 0000

CP control registers (8 MiB)3248 MiB / 0xCB00 0000

...

Figure 6.1: Memory-mapped devices in the physical address space of the
ARM Integrator/CP board in qemu.

Upon booting, the program counter is set to the address of the entry symbol. This
function is implemented in the boot.s file. The entry function first sets up the stack
and calls the function initialiseBootTimePaging to initialise paging.

The initialiseBootTimePaging function initializes the page directory by creating an
identity mapping using 1 MiB pages. We map the first 8 MiB of virtual address space to
the first 8 MiB of physical address space. This mapping is used by the interrupt handlers
and the frame buffer and therefore has to exist in user and kernel mode, although it is
not accessible in user mode. The CPU switches to interrupt mode for interrupt handling
and then jumps to one of the addresses in the interrupt vector table while the virtual
address space is unchanged. We will explain this in the next section in detail.

The memory above 0xC000 0000 is identity mapped to the memory starting from 0x0.
For the kernel execution, we map the first 4 MiB of physical memory to 0x8000 0000.
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We mapped most of the devices shown in Figure 6.1 with an offset of 0x7000 0000,
resulting in virtual addresses after kernel end (2 GiB + 4 MiB). Thus the lower 2 GiB
of address space can be used for user programs except for the first 8 MiB. The virtual
address space layout for a typical SWEB binary on ARM is shown in Figure 6.2.

1:1

0 B

0x0 8 MiB

0x80 0000

Code, Data

128 MiB

0x0800 0000

Stack

2 GiB

0x8000 0000

Kernel Devices

3 GiB

0xC000 0000

1:1

4 GiB - 1

0xFFFF FFFF

Figure 6.2: Virtual memory layout of SWEB on ARM for a typical SWEB
binary

After the page directory is initialized we enable buffering and paging through the CP15
control registers. Finally, we call the function PagingMode. The jump moves execution
to the higher half. In PagingMode, the stack is set to the new address above 2 GiB and
the SWEB startup() C-function is called. The startup() function is implemented in
the architecture independent part and therefore remains unchanged.

In the ArchCommon class we introduced a createConsole method when merging the
SWEB x86 implementation with the SWEB Xen architecture implementation. We use
this method to initialize the PL110 LCD device and setup a FrameBufferConsole using
the frame buffer of that LCD device. This works surprisingly well, as the frame buffer
can be configured to work with the same pixel format as the x86 VESA frame buffer.
The CLCD device allows to configure where the frame buffer memory lies. We put the
frame buffer memory at the end of the physical memory. Having a resolution of 640 ×
480 pixels with 16 bits per pixel, about 600 KiB of physical memory are used as frame
buffer memory.

The ARM-v5 architecture lacks an atomic add operation. Therefore, we implemented
the atomic_add function in the ARM-v5 version of SWEB on a higher level, protected
by a global spin lock. Instead of the x86 xchg instruction, we use the swp instruction
which does basically the same. However, the swp instruction is deprecated in ARM-v6.
ARM-v6 introduces a performance-enhanced locking mechanism (load exclusive, store
exclusive) which should be used instead.

The backtrace() function using the gstabs2 debug information works on ARM exactly
the same way as on x86 after it has been adapted to the ARM calling convention. In
order to add functions implemented in assembly language to the gstabs2 symbol table,
it is possible to annotate the function with the .stabs directive.

As the hardware configuration of the ARM Integrator/CP board differs significantly from
common x86 hardware, we had to replace some drivers to provide the same functionality.
The x86 version of SWEB uses an ATA driver to load data like user programs from a
hard disk. The ARM port replaces the ATA driver by an MMC card driver. An SD
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card containing the same data as the hard disk is attached to the MMC slot. The
MMC controller can be accessed through memory-mapped I/O. The implemented driver
provides the same interface as the ATA driver and thus the existing IDE driver can use
the MMC driver in the same way. Using SD cards with an ARM board is far more
common than using an IDE controller attached to an ARM board. The SD card is
initialized using the initialization sequence specified in the SD specifications [SD 13].
After the initialization the SD card stays in a mode where read and write operations are
always possible.

User space binaries use the ELF32 format just as on x86. To load the ARM user space
binaries no changes to ELF32 loader source code were necessary at all.

6.3 SWEB on the Gumstix Verdex

The Gumstix Verdex is a more recent ARM-v5 board developed by Gumstix. The
Gumstix Verdex has an on-board flash memory for the boot loader and the kernel. For
booting SWEB on the Gumstix Verdex, we use the “Das U-Boot” boot loader which
is a very common boot loader on embedded platforms. The compiled kernel has to be
prepared for this boot loader using the mkimage tool. This tool builds a file containing
the kernel and meta data for the boot loader. In order to copy the boot loader and
the kernel file to the onboard flash memory, they need to be written into an image file
first. This image file can then be copied to real hardware or used to run SWEB in qemu

emulating the Gumstix Verdex board.

The Gumstix Verdex provides different devices than the ARM Integrator/CP and or-
ganizes the physical address space differently. For instance, the physical RAM is lo-
cated at 0xA000 0000 instead of 0x0. Therefore, the kernel page directory needs to
be constructed somewhat different in order to build a virtual address space equivalent
to the virtual address space in the ARM Integrator/CP version of SWEB. The SWEB
PageManager manages the physical RAM pages. As it starts counting at 0, we have to
add the 0xA0000 offset before writing page numbers into page directory or page table
structs [Int04]. Currently the Gumstix Verdex is the only architecture SWEB runs on
where it is necessary to add this offset. An adaption of the PageManager to work with
the real page numbers even if there is a physical RAM offset would probably help to
make the code easier.

The Gumstix Verdex board has no keyboard controller. Common setups use the serial
port for debug output and input. The serial port outgoing line is used for the debug
console output. It can be connected to a computer or some other device to display the
debug messages. Since SWEB accepts no input on the debug console, we redirected the
input to the SWEB internal keyboard buffer. Thus, user programs will perceive inputs
from the serial ports as keyboard inputs.

The MMC driver and the LCD initialization from the Integrator/CP had to be rewritten,
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since the Gumstix Verdex has a different MMC controller and LCD controller than the
ARM Integrator/CP. In either case we use an SD card attached to the MMC controller.
The communication with the SD card follows the SD specification. Therefore, SD card
commands are issued in the same order on both controllers. The LCD controller receives
the frame buffer data through Direct Memory Access (DMA). The DMA controller copies
data in physical memory with minimal CPU interaction. For this purpose, the DMA
controller uses DMA descriptors. A DMA descriptor defines what the DMA controller
should do. Usually this is copying data from or to an address in physical memory. Each
DMA descriptor contains a pointer to the next DMA descriptor, thus forming a linked
list of jobs for the device. As soon as a device has finished one job, it jumps to the
pointer of the next DMA descriptor and starts with this new job.

Physical address of the next frame descriptor

Physical address of the frame buffer

Frame ID field, unused by the hardware

Length of the frame buffer12

8

4

0

Figure 6.3: DMA/frame descriptor for the Gumstix Verdex LCD controller

The structure of a DMA descriptor for the Gumstix Verdex LCD controller is shown in
Figure 6.3. We want the LCD controller to continuously load the data from the same
frame buffer, therefore we link the frame descriptor to itself.

6.4 SWEB on the Raspberry Pi

In the last two sections we developed SWEB ports that run on emulated ARM boards.
Running SWEB on a real ARM board brings up new challenges. First of all does
the emulated hardware not behave like real hardware in all situations. Second, timing
plays a far more important role on real hardware. The Raspberry Pi is a cheap ARM
platform, currently available for about $25. It comes with a ARM1176JZF-S processor
which is backward compatible to the ARM-v5 instruction set. Furthermore, SWEB is
an operating system for educational purposes. Being able to run SWEB on student-
affordable real hardware might also enrich education using SWEB. Therefore, we ported
SWEB to the Raspberry Pi.

Implementation for a real board is much easier if you can also emulate the board, like in
case of the ARM Integrator/CP and the Gumstix Verdex. qemu has no support for the
Raspberry Pi board, but there is a qemu fork [Est14] that emulates a simplified variant
of the Raspberry Pi. However, some devices like the emulated USB controller are not
compatible with the corresponding ones on the real Raspberry Pi. The Raspberry Pi
port of SWEB was implemented after applying the changes from Chapter 7. Therefore
this platform is not listed in the evaluation and comparison in Chapter 7 and it had
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no influence on the developed enhancements. Instead, the Raspberry Pi port of SWEB
benefits from the measures taken, such as the architecture tree.

The Raspberry Pi comes with a number of hardware devices. SWEB only uses a few
of these devices: the MMC controller, the interrupt controller, the timer controller and
the USB controller [Bro12]. Additionally, it communicates with the GPU for graphics
display.

Similar to the ARM Integrator C/P and the Gumstix Verdex, the Raspberry Pi has no
ATA controller. Instead, the typical setup uses an SD card containing the kernel as well
as operating system and user files. The first partition of the SD card is expected to be
formatted as FAT32. The execution begins on the GPU which will load a first-stage boot
loader from this partition. The first-stage boot loader powers up the ARM CPU and
starts the execution of the second-stage boot loader on the ARM CPU. The second-stage
boot loader will then set up the hardware according to the configuration file provided
on the FAT32 partition. For instance, some physical memory is reserved for the video
adapter. Still, this physical memory is mapped in the physical address space. Finally, it
will load and start the execution of the kernel image provided on the FAT32 partition.
The x86 variant of SWEB has a first partition in a GRUB-readable format and contains
GRUB and the kernel image. On all platforms, SWEB expects the user programs on
the second partition.

After building the SWEB kernel, it is necessary to produce a stripped binary file using
objcopy. This binary file does not contain the ELF headers and is loaded directly into
memory. The Raspberry Pi port comes with a script that mounts the partitions of the
SD card automatically and copies all files to it. Using the SD card from within SWEB
works using the MMC controller. There are a only a few small differences to the MMC
controller of the ARM Integrator/CP.

The Raspberry Pi has an on-board HDMI interface and a composite video port. The
Raspberry Pi GPU sends output to one of them, depending on the configuration and
the attached video device. The GPU has to be initialized before the operating system is
able to use the frame buffer. The initialization involves so-called mailboxes. Mailboxes
provide a way for different devices to communicate with each other. In this case, we
want the CPU to send a message to the GPU which sets the GPU to frame buffer mode.
The GPU will then acquire memory for the frame buffer in the physical memory reserved
for the video adapter. This buffer along with more information on the external device
configuration is sent back to the CPU using another mailbox message. The operating
system receives that message and reads the frame buffer address returned by the GPU.
This frame buffer can from then on be used as usual. The GPU continuously updates
the screen with the data from the frame buffer.

The Raspberry Pi does not have a keyboard controller. Instead you can attach a USB
keyboard. We integrated the CSUD [Cha14] USB stack, which is a very small USB
stack implementation. It has about 5500 lines of code, which is far more than the
complete architecture dependent source code for the Raspberry Pi. It comes with a
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simple USB keyboard driver and was relatively easy to integrate into SWEB. While
integrating the CSUD USB stack in SWEB we submitted patches which provide a more
tolerant keyboard detection and easier integration into C++ projects. The CSUD USB
stack implements no interrupt mechanisms. Therefore, the USB keyboard is used in
polling mode currently. The keyboard state is checked by the IdleThread.

As the ARM1176 behavior is undefined in some cases of unaligned memory accesses, the
linker script was adapted to load all sections to aligned offsets. For the same reason,
the KernelMemoryManager was modified to return only 16 byte aligned addresses. The
linker script also loads the symbol table into physical memory, just as it does in the x86
version fo SWEB. Therefore, debugging using the backtrace() function works on the
Raspberry Pi just as well as in the emulator. The stack traces are printed to the debug
console running on a serial port as on all ARM versions of SWEB. The serial port can
be connected to a computer and the received debug console data can be displayed to the
user easily. This setup is also shown in Figure 6.4.

Figure 6.4: Setup for testing SWEB on the Raspberry Pi: a Raspberry Pi
running SWEB can be seen in the middle of the picture. The left screen is
attached to the Raspberry Pi HDMI port. It shows the SWEB console after
some user input. The upper keyboard is attached to one of the Raspberry Pi
USB ports and is used for user input. The blue card in the Raspberry Pi is
the SD card containing SWEB. The lower keyboard is attached to the laptop
on the right. The laptop screen shows two windows, the build window on the
left and the debug console with debug output received from the Raspberry
Pi on the right. A USB serial adapter is connected to the laptop on the left.
The red and a blue wire connect it to the Raspberry Pi.
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6.5 Interrupt handling and context switching

We discussed porting SWEB to three specific ARM boards and differences between these
three ports. In this section we describe how interrupt handling and context switching
works in SWEB on all ARM architectures.

The initialization of the interrupt vector table is implemented in the ArchInterrupts

class. We initialize the primary interrupt controller, the timer and the keyboard. The
timer will produce interrupts in a regular interval, just like the programmable interval
timer (IRQ0) on x86. It is used for preemptive scheduling. The keyboard controller
works very similar to the keyboard controller on x86. Unlike the x86 architecture all
devices are accessed through memory-mapped I/O.

When the CPU starts the execution of an interrupt handler, it works in the corresponding
exception mode. All exception modes have their own registers r13 and r14. In SWEB all
interrupt modes use the same stack. This stack, however, is used for context switching
only. This way, context switching shares more similarities between ARM and x86 and
nested interrupts can be handled in the same way. The first thing each interrupt handler
does is store all registers in the currentThreadInfo struct and switch from the exception
mode to the system task mode. In this mode, we may enable interrupts again and
therefore allow nested interrupts.

Listing 6.1 shows the interrupt handler entry in the ARM port of SWEB. First, regis-
ters r0 to r12 are stored to the stack because they may be changed by the following
operations. We don not use the stack except for these 13 integer values and switch to
a different stack a few instructions later anyway. Therefore, and in order to keep the
stack pointer at the same address for the next interrupt, we reset it immediately. At this
point, the execution is still in interrupt mode; that is registers lr (r14) and sp (r13) are
the interrupt mode registers. The code in Listing 6.1 then stores the lr register and the
spsr register in the currentThreadInfo struct. The currentThreadInfo struct holds
all register values of a thread while it is not running. Afterwards, we switch to system
task mode with interrupts disabled (0xdf) by changing the cpsr register. In system task
mode, the sp and lr registers are shared with user space mode. Therefore, we can now
store these registers in the struct.

The interrupt handler entry checks whether this interrupt came from user space. We do
not want to execute the interrupt handler on a user space stack. Therefore, we replace it
by the sp0 value from the currentThreadInfo struct. The sp0 field does not represent
a real register, but the address of the kernel thread stack of this user thread.

In SWEB, each user thread contains a full kernel thread as well. This way, syscalls
can be executed by the kernel thread belonging to the user thread. This mechanism is
identical to the one on x86 SWEB.

Now we work on the kernel stack, which is used by the running thread only. Therefore,
we may call functions and work on the stack as usual. The function storeRegisters()
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now stores the variables from the other stack into the currentThreadInfo struct. Thus,
all registers are stored and can be restored when the thread is scheduled the next time.

The ARM port of SWEB knows two different software interrupts: one for syscalls and
one for yielding. The yield software interrupt tells the Scheduler to schedule a new
thread. The Scheduler will then replace the currentThread and currentThreadInfo

pointers. When the CPU returns from the interrupt, the registers are restored from
the currentThreadInfo struct. If it has been changed during this interrupt, the new
currentThread is scheduled. Before returning from the interrupt handler, the trans-
lation table base register 0 (ttbr0) is updated in the same way as the cr3 register is
updated on x86.

1 asm( ”push { r0 , r1 , r2 , r3 , r4 , r5 , r6 , r7 , r8 , r9 , r10 , r11 , r12 }” ) ;\
2 asm( ”add sp , sp , #0x34” ) ;\
3 asm( ”mov %[v ] , l r ” : [ v ] ”=r ” ( currentThreadInfo−>pc ) ) ;\
4 asm( ”mrs r0 , sp s r ” ) ; \
5 asm( ”mov %[v ] , r0 ” : [ v ] ”=r ” ( currentThreadInfo−>cpsr ) ) ;\
6 asm( ”mrs r0 , cpsr \n\
7 b i c r0 , r0 , #0xdf \n\
8 or r r0 , r0 , #0xdf \n\
9 msr cpsr , r0 \n\

10 ” ) ;\
11 asm( ”mov %[v ] , sp” : [ v ] ”=r ” ( currentThreadInfo−>sp ) ) ;\
12 asm( ”mov %[v ] , l r ” : [ v ] ”=r ” ( currentThreadInfo−> l r ) ) ;\
13 i f ( currentThreadInfo−>sp < 0x80000000 ) { asm( ”mov sp , %[v ] ”

: : [ v ] ” r ” ( currentThreadInfo−>sp0 ) ) ; }\
14 s t o r e R e g i s t e r s ( ) ;

Listing 6.1: Context switching: Interrupt handler entry on ARM

When switching modes, the ARM processor accesses different sp, lr and spsr registers,
except for system task and user mode. Therefore, they have to be restored before
returning from the interrupt.

Listing 6.2 shows the interrupt handler exit procedure in the ARM ports of SWEB. The
execution begins in system task mode, that is, lr and sp for the user thread can be
restored first. In order to return from the interrupt, we switch from system task mode
to service mode, because we need to be in an interrupt mode to execute an interrupt
return. Only interrupt modes have an spsr register, which is used when executing an
interrupt return. When the CPU executes the interrupt return, the cpsr register is
changed implicitly to the old cpsr value restored from the spsr register. We set the
interrupt mode spsr register to the value stored in the cpsr field and the interrupt
mode lr register to the pc register from the struct. Then we push registers r12 to r0

from the struct on the stack and restore them using a single pop instruction. Finally,
the movs pc, lr instruction causes the interrupt return.
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The ARM-v5 architecture defines two different kinds of page faults: page faults on
instruction fetches and page faults on data accesses. Both cases are implemented in the
void pageFaultHandler(uint32 address, uint32 type) method. The type defines
which of the two types a page fault is. In case of a page fault caused by an instruction
fetch, the instruction pointer causing this page fault can be retrieved from the stored
lr register. In case of a data access page fault, the address causing the page fault
can be retrieved from the fault address register. The ELF32 binary loader is almost
unchanged from x86, as the binary format is the same. Some constants were replaced in
order to allow execution of ARM binaries and forbid the execution of binaries for other
architectures.

1 asm( ”mov l r , %[v ] ” : : [ v ] ” r ” ( currentThreadInfo−> l r ) ) ;\
2 asm( ”mov sp , %[v ] ” : : [ v ] ” r ” ( currentThreadInfo−>sp ) ) ;\
3 asm( ”mrs r0 , cpsr \n\
4 b i c r0 , r0 , #0xdf \n\
5 or r r0 , r0 , #0xd3 \n\
6 msr cpsr , r0 \n\
7 ” ) ;\
8 asm( ”mov r0 , %[v ] ” : : [ v ] ” r ” ( currentThreadInfo−>cpsr ) ) ;\
9 asm( ”msr spsr , r0 ” ) ; \

10 asm( ”mov l r , %[v ] ” : : [ v ] ” r ” ( currentThreadInfo−>pc ) ) ;\
11 asm( ”mov r3 , %[v ] ” : : [ v ] ” r ” ( currentThreadInfo−>r12 ) ) ;\
12 asm( ”push { r3 }” ) ;\
13 // [ . . . i d e n t i c a l l y f o r r e g i s t e r s r11 to r1 . . . ]
14 asm( ”mov r3 , %[v ] ” : : [ v ] ” r ” ( currentThreadInfo−>r0 ) ) ;\
15 asm( ”push { r3 }” ) ;\
16 asm( ”pop { r0 , r1 , r2 , r3 , r4 , r5 , r6 , r7 , r8 , r9 , r10 , r11 , r12 }” ) ;\
17 asm( ”movs pc , l r ” )

Listing 6.2: Context switching: Interrupt handler exit on ARM

6.6 User processes

SWEB provides each user process with its own address space. This is implemented
by giving each user process its own page directory. Upon context switch, the ttbr0

register is updated to the address of the page directory of the new running process. A
page directory uses 16 KiB of space. Therefore, the PageManager was extended to allow
allocating 4 physically subsequent pages. In a new user process page directory, all entries
between 8 MiB and 2 GiB are marked as not present. The remaining entries are copied
from the kernel page directory. When loading the binary, the kernel maps a 4 KiB stack
page for the user process below 2 GiB.

Although page tables contain only 256 entries and thus need only 1 KiB of space, a 4 KiB
page is allocated for each page table currently. To reduce the waste of memory, it would
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be possible to completely switch the ARM architecture implementation, or at least the
PageManager, to 1 KiB paging. A different solution would be to create a page table pool
where page table space can be acquired. Page tables are then grouped together to fill a
4 KiB page.

When starting a user thread, the thread info structs have to be initialized to the initial
register values of the new user thread. The pc register is set to the address of the entry
point of the program. The cpsr register is set to user mode. The stack pointer (sp)
and the frame pointer (fp) are set to the user stack. The sp0 is set to the kernel thread
stack. Some ARM processors will generate a CPU fault if the stack pointers are not
8-byte aligned, thus it is recommended to align stack pointers to 8 byte.

With user processes running in SWEB on ARM, we finished the ARM port of SWEB. In
the next chapter we will examine how we enhanced multi-platform compatibility while
we ported SWEB.
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Chapter 7

Increasing the multi-platform
compatibility of SWEB

As a part of this master thesis we developed the x86-PAE port, the x86-64 port, and
the ARM-v5 port of SWEB, as well as a Xen port and an ARM-v7 port. With the
Xen variant the two folder structure of SWEB was established, with one folder for
architecture dependent and one folder for architecture independent code. However, as
the Xen variant had only a few users, the code diverged over the years and finally in
2011 the Xen folder was removed from the master branch and moved into a separate
branch. Over the next years the code diverged further.

In this chapter we describe how we merged the different architecture branches of SWEB.
The initial situation was having each platform implemented in separate branches. We
merged all branches, except for the ARM-v7 branch. Although merging the build system
of the ARM-v7 branch would not take much effort, it would take a lot to merge the
architecture independent folders of the two branches. Just like the Linux kernel, the
SWEB kernel follows the design principle that architecture independent code may be
accessed from anywhere. However, architecture dependent code must be abstracted
behind the existing interface to the architecture dependent code. In the ARM-v7 branch
in many architecture independent files C++ has been replaced with C upon porting to
the new architecture. Thus, the interface of the architecture independent code changed
in many files. The architecture dependent code again relies on that interface. Therefore,
we decided not to merge the ARM-v7 port.

We merged the branches in order of difference in the architecture independent code in
order to minimize merging efforts. That is, we first merged x86 and x86-PAE. The
merge of x86 and x86-PAE introduced the abstraction of the memory model which we
describe in detail in Section 7.1. The two platforms are virtually the same, but differ in
the way paging is done. If we take a look at the Linux kernel, we see that in the Linux
kernel x86-32, x86-PAE and x86-64 are implemented as one architecture with #ifdef
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constructs to provide different source code for the different architectures and files with
different postfixes for 32-bit respectively 64-bit implementations. The Minix kernel only
implements the x86-32 architecture, neither x86-PAE nor x86-64.

The next branch we merged was the Xen branch. Although it diverged for several years
and the old code was not compiling at all, the interface between architecture depen-
dent and independent code was mostly unchanged. This merge lead to a rudimentary
hardware abstraction as described in Section 7.2 and abstraction in the build system as
described in Section 7.3.

Finally, we merged the x86-64 branch, which was a lot easier, because of the changes in-
troduced by the previous merges. The most significant change the x86-64 merge brought
to the architecture independent code was the data type usage. As all data types were
size explicit until now (for instance uint32) this lead to small changes in many files.
The changes are described in detail in Section 7.4.

After the merge we started developing the ARM-v5 port. Almost no adaption in the
architecture independent code was necessary. Only about 300 lines of code had to be
added and another 300 lines of code were modified, both in the architecture dependent
code. This shows that the existing and newly introduced architecture abstraction eases
porting SWEB to new architectures. The ARM-v5 port still lacks some features x86
SWEB provides, but most hardware dependent parts are already implemented.

It is important to note that there are big differences between different base boards
using the same ARM processor. The ARM-v5 port initially was written for the ARM
Integrator/CP. Support for Gumstix Verdex Boards and the Raspberry Pi was added
subsequently. We introduced a new folder tree structure for the different architectures
in order to reduce code replicated in several architecture folders.

7.1 Memory model abstraction

In the old SWEB the Loader class contained a member variable page_directory_page_
storing the physical page number of the page directory page. In Section 3.1, 3.2 and 3.3
we described the differences between paging modes on the x86 architecture. For instance
we saw that in PAE paging mode there is the page directory pointer table. The page
directory pointer table in PAE paging mode does not only differ from the page directory
in x86 paging mode in the fact that it is the third level of the paging mechanism, but
furthermore, it is only a table containing 4 pointers. It would be wasteful to use a whole
page for these 4 pointers. This shows that we need an abstraction of the memory model
for the different architectures.

We found that the ArchMemory class can be used for this abstraction with only a few
source code changes. In the old SWEB the ArchMemory class provided several static
methods to modify paging data structures. Therefore, the methods took the page number
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of the page directory page as the first parameter. This already suggests to redesign this
class as an object, which is what we did. Thus the Loader holds an ArchMemory object
and does not need to know how the paging data structures work or even if they exist at
all. We saw this design idea already in the Linux kernel in Section 2.2, where one of the
basic assumptions was that the platform has some address translation mechanism and
that it works similarly to the Intel 386 architecture.

As an additional measure the method signatures of the ArchMemory class were given
simpler and more general names1. Furthermore, the C++ constructor and destructor
features provide a less error-prone way to initialize and clean up the address space.
In the old SWEB the address space of a user process was initialized by calling the
initNewPageDirectory method. Now this is done by the default constructor of the
ArchMemory object, so it is much harder to not initialize the address space. When it
comes to process termination, the user had to call a cleanupUserSpaceAddressSpace

method to clean up the paging data structures.

In the old implementation, if the programmer forgot about the cleanup, the previously
used paging data structures remain in physical memory and this would be a physical
memory leak. Now the cleanup is done by the destructor, making it virtually impossible
to forget about the cleanup and leak physical memory this way. Listing 7.1 and 7.2
compare the interface-related method calls in the old and the new ArchMemory imple-
mentation during the life time of a user process. The initNewPageDirectory method
call is removed as well as the call to the cleanupUserspaceAddressSpace method.

User process creation:
new UserProcess ( path , f s w o r k i n g d i r , t h i s ) ;�

l o a d e r = new Loader ( fd , t h i s ) ;
l oade r −>l oadExecutableAndIn i tProcess ( ) ;�

in i tUserspaceAddressSpace ( ) ;�

ArchMemory : : in itNewPageDirectory ( p a g e d i r p a g e ) ;
ArchMemory : : mapPage( page d i r page , 1024∗512−1 ,

stack page , 1) ;

User process destruction:
d e l e t e d e s t r o y l i s t [ i ] ;�

l oade r −>c leanupUserspaceAddressSpace ( ) ;�

ArchMemory : : f r e ePageDi r ec to ry ( p a g e d i r p a g e ) ;
d e l e t e l o a d e r ;

Listing 7.1: Old ArchMemory implementation: interface-related method calls during
a user process life time

1For instance setPageDirectory was renamed to setAddressSpace.
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User process creation:
new UserProcess ( path , f s w o r k i n g d i r , t h i s ) ;�

l o a d e r = new Loader ( fd , t h i s ) ; // ArchMemory i s member
loader −>l oadExecutableAndIn i tProcess ( ) ;�

in i tUserspaceAddressSpace ( ) ;�

arch memory . mapPage(1024∗512−1 , stack page , 1) ;

User process destruction:
d e l e t e d e s t r o y l i s t [ i ] ;�

d e l e t e l o a d e r ; // decons t ruc t s ArchMemory member

Listing 7.2: New ArchMemory implementation: interface-related method calls
during a user process life time

In Section 4.7.1 we described how a 48-bit virtual address space simplifies the stack-
placement design decision. The basic SWEB has no dynamic stack allocation. Listing
7.3 shows the user process stack allocation in basic SWEB. A physical page is allocated
from the PageManager and the physical page number is then mapped to virtual page
number 1024 · 512− 1, that is the page starting at virtual address 2 GiB − 4 KiB.

1 s i z e t p a g e f o r s t a c k = PageManager : : i n s t anc e ( )−>
getFreePhys ica lPage ( ) ;

2 arch memory . mapPage(1024∗512−1 , p a g e f o r s t a c k , 1) ;

Listing 7.3: User process stack allocation

Students are expected to implement stack allocation for user threads in the Operating
Systems exercise class at Graz University of Technology. An architecture-independent
multi threading implementation requires additional effort. In case of supporting only one
architecture, the new ArchMemory implementation is always less code to write and less
error-prone. In case of supporting several architectures it gives only small advantages
over the old ArchMemory implementation.

The new ArchMemory class allows to abstract the stack allocation and stack mapping
behind the ArchMemory class interface. The ArchMemory object is specific to one user
process. Therefore, it is possible to store additional information in the ArchMemory

object, for instance the data structures for the stack slot management. For example, a
student could implement a method allocateStack() in the ArchMemory class, which
allocates a physical stack page and a stack position in the user process address space.
The physical stack page would then be mapped into the user process address space. An
implementation of the allocateStack() method would be required for each supported
architecture.

A similar method could also be implemented in the old ArchMemory class, but would
require passing more arguments and the separation between architecture dependent and
architecture independent code would be less clear, as the old ArchMemory class cannot
contain any data structures.
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7.2 Hardware abstraction

When merging the Xen branch, one of the conflicts was the console. Xen provides a
console interface as hypervisor calls (Xenprintf, etc.), whereas the x86 architecture
works with a frame buffer which can be used as a frame buffer based console or a text
based console. The Cortex-M4 board on which SWEB runs has neither of this, the
console on the ARM port of SWEB uses one of the serial port for this purpose.

Until now the console object had been created in the main.cpp in the architecture in-
dependent code. In an old version of the code with x86 and Xen in one branch an
#ifdef at this point decided which console object to create, depending on the archi-
tecture. Because SWEB is an operating system used for education, one of its design
principles is to avoid using #ifdef constructs to produce different code for the different
architectures. Therefore, we abstracted this and defined a new createConsole method
each architecture has to implement.

When porting SWEB to ARM-v5 we found several x86-specific statements in the code,
such as an inline assembler execution of the hlt statement. We abstracted these assem-
bler instructions in the common code behind new generic methods of the architecture
interface.

7.3 Build system

SWEB uses the CMake build system. The basic structure in SWEB is that every direc-
tory contains a file CMakeLists.txt defining what to compile in this directory and how
to compile it. The CMake file in the root directory of the repository defines some basic
rules which apply to all sub folders so that the CMake files in the sub folders are much
shorter.

The build process for each architecture differs in the used programs, the compiler flags
and more. In order to provide a simple way to build the SWEB kernel differently
for each architecture, we introduced two new files which have to be provided in each
architecture folder: CMakeLists.include, which is included by the root CMake file,
and CMakeLists.userspace, which is included by the CMake files in the user space
folders. This way we are able to specify architecture dependent flags and targets for
both, the kernel binary and the user space programs.

A third file CMakeLists.compiler had to be introduced in order to facilitate cross
compilation in the existing framework more conveniently. The ARM-v5 port uses this
file to force CMake to use a specific compiler.
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7.4 Data type usage in an operating system kernel

Using platform independent data types is necessary as soon as the kernel has to work
with architectures with different pointer sizes. Throughout the SWEB source codes a
large number of casts between pointers or indices and size explicit data types like uint32
can be found. First of all we replaced many occurrences of uint32 by size_t and int32

by ssize_t. size_t is an unsigned integer variable defined to be as many bits wide as
are necessary to index the whole address space. ssize_t is a signed integer variable of
the same width as size_t.

Anyway, switching to existing platform independent data types does not always work.
On 32-bit SWEB we have an ELF32 binary loader. It requires many constants and some
parsing methods which are format specific. We split the ELF binary loader into a part
which is ELF32 specific and into a part which forms a generic ELF binary loader. The
ELF32 specific part is placed in a new ElfFormat.h header file inside the architecture
dependent folder. The 64-bit variant of SWEB implements this header file differently,
providing support to load ELF64 binaries. This solution is similar to the previously
introduced ArchMemory object.

7.5 Multi-platform compatibility of the new SWEB kernel

In this section we want to analyze how the merged SWEB kernel supports multi-platform
compatibility by design. The merged SWEB kernel did not change in its general struc-
ture. That is, the architecture dependent code is still in the arch folder and the archi-
tecture independent code in the common folder.

One factor is the amount of code redundancy. Code redundancy interferes with multi-
platform compatibility as it requires to apply changes to the redundant code manually.
We analyzed the folders of the five architectures and built the code redundancy matrix
shown in Figure 7.1.

x86 x86-PAE X86-64 Xen ARM-v5 lines of code

x86 96% 62% 32% 53% 5427
x86-PAE 95% 63% 30% 52% 5481

x86-64 70% 71% 21% 47% 4851
Xen 28% 27% 17% 24% 6174

ARM-v5 87% 86% 69% 44% 3285

Figure 7.1: Architecture code redundancy matrix (before grouping com-
mon code)

As you can see x86 and x86-PAE share about 95% of their source code. Even x86 and
x86-64 share about 70% of their source code. In the next section we build a structure
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which allows different architectures to group their common code together. For example
driver code could be grouped together in a driver folder as in Linux. Furthermore,
architecture family folders could provide a source folder structure which allows having
code all architectures of a family share in one place only.

Xen and x86 have less than 30% of their source code in common. The architectures that
differ the most with respect to their common source code are ARM and Xen. Only 16% of
the lines of code in the Xen implementation exist identically in the ARM implementation.
Surprisingly the ARM-v5 source code shares the greatest part of its source code with
other architectures. This is due to the fact that the the ARM-v5 source code has about
50% fewer lines of code than the other architectures. Therefore the fraction of common
source code is higher, although it has fewer lines in common in absolute numbers.

In the case of the different ARM base boards the Linux kernel solves this through sub
folders. All base boards have the same processor and therefore share the architecture
specific code for this processor. The differences between the base boards are implemented
in the sub folders. In SWEB we have a similar folder structure but on a higher level.
We have a folder for common architecture dependent code and code which is specific to
one architecture only. To demonstrate the potential in moving source code that exists
in multiple architecture folders to a common folder, we exemplary moved some source
and header files which were very similar or identical in all architecture implementations
into a common folder. The resulting difference matrix can be seen in Figure 7.2. All
architecture implementations now have significantly less lines of code. For instance the
ARM-v5 implementation has 2134 lines of code, which is only about 5 percent of the
total 40000 lines of code.

x86 x86-PAE X86-64 Xen ARM-v5 lines of code

x86 96% 66% 26% 27% 4775
x86-PAE 95% 66% 24% 25% 4836

x86-64 70% 71% 21% 25% 4552
Xen 22% 20% 17% 13% 5607

ARM-v5 60% 58% 53% 33% 2134

Figure 7.2: Architecture code redundancy matrix (after grouping common
code)

Another important measure is to see how many lines were modified or added. This is
shown in Figure 7.3. The ARM-v5 architecture was added with a very small amount of
lines of code. This indicates that SWEB can easily be ported to architectures signifi-
cantly different from the x86 architecture family.

One design principle of SWEB is to avoid platform specific use of #ifdef. The merged
SWEB contains no such #ifdef constructs at all.
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lines of code modified lines of code added lines of code

x86-PAE 176 85 4836
x86-64 474 906 4552

Xen 113 4265 5607
ARM-v5 414 445 2134

Figure 7.3: Architecture code compared to the x86 base branch: modified
and added lines of code

7.6 Reduction of code replication

We have seen that the x86 and x86-PAE architecture implementations each have about
4800 lines of code. The difference between the two implementations is only about 250
lines of code. Thus, the remaining 4550 lines of code still are identical in both imple-
mentations. We enhanced the folder structure introduced in the previous section and
implemented a recursive architecture tree in SWEB in order to reduce code replication
even further. The root of the tree is the arch folder which contains all architecture
dependent code. Each node of the tree now has sub folders for further architecture spe-
cialization and a sub folder common for code shared by all derived architectures. If the
node is a leaf it has no sub folder common. Instead this code is placed in the folder of the
leaf node itself. This makes the tree more shallow and thus simpler. Figure 7.4 shows
the architecture tree in SWEB.

arch

xenx86

32

pae

64

arm

integratorcp

verdex

Figure 7.4: Architecture tree of the SWEB kernel

In the x86 architecture family we identified 11 common header files and 12 common
source files. These files belong to drivers which do not differ between x86-32, x86-
PAE and x86-64, for instance the keyboard driver, the IDE driver, the ATA driver and
the serial port driver. This is similar for the ARM architecture family, although more
drivers are implemented for a device on one specific base board. Figure 7.5 shows the
reduction in lines of code for the different x86 architecture implementations, resulting
from the architecture tree. Figure 7.6 shows how much code the architecture families
have in common and Figure 7.7 shows how much code the architecture implementations
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(the second level of the tree structure) have in common. Overall the architecture tree
allowed for the removal of 13000 previously replicated lines of code, which is about 22%
of the total source code.

lines of code difference lines of code

x86-32 -38% 2954
x86-PAE -38% 3015

x86-64 -41% 2693
x86 (common) 1831

Figure 7.5: Lines of code reduction for x86 architectures after architecture
tree implementation

x86 Xen arm lines of code

x86 7% 5% 9815
Xen 12% 9% 5607
arm 17% 17% 3118

Figure 7.6: Architecture family code redundancy matrix

x86-32 x86-PAE x86-64 ARM I/CP ARM Verdex LoC

x86-32 93% 47% 9% 9% 2954
x86-PAE 91% 47% 9% 9% 3015

x86-64 51% 53% 9% 9% 2693
ARM I/CP 26% 25% 23% 86% 1092

ARM Verdex 27% 26% 24% 90% 1048

Figure 7.7: Architecture code redundancy matrix after architecture tree
implementation

The tree structure is easy to understand, but it is not sufficient to prevent future code
replication, especially if SWEB gets ported to more architectures or different base boards.
The folder tree structure follows the assumption that a driver belongs to exactly one
architecture branch. This might be true if you only have architecture branches which
have very little in common, but it is certainly not true in the case of closely related
architecture branches. If two architectures have the same hardware device but the
parent architecture or the architecture family does not, it will be necessary to place the
driver source code in both directories.

Instead of replicating the driver source code we could copy another idea from the Linux
kernel structure and move all driver code in SWEB to a driver folder. This way we
separate drivers from processor architectures. Hence, the driver has to be implemented
independently from the processor architecture.
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Chapter 8

Conclusion

In this thesis we examined how different kernels are designed regarding multi-platform
compatibility. We found and identified good design principles in the Linux kernel. More-
over, we described in detail how the SWEB kernel was ported to the x86-64 architecture,
the ARM-v5 architecture and how it has been made multi-platform compatible.

With this intention in mind, we compared the x86-32 architecture and the x86-64 ar-
chitecture in detail. We saw how paging was extended by a third level in PAE and
by a fourth level in x86-64 paging mode. Furthermore, we described changes regarding
interrupt handling, the calling convention and the small differences in the ELF binary
format.

With this knowledge we were able to port SWEB from x86-32 to x86-64. This was
achieved by implementing PAE paging first and then implementing x86-64 paging.

The most time consuming part of this work has been debugging the operating system
ports on the different platforms. That of course does not show up in this document
proportionately, but we tried to give the reader a good overview what steps are necessary
to avoid time consuming kernel debugging.

We compared the x86-32 architecture and the ARM-v5 architecture and described how
paging works on the ARM-v5 architecture. We described how interrupts work on ARM
boards. We compared the ARM EABI calling convention to the AMD64 ABI calling
convention.

With this knowledge we were able to port SWEB from x86-32 to the ARM-v5 on an
ARM Integrator C/P board. The ARM-v5 port uses the memory management unit and
interrupts for the kernel, a MMC driver instead of an ATA driver for block device access.

Having SWEB implemented for four different architectures in different branches, we
tried to make SWEB a multi-platform compatible kernel. Therefore, we merged the
four architecture branches and applied the design principles we saw in the Minix kernel
and in the Linux kernel. It was necessary to abstract the paging data structures into
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a newly introduced object. We abstracted the initialization of hardware components.
We adapted the build system to allow architecture specific building. Finally, we had
to replace data type usage from 32-bit specific data types to more abstract data types,
allowing to run the same code on systems with different pointer sizes.

In the analysis of the merged SWEB kernel we saw that there is room for improvement
regarding code redundancy. We implemented some of the ideas, such as the architec-
ture folder tree, which allows more flexible implementation of new architectures. The
enhancements helped achieve a reduction of the existing source code by about 22% mea-
sured in lines of code. In the case that SWEB will be ported to more architectures the
separation of drivers from the processor architecture dependent code might become nec-
essary. Furthermore, there is still some potential in grouping more identical or similar
code to improve the source code maintainability.

After the SWEB kernel structure was improved we ported SWEB to the Gumstix Verdex
ARM board and the Raspberry Pi within a few days. This showed how well the structure
supports porting SWEB to new architectures.
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