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Abstract In Finite Element Analysis (FEA) the discretisation (the mesh and the shape
functions’ order) has great influence on the quality of analysis. In r-adaptive FEA it is
tried to improve the FE solution by finding the optimal mesh without changing the mesh
topology and the element order. This means, the mesh’s nodes are moved to improve the
overall result. The energy-based r-adaptivity approach is driven by energy minimisation,
which also is the governing principle in hyperelastostatics. Therefore, a variational
Arbitrary Lagrangian Eulerian (ALE) formulation is used to obtain the equilibrium
equations for spatial and material motion. The FE solution of both equilibrium equations
yields an optimised mesh and thus better results concerning energy minimisation. This
reduces the overall error, compared to the FE solution of the pure spatial equilibrium
on the initial mesh.

Kurzfassung Die Diskretisierung (das Rechennetz und die Ordnung der Formfunktio-
nen) hat großen Einfluss auf die Qualität der Lösung von Finite Elemente (FE) Simula-
tionen. Bei der r-adaptiven FE-Methode wird zur Verbesserung der FE-Lösung versucht,
das optimale Netz unter Beibehaltung der Netztopologie und der Element-Ordnung
für die gegebene Aufgabenstellung zu finden. Energie-basierte r-Adaptivität folgt dem
Prinzip der Energieminimierung, das auch in der statischen Berechnung bei hyperelasti-
schen Materialien angewandt wird. Die Umsetzung erfolgt über einen speziellen Vari-
ationsansatz, bei dem sowohl die räumlichen Verschiebungen des verformten Körpers,
als auch die Lage der Knoten des Rechennetzes variiert werden. Dieser als “variational
ALE” Formulierung bekannte Ansatz wird zur Formulierung der räumlichen und ma-
teriellen Gleichgewichte verwendet. Die FE-Lösung dieser beiden Gleichgewichte ergibt
ein optimiertes Netz und damit bessere Resultate gemessen an der erreichten Energiere-
duktion. Dadurch wiederum wird der globale Fehler verglichen mit der FE-Lösung allein
für das räumliche Gleichgewicht am ursprünglichen Rechennetz verringert.
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1. Preliminaries

This chapter gives an overview of the basic concepts that will be used in the framework
presented dealing with r-adaptivity. This is a method for improving the solution of
discretised partial differential equations by introducing the material coordinates as ad-
ditional unknowns into the system of equations. Although r-adaptivity has a wide range
of applications, this work is restricted to the static analysis of hyperelastic solids.

1.1. Equilibrium

A static analysis of solids is usually set up on the well known spatial equilibrium equa-
tions given in equation (1.1.1) and (1.1.2) respectively.
The local spatial translational equilibrium (for statics) in terms of Cauchy stresses is,

∂σij
∂xj

+ fBi = 0 i, j = x, y, z (1.1.1)

This differential (strong) form of the equilibrium equation can be transferred into an
integral (weak) form ∫

Vt

(
∂σij
∂xj

+ fBi

)
dVt = 0 (1.1.2)

where the first index of σ denotes the stress direction and the second one denotes the
direction normal to the surface on which the stress is acting.

Investigating the rotational equilibrium it can be shown that the Cauchy stress tensor
is symmetric (σij = σji)(Parkus 1960).

1



1. Preliminaries

1.1.1. Principle of Virtual Power

Multiplying equation (1.1.1) with a virtual velocity δv yields after integration over the
volume Vt (Bonet and Wood 1997),

δẆ =

∫
Vt

(
∂σij
∂xj

+ fBi

)
δvi dVt = 0 (1.1.3)

Application of the product rule

∂σij
∂xj

δvi =
∂ (σijδvi)

∂xj
− σij

∂δvi
∂xj

(1.1.4)

and the Gauss theorem ∫
Vt

∂ (σijδvi)

∂xj
dVt =

∫
∂Vt

nj (σijδvi) dAt (1.1.5)

on equation (1.1.3) gives

δẆ =

∫
∂Vt

σijδvinj dAt −
∫
Vt

σij
∂δvi
∂xj

dVt +

∫
Vt

fBi δvi dVt = 0 (1.1.6)

Finally, introducing the virtual symmetric velocity gradient δd,

δdij =
1

2

(
∂δvi
∂xj

+
∂δvj
∂xi

)
(1.1.7)

yields,

δẆ =

∫
Vt

σijδdij dVt −
∫
Vt

fBi δvi dVt −
∫
∂Vt

σijnj︸ ︷︷ ︸
ti

δvi dAt = 0 (1.1.8)

The above equation is a weak formulation of the equilibrium equation, based on the
principle of virtual power. In the scope of this thesis the principle of virtual power
(Jourdain’s principle) is equivalent to the principle of virtual work (d’Alembert’s prin-
ciple) (Glocker 1998).

In elastostatics, these principles represent tools corresponding to the more general con-
cept of calculus of variations. They can be interpreted as an energy functional’s arbitrary
admissible variation with respect to spatial coordinates and are common in cases when

2



1. Preliminaries

the observer takes up the Lagrangian point of view. However, for r-adaptivity the Eu-
lerian viewpoint is also considered. Thus, the concept of calculus of variations is used
in this work, resulting in the formulation of Euler-Lagrange equations. Introducing the
energy functional for elastostatic analysis,

Π =

∫
V

Ψ int + Ψ ext dV (1.1.9)

where Ψ int denotes the internal potential energy density. Hence, the functional Π is the
body’s total potential energy. In this context, the Euler-Lagrange equations describe
stationary points of the total energy which represent local points of equilibrium. They
do not distinguish between stable and non-stable equilibrium. In standard elastostatic
analysis this is a minor restriction, not so for r-adaptivity as will be shown later.

Furthermore, the connection between the Euler-Lagrange equations for spatial motion
and the principle of virtual power or virtual work respectively will be outlined in the
following sections.

1.2. Introduction to Spatial and Material Motion

R-adaptivity is usually settled in a framework called arbitrary Lagrangian-Eulerian
(ALE) formulation (Thoutireddy 2003; Mosler and Ortiz 2006; Kuhl et al. 2004). This
means that the deformation of a solid is described from the Lagrangian and from the
Eulerian viewpoint. Classic elastostatics, as treated in many text books, work with the
Lagrangian viewpoint describing a physical particle’s spatial motion. This setting will
be called spatial motion problem. The Eulerian viewpoint is used to describe changes in
the material configuration, the material motion problem (Steinmann 2002). While the
Lagrangian viewpoint is widely used in solid mechanics, the Eulerian viewpoint is far
more common in fluid dynamics. Since both viewpoints describe the same physics, the
exact solutions obtained from different viewpoints have to be identical. This holds for
both spatial and material motion problem. However, finite element discretisation usually
destroys this property, even in the case of homogeneous isotropic material (Steinmann
et al. 2009). Depending on the discretisation, the differences are larger or smaller.

Interpretation of Material Motion - Configurational Mechanics: Keeping things
simple, the spatial motion problem is motivated by the question, “Where will a given
point of the undeformed body move to when the body is subjected to a certain load?”.
The material motion problem asks, “From where has a given point of a deformed body
moved to its current position?”. Assuming one has solved the spatial motion problem,
it should not be difficult to obtain the inverse map and thus, obtain the solution of the

3



1. Preliminaries

material motion problem. This holds for undiscretised continua but not so for discretised
as mentioned before.
Configurational mechanics deal with disturbed continua, inclusions, phase transitions
et cetera. Despite the physical background, a rather formal variational approach to
energy minimisation will be used to derive all formulations concerning r-adaptivity in
hyperelastostatics as presented in (Kuhl et al. 2004).

1.2.1. ALE Kinematics

Configurations used in the ALE formulation presented are the material configuration
(MC, undeformed body), the spatial configuration (SC, deformed body) and the refer-
ence configuration (RC, fixed). It is important to note that the material motion problem
and the spatial motion problem can be formulated in terms of MC, SC and RC inde-
pendently. The mapping between those three configurations is shown in Figure 1.2.1.

ϕ Spatial motion deformation map

F Spatial motion deformation gradient

Φ Material motion deformation map

f Material motion deformation gradient

In mappings with a superscript ∗ the reference configuration takes over the part of the
material configuration, a subscript ∗ indicates that the reference configuration “replaces”
the spatial configuration. Thus following relationships between the three mappings
hold,

x = ϕ(X, t) = ϕ∗(ξ, t) (1.2.1)

ϕ(X, t) = ϕ∗(ξ, t) ◦ϕ∗(X, t) (1.2.2)

F =
∂ϕ(X, t)

∂X
=
∂ϕ(X, t)

∂ξ

∂ξ

∂X
= F ∗ · F ∗ (1.2.3)

X = Φ(x, t) = Φ∗(ξ, t) (1.2.4)

Φ(x, t) = Φ∗(ξ, t) ◦Φ∗(x, t) (1.2.5)

f =
∂Φ(x, t)

∂x
=
∂Φ(x, t)

∂ξ

∂ξ

∂x
= f ∗ · f ∗ (1.2.6)

4



1. Preliminaries

Φ

ϕ∗ Φ∗

ϕ∗
Φ∗

ϕ

F

f

F ∗
f ∗ F ∗f ∗

X x

ξ

material

reference

spatial

Figure 1.2.1. Mappings between configurations

More definitions used in the following sections:
Variation

δ{•} = δx{•}+ δX{•} (1.2.7)

δx{•} = δ{•}|X (1.2.8)

δX{•} = δ{•}|x (1.2.9)

and analogously:
Incrementation

∆{•} = ∆x{•}+∆X{•} (1.2.10)

∆x{•} = ∆{•}|X (1.2.11)

∆X{•} = ∆{•}|x (1.2.12)

1.2.2. Transformations Between Configurations

The relation between the infinitesimal volume calculated on the material configuration
dV0 and the infinitesimal volume calculated on the spatial configuration dVt is given

5



1. Preliminaries

as,

dVt = JdV0 (1.2.13)

dV0 = jdVt (1.2.14)

with,

J = detF

j = detf = 1/J

This leads to, ∫
V0

{•}0 dV0 =

∫
Vt

{•}t dVt =

∫
Vt

{•}t JdV0

and thus,
{•}t = 1/J {•}0 = j {•}0 (1.2.15)

Equation (1.2.15) gives the transformation of scalar quantities between configurations.

For the derivation of an equilibrium equation through variation of the potential ener-
gy Π with respect to the spatial coordinates x, the following expressions will be used
(Steinmann 2002):

δx{•}0(F ,ϕ;X) = DF {•}0 : δxF +
∂{•}0

∂x
· δxϕ (1.2.16)

In equation (1.2.16) the operator DF is the derivative with respect to the spatial motion
deformation gradient, whereby the quantity {•} is expressed for the spatial motion
problem1. The index 0 indicates that {•} is a quantity on the material configuration.
An index t denotes a quantity on the spatial configuration. Besides DF there also exist
the operators Df , dF and df . A capital “D” is used for functions expressed for the
spatial motion problem and a lowercase “d” for functions expressed for the material
motion problem. In the hyperelastic static case the distinction between DF and dF is
not necessary. The same holds for Df and df (Steinmann 2002). Thus, the derivatives
with respect the deformation gradients, will be written as ∂F or ∂f respectively.

According to Steinmann (2002), the following is valid for a scalar object,

DF {•}0 = {•}0 f
T − JfT ·Df {•}t · f

T (1.2.17)

As mentioned above, in the hyperelastic static case this can be written as,

∂F {•}0 = {•}0 f
T − JfT · ∂f {•}t · f

T (1.2.18)

A proof for equation (1.2.18) is given in the Appendix (A.1.1).

1“Expressed for the spatial motion problem” means that all quantities are parametrised in terms of
material quantities, e.g. ϕ = ϕ(X). Consequently, “expressed for the material motion problem”
means parametrised with spatial quantities, e.g. Φ = Φ(x).

6



1. Preliminaries

1.3. Spatial Motion Problem

The description of the position of a physical particle in the spatial configuration by
means of the nonlinear deformation map ϕ is the spatial motion problem.

Making use of the transformations given above, the variation of the total potential energy
yields,

δxΠ =

∫
V0

[
δxΨ

int
0 + δxΨ

ext
0

]
dV0

=

∫
V0

[(
∂FΨ

int
0 : δxF + ∂xΨ

int
0 · δxϕ

)
+
(
∂FΨ

ext
0 : δxF + ∂xΨ

ext
0 · δxϕ

)]
dV0 (1.3.1)

Considering the common parametrisations Ψ int0 = Ψ int0 (F ;X) and Ψ ext0 = Ψ ext0 (ϕ;X),
equation (1.3.1) can be simplified to,

δxΠ =

∫
V0

[
∂FΨ

int
0 : δxF + ∂xΨ

ext
0 · δxϕ

]
dV0 (1.3.2)

Finally, the transformation of equation (1.3.2) from the material to the spatial domain
yields,

δxΠ =

∫
V0

[(
Ψ int0 fT − JfT ·DfΨ

int
t · fT

)
: δxF + ∂xΨ

ext
0 · δxϕ

]
dV0

=

∫
Vt

[(
Ψ intt fT − fT · dfΨ

int
t · fT

)
: δxF + ∂xΨ

ext
t · δxϕ

]
dVt

=

∫
Vt

[(
Ψ intt I − fT · dfΨ

int
t

)
:
∂δxϕ

∂x
+ ∂xΨ

ext
t · δxϕ

]
dVt (1.3.3)

where I is the (appropriate) unit tensor.

1.3.1. Stress Tensors for the Spatial Motion Problem

In equation (1.3.2), expression DFΨ
int
0 is the First Piola-Kirchhoff stress tensor P (Stein-

mann 2002). Changing the integration domain from material to spatial, DFΨ
int
0 : δxF

ends up in

7



1. Preliminaries

(
Ψ intt I − fT · dfΨ

int
t

)
: ∂δxϕ

∂x
, which is interesting, because it results in an alternative

expression for the Cauchy stress tensor

σ = jP · F T = jDFΨ
int
0 · F T = Ψ intt I − fT · dfΨ

int
t (1.3.4)

and the transformation between P and σ is a Piola transformation 2. Inserting equation
(1.3.4) into (1.3.3) gives,

δxΠ =

∫
Vt

[
σ :

∂δxϕ

∂x
+ ∂xΨ

ext
t · δxϕ

]
dVt (1.3.5)

Comparison of the above equation with (1.1.8) shows the equivalence of the Principle of
Virtual Power and the variational approach used in this thesis. However, this statement
only holds for the elastostatic conservative case and things become more complicated
for dynamic problems. Steinmann (2002) also discusses the elastodynamic case using
the Hamiltonian framework.

It should be mentioned that many authors, including Steinmann, write,

DFΨ
int
0 = P T and (1.3.6)

σT = jP T · F T (1.3.7)

As long as these tensors are used consistently within a more or less closed framework,
this makes no difference at all. The transposition may result from different “sortings” of
the Cauchy stress tensor’s components, depending on their interpretation. In this work,
the first index (i) of σij is the stress component’s direction, the second index j denotes
the direction of the surface, on which the component is “acting”. The second possible
interpretation is exactly the opposite, or in other words, σnotation1 = σTnotation2.

Remark 1.1. Covariance and contravariance: Taking contravariant components from
position vectors x and X, the deformation gradient is, in index notation, written as,

F i
I =

∂xi

∂XI

and hence,
∂Ψ int0

∂F i
I

= P I
i

P I
i are mixed components of the first Piola-Kirchhoff tensor. This is of theoretical

importance for transforms like the Piola transform between P and σ. Applying index
notation to equation (1.3.4) yields,

j P I
i F

j
I = σ ji

2In this case, the transformation can be obtained by applying Nanson’s formula dan = J dAF−T ·N

8



1. Preliminaries

but the commonly used components of Cauchy stresses are contravariant σij. This
means a metric tensor has been omitted. This is not a big deal when using rectangular
Cartesian reference frames, where metric tensors are unit tensors I in “their” frame.
As this thesis only uses such reference frames, the distinction between covariant and
contravariant components is not necessary and in most equations a simplified index
format will be used, e.g.,

F i
I =

∂xi

∂XI
→ Fij =

∂xi
∂Xj

1.3.2. Spatial Equilibrium

To keep things simple, this work concentrates on displacement driven examples and
therefore, the external potential energy will not be considered any further. This leads
to a short equation for spatial equilibrium given on the material and spatial domain:

δxΠ =

∫
V0

δxF : P dV0 = 0 (1.3.8)

δxΠ =

∫
Vt

∂δxϕ

∂x
: σ dVt = 0 (1.3.9)

or in index notation, considering Einstein’s sum convention,

δxΠ =

∫
V0

δxFij Pij dV0 = 0 (1.3.10)

δxΠ =

∫
Vt

∂δxϕi
∂xj

σij dVt = 0 (1.3.11)

1.4. Material Motion Problem

Proceeding in analogy to the spatial motion problem, an equation for material equilib-
rium can be derived as follows.

δXΠ =

∫
Vt

[
δXΨ

int
t + δXΨ

ext
t

]
dVt (1.4.1)

Seeking a variation with respect to material coordinates X, the corresponding variations
are introduced,

δX {•}t (f ,Φ;x) = df {•}t : δXf +
∂ {•}t
∂x

· δXΦ (1.4.2)

9



1. Preliminaries

Above expression as well as considering the absence of Ψ ext, applied in the variation of
the total potential energy with respect to material coordinates, gives,

δXΠ =

∫
Vt

[
dfΨ

int
t : δXf + ∂XΨ

int
t · δXΦ

]
dVt (1.4.3)

As Ψ intt = Ψ intt (f ;x) the second term in equation (1.4.1) vanishes and we obtain,

δXΠ =

∫
Vt

dfΨ
int
t : δXf dVt (1.4.4)

To show the connection to Eshelbian mechanics, df {•}t or ∂f {•}t respectively is ob-
tained from equation (1.2.18),

∂f {•}t = {•}t F
T − j F T · ∂F {•}0 · F

T (1.4.5)

With equations (1.2.14) and (1.2.15) the pull back of equation (1.4.4) can be computed:

δXΠ =

∫
Vt

(
Ψ intt F T − j F T ·DFΨ

int
0 · F T

)
: δXf dVt

=

∫
V0

(
Ψ int0 F T − F T ·DFΨ

int
0 · F T

)
: δXf dV0

=

∫
V0

(
Ψ int0 I − F T ·DFΨ

int
0

)
:
∂δXΦ

∂X
dV0 (1.4.6)

While,
p = dfΨ

int
t (1.4.7)

is the material motion analogon to the First Piola-Kirchhoff stress tensor for the spatial
motion problem,

Σ = Ψ int0 I − F T ·DFΨ
int
0 = J pikfjk (1.4.8)

is the Eshelby stress tensor. The structure of (1.4.8) for the Eshelby stress tensor is
similar to the structure of (1.3.4) for the Cauchy stress tensor.

1.4.1. Material Equilibrium

To summarise the results above, the material equilibrium equation with all simplifica-
tions as it will be used in this work is given for the material and spatial domain as

10



1. Preliminaries

follows,

δXΠ =

∫
Vt

δXf : p dVt = 0 (1.4.9)

δXΠ =

∫
V0

∂δXΦ

∂X
: Σ dV0 = 0 (1.4.10)

δXΠ =

∫
Vt

δXfij pij dVt = 0 (1.4.11)

δXΠ =

∫
V0

∂δXΦi
∂Xj

Σij dV0 = 0 (1.4.12)

1.5. Nonlinear Equations

Nonlinear equations are equations
f(x) = 0

where f(x) is nonlinear in x.

The stress tensors in the spatial and material equilibrium equations are defined as func-
tions of the spatial or material motion deformation gradient respectively. These func-
tions are nonlinear for most materials, including neo-Hookean material, which is used
later in this thesis. Hence, the equilibrium equations are treated as nonlinear equations.
Before introducing the Finite Element Method (chapter 2) some aspects of nonlinear
optimisation problems and resulting nonlinear equations will be discussed.

1.5.1. Newton-Raphson Method for Nonlinear Systems of
Equations

The Newton-Raphson method is an iterative root finding algorithm for nonlinear equa-
tions and nonlinear systems of equations.

Take the nonlinear system F (x) = 0: Linearisation starting from an initial guess x0

yields,

F (x0) +
∂F

∂x

∣∣∣∣
x0

∆x0 = 0 (1.5.1)

Now, calculating x1 = x0 + ∆x0 and generally it will come out that F (x1) 6= 0.
However, if x0 is sufficiently close to the exact solution, then ||F (x1)|| < ||F (x0)||.

11
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Hence, calculating x2 in the same way yields an approximate solution x2 with ||F (x2)|| <
||F (x1)||. This procedure is repeated until the error ||F (xn)|| is sufficiently small. A
1d illustration of Newton’s method is given in Figure 1.5.1. The algorithm is given
in Table 1.1. A geometrical interpretation of the Newton-Raphson scheme is given in

Table 1.1. General Newton-Raphson Algorithm

1: set CONVERGED = False
2: choose initial guess x0, set iteration counter n = 0
3: while CONVERGED = False do
4: compute F (xn) and ∂F

∂x

∣∣
n

5: solve ∂F
∂x

∣∣
n
∆xn = −F (xn)

6: compute next position xn+1 = xn +∆xn

7: check the error εn+1 = ||F (xn+1)||3
8: if εn+1 ≤ tol then
9: set CONVERGED = True

10: else
11: increment iteration counter n = n+ 1
12: end if
13: end while

Figure 1.5.1.

x0 x1 x2 x3

t0(x)

t2(x)

t1(x)

f(x0)

f(x1)

f(x2)

f(x3)

y = f(x)

x

y
ei = f(xi)− 0 = f(xi)

ti(x) = f(xi)− f ′(xi) · (x− xi)
ti(xi+1) = f(xi)− f ′(xi) · (xi+1 − xi) = 0

error:

tangent:

∆x0 ∆x1∆x2

Figure 1.5.1. Geometrical interpretation of the Newton-Raphson scheme applied to a 1d
function (“Newton’s method”)

3There exist some other error measures like the unbalanced energy introduced in Section 2.6.1
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1.5.2. A One-dimensional Minimisation Problem

Considering a more or less arbitrary potential

Π(x) = 0.2x2 − cos (x) (1.5.2)

that should be minimised. The potential Π is depicted in Figure 1.5.2.

Π
(x

)

Figure 1.5.2. Example potential Π(x)

To find a (local) minimum, Π(x) will be derived with respect to x. At an extremum,
this derivative equals zero and if this extremum is a local minimum the second derivative
of Π has to be greater than zero. Thus, one is seeking a point x̄ where,

dΠ(x)

dx

∣∣∣∣
x̄

= 0 (1.5.3)

d2Π(x)

dx2

∣∣∣∣
x̄

> 0 (1.5.4)

hold. Equation (1.5.3) has to be solved and equation (1.5.4) is the criterion for a local
minimum.

The first and second order derivatives of Π are given as,

dΠ(x)

dx
= 0.4x+ sin(x) (1.5.5)

d2Π(x)

dx2
= 0.4 + cos(x) (1.5.6)
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Obviously, equation (1.5.5) is nonlinear. Finding a local minimum of the given potential
with the Newton-Raphson scheme with an initial guess x0 = −1 is depicted below.
Figure 1.5.3 shows the Newton-Raphson algorithm applied to the gradient of Π given
in equation (1.5.5). At x̄ = 0, equation (1.5.3) and condition (1.5.4) hold. Therefore,

step 1

step 2

x

d
Π

(x
)

d
x

Figure 1.5.3. The Newton-Raphson algorithm applied to equation (1.5.5) with x0 = −1.0

at x̄ = 0 the potential Π has a (local) minimum. Figure 1.5.4 depicts the values of Π
evaluated at the Newton-Raphson iterations xi.

x

x0 x1x2 ≈ x̄ = 0

Π
(x

)

Figure 1.5.4. Potential Π evaluated at Newton-Raphson iterations with x0 = −1.0

However, setting x0 = −1.5 causes severe convergence problems for the Newton-Raphson
algorithm. Figure 1.5.5 depicts the first 3 Newton-Raphson iterations (steps). At step 3

14
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the solution x3 ≈ −13 is far away from the exact solution x̄ = 0 and also far away from
the initial guess x0 = −1.5. Again, the potential Π is evaluated at the Newton-Raphson
iterations xi (see Figure 1.5.6.

step 1

step 2

exact solution x̄ = 0

d
Π

(x
)

d
x

step 3

Figure 1.5.5. The Newton-Raphson algorithm applied to equation (1.5.5) with x0 = −1.5

x0 x1x2 x3

Π
(x

)

Figure 1.5.6. Potential Π evaluated at Newton-Raphson iterations with x0 = −1.5

The reason for the convergence problems shown above is a Hessian of almost zero at x1.
This is indicated by the nearly horizontal tangent to the gradient for Newton-step 2 in
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Figure 1.5.5. The Hessian of the potential Π as given in equation (1.5.2) is depicted in
Figure 1.5.7.

∂
2
Π

(x
)

∂
x

2

x

x0 x1x2 x3

Figure 1.5.7. Hessian of potential Π
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2. Finite Element Method

The Finite Element Method (FEM) is the standard discretisation method in mechanics
of solids. In this chapter the basic concept of the displacement-based FEM will be
introduced without going into too much detail.

2.1. The Concept of Finite Elements

The idea is to partition a body into finite elements and obtain approximations of the
exact solution on these elements. Of course, these approximations have to fulfil a set of
criteria, e.g. gaps must not emerge between the elements. These criteria imply additional
equations coupling the corresponding elements, leading to a system of equations for the
global set of differential equations. The approximations themselves are usually based on
interpolations of the exact solution.

2.2. Finite Element Shapes

The first decision in any finite element analysis (FEA) is the selection of finite element
shapes, the discretisation of the body itself. There exist shapes for one-, two-, three-
dimensional and even for higher dimensional problems. Besides very basic elements
like hexahedra or tetrahedra that are called volume elements, structural elements like
shell-elements have been developed, which are able to decrease the computational effort
significantly. These elements are dedicated to specific applications and therefore already
include further modelling and are not generally applicable. However, this work is re-
stricted to volume elements and their equivalents for lower dimensional problems. In
Figure 2.2.1, discretisations of a rectangle and a quadrant are shown. The first mesh
is called structured and consists of quadrilateral elements. The latter discretisation is
of an unstructured type, the shapes are linear triangular. Observing this discretisation
at the curved borders, one can see the difference between the outline of the continuous
body and the discretised mesh consisting of triangles.
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2. Finite Element Method

Figure 2.2.1. Example of a structured (left) and an unstructured (right) two-dimensional
mesh

2.3. Interpolation

Interpolation is a very basic tool for the approximation of a function. Basically, there
are two possible approaches to interpolation:

• global interpolation and

• piecewise interpolation.

An example for global and piecewise interpolation is illustrated in Figure 2.3.1.

x1 x2 x3 x4

x

y
f(x) p3(x)

p1(x)

f(xi)

Figure 2.3.1. Piece-wise linear and global 3rd order polynomial interpolation

In Figure 2.3.1 the function f(x) should be interpolated, p1(x) is a piecewise linear
interpolation polynomial and p3(x) is a global interpolation polynomial of order 3. While
p3(x) is a single curve that fulfils the interpolation condition at all four interpolation
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2. Finite Element Method

points (x1, . . . , x4), p1(x) consists of three concatenated linear interpolation polynomials.
Each of these linear polynomials fulfil the interpolation condition only at a subset of
interpolation points.

2.3.1. Interpolation Error

Error analysis of interpolation tells us that the error can be reduced by using higher
order interpolation polynomials. However, higher order polynomials cause a higher
computational effort and sometimes numerical difficulties arise. Polynomials become
more “sensitive” with increasing order. For piecewise polynomials it can be shown that
their approximation error additionally depends on the size of their partitions. Smaller
partitions cause smaller errors and the power of this error reduction on the other hand
depends on the polynomial order. As the partitions or pieces of the piecewise polynomials
correspond to the finite elements discretising the solid, refinement of this finite element
mesh is used to reduce the approximation error. This increases the quality and accuracy
of the finite element solution.

linear piecewise interpolation

interpolation with a polynomial of order 9

regions with problematic behaviour of higher order polynomial

Figure 2.3.2. Comparison of piecewise linear (blue lines) and global polynomial (green
curve) interpolation. Both of them fulfilling the interpolation condition.
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2. Finite Element Method

2.3.2. Lagrange Polynomials

Looking for a way to determine interpolation polynomials for a given set of data without
having to solve a system of equations each time, Joseph Louis Lagrange found that the
interpolation polynomial p(x) for an arbitrary function f(x) with interpolation points
xi can be given as,

p(x) =
n∑
i=1

f(xi) ·
n∏
j=1
j 6=i

x− xj
xi − xj

(2.3.1)

The products

ln−1
i (x) =

n∏
j=1
j 6=i

x− xj
xi − xj

(2.3.2)

are known as Lagrange basis polynomials of order n − 1 for the interpolation point xi.
With,

ln−1
i (xk) =

n∏
j=1
j 6=i

xk − xj
xi − xj

=
0 for k 6= i and
1 for k = i

(2.3.3)

it can be proven, that p(xi) fulfils the interpolation condition:

f(xi) = p(xi) =
n∑
i=1

f(xi) ·
n∏
j=1
j 6=i

xi − xj
xi − xj

= f(xi) · ln−1
i (xi) = f(xi) · 1 (2.3.4)

The form of interpolation polynomials presented can be interpreted as a polynomial
of order n − 1 in an n-dimensional (polynomial) space, of the basis polynomials which
are of order n − 1 each and with the function values at the interpolation points as
components.

Linear and quadratic Lagrange basis functions for 1d domains are depicted in Figure
2.3.3.

2.4. Isoparametric Finite Element Method

In this work isoparametric finite elements will be used. Isoparametric means that dis-
placements and geometry are interpolated in the same way (Bathe 1996).
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Figure 2.3.3. Linear and quadratic Lagrange basis (1d)

2.4.1. Reference Element

In finite element analysis, the computation of integrals is usually performed by numeric
integration methods. Therefore it is beneficial to map every finite element of the “orig-
inal” domain on a reference element where the integration takes place. This reference
element is a normalised form of the same shape type as the concrete elements. The co-
ordinates used in these elements are natural coordinates. Figure 2.4.1 shows an example
for the mapping of a triangular element.

1 (x1|y1)

2 (x2|y2)

3 (x3|y3)

r

s

x

y

r

s

1 (0|0)
2 (1|0)

3 (0|1)

Figure 2.4.1. Triangular reference element and general triangular element

Figure 2.4.2 shows the mapping of a bilinear quadrilateral element.

The mapping itself is realised through geometry interpolation as discussed in the follow-
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s

x

y

r

1

-1

1

-1

r

s 1(x1|y1)

2(x2|y2)

3(x3|y3)

4(x4|y4)

1(−1| − 1) 2(1| − 1)

3(1|1)4(−1|1)

Figure 2.4.2. Quadrilateral reference element and general quadrilateral element

ing section.

2.4.2. Interpolation of Geometry and Displacements

General approach to interpolation of geometry

xi(r) =
n∑
j=1

x̂ij hj(r) (2.4.1)

with

xi(r) i-th component of coordinates x at natural coordinates r with i = 1, . . . , dim

hj(r) shape function of node j evaluated at natural coordinates r with
j = 1, . . . , n (n is the number of nodes)

x̂ij i-th component of material or spatial coordinates x̂ of node j
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General approach to interpolation of displacements

ui(r) =
n∑
j=1

hj(r)ûij (2.4.2)

with

ui(r) i-th component of displacement u at natural coordinates r with i = 1, . . . , dim

ûij i-th component of displacement û of node j

Shape functions Comparing Lagrange interpolation and the interpolation methods
presented above, the similarity between both methods is obvious and the only question
is, how to obtain shape functions from the Lagrangian basis polynomials. Fortunately,
the shape functions for standard shapes like quadrilaterals and triangles are documented
in many textbooks, such as (Zienkiewicz and Taylor 2000).

For quadrilateral shape functions they are given as the tensor product of Lagrange
polynomials,

h̃n[k,l](r, s) = lnk (r) · lnl (s) (2.4.3)

where h̃n[k,l](r, s) is the shape function for the node with the local node indices k for
coordinate r and l for coordinate s. The mapping between local node numbers and local
node indices is established by appropriate adjacency tables, i.e. h̃n[1,0](r, s) = h2(r, s).

For triangular shape functions, things are a little more complicated:

h̃n[k,l,m](L1, L2, L3) = lkk(L1) · lll(L2) · lmm(L3) (2.4.4)

where natural coordinates are replaced by area coordinates. The area coordinates them-
selves can be expressed in terms of natural coordinates,

L1 = 1− r − s (2.4.5a)

L2 = r (2.4.5b)

L3 = s (2.4.5c)

(2.4.5d)

2.4.3. Coordinate Transformation for Integration on Reference
Element

To evaluate the integral of a function Q(X) over a single finite element m in a standard-
ised way, the computation is performed on the reference element. Therefore, a change
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of variables is used to write the integral in terms of the (natural) coordinates of the
reference element, ∫

V (m)

Q(X)dV (m) =

∫
Ω

Q[X(r)] det[
∂X

∂r
]dΩ (2.4.6)

2.4.4. Numerical Integration

The standard method for computing integrals in isoparametric finite element analysis is
numerical integration with Gaussian quadrature. With precomputed integration points
(or Gauss points) ar it is possible to compute integrals as the sum over the function
values at the integration points (labelled a = 1 . . . q) multiplied with an integration
weight aw. ∫

Ω

Q[X(r)] det[(J(r)] dΩ
.
=

q∑
a=1

Q[X(ar)] det[J(ar)] aw (2.4.7)

Although this method is not exact in general, it is for polynomials of order 2q−1. How-
ever, if the integrand is not polynomial and does not have polynomial character, the
integration error can be significant, e.g. if the integration point is near to a singular-
ity. The integration points in natural coordinates and integration weights for Gaussian
quadrature are listed in tables, at least for common integration domains like straight
lines, squares, triangles, cubes and tetrahedra etc. (Zienkiewicz and Taylor 2000).

2.5. Finite Element Formulation of Spatial Equilibrium
Equation

After introducing FEM basis techniques, they should be applied to the spatial equilib-
rium equation as given in equation (1.4.12). Partitioning the overall material domain V0

in finite elements m with volume V (m) yields,∫
V0

δxF : P dV0 = A
m

∫
V

(m)
0

δxFij Pij dV
(m)

0 = 0 (2.5.1)

Because elements are coupled with their neighbour elements, equation (2.5.1) is not a
sum of equations but a system of equations and A

m
indicates an assembling procedure

respecting the interdependencies between elements. Using equations (2.4.7), equation
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(2.5.1) with a focus on a single element (m) can be written as,∫
V

(m)
0

δxFij Pij dV
(m)

0
.
=

q∑
a=1

a (δxFik) aPij det(aJ) aw = 0 (2.5.2)

Since the first Piola-Kirchhoff tensor depends on F , and P = P (F ) is a nonlinear
function, equation (2.5.1) is nonlinear too and P (F ) has to be linearised:

Pij(F +∆F ) = Pij|F +
∂Pij
∂Fkl

∣∣∣∣
F

∆Fkl +O
[
(∆F )2] .= Pij|F +

∂Pij
∂Fkl

∣∣∣∣
F

∆Fkl (2.5.3)

Beginning with the deformation gradient in terms of nodal values,

Fij =
∂ϕi
∂Xj

=
∂xi
∂Xj

=
∂ (Xi + ui)

∂Xj

= δij +
∂ui
∂Xj

= δij + J
(h)
kl J

−1
lj ûik (2.5.4)

the virtual deformation gradient in terms of virtual nodal displacements is obtained
straight-forwardly:

δxFij =
∂δxϕi
∂Xj

=
∂δxûik hk
∂Xj

=
∂hk
∂Xj

δxûik

= J
(h)
kl J

−1
lj δxûik (2.5.5)

The same procedure leads to the incremental deformation gradient in terms of incre-
mental spatial displacements,

∆xFij = J
(h)
kl J

−1
lj ∆xûik (2.5.6)

In above equations some Jacobians have been introduced, they are given as,

J
(h)
kl =

∂hk
∂rl

(2.5.7)

Jik =
∂X̂ij hj
∂rk

= J
(h)
jk X̂ij (2.5.8)

where (2.5.8) is the Jacobian of the interpolation of nodal material coordinates X̂ which
is used to compute J−1.

With
Jij = J

(h)
ik J−1

kj (2.5.9)

equation (2.5.2) reads now as,∫
V

(m)
0

δxFij Pij dV
(m)

0
.
=

q∑
a=1

δxûik aJkj

(
Pij|

aF
+

∂Pij
∂Flm

∣∣∣∣
aF

aJnm∆xûln

)
aw = 0

(2.5.10)
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2. Finite Element Method

Remembering that the equilibrium equation must hold for all allowed variations, a sys-
tem of equations for incremental nodal displacements ∆xû is obtained:(

q∑
a

aJkj
∂Pij
∂Flm

∣∣∣∣
aF

aJnm aw

)
∆xûln = −

(
q∑

a=1

aJkj Pij|
aF aw

)
K

(m)
ikln∆xû

(m)
ln = R

(m)
ik (2.5.11)

whereK(m) is the element stiffness matrix, ∆xû
(m) are the element’s nodal displacement

increments and R(m) is the element residual. These element-level equations have to be
fulfilled on each element simultaneously which is realised by an assembling operation
(indicated by A

m
) that builds a global system of equations,

K = A
m
K(m)

R = A
m
R(m)

K∆xû = R

Details of an exemplary assembling scheme are given in the next section.

2.5.1. Assembling the Global System of Equations

To obtain a system of linear equations in classic matrix-vector form from equation
(2.5.11), it has to be assembled, indicated by A

m
. The assembling map used in this

work is quite simple and examples for two and four dimensional objects are presented
below:

RI=̂R
(m)
ij , with I = i+ dof · (nj − 1) (2.5.12)

KIJ=̂K
(m)
ijkl , with I = i+ dof · (nj − 1), J = k + dof · (nl − 1) (2.5.13)

In equations (2.5.12) and (2.5.13) the first and third indices indicate the coordinate
or degree of freedom, e.g. 0=̂x, 1=̂y, the second and fourth indices of the unassembled
entities indicate the local node number (node number within the element m), nj is the
global node number of the local node with local number j and dof is the number of
degrees of freedom of each node1.
Finally, the resulting system is written as,

K ·∆xû = R (2.5.14)

1This assembling scheme only works if each node has the same number of degrees of freedom. Fur-
thermore, the scheme is for 1 as the first index of arrays, node numbering etc. In cases where array
indices start at 0, the (nj/l − 1) changes to nj/l.
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2. Finite Element Method

(1)

(2)

(3)

3

6

8

row

column

row

column

1
2

1 2

local matrix

global matrix

5

5

3
4

3 4

12

15
1
2

1 2

dof · (3− 1) + 1 = 5

local node number

global node number

dof · (2− 1) + 2 = 4

dof · (6− 1) + 2 = 12

dof · (8− 1) + 1 = 15

dof=̂degrees of freedom per node

here: dof = 2

6

6

Figure 2.5.1. Assembly of matrix entry corresponding to the second coordinate in local
node (1) and to the first coordinate in local node (2)

2.5.2. Integration of Dirichlet Boundary Conditions

If the value of the quantity sought, e.g. displacements, is known at some point, this is
called a Dirichlet or necessary boundary condition. In mechanics such boundary condi-
tions may be introduced by infinitely stiff support, where displacements are zero a priori.
Another source of Dirichlet boundary conditions is the exploitation of a mechanical sys-
tem’s symmetry. In displacement driven analysis, “load” application is also performed
by Dirichlet boundary conditions, whereby in this case the prescribed displacements are
different from zero. A proper way to impose this kind of boundary conditions is given
in (Wu et al. 2008).
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2. Finite Element Method

2.6. Nonlinear Problem

In case of a significant magnitude of nonlinearity in equation (2.5.1) simple linearisation
and solution of the resulting linear system of equations is not sufficient to obtain high
quality results. One approach to the solution of nonlinear systems of equations is the
Newton-Raphson method. The concept of this method has already been introduced in
Section 1.5.1. Below, the Newton-Raphson method will be written in terms of FEM
expressions.

2.6.1. The Newton-Raphson Algorithm Applied in Finite Element
Analysis

Comparing equations (1.5.1) and (2.5.14) we find that,

∂F

∂x

∣∣∣∣
0

=̂ K|0 (2.6.1a)

∆x0=̂ ∆xû|0 (2.6.1b)

F (x0)=̂ R|0 (2.6.1c)

where |0 indicates terms from the linearisation at the initial state. The Newton-Raphson
algorithm implemented for the pure spatial motion problem, as it has been implemented
for this work, is listed in Table 2.1.
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2. Finite Element Method

Table 2.1. Newton-Raphson Algorithm for Finite Element Method

1: set CONVERGED = False
2: choose initial guess û0 = 0, set iteration counter n = 0
3: while CONVERGED = False do
4: compute deformation gradient F (x)|n for each integration point of each

element
5: compute element right hand side R(m)(F )

∣∣∣
n

and element stiffness matrix

K(m)(F )
∣∣∣
n

6: assemble global right hand side R(F )|n and stiffness matrix K(F )|n
7: integrate Dirichlet boundary conditions BCn as proposed in (Wu et al.

2008)2

8: Solve K(F )|n ∆xû|n = R(F )|n
9: update nodal data and integration points: Coordinates x̂n+1 = x̂n +

∆xû|n, Jacobians, ...
10: check convergence with an appropriate criterion, e.g. absolute value of

“unbalanced energy” εn = |∆xû|n · R(F )|n|
11: if εn ≤ tol then
12: set CONVERGED = True
13: else
14: increment iteration counter n = n+ 1
15: end if
16: end while
17: write out the results, postprocessing

2usually, for n = 0 the “driving” displacement is the boundary condition, if n > 0 all nodes with
Dirichlet boundary condition have ∆ûn = 0, since after the initial displacements there are no more
increments in their displacement.
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3. r-Adaptivity

In chapter 2 the FEM was applied to the spatial motion problem only. R-adaptivity
means the solution of the spatial motion and material motion problem with the aim of
further minimising the total energy resulting in a smaller error. The nature of the r-
adaptivity problem contains several numerical difficulties as highlighted in (Askes et al.
2004) and (Mosler and Ortiz 2006). The r-adaptivity problem is not strictly convex in
contrast to the classic FEM approach to the pure spatial motion problem. Furthermore
the resulting systems may contain singularities differing from one iteration to another
(Askes et al. 2004). These difficulties motivate different regularisation approaches and
solution strategies, which will be compared by means of example problems. Beside
the class of strategies based on the already introduced concept of linearisation and
application of the Newton-Raphson scheme there exist other methods to solve nonlinear
problems that sometimes do not require any linearisation in the classic sense at all, e.g.
nonlinear conjugate gradient type methods used in (Thoutireddy 2003). However, this
work is restricted to the former class of strategies.

3.1. Linearisation of Spatial and Material Motion
Quantities

Seeking stationary points of the total energy Π, the starting point to r-adaptivity is,

δΠ = δxΠ + δXΠ = 0 (3.1.1)

the full linearisation consists of four linearised terms,

δΠ(x+∆x,X +∆X)
.
= δΠ(x,X) +∆δΠ

= δΠ(x,X) +∆xδxΠ +∆xδXΠ +∆XδxΠ +∆XδXΠ
(3.1.2)
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3. r-Adaptivity

Starting from equation (1.3.10),

∆xδxΠ =

∫
V0

δxFij ∆xPij dV0

=

∫
V0

δxFij (∂FP )ijkl ∆xFkl dV0

where,

(∂FP )ijkl =
∂Pij
∂Fkl

(3.1.3)

with P expressed for the spatial motion problem. Using,

Pij =
∂Ψ int0

∂Fij
(3.1.4)

δxϕ = δϕ∗ (3.1.5)

δxF =
∂δϕ∗

∂X
(3.1.6)

above equation can be written as,

∆xδxΠ =

∫
V0

∂δϕ∗i
∂Xj

∂2Ψ int0

∂Fkl∂Fij

∂∆ϕ∗k
∂Xl

dV0 (3.1.7)

The linearisation with respect to material coordinates X of the variation with respect
to spatial coordinates x is done starting from equation (1.3.11), since this avoids the
linearisation of the infinitesimal volume dV0.

∆XδxΠ =

∫
Vt

∂δxϕi
∂xj

∆Xσij dVt

=

∫
Vt

∂δϕ∗i
∂xj

∂σij
∂fkl

∆Xfkl dVt

=

∫
Vt

∂δϕ∗i
∂Xm

F−1
mj

∂σij
∂fkl

∂∆Φ∗k
∂xl

dVt (3.1.8)

As shown in Section 1.3.1 Cauchy stresses σ can be written as,

σij = Ψ intt δij − fki
∂Ψ intt

∂fkj
(3.1.9)

Inserting equation (3.1.9) with index k replaced by n, equation (3.1.8) becomes,

∆XδxΠ =

∫
Vt

∂δϕ∗i
∂Xm

F−1
mj

(
δij

∂Ψ intt

∂fkl
− ∂fni
∂fkl

∂Ψ intt

∂fnj
− fni

∂2Ψ intt

∂fkl∂fnj

)
∂∆Φ∗k
∂xl

dVt (3.1.10)
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3. r-Adaptivity

The next step is the linearisation with respect to x of the variation with respect to
material coordinates X:

∆xδXΠ =

∫
V0

∂δXΦi
∂Xj

∆xΣij dV0

=

∫
V0

∂δΦ∗i
∂Xj

∂Σij

∂Fkl
∆xFkldV0

=

∫
V0

∂δΦ∗i
∂xm

f−1
mj

∂Σij

∂Fkl

∂∆ϕ∗k
∂Xl

dV0 (3.1.11)

Again, expressing the Eshelby stress tensor as a derivation of the internal potential
energy using equation (1.4.8), equation (3.1.11) can be written in terms of the internal
energy:

∆xδXΠ =

∫
V0

∂δΦ∗i
∂xm

f−1
mj

(
δij
∂Ψ int0

∂Fkl
− ∂Fni
∂Fkl

∂Ψ int0

∂Fnj
− Fni

∂2Ψ int0

∂Fkl∂Fnj

)
∂∆ϕ∗k
∂Xl

dV0 (3.1.12)

Finally, linearisation of variation, both with respect to material coordinates X is ob-
tained in a similar manner,

∆XδXΠ =

∫
Vt

δXfij ∆Xpij dVt

=

∫
Vt

δXfij
∂pij
∂fkl

∆Xfkl dVt

=

∫
Vt

∂δΦ∗i
∂xj

∂pij
∂fkl

∂∆Φ∗k
∂xl

dVt (3.1.13)

and using

pij =
∂Ψ intt

∂fij
(3.1.14)

yields,

∆XδXΠ =

∫
Vt

∂δΦ∗i
∂xj

∂2Ψ intt

∂fkl∂fij

∂∆Φ∗k
∂xl

dVt (3.1.15)

Remembering,

δxFij =
∂δϕ∗i
∂Xj

δXfij =
∂δΦ∗i
∂xj

32



3. r-Adaptivity

the introduced linearisations fit into a matrix scheme as given below,

∆δΠ=̂

∫
V

[
δxFij δXfij

]
·
[

Ãijkl F−1
jm b̃imkl

f−1
jmB̃imkl ãijkl

]
·
[
∆xFkl
∆Xfkl

]
dV (3.1.17)

with,

Ãijkl =
∂2Ψ int0

∂Fkl∂Fij
(3.1.18a)

b̃ijkl = δij
∂Ψ intt

∂fkl
− ∂fmi
∂fkl

∂Ψ intt

∂fmj
− fmi

∂2Ψ intt

∂fkl∂fmj
(3.1.18b)

B̃ijkl = δij
∂Ψ int0

∂Fkl
− ∂Fmi
∂Fkl

∂Ψ int0

∂Fmj
− Fmi

∂2Ψ int0

∂Fkl∂Fmj
(3.1.18c)

ãijkl =
∂2Ψ intt

∂fkl∂fij
(3.1.18d)

Note that in the scheme from equation (3.1.17) the integration domains are not specified,
and therefore some additional operations presented in the next section are necessary to
obtain a scheme of practical use.

3.1.1. Discretised r-Adaptivity Equations

Now, to obtain these linearisations in terms of virtual and incremental displacements
δϕ∗, δΦ∗ and ∆ϕ∗, ∆Φ∗, the FEM formulations of the material motion and spatial motion
deformation gradients is used (see Section 2.5, equation (2.5.4)) and the following for
the derivation for δFij):

δxFij = J
(h)
kl J

−1
lj δϕ̂

∗
ik (3.1.19a)

δXfij = J
(h)
kl j

−1
lj δΦ̂∗ik (3.1.19b)

where,
jij = J

(h)
kj x̂ik (3.1.20)

is similar to equation (2.5.8). Combining the two Jacobians in each formulation, the
variations and increments read as,

δxFij = Jkjδxϕ̂
∗
ik (3.1.21a)

δXfij = jkjδXΦ̂∗ik (3.1.21b)

∆xFij = Jkj∆xϕ̂
∗
ik (3.1.21c)

∆Xfij = jkj∆XΦ̂∗ik (3.1.21d)
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3. r-Adaptivity

Using these expressions in equation (3.1.17) and specifying integration domains yields,

∆δΠ
(m)
h =[
δϕ̂∗in δΦ̂∗in

]
·

[ ∫
V

(m)
0

Jnj ÃijklJol dV0

∫
V

(m)
t

Jnj F
−1
jm b̃imkl jol dVt∫

V
(m)
0

jnj f
−1
jm B̃imkl Jol dV0

∫
V

(m)
t

jnj ãijkl jol dVt

]
·
[
∆ϕ̂∗ko
∆Φ̂∗ko

]
(3.1.22)

Now, applying,

Jij =
∂hi
∂Xj

=
∂hi
∂xk

∂xk
∂Xj

=
∂hi
∂xk

Fkj = jikFkj (3.1.23a)

jij =
∂hi
∂xk

=
∂hi
∂Xk

fkj = Jikfkj (3.1.23b)

in equation (3.1.22) yields,

∆δΠ
(m)
h =

[
δϕ̂∗in δΦ̂∗in

]
·

[∫
V

(m)
0

Jnj ÃijklJol dV0

∫
V

(m)
t

jnj b̃ijkl jol dVt∫
V

(m)
0

Jnj B̃ijkl Jol dV0

∫
V

(m)
t

jnj ãijkl jol dVt

]
·
[
∆ϕ̂∗ko
∆Φ̂∗ko

]
(3.1.24)

3.1.2. General Newton Scheme for r-Adaptivity

Seeking a stationary point of the total potential energy can be expressed as,

δΠ = 0 (3.1.25)

or considering nonlinear behaviour and prepared for Newton-Raphson scheme:

0 = δΠ|n + ∆δΠ|n (3.1.26)

∆δΠ|n = − δΠ|n (3.1.27)

Finally, inserting all variations (equilibrium equations (1.3.10) and (1.4.11)) and lineari-
sations (equation (3.1.22)) in the above equation (3.1.27) gives:

[
δϕ̂∗in δΦ̂∗in

]
·

[ ∫
V

(m)
0

Jnj ÃijklJoj dV0

∫
V

(m)
t

Jnj F
−1
jm b̃imkl jol dVt∫

V
(m)
0

jnj f
−1
jm B̃imkl Jol dV0

∫
V

(m)
t

jnj ãijkl jol dVt

]∣∣∣∣∣
n

·
[
∆ϕ̂∗ko
∆Φ̂∗ko

]∣∣∣∣
n

=

−
[
δϕ̂∗in δΦ̂∗in

]
·

[∫
V

(m)
0

JnjPij dV0∫
V

(m)
t

jnjpij dVt

]∣∣∣∣∣
n

(3.1.28)
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Since these equations must hold for all allowed variations, one can write,[ ∫
V

(m)
0

Jnj ÃijklJoj dV0

∫
V

(m)
t

Jnj F
−1
jm b̃imkl jol dVt∫

V
(m)
0

jnj f
−1
jm B̃imkl Jol dV0

∫
V

(m)
t

jnj ãijkl jol dVt

]∣∣∣∣∣
n

·
[
∆ϕ̂∗ko
∆Φ̂∗ko

]∣∣∣∣
n

=

−

[∫
V

(m)
0

JnjPij dV0∫
V

(m)
t

jnjpij dVt

]∣∣∣∣∣
n

(3.1.29)

and obtain the fully linearised equations to the r-adaptivity problem, where ∆ϕ̂∗ and
∆Φ̂∗ are the incremental spatial and material displacements calculated in each Newton-
Raphson iteration.
Instead of using the equilibrium equations (1.3.10) and (1.4.11) one could also have used
equations (1.3.11) and (1.4.12).

Symmetry: Since equation (3.1.29) is derived from a potential Π, the system matrix
corresponding to second order derivatives,[

A b
B a

]
=

[ ∫
V

(m)
0

Jnj ÃijklJol dV0

∫
V

(m)
t

Jnj F
−1
jm b̃imkl jol dVt∫

V
(m)
0

jnj f
−1
jm B̃imkl Jol dV0

∫
V

(m)
t

jnj ãijkl jol dVt

]
(3.1.30)

has to be symmetric and
b = BT (3.1.31)

holds for the off-diagonal block matrices (mixed second order derivatives of scalar po-
tentials are symmetric).

3.1.3. A More Compact Notation

The derivations given above contain rather specific expressions for gradient and Hessian.
In terms of Euler-Lagrange equations, the system given in equation (3.1.29) can be
written as,

−

[
∂Π
∂x
∂Π
∂X

]
n

= −
[
r
R

]
n

=

[
∂r
∂x

∂r
∂X

∂R
∂x

∂R
∂X

]
n

·

[
∆x

∆X

]
n

(3.1.32)

This compact notation will be used in the sequel, if more general aspects of r-adaptivity
are concerned.

3.2. Properties of the Basic r-Adaptivity Problem

All previous chapters and sections dealt with the setup of a proper framework including
equilibrium equations, linearisations and a standard algorithm to solve nonlinear prob-
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3. r-Adaptivity

lems. Now, having all the tools together and applying them to quite simple examples
reveals some minor and major difficulties stemming from the nature of r-adaptivity. In
the upcoming sections the major phenomena one has to deal with, when solving the
discussed r-adaptivity problem, will be presented. As there already exists a popular
model problem (see Figure 3.2.1) used in preceding works, e.g. (Mueller and Maugin
2002) and (Askes et al. 2004), this setting is used for first investigations. In this 2d
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Figure 3.2.1. Model problem 1: square block tension

example plane strain is assumed. The material is of neo-Hookean type with parameters
λ = E/[3(1 − 2ν)] − 2/3µ and µ = E/[2(1 + ν)] with E = 2.0e11Pa and ν = 0.3. The
length L = 1m and thickness d = 1m. The prescribed overall displacement w = 0.5m.
However, this overall displacement will be applied incrementally (10 increments). As
will be shown in the next subsection, these “load-”, or better displacement-increments,
yield interesting effects in material motion and r-adaptivity.

3.2.1. Displacement Increments

For this first study, only two inner nodes (“20”, “22”) were allowed to move in the
material configuration. Observing material displacements for each spatial displacement
increment shows that small spatial displacement increments in general do not yield
small material displacements. Since the problem is symmetric, only node “22” will be
observed. For the resulting spatial and material motion in the y-direction see Table 3.1
and Figure 3.2.2.
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Increment # spat. displ. [m] mat. displ [m]
1 0.0399396 0.0285456
5 0.197885 0.0218019
10 0.391258 0.0143212

Table 3.1. Material displacement and spatial displacement of node “22” at different dis-
placement increments

material displacement

spatial displacement

Displacement increment #

N
o
d
al

d
is

p
la

ce
m

en
t

∆
ŷ 2

2
[m

]

Figure 3.2.2. Material displacement of node “22” decreasing with increasing spatial
displacement

This reproduces a behaviour mentioned in (Askes et al. 2004; Remark 7). Furthermore,
higher material displacements at lower spatial displacements are related to the problem
with singularities discussed in Section 3.2.5.

3.2.2. Convexity

Here all inner nodes are allowed to move in the material configuration and the system
matrix is analysed at some Newton iterations. This yields results different from pure
spatial motion computation where eigenvalues λi of the system matrix are usually posi-
tive. During the first two (“purely spatial”) iterations only the spatial motion problem
is treated, in all following iterations (beginning from number 3) the full r-adaptivity
system is solved. As shown in Table 3.2, negative eigenvalues emerge beginning from
iteration 3. The setup used in this case was the same as before, only the displacement
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(now w = 0.1m) is applied at once (no increments).

Iteration # λmin λmax with r-Adaptivity
1 3.26647640× 1010 8.99231655× 1011 no
2 3.35893754× 1010 8.89363870× 1011 no
3 −1.67829331× 1008 1.39358464× 1012 yes
4 −1.62069864× 1005 1.85436530× 1012 yes
5 −1.87446387× 1013 1.39274754× 1013 yes

Table 3.2. Smallest and largest eigenvalues at different iterations

For this setting, the Newton-Raphson algorithm failed to converge. However, performing
three purely spatial iterations instead of two results in a better conditioned system, the
Newton-Raphson algorithm does converge and all eigenvalues are positive throughout
all iterations.
An indefinite system matrix, in fact, is no exception but the common case. Hence, the
pure r-adaptivity problem is not strictly convex. This is of great importance since strict
convexity of a potential guarantees the existence of a unique local minimum (point of
equilibrium, stationary point). Therefore, the optimisation problem may become more
difficult.
Furthermore, the Newton-Raphson scheme may fail to converge as already illustrated in
Figure 1.5.5.

3.2.3. Boundary Nodes

In the above computations only a few inner nodes were allowed to change their material
position. Now, with the same parameters as used in Section 3.2.2, at first only the
internal nodes are allowed to move in the material configuration. When this first stage
has converged, all inner nodes are fixed and the boundary nodes are allowed to move
tangentially to the boundary. After convergence of the second stage, the internal and
boundary nodes are released and the final solution is obtained. The material motion
boundary condition (for the final stage) are depicted in Figure 3.2.3.

Comparing the resulting total energy at the different stages (see Figure 3.2.4), it is obvi-
ous that the energy release achieved by material motion boundary nodes is significantly
higher than that of inner nodes. In this case, the separation of the overall solution
process into internal-only, boundary-only and overall r-adaptivity was necessary for the
Newton-Raphson solver to converge. However, this strategy does not work in general,
and therefore more sophisticated stabilisation procedures will be introduced below.

The sharp peaks in Figure 3.2.4 result from changes in material boundary conditions.
The total energies at steps 0 to 2 are not shown and therefore, the peak at step 11 seems
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Figure 3.2.3. Model problem 1: material motion boundary conditions
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Figure 3.2.4. Model Problem 1: total potential energy with different material boundary
conditions
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to be a global maximum, however, this is not the case at all.
Applying material boundary conditions in the above manner can help to stabilise the
solver procedure in very simple cases only. Therefore relying on this approach is not
recommended in general.

3.2.4. Stationary Point Outside Admissible Domain

Allowing all nodes except vertices to move in the material configuration shows some
nodes having large material displacements degenerating their elements or even leaving
the material configuration’s borders. Noteworthy, as in Figure 3.2.5, nodes that left
the material domain may return in subsequent iterations. This phenomenon has been

1 2 3

4 5

Node leaving domain and coming back again

Figure 3.2.5. Model Problem 1: node leaving domain but coming back again

observed in overall steps 20 to 24 of the computation of which the setup and the results
were already discussed in Section 3.2.3 and Figure 3.2.4.

More often there exists no admissible solution, since having nodes traversing (or leaving)
the body’s borders or degenerating elements is not the result one is looking for, even if
that would minimise the total energy (Scherer et al. 2007; 2008). This corresponds with
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convexity or non-convexity respectively of the r-adaptivity problem. Figure 3.2.5 only
describes tendencies of domain-leaving phenomenon. In Section 4.5 this problem will be
discussed in more detail.

3.2.5. Singularities

To demonstrate the occurrence of singularities, the current setting has to be adapted.
The mesh of the square block is refined and symmetry is used to solve the problem on a
quarter of the whole block. Herein, L/2 = 1m and w/2 = 0.05m, material and thickness
d remain unchanged. Figure 3.2.6 gives an overview of the adapted example.

w/2

d

L
/2

Figure 3.2.6. Model problem 2: square block tension on quarter system

The pure spatial motion problem yields rather small displacements in the lower right
region in figure 3.2.7. Despite the fact that spatial equilibrium has been obtained before
the first r-adaptivity step, the Newton-Raphson solver diverges immediately. This be-
haviour marks the extremum of the already discussed tendency of large material motion
of nodes with rather small spatial displacement. In (Askes et al. 2004) it is mentioned
that nodes with vanishing configurational forces cause singularities. As a remedy it is
proposed to impose Dirichlet boundary condition on these nodes’ material motion. How-
ever, in (Mosler and Ortiz 2006) it is shown that these nodes are not the only reason for
singularities. In case of small spatial displacements, too “similar” spatial and material
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pure spatial motion solution first r-adaptivity step

Figure 3.2.7. Model problem 2: nodes with too large material displacements

configurations may also cause problems (see section 4.5). This is the case in the above
example, where configurational forces at boundary nodes in tangential direction to the
surface are of the same magnitude as configurational forces of internal nodes. Therefore,
there are no nodes with vanishing configurational forces.
Table 3.3 shows eigenvalues and condition numbers of the Hessian for the last pure spatial
motion step and the immediately following r-adaptivity step. Comparing condition num-

Step |λ|min λmin λmax κ2

last pure spatial 8.538e9 8.538e9 1.032e12 1.209e2
first r-adaptivity 3.024e3 −1.411e4 2.020e12 6.641e8

Table 3.3. Eigenvalues and condition numbers at last pure spatial and first r-adaptivity
step

bers, the Hessian of the first r-adaptivity step is far worse conditioned than the Hessian
of the last pure spatial step. On the other hand, the r-adaptivity Hessian is not positive
definite. Nevertheless, the system is ill-conditioned enough to cause inadmissible mate-
rial displacements, even if it is not singular in a narrower sense. In pure spatial analysis
inadmissible displacements are avoided by applying the load incrementally. However,
these increments only concern the spatial motion problem and the material displace-
ments may even be higher at low increments, as discussed in Section 3.2.1. Hence, other
ways to incrementally apply the “material” load have to be found. Several more or less
successful approaches (solution strategies) will be introduced in the next chapter.
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As pointed out in Section 3.2 there is more to r-adaptivity than just variating an energy
functional and then linearising it. Different strategies to overcome these difficulties have
been proposed by various authors. Probably the most important publications on this
topic are those of Mosler and Ortiz (2006) and Scherer et al. (2007; 2008). In (Kuhl
et al. 2004; Askes et al. 2004) the VALE framework for r-adaptivity was introduced and
prepared for the Newton-Raphson scheme. First proposals have been made, for example
the dynamic selective imposition of material Dirichlet boundary conditions. In (Mosler
and Ortiz 2006) the nature of singularities of the system matrix have been further
investigated and a first regularisation approach has been presented. Subsequently, in
(Scherer et al. 2007; 2008) Scherer et al., introduced more sophisticated regularisation
methods based on fictitious potentials and mesh quality measures. Another aspect is
the type of linearisation and iterative solver procedure. In (Askes et al. 2004) a plain
staggered (completely uncoupled linearisations) as well as a monolithic (coupled, fully
linearised system) Newton-Raphson scheme had been tested. An improved staggered
scheme considering the coupling between spatial and material motion was applied in
(Scherer et al. 2007). In (Mosler and Ortiz 2006) a monolithic scheme making use of line
search and angular criteria was used. The following sections will discuss the approaches
introduced above in more detail.

4.1. Staggered Newton-Raphson Scheme

The staggered scheme from (Askes et al. 2004) solves the pure spatial motion problem
and the pure material motion problem alternatingly.

Performance considerations given in that work show the implications of neglecting the
strong coupling of spatial and material motion. It is important to note that in this first
staggered scheme the spatial motion and material motion were iterated until convergence
was reached before switching the type of motion.

Besides simultaneously solving the fully linearised system another possibility to con-
sider the coupling was given by Scherer et al. (2007). Therein, an improved staggered
scheme has been introduced that uses the implicit dependence of the discrete energy
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functional Πh(X) = Πh(ϕ(X);X). Furthermore, the spatial equilibrium is recovered
after each material motion increment. Now, as Πh is a function of only one variable and
Π∗(ϕ∗(X);X) denotes Πh at spatial equilibrium, the coupled scheme given in equation
(3.1.32) is rewritten:

R∗ =
∂Π∗(ϕ(X);X)

∂X
=
∂Πh(ϕ(X);X)

∂ϕ(X)

∣∣∣∣
ϕ∗,X

· ∂ϕ
∂X

∣∣∣∣
ϕ∗,X

+
∂Πh

∂X

∣∣∣∣
ϕ∗,X

=
∂Πh

∂X

∣∣∣∣
ϕ∗,X

(4.1.1)

∂2Π∗

∂X2 =
∂R∗

∂X
=
∂R∗

∂X

∣∣∣∣
ϕ∗,X

+
∂R∗

∂ϕ

∣∣∣∣
ϕ∗,X

· ∂ϕ
∂X

∣∣∣∣
ϕ∗,X

(4.1.2)

The term that does not occur in equation (3.1.32) is
∂ϕ

∂X
. This term can be computed

as
∂ϕ

∂X

∣∣∣∣
ϕ∗,X

= − ∂r

∂ϕ

∣∣∣∣−1

ϕ∗,X

· ∂r
∂X

∣∣∣∣
ϕ∗,X

, (4.1.3)

which is an expensive operation since it involves the inversion of a matrix and the
multiplication of two square matrices.

Note that because of symmetry (see equation (3.1.31))
∂r

∂X

∣∣∣∣
ϕ∗,X

=
∂R

∂x

∣∣∣∣T
ϕ∗,X

. The

staggered scheme from (Scherer et al. 2007) that also has been used in (Scherer et al.
2008) is given below:

Table 4.1. Staggered r-adaptivity scheme

1: start from state of spatial equilibrium
2: while ||R|| > ε1 do
3: compute deformation gradient matrix using equation (4.1.3)
4: compute material motion gradient R∗ and Hessian ∂R∗

∂X
using equation

(4.1.1) and equation (4.1.2) respectively.

5: solve
∂R∗

∂X
·∆X̂ = −R∗

6: apply material motion increment ∆X̂: Update nodal material coordi-
nates and integration point data

7: recover spatial equilibrium: Standard spatial motion FEM
8: end while

Because it respects the implicit dependence, this scheme uses exactly the same block
matrices (except from ∂ϕ

∂X
) as the coupled (“monolithic”) scheme. In a comparison

of both schemes applied to model problem 1 (see Section 3.2) the convergence rates
of both schemes were approximately equal. However, within a staggered scheme the
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systems of equations to solve have N degrees of freedom whereas within the coupled
scheme systems of 2N equations have to be solved. Assuming a solver of complexity
O(N3) as the procedure’s bottle-neck, the staggered scheme outperforms the coupled
scheme as soon as the recovery of spatial equilibrium takes less than approximatetly five
iterations which is the case for most staggered iterations.

4.2. Monolithic Newton-Raphson Scheme

In contrast to staggered schemes, in monolithic schemes it is not necessary to regain
spatial equilibrium after solving the material motion problem as both problems, spatial
and material motion, are solved simultaneously. Therefore, except for the matrices that
have to be assembled (see Section 3.1.2) the procedure is the same as for standard spatial
motion FEM. However, while for staggered schemes the system of equations is of size N ,
for monolithic schemes it is of size 2N . So, the former method results in a higher number
of less expensive iterations (more systems to solve). Assuming an overall complexity for
one iteration (assembling and solving one system of equations) of O(N3), solving about
eight systems of equations in the staggered scheme causes the same effort as solving one
system in the monolithic scheme. The coupled scheme might be beneficial in case of
line search methods, as for each line search step material and spatial configuration have
to be updated, before the internal potential energy can be computed. Latter updates
involve solving systems of equations to recover spatial equilibrium after each material
motion update.

4.3. Line Search

Because of the limitations of the Newton-Raphson scheme concerning starting points
not close to the final solution, a frequently used class of tools to “globalise” the stan-
dard Newton-Raphson scheme are line search methods. All line-search-enhanced Newton
methods have in common that they use the increment obtained by the Newton-Raphson
scheme, the Newton direction, and take this direction to find the best increment deter-
mined by an appropriate criterion. The range of scaling factors and the distribution of
line search points are the main differences between line search methods. Furthermore,
many methods use an angular criterion to ensure that the Newton direction is a de-
scending direction. An introduction into line search methods is given in (Ulbrich and
Ulbrich 2011). The line search algorithm used in this work is presented in Table 4.2.
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Table 4.2. Line search algorithm

1: obtain Newton direction ∆x through a standard Newton iteration
2: set SUCCESS = False
3: set scaling increment ∆s
4: set initial scaling s = ∆s
5: set best scaling sbest = 0
6: while SUCCESS == False and s ≤ 1 do
7: apply increment s∆x, update nodal data and integration points
8: compute total potential energy change ∆Πh = Πh(sbest)−Πh(s)
9: if ∆Πh < 0 then

10: if s > 0 then
11: SUCCESS = True
12: else
13: break
14: end if
15: else
16: sbest = s
17: s = s+∆s
18: end if
19: end while
20: return SUCCESS, sbest

Since this algorithm has not been applied in every example, its use is mentioned in the
example’s or figure’s description explicitly. The main purpose was to produce plots of
energy over the scaled increment to better understand the problem’s behaviour. It also
has been more or less successfully used to stabilise the solution procedure. Although
in some cases the convergence behaviour had been improved, the presented line search
method turned out to be insufficient to overcome all solver failures.

4.4. Selective Material Motion Restriction

As outlined in (Mosler and Ortiz 2006) there are very few cases where the full linearised
system (3.1.29) can be solved without means of stabilisation. To overcome singularities
arising from nodes with (nearly) vanishing material motion residual, selective fixation
of such nodes has been proposed. A special subclass of that kind of nodes are those
located on symmetry axes or planes. They may cause problems when numeric errors
destroy symmetry. The fact that symmetry is often used to reduce computational effort,
for example by doing analysis on only a quarter of the original model and introducing
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boundary conditions at symmetry axes or planes, indicates the special role of “symmetry
nodes“ for r-adaptivity as some kind of “boundary nodes inside the domain“.

Model problem 1 as introduced in Section 3.2 will be used to demonstrate the effects of
this strategy. For this purpose, a minimal ratio β has to be defined, to filter (material)
degrees of freedom that have to be removed. The filtering condition reads as,

β ·max(|RHSmaterial|) ≤ |RHSmaterial| ≤ max(|RHSmaterial|) (4.4.1)

where RHSmaterial denotes the set of Right-Hand-Side (RHS) values corresponding to
the material motion problem. |RHSmaterial| denotes the set of absolute RHS values
corresponding to the material motion problem.

The evolution of the final solution when the presented strategy is applied is depicted in
Figure 4.4.1. Herein, the filter ratio was set to β = 0.7. All “material-dofs” not fulfilling
the filtering condition given in equation (4.4.1) were removed by restricting their motion
via Dirichlet boundary conditions.
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Figure 4.4.1. Model problem 1 - strategies: selecting nodes with high configurational
forces, total energy and residuals

Choosing the selection parameter β sufficiently large (β = 0.5 failed), the computation
converges without additional stabilisation such as line search methods. However, con-
vergence behaviour is rather weak. The final solution is identical to the results obtained
in Section 3.2.3.

Enhancing this method by extending the Newton-Raphson algorithm with a simple line
search routine allows lower values for β. Figure 4.4.2 shows a comparison of the potential
energy and residuals over iterations for this strategy solved with the line search enhanced
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Newton-Raphson solver and different parameters β. As frequently altering material
motion boundary conditions affect convergence in a negative manner, lower values for
β are beneficial. Despite these promising results, this method fails when applied to
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Figure 4.4.2. Model problem 1 - strategies: selective node fixation with line search, com-
parison of fixation parameters

model problem 2 and shows a behaviour approximately similar to the one depicted in
Figure 3.2.7. Therefore, in the following sections more sophisticated methods will be
introduced.

Remark 4.1. Total energy, residuals and convergence criteria: In traditional spatial
motion analysis an unbalanced energy type criterion such as |∆u · r| < tol is well suited
convergence criterion. However, if a problem is not strictly convex, a solution may be a
local minimum, a local maximum, a saddle point or a neutral state. Therefore it may be
also necessary to validate results by evaluating the total energy or total energy change
along the Newton increment. In the above example it turned out that at low residuals
the change of potential energy is too small to be evaluated with double precision floating
point numbers. Thus, validation by means of total energy may not be possible in general.
A line search plot of discrete energy Πh at iteration 27 with β = 0.2 is depicted in Figure
4.4.3. All eigenvalues of the Hessian at this iteration are positive.
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Figure 4.4.3. Model problem 1 - strategies: selective node fixation with line search,
change of potential energy at iteration 27

4.5. Regularisation and Stabilisation

Besides vanishing material motion residuals however, Mosler and Ortiz (2006) pointed
out that there is one more source of singularities. In the case of regions with rather small
spatial displacements there is only a very small difference between spatial and material
configuration and so the same holds for derivatives with respect to spatial and material
coordinates. Since both derivatives are part of the linearised system, they yield almost
equal blocks in each of the four sub-matrices A, a,B and b from (3.1.30) resulting in
almost linear dependent equations and an ill-conditioned system.
This section deals with several approaches to regularise the optimisation problem. These
methods can be applied to both staggered and monolithic schemes.

4.5.1. Viscous Regularisation

Mosler and Ortiz (Mosler and Ortiz 2006) used a viscous regularisation term only de-
pending on material coordinates:

Πvisc
n+1 = Πn+1 + α ‖Xn+1 −Xn‖2 (4.5.1)
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resulting in,

∂Πvisc

∂X

∣∣∣∣
n+1

=
∂Π

∂X

∣∣∣∣
n+1

+ 2α (Xn+1 −Xn) (4.5.2)

∂2Πvisc

∂X2

∣∣∣∣
n+1

=
∂2Π

∂X2

∣∣∣∣
n+1

+ 2α I (4.5.3)

where I is the unit tensor.
This regularisation not only overcomes problems of rank-deficiency but also makes it
possible to obtain a strictly convex problem, given that parameter α is large enough.
On the other hand, α influences convergence behaviour. While being close to the exact
solution, when displacement increments Xn+1−Xn are small, the viscous term has only
minor influence, in case of large increments and high values for parameter α the viscous
term significantly alters the overall behaviour. In fact, when the additional term on
the RHS becomes dominant, the method fails. This may be induced by bad predictors
for the unknown Xn+1 −Xn or too large values for α. Therefore, as Mosler and Ortiz
pointed out, α has to be chosen with care. Aiming for a positive definite system, one
has to ensure that all eigenvalues are positive and therefore to choose α large enough.
Hence, for finding the smallest parameter α that yields a positive definite system, one
has to compute the smallest eigenvalue and increase α if this eigenvalue is not positive
or larger than a given tolerance. However, this procedure is rather expensive and has
to be repeated for each iteration. Thus, it may be beneficial to estimate α high enough
and adapt heuristically in cases of weak convergence behaviour. The latter approach
should be used with care since the sequence of values determines whether the procedure
converges or not. Furthermore, the line search enhanced Newton-Raphson procedure
used in the previous section will be used again in the following example. As shown in
Figure 4.5.1 the problematic nodes (see Section 3.2.5, Figure 3.2.7) in the lower right
region reduced their material motion. However, large material motion of nodes in the
upper left region induce degenerated elements. At this state, configurational forces
have been reduced, but their magnitude is still too high. Since the proposed method is
intended to not influence the final solution, setting the parameter α to higher values,
will not prevent nodes from leaving the domain.

In Section 3.2.4, it has been outlined that large material displacements may induce
degenerated elements or even let inner nodes leave the domain. Viscous stabilisation is
in general not able to prevent these effects and thus, material motion has to be restricted
by additional means, e.g. restricting incremental material motion.

4.5.2. Fictitious Potentials

Acknowledging that in many cases the solution (stationary point) cannot be obtained
due to inadmissible material displacements, Scherer et al. (2008) proposed a stabilisation
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no problematic nodes in this region any more

unadmissible material displacement (inner node leaving domain)

Figure 4.5.1. Model problem 2 (deformed mesh) - strategies: viscous regularisation, α =
2× 108 yields inadmissible material displacements

term that acts as a barrier function limiting material displacements. This stabilisation
term is a type of “fictitious potential”. The idea behind this approach is the addition
of a potential introducing an artificial material motion stiffness between the material
configuration and the reference configuration. Thereby, this stiffness tends locally to
infinitely high values, if an element’s deformation reaches a predefined level and therefore,
this artificial stiffness is intended to act as a barrier for material motion. In (Scherer
et al. 2008) a neo-Hooke-like potential Ψ+ has been constructed:

Ψ+ =
1

2(1− δ)
f∗ij f∗ij − ln (jr − δ) (4.5.4)

Π+(m)
=

∫
V

(m)
r

Ψ+dVr (4.5.5)

where

δ is a limit for change of volume,

f∗ij denotes the deformation gradient mapping from the reference configuration to the
material configuration and
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jr is the determinant of f∗ij.

Following Section 1.2.1,

f∗ij =
∂Φi
∂ξj

(4.5.6)

Since this fictitious potential considers constraints of the r-adaptivity solution, the new
(constrained) overall total energy Πc that will be subjected to minimisation is written
as,

Πc = Π + γ Π+ (4.5.7)

Herein, γ is a weighting parameter similar to α in the viscous stabilisation approach.
However, in comparison with the viscous regularisation, the fictitious potential approach
inherently misses the property to lose influence when the Newton-Raphson procedure
converges. On the one hand, this behaviour ensures that constraints such as admissible
elements are pertained but on the other hand it counteracts minimisation of the total
inner potential energy. Hence, it is reasonable to lower γ after each successful Newton
run and raise γ in case of failures (Scherer et al. 2008).

Remark 4.2. The term barrier function refers to a whole class of solution methods for
optimisation problems, constrained by (nonlinear) inequalities. In contrast to penalty
methods barrier methods do not allow violation of inequality constraints. This is
achieved through replacing inequality constraints with functions containing singulari-
ties. Thus, they may behave more problematically than penalty methods but prevent
inadmissible solutions. Detailed information on barrier methods is available in Boyd and
Vandenberghe (2004).

4.5.2.1. Variations of Fictitious Potential

The first order variation with respect to material coordinates reads as,

δΠ+ = δXΠ
+ =

∫
Vr

∂Ψ+

∂f∗ij
δXf∗ij dVr

=

∫
Vr

∂Ψ+

∂f∗ij

∂δΦ∗i
∂ξj

dVr. (4.5.8)

The discretised form,

δΠ+
h

(m)
=

∫
V

(m)
r

δΦ̂∗ik
∂Ψ+

∂f∗ij

∂hk
∂ξj

dV (m)
r

= δΦ̂∗ik

∫
V

(m)
r

∂Ψ+

∂f∗ij
j∗kj dV (m)

r . (4.5.9)
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The linearisation with respect to material coordinates yields,

∆δΠ+
h

(m)
= δΦ̂∗im

∫
V

(m)
r

j∗mj
∂2Ψ+

∂f∗kl∂f∗ij
j∗nl dV

(m)
r ∆Φ̂∗kn. (4.5.10)

The given variation and linearisation are completely compatible with equation 3.1.27
and therefore, can easily be integrated into the basic schemes.

4.5.2.2. Fictitious Potential Method Applied to Model Problem 2

For all examples within this section, the volume change parameter δ was set to 0.1. A
value of δ = 0.05 allowed nodes to leave the domain as already observed in Section 4.5.1.
This may occur because the evaluation of all integrals is done by Gaussian quadrature,
where function values are evaluated at certain interior points (Gauss points) only. The
highly nonlinear and nonpolynomial character of the fictitious energy function is not
integrated exactly in general and therefore, not only the gradient and the Hessian may
contain significant errors, but all admissibility checks based on Gaussian quadrature of
the fictitious energy function are not exact. Using better suited integration methods
or at least a higher number of Gauss points may improve the overall performance of
the fictitious potential method. The mesh quality approach presented in the upcoming
section may also benefit from proper integration methods. However, for linear triangular
elements, Jacobians and other derivatives are constant over the element. Thus, the
admissibility checks based on numerical integration are exact for these elements.

The figures 4.5.2 and 4.5.3 show a comparison of the fictitious potential approach with
and without line search. The energy graphs in Figure 4.5.2 start from the converged
solutions for the initial weighting parameters γ. Note that line search allows a signif-
icantly lower initial weighting parameter. Hence, the graph corresponding to the line
search version starts at a lower discrete total energy Πh.

While the final solution of both approaches is nearly identical, the line search enhanced
procedure allows a lower initial weighting parameter. However, the number of iterations
until convergence (marked by coloured circles) is higher when line search is used. Figure
4.5.3 shows stagnating weighting parameters somewhere around 2 × 106 for both ap-
proaches and line search does not show any advantage in this region. In fact, there is a
rather significant kink in both figures, from which any further reduction of the weighting
parameter is computationally expensive compared to the rather small improvement in
energy Πh. Figure 4.5.4 compares the first adapted mesh and the final mesh obtained
by both procedures. Here again, the first solution shows significant differences, the final
result is practically identical. Noteworthy, the nearly degenerated element at the left
top of the final meshes is the one causing problems with lower values for δ mentioned
before.
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Figure 4.5.3. Model problem 2 - strategies: fictitious potential, weighting parameters

4.5.3. Mesh Quality-based Regularisation

While the fictitious potential approach shows satisfying regularisation and convergence
properties, it does not take mesh quality into account explicitly. Moreover, decreasing
the weighting parameter may result in admissible (in sense of positive Jacobian deter-
minants) but nearly degenerated meshes. Another regularisation approach introduced
in (Scherer et al. 2007) works with a barrier method based on a mesh quality measure
for triangular and tetrahedral shapes with linear shape functions,

υ(m) =
f∗ij f∗ij

(jr)2/ndim (4.5.11)
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Figure 4.5.4. Model problem 2 - strategies: mesh deformation with and without line
search (material configuration)

whereby the deformation gradient mapping the reference configuration (initial mesh) and
the material configuration (deformed mesh) is used. This causes the quality measure to
be only relative and therefore the quality of single elements depends on their quality at
the initial state. Note that only for linear shape functions υ is constant on each element
and can be used as a measure for shape quality directly. Thus, within this thesis,
the mesh quality approach presented will be applied to linear triangular or tetrahedral
shapes only.
The global barrier function constructed from 4.5.11 reads as,

Π+(m)
=

−1

δ − υ(m)−1 (4.5.12)

The further implementation is the same as for fictitious potentials.
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4.6. Comparison of Mesh Quality and Fictitious
Potential Approaches

To demonstrate the different behaviour of the mesh quality and of the fictitious potential
approach, a new model problem is introduced (see Section 4.6.1). The calculations were
performed with staggered and coupled schemes, all without line search methods.

4.6.1. Model Problem 3: Cracked Specimen

This example was shown in (Scherer et al. 2007) and (Scherer et al. 2008). The values
used in this thesis are based on (Scherer et al. 2008). The full problem as used in these
publications is depicted in Figure 4.6.1.

w

d
2L

L

w

Figure 4.6.1. Model problem 3: cracked specimen, full problem

Since the problem is symmetric, all of the following computations were performed with
the equivalent half system. Figure 4.6.2 shows the mesh and spatial boundary conditions
of model problem 3.

Mesh and spatial boundary conditions: The length L = 10m, thickness d = 1m and
the prescribed deformation w = L/40 = 0.25m. The type of spatial boundary conditions
is depicted in Figure 4.6.2.
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Figure 4.6.2. Model problem 3: cracked specimen, spatial motion boundary conditions

Material motion restrictions: Boundary nodes were allowed to move tangentially to
the boundary, material motion of all vertices is fully restricted. All other nodes do not
have any restrictions at all.

Material properties: For this example, a neo-Hookean type material with parameters
λ = 1.15× 103Pa and µ = 7.69× 102Pa is used. These parameter values correspond to
a Young’s modulus E = 2.0× 103Pa and a Poisson’s ratio ν = 0.3.

4.6.2. Improving Performance of the Mesh Quality Approach

The method presented now can be applied on fictitious potential approaches too. How-
ever, since the mesh quality approach seems preferable in terms of mesh quality, it will
be used to demonstrate this performance improving technique.
The main drawback of the barrier methods introduced is their need of a sequence of
calculations with increasing weighting parameters. Starting with weights that are too
low yields an ill-conditioned system since their regularisation property strongly depends
on the weighting parameter. Considering the weak convergence behaviour especially
for lower weights, the procedures presented before (no matter if they use staggered or
monolithic schemes) are expensive. Remembering the viscous regularisation method
discussed in Section 4.5, with good regularisation behaviour but yielding inadmissible
meshes (see 4.5.1), the idea is to use viscous regularisation as the main regularisation
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method (applied on the Left-Hand-Side (LHS) only) and the mesh quality based barrier
method (LHS and RHS) for conserving mesh quality and admissibility. This combination
of viscous regularisation and barrier methods significantly reduces the initial weighting
parameter for the barrier function and therefore the overall computational effort.
The algorithm is outlined in Table 4.3.

Table 4.3. Combination of barrier methods and viscous regularisation

1: set ALPHA INCREASED = False
2: set viscous regularisation weight to initial value: α = α0

3: set viscous regularisation updating parameter: 0 < ηreg < 1
4: solve spatial motion problem
5: FIRST R STEP = True
6: while ||R|| > ε1 or FIRST R STEP do
7: FIRST R STEP = False
8: assemble r-adaptivity equations for staggered or coupled scheme
9: apply viscous regularisation on the LHS using equation (4.5.3)1

10: compute incremental displacements (whether with staggered or coupled
scheme)

11: check mesh properties: e.g. element distortion, Jacobians
12: while mesh inadmissible do
13: increase viscous regularisation weight: α← α/ηreg

14: apply viscous regularisation on the LHS using equation (4.5.3)
15: set ALPHA INCREASED = True
16: compute incremental displacements
17: check mesh
18: end while
19: compute new ||R||k (convergence criterion for material motion)
20: if ALPHA INCREASED == False then
21: compute convergence rate:

CR =
(
||RHS||k − ||RHS||k−1

)
/||RHS||k−1

22: if CR > CRlimit then
23: decrease viscous regularisation weight: α← α · ηreg
24: end if
25: end if
26: end while

1The viscous term on the RHS of equation (4.5.2) has been omitted because of difficulties arising from
bad predictors.
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4.6.3. Optimality

In the present case there is an unconstrained problem (the pure r-adaptivity problem)
and a constrained problem formulated in terms of the unconstrained problem plus bar-
rier functions enforcing inequality constraints. The vanishing RHS norm or gradient
norm respectively acts as the optimality condition. Since only the constrained problem
has been solved, the point of optimality has been found for the more or less artificially
constrained problem and a specific weighting parameter γ only. Thus, one has to assume
that the solution obtained is near the solution of the unconstrained problem. However,
lowering the weighting parameter γ can bring the constrained problem near to the un-
constrained one. Consequently, the RHS norm of the unconstrained problem at the final
state obtained by solving the constrained problem is not zero (optimal) in general.
Thus, two quantities will be used to compare solutions obtained by different barrier and
regularisation methods:

• Total potential internal energy Πtot and

• the material gradient norm (||R||) of Πtot that is the norm of the vector of nodal
configurational forces,

both of them evaluated for the unconstrained problem at the final state of the constrained
problem.

Convergence criterion: In all following computations, as convergence criterion for
material motion the (constrained system’s) RHS norm has been used. It has been
preferred over a criterion using unbalanced energy for better comparability with results
given in publications of Scherer et al. (2007; 2008).

4.6.4. Comparison of Solution Strategies

In the following, comparison of different aspects of the fictitious potential, mesh quality
and the combined regularisation approach will be presented in figures 4.6.3 to 4.6.6.

Because not only regularisation approaches but also the scheme types are compared,
the abbreviations “M” denoting monolithic and “S” denoting staggered schemes in the
legends of figures 4.6.3 to 4.6.6 are introduced. “VR” stands for viscous regularisation
and therefore denotes combined methods.

Fictitious potential parameters: This method has been initialised with γ = 0.5,
η = 0.7 and κ = 1.0. The coefficients for reduction and increase of κ have been set to
cred = 0.6 and cinc = 1.6666. Volumetric change is limited a 0.005.
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Mesh quality parameters: The initial weighting parameter was γ = 5.0, the distortion
limiting parameter δ = 0.2. Other parameters: κ = 1.0, cred = 0.6 and cinc = 1.6666.
Additionally, the example was solved using the monolithic scheme with δ = 0.1.

Combined method parameters: γ = 1× 10−4 and δ = 0.2. Other parameters: κ =
1.0, cred = 0.6 and cinc = 1.6666. For the viscous regularisation parameter α = 1× 104

and ηvisc = 0.3. The other parameters κvisc, cviscred and cviscinc were all set to 1.

Convergence limits: A value of ||RHS|| = 1 × 10−8 was set as convergence limit
for every method. Since coupled schemes deal with larger systems, they tend to have
higher residuals even if the solution has the same quality as the solution obtained with
staggered schemes.

Barrier weight update #

Π
h

[J
]

Figure 4.6.3. Model problem 3 - comparison: decrease of discrete potential energy

Due to the rather low initial mesh quality weighting parameter of the combined method,
the highest initial (weight update 0) decrease in potential internal energy has been
achieved. However, in the long run the methods not using viscous regularisation yield
a lower final internal energy. It can be seen that the fictitious potential approach has
some weaknesses concerning nodal configurational forces, since, despite lower final inter-
nal energy than the pure mesh quality approach, the final result yields a higher material
gradient norm ||Rh|| (see 4.6.4). The pure mesh quality approach as well as the fictitious
potential approach were aborted because of stagnation (weight updating factor ηk ≈ 1)
in terms of fictitious potential weight γ. Obviously, the additional viscous regularisation
helped to overcome this deficiency. However, it turned out that an admissible mesh
alone could not prevent occurrence of stagnation. Indeed, the sequence of the viscous
parameters α, determined by initial values and updating factors, has great influence on
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Barrier weight update #
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Figure 4.6.4. Model problem 3 - comparison: norm of nodal configurational forces

convergence. A proper (and computationally cheap) criterion for viscous regularisation
updating has not been found. Especially the final results obtained by both combined
approaches cannot competed with those obtained by the pure mesh quality approach.
Thus, there may be some optimisation potential in this naive combined procedure. Line
search methods may be a way out and will be considered in further investigations. Be-
cause of the staggered calculation of material motion and spatial equilibrium, line search
is more expensive for staggered schemes than for coupled schemes. While at any line
search point in Newton direction obtained by a coupled scheme the line search criterion
(e.g. total potential energy) can be computed directly, in case of staggered schemes,
the Newton direction is obtained from the computed material motion. Therefore, when
using staggered schemes, for each line search point the spatial equilibrium has to be
recovered before the criterion can be computed. Consequently, when using line search
the coupled scheme catches up or even outperforms the staggered scheme in terms of
overall computational effort per iteration. Remarkably, the plain mesh quality approach
has a rather weak convergence behaviour and is inferior in every aspect of performance.
However, using the combined approach, the weighting parameter for mesh quality may
be chosen lower than the value reached by the pure mesh quality approach. Unfor-
tunately, a lower barrier weight does not necessarily mean better results in terms of
internal energy and material forces. The main advantage of the combined approach is
the resistance against stagnation of the Newton-Raphson solver. Note that Figures 4.6.3
to 4.6.6 consider successful runs only.

Remark 4.3. Methods not using viscous regularisation may suffer from stagnation dur-
ing the Newton-Raphson procedure. Therefore, a stagnation detection and additionally,
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Barrier weight update #

B
ar

ri
er

w
ei

gh
t
γ

[-
]

Figure 4.6.5. Model problem 3 - comparison: decrease of weighting parameters
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Figure 4.6.6. Model problem 3 - comparison: interations until convergence for each
weight update

an upper limit for the number of Newton iterations were applied. If the procedure had
stagnated or not converged within that limiting number of iterations, the weighting pa-
rameter γ was increased and Newton-Raphson procedure was restarted. Only successful
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(meaning converged within the maximum number of iterations) Newton-Raphson pro-
cedures were considered in Figures 4.6.3 to 4.6.5. The maximum number of iteration
per weight update was set to 80, which can be seen in Figure 4.6.6.
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Figure 4.6.7. Model problem 3 - comparison: Accumulated iterations of successful
Newton-Raphson procedures

Finally, Figure 4.6.8 shows the final meshes. The final mesh belonging to the pure
mesh quality method with limit δ = 0.1 is not depicted, because this setup suffered from
stagnation in weight updates and did not yield interesting results. Whether an approach
used a staggered or a monolithic scheme had no significant influence on the final mesh
as demonstrated by meshes c) and d) in Figure 4.6.8.
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a) b)

c) d)

Figure 4.6.8. Model problem 3 - comparison: final meshes obtained with fictitious po-
tential approach a), mesh quality approach b) and combined method with
staggered c) and monolithic scheme d)

64



5. Conclusion

Starting from a variational ALE formulation applied to hyperelastostatics a variational
framework for r-adaptive FEA has been presented. The solution method is based on the
Newton-Raphson procedure. At first, the plain r-adaptivity framework was applied to
very basic examples and soon it turned out that there are some numerical difficulties such
as indefinite system matrices. These numerical problems were demonstrated and dis-
cussed on various simple examples. Then several regularisation approaches to overcome
these difficulties introduced by other authors were tested and compared. Continuing with
regularisation methods, a rather simple combination of a viscous regularisation and a
mesh-quality-based approach was introduced. Finally, the most promising approaches
were applied to the model problem of a cracked specimen.

As discussed in Section 3.2, r-adaptive FEA yields several challenges on the solution
algorithm. In fact, regularisation and stabilisation methods have great influence on the
overall performance. The most promising regularisation approaches are based on barrier
methods. However, the barrier functions introduced were suitable for linear triangular
and tetrahedral shapes only. Furthermore, the computational efficiency of the barrier
methods presented needs further improvement. The combination of barrier methods
and viscous regularisation seems promising concerning performance. The unsatisfying
behaviour of the combined method concerning energy minimisation observed in Section
4.6 may result from the non-convexity of the r-adaptivity problem. A further conse-
quence of non-convexity is that the Newton-Raphson method may converge to a saddle
point instead of a local minimum. Furthermore, there may exist several local minima.
Consequently, a stationary point obtained by a Newton-Raphson type procedure is not
guaranteed to be the “best” result concerning energy minimisation in the presented
vALE r-adaptivity framework.
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Appendix A.

Derivations

A.1. Basics

Before the neo-Hookean material specific derivatives used in this work will be derived,
some basic operations and techniques are shown.

Derivative of a tensor determinant with respect to the tensor itself (Bonet and
Wood 1997)

J = detF

∂J

∂F
= J · F−T (A.1.1)

∂J

∂Fij
= J fji, (A.1.2)

and using the chain rule

∂ ln J

∂Fij
=
∂ ln J

∂J

∂J

∂Fij

=
1

J
J fji = fji. (A.1.3)

This also enables to compute,

∂ 1
J

∂Fij
= − 1

J2

∂J

∂Fij

= − 1

J
fji. (A.1.4)
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Derivative of a tensor with respect to its inverse

Fimfmj = δij

∂ (Fimfmj)

∂fkl
= 0 → using the product rule

∂Fim
∂fkl

fmj = −Fim
∂fmj
∂fkl

= −Fimδmkδjl | · Fjn

∂Fim
∂fkl

δmn = −FimδmkδjlFjn = −FikFln | n→ j

∂Fij
∂fkl

= −FikFlj, (A.1.5)

and swapping i and j yields the derivative of the transpose

∂Fji
∂fkl

= −FliFjk. (A.1.6)

A.1.1. Transformation of the Derivative of a Scalar Entity with
Respect to the Deformation Gradient

For this derivation, DF will be written as ∂{•}
∂F

. Remembering equation (1.2.15),

{•}0 = J{•}t

the transformation of ∂{•}0
∂Fij

is obtained as follows:

∂{•}0

∂Fij
=
∂J{•}t
∂Fij

= {•}t
∂J

∂Fij
+ J

∂{•}t
∂Fij

= {•}t Jfji + J
∂{•}t
∂fkl

∂fkl
∂Fij

= {•}0fji − J
∂{•}t
∂fkl

fkifjl, (A.1.7)

In matrix notation this reads as,

∂{•}0

∂F
= {•}0f

T − JfT ∂{•}t
∂f

fT (A.1.8)
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A.2. Derivatives of the Neo-Hookean Energy Density
Function

A.2.1. Spatial Motion Entities

The energy function for compressible neo-Hookean material is given as

Ψ int0 =
1

2
λ0(ln J)2 +

1

2
µ0

(
FijFij − ndim − 2 ln J

)
, (A.2.1)

for the spatial motion problem in terms of the spatial motion deformation gradient.
To obtain the first Piola-Kirchhoff stress tensor, the derivative of the neo-Hookean energy
function with respect to F :

Pij =
∂Ψ int0

∂Fij
=
∂
[

1
2
λ0(ln J)2 + 1

2
µ0

(
FijFij − ndim − 2 ln J

)]
∂Fij

= (λ0 ln J − µ0) fji + µ0Fij, (A.2.2)

with f = F−1. Using equation (1.3.4) and expressions λt = λ0/J, µt = µ0/J ,

σij =
1

J
PikFjk = (λt ln J − µt) δij + µtbij, (A.2.3)

where bij = FikFjk is the left Cauchy-Green tensor.
Recalling the discretised spatial motion linearisations obtained in Section 3.1,∫

V0

JmjÃijklJnl dV0 =

∫
V0

Jmj
∂2Ψ int0

∂Fkl∂Fij
Jnl dV0 (A.2.4)

∫
Vt

jmj b̃ijkl jnl dVt =

∫
Vt

jmj
∂σij
∂fkl

jnl dVt (A.2.5)

Therein,

∂2Ψ int0

∂Fkl∂Fij
=
∂Pij
∂Fkl

= λ0
∂ ln J

∂Fkl
fji + (λ0 ln J − µ0)

∂fji
∂Fkl

+ µ0
∂Fij
∂Fkl

→ using equations (A.1.3) and (A.1.6)

∂2Ψ int0

∂Fkl∂Fij
= λ0fjiflk − (λ0 ln J − µ0) flifjk + µ0δikδjl (A.2.6)

and using J = 1/j,

∂σij
∂fkl

= (λ0 ln(J)δij − µ0δij + µ0bij)
∂j

∂fkl
+ λtδij

∂ ln(1/j)

∂fkl
+ µt

∂(FimFjm)

∂fkl
= (λt ln(J)δij − µtδij + µtbij)Flk − λtδijFlk − µt (FikFlmFjm + FimFjkFlm)

= (λt (ln(J)− 1)− µt) δijFlk + µt (FimFjmFlk − FikFlmFjm − FimFjkFlm) (A.2.7)
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Now, remembering equations (3.1.23),

Jij = jikFkj (A.2.8)

jij = Jikfkj (A.2.9)

replacing all J and j in equation (A.2.4) results in,∫
V0

Jmj
∂2Ψ int0

∂Fkl∂Fij
Jnl dV0 →

Jmj
∂2Ψ int0

∂Fkl∂Fij
Jnl = jmoFoj

∂2Ψ int0

∂Fkl∂Fij
jnpFpl

= jmoFoj [λ0fjiflk − (λ0 ln J − µ0) flifjkµ0δikδjl] jnpFpl
= jmo [λ0δioδkp − (λ0 ln J − µ0) δipδok + µ0δikbop] jnp (A.2.10)

Note that equations (3.1.18) give rather general expressions for the coupling tangent
operators (A.2.5). The tangent operators as implemented for this work: Replacing the
second j in equation (A.2.5),∫

Vt

jmj
∂σij
∂fkl

jnl dVt →

jmj
∂σij
∂fkl

jnl = jmj
∂σij
∂fkl

Jnpfpl

= jmj [[λt (ln(J)− 1)− µt] δijFlk + µt (FioFjoFlk−
FikFloFjo − FioFjkFlo)] Jnpfpl

= jmj [[λt (ln(J)− 1)− µt] δjiδpk
+µt (FioFjoδpk − FikδpoFjo − FioFjkδpo)] Jnp

= jmj [[λt (ln(J)− 1)− µt] δijδkp
+µt (bijδkp − FikFjp − FipFjk)] Jnp (A.2.11)

A.2.2. Material Motion Entities

Analogously, the linearisations of the material motion problem for neo-Hookean material
can be obtained using the neo-Hookean energy function for material motion in the spatial
domain in terms of the material motion deformation gradient,

Ψ intt =
1

2
λt (ln j)2 +

1

2
µt
(
f−1
ij f

−1
ij − ndim + 2 ln j

)
(A.2.12)

and the Eshelby momentum tensor (also see equation (1.4.8)),

Σij = J pikfjk, (A.2.13)
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wherein

pij =
∂Ψ intt

∂fij
=

[
1

2
λt (ln j)2 +

1

2
µt
(
f−1
mnf

−1
mn − ndim + 2 ln j

)]
Fji

+ λt ln jFji + µt

(
∂f−1

mn

∂fij
f−1
mn + Fji

)
=
(
Ψ intt + λt ln j + µt

)
Fji − µtFmiFjnFmn

=
(
Ψ intt + λt ln j + µt

)
Fji − µtCinFjn, (A.2.14)

where Cij = FkiFkj is the right Cauchy-Green tensor (for rectangular Cartesian reference
frame).

Now, having in mind the material motion part of equation 3.1.22,∫
V0

JmjB̃ijklJnl dV0 =

∫
V0

Jmj
∂Σij

∂Fkl
Jnl dV0 (A.2.15)

∫
Vt

jmj ãijkljnl dVt =

∫
Vt

jmj
∂2Ψ intt

∂fkl∂fij
jnl dVt, (A.2.16)

one is interested in

∂2Ψ intt

∂fkl∂fij
=
∂pij
∂fkl

and

∂Σij

∂Fkl
=
∂ (Ψ int0 δij − FmiPmj)

∂Fkl
.

Beginning with,

∂pij
∂fkl

=

(
∂Ψ intt

∂fkl
+ λt ln jFlk + λtFlk + µtFlk

)
Fji

+
(
Ψ intt + λt ln j + µt

) ∂Fji
∂fkl

− µt
(
CinFjnFlk

∂Fmi
∂fkl

FmnFjn + Fmi
∂Fmn
∂fkl

Fjn + FmiFmn
∂Fjn
∂fkl

)
= Fji pkl + [λt (ln j + 1) + µt]FjiFlk

−
(
Ψ intt + λt ln j + µt

)
FliFjk

− µt (CinFjnFlk − FliFmkFmnFjn
−FmiFlnFmkFjn − FmiFmnFlnFjk)

= Fji
[(
Ψ intt + λt ln j + µt

)
Flk − µtCknFln

]
+ [λt (ln j + 1) + µt]FjiFlk

−
(
Ψ intt + λt ln j + µt

)
FliFjk

− µt (CinFjnFlk − FliFmkbjm − Cikbjl − CinFlnFjk) . (A.2.17)
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Then,

∂Σij

∂Fkl
= δijPkl − δmkδilPmj − Fmi

∂Pmj
∂Fkl

= δijPkl − δilPkj − Fmi
∂Pmj
∂Fkl

= (λ0 ln J − µ0) δijflk + µ0δijFkl

− [(λ0 ln J − µ0) δilfjk + µ0δilFkj]

− [λ0δijflk − (λ0 ln J − µ0) δilfjk + µ0Fkiδjl] . (A.2.18)

Next, using equations (A.2.8) and (A.2.9),∫
Vt

jmj
∂2Ψ intt

∂fkl∂fij
jnl dVt →

jmj
∂2Ψ intt

∂fkl∂fij
jnl = Jmofoj

∂2Ψ intt

∂fkl∂fij
Jnpfpl

= Jmo{fojFji
[(
Ψ intt + λt ln j + µt

)
fplFlk − µtCknfplFln

]
+ [λt (ln j + 1) + µt] fojFjifplFlk

−
(
Ψ intt + λt ln j + µt

)
fplFlifojFjk

− µt (CinfojFjnfplFlk − fplFliFmkfojbjm
−Cikfojfplbjl − CinfplFlnfojFjk)}Jnp

= Jmo{
(
Ψ intt + λt ln j + µt

)
δioδkp − µtδioCkp

+ [λt (ln j + 1) + µt] δioδkp

−
(
Ψ intt + λt ln j + µt

)
δipδok

− µt (Cioδkp − δipCok
−Cikδop − Cipδok)}Jnp

= Jmo{
(
Ψ intt + 2λt ln j + λt + 2µt

)
δioδkp

−
(
Ψ intt + λt ln j + µt

)
δipδok

− µt (Cioδkp + δioCkp − δipCok
−Cikδop − Cipδok)}Jnp (A.2.19)

Once again, the coupling tangent operator is not implemented as given in equation
(3.1.18). The coupling tangent operator in its implemented form is derived below: Re-
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placing the second J in equation A.2.18,∫
V0

Jmj
∂Σij

∂Fkl
Jnl dV0 →

Jmj
∂Σij

∂Fkl
Jnl = Jmj

∂Σij

∂Fkl
jnpFpl

= Jmj{(λ0 ln J − µ0) δijFplflk + µ0δijFplFkl

− [(λ0 ln J − µ0) δilFplfjk + µ0δilFplFkj]

− [λ0δijFplflk − (λ0 ln J − µ0) δilFplfjk + µ0FkiδjlFpl]}jnp
= Jmj{(λ0 ln J − µ0) δijδkp + µ0δijbkp

− [(λ0 ln J − µ0)Fpifjk + µ0FpiFkj]

− [λ0δijδkp − (λ0 ln J − µ0)Fpifjk

+µ0FkiFpj]}jnp
= Jmj{[λ0 (ln J − 1)− µ0] δijδkp

+ µ0 (δijbpk − FpiFkj − FkiFpj)}jnp. (A.2.20)

A.3. Material Derivatives of the Fictitious Potential

In Section 4.5.2, equation (4.5.4) the fictitious potential was given as,

Ψ+ =
1

2(1− δ)
f∗ij f∗ij − ln (jr − δ) . (A.3.1)

The first derivative with respect to the mesh deformation gradient f r yields,

p+
ij =

∂Ψ+

∂f∗ij
=

1

(1− δ)
f∗ij −

jr
(jr − δ)

f−1
∗ji . (A.3.2)

Computing the second derivative,

∂p+
ij

∂f∗kl
=

1

(1− δ)
δikδjl −

jr
(jr − δ)

∂f−1
∗ji

∂f∗kl
− jr

(jr − δ)
f−1
∗jif

−1
∗lk +

jr
2

(jr − δ)2
f−1
∗jif

−1
∗lk

=
1

(1− δ)
δikδjl +

jr
(jr − δ)

f−1
∗li f

−1
∗jk +

δjr
(jr − δ)2

f−1
∗jif

−1
∗lk (A.3.3)
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A.4. Material Derivatives of the Mesh Quality Barrier
Function

The mesh quality based barrier function presented in Section 4.5.3, equation (4.5.12)
was given as,

Π+ =
−1

δ − υ−1
, (A.4.1)

with

υ =
f∗ijf∗ij

(jr)
2/ndim , (A.4.2)

where the superscript (m) indicating evaluating on element m is omitted to reduce clut-
ter.

Note that there is need for an integration over the domain, because a single element’s
quality should not depend on its size.
Computing the first derivative with respect to f ∗,

∂Π+

∂f∗ij
=

1

(δ − υ−1)2 υ
−2 ∂υ

∂f∗ij
, (A.4.3)

with
∂υ

∂f∗ij
= 2

(
f∗ij

(jr)
2/ndim −

υ

ndim
f−1
∗ji

)
, (A.4.4)

and the second derivative,

∂2Π+

∂f∗kl∂f∗ij
=

−2

(δ − υ−1)3 υ
−4 ∂υ

∂f∗ij

∂υ

∂f∗kl

− 2

(δ − υ−1)2 υ
−3 ∂υ

∂f∗ij

∂υ

∂f∗kl

+
1

(δ − υ−1)2 υ
−2 ∂2υ

∂f∗kl∂f∗ij
, (A.4.5)

with

∂2υ

∂f∗kl∂f∗ij
= 2

[(
δikδjl

(jr)
2/ndim −

2

ndim
f∗ijf

−1
∗lk

(jr)
2/ndim

)
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Appendix B.

Software

Several software packages and libraries have been used within the code written for the
computations presented in this work. The code itself is mainly written in Python (Ver-
sion 2.x). Numerics were primarily done with “NumPy” and “SciPy” classes. Some
tensor operations were implemented in C++ using Blitz++. Figures were generated
with “matplotlib” and “ParaView”, a VTK viewer. Coding itself was done with Eclipse
using the PyDev plug-in. In fact, the list of software and tools is far too long to be
completely listed here. Nevertheless, an incomplete listing is given below:

• Python

– The Python programming language and interpreter
(http://www.python.org),

– IPython - an interactive Python shell (http://ipython.org) (Pérez and Granger
2007),

– NumPy and SciPy - numeric and scientific library (http://www.numpy.org,
http://www.scipy.org),

– Matplotlib - a plotting library (http://matplotlib.org/) (Hunter 2007),

– PyVTK - library for writing VTK files (http://cens.ioc.ee/projects/pyvtk/),

– PySoofea - Michael Hammer’s Software for Object Oriented Finite Element
Analysis in Python, that delivered the foundations for the final software
(http://www.soofea.org/, Python version unpublished),

– PyLint - code analysis (http://pylint.org/), ...

• Blitz++ - C++ class library for scientific computing featuring index operations
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(http://sourceforge.net/projects/blitz/)

• ParaView - scientific data visualisation (http://www.paraview.org/),

• Eclipse - IDE (http://www.eclipse.org/), with plug-ins for Python
(http://pydev.org/) and C/C++ (Eclipse CDT),

• Gmsh - a mesh generating tool (http://geuz.org/gmsh/),

• Inkscape - vector graphics editor (http://inkscape.org/),

• Kile - a LATEX-editor (http://kile.sourceforge.net/), and many others
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