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Abstract

Spike-based Expectation Maximization (SEM) gives a powerful tool that combines Spike-

Timing Dependent Plasticity (STDP) with Winner-Take-All (WTA) circuits of spiking

neurons to learn implicit generative models for high-dimensional spiking input. However,

the WTA feedback used is still computed and applied in a biologically impossible way.

The thesis at hand addresses this issue by proposing a spiking feedback loop using

realistic neuron models. Computer simulations have been used to evaluate the introduced

spiking WTA circuit. Measures for assessing the designed network’s classification perfor-

mance and its ability to learn a representative generative model have been computed and

compared to SEM reference values. It turned out that SEM behavior can be approximated

for special cases of uniform input distributions.

Throughout the designed WTA circuit, biologically plausible spiking neuron models

have been used and parameters were set to be within a biologically reasonable range.
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1.1 Problem Statement

Recent findings by Nessler, Pfeiffer and Maass [27, 28] have helped to gain new insights

how the interplay of Spike-Timing Dependent Plasticity (STDP) and Winner-Take-All

(WTA) circuits of spiking neurons can learn implicit generative models for high-dimensional

spiking input and detect hidden causes within it. However, the feedback used for WTA

competition to emerge is still computed and applied in a biologically impossible way.

This master’s thesis addresses the problem of how to approximate the functionality

of the WTA circuit provided in their work by a network of biologically realistic models

for excitatory and inhibitory neurons in an experimental way. It is desired to determine

scenarios where the proposed network can fit closely to the cited work.

The term WTA circuit (Section 1.5) refers to a specific topology of neurons, that

compete by inhibiting each other. While a winning neuron remains active, the others get

suppressed. Various kinds of WTA circuits are a common topic of interest in fields related

1



2 Chapter 1. Introduction

to computational intelligence and neuroscience. Different implementations with spiking

or non-spiking neurons have already been published.

The aim of this thesis is to design a WTA circuit inspired by the theory of Spike-

based Expectation Maximization (SEM) [28] by making use of the learning rule proposed

therefore. The most important part thereby is the construction of a spiking feedback

loop that provides essential normalization inhibition for the WTA competition between

the network’s output neurons. It has to be analyzed how close the spiking inhibition can

fit a theoretically optimal one and how alterations in terms of non-optimal feedback affect

the network’s performance.

A goal is to keep the designed network reasonably biologically realistic. Especially the

spiking behavior of neuron models used should be biologically valid and explainable.

Computer simulations will help to identify scenarios where a good approximation can

be made and depict the designed network’s limitations. Specific behavior should be ob-

served and analyzed. The primary ambition is to be able to determine benefits and limi-

tations of the proposed completely spiking model. It is desired to assure that comparable

performance to the theoretical model can be reached with a biologically realistic one.

In the end, a spiking WTA network of realistic neuron models should be available

that can learn to detect hidden causes in high-dimensional input. Results of computer

simulations performed with this network should be compared with simulations of the

existing model SEM.

1.2 Outline

A short introduction to spiking neurons is given in Section 2.2 as this could help the

novice reader to gain a basic idea and help to follow the subsequent work. The concepts

of WTA circuits and STDP are predominantly present throughout the whole thesis. Short

introductions are given in Section 1.5 and 1.6 to establish a theoretical fundament.

Chapter 2 focuses on recent work that is closely related to the proposed spiking WTA

circuit. In Section 2.1, the SEM theory [27, 28] that motivated this thesis is introduced

briefly. The soft WTA (Section 2.1.1) as well as the learning rule (Section 2.1.2) are

accented as they are especially relevant for subsequent work. Neuron models are discussed

in Section 2.2, and their biological plausibility is observed. The chapter is concluded with

a specification of the simulation framework used in Section 2.3.

The proposed spiking WTA network is presented in Chapter 3 where also its design is

explained. Section 3.1 focuses on how to transfer the theoretical inhibition proposed to
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a realistically spiking one. Difficulties and necessary approximations made are explained

here. The architecture chosen for the network is visualized in Section 3.2 before Section 3.3

steps through network elements that had to be taken care of while adapting the WTA

circuit to the specific needs for this thesis. The choice of parameters is mentioned and

argued. It is mentioned when abstractions of biological realism had to be made in favor

of simplicity (for comprehensible analyzations) or computational efficiency. Qualitative

impacts on simulation results are tried to be estimated. Section 3.4 describes the input

used for computer simulations of the proposed network.

In Chapter 4 simulation results are presented and discussed. Data obtained from sim-

ulations of the designed model are set in relation to and compared with the theoretical

model [28] as a reference. In the following, the designed circuit is analyzed for its clas-

sification performance (Section 4.6), focussing on the output spiking behavior and how

well they represent specific input patterns. Some variations of input or network config-

urations are studied, and limitations addressed. A qualitative comparison of the spiking

inhibition and the theoretical one is given in Section 4.3. To observe the learning process

of the network, the development of its input weights (Section 4.4) as well as its output

spikes (Section 4.5) are pictured and discussed throughout a training process beginning

with randomly initialized weights and going until their convergence. Observing how far

the log-likelihood can be maximized in relation to the optimal model gives an idea of how

well an actual generative model representing the input distribution can be learned. This

is analyzed in Section 4.7.

Finally, Chapter 5 ends the thesis with a short conclusion in Section 5.1 that recapitu-

lates on findings made throughout this work and ideas that could motivate future research

in Section 5.2.

1.3 Conventions Used in this Document

1.3.1 Naming Conventions

To distinguish between the designed WTA model and the SEM model, the following names

are used to denote them:

Biological Model This name refers to the WTA model designed within this thesis. Al-

though the designed model is as an approximation far from a completely biologically

realistic one, we use this name to refer to the network as it is inspired by biology

and communication within the entire network completely based on spikes.
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Theoretical Model This name refers to the SEM model (Section 2.1) that serves as a

reference implementation the simulation’s results are compared to.

1.3.2 Drawing Conventions

Schematic network drawings within this document use the symbols shown in Figure 1.1

to illustrate specific network elements.

Excitatory Synapse Inhibitory Synapse

Excitatory Neuron Inhibitory Neuron Pool of Inhibitory Neurons

Figure 1.1: All schematic network drawings in this document use the listed symbols for
excitatory and inhibitory neurons and connections.

1.3.3 Simulation Conventions

All computer simulations (Section 4) use the default configuration parameters (as not

noted otherwise) listed in Table 1.1.

# yn = 100 The number of input neurons yn of a network.

TPattern = 50ms Duration of an input pattern.
TNoise = 50ms Duration of noise separating the presentation of two input patterns.

fy,Pattern = 20Hz Poisson rate of an input neuron yn while a pattern is active (Section 3.4).
fy,Noise = 20Hz Poisson rate of an input neuron yn when randomly spiking.

Table 1.1: Default network configuration parameters for computer simulations.

1.4 An Introduction to Spiking Neurons

The brain consists of various kinds of cells, that differ slightly from traditional tissue

cells. Brain cells can basically be separated into two groups: neurons (nerve cells) that

communicate with each other by emitting electrical pulses and neuroglial cells, that work

as support cells for the nervous tissue. [30]



1.5. WTA Circuits 5

There are multiple types of neurons, but they typically consist of a cell body (soma),

dendrites and axons. A neuron collects input from other cells via its dendrites and pro-

cesses the information gained in its soma. Once the input exceeds a specific threshold, a

neuron∗ emitts (fires) an electric pulse, called Action Potential (AP), that is forwarded via

an axon and transmitted over synapses to other neurons. The amplitude of these electric

pulses does not depend on the strength of the input. As these AP’s are typically very short

(≈ 1−2ms), they are also refered to as spikes. As a single AP does not differ from another,

the information transmitted between neurons is modulated in the spike occurance number

and time. [12]

An AP is transferred from one neuron to another over a synapse by releasing neuro-

transmitters† that cause a change of the electrical potential on the postsynaptic neuron.

Depending on the synapse type, different kinds of neurotransmitters are set free and cause

excitatory or inhibitory postsynaptic potentials on the receiving (postsynaptic) neuron.

These are either increasing or decreasing the likelihood of a postsynaptic neuron to fire. [30]

Mathematical models used to describe the dynamics of biological neurons have proven

to be of interest for quite a long time now, as the computational power of spiking neurons

has been demonstrated [21, 22]. Hodgkin-Huxley-like [16] neuron models provide rich

detail down to the ion-channel level, but make analysis in terms of computational abilities

hard. Simpler models like the Spike Response Model (SRM) [12] have made a step into

being more accessible to analyze while remaining reasonably accurate [19]. [22]

1.5 WTA Circuits

The term WTA circuit refers to a specific network topology composed of typically exci-

tatory pyramidal neurons that inhibit each other through inhibitory interneurons. The

resulting competition between the neurons lets a winning neuron fire while the others are

suppressed, thereby enhancing the contrast of signals. Recurrent networks are thought to

be found in cortex [10].

The computational power of WTA circuits has been demonstrated [23, 24]. They

constitute an important role in computational neuroscience and related fields [14, 20, 27,

29, 31, 37].

A hard WTA circuit is a simple deterministic network, where the only winner is selected
∗In the following, other types than spiking neurons are neglected.
†Synapses emitting neurotransmitters are typically referred to as chemical synapses. As these make the

major part of synapses for intercellular signaling (among neurons), other types of synapses (i.e. electrical
synapses) are neglected here.



6 Chapter 1. Introduction

as the one with the highest input. The winner is active while the others remain silent.

A stochastic (or soft) WTA circuit (Section 2.1.1) additionally introduces a probabilistic

component. Here, the neuron with the highest input is indeed the most likely, but there

remains a probability for other output neurons to fire as well.

1.6 STDP

The amplitude of a postsynaptic potential triggered by a presynaptic spike is determined

by the synaptic weight (efficacy) w between them. The ability to change these weights is

called synaptic plasticity. If, through specific stimulation, the connection is strengthened

over time, it is referred to as Long-Term Potentiation (LTP), if it is weakened, it is called

Long-Term Depression (LTD) [12]. A basic mechanism for synaptic plasticity is referred to

as Hebbian learning, as Donald O. Hebb stated in his work The Organization of Behavior

[15]:

When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A’s efficiency, as one of the cells firing

B, is increased.

Thus, correlation between pre- and postsynaptic activity can induce changes in synaptic

weights.

STDP is an extended form of Hebbian learning. The change of a synaptic connection

strength is a function of the relative timing of pre- and postsynaptic spikes.[32] It is

assumed that STDP plays a major role for learning in biological neural circuits [2]. The

function of how the weight changes, with time windows for the pre- and postsynaptic

spike arrival of a few milliseconds, differs with various types of neurons and synapses and

depends whether the connection is an inhibitory or an excitatory one [5, 7].
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Related Work

Contents

2.1 SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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2.1 SEM

Nessler, Pfeiffer and Maass [27] recently provided a theory of how to approximate the

powerful machine learning tool Expectation Maximization (EM) [3, 9] with the use of

STDP in a stochastic WTA circuit.

Through a specific STDP learning rule, a generative model of high-dimensional inputs

is learned within the collective of synaptic weights of the circuit. After learning, the output

neurons fire with a probability depending on how good the current input fits the learned

generative model of the circuit. [28]

The learning of this generative model is done using the unsupervised learning principle

EM. During its first stage, the expectation step, the network makes an initial guess by

randomly selecting a neuron through the soft WTA circuit to fire at the currently applied

input. After the selection of a neuron, the choice is evaluated by the modification of the

synaptic weights to the active neuron via the STDP learning rule, what would refer to the

second EM stage, the maximization step, maximizing the log-likelihood of this internal

model for high-dimensional spike inputs learned. As the basic functionality is working

with spiking neurons, Nessler, Pfeiffer and Maass named this application of STDP for

WTA circuits Spike-based Expectation Maximization (SEM). [28]

7



8 Chapter 2. Related Work

2.1.1 Soft WTA

The WTA circuit used in the context of SEM networks is a stochastic or soft WTA circuit

where the firing probability for each of the Output Neurons (z-Neurons) for a current input

y is given as

p (zk fires at time t | y) =
euk(t)∑K
l=1 e

ul(t)
, (2.1)

where uk(t) is the membrane potential of output neuron zk at time t. The membrane

potentials of the z-Neurons are driven by synpatic inputs and computed as

uk(t) = wk,0 +
∑

i

wk,i

∑
t
(f)
i

ε(t− t(f)
i ), (2.2)

where wk,0 (that could also be referred to as a resting membrane potential) is an offset

constant added to the membrane potential to influence its excitability. wk,i denotes the

synaptic efficacy from input neuron yi to the output neuron zk. ε(s) models the time

course of a PostSynaptic Potential (PSP) [12] with t
(f)
i marking the times at which the

presynaptic input neuron yi has fired. [28]

2.1.2 Learning Rule

In the maximization step input weights are updated according to the following learning

rule:

∆wk,i =

 η
(∑t

i=0 ε(t− t
(f)
i ) · e−wk,i − 1

)
if zk has fired

0 else
(2.3)

Thereby, η is the current learning rate. If output neuron zk has fired, its input weights

wk,i are updated. If input neuron yi contributed in exciting zk

t∑
i=0

ε(t− t(f)
i ) > 0, (2.4)

the synaptic connection inbetween these two neurons wk,i is strengthened, depending on

the amount with which the input neuron yi has increased the membrane potential of

output neuron zk and the current weight wk,i.

If however, yi remained silent some time before output neuron zk emitted a spike

t∑
i=0

ε(t− t(f)
i ) = 0, (2.5)
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and therefore did not contribute in exciting zk, the connection becomes weaker with

∆wk,i = −η. (2.6)

For determining the learning rate η, a variance tracking heuristic, as described in [28],

is used for faster convergence of input weights.

2.2 Neuron Models

Detailed conductance-based neuron models, like the one from Hodgkin-Huxley [16], that

is detailed to the ion channel level, can capture electrophysiological behavior of neurons in

great detail. But due to the complexity of tuning numerous parameters, required for their

level of detail, and their high computational demand, they are often not the first choice

for large scale simulations. [4]

Integrate-and-Fire neuron models, that filter their inputs and spike once their mem-

brane potential crossed a threshold, are easier to analyze, simulate and fit to real measured

data. Due to their simplicity benefits, they are often used for theoretical analysis and com-

puter simulations [12, 25]. It has been demonstrated that such phenomenological models

can fit biological data very well [4, 6, 13, 17, 18] and therefore proof to be valid biologically

realistic models.

Adding noise to a per definition deterministic Integrate-and-Fire neuron can cause the

neuron to fire stochastically [1, 33]. Thus, a neuron emitting inhomogeneous poisson trains

with a dependence of the rate on the neuron’s input (and therefore membrane potential)

can be a plausible abstraction to model biologically realistic neurons.

2.3 Simulation Framework

A simulation framework∗ for the analysis of learning with WTA circuits was created during

my seminar project [35]. Completely written in MATLAB, it offers configurable and

highly flexible modules to build, simulate and analyze various kinds of WTA circuits. All

simulations done within this thesis were done using this framework.

∗Available on request to unger@igi.tugraz.at.

unger@igi.tugraz.at
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Design of a WTA Circuit

Contents
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3.1 From Theoretical to Realistic Spiking Inhibition

3.1.1 Output Rate Normalization

Competition between output neurons is a vital part in the SEM architecture for learning

to emerge (Section 2.1.1). This is achieved by using a soft WTA function (Equation (2.1))

between the z-Neurons. A z-neuron fires according to an inhomogeneous poisson process

with an instantaneous rate Λk. The output rate of neuron zk should be proportional to it’s

membrane potential with an exponential dependence euk . Thereby, the sum over the rates

of all z-Neurons should remain constant over time
∑K

k=1 Λk = 1. Thus, the normalization

Λk =
λk∑K
l=1 λl

=
euk(t)∑K
l=1 e

ul(t)
(3.1)

arises, which keeps the sum over all output rates
∑K

k=1 Λk constant over time and enhances

rate differences between the z-Neurons. The divisive normalization term of the theoretical

11



12 Chapter 3. Design of a WTA Circuit

SEM model
K∑

l=1

eul(t) (3.2)

is computed at every time step with the known values of the z-Neurons membrane poten-

tials uk(t).

3.1.2 Biological Constraints

With the aim of designing a biologically plausible WTA circuit where information among

neurons is transmitted only by spikes, constraints arise:

• Synaptic inhibition is typically modeled as an additive term.∗ The normalization of

Equation (3.1) can therefore be seen as

Λk = e(uk−log
PK

l=1 eul(t)), (3.3)

where log
∑K

l=1 e
ul(t) describes the required inhibition.

• The membrane potentials uk(t) for computing the inhibition can not be accessed

directly from an inhibitory neuron, as the only information source for a neuron are

its input spikes. Therefore, only the effective presynaptic membrane potentials vk

for computing the inhibition can be estimated from the z-Neurons output spikes.

• An estimate for the neurons membrane potentials has to be sampled from output

spikes of the z-Neurons. As the z-Neurons within a spiking WTA circuit receive

inhibitory feedback, their membrane potentials are affected by the Inhibition (I)

and are therefore computed as vk(t) = uk(t)− I(t). Thus, the output of a z-neuron

does not only depend on the part uk(t) of the membrane potential, driven by input

neurons yi, but on the complete membrane potential vk including inhibition. With

the output spikes of the z-Neurons as the only source of information, the inhibitory

neuron can only make an estimate for the effective membrane potential vk.

• The transmission of a biological AP takes time as it is propagated along a neuron’s

axon and transmitted over a chemical synapse. This has to be accounted for by in-

troducing a delay in the designed model. In contrast to a SEM network, an instantly

applied, correct inhibition is not possible.

∗Altough models like shunting inhibition exist, additive inhibition is a well established method how
synaptic inhibition can be modeled.
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3.1.3 Theoretical Inhibition

zk

Figure 3.1: A single neuron zk with excitatory and inhibitory inputs. Its membrane
potential uk is computed in Equation (3.4).

Considering a neuron zk (Figure 3.1), whose membrane potential is driven by excita-

tory inputs and an additional inhibitory connection, it’s membrane potential vk can be

computed analogous to Equation (2.2) with the neurons resting potential named u0 as

vk(t) = uk(t)− I(t) = u0 +
∑

i

wk,i

∑
t
(f)
i

ε0(t− t(f)
i )− I(t). (3.4)

I(t) denotes the incoming inhibition at time t. Assuming zk fires a poisson train with a

rate exponentially depending on its membrane potential vk(t) (Section 3.3.1), the output

rate can be given as

Λk(t) = evk(t) = euk(t)−I(t). (3.5)

Rewriting the SEM models soft WTA computation (Equation (2.1)) as

p (zk fires at time t | y) =
euk(t)∑K
l=1 e

ul(t)
= exp

uk(t)− log
K∑

l=1

eul(t)

︸ ︷︷ ︸
ITheoretical(t)

 , (3.6)

and given the possibility to obtain the real values of ul(t) instantaneously, the subtractive

inhibition term I(t) would model the required normalization exactly:

ITheoretical(t) = log
K∑

l=1

eul(t) (3.7)
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3.1.4 Realistic Spiking Inhibition

In a realistic setup, uk is not directly accessible. Through the output spikes of neuron

zk (Equation (3.5)), a Low-Pass Filtered (LPF) signal in dependence of its membrane

potential vk can be estimated. The LPF is determined by the time constant τ of the

respective EPSP (Section 3.3.2.2). To close the complete spiking, regularizing feedback

loop (Figure 3.2) an inhibitory neuron is introduced.

zk

K

Figure 3.2: Spiking feedback loop. Neuron zk has an excitatory connection to the in-
hibitory neuron. This projects back with an inhibitory connection. For the drawing plate
notation [3] was used. Only one neuron zk out of K, that all share the same inhibitory
neuron, is drawn.

With inputs from all z-Neurons, the inhibitory neuron’s membrane potential uInh is

proportional to the sum of LPF estimates of evk(t − ∆ax), where ∆ax is an axonal spike

transmission delay:

uInh = u0 +
K∑

k=1

LPF
(
evk(t−∆ax)

)
(3.8)

To make a good approximation of the theoretical SEM inhibition (Equation (3.8)),

the inhibitory neuron is chosen to be a linear poisson neuron (Section 3.3.1) assuming

the output firing rate linearly proportional to its membrane potential uInh. This is done

by linearizing the desired logarithmic dependence around an operating point where the

logarithmic function y = log(x) can be approximately fitted (Figure 3.3) with y = x − c.
The constant c can be dropped in a neuron’s excitability factor u0.

By projecting back to the z-Neurons with an inhibitory connection, the spiking feedback

loop is closed. Each of the z-Neurons is therefore inhibited by

ISpiking(t+ ∆ax) ∝ LPF

(
u0 +

K∑
k=1

LPF
(
evk(t−∆ax)

))
. (3.9)
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Figure 3.3: Comparing the functions y1 = log x and y2 = x − 1. For values of x close to
1, log x can be approximately linearized.

3.2 Network Architecture

Having an eligible spiking approximation of the theoretical inhibition (Section 3.1.4), a

complete WTA circuit can be constructed. A schematic drawing of the network architecture

can be seen in Figure 3.4.

The input layer consists of N input neurons yn (Section 3.4) that have an all-to-all

connection to the network’s output layer of z-Neurons. Initially weighted randomly, the

strengths of these connections are learned using the SEM learning rule (Section 2.1.2).

The weight of the connection from an input neuron yn to an output neuron zk is denoted

as wk,n.

The output (z) layer consists of K exponential neurons zk that have bidirectional

connections to an inhibitory layer, so that WTA competition between the z-Neurons can

emerge. Connections in both directions are weighted with w = wInh,Exc = wExc,Inh = 1.

These values do not necessarily have to be 1, but should remain equal and constant.

Inhibition strength, and therefore the inhibition of z-Neurons can be scaled with these

factors. Thus a single spike emitted from any zk has the same impact on an inhibitory

neuron’s membrane potential and vice versa, an inhibitory spike affects each of the z-

Neurons equally.

To match the approximated SEM inhibition the best, linear neurons are used in the

inhibitory pool for further analysis and computer simulations (Section 4). This simplifies

interpretations of simulations and makes analysis easier. For a step towards biological real-

ism, simulations with exponentially firing neurons have also been performed (Section 4.8)
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Input Layer Output (z) Layer Feedback Layer

z2

y1

y2

yN

w1,1

wK,N zK

z2

z1

WTA

wInh, Exc

wExc, Inh

Figure 3.4: The architecture of the designed, biologically inspired network. Additional to
a classical SEM setup, the necessary feedback for WTA competition at the z-Neurons is
designed with completely spiking information transmission. A pool of inhibitory neurons
is used to provide the required inhibition.

and have shown to be qualitatively equal. Despite that, linear neurons have been used for

the majority of simulations and analysis as a matter of simplicity.

3.3 Design of Network Elements

3.3.1 Neuron Models

For constructing the network, two different types of poisson neurons have been used:

• Exponential Neurons

• Linear Neurons

Both neurons modulate the rate of a poisson train emitted by a neuron in dependence

to a funtion of their membrane potentials (Section 2.2), and therefore in dependence on

their inputs [1].

The output layer of z-Neurons consists of exponential neurons. Their firing rate de-

pends exponentially on their membrane potentials uk, what seems to be a biologically
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suitable assumption [18]. The basic aspect of this firing behavior is summarized in mod-

eling a neuron’s poisson firing rate with

fk,Exp = euk · fBase, (3.10)

where fBase is a base rate defining the neuron’s spike rate scale. The use of exponential

neuron models as z-Neurons is already intended in the original SEM theory.

The inhibitory pool is modeled with linear neurons (Section 3.1.4). The firing rate of

these neurons has a linear dependence on their membrane potentials uk. For simulation

purpose, they have been modeled with

fk,Exp = uk · fBase. (3.11)

3.3.1.1 Firing Rates

An abstraction in terms of biological feasibility is the choice of the neuron firing rate

magnitude for simulation. Despite firing rates of cells in cortex of around 40 − 100Hz

[1, 26, 36], simulations (Section 4) were done with base firing rates of fBase = 400Hz.

These base rates are multiplied with the specific neuron’s membrane potential uk(t) for

linear neurons or the exponential function euk(t) for exponential neurons (Section 2.2) to

calculate the effective neuron poisson firing rate fk(t).

Although those rates exceed biological rates by far, simulation results are not quali-

tatively different. As increased firing rates make a huge impact on computer simulation

time, the effect of a reduced number of weight updates inbetween two spike events can be

made up by choosing an appropriate learning rate and adapted simulation environment.

Hence the frequency shift out of a biologically realistic region is a technical simplification

only and does not imply a qualitative biological violation.

In a further simulation abstraction, a single neuron xInh was used to model the pool

of originally I inhibitory neurons. Again, this has no qualitative impact on the simulation

as every z-neuron has equal connections to every neuron in the inhibitory pool [26], and

vice versa. Thus, having a single inhibitory neuron spiking with

fxInh
=

I∑
i=1

fxi , (3.12)

is an acceptable simplification to gain a benefit in simulation computation time. Further-

more, by distributing the required frequency band of xInh over a pool of multiple inhibitory
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neurons, the firing rate of a single neuron could be easily shifted into a biologically plausible

region.

3.3.1.2 Refractory Period

A neuron’s refractoriness is described by its Absolute Refractory Period (ARP) and Rela-

tive Refractory Period (RRP). During a specific time following an AP, called the ARP, it

is impossible to trigger a second spike from the same neuron. During the RRP it becomes

possible to initiate an AP again, but it is inhibited. [12]

While a RRP was not modeled for reasons of analyzing simplicity, an ARP is included

through the simulation timestep ∆t, as only one AP can be generated per ∆t. With a

simulation resolution of ∆t = 1ms, we define a maximum firing rate f of a single neuron

with

fk,max(t) =
1

∆t
=

1
∆ARP

=
1

1ms
= 1000Hz. (3.13)

The length of an ARP determines a limit of how far the output rate fk can manage

to stay proportional to the neuron’s membrane potential vk. Figure 3.5 demonstrates this

effect for the postsynaptic output of a linear neuron. As long as the neuron’s output rate

is below its maximum value fk(t) < fk,max, its postsynaptic output stays proportional to

the membrane potential, but saturates once fk,max is reached.

3.3.2 Synapse Models

A presynaptic spike at time t(f)
i increases – Excitatory PostSynaptic Potential (EPSP)– or

decreases – Inhibitory PostSynaptic Potential (IPSP)– a postynaptic neuron’s membrane

potential vj for t > t
(t)
i by an amount of

wj,i · εj,i(t− t(f)
i ). (3.14)

The time course of the PSP is described by a kernel ε(s) (Section 3.3.2.1). wi,j denotes

the synaptic efficacy (Section 3.3.2.3). To model the transmission of an AP, a delay can

be included in the kernel ε(s) (Section 3.3.2.4). [11]

3.3.2.1 Kernel

Every synaptic connection within the network uses the same basic kernel ε(s) to model a

PSP, although they differ in the choice of parameters. A kernel containing an exponential
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Figure 3.5: A linearly increasing membrane potential compared to its postsynaptic output.
Due to a neuron’s refractory period, it can not fire infinitely fast and thus, can not follow
the increasing membrane potential once the neuron’s maximum rate is reached.

decay

ε(s) = exp(− s
τ

)Θ(s) (3.15)

was used. τ is the the time constant of the decaying exponential function (Section 3.3.2.2).

Θ(s) denotes the Heaviside step function with Θ(s) = 1 for s > 0 and Θ(s) = 0 else. [12]

Figure 3.6 shows the time course of the kernel ε(s) for two different time constants

τ used within the designed network. As a spike occurs at t(f)
i = 10ms, the PSP rises

instantly. This assumption might not be biologically exact, but holds as an appropriate

approximation. As biological findings show that rise times of postynaptic potentials can

be less or around ∆tRise = 1ms [34], it is assumed smaller than the simulation time

resolution. Additionally, PSP rise times, determined by an exponential rising function
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Figure 3.6: Unweighted kernel ε(t− t(f)
i ) for the modelling of postsynaptic potentials with

different time constants τ over time t. The only spike occured at t(f)
i = 10ms.

with time constant τm, are very short compared to their fall times defined by τs = τ ,

τm << τs, (3.16)

so that this abstraction was done in favor of computational effort and simplicity.

3.3.2.2 Time Constants

The time constant τ determines the width of the exponential kernel ε(s) (Figure 3.6)

convolved with a presynaptic AP to compute a LPF signal of the original spike train. This

stands as the effect on the postsynaptic membrane potential.

The values used for simulating the network were set to be in a biologically plausible

region [34]. Their exact value was determined by empirical simulation. The aim was to

have a neuron’s LPF output signal follow the desired output characteristic in relation to
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the membrane potential. Figure 3.7 shows an example, performed on a linear neuron.

Therefore, the neurons membrane potential vi should be followed qualitatively by the

convolved output signal. A characteristic membrane potential vi is applied to trigger the

presynaptic neuron.

Figure 3.7(b) shows an extreme case of a too short time constant τb. Here, the post-

synaptic neuron j is not able to track the presynaptic membrane potential vi, because

information is only available for a short period of time. Figure 3.7(a) demonstrates an

opposite example with a τc too large. As a PSP is too long information about previous

spikes builds up and the correlation is low again. Figure 3.7(a) finally shows a proper

choice for the time constant τa with a correlation coefficient of corra = 0.831.

For the construction of the network two time constants have been used:

• τ1 = 20ms – For connections from input neurons yn to z-Neurons.

• τ2 = 5ms – For connections from z-Neurons to the inhibitory pool and back.

3.3.2.3 Weights

As the shape of how a presynaptic AP at t(f)
j affects the postsynaptic membrane potential vi

is determined by the kernel ε(s), its amplitude is determined by the strength of the synaptic

connection wi,j . By adding a sign to the synaptic efficacy wi,j , a distinction between an

EPSP and an IPSP can be made. An EPSP typically causes the membrane potential to

depolarize and the neuron to fire more likely. An IPSP causes hyperpolarization, which

inhibits the neuron’s firing. [11]

The input layer weights are initialized randomly (with a mean magnitude of 0.005)

and learned with the SEM learning rule (Section 2.1.2). They are set to be in a region to

cause plausible PSP values with a magnitude of approximately 0.1− 3mV [34].

Weights wInh, Exc from the z-Neurons to the inhibitory pool are all equal. This accounts

for the same impact from any of the z-Neurons on the inhibition. Equivalently, the weights

from the inhibitory pool back to the z-Neurons wExc, Inh are also identical to provide the

same inhibition for each of the z-Neurons. Again, this seems to be a valid assumption as

weights from an inhibitory interneuron onto different pyramidal cells are not necessarily of

equal strength, but seem to change accordingly [26]. As we do not learn these weights, the

assumption can be argued because the relation within the different synapses stays the same.

By having the same excitability on all z-Neurons these weights are chosen equally. The

abstraction made by summarizing the inhibitory pool with a single neuron for simulation
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Figure 3.7: The correlation between a linear neuron’s membrane potential vi and its
spiking output convolved with an exponential kernel ε(s) with various time constants τ .
(a) τa = 5ms, corra = 0.831 (b) τb = 0.5ms, corrb = 0.403 (c) τc = 50ms, corrc = 0.363
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has to be taken into account when choosing the weights wInh, Exc and wExc, Inh. Therefore,

the weights are set to 1. The offset caused by high weight values can be made up for by

adpating the neurons resting potential.

3.3.2.4 Delay

Information transmission over synapses does not happen instantly. An axonal transmission

delay ∆ax (Figure 3.8) is added to the kernel ε(s) [11]:

ε(s) = exp(−s−∆ax

τ
)Θ(s−∆ax) (3.17)

Simulations have shown that values of a complete feedback loop delay

∆ax
Inh, Exc + ∆ax

Exc, Inh > 4ms (3.18)

lead to poor network performance. Therefore, values for these delays are set to ∆ax = 1ms

for every synaptic connection within the network [8].

3.4 Network Input

An input sequence to the network is a sequence of predefined patterns alternating with

noise. Every pattern Patl presented is chosen randomly out of L different patterns and

followed by a sequence of TNoise with noise.

A pattern Patl is generated once by generating a random poisson spike train with rate

fPat and duration TPat for every single neuron yn of N input neurons. The exact spike

trains are stored and applied as input to the network every time the pattern Patl is chosen

and presented.

After each pattern, every neuron yn of N input neurons fires a randomly generated

poisson train as a noise sequence with the same rate fNoise = fPat and duration TNoise.

For simulations carried out (Section 4), a poisson rate of fNoise = fPat = 20Hz and a

pattern duration TPat = 50ms was used. Simulations were performed with noise between

patterns of duration TNoise = TPat = 50ms or Tnoise = 0ms as noted.

A sample input sequence consisting of L = 3 different patterns of duration TInput =

400ms is presented in Figure 3.9. Note that the spike trains are exactly the same as a

pattern is repeatedly presented.

Further simulations where pattern sequences and noise interfere have been done.
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Figure 3.8: Axonal transmission delay ∆ax shifting the arrival of a postsynaptic potential
back.

Therefore, the patterns were created with a rate of fPat − fsuperimposed Noise and

superimposed by a poisson noise train with a rate of fsuperimposed Noise every time they

occured as a network input. This had no qualitative impact, but weakened and blurred

the performance of simulations. For demonstration clarity, noise-superimposed patterns

have been neglected in the following.
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Figure 3.9: Sample of an input spike sequence to a network consisting of L = 3 different
patterns of duration TInput = 400ms with fNoise = fPat = 20Hz and TNoise = TPat = 50ms.
Patterns presented are numbered and marked with a specific color while they are active.
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4.1 Key Design Choices

During an iterative design and evaluation process, the choices of a few specific network

parameters have shown to be of particular significance. Only with suitable configurations

of these parameters, simulations turned out to performe reasonably well:

• Axonal transmission delay ∆ax: The choice of the axonal transmission delay for

connections to and from the inhibitory neuron turned out to be quite limited. An

upper bound for the complete axonal feedback loop delay of

∆Loop ≤ 4ms (4.1)

appeared to be the experimental limit. The distribution between connections to and

from the inhibitory neuron proved to be of less significance. The axonal transmission

27
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delay finally defined for simulations was

∆ax = 1ms (4.2)

for both directions. In terms of biological plausibility, this seems to be a reasonable

choice [8].

• PSP time constants τ : How good a presynaptic membrane potential can be traced

by a postsynaptic one, is limited by the time constant τ of the postsynaptic potentials

and the presynaptic neuron’s firing rate. Tuning the decaying time constant τ2 for

the postsynaptic potentials used for connections within the inhibitory feedback loop,

turned out to be vital. Incase the filtering time constant was chosen too small or

too large the inhibitory neuron could not follow the z-neuron’s membrane potential

exactly enough. The chosen value of

τ2 = 5ms (4.3)

was determined experimentally by maximizing the correlation between pre- and post-

synaptic potentials.

• Absolute refractory period (ARP): The absolute refractory period limits the

maximum firing frequency of a neuron. Together with the PSP time constant τ , it

plays a major role for estimating presynaptic activity through spikes. For simula-

tions, an absolute refractory period of

ARP = 1ms (4.4)

was chosen. The ARP seems to be a key parameter for the designed network to work

in general. We assume that the ARP limits the rate of which the weights change

during an initial training phase, and therefore prevents them from drifting apart.

This assumption was substantiated by simulations with an ARP < 1ms.

• Membrane resting potential u0: The choice of z-Neurons’ membrane potentials

has to be set in relation with the number of z-Neurons available and therefore, with

the inhibition’s strength. The more z-Neurons are available, the more spikes are

collected initially by the inhibitory neuron and thus, inhibition becomes stronger.

As synaptic weights within the feedback loop are changed, the resting potentials
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have to be adjusted. Depending on the network setup, a membrane resting potential

has to be chosen to keep the z-Neurons spiking though inhibition.

• Input distribution: The choice of the input distribution had quite an impact on the

generative model learned. With uniformly distributed input patterns, the proposed

network seemd to learn a representative generative model of the input distribution.

Although classification was still possible, this was not the case for patterns with very

unequal occurance probabilities (Section 4.7).

4.2 WTA Circuit Evaluation Plan

In the following, guidelines and test case scenarios of how to assess the performance and the

learning abilities of the designed WTA circuit are thought of. For the computer simulations

done, the proposed network was implemented in MATLAB (Section 2.3). An additional

implementation of a standard SEM model served as reference for comparison.

4.2.1 Task Definitions

For simulations, input as described in Section 3.4 was used. Patterns with poisson trains

of constant rate were generated and presented. The number of available input patterns

was constant and was not changed during the training and testing phase of a respective

simulation run. Two different scenarios of different complexity have been tested. In the

basic setup, all available patterns occured on the input with equal probability (Uniform

Pattern Distribution). In the more advanced setup, patterns got a prior probability as-

signed. Therefore, some of them occured less likely than others (Non-Uniform Pattern

Distribution).

Before stepping through the given test case scenarios, a look on the inhibition of the

designed spiking loop will be taken at first to give an idea of the qualitative differences

to SEM inhibition (Section 4.3). While any kind of performance or evaluation measure

for the learning ability of the proposed network is meaningless unless its weights have

converged and settled around a value, we will see whether input weights of the proposed

model can converge at all (Section 4.4). What happens at the output of the z-Neurons

during the time it takes for the input weights to converge (the learning phase), is observed

in Section 4.5.

For evaluation of the proposed network, two different criteria have been assessed. The

network’s ability to classify patterns and its generative model learned. Each of them tested
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for the two pattern distribution scenarios defined.

4.2.2 Definition of Classification Performance

In order to introduce a method to measure and compare a network’s ability to distinguish

between different input patterns, the classification performance is introduced. Therefore,

spikes within a pattern time window are summed up, thresholded and correlated with a

target vector. The resulting measure gives an idea of how good a single output neuron

reacts to its most likely target pattern.

The ability of a network to discretize between different input patterns is basically

limited by the number of available z-Neurons, as an active output neuron marks an active

input pattern. Therefore, the performance was analyzed for configurations with

• Number of z-Neurons ≥ Number of Patterns

• Number of z-Neurons < Number of Patterns

4.2.3 Definition of Generative Model Validation

While only having a look at the output performance of a network, it is hard to infer

how good an actual generative model learned represents the applied input distribution.

Therefore, a look on the generative model learned, represented in the collective of input

weights, is more fruitful. Typically assessed by the minimized Kullback-Leibler divergence,

that measure did not turn out to be suitable, as a required normalization term could not

be found. But maximizing the log-likelihood (``) can be seen as an equal measure [27],

although not in absolute values. As it is shown that SEM learns a valid generative model

of the input distribution, it is taken as a reference that the `` computed for the proposed

WTA circuit is compared to:

`` =
S∑

i=1

log
K∑

k=1

euk(i) (4.5)

With maximizing the `` in the SEM training phase [28], a comparison of how close the

designed WTA circuit’s generative model `` can give an idea of how good the network

learns.

A lower bound for the ``, with a better learned generative model further above this

bound, had to be defined. For that reason, the network the `` was originally computed

for, was taken and its inputs randomly permutated. This was done several times and is
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drawn with dotted lines in the corresponding plots. Once the `` goes below this randomly

connected value of the reference, the model learned is defined as invalid.

Again, in order to make an assertion about how good a generative model was learned,

the learning itself has to be finished. This has happened, once the input weights converged

and do not qualitatively change anymore. Simulations were done for both defined input

distribution scenarios.

4.3 Inhibition Characteristics
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Figure 4.1: Comparison of inhibitions of training a theoretical and a biological model.
The curves have a correlation coefficient of corr = 0.8420.

In contrast to theoretical inhibition, spiking inhibition is band limited. It can not

react infinitely fast, as the spiking inhibition control loop has to react to the change of its

reference signal, the output rate of the z-Neurons. Not only is the spiking inhibition band

limited in frequency changes (as the z-Neurons output is LPF), sampled and therefore only

estimated, it is also delayed (by axonal transmission delays) and limited in its amplitude.
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As a single inhibitory neuron can only emit a single spike at a time and is muted for the

following refractory period (Section 3.3.1.2), the maximum inhibition amplitude is limited

at every timestep t. The minimal inhibition that can be achieved with this network setup

is Inhibition = 0. This is because a neuron can not invert its signals sign, but only remain

silent.

Theoretical inhibition on the other hand can apply a optimal computed value imme-

diately at timestep t, without any limitations in its amplitude, rise or fall times, delays or

signs.

An example comparison of inhibition signals from a theoretical and a biological network

model can be seen in Figure 4.1. The signals have been recorded during training of the

networks. The signal from the biological network is printed as the direct spiking output

of the inhibitory neuron convolved with an IPSP. The negative sign, characterizing the

inhibitory signal, has been left out to make the two signals distinguishable. The mean

value of both signals decays at the beginning of the learning phase and settles afterwards.

After this transient phase, inhibition settles around a constant mean value.

4.4 Weight Convergence

Input weights, the synaptic strengths from the input layer neurons yn to the output layer

neurons zk, are learned during the network’s training phase. A vital part of the network’s

performance is to have the input weights converging for a defined set of input patterns, as

a network would forget the once learned patterns otherwise.

Figure 4.2 shows an example plot of K = 4 z-Neurons input weights evolution while

training. At the beginning the weights change, as new patterns are introduced and the

learning rule still has effect on the weights. After a while, the weights basically converge

and just fluctuate around this value. From this stage on, when the weights have settled,

no further learning occures if the input distribution remains unchanged.

4.5 Output Spike Evolution

To give an idea of how the classification performance from the z-Neurons emerges,

Figure 4.3 and Figure 4.4 show the evolution of z-Neurons output spikes during learning.

The network with K = 3 z-Neurons was trained with L = 3 equally likely input patterns

(a repeated set of 12 pattern occurances).

Figure 4.3 shows the beginning of the training sequence. As input is presented, and the
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Figure 4.2: Evolution of the input weights to a networks output neurons.
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Figure 4.3: Output spike evolution while training a network with K = 3 output neurons
and L = 3 different patterns. Continued in Figure 4.4.
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Figure 4.4: Continued from Figure 4.3. Output spike evolution while training a network
with K = 3 output neurons and L = 3 different patterns.
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input weights are initialized randomly, all z-Neurons start to fire approximately equally.

After a while, the network starts to detect the repeated patterns and spike trains begin

to be limited to these time frames.

At the same time, the competition between the output neurons already suppresses

other z-Neurons when one is already a bit stronger for a specific pattern. This sharpening

of the classification contrasts takes until the end of Figure 4.4 where the classification is

already working properly.

4.6 Classification Performance

4.6.1 Uniform Pattern Distribution with a z-Neuron Surplus

This configuration could be seen as the most basic and reasonable one. With a number of

z-Neurons to a number of patterns ratio of

# of z-Neurons K > # of Different Patterns L, (4.6)

all presented input patterns could basically be separated, as enough z-Neurons are avail-

able. For the basic classification analysis, patterns are selected with equal probability

for each one. Therefore, each available pattern has been presented during training for

approximately the same time.

With simulations being done with respect to the given properties, classification per-

formances of ≈ 100% can be reached.

A comparison between network output activities of a theoretical SEM model and a

biological designed model can be seen in Figure 4.5. The simulated network configuration

was with K = 4 z-Neurons and L = 3 different input patterns.

Output of the reference SEM model can be seen in Figure 4.5(a). Each of the z-Neurons

specializes on a different pattern, with noise counting as an additional pattern. Therefore,

the number of patterns is equal to the number of z-Neurons. The model manages to keep

the output rate approximately constant over all z-Neurons. Once a pattern is applied

to the input, it takes some onset time for the network to detect the change and for the

specific neuron to react. During this time, the previously active neuron stays active and

keeps spiking. Therefore, the spike train indicating a pattern is delayed from the on and

off times from the pattern.

Figure 4.5(b) shows the actual biologically inspired spiking WTA model. At first three

major differences to the SEM model come to sight:
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1. Immediatly when starting the simulation, every output neuron starts bursting spikes.

This is due to the spiking inhibition loop, where the inhibitory neuron first needs

excitatory input before it actually starts emitting spikes itself. But once the in-

hibition becomes effective, only the patterns representative neuron keeps spiking.

The bursting behavior of an active output neuron can be due to inhibition gain and

membrane potential offsets. Once an input pattern is finished, the specific neuron

stops firing nearly immediatly (depending on how good the pattern’s final part can

be distinguished from noise).

2. Once noise is presented to the network, all of the z-Neurons stop firing completely.

As random noise can not raise the z-Neurons’ membrane potentials high enough to

get them spiking, the network stays silent. This inherent noise filter may provide

welcome functionality, but is problematic when wanting to introduce new patterns

once the network is already trained. This would have to be taken care of by adjusting

resting potentials and injected noise to make the spiking more probabilistic.

3. As the noise is filtered out by the the biological model, there is a surplus over the

SEM model of one of the z-Neurons for pattern classification. Therefore, the neuron

starts to split a pattern apart and classifies the first, as well as the second half of,

in this example, pattern #2 as separate patterns. This is the same behavior that a

SEM model would exhibit when an additional output neuron would be introduced.

For a better understanding of the differentiation between the patterns done by the

z-Neurons, Figure 4.6 shows their membrane potentials. While the membrane potential

vk of an active neuron remains above 0, the others are suppressed by the inhibition. This

has the effect that just one neuron is spiking as intended for WTA behavior.
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(a)

(b)

Figure 4.5: z-Neuron surplus: Output activity of a network with K = 4 z-Neurons and
L = 3 different input patterns. (a) For a theoretical model. (b) For a biological model.
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Figure 4.6: Membrane potentials vk for the same biological network as in Figure 4.5(b).

4.6.2 Uniform Pattern Distribution with a z-Neuron Shortage

Limiting the available z-Neurons is a second test case scenario. With a number of z-Neurons

to a number of patterns ratio of

# of z-Neurons K < # of Different Patterns L (4.7)

not every available pattern can be represented by a unique output neuron. This case

may not be of equal importance for specifically designed networks that should suit a

predefined pattern set with the aim of classifying available patterns the best possible. But

while using pattern sets of unknown size, the number ob z-Neurons can only be estimated.

Furthermore, additional patterns may be introduced while the network is already working

(which would be the biologically most interesting way). The ability of the network to

classify, and therefore its classification performance, depends highly on how short the

network is of z-Neurons in comparison to the number of patterns L.

An example comparison between network output activities of a theoretical SEM model

and a designed biologically plausible model can be seen in Figure 4.7. The simulated
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network had K = 3 z-Neurons and L = 7 different input patterns.

Again, the output activity of a trained SEM model serves as a reference. The activity

of its z-Neurons can be seen in Figure 4.7(a). The performed classification is very simple

to analyze. As long as there are z-Neurons available (not responsible for a pattern yet),

one of the free ones specializes on the pattern first presented when starting to train the

network (learn its input weights). In this simulation this happens for z-Neurons 1 and 2

specializing on patterns #1 and #3 as these had been the first randomly selected when

the training simulation was started. To keep the overall rate constant, the remaining

neuron becomes active for every other pattern (including noise). No further discrimination

between patterns can happen as there are no z-Neurons left. The neuron picks patterns as

long as z-Neurons are available, with the last of the z-Neurons treating all remaing patterns

equal to noise.

The simulation results of z-Neurons’ activity of the biological network can be seen

in Figure 4.7(b). The classification is related to the previous one of the SEM model in

terms of treating the early presented patterns in training equal. Again, as z-Neurons are

available, recently introduced patterns can be assigned to them. As patterns #1 and #3

are presented first in training, they get responsive neurons that mark their occurance.

Again the biological spiking network shows two model-inherent differences:

1. As already described in Section 4.6.1, noise is not treated as an additional pattern,

but left out completely of classification (inherent noise filtering). With too few z-

Neurons to classify all different patterns, excessive patterns get treated as noise and

therefore, the network remains silent while one of these patterns is active. This leaves

one additional z-Neuron available for representing a single pattern (in comparison

to the SEM model).

2. The activities of z-Neurons do not necessarily exclude each other. Thus, it is possible

for more than one of the z-Neurons to specialize on the same input pattern, as it

happend in the plotted example for pattern #1. When initial input weights to

different z-Neurons are close enough, both (or more) can start firing simultaneously

and therefore learn to trigger on the same input pattern. As z-Neurons do not have

exact feedback information as in the SEM model, this behavior is inherent and can

occur for different network configurations (not only for a z-Neurons shortage). The

neurons might fire with a lower rate than when mutually excluded, but both remain

active though inhibition.
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(a)

(b)

Figure 4.7: z-Neuron shortage: Output activity of a network with K = 3 z-Neurons and
L = 7 different input patterns. (a) For a theoretical model. (b) For a biological model.
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4.6.3 Uniform Pattern Distribution: Number of z-Neurons vs. Number

of Patterns

Figure 4.10 summarizes the network’s dependence on the ratio of the number of z-Neurons

K to the number of patterns L in comparison to SEM output in Figure 4.9. Contrary

to the SEM, model (Figure 4.9(a)), the designed WTA circuit (Figure 4.10(a)) can still

separate a single input pattern from all others with just one z-neuron. As the rate is kept

constant over time performing SEM no differentiation between any patterns can be made.

Due to its implicit noise cancellation, an additional neuron for classification is available in

the biological model.

Both networks perform equally well (Figure 4.9(b) and Figure 4.10(b)) in terms of

classification, with the number of z-Neurons equal to the number of patterns. Again, noise

is left out in classifications from the proposed model. This helps to determine the time a

pattern really is active on the input.

With a neuron surplus both networks (Figure 4.9(c) and Figure 4.10(c)) start to split

the patterns into respective sub-patterns.

4.6.4 Non-Uniform Pattern Distribution

Previous results showed that the designed WTA network can distinguish patterns with an

uniform occurance probability (all patterns occur equally likely) very well. Additionally,

a prior-probability is introduced to make the occurance of a pattern more or less likely.

Since the output rate of the biological network is not kept constant over time (as the

network remains silent for noise), unlikely input patterns can turn out to be a problem.

As they are rarely presented, the network treats them as noise and their occurance gets

lost. Input weights are then adapted to suit the most likely patterns.

The dependence of the classification performance on the occurance probability is

demonstrated in Figure 4.8. Simulations of a network with K = 3 z-Neurons and L = 2

different input patterns were performed and their classification performance evaluated over

10 trials each. The occurance probability of pattern #1 p(#1) thereby varied from 10%

to 50%. Pattern #2 had therefore an occurance probability of

p(#2) = 1− p(#1). (4.8)

Starting with 10% occurance probability of pattern #1, the biological network’s classifica-

tion performance is at approximately 65%, which is hardly better than having learned just
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a single pattern. With the occurance probabilities becoming more equal, the classification

performance increases and reaches ≈ 100% for uniformly presented input patterns.

This dependence on the distribution of input patterns is a profound problem of the

designed network, that would have to be addressed by introducing adapting inhibition.
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Figure 4.8: Classification performance of a network in dependence of occurance probability
of pattern #1. Each setup was simulated over 10 trials, with K = 3 output neurons and
L = 2 input patterns.
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(a)

(b)

(c)

Figure 4.9: Theoretical Network: 3 different patterns get clustered by (a) 1 z-neuron, (b)
3 z-neurons and (c) 5 z-neurons.
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(a)

(b)

(c)

Figure 4.10: Biological Network: 3 different patterns get clustered by (a) 1 z-neuron, (b)
3 z-neurons and (c) 5 z-neurons.
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4.7 Generative Model Validation

4.7.1 Uniform Pattern Distribution without Noise Breaks

The basic setup to analyze a generative model can be constructed with equally likely

(uniformly distributed) input patterns without any noise breaks. For simulation, a network

with K = 3 z-Neurons and L = 3 different input patterns was used.

As already mentioned, the learning itself has to be finished to evaluate the model.

Figure 4.11 shows how the input weights of both, a theoretical SEM model and a biological

model, evolve. After some time, learning has finished and the weights have converged. The

developed model can be analyzed.

As we can not give an absolute performance measure of how good the learned model is,

the model learned by a SEM is set as reference. Figure 4.12(a) shows the `` of both models.

Additionally, the `` of the same models for randomly permutated inputs is printed to give

a lower-performance bound. The generative model of the biological network is nearly as

good an approximation of the original model as the SEM generated one. Further, both

`` values are far above the randomly permutated lower-bound. Therefore, the model has

learned properly.

Figure 4.12(b) shows the fluctuation of the output rates. Both network’s output rates

fluctuate, but evolve to keep a stable mean value. The trend of the output rates does not

change after the initial learning phase.

4.7.2 Uniform Pattern Distribution with Noise Breaks

Additionally to the setup of Section 4.7.1, noise breaks of equal length as the patterns

are separating individual pattern occurances. Again, the `` does only provide a mean-

ingful measure once the input weights have converged and the generative model remains

unchanged (Figure 4.13).

The designed networks `` again grows towards the SEM reference, but both values are

closer to the lower-bounds than in noise free simulations. The model learned can still be

seen as a valid input model approximation.

4.7.3 Non-Uniform Pattern Distribution with Noise Breaks

For the next simulations, the input patterns are selected with unequal probabilities

p(#1) =
6
12

p(#2) =
4
12

p(#3) =
2
12
. (4.9)
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This unequal presentation of the different patterns already caused some difficulties in

Section 4.6.4 when the network’s output was observed. However, a direct inference can

not be made. Once again, only the final part of the plots can be evaluated as learning has

to be finished.

Figure 4.14(b) shows the `` of the network trained with the unequally presented input

patterns. The `` of the biological model drifts far apart from the theoretical SEM models ``.

It is even below the lower-bound of the SEM model. This indicates that the model learned

is very different from the original input distribution, as the `` is even below a trained SEM

model with randomly connected inputs. As mentioned, this does not necessarily mean

that some patterns can be separated, but the generative model learned is by far not as

good as the SEM ones.
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Figure 4.11: Sum of normalized input weights while learning uniformly distributed input
patterns without noise breaks.
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Figure 4.12: Uniform distributed input patterns without noise breaks: (a) Log-Likelihood
during training. (b) Output rates of z-neurons during training.
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Figure 4.13: Sum of normalized input weights while learning uniformly distributed input
patterns with noise breaks separating pattern occurances.
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Figure 4.14: Log-Likelihood of network while training patterns with noise breaks with (a)
uniform input distribution, (b) non-uniform input distribution.
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4.8 Exponential Inhibitory Neuron

As further step into the direction of a biologically realistic model, the WTA network’s linear

inhibitory neuron could be replaced by an exponentially firing one [18]. Classification is

still working while using an exponential neuron, but the previous analysis was done using

a linear one for the sake of simplicity and its closer relation to the SEM theory.

Figure 4.15 shows an example plot of a network trained and tested with z-Neurons

with an output rate exponentially depending on their membrane potentials. As desired,

a trained network is again able to differentiate between individual patterns. This demon-

strates the basic ability of the WTA network to learn, even with an exponential inhibitory

neuron.

Figure 4.15: Classification with an exponential inhibitory neuron.
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5.1 Conclusion

In this master’s thesis a WTA circuit using realistic neuron models for the discovery of

hidden causes (via STDP) was presented. At first the basic concepts of WTA and STDP

were recapitulated.

Chapter 2 gave a very brief introduction to the theoretical work of Nessler, Pfeiffer

and Maass [27, 28] that motivated this thesis. The desired form of soft WTA competition

(Section 2.1.1) that should be remodeled using a completely spiking feedback loop instead

of theoretical normalization was shown. Further, it was argued in Section 2.2 that the neu-

ron models used for computer simulations within this thesis are a valid phenomenological

approximation of biologically realistic neurons.

The designed WTA circuit was introduced in Chapter 3 that uses a known architecture

[29]. The design of individual components within the proposed network was done to create

a good approximation of the theoretical model [27, 28], while keeping models of neurons

and synaptic transmission within a biologically reasonable range. However, it was not

easy at all to establish stable output behavior in terms of weight convergence. Crucial

parameters had to be identified, parameter ranges defined and their values fine-tuned with

the use of computer simulations.

53
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The results of extensive computer simulations were presented in Chapter 4. It became

obvious that the proposed WTA circuit can approximate SEM behavior within limitations:

• For uniformly distributed input patterns, the proposed network approximates the

SEM model very well (Section 4.7.1). The log-likelihood of the generative model

learned is close to the SEM. The network can distinguish individual trained input

patterns with a classification performance of ≈ 100% (for network sizes as given in

Chapter 4).

• For patterns that are not equally likey presented while training, the performance is

limited. Patterns that are presented far less likely can get treated as uncorrelated

noise (when introduced at a later stage of training) and are therefore completely

left out of classification (this peculiarity of the designed WTA circuit is described

below in more detail). The log-likelihood in this case is below the one of a randomly

connected SEM model. In this case, the generative model has only learned those

patterns that were presented more often what is a clear disadvantage in comparison

to the theoretical model. Although the generative model learned does not fit the

input, the network can still be able to perform classification.

The major difference between the theoretical model and the designed WTA circuit

is the z-Neurons’ membrane potentials of which the inhibition is computed. Theoretical

inhibition can be computed according to Equation (2.2) and applied immediatly. Due to

biological constraints, basic differences are:

• The z-Neurons’ membrane potentials uk created only through inputs can not be

accessed directly by the inhibitory neuron.

• The inhibitory neuron can only sample a value of the z-Neurons’ membrane potentials

through spikes they emit.

• As the inhibitory feedback to the z-Neurons affects their membrane potentials, they

fire dependent on their complete membrane potential vk and not only the part of it

generated through input uk. Therefore, the inhibition of the spiking model has to

drift apart from the theoretical one that is computed with direct access to uk.

• Theoretical inhibition is applied immediately, but through spike transmission times,

delays are introduced in a spiking feedback loop. Due to this, the applied inhibition

always lacks a bit behind.
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The designed WTA circuit shows a few differences in the spiking output behavior of

its z-Neurons compared to a theoretical SEM implementation:

• The proposed network shows an inherent noise filter. Once the input weights are

adapted to specific patterns, z-Neurons remain silent when noise is presented at the

input.

On the positive side, this helps to get sharper contrasts to indicate when a pattern

is on or off. As no neuron is occupied with being a specialist for classifying noise, an

additional neuron remains to distinguish patterns. Therefore, the proposed network

can theoretically cluster a pattern more than a SEM model of the same size, as noise

is indicated with silence. This is especially useful when the number of z-Neurons is

less than or equal to the number of different patterns. In the extreme case of just

a single output neuron, the designed WTA circuit is still able to distinguish a single

pattern from the rest.

On the other hand, this behavior can cause the biggest disadvantage of the proposed

model. As some early presented patterns are trained, less likely ones get treated

like noise when presented later in the training phase, and are therefore completely

left out of classification. Problems with non-uniform distributions of input patterns

arise.

• As there is no mutual exclusion of two or more z-Neurons firing at a time, it can

happen that likely initalized input weights to more than one of the z-Neurons can

cause them to start firing almost at the same time. Consequently, a single pattern

can be learned from more than one output neuron.

We can conclude that the WTA circuit proposed in this thesis provides a well-suited,

completely spiking approximation of the SEM theory for a defined set of uniformly dis-

tributed input patterns. In this case, the generative model learned is as good as the one

learned by SEM. This approximation does not work for alterations in the input distribu-

tion. Although the network can still perform classification, an invalid generative model is

learned.

5.2 Future work

It would be desired to investigate how introducing an adaptation mechanism in the in-

hibitory loop (neuronal or synaptical), would help to deal with non-uniform input dis-
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tributions. Additional robustness to changes in the input distribution would be a future

goal. Or even further robustness to changes in the internal structure of the WTA circuit

and its ability to repair itself.

A highly desirable feature would be to port the network onto spiking neuromorphic

hardware. The hardware developed during the FACETS∗ project would be a possible

target.

The designed circuit shall be extended in terms of biological plausibility in computer

simulations with more detailed models for excitatory and inhibitory neurons and the mod-

elling of receptors for specific synapse types.

∗http://facets.kip.uni-heidelberg.de/

http://facets.kip.uni-heidelberg.de/


Appendix A

Acronyms and Symbols

List of Acronyms

AP Action Potential

ARP Absolute Refractory Period

EM Expectation Maximization

EPSP Excitatory PostSynaptic Potential

IPSP Inhibitory PostSynaptic Potential

LPF Low-Pass Filtered

LTD Long-Term Depression

LTP Long-Term Potentiation

PSP PostSynaptic Potential

RRP Relative Refractory Period

SEM Spike-based Expectation Maximization

SRM Spike Response Model

STDP Spike-Timing Dependent Plasticity

WTA Winner-Take-All

z-Neurons Output Neurons

List of Symbols

∆ax Axonal spike transmission delay.

ε(s) PSP kernel.

I(t) Inhibition.
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`` log Likelihood.

λk(t) Theoretical output rate of neuron k without inhibition.

Λk(t) Effective output rate of neuron k.

τ Time constant for the exponential decay of a PSP.

Θ(s) Heaviside step function.

fk(t) Poisson rate of neuron k.

u0 Membrane resting potential.

uk(t) Theoretical membrane potential of neuron k without inhibition.

vk(t) Effective membrane potential of neuron k.

wk,0 (=̂u0) Membrane resting potential of neuron k.

xInh Inhibitory neuron.

yi Input neuron i.

zk Output (z) neuron k.
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