
Side-Channel Analysis of ALE

Jakob Girstmair
jakob.girstmair@gmail.com

Institute for Applied Information
Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a

8010 Graz, Austria

Master Thesis

Supervisor: Prof. Karl-Christian Posch
Assessor: Thomas Korak

September, 2015

I hereby certify that the work presented in this thesis is my own work
and that to the best of my knowledge it is original except where indicated
by reference to other authors.

Ich bestätige hiermit, diese Arbeit selbständig verfasst zu haben. Teile
der Diplomarbeit, die auf Arbeiten anderer Autoren beruhen, sind durch
Angabe der entsprechenden Referenz gekennzeichnet.

Jakob Girstmair

i

Acknowledgements

I would like to thank my parents for supporting me through these strange times that
we live in, all my friends for motivating me to hang in there, Sandra Grinschgl for her
unbreakable optimism and the staff at IAIK for their unmatched expertise, never-ending
patience and unflinching support. I have to thank you all.

ii

l

iii

Abstract

In this master thesis we examined the ALE authenticated encryption algorithm towards its
practical implementation and its resistance to side-channel attacks. ALE is a lightweight
authenticated encryption scheme based on AES-128 whose use in the initialization stage
of the algorithm can be used for first-order DPA attacks on ALE.

For this we provided our own optimized low-area implementation which showcases a
smaller datapath of the AES-core than compared to what was previously achieved with
AES implementations of a similar architecture. We have shown that this architecture
of AES is even more vulnerable to DPA attacks than was originally assumed due to the
effects high-fanout registers of the FPGA have on the switching noise. We have also
examined the influence single-pole Butterworth filters have on the success rate of DPA
attacks and examined our DPA results in regards to the characteristic frequency found in
the correlation results and the recorded power traces.

Next we implemented two FPGA-specific generic countermeasures to improve on the
side-channel resistance and proposed ways to improve them. The first countermeasure
randomizes the clock signal by switching between multiple differently phase-shifted clock
signals which yielded promising results but was weaker than originally described in its
proposal. We improved on this countermeasure by lowering the frequency of half of the
phase shifted signals by a factor of 16 which results in a mixed operating frequency on the
design. The second countermeasure involves the randomized switching of short-circuits as
means to generate noise on the power traces. This countermeasure not only proved hard
to implement but was also very ineffective.

Lastly we utilized Welsh’s t-test as a means to further examine the effectiveness of the
implemented countermeasures.

Keywords: ALE, AES, side-channel, DPA, t-test, frequency-dependence, ASIC

iv

Kurzfassung

Im Zuge dieser Masterarbeit wurde der ALE-Algorithmus hinsichtlich seiner praktischen
Implementierung und seiner Resistenz gegenüber Seitenkanalattacken überprüft. ALE ist
ein leichtgewichtiger und authentifizierender Verschlüsselungsalgorithmus, der auf AES-
128 basiert. Die unveränderte Nutzung von AES-128 während der Initialisierungsphase
von ALE wurde benutzt, um DPA-Attacken auf ALE durchzuführen.

Um diese Attacke durchführen zu können, wurde im Rahmen dieser Masterarbeit eine
low-area-optimierte ASIC-Implementation von ALE angefertigt. Diese implementation er-
reicht einen kleineren Datenpfad beim AES-128-Kern als vorangehende Implementationen
mit ähnlichen Architektur-Konzepten. Wir haben gezeigt, dass dieser Architekturansatz
für AES-128 weitaus angreifbarer ist, als ursprünglich angenommen wurde, diese fehlende
Resistenz kann zum Teil auf eine Aufsummierung des relevanten Stromverbrauchs beim
Speichern der Information im Schieberegister zurückgefürt werden. Des Weiteren wurde
der Einfluss von Tiefpassfiltern erster Ordnung auf die Erfolgsraten der DPA-Angriffe un-
tersucht und die DPA-Ergebnisse in Hinblick auf das Phänomen der Eigenfrequenz der
verwendeten FPGA untersucht. Diese Eigenfrequenz ließ sich sowohl in den Kurven der
korrekten Schlüsselhypothese in den Ergebnissen der DPA als auch in den aufgezeichneten
Stromverbrauchskurven beobachten.

Als Nächstes wurden zwei FPGA-spezifische Gegenmaßnahmen implementiert, um die
Resistenz gegen Seitenkanalangriffe zu erhöhen. Die erste Gegenmaßnahme randomisiert
das interne Clock-Signal der Implementation durch ein randomisiertes Umschalten zwi-
schen verschieden phasenverschobenen Clock-Signalen. Diese Gegenmaßnahme lieferte
vielversprechende Ergebnisse, die aber leider hinter den Ergebnissen des ursrprünglichen
Vorschlags lagen. Des Weiteren wurde diese Gegenmaßnahme in dieser Masterarbeit ver-
bessert, indem ein Teil der verschieden phasenverschobenen Clock-Signale auf ein Sech-
zehntel der ürsprünglichen Frequenz verlangsamt wurde. Die zweite Gegenmaßnahme
nutzt das randomisierte An- und Abschlaten von Kurzschlüssen, um Rauschen auf den
aufgezeichneten Stromverbrauchskurven zu erzeugen. Es zeigte sich, dass diese Gegen-
maßnahme sowohl schwer zu implementieren als auch sehr ineffektiv ist.

Abschließend wurde Welshs T-Test alternativ zur DPA-Attacke benutzt, um die Ef-
fektivität der Gegenmaßnahmen besser beurteilen zu können.

Stichwörter: ALE, AES, side-channel, DPA, t-test, frequency-dependence, ASIC

v

Contents

1 Introduction 1
1.1 Related Work . 3

2 Introduction to ALE 5
2.1 The Ten-Round AES Encryption . 6
2.2 Initialization . 9
2.3 Encryption . 9
2.4 Tag Generation . 10
2.5 Discrepancies between Paper and Reference Implementation 10
2.6 Summary . 12

3 Lightweight Implementation of ALE 13
3.1 Global Requirements and Design Decisions 13

3.1.1 Communication Interface . 14
3.2 Hardware Design of ALE . 15

3.2.1 Datapath Module of ALE . 17
3.2.2 The Control Module of ALE . 27

3.3 Countermeasures . 33
3.3.1 The Xorshift Random Number Generator 34
3.3.2 Clock Randomization . 35
3.3.3 Short Circuits . 35

3.4 Synthesis Results . 40
3.5 Summary . 43

4 DPA Attack on ALE 44
4.1 The Basic Steps for Differential Power Analysis Attacks 46

4.1.1 An Introduction to Various Power Models 47
4.1.2 The Correlation Coefficient . 49

4.2 The Attack on ALE . 49
4.3 Other Attacks on ALE . 52
4.4 Summary . 52

5 Side-Channel Analysis of ALE 53
5.1 The Measurement Setup . 53
5.2 Side-Channel Analysis at Varying Operating Frequencies 55

5.2.1 DPA with Added Low-Pass Filters 60
5.2.2 Integration of Multiple Clock Cycles 63
5.2.3 The Correlation Decay . 64

vi

5.3 About the Characteristic Frequency of the Xilinx Virtex-II Pro FPGA . . . 65
5.4 Summary . 70

6 Side-Channel Analysis with Countermeasures 73
6.1 Results on the Clock-Randomization Countermeasure 74

6.1.1 Choosing the Input of the PRNG . 74
6.1.2 DPA Attacks on a CR-Secured Design 80
6.1.3 Clock Randomization with Mixed Operating Frequencies 81
6.1.4 DPA Attacks on the Improved CR-Secured Design 82
6.1.5 Summary of the Clock-Randomization Countermeasure 83
6.1.6 Evaluation of the Leakage Produced by CR-secured Designs using

t-tests . 85
6.2 Results on the Short-Circuit Countermeasure 91
6.3 Summary . 91

7 Conclusions 94

A Definitions 96
A.1 Abbreviations . 96

Bibliography 98

vii

Chapter 1

Introduction

Throughout the last two decades computers have become increasingly integrated into all
aspects of human life. The first interactions of our children with a computer -maybe a
tablet or a smartphone- will probably take place before they can even speak. Computers
have become so ubiquitous, so diverse and in many aspects independent from human
interaction that the mere task of listing their applications and purposes seems exhausting.

But as the years went by our trust in the security of information technology has always
been the achilles heel of this integration. Passwords, communication, any recordings of
our daily lives will always be of interest to other people we do not want to share this
information with. As many of the devices we use process or generate data we deem as
private the security with which these are handled has to be evaluated and reviewed with
great care. Security issues like Heartbleed have been present in the media with increasing
coverage1 and it is safe to say that the continued engagement of nation states to circumvent
and water down existing security measures will be a defining question of the 21st century.

The work of the scientific community with its analysis and proposals of security schemes
and paradigms has been one of the pillars against this lack of trust. A defining achievement
of this scientific approach is our ability to use many cryptographic tools like the Advanced
Encryption Standard (AES) for diverse applications with certain amounts of trust and
ease.

One of the most pressing and current issues regarding IT security is the standardization
of authenticated encryption (AE). AE includes all block cipher2 modes which simultane-
ously provide confidentiality, integrity, and authenticity assurances and has been discussed
by researchers in detail since 2000 [12]. Authenticity is necessary for every implementation
of secure communication and has often been added through a combination of confidential-
ity and authenticity modes. The need for dedicated AE modes of operation emerged after
it became clear that the combination of confidentiality and authenticity modes is prone
to errors [17]. This realization was followed by attacks on existing implementations (e.g.
OpenSSH [18], TLS-encrypted cookies [19]) while other implementations still fail to use
authentication by default or allow to disable authentication for a gain in performance (e.g.
IPSec [20, 21, 22], VMWare) and are still vulnerable.

Many AE modes of operation like CWC [23], GCM [24], OCB [25] and EAX [26]
have been proposed and implemented over the last years but some of them have their
own complications. OCB for example outperforms GCM but is hindered by its patented

1As an example see: http://bits.blogs.nytimes.com/2014/04/18/heartbleed-internet-security-flaw-used-
in-attack/

2A block cipher denotes any encryption which operates on a fixed number of bits (ergo a block).

1

CHAPTER 1. INTRODUCTION 2

status held by Philip Rogaway. EAX on the other hand received standardization as a
slightly modified version called EAX prime [27] in ANSI C12.22 which sacrificed its proof
of security for better performance and which was broken by Kazuhiko Minematsu et al.
[28] in 2012. In order to standardize an authenticated encryption scheme that matches or
surpasses GCM’s performance the CAESAR challenge was started. Its submission Dead-
line was set to May 2014 and it will finish in late 2017. Submissions have predominantly
been based on sponge constructions (e.g. ASCON [29]) and AES (e.g. AES-OTR [30]).

These proposals also reached the domain of lightweight security which has its own
specific set of resource constraints. Especially aspects like low-power, low-energy and low-
area are important design factors. Lightweight security aims at applications like security
in RFID-tags which also raises the exposure of these devices to side-channel attacks. Side-
channel attacks use information gained by the physical implementations of cryptographic
systems. This information can include power consumption [51], emitted sound [55], timings
of encryption steps [52] or electromagnetic emissions [51]. A popular example for such an
attack is a differential power analysis (DPA) [51] attack which utilizes the statistical
analysis on the power consumption of the cryptographic system under attack.

The first encryption schemes to be proposed with the lightweight aspect in mind were
encrytpion modes without authentication. Lightweight security schemes were proposed for
stream ciphers3(e.g. Trivium [31], Mickey [32], Grain [33]), block ciphers (e.g. DESXL [34],
PRESENT [46], HIGHT [35], mCrypton [36]) and dedicated hash functions (e.g. Spongent
[37], Photon [38], Quark [39]) but omitted authenticated encryption until recently.

AE schemes with a focus on lightweight encryption have been relatively rare. Examples
are Grain-128a [40], Hummingbird-2 [41], Fides [10], APE [42] and ALE [1]. ALE will be
the focus of this thesis. ALE has been proposed by Bogdanov et al. in 2013. It is based on
AES-128 and uses a Pelican MAC to facilitate authenticity. Two implementations were
realized by its creators. One was a software implementation to showcase its performance
and another was done in hardware (ASIC 4) to project its uses as a ligthweight encryption
scheme. The latter uses code protected by copyright law and omits many registers5 needed
for independent usage of the circuit.

This leads us to the contributions of this master thesis. We will propose a hardware
(ASIC/FPGA6) implementation of ALE that is relatively lightweight and can be operated
independently and without the need to load every message block twice which was part of
the proposal for a ASIC implemenetation for ALE by [1] which had no additional registers
besides registers with the purpose to hold key and state values. Also no code protected
by copyright will be used. This implementation also uses a different mixcolumns module
than used by most of the current lightweight implementation of AES [6]. This achieves
a smaller state module when compared to [6]. Futhermore we take a closer look at the
side-channel vulnerability of ALE. Due to the fact to its close relationship with AES this
will also re-evalutate the sidechannel vulnerabilities of AES.

During the course of this thesis we also observed unusual correlation behavior while
performing a DPA attack. Although our design and attack hypothesis of AES are similar
to that proposed and used by [6] we did not register short bursts of succesful correlation

3Also called a state cipher, typically one bit is combined with the corresponding bit of its internal state
4Application-Specific Integrated Circuits are integrated circuits that are intended for specialized use

and cannot be repurposed
5A register defines a hardware construction to hold and save data
6FPGA: Field-Programmable Gate Array, defines an integrated circuit that is configurable after manu-

facturing

CHAPTER 1. INTRODUCTION 3

peaks but instead calculated a gradually increasing DPA result whose distinguish-ability
of the correct hypothesis for one key byte actually lingered well into the timings of the
second AES-round7 and beyond.

We also evaluate the merits of two FPGA-specific countermeasures proposed by [4]
with the goal to mitigate these vulnerabilities. The first countermeasure is called Clock
Randomization and uses the FPGA’s own DCMs8 and a random number generator (RNG)
to randomize the internal clock9 of the integrated circuit. This countermeasure is evaluated
over variyng degrees of available clocks to be switched between and has proven to be
effective with a rather small effort to implement.

The second countermeasure we implemented are controlled short-circuits in the FPGA
which are also controlled by the same RNG and functions as low-cost noise generator. The
merit of this countermeasure on its own is debatable but can still mitigate attack results
at a rather low cost of FPGA resources especially if the RNG can be shared with other
countermeasures.

The remainder of this thesis is organized as follows: Chapter 2 explains AES and
ALE in more detail and explains some of the discrepancies between the two antedecent
implementations of ALE. In Chapter 3 we will take a closer look at our hardware im-
plementation of ALE and possible variations. This chapter also discusses how the coun-
termeasures were implemented and examines how many resources were used and which
constraints were imposed on the design. Chapter 4 will give an introduction into the
nature of DPA attacks and discuss how a fitting attack was devised for the implemented
design. We will look at our measurement setup and the results of a DPA on ALE in Chap-
ter 5. Chapter 6 is reserved for the discussion of DPA results of our measurements with
the countermeasures turned on. And finally in Chapter 7 we will give a summary and a
outlook on further research.

1.1 Related Work

The proposal of ALE [1] acts as one of the centerpieces to this work and is heavily ref-
erenced in Chapter 2. It was used as a blueprint (in combination with its software im-
plementation of ALE) for our own implementations and is used for comparison in almost
every step of the way. As goes with many other encryption schemes -especially ones for
AE - it uses many other works which are of importance to this thesis.

The core building block of ALE is AES which was proposed by Joan Daemen and
Vincent Rijmen in 2002 [3] which is also referenced heavily in Chapter 2. AES serves
as the de facto standard block cipher in current crypto systems. Another work regarding
AES is Moradi et al.’s currently smallest ASIC implementation [6] of AES which provided
the AES core for the ASIC implementations of ALE in its original proposal [1]. Also in
our work, the AES implementation is based on [6]. The AES implementation by Moradi
et al [6] also uses Canright’s substitution box (Sbox) [14], which is the smallest version
for this module yet. Another implementation of ALE was proposed by Bogdanov et al.
[9] who created a more performance oriented implementation of ALE to encrypt FPGA
bitstreams.

7A more detailed look into how AES works is given in Chapter 2
8Digital Clock Managers are built-in into many FPGAs by multiple vendors and are used to manipulate

clock signals
9the clock signal is a periodic signal used to control the registers of an integrated circuit

CHAPTER 1. INTRODUCTION 4

Further building blocks of ALE are the Pelican MAC [16] function and the LEX leak
[15] stream to generate its authentication tag and ciphertext respectively. Both have been
iterated in this work. ALE also incorporates an added AES keyschedule which has also
been used by ASC-1 [11] and shares some of its ideas with Fides [10] which omits the AES
core.

ALE has also been already attacked by Khovratovich et al. [7] and Wu et al. [8]
although they used different implementations and used specialized attacks which have
little in common with our DPA approach. While [7] used a software attack using forged
states in a so called LOCAL attack, [8] attacked ALE through its cipher generation which
reduced ALE’s authentication security to 97-bit.

The ideas for FPGA-specific countermeasures including clock randomization and the
integration of short circuits were provided by Tim Güneysu et al. [4] where they used
them on a different implementaion of AES which was based on T-tables. The design for
the MixColumns module was proposed by Hua Li et al. [13] in 2005 but did not turn out
as area efficient as they claimed.

This thesis also relies heavily on Stefan Mangard et al.’s work [2] regarding the exe-
cution of DPAs and their optimization including the use of moving average filters. Other
important aspects of this work are its guidelines on how to use Hamming weights (HWs)
and Hamming distances (HDs) in order to establish hypotheses on power consumption
levels.

Chapter 2

Introduction to ALE

In this chapter we take a closer look at the ALE authenticated-encryption algorithm. ALE
stands for AES-Based Lightweight Authenticated Eencryption. ALE is heavily based on
Rijandel’s AES [3] encryption method but uses a LEX-leak [15] to generate a more stream-
oriented cipher. It also produces an authentication tag based on the Pelican-MAC [16]
function to enable detection of ciphertext manipulation.

The original authors of ALE [1] created two different reference implementations for
ALE. One was written in C to take advantage of the NI-instruction set of modern Intel-
CPU architectures. The other was created to showcase ALE’s affinity to low-area ASIC
implementations and was written in a hardware description language. The latter uses code
protected by copyright and was unavailable at the time of writing. This thesis understands
ALE as it was conceived in the most recent version of the reference C implementation for
NI-enabled architectures which features some discrepancies, changes and additions to the
algorithm described in its original paper. These differences are discussed on their own in
Section 2.5 of this chapter.

This chapter will otherwise be more focused on the specification of ALE. But before
we begin with a more detailed discussion of ALE and the creation of its authentication
tag, we will give a short overview into its main building block, the advanced encryption
standard (AES) in Section 2.1. Further on, we will conclude with a short summary. Before
concluding this introductory section we discuss some basic information on ALE.

Initialization Encryption Tag-Generation

master key associated data,
message blocks

master key

ciphertext blocks authentication tag

Figure 2.1: Stages of ALE

ALE is an authenticated encryption algorithm which means that it transforms plaintext
into ciphertext while also providing an authentication tag which can be used to verify the
integrity of the transformed data. This added data integrity is rendering alterations,

5

CHAPTER 2. INTRODUCTION TO ALE 6

forgeries and other manipulations of the ciphertext highly unlikely. ALE’s main building
block is the advanced encryption standard (AES) which is used and has been used in many
cryptographic applications and is well understood by the research community.

ALE is processed in three stages: Initialization, Encryption and Tag-Generation as
can be seen in Figure 2.1. The master key is used as an AES-key during the first and final
stages. The initialization stage is used to set up the internal states of ALE, the encryption
stage can be used to process associated data and to transform plaintext into ciphertext.
The tag-generation stage is used to create the authentication tag.

ALE uses two 128-bit wide internal states for its operations. The two internal states
of ALE are called data state and key state. The data state is used as the state of all AES
operations after initialization and is also influenced by additions with blocks of plaintext
or associated data. The initialized key state is used as its AES-key counterpart and is only
updated by the regular key-schedule of AES. The 128-bit size of these states also influences
the block length for the master key, plaintex and ciphertext which are all defined to have a
length of 128-bit (or 16 bytes) per block. An overview of ALE’s input and output data is
displayed in Table 2.1. Information on associated data in these table is kept in parentheses
as associated data is an optional feature. As discussed earlier the next section focuses the
Advanced Encryption Standard(AES) which serves as the main building block for ALE.

Stage Inputs Outputs
Name Bitlength Name Bitlength

Initialization Master Key 128 - -
IV 128

Encryption (Associated Data Blocks) (l ∗ 128)
Message Blocks n ∗ 128 Cyphertext Blocks n ∗ 128

Tag-Generation Master Key 128 Tag 128

Table 2.1: IO-Data of ALE

2.1 The Ten-Round AES Encryption

The advanced encryption standard (AES) or originally called Rijandel [3], was chosen by
the U.S. National Institute of Standards and Technology (NIST) to be the official successor
to the data encryption standard1 (DES) in 2001. There are three official versions of AES,
all of them feature a block size of 128 bits for their data state while each having different
key sizes of 128, 192 and 256 bits respectively. These versions are referred to as AES-128,
AES-192 and AES-256. From here on, when talking about AES we mean AES-128.

One of the most important features of AES is its use of a matrix representation for
all of its operations. AES uses two 128-bit wide blocks as inputs. These are transposed
from one-dimensional arrays as the key and message blocks k = [k0, k1, k2, ..., k15] and
m = [m0,m1,m2, ...,m15] into four by four matrices as can be seen below in Equation
(2.1). Each element of the former array and the matrices below represent one byte. These
matrices are also important to consider when we discuss the LEX-Leak of ALE in one of
the following subsections.

1puplished in 1977 by the NSA

CHAPTER 2. INTRODUCTION TO ALE 7

K =

k0,0 k0,4 k0,8 k0,12
k0,1 k0,5 k0,9 k0,13
k0,2 k0,6 k0,10 k0,14
k0,3 k0,7 k0,11 k0,15

 ,M =

m0 m4 m8 m12

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

 (2.1)

A regular AES encryption consists of ten rounds, each one of these includes a key
addition with the respective round key. These round keys are calculated consecutively
through a process which is summarized under the term key-schedule (KS) which we will
discuss first.

The last column of the k-matrix is rotated one element upward. Then the elements
of this column are sent through the Rijandel Sbox. In the next step these Sbox values
are xored with the first column of the k-matrix. The first byte is also xored with the
current round constant. This forms the first column of the round key. The remaining
columns are results of xor operations of the respective element with the same-row element
of the previous column. This can be seen in Equation (2.2). The variable t determines
the current round and the function S() describes the Sbox-transforation function.

kt =

kt,0 kt,4 kt,8 kt,12
kt,1 kt,5 kt,9 kt,13
kt,2 kt,6 kt,10 kt,14
kt,3 kt,7 kt,11 kt,15

=

kt−1,0 ⊕ S(kt,13)⊕RCON(t) kt,0 ⊕ kt−1,4 kt,4 ⊕ kt−1,8 kt,8 ⊕ kt−1,12

kt−1,1 ⊕ S(kt,14)⊕ 0 kt,1 ⊕ kt−1,5 kt,5 ⊕ kt−1,9 kt,9 ⊕ kt−1,13

kt−1,2 ⊕ S(kt,15)⊕ 0 kt,2 ⊕ kt−1,6 kt,6 ⊕ kt−1,10 kt,10 ⊕ kt−1,14

kt−1,3 ⊕ S(kt,12)⊕ 0 kt,3 ⊕ kt−1,7 kt,7 ⊕ kt−1,11 kt,11 ⊕ kt−1,15

t = 1, 2, ... (round) ; k0 = K (the master key)

(2.2)

The Round Constant (RCON) is a value dependent on the current encryption round
and can also be represented by a set of constant values. In order to save memory these
constants can also be calculated ad hoc by using the following steps. The Round Constant
is initialized with the value 1 for the first round. The following round constants are
results of a times-2 operation within Rijandel’s finite field (GF (28))[3]. The result of this
operation can be calculated with bit arithmetics quite easily via a one-bit shift-rotation
to the left and three xor operations of the old values of bits three, two and zero, with the
seventh bit. The seventh bit is the most significant and left-most bit.

RCON(i+ 1) = b(i+ 1)7.b(i+ 1)6.b(i+ 1)5.b(i+ 1)4.b(i+ 1)3.b(i+ 1)2.b(i+ 1)1.b(i+ 1)0

= X2(RCON(i))

= b(i)6.b(i)5.b(i)4.b(i)3 ⊕ b(i)7.b(i)2 ⊕ b(i)7.b(i)1.b(i)0 ⊕ b(i)7.b(i)7
RCON(1) = 0.0.0.0.0.0.0.1

i = 1, ...
(2.3)

This concludes the key-schedule. Next we will look into the state. Each of the ten
rounds of AES uses the following round transformations to manipulated the state:

CHAPTER 2. INTRODUCTION TO ALE 8

1: SubBytes
All byte values of M are replaced with the values of their respective Sbox trans-
formations. Most commonly this is achieved with a lookup-table but can also be
calculated within Rijandel’s finite field (GF (28)).

2: ShiftRows
The rows of the matrix M are shifted to the left. The shifting distance is determined
by the row number as can be seen in Figure 2.2. The first row remains unshifted,
the second is shifted by one, the third by two and the fourth by three columns.

m0 m4 m8 m12

m5 m9 m13 m1

m10 m14 m2 m6

m15 m3 m7 m11

After the ShiftRows-Step

m0 m4 m8 m12

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

Before the ShiftRows-Step

Figure 2.2: ShiftRows-Step on matrix M

3: MixColumns
Each column of the matrix M is substituted by the result of the MixColumns opera-
tion. The multiplications and additions of this operation are calculated in the finite
field (GF (28)). The computation is conducted as shown in Equation (2.4).

m̄i

m̄i+1

m̄i+2

m̄i+3

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

mi

mi+1

mi+2

mi+3

 =

=

2mi + 3mi+1 +mi+2 +mi+3

mi + 2mi+1 + 3mi+2 +mi+3

mi +mi+1 + 2mi+2 + 3mi+3

3mi +mi+1 +mi+2 + 2mi+3

i = 0, 4, 8, 12

(2.4)

4: AddRoundKey
All elements of M are xored with the current elements of kt, which were calculated
with the aforementioned key-schedule.

Adding to this the AddRoundKey-step is also calculated as the very first step ahead of
the first round and the MixColumns-step is omitted in the last (e.g. tenth) round. This
concludes the Advanced Encryption Standard. Now we will look how AES was used by
ALE to form an authenticated encryption algorithm.

CHAPTER 2. INTRODUCTION TO ALE 9

2.2 Initialization

In order to set the two states of ALE up for encryption and the possible processing
of associated data, three full AES encryptions have to be calculated as can be seen in
Figure 2.3. First an initialization vector (IV) has to be AES-encrypted with the master
key. This IV is 128-bit long and is suggested to be generated by a counter. Second, the
master key is used to encrypt a 128-bit long vector consisting of 0s. In the third AES
encryption the results of the first two encryptions are used as key and input. The result
of AES encryption of the IV is used as the key while the result of the AES encryption of
the zero vector is used as the state. The result of this third ten-round AES encryption is
the initialized data state.

The result of the first AES encryption in which the IV was encrypted is then also sub-
mitted to one additional round of the AES keyschedule with the round constant (RCON)
set to ‘0x6c’ which is the round constant for the eleventh round. The result is the initial-
ized key state. As this key-schedule is never directly mentioned in the paper but is still in
the reference implementation albeit unexplained the author has started to refer to it for
the lack of a better word as the solo key-schedule. The solo key-schedule can be observed
in the upper right corner of Figure 2.3 in the function box denoted as AES KS 1Round.
It will be further discussed in section 2.5. With the initialization of the internal states
complete, associated data blocks and message blocks can now be processed.

AES

AES AES

AES KS
1Round

'0'

IV

master key

master key

key state

data state

Figure 2.3: Initialization of ALE

2.3 Encryption

The encryption of one single message block or one block of associated data after the
initialization is depicted in Figure 2.4. ALE encrypts 128-bit message blocks by performing
the following steps:

AddRoundKey
Before the first round of AES is performed the key state is added into the data state,
just like in a regular ten-round AES encryption.

CHAPTER 2. INTRODUCTION TO ALE 10

4-Round AES
For each message block 4 rounds of AES are performed. After each round the LEX-
Leak step is executed.

Word Reversal
Every message block is split up into four 32-bit long words which are used to generate
the according words of the ciphertext. These words are used after each round of AES
in reverse order. The order of the bytes inside those words remains intact.

LEX-Leak
To generate the ciphertext, the aforementioned words are added with selected parts
of the data state, these parts are selected by the so called LEX-Leak, which consists
of two masks. One is for odd rounds of the AES the other is for even rounds. These
masks are represented by the following matrices. These four-by-four matrices are
applied to the data state of ALE which also consists of a four-by-four matrix with
one byte per element. A 1 represents a byte that will be xored with one byte of the
message word while a 0 will be ignored. The order of the bytes extracted to the
data state is defined as top-then-down before left-then-right.

odd =

0 1 0 0
1 0 1 0
0 0 0 0
0 0 1 0

 , even =

1 0 1 0
0 0 0 0
0 0 1 0
1 0 0 0

 (2.5)

Add
After four rounds of AES with LEX-Leak operations the whole message block is
added into the data state. This is essential for the processing of associated data
where the aforementioned LEX-Leak operations can be omitted.

After the last block message data has been encrypted, ALE should proceed to its tag-
generation stage. The reference implementation and the original ALE paper left unclear
whether the switch into the tag-generation stage should be done automatically or how this
should be communicated to the algorithm.

2.4 Tag Generation

After the final message block has been processed the current data state serves as the input
to a 10-round AES encryption with the original master-key as can be seen in Figure 2.5.
The result of this encryption is called the authentication tag. After this all states can be
reset.

2.5 Discrepancies between Paper and Reference Implemen-
tation

In the following paragraphs we are going to discuss some discrepancies between the original
ALE paper [1] and the available reference implementation and some omissions by the
former. Some of these are needed to completely specify ALE while others are unnecessary
deviations. First of all there is no handling of the padding in the reference implementation
which is promised by the paper as

CHAPTER 2. INTRODUCTION TO ALE 11

m
3

AES KS
1Round

key state

data state + AES
1Round +

AES KS
1Round

AES
1Round

AES KS
1Round

AES
1Round

AES KS
1Round

AES
1Round

+++ +m
2

m
1

m
0

c
3

c
2

c
1

c
0

m
0-3

LEX odd LEX oddLEX even LEX even

...

...

32 32 32 32

128

128 128 128 128

Figure 2.4: Encryption of one message block

AES

master key

tagdata state

Figure 2.5: Tag-Generation of ALE

�For the last block of M the exact required number of most significant bits are
taken from the leak and xored to the last block (without padding) to produce
the last bits of ciphertext, and mt is xored to the data state.[1]�

The paper proposes a padding-mode similar to MD4. This includes the addition of a 1-bit
followed by 0-bits and a 64-bit encoded message length encoded into the last message
block. In reality the code has no other handling for the last message block so the padding
is in fact xored into the data state. Second the paper proposes different masks for the
LEX-Leak than are actually used in the implementation:

odd :

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 , even :

0 1 0 1
0 0 0 0
0 1 0 1
0 0 0 0

 (2.6)

Another point is that the 1-round keyschedule in the Initialization stage is omitted by
the paper, although it is mentioned in the beginning when comparing the algorithm to
ASC-1.

�the non-sequential order in which the AES-256 subkeys are used in ASC-1
(e.g. subkey 11 is needed already in the first round) [1]�

And at last the reverted order of the message words is omitted in the paper[1].

CHAPTER 2. INTRODUCTION TO ALE 12

2.6 Summary

ALE is an authenticated encryption algorithm that is heavily based on AES. Some minor
specifics of ALE seem to be not set in stone yet. While others have filled the fuzzy
details on their own with mixed success [7], we filled this lack of specification with a strict
adherence to the reference implementation that was provided to us. Many aspects of ALE
are intriguing, especially when it comes to its low-area qualities which we will discuss
further in Chapter 3.

Chapter 3

Lightweight Implementation of
ALE

In order to perform a side-channel analysis of ALE, the algorithm was implemented tar-
geting a Xilinx Virtex-II Pro FPGA platform. We describe this FPGA in more detail in
Chapter 5. In this chapter we give a detailed overview of the design of this lightweight
implementation of ALE and all of its components. We discuss each of the modules and
the design in a top-down approach. In the first section, the global requirements are re-
viewed and the resulting design decisions are discussed, this is followed by the hardware
architecture of ALE. There we discuss our top module which can be split into a control
and a datapath module. This will give an overview of all the control signals which are
wired between those two modules and their relations to the finite state machine (FSM)
which we use as the control module and also discuss their purpose in the datapath.

We created an implementation of AES which is similar to Moradi et al.’s proposal in
[6] but deviate from it in some aspects which we discuss in other sections of this chapter
in more detail. The original proposers [1] of ALE claim that they also used an AES core
based on [6]. This chapter also features more detailed discussions on other modules created
for this implementation and the purposes of these modules in the following sections. These
explanations also include a description of our solutions for a LEX-leak [15] and all other
aspects needed to augment AES into a fully functioning version of ALE.

Further on we discuss the implementation of our FPGA-specific countermeasures as
they were proposed by Tim Güneysu and Amir Moradi in [4]. One subsection is devoted to
the random number generator (RNG) we implemented while each of the countermeasures
-clock randomization and the randomized switching of short circuits- receive their own
discussion regarding their implementation. Both of these countermeasures utilize the
same RNG design which is discussed in Section 3.3.1.

At the end of this chapter we discuss the synthesis results and further optimizations.
We also give a comparison of the results provided by [1], [6] and [13] with our own results.
This chapter is then concluded by a short summary.

3.1 Global Requirements and Design Decisions

Our global requirements are first and foremost defined by a motivation towards area op-
timization with the goal to achieve a smaller AES core than what was achieved by [6].
Smaller area requirements lead to cheaper production costs if a design would eventually

13

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 14

get taped-out, a smaller area rquirement also comes with lower power-consumption re-
quirements when compared with designs focused on the fastest possible computations.
Since ALE was proposed as a tool for light-weight cryptography we also opted for an area
optimization approach. The design should be able to function as an ASIC and on an
FPGA and be cycle-efficient. It should be noted that the countermeasures implemented
are FPGA-specific and are not suited for ASIC implementations.

To verify the correct functionality, the implementation also must be able to pass the
same testvectors as the reference implementation of ALE [1] with the same ciphertext
and tag output. This means that we chose to adapt the same LEX-mask as described
in Chapter 2.3 and not the one seen in the figures of [1]. This necessitates an AES core
capable of executing up to ten rounds of AES and the calculation of the eleventh round
of the AES keyschedule.

We chose to communicate via a predefined communication standard (AMBA APB) as
described in Subsection 3.1.1 and adopted a similar 8-bit architecture as [1] and [6]. We
also chose to use the standard approach of seperating the design into a datapath and a
controlpath.

One of our further-reaching design decisions was to actively use clock gating or enable
signals for flipflops to control the flow of data. We also decided to generate Sbox and
RCON results through logic gates and not through look-up tables (LUT).

3.1.1 Communication Interface

In order to set up a predefined way of communication for the implementation we decided
to use an established communication standard for the input and ouput of data. We
chose the Advanced Microcontroller Bus Architecture (AMBA) Advanced Peripheral Bus
(APB) [43] protocol by ARM due to the already existing serial-to-APB module which
allows serial communication with computers and its simplicity. AMBA APB is used for
low bandwith access to peripheral slaves and is part of other open-standard, on-chip
interconnect specifications for system-on-a-chip (SoC) designs which were created by the
ARM corporation.

We use AMBA APB with 32-bit wide bus signals for data transfers (IO). The signals
we use can be seen in Figure 3.1. This figure shows the top module of our implementation
with the interface signals on its outer left and outer right edges. The general purposes of
these signals are as follows:

penable
This signal indicates a data transfer via APB from the second sent or received block
onward when set to high.

presetn
This is the reset signal, generally used to reset the slave back to its starting point
and resetting registers where necessary. This signal is active LOW which means a
reset should take place if this signal equals zero.

pwrite
pwrite is used to indicate the direction of a data transfer via APB from master to
slave device. If set to HIGH (logical one) data is sent to the peripheral device, if
LOW data can obtained from the device.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 15

pwdata (32 bits wide)
This bus is used to send 32-bit wide data blocks to the peripheral device and should
only be relevant if pwrite is HIGH.

prdata (32 bits wide)
This bus is used to read 32-bit wide data blocks from the peripheral device and
should only contain relevant data if pwrite is LOW.

psel (unused)
This indicates that the peripheral device is selected. Due to the lack of other pe-
ripheral devices the need to communicate with this signal has been omitted by the
control logic of our implementation.

paddr (8 bits wide) (unused)
This bus can be used to indicate to which address transferred data should be written.
This bus was unnecessary for our implementation and was therefore left unused.

pclk
The clock signal whose rising edge times all transfers of information via the APB
interface.

Taking a closer look at Figure 3.1, the control signals penable, pwrite and presetn
are connected to the control module of our implementation. But also the data signal
pwdata[31] is connected to this module. This is because we only use pwdata[15] - pwdata[0]
for data transmission. We reduced our input bandwith due to the fact that it further
improves our low area target and fits better into our architecture which heavily depends
on 8-bit wide buses. The hence otherwise unused pwdata[31] signal is repurposed to
indicate if the last message block has been transmitted. That means, the pwdata[31] signal
serves as an additional interface control signal. This enables the implementation to know
when to switch from ciphertext generation to tag generation. The decoding of information
encoded in the message padding would be another albeit more expensive solution to detect
this.

Also note that in order to be able to use this interface on an FPGA for a side-channel
analysis, a pre-existing serial-to-APB interface in the FPGA bitstream was used as a
intermediate module.

As was previously mentioned, the serial-to-APB module enables communication with
an external controller (e.g. a PC running on the Windows operating system) which sends
and receives its information one bit at a time. This reduces the input and output signals
to one signal for each purpose (rx for receiving, tx for transmitting). The serial-to-APB
module itself is available in VHDL. For the communication to work properly, information
about the operating frequency and the baudrate1 need to be hardcoded into the HDL files.

3.2 Hardware Design of ALE

As is common in modern hardware designs we divided our design into a datapath and a
controlpath. The datapath module stores, processes and outputs the supplied data and
the control module controls the flow of the data in the datapath. Figure 3.1 shows the
top module containing a datapath module and a control module. The control module uses

1The baudrate is defined as symbols per second

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 16

multiple control signals to direct the datapath module. According to the signals set by the
control module, the data is modified in the datapath.

In the following, the purpose of each of the control signals depicted in Figure 3.1 is
discussed:

state select, key select, temp select and zero
These signals determine which input will be shifted into the respective registers of
the state, key, and temp modules. The zero signal controls a multiplexer regarding
the input of the state register. This is needed in the initialization stage of ALE to
fill the state register with zeroes.

add select
According to the value of this signal, the values of one of the output buses of either
the key or the temp module is added to the output bus (state[127:120]) of the state
register. The output of the multiplexer will be sent to an 8-bit XOR gate whose
other input is an output bus of the state module.

state en, key en, tmp en and lex en
These enable signals determine if the respective registers should update their values
at the next positive edge of the clock (HIGH) or hold their current values disregarding
the clock signal (LOW).

mx and shiftrows
These signals are all used in the state module. The mx signal determines if the
output of the mixcolumns module should be the input of the last column of the
register while the shiftrows signal enables the ShiftRows transformation of AES as
it was discussed in Section 2.1.

sel and and sub word
These signals are used to control the keyschedule of AES.

loadpt
This signal is used to store message blocks in the temp register.

even and shift
In the LEX-leak module these signals control the flow of information. even denotes
whether the current round of AES is odd or even while the signal named shift enables
the registers of the LEX-leak module to perform a regular shift to the left. In an
alternative implementation of the LEX-leak module the shift signal is replaced by a
signal called round1 which denotes whether the module can skip the preprocessing
of the keyschedule (see Section 3.2.1 and Figure 3.9).

reset rcon, step rc, active rc
These signals are used to control the state and the output bus of the RCON module.
A step rc set to HIGH will set the internal value of the RCON module one step
further. If the RCON module is set to inactive (active rc set to LOW) it will set the
value on its output bus to zero.

tag out
The tag out signal sets the prdata bus to the result of the tag generation. Otherwise
it outputs the results of the LEX-leak.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 17

control datapath

state_select[1:0]

key_select[1:0]

temp_select[1:0]

add_select[1:0]

temp_en

loadpt

state_en

mx

zero

shiftrows

key_en

sub_word

reset_rc

active_rc

step_rc

lex_en

even

shift

tag_out

sel_and

pclk

prdata[31:0]

pwdata[15:0]

penable

presetn

pwrite

pwdata[31]

Figure 3.1: The top module with input, output and control signals

How the signals described above change the behavior of the datapath is discussed in
more detail in Section 3.2.1. For further information on how they are set see Section 3.2.2.

Figure 3.1 also shows how the signals of the communication interface are routed and
reveal some of the specifics of the communication between the interface master and our
ALE implementation. These interface signals have been discussed in Section 3.1.1.

This section has featured information on the control signals used in the top module of
our ALE implementation. The following subsections discuss the datapath module with its
submodules and the control module, respectivily.

3.2.1 Datapath Module of ALE

The datapath module can be described as a modified version of the datapath proposed
by [6] and can be seen in Figure 3.2. Besides the one module containing Canright’s Sbox
[14] it holds four specialized register modules: state, key, temp and LEX-leak. The state,
key and temp modules include 16 registers each containing one byte (for an example see
Figure 3.3) while the LEX-leak module holds four byte registers in order to be able to
hold one word (32 bits) of the current ciphertext block (see Figures 3.9 and 3.10).

The datapath module uses 8-bit buses to transfer data almost exclusively with a few
notable exceptions concerning the LEX-leak module and the output of data. We can also
see this 8-bit structure at the core of the design where the datapath module has the ability
to add two bytes of data and send the result through the Sbox in one clock cycle.

The interactions between the five modules contained in the datapath module is con-
trolled by several multiplexers, which are discussed in the following paragraphs. All the
multiplexers are controlled by signals originating from the control module. All of our
explanations can be related to Figure 3.2.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 18

F
ig

u
re

3.
2:

T
h

e
d
a
ta

pa
th

m
o
d

u
le

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 19

mux state select
The 8-bit multiplexer denoted in Figure 3.2 as mux state select allows to select be-
tween four inputs. The first (from the left) input is used to store data received from
the AMBA APB interface. The second is reserved for the last operation of a single
message block encryption in which the message block is added into the state register.
The third input takes the output of the Sbox as is needed for the AES encryption.
And finally the fourth input is used during the initialization stage (see Section 2.2
about this particular stage of ALE) where the result of the first AES encryption has
to be stored temporarily in the temp register.

mux key select
The 8-bit multiplexer called mux key select has three inputs for the key module.
The first (from the top) input is used to store data received from the AMBA APB
interface. The second input takes the output of the temp module to load the master
key or the initialized key from the temp module. The third input is used to rotate
the key bytes during the key addition of the AES encryption.

mux temp select
The mux temp select 8-bit multiplexer provides three inputs for the temp module.
The first input is used to store data received from the AMBA APB interface. The
second input is used during the initialization stage of ALE where the result of
the first AES encryption has to be stored temporarily in the temp register. The
third input is used to rotate the bytes of the temp module in order to preserve the
initialized key for the additional keyschedule (see Section 2.2).

mux add select
The add select signal selects the byte that will be added to the current byte of
the state. This enables the design to add bytes of the temp and key modules to
bytes of the state module (whose signal is called state[127:120] the input signals
of the multiplexer are called key[127:120] and temp[127:120] respectively). ALE
necessitates this when a plaintext block which is stored in the temp register has to
be added into the state module.

mux sub word
In order to enable an AES keyschedule it is required to substitute bytes of the
round key using the Sbox module. This is provided by the multiplexer switched by
sub word. The sub word signal is also used in the key module to change the inputs
of its registers.

mux zero
Another requirement of ALE is the loading of zero bytes into the state module
during the initialization stage (see Section 2.2) for the second AES encrytption.
This is achieved by applying an additional multiplexer.

mux tag out
The 32-bit multiplexer called mux tag out enables us to switch between the cipher-
text words generated in the LEX-leak module and 32-bit words of the authentication
tag which we process in the final AES encryption of ALE.

Some other points are of note in the datapath module. The temp and LEX-leak modules
have another pwdata[7:0] input bus which is used to store or process plaintext inside of

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 20

them. Figure 3.2 omits input buses used by the less compact LEX-leak module which are
selected byte registers of the state and key modules to comply with the given LEX-mask
and a bus coming from the temp module which supplies a complete plaintext word.

In the following subsections the state, key, temp, Sbox and LEX-leak modules are
discussed in a sequential order.

The State Module

The state module consists of sixteen registers (each 8-bit wide) which can be used as a
simple shift register and is shown in Figure 3.3. The registers in Figure 3.3 are assembled
to resemble the same four-by-four pattern the internal states of AES hold as can be seen
for the matrices M and K in Equation (2.1). The same matrix pattern is used for the
registers of the key and temp modules. This enables the module to load data from multiple
sources as was dicussed above in the general datapath section.

In order for the registers to be clocked, they have to be enabled by the state en signal
first. This additional complexity in flipflop-design was introduced along with the use of
scan flipflops to gain better control over the flow of data. The scan flipflops help to keep
the area requirements low as they are significantly smaller than additional multiplexers.

The shiftrows signal is used to facilitate the ShiftRows step of AES (see Section 2.1)
which selects the inputs of the registers as is indicated by the lower set of inputs of the
multiplexers labeled with ‘scan’ in Figure 3.3. The mx signal cuts the shift chain from
the last byte to the byte into four self-contained shift loops along the rows of the registers
to direct all four columns through the mixcolumns module.

The state module also contains a submodule called mixcolumns which transforms the
first column of registers into the result of AES’ MixColumns step of AES. The design of
this module can be seen in Figure 3.5 and was taken from Hua Li and Zac Friggstad’s [13]
proposal. This is a derivation of the design proposed by [6] which uses a module which is
designed for the first row of the MixColumns matrix multiplication as it was depicted in
Equation (2.4). The module is instantiated four times for each of the four result bytes of
MixColumns. The wiring of the input bytes is rotated according to multiplication matrix
of Equation (2.4).

Our approach holds the advantage of smaller area requirements due to the reuse of
the results of the x2 modules which can also be observed in Figure 3.5. An x2 module
computes a simple duplication of a value inside of GF (28) which corresponds to a shift
operation to the left and a reduction modulo x8 + x4 + x3 + x + 1 which translates to
an xor operation with 1000110112 if the most-significant bit (MSB) is set. This is the
same function as was described in Equation (2.3). So these x2 modules contain a simple
bit-wise shift wiring to the left and three 2-input XORs of the MSB with the fifth, sixth
and eighth significant bits. The MSB is also rotated to the place of the least significant
bit (LSB) as can be seen in Figure 3.4.

Another advantage regarding area requirements is the omission of a 64-to-32-bit mul-
tiplexer which we do not need due to the further utilization of our state en signal. This
multiplexer was used in the design of [6] to circumvent the MixColumns-step of AES for
the tenth round of AES while our design just disables the clocking of the registers used in
the state module.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 21

Figure 3.3: The state module

Figure 3.4: The x2 module only consists of wires and three XOR gates

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 22

Figure 3.5: The mixcolumns module

The Key Module

The key module is designed similarly to what we established while discussing the state
module. It is comprised of 16 byte registers which are clocked when the key en signal is
set to HIGH and utilizes scan flipflops to save some area.

A 2-to-1 multiplexer costs 2.33 gate equivalents (GE) and a positive edge triggered
D-flipflop requires 5 GE to be able to store one bit. Scan flipflops on the other hand
require 6 GE while combining the functionality of the multiplexer and the flipflop. This
results in 1.33 GE saved per bit of storage that would otherwise require a multiplexer on
its input. This approach to reduce area requirements has been used before in area efficient
implementations of PRESENT [47], KATAN/KTANTAN [48] and AES [6].

The key module can be used as a simple rows-first shift register but also holds features
designed to facilitate the processing of the AES keyschedule. As depicted in Figure 3.6
the registers also support a columns-wise shift operation when the sub word signal is set
to HIGH. This is used to shift the rightmost column of the registers through the Sbox
module and XOR the results with the current RCON values and the values held in the
leftmost register column of the module. The results of this operation are then shifted into
the registers of first column. Note that the output to the Sbox is set to output the second
byte of the last column first. This allows for an easy way to rotate this column as is needed
to process the AES keyschedule. The sub word signal is also used in the datapath module
above to set the Sbox input to the key[71:64] signal of the key module.

The RCON submodule is used to output the correct RCON value and is controlled by
three control signals. The reset rc signal resets the internal 8-bit register of the module
to its initial value of 00000001 if set to HIGH. The active rc signal sets the output of the
RCON module to the current value if set to HIGH and otherwise to 00000000 as only the

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 23

Figure 3.6: The key module

first of the four bytes of the column must be added with the RCON. The step rc sets the
internal register of the RCON module to the next value at the next positive clock edge.
The next value is calculated inside of an x2 module which we discussed while taking a
closer look at our mixcolumns module and can be seen in Figure 3.4.

The remaining three columns are applied to the keyschedule while the module is set to
function as a shift register and the sub word signal is LOW by utilizing the sel and signal.
If the sel and signal is set to HIGH the values of the current first and second register in
the first row will be XORed and stored in the first register. This signal should only be
set to HIGH when storing keystate values from the second to fourth columns in the first
register of the first row to ensure a correct keyschedule.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 24

The Temp Module

The temp module is specific to our implementation of ALE and was not proposed by [6] or
[1]. It is used as a general storing tool enabling us to reduce the amount of communication
overhead needed for the ALE encryption. It is used to store three types of data.

First, it is used to store the masterkey during the initialization. The goal is no to have
to transmit it twice in that stage.

Second, it is used to store the result of the first AES encryption during the initializa-
tion stage. Otherwise this result must be transmitted outside of the implementation and
reloaded twice afterwards as was done in the implementation by [1]. The first reloading
would take place for the third AES encrytption of the initialization stage while the second
reloading would be necessary to reset the registers of the key module and process the
single keyschedule of the initialization stage.

Third, it is utilized to store the plaintext blocks used for the ALE encryption. Without
this use of the temp module it would be necessary to reload all of the plaintext blocks
through the global interface to add their values into the registers of the state.

As we have discussed with the state and key modules the temp module holds 16 byte
registers which can be enabled to store values at their inputs when the temp en signal is
set to HIGH and utilizes scan flipflops to avoid the use of multiplexers. As is the case with
the previously discussed main modules it supports a rows-first shift mode of operation
while the load pt signal is LOW. The overall design scheme of this module can be seen in
Figure 3.7. This functionality of a shift register is utilized when storing the masterkey,
storing intermediate results of the initialization stage from or to the module and when the
current plaintext block needs to be added to the values of the state module.

If the load pt signal is set to HIGH the module is set to a columns-first shift mode.
During this mode of operation the data is retrieved from another input which is connected
directly to the communication interface (pwdata[7:0]). This allows to load plaintext blocks
without the need to transpose them for the otherwise rows-first design.

Another solution to load the message would be to transpose the message blocks before
sending them. This would have the effect of added clock cycles for the encryption since
the ciphertext words could no longer be created simultaneously to loading the respective
words and would lead to other additions in the design like additional FSM states, another
shifting mode for the temp module, etc.

This also enables us to transmit the words of a plaintext block in reverse order as is
necessitated by the LEX-leak while filling the registers of the temp module in the correct
order so they can later be added to the values stored inside of the state module.

The Sbox Module

In search of the currently smallest design of the AES Sbox we have chosen the proposal
of Canright who investigated the possibilities of hardware requirements for the AES Sbox
in [14]. As many similar proposals suggest he chose to split up the GF (28) into nested
fields GF (24) and GF (22) in order minimize the area requirements of the Sbox. The
mathematical specifics can be found in [14] while a graphical representation of the Sbox
was created for [6]. Our implementation is directly based on the optimized verilog source-
code provided by [14] with a few alterations regarding the compatibility of Canright’s
code.

An overview of the model can be seen in Figure 3.8. All submodules use combinational
logic to calculate the result. After the input byte has been transformed from GF (28) to

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 25

Figure 3.7: The temp module

Figure 3.8: Overview of the Sbox module

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 26

GF (28)/GF (24)/GF (22) which includes about 14 xor gates and additional logic inverers,
the byte is split up to perform multiplications in GF (24) which include calculations using
submodules in GF (22), these submodules are not displayed in the figure for the sake of
space. After these multiplications the byte is reassembled (right-most side of Figure 3.8).
and converted back to GF (28).

The LEX-Leak Module

Two different approaches for implementing a module for the LEX-leak function are pre-
sented in the following. While the first design is a straight-forward solution and serves as
a reference, the second design includes several improvements to decrease the area require-
ment of the module. The second design also reduces the amount of FSM states needed
and also the number of clock cycles it takes to create the ciphertext is smaller.

Here we also discuss the challenges the LEX-leak imposes on us. Assuming we leave
the AES core unaltered, it seems quite expensive to select the correct 4 bytes out of 16
during every round. One can either route the results of the SubBytes step of AES directly
from the state module after their calculation is complete or pick them out of the shifting
cycle when the respective bytes needed for the LEX mask are created.

Additional problems arise from the LEX mask itself. Because of the alternative version
used by the reference implementation not only have the selected bytes to be changed for
odd and even AES rounds but the correct transposition from the rows-first architecture
into a columns-first ciphertext must also be altered accordingly. And another fact to con-
sider is that the key schedule of the first round is omitted, resulting in altered requirements
regarding the keyschedule. It should be noted that the way in which we have to generate
our ciphertext requires a reverse order of 32-bit plaintext words of one 128-bit plaintext
block. Our first decision was to keep the modifications of the communication through the
interface as small as possible. We transmit the plaintext words in a reversed order but
apart from this no alterations regarding the order of the bytes inside the words have to
be made.

1. The first implementation of the LEX-leak module:

The decision mentioned in the last paragraph gave way to our first design seen in
Figure 3.9. This design circumvents the overall 8-bit wide dataflow for a one-cycle
generation of a complete ciphertext word. To achieve this the plaintext word is
loaded into the temp module in parallel to the steps of the mixcolumns and subword
steps taking place inside of the state and key modules respectively. After this the
ciphertext word is generated. All the bytes of the LEX mask and the ciphertext
word are directly wired into the LEX-leak module and can be switched in-between
in relation to odd and even rounds. This is rather straightforward for the bytes wired
in from the state and temp modules as can be seen in the bottom half of Figure 3.9.
What makes this approach so unattractive is how the bytes from the key module
have to preprocess the last steps of the keyschedule depending on how far to the
right (columns-wise) they are according to the LEX-mask as can be seen in the top
area of the figure. This preprocessing is also unnecessary in the first AES round due
to the omission of the keyschedule as we discussed above leading to an additional
layer of multiplexers and a control signal called round1.

As announced earlier, this approach is very raw and leaves a lot of room to area
optimization, one could for example perform a 16-cycle loop of the key module and

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 27

perform the keyschedule then and omit the need for the XOR gates which can be
seen in the top half of Figure 3.9 at the cost of more cycles and a little bigger control
module.

2. The second implementation of the LEX-leak module:

In our second design however we chose to stay as close to the given AES core and its
8-bit wide bus structure as possible. The goal of this design was to pick the results
of the AddKey step (the sbox out[7:0] signal in the datapath) according to the LEX-
mask and storing them in the LEX-leak module. Then we can add the bytes of
the plaintext word (from the pwdata[7:0] signal) as we load them while using the
LEX-leak module as a shift register with the shift control signal set to HIGH. This
design can be seen in Figure 3.10. A few things are of note here. First, the lex en
signal has to be HIGH on very specific cycles according to the LEX-mask. Second,
we have to take care of the order in which we want the bytes to be stored inside
of the LEX-leak module. This is where the remaining multiplexers come into play
creating two additional shift patterns for the module. During odd rounds the bytes
originating from sbox out[7:0] are shifted through the fourth, third, first and then
second register, while they are shifted through the second, fourth, third and then
first register during even rounds. This results in a correct byte order when adding
the plaintext words. Otherwise we would either have to send specially arranged
plaintext words and rearrange them in a correct order inside of the temp module or
we would have to create our own state inside of the FSM of the control module with
still almost the same area requirements in the LEX-leak module.

Compared to our first design this module requires 35 percent of the area while
being one cycle faster (the first design requires its own encryption cycle). Other
optimizations would eventually require additional preconditioning of the plaintext
blocks.

3.2.2 The Control Module of ALE

In this section we take a look at the FSM of our implementation. FSMs can be used to
design and describe sequential logic circuits and have a number of states. When used as
control logic, a FSM has the purpose to set and unset its output signals to control the
datapath.

The FSM featured in our implementation can be seen in Figure 3.11 where its states are
grouped into the three stages of ALE (initialization, encrytption, tag generation). Besides
its main state, the FSM uses the following internal attributes to determine its next state:

AES ESCAPE
This type determines the next state after a ten round AES encryption has finished.
The possible values are: IV, ZERO, FINAL, TAG.

If set to IV, the value indicates that the AES encryption of the initialization vector
has been processed and that the relocation of the encryption result into the temp
module should be done next.

If set to ZERO, the value indicates that the AES encryption of the zero vector
during the initialization stage has been processed and that the values held by the
temp module should be copied into the registers of the key module.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 28

Figure 3.9: The first implementation of the LEX-leak module

Figure 3.10: The second, more compact implementation of the LEX-leak module

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 29

IDLE

AES_FR

AES_SR

AES_MC_SW

AES_ADD

LOAD_IV

RELOCATE

SAVE_KEY

RESTORE
_KEY

SOLO
_KEYSCHED

_ADD

SOLO
_KEYSCHED

_MW

ENC_FR

ENC_SR

ENC_MC
_SW

ENC_ADD

ENC_LOAD
_WORD

ENC_LEX
_WAIT

ENC_ADD
_PT

LOAD_MK

READTOBUS

AES*

AES*

AES*

AES*

A
E

S*

10 rounds
TA

G
 G

E
N

E
R

A
T

IO
N

E
N

C
R

Y
PT

IO
N

IN
IT

IA
L

IZ
A

T
IO

N

4 rounds

another m
essag e block

.

.

.

.
.

.

Figure 3.11: The states of the FSM which are setting the control signals

If set to FINAL, the value indicates that the last AES encryption of the initialization
stage has been processed and that the values held by the temp module should be
copied again into the registers of the key module.

If set to TAG, the value indicates that the AES encryption which creates the au-
thentication tag has been processed and that its result should now be read out to
the AMBA APB interface.

aes counter
This counter is used to determine the progress of the current AES phase during
AES FR, AES ADD, ENC FR add ENC ADD where it counts up to 15. During
AES MC SW and ENC MC SW it counts up to 3.

lex counter
This counter is used to determine the current AES round. This counter counts up to
ten during the initialization and tag-generation stages and to four while encrypting
a single plaintext block.

last block
This internal register is used to decide if the encryption stage is complete.

Figure 3.11 shows all the states of the FSM. The states required for a complete AES
encryption are used four times for every complete ALE encryption. The states can be
described as follows:

IDLE
This state is meant as a starting point, the FSM will set itself to this state if reset.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 30

Figure 3.12: State transitions at the beginning of the FSM.

In this state both counters are set to 0, the RCON is set to 1 and the AES ESCAPE
is set to IV. The FSM will leave this state if pwrite is set to 1.

LOAD IV
In this state the IV and key bytes are retrieved via the interface. The key bytes are
stored twice: one copy is stored in the key module while the other is stored in the
temp module If penable is 1 the clocking of the state, key and temp modules are
enabled, otherwise they are not. This state will be left and AES FR will be entered
if pwrite returns to 0.

AES FR
During this state the first round of AES begins. The key and state bytes are added
and submitted to the Sbox from which the resulting bytes are stored in the state
module. The input of the state module is set to the output of the Sbox while the
key module is set to a loop. Also the value inside of the RCON module is always
reset to 1 in this state with the reset rc signal set to HIGH. After 16 clock cycles
counted by the aes counter signal the state is set to AES SR.

AES SR
SR is an acronym for shiftrows. The registers of the key module are disabled. The
lex counter is increased by one and the value inside the RCON module is set to the
next one if it is no longer the first round. The next state (AES MC SW) is reached
immediatly.

AES MC SW
This state is set to last four clock cycles in which the mixcolumns operations take
place. Meanwhile the first column of the new round key is calculated. Both key
and state registers are enabled. The mx and sub word signals are set to HIGH. The

Figure 3.13: State transitions of the AES states.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 31

active rc signal is set to HIGH only during the first clock cycle. The next state
(AES ADD) is reached after the fourth clock cycle.

AES ADD
The AES ADD state is very similar to the AES FR state. Until the lex counter
signal reaches a value of 10 indicating that the final round of AES was reached the
state behaves as follows. The key and state bytes are added and submitted to the
Sbox from which the resulting bytes are stored in the state module. The input of the
state module is set to the output of the Sbox while the key module is set to a loop.
After 16 clock cycles counted by the aes counter signal the state is set to AES SR.
Additionally it sets the key and signal to HIGH if the aes counter signal currently
is not set to the value of 3, 7, 11 or 15.

When the lex counter signal has reached the value of 10 the input of the state module
is set to the output of the the 8-bit XOR in the datapath module (Figure 3.2. After
16 clock cycles counted by the aes counter signal the state is set to RELOCATE,
SAVE KEY, RESTORE KEY or READTOBUS depending on the current value of
the AES ESCAPE variable.

RELOCATE
This state takes 16 clock cycles of time. It is used to load zero values into the state
module. Also the result of the previously calculated AES encryption is relocated from
the state module to the temp module as is the masterkey which is currently held in
the temp module to the key module. All these operations take place concurrently
with the zero signal set to HIGH. The respective select signals of the key and temp
modules are set to the corresponding values.

SAVE KEY
The SAVE KEY state is very similar to the RELOCATE state. It takes 16 clock-
cycles to complete between the second and third AES encryptions as is also shown
in Figure 3.11. This state allows the design to copy the values in the temp module
to the key module while the values held in the state module must remain unaltered.
All of these three modules are enabled in this state, with the inputs of the state and
temp modules set to loop their contents while the input of the key module is set to
receive data from the temp module.

RESTORE KEY
This state is used to transfer 16 bytes from the temp module to the key module. The
only significant difference to the SAVE KEY state is that it’s next state is called
SOLO KEYSCHED SW.

Also in the last cycle the step rc signal is set to high to set the value inside of the
RCON module to the value corresponding to the eleventh round of AES.

SOLO KEYSCHED SW
This state facilitates the same steps of the AES keyschedule as AES MC SW but
disables the state module during its duration which is four clock cycles. The sub word
signal is set to HIGH. The active rc signal is set to HIGH only during the first clock
cycle. Note that the value inside of the RCON module is currently set to the value
of the RCON in eleventh round of AES. The next state (AES ADD) is reached after
the fourth clock cycle.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 32

SOLO KEYSCHED ADD
This state facilitates the same steps of the AES keyschedule as AES ADD but dis-
ables the state module during its duration which is four clock cycles. It sets the
key and signal to HIGH if the aes counter signal currently is not set to the value of
3, 7, 11 or 15.

ENC FR
During this state the first round of AES begins. The key and state bytes are added
and submitted to the Sbox from which the resulting bytes are stored in the state
module. The input of the state module is set to the output of the Sbox while the
key module is set to a loop. Also the value inside of the RCON module is always
reset to 1 in this state with the reset rc signal set to HIGH. After 16 clock cycles
counted by the aes counter signal the state is set to ENC SR.

ENC SR
SR is an acronym for shiftrows. The registers of the key module are disabled.
The lex counter is increased by one and the value inside the RCON module is
set to the next one if it is no longer the second round of AES. The next state
(ENC MC SW LW) is reached immediatly.

ENC MC SW
When compared to other states this state is very similar to the AES MC SW state
that it also sets the even control signal according to whether the current round of
AES is odd or even. The state module is enabled. The key module is only enabled
if the lex counter has the values 2, 3 or 4 since the keyschedule is omitted in the
first round. This applies also to the active rc signal which is otherwise set to HIGH
when the first byte is loaded. The control signals mx and sub word are set to high
to facilitate the mixcolumns step and steps of the keyschedule when the state and
key modules are clocked.

This state will be left and ENC ADD will be entered after four cycles.

ENC ADD
During this state the remaining addkey and Sbox permutation steps of AES are
processed. The key and state bytes are added and submitted to the Sbox from
which the resulting bytes are stored in the state module. The input of the state
module is set to the output of the Sbox while the key module is set to a loop.
Additionally it sets the key and signal to HIGH if the aes counter signal currently
is not set to the value of 3, 7, 11 or 15 and the lex counter variable holds values
above 1. It sets the even control signal according to whether the current round of
AES is odd or even. Also, while in an odd round it sets the lex en signal to HIGH
if the aes counter holds the values 1,4,6 or 14. If the round is even the lex en signal
is set to HIGH if the aes counter holds the values 0,2,10 or 12

After 16 clock cycles counted by the aes counter signal the state is set to
ENC LOAD WORD.

ENC LOAD WORD
This state is very similar to the LOAD IV state. The load pt and shift signals are
set to HIGH, and both the LEX-leak and temp modules are enabled if both penable
and pwrite are set to HIGH. Both state and key modules stay disabled during this
state.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 33

Figure 3.14: State transitions of the encryption states.

After 4 clock cycles counted by the aes counter signal the state is set to
ENC LEX WAIT.

ENC LEX WAIT
In this state our design waits for the AMBA master to retrieve the calculated ci-
phertext word. The clocking of the state, key, temp and LEX-leak modules is dis-
abled during the duration of this state. If the penable signal is HIGH the state
ENC ADD PT or the state ENC SR is entered depending on whether the lex counter
has a value equal to 4 which suggests that a whole plaintext block has been encrypted.

ENC ADD PT
This state is used to add the values of the temp module which holds the values of
the current plaintext block into the values of the state module. The clocking of
the state and temp modules are enabled in this state while the clocking of the key
module is turned off. The input of the state module is set to take the output of
the 8-bit XOR in the datapath module, while temp module is set to loop on itself.
Additionally the add select signal is set to let the signals from the temp module
through the multiplexer.

After 16 clock cycles the state determines whether to switch to ENC FR or LOAD MK
if the last block register is set.

LOAD MK
This state is similar to LOAD IV but only key bytes are retrieved via the interface.
The key bytes are stored in the key module. If penable is 1 the clocking of the key
module is enabled, otherwise it is not. This state will be left and AES FR will be
entered if pwrite returns to 0.

READTOBUS
After the last ten-round AES encryption to generate the authentication tag. The
tag is read out from the state module to the prdata bus. This is facilitated by setting
the tag out and mx signals to HIGH. Depending on the penable signal which also
controls the clocking of the state module, the state is left after each of the four words
from the state module has been read out to the AMBA master and is set back to
the IDLE state.

3.3 Countermeasures

After our first successful implementation attempt of ALE we went on to implement two
FPGA-specific countermeasures to reduce the feasability of DPA attacks on the design. We

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 34

Figure 3.15: Hardware structure of Xorshift

also analyzed them and compared how the needed effort for a successful DPA attack differs
to the unprotected implementation. Other compared parameters are the total correlation
value, usage of FPGA resources and ease of the implementation. The countermeasures we
chose were proposed by [4] as they seemed interesting regarding their focus on FPGAs.

The first countermeasure we implemented is called clock randomization i.e. random-
izing the timing behavior during critical calculations which appear to be suitable for
hardening the design against DPA attacks. The second countermeasure utilizes random
short circuits to randomize power consumption during critical calculations.

Both of these countermeasures use a pseudo-random number generator, which we chose
to be a Xorshift Random Number Generator (RNG) due to its relative ease of implemen-
tation. Further details on the RNG are discussed in the following subsection.

3.3.1 The Xorshift Random Number Generator

The Xorshift RNG was first proposed by George Marsaglia in [44] and is a pseudo random
number generator that requires a rather small amount of resources. Although a simple
implementation of Xorshift which lacks an additional non-linear step (which would result
in a stronger Xorshift* [44] or Xorshift+ [45]) is weak to some statistical attacks we chose
the basic version as our generated sequence is never fully exposed to attacks. This is owed
to the fact that the value of the 32 bits while they are controlling short circuits is masked
in the limited variance of the power consumption and only 3 bits of the RNG are utilized
while using it as a source for clock randomization. It should also be noted that due to the
always on nature of this RNG (which also disregards resets) the chance of reoccurance
of the same sequence point during critical calculations is highly unlikely. This version of
Xorshift yields a sequence with a length of 2128 − 1 of 32-bit wide values.

Figure 3.15 shows a hardware implementation of Xorshift. Take note that the shift
operations of Xorshift are logical and not circular. So if this RNG were to be implemented
in an area optimized setting this fact could be used to omit 38 gates. The registers w, x,
y, z are all 32-bit wide and initialized with hardcoded, non-zero values. The register w
also serves as the output. All registers are clocked with the standard clock of the circuit.

This also applies during active clock randomization phases where the RNG module
remains the only one still clocked by the unaltered clock signal. For further details on

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 35

clock randomization see the following subsection.

3.3.2 Clock Randomization

Clock Randomization is defined as a method to randomize the clock cycles during critical
calculations in order to impede DPA attacks by varying the occurences of positive clock
edges for every trace recorded. In order to make the clock randomization on an FPGA
feasible we use the clock buffers (CBs) and digital clock managers (DCMs) which are
provided by the FPGA. Clock Buffers here refer to multiplexers which can switch between
different clock signals and keep them stable while switching. DCMs offer many other
functionalities but we are only interested in one of them, their ability to output multiple
phase-shifted clocks simultaneously. Although the FPGA we used2 features eight DCMs
we were only able to use a maximum of two DCMs for clock randomization due to routing
limitations of the designated clock network which inhibited access to additional clock
buffers. These limitations made the inclusion of additional DCMs in the randomized
clock-tree impossible.

Figure 3.16 shows the implementation structure of our clock randomization with eight
clocks derived from two DCMs. The clock signal is selected by three different bits r0,
r1 and r2 of the current value held by the RNG. We also use the additional control
signal clkr on to turn clock randomization on or off. This is necessitated by the need of
a constant clock during communication states. Originally we wanted to use another CB
to switch between randomized and unrandomized clock but had difficulties generating a
valid bitstream file. So we chose to implement the three AND gates at the left-hand side
of Figure 3.16 as a way to activate clock randomization.

We also implemented smaller pools of clock signals to randomize between the phase
distance of these clocks set to a maximum3. The scaling in behavior and effectiveness
against DPAs with varying degrees of clock randomization will be discussed in a later
chapter.

3.3.3 Short Circuits

Short circuits (SCs) can be used on an FPGA as a noise generator. The basic idea is
to turn SCs on and off randomly during vulnerable operations which changes the power
values of each recorded trace-sample. As a result the SNR and the exploitable leakage
used by a DPA attack should decrease.

We opted to have the switching of SCs always turned on as their occurrences do not
impede the operation of our design. This choice also translates to no additional control
signals in our design. Implementing SCs themselves proofed to be a bit problematic. [4]
proposed the following process to implement SCs on Xilinx Virtex-II Pro FPGAs:

1. Create one SC manually with the FPGA Editor by Xilinx

2. Transform the SC design into an .xdl4-file and manipulate the configuration into an
actual SC there. Then transform the result back into a standard design file (.ncd).

2Xilinx Virtex-II Pro 2vp30
3two clocks: 0 and 180 degrees, four clocks: 0, 90, 180 and 270 degrees
4The Xilinx Design Language (XDL) can be used to directly change device configurations through a

text editor

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 36

Figure 3.16: Clock randomization with 8 different clock signals

3. Save the design as a hard macro (.nmc) and instantiate it multiple times in your
main implementation. Make sure that the outputs of your RNG are connected to
the inputs of the instantiated SC modules.

4. Compile your main implementation into a standard design file (.ncd) and then re-
locate the hard macros to spread-out places to avoid damaging the FPGA. This
relocating is again done with the FPGA Editor

5. Generate a .bit5-file with the DRC (design rule checking) turned off.

As we tried to follow these steps we used the same toolchain as [4] claimed to have
used but could not complete them. At step 4 of their proposal we could not proceed
further because the Xilinx toolchain could not place hard macros which contain activated
SC designs.

Our first idea to circumvent this roadblock was to compile our design with instantiated
hard macros that contained only unactivated SCs. Then we could have activated them via
the .xdl-file we would create from our compiled implementation. This idea unfortunately
did not work. When trying to convert the compiled design (.ncd) to XDL the official
Xilinx conversion tools gave segmentation faults. These segmentation faults only occur if
the source file was generated with instantiated hard macros.

Another way to implement SCs on FPGA was proposed by [5]. They proposed to
activate SCs on the .bit-file using a Hex Editor. In order to be able to tell which bits
should be flipped, [5] developed a tool to analyze .bit-files. From here on out one could
activate SCs which were instantiated though hard macros or by hand if one had sufficient
knowledge about the .bit-files. Unfortunately we were unable to use the tool6 developed

5Bitstream files are used to configure Xilinx FPGAs
6The tool is called ReCoBus-Builder and is developed and supported at the university of Erlangen.

https://www12.informatik.uni-erlangen.de/research/recobus/

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 37

Figure 3.17: An activated short circuit as seen in the FPGA Editor. The circle indicates
the position of the short circuit

by [5]. This is why we proposed our own way to successfully implement SCs on a Xilinx
Virtex-II Pro FPGA:

1. Compile your implementation into a .ncd file. Make sure your RNG is not optimized
away if it is not used for other purposes.

2. Draw the SCs you want to implement and connect them to the RNG ouputs with
the FPGA Editor.

3. Redraw the connections you want to activate your SCs with and save them in another
.ncd file.

4. Convert both .ncd files from steps 2 and 3 into XDL. Replace the connections of the
former with the connections of the latter to activate the SCs.

5. Convert the implementation back to .ncd and generate the .bit file using the bitgen
tool without DRC checks.

In order to get a better idea of our capabilities regarding SCs we conceived three
different SC designs whose different impacts on the noise of our measurements will be
discussed in Chapter 6. The three designs can be seen in Figure 3.18. Design 1 is closest
to what was proposed by [4]. It features two flipflops (FFs) fed by different outputs of
the RNG. The outputs of the flipflops create a short circuit on the same input of another
slice.

Design 2 omits the need for a clock connection by replacing the flipflops with look-up
tables (LUTs). Simplifying the SC construction even more is Design 3 which omits those

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 38

Figure 3.18: Three different approaches to SC designs.

intermediate components (FFs or LUTs) completely and just short-circuits the outputs of
the RNG directly which results in the longest connections that are re-purposed as a SC.

Design 1 2 3

Amount of Slices per SC 3 3 1

Table 3.1: FPGA usage of each short circuit design

Another concern when implementing SCs is the maximization of the possible power
consumption variance. Remember that one SC can occur if the input bits have different
values.

SCri,rjoccurs if(ri ⊕ rj), i = 0, 1, ..., 31, j = 0, 1, ..., 31, i 6= j (3.1)

Assuming we have a RNG which provides 32 random bits r0, r1...r31 the amount of
total possible connections is defined by the binomial coefficient

(
32
2

)
= 496. Due to the

exclusive requirements of a SC occuring it is not possible to have 496 SCs activated at
the same time. Take also note that the variance of actual SCs activated plays the most
important role when using SCs as a countermeasure.

Take for example four random bits r0, r1, r2, r3 and connect them with two, three, four
or six (

(
4
2

)
= 6) short circuits as seen in Figure 3.19.

If we assume that all four random bits have a probability of being 1 at 50% we can
analyse at what combinations which SCs are active. The possible amounts of SCs active
at the same time is shown in Table 3.3 while one example of how this listing came to
be can be observed in Table 3.2. The best variance of values is achieved with three SCs
while the implementation of four SCs will lead to the least amount of hiding DPA-relevant
information by noise. It does not matter which connections are made for the SCs, but
how many were implemented.

We connected the SCs after the pattern

SCri,ri+1occurs if(ri ⊕ ri+1), i = 0, 2, 4, ..., 30 (3.2)

for up to 16 SC instantiations. When implementing 32 SCs we connected the remaining
SCs in this pattern

SCri,ri+3occurs if(ri ⊕ ri+3), i = 0, 1, 2, ..., 15 (3.3)

Besides implementations of varying amounts of short circuits (1,4,8,16,32; most of
them with all three different SC designs) we created one implementation just containing

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 39

Figure 3.19: Multiple ways to use four random bits for short circuits. Arrows indicate a
pairing for a short circuit.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 40

bit values active SCs bit values active SCs

0000 0 1000 1

0001 1 1001 2

0010 2 1010 3

0011 1 1011 2

0100 2 1100 1

0101 3 1101 2

0110 2 1110 1

0111 1 1111 0

Table 3.2: Possible active short circuits with 3 implemented short circuits on four random
bits

Implemented SCs Active SCs
0 1 2 3 4 5 6

2 4 8 4
3 2 6 6 2
4 2 0 14 0 2
6 2 0 0 8 6 0 0

Table 3.3: Distribution of active short circuits with variyng amounts of implemented short
circuits on four random bits

the RNG module for comparison purposes. It also should be noted that our proposed
process of implementing SCs is rather unsuited for easy recreation, requiring a huge amount
of manual work and time with the FPGA Editor. And it remains untested if similar
procedures can succeed on more modern Xilinx FPGAs or on FPGAs by other vendors.

3.4 Synthesis Results

In this section we discuss the results of our implementation without FPGA-specific coun-
termeasures and compare it to the results of the available related work. This is why we
also synthesized our implementation for ASIC (using standard cell libraries) as it yields
more comparable results. Table 3.4 showcases the differences between our results in gate
equivalents (GE), the results of the original compact implementation of AES [6] and the
original implementation of ALE [1]. One intersting observation is that the original imple-
mentation of ALE [1] claims to be smaller than the pure AES core proposed by [6]. [1] also
claims that their implementation only needs to load the master key twice without using a
third storage array like we do. Their claims are similar when it comes to plaintext blocks
i.e. they achieve a one-time transmission of the plaintext blocks which are necessary to
generate the ciphertext blocks and then need to be added into the state array up to four
AES rounds later without any additional storage. We claim that the storage of the master
key for the duration of a 10-round AES encrytpion without a third 128-bit register or the
reversal of the 10 rounds of keyschedule seems highly unlikely. Also very unlikely is the
successful storage of complete plaintext blocks for addition into the stream without any
additional registers like we use in our temp module.

So in order to get a better comparison we took a closer look at the implementation
of [6] which the original proposal of ALE [1] also claims to integrate. Comparing [6]

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 41

with our own implementation yields some insights. We managed to get all of our core
components close or below the thresholds set by [6] except for our area requirements for
the multiplexers and the control logic.

ALE AES [6] ALE [1]
Technology UMC 180nm UMC 180nm STM 65nm

Sum 3 622 GE 100% 2 601 GE 100% 2 579 GE

Single modules [GE] [%]
State 699 19% 843 32%
Key 747 21% 835 32%

RCON 83 2% 89 3%
Sbox 230 6% 233 9%

Mixcolumns 349 10% 373 14%
Key add 20 1% 21 1%

Multiplexers 213 6% 128 5%
Control logic 385 10% 72 3%

Other 0 0% 7 1%
Temp 678 19%

LEX-leak 218 6%

Table 3.4: Area results and comparisons

This holds especially true when comparing our values to the most similarily imple-
mented modules like the key, Sbox or RCON modules. One notable derivation is the state
array which is smaller in our implementation. This can be attributed to the the 32-bit
wide multiplexer which is used by [6] to circumvent the mixcolumns module in the last
round of AES. We do not need this multiplexer due to our additional use of clock-gating
circuits controlled by the state en signal to disable the registers during this state. Our need
for more multiplexers in the datapath is explained by our additional requirements regard-
ing ALE, for example its initialization necessitates additional multiplexers for relocation
purposes. Our different approach towards the mixcolumns module has only manifested in
neglible area savings which is surprising because the original proposal of this mixcolumns
implementation [13] projected an area requirement of 140 “gates”. It seems the authors
confused gates with cells as 140 is the exact number of cells this module requires. Our
biggest weakness is obviously the control module which takes more than five times the area
required by Moradi et al’s [6] highly optimized shift register they implemented instead of
an FSM.

Compared to our first approach to the LEX-leak module we save a total of 504 GE
with the module using only 35 percent of the area of our original approach. Although the
module is now smaller by a relative amount our additional use of scan flipflops yielded
about 37 additional GEs. Surprisingly enough we even saved 19 GE in our control module.

We used Cadence Encounter(R) v08.10-s238 1 for our synthesis. This tool also projects
a power usage of around 3.7 mW and a maximum frequency of 94.02 MHz. The critical
path is also determined by this toolchain and starts inside FSM and ends with the storage
into the state module utilizing the Sbox and requires a simulated time of 10 636 ps.

We also had to place-and-route our design to the target FPGA, which is a Xilinx
Virtex-II Pro FPGA. The results of this can be observed in Table 3.5. The table also
holds the place-and-route results for a design with an altered FSM which we did construct
to improve our measurement setup (see Figure 5.1) in order to be able to verify the results

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 42

of the on-device AES-encryptions directly. The last segment of Table 3.5 is dedicated to
the resources used when the 32-bit RNG of Section 3.3.1 is included into the implemen-
tation. All three sections of Table 3.5 implemented the serial-to-APB module to facilitate
communication with a computer.

Complete ALE Amount Total Percentage

slice utilization: slice flipflops 551 27 392 2%
4-input LUTs 1 061 27 392 3%
occupied slices 550 13 696 4%

used IOBs 13 416 3%

use of 4-input LUTs: logic 1 033 1 061 97%
route-through 12 1061 1%
shift registers 16 1061 2%

FSM modified to AES-only Amount Total Percentage

slice utilization: slice flipflops 547 27 392 1%
4-input LUTs 1 014 27 392 3%
occupied slices 528 13 696 3%

used IOBs 13 416 3%

use of 4-input LUTs: logic 988 1 014 97%
route-through 10 1 014 1%
shift registers 16 1 014 2%

AES-only with added RNG module Amount Total Percentage

slice utilization: slice flipflops 611 27 392 2%
4-input LUTs 1 091 27 392 3%
occupied slices 567 13 696 3%

used IOBs 13 416 3%

use of 4-input LUTs: logic 1033 1 091 95%
route-through 10 1 091 1%
shift registers 48 1 091 4%

Table 3.5: Resources used on the Xilinx Virtex-II Pro (2vp30)

As can be deduced from the percentage numbers of Table 3.5, many of the FPGA’s
slices remain unused. This has an advantage for our SC countermeasure as many slices to
construct SCs with them remain available. This can be beneficial to the countermeasure
since the SCs can be spread out more evenly over the FPGA.

When reducing the FSM to function as an AES-only implemnation we save 22 slices
through the optimization methods of the Xilinx tools in total. The 32-bit RNG module
adds to this with 39 used slices.

The clock-randomization countermeasure uses seven CBs and two DCMs of the FPGA
which can result in routing problems when additional independent clock routes should be
added to the design. If other DCMs should be added (e.g. for dividing the operating
frequency), the Xilinx place-and-route connects them to general routing and can not give
the intermediate clock signals access to the dedicated clock nets.

CHAPTER 3. LIGHTWEIGHT IMPLEMENTATION OF ALE 43

3.5 Summary

In this chapter we have discussed our implementation of the ALE authenticated encryption
method, which is based on a compact AES core and an LEX-leak extension of which we
implemented two different versions. One of which has become our main implementation
while we discussed the other implementation for a better understanding of the complexity
a non-standard LEX-mask poses to a rows-first architecture.

We also discussed the implementation of the FPGA-specific countermeasures we have
chosen to secure ALE against DPA attacks. There we described our source of pseudo
randomization, and also the countermeasures known as clock randomization and short
circuits.

With our implementation of ALE we have also shown that there is some room left
for optimization regarding the area of a compact implementation of AES as proposed by
[6], at least when it comes to the datapath. We have still some scepticism regarding the
original ASIC implementation of ALE in [1], especially when it comes to the intermediate
storage of data.

In the following chapter we will discuss differential power-analysis (DPA) in general
and how we constructed a power model of our implementation to perform DPA attacks
on a Xilinx Virtex-II Pro FPGA which processes AES encryptions based on our design.

Chapter 4

DPA Attack on ALE

The functional-verified implementation of ALE was analyzed according to possible side-
channel leakages in a next step. By activating the implemented countermeasures one after
the other, the side-channel leakage should be minimized. But before the discussion of
these results is provided in the next chapters, the theory behind DPA attacks and how
one specific DPA attack for this implementation was conceived are summarized in this
chapter.

Differential power analysis (DPA) attacks are among the most popular forms of side-
channel analysis according to [2]. Sections in this work attribute this to the fact that
DPA attacks do not require detailed knowledge of the attacked device. When conducting
a simple power analysis (SPA) in an encryption device it is necessary to attribute certain
parts of a power trace to specific parts of the cryptographic algorithm (so called profiling).
With DPA attacks this is not necessary since they treat all parts of a power trace equally
so any point of the recorded time-frame could lead to a positive DPA result if that point
features a strong correlation with the chosen power-model.

Another advantage of DPA attacks is their likely success despite extremely noisy power
traces as the number of required traces for a successful DPA increases with increasing noise
levels. This requires ownership of the device under attack for extended periods of time and
also that the key must not change during the attack. Both of these concerns do not affect
us in our research environment but should be kept in mind for the real-world feasibility of
these attacks.

Differential power analysis works by evaluating fixed points of time regarding their
dependence on data using significant amounts of power traces in the process. This gives
way to our preconditions before attacking a device. We need to know which encryption
method is used inside of the device in order to give the processed data and the power
consumption a relationship for the evaluation. We need to have access to a communication
interface through which we can provide the device with data and start the encryption or
the decryption processes. Another requirement is the ability to measure one or more
parameters that are related to the processed intermediate data (e.g. power consumption,
electro-magnetic emissions, sound emissions).

In the remaining sections of this chapter we will take a closer look at how DPA attacks
are realized in a general fashion. Then we will discuss how we used these generic steps
to attack our implementation of ALE. Furthermore we will take a closer look at how
other researchers created attacks on ALE. We will also discuss some other approaches (i.e.
points of attack) we could have exploited.

44

CHAPTER 4. DPA ATTACK ON ALE 45

F
ig

u
re

4.
1:

G
en

er
al

ov
er

v
ie

w
of

a
D

P
A

at
ta

ck

CHAPTER 4. DPA ATTACK ON ALE 46

4.1 The Basic Steps for Differential Power Analysis Attacks

For attacking a cryptologic implementation using DPA a few general steps were outlined
by Stefan Mangard et al. in [2]. These steps are general in nature and their application on
an actual cryptologic implementation can be followed in Section 4.2. To get an overview of
how these steps are interconnected on can take a look at Figure 4.1 which shows a general
overview of an DPA attack after a sensitive intermediate value has been determined. The
general steps for a DPA can be summarized as follows:

1. Choosing a sensitive intermediate value

The first step is to choose an intermediate value of the algorithm that is being
processed in the device under test (DUT). This value must be the result of a function
f(d, k) where d denotes known data (a part of the plaintext or ciphertext) and k is
a part of the key.

2. Measuring a parameter related to the sensitive intermediate value

In the second step multiple samples of a parameter related to the sensitive inter-
mediate value are recorded. These samples subsumed into so called traces with one
trace per encryption. Not all recorded samples must be in direct relationship to the
sensitive intermediate value but at least one part of these traces must contain the
time interval of the calculation of the intermediate value chosen in Step 1. One also
needs to keep track of the known data used during these trace recordings. These val-
ues are stored as a vector d = (d1, d2, ..., dD) -with D being the amount of recorded
traces- as can be seen on the left-hand side of Figure 4.1. The values of one trace
are stored as the vector ti = (ti,1, ti,2, ..., ti,T) with T being the amount of samples
per trace.

In order to record perfectly aligned power traces some sort of trigger signal is re-
quired. If such a signal is not available several techniques to align or preprocess
these traces at a time post-recording exist. Alignments are usually done using pat-
tern matching with the evaluation done with least squares or the help of the cor-
relation coefficient (see Section 4.1.2). Preprocessing methods include integration
(summing up the power consumption of multiple clock cycles), convolution of the
power traces with a suitable window function or in some cases even the Fast-Fourier
Transformation which depends on the spectral characteristics of noise and leakage.

3. Compute Intermediate Values

Using the function chosen in Step 1, we calculate all possible intermediate val-
ues of this function using d = (d1, d2, ..., dD) and all possible key hypotheses k =
(k1, k2, ..., kK). This calculation results in a matrix V with the dimensions D ×K.

V =

v1,1 v1,2 ... v1,K
v2,1 v2,2 ... v2,K
...
vD,1 vD,2 ... vD,K

 (4.1)

CHAPTER 4. DPA ATTACK ON ALE 47

Each of the columns of V belongs to one hypothetical value of the key. The further
goal will be finding out which of the columns of V was calculated during the execution
of the algorithm during the measurements of Step 2.

4. Choosing a Power Model

As can be seen in Figure 4.1, the values that were calculated into matrix V are
mapped to corresponding values of a power model into the matrix H. Power models
are normally a very simple unit-less way of estimating power consumption. The two
most popular models are the Hamming weight (HW) and the Hamming distance
(HD). Section 4.1.1 will discuss these power models with the addition of the zero-
value power model.

The choice of a power model strongly depends on the knowledge of the device under
test (DUT). The better these simulated power values correspond with the actual
power usage the better are the results of the DPA attack. A better DPA attack
is defined by a smaller number traces needed for a successful deduction of the key
value.

H =

h1,1 h1,2 ... h1,K
h2,1 h2,2 ... h2,K
...
hD,1 hD,2 ... hD,K

 (4.2)

5. Statistical Analysis

Now that the calculation results of V are mapped to the power values of H it is
possible to compare each column of H to each point in time of the recorded traces.
This results in a matrix called R with the dimensions K × T .

There are different algorithms to use for this comparison but when using the cor-
relation coefficient higher values inside of R correspond to a better match of one
key hypothesis with the samples of the power traces. We will use the correlation
coefficient which we discuss in more detail in Section 4.1.2.

6. Evaluating the Result

In this step the result matrix R is evaluated. If the correlation coefficient is used the
highest values of R reveal at which point in time our chosen intermediate value was
processed and with which key hypothesis this was done.

If there are multiple conflicting maxima or none at all in R the DPA attack has failed.
This can be due to too few recorded traces or wrong assumptions regarding the power
model. It is also possible that the DPA attack was thwarted by countermeasures.

4.1.1 An Introduction to Various Power Models

In this section we will discuss the following three power models: the hamming weight
(HW), the hamming distance (HD), and the zero value (ZV) model. A power model is
used as a mean to map intermediate values to hypothetical power values. These power
values do not have a designated unit and should be viewed as a way to differentiate the
power consumption of one computation result to another.

CHAPTER 4. DPA ATTACK ON ALE 48

The power models discussed here were also listed by Stefan Mangard et al. in [2]
which serves as a point of reference for most research into power analysis attacks as it has
compiled a huge amount of related research. Take note that it is possible to derive other
power models from the power models described below for a more specific description of
power usage if one has a better understanding of the algorithm and the attacked device.

� The Hamming Weight (HW) Power Model

The Hamming Weight is the number of bits set to 1 of a given array of bits. For
example HW (11102) = 3. The power model based on this function is rather simple.
It assumes that the HW of a given processed value v0 is proportional to the actual
power consumption. This means that this power model is rather unsuited for CMOS
technology whose actual power usage is proportional to which signals of its buses
and registers switch during its clock cycle than the actual values that are held by
them.

If an attacker does not know the value which is replaced by v0 he has not other
choice but to use this model. Normally there is still some proportionality of the
HW of v0 and the actual power consumption especially if the value which is replaced
by v0 is a constant. Another aspect of why this model works is that transitions
of values conducted in CMOS technology have slightly different power usages for
zero-to-one and one-to-zero transitions. So if zero-to-one transitions have a higher
power consumption, values with a larger HW will use more power than values with
a lower HW.

As a rule of thumb most attackers should only rely on the HW model if the use of
the Hamming Distance model is unavailable. But as always there are exceptions, for
example many processors set their buses to zero before loading new data onto them.
In this case the HW model is obviously a better fit than the HD model. The choice
of power model should always be given enough consideration.

� The Hamming Distance (HD) Power Model

The Hamming Distance describes the number of bits that are flipped during a storing
or bus transition. For example if v0 is replaced by v1 then the HD of this transition
can be described as HD(v0 → v1) = HW (v0⊕v1). It follows that this model assumes
that bit-transitions of zero-to-one and one-to-zero require the same amount of power
and ignores static power consumption altogether.

The HD model is very popular due to its relative simplicity and ease to compute while
also delivering correct results for DPA attacks. Although not suited for describing
the power consumption of combinational cells it is commonly a good fit when trying
to model power consumption of buses and registers.

In order to use the HD it is necessary to know two consecutive values inside of a
register or a bus, this can be if a constant value (like for example: zero) is replaced
or a other data known to the attacker is involved. So the HD power model usually
requires some knowledge of the internal architecture of the DUT.

� The Zero-Value (ZV) Power Model

CHAPTER 4. DPA ATTACK ON ALE 49

When trying to attack combinational logic, the Zero-Value model may apply. Instead
of trying to model the power consumption of transitions or simple bit-weights of the
processed data the ZV model attacks multiplications (including AND-gates).

The ZV model assumes that for some combinational architectures (like Sboxes or
multipliers) a zero-bit results in much less power consumption than if the bit is set
to one due to a multiplication by zero.

The ZV model is defined for each input bit of combinational logic as

ZV (vi,j) =

{
0 for vi,j = 0
1 for vi,j 6= 0

4.1.2 The Correlation Coefficient

The correlation coefficient is one common method used to create a relation between hypo-
thetical and measured power consumption. The correlation coefficient or more specifically
the Pearson product-moment correlation coefficient generally is used to measure the linear
correlation between two variables.

The coefficient is defined as the covariance between two variables divided by the prod-
uct of their standard deviations. The equation for a statistical data sample is shown
below in Equation (4.3). x̄ and ȳ are the mean values of the data vectors ~x and ~y while n
describes the amount of data values available for each of the data vectors.

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(4.3)

So if we want to apply Equation (4.3) on a DPA attack our two variables we want to
correlate with each other are our modeled power values hd,i and the measured power values
of td,j with i = 1, ..,K denoting our possible key hypotheses and j = 1, ..., T indexing each
sample of a trace over a total of T . Lastly d = 1...D indexes our processed plaintext
values. This results in Equation (4.4) which assigns each key hypothesis i at a specific
sample time j a correlation value ri,j .

ri,j =

∑D
d=1(hd,i − h̄i)(td,j − t̄j)√∑D

d=1(hd,i − h̄i)2
∑D

d=1(td,j − t̄j)2
(4.4)

4.2 The Attack on ALE

We chose our sensitive intermediate value based on a standard approach to do an attack on
AES which uses the relation of processed data and the key in the first round of AES when
the plaintext is known. A similar approach to attack AES uses the relation of processed
data and the key in the last round of AES when the computed ciphertext is available.
This relation can be exploited bit-wise if the output of the key addition is the target of
the attack. Similar techinques have been employed by Moradi et al. when they performed
a side-channel analysis on their implementation of AES [6].

Another way to exploit this relation of input (or output) data with the key is byte-
wise. This can be achieved when we want to attack the output of the SubBytes-step of
AES. In this step the results of the AddKey operation are transformed through Rijandel’s
Sbox. When we consider that we know the plaintext that is being used as an IV for ALE

CHAPTER 4. DPA ATTACK ON ALE 50

r7 r6 r5 r4scan scan scan scan

8

8

8

8

8

8

8

r11 r10 r9 r8 scan

8 8

r15 r14 r13 r12scan scan scan scan

8

8

8

8

8

8

8

r3 r2 r1 r0scan scan scan scan

8

8

8

8

8

8

8

state[127:120]

8

888

8 8 8

8

8

8

8

8

8

8

8

888

clock gating

state_en = 1

pclk

shiftrows = 1

mixcolumns

8

8

8

8

32

8

8

8

8

32

32

state_col[31:0]

mx = 0

mx = 0

mx = 0

mx = 0

S-box

key[127:120]

state xor key

S(state xor key)

point of attack

Figure 4.2: Point of attack in the implementation

which is a possibility since it will most commonly be generated by a counter then we can
describe all possible outputs of one processed byte in the first round of AES through the
Sbox as the vector r̄i = S(pi⊕ k̄i) where S() is the Sbox transformation, the index i holds
a value of 1 to 16, pi is the respective plaintext byte while k̄i represents all of the 256 valid
values for the respective key byte. If we write ki we assume to know the correct value of
the respective byte.

Due to our knowledge of the implemented architecture, we can use this Sbox calculation
for a power model based on the Hamming distance while an attack on the operation of the
key addition seems less rewarding since its results are not intermediately saved into any
kind of register but wired into the Sbox module itself. When we look at the moment when
the first byte of the first round of AES is to be calculated we can write the result of the
key addition which is then transformed by the Sbox as r1 = S(p1 ⊕ k1). When this value
is stored into the last register of the state module this operation will overwrite the value
currently held at the last byte of this register which equals p16. The Hamming distance
of this can be viewed as

HD(p16 ← S(p1 ⊕ k̄1)) = HW (S(p1 ⊕ k̄1)⊕ p16) (4.5)

which we can use to calculate hypothetical power values in association with the first key
byte. When attacking the remaining bytes of the key we can describe the HD as

HD(S(pi−1 ⊕ ki−1)← S(pi ⊕ k̄i)) = HW (S(pi ⊕ k̄i)⊕ S(pi−1 ⊕ ki−1)), i = 2...16 (4.6)

due to the further workings of the shift register. The ki−1 of Equation (4.6) denotes the
correct key byte which was found out a priori through another DPA calculation but can

CHAPTER 4. DPA ATTACK ON ALE 51

HDs / states AES FR AES SR AES MC SW Total

HD(p16 ← p1, k̄1) 16 0 0 16
HD(S(p1 ⊕ k1)← S(p2 ⊕ k̄2)) 15 0 1 16
HD(S(p2 ⊕ k2)← S(p3 ⊕ k̄3)) 14 0 2 16
HD(S(p3 ⊕ k3)← S(p4 ⊕ k̄4)) 13 0 3 16
HD(S(p4 ⊕ k4)← S(p5 ⊕ k̄5)) 12 0 0 12
HD(S(p5 ⊕ k5)← S(p6 ⊕ k̄6)) 11 1 0 12
HD(S(p6 ⊕ k6)← S(p7 ⊕ k̄7)) 10 1 1 12
HD(S(p7 ⊕ k7)← S(p8 ⊕ k̄8)) 9 1 2 12
HD(S(p8 ⊕ k8)← S(p9 ⊕ k̄9)) 8 0 0 8
HD(S(p9 ⊕ k9)← S(p10 ⊕ k̄10)) 7 0 3 10
HD(S(p10 ⊕ k10)← S(p11 ⊕ k̄11)) 6 0 0 6
HD(S(p11 ⊕ k11)← S(p12 ⊕ k̄12)) 5 0 1 6
HD(S(p12 ⊕ k12)← S(p13 ⊕ k̄13)) 4 0 0 4
HD(S(p13 ⊕ k13)← S(p14 ⊕ k̄14)) 3 1(→) 2 6
HD(S(p14 ⊕ k14)← S(p15 ⊕ k̄15)) 2 1(→) 3 6
HD(S(p15 ⊕ k15)← S(p16 ⊕ k̄16)) 1 1(→) 0 2

Table 4.1: Occurrences of the HDs during each FSM state of the first AES round

also be still an unknown key byte in which case the amount of possible key hypotheses is
increased 1. This was also the case for Moradi et al.’s [6] basic attack model. For i = 2
in Equation (4.6) the previosly found out key byte has resulted from the DPA which was
computed with Equation (4.5);

Due to the nature of the state module these Hamming Distances should reoccur for
multiple clock cycles. A simplified version of all components involved and according to our
design can be seen in Figure 4.2. If we consider the HD as described in Equation (4.5) for
example, the same HD occurs for 16 consecutive clock cycles until the value r1 = S(p1⊕k1)
is written into the first byte of the register inside of the state module during the FSM
state called AES FR. The following HDs will each occur one cycle less. But we also have
to consider these HDs during the next states of our FSM which can be seen in its AES
optimized form in Figure 5.1. During the subsequent states of AES SR and AES MC SW
some of the HDs discussed above reoccur. During AES SR regular shift operations to the
left (second row from the top of Figure 4.2) and to the right (last row from the top of
Figure 4.2) are carried out which reapplies to some of the HDs discussed above. The same
is true for the shift operations facilitated during AES MC SW.

A complete summary of these occurrences can be seen in Table 4.1. These occurances
translate into attack windows. The HDs with the most occurrences occur over 16 clock
cycles while the last byte (HD(S(p15⊕k15)← S(p16⊕k̄16))) has the smallest time window.
The attack window for these key bytes varies with the first row of the key bytes having
the largest time window for a DPA attack.

Alternatives to this attack model could be an SPA on the second AES encryption
during the initialization stage which always encrypts 16 bytes of zero values with the
master key or a more specified attack during the shift operations of AES MC SW using a
32-bit wide key hypotheses.

Moradi et al [6] devised a similar attack on their design but left these multiple occur-

1two bytes give 65536 key hypotheses instead of 256

CHAPTER 4. DPA ATTACK ON ALE 52

rences relatively untouched. We assumed that each of these occurrences would supply us
with almost the same information leakage. This is why we assumed that small alterations
of this attack would be of limited use. One of these alterations ensures a much better
attack on the last key byte although its occurrence count is the same (2). It uses the HD
between the 16th and the 13th bytes (first and last bytes of the last row) and occurs once
during AES SR and once AES MC SW. For a more extensive discussion why this occurs
see Chapter 5.

HD(S(p13 ⊕ k13)↔ S(p16 ⊕ k̄16)) = HW (S(p13 ⊕ k13)⊕ S(p16 ⊕ k̄16)) (4.7)

4.3 Other Attacks on ALE

In this section we give a short summary of related attacks on ALE as they were conceived
and realized by [7] and [8]. These attacks are not based on DPA but on algorithmic attacks
which are based on differential cryptanalysis.

Both of these attacks used differential cryptanalysis on the LEX leak to produce a
forgery attack. Please note that both of these attacks used the original LEX mask provided
by [1] which was probably altered due to these attacks and make them more difficult since
the new mask also varies in AES state rows and not only in columns.

First off was the so-called LOCAL Attack by Khovratovich and Rechberger[7] which
used local collisions to produce the same authentication tags for different plaintexts and
found out that the state information leaked through the ciphertext can lead to these
collisions much faster. The probabilities they give are 2−102 when 2102 messages are
available to 2−119 when only one message is available. After this they claim to be able to
strengthen their attack to the point of full state recovery which allows universal forgery
without knowledge of the master key.

The other attack [8] claims that the first one used an unfairly weakened version of
ALE while using a half-sized implementation of ALE for their attack 2. They used this
implementation to show that the authentication security of ALE is only 97-bit and could
be reduced to 93-bit if the whitening key layer is removed. On the other hand their attack
seems to exploit the same leakage provided by the LEX Leak.

Both of these attacks show that they are highly dependent on the LEX mask which
was altered in the reference implementation we received. This altered mask should at least
provide a different challenge for such attacks.

4.4 Summary

In this chapter we have discussed how DPA attacks work in general and how we conceived
our attack on our implementation of ALE. We also briefly discussed which other attacks
have been put on the ALE algorithm up to now and how they focused more on differential
cryptanalysis than differential power analysis. We are in the unique position where we
can attack each byte of the key one after the other in a direct causality chain and each of
the 16 key bytes will leak its information inside of a different time window.

In the next chapters we present the DPA attack results on ALE first without and then
with countermeasures enabled.

2the block size was halved to 64 bits

Chapter 5

Side-Channel Analysis of ALE

In this chapter we will conclude the DPA attack on the unprotected FPGA-implementation
of ALE. We will discuss why the attack on each byte of the key results in very different
albeit successful correlation results.

First there is a short discussion of the used measurement setup on the SASEBO G-
board. Then we discuss our results which were achieved while using the implementation
with an operation frequency of 24 MHz. While doing this we made some observations on
aspects of the correlation result which merited further investigation into their character-
istics while changing the operation frequency. We conducted DPA attacks on operation
frequencies ranging from 1.5 MHz up to 48 MHz and compared the characteristics of their
correlation results. After discussing these results and how we achieved these alterations
of operating frequency there will be a short subsection regarding our investigations into a
phenomenon we call the characteristic frequency of the FPGA.

Lastly this chapter will conclude with a summarization of our findings and discuss
potential points for future work. Some of these findings are expected results, while other
results showcase some relatively unexplored power/correlation behavior.

5.1 The Measurement Setup

After a few test measurements it became clear that a reduction of ALE into a ten-round
AES encryption shortens measurement time and accounts for a easier verifiability of the
encryption. The basic AES result which is sent back to our workstation is more easily
verifiable compared to the additional computational effort required for two additional AES
encryptions, one single key schedule and at least one generation of a 128-bit ciphertext
block which includes the even and odd round characteristic of the LEX mask.

Another simplification we introduced was the so called TRIGGER state which sets
one of the available input/output pins to a logic HIGH and back to LOW four or eight
clock cycles before AES FR is entered1. The remodeled FSM for these two simplifications
can be seen in Figure 5.1, no other module had to be changed. Although the complete
ALE-encryption is no longer processed on the FPGA the attack remains the same and can
still be used to evaluate the security of ALE.

1This gap of multiple clock cycles was introduced to minimize the possible overlap of power consump-
tions of AES FR and the output signal whose influence on the power consumption can be measured for
multiple cycles onward.

53

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 54

IDLE

AES_FR

AES_SR

AES_MC_SW

AES_ADD

LOAD_IV

READTOBUS

AES*

A
E

S*

10 rounds

.

.TRIGGER

Figure 5.1: Modified FSM for faster measurements

The communication between workstation and DUT was achieved through an USB-to-
serial interface and cable using the RS-232 serial-communication standard. The baudrate
was fixed at 9600 for almost all measurements2. This serial communication was translated
to AMBA APB by a serial-to-apb module included in our design through VHDL files
and was already mentioned in Chapter 3. Keep in mind that this module necessitates
hard-coded information about the baudrate and the operation frequency which results in
separate FPGA configurations and bit-files3 for altered operation frequencies even if no
DCM-based reconfiguration would be necessary. This interface enabled communication
between DUT and workstation to send input data and verify the correct calculation of the
AES ciphertext.

The oscilloscope in use was a Le Croy 1 GHz oscilloscope which can take up to 2
Gigasamples per second (2 GS/s which translates to a interval of 0.5 nanoseconds between
two samples) and is designated by the model number LC584AM. The aforementioned
maximum sampling rate was used for almost all measurements. Exceptions were measure-
ments which necessitated a very long recording window due to our clock-randomization
countermeasure where it was reduced to 1 GS/s. The trigger delay was almost always
set to zero with some exceptions where the trigger delay was set to wait for around three
clock cycles which cut off most of the power consumption influenced by the trigger signal
and started closer to the actual beginning of the AES FR state.

A Xilinx Virtex-II Pro (xc2vp10) FPGA was used as the implementation platform.
The FPGA is part of the SASEBO-G board [53]. No other IO pins than clock, rx, tx4

and the trigger signal were used. The only exceptions were pins to LEDs for debugging
purposes.

2The baudrate was halved to 4800 for measurements at an operation frequency of 1.5 MHz
3bit-files are used to configure Xilinx FPGAs
4rx and tx are standard denominations for serial communication pins. rx is for receiving and tx is

usually designated for transmissions.

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 55

The serial communication is determined by the RS-232 standard which formally defines
the signals used to communicate between a data terminal equipment (DTE) and a data
circuit-terminating equipment (DCE) and was originally used for modems. Since the
workstation used for communication measurements does not feature a RS-232 port a USB-
to-RS-232 converter cable is used.

The SASEBO-G board which mounts our target platform has the following features:

� A printed circuit board (PCB) with 230 mm x 180 mm x 1.6 mm measurements, a
FR-4 grade and eight layers.

� Two Xilinx Virtex-II Pro series FPGAs, one designated as the cryptographic FPGA
(xc2vp7-fg456-5) the other designated as the control FPGA (xc2vp30-fg676-5). The
FPGAs are connected through two 16-bit buses (data and address) and four control
signals

� Two on-board oscillators with the frequency set to 24 MHz (for more details see
further below)

� Power regulators which convert the 3.3 V supplied by an external power supply to
2.5 V, 1.8 V and 1.5 V for the FPGAs.

� Connectors for shunt resistors to apply power measurements on the FPGAs.

� Communication with external sources via an RS-232 connector to the control FPGA.
Since the signals used by RS-232 have higher voltage levels (between -15 V and 15 V)
than supported by the control FPGA a RS-232 level converter is also installed on
the SASEBO board.

We used one differential probe to measure the voltage drop over the shunt resistor
for statistical power analysis. The probe is a lab-fabricated differential probe with a
bandwidth of 200 MHz and an amplification of 13. The differential probe measured the
voltage drop on a 1.5 Ω resistor in the 1.5 VDD path to the FPGA.

The FPGA platform was programmed with a Xilinx Platform Cable and supplied by
a BST PSM 2/5A with a supply voltage of 3.3 V. This power supply was also used to
power the lab-fabricated differential probe.

A simplified version of the measurement setup can be seen in Figure 5.2. At last,
the operation frequency was provided by an Epson 24 MHz on-board oscillator and by a
digimess FG 100 function generator which was used to generate operation frequencies
close to 30 MHz. A short overview of all the hardware involved is given in Table 5.1.

5.2 Side-Channel Analysis at Varying Operating Frequen-
cies

We conducted our first measurements on our implementation with an operating frequency
set to 24 MHz and recorded ten thousand (10k) traces. We chose a recording window to
observe 6 rounds of the AES encryption.

After the measurements we started applying the DPA attack (which was discussed in
more detail in Section 4.2) on the recorded traces. Figure 5.3 shows the DPA result after
we applied our HD power model for the first key byte according to Equation (4.5). The

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 56

Figure 5.2: Overview of the measurement setup

Device Name

FPGA Xilinx Virtex-II Pro xc2vp10

FPGA Board SASEBO-G

Serial Interface USB-to-Serial, RS-232 standard

Workstation Windows 7 and 8, MATLAB, Xilinx iMPACT 10.1

Oscilloscope Le Croy LC584AM

Differential Probe lab-fabricated 200 MHz probe with an amplification factor of 13

Power Supply BST PSM 2/5A

Frequency Generators Epson 24 MHz on-board, digimess FG 100

FPGA-Programming Xilinx USB Platform Cable

Table 5.1: Table of used hardware for the DPA measurement

x-axis shows the simplified states of our FSM for the first three rounds of AES. The first
observations which were made are the following:

1. The correct key hypothesis with value 237 (shown in black in Figure 5.3 is clearly
distinguishable from the other wrong 255 key-hypotheses. This is an indicator that
the HD power-model fits well.

2. The correlation value for the correct key hypothesis at the beginning of the ADD
state is mall compared to the value at the beginning of the SR state.

3. The correct correlation curve stays distinguishable up until the beginning of the
third ADD state.

4. The correlation values increase in four distinguishable steps although it was outlined
that it should have 16 occurrences in Table 4.1.

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 57

Figure 5.3: Correlation curve for the first key byte at 24 MHz (ten thousand traces)

5. Before the high positive peak, each of the four distinguishable peaks show a strong
negative peak.

First, we tried to determine the reasons why the correlation after the first iterations
of the AES states that remains distinguishable into the following AES states. Possible
reasons are the result of the Xilinx optimization tools, other design altering effects or
other physical effects (see below). So another DPA was conducted on the Sbox output
of the next AES round. This is solely a profiling step and requires knowledge of all AES
key-bytes to determine the possible values of the second ADD state. The result for the
first key-byte of the second round can be seen in grey in Figure 5.3). As can be seen in
this figure, the correlation curves of the first and second Sbox calculation rounds (seen
marked as ADD in Figure 5.3) intersected. Another step to get clarity on this matter
was a profiling step on the plaintext bytes. All of these (correlation) curves shared the
same behavior regarding their atypical long distinguishability after the processed data the
chosen power-model is based on has been overwritten by subsequent steps of the AES
encryption.

An explanation for this was given by Stefan Mangard et al in [2] where they discussed
the relations of switching noise, bandwidth and clock frequencies. Since integrated circuit
designs commonly utilize supply capacitances to guarantee a stable power supply, these
capacitances add parasitics to the power-supply chain. So when these capacitances are
drained of their load the power consumption will rise in order to reapply the maximum
load onto the capacitances. If the operating frequency of the clock is set faster than the
capacitances can be refilled the measured power consumption of subsequent clock cycles
overlaps and becomes continuous instead of only using power at clock based events. As
an example see the rising power consumption curves during the ADD state in the plots of
Figure 5.15.

This fast operating frequency causes the power consumptions of individual clock cycles
to overlap, resulting in a higher amount of switching noise measured in each cycle but
also leaks relevant information into subsequent cycles. Since the implemented design has

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 58

Figure 5.4: Correlation curve for the first key byte at 1.5 MHz (ten thousand traces)

multiple occurrences of the same characteristic HD, it can be argued that each occurrence
adds to the characteristic power consumption of each recorded sample. This characteristic
power information is “stored” in the power consumption until enough load is restored
to the supply capacitance or enough unrelated power consumption has occurred which
makes the characteristic power consumption unsignificant. For a deeper comparison on
this matter see Section 5.2.3.

In order to get a better understanding of the occurrences related to the chosen power
model, additional measurements on AES encryptions with the implemented design were
taken with lowered operation frequencies. Figure 5.4 shows the correlation result for
the first key byte at an operation frequency of 1.5 MHz. The correlation at an operating
frequency of 1.5 MHz also needs a significant amount of time (see the end of the correlation
curve in Figure 5.4) to become indistinguishable. What is interesting about this result are
the qualitative differences each occurrence of the power model has on on the correlation
value.

The correlation curve seen in Figure 5.4 should feature 16 individual peaks of equal
value in the ADD state as was summarized in Table 4.1. What can be observed in Figure
5.4 on the other hand are about 9 peaks of varying correlation value in an interval of 16
clock cycles (see cycles 1, 2, 3, 4, 8, 9, 12, 13 and 16 in Figure 5.4). According to the
design the HD should occur 16 times because of the use of the register in the state module
as a shift register.

There are four peaks with correlation values above 0.15 (cycles 4, 8, 12, and 16),
these peaks occur when the HD applies to a writing process on the first column of the
registers inside of the state module. These registers are connected to the input signals of
the mixcolumns module which increases the fanout of these modules considerably.

The same can be observed in Figure 5.5 which displays the correlation curve for the
tenth key byte. Again, according to Table 4.1 the correlation curve should have 7 peaks
in the ADD state and 3 peaks in the MC state. As was observed with the result for the
first key byte the correlation has the highest values when the attacked HD passes through
a register of the first column. One additional occurrence appears one cycle before the

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 59

Figure 5.5: Correlation curve for the tenth key byte at 1.5 MHz (ten thousand traces)

expected occurrences and can be observed for every key byte beginning with the second.
This can probably be attributed to the combinational switching of the Sbox module which
produces power according to our HD one cycle before the corresponding value is stored
inside of the state module.

Row\Column 1 2 3 4

1 17.12.12.10.9.8.9.9 0.0.0.0.0.0.0.0 0.0.0.0.0.0.0.0 1.1.1.1.1.1.1.1

2 15.9.9.8.8.9.8.9 0.0.0.0.0.0.0.0 0.0.0.0.0.0.0.0 1.1.1.1.1.1.1.1

3 18.12.12.9.8.9.8.8 2.2.2.2.2.3.2.3 2.2.2.2.2.2.2.2 2.2.2.2.2.2.2.2

4 16.10.10.9.8.8.8.10 2.2.2.2.2.2.2.2 3.3.3.3.5.5.3.3 2.2.2.2.2.2.2.2

Table 5.2: Fanout of the registers in the state module

The correlation behavior relates to the fanout of the place-and-route result of the
design for the FPGA which can be observed bit-wise in Table 5.2. This information was
obtained through the netlists provided by the Xilinx FPGA Editor. The first (from the
left) column has significantly higher fanout due to its connection with the mixcolumns
module. Byte [1, 1] is connected to the S-Box module which lengthened the connections
originating from that byte and increased the fanout of this register, probably causing
the biggest correlation-peak when the power-model applies to this register. A similar
observation of increased correlation values in relation to the additional fanout due to the
connection to the mixcolumns module was made by [56] where a similar architecture based
on the proposal of [6] was attacked. The reduced fanout of zero for the register bytes at
[2, 2], [2, 3], [3, 2] and [3, 3] occurs due to the optimization of the Xilinx tools where
the slices associated with these registers and also the registers of the first column of the
affected rows are contracted into 3-bit shift registers.

When we now consider all key bytes we can always observe high correlation peaks when
the attacked byte passes through one of the high-fanout registers of the first column. On
the other hand if we apply our power-model of Equation (4.6) to the last key-byte the

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 60

Figure 5.6: Correlation curve for the 16th key byte at 24 MHz

HD never applies to a register with high fanout. This can be seen in Figure 5.6 for our
measurements with an operation frequency of 24 MHz where the correlation for the correct
key value barely manages to reach the a value of 0.05. This low correlation also holds true
for all other tested operation frequencies especially for 48 MHz where the correlation does
not reach a distinguishable level with a measurement effort of 10k traces due to the stronger
switching noise.

Since we have shown that HDs that apply to the first column of our register state deliver
better correlation results one can change the attack on the last key byte to something more
effective as was discussed earlier for Equation (4.7) where not the HD of subsequent bytes
during the shifting of the ADD state is attacked but the register changes that occur during
the SR and MC states. This enables the attack on the last key byte in relation to the
first register of the last row and yields a better correlation result which can be observed in
Figure 5.7 where the maximum correlation result is almost four times the value the attack
yields with an unaltered power-model. This alteration of the attack was successful with
all measured operation frequencies.

5.2.1 DPA with Added Low-Pass Filters

Since we could observe frequencies beyond our set operation frequency, measurements
using the bandwidth limitation of the oscilloscope were conducted but did not change
the correlation result in a significant way. After this low-pass filters with varying cut-off
points were applied via MATLAB to our regular measurements. These low-pass filters are
single-pole which behave similar to moving average filters discussed by Stefan Mangard et
al. in [2]. The results of applying these filters were an increased smoothing effect on the
correlation and overall lower correlation values. We also applied a bandwidth limitation
of 25 MHz via the oscilloscope for one measurement of 10k traces which had a comparable
effect as applying a low-pass filter after the measurements.

To evaluate the perceived amount of lower correlation for the correct key byte we
analyzed the success rates for each low-pass filter. The results of these experiments can

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 61

Figure 5.7: Correlation curve for the 16th key byte at 24 MHz with the improved power
model

be seen in Figure 5.8. The success rates were calculated through the following means: For
every amount of considered traces we selected ten sets of randomly chosen traces after the
low-pass filter was applied to them and evaluated whether the correlation for the correct
key byte surpassed the maximum noise-level of the given set. If this criterion was met the
set increases the success rate of the considered amount of traces by 0.1 with a maximum
of 1 if each set managed to fulfill the criterion.

With that in mind it can be determined that around 400 traces are enough to deter-
mine the first key byte when using our implementation with a success rate of 1. This is
very low when considering that the almost identical implementation of AES by [6] ne-
cessitates 30k traces to yield a successful result. This result of [6] was achieved with no
active countermeasures and an almost identical power model on the same SASEBO board
(although on the smaller FPGA).

When considering the effects of added low-pass filters to the calculation, the results
are clear. Applying these filters has no positive effect on the correlation result, to the
contrary the absolute correlation values for the correct key hypothesis are reduced and
the success rate of the DPA attacks are lowered to the point where additional traces are
needed.

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 62

F
ig

u
re

5.
8:

S
u

cc
es

s-
ra

te
s

of
w

it
h

ra
n

d
om

se
ts

of
tr

ac
es

w
it

h
d
iff

er
en

t
lo

w
-p

as
s

fi
lt

er
s

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 63

Figure 5.9: Correlation curve for the first key byte at 1.5 MHz using the integration method

1.5 MHz 32 MHz

Cycles Correlation Cycles Correlation

16 0.2447 16 0.2779

15, 16 0.1717 15, 16 0.2250

14, 16 0.1714 14, 16 0.2362

13, 16 0.2035 13, 16 0.2456

12, 16 0.2696 12, 16 0.2583

11, 12, 16 0.2170 11, 16 0.2167

10, 12, 16 0.2202 10, 16 0.2286

9, 12, 16 0.2501 9, 16 0.2403

8, 12, 16 0.2893 8, 16 0.2723

7, 8, 12, 16 0.2609 7, 16 0.2294

6, 8, 12, 16 0.2597 6, 16 0.2402

5, 8, 12, 16 0.2668 5, 16 0.2686

4, 8, 12, 16 0.3197 4, 16 0.2216

3, 4, 8, 12, 16 0.2946 3, 16 0.2272

2, 4, 8, 12, 16 0.2899 2, 16 0.2391

1, 4, 8, 12, 16 0.3073 1, 16 0.1901

Table 5.3: Integration attempts at 1.5 MHz and 32 MHz operating frequency (10k traces).

5.2.2 Integration of Multiple Clock Cycles

Stefan Mangard et al. proposed a way to improve DPA results in [2]. This method adds
multiple clock cycles calculating the same intermediary result on top of each other and is
called Integration. We applied this method to measurements taken the operating frequency
set to 1.5 MHz and 32 MHz with 10k of traces each and applied the power model of the
first key byte. The algorithm starts with the clock cycle containing the highest correlation
peak (cycle 16) and integrates the clock cycles which improve the result until all relevant
clock-cycles have been considered. The results can be seen in Table 5.3.

As can be seen from the table the results lead to a considerable increase of correlation
values at an an operation frequency of 1.5 MHz, but only the clock cycles 4, 8 and 12
improve the result at 1.5 MHz and while the method has no positive effect on the correlation
value at an operating frequency of 32 MHz. This is probably due to the differing power
voltage levels which are integrated, which are more similar with an operation frequency
of 1.5 MHz at the clock cycles where the result is improved. This integration method also
increased the success rate as can be seen in Figure 5.8.

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 64

Figure 5.10: Comparison between untampered correlation decay and a decay influenced
by switching registers at 48 MHz

5.2.3 The Correlation Decay

As was discussed earlier, the correlation result for the correct key-hypothesis remains
distinguishable from the wrong key-hypotheses for multiple clock cycles or even multiple
AES rounds for measurements with the operating frequencies higher than 12 MHz. We
concluded that this aspect of the correlation was in part caused by the supply capacitances
provided by the board and the FPGA itself as was also discussed by Stefan Mangard et
al. in [2].

As a next step the influence of the switching noise on this phenomenon was examined.
Due to the measurements taken with different operation frequencies we concluded that
the added switching noise plays a factor in the correlation decay of the DPA. We also
concluded that the more switching occurs during the distinguishable time-window of the
correct key-byte the shorter the distinguishable time-window becomes.

Further another measurement of 10k traces was taken on a design which replaced
the AES states after the first ADD state with a wait state halting the main registers of
the implementation for multiple clock cycles. This measurement simulates an correlation
decay without switching noise. The measurement was taken at an operation frequency of
48 MHz to compare it to the occurrence of the highest switching noise achievable with the
measurement setup.

This comparison is displayed in Figure 5.10 over a time window of 7 000 samples
(3 500 ns). The correlation of the halted implementation remains distinguishable signifi-
cantly longer than it does with the standard implementation due to the lack of switching
noise. The halted implementation features higher correlation values due to a smaller foot-
print on the FPGA after the Xilinx tools optimizing unused resources, decreasing the
overall usage of the FPGA resources. This further decreased the DPA relevant noise.

The hence uninfluenced correlation decay is set at about 0.042 per 500 ns. When
switching is active the correlation decays with 0.169 per 500 ns which is about four times
the value-loss of the halted implementation. We can conclude that the switching of the

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 65

Figure 5.11: Correlation results for the first key byte at different operating frequencies.
(10k traces)

main registers causes a faster correlation decay at an operation frequency of 48 MHz.

5.3 About the Characteristic Frequency of the Xilinx Virtex-
II Pro FPGA

While conducting DPA attacks on the AES implementation similar to Moradi et al.’s
proposal [6] on varying operating frequencies (1.5, 3, 6, 12, 24 and 48 MHz) we always
observed a superimposed frequency of about 30 MHz on the correlation for the correct
key hypothesis. Some examples of this phenomenon are displayed in Figure 5.11. At a
sampling rate of 2 GS/s a period of 66.6 samples corresponds to a frequency of 30 MHz.
The decaying oscillation shown in the left plot of Figure 5.11 has a frequency of about
29.6 MHz, the oscillation is held in most observed cases for 5 succeeding peaks which is
then deteriorated by noise but still detectable. This deterioration does not occur if new
correlation events (in our case the shifting of a register reiterating the same HD) occur.
There is a chance that these events will break the phase of the correlation curve in the
correlation plot for an operating frequency of 48 MHz as can be seen at certain sample
points in the right correlation plot of Figure 5.11.

Figure 5.11 also shows part of correlation curve for the first key byte at an operation
frequency of 24 MHz. Take note that the correlations still holds its frequency (the mea-
surement window of 15 oscillation periods suggests a frequency of 29.9 MHz) and does not
feature any breaks in its oscillation phase. We have determined earlier in this chapter that
the strength of a correlation event is determined partly through the fanout of its affected
output signals. In the case of this correlation curve the timing of the peaks where the
value of the correlation is increased coincides with the correlation events connected to the
biggest fanout values.

On the other hand the more minor correlation events between these peaks are not
represented in the correlation result. Note that instead of a peak for each clock cycle

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 66

Figure 5.12: FFT result of the correct correlation curve of the first byte at multiple
operating frequencies.

the correlation peaks with its characteristic frequency. Assuming that this frequency is
30 MHz the relationship between an operation frequency of 24 MHz and the characteristic
frequency is 4/5 which results in an additional peak every four clock cycles (four clock
cycles between each of the four major peaks).

When the operating frequency is doubled to 48 MHz (by employing a DCM) the relation
between operating frequency and characteristic frequency is now 8/5. The right plot of
Figure 5.11 shows the correlation result for the correct key hypothesis. We can see that
the correlation still holds to its characteristic frequency albeit with major interferences
regarding its phase. Note that there are also 12 clock cycles between the added data tips
as there are for the plot at 24 MHz operating frequency.

We also conducted spectral analyses on the result vectors of the correct key hypothesis.
Figure 5.12 holds multiple spectral analyses of DPA results of measurements taken with
a determined set of operating frequencies. These spectral analyses show differing but
noticeable amounts of spectral density around 30 MHz.

This characteristic frequency is probably caused by the resistances, capacitances and
inductances of the circuit. So further measurements of the circuit were taken utilizing addi-
tional supply capacitors (10µF, 220µF or 1500µF) and alternative shunt resistors (1.5 Ω,
1.8 Ω or 4.8 Ω). These alternative measurements setups were connected and examined for
deviations in power consumption and altered correlation results.

The altered shunt resistors changed the measured voltage drop on the resistor but did
not influence the correlation result. Adding additional capacitors to the FPGA also did not
change the characteristic frequency but did result in altered voltage drops and correlation
results as can be seen in Figure 5.13. This led us to believe that the characteristic frequency
is solely caused by the inductances and capacitances of the FPGA and not related to the
power-supply paths of the SASEBO board.

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 67

Figure 5.13: Correlation results and power-consumption plots with altered capacitances.
(10k traces)

To further deepen our understanding of the characteristic frequency we approximated
this frequency with the use of another DCM5and managed to lock an operating frequency
of 32 MHz and compared the correlation results of multiple key bytes to one another.

To get a better understanding on this phenomenon we call the characteristic frequency
one could take a closer look at the actual power traces. Figure 5.15 shows one thousand
power traces for each operating frequency. The power traces of 48 MHz have no observable
frequency. This indicates that the operating frequency is filtered/dampened by the capac-
itance of the FPGA acting as a low-pass filter. This capacitance probably also defines the
characteristic frequency. The characteristic frequency of about 30 MHz is observable in
all of the other power traces of 1.5 MHz to 32 MHz after a positive edge of the operating
clock occurred.

We can also observe that the power consumption reaches a maximum at 30 MHz. In
other measurements utilizing a function generator we determined that the actual maximum
in power consumption is reached with the operating frequency set just below 30 MHz.

This is similar to reaching something akin to a resonance state which was hinted at by
the characteristic frequency we observed at downward slopes of the correlation curves and
their corresponding power traces. What is of interest in the context of this thesis are the
effects this phenomenon has on the correlation curve due to our focus on security-aspects
of the exposed side-channel.

We theorize that two possible effects could exist: First, an improvement of the signal-
to-noise-ratio due to the higher exposure - read: higher min-to-max distance - of each
clock cycle. Second, a faster correlation decay due to higher power consumption oscillation
which could lead to a smaller “storage” window in the switching noise. We will align these
possible effects with our observations and evaluate if these claims have any merit or further
practical use.

The next logical step is headed at the evaluation of the correlation curves of correct key

5one DCM doubled the input frequency to 48 MHz, another divided the signal by 1.5 to 32 MHz.

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 68

Figure 5.14: Correlation result for the first byte at multiple operating frequencies. (10k
traces)

hypotheses for several key-bytes (the first, the second and the last). We should be experi-
encing alterations of the correlation behavior at different operating frequencies. First, the
correlation should start to exhibit phase disturbances once an operating frequency above
the characteristic frequency is reached. At this point, impulses sent by the operating clock
can no longer be absorbed at a fast enough frequency. this leads to the reduction in power
consumption at operating frequencies 31 MHz and above. Second, at operating frequen-
cies close to the characteristic frequency the high-fanout registers should have a smaller
impact on the correlation curve. This is due to the reduced amount of switching noise into
subsequent registers. Low-fanout registers should have a higher impact on the correlation
curve since their respective signal-to-noise-ratio has been increased when compared to the
impact of high-fanout registers have at operating frequencies farther below and above the
characteristic frequency.

The plots in Figure 5.14 show our correlation results at the first four clock cycles at
which our power model applies for the first key byte at operating frequencies 1.5, 3, 6,
12, 24, 32 and 48 MHz with 10 000 recorded traces. Observations are: the phase of the
correlation curves at 32 MHz and 48 MHz feature phase disturbances while correlation
curves originating from measurements with lower operation frequencies do not. Also,
measurements at 32 MHz result in the fastest correlation decay resulting in lower total
correct correlation values when compared with 24 MHz and 48 MHz. This can be explained
with the abridged influence high-fanout registers have on the switching noise.

When considering the results for the second byte (see Figure 5.16) these observations
still hold true. Here the correct correlation at the first clock cycle does not originate from
a register but from the combinational output of the Sbox module. The first clock cycles
are visibly more masked than other clock cycles and when compared to the correlation
curve at an operating frequency of 32 MHz.

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 69

F
ig

u
re

5.
15

:
P

ow
er

co
n

su
m

p
ti

on
fo

r
al

l
cy

cl
es

of
th

e
fi

rs
t

A
E

S
ro

u
n

d

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 70

Figure 5.16: Correlation result for the second byte at multiple operating frequencies. (10k
traces)

This effect is the most pronounced when considering our original power model for the
last byte (Equation (4.6)) which does not feature a HD occurrence at a high-fanout register.
Naturally this is the only key-byte where the correlation curve of 32 MHz surpasses other
surrounding operating frequencies (namely 24 MHz and 48 MHz6) in total correlation value
since the influence of a high-fanout register does not occur. The correlation results can be
observed in Figure 5.17.

Also, when looking at a larger time-frame for this correlation curve (see Figure 5.18)
we can see that the correlation decays faster than at other operating frequencies while
oscillating with a significantly bigger amplitude. We have now argued for two effects
occurring at the same time when the operating frequency approximates the characteristic
frequency. The effect of a faster correlation decay is weakening DPA attacks that rely on
multiple occurences of the same HD but is negligible for implementations that do not have
multiple HD occurrences stacking on the switching noise. The effect of a seemingly better
signal-to-noise-ratio can be beneficial to DPA attacks where the noise can not be reduced
by lowering the operation frequency but approximated to the characteristic frequency.

But due to the singular experience with this FPGA it is hard to asses whether this
effect is of use to other attacks on other FPGA models. We would like to suggest this
open question as a possibility for future work of research.

5.4 Summary

In this chapter we have described our measurement setup for DPA attacks and discussed
some evaluation methods regarding side-channel resistance. With these methods we have
shown that the vulnerability of the AES implementation to DPA attacks is much higher
compared to the findings of [6]. We require approximatly 400 traces for a success rate of 1
while in [6] 30k traces are required for the same result. This is a discrepancy of the factor

632 MHz also surpasses 30 MHz

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 71

Figure 5.17: Correlation result for the last byte at multiple operating frequencies. (10k
traces)

Figure 5.18: Correlation result for the last byte at an operating frequency of 32 MHz. (10k
traces)

CHAPTER 5. SIDE-CHANNEL ANALYSIS OF ALE 72

of almost 100. The attack on the AES implementation is essential for retrieving the key
used in ALE encryptions.

We have explained different aspects of the behavior of the correct key-byte correlation
in regards to the fanout of the implemented register, the noise originating from the trigger
signal and the influence of switching noise. We could show a relation between the total
maximum correlation value and the fanout of registers, how output switching influences
the correlation result and how switching noise affects the decay of the correlation curve.

We have also shown the significance of a phenomenon we call the characteristic fre-
quency and its sole dependence on the FPGA model in use. We have shown that this
phenomenon can be exploited to achieve slightly better correlation results when no high-
fanout registers or methods to slow the operation frequency (to avoid switching noise)
are available. We have also shown how to improve a power-model when tailoring it to
high-fanout registers (and probably nets).

Next we will look at the results yielded after implementing FPGA-specific counter-
measures and the statistical evaluation technique known as t-test.

Chapter 6

Side-Channel Analysis with
Countermeasures

In this chapter we take a look at the DPA results yielded after implementing the coun-
termeasures described in Section 3.3. The two implemented countermeasures hindered
the success of the DPA to varying degrees. This can be measured by an increased effort
regarding the amount of traces required for a successful DPA attack.

The clock-randomization countermeasure proved to be suitable for a relatively easy
implementation on varying operating frequencies while the implementation scale of the
short-circuit countermeasure was hindered by the lengthy process required to alternate
existing designs. Since the clock-randomization countermeasure was easy to implement
and yielded promising results we decided to alter it by mixing two different operating
frequencies together by employing an additional DCM. The results of this alteration are
discussed in Section 6.1.4, where more details on the further success of this countermeasure
are described.

The short-circuit countermeasure proved to be unsuitable for masking the relevant
power information in our design at an operating frequency of 24 MHz since the power
information is “stored” and added to for a relatively long time due to the effect of emptying
the supply capacitances as was also described by Stefan Mangard et al. in [2]. This makes
the countermeasure ineffective for later clock cycles (after the fourth clock cycle) since
the noise it generates is insufficient. The short-circuit countermeasure also proved to
be unsuitable for designs at lower operating frequencies as the additional measurement
effort this countermeasure necessitates is much lower than was described by [4]. A deeper
discussion of the results can be found in Section 6.2. But first, this chapter will discuss the
results of the basic clock-randomization countermeasure, which was also evaluated with
DPA attacks on different operating frequencies.

For further information on the measurement setup please refer to Section 5.1 since no
major alterations were made for conducting measurements on the designs with counter-
measures.

73

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 74

6.1 Results on the Clock-Randomization Countermeasure

This section will discuss our evaluations of various aspects of the clock-randomization
countermeasure (CR1). First we discuss our choice of the clock-input of our PRNG module
and its effects on the countermeasure in Section 6.1.1. Then a discussion to the effects of
the clock-randomization countermeasure on DPA attacks is given in Section 6.1.2. Here we
also discuss the results of several DPA attacks which were conducted on implementations
of CR2, CR4 and CR8. Section 6.1.3 gives a short overview how alterations of the clock-
randomization countermeasure were implemented while Section 6.1.4 analyzes the effects
these alterations had on DPA attacks. A summary of these and other findings on this
countermeasure is given in Section 6.1.5. Finally, we introduce another way to evaluate the
leakage produced by various implementations of the clock-randomization countermeasure
by applying the t-test on various measurement sets taken on all major implementations
of this countermeasure in Section 6.1.6.

6.1.1 Choosing the Input of the PRNG

The clock-randomization countermeasure was at first implemented as was discussed in
Section 3.3.2. At this section the clock input of the PRNG module was mentioned to be
the unaltered clock provided by the on-board oscillator. But originally we considered two
clock signals to drive the PRNG. First, we considered the aforementioned unaltered clock
signal. This clock signal is supplied by the on-board oscillator and is used on the DCMs to
produce the phase-sifted clock signals. The other option we considered was the result of
the clock randomization itself. Which signal would suit our need for security against DPA
attacks better did not seem clear and the decision made by [4] was not documented. So we
chose to evaluate which signal would be a better solution. The results of this evaluation
are summarized in this section.

The decision to use the input clock instead of the randomized clock was made after
doing some preliminary measurements. These measurements were taken after altering the
design to have the clock randomization always on and measuring the randomized clock
which was routed on one of the output pins. We measured clock traces with the clock
randomization set to use 2, 4 or 8 phase shifted clocks and altered the input of the RNG
between the input clock to the randomized clock.

Each of these design variations was measured 1000 times with the measurement set
to start after the first positive clock edge. These measurements were subsequently used
to analyze the distribution behavior of the randomized clock periods. The plots inside
of Figure 6.1 show histograms for the distribution of the randomized clock period for
implementations of CR2, CR4 and CR8. It can be observed that no design variant causes
the clock period to grow shorter than the unaltered clock of 24 MHz2 while all variants
cause the potential clock periods to increase. This lack of shorter clock periods is caused
by the glitch-suppressing properties of the utilized clock multiplexers which are supplied
by the FPGA.

1Implementations of the clock-randomization countermeasure which utilize two, four or eight phase-
shifted clock signals are abbreviated with CR2, CR4 or CR8 respectively.

224 MHz equals 41.6 nanoseconds

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 75

F
ig

u
re

6.
1:

H
is

to
g
ra

m
s

of
cl

o
ck

p
er

io
d

s
on

va
ri

ou
s

cl
o
ck

-r
an

d
om

iz
a
ti

on
im

p
le

m
en

ta
ti

o
n

s

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 76

Another observation is that the clock periods are farther distributed if the RNG is
clocked by the input clock of the circuit and not by the randomized clock. When utilizing
two or four phase-shifted clocks for the randomization about 17% of the clock periods will
be longer than the longest clock periods measured when the input clock of the RNG is the
randomized clock. This number almost doubles to 30% when eight phase-shifted clocks
are utilized. These larger distribution windows also yielded better results when using the
clock randomization against DPA attacks which is the reason why this way to clock the
RNG became part our main implementation.

These larger distribution windows regarding the randomized clock periods can be ex-
plained by the combination of two effects. The first only occurs if the input clock of the
RNG is the input clock of the device. When we compare the histograms at the top of
Figure 6.1 which display the distribution of clock periods when two phase-shifted clocks3

are utilized, we can see that there is a third bar of about 17% that equals to a phase shift
of 360° which is twice the unaltered clock period (83.3 ns) for measurements taken with
the RNG driven by the input clock of the device. To answer the question why this 360°
shift only occurs in this case and not when the RNG is driven by the randomized clock
we repeated the meaurements on the clock signal with two phase-shifted clocks but also
captured the decision bit of the RNG. If the decision bit has the value 1 the clock signal
which is shifted by 180° is activated by the clock randomization module. Otherwise the
clock signal which is shifted by 0° is is activated by the clock randomization module. The
three scenarios which we observed in the histogram were also present in this measurement
and can be observed in Figure 6.2. If the clock signal remains unaltered the decision bit
holds the value 0 or 1 during the critical decision time-frames. If the phase of the clock is
altered by 180 degrees two different value inversions of the decision bit occur: The 0° clock
signal is active and produces a positive clock edge while the decision bit changes from 0
to 1 or the 180° clock signal is active and produces a positive clock edge and the decision
bit switches a half clock-period later (21 ns) from 1 to 0. Both of these cases result in
the same clock alteration. The third case (i.e. the 360° shift) occurs when the 0° clock is
selected and the decision bit switches to 1 at the positive clock edge and changes back to
0 before the 180° clock successfully has passed through the clock buffers.

The two latter cases show behavior that can only occur if the RNG is driven by the
input clock of the device since changes of the decision bit can occur regardless of the
current state of the randomized clock signal. This also explains the values of the first
row of the histograms in Figure 6.1. If the RNG is driven by the randomized clock only
two cases occur with a probability of about 50% each which only rely on the probability
whether the RNG decision bit does not change (no alteration of the randomized clock and
a clock period of 41.6 ns) or changes its value (a phase shift of 180° and a clock period
of 62.5 ns). If the RNG is driven by the input clock of the device the last case is divided
into two sub-cases. One subsumes that the decision bit switches from 1 to 0 or from 0 to
1 and keeps that value in the latter case for one clock cycle of the input clock. The other
is less likely and requires that the decision bit switches from 0 to 1 and back to 0 in two
subsequent clock cycles of the input clock.

The second effect is also present in clock-randomization variants where the RNG is
driven by the randomized clock. The histogram for four phase-shifted clock signals where
the RNG is driven by the randomized clock (second row, first column of Figure 6.1) has
one additional non-zero value for clock periods of about 94ṅs which equals a phase shift

30° and 180°

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 77

RNG value Phase RNG value Phase Phase shift

00 0° → 00 0° 0°
01 90° 90°
10 180° 180°
11 270° 270°

01 90° → 00 0° 270°
01 90° 0°
10 180° 450°

11 270° 180°

10 180° → 00 0° 180°
01 90° 270°
10 180° 0°
11 270° 90°

11 270° → 00 0° 450°

01 90° 180°
10 180° 270°
11 270° 0°

Table 6.1: Phase-transition behavior of the clock-randomization countermeasure utilizing
four phase-shifted clocks. The clock change is decided by the PRNG which is clocked by
the randomized clock.

of 450°. To get a better understanding of how this clock period can occur we repeated the
measurement while also recording the involved decision bits of the RNG. The five different
cases for randomized clock periods can be seen in Figure 6.3. Decision bit 0 decides about
the outcome of two clock buffers with the input pairs [0°,90°] and [180°, 270°] while bit
1 decides whether to let the clock signal pass from the outputs of the former or latter
clock buffer. Again no clock alteration happens if the two decision bits keep their values.
Phase shifts of 90 degrees occur if bit 0 changes its value from 0 to 1 while bit 1 remains
unchanged. Phase shifts of 180° occur if bit 0 remains unchanged and bit 1 transitions
from 0 to 1 or 1 to 0. Phase shifts of 270° can occur if bit 0 changes its value from 1 to 0
and bit 1 retains the same value which results in a negative phase jump of -90° which is
equal to 270° or the same phase shift can occur if bit 0 changes from 0 to 1 and bit 1 inverts
its value (which equals a switch from the 180° to 90° or from the 0° to 270° phase-shifted
clock signals). All possible phase transitions of this measurement are contained in Table
6.1.

The phase shift of 450° occurs instead of phase shifts that should have a value of 90°
where bit 0 changes from 1 to 0 and bit 1 inverts its value. We strongly believe that this
effect is also caused by the utilized clock buffers which suppress the first positive clock edge
after the change which delays the positive clock edge by another 360° (41.6 ns)4. This also
explains why the corresponding histogram of Figure 6.1 has three possible clock periods
with probabilities of about 25% each while the other two (the ones belonging to the 90°
and 450° phase shifts) share the remaining 25%.

490° + 360° = 450°

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 78

F
ig

u
re

6
.2

:
T

h
e

th
re

e
ca

se
s

of
cl

o
ck

al
te

ra
ti

on
p

re
se

n
t

w
it

h
th

e
cl

o
ck

ra
n

d
om

iz
at

io
n

u
ti

li
zi

n
g

tw
o

p
h

as
e-

sh
if

te
d

cl
o
ck

s.
T

h
e

cl
o
ck

ch
an

ge
is

d
ec

id
ed

b
y

th
e

P
R

N
G

w
h

ic
h

is
cl

o
ck

ed
b
y

th
e

in
p

u
t

cl
o
ck

of
th

e
ci

rc
u

it
.

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 79

F
ig

u
re

6
.3

:
T

h
e

fi
ve

ca
se

s
of

cl
o
ck

al
te

ra
ti

on
p

re
se

n
t

w
it

h
th

e
cl

o
ck

ra
n

d
om

iz
at

io
n

u
ti

li
zi

n
g

fo
u

r
p

h
a
se

-s
h

if
te

d
cl

o
ck

s.
T

h
e

cl
o
ck

ch
an

ge
is

d
ec

id
ed

b
y

th
e

P
R

N
G

w
h

ic
h

is
cl

o
ck

ed
b
y

th
e

ra
n

d
om

iz
ed

cl
o
ck

.

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 80

Figure 6.4: Clock randomization with four clocks and eight clocks. The PRNG is clocked
by the input clock.

If these two effects are combined with each other (see the clock randomization using
four phase-shifted clocks and the RNG driven by the input clock) and then also combined
with the added complexity of another clock-buffer layer and four additional phase-shifted
clocks of the clock randomization with eight phase-shifted clocks and the RNG driven by
the input clock of the device multiple skips of positive clock-edges can occur. This leads
to possible maximum clock-periods between positive clock-edges of almost 600 ns.

To get a better idea of the scope of the randomization effort and how it can variate
overall calculation timings see Figure 6.4 which shows the placement of positive clock
edges after a first positive clock edge. The top plot of Figure 6.4 shows the timing of the
positive clock edges for a clock randomization with four phase-shifted clock signals for 15
recorded traces. As can be seen, the irregularity of the clock grows with each subsequent
positive edge of the clock signal. This effect is exacerbated in the bottom plot of Figure
6.4 where the variance of one subsequent clock edge is increased as is expected with an
implementation of the clock-randomization countermeasure that utilizes eight different
phase-positions.

6.1.2 DPA Attacks on a CR-Secured Design

Next, we discuss the effects of the countermeasure on the DPA attack. As was discussed
in Chapter 5, the correlation of most bytes stays distinguishable for many clock cycles
when no countermeasures are applied, so it has to be determined how the interval of this
correlation is affected by the randomization of the same time frame.

Since the interval is now calculated at different points in time and is of variable length,
the total length of consideration for the DPA attack is increased. On the other hand the
total correlation must be weaker since the calculation cycles are no longer aligned. As

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 81

Figure 6.5: Correlation for the first key byte at an operating frequency of 24 MHz and an
active CR countermeasure with four clocks, 100k traces

we discussed earlier in Chapter 4 one of the per-requisites for an optimal DPA attack is
alignment of the traces. Re-alignment of the power traces is difficult due to the non-linear
nature of the power traces recorded with this countermeasure and the jumps in phase of
the clock signal.

Due to this, the total maximum correlation value of the correct key-hypothesis only
reaches a fraction of the value of its counterpart of the implementation without active
countermeasures compared to implementations of the clock-randomization countermeasure
which utilize two or four phase-shifted clock signals. The result for the total maximum only
reaches about 0.04 which it also does when only two clock signals are used albeit with a
longer time period of distinguish-ability. The correlation result for the clock-randomization
implementation with four phase-shifted clock signals can be seen in Figure 6.5.

Another aspect of this countermeasure is present when evaluating the subsequent key
bytes whose attacked HD is exposed for fewer clock cycles. As the time window of exposure
is reduced the worse the correlation result becomes. This is especially notable for key bytes
corresponding with the last row of the register used in the state module where the correct
key bytes can no longer be exposed by measurements with one-hundred thousand traces.

All the above aspects are featured even stronger when eight different clock signals are
used. The maximum total value of the correlation curve for the correct first key-byte is
now halved to 0.02 and the time window of distinguish-ability is further shortened. The
result for the first key-byte is shown in Figure 6.6.

Also the DPA attack fails for the third row of registers in the state module when eight
clock signals are used. This countermeasure is very successful considering the footprint of
FPGA-resource usage necessary to implement it.

6.1.3 Clock Randomization with Mixed Operating Frequencies

In the search of improving this countermeasure we considered two approaches. First, one
could add additional DCMs and phase-shifted clock signals into the implementation. Sec-
ond, one set of DCM-clocks could be slowed down to randomly spread out the critical

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 82

Figure 6.6: Correlation for the first key byte at an operating frequency of 24 MHz and an
active CR countermeasure with eight clocks, 100k traces

cycles of the encryption even more which should further lower the maximum total cor-
relation. Also this approach increases the measurement and DPA analysis effort because
longer time-windows of measurement are necessitated.

Unfortunately the first approach can not be implemented without the chance of data
corruption through clock glitches since not enough clock-buffer enabled multiplexers are
available on the FPGA. We went on to implement the second approach by using an
additional DCM to slow the clock down to 12 MHz and 1.5 MHz respectively. This also
necessitated a reconsideration of how the RNG module should be clocked. Until now
the RNG would be clocked by the main input clock, which guaranteed a chance of a
clock-blocking event in one of the clock buffers, resulting in skips of clock-edge events.
Since this clock must be the main 24 MHz clock of the design, the chance of considering
positive clock events from the slower clock signals via the clock tree controlled by the
RNG is low resulting in almost no further slow-down and interval widening of the AES
encryption. Because of this, we reconnected the input clock of the RNG to the output of
the RNG-controlled clock tree which guarantees whole clock periods after a clock switch
has occurred which results in a longer encryption time-frame.

6.1.4 DPA Attacks on the Improved CR-Secured Design

When evaluating the countermeasure with four of the eight clock signals slowed to 12 MHz
the impact the source of the input clock of the RNG module had on the correlation was
insignificant, also the maximum total correlation of the first key byte remained almost the
same with measurements done for both clock-source options. This is also the case when
comparing the results with those obtained from the unaltered countermeasure design. The
window of distinguish-ability is roghly the same as is the maximum total correlation for
the correct first key byte at 0.02.

When the operating frequency of the second DCM is further slowed to 1.5 MHz the
correlation result of the altered countermeasure shows a better masking of the correct
key hypothesis. The correct key-byte hypothesis now has a maximum of 0.015 and is no

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 83

Figure 6.7: Correlation for the first key byte at an operating frequency of 24 MHz and
1.5 MHz and an active CR countermeasure with eight clocks, 100k traces

longer distinguishable from other maxima of wrong key hypotheses with a DPA calculated
from 100k traces. This result can be seen in Figure 6.7. Since the exact timing of where
the correlation maximum should occur is no longer known to the attacker all correlation
maxima at around 0.15 must be considered hence the DPA has become more difficult for
the first key-byte.

For this measurement the sampling rate had to be reduced to 1 GS/s in order to capture
the relevant time window since the complete AES encryption now takes about 180µs which
is about 22-times of the 8µs encryption time needed with no clock randomization. Also
realignment of the clock cycles has been further hampered since the recombination of
random 24 MHZ and 1.5 MHz clock-cycles has now to be applied to the measured power-
traces.

From this point on we applied the second countermeasure which utilizes the random-
ized switching of short-circuits to the implementations of regular CR8, an 8-signal clock-
randomization with the half of them slowed to 12 MHz and an 8-signal clock-randomization
with the half of them slowed to 1.5 MHz. The first 2 implementations mentioned above
showed no observable effect on the correlation curves. The implementation with half of
the available clock signals slowed to 1.5 MHz slightly lowered the correct correlation below
the noise-level. This however is still in the range of statistical deviation. The result for
this implementation regarding the first key-byte can be observed in Figure 6.8. With this
application of countermeasures the conventional DPA attack on 100k traces fails.

6.1.5 Summary of the Clock-Randomization Countermeasure

This section will discuss the results obtained when looking for the maximum correct corre-
lation values of the first key byte in relationship to the amount of traces used in the DPA
attack. It will also discuss the lower correlation achievements are linked to the additional
time-requirement by slowed encryption process.

Figure 6.9 shows the success rates for the first key byte for multiple clock-randomization
implementations. This plot was created by calculating the success rate as was discussed

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 84

Figure 6.8: Correlation for the first key byte at an operating frequency of 24 MHz and
1.5 MHz and an active CR countermeasure with eight clocks and 16 short-circuits, 100k
traces

encryption time percentage maximum correlation

units µs % [100 k traces]

NO CR ≈ 8 100 0.322

CR2 ≈ 15 187 0.045

CR4 ≈ 18 225 0.043

CR8 ≈ 35 437 0.023

CR8 +12 MHz ≈ 30 375 0.020

CR8 +1.5 MHz ≈ 180 2 250 0.015

CR8 +1.5 MHz +16 SCs ≈ 180 2 250 0.013

Table 6.2: Results from the various clock randomization implementations.

in Section 5.2 and repeating the process 10 times and taking the mean of all 10 results.
This was done to gather a better resolution5. It can be observed that the success rate is
lowered by further deployments of clock signals and slowing part of these signals. Also
the effects of 16 short-circuit instances appear to be negligible in the scope of this plot. It
also seems that the implementation of clock randomization that utilized four phase-shifted
clock signals at 12 MHz had minor adverse effects on the success rate.

When comparing our results with the ones given by [4] some discrepancies occur. Our
clock randomization utilizing 8 phase-shifted clock requires on average 437% of the original
time window while their implementation requires 377% which is a rather small difference.
On average the implementation necessitates 100 times the amount of traces needed than
without clock randomization while the implementation of [4] necessitates 1000 times the
amount of traces needed than without the countermeasure.

When we compare our results of correct correlation maxima listed in the right column
of Table 6.2 we can argue that the additional time needed by the encryption yields a
relatively little benefit when regarding its lowered maximum correlation value.

51/100 instead of 1/10

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 85

6.1.6 Evaluation of the Leakage Produced by CR-secured Designs using
t-tests

Further on we examined the effectiveness of the clock-randomization countermeasure with
a statistical method called Welsh’s t-test which can be used to determine wheter the main
values of two different sets with different variances are identical or not. This tool has
already been introduced as an evaluation method for applications regarding side-channel
analysis by Gilbert Goodwill et al. in [49]. We applied this test for various datasets to
further analyze the countermeasure. Equation (6.1) describes the statistic to be applied
on a threshold evaluation:

t =
X̄1 − X̄2√

s21
N1

+
s22
N2

(6.1)

The variables Xi, s
2
i and Ni are the mean, variance, and sample size of each data set.

First we applied the t-test on samples of fixed HDs. Our goal is to measure multiple
occurrences of the same HD which is repeated in the 16 cycles of the ADD state and
compare it to another specified HD. The t-test can evaluate how distinguishable both
groups of measurements are and what influence the clock randomization countermeasure
has on this distinguish-ability.

To achieve this, we set the state data to zero and the key data to Sbox inversions.
Since we want to produce HDs by overwriting zero-values, we picked a value for each HD
(zero to eight) to overwrite zero. We then calculated the Sbox inversions for each of these
values which are supposed to be the results of the xor addition of the state and key. In
this scenario all the state-bytes are zero and the key values hold the values of the Sbox
inversion. To keep the occurrence of the same HD constant during the first AES-round the
16 key-bytes hold the same value. We recorded each HD one thousand times, the degree of
freedom was constant at 2000 resulting in a threshold value of 3.1 which correlates with a
distinguish-ability at probabilty of 99%. This threshold was derived from a table provided
by NIST [50].

We measured these sets of one thousand traces each on our implementations outfitted
with variations of the clock-randomization countermeasure. The statistic variable of the
t-test can be observed in Figure 6.10 for the basic implementations (no countermeasure,
CR2, CR4, CR8) of the clock-randomization countermeasure and in Figure 6.11 for altered
versions of the clock-randomization countermeasure (CR4 24 MHz + CR4 12 MHz, CR4
24 MHz + CR4 1.5 MHz, CR4 24 MHz + CR4 1.5 MHz + 16 SCs) and also CR8 to ease the
comparison between both figures. Both figures display t-test results of the comparisons
between sets of HD0 with HD1, HD0 with HD4, HD4 with HD8 and HD0 with HD8. The
t-test of HD0 with HD1 represents the smallest gap in HD while the t-test of with HD0
with HD8 represents the largest. We chooses these to see if both of these extremes pass
the t-test threshold of 3.1 and whether they show different behavior. The t-tests of HD0
with HD4 and HD4 with HD8 represent the same gap in HD but were chosen to examplify
the difference in behavior these t-test can nevertheless produce. This is mostly caused by
the difference in fanout which was discussed back in Section 5.2 and also by the nonlinear
effects the Sbox and other steps of the AES encryption which alter the behavior of these
tests in later AES rounds considerably.

The t-test results clearly indicate that the mean values of each examined HD get closer
the more clock signals are used for clock randomization and become almost identical when
the clock randomization utilizes slower clock signals at 1.5 MHz while a combination with
12 MHz does not achieve this effect. This effect is caused by the distribution of calculation

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 86

timings due to the clock-randomization countermeasure. The effect increases with the
strength of the countermeasure and also with the progress of time as can be observed in
Figure 6.4.

To get a better understanding we repeated the t-tests with various HDs but altered
how the HDs are created. In this case the HD is created from the overwriting process of
the Sbox result to a non-zero value. In this case we chose a constant non-zero value which
had also to be added to the result of the Sbox inversion values (see above) in order to get
the needed values for the key byte. We did this for multiple reasons. First, we wanted to
see the t-test performed over the complete AES encryption for multiple implementations
of the clock-randomization countermeasure to be able to better compare the time scale
of the leakage. We also wanted to eliminate our reliance on zero-value registers. And
another goal was to conduct t-tests between fixed HDs (like HD0) and sets that contain
measurements of random HDs. With this we hoped to get information how these fixed
HDs are distinguishable from a “mean” HD we generated from these randomized sets.

The results for these t-tests can be observed in Figure 6.12 which captured the whole
AES-encryption process of one 128-bit block for various implementations of the clock-
randomization countermeasure. Here it can also be observed that the clock randomization
weakens the distinguish-ability with more effective implementations of the countermeasure.
This also entails delays of the most distinguishable calculations. When the enhanced
countermeasure with four clock signals at 1.5 MHz is used the lower initial distribution
of positive clock edges leads to a better distinguish-ability at the beginning of the AES-
encryption process. This is because this implementation uses the randomized clock to
drive the PRNG module instead of the standard input clock, a discussion on this topic
was conducted in Section 6.1.1.

These t-test results also indicate that the mean values of each examined HD get closer
the more clock signals are used for clock randomization and become almost identical when
the clock randomization utilizes slower clock signals at 1.5 MHz. Note that the distinguish-
ability observed after the first round is not of interest when trying to obtain key information
from the first round as our DPA attack using known plaintext and the HD power-model
are not applicable there. As we can now see from the leakage of the encryption that peaks
that are distinguishable when no countermeasure is active get alaised by the clock edge
distributions imposed by the clock-randomization countermeasure. T-tests which compare
fixed HDs to randomized HD sets show a better distinguish-ability particularly at the
beginning of the encryption process which hints on why our DPA attacks remained feasible.
Also when we conducted t-tests between different sets of random HDs the results stayed
close but sometimes reached above the threshold criterion indicating that the criterion
was set too strict.

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 87

F
ig

u
re

6.
9:

S
u

cc
es

s
ra

te
s

of
va

ri
ou

s
cl

o
ck

-r
an

d
om

iz
at

io
n

im
p

le
m

en
ta

ti
on

s

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 88

F
ig

u
re

6.
10

:
R

es
u

lt
s

o
f

W
el

sh
’s

t-
te

st
on

va
ri

ou
s

cl
o
ck

-r
an

d
om

iz
at

io
n

im
p

le
m

en
ta

ti
o
n

s

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 89

F
ig

u
re

6.
11

:
R

es
u

lt
s

o
f

W
el

sh
’s

t-
te

st
on

va
ri

ou
s

cl
o
ck

-r
an

d
om

iz
at

io
n

im
p

le
m

en
ta

ti
o
n

s

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 90

F
ig

u
re

6.
12

:
R

es
u

lt
s

o
f

W
el

sh
’s

t-
te

st
on

va
ri

ou
s

cl
o
ck

-r
an

d
om

iz
at

io
n

im
p

le
m

en
ta

ti
o
n

s

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 91

6.2 Results on the Short-Circuit Countermeasure

We implemented all three SC designs as was discussed in Chapter 3 with one instance
at first but could not detect any influence on the correlation results obtained from 10k
measurements. Next we repeated the process with 16 SC instances which yielded a minor
masking of the correlation curve for the correct key-byte for our design with three LUTs.
Next we implemented 32 SC instances which was double the amount used by [4] but yielded
weaker results than the implementations with just 16 SC instances for every design.

These correlation results seemed rather disappointing considering [4]’s claim of the
need for a minimum of 8k traces per measurement with this countermeasure while their
unprotected design required a minimum amount of 3k traces for a successful attack. So
[4] conclude that this countermeasure more than doubled the minimum amount of traces.
This is much better than our results which had showed no major impact on the success
rates of the DPA attacks.

In order to better understand the reduced leakage of this countermeasure we addi-
tionally examined it with the same t-test scheme we applied on the clock-randomization
countermeasure. The results of the t-tests can be seen for the period of the first 16 cycles
of the encryption in Figures 6.13 for measurements taken at an operating frequency of
24 MHz and 6.14 for measurements conducted at an operating frequency of 1.5 MHz. It
can be observed that the mean values of each set become more distinguishable the farther
the shifting has proceeded. As expected this trend is accelerated when registers with high
fanouts are passed. Ultimately the additional SC instances make the sets of recorded HDs
less distinguishable. But it does this in very low increments.

Considering each SC instance needs 3 slices of the FPGA, 32 SC instances need about
an additional 17% of the slices of the AES implementation equipped with an RNG module
this is not very effective and even less effective than what was observed by [4]. Because
of this and the complications involved with implementing the countermeasure we can not
recommend this proposal for a countermeasure for an actual security-related implementa-
tion.

It is also unclear whether the toolchain-exploitations needed to achieve the SCs can
be replicated on more modern Xilinx FPGAs.

6.3 Summary

In this chapter we have shown how both of the implemented countermeasures affected the
correlation behavior of the correct key hypothesis. The clock-randomization countermea-
sure proved to be rather cost-effective regarding the use of FPGA resources but showed a
significant increase in time necessary to calculate the encryption result.

We then proceeded to enhance this countermeasure by slowing half of the clock signals
down to 12 MHz and 1.5 MHz which resulted in decreased correlation values with the
slow to 1.5 MHz and reduced the correlation value even farther after we combined this
implementation with 16 short-circuit instances. The major cost of this enhancement was
the time used by the encryption since it now needs at average 22.5 times the time to
calculate the encryption result.

We have shown that the short-circuit countermeasure is rather ineffective and expensive
regarding the amount of FPGA resources needed. We also designed ways to evaluate these
countermeasures with the help of Welsh’s t-test which led to further insights into the effects
of the countermeasures.

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 92

F
ig

u
re

6
.1

3
:

R
es

u
lt

s
o
f

W
el

sh
’s

t-
te

st
on

va
ri

ou
s

S
C

im
p

le
m

en
ta

ti
o
n

s
a
t

2
4

M
H

z

CHAPTER 6. SIDE-CHANNEL ANALYSIS WITH COUNTERMEASURES 93

F
ig

u
re

6.
14

:
R

es
u

lt
s

of
W

el
sh

’s
t-

te
st

on
va

ri
ou

s
S

C
im

p
le

m
en

ta
ti

on
s

at
1.

5
M

H
z

Chapter 7

Conclusions

Through the course of this thesis we have shown that the specification of ALE needs im-
provement to ensure standardized implementations which could be provided by the original
authors of [1]. Also we have shown that the original ASIC implementation relied heavily
on saving intermediate values online which we solved by adding a third 16-byte storage
module called temp and still achieved comparable results regarding the area requirements
of the implementation.

We have also discussed the influences supply capacitances and shunt-resistor values
have on the correlation result. Since we experienced a correlation windup caused by
switching information leaking into subsequent clock cycles, we have shown that this effect
is minimized when setting the operating frequency close to the characteristic frequency
which could be observed both in correlation results and the measured power traces. The
characteristic frequency is set by the implementation of the FPGA itself and has no relation
to power-supply setup provided by the evaluation board.

We have shown that there is a relationship between the fanout of a given net to
its contribution to the correlation result. A higher fanout leads to increased correlation
values when compared to the same information applied to nets with a lower fanout. This
effect may also be mitigated by setting the operation frequency near to the characteristic
frequency since low-fanout nets seem to contribute with a slightly better signal-to-noise-
ratio in these measurements. It is left to further research whether these observations can
be further utilized to hinder or enable DPA attacks.

We have also shown that low-pass filters set below the operating frequency measurably
lower correlation values. Since the side-channel resistance of the AES implementation is
much lower than what was observed by their original proposers [6] it begs to question
what caused these discrepancies in results.

The FPGA-specific generic countermeasures performed worse than what was originally
found by [4]. The improvement of the clock randomization countermeasure by significantly
slowing the half of the used clock signals closed this gap but came at the cost of significantly
slower encryption throughput. We did preliminary testing with 16 clock signals instead of 8
and experienced data corruption through clock glitches caused by a lack of additional clock
buffers, but these findings were inconclusive. Maybe this further enhancement of the clock-
randomization countermeasure can be researched on more modern FPGA technologies.

The countermeasure involving the randomized switching of short-circuits proved to
be without any bigger merit besides further improving on the clock randomization coun-
termeasure by causing a small decrease in correct correlation values. Since the imple-
mentation of short-circuits proved to involve a lot of time and resources with the dated

94

CHAPTER 7. CONCLUSIONS 95

FPGA-Editor software and causes a significant increase of used FPGA resources we do
not recommend any further research involving this countermeasure.

Overall we modified a standard approach to be used as the power model to attack AES-
128 and were successful with it. At first we underestimated the effects multiple fanout
values and the leakage of switching information had on our results caused by attacking a
16-byte shift register. Then we successfully explained most features the correct correlation
curves exhibit.

This thesis re-examined many of the findings and proposals set by our peers and man-
aged to add to their findings or highlight discrepancies in their approaches and findings.
In the end we have primarily shown that many of the papers and proposals published in
modern IT-security research could benefit from approaches to make it easier to reproduce
their results.

Appendix A

Definitions

A.1 Abbreviations

AE Authenticated Encryption
AES Advanced Encryption Standard
ALE AES-based Lightweight Encryption
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
ASIC Application-Specific Integrated Circuit
CB Clock Buffer
CR Clock Randomization
DCM Digital Clock Manager
DES Data Encryption Standard
DPA Differential Power Analysis
DRC Design Rule Checking
DUT Device Under Test
FF FlipFlop
FPGA Field-Programmable Gate Array
FSM Finite State Machine
GE Gate Equivalent
GF Galois Field
HD Hamming Distance
HDL Hardware Description Language
HW Hamming Weight
IT Information Technology
IV Initialization Vector
KS Key Schedule
LEX Leak Extraction
LUT Look-Up Table
MAC Message Authentication Code
PC Personal Computer
PRNG Pseudo-Random Number Generator
RC / RCON Round Constant
RFID Radio-Frequency IDentification
RNG Random Number Generator
SASEBO Side-Channel Attack Standard Evaluation BOard

96

APPENDIX A. DEFINITIONS 97

SC Short Circuit
SCA Side-Channel Analysis
SNR Signal-to-Noise Ratio
VHDL VHSIC Hardware Description Language
XDL Xilinx Design Language
XOR Exclusive Or
ZV Zero Value

Bibliography

[1] Andrey Bogdanov, Florian Mendel , Francesco Regazzoni, Vincent Rijmen and Elmar
Tischhauser, ALE: AES-Based Lightweight Authenticated Encryption.

[2] Stefan Mangard et al. Power Analysis Attacks – Revealing the Secrets of Smart
CardsSpringer, 2007.

[3] Joan Daemen, Vincent Rijmen, The Design of Rijndael: AES – The Advanced En-
cryption Standard. Springer, 2002.

[4] Tim Güneysu and Amir Moradi Generic Side-Channel Countermeasures for Reconfig-
urable Devices Springer, 2011.

[5] Beckhoff, Christian, Dirk Koch, and Jim Torresen Short-Circuits on FPGAs Caused by
Partial Runtime Reconfiguration Field Programmable Logic and Applications (FPL),
2010 International Conference on. IEEE, 2010.

[6] Amir Moradi et al. Pushing the Limits: A Very Compact and a Threshold Implemen-
tation of AES Springer, 2011.

[7] Dmitry Khovratovich and Christian Rechberger The LOCAL Attack: Cryptanalysis of
the Authenticated Encryption Scheme ALE Springer, 2014.

[8] Wu, Shengbao, et al. Leaked-state-forgery attack against the authenticated encryption
algorithm ale. Advances in Cryptology-ASIACRYPT 2013. Springer Berlin Heidelberg,
2013. 377-404.

[9] A. Bogdanov et al. Efficient and Side-Channel Resistant Authenticated Encryption of
FPGA Bitstreams ReConFig, 2012.

[10] B. Bilgin et al. Fides: Lightweight Authenticated Cipher with Side-Channel Resistance
for Constrained Hardware Springer 2013.

[11] Jakimoski, Goce, and Samant Khajuria. ASC-1: an authenticated encryption stream
cipher. Selected Areas in Cryptography. Springer Berlin Heidelberg, 2012.

[12] Mihir Bellare and Chanathip Namprempre Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm Springer, 2000.

[13] Hua Li and Zac Friggstad An Efficient Architecture for the AES Mix Columns Oper-
ation ISCAS, 2005.

[14] D. Canright An Efficient Architecture for the AES Mix Columns Operation Naval
Postgraduate School Monterey CA, 2005

98

BIBLIOGRAPHY 99

[15] Alex Biryukov A New 128-bit Key Stream Cipher LEX ECRYPT, 2005

[16] J Daemen, V Rijmen The Pelican MAC Function IACR Cryptology ePrint Archive,
2005

[17] H. Krawczyk The order of encryption and authentication for protecting communica-
tions (or: How secure is SSL?) Springer-Verlag, Berlin Germany, 2001.

[18] Albrecht, Martin R., Kenneth G. Paterson, and G. Watson. Plaintext recovery attacks
against SSH. Security and Privacy, 2009 30th IEEE Symposium on. IEEE, 2009.

[19] Duong, Thai, and Juliano Rizzo. Here come the ⊕-ninjas. Unpublished manuscript
(2011).

[20] Bellovin, Steven M. Problem Areas for the IP Security Protocols. USENIX Security.
1996.

[21] Paterson, Kenneth G., and Arnold KL Yau. Cryptography in theory and practice: The
case of encryption in IPsec. Advances in Cryptology-EUROCRYPT 2006. Springer
Berlin Heidelberg, 2006. 12-29.

[22] Degabriele, Jean Paul, and Kenneth G. Paterson. Attacking the IPsec Standards in
Encryption-only Configurations. IEEE Symposium on Security and Privacy. 2007.

[23] Kohno, Tadayoshi, John Viega, and Doug Whiting. CWC: A high-performance con-
ventional authenticated encryption mode. Fast Software Encryption. Springer Berlin
Heidelberg, 2004.

[24] Yang, Bo, Sambit Mishra, and Ramesh Karri. A High Speed Architecture for Ga-
lois/Counter Mode of Operation (GCM). IACR Cryptology ePrint Archive 2005 (2005):
146.

[25] Rogaway, Phillip, Mihir Bellare, and John Black. OCB: A block-cipher mode of op-
eration for efficient authenticated encryption. ACM Transactions on Information and
System Security (TISSEC) 6.3 (2003): 365-403.

[26] Bellare, Mihir, Phillip Rogaway, and David Wagner. The EAX mode of operation.
Fast Software Encryption. Springer Berlin Heidelberg, 2004.

[27] Moise, Avygdor, et al. EAX’Cipher Mode (May 2011).

[28] Minematsu, Kazuhiko, et al. Attacks and Security Proofs of EAX-Prime. Pre-
proceedings of Fast Software Encryption. 2013.

[29] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, Martin Schläffer Ascon v1
Submission to the CAESAR Competition, 2014

[30] Kazuhiko Minematsu on behalf of NEC Corporation, Japan AES-OTR v1 Submission
to the CAESAR Competition, 2014

[31] De Canniere, Christophe, and Bart Preneel. Trivium. New Stream Cipher Designs.
Springer Berlin Heidelberg, 2008. 244-266.

BIBLIOGRAPHY 100

[32] S. Babbage and M. Dodd. The MICKEY Stream Ciphers. In M. J. B. Robshaw and
O. Billet, editors, The eSTREAM Finalists, volume 4986 of LNCS, pages 191–209.
Springer, 2008.

[33] M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain Family of Stream
Ciphers. In M. J. B. Robshaw and O. Billet, editors, The eSTREAM Finalists, volume
4986 of LNCS, pages 179–190. Springer, 2008

[34] G. Leander, C. Paar, A. Poschmann, and K. Schramm. New Lightweight DES Vari-
ants. In A. Biryukov, editor, FSE, volume 4593 of LNCS, pages 196–210. Springer,
2007.

[35] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K.
Jeong, H. Kim, J. Kim, and S. Chee. HIGHT: A New Block Cipher Suitable for Low-
Resource Device. In L. Goubin and M. Matsui, editors, CHES, volume 4249 of LNCS,
pages 46–59. Springer, 2006.

[36] C. H. Lim and T. Korkishko. mCrypton - A Lightweight Block Cipher for Security of
Low-Cost RFID Tags and Sensors. In J. Song, T. Kwon, and M. Yung, editors, WISA,
volume 3786 of LNCS, pages 243–258. Springer, 2005.

[37] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede.
Spongent: A Lightweight Hash Function. In B. Preneel and T. Takagi, editors, CHES,
volume 6917 of LNCS, pages 312–325. Springer, 2011.

[38] J. Guo, T. Peyrin, and A. Poschmann. The PHOTON Family of Lightweight Hash
Functions. In P. Rogaway, editor, CRYPTO, volume 6841 of LNCS, pages 222–239.
Springer, 2011.

[39] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia. Quark: A Lightweight
Hash. In S. Mangard and F.-X. Standaert, editors, CHES, volume 6225 of LNCS, pages
1–15. Springer, 2010.

[40] M. Agren, M. Hell, T. Johansson, and W. Meier. Grain-128a: a new version of
Grain-128 with optional authentication. IJWMC, 5(1):48–59, 2011.

[41] D. W. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith. The Hummingbird-
2 Lightweight Authenticated Encryption Algorithm. In A. Juels and C. Paar, editors,
RFIDSec, volume 7055 of LNCS, pages 19–31. Springer, 2011.

[42] Andreeva, Elena, et al. APE: Authenticated Permutation-Based Encryption for
Lightweight Cryptography. IACR Cryptology ePrint Archive 2013 (2013): 791.

[43] ARM Ltd. AMBA APB Protocol Version 2.0 2010.

[44] Marsaglia, George Xorshift rngs. Journal of Statistical Software 8.14 (2003): 1-6.

[45] Saito, Mutsuo and Matsumoto, Makoto. XORSHIFT-ADD (XSadd): A variant of
XORSHIFT 2014

[46] Bogdanov, Andrey, et al. PRESENT: An ultra-lightweight block cipher. Springer,
2007.

BIBLIOGRAPHY 101

[47] Rolfes, Carsten, et al. Ultra-lightweight implementations for smart devices–security
for 1000 gate equivalents. Smart Card Research and Advanced Applications. Springer,
2008

[48] De Canniere, Christophe, Orr Dunkelman, and Miroslav Knežević KATAN and
KTANTAN—a family of small and efficient hardware-oriented block ciphers. Springer,
2009

[49] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi A testing methodol-
ogy for side-channel resistance validation. NIST Non-invasive attack testing workshop.
2011.

[50] NIST table for t-test Evaluation thresholds http://www.itl.nist.gov/div898/handbook
/eda/section3/eda3672.htm NIST

[51] Kocher, Paul, Joshua Jaffe, and Benjamin Jun. Differential power analysis. Advances
in Cryptology—CRYPTO’99. Springer Berlin Heidelberg, 1999.

[52] Dhem, Jean-Francois, et al. A practical implementation of the timing attack. Smart
Card Research and Applications. Springer Berlin Heidelberg, 2000.

[53] Research Center for Information Security, National Institute of Advanced Indus-
trial Science and Technology (RSIC) Side-channel Attack Standard Evaluation Board
SASEBO-G Specification.

[54] Comprehensive TEX Archive Network (CTAN) http://www.ctan.org

[55] Shamir, Adi, and Eran Tromer. Acoustic cryptanalysis. presentation available from
http://www.wisdom.weizmann.ac.il/ tromer (2004).

[56] Bilgin, Begül, et al. A more efficient AES threshold implementation. Progress in
Cryptology–AFRICACRYPT 2014. Springer International Publishing, 2014.

	Introduction
	Related Work

	Introduction to ALE
	The Ten-Round AES Encryption
	Initialization
	Encryption
	Tag Generation
	Discrepancies between Paper and Reference Implementation
	Summary

	Lightweight Implementation of ALE
	Global Requirements and Design Decisions
	Communication Interface

	Hardware Design of ALE
	Datapath Module of ALE
	The Control Module of ALE

	Countermeasures
	The Xorshift Random Number Generator
	Clock Randomization
	Short Circuits

	Synthesis Results
	Summary

	DPA Attack on ALE
	The Basic Steps for Differential Power Analysis Attacks
	An Introduction to Various Power Models
	The Correlation Coefficient

	The Attack on ALE
	Other Attacks on ALE
	Summary

	Side-Channel Analysis of ALE
	The Measurement Setup
	Side-Channel Analysis at Varying Operating Frequencies
	DPA with Added Low-Pass Filters
	Integration of Multiple Clock Cycles
	The Correlation Decay

	About the Characteristic Frequency of the Xilinx Virtex-II Pro FPGA
	Summary

	Side-Channel Analysis with Countermeasures
	Results on the Clock-Randomization Countermeasure
	Choosing the Input of the PRNG
	DPA Attacks on a CR-Secured Design
	Clock Randomization with Mixed Operating Frequencies
	DPA Attacks on the Improved CR-Secured Design
	Summary of the Clock-Randomization Countermeasure
	Evaluation of the Leakage Produced by CR-secured Designs using t-tests

	Results on the Short-Circuit Countermeasure
	Summary

	Conclusions
	Definitions
	Abbreviations

	Bibliography

