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 Abstract 
 

 

The human microbiome is a vast source of genetic functionality and contributes to both, 

health promoting and pathological events in the human body. Trillions of bacteria associated 

with nearly all organ systems inhabit the human body and outnumber human cells by a 

factor of ten. The role of this microbial flora in diseases like asthma and chronic 

inflammation or body states such as obesity, mental health and gut functionality has been a 

rapidly expanding field in life sciences. To get access to this interconnected system of 

bacterial species, next generation sequencing technologies have been developed. In this 

work, we examine the structure and changes of the human gut microbiome via 

pyrosequencing and subsequent bioinformatics analysis of the generated data. To overcome 

limitations of statistical methods, a scoring mechanism was created to identify phylotypes of 

interest that could be associated with physiological states. This was further developed into a 

network analysis routine, where a bacterial community can be viewed depending on the 

abundance changes of its members. Two projects have been carried out as a base for further 

experiments, one being the artificial induction of diarrhea, the other the description of the 

microbiome in a severe form of enterocolitis. In the first, we found that diarrhea, a 

commonly occurring misbalance of the gut system, can lead to thorough changes of the 

human gut microbial community. Washing out events of Bacteroides and other commensals 

are accompanied by a rise of Proteobacteria and a general reduction of diversity. We could 

also show that reconstitution occurs after an acute diarrhea phase, when the bacterial 

system regenerates the pre-diarrhea composition in a patient specific way. We speculate 

that these changes could serve as starting points for more severe misbalanced states like 

chronic inflammations of the gut. The second project was the investigation of 

nongranulomatous chronic idiopathic enterocolitis, a severe inflammation of the small 

bowel with high mortality rates and elaborate treatment requirements. Bacterial community 

structure was again determined by pyrosequencing, statistical data analysis and a network 

approach. We observed washing out events similar to the diarrhea experiment and an 

accompanying rise of several phylotypes usually associated with the human oral cavity. 

Therefore, we propose a translocation genesis for NCIE, where species usually associated 

with oral biofilm formation enter the gut system either by swallowing or blood transfer and 

form bridgeheads of colonization for a misbalanced microbial community. Subsequent local 

inflammation events and nutrition changes then lead to further community reshaping and 

chronic inflammation in typical patches.  These changes are commonly known as “dysbiosis”: 

when the bacterial and the host interactions enter a mode of misbalance, human physiology 

can change drastically. These findings underscore the importance of examining the human 

microbiome as part of an intertwined network, where a plethora of parameters and triggers 

affect the outcome of bacterial-host interactions. 
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1. Introduction 
 

The human body can be considered a complex ecosystem with a variety of habitats. Each 

habitat represents a unique niche with special nutrient sources and growth requirements 

(e.g oxygen tension, pH, etc.) for the bacteria. It has become evident in the last years that 

this community of microbes is not isolated from human body function but an integral part of 

our physiology. This is strikingly shown by the fact that the bacterial cells associated with 

humans outnumber human cells by at least a factor of 10 [1,2] and that there are a hundred 

times more genes in the microbial metagenome than in the human genome. Therefore it is 

speculated that the existence of the human microbiome is a reason for the relatively small 

number of genes found in the human genome [3]. Indeed these bacteria can fulfill a large 

number of tasks that are not encoded in human DNA.  

Of the 100 trillion [4] bacteria associated with humans, most live within the gut [2]. The gut 

microbiota has been identified to facilitate a large number of tasks important to human 

physiology. It is capable of degrading otherwise indigestible carbohydrates (glycans), 

therefore contributing to energy metabolism [1] and host fat storage [5]. Gut bacteria are able 

to release hormone-like substances and lipids signals conferring a cross talk with the host, 

stimulate growth of epithelial cells and, very importantly, contribute to the formation of a 

functional immune system [2]. These traits have a significant impact on host physiology. Their 

lack can be observed in germ free mice which show dysfunctionality in various organs and 

tissues and a significant reduced vascularization of the gut tissue. Without these microbe-

host interactions, the gastrointestinal system is immature, which hamperes nutritional 

processing. Interestingly, these mice also show behavioral changes, which indicates that the 

microbiota could indeed influence our mood and, to some extent, our personalities [6] [7].  

Microbial communities of different body parts are not homogenous in their structure and 

physiological capabilities. When comparing the microbiota of e.g. the oral cavity, the gut or 

the skin, it became obvious, that a large amount of variation can be found within these 

habitats [4]. The effect of different body niches is greater than variation due to interpersonal 

difference, sex or time [4].  Interpersonal variation of the microbiota is far higher than 

intrapersonal difference in one habitat, even over a long period of time [4].  Large differences 

in community structure also occur when comparing different micro-habitats, e.g. luminal, 

mucosal and epithelial areas [5]. A gut core community, a commonly shared microbiota 

amongst all humans, is not evident on a species or genus level [8]. It was however shown, 

that a gene level core microbiome exists [9], indicating that a presence of genes and gene-

families is more important to fulfill the required functions than membership to a certain 

taxon.  

The structure of the microbiome in healthy and diseased individuals and its participation in 

beneficial and adverse events has been a highly active area of research in the last few years. 

It has become clear that patchworks of bacterial communities inhabit the human body and 
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that these habitats are often interconnected. Disturbances in this intertwined system can 

lead to severe imbalances of host-bacterial interactions and can result in a plethora of 

diseases. Diarrhea [10], obesity [9] and chronic inflammatory diseases [3] were identified to be 

associated with an altered microbiome structure.  

In western societies, a very high standard of hygiene has been reached in the last couple of 

decades. A desirable process per se, it could have long lasting effects on the composition of 

our microbiota. While many infectious diseases have been virtually wiped out, the rise of 

chronic and autoimmune diseases is obvious and problematic.  

For this work, the human gut microbiome was investigated in both its healthy and 

misbalanced states. We identified changes and species of interest during diarrhea and 

applied that knowledge to characterize a severe form of enterocolitis.  
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2. Methodology 

 

Traditional methods of microbiology, such as isolation, cultivation as well as subsequent 

morphologic and functional characterization have been used for decades to shed light into 

the complex system of human associated bacteria. Ultimately though, there is a limit to this 

approach. Cultivation methods fail to grow a large number of bacteria, preventing a 

thorough investigation of the whole bacteria-human system. It has become a well-

established fact that approximately only 10% of bacteria found in the environment can be 

cultivated under laboratory conditions. To circumvent these limitations, culure-independent 

approaches of microbial systems have been developed that enable the amplification and 

analysis of microbial marker genes (e.g. 16S rDNA) with next-generation sequencing 

technologies.  

 

2.1 Pyrosequencing 
 

The technique used in the work at 

hand, known as pyrosequencing, is a 

member of a new group of genomic 

analysis methods, commonly known 

as NGS or next generation 

sequencing. Compared to traditional 

Sanger sequencing, a much higher 

number of sequences can be 

generated in one run, thus allowing 

the researcher to investigate a 

community of bacteria in a cost 

efficient manner. The methodology 

was developed in 1996 by Pål 

Nyrén and Mostafa Ronaghi at the 

KTH in Stockholm [11]. 

Prior to a pyrosequencing run, the 

DNA has to be isolated from bacteria. 

Subsequently, a microbial marker 

gene suitable for community analysis 

is amplified via PCR. One such region 

is the 16S gene for the bacterial 

ribosomal RNA. It features a variety 

of hyper variable parts (v1-v9) 

Figure 1: Basic workflow of pyrosequencing 
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specific for microbial taxa, enabling unambiguous identification of bacteria and conserved 

regions targeted by pan-bacterial primers allowing amplification of the majority of microbes. 

The 16S rRNA gene has been used as a suitable region for high throughput pyrosequencing 

in a large number of bacterial community studies so far [12]. The oligonucleotide primers 

used for PCR fragments harbor a linker (called MID) that allows for the later identification of 

the sequence as a member of a specific sample. This way, a variety of samples can be 

analyzed in one sequencing run. At this point, the amplified DNA sequences consist of the 

16S gene region, the primer sequence, a linker and the barcode. After DNA amplification, 

sequences get transferred to beads, where they bind to the surface and get amplified in an 

enrichment step. Subsequently, the actual pyrosequencing starts, where a deoxynucleotide 

triphosphate (A, T, G or C) gets supplied to a DNA polymerase, which complements the 

template sequence. If the base fits to the complement strand, it is incorporated into the 

strand, a phosphor-diester bond is generated by the DNA polymerase and one 

pyrophosphate (PPi) is released. An ATP sulfurylase converts this compound to ATP, which in 

turn activates a luciferase that produces light. The resulting signal is directly proportional to 

the amount of integrated nucleotides, thus allowing a determination of homopolymers. If 

the supplied nucleotide is not complementary, it gets degraded by the fourth enzme in the 

system, an apyrase. Repeating circles of these reactions allow the determination of the 

actual sequence. The technology is currently limited to sequences of 500-800 bases in 

length.  

 

 

2.2 Data Analysis via Qiime 
 

A pyrosequencing device generates three kinds of files: the first is the stored sequence data 

in FASTA format, which includes all sequence-reads that have been fit the quality 

parameters. As the distributing process of the PCR fragments amongst the beads is a 

statistical process rather than a one on one assignment, two or more different sequences 

will sometimes bind to a bead and, on the other hand, some beads will carry no sequences 

at all. A respective read (one information unit that is derived from one well and its 

correspondent bead) can be judged untrustworthy and hence is eliminated from the analysis 

if it is found ambiguous or empty. This step is the first filtering step in the analysis and is 

facilitated by using the second resulting file from a pyrosequencing run: the *.qual file. The 

file indicates a score which is a direct measure of the quality of each sequence in the FASTA 

file. The third filetype is *.sff, which is a combination archive for both *.fasta and *.qual files. 
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2.2.1 Qiime Workflow I - from FASTA to OTU tables 

 

The program we mainly used to analyze pyrosequencing data is called Qiime. It is an analysis 

tool for microbial community sequencing data and was developed by Knight et al. in the last 

several years [13]. Qiime uses pre – defined scripts to enable users to analyze their data. The 

above mentioned filtering is part of the first step in this pipeline, a script called 

“split_libraries”. Besides eliminating ambiguous and low quality reads, it is also responsible 

for splitting the whole sequence data and assigning sequences to their respective samples 

based on the barcodes. Hence, the output of this step is a quality filtered list, wherein each 

sequence is assigned explicitly to one sample. 

The next step in Qiime analysis is the script “pick_otus_through_otu_table.py”. It consists of 

several subscripts which are shown in Table 1: 

Table 1: The Qiime script "pick_otus_through_otu_table" 

Subscript Description 

pick_otus.py clustering sequences of a given similarity into OTUs 

pick_rep_set.py choosing a representative sequence for each cluster 

align_seqs.py aligns the representative sequences to a set of sequences 

assign_taxonomy.py assigns a taxonomy to a sequence cluster 

filter_alignment.py filters the alignments for gaps 

make_phylogeny.py builds a phylogenetic tree based on a chosen method 

make_otu_table.py creates an OTU table 

 

The first sub-step is essential since it determines to what taxonomic level sequences are 

going to be analyzed. After this step, several clusters of sequences have been created, which 

are called OTUs (operational taxonomic units) or phylotypes. As a threshold value of any 

kind cannot be directly translated into classic taxonomic levels like phylum, family or genus, 

an OTU represents an artificial system in which sequences are clustered by their similarity. 

We used a sequence similarity of 97% for clustering, which is higher than the genus level 

requirement of 94% one can find in the Qiime documentation [14]. Our analysis can therefore 

be considered to work on species level, as methodological studies suggest [15]. 

Out of these clusters of sequences one is chosen to be the “representative” sequence. The 

default method for doing this is searching for the most abundant sequence in an OTU.  

Aligning the representative sequences to a template alignment is important for following 

steps as it correlates all OTUs amongst each other. By default, a PyNAST method is chosen 

here, where a set of pre-aligned sequences (Greengenes - http://greengenes.lbl.gov/cgi-

bin/nph-index.cgi) is used as the template. As this alignment creates gaps in the query 

http://qiime.sourceforge.net/scripts/pick_rep_set.html
http://qiime.sourceforge.net/scripts/align_seqs.html
http://qiime.sourceforge.net/scripts/assign_taxonomy.html
http://qiime.sourceforge.net/scripts/filter_alignment.html
http://qiime.sourceforge.net/scripts/make_phylogeny.html
http://qiime.sourceforge.net/scripts/make_otu_table.html
http://greengenes.lbl.gov/cgi-bin/nph-index.cgi
http://greengenes.lbl.gov/cgi-bin/nph-index.cgi
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sequences, a subsequent filtering step “filter_alignment” is implemented to eliminate gaps 

which are shared amongst all sequences. 

“Assign_taxonomy” searches NCBI (National Center for Biotechnology Information) or RDP 

(Ribosomal Database Project) databases for matching sequences to the generated query 

ones. In the default method, RDP classification, small fragments of sequences are compared 

to pre-aligned sequences of the RDP database and subsequently assigned to the resulting 

taxonomic classification. As the RDP database allows only for genus level taxonomic 

classification, the resulting output will be not showing species level, even if the similarity of 

sequences in an OTU would theoretically allow this. 

With data from previous steps, a phylogenetic tree is then created by the script 

“make_phylogeny”. By default, a FastTree algorithm is used to accomplish this task. This 

again is an essential step for downstream analysis, as many diversity measurements depend 

on it. 

The last step of “pick_otus_through_otu_table” is the actual generation of an OTU table, 

which lists all OTUs that were created in the analysis together with their respective reads 

and taxonomic classification. Together with the OTU table a statistical analysis of the 

pipeline run is created, where one can find information about sequence length and number 

of reads per sample. The information content of the OTU table is then used in other scripts 

(make_otu_heatmap_html.py, make_otu_network.py and summarize_taxa_ 

through_plots.py) to allow a basic graphical representation of the data. While the first 

scripts create heatmaps and a basic cytoscape network, the later script sums up all reads on 

a given taxanomic level (e.g. family) and creates bar-charts and pie-charts as graphical 

representation of the data. 

 

2.2.2 Qiime Workflow II – Diversity measurements 

 

An essential part of any community analysis is the description of the diversity in and 

amongst samples. The first is called “alpha diversity” or “within – sample” diversity, as it is a 

direct measure of how large the variety of species in a sample is (or could be). The second 

group is “beta diversity” or the “diversity between samples”, which measures and illustrates 

the similarity or dissimilarity of samples when they are compared to each other.  

To calculate alpha diversity one must first generate subparts of the main OTU table. This 

procedure creates smaller OTU tables of a user defined size were a given number of OTUs 

from the main list is chosen at random for each sub-table.  This step is called subsampling or 

rarefaction. For each of these tables the alpha diversity is calculated by a user defined 

algorithm and expressed in a number as a fraction of 1. The subsamples are now fused again 

into one list and their data can be visualized in a “rarefaction plot” (Figure 2). Rarefaction 

http://qiime.sourceforge.net/scripts/make_otu_heatmap_html.html
http://qiime.sourceforge.net/scripts/summarize_taxa_through_plots.html
http://qiime.sourceforge.net/scripts/summarize_taxa_through_plots.html
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allows for a rough estimate of inner sample diversity. A typical pyrosequencing run creates 

between 3000 and 10000 reads per sample. One can imagine that, if only a small fraction of 

these, e.g. 100, are chosen for subsampling, one will not be able to gain insight into the 

whole diversity of the community. When raising this number by adding a user defined 

amount of sequences (which is called iteration step), a larger portion of the community is 

revealed, thus allowing a more in depth analysis. Essentially, one will reach a plateau, were 

adding additional sequences will not raise the number of observed OTUs anymore, as new 

reads are assigned to existing OTUs rather than creating new ones. This limit gives us a 

reasonable idea about the number of sequences that are needed to fully sample the 

community. Alpha diversity measurement is therefore an essential part in community 

analysis. It reveals if the number of sequences generated by a pyrosequencing run (also 

known as depth of the analysis) is sufficient to describe a given community as a whole. The 

higher the depth of a pyrosequencing run, the higher the probability of finding rare OTUs, 

which are only represented by a small fraction of the sequences in one run. Although one 

could argue, that an OTU is more essential for a community if it is represented by a large 

number of reads (and therefore represents a dominating taxonomic group of bacteria). 

Nevertheless, rare OTUs of a bacterial community should not be underestimated.  

 

 

Figure 2: A typical alpha rarefaction plot. As the depth of the subsamples increases, a significant increase in OTU 
numbers is noticeable. Once a certain treshhold is reached (around 3000 sequences in this example) all curves reach a 
plateau indicating that additional reads do not lead to a significant increase in new OTUs. 

 

As in alpha diversity, measurement of beta diversity starts with subsampling, in which single 

file rarefactions are produced and their beta diversity calculated separately. Subsequently, 

principal coordinates are generated and all samples are mapped to an orthogonal plot. 

Principal coordinates (PC) are distance calculation results, which give insight into the amount 
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of variation between samples. They are usually depicted in a 2-D or 3-D plot, where the PC 

with the highest variation is assigned to one axis, the PC representing a lower amount of 

variation to the second and the one associated to the least variation to the third axis of the 

diagram. In the resulting plot one can estimate the similarity of samples based on their 

proximity, where samples with high similarity in their communities form clusters in the three 

dimensional system. 

 

Figure 3: A typical PCA plot depicting the dissimilarity of gut samples. Principle components 1 to three account for up to 

13.49% variability. The percentage number on each axis represents the amount of variation that is associated with the 
axis. In this figure a three dimensional PCA plot is shown in three independent 2D plots. 

 

2.2.3 Qiime Workflow III – Distance Computation: Verification 

 

Verification of distance computing can 

be carried out via jackknifing, one 

example of this being the UPGMA 

(Unweighted Pair Group Method with 

Arithmetic Mean) tree. Jackknifing 

starts by creating a master (main) tree 

based on information from previous 

beta diversity distance values and the 

OTU table. Subsequently, as in beta 

diversity, subsampling and beta 

diversity distance computation leads to 

a number of rarefied lists. These are 

used to generate subsampled trees, 

which in turn are compared to the 

master tree. Branching points (or 

nodes) that are consistent over a high 

number of comparisons are identified 
Figure 4: A typical UPGMA tree. Nodes are colored by their 
"trustworthiness" / consistency: highly supported nodes are shown in red 
(75-100% support), yellow (50-75% support), green (25-50% support) and 
blue (0-25% support). 
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as robust, while nodes that vary significantly between comparisons are characterized as non-

robust. 

 

2.3 Development of a Scoring System 
 

The main project of this thesis was to develop a method for analysing the microbiota of a 

patient with a severe form of Enterocolitis. As stated in chapter 0, the bacterial communities 

which can be found in humans differ significantly, even between members of a family. This 

leads to a number of problems when analysing pyrosequencing data: 

 

a. As the interpersonal variation between patients is high, it is difficult to find OTUs, 

where progressions during the illness / the experiment are similar in all patients. 

b. Hence, when observing only the mean changes amongst patients, OTUs of interest 

often get excluded due to normalizing effects. 

c. Analysing the basic sample differences (as in beta diversity measurement) gives an 

idea of the similarity between samples but will not produce results on e.g. species 

level. 

d. Trying to use the advantage of bar charts which require a summarize_taxa approach, 

where groups are formed on a certain taxonomic level (like genus), exhibits similar 

problems, as it is not sure if these groups behave similar internally. A high rise in one 

particular Bacteroides OTU could thus be covered up by a high number of small 

declines in other Bacteroides. 

e. Statistical analysis demand sample sizes which are high enough to function correctly. 

There are several cases (rare diseases, stored material with no access of gaining new 

samples, highly invasive sampling procedures in humans, ethical questions or 

financial limitations) when only a small number of samples can be sequenced and 

analysed. 

 

To overcome these problems, one must circumvent the drawbacks of classical statistical 

approaches but still be able to find OTUs of interest. To achieve this, I designed a global 

scoring system, which weighs OTUs on their abundance in patients rather than producing a 

mean value amongst all patients. 

The scoring systems input file is the main OTU table, which is generated in Qiime analysis. 

For explanation purposes, we will only focus on the standard case where a disease is 

examined first (acute state) and a late examination, when the disease is cured or latent 

(remission state). As by default the OTU table features absolute reads rather than portions, 

so a relative value is calculated for each OTU in each sample. This allows for comparing of 
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samples with different absolute read values. In the next step, a ratio is calculated between 

different time points / health states. The formula for this step is %acute / (%remission + 0.1). 

The addition of 0.1 serves two purposes: First, it avoids division by 0, which would yield a 

false value. Secondly, it prohibits small value changes (as from acute: 0.1% to remission: 

0.2%) from entering the scoring boundaries. This approximately relates to 10 reads per 

sample (in a sample of 10 000 reads) and represents the error of PCR / pyrosequencing, 

which could arise and falsify the results. After this step, every OTU in each sample now has a 

ratio value assigned to it. Depending on these ratios, a local score is formed: it counts the 

number of times, an OTU reaches a certain threshold ratio (e.g. above 1.5) when looking at 

all samples. In the easiest system of two patients with two states only three values can be 

the result of this step: If a ratio > 1.5 between acute and remission is found in both, the local 

score is 2, if it is found in one, the score is 1 and 0 if an OTU does not reach the given ratio in 

any patient. The last step in this system is the introduction of a global score. It is calculated 

with the formula: 

              ∑                                                                           

The sum of local scores by itself is a direct measure of how many times an OTU showed a 

significant increase. As it is quite unlikely, that the bacterial communities of two patients 

show a similar behaviour, this event should be emphasised when it actually occurs. This is 

facilitated by the introduction of a multiplication by the number of times a significant OTU 

ratio change is detected in more than one patient. Hence, two OTUs that show the same 

local score sum over two patients can have a different global score, where the OTU that 

shows the increase in more patients scores higher.  

The introduction of this global scoring system simplifies the identification of genera that 

feature a user defined ratio change. The OTU of interest does not have to behave the same 

way in all patients or all conditions but could still score high if certain criteria (several local 

scores > threshold, found in more than one patient) are met. This approach also circumvents 

the limitations of statistics when it comes to small sample sizes. This is essential for cases like 

our experiments, where due to the rare nature of the disease or invasive nature of the 

sampling method (gut biopsies in diarrhea) only a small number of samples are available. 

After a global score has been determined for each OTU, the correspondent sequence can be 

blasted via NCBI blast tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) or similar services, most 

notably RDP SeqMatch  (http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp) [16].  

According to the nature of the setup, one can also choose different ratios or ratios < 1 to find 

OTUs which decrease over the course of the experiment. 

An alternate way to use the scoring system is to not use fold changes (e.g. between acute 

and remission states) but “changing patterns”, like increasing or decreasing to create local 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp
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scores. The subsequent steps are then the same as described above. The diarrhea study 

discussed in this work is an example for this approach, which we called “profile clustering”. 

 

2.4  Cytoscape and Profile Clustering 
 

The next methodological task was the development of an OTU based network analysis which 

allows the identification of bacterial groups which behave in certain patterns over the course 

of the experiment. We developed two network types, which could handle data from 

different experimental setups. The first one is applicable for two point setups, where these 

two points can either represent time, disease state, treatment type or any other groups 

defined by the researcher. The second network is similar to the first but the fact that it 

allows OTU progression identification in experiments with more than two sampling points.  

 

2.4.1 Limitations of Common Data Representation Methods 

 

The basic purpose of profile clustering is to find bacteria of interest on OTU level, without 

losing biologically important information about the interpersonal variety of the system and 

representing their progression in a graphical manner. It became clear early in the 

development process, that pie charts or bar charts are not suitable for this task due to the 

high number of OTUs which arise from this kind of analysis. One can plot a small number of 

OTUs on a classical diagram with the time points on x-axis and the relative abundance in a 

sample on the y-axis, but as with bar charts, the number of OTUs one can follow in one 

picture is low, especially if the progressions differ amongst patients. The first step was to 

take lists generated with our global scoring system and map their respective relative 

abundance on diagrams as described above. After comparing a number of high scoring 

bacterial OTUs it was obvious, that reaction patterns to an impetus differed greatly amongst 

patients. This is attributed to the high inter-personal variation within the individual 

microbiomes and leads to the assumption that disease patterns or shared symptoms are not 

necessarily attributed to the same changes in the bacterial community of each patient. 

Examples of this can be found in chapter 4.2. There was, however, an interesting finding in 

all bar charts, namely, that progressions showed similar reaction patterns when comparing 

different OTUs. Our first approach of developing an OTU based identification system 

therefore led to statistical graphical analysis, where curves can be fitted onto standard 

curves with a certain degree of variation. One could therefor design a system, in which OTUs 

are mapped to certain model progressions. Unfortunately, the scarcity of suitable material 

for our experiments prohibited that approach due to the low number of samples we 

obtained. 
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2.4.2 Development of a Profile Clustering System 

 

These limitations led to a more straightforward approach for our first network experiment, 

the bacterial community changes in diarrhea. Here, three time points had to be compared in 

four patients.  

In our model study, three time points related 

to the stressor (diarrhea) can be defined, pre-

diarrhea, diarrhea and post-diarrhea. 

Therefore, an OTU can only feature three 

progressions when comparing two points. It 

can either increase, decrease or stay within 

certain limits of abundance changes which 

define the state “non-changing”. The slope of 

a corresponding imagined straight line is 

therefore > 0, < 0 or 0. The same applies to the 

next relation between time points two and 

three. To allow for this comparison, the 

absolute read values (correspondent to 

sequences) of each OTU had to be transferred to relative values based on the percentage 

they represent in a sample. Subsequently we calculated the abundance changes for each 

OTU between the first two (pre-diarrhea) samples. Together with the corresponding 

abundance values for diarrhea and post-diarrhea status, a three point profile (pre-diarrhea – 

diarrhea – post-diarrhea) of each OTU could be drawn. Subsequently, a scoring system was 

introduced that assigned values of -1 (decreasing abundance value between two states), +1 

(increasing abundance value) or 0 (relative abundance change < +/- 0.05%) to the (two) 

slopes of this profile. Each OTU therefore generated a specific overall score that related to 

one of the nine possible progressions. When comparing the relative values of OTUs in the 

OTU table, most (60-70%) followed a “non-changing” pattern and only 30-40% showed 

significant increase or decrease. Omitting taxonomic units with a total score of 0 (no 

abundance changes > +/- 0.05%) we created a network in Cytoscape. The latter is a program 

especially designed for network analysis and was developed at the Institute of Systems 

Biology in Seattle [17].  

Our Network Profiling features a number of distinct features: Each OTU is connected to its 

corresponding profiles in a spring embedded manner, placing units that relate to more than 

one progression nearer to the center of the network, while those corresponding to one 

distinct profile are clustered around the periphery. Therefore, the behavior of a specific OTU 

during the course of the experiment can easily be identified. The width and opacity of the 

lines indicate the number of patients in which an OTU clustered to a specific profile (The 

Figure 5: One of nine possible progressions (profiles) of 
OTU abundance during the course of a three time point 
experiment (pyramid profile). 
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more often an OTU is associated with a certain profile, the more dominant an edge will show 

in the network). The color of the lines represents connections to OTUs either considered 

associated with an abundance increase (red) or decrease (green) in the diarrhea state.  Node 

sizes correspond to the mean relative abundance change between the pre-diarrhea and the 

diarrhea state, allowing an estimation of the impact each OTU receives when diarrhea is 

induced. Larger nodes indicate high abundance changes of an OTU, both negative and 

positive in relation to the pre-diarrhea state. Profiles with connections to a large number of 

OTUs can be considered dominant for a given investigated condition, which is further 

emphasized by the size of the nodes clustered near a profile. Therefore, certain conditions in 

the body could be identified by different distributions of OTUs amongst the 9 profiles. 

 

 

Figure 6: Cytoscape profile cluster analysis from stool samples showing the relative abundance change of phylotypes in 
response to diarrhea. Three point patterns including pre-diarrhea, diarrhea and post-diarrhea abundance levels are 
shown. Displayed are only phylotypes which were assigned to a respective reaction pattern in at least two individuals 
(corresponding to thin lines). The width of lines correlates to the number of individuals a respective phylotype was 
assigned to a specific reaction pattern. Phylotypes showing an abundance change of at least 50% are represented as full 
colored nodes; below that level, nodes appear transparent. Size of nodes correlates to the mean relative abundance 
change comparing pre-diarrhea to diarrhea samples. Phylotypes are colored according to their phylum membership and 
named according to the phylogenetic level conferred by the RDP classifier with 80% identity.  
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We propose that our profile clustering approach facilitates the identification of relevant taxa 

and could empower bacterial community analysis in the course of microbiome experiments 

with low sample counts. 

Although the implementation of this network system in our experimental setup proved 

successful, there occurred a number of problems that should be considered when using this 

approach. Firstly, due to the calculation of the difference (a subtraction) between time 

points in certain cases a minimal change (as 20.1 to 20.3%) can lead for the OTU to be 

considered “increasing”. This has been circumvented by the introduction of a fold change 

regulation, where only OTUs get represented as full circles that reach a fold change of > 1.5. 

The higher the numbers of patients this rule applies, the higher the opacity of the 

corresponding node. Hence, OTUs that show small differences > 0.05% but do not reach a 

fold change > +- 50% are more transparent and therefore less prominent when viewing the 

network. The second limitation of the current network version is the inability to show the 

relative changes (node sizes) for more than two time points. This will be a concern for the 

ongoing development of the system. 

For experimental setups with only 2 conditions like diseased/healthy, treated/untreated 

etc., the same principles are applicable as in three time point networks. But due to the fact 

that a similar number of OTUs is now clustered to only two possible profiles, one must find 

ways to enhance the accessibility of the network graphic. A good way to facilitate this 

proofed to be the combination of the network profiling approach with the global scoring 

system described in chapter 2.3. This allows a better filtering of OTUs of interest based on 

the global scoring system.  

It is also important to note that both approaches, global scoring as well as profile clustering, 

are currently developed for the identification of OTUs which significantly change in the 

highest number of patients. There might be circumstances though, as when one is searching 

for species that are uniquely found in one sample, when both systems have to be adjusted 

to meet the new requirements. 
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3. Bacterial community changes in diarrhea 
 

3.1 Materials and Methods 
 

3.1.1 Study Setup and Sampling 

 

The principal idea behind the first project discussed in this thesis was to investigate the 

behavior of the bacterial gut community when confronted with the effects of induced 

diarrhea. Because diarrhea is an accompanying symptom in a large number of 

gastrointestinal diseases, the intrinsic effects of this condition are of great interest.  

The study was conducted with four healthy male Caucasians, which were subjected to a 

diarrhea inducing therapy with polyethylene-glycol 4000 (PEG). Neither had a history of 

diarrhea or was treated with antibiotics for a time period of at least 1 year prior to the start 

of the study. Stool sampling was carried out on four time points, t1 – t4, where t1 represents 

the starting point of the study, 7 days before a defined diet was administered to the 

participants. This diet consisted of a defined mixture of protein, fat and sugars for a time 

period of five days. On day two of this defined diet, another stool sample was gathered (t2). 

Subsequently, on the third day of the diet, diarrhea was induced by oral intake of 150 g PEG. 

This treatment was sustained for three days, after which another stool sample (t3) was 

taken. The final sample was acquired seven days after the withdrawal of PEG and return to a 

free diet (t4). Figure 7 shows the study timeframe: 

 

 

Figure 7: Study timeframe for induction of diarrhea with definition of diet periods and PEG intake duration. One box space represents 
one day. 

 

In addition to stool samples, biopsies of the colon were carried out for three of the four 

participators on time points t2 and t3. The biopsy samples were taken from the sigmoid 

mucosa after washing the area with a physiological saline solution to avoid stool 

contamination. 

Both stool and mucosa samples were immediately frozen at -20°C after sampling. 



P a g e  | 19 

 

 

3.1.2 DNA Extraction, Amplification and Quality Measurements 

 

DNA Extraction was carried out with QIAamp DNA Stool Mini Kit (Qiagen) for stool samples 
and with QIAamp DNA Mini Kit (Qiagen) for biopsies according to standard protocols. The 
only deviation from standard protocol was an additional incubation step for stool samples in 
a boiling water bath for five minutes. 
The target gene for the subsequent pyrosequencing analysis was the 16S rRNA gene, which 
has been proven to be a suitable target according to prior studies [12]. A variable region (v1-2) 
of the 16S gene was amplified by using oligonucleotide primers BSF8 and BSR357. Each 
primer additionally harbored a barcode sequence (MID) to allow for sample allocation after 
sequencing The MID part was linked to the primer by a linker region. PCR conditions can be 
found in Table 2 and Table 3: 
 
Table 2: PCR Mix for 16S V1-2 region amplification in stool and tissue 

Material Stool Tissue 

Sample 100 ng 10 ng 

1x HotStar Master Mix (Qiagen) 50 µL 50µL 

Primer BSF8 20 µM 20 µM 

Primer BSR357 20 µM 20 µM 

 
 PCR conditions were chosen as follows:  
 
Table 3: PCR Setup for 16S V1-2 region amplification in stool 

PCR step Temperature Duration 

Initial Denaturation 95 °C 12 min 

Denaturation 95 °C 30 sec 

Annealing 56°C 30 sec 

Elongation 72 °C 60 sec 

Final Step 72 °C 7 min 

 
 
For each sample, three separate amplifications were carried out under the same conditions. 
Resulting PCR products were separated via 1% agarose-electrophoresis in 1xTAE buffer and 
subsequently extracted and purified via the Qiagen Gel Extraction Kit according to the 
standard protocol. Extracted PCR products were then pooled and analyzed for fragment 
length and DNA quality by the BioAnalyzer 2100 DNA 1000 system (Agilent Technologies). 
DNA concentrations were measured with the QuanitDect reagent (Invitrogen).  
 

3.1.3 Pyrosequencing 

 

Pyrosequencing preparations included the mixture of targeted gene PCR products with a 

bead solution (Roche - FLX System). Targeted gene fragments and beads were mixed in an 

Stool 

22 cycles 

Tissue 

35 cycles 
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equi-molar fashion and the mix applied to PicoTiter Plates (Roche) according to the 

manufactures recommendations. 

 

3.1.4 Data Analysis 

 

Pyrosequencing reads derived from the diarrhea project were analyzed with SnoWMAn 

(http://SnoWMAn.genome.tugraz.at), an analysis pipeline for pyrosequencing data 

developed at the Graz University of Technology. After an initial quality filtering step we 

discarded all sequences that featured a length <150 bp, any ambiguous characters or were 

not matching the forward primer (distance > 2)). Subsequently, the remaining sequences 

were clustered by complete linkage with Infernal V1.0., allowing for 0 to 5 % sequence 

similarity. Representative sequences from each cluster were picked and classified via the 

RDP Bayesian classifier 2.0.1. to assess taxonomy. Subsequent statistical Analysis was carried 

out within the software package “R” (V.2.12.1). A profile clustering approach was developed 

to identify OTUs of interest with methods described in chapter 2.4. Healthy gut status at 

time points t1 and t2 were evaluated together and their mean values were used for 

comparison against the diarrhea state t3.  

The identification of phylotypes of interest was carried out with a global scoring system and 

a subsequent profile clustering network analysis. We compared the pre-diarrhea to the 

diarrhea state and the latter to the resulting post-diarrhea state. To calculate pre-diarrhea 

abundance a mean value of tp1 and tp2 was generated. A significant change was indicated 

by a difference between time points of at least +- 0.05%. If progressions showed changes 

below this threshold, they were considered “non-changing” and were not included in the 

network analysis. 

  

http://snowman.genome.tugraz.at/
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3.2 Results 
 

3.2.1 General Comparisons 

 

Detailed Snowman and R analyses that were carried out over the course of the experiment 

can be found in the manuscript this master thesis supplements [18]. For all 16 stool samples 

that were sequenced, an average read depth of 18288 +/- 3198 was achieved. The 6 biopsy 

samples achieved an average of 25300 +/- 1075 reads. Phylum level evaluation of stool and 

mucosal samples showed a clear dominance of Firmicutes in the latter and Bacteroidetes in 

these stools (Figure 8). 

 

Figure 8: A bar chart representation of pooled stool and mucosa samples. Bacteroidetes are clearly dominating the stool 
community, while Firmicutes make up for the majority of reads in mucosa samples. Even on the low taxonomic phylum 
level variation between patients can be observed (reproduced from 

[17]
). 

 

Proteobacteria make up a comparatively 

group in both the stool (2%) and mucosa 

(5.7%) environments.  

Beta diversity measurements by PCA 

analysis revealed a high level inter-

individual variation of stool and mucosal 

microbiotas with a tendency of mucosal 

microbiotas to convergate in the event of 

diarrhea (Figure 9). This effect cannot be 

observed in stool samples, where inter-

personal variation seems to be the 

Figure 9: Representation of PC1 and PC3 with mucosa and stool 
sampling (reproduced from 

[17]
). Legend: first position: participant, 

second position: mucosa (M) or stool (F) content. Numbers 
indicate timepoints 
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stronger clustering force. In general, a clustering of mucosa and stool samples can be 

observed, an effect that is due to the differences in these two different habitats and their 

resulting colonization patterns. 

Alpha diversity measurements and rarefaction analysis suggested a diversity loss in acute 

diarrhea samples indicated by a lower slope plateau value (see Figure 10).  

 

 

Figure 10: Alpha rarefaction analysis of stool and mucosal communities. Curves on the left side show alpha diversity 
measurements of all samples, whereas plots B and D approximate the mean diversities of time points tp2 (pre-diarrhea) 
and tp3 (diarrhea) - reproduced from 

[17]
. 

 

The plots on the right hand side (B, D) of Figure 10 indicate a decreased species richness, or, 

in other words, the loss of a multitude of species (OTUs) formerly building up the microbial 

community. This can be observed in both, stool and mucosa samples. 

After a period of diarrhea, the gut microbiota is reconstituting, where samples regain their 

pre-diarrhea species richness and taxa distribution. Graphically this was again assessed via 

PCA plots to investigate cluster forming of samples. Figure 11 shows two PC comparisons of 

the three dimensional PCA result:  
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Figure 11: Reconstitution events in stool samples. Colors represent different patients. Notably, this reconstitution could 
only be observed in two patients (50%) (reproduced from 

[17]
). 

 

Figure 11 shows that reconstitution appeared only in two individuals (50%), while the other 

two showed a sustained alteration of the microbiotas one week after cessation of PEG.  

 

 

 

 

 

 

3.2.2 Profile Clustering 

 

Profile clustering analysis was carried out with 5885 OTUs of the combined stool and tissue 

sample data set. Of these, 5427 or 92.2% in stool and 5567 or 94.9% in mucosa samples 

were considered “non-changing”, as their respective relative abundance did not change 

within our threshold value of +- 0.05% over the course of the experiment. Phylotypes for 

stool and mucosa samples were then clustered to their progressions as described in Chapter 

3.1.4. The resulting profile clustering network for stool is shown in Figure 13.  
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Figure 12: The diarrhea profile clustering Cytoscape network generated from comparing OTU progressions over the 
course of the experiment in stool samples: Each OTU is connected to its corresponding profiles in a spring embedded 
manner, placing units that relate to more than one progression nearer to the center of the network, while those 
corresponding to one distinct profile are clustered around the periphery. Therefore, the behavior of a specific OTU during 
the course of the experiment can easily be identified. The width and opacity of the lines indicate the number of patients 
in which an OTU clustered to a specific profile. The more often a phylotypes is associated with a certain profile, the more 
dominant an edge will show in the network. The color of the lines represents connections to OTUs either associated with 
a high abundance in diarrhea (red edges) or a low one (green edges). Node sizes correspond to the mean relative 
abundance change between the pre-diarrhea and the diarrhea state, allowing an estimation of the impact each 
phylotype receives when diarrhea is induced. Larger nodes indicate high abundance changes of an OTU, both negative 
and positive in relation to the pre-diarrhea state. Profiles with connections to a large number of OTUs can be considered 
dominant for a given investigated condition, which is further emphasized by the size of the nodes clustered near a 
profile.  

A clear dominance of Bacteroidetes and Firmicutes is obvious in the gut microbiota. 

Numbers of Protebacteria and Actinobacteria, whose numbers in stools are naturally low [5] 

represent only a minor fraction of the microbiota. It should be noted that certain 

progressions are more likely to occur then others as revealed by the analysis. A dominant 

reaction of phylotypes in case of diarrhea is decreased richness, in other words a wash out 

effect during diarrhea (low-high-low (pyramid) and high-low-high (well) abundance profiles) 

and a loss of microbial phylotypes in stool without recovery after diarrhea (top left hand 

profile). Other progressions, like increasing abundance over all three time points or its 

opposite, a steady decreasing pattern, are less likely to occur; only few OTUs are clustered 

with these profiles. It is not uncommon for OTUs to behave in a different pattern in different 
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patients, hence they are clustered not around a specific profile but on the intersections 

between two or, when featuring a wide variety of reactions, in the middle of the network. 

Identifying these can be of great interest when searching for phylotypes with a more flexible 

behavior, e.g. when looking further into displacement effects. If, for example, one is 

comparing a pyramid and a well profile, OTUs clustering to both profiles could indicate 

bacteria that can react two ways, depending on the overall state of the bacterial community. 

Further insights into the general nature of the system can therefore be generated by 

examining subparts of the network and their respective clustered phylotypes. 

To enhance the viewing characteristics of the network and identify OTUs of interest within it, 

a sub-network was created from Figure 12 only showing phylotypes whose progressions were 

found in at least two patients (Figure 13).  

 

Figure 13: The diarrhea profile clustering Cytoscape network for stool samples simplified by only showing phylotypes 
that show a common progression in at least 2 patients. High opacity of circles indicates major fold change differences 
whilst more transparent circles indicate low fold change values for a given OTU progression. Nomenclature of nodes is 
based on the highest taxonomic classification with at least 80% confidence. 
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The network analysis revealed that Firmicutes and Bacteroidetes changed dominantly in 

stool samples of at least two patients. At genus level Bacteroides are associated with a 

pyramid pattern, Oscillibacter and Ruminicoccus show a decrease in diarrhea and do not rise 

in numbers in the post-diarrhea state. Proteobacteria were not obviously affected by 

diarrhea in stool samples, the exception was Sutterella, which shows a low fold change 

difference. Lachnospiraceae family members seem to interchange amongst each other - they 

can be found in 4 of 6 profiles indicating a wide range of reactions to the diarrhea impetus. A 

more in depth classification of this group could reveal if displacement amongst 

Lachnospiraceae family members occurs and which genera are taking part in this process. 

Data from mucosa samples was also visualized in a network (Figure 14). 

 

Figure 14: The diarrhea profile clustering Cytoscape network generated from comparing OTU progressions over the 
course of the experiment in tissue samples. The progression of pre-diarrhea state (pre-D) to diarrhea state is shown, 
increasing phylotype edges are colored in red, decreasing in green. Size of nodes indicates relative abundance difference. 
Connections to a non-changing behavior are shown. Notably, the majority of OTUs do not show a general pattern of 
either increase or decrease amongst all three patients. It is common for phylotypes which are found changing in one 
patient to maintain their relative abundance in others.  

 

Figure 14 clearly illustrates that stable progressions with no significant abundance change 

account for the majority of OTU behaviors. Phylotypes showing significant increase or 

decrease in one patient often exhibit a non-changing trend in others. 

pre-D 

diarrhea 

diarrhea 

pre-D 
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Omitting non-changing phylotypes and only using connections found in at least two 

individuals allowed for a simplified representation of the mucosal microbial communities 

(Figure 15). 

 

Figure 15: The diarrhea profile clustering Cytoscape network for tissue samples simplified by only showing phylotypes 
that show a common progression in at least 2 patients. The progression of pre-diarrhea state (pre-D) to diarrhea state is 
shown, increasing phylotype edges are colored in red, decreasing in green. Size of nodes indicates relative abundance 
difference; high opacity of circles indicates major fold change differences. Nomenclature of nodes is based on the highest 
taxonomic classification with at least 80% confidence. 

 

Bacteroidetes are clearly associated with a decreased abundance on the mucosa while 

Firmicutes and Proteobacteria make up the majority of OTUs associated with an increased 

abundance during diarrhea. Especially Weissella and Lactococcus genera, members of the 

Firmicutes phylum, dominated the changing phylotypes. Also several Proteobacteria 

dominated the increased abundance pattern, with more than 15 different genera (amongst 

others: Citrobacter, Acinetobacter, Acrobacter, Acidovorax, Microvirgula). Genera that 

showed a significant decrease at the mucosa during diarrhea are represented by 

Parabacteroides and, to a bigger extend, Bacteroides.  

 

 

pre-D 

diarrhea 

diarrhea 

pre-D 



P a g e  | 28 

 

3.3 Discussion 

 

The majority of bacteria found in the human gut belong to either the Firmicutes or 

Bacteroidetes phylum. Data from tissue sampling though clearly shows that it is especially 

the Firmicutes, Bacteroidetes and Proteobacteria that increase significantly after induction 

of diarrhea.  The major decreasing group on the mucosa is the Bacteroidetes phylum, which 

accounts for more than 75% of decreasing OTUs. This finding suggests that the community 

occurring in a healthy gut system is indeed ruptured by diarrhea and is displaced to some 

extend with phylotypes of the Proteobacteria phylum when comparing relative abundance 

values.  

The most abundant genera found in human stool samples by Eckburg et al. were 

Bacteroides, Alistipes, Parabacteroides, Dorea, Ruminococcus, Clostridium, Eubacterium, 

Faecalibacterium, Collinsella, Roseburia with Bacteroides being the most abundand [3] but as 

in most studies in the gut microbiome field, no data was generated on tissue / mucosal 

samples. 

The separate analysis and comparison between mucosa and stool habitats is vital for a 

successful description of the gut microbiome, as community structure differs greatly 

between the two habitats [2]. Implementation of both environments allowed for a 

comparative approach. In our study, a clear indication for the displacement effect is the high 

amount of Bacteroidetes found in stool samples and their decline on the mucosa. It seems 

that with changing environmental factors, Bacteroidetes get washed out of the community 

system. It could be shown in previous studies that Bacteroidetes numbers can significantly 

change with antibiotic therapy [19] or human weight loss [8]. In the latter it could also be 

shown that the level of functional diversity in a gut system is directly linked to the relative 

abundance of Bacteroidetes. Lachnospiraceae and Ruminoccocaceae are the other two 

groups found in mucosa samples that significantly decrease in abundance during diarrhea. 

As for Bacteroidetes, some of them might get washed out as indicated by an association with 

the pyramid profile. Additionally, they are also associated with the other two main changing 

patterns in stools (decrease-increase and decrease-nonchanging), which indicates that their 

elimination from the community is not associated with a specific time point but a more long 

lasting effect, which takes place in a wider timeframe. One could say that the reaction of 

Bacteroidetes to diarrhea is a more acute event, with subsequent fast normalization in its 

washing out behavior, while Lachnospiraceae and Ruminococcaceae show a more diverse 

and enduring abundance change. Both families are common in gut communities [8]. 

Bacteroidetes can be seen as (pan-)bacterial genomic libraries, as they harbor a plethora of 

genes that can be non-active for a long time but can be switched on if environmental 

conditions require it [20].This could be the reason for the more “acute” response of 

Bacteroides to diarrhea. 
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Members of the Proteobacteria phylum seem to increase after diarrhea. A possible 

explanation for this finding is that members of this phylum quickly occupy niches in the gut 

with a successful local colonization. Lactobacillus and Lactococcus on the other hand are 

usually considered beneficial human gut bacteria (i.e. probiotic bacteria) [6]. Their numbers 

increase on the mucosal layer. This effect could be attributed to the loss of genera like 

Bacteroidetes and the subsequent rise of phylotypes that flourish not due to pathological 

conditions but simply due to loss of competition for available nutrients. This finding is 

backed up by the results of our snowman / R analysis [18], especially the PCA analysis and 

rarefaction curves, where a clear decrease in diversity is observable (Figure 10). By promoting 

certain beneficial bacteria or a decrease in immunologic actions against them, reconstitution 

of a normal bacterial gut community could be enhanced and accelerated. When comparing 

the similarities between samples, such a relationship can also be seen in two patients and 

their respective bio diversities (Figure 9). While it seems to take longer for some individuals 

to recover from an event of diarrhea, others show a strong reconstitution with a fast return 

to the pre-diarrhea diversity.  

As science investigates the complex interactions of the bacterial – human relationship it 

becomes more and more obvious that collective reactions like these are not an exception 

but a general principle of biological systems. Data acquired from this analysis suggests that 

events like diarrhea, which are usually considered harmless, can indeed have pronounced 

effects on the human gut microbiome. Due to significant changes in the bacterial 

community, a short lasting bacterial infection could lead to a misbalance in the bacterial-

host relationship and subsequently to the development of an altered (disordered) 

community.  
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4. Bacterial community changes in Enterocolitis 
 

4.1 Materials and Methods 
 

4.1.1 Study Setup and Sampling 

 

Nongranulomatous chronic idiopathic enterocolitis (NCIE) is a chronic inflammation of the 

human small intestine, which leads to severe diarrhea and subsequent dehydration. High 

mortality rates and an unknown but suspected infectious etiology make it a very interesting 

target for investigation. Our principal hypothesis was that a dysbiosis (misbalance) of the 

human small intestinal microbial community led to an over-stimulation of the immune 

system, hence causing chronic inflammation.  

Human biopsies of three female patients (age 20-49) diagnosed with NCIE were available in 

FFPE (formalin fixed paraffine embedded) material and investigated using a pyrosequencing 

approach. All samples were obtained from the Biobank of the Medical University of Graz 

(http://www.medunigraz.at/biobank). The bacterial community was analyzed in two ways: 

the first was a classic diversity comparison, which should give insights into the general 

community dynamics in NIEC. The second was to develop a method to analyze the samples 

in more detail on the OTU level. Thus, OTUs of interest should be found that changed 

significantly between the two main states (acute/remission). As the interpersonal variety in 

the gut microbiome is very high, an approach overcoming the limitations of statistics when 

dealing with small sample size experiments was chosen. That led to the development of the 

scoring system described in chapter 2.3, with further development into the profile clustering 

system.  

Table 4 gives an overview of samples acquired from FFPE biopsies.  

Table 4: Sample nomenclature of NCIE patients  

Patient Sample Name 
Run1 

Disease State Location 

A 

FFPE10 Remission Small bowel (Duodenum) 

FFPE11 Acute Small bowel (Duodenum) 
FFPE12 Acute Small bowel (Duodenum) 

B 

FFPE13 Remission Small bowel (Duodenum) 
FFPE14 Acute Small bowel (Duodenum) 
FFPE15 Acute Small bowel (Duodenum) 
FFPE16 Acute Small bowel (Duodenum) 

C 

FFPE17 Remission Small bowel (Duodenum) 
FFPE18 Acute Small bowel (Duodenum) 
FFPE19 Acute Small bowel (Duodenum) 

 

http://www.medunigraz.at/biobank
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As NCIE is a very rare disease, only a small number of patient samples were available. 

Histological assessment available from all samples allowed for stratification of samples into 

remission / acute disease states (see Table 4). All samples in this project were derived from 

FFPE (formalin fixed paraffin embedded) material, a common agent to conserve and fix 

tissue samples for histopathological assessment. 

 

4.1.2 DNA Extraction, Amplification and Sequencing 

 

Tissue from FFPE material was cut via a microtome and extracted with the Qiagen DNA mini 

Kit (Qiagen) according to the standard protocol. Subsequent 16S V1-2 amplification was 

carried out with Roche standard primers (primer_fw and primer_rev) and 6base MID codes 

(Table 7). Separation of the amplified sequences and purification was then achieved by gel 

electrophoresis. Sequencing was accomplished on a Roche FLX Sequencing System in 

PicoTiter Plates. 

 

Table 5: PCR mix for 16S amplification 

Material  Concentration 

Sample 2 µL Range: 0.5 – 12.2 ng/µL 

1x HotStar Master Mix (Qiagen) 10 µL  

Primer_fw 0.6 µL 10 pmol/µL 

Primer rev 0.6 µL 10 pmol/µL 

H2O 6.8 µL  

 
 
 PCR conditions were chosen as follows:  
 
Table 6: PCR parameters for 16S amplification 

PCR step Temperature Duration 

Initial Denaturation 95 °C 12 min 

Denaturation 95 °C 30 sec 

Annealing 56 °C 30 sec 

Elongation 72 °C 60 sec 

Final Step 72 °C 7 min 

 

A compilation of sequenced samples with their respective sampling dates and primer design 

can be found in Table 7. 

  

Run1 

35 cycles 
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Table 7: Samples sequenced and analyzed in both runs with sequences of primers and data of biopsy sampling 

Patient Sample ID Run Mid Primer 
Sampling 

Date 

A 

FFPE_010 

1 

ATGCAG AGAGTTTGATCCTGGCTCAG 08-08-06 

FFPE_011 ATGCTC AGAGTTTGATCCTGGCTCAG 08-02-27 

FFPE_012 CAGAGC AGAGTTTGATCCTGGCTCAG 08-03-10 

B 

FFPE_013 CAGATG AGAGTTTGATCCTGGCTCAG 06-02-27 

FFPE_014 CAGCAG AGAGTTTGATCCTGGCTCAG 04-09-24 

FFPE_015 CAGCTC AGAGTTTGATCCTGGCTCAG 04-02-10 

FFPE_016 CATCTG AGAGTTTGATCCTGGCTCAG 04-02-03 

C 

FFPE_017 CATGAG AGAGTTTGATCCTGGCTCAG 97-09-23 

FFPE_018 CTCATG AGAGTTTGATCCTGGCTCAG 95-09-18 

FFPE_019 CTGATC AGAGTTTGATCCTGGCTCAG 95-11-06 

 

4.1.3 Data Analysis 

 

The study was based on a retrospective assessment of specimens available in the tissue 

bank. Therefore, time between sampling and number of samples varied amongst the 

patients. Figure 16 shows sampling points and disease states of all three patients on a 

coherent time scale. 

 

 

Figure 16: Sampling timepoints (colored boxes) for all three patients. Timeframes are drawn to scale, with one box space 
representing one month. Two boxes stacked onto each other indicate two sampling points in this particular month.  

 

The variability amongst sampling times led to a two state comparison approach, where 

mean values for acute vs. remission states were compared rather than longitudinal 

progressions (as in the diarrhea project). 

The data analysis pipeline package Qiime was used to create OTUs, diversity measurements 

and phylogenetic trees. Custom parameters can be found in Table 8. For filtering out 



P a g e  | 33 

 

ambiguous and low quality reads, the quality file of the GS FLX system was used in the 

split_libraries script. 

 
Table 8: Qiime parameters for both enterocolitis runs 

 

After sequencing and basic data analysis with Qiime, a global scoring system was developed 
to find OTUs of interest. Subsequent clustering of progressions was achieved with a profile 
network approach (see chapter 2.4).  A cluster similarity of 0.97 (97%) was chosen to enable 
OTUs presenting species. The RDP classifier was used to determine taxonomic classification; 
output was restricted to an 80% confidence threshold allowing for taxonomic assignment. 
Comparing the relative abundance values for the remission state versus acute states in any 
patient, two point profiles (remission versus various acute states) could be drawn. After 
omitting taxonomic units with a total score of 0 (relative abundances in two samples differ 
by less than 0.05%) we created a Cytoscape network, where each OTU was connected to its 
corresponding profiles. To enhance visualization properties, only OTUs with high global 
scores were used to build the network in Figure 23. For the global scoring system, acute 
versus remission states have been compared and their respective difference calculated. For 
all comparisons, a local score has been calculated that indicates, how many times an OTU is 
changing in one patient and into what direction (increasing or decreasing manner). From 
these local scores a global score could be calculated as explained in chapter 2.3. 
 
OTUs of interest that reached a high global score but could only be classified to the genus 
level with the RDP classifier approach were later blasted with RDP SeqMatch to reach 
species level classification (http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp) and the 
blast option on HOMD (Ver. 10.1 – standard parameters) 
(http://www.homd.org/modules.php?op=modload&name=RNAblast&file=index&link=upload). 

HOMD is a bacterial community analysis platform for the human mouth microbiome [21].  
 

For validation of global scoring, a second approach was used, where acute versus remission 
was calculated as division rather than difference. 
 
 
  

Qiime parameter Value 

OTU picking algorithm UClust 

Cluster similarity 0.97 

Picking representative OTUs most_abundand 

Alignment method PyNast 

Minimum sequence length 150 Bp 

Taxonomy assignment method RDP 

Taxonomy assignment Confidence 0.8 

Tree building method fasttree 

Rarefaction depth 3727 

Number of reps 100 

http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp
http://www.homd.org/modules.php?op=modload&name=RNAblast&file=index&link=upload
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4.2 Results 
 

4.2.1 Histological assessments 

 

 

Nongranulomatous chronic idiopathic enterocolitis leads to severe alteration in the structure 

of the human small intestinal surface by chronic inflammation. These changes in the human 

mucosal layer of the small gut (Duodenum) are shown in Figure 17.  

 

 

 

Figure 17: Histopathological representation of tissue samples in NCIE cases. A healthy duodenal mucosa is composed of a 
multitude of villi and crypts to increase the surface in the gut. During inflammation one can observe a loss of this surface 
structures are shown. Histological assessment is shown for patients A and B. Healthy tissue before acute onset of the 
disease is shown in the top left panel for case A. Direct comparison shows that after antibiotic and anti-inflammatory 
treatment a regeneration of the layer to pre-disease status could be accomplished (right side panels). 
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4.2.2 Qiime Analysis 

 

On average, a sample achieved 10082 reads in the Qiime analysis (+/- 2908). 1695 OTUs 

have been identified at 97% similarity clustering. Of these, 1076 have been identified as non-

changing, indicating that they did not change their relative abundance in all acute versus 

remission comparisons or did not reach the threshold level of +- 0.05% abundance change. 

This equals to 63% of all OTUs. 

Alpha rarefaction analysis showed that a high level of coverage was reached throughout all 

samples. Additional sequencing effort would therefore have to be substantial to identify new 

phylotypes (Figure 18). 

 

Figure 18: Alpha Rarefaction analysis of Enterocoliits FFPE samples. (Chao1 diversity computation is shown) 

 

Phylum level analysis revealed a 

decrease in Firmicutes and 

Bacteroidetes and a parallel rise of 

Actinobacteria as well as Proteobacteria 

in the acute state (Figure 19). 

Comparing distinct samples (Figure 20) 

on phylum level confirmed that trend in 

all three patients, although in different 

forms. A high phylum-level inter sample 

variation could be observed between 

patients which indicated a thorough 

change in the bacterial community.  

 Figure 19: Phylum level abundance in remission and acute states 
(pooled data) 
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Figure 20: Phylum level abundance in various samples. FFPE sample numbers with green background indicate remission 
states, red background displays acute states. 

The high number of Cyanobacteria present in FFPE11 was possibly caused by contamination 

of the sample. 

Inter sample diversities represented via PCA plots (Figure 21) revealed a significant 

disturbance in the gut microbial community. Patients formed loose clusters, where acute 

samples showed large dissimilarities to the remission states. When coloured by disease 

state, clustering of remission states occurred to some extent, although no general principle 

of reconstitution could be identified. 

 

Figure 21: Principle Component Analysis of FFPE samples 10-19. Remission (blue dots) and acute states (red squares) are 
connected in an ellipse to show patient affiliation. Three PCA dimensions (1-3) are shown. 

Figure 20 and Figure 21 clearly demonstrate that community compositions are not only 

dissimilar between patients but also when comparing the microbial community of one 

patient over a longer period of time. This initial whole community approach was therefore 
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limited by a high inter and intra personal variation. An OTU based approach had been 

developed to overcome these limitations. 

 

4.2.3 Network Analysis 

 

The network profiling (Figure 22) using a global scoring system led to a number of findings 

not accessible via a basic sample comparison. While Firmicutes and Bacteroidetes make up 

for the major part of a healthy human gut [2,5], the duodenum features high numbers of 

Proteobacteria as well as Actinobacteria that change significantly amongst all three patients 

(Figure 22).   

  

  

Figure 22: Phylotypes showing an increasing (red) or decreasing (green) relative abundance comparing acute phase of 
disease with the remission state. OTUs showing the respective abundance change are connected to their respective 
profile. The width of the lines indicates the number of patients in which an OTU has clustered to a specific profile.  Node 
sizes correspond to the mean relative abundance change between the acute and the remisson state. The transparency of 
nodes is dependend on the number of times a given fold change value (+-50%) was reached.  The node labels show the 
highest possible taxonomic classification with at least 80% confidence (Ribosomal Database). OTUs that are prominent 
members of the human oral microbiota are indicated with an H.  

 

acute 

acute 

remission 

remission 
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The majority of OTUs do not cluster with one specific profile in more than 1 patient. This is a 
reasonable finding, given the large interpersonal variety of the human gut microbiome and 
the resulting possibilities for the gut community to react to an impetus. However, the small 
number of OTUs that showed a similar behavior in many patients could represent common 
microbial agents that are crucial for the development of the investigated condition. In our 
study, we identified a number of agents that could be viewed as a base disturbance in the 
case of NCIE acute state (e.g. Fusobacterium, Propionibacterium, Stenotrophomonas, 
Streptococcus and Staphylococcus). Some of them are already known for acting detrimental 
in other forms of chronic GI inflammation.  
 
 
Figure 23 depicts the highest global scorers (minimum global score = 9) in NIEC. 
 
 

 

Figure 23: A profile clustering approach with a global scoring system incorporated. The global score is made up of 
difference local scores and therefore a measure of how many times an OTU shares a common progression in all patients. 
OTUs are clustered to progressions between states t1 (acute state) and t2 (remission). Of the several thousand OTUs 
resulting from the pyrosequencing analysis, only those with high global scores are shown. Edge thickness is based on the 
global score while the size of nodes is related to the mean abundance change a phylotype features between the acute 
and remission measurements. Nomenclature of nodes is based on the highest taxonomic classification with at least 80% 
confidence. 

 

Even though the global score is a measure to identify OTUs that behave similarly in all 

patients, a longitudinal representation showed the large interpersonal variation that even 

these high global scorers featured (Figure 24). Whilst genera like the top right hand 

Propionibacterium or Stenotrophomonas somewhat showed a common trend, others like 

Corynebacterium behaved significantly different in at least one of the patients. 
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For the top scoring OTUs identified via the global scoring system, their respective 

representative sequences were blasted with HOMD. When comparing the results to RDP 

classifier (whole database) hits, a far higher identity match could be observed in HOMD. Top 

scoring strains that are associated with a high relative abundance in the acute disease state 

are shown in Table 9. 

Table 9: HOMD database output for OTUs of interest (high global scorers). Only the top ranking classification results are 
shown. Phylotypes are arranged to reflect counter-clockwise decreasing global scores as seen in Figure 23. Identities/ 
Mismatches are calculated with gaps and AGCTU. 

Network Name HOMD Identification (10.1) Identities Mismatch 

Propionibacterium 
Propionibacterium acnes | Oral Taxon 530 | Strain 63597 | 
AF145256 | 70 | N 

100 0/247 

Stenotrophomonas 
Stenotrophomonas maltophilia | Oral Taxon 663 | Strain LMG 
958 | X95923 | 28 | N 

97.4 6/228 

Stenotrophomonas 
Stenotrophomonas maltophilia | Oral Taxon 663 | Strain LMG 
958 | X95923 | 28 | N 

99.2 2/237 

Veillonella 
Veillonella atypica | Oral Taxon 524 | Strain DSM 20739 | 
X84007 | 208 | N 

99.1 2/219 

Staphylococcus 
Staphylococcus epidermidis | Oral Taxon 601 | Strain ATCC 
14990 | D83363 | 3 | N 

100 0/227 

Streptococcus 
Streptococcus mitis bv 2 | Oral Taxon 398 | Strain SK34 | 
AY005045 | 410 | N 

98.2 4/220 

Neisseria 
Neisseria flavescens | Oral Taxon 610 | Strain LNP444 | 
AJ239280 | 115 | N 

99.5 1/220 

Corynebacterium 
Corynebacterium mucifaciens | Oral Taxon 835 | Strain DMMZ 
2278 | Y11200 | 0 | N 

93.8 15/243 

Propionibacterium 
Propionibacterium acnes | Oral Taxon 530 | Strain 63597 | 
AF145256 | 70 | N 

99.7 1/324 

Figure 24: Abundance change (y-axis) of selected OTUs during the course of disease (x-axis: time-point 1 & 2, acute phase; 
time-point 3, remission). Samples from all three individuals (A, B, C) are shown. Although these high scoring phylotypes 
were found to be related to the disease status not every OTU shows a similar behavior (abundance change) in every 
patient. Data is normalized to the abundance value of t3. 
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Gemella 
Gemella haemolysans | Oral Taxon 626 | Strain ATCC 10379 | 
L14326 | 537 | N 

100 0/229 

Rhodobacteriaceae 
Rhizobium loti | Oral Taxon 659 | Strain USDA 3455 | U50166 | 
3 | N 

86.9 32/244 

Bacillus 
Bacillus subtilis | Oral Taxon 468 | Strain ATCC 6633 | 
AB018486 | 46 | N 

86 36/257 

Clostridiales 
Oribacterium sp. | Oral Taxon 108 | Strain FTB41 | AF287770 | 
22 | U 

89.3 24/224 

Granulicatella 
Granulicatella adiacens [para-adiacens] | Oral Taxon 534 | 
Strain TKT1 | AB022027 | 515 | N 

97.8 5/229 

Actinomyces 
Actinomyces sp. | Oral Taxon 170 | Clone AP064 | AF287749 | 
36 | U 

99.1 2/234 

Variovorax 
Variovorax paradoxus | Oral Taxon 717 | Strain IAM 12373 | 
D30793 | 7 | N 

97.6 5/206 

Streptococcus 
Streptococcus australis | Oral Taxon 073 | Strain T1-E5 | 
AF385525 | 179 | N 

99 2/210 

Incertae sedis 5 
Leptothrix sp. | Oral Taxon 025 | Clone AV011a | AF385528 | 
11 | P 

95.1 12/243 

Fusobacterium 
Fusobacterium periodonticum | Oral Taxon 201 | Strain ATCC 
33693 | X55405 | 53 | N 

100 0/224 

 

OTUs with high global scores associated with the remission state are shown in Table 10: 

Table 10: HOMD database output for OTUs of interest (high global scorers). Only the top ranking classification results are 
shown. Phylotypes represent those associated with an increasing pattern in Figure 23. Identities/ Mismatches are 
calculated with gaps and AGCTU. 

Network Name HOMD Identification (10.1) Identities Mismatch 

Porphyromonadaceae Helicobacter pylori | Oral Taxon 812 | Strain ATCC 43504 | M88157 | 
0 | N 

87.3 28/220 

Bacteroidetes Catonella morbi | Oral Taxon 165 | Clone MB5_P12 | DQ003629 | 92 | 
N 

79.7 43/212 

Bacteria Prevotella sp. | Oral Taxon 820 | Strain P2A_FAAD4 | AF537212 | 0 | 
U 

84.8 33/217 

Wolinella Tannerella sp. | Oral Taxon 286 | Clone BU063 | AY008308 | 16 | P 88.5 26/227 
 

 

Using a slightly different scoring approach (ratio comparison) and starting a new run, the 

whole process of finding OTUs of interest was repeated and yielded the same results for 

most high scoring phylotypes. The results of this second analysis, which should be seen as 

validation, can be seen in Table 11. 

Table 11: HOMD database output for OTUs of interest (high global scorers). Repetition of analysis that led to Table 9 with 
altered scoring system and analyzed separately in a new Qiime run. 

HOMD Identification (10.1) Identities Mismatch 
Gemella haemolysans | Oral Taxon 626 | Strain ATCC 10379 | L14326 | 537 | N 100 0/229 

Streptococcus mitis bv 2 | Oral Taxon 398 | Strain SK34 | AY005045 | 410 | N 98.2 4/220 

Corynebacterium mucifaciens | Oral Taxon 835 | Strain DMMZ 2278 | Y11200 | 0 | N 93.8 15/243 

Stenotrophomonas maltophilia | Oral Taxon 663 | Strain LMG 958 | X95923 | 28 | N 97.4 6/228 

Neisseria flavescens | Oral Taxon 610 | Strain LNP444 | AJ239280 | 115 | N 99.5 1/220 
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Propionibacterium acnes | Oral Taxon 530 | Strain 63597 | AF145256 | 70 | N 100 0/247 

Microbacterium sp. | Oral Taxon 185 | Clone AV005b | AF385527 | 2 | P 88.1 26/218 

Streptococcus australis | Oral Taxon 073 | Strain T1-E5 | AF385525 | 179 | N 99 2/210 

Fusobacterium periodonticum | Oral Taxon 201 | Strain ATCC 33693 | X55405 | 53 | N 100 0/224 

Bergeyella sp. | Oral Taxon 422 | Clone C4MKM119 | AY278614 | 14 | P 90.3 21/216 

 

Except for two phylotypes (Microbacterium and Bergeyella) the lists for difference and ratio global 

scoring were identical. This is due to the relatively stable global scoring system, which emphasizes 

changing patterns rather than absolute values.  
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4.3 Discussion 

 

Our investigation of the impact of NCIE on the bacterial community confirmed a number of 

hypotheses that we initially generated. Firstly, the impact of NCIE on the human gut is 

evident not only in histological differences of the small bowel tissue. It can also be assessed 

by a sequence driven community analysis, which shows a major disturbance in the 

microbiota of the duodenal mucosa. Changes that can be seen during acute enterocolitis are 

thorough up to phylum level. Notably, certain percentile changes in OTU abundance, as it is 

the case for Propionibacterium acne, number in the 20s to 30s. This implies that the bacterial 

community gains and loses certain highly abundant phylotypes, which in turn are the apex of 

a once balanced system. Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria make 

out a major part of OTUs that change significantly amongst all three patients.  

It is still unclear, if the disturbed bacterial gut community in NIEC is caused by a certain agent 

or a disturbed immune response and a subsequent loss of beneficial bacteria or another 

mechanism that is unknown up to now. It is possible that a member of the discovered high 

scoring taxa is actually causing the chronic inflammation which subsequently leds to the 

prominent phylum level disturbances due to an altered microbial niche. This hypothesis is, 

however, opposed by the clear differences of high scoring bacteria (as seen in Figure 24). If 

only one agent was the cause of NCIE, it should be found in a somewhat similar abundance 

in the acute state of the disease in all three patients, while in remission its numbers should 

dwindle. Stenotrophomonas maltophilia is the only phylotype that meets this general 

requirement, but shows different abundance changes in all patients.   

We therefore propose that NCIE is caused by a misbalance in the bacterial community of the 

human gut. This effect, which is known as dysbiosis, is characterized by the comprehensive 

community changes we can also find in enterocolitis patients. Hence, it is not one 

pathogenic agent but a multitude of bacteria that are responsible for the chronic 

inflammation, which devastates the gut tissue and leads to an initial misbalance. Driven by 

these changes, a newly composed gut flora could arise that harbors detrimental features. 

Hereafter, further displacement of commensal bacteria, like Bacteroidetes or 

Faecalibacterium and subsequent loss of healthy immunologic triggering effects take place. 

The inflammatory potential is directly influenced by modulation of the ubiquitin-proteasome 

system in epithelial cells by commensal gut bacteria [22]. The ability of certain beneficial gut 

microbes to induce anti-inflammatory regulatory T-cells was identified to be vital for the 

prevention of several chronic disorders [6]. For instance, Bacteroides fragilis has been shown 

to produce a polysaccharide (PSA) which leads to specific proliferation of CD4+ regulatory T 

cells and subsequent anti-inflammatory IL-10 expression [20]. Without these regulating cycles 

of activation and deactivation, the immune system enters a state of permanent over-

induction without ways to balance itself as commensal bacteria leave the gut-bacterial 
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system. Once the new microbial community is in place, only extensive antibiotic therapy can 

levitate the pressure on the host. 

The question is how a formally healthy system can change so drastically. 

 

 

The oral translocation hypothesis 

The discovery that high scoring genera could be identified better in the human oral 

microbiome database than in the more general annotated RDP database led us to another 

mechanism that we propose as hypothesis in this work. As described above, every part of 

the human body has a distinct bacterial community, where most members are considered 

mutualists. This system facilitates a number of reactions, from simple neutral inhabitation to 

complex host-bacteria interactions like production of hormones and neuro-active substances 

or degradation of chemical compounds [2,5,19]. Invasive species of bacteria which are usually 

not associated with a healthy human-bacterial system usually find it hard to out-compete 

commensal species. An invading pathogenic bacterium that comes from outside the system 

has to overcome the native microbial flora, which can be considered one of the first lines of 

defense. In a classic infection, only bacteria that find a growth advantage in some way can 

maintain a certain threat for the human body. But what would happen if it was not one 

pathogenic agent but a whole community? 

The displacement of parts of the human oral bacterial community, as indicated by the types 

of species found in acute enterocolitis samples, could play a major role in development of 

NCIE. Such a translocation event could be triggered by a multitude of factors, may it be 

diarrhea, a former illness or something as common as teeth brushing with aggressive tooth 

paste [23]. Once these oral bacteria find a suitable niche within a habitat they usually do not 

inhabit, community dynamics could lead to local inflammatory reactions. A healthy gut 

system would balance out bacteria with immune-regulation via IgA, proteolytic enzymes or 

protection by bile acid [24]. But in contrast to bacteria which can be found outside the human 

system, these oral bacteria, as they were tolerated to some extend in the oral cavity, could 

harm the mucosa at this atypical niche. Moreover, immune response would lead to an 

increasingly suitable environment for the newcomers, as cellular parts and body fluids could 

provide excellent nutrients.  

 

A schematic proposal of events is shown in Figure 25: 
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Figure 25: A proposed effective scheme of human oral microbiome translocation: Oral bacteria get swallowed and pass 
the stomach’s acidic environment to settle in locations throughout the small intestine. If events like diarrhea or local 
inflammation lead to a growth benefit or if they are translocated in a high numbers, commensal gut bacteria (green) get 
displaced by oral bacteria (blue). This leads to further immunologic responses and increased inflammation, further 
promoting the dysbiosis in the system. Once a chronic inflammation status is reached, the affected tissue has very 
thoroughly altered its appearance- Cavities and intestinal villi close up which leads to the classic “flat” gut surface that 
can be observed in coloscopy. A reason for this change could very well be the minimization of surface that is available to 
the now detrimental bacterial gut community. 
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Adjusting to these new conditions, a formerly commensal community could switch to 

“disease enhancing” as anatomic constraints are weakened. A similar translocation event 

can be observed during “bacterial overgrowth syndrome”, a severe complication in a 

number of gut related diseases and immune deficiency disorders, where the bacterial flora 

of the small gut is “overgrown” or displaced with communities usually associated with the 

colon [24].  

Oral communities feature less variation amongst different humans than other habitats [4]. 

The similar behavior of certain OTUs amongst patients could therefore indeed be an 

indicator for a less variable bacterial system getting access to a system of high variability and 

functional redundancy. Thirty percent of human oral microbial OTUs are classified as 

Proteobacteria, with Neisseria found most often but is virtually depleted of Bacteroidetes 
[25]. Thus, an oral community “used to” a high number of Proteobacteria and low numbers of 

Bacteroidetes could find itself benefiting from washing out events during inflammation.  

Nutrients and species of interest. 

While certain bacteria indeed receive a boost in growth, it is Bacteroidetes that decline in 

NIEC. Bacteroides are responsible for the majority in the colon [26] and a rise of a competing 

community could lead to their repression during acute enterocolitis. Additionally, 

Bacteroides have been observed to actively induce gene expression in human host cells, 

indicating a tight communication link between bacterial and human system [20]. As in case of 

diarrhea, Bacteroides could play a pivotal role in community restructuring as their large set 

of genes could makes them more flexible under adverse (or opportunistic) conditions.  

Antibiotic treatment leads to a decrease of butyrate producing genera like Faecalibacterium 

or Clostridium in the colon [19], further amplifying nutrient competition in the gut. 

Importantly, butyrate is also a major nutrient source for GI epithelial cells [3]. 

It is known that certain genera of Proteobacteria are highly effective in exploiting the iron 

rich living conditions provided by blood [10]. Furthermore, it could be shown, that it is mostly 

Enterobacteria which require a readily available iron source for proliferation and virulence, 

while many commensals, as Lactobacillus, do not. The supplementation of iron led to 

competition advantages for pathogenic strains on cost of “barrier” genera [10]. Therefore, 

tissue damage, which is accompanied by loss of iron into the gut lumen, could in fact cause 

major proliferation of these species rather than their removal.  

Propionibacterium acnes was found to be one of the possible causative agents for 

granulomatous colitis [27].  The family Fusobacteriaceae is known to efficiently ferment 

amino acids, a source of nutrients that are also increased in inflamed guts [26]. Fusobacterium 

nucleatum has been associated with inflammatory diseases in the oral cavity and is common 

in mucosa isolates from the gut in IBD cases [28]. It features a wide range of abilities that 

would make it very effective as co-inductor of adverse NCIE effects: readily attachment to a 

wide range of cell types would enhance its capacity to form bridgeheads of infection in the 
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gut, enhanced compatibility of aggregation with other bacterial species and production of 

tissue irritating substances [28] would boost changes in the bacterial community structure. As 

for Propionibacterium, it could be shown that Fusobacterium is associated with IBD [29]. In 

addition to that, Fusobacteria are also producing butyric acid, which, in excess is a toxin for 

mucosal cells which induces apoptosis and ulceration [29]. Stenotrophomonas maltophilia has 

been associated with neonatal infections and bacteraemia [30]. Streptococcus mitis is known 

for a highly effective epithelial attachment system, translocation via the bloodstream and 

the causative agent for a form of endocarditis [31]. It is highly antibiotic resistant and 

expresses an Immunoglobulin A protease, which would make it a perfect “first settler” for 

infectious sites in the gut.  

As stated before, nearly all of the global high scoring bacteria in NCIE (see Table 9) are 

common members of the oral microflora and/or associated with disease states in the oral 

cavity. Their appearance mimics the appearance of oral plaques, which led to the biofilm 

hypothesis in inflammatory bowel diseases that we generated over the course of the study. 

Biofilms and antibiotic treatment 

The following paragraph is a short summary of the excellent review on oral biofilms written 

by Filoche et al. [32] with additional remarks regarding its connection to chronic enterocolitis. 

According to the ecological plaque hypothesis, the oral bacterial community can switch its 

behavior – from more mutualism driven to pathogenic states. The development of oral 

biofilms usually starts with a triggered adhesion to the tooth or surrounding tissue. It could 

be shown by Ritz and colleagues that streptococci belong to the first to colonize epithelial 

surfaces, followed by Actinomyces (high scoring in NCIE) and gram negative filamentous 

bacteria that attach to the “bridgehead” colonies. Over time, a biofilm will evolve, whose 

appearance and composition is tightly linked to the host health state and the biofilms 

specific location in the oral cavity. If human nutrition is heavily based on sugars, acidogenic 

bacterial species flourish and the whole community enters a pathogenic state – which is 

commonly known as dental caries. These pathogenic biofilms are constructed amongst 

others by Streptococcus mutans, Streptococcus mitis as well as Rothia and Actinomyces 

species. Similar species alterations can be found in paradontosis, where Fusobacterium 

nucleatum and Porphyromonas sp. contribute to the disease state. In recent years, a theory 

has evolved that describes the formation of biofilms not only as a one by one occupation 

event by different species but actual attachment of free moving (“planktonic”) bacterial 

aggregates to the oral surfaces with subsequent colonization of a local spot. The concerted 

action of a bacterial “multicellular” structure could indeed protect the colonizing bacteria 

from host immune reaction that single cells would not be able to overcome. Apart from 

attachment and biofilm evolving, the detachment of cells from the aggregate has become a 

major area of research. Active detachment could very well be facilitated by a bacterial 

community in order to avoid nutrition shortage or adverse conditions (aggressive tooth 

paste, frequent use of mouth fresheners, smoking).  
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The moving aggregate could find its way into the human gastrointestinal system by 

swallowing. Upon its arrival in the stomach, its matrix and layered architecture would 

prevent the annihilation of viable microbes by the acidic gastric environment and protect it 

until arrival in the duodenum or subsequent parts of the bowel. With an attachment event in 

the gut, various displacements lead to the formation of a viable translocated community 

that has been described in this chapter. Due to repeated attachment and detachment 

events, the patchy inflammatory appearance could occur, which is so typical for chronic 

inflammatory diseases of the gut. The large variety of group genome content in a biofilm 

could very well be one of the reasons for the ability of the oral microbial community to 

outcompete the functionally potent Bacteroidetes or Firmicutes group in the gut. 

Alternatively,”biofilm priming” could also be facilitated by bacteria like Streptococcus mitis 

and its migration to the gut via the bloodstream to be later enriched with oral bacteria via 

plaques or blood vessel translocation.  

The biofilm hypothesis is also backed up by the resilience of chronic bowel diseases to 

antibiotic treatment.  

When treated with antibiotics, patients show decreased gut concentrations of propionate, 

butyrate and isobutyrate [26]. Woodmansey et al. could also observe that numbers of 

Staphylococcus, Streptococcus and Enterococcus in feces increase under antibiotic 

treatment. This rise was accompanied by higher abundance of Propionibacterium acnes. In 

the oral microbiome, it could be observed that upon antimicrobial treatment, the inner 

layers of a biofilm community were sheltered and would be the source for reformation when 

the antibiotic treatment was ceased [32]. These aggregates could function as a source for new 

inflammation and could be the reason for the immediate onset of acute inflammation NCIE 

patients suffer after antibiotic deduction. The effects of the antibiotic intake, necessary to 

levitate symptoms of enterocolitis, could therefore lead to further dysbiosis themselves. 

Antibiotic treatment has already been linked to a number of chronic diseases like asthma 

and atopic disease [19], underlining the necessity for a responsible use. 
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5. Concluding remarks 
 

We showed that diarrhea, a very common and usually harmless condition of the human 

body, could indeed lead to major disturbance in the gut microbial community with phylum 

level changes and washing out of important commensal taxa. Such an event could be one of 

the priming factors for the development of IBD, as the free competitive space if quickly filled 

up by opportunistic pathogens, one of them being the large group of Proteobacteria. This 

rampaged system is susceptible to a number of adverse environmental conditions and is 

more sensitive to community reshaping by bacteria normally rare in the Gi microbial 

community.  

We believe that the source for the onset and severe progression of NCIE are microbes of the 

oral bacterial community. Bridgeheads of translocations are formed by either blood vessel 

transport or swallowing of biofilm particles and subsequent attachment (by pioneering 

species like Streptococcus mitis or members of the Actinomyces genus) and colonization of 

the gut. After this initial priming phase and first inflammatory reactions of the host, the 

bacteria receive a growth advantage with further enhancement of biofilm diversity and 

pathologic potential. The role of butyrate and other nutrients in this event remains to be 

examined, as it can either act as toxin or essential cell nutrient. A shortage of butyrate in the 

early stages of IBD development due to displacement of the native flora could be followed 

by the subsequent rise of functional redundant (butyrate producing) bacteria like 

Fusobacterium, which could lead to misbalance, overproduction and cellular damage in the 

long run. Displacement of commensal bacteria, like members of the Bacteroidetes phylum 

takes place and the functional diversity of the gut microbial system gets impeded. 

Eventually, an altered bacterial community has established itself in the gut, accompanied by 

the IBD characteristic patchy inflammation where translocation has occurred. Antibiotic 

therapy in combination with anti-inflammatory treatment attacks biofilms and helps 

reconstitute a native epithelial structure. With it, formerly outcompeted native bacteria gain 

in numbers and the community enters a state of remission again. As therapy will not be able 

to get rid of all biofilm particles, there will always exist sources for repeated colonization, as 

indicated by the severe relapses upon antibiotic treatment stop.  

These findings underscore the importance of a multi-level approach when examining host-

bacterial systems. Data that can be acquired from formerly poorly described systems will 

have to be supplemented by functional analysis and causative modes of metabolic co-

existence in the future. Next and next – next generation sequencing methods will allow for a 

more in depth analysis of the microbial agents associated with humans and enhancing 

spatial distinguishability between communities will help resolving the dependencies in these 

systems. With the progression of the Human Microbiome Project, we can hope for the 

generation of baseline parameters in bacterial-host systems, which would serve as 

guidelines for further studies. Despite these advances, we are only at the verge of describing 
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the system of biological agents and their human hosts, e.g. the large area of viral-human 

interactions is virtually not explored on a community level. 

Nonetheless, there has been a paradigm change in medical life sciences in the last couple of 

years. Focusing on a limited number of parameters (a small number of species, genomes or 

an effector molecule) is important to understand basic biological rules and direct 

relationships. There are, however, limitations to this approach, as the complex network of 

microbes with its hosts often acts indirectly and system wide. Bacterial communities could 

indeed be linked over a large number of effector pathways and body parts. The events 

started in one of the habitats found in and on human bodies are not isolated but interchange 

information in various ways. The path that participants of this living space take and the 

results on human health and wellbeing are dependent on a large multitude of factors, 

beginning from host immune state to commensal bacterial community structure, location, 

nutrition, diseases and their treatments, environmental and geographical parameters or 

psychological conditions. Rather than forming direct causative chains of effectors, they all 

belong to a network of interdependency and concerted reactions forming the human-

bacterial system.  

Therefore, understanding the network of human-bacterial interactions would bring us closer 

to not only battling adverse conditions, but getting new insights into one of the fundamental 

questions of mankind: what actually defines a human being. 
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