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Abstract

In this thesis we propose a novel model- and point-based pose estimation approach, which is

able to operate on multiple scales in real time. We build our work on a state-of-the-art visual

Simultaneous Localization And Mapping (SLAM ) approach and extend it to exploit metric prior

knowledge about the geometry of a single object in the scene. Using keypoint-based localization,

which actually tracks the object by its surroundings, we are robust to occlusions and can even

determine a pose when the object vanishes completely. Additionally, we refine this pose based on

edge information to increase accuracy when the object occupies a certain amount of the image. In

our experiments we show an improvement of the mean translational localization error compared

to a state-of-the-art SLAM system from 6.1 cm to 1.7 cm for solid objects, and from 6.9 cm to

2.6 cm for wiry objects. Furthermore, when tracking is lost due to a lack of distinctive features, a

purely model-based tracking component takes over. This reduces the number of frames for which

the pose cannot be estimated by more than 20%. Our approach delivers a metrically correct pose

estimate relative to a known object solely based on visual input from a single camera, which is

useful for different robotic applications such as the autonomous inspection of a power pylon by an

Unmanned Aerial Vehicle (UAV ).
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Kurzfassung

In dieser Abschlussarbeit präsentieren wir einen neuartigen modell- und punktbasierten Ansatz

zur Positionsbestimmung, welcher in Echtzeit und für verschiedene Größenordnungen funktion-

iert. Wir bauen dabei auf einer aktuellen bildbasierten Simultaneous Localization And Mapping

(SLAM) Methode auf und erweitern diese so, dass Vorwissen über die Geometrie eines einzelnen

Objektes in der Szene ausgenutzt wird. Zunächst wird die Lage der Kamera relativ zum Objekt

basierend auf markanten Punkten in der Szene geschätzt, wobei diese Punkte hauptsächlich im

Hintergrund und nicht auf dem Objekt liegen. Dadurch sind wir in der Lage sowohl mit Verdeck-

ungen umzugehen, als auch in kompletter Abwesenheit des Objektes eine Pose zu schätzen. Wenn

das Objekt prominent im Bild zu sehen ist, werden die Kanteninformationen zusätzlich zum Ver-

feinern der Pose verwendet. In unseren Experimenten zeigen wir eine Verbesserung des mittleren

translatorischen Fehlers im Vergleich zu einem aktuellen SLAM System von 6.1 cm auf 1.7 cm für

solide Objekte und von 6.9 cm auf 2.6 cm für drahtige Objekte. Außerdem setzen wir auf eine rein

modellbasierte Tracking-Komponente, die bei einem Verlust der Verfolgungsqualität auf Grund

von zu wenigen markanten Punkten automatisch übernimmt. Dadurch wird die Zahl an Bildern

für die keine Pose bestimmt werden kann um mehr als 20% gesenkt. Unser Ansatz liefert eine

metrisch korrekte Positions- und Lageschätzung relativ zu einem bekannten Objekt, basierend auf

Bildern einer einzelnen Kamera. Dies ist für verschiedene Anwendungen in der Robotik nützlich,

wie zum Beispiel für die autonome Inspektion von Hochspannungsmasten durch ein Unmanned

Aerial Vehicle (UAV) .

Stichworte: Posebestimmung, SLAM, Modell-Basiertes Tracking, UAV, Inspektion, Vision
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Chapter 1

Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

The field of robotics has been constantly growing over the past decades. Along with this devel-

opment, computer vision and its applications have become increasingly important. Whether we

think of rescue robots, service robotics, or robots used for inspection tasks, 2D- and 3D-visual

data represents one of the most important sources of information describing the current state of

the environment. Data acquired from vision systems is used for instance for navigation, grasping

of objects, or quality assurance inspection. In future, an increasing number of applications will

ultimately depend on visual input: Cameras are a robot’s eyes.

1.1 Motivation

This work is part of the Pegasus project1 at the Institute for Computer Graphics and Vision at

Graz University of Technology which focuses on the autonomous inspection of overhead power

lines using an Unmanned Aerial Vehicle (UAV ). Today, such inspection tasks are performed with a

helicopter. This is not only time-consuming and hence quite expensive, but furthermore dangerous

for the crew itself, as the power lines to inspect cannot always be shutdown during inspection.

Therefore, this task is predestined for autonomous inspection by a UAV without putting any risk

on human beings.

1http://aerial.icg.tugraz.at

1

http://aerial.icg.tugraz.at


2 Chapter 1. Introduction

During autonomous inspection of overhead power lines several tasks depending on visual input

have to be performed. First, a safe navigation within the vicinity of power lines involves a proper

recognition of power pylons. This knowledge is then used during visual servoing to approach and

inspect several points of interest such as single insulators. In this work we focus on the reliable

determination of the exact location and orientation of a camera with respect to a known object in

the scene. In turn, this allows accurate navigation of a robot; whether it comes on two wheels, is

supplied with an omni-directional drive, or as in our case is airborne.

1.2 Goals and Contributions

Our goal is to be able to reliably and accurately determine a camera’s pose with respect to a single

yet known object with only images and detailed prior knowledge about the object’s geometry

being supplied. This can be used in future work to safely navigate within the vicinity of e.g.

power pylons, when thinking of overhead power line inspection. The main contributions of this

work are described in the following. Furthermore, a short outline of the structure of this work is

given.

Tracking Using Background Information. Initial experiments have shown that it is difficult

to estimate a pose for complex structures like power pylons from one single image. Due to the

fact that a continuous image stream is available, we decided to use a tracking based approach.

After an initialization step where the a-priori model information is used, the object is tracked by

its surroundings. This includes recovering sparse 3D-information of the environment. As a result,

determining the pose with respect to the object is not only possible over multiple scales, but as

well when parts of the object are occluded, the object is only partially visible, or even vanishes

completely.

Pose Refinement Using Prior Knowledge. As the geometry of one object in the scene is known,

this information is not only used during initialization, but furthermore used permanently in a robust

pose refinement during tracking, as long as the object is within the camera’s view and occupies a

significant area of the image. Especially when the camera is quite close to the object the refinement

is able to improve accuracy. Additionally, refinement during initialization helps to ensure a good

initialization, which is most essential in terms of accuracy.

Failure Recovery Using Model Information. When performing inspection tasks, closeup

views of parts of the known object are sometimes needed. In such cases, tracking the object by its
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surroundings often fails due to the lack of features. To successfully recover from such failures,

model information is used to keep up tracking. We seamlessly switch back to a background-based

tracking when visiting already explored areas.

Capability of Sensor Fusion. The current pose of the camera is supplied in real time at all

times. This allows further integration into probabilistic frameworks, together with other sensor

measurements like Global Positioning System (GPS ) localizations or pose estimates delivered by

an Inertial Measurement Unit (IMU ).

The remainder of this work is organized as follows. In Chapter 2 the related work is discussed.

Chapter 3 describes a general state-of-the-art framework for Visual Simultaneous Localization

and Mapping, whereas our approach is presented in Chapter 4. Experiments and pose estimation

results with respect to different known objects are then given in Chapter 5. Finally, Chapter 6

presents a summary and an outlook to possible future work.





Chapter 2

Related Work

Contents
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Pose Estimation for Known Correspondences . . . . . . . . . . . . . . . . . 8

2.3 Pose Estimation for Unknown Correspondences . . . . . . . . . . . . . . . 11

2.4 Pose Estimation for Image Sequences . . . . . . . . . . . . . . . . . . . . . 14

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

The problem of determining the position and orientation of a 3D-object in space from one or more

images is known as pose estimation. In literature, pose estimation is often referred to as extrinsic

camera calibration, as the external parameters of the camera, namely the relative translation and

orientation with respect to the 3D-object, are determined. Sometimes the term pose estimation is

also used when the relative rotation and translation of one camera between two different views is

desired. In photogrammetry pose estimation is often called space resection [1].

2.1 Overview

When talking about a pose or extrinsic calibration we always refer to the transformation between

world and camera coordinate frame, as depicted in Figure 2.1.

The mapping between a 3D-world point X and the corresponding 2D-image point x, assuming

5
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R, t

x
world

z
world

y
world

O

C

z
cam

x
cam

y
cam

Figure 2.1: The transformation between world and camera coordinate frame, consisting of R and
t, is shown. Usually this transformation is also referred to as pose or extrinsic camera calibra-
tion. The camera center C is the origin of the camera coordinate frame expressed in the world
coordinate frame O.

homogeneous coordinates, is performed by the central projection


u

v

w

 =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34



x

y

z

1

 , (2.1)

written in short matrix representation as

x = PX , (2.2)

where P is the 3× 4 camera projection matrix. This matrix can be further broken down into

P = K [ R | t ] , (2.3)

where K3×3 is the camera calibration matrix, R3×3 the rotation matrix, and t3×1 the translation

vector. The combination of R and t is the camera’s pose or extrinsic calibration and has six

degrees of freedom (DOF ), where three DOF result from the rotation matrix and another three

DOF from the translation vector. The camera center C in the world coordinate frame can be

determined using

C = −RT t . (2.4)
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The camera calibration matrix

K =


fx s px

0 fy py

0 0 1

 (2.5)

is often referred to as intrinsic calibration and has five DOF . These are the focal lengths fx and

fy of the camera in x- and y-direction, respectively, a skew factor s, which accounts for non

perpendicular pixel elements, and the principal point offsets px and py. All these parameters

are determined during a camera calibration step [2, 3], using one of many available toolboxes

like MATLAB ’s camera calibration toolbox1. A detailed comparison of different camera models

including their projective geometry can be found in [4].

One of the challenges when talking about pose estimation is the large six dimensional search

space, as the pose is fully described by three DOF for its position in space, and another three DOF

for the rotation angles around the x-, y-, and z-axis, respectively. The topic of pose estimation is

almost as old as the area of computer vision, and hence a very extensively studied topic. Three

different groups of algorithms are distinguished by means of their pose determination approach:

• View- or appearance-based approaches [5–8]. For some time these approaches – espe-

cially the eigenspace approaches [5, 7, 8] – were in vogue due to their ability to handle the

combined effects of shape, pose, reflections, partial occlusions, and illumination changes.

These methods compare the query image to precomputed views of the object to determine

its pose. The major drawback of such approaches is that they try to deal with the full

six-dimensional search space by clustering the precomputed 2D-views of the object. Fur-

thermore, due to comparing with precomputed views, these approaches are not suitable for

non-solid objects such as power pylons.

• Descriptor-based methods [9–13]. In this class of methods, artificial views of the object

are generated and descriptors are extracted at salient image locations. Based on these de-

scriptors, a classifier is trained. During the query phase, descriptors are extracted again

at salient image locations, which are then classified accordingly in order to determine the

object’s pose. Despite their good performance in some applications, such approaches are

limited to textured objects. As we are looking for a more general approach to determine the

pose of objects with little or no texture, these methods are not suitable either.

• Correspondence-based approaches [14–24]. These approaches use either points, lines, or

other geometric primitives like triangles, and therefore circumvent the search in the large
1http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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pose space. Yet, they have to deal with the search space resulting from establishing point

correspondences if no prior knowledge is given. This search space can even grow bigger

when additional features are introduced by clutter. However, this can be avoided by choos-

ing more complex features such as lines, which reduces the search space on the one hand

but makes the algorithm less robust to e.g. partial occlusions of the object.

For time critical applications like autonomous systems, with the aim on inspecting untextured

objects such as power pylons, the focus is kept on feature-based approaches. In the remainder

of this section an overview of related work regarding pose estimation with and without known

correspondences is given.

2.2 Pose Estimation for Known Correspondences

In general, some prior knowledge like a few correspondences between 3D-model points Xi and

2D-image features xi are needed for pose estimation. In other words, what we want to determine

is the camera’s projection matrix P, which maps all n corresponding 3D-model points to their

image points as

x̃i ≡ PX̃i , (2.6)

where ≡ denotes the equality up to an unknown scale factor. In other words, without further

knowledge about the scene’s metric geometry the pose is only estimated relatively. The 3 ×
4 projection matrix P consists of the pose and the intrinsic camera calibration parameters, and

generally has eleven DOF . Thus, for a minimal solution n = 51
2 correspondences are needed,

since every correspondence Xi ↔ xi rises two linearly independent equations in Eq. 2.6. The

equation system Ap = 0 has to be solved, where A is a 2n×12 matrix. This method is also known

as direct linear transformation (DLT ) and has already been developed in 1963 during Sutherland’s

work on Sketchpad [25]. It was later introduced to the computer vision community by [4, 14].

When more than the minimal n = 51
2 correspondences are given, the problem is over-determined

and can be solved using Singular Value Decomposition (SVD ) [4]. In this case an algebraic

error is minimized with respect to further constraints, i.e. ||p|| = 1. The internal and external

camera parameters can then be extracted from P, however, in general DLT is not suitable for

pose estimation as degenerate cases exist [4]. The Gold Standard algorithm is not to minimize

an algebraic but a geometric error function. Thus, assuming a Gaussian noise distribution, the

maximum likelihood estimation (MLE ) [4] of P can be calculated by solving the minimization
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problem

min
P

∑
i

d (PXi,xi)
2 , (2.7)

where d(a,b) is the Euclidean distance between the image points a and b. Equation 2.7 is then

solved by an iterative minimization technique like Levenberg-Marquardt (LM ) [4], which mini-

mizes the sum of reprojection errors.

As a matter of fact, the complexity of estimating all eleven DOF of P can be reduced by simply

calibrating the camera beforehand. By determining the five DOF of the intrinsic camera calibra-

tion matrix K, another six DOF for the pose remain. Thus, only three correspondences are needed

for a minimal solution of the pose problem, which is therefore referred to as the Perspective three

Point problem (P3P ), or in general Perspective n Point problem (PnP ) for overdetermined config-

urations. For the minimal configuration of three point correspondences up to four possible solu-

tions exist, whereas for four or more correspondences the solution is unique. Six direct solutions

to the P3P problem are given in [26], and their numerical stabilities are discussed. Several higher

order polynomial equations are derived from three points and the resulting triangle configurations.

The numerically most stable solution is that of Finsterwalder [15], which only requires finding

the root of a cubic polynomial and the roots of two quadratic polynomials to solve the problem

formulation. Recently Kneip et al. [27] proposed a novel parametrization of the P3P -problem.

They introduced intermediate camera and world reference frames to solve the problem directly in

a single stage. Again, a quartic equation with up to four solutions has to be solved, while a fourth

point is used for disambiguation.

A very famous solution to the PnP problem requiring n ≥ 4 non-coplanar points and a model

of the object is POSIT [16]. The method approximates the perspective projection with a scaled

orthographic projection and then calculates the pose by solving a set of linear equations using POS

(Pose from Orthography and Scaling). The ITerative pose estimation is then continued using the

last calculated pose. This allows POS to compute increasingly accurate scaled orthographic pro-

jections of the feature points in each iteration. POSIT only requires a single image, converges fast,

is easy to implement, and does not require an initial guess like Newton-based methods. However,

POSIT is quite sensitive to noise.

For n ≥ 5 correspondences, [28] presented a linear method which is not degenerate for coplanar

configurations. The method takes advantage of data redundancy and gives a unique solution. For

n points, m = (n− 1)(n− 2)/2 fourth order polynomials are derived, resulting in a set of linear

homogeneous equations of the form Am×ntn×1 = 0, where A contains the coefficients of the

fourth degree polynomial, and t = (1, x, x2, ..., xn)T is a vector of the first n powers of the



10 Chapter 2. Related Work

distance between one of the 3D-points and the camera center. Thus, t can be calculated using

SVD , from which the pose can be determined subsequently.

Further closed-form solutions to the PnP problem, which neither require iteration nor a good

initial guess, have been presented by Horn et al. [29, 30]. [29] uses unit quaternions [31] as

rotation representation to simplify the solution, whereas [30] presents a solution where 3 × 3

orthonormal rotation matrices are used. Both solutions determine the translation as difference

between the centroid of the coordinates in one system, and the rotated and scaled centroid of the

coordinates in the other system.

Although the topic of estimating a pose is known for decades now, quite recent papers [17, 18, 32]

deal with more efficient solutions to the PnP problem. Schweighofer and Pinz [17] investigated

the pose ambiguities for planar targets viewed by a perspective camera. They showed that the in-

stabilities in many applications occur due to two local minima of the error function used, however,

the second minimum has almost been completely ignored. Only Oberkampf et al. [33] dealt with

the second minimum in an extended version of POSIT, which handles coplanar points as well.

However, Schweighofer and Pinz derived an analytical solution to locate the second minimum.

They use the iterative pose estimation algorithm of [34] to solve for a first pose. Having a first

possible solution, they reparametrize the error function and solve for a second minimum. The two

possible pose estimates are then reevaluated, using each of them as an initial guess in [34], and

retaining the solution with the smallest error.

An O(n) solution to the PnP problem has been presented in [32]. This approach is of non-iterative

nature and its complexity just grows linearly with the number of points. The central idea of the

algorithm in contrast to most other approaches, which try to solve for the depths of the reference

points in the camera coordinate frame, is to express the 3D-points pi =
4∑
j=1

αijcj with
4∑
j=1

αij = 1

as a weighted sum of four virtual control points cj . Thus, the coordinates of the four control

points become the unknowns of the problem, which can be determined by solving an equation

system of the form Mx = 0, where x = (cT1 , c
T
2 , c

T
3 , c

T
4 )
T is the 12-vector of the unknowns,

and M a 2n × 12 matrix, which can be easily computed from 3D-to-2D correspondences. Thus,

x =
N∑
i=1

βivi is expressed as weighted sum of the null eigenvectors vi of MTM, where a small

constant number of quadratic equations has to be solved to pick the right weights βi. To improve

accuracy, the closed-form solution of [32] can be used as an initial guess for iterative Gauss-

Newton minimization.

Schweighofer and Pinz presented a globally optimal O(n) solution to the problem in [18]. Instead

of limiting the algorithm to perspective cameras they use a general camera model formulation.

Quaternions are used as representation for rotations and the object space costs are minimized by
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transferring the problem into a semi-definite positive program. This transfer can be done in O(n)

time, whereas the solution of the semi-definite positive program is a global minimizer to the PnP

problem and can be computed in a negligible amount of time for a large number of points.

All approaches presented require the knowledge of which 3D-point corresponds to which 2D-

image feature. However, the question of how these correspondences have been established re-

mains unanswered. Therefore, the next section is devoted to pose estimation for unknown corre-

spondences, which is the far more general case.

2.3 Pose Estimation for Unknown Correspondences

The previous section presented solutions to the pose estimation problem for sets of known corre-

spondences. However, if the correspondences are not given, the pose has to be estimated while

simultaneously hypothesizing correspondences. Usually a small set of 3D-to-2D point correspon-

dences is hypothesized randomly, and a pose is estimated using one of the previously discussed

methods. Subsequently, the pose generated by these correspondences is evaluated using the re-

maining points. Therefore the 3D-points are projected to the image using the estimated pose

and the nearest image feature is assigned as a corresponding 2D-point. However, standard least

squares techniques usually applied to such problems fail in cases where large outliers are present

and hence more robust methods need to be applied. The probably most widely used algorithm

for robust estimation in the field of computer vision applications is RANdom SAmple Consen-

sus (RANSAC ) [19]. There, the geometric image distance between the projected 3D-point and

its corresponding 2D-feature point is tested, and if the distance is below a threshold t, the corre-

spondence is assumed to support the generated hypothesis. After several iterations of randomly

sampling hypotheses and determining the set of inliers – also called consensus set – the largest

set is taken to reestimate the pose. To guarantee with a high probability p that at least one of the

randomly drawn samples of s points is free of outliers,

N =

⌈
log (1− p)

log (1− ws)

⌉
(2.8)

iterations have to be performed, where w is the probability that any selected point

is an inlier, and d · e the ceiling operator. Table 2.1 gives examples of the growth

of iterations for p = 0.99 for given set sizes s = 3 . . . 8 and inlier probabilities

w = {0.95, 0.90, 0.80, 0.75, 0.70, 0.60, 0.50, 0.40}. Due to the fast increasing number of

iterations needed when more detailed models with more points are used, and additionally

introduced features by clutter, RANSAC based approaches can become inapplicable for time
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critical applications.

sample size proportion of inliers w
s 0.95 0.90 0.80 0.75 0.70 0.60 0.50 0.40
3 3 4 7 9 11 19 35 70
4 3 5 9 13 17 34 72 178
5 4 6 12 17 26 57 146 448
6 4 7 16 24 37 97 293 1123
7 4 8 20 33 54 163 588 2809
8 5 9 26 44 78 272 1177 7025

Table 2.1: This table shows the number of iterations N needed by RANSAC to guarantee with a
probability of p = 0.99 that at least one of the randomly drawn samples of a set of s points is free
of outliers, while having an inlier probability of w. The number of iterations grows quickly when
the inlier probability drops and/or the sample size increases.

The probably best known and computationally very efficient algorithm when it comes to simulta-

neously estimating the pose and hypothesizing correspondences is SoftPOSIT [20]. SoftPOSIT

combines the iterative Softassign algorithm [35, 36] for computing correspondences with the

POSIT algorithm [16]. Unlike in RANSAC based approaches, all possible matches are treated

identically throughout the search for an optimal pose. SoftPOSIT belongs to the group of model-

based approaches as a 3D-point model of the object is needed to determine its pose in a single

2D-image. SoftPOSIT tries to estimate the correspondence matrix that matches 3D-model to

2D-image points and then computes the MLE of the unknown pose parameters. However, as

SoftPOSIT is related to Expectation Maximization (EM ) [37] algorithms, it converges to the min-

imum of a valley of the cost function. Subsequently, when SoftPOSIT should converge to the

globally optimal pose a good initial guess is necessary. A commonly used technique to find the

global optimum in EM algorithms is to run the algorithm from several randomly chosen initial

guesses, however, many such guesses would be necessary in the large six dimensional pose pa-

rameter space. A further drawback of the method is its sensitiveness to noise, occlusions, and

repetitive patterns.

Therefore, David et al. [21] extended SoftPOSIT to the case of line features. Lines are supposed

to be more stable, less sensitive to partial occlusions, and are less likely produced by clutter and

noise. However, David et al. use the line features only to determine the distances associated to

point features, which are then used to initialize the correspondence matrix. Thus, the lines are

only used for correspondence determination after which the normal SoftPOSIT operates on point

features again. Yet, when carefully implemented, the runtime of SoftPOSIT can be retained.

Another suitable approach to the simultaneous solution of correspondence and pose is
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BlindPnP [22]. BlindPnP claims to overcome the limitations of SoftPOSIT by taking

advantage of some a-priori information on the camera pose. This knowledge is modeled as

a Gaussian Mixture Model (GMM ) that is refined progressively when correspondences are

hypothesized, which considerably speeds up the exploration of the pose space. With each

assigned correspondence the pose and its covariance are updated using standard Kalman filter

equations. Simultaneously, the pose covariance defines search regions for further possible

correspondences, which therefore become tighter with each correspondence assigned. After three

correspondences have been chosen the uncertainties are so small that additional correspondences

can be assigned easily, yielding an initial solution for [32]. In order to find the best pose, small

sets of three correspondences are generated and the pose with the smallest reprojection error and

maximum number of correspondences is retained. However, the main problem using BlindPnP

is to detect 2D-image features which really correspond to a 3D-model point. Furthermore,

BlindPnP is not intended to run in real time, and therefore is not suitable for online applications

as would be needed by an autonomous robot.

Another model-based approach solely based on a Computer Aided Design (CAD ) model of the

object and a single image is presented in [38]. The view-based approach combines a pyramid

search with a hierarchy of object views, arranged in a precomputed tree structure. Thus, the pose

can be estimated in a short time, while exploiting the robustness of an exhaustive search. First, the

model lines are subsampled and the resulting points located with subpixel precision by searching

perpendicular to the model edges for edges in the image. Then, the pose is calculated by least-

squares minimization using LM . The approach claims to be robust to noise, occlusions, clutter,

and background changes. However, the major limitation of this approach are degenerated views

during training, i.e. side views of almost planar objects, which would be detected at each pair of

parallel lines.

Grimson et al. [39] search an interpretation tree of corresponding model and image features. This

algorithm, however, is a combinatorial problem, which sometimes gets prohibitively expensive to

compute. Therefore, often additional constraints are added to prune the search tree [40].

Holzer et al. [41] presented a pose estimation algorithm for planar objects only, based on edges.

They extract normalized distance transform templates by applying distance transform [42] to edge

images. Then, closed contours are extracted, small gaps are removed, and the templates are created

by transforming them to a canonical scale and orientation. The patch is used to train a classifier in

order to gain robustness against perspective transformations. During training the identity and pose

of the templates is learned and spatial relations between contours are introduced for outlier rejec-

tion. Once the classifier has been trained, it retrieves template identity and pose simultaneously.
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The pose is finally refined similar to Lucas-Kanade’s template tracking [43] algorithm, however,

instead of intensity images they use distance transform maps to align a template image to an in-

put image. As the alignment is a homography, the 3D-pose can be computed using homography

decomposition [44].

2.4 Pose Estimation for Image Sequences

Often, pose determination is needed not only for single images but for a continuous sequence of

images. Initialization of such pose estimation algorithms is often difficult, however, essential to

retrieve accurate results. Therefore, many algorithms use some kind of tracking approach with

manual or semi-automatic initialization. When a first pose has been estimated, the pose can be re-

fined frame by frame, while the algorithms are given a good initial guess using the pose of the last

frame to solve for the new one. During tracking sometimes the 3D-scene structure is determined.

Usually, the problem is then referred to as Structure from Motion (SfM ) or Simultaneous Localiza-

tion And Mapping (SLAM ). Visual SLAM (VSLAM ) describes the group of SLAM algorithms,

where only images are used as sensor input.

A popular real-time VSLAM implementation is that of Davison [45]. He was the first to propose

a real-time capable, single-camera localization by creating a map of sparse natural features. The

Bayesian-based framework allows handling of uncertainties in a way that robust localization is

possible. Based on this approach Davison et al. proposed MonoSLAM [46]. They extend the pre-

viously proposed method of monocular feature initialization by a feature orientation estimation.

This successfully increases the range in which landmarks are detected and hence improves track-

ing. However, MonoSLAM only works for slow camera motions or in combination with further

sensor inputs such as wheel-odometry.

Bleser et al. [23] proposed a robust real-time camera pose estimation approach for partially known

scenes. The connection between the real and the virtual world is made by one known object,

given as a CAD -model. However, the model is only used during initialization, which is semi-

automatic: The model is projected to the image using a predefined pose, which the user then

has to register manually to the image by moving the camera. When the projected model is close

enough to register the model lines to the image gradient, initialization completes automatically.

Then, point-based tracking is applied to estimate the pose using warped patches around extracted

feature locations. 3D-features are initialized using triangulation, which are then refined during

tracking using an Extended Kalman Filter (EKF ) [47]. Due to uncertainty, statistical methods

are incorporated, which are then used to calculate the weights during Weighted Least-Squares
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(WLS ) [4] pose estimation. The pose of the previous frame is used as initialization, whereas the

refinement is implemented as RANSAC procedure to gain robustness.

Others [48, 49] use model-based pose estimation together with gyroscope measurements to be able

to cope with fast motions and resulting motion blur. While [48] is used for Augmented Reality

(AR ) in head-mounted displays, [49] is used for outdoor AR and extends the former work of

Klein by the usage of a texture-based model and online edge extraction. Both approaches use the

edge-based tracking algorithm by Drummond and Cipolla [50].

Nistér et al. [51] presented a system that estimates motion trajectories using video input only. Point

features are used to robustly estimate camera motion in real time, without any prior knowledge

about neither scene nor motion. Accurate results have been achieved for sequences of several

hundred meters using their Visual Odometry algorithm.

Recently [52] investigated the tracking of rigid objects using the integration of model-based and

model-free cues in an iterated EKF . The model-based cue uses a wireframe-edge model of the

object, whereas, the model-free cue uses automatically generated surface texture features. Thus,

the approach relies on both model and texture information. The model-based tracking is similar

to [50, 53], which estimates the normal flow for points along edges. The normal flow is then

projected in the direction of the contour normal so that the error can be minimized using robust

M-Estimators [54]. For the model-free cue, Harris corners are extracted and tracked for visible

parts of the object by minimizing the Sum of Squared Differences (SSD ) in RGB values. The

algorithm is able to deal not only with polyhedral objects, but also with spherical, cylindrical and

conical objects. However, this approach makes strong usage of texture information available on

the object itself, and hence is not capable of dealing with non-solid objects such as power pylons.

Parallel Tracking And Mapping (PTAM ) [24] is the current state-of-the-art SLAM system. PTAM

is able to estimate the camera pose in a formerly unknown scene. It splits tracking and mapping

into two separate tasks, which are processed in parallel. Thus, global optimization techniques can

be applied, resulting in an accurate and real-time capable tracking system. PTAM is even capable

of dealing with reasonably fast camera motions without being given further sensor measurements.

2.5 Summary

Several algorithms for pose estimation with, and without given correspondences have been dis-

cussed. As our work aims towards an autonomous power line inspection using a UAV , only

real-time capable approaches are applicable. As a continuous video stream will be available,
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SLAM -based approaches are most suitable: After an initial map has been created, a system based

on SLAM can perform iterative pose updates in real time, while simultaneously expanding the

map to be able to keep track of the camera. For this reason, our work is focused on VSLAM sys-

tems. This allows a platform-independent development of the algorithm supplying a vision-based

pose estimate, which in future applications can be fused with other sensor measurements. As

PTAM [24] meets all these requirements, it builds the basis of this work and is therefore discussed

in detail in Chapter 3.
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Parallel Tracking and Mapping (PTAM ) belongs to the group of Simultaneous Localization and

Mapping (SLAM ) algorithms. SLAM is a common problem in the field of robotics, as well as

in computer vision tasks. It consists of two parts, namely the localization task and the mapping

task. Each of them can be solved quite straight-forward if the other one has already been solved

beforehand. In other words, it is possible to localize a robot within an already known environment

on the one hand, and on the other hand a map can be built if the robot’s position can be determined

accurately at all times. However, the combination of simultaneously solving both problems has

long been seen as a ‘holy grail’ for the mobile robotics community. Up to now, a lot of research

has focused on this topic and considerable progress has been made in this field [55, 56]. The

solution of the SLAM problem is the key towards a fully autonomous robot.

3.1 Overview

Many different SLAM implementations exist, depending on the field of application and the robot

used. However, when talking about Visual SLAM , only camera images are used for both the local-

ization and the mapping task. A SLAM system operates in an endless-loop, always trying to keep

17
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track of the actual location of the robot, while simultaneously updating the map, as schematically

depicted in Figure 3.1.

Figure 3.1: A SLAM system needs a component which recognizes places already visited in order
to localize itself and update the map. Furthermore, a global map optimization has to be applied
due to noisy and inaccurate measurements. A good strategy to estimate the pose in the next
iteration is needed to perform a fast iterative pose update during localization.

Therefore, the main components of a good SLAM system are

• recognition of places already visited (localization),

• a map optimization technique, and

• a local motion estimation for pose propagation.

Each of these components is depicted as a light gray box in Figure 3.1.

The current state-of-the-art monocular real-time VSLAM implementation is Klein and Murray’s

Parallel Tracking And Mapping (PTAM ) [24]. The core idea of the algorithm is to split tracking

and mapping into two separate tasks executed in parallel. As a result, any robust tracking method

could be used, however, PTAM uses a fast coarse-to-fine tracking approach. The mapping in

PTAM is based on keyframes and the world is represented as a sparse 3D-point cloud. Whenever

a formerly unknown area is explored, a new keyframe is created and new 3D-points are calculated

using triangulation with the closest nearby keyframe. The big benefit of PTAM is the sophisticated

optimization technique of Bundle Adjustment (BA ) applied in the mapping thread. PTAM is

accurate and fast; it is even able to run in real time on hardware like todays mobile phones [57].
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Summing up, PTAM meets all necessary requirements of a good SLAM system. PTAM was

originally developed as an AR application to overlay rendered content in the real world. Hence,

the position and orientation of the camera with respect to the world coordinate frame has to be

determined frame by frame. PTAM belongs to the group of monocular VSLAM approaches

where only one single camera is used. Figure 3.2 finally shows a few screen-shots of PTAM in

action.

3.2 Initial Pose Estimation and Map Construction

PTAM is able to generate and track a map from scratch without being given any prior knowledge

about the scene. Only little user interaction is required to initialize the algorithm. Assuming a

calibrated camera the following steps are needed to initialize PTAM :

• The user points the camera on a planar but well structured scene and manually initiates the

start of salient image point tracking. The first frame is used as the first keyframe.

• While translating the camera sideways the system tries to track the feature points frame by

frame, as depicted by Figure 3.2(a).

• The user manually initiates the end of the feature tracking process. This frame then marks

the second keyframe. The two keyframes build a pair of stereo-images.

• The tracked correspondences are now used to estimate the relative camera motion up to

scale. The baseline between the two cameras is then scaled to a fixed metric distance.

• Finally, 3D-map points are triangulated using the two views (see 3.2(c)). The dominant

plane in the scene is determined by fitting a plane to the reconstructed points. The whole

map is finally rotated in a way that the detected plane lies in the world’s x-y-plane, drawn

as a grid in Figure 3.2(b).

After these few steps, which only take a few seconds, PTAM starts tracking the camera and when

needed extends the map. In the following some more details about the initialization steps are

given, including important concepts of multiple view geometry [4].

Features. Many different features like points, lines or blobs can mark an interesting image lo-

cation. To name just a few of the most popular detectors, there is the Harris corner detector [58],

which analyzes the second-moment matrix or structure-tensor. Shi-Tomasi corner detection [59]
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(a) During initialization features are tracked frame
by frame. Successfully tracked features are shown
as lines connecting the initial and current location of
each feature.

(b) After initialization, the successfully tracked fea-
ture points are shown as dots. The dominant plane is
drawn as a grid.

(c) The 3D-map points are shown as dots. The po-
sitions of the cameras, where keyframes have been
dropped, are drawn as coordinate frames. The bold
keyframe marks the current camera. This map has a
total of approximately 2000 points and 30 keyframes.

(d) A possible AR application: Four eyeballs facing
the camera are overlaid to the real world.

Figure 3.2: A typical application of PTAM is the tracking of small environments like the desktop
scene shown in (b). Figure (a) shows the feature tracking, (c) illustrates the 3D-map corresponding
to the shown scene, and in (d) an AR model is overlaid to the scene.
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is similar to the Harris corner detector, however, Shi-Tomasi calculate the score of a possible

corner by taking the minimal eigenvalue of the structure tensor, whereas Harris suggested to use

the matrix’s determinant and trace to avoid eigenvalue decomposition. In general the criterion

of Shi-Tomasi outperforms the one suggested by Harris. Furthermore, there exists Scale Invari-

ant Feature Transform (SIFT ) [60], which actually uses Difference of Gaussian (DoG ) to detect

scale-space extrema, and Smallest Univalue Segment Assimilating Nucleus (SUSAN ) [61], where

a circular mask is placed over the pixel to be tested and every pixel within this nucleus is weighted

according to a comparison function. SUSAN can be used either as edge or corner detector, where

a corner is as far as possible away from the nucleus. An overview over region detectors is given

in [62], whereas Maximally Stable Extremal Region (MSER ) [63] often perform best. MSERs

are detected by thresholding an image at all possible gray levels and monitoring regions. Those

regions most stable with respect to a thresholding operation are then marked as maximally stable.

However, PTAM uses a quite recently proposed feature detector called Features from Accelerated

Segment Test (FAST ) [64, 65]. FAST is a high-speed corner detector similar to SUSAN and

hence very suitable for real-time applications like PTAM . Pixels in a Bresenham-circle around

candidate points are tested by comparing their gray-value intensities as depicted by Figure 3.3.

If n pixels are all brighter or darker than the center pixel by a threshold t, the candidate point is

considered to be a corner.

Figure 3.3: FAST uses a technique called Accelerated Segment Test to determine a feature point.
Gray-value intensities of pixels in a Bresenham-circle around the candidate point p are compared.
If n neighboring pixels are all brighter or darker than the center pixel by a threshold t the point
is considered a feature. A circle radius of r = 3 pixels yields 16 Bresenham-circle pixels used for
testing. Here the dashed line passes through twelve of the 16 pixels, which are all brighter than p.
Image taken from [65].
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Frame by Frame Feature Tracking. When the first keyframe is stored, FAST features are

extracted. For each feature the Shi-Tomasi score is calculated and the N = 1000 most salient

FAST corners are tracked. At each salient location a small image patch I0(x) is extracted. Each

patch is then locally searched for in the current frame I1, starting at the location it has been found

in the last frame. If and where the patch has been found is determined by evaluating the SSD

ESSD(u) =
∑
i∈I0,1

[I1(xi + u)− I0(xi)]2 (3.1)

at all possible displacements u = (u, v) within a predefined window of fixed size. The difference

between the compared patches is often referred to as residual error. When the patch has been found

an additional criterion has to be met. At the location where the SSD had its maximum response

another patch is extracted, which is then searched for in the last frame. Only if the backwards

matching yields a location close to the starting location of the forward matching, the patch has

successfully been tracked.

Estimating Relative Camera Motion. After tracking the most salient feature points enough

correspondences between the images of the first and second keyframe hopefully remain. Using

these correspondences the relative motion between the two cameras can be determined by exploit-

ing epipolar geometry constraints. Epipolar geometry is the intrinsic projective geometry between

two views and only depends on the internal parameters of the cameras and their relative pose. This

mathematical relation is fully described by the fundamental Matrix F3×3 of rank two, which maps

an image point x from one view to it’s corresponding epipolar line

l′ = Fx (3.2)

in the second view. When two points x ↔ x′ truly correspond, they must satisfy the epipolar

constraint

x′
T

Fx = 0 . (3.3)

Figure 3.4 illustrates the epipolar geometry. When the intrinsic camera calibration matrix K is

known, any image point x = PX can be transferred to normalized camera coordinates by applying

K−1 to the image point x, resulting in

x̂ = K−1x , (3.4)
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C C'

Figure 3.4: The epipolar geometry is the intrinsic projective geometry between two views. A 3D-
world point X is imaged as x in the first and x′ in the second view, respectively. The two image
points are related via the fundamental matrix F, which maps a point from one view onto a line
in the second view. The connection between the two camera centers C and C′ is called baseline.
The intersection of the baseline with the image planes of the two cameras defines the epipoles e
and e′, respectively. Any plane π containing the baseline is an epipolar plane, which intersects
the image planes in the epipolar lines, like e.g. l′ for the second view.

where x̂ is now expressed in normalized camera coordinates. In the case of normalized camera

coordinates there exists a specialization of the fundamental matrix called the essential matrix E.

The essential matrix has fewer DOF compared to the fundamental matrix and is defined by

E = [t]×R , (3.5)

assuming a pair of normalized camera matrices P = [I | 0] and P′ = [R | t], respectively. When

t = (t1, t2, t3)
T is a three-vector,

[t]× =


0 −t3 t2

t3 0 −t1
−t2 t1 0

 (3.6)

generates a 3× 3 skew-symmetric matrix. The [ · ]×-operator is used to express a cross product in

terms of a matrix multiplication.

The essential matrix can be directly computed using the five-point algorithm and RANSAC [19],
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or from the fundamental matrix, if known, using

E = K′
T
FK . (3.7)

When the essential matrix has been computed, the relative motion between the two cameras can

be calculated up to an unknown scale using SVD [4]. This yields up to four possible solutions

as described in [4], however, only one solution is possible as only in one case a reconstructed

3D-point lies in front of both cameras.

PTAM , however, uses an approach to the decomposition of E similar to Faugeras and Lust-

man [44], where under the assumption of a piecewise planar environment the tracked point cor-

respondences are used to estimate a homography H3×3 between the two images. H is further

decomposed into R and t using SVD under the assumptions of h33 = 1 and |R| = 1, with | · |
being the determinant of the matrix. However, the solution is only defined up to scale and hence

not metric, so PTAM assumes a baseline of ten centimeters between the two cameras and scales t

accordingly.

Triangulating 3D-Points. Triangulation is the process of finding the 3D-point corresponding

to several image measurements. As the motion between the two cameras has been determined,

3D-map points can be triangulated from the known point correspondences x ↔ x′. Due to the

fact that in reality the measured correspondences are noisy, they do not necessarily satisfy the

epipolar constraint of Equation 3.3. Assuming a Gaussian noise model the reprojection error for a

3D-world point X̂, which is mapped to the image points x̂ and x̂′ with projection matrices P and

P′ corresponding to F, is minimized. x̂ and x̂′ are then the maximum likelihood estimates of x

and x′, respectively. Now a linear triangulation method can be applied by combining x̂ = PX̂ and

x̂′ = P′X̂ into an equation of the form AX̂ = 0. This equation system can now either be solved

homogeneously using SVD , or as a set of inhomogeneous equations, where homogeneous coor-

dinates are used, using a least-squares technique. A detailed description of optimal triangulation

methods is given in [4], while the process of triangulating a 3D-point from image correspondences

is depicted in Figure 3.5.

3.3 Iterative Pose and Map Update

PTAM is able to estimate the camera’s pose with respect to the world coordinate frame by point-

based tracking. After initialization a map is created, containing 3D-world points which have been

determined using triangulation of corresponding points in two views. PTAM now estimates the
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Figure 3.5: The 3D-point X̂ is imaged as x̂ and x̂′ in C and C′, respectively. x̂ and x̂′ are
determined by minimizing the reprojection error d2 + d′2 with respect to the epipolar constraint
x̂′TFx̂ = 0, starting from the noisy correspondences x ↔ x′ measured. As an outcome the 3D-
point X̂ can be reconstructed from two noisy image correspondences by minimizing the geometric
error.

camera’s position in real time using a two-stage, coarse-to-fine tracking procedure, while simul-

taneously expanding the map if unexplored regions are visited. In such a case, a new keyframe is

inserted into the map and new 3D-points are triangulated using this keyframe and its nearest neigh-

boring keyframe. Before we continue, the mathematical terminology used for pose representation

is explained.

3.3.1 Pose Representation

Throughout the rest of this work a pose or rigid body transformation, consisting of a rotation and

a translation, are encoded in a 4× 4 matrix E of the Special Euclidean Lie Group SE(3) [66]. The

six-dimensional SE(3) Lie Group contains the set of all 3D rigid-body transformations in R3. A

point p in the world-coordinate frameW is then transformed to the camera-coordinate frame C by

pC = ECW pW , (3.8)

where ECW represents the camera’s pose as a member of SE(3) and takes the form

ECW =

[
R3×3 t3×1

0 0 0 1

]
. (3.9)
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E may be parameterized by a six-dimensional motion vector µ via the exponential map, where

µ1, µ2 and µ3 represent translation along x, y and z axes, and µ4, µ5 and µ6 describe the rotation

around these axes, respectively. An SE(3) matrix E is calculated from a six-dimensional motion

vector µ by

E = exp

(
6∑
i=1

µiGi

)
(3.10)

where Gi are called generator matrices, which take the values

G1 =

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , G2 =

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , G3 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,
(3.11)

G4 =

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , G5 =

 0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , G6 =

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .
Vice versa, a six-dimensional motion vector can be extracted from an SE(3) matrix using the

logarithm operation

µ = ln (E) . (3.12)

All operations on the SE(3) group are continuous and smooth, and hence differentiable in closed

form, which is essential for tracking applications. Differentiating a motion matrix E at the origin

µ = 0, the partial derivatives
∂E

∂µi
= Gi (3.13)

are simply the generator matrices.

3.3.2 Two-Stage Coarse-To-Fine Tracking

To continue with the pose estimation we now describe all steps of the two-stage tracking procedure

stated in [24] and give some more details regarding the single steps:

1. A new frame is acquired from the camera and a prior pose estimate is generated from
a motion model. During this step PTAM generates a four-level image pyramid, which

makes the algorithm able to cope with multiple scales. This is an essential property in terms

of our goal of multi-scale pose estimation. At level zero the full resolution image is stored,

whereas the levels below contain sub-sampled images of half the resolution of the image of

the higher level. On each level FAST corners are extracted as depicted in Figure 3.6.
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fine

coarse

level 0

level 1

level 2

level 3

Figure 3.6: For each new frame a four level image-pyramid is generated, used in the coarse-to-
fine tracking approach. Each level has half the resolution and a quarter the pixels of it’s parent
level, starting with the original image at level zero. Furthermore, FAST corners are extracted on
each level, illustrated as colored dots.

Additionally, a decaying velocity model in form of a six-dimensional vector

vt = τ
(
0.5 ln

(
ECW(E−CW)−1

)
+ 0.5 vt−1

)
(3.14)

with τ < 1 is used to propagate ECW , the actual pose of the camera, forward, while a

one-frame-per-second camera is assumed. This is done by applying the motion model from

Equation 3.14 to E−CW , which denotes the pose of the camera at the beginning of the frame.

The predicted pose of the camera in the next frame can be calculated by transforming the

prior pose using the motion vector vt, providing a posterior pose estimate

E+
CW = exp (vt)E−CW . (3.15)

2. Map points are projected into the image according to the frame’s prior pose estimate.
Using the camera’s estimated pose E+

CW determined by Equation 3.15, all currently avail-

able map points are projected to the image. PTAM uses a field of view (FOV ) camera model
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with a single distortion parameter [67]:(
uj

vj

)
= CamProj

(
E+
CWpjW

)

= CamProj


XC

YC

ZC

 (3.16)

=

(
px

py

)
+

[
fx 0

0 fy

]
r′

r

(
XC
ZC
YC
ZC

)
,

where r =

√(
XC
ZC

)2
+
(
YC
ZC

)2
, and r′ = 1

ω arctan
(
2r tan

(
ω
2

))
compensate for radial lens

distortion.

3. A small number of the coarsest-scale features are searched for in the image. In order

to match a single map point in the current image PTAM performs a patch-based search.

Therefore each map-point is first transformed into the camera-coordinate frame using the

predicted pose E+
CW and then projected to the image plane. Around this location a patch

based search is performed, again using SSD (see Equation 3.1) to determine patch similarity.

Additionally, a patch warping is performed to account for viewpoint changes. Further details

regarding the patch search can be found in [24].

4. The camera pose is updated from these coarse matches. For details on how the pose

update is done refer to the following Section 3.3.3.

5. A larger number of points is reprojected and searched for in the image. When the

coarse tracking is completed and the pose has been updated a first time, the same procedure

is repeated using a larger number of points on the lower levels of the image pyramid.

6. A final pose estimate for the frame is computed from all the matches found. The final

pose estimate is again computed according to Section 3.3.3.

3.3.3 Pose Update

From all the matches determined during patch-based search, a camera pose update can be com-

puted as

E∗CW = MC E+
CW = exp (µC) E+

CW , (3.17)
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where MC accounts for a small camera motionµC , which minimizes the sum of reprojection errors

for the given set of correspondences. The reprojection error is defined as

ej =

(
ûj

v̂j

)
− CamProj

(
exp (µC)E+

CW pjW
)
, (3.18)

where (û, v̂)T is the position the patch has been found, and pjW is the jth 3D-point in terms of the

world coordinate frame, respectively. A general approach is to minimize the sum of reprojection

errors using a least squares formulation

min
∑
j

(||ej ||)2 , (3.19)

where || · || is the L2-norm. Due to noise, occlusions and false matches the minimization has to

be performed robustly, as the standard least squares is unstable when outliers are present in the

data. Thus the minimization is performed robustly using M-Estimators [54], as they are capable

of dealing with gross errors by applying a robust penalty function ρ(e) to the residual error. Hence

the minimization problem of Equation 3.19 becomes

min
∑
j

ρ (||ej ||) . (3.20)

The minimization is done by taking the derivative of Equation 3.20 with respect to a parameter

vector p - which in our case has six dimensions (pose) - and set it equal to zero. Thus,

∂

∂p

∑
j

ρ (||ej ||)

 =
∑
j

ψ (||ej ||)
∂||ej ||
∂p

=
∑
j

ψ (||ej ||)
||ej ||

eTj
∂ej
∂p

= 0 , (3.21)

where ψ(e) is called influence function and is the derivative of the penalty function ρ(e). If further-

more a weight function w(e) = ψ(e)/e is introduced, the minimization problem of Equation 3.20

using 3.21 is equivalent to minimizing the Iteratively Reweighted Least-Squares (IRLS ) [68] prob-

lem

min
∑
j

w (||ej ||) ||ej ||2 , (3.22)

where w (||ej ||) is a robust weight function. A commonly used weight function illsutrated in

Figure 3.7 is the Tukey biweight function [69], which is used throughout this work when applying
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M-Estimators, and is defined as

wTUK(e) =


(
1−

(
e
c

)2)2 if |e| ≤ c

0 if |e| > c
(3.23)

where c is a threshold for outlier rejection, usually determined robustly from the residual’s dis-

tribution (e.g. median of standard deviation). The Tukey function even suppresses gross outliers.
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Figure 3.7: This figure depicts the robust penalty function ρ (a), the influence function ψ (b),
as well as the weight function w (c) according to Tukey. These functions are used during robust
iterative least-squares minimization to account for measurement errors and gross outliers.

The optimal pose update vector µ′ is then computed using the Tukey M-Estimator to perform

robust minimization by applying IRLS , after convergence yielding the pose update vector as

µ′ = argmin
µ

∑
j

wTUK (||ej ||) ||ej ||2 , (3.24)

from which MC = exp (µ′) and furthermore the final pose E∗CW can be computed using Equa-

tion 3.17.

3.4 Map Management

Bundle Adjustment (BA ) is a global optimization strategy where under the assumption of a Gaus-

sian noise distribution the MLE for a set of 3D-points X̂j and a set of camera projection matrices

P̂i is searched for, such that the geometric image distance d between the measured image points
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xij and the projected image points x̂ij = P̂iX̂j is minimized according to

min
P̂i,X̂j

∑
ij

d
(
P̂iX̂j ,x

i
j

)2
. (3.25)

According to [4], BA should be used as a final step of any reconstruction algorithm. BA is very

flexible and allows the integration of camera constraints and constraints on the position of 3D-

points. Yet, BA has two major drawbacks, including the need of a good initialization and the

growth in time of the minimization problem along with the number of parameters. PTAM delivers

a quite good initialization where BA can be applied easily, however, the number of increasing

parameters to optimize remains. Since each camera generally has eleven DOF , and each 3D-

point an additional three DOF , a minimization for n 3D-points and m camera matrices involves

3n+11m parameters in general, or 3n+6m parameters in case of a calibrated camera. This results

in a fast growth in time needed for global BA , as the number of points and cameras increase.

According to the fact that most points are only observed by a small set of cameras, the resulting

sparseness of the problem can be exploited using e.g. sparse Cholesky factorization or sparse LM ,

resulting in tremendous speedups. The Jacobian matrix containing the first order partial derivatives

J =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn

 , (3.26)

as well as the square Hessian matrix of second order partial derivatives of a function

H =



∂2f
∂x21

∂2f
∂x1x2

· · · ∂2f
∂x1xn

∂2f
∂x2x1

∂2f
∂x22

· · · ∂2f
∂x2xn

...
...

. . .
...

∂2f
∂xnx1

∂2f
∂xnx2

· · · ∂2f
∂x2n

 , (3.27)

are used in Newton-type optimization methods like LM , as they occur in local Taylor expansion

of a function

f(x + ∆x) ≈ f(x) + J(x)∆x +
1

2
∆xTH(x)∆x . (3.28)

Since most points are only observed by a small set of cameras, J and H have a sparse, block-like

structure, allowing a more efficient solution of the BA problem by using sparse methods. An

example from [70] of an artificial BA problem, including the block-like structures of J and H,

respectively, is given in Figure 3.8.
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(a) Example (b) Jacobian matrix (c) Hessian matrix

Figure 3.8: Figure (a) describes an artificial structure from motion problem, where A-D are
cameras and 1-9 feature points. The lines indicate which point is observed by which camera.
(b) depicts the associated Jacobian J, and (c) the Hessian H. The matrices are ordered in a
way that the point variables are before the camera variables. The block-like structure of the two
matrices, resulting from the fact that most points are only observed by a small set of cameras,
allows more effective optimization using sparse methods. Image taken from [70].

Although sparsity is exploited, PTAM needs tens of seconds for full BA to converge when the map

has more than 150 keyframes. Hence, to perform optimization in a reasonable amount of time,

PTAM also performs local BA . During local BA the pose of the most recent keyframe and its

closest neighbors, together with all map points observed by these keyframes, are optimized. This

optimization is performed in the same way as global bundle adjustment, but with the difference that

only a small part of the map is optimized. Only if enough computational resources are available,

PTAM performs full BA . Thus, during map optimization first a local BA is performed for the

most recent keyframe added, and if this optimization has converged global BA proceeds during

the next iteration, as depicted by Figure 3.9. The changes made to the locations of the keyframes

and the positions of the map points during optimization are directly applied to the map.
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Figure 3.9: During map optimization in the mapping thread PTAM always performs a local BA
first. There, the most recent keyframe and its closest neighboring keyframes are optimized. If
the local optimization has converged, during the next iteration the entire map is optimized until
convergence has been reached.

3.5 Summary

In this chapter the current state-of-the-art implementation of a visual simultaneous localization

and mapping implementation, namely Parallel Tracking And Mapping (PTAM ) [24] has been de-

scribed. Important parts of the framework, including initialization, iterative pose and map updates

as well as map management have been discussed in more detail, as these parts are important to our

approach presented in the remainder of this work.
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In this chapter we present how the VSLAM framework introduced in Chapter 3 can be extended

to make it suitable for online model-based multi-scale pose estimation. Major components include

a metric initialization, a model-based pose refinement, and a model-based tracking stage.

4.1 Overview

Initial experiments regarding the fully automatic estimation of the camera’s pose with respect to

a single known object from still images have shown unsatisfactory results, especially for wiry

objects. As wiry objects have little associated texture, descriptor-based and appearance-based ap-

proaches are not applicable. Correspondence-based approaches do not fulfill our real-time require-

ment as the large amount of unknown correspondences require robust RANSAC -style algorithms

with a rather high number of iterations. Because of these issues, and furthermore because of the

availability of a continuous image stream, we employ a VSLAM approach where the pose of the

camera just has to undergo small changes from one frame to the next. We build our work on the

keypoint-based VSLAM framework introduced in Chapter 3, which is already real-time capable

and copes with multiple scales. However, to incorporate the prior knowledge about the object in

35
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form of a CAD -model, we extend the framework in several ways.

First, we use the CAD -model of the object to generate a metrically correct map during initial-

ization. Hence, a metrically correct pose is determined in every frame and can be fused with

other systems such as GPS , or can be integrated into cartographic maps such as Open Street Map

(OSM ) 1. During initialization some user interaction is required, however, we thus avoid object-

dependent pose ambiguities right from the beginning.

After having initialized the keypoint-based tracking, the object is actually only tracked by its

surroundings. This has on the one hand the advantage that the pose can be estimated over multiple

scales, and that the pose estimation is robust to partial occlusions of the object. Additionally,

pose estimation is even possible when the object completely vanishes, which is not the case for

pose estimation algorithms based on the object alone. On the other hand, given a good prior pose

estimate from keypoint-based tracking, we can use the knowledge about the object’s geometry

to refine the pose, which is the second extension. A refinement is only triggered if the object is

present in the image, and furthermore occupies a significant amount of it. The refinement itself is

robust to partial occlusions as well, and helps to improve accuracy especially when the camera is

close to the object.

Keypoint-based pose estimation works well when enough discriminative world information is de-

tected in the current image. When thinking for instance of inspection tasks, closeup views of the

known object are sometimes necessary. When being that close to an object, keypoint-based track-

ing often fails as too few discriminative world information can be found in the image. However,

the model is very prominent in such cases. As a third extension, we therefore impose a purely

model-based tracking component. Model-based tracking tries to close the gap until revisiting al-

ready explored areas, where we can switch back to keypoint-based tracking. The model-based

tracking component works the same way as the refinement component, however, due to the lack

of a background-based pose propagation it is more affected by fast translations and rotations. We

therefore just rely on this approach if keypoint-based tracking fails.

The keypoint-based VSLAM approach has been extended with several model-based components.

A graphical overview of the entire system is given in Figure 4.1. The remainder of this chapter

explains the metric initialization process, as well as the individual steps needed for pose refinement

and model-based tracking.

1http://www.openstreetmap.org

http://www.openstreetmap.org
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Figure 4.1: System overview. The gray blocks depict the extensions. After a metric initialization
using the CAD-model, the object is tracked by its surroundings. This pose is then refined to
improve accuracy. When tracking the object by its surroundings fails, a model-based tracking
takes over, while seamlessly switching back to a background-based tracking when visiting already
explored areas. In case tracking is completely lost a recovery attempt is initiated.

4.2 Initial Pose Estimation and Map Construction

Detailed information about a single object in the scene is given in form of a CAD -model. This

means that the VSLAM algorithm can be initialized metrically. Therefore, we extend the previ-

ously introduced initialization process. Beyond the frame-by-frame feature tracking, we now need

two additional steps during initialization:

• Solving a PnP -problem. The first camera pose is calculated by choosing point corre-

spondences between 3D-object points Xi and the 2D-image points xi. This results in a

PnP -problem, which is solved using an iterative LM optimization algorithm. We solve the

problem by employing Zhang’s method [71] for camera calibration, with the exception that

the intrinsic camera parameters as well as the distortion coefficients are given a-priori, as

the camera has already been calibrated beforehand. The algorithm then minimizes the sum

of reprojection errors

min
P

∑
i

d (PXi,xi)
2 , (4.1)

where d(a,b) is the geometric image distance between the points a and b measured in pix-

els. As LM methods need an initial estimate, planar and non-planar cases of point configu-

rations are considered. In the case of a planar configuration the initial estimate is calculated

via homography estimation and decomposition, whereas in the case of non-planar points

DLT is used to solve for an initial guess. As soon as LM has converged, the first camera po-

sition C1 is determined, and frame-by-frame feature tracking starts. Note that at least four

correspondences are necessary for a unique solution, and that they have to be chosen care-
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fully as outliers are not handled. Our implementation therefore requires a human operator

to choose the correspondences between model and image.

• Rescaling the baseline. After the end of frame-by-frame feature tracking is determined

by the user, a homography is estimated between the initial camera C1 and the translated

camera Ĉ2 and further decomposed into a rotation matrix R and a relative translation vector

t̂ using [44]. However, the translation t̂ is only determined up to an unknown scale factor s.

The scale is corrected by first choosing another correspondence between a previously chosen

3D-model point X and a 2D-image point xĈ2
. Thus, as by now two image locations of one

and the same point, namely xC1 and xC2 , and the relative camera translation t̂ and rotation

R between the two views C1 and Ĉ2 are known, the corresponding 3D-model point X̂C1

can be triangulated in the camera coordinate frame of camera C1. After the 3D-model-point

X has been transformed to the same coordinate frame, the disparity in length between the

true XC1 and the reconstructed 3D-model-point X̂C1 can be calculated, from which the

scale factor

s =
||XC1 ||
||X̂C1 ||

(4.2)

can be derived using similar triangles, where || · || depicts the length of the vector. This

factor is then used to scale the baseline to its correct metric length, yielding the true metric

translation vector t = st̂. This procedure is depicted in Figure 4.2.

The only constraint enforced to the initialization is the availability of a metrically defined model

of the object of interest in form of a 3D-point list together with a list of connected vertices, similar

to Virtual Reality Modeling Language (VRML )-files such as the one shown in Listing 4.1. It is

important to our implementation that the model is represented using a quadrangular mesh rather

than a triangular mesh, as with a triangular mesh additional edges would be introduced, which are

not part of the physical object. Furthermore, the object has to be centered around the origin of

the xy-plane and grows in direction of the positive z-axis. Some examples of 3D-objects and their

corresponding CAD -models are given in Figure 4.3. By enforcing these constraints, the model

coordinate system and the world coordinate system are the same, and additional transformations

between these two coordinate systems during pose estimation are avoided.
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Figure 4.2: The location of camera C1 is determined by solving a PnP-problem, after at least four
point correspondences between a metric object model and the image have been chosen manually.
Then, frame-by-frame feature tracking is used to track correspondences, from which a homography
is estimated and subsequently the relative camera motion t̂ and rotation R between C1 and Ĉ2 are
extracted. The translation vector t̂ is corrected by t = st̂, where the scaling factor s is determined
using an additional correspondence xC2 and the disparity in length between the reconstructed X̂
and the true model-point X. Thus, the exact location of camera C2 is known too.

Listing 4.1: This example shows the definition of a metric CAD-model. The definition of the 3D-

point list together with a list of point indices connecting the vertices is shown. The model is defined

using quadrangles rather than triangles. The connection of four points is terminated via -1.
# I n v e n t o r V2 . 1 a s c i i

Separator {
DEF p o i n t s Coordinate3 {
p o i n t [

# bot tom

0 .089 −0.123 0 .000 # v e r t e x 0

0 .089 0 .123 0 .000 # v e r t e x 1

−0.089 0 .123 0 .000 # v e r t e x 2

−0.089 −0.123 0 .000 # v e r t e x 3

# t o p

0 .089 −0.123 0 .030 # v e r t e x 4

0 .089 0 .123 0 .030 # v e r t e x 5

−0.089 0 .123 0 .030 # v e r t e x 6

−0.089 −0.123 0 .030 # v e r t e x 7

]

}
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DEF c o n n e c t i o n s IndexedFaceSet {
coordIndex [

0 , 1 , 2 , 3 , 0 , −1 # bot tom

4 , 5 , 6 , 7 , 4 , −1 # t o p

0 , 1 , 5 , 4 , 0 , −1 # f r o n t s i d e

0 , 3 , 7 , 4 , 0 , −1 # l e f t s i d e

1 , 2 , 6 , 5 , 1 , −1 # r i g h t s i d e

3 , 2 , 6 , 7 , 3 , −1 # back s i d e

]

}
}

Figure 4.3: The top row shows the objects of interest, namely a book, a box for staples, a wooden
wiry box, and a wooden model of a power pylon. The corresponding rendered CAD-models are
depicted in the bottom row, respectively.

While manual initialization has the drawback of requiring more user interaction, it has another

important advantage besides the fact that the localization and mapping tasks are now performed

metrically. Difficult and object dependent ambiguities are eliminated right at the beginning, thus

all pose ambiguities – multiple poses for which the object appears the same – can be neglected.

Therefore, not even a cube looking the same from six different viewpoints states a problem to the

proper functionality of our algorithm. This, however, is not only the result of manual initialization,

but rises from the fact that the object’s pose is actually determined using the entire image. Hence,

the object’s pose is determined by all features detected, regardless whether they are located on the

object itself or its surroundings. In Figure 4.4 the procedure of metric initialization is illustrated

step by step.
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(a) First, at least four correspondences between CAD -model and image
have to be selected manually. These n correspondences are then used to
solve the PnP -problem and retrieve the pose of the first keyframe. After
a first pose has been retrieved, the camera has to be translated sideways
and may also be rotated.

(b) During translation salient im-
age locations are tracked. These
are used to estimate a homography,
from which a relative camera trans-
lation t̂ and rotation R are then ex-
tracted.

(c) Finally, one last correspondence has to be chosen manually to per-
form the scale correction of the baseline. After re-scaling the baseline
to its correct metric length, simultaneous tracking and mapping of the
environment begins.

(d) During tracking the xy-plane is
drawn as grid, the detected feature
points are shown as dots, and the
wireframe model is overlaid to the
scene.

(e) The 3D-map points are shown
as dots, while the model is ren-
dered as a white wireframe. The
first two keyframes are shown in
red and yellow, respectively.

(f) The image of the first
keyframe with the wireframe
model overlaid.

(g) The image of the second
keyframe with the wireframe
model overlaid.

Figure 4.4: All steps needed for metric initialization are illustrated successively by figures (a-c).
After initialization has been completed, the map is shown in figures (d) and (e). The images of the
first and second keyframe are depicted by (f) and (g), respectively.
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4.3 Iterative Pose and Map Update

After an initial map has been generated, the algorithm has to simultaneously update the map when

exploring the environment in order to successfully track its position. As described in Chapter 3, at

each frame received, the current camera pose is updated iteratively during a two-stage coarse-to-

fine tracking procedure. The last pose of the camera is therefore updated by forward-propagation

using a motion model (Equation 3.15), giving a predicted pose E+
CW . Using this estimated pose

all map points are projected into the current image, a patch-based search is performed to deter-

mine correspondences, and a pose update vector µ′ is robustly calculated using an M-Estimator

(Equation 3.24). The final pose E∗CW is then calculated as

E∗CW = exp(µ′) E+
CW . (4.3)

During tracking, unknown locations in the environment are visited, and the map therefore has

to be updated accordingly. PTAM therefore creates so-called keyframes at previously unknown

locations, which are separated from each other not only by a minimum number of frames, but as

well by a minimum distance in space. When a keyframe is inserted, it is integrated into the map

and new 3D-map points are triangulated, added to the map, and in succession used again during

tracking.

In contrast to the standard PTAM approach, the pose E∗CW is now again refined using the available

model information if the model is currently present in the image and occupies a significant area.

The technique we use to refine our pose is based on an edge-based tracking algorithm proposed by

Drummond and Cipolla [50], which has already been successfully applied to several augmented

reality applications, including e.g. work of Klein et al. [48] and Reitmayr et al. [49]. This pose

update is point-based and again performed in a robust manner, thus several steps are needed:

• Interpolate additional model points on edges of the CAD -model and determine their visibil-

ity using the depth buffer information retrieved from a rendering component,

• perform a perpendicular search for the strongest image gradient of approximately same

direction as the model’s edge which is expected to be part of the object, and

• robustly calculate another pose update vector using an M-Estimator in combination with

IRLS .

The refinement component is not only used to refine the pose for increased accuracy, but also for

frame-to-frame tracking in cases where the keypoint-based approach loses the map. It is schemat-

ically depicted in Figure 4.5, and subsequently each block is going to be described in detail.
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Figure 4.5: The refinement component, consisting of several blocks, has been integrated into the
keypoint-based tracking loop to refine the pose, or even take over tracking in cases where the map
gets lost. The CAD-model is used during determination of the area occupied by the object, during
interpolation of additional model points, as well as during determination of their visibility using
a rendering component, and during the perpendicular search for the strongest edge.

Determination of the area occupied by the object. First, when a refinement is triggered, the

model points are projected to the image. Then, a bounding box is determined and the ratio between

the image and the area of the bounding box is calculated. If this ratio

A bounding box

A image
> t (4.4)

exceeds a certain threshold t, a refinement is performed. Otherwise, the object is either not present

in the image anyway, or too small, so that calculating a refinement based on the object’s model

would not improve the camera’s pose notably. A few examples of the projected model points

together with the determined bounding box for the 3D-model of a book are given in Figure 4.6.
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(a) (b) (c) (d)

Figure 4.6: The first step needed when triggering a pose refinement is the determination of the
area currently occupied by the object. A refinement is triggered in case the object is fully present
in the image as in (a), or only partially visible as in (b), as long as it is large enough. However, if
the object is too small as in (c) or even not present at all as in (d) no refinement is performed.

Computation of gradient image. The refinement is based on gradient information extracted

from the current image I . Therefore, the image is convolved with the derivatives of a Gaussian

kernel Gx(x, y, σ) in x-direction and Gy(x, y, σ) in y-direction, respectively. The kernels are

calculated as

Gx(x, y, σ) =
∂
∂x

(
exp

(
− (x2+y2)

2σ2

))
= − x

σ2 exp
(
− (x2+y2)

2σ2

)
and (4.5)

Gy(x, y, σ) =
∂
∂y

(
exp

(
− (x2+y2)

2σ2

))
= − y

σ2 exp
(
− (x2+y2)

2σ2

)
, (4.6)

where the standard deviation σ is the only parameter. Pixels farther away from the center therefore

have smaller influence on the result of the convolution, whereas pixels beyond 3σ have negligible

effects on the result. The image derivatives are then calculated as

Ix = Gx ∗ I and (4.7)

Iy = Gy ∗ I , (4.8)

where F ∗ I expresses a convolution of an image I with a convolution kernel F . Using the image

derivatives Ix and Iy, the gradient magnitude |∇I(x, y)| as well as the gradient direction ψ can be

computed as

|∇I(x, y)| =
√
I2x + I2y and (4.9)

ψ = arg (Ix, Iy) , (4.10)
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where arg (x, y) is the angle from the x-axis to the point (x, y). The previously calculated bound-

ing box is increased by a certain percentage, and the magnitude and phase information is extracted

for this region of interest only. An example is given in Figure 4.7.

(a) Magnitude information (b) Phase information

Figure 4.7: The calculated bounding box is increased by a certain percentage, and gradient
information is extracted according to Equations 4.9 and 4.10, respectively.

Interpolation of additional model points and determination of their visibility. Typically too

few model points exist in order to perform a robust refinement and additional 3D-model points

need to be interpolated. Therefore, all model points are first projected into the image. Then, on

each line connecting a pair of model points (A,B) the number of additionally needed 3D-points

Ni =
d (PAi,PBi)

s
(4.11)

is determined, where d(a, b) is the distance in pixel between two image points a and b, P is the

projection matrix for the actual camera pose E∗CW , and s is the maximum distance in pixel for two

neighboring model points. After adding

N =
∑
i

Ni (4.12)

additional points to the 3D-model, each of these points has to be tested for visibility in the current

frame. For this purpose, a rendering component is used where the CAD -model is rendered under

its currently estimated pose E∗CW . After rendering, the depth buffer – also called z-buffer – is

retrieved [72]. Each value in the z-buffer contains the depth value of the object closest to the

camera, and therefore allows testing for visibility of a 3D-world point XW by first transforming it
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to the camera coordinate frame via

XC = E∗CWXW . (4.13)

Then, the 3D-point XC is projected from the camera coordinate frame to normalized clipping

coordinates xncc in the range of [−1, 1], using


xncc

yncc

zncc

 = P4×4


XC

YC

ZC

1

 , (4.14)

where P4×4 is the OpenGL camera projection matrix which has been used during rendering.

Hereafter, (xncc, yncc)
T are linearly transformed to image coordinates (uncc, vncc)

T , where

(uncc, vncc)
T is used as a lookup index in the z-buffer to retrieve the correct depth value for the

3D-point. If the difference

|zncc − zbuffer (uncc, vncc) | < τ (4.15)

between the depth zncc of the 3D-point in the normalized clipping coordinate frame and the corre-

sponding z-buffer value zbuffer (uncc, vncc) is below a threshold τ , the 3D-point XW is considered

visible, otherwise invisible. As the z-buffer only contains values between [−1, 1], where the near-

plane is at−1, and the far-plane at 1, these planes are always set as close to the object’s boundaries

as possible, in order to retrieve highest possible accuracy for the depth values. In Figure 4.8 an

example of the interpolation of additional visible model points is given, starting with only the

information from the CAD -model, the visibility test using the depth buffer from a rendering com-

ponent, to the final result of the visible model points. Another example of interpolating and testing

for visible points is given for a wiry object, depicted in Figure 4.9.
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(a) Only the CAD -model infor-
mation is available at the begin-
ning, including the eight model
points (green dots) and the edges
(yellow).

(b) After interpolating additional
points, all of them (yellow) are
tested for visibility, using depth
information. Visible points are
highlighted by a green circle.

(c) The final result of all addi-
tional and visible points is over-
laid to the scene.

Figure 4.8: Starting from the available CAD-model information (a) and the current pose E∗CW ,
N = 782 additional 3D-model points are interpolated. The CAD-model is then rendered and
all points are tested for visibility using the z-buffer, which can be retrieved from the rendering
component. The depth buffer is depicted in (b) together with all points to test (yellow). The 606
visible points are encircled green, and finally overlaid to the scene in (c). Occlusions by other
objects like the bottle cannot be handled here, as only the available CAD-model can be rendered
and used for visibility testing.

Figure 4.9: This example shows the same three steps as depicted by Figure 4.8, except for a wiry
object. N = 2403 additional visible 3D-model points are shown here. Despite the small cross-
sections of the object, depth testing yields very accurate results. Note that parts of the object are
outside the image.
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Perpendicular search for the strongest edge. For all model points including the interpolated

ones, a linear search for the strongest gradient magnitude is performed as depicted in Figure 4.10.

The search line η is arranged perpendicular to the model’s edge. The projected model point is now

shifted along the perpendicular search line to the image point (x, y) which maximizes

max
(x,y)

(
|∇I(x, y)| exp

(
−v

2 − µ2

2σ2

)
− λ ^ (ψ(x, y),η)

)
, (4.16)

where the image gradient magnitude |∇I(x, y)| is weighted with a Gaussian windowing function

centered at the projected model point’s position µ, the scalar v denotes the distance along the

search line, and λ ^(n1,n2) is a term that penalizes orientation deviations between the perpen-

dicular search direction η and the image gradient direction ψ(x, y). In short, what we are looking

for is the nearest image location of the projected model point with the strongest gradient response

and approximately the same direction.

projected model points

perpendicular

search line

object in

the image

image gradient

gradient direction

Figure 4.10: For each projected model point, a linear search perpendicular to the model’s edge is
performed. The image point is thereby shifted along the search line η, while looking for a strong
image gradient with approximately the same direction. The gradient magnitude is weighted with a
Gaussian windowing function centered at µ, where σ2 controls the expansion of the search region.

The perpendicular search strategy proposed here is similar to that used by Berger et al. [73].

However, false matches might occur with models consisting of thin structures delimited by two

edges, as it is the case with wiry structures. We try to overcome this issue by using a tight search

region with small σ during the first iteration, assuming a good initial guess in the first place. When

refinement doesn’t converge after the first iteration, the search region is expanded.

Robust computation of the pose update vector. After a new image location has been deter-

mined for each visible model point using the perpendicular search strategy, the image distances

between old and new positions are assigned to an error vector e. We then calculate a motion vector



4.3. Iterative Pose and Map Update 49

µ which minimizes these image errors by solving the equation system

Jµ = e , (4.17)

where J is a Jacobian matrix describing the effect of each element of µ onto each element of e

in direction perpendicular to the edge. The elements of J are therefore calculated by taking the

partial derivatives at the current pose along the edge normal as

Jij =
∂ei
∂µj

= 〈n̂i ,

 ∂u
∂µj
∂v
∂µj

〉 , (4.18)

where (u, v)T are the image coordinates of the ith projected model point, n̂i is the corresponding

unit length edge normal, and 〈x, y〉 denotes the tensor dot product. Recalling from Equation 3.16

that a world point piW is projected to the image coordinates (u, v)T by first transforming it to

the camera coordinate frame using the actual pose estimate E∗CW and then performing the camera

projection as (
ui

vi

)
= CamProj (E∗CWpiW)

= CamProj


XiC

YiC

ZiC

1

 (4.19)

=

[
fx 0 px

0 fy py

]
XiC
ZiC
YiC
ZiC

1

 .

The radial lens distortion can be ignored here, as the images are undistorted prior to applying

our algorithm. Thus, Equation 4.19 has to be differentiated with respect to the motion parameter

vector µ by applying the chain rule[
∂ui
∂µ
∂vi
∂µ

]
=

∂ CamProj (E∗CWpiW)

∂µ

=
∂ CamProj (X)

∂X

∣∣∣∣
X=E∗CWpiW︸ ︷︷ ︸

I

∂ (E∗CWpiW)

∂µ︸ ︷︷ ︸
II

(4.20)
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with I:

∂ CamProj (X)

∂X

∣∣∣∣
X=E∗CWpiW

=

∂


[
fx 0 px

0 fy py

]
X
Z
Y
Z

1




∂X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
X=E∗CWpiW

=

fx 1
Xz

0 −fxXx
X2

z

0 fy
1
Xz

−fy Xy

X2
z

 , (4.21)

and with II:

∂ (E∗CWpiW)

∂µ

Eq. 3.13
=


1 0 0 0 Xz −Xy

0 1 0 −Xz 0 Xx

0 0 1 Xy −Xx 0

 , (4.22)

finally resulting in a 2× 6 Jacobian

[
∂ui
∂µ
∂vi
∂µ

]
=

fx 1
Xz

0 −fxXx
X2

z
−fxXxXy

X2
z

fx

(
1 + X2

x
X2

z

)
−fxXy

Xz

0 fy
1
Xz

−fy Xy

X2
z
−fy

(
1 +

X2
y

X2
z

)
fy

XxXy

X2
z

fy
Xx
Xz

 , (4.23)

describing the influence of a small increment around the current pose on the projected point pi.

Given all necessary mathematical expressions, Equation 4.17 may be solved for the motion-update

vector µ using a simple least-squares solution

µ = J†e , (4.24)

with J† =
[
JTJ

]−1
JT being the pseudo-inverse. However, as commonly known, least-squares

solutions are not robust to outliers. As in this case gross outliers are very likely to occur due to

noise, occlusions or falsely matched points during the perpendicular search, solving the above

equation system in a least-squares manner is not appropriate, as the distribution of the error vec-

tor e is not Gaussian at all. Therefore, a robust estimation for µ is performed, again using IRLS

performing

µ′ = argmin
µ

∑
i

wTUK (||ei||) ||ei||2 (4.25)
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each iteration, whereas the weights are again obtained by the use of a Tukey M-Estimator. A

few examples for such an iterative pose update using nine iterations, respectively, are given in

Figures 4.11, 4.12 and 4.13, respectively. The yellow pose depicts the pose E∗CW from the prior

iteration, while the green pose marks the updated pose

ECW = exp
(
µ′
)
E∗CW . (4.26)

The white lines show the error vectors connecting the points on the model edges with the points

found during the perpendicular search.

Figure 4.11: An example of an iterative pose refinement for a solid object using nine update
iterations is shown. The initial pose is shown in yellow, the refined pose in green. The error
vectors determined during the perpendicular search are depicted by the white lines. Iteration
count increases from the left to the right and from the top to the bottom.
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Figure 4.12: An example of an iterative pose refinement for a wiry object using nine update
iterations is shown. The initial pose is again shown in yellow, the refined pose in green. The error
vectors determined during the perpendicular search are depicted by the white lines. Iteration
count increases from the left to the right and from the top to the bottom.
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Figure 4.13: An example of an iterative pose refinement for a power pylon model using nine
update iterations is shown. The initial pose is shown in yellow, the refined pose in green. The
error vectors determined during the perpendicular search are depicted by the white lines. Iteration
count again increases from the left to the right and from the top to the bottom.





Chapter 5

Experiments and Results

Contents
5.1 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Several experiments with solid objects as well as wiry objects have been performed. Our imple-

mentation of online model-based multi-scale pose estimation runs in real time with 15-20 frames

per second (FPS ), while exploiting the computational resources of todays multi-core processors.

We have evaluated our adoptions in terms of tracking accuracy by comparison to a ground-truth,

acquired by an outside-in tracking system. All evaluation tasks are performed on a PC with an

Intelr CoreTM i5 2,66 GHz processor running Linux. Our implementation runs in C++ and makes

use of the Robotics Operating System (ROS ) 1. ROS is frequently used in robotics application to

perform distributed computing, because it already cares about many common problems such as

message passing.

5.1 Evaluation Setup

The accuracy of the algorithm has been evaluated by comparing the pose delivered by our system

against an off-the-shelf outside-in tracking solution from A.R.T. GmbH2. The tracking system

uses three A.R. tracking cameras and calculates 6 DOF positions of rigid arrangements of several

markers – also called a target – with an accuracy of approximately ±1mm. Such a target has been

mounted onto the camera shown in Figure 5.1(a). Additionally, a stylus equipped with a target,
1http://www.ros.org
2http://www.ar-tracking.de
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shown in Figure 5.1(b), was used to select the model points within the world coordinate frame of

the A.R.T. system, and furthermore calculate a transformation between A.R.T. world coordinate

frame and our tracking coordinate frame, by solving a 3D-similarity transformation of the form

Xleft = s (RXright + t) , (5.1)

where Xleft are the 3D-model points selected in the A.R.T. world coordinate frame A using the

stylus, and Xright are the model points defined within our tracking coordinate frameW . Thus, the

transformation fromW to A can be written as

EAW =

[
R st

0 0 0 1

]
. (5.2)

(a) Camera equipped with tracking target (b) Stylus equipped with tracking target

Figure 5.1: The camera in (a) has been equipped with a tracking target consisting of six mark-
ers, which allows us to retrieve a ground-truth for the camera’s pose. A stylus in (b) has been
used to select 3D-model points in the A.R.T world coordinate frame and subsequently calculate a
transformation from our tracking coordinate frame to the A.R.T coordinate frame.

Moreover, the transformation ECT between the camera coordinate frame C and the target’s coor-

dinate frame T , located in one of the six markers, has been calculated from 600 samples acquired

during a qualitatively well initialized tracking sequence. As we had to experimentally estimate the

fixed translation ECT , several hundred samples were used, however, we still impose a small sys-

tematic error, especially in the translational component. This is the reason for the many qualitative

results shown throughout this evaluation, as these images illustrate the accuracy.
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Given ECT allows us to compare the camera’s world pose Eour
CW calculated by our implementation,

to the ground-truth

Eart
CW = ECT ET AEAW (5.3)

measured by the outside-in tracking system. The chain of transformations is schematically de-

picted in Figure 5.2. Finally, Figure 5.3(a) shows the room with the A.R.T. system setup, while

Figure 5.3(b) shows a single A.R. tracking camera in action.

x
art

z
art

y
art

x

z

y

z
world

y
world

x
world

z
cam

x
cam

y
cam

Figure 5.2: To compare our camera pose Eour
CW to the ground-truth camera pose Eart

CW three dif-
ferent transformations have to be combined according to Equation 5.3. EAW is determined using
a similarity transform, ET A is delivered by the A.R. tracking system, and ECT is calculated from
600 samples during a qualitatively good tracking sequence.

5.2 Evaluation

Tracking accuracy is evaluated by comparing the camera’s pose, determined by our implementa-

tion, against ground-truth supplied by an outside-in tracking system. Additionally, we compare

the accuracy of a standard PTAM implementation against our implementation. Both approaches

are initialized metrically, but our implementation exploits additional model information during

initialization and tracking. Several different objects are used, including solid and wiry ones. For

both translational and rotational error, scalar error measures are used. While for the translational

error the Euclidean distance

terr = ||t− ttrue|| (5.4)
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(a) Evaluation setup (b) A.R. tracking camera

Figure 5.3: The evaluation setup consisting of three A.R. tracking cameras is shown in (a). Only
two of the three cameras are visible in the picture, while a single tracking camera in action is
shown in (b).

between the two camera centers is used, an attitudinal error measure based on a quaternion

representation has been chosen. A quaternion is defined as q =
[
ρT qw

]T
, with

ρ =
[
qx qy qz

]T
= ê sin

(
θ
2

)
and qw = cos

(
θ
2

)
, where ê is the axis of rotation and θ is the

angle of rotation [74]. Thus, the angular difference between two quaternions qtrue and q can be

calculated from qw as

θerr = 2arccos
(
||q−1trueq||w

)
, (5.5)

where || · ||w is an operation that first normalizes the quaternion resulting from the quaternion

multiplication, and then extracts qw.

The parameter settings throughout this evaluation are the same. While the significant area thresh-

old t = 0.2, the convolution kernel used to calculate the gradient information has σ = 0.7. The

parameter chosen for the perpendicular search strategy is λ = 0.8, and the expansion of the search

region is set to 30% of the maximum expansion of the bounding box. τ = 0.025 is used during

z-buffer thresholding.
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5.2.1 Solid Objects

First, results using a solid object are presented. The results for a two and a half minute long

tracking sequence of a book are listed in Table 5.1.

translational error [m] rotational error [deg]
µ ±σ max µ ±σ max

our implementation 0,017 0,008 0,107 1,0 0,4 4,8
std. PTAM 0,061 0,034 0,177 1,2 0,4 3,7

our implementation w/o global BA 0,017 0,008 0,064 1,0 0,4 3,2

Table 5.1: The accuracy of the standard PTAM implementation is compared against our im-
plementation, where additional model information is used during initialization as well as during
tracking. Furthermore, the effect of disabling global BA has been evaluated.

From the results listed in Table 5.1 one could assume, that our implementation significantly outper-

forms standard PTAM . This, however, is mainly due to the fact that the relative motion estimation

between the first and second keyframe estimated from the piecewise planar environment using [44]

is erroneous. Thus, a model-based refinement during initialization is essential. When the model

information is incorporated into the initialization process to refine the first two camera poses for

the first and the second keyframe, respectively, then standard PTAM is almost as accurate as our

implementation. The accuracy gained when constantly refining the pose during tracking using

the model is quite small as long as the initialization is good, and is not important until being very

close to the object. Furthermore, looking forward to use our implementation on a UAV , we tried to

save computational resources by disabling global bundle adjustment, as this is the computationally

most expensive task which grows rapidly with increasing map size [24]. We show that our imple-

mentation is able to track very accurately, even when disabling global optimization. However, this

only holds as long as we navigate within a local environment around the object of interest, in this

case within the vicinity of the book. In Figure 5.4 we compare the camera’s trajectory against the

ground truth acquired by the A.R.T. system for both our and standard PTAM implementations.

Additionally, the maximum translational as well as rotational error in our implementation occur-

ring due to a bad refinement are shown in Figure 5.5. This happens because our implementation

with all features enabled sometimes drops one or two frames, as we are operating at our com-

putational limits, which is not the case when disabling global BA . Therefore, although looking

contradictory, the accuracy during this experiment even improves when disabling global BA , as

shown in Table 5.1.
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Figure 5.4: The camera’s trajectory of our vision based system using additional model infor-
mation is compared to ground-truth obtained from an outside-in tracking system. High tracking
accuracy with a mean deviation of only 1,7 centimeters is achieved over a 2:30 minute long track-
ing sequence of a solid object, namely a book. In the upper right corner, marked in red, the
camera moved outside the tracking volume of the reference system, which has been considered
during evaluation.

Figure 5.5: When global BA is enabled additional computational resources are needed, which
sometimes leads to a drop of a few frames. Thus, the refinement component can fail to refine the
pose properly, which is not happening when global BA is turned off.
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Furthermore, Figures 5.8 and 5.9 show qualitative results acquired during the tracking sequence

used for evaluation. We first show the problems that occur, when refinement is not used during

initialization, followed by some qualitative results of our implementation. The high accuracy of

our implementation is evident, especially when being close to the object. This is in our case of

high importance, as we are working towards an inspection system, where closeup views of parts

of the object will become important. Furthermore, our implementation can handle smaller objects

(see Figure 5.6), as well as robustly deal with partial occlusions, not only during tracking but

during refinement as well, as depicted in Figure 5.7.

Figure 5.6: A small solid object, in this case a box for staples, is successfully tracked.

Figure 5.7: The object tracking process is very robust against partial occlusions, and severe scale
changes. The object is tracked using the entire 3D-information available, and thus when parts are
occluded enough information from the background is available to keep up tracking. However, not
only the tracking itself is robust to occlusions, but the refinement is as well. This is shown in the
bottom row of this figure. The refined pose is shown in green.



62 Chapter 5. Experiments and Results

Figure 5.8: A few qualitative results of standard PTAM, where no refinement during the initial-
ization has been used, are shown here. The images have been taken from the 2:30 minute long
tracking sequence used for evaluation. The inaccuracies due to a bad initialization are clearly
visible, especially when close to the object. The bottom row shows the final map.
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Figure 5.9: A few qualitative results of our implementation are shown here. The high accuracy
is visible, especially when being close to the object. Obtaining such highly accurate results is
only possible when the initialization is excellent, which is assured by refining the first and second
keyframe during initialization. The bottom row shows the final map.
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5.2.2 Wiry Objects

The same experiments performed for the solid object have been performed with a wiry object,

namely the wiry-wooden box from Figure 4.3(c). The same observations made before hold for the

results of the wiry object as listed in Table 5.2, except the maximum errors also occur when global

BA is disabled. This is due to the fact that the computational time for refinement slightly increases

with the number of model points. The accuracy strongly depends on a good initialization, achieved

by using the refinement component during initialization. The camera trajectories of our and a

standard PTAM implementation, compared to ground-truth, are shown in Figure 5.10. Although

overall tracking accuracy slightly decreases compared to the solid object, the qualitative results

depicted in Figure 5.12 show very satisfactory results.

translational error [m] rotational error [deg]
µ ±σ max µ ±σ max

our implementation 0,026 0,031 0,300 1,6 1,4 16,5
std. PTAM 0,069 0,029 0,320 1,4 1,3 11,3

our implementation w/o global BA 0,026 0,031 0,313 1,6 1,3 11,7

Table 5.2: The accuracy of the standard PTAM implementation is compared against our im-
plementation using the refinement component during initialization. Furthermore, the effect of
disabling global BA on the accuracy of the tracking has been evaluated.
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Figure 5.10: The camera’s trajectory of our implementation has been compared to ground-truth
obtained by an outside-in tracking system. Tracking accuracy with a mean deviation of 2,6 cen-
timeters is achieved over a 2:00 minute long tracking sequence of a wiry object. The camera
moved several times outside the tracking volume of the reference system, marked in red, which has
been considered during evaluation.
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Figure 5.11: A few qualitative results of standard PTAM are shown here. The inaccuracies due
to a bad initialization are again clearly visible, especially when being close to the object. The
bottom row shows the final map.
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Figure 5.12: A few qualitative results of our implementation are shown here. The high accuracy
is visible, especially when being close to the object. The bottom row shows the final map.
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After having evaluated the accuracy for wiry objects as well, we want to show further qualitative

results from two scenes where our hand-crafted wooden power pylon was used as object of interest.

The results for both scenes are depicted in Figure 5.13 and Figure 5.14, respectively.

Figure 5.13: A few qualitative results of our implementation are shown here for an indoor scene
with the hand crafted wooden power pylon. Note the partial occlusions in the middle row.
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Figure 5.14: A few qualitative results of our implementation are shown here for an outdoor scene
with the hand-crafted wooden power pylon. In some cases the alignment is not perfect, such as
depicted in the last row. This is caused by the very thin structure and the fact that despite the small
search region used during the first iteration, too many wrong image points are determined during
the perpendicular search.

5.2.3 Overcoming tracking failures

The main benefit of our implementation, however, is to combine PTAM ’s tracking procedure with

model-based tracking in order to keep up tracking in cases where standard PTAM would lose it.

This is especially the case when capturing closeup views of parts of the object as needed during

inspection tasks. To track the model in a frame-by-frame manner, we simply use the same refine-

ment component used during initialization. However, to ensure real-time operation, we perform
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less pose update iterations, and only determine model point visibility in every fifth frame. We have

simulated such closeup views using the wiry wooden box, and compared the standard PTAM im-

plementation against our implementation with model-based refinement and model-based recovery.

As can be seen from the results summarized in Table 5.3, loss of tracking could always be pre-

vented for this 2:20 minute long video sequence when using model-based tracking during failure

recovery. This is not true for the standard PTAM implementation where tracking is completely

lost in 20,9%. Moreover, we could not only keep up tracking during longer periods of time, but

even avoid further loss of frames by the use of model-based tracking. Qualitative model-tracking

results from Figure 5.15 show very promising results. More results can be seen in the video,

available online3.

#frames #frames lost frames lost [%]
#frames

recovered
frames re-

covered [%]
standard PTAM 4110 860 20,9 0 0,0

our implementation 4110 272 6,6 272 100,0

Table 5.3: A model-based tracking using our refinement-component takes over tracking in cases
where standard PTAM tracking fails. This especially is the case when capturing closeup views of
an object to inspect. During a 2:20 minute long tracking sequence including several closeups we
could always recover from loss of tracking by switching to a model-based tracking stage. Further-
more, the total number of frames lost is far smaller, because by overcoming tracking failures the
need to attempt a total recovery could be avoided completely.

5.3 Discussion

During the experiments for solid and wiry objects of different sizes we have shown that we are

able to determine the camera’s pose accurately by integrating the available prior knowledge of the

model into PTAM . We use the model information to create a metrically correct map from scratch,

and have shown that a refinement of the first two keyframes ensures a good initialization. An

accurate initialization is the most important step towards an accurate SLAM system.

Beyond using the refinement component during initialization, we perform a pose refinement in

each frame when the object occupies a significant area of the image, in order to improve accuracy.

When too few map-points are detected in the image, tracking usually gets lost. This is the case

for instance when capturing closeup views where the background has little texture. A possible

scenario would be the inspection of an insulator at a power pylon with just sky in the background.

3http://aerial.icg.tugraz.at

http://aerial.icg.tugraz.at
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Figure 5.15: When not enough features for tracking are available, we automatically switch to a
model-based tracking stage in order to avoid tracking failure. Some qualitative results are shown
here for thirty continuous frames.

We showed that we can overcome such failures by seamlessly switching to a model-based tracking

stage, and switch back to standard tracking if enough map-points are detected again.

A drawback of our current implementation is that during purely model-based tracking we are quite

prone to fast motions, as a fast motion results in a rather big shift of the model in the image when

being close to it. Besides fast motions, the refinement component can fail if too strong edges par-

allel to the object’s edges are apparent in the scene. This is not an issue during a refinement when

the prior pose estimate to refine is delivered by PTAM ’s standard tracking procedure, however,

becomes a serious problem when only performing edge-based model tracking. This, however, can

be resolved by predicting the camera’s transformation using the IMU as for instance demonstrated

in [48, 49].
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During this work we have presented our online model-based multi-scale pose estimation approach,

which builds upon a state-of-the-art VSLAM implementation. We integrated prior knowledge of

our object of interest not only during initialization, but used this information during the entire

tracking procedure. To conclude our work, we summarize our contributions and present an outlook

to future work.

6.1 Conclusion

We have shown that we are capable of delivering accurate metric pose estimates in real time for

different sizes and types of objects, including solid and wiry models. We are able to estimate

the camera’s pose over multiple scales: When far away from the object, or in cases where the

object is not even present in the image, the pose is estimated using the standard keypoint-based

tracking procedure. When close to the object the additional model knowledge is used to refine

this pose estimate. We have learned that refining the pose is most important in terms of accuracy

during the initialization step. Furthermore, the model information has been used for model-based

tracking to overcome failures in cases where tracking using the background information failed.

This especially avoids tracking failures when capturing closeup views of the object, for instance

during inspection tasks. Our implementation only requires a single camera, and steps towards

using this implementation on a UAV with limited computational resources have been taken. This

73
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especially involves the disabling of the computationally expensive global map optimization, while

retaining accuracy. Furthermore, the entire algorithm has been realized as a stand-alone ROS -

node, which allows for distributed computing as often needed in mobile robotics applications.

6.2 Future Work

With our implementation we are able to obtain accurate metric pose estimates in real time solely

based on images. However, when thinking of a UAV other sensors are available, namely GPS and

IMU data. For future work we therefore suggest a robust fusion of all data available, including

a pose prediction based on gyroscopic measurements. The IMU typically operates at far higher

rates than a camera and thus could be used to accurately propagate the pose from one frame to the

next. We think that incorporating IMU data especially helps to cope with fast camera movements

and rotations during model-based tracking, where our implementation currently lacks accuracy.

Other than that, the refinement component now performs a sequential perpendicular search for

each edge point, but this could be performed in parallel on a Graphics Processing Unit (GPU ).

GPUs are not yet available in such small form factors that they could be used on a UAV , however,

we think that this is going to be the case in near future.



Appendix A

Acronyms

List of Acronyms

AR Augmented Reality

BA Bundle Adjustment

CAD Computer Aided Design

DLT direct linear transformation

DoG Difference of Gaussian

EKF Extended Kalman Filter

EM Expectation Maximization

FAST Features from Accelerated Segment Test

FPS frames per second

GMM Gaussian Mixture Model

GPS Global Positioning System

GPU Graphics Processing Unit

IMU Inertial Measurement Unit

IRLS Iteratively Reweighted Least-Squares

LM Levenberg-Marquardt

LS Least-Squares

MLE maximum likelihood estimation

MSER Maximally Stable Extremal Region

OSM Open Street Map

PTAM Parallel Tracking And Mapping

P3P Perspective three Point problem
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PnP Perspective n Point problem

RANSAC RANdom SAmple Consensus

ROS Robotics Operating System

SfM Structure from Motion

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization And Mapping

SSD Sum of Squared Differences

SVD Singular Value Decomposition

SUSAN Smallest Univalue Segment Assimilating Nucleus

UAV Unmanned Aerial Vehicle

VSLAM Visual SLAM

VRML Virtual Reality Modeling Language

WLS Weighted Least-Squares
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