
Efficient Implementation of
Elliptic Curve Cryptography in Software:

Protocols and
Improved Scalar Multiplication Methods

on Koblitz Curves

Christian Wagner

Institute for Applied Information
Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a

8010 Graz, Austria

Master’s Thesis

Supervisors :
Dipl.-Ing. Christian Hanser

Dipl.-Ing. Dr.techn. Michael Hutter

Assessor :
Univ.-Prof. Dipl.-Ing. Dr.techn. Roderick Bloem

May 2014

Statutory declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Graz,
(date) (signature)

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich
und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am
(Datum) (Unterschrift)

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008;
Genehmigung des Senates am 1.12.2008

i

Acknowledgements

First, I would like to thank Roderick Bloem for serving as the assessor of this thesis.
Second, I would like to offer my special thanks to Christian Hanser and Michael Hutter,
my supervisors, who gave me an understanding of elliptic curve theory and the principles
of academic work. Moreover, I would like to thank them for their support and patience
during the development of this thesis and the efforts they spent on corrections and remarks.

I would also like to sincerely thank my parents who have unconditionally supported
me in every possible way. Furthermore, I am also very thankful to my love Stephanie for
always being there for me and encouraging me whenever I needed it. Finally, I would like
to thank my friend Gerwin for the companionship throughout all these years of studying.

ii

Abstract

These days, elliptic curves are widely used for security-related applications that provide
cryptographic services such as key agreement and digital signature generation and verifi-
cation. All of these applications need scalar multiplication, which is the most expensive
arithmetical operation on elliptic curves.

In this master’s thesis, we discuss security properties of elliptic curves and examine
some attacks against the elliptic curve discrete logarithm problem. We present several
protocols which are based on elliptic curves, such as the Elliptic Curve Digital Signature
Algorithm (ECDSA) and the Elliptic Curve Integrated Encryption Scheme (ECIES). In
these protocols, scalar multiplication is an essential element, hence we also detail various
methods for scalar multiplication on elliptic curves. Within this context, we introduce
a modification to the fixed-base comb multiplication method. When it comes to speed
regarding scalar multiplication, the fixed-base comb multiplication method, which is due
to Lim and Lee, is one of the preferable methods. The presented modification exploits
the possibility of exchanging doubling operations with much cheaper applications of the
Frobenius endomorphism on binary Koblitz curves. We have implemented this modifi-
cation in software and compare its performance with the performance of the windowed
τ -adic non-adjacent form (WTNAF) multiplication method implementation and the per-
formance of the conventional fixed-base comb method. The comparison of a single scalar
multiplication shows a performance improvement of up to 25% over the WTNAF method
and an improvement of up to 42% compared to the conventional comb method. We show
that not much effort is required for the implementation of the τ -adic comb method and
that it is a good alternative to other fixed-base multiplication methods.

Keywords: elliptic curves, ECC, Pollard’s rho, SSSA, MOV, ECDSA, ECIES, ECDH,
ECMQV, scalar multiplication, Lim-Lee method, fixed-base comb method, Koblitz curves,
Frobenius endomorphism, WTNAF, τ -adic representation

iii

Kurzfassung

Heutzutage sind elliptische Kurven weitverbreitet für sicherheitsrelevante Anwendungen,
die kryptographische Services, wie zum Beispiel Schlüsselaustausch und Generierung und
Verifikation digitaler Signaturen, bereitstellen. All diese Anwendungen erfordern die Skalar-
multiplikation, welche die aufwendigste arithmetische Operation auf elliptischen Kurven
ist.

In dieser Masterarbeit betrachten wir die Sicherheitseigenschaften von elliptischen Kur-
ven und untersuchen einige Angriffe auf das Diskrete-Logarithmus-Problem in elliptischen
Kurven. Wir stellen auch mehrere Protokolle vor, die auf elliptischen Kurven basieren,
wie zum Beispiel den Elliptic Curve Digital Signature Algorithm (ECDSA) und das
Elliptic Curve Integrated Encryption Scheme (ECIES). In diesen Protokollen ist die Skalar-
multiplikation ein grundlegendes Element, daher zeigen wir auch verschiedene Metho-
den für Scalarmultiplikation auf elliptischen Kurven. In diesem Zusammenhang präsen-
tieren wir eine Modifikation der Fixed-base Comb Multiplikationsmethode. Wenn es um
Geschwindigkeit bei der Skalarmultiplikation geht, ist die Fixed-base Comb Multiplika-
tionsmethode von Lim und Lee eine der bevorzugten Methoden. Die vorgestellte Modifika-
tion nutzt die Möglichkeit, auf binären Koblitz-Kurven Doubling-Operationen gegen viel
weniger aufwendige Anwendungen des Frobenius-Endomorphismus auszutauschen. Wir
haben diese Modifikation in Software implementiert und vergleichen ihre Leistung mit der
Leistung der Implementierung der Windowed τ -adic non-adjacent form (WTNAF) Multi-
plikationsmethode und der Leistung der herkömmlichen Fixed-base Comb Methode. Der
Vergleich einer einzelnen Skalarmultiplikation zeigt eine Leistungssteigerung von bis zu
25% gegenüber der WTNAF-Methode und von bis zu 42% gegenüber der herkömmlichen
Comb Methode. Wir zeigen, dass die Implementierung der τ -adischen Comb Methode nur
wenig Aufwand erfordert und dass sie eine gute Alternative zu anderen Fixed-base Multi-
plikationsmethoden ist.

Stichwörter: elliptische Kurven, ECC, Pollard’s rho, SSSA, MOV, ECDSA, ECIES,
ECDH, ECMQV, Skalarmultiplikation, Lim-Lee Methode, Fixed-base Comb Methode,
Koblitz-Kurven, Frobenius-Endomorphismus, WTNAF, τ -adische Darstellung

iv

Contents

1 Introduction 1
1.1 Contribution . 2
1.2 Outline . 3

2 Preliminaries 4
2.1 Algebraic Background . 4

2.1.1 Groups . 4
2.1.2 Rings . 7
2.1.3 Fields . 7
2.1.4 Freshman’s Dream . 7
2.1.5 Greatest Common Divisor . 8
2.1.6 Lucas Sequences . 8

2.2 Binary Fields . 9
2.2.1 Arithmetics . 9

2.3 Elliptic Curves . 11
2.3.1 Discriminant and j-Invariant . 11
2.3.2 Group Law . 11
2.3.3 Simplified Weierstrass Equations . 14
2.3.4 Projective Coordinate Types . 16

2.4 Summary . 18

3 Security Properties of Elliptic Curves 19
3.1 Elliptic Curve Discrete Logarithm Problem 19
3.2 Elliptic Curve Diffie-Hellman Problem . 20
3.3 Generic Attacks . 20

3.3.1 Pollard’s Rho . 20
3.4 Specific Attacks . 23

3.4.1 Isomorphism Attacks on Prime-Field Anomalous Curves 23
3.4.2 The MOV Attack . 24

3.5 Summary . 27

4 Protocols 28
4.1 Domain Parameters . 28

4.1.1 Generation and Validation of Domain Parameters 29
4.2 ECDSA . 29

4.2.1 Signature Generation . 29
4.2.2 Signature Verification . 30

4.3 ECDH . 32

v

4.4 ECMQV . 33
4.5 ECIES . 34

4.5.1 Encryption . 35
4.5.2 Decryption . 36

4.6 Summary . 36

5 Scalar Multiplication Algorithms 37
5.1 Basic Point Multiplication Methods . 37

5.1.1 The Left-to-right Binary Method . 37
5.1.2 The Non-adjacent Form . 38

5.2 The Windowed NAF Method . 40
5.3 Fixed Point Multiplication Methods . 41

5.3.1 The Fixed-base Comb Method . 42
5.3.2 The Fixed-base Comb Method with Two Tables 43

5.4 Multiple Point Multiplication Methods . 44
5.4.1 The Simultaneous Multiple Point Multiplication Method 44
5.4.2 The Interleaving Multiple Point Multiplication Method 46

5.5 Summary . 47

6 Koblitz Curves 48
6.1 Properties . 48

6.1.1 Group Order . 48
6.1.2 Frobenius Endomorphism . 49
6.1.3 The ECDLP on Koblitz Curves . 50
6.1.4 Lucas Sequences for τ . 50

6.2 τ -adic Representations . 51
6.2.1 The τ -adic Non-adjacent Form (TNAF) 51
6.2.2 The Reduced τ -adic Non-adjacent Form (RTNAF) 52

6.3 τ -adic Scalar Multiplication Methods . 55
6.3.1 τ -adic NAF Point Multiplication Methods 55
6.3.2 τ -adic Multiple Point Multiplication Methods 59

6.4 Summary . 59

7 Results 61
7.1 Speeding Up more Scalar Multiplication Methods on Koblitz Curves 61

7.1.1 The Unsigned τ -adic Representation 61
7.1.2 τ -adic Fixed-base Comb Multiplication Methods 62
7.1.3 The τ -adic Simultaneous Multiple Point Multiplication Method . . . 65

7.2 Implementation Details . 65
7.3 Estimated Costs and Timings . 66
7.4 Summary . 67

8 Conclusions 68
8.1 Related and Future Work . 69

A Definitions 70
A.1 Abbreviations . 70
A.2 Used Symbols . 71

Bibliography 73

vi

List of Algorithms

1 Extended Euclidean algorithm . 11
2 Pollard’s rho algorithm . 22
3 SSSA algorithm . 24
4 Simplified MOV algorithm . 25
5 ECDSA signature generation . 30
6 ECDSA signature verification . 31
7 ECDH key agreement . 32
8 ECMQV key agreement . 34
9 ECIES encryption . 35
10 ECIES decryption . 36
11 Left-to-right binary method . 38
12 Computing the NAF representation . 39
13 NAF point multiplication . 39
14 Computing the width-w NAF representation 40
15 Window NAF point multiplication . 41
16 Precomputation for the fixed-base comb method 42
17 Multiplication routine of the fixed-base comb method 43
18 Precomputation for the fixed-base comb method with two tables 43
19 Multiplication routine of the fixed-base comb method with two tables . . . 44
20 Simultaneous multiple point multiplication 46
21 Interleaving with NAFs . 47
22 Computing the τ -adic NAF . 52
23 Reduction modulo δ = (τm − 1)/(τ − 1) . 54
24 Partial reduction modulo δ = (τm − 1)/(τ − 1) 54
25 TNAF point multiplication . 55
26 Computing the width-w TNAF representation 58
27 Window TNAF point multiplication . 58
28 τ -adic interleaving with NAFs . 59
29 Computing the unsigned τ -adic representation 62
30 Precomputation for the fixed-base comb method on Koblitz curves 63
31 Multiplication routine of the fixed-base comb method on Koblitz curves . . 63
32 Precomputation for the fixed-base comb method with two tables on Koblitz

curves . 64
33 Multiplication routine of the fixed-base comb method with two tables on

Koblitz curves . 64
34 τ -adic simultaneous multiple point multiplication method 65

vii

List of Figures

2.1 Addition of points P and Q on the curve y2 = x3 + 3x2 − 10x over R 12
2.2 Doubling of point P on the curve y2 = x3 + 3x2 − 10x over R 13

3.1 Resulting sequence {Xi} in Pollard’s rho algorithm 21

4.1 ECMQV key-agreement protocol . 33

5.1 Accumulation step of the simultaneous multiple point multiplication method 45

List of Tables

6.1 Expression for αu for a = 0 and 3 ≤ w ≤ 5 57
6.2 Expression for αu for a = 1 and 3 ≤ w ≤ 5 57

7.1 Costs of squarings in relation to multiplications 66
7.2 Comparison of the multiplication timings of the comb, the τ -comb and the

WTNAF methods . 67

viii

Chapter 1

Introduction

In 1985, Neal Koblitz [Kob87] and Victor S. Miller [Mil85] independently discovered a
way of using elliptic curves over finite fields for public key cryptography. Both proposed
to use the group of points on an elliptic curve defined over a finite field in a discrete
logarithm cryptosystem. Nowadays, elliptic curve cryptography (ECC) systems are widely
used for security related applications like key agreement and digital signature generation
and verification. The mathematical basis of the security of ECC is the intractability
of the elliptic curve discrete logarithm problem (ECDLP). In contrast to RSA, there
is no algorithm known that can solve the ECDLP in subexponential time on today’s
computers, provided that the curve and the underlying finite field are chosen properly.
As a consequence, it is assumed that the ECDLP is significantly harder than the integer
factorization problem (IFP), which is the basis of other cryptosystems like RSA. Therefore,
ECC systems have a greater strength-per-keybit compared to RSA and, thus, require
smaller parameters to offer approximately the same level of security. For example, an
encryption with a 224 bit elliptic curve key equals an encryption with a 2048 bit RSA key
in terms of security. A comprehensive list of comparable security strengths is available
in [BBB+12]. The use of smaller parameters results in faster computations and smaller
keys, signatures and certificates. This is quite important in environments with limited
processing power, low memory resources or constraint power consumption and bandwidth,
e.g. smart cards, cell phones or other embedded systems.

For a long time there were no important ECC-based protocols that made use of the
special structures of elliptic curves. The protocols used were simply straightforward adap-
tions of the ones developed earlier for finite fields. This changed around the year 2000,
when pairing-based cryptosystems emerged ([Jou00], [BF01], [BLS01], [Sma01]). The
idea of bilinear pairings of algebraic curves was not really new. The Weil pairing and the
Tate pairing had already been used for attacks against the ECDLP. However, the whole
potential of pairings had not been recognized until then. Pairings offer a way to implement
schemes where no other efficient implementation is known, such as identity-based encryp-
tion or attribute-based encryption. In the last few years there has been a lot of research
regarding efficient implementation of bilinear pairings and a large number of cryptographic
primitives based on bilinear mappings have been introduced. Based on these primitives,
numerous ECC-based schemes have been developed providing identity-based encryption
as well as key agreement, pairing-based signatures and signcryption.

Over the years the trust in ECC was shaken to the very foundations several times. The
first time this happened was in 1991, when the MOV-attack was published. It provided
an efficient computation of the discrete logarithm on the so-called supersingular elliptic

1

CHAPTER 1. INTRODUCTION 2

curves. This type of curves was very popular then, because it provided fast computa-
tions. In 1994, Adleman et al. presented a subexponential-time algorithm for the discrete
logarithm problem on hyperelliptic curves of a genus greater than 4 [ADH94]. Before,
hyperelliptic curve cryptography, proposed by Neil Koblitz in [Kob89], had been thought
to be at least as secure as elliptic curves. Although the proposed algorithm did not affect
elliptic curves themselves, which are in fact hyperelliptic curves of genus 1, it gave reason
to question the security of ECC in general. ECC suffered from another setback in 1997,
when the SSSA attack was published, which gave a polynomial-time algorithm to solve
the ECDLP on prime-field anomalous curves.

Recently, in 2013, Antoine Joux claimed that he had set a new speed record for the
computation of discrete logarithms in finite fields [Jou13b]. He was able to compute the
discrete logarithms on supersingular curves of characteristic 2 in reasonable time using
the index calculus algorithm he proposed in [Jou13a]. Thereby he showed that these
curves are not suitable for secure pairing-based cryptography. Based on Joux’ algorithmic
ideas, several computation records for the discrete logarithm on supersingular curves of
characteristic 2 and 3 have been set [Gal14]. As a consequence, symmetric pairings, often
called Type-1 pairings [GPS08], can be considered unusable in terms of security. However,
a lot of ECC-based protocols have been designed for Type-1 pairings only.

In 2006, the trust in the standardization procedure and the recommended curve param-
eters of ECC of the National Institute of Standards and Technology (NIST) was shaken
when it was discovered that the ECC-based pseudorandom number generator Dual Ellip-
tic Curve Deterministic Random Bit Generator (Dual EC DRBG) [BK12], which had been
claimed to be cryptographically secure, had a serious weakness. The author of [Bro06] as
well as the authors of [SS06] showed that the output of the random number generator can
be empirically distinguished from random bits. This flaw was interpreted as a sign of a
possible backdoor in the algorithm. There is evidence that despite this flaw, or perhaps
because of it, the Dual EC DRBG had been included in the NIST standard on behalf of
the NSA. In connection with this exposure, security experts currently question the choice
of parameters of the elliptic curves suggested by the NIST standard, although there has
been no evidence for weaknesses so far. Some experts, however, suggest using Brainpool
curves [LM10] or the Curve25519 elliptic curve proposed by Bernstein in [Ber06], which
is designed as a very fast, high-security elliptic curve Diffie-Hellman function, instead of
the NIST-recommended parameters.

Irrespective of the employed curves, scalar multiplication is the most expensive opera-
tion in ECC when it comes to computational effort. Consequently, improving multiplica-
tion methods is essential for the performance of cryptosystems on elliptic curves. One way
to increase the performance of scalar multiplications is to exploit the curve’s structure,
such as the structure of Koblitz curves. These curves are equipped with the so-called
Frobenius endomorphism which can be used to achieve tremendous speedups for scalar
multiplications. In the context of Koblitz curves, many multiplication methods relying on
a non-adjacent form (NAF) have been adapted so that they exploit the available endomor-
phism. However, until now there has been no such modification to the fixed-base comb
multiplication method, which is one of the fastest scalar multiplication methods available.

1.1 Contribution

In this master’s thesis, we are going to present an improvement of the fixed-base comb
methods on Koblitz curves that we proposed in [HW13]. We show a scalar recoding

CHAPTER 1. INTRODUCTION 3

to obtain an unsigned τ -adic representation of scalars, which provides the possibility to
exchange the point doublings within the comb methods for applications of the Frobenius
endomorphism. We detail the modifications to the fixed-base comb methods that are
required in order to gain a performance benefit from the scalar recoding. Furthermore, we
have implemented the modified comb method as well as the conventional fixed-base comb
method and the WTNAF method in software. We give a detailed performance comparison
and illustrate the performance gains we have achieved with respect to the WTNAF and
the conventional fixed-base comb methods. Especially the comparison with the WTNAF
multiplication method is of great interest, as it exploits the Frobenius endomorphism on
Koblitz curves as well. We achieve performance improvements of up to 25% compared
to the WTNAF method and performance improvements of up to 42% compared to the
conventional fixed-base comb method.

1.2 Outline

At the beginning of this thesis, Chapter 2 gives an overview of the mathematical back-
ground and fundamental concepts of elliptic curves. Based on these preliminaries, Chap-
ter 3 introduces the reader to the security properties of elliptic curves and details several
state-of-the-art attacks against the ECDLP. Chapter 4 deals with protocols and crypto-
graphic schemes on elliptic curves. It covers digital signatures and key-agreement schemes,
as well as a hybrid encryption scheme. Chapter 5 is devoted to scalar multiplication
methods on elliptic curves. It discusses three different types: basic algorithms, fixed-point
algorithms, and multiple point multiplication algorithms. In Chapter 6, a comprehensive
overview of Koblitz curves is given. Chapter 7 introduces a recoding of scalars, the so-
called unsigned τ -adic representation. We detail how it can be efficiently obtained from
an integer and we present a modification to the fixed-base comb method, discussed in
general in Chapter 5, which offers a performance benefit on Koblitz curves from using this
representation. In this context, we have implemented this modified method in software
and compare its performance to the performance of the implementations of conventional
algorithms. Finally, this thesis is concluded in Chapter 8.

Chapter 2

Preliminaries

This chapter is intended as an overview of the fundamental mathematical principles that
are essential for the subsequent parts of this thesis. It treats the algebraic concepts of
groups, rings and fields as well as the fundamentals of elliptic curves. Readers who are
already familiar with these topics can safely skip this chapter.

The chapter is composed of four sections. Section 2.1 is devoted to the algebraic
background of elliptic curve cryptography. It covers introductions to rings, groups, and
fields, as well as an introduction to the discrete logarithm problem, the Freshman’s dream,
and Lucas sequences. Section 2.2 briefly discusses binary fields and the corresponding
arithmetic. The third section, Section 2.3, provides an introduction to elliptic curves in
general as well as an insight into point representation in form of projective coordinate
types. At the end, the chapter is briefly summarized in Section 2.4.

This chapter is primarily based on the books [HMV04], [Sil09], [Her96], [DF04], [Wal98],
and [Sma12]. Additional information is taken from [Rib91], [Han10], [CLO07], [Rib00]
and [JMV01], as well as from the lecture notes [Die07] and [Die09].

2.1 Algebraic Background

This section gives a short introduction to the essential algebraic structures as well as some
corresponding concepts. These topics form the basis of public key cryptography in general.

2.1.1 Groups

A group (G, ·) is a non-empty set G with an arithmetic operation · that satisfies the
following properties:

� G is closed under the operation ·, i.e., if a, b ∈ G then also a · b ∈ G.

� The associative law holds in G. For all elements a, b, c ∈ G it applies that (a · b) · c =
a · (c · b).

� A special element e ∈ G exists such that a · e = e · a = a,∀a ∈ G. This element e is
called the identity element of G.

� For every a ∈ G there exists an inverse element, denoted by a−1, such that a−1 · a =
a · a−1 = e.

4

CHAPTER 2. PRELIMINARIES 5

A group (G, ·) is called Abelian if it is commutative, i.e. a · b = b · a for all a, b ∈ G.

Note that groups can also be written in an additive way with + as group operation. If a
group G contains a finite number of elements then G is called finite and infinite otherwise.
The number of elements (cardinality) of a finite group G is called the order of G, denoted
by |G| or ord(G).

A group G that contains an element g from which every other element y ∈ G can be
obtained by repeatedly applying the group operation, is called cyclic. In the case of a
cyclic multiplicative group (G, ·), every element y ∈ G can be expressed as

y = g · g · . . . · g︸ ︷︷ ︸
x times

= gx with x ∈ Z.

This element g is called a generator of the group G. A group generated by some generator
g is often denoted by 〈g〉. A group can have multiple generators.

Example 2.1.1 (Generators). Let (Z∗5 = {1, 2, 3, 4}, ·) denote a multiplicative, Abelian
group modulo 5 with neutral element 1. The generators of (Z∗5, ·) are the elements 2 and
3:

21 = 2 31 = 3

22 = 4, 32 = 9 ≡ 4 mod 5

23 = 8 ≡ 3 mod 5 33 = 27 ≡ 2 mod 5

24 = 16 ≡ 1 mod 5 34 = 81 ≡ 1 mod 5

The order ordG(x) of an element y ∈ G is the smallest positive integer x, such that yx = e
Thus, the order of the generators in a group is equal to the order of the group. If no such
x exists, the element y has infinite order.

Discrete Logarithm Problem

In a cyclic group G of order n, the smallest positive integer x for which it applies that
y = gx, where y ∈ G and g is a generator of G, is called the discrete logarithm (DL)
of y to the base g. The DL is the analogue to the ordinary logarithm with regards to
multiplicative cyclic groups. Thus, important features of the ordinary logarithm remain
valid for the DL:

� logg(y · z) = logg(y) + logg(z) mod n,

� logg(y
a) = a logg(y) mod n, and

� logh(y) = logg(y) · logg(h) mod n,

where g and h are different generators of G, y, z ∈ G and a is an integer.

The security assumptions of many cryptographic schemes rely on the intractability of the
discrete logarithm problem (DLP).

Definition 2.1 (DLP). Given a cyclic group (G, ·) of order n with a generator g, and an
element y ∈ G, then the DLP is the difficulty to find the DL to the base g of y, i.e., finding
an integer x such that:

y = gx.

CHAPTER 2. PRELIMINARIES 6

The difficulty of solving the DLP depends on the group structure. For example:

� In an additive cyclic group (Z∗p,+), the DLP is easy to solve, since, if g ∈ Z∗p is the
generator, the problem to solve is y ≡ xg mod p.

� In a group of the shape (Z∗p, ·), where p is prime, the DLP is hard if ord(Z∗p) comprises
a large prime factor q, i.e., q | p−1. In this context, such prime p is often called safe
prime. However, even if p is a safe prime, there exists an algorithm that can find
the DL in subexponential time (see “Index Calculus” in Section 3.4.2). Therefore,
in this case p is additionally required to be very large.

Diffie-Hellman Problem

The Diffie-Hellman problem (DHP) is closely related to the DLP. Its intractability is the
basis for various public-key cryptosystems, e.g., the Diffie-Hellman key agreement and the
ElGamal public-key encryption scheme.

Definition 2.2 (DHP). Given a generator g of G, and two elements ga and gb, then the
DHP is the problem of finding an element y such that:

y = gab.

Note that the DHP is not harder than the DLP since, if the DLP can be efficiently
solved for y = gx, then so can the DHP.

Homomorphisms

A homomorphism in abstract algebra is a structure-preserving map between two algebraic
structures. More precisely, a homomorphism between two groups (G, ·) and (G′, ∗) is a
map

ϕ : G → G′

that ensures that
ϕ(ab) = ϕ(a)ϕ(b) (2.1)

holds for all a, b ∈ G. Note that in Equation (2.1), the product on the left side is computed
in G and the product ϕ(a)ϕ(b) on the right side is computed in G′. The homomorphism
preserves the group operation as well as the identity element (i.e. ϕ(eG) = e′G) and the
inverse (i.e. ϕ(a)−1 = ϕ(a−1)). A homomorphism ϕ : G → G′ is called

� monomorphism if ϕ is one-to-one (injective),

� epimorphism if ϕ is onto (surjective),

� isomorphism if ϕ is a monomorphism that is onto (bijective),

� endomorphism if G and G′ are the same, and

� automorphism if ϕ is an isomorphism and also an endomorphism.

Two groups G and G′ are said to be isomorphic if there is an isomorphism of G onto G′
(denoted as G ' G′).

CHAPTER 2. PRELIMINARIES 7

2.1.2 Rings

Definition 2.3. A ring is a non-empty set R with two binary operations + and ·. For a
ring (R,+, ·) the following properties apply:

(i) (R,+) is an Abelian group with identity element 0R.

(ii) Multiplication is associative: ∀a, b, c ∈ R : (a · b) · c = a · (b · c).

(iii) Multiplicative identity: ∃1R ∈ R : ∀a ∈ R : 1R · a = a · 1R = a.

(iv) The two distributive laws

� a · (b+ c) = a · b+ a · c,
� (a+ b) · c = a · c+ b · c

hold for all a, b, c ∈ R.

2.1.3 Fields

A field (K,+, ·) is a commutative ring such that additionally:

(i) (K,+) is an (additive) Abelian group with identity element 0K .

(ii) (K∗, ·) is a (multiplicative) Abelian group with identity element 1k, where K∗ =
K \ 0K .

(iii) The distributive laws hold for both groups.

In a field every nonzero element is invertible. A field is said to be finite if it has only a
finite number of elements.

The characteristic of a field K, often char(K), is the smallest positive integer p so that
p · 1K = 0, where 1K is the identity of the field K. If no such p exists, the characteristic
is 0.

Field Extensions

Consider K to be a subset of field L. If K itself is a field under the operations of L, then
K is a subfield of L. The field L is said to be an extension field of K, denoted L/K. If
K 6= L, then K is called a proper subfield of L. For every prime power pm there is up
to isomorphisms exactly one finite field. This field has characteristic p and contains all
subfields Fpl for l|m.

2.1.4 Freshman’s Dream

The Freshman’s dream is the name of the common mistake (x + y)n = xn + yn that is
made when computing the power of a sum of real numbers in a field of characteristic 0. It
is obvious that in general this is incorrect. However, in fields with prime characteristic p,
(x+ y)n does evaluate to xn + yn.

Lemma 2.1 (Freshman’s dream). If x and y are elements of a field K, which has prime
characteristic p, then

(x+ y)p = xp + yp.

CHAPTER 2. PRELIMINARIES 8

Proof. (x+ y)p written in binomial formula, we get:

(x+ y)p =

p∑
k=0

(
p

k

)
xp−kyk =

p∑
k=0

.
p!

k!(p− k)!
xp−kyk (2.2)

Looking at the prime factors of the binomial coefficients p!
k!(p−k)! in Equation (2.2), we can

see that for all 0 < k < p, p divides the term p!
k!(p−k)! and due to the commutative ring,

this term evaluates to 0. For the other two cases, the result of the fraction is 1. Thus,
from Equation (2.2) we have two remaining terms that are nonzero:

(xpy0) + (x0yp) = xp + yp.

2.1.5 Greatest Common Divisor

The greatest common divisor (GCD) is the greatest positive integer that divides two (or
more) integers, which are not all 0, without remainder.

Definition 2.4 (GCD). The greatest common divisor of a, b ∈ Z with a 6= 0 ∨ b 6= 0 is
the greatest positive c ∈ N such that:

gcd(a, b) = max{c ∈ N : c | a ∧ c | b}.

2.1.6 Lucas Sequences

The Lucas sequences Un(p, q) and Vn(p, q) are sequences of integers characterized by two
fixed integers p and q. The sequences satisfy the recurrent relation xn = qxn1 − qxn2.
Every sequence that satisfies this relation can be expressed as a linear combination of
Un(p, q) and Vn(p, q).

Before we detail the Lucas sequences, we are going to briefly explain the roots and the
discriminant of polynomials. The roots, also called zeros, of a polynomial f(x) are all
values for x such that f(x) = 0. The discriminant of a polynomial gives information about
the nature of the polynomial’s roots. For a quadratic polynomial f(x) = ax2 + bx+ c, the
discriminant is D = b2 − 4ac.

Now, consider the polynomial x2 − px + q where p and q are two nonzero integers. The
nonzero discriminant D of the polynomial is D = p2 − 4q and its roots α and β are

α =
p+
√
D

2
and β =

p−
√
D

2
.

For these roots it applies that α 6= β, α+ β = p, αβ = q, and (α− β)2 = D.
Now, we define Un = Un(p, q) and Vn = Vn(p, q) for every n ≥ 0:

U0 = 0, U1 = 1, Un = pUn−1 − qUn−2,

V0 = 2, V1 = p, Vn = pVn−1 − qVn−2.

The sequences Un and Vn are called the first and the second Lucas sequences with parame-
ters (p, q). Vn is also called the companion Lucas sequence with parameters (p, q). Special
Lucas sequences (with p = 1, q = −1 and the corresponding d = 5) are

CHAPTER 2. PRELIMINARIES 9

� Fibonacci numbers: Un = Un(1,−1): 0, 1, 2, 3, 5, 8, 13, 21, . . .

� Lucas numbers: Vn = Vn(1,−1): 2, 1, 3, 4, 7, 11, 18, 29, . . .

2.2 Binary Fields

A binary field is a finite field of order 2m. These types of fields are often also called
characteristic-two finite fields. For binary fields there are two common ways to represent
field elements: the polynomial basis an the normal basis. In the following we focus solely
on the polynomial basis.

A binary polynomial f(x) is a polynomial whose coefficients are in F2. The set of all
these polynomials is denoted as F2[x].

The degree of a polynomial f(x), denoted deg(f), is given by the greatest index i where the
coefficient ai is nonzero. If there is no such index i, then deg(f) = −∞. This polynomial
is called zero polynomial.

Definition 2.5 (Irreducible Polynomial). A polynomial f(x) ∈ F2[x] is called irreducible
if deg(f) > 0 and its only divisors are nonzero constant polynomials, i.e., g(x) | f(x) where
g(x) ∈ F2 or g(x) = f(x).

Definition 2.6 (Monic). A polynomial f(x) in an arbitrary field is called monic, if its
leading coefficient an = 1, i.e., a monic polynomial is of the form:

f(x) = xn + an−1x
n−1 + . . .+ a1x+ a0.

Let f(x) = xm +
∑m−1

i=0 fix
i be a monic, irreducible polynomial over F2 of degree

m and let α ∈ F2m be its root. Then, the polynomial basis of the field F2m over F2 is
{1, α, α2, . . . , αm−1}. The polynomial f(x) is referred to as reduction polynomial.

In polynomial basis representation, the elements of F2m are all the binary polynomials
with a maximum degree of m− 1:

F2m = {am−1xm−1 + am−2x
m−2 + . . .+ a2x

2 + a1x+ a0 : ai ∈ 0, 1}.

In polynomial basis representation, a field element am−1x
m−1 + . . . + a1x + a0 of F2m is

represented by the bitstring (am−1, . . . , a1, a0).

2.2.1 Arithmetics

In order to simplify the notation, we are going to denote a binary polynomial g(x) by g for
the rest of this chapter. The addition and subtraction of field elements using a polynomial
basis equals the common polynomial addition, with coefficient arithmetic modulo 2. Since
−1 = 1 in characteristic 2, addition and subtraction are the same operation on binary
fields.

The multiplication of field elements can be performed as common multiplication, with
an additional reduction modulo f. This reduction is essential since the result can have a
degree up to 2m − 2. The reduction by the reduction polynomial f results in a unique
remainder polynomial r of degree less than m. Various methods for such a reduction

CHAPTER 2. PRELIMINARIES 10

can be found in [HMV04, Section 2.3.5]. There are numerous techniques for speeding
up the multiplication, e.g., the right-to-left comb method [HMV04, Algorithm 2.34] or
the Karatsuba-Ofman algorithm [KO62], which can be directly adapted for polynomial
multiplication.

Squaring of a field element can be carried out very efficiently since for binary polyno-
mials, squaring is a linear operation. Let the binary representation of element a be
(am−1, am−2, . . . , a1, a0) where ai ∈ F2. In order to obtain a2 there is a 0 inserted be-
tween each two consecutive bits in the binary representation of a. Hence, the binary
representation of a2 is then (0, am−1, 0, am−2, . . . , 0, a1, 0, a0). To speed up this compu-
tation, it is possible to precompute tables which help to expand the polynomials. An
explicit algorithm for polynomial squaring that also includes the precomputation table is
given in [HMV04, Algorithm 2.39]. As with the multiplication, the result of a squaring
operation is reduced modulo f to obtain a result of degree less than m.

The inverse of an element a ∈ F2m , denoted by a−1 mod f , is the unique element g ∈ F2m

such that ag ≡ 1 mod f . There are various efficient methods to compute the inverse of
a field element in F2m , e.g., the Euclidean algorithm for polynomials or the Itoh-Tsujii
inversion algorithm [IT88].
We will first show the idea of the Euclidean algorithm by using integers. Then, we will
briefly discuss it for polynomials.

Euclidean Algorithm. The authors of [HMV04] describe the Euclidean algorithm and
its modifications as follows. The classical Euclidean algorithm is used for computing the
greatest common divisor of two positive integers a and b. The set of integers Z forms an
Euclidean ring. In such a ring, we are able to perform a division with remainder, that
is, given two values a, b ∈ Z with a ≤ b, we can compute b = qa + r with q, r ∈ Z and
0 ≤ r < a. Since gcd(a, b) = gcd(b − ta, a) for all t ∈ Z, the computation is reduced
to finding gcd(r, a), where obviously the arguments (r, a) are smaller than (a, b). This
computation is repeated until one of the arguments is 0. The result is then directly
obtained since gcd(0, d) = d. Due to the fact that the non-negative remainders strictly
decrease, this algorithm always terminates.

Extended Euclidean Algorithm. The classical Euclidean algorithm can be extended
to additionally obtain the integers x and y satisfying ax+by = d where d = gcd(a, b). This
algorithm, shown in Algorithm 1, terminates as soon as u = 0, and hence, v = gcd(a, b)
and x = x2, y = y2 such that ax+ by = d.

The extended Euclidean algorithm can be used to compute the multiplicative inverse
of an element a ∈ Fp, i.e., a−1 mod p where p is prime and a ∈ Fp, as it is detailed
in [HMV04, Section 2.2.5].

Extended Euclidean Algorithm for Polynomials. The classical Euclidean algo-
rithm as well as its extended version can be applied to polynomials, based on the fact
that gcd(a, b) = gcd(b − ta, a) for all binary polynomials t. With the extended Euclidean
algorithm for polynomials, it is possible to find two binary polynomials g and h, such that
ag+ bh = d where d = gcd(a, b). A detailed explanation and an explicit algorithm can be
found in [HMV04, Section 2.3.6].

CHAPTER 2. PRELIMINARIES 11

Algorithm 1 Extended Euclidean algorithm [HMV04, Algorithm 2.19]

Input: Positive integers a, b with a ≤ b.
Output: d = gcd(a, b), x, y ∈ Z satisfying ax+ by = d.

1: u = a, v = b
2: x1 = 1, y1 = 0, x2 = 0, y2 = 1
3: while u 6= 0 do
4: q = bv/uc, r = v − qu, x = x2 − qx1, y = y2 − qy1
5: v = u, u = r, x2 = x1, x1 = x, y2 = y1, y1 = y
6: end while
7: d = v, x = x2, y = y2
8: return (d, x, y)

2.3 Elliptic Curves

An elliptic curve E over an arbitrary field K is a plane, smooth curve defined by the
following affine version of the so-called long Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.3)

with coefficients a1, a2, a3, a4, a6 ∈ K. The set of all points (x, y) ∈ K2 satisfying Equa-
tion (2.3) plus the point at infinity O:

E(K) = {(x, y) ∈ K ×K : y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0} ∪ {O}. (2.4)

forms an additive Abelian group, where O is the identity element. The number of points
in E(K) is called the order of E over K and is denoted by #E(K).

2.3.1 Discriminant and j-Invariant

An elliptic curve is said to be smooth or non-singular if there are no points on E at which
the curve has more than one distinct tangent line. This condition can be ensured by
verifying that the discriminant of E, denoted by ∆(E), is nonzero. Given a curve defined
by Equation (2.3), the discriminant ∆(E) is defined as follows:

∆(E) = −b22b8 − 8b34 − 27b26 + 9b2b4b6

b2 = a21 + 4a2

b4 = 2a4 + a1a3

b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24


(2.5)

The j-invariant of a curve E for ∆(E) 6= 0, denoted by j(E), is defined as

j(E) =
b22 − 24b4

∆(E)
.

2.3.2 Group Law

In order to perform computations in the set E(K), an arithmetic operation + is required.
An important property of E is that for two distinct points P,Q ∈ E(K), there is a line

CHAPTER 2. PRELIMINARIES 12

L through P and Q that intersects the curve at a unique third point R ∈ E(K). In case
of Q = P , P is counted twice and the line L is the tangent to E at the point P . This
tangent again intersects E at a unique third point. This is the basis to define an addition
law.

The addition law can be illustrated geometrically with the chord method and the
tangent method.

Addition

The chord method, depicted in Figure 2.1, applies if P 6= Q. To compute the sum of P
and Q, a line L is laid through the two points. L intersects the curve E at a third point
R ∈ E(K). The sum P +Q is actually obtained by reflecting R, i.e. P +Q = −R.

Figure 2.1: Addition of points P and Q on the curve y2 = x3 + 3x2 − 10x over R

Doubling

The tangent method, depicted in Figure 2.2, illustrates how a point P ∈ E(K) is doubled
geometrically. In order to compute P + P = 2P a tangent L is laid on E at the point P .
L intersects the curve at a third point R ∈ E(K). If not, the point R is set to O. The
point 2P is then obtained by reflecting R, i.e, 2P = −R.

From the geometric descriptions of the point addition and the point doubling, the explicit
algebraic formulas can be derived. Let E denote a curve defined by Equation (2.3) and
P = (x1, y1), Q = (x2, y2) ∈ E be points on the curve. The reflection of point P is

−P = (x1,−y1 − a1x1 − a3). (2.6)

If Q = −P then P +Q = O. Otherwise, if x1 6= x2 (addition), then

λ =
y2 − y1
x2 − x1

,

µ =
y1x2 − y2x1
x2 − x1

.

CHAPTER 2. PRELIMINARIES 13

Figure 2.2: Doubling of point P on the curve y2 = x3 + 3x2 − 10x over R

If x1 = x2 (doubling), then

λ =
3x21 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
,

µ =
−x31 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3
.

The addition formula for R = (x3, y3) = P +Q 6= O is given by

x3 = λ2 + a1λ− a2 − x1 − x2,
y3 = −(λ+ a1)x3 − µ− a3. (2.7)

As already stated, the addition laws together with the corresponding set of points E(K)
form an Abelian group (E(K),+) with identity element O. The following group laws are
properties of the addition:

� E(K) is closed under the operation +, i.e., if P,Q ∈ E(K) then also P +Q ∈ E(K).

� The associative law holds in E(K). For all points P,Q,R ∈ E(K), it applies that
(P +Q) +R = P + (Q+R).

� A neutral element O exists such that P +O = O + P = P,∀P ∈ E(K).

� For every P ∈ E(K) there exists an inverse −P ∈ E(K), such that (−P) + P =
P + (−P) = O.

� The operation + is commutative, i.e., for all points P,Q ∈ E(K) it applies that
P +Q = Q+ P .

CHAPTER 2. PRELIMINARIES 14

2.3.3 Simplified Weierstrass Equations

For fields of specific characteristics, the long Weierstrass equation can be transformed to
a simpler form. Such a form is called a short Weierstrass form. As a matter of course,
the transformation must not change the curve’s properties.

Now, consider two elliptic curves E, E′ over a field K defined by the following long
Weierstrass equations

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

E′ : y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6.

These two curves are isomorphic over K if E′ can be obtained from E by applying
the following change of variables

Ψ : (x, y) = (u2x+ r, u3y + u2sx+ t) (2.8)

where u, r, s, t ∈ K, u 6= 0. The transformation Ψ in Equation (2.8) is referred to as admis-
sible change of variables. This admissible change of variables depends on the underlying
field K. In this work, we consider the cases char(K) = 2 and char(K) 6= {2, 3}. For other
characteristics of K, we refer the reader to [HMV04] and [Eng99].

1. For a field K of characteristic not equal to 2 or 3, the change of variables

Ψ : (x, y) =

(
x− 3a21 − 12a2

36
,
y − 3a1x

216
− a31 − 4a1a2 − 12a3

24

)
transforms Equation (2.3) to the short Weierstrass form

E : y2 = x3 + a4x+ a6 (2.9)

where a4, a6 ∈ K, with ∆(E) = 16(4a34+27a26) and j(E) = 1728 ·4a34 ·(4a34+27a26)
−1.

The addition formulas given in Section 2.3.2 simplify as follows. The reflection given
in Equation (2.6) transforms to

−P = (x1, −y1).

The addition formula in Equation (2.7) simplifies to

x3 = λ2 − x1 − x2,
y3 = (x1 − x3)λ− y1,

where if x1 6= x2 then

λ =
y1 − y2
x2 − x1

,

and if x1 = x2 then

λ =
3x21 + a4

2y1
.

2. For a field K of characteristic 2, there are two cases to be taken into account:
supersingular curves and non-supersingular curves. A curve E defined over a field
of characteristic 2 is supersingular if j(E) = 0, and non-supersingular otherwise.

CHAPTER 2. PRELIMINARIES 15

(a) If E is non-supersingular and, hence, a1 6= 0, then the change of variables

Ψ : (x, y) =

(
a21x+

a3
a1
, a31y +

a21a4 + a23
a31

)
transforms Equation (2.3) to the short Weierstrass form

E : y2 + xy = x3 + a2x
2 + a6 (2.10)

where a2, a6 ∈ K, with ∆(E) = a6 and j(E) = a−16 .

The addition formulas given in Section 2.3.2 simplify as follows. The reflection
given in Equation (2.6) transforms to

−P = (x1, y1 + x1).

The addition formula in Equation (2.7) simplifies to

x3 = λ2 + λ+ a2 + x1 + x2,

y3 = (λ+ 1)x3 + µ,

where if x1 6= x2 then

λ =
y1 + y2
x1 + x2

,

µ =
y1x2 + y2x1
x1 + x2

,

and if x1 = x2 then

λ =
x21 + y1
x1

,

µ = x21.

(b) In the case that E is a supersingular curve and therefore a1 = 0, then the
admissible change of variables

Ψ : (x, y) = (x+ a2, y)

transforms Equation (2.3) to the short Weierstrass form

E : y2 + a3y = x3 + a4x+ a6

where a3, a4, a6 ∈ K, with ∆(E) = a43 and j(E) = 0.

The addition formulas given in Section 2.3.2 simplify as follows. The reflection
given in Equation (2.6) transforms to

−P = (x1, y1 + a3).

The addition formula in Equation (2.7) simplifies to

x3 = λ2 + µ,

y3 = λ(x1 + x3) + y1 + a3,

CHAPTER 2. PRELIMINARIES 16

where if x1 6= x2 then

λ =
y1 + y2
x1 + x2

,

µ = x1 + x2,

and if x1 = x2 then

λ =
x21 + a4
a3

,

µ = 0.

Throughout the rest of this work we are going to primarily use the short Weierstrass form
when it comes to elliptic curve equations.

2.3.4 Projective Coordinate Types

Elliptic curves can be represented in different coordinate systems. In the following we are
going to have a look at projective coordinate types which have computational advantages
over the affine form. As we have seen, the formulas for point addition and point doubling
in affine coordinates require field inversions which is the most expensive operation in finite
fields. If a field multiplication is considerably cheaper than such a field inversion, it is
advisable to use a projective coordinate type for point representation.

Projective Coordinates

Let K be an arbitrary field. The projective equivalent of the affine curve over K, defined
by Equation (2.3), is given by

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (2.11)

The projective space P2(K) over K is defined as the set of all triples (X,Y, Z) where
X,Y, Z ∈ K and (X,Y, Z) 6= O. These triples have an equivalence relation

(X,Y, Z) ∼ (X ′, Y ′, Z ′)

if there is a λ ∈ K such that

X = λcX ′, Y = λdY ′, Z = λZ ′ with c, d ∈ N.

A projective point is denoted by (X : Y : Z). The triple (X,Y, Z) is called a representative
of (X : Y : Z). Since it applies that if (X ′, Y ′, Z ′) ∈ (X : Y : Z) then (X ′, Y ′, Z ′) = (X :
Y : Z), any element of the equivalence class

(X : Y : Z) = {(λcX,λdY, λZ) : λ ∈ K}

can serve as its representative.
If Z 6= 0, then (X/Zc, Y/Zd, 1) is the affine representative of the projective point

(X : Y : Z). There exists a 1-1 correspondence between the set of projective points

P2(K) = {(X : Y : Z) : X,Y, Z ∈ K,Z 6= 0}

CHAPTER 2. PRELIMINARIES 17

and the set of affine points

A2(K) = {(x, y) : x, y ∈ K}.

The set of projective points which do not correspond to any affine point is called line at
infinity. This line at infinity is the set of projective points where Z = 0 and is denoted by

P2(K)0 = {(X : Y : Z) : X,Y, Z ∈ K,Z = 0}.

The projective version of the non-binary short affine Weierstrass form of E(K), given in
Equation (2.9), is obtained by replacing x with X/Zc and y with Y/Zd and subsequently
clearing the denominators. For the standard projective coordinates, where c = 1 and d = 1,
the short Weierstrass form of E(K) is given by

E : Y 2Z = X3 + a4XZ
2 + a6Z

3. (2.12)

In case of a binary curve, given by Equation (2.10), the projectively closed curve is

E : Y 2Z +XY Z = X3 + a2X
2Z + a6Z

3. (2.13)

The point at infinity is O = (0 : 1 : 0), which is the only point of the line at infinity that
the curve contains. To map a projective point (X : Y : Z) 6= O to an affine point, one
simply computes (X/Zc : Y/Zd). To map an affine point (X : Y) which is not at infinity,
one chooses Z = 1 and computes (XZc : Y Zd : Z).

Projective Point Addition Formulas

The following equations will give the addition formula and doubling formula with the best
operation counts according to [BL14] for standard projective coordinates.

Addition. Formula for computing (X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3) on a
curve defined by Equation (2.13):

A = Y1Z2 + Z1Y2 B = X1Z2 + Z1X2, C = B2,

D = Z1Z2, E = BC, F = A+B,

G = (AF + a2C)D + E,

X3 = BG, Y3 = C(AX1Z2 +BY1Z2) + FG, Z3 = ED.

Doubling. Formula for computing 2(X1 : Y1 : Z1) = (X3 : Y3 : Z3) on a curve defined
by Equation (2.13):

A = X2
1 , B = A+ Y1Z1, C = X1Z1,

D = C2, E = B + C, F = B ∗ E + a2D,

X3 = CF, Y3 = EF +A2C, Z3 = CD.

As we can see, in projective coordinates no inversion operation is needed. Using the
formulas above, an addition requires 14M + 1S and a doubling can be done with 7M + 3S,
where M denotes the cost of one field multiplication and S denotes the cost of one field
squaring. Additional formulas for standard projective coordinates can be found in [BL14]
and [CFA+05, Section 13.2.1.b].

CHAPTER 2. PRELIMINARIES 18

Jacobian Coordinates

Jacobian Coordinates are projective coordinates where c = 2 and d = 3. They offer fast
doubling formulas. The negative of the projective point P = (X : Y : Z) is −P = (X :
X + Y : Z) and P represents the affine point P̄ = (X/Z2, Y/Z3). The point at infinity O
is defined as (1 : 1 : 0). Thus, using Jacobian coordinates, Equation (2.9) evolves to

E : Y 2 = X3 + a4XZ
4 + a6Z

6

and Equation (2.10) evolves to

E : Y 2 +XY Z = X3 + a2X
2Z2 + a6Z

6.

There are formulas for Jacobian coordinates so that a point addition can be done in
14M + 5S and a doubling operation in 4M + 5S. For the explicit formulas, we refer the
reader to [BL14] as well as [CFA+05, Section 13.3.1.c].

López-Dahab Coordinates

In 1998, López and Dahab introduced a projective coordinate type for binary curves,
where c = 1 and d = 2 [LD98]. In this set of coordinates, the projective equation of the
curve defined by the Equation (2.10) is given as

E : Y 2 +XY Z = X3Z + a2X
2Z2 + a6Z

4.

The negative of the projective point P = (X : Y : Z) with Z 6= 0 is −P = (X : X+Y : Z)
and P represents the affine point P̄ = (X/Z, Y/Z2). The point at infinity O is defined as
(1 : 0 : 0). With López-Dahab coordinates, the point addition can be done in 13M + 4S

and a doubling requires 3M + 5S. Explicit formulas for these coordinates can be found
in [BL14] as well as [CFA+05, Section 13.3.1.d].

2.4 Summary

This chapter gave an overview of the mathematical principles that are necessary to under-
stand the remainder of this master’s thesis. It discussed the algebraic concepts of groups,
fields and rings and introduced the discrete logarithm problem as well as the Freshman’s
dream and Lucas sequences. Furthermore, the chapter provided some background on bi-
nary fields and the corresponding arithmetic. On the basis of these concepts, the last
part of this chapter explained the fundamentals of elliptic curves, like the group law and
Weierstrass equations, and detailed projective coordinate types for point representation
on elliptic curves.

Chapter 3

Security Properties of Elliptic
Curves

This chapter addresses the security properties of elliptic curves over finite fields. It details
the elliptic curve discrete logarithm problem (ECDLP) and a selection of attacks on it.
The presented attacks are divided into two categories. At first, there are generic attacks,
which do not exploit any special structure of the curve. Then, there are specific attacks
that make use of the curve’s structure, e.g. by exploiting an isomorphism available on
the curve. The chapter consists of five sections. Section 3.1 and Section 3.2 present the
elliptic curve logarithm problem (ECDLP) and the elliptic curve Diffie-Hellman problem
(ECDHP), respectively. Subsequently, Section 3.3 is dedicated to generic attacks on the
ECDLP and details the Pollard’s rho attack. Curve-specific types of attacks are presented
in Section 3.4. This section covers the SSSA attack, an isomorphism attack suitable for
prime-field anomalous curves, as well as the Weil pairing attack or MOV attack, which is an
attack feasible on supersingular elliptic curves. Finally, the chapter is briefly summarized
in Section 3.5.

3.1 Elliptic Curve Discrete Logarithm Problem

In Section 2.1.1, we have introduced the discrete logarithm problem (DLP). Now, we are
going to have a look at its counterpart on elliptic curves.

Definition 3.1 (ECDLP). Let E be an elliptic curve defined over a finite field Fq and
let G ∈ E(Fq) be a point of order n. Given a point P ∈ 〈G〉, the elliptic curve discrete
logarithm problem (ECDLP) is the problem of finding an integer 0 ≤ k < n so that
P = kG.

The hardness of the ECDLP is the basis that all security assumptions of elliptic curves rely
on. Hence, it is essential to carefully choose the elliptic curve parameters in cryptographic
schemes in order to resist all known attacks on the ECDLP.

The most obvious and at the same time most impracticable attack is certainly the
exhaustive search where simply the sequence G, 2G, 3G, . . . is computed until P is found.
This method has an expected running time of n/2 and a running time of n in the worst
case. In the Sections 3.3 and Section 3.4, we are going to present a selection of far more
sophisticated attacks on the ECDLP.

19

CHAPTER 3. SECURITY PROPERTIES OF ELLIPTIC CURVES 20

3.2 Elliptic Curve Diffie-Hellman Problem

The elliptic curve Diffie-Hellman problem (ECDHP) is the elliptic curve analogue to the
Diffie-Hellman problem (DHP) discussed in Section 2.1.1.

Definition 3.2 (ECDHP). Let E be an elliptic curve defined over a finite field Fq and
G ∈ E(Fq) be a point of order n. Given two points P = kG,Q = lG ∈ 〈G〉, the problem
of finding a point R = klG is called the elliptic curve Diffie-Hellman problem (ECDHP).

The ECDHP is not harder than the ECDLP since, if the ECDLP can be efficiently
solved for P = kG, then it is easy to solve the ECDHP subsequently by computing R = kQ.

3.3 Generic Attacks

In this section we are going to detail a generic attack on the ECDLP. As the authors
of [CFA+05] state, an attack is generic, if it only performs computations of the composi-
tion of two elements, computations of the inverse of an element, and comparisons of two
elements. In other words, generic attacks are attacks that can be used in any DLP settings
because they do not involve any special structure of the elliptic curve.

3.3.1 Pollard’s Rho

In 1978, J. Pollard proposed an algorithm for solving the DLP in [Pol78]. The pro-
posed algorithm is an analogue to the integer factorization algorithm he proposed earlier
in [Pol75]. The Pollard’s rho for logarithms algorithm searches for collisions in pseudo-
random sequences, very similar to Floyd’s cycle-finding algorithm. A big advantage of
this algorithm is the negligible amount of required storage. However, it is a Monte Carlo
algorithm, which means that there is no guarantee of success. In the following we are
going to explain how Pollard’s rho algorithm is used to solve the ECDLP. The section is
based on the details given in [HMV04] and [Sma12], as well as [KS01] and [YISK11].

Let G ∈ E(Fq) be a base point of order n and P ∈ 〈G〉, then, in order to solve the ECDLP,
we have to find a k ∈ [0, n− 1] so that P = kG. The goal of the algorithm is to find two
distinct pairs (c, d) and (c̄, d̄) of integers modulo n where

cG+ dP = c̄G+ d̄P. (3.1)

As P = kG, Equation 3.1 can be written as follows:

cG+ dkG = c̄G+ d̄kG. (3.2)

In terms of modular arithmetic with respect to the group order n, we get

c+ dk ≡ c̄+ d̄k mod n, (3.3)

and to obtain k we compute

k = logG P = (c− c̄)(d̄− d)−1 mod n. (3.4)

A simple approach is to repeatedly generate a random pair (c, d) and store triples
(c, d, cG + dP) ordered by the third entry for each generated pair. This is done until a

CHAPTER 3. SECURITY PROPERTIES OF ELLIPTIC CURVES 21

point cG + dP occurs a second time. If the corresponding value d of these two points is
not the same, then a collision has been found. The expected number of required iterations
is according to the birthday paradox

√
πn
2 = 1, 2533

√
n. The big disadvantage of this

approach is the required storage, which is expected to be
√

πn
2 triples, since every triple

has to be stored.
The approach proposed by Pollard has roughly the same expected running time but

is in fact memoryless. To do so, it is necessary to define an iterating function f : 〈G〉 →
〈G〉 that is fast to compute. In addition, f should have random-function characteristics.
Typically, f(X) = X̄ = c̄G+ d̄P with c̄, d̄ ∈ [0, n− 1] is chosen as iterating function.

The iterating function f is used to define a sequence {Xi} by Xi+1 = f(Xi) where
i ≥ 0, with a random starting value X0. Due to the random-function characteristics of f ,
this sequence behaves as a pseudorandom walk in 〈G〉.

Consequently, any point X0 determines a sequence {Xi}i≥0. Because the set 〈G〉 is
finite, the sequence will collide at some point and from there on it will cycle forever. This
happens at the point where Xt = Xt+s for some s ≥ 1 and index t is minimal. From this
point on Xi = Xi−s for all i ≥ t + s, which means that the sequence cycles. Figure 3.1
graphically illustrates such a cycling sequence. Due to its shape, which bears a strong
resemblance to the Greek letter ρ, the algorithm is called Pollard’s rho algorithm.

Figure 3.1: Resulting sequence {Xi} in Pollard’s rho algorithm

The index t is called the tail length and s is called the cycle length. As the iterating
function f has a random characteristic, the expected number of iterations before obtain-
ing a collision is approximately

√
πn
2 . The expected length of t and s is approximately√

πn
8 each. The complete algorithm, based on information from [HMV04], is detailed in

Algorithm 2. To find a collision of two points Xi, Xj where Xj = Xj with i 6= j, the
well-known Floyd’s cycle finding algorithm ([Knu69], [Flo67]) can be used.

CHAPTER 3. SECURITY PROPERTIES OF ELLIPTIC CURVES 22

Algorithm 2 Pollard’s rho algorithm

Input: G ∈ E(Fq) of order n, where n is prime, P ∈ 〈G〉.
Output: logG(P).

1: Select the number of branches L.
2: Select a partition function H : G→ {1, 2, . . . , L}
3: for j = 1 to L do
4: Select aj , bj ∈R [0, n− 1]
5: Qj = aj + bjQ
6: end for
7: Select c, d ∈R [0, n− 1]
8: X = cG+ dP
9: X̄ = X, c̄ = c, d̄ = d

10: do
11: j = H(X)
12: X = X +Qj , c = c+ aj mod n, d = d+ bj mod n
13: for i = 1 to 2 do
14: j = H(X̄)
15: X̄ = X̄ +Qj , x̄ = c̄+ aj mod n, d̄ = d̄+ bj mod n
16: end for
17: while X 6= X̄
18: if d = d̄ then
19: return (failure)
20: else
21: l = (c− c̄)(d̄− d)−1 mod n
22: return l
23: end if

Iterating Function

An example for an iterating function is the L-adding walk proposed by Teske in [Tes00].
The set 〈G〉 is quasi randomly partitioned into L sets {S1, S2, S3, . . . , SL} of roughly the
same size. L denotes the number of branches. A point X ∈ 〈G〉 can be assigned to a set
Sj depending on the number of branches. For example, let L = 2z, then X is assigned to
the set Sj if the value represented by the z least significant bits of the x-coordinate of X
is equal to the integer j − 1. Typical values for L are 16 and 32. If X ∈ Sj then this is
written as H(X) = j where H is called the partition function. With aj , bj ∈R [0, n − 1]
for 1 ≤ j ≤ L, the iterating function f : 〈G〉 → 〈G〉 is defined by:

f(X) = X + ajP + bjQ where j = H(X). (3.5)

If X = cG+ dP is given, we can compute f(X) = X̄ = c̄G+ d̄P where c̄ = c+ aj mod n
and d̄ = d+ bj mod n.

Parallelization

The Pollard’s rho algorithm detailed above uses only a single processor, however, it is pos-
sible to extend the number of employed processors. In [OW99], Van Oorschot and Wiener
proposed a parallelized variant of Pollard’s rho that can employ an arbitrary number of
processors, where for M used processors it yields a speedup of factor M . Therefore a

CHAPTER 3. SECURITY PROPERTIES OF ELLIPTIC CURVES 23

distinguishing property for points is selected, i.e., a property that can easily be tested,
such as the number of leading zeros of a point’s x-coordinate. Each processor starts with
its own randomly selected starting point X0, but all use the same iterating function f
to generate the sequences {Xi}i≥0. If a sequence hits a distinguished point, this point
is sent to a central server which stores all those points in a sorted list. As soon as the
server receives a stored point a second time, the discrete logarithm can be computed via
Equation (3.4). The expected running time of the parallelized Pollard’s rho algorithm is√

(πn/2)/M + 1/θ, where θ denotes the proportion of points in 〈P 〉 that have the selected
distinguishing property. For a more detailed explanation and an explicit algorithm, we
refer the reader to [HMV04, Section 4.1.2].

3.4 Specific Attacks

This section is dedicated to attacks on the ECDLP that make use of the curve’s structure.
In the following, we are going to focus solely on isomorphism attacks. These attacks reduce
the effort required to solve the ECDLP by using an isomorphism provided by the elliptic
curve.

The principle of isomorphism attacks is to map elements of elliptic curve groups to
isomorphic groups, where the DLP is less hard, i.e., where the DLP can be solved in
subexponential or even polynomial time. The solution to the DLP in the other group then
immediately gives a solution to the DLP in the elliptic curve group. Let E be an elliptic
curve defined over a finite field Fq and G ∈ E(Fq) a point of prime order n. Moreover,
let GT be a group of order n as well. Then, 〈G〉 and GT are isomorphic since both groups
have order n. Whenever an isomorphism

φ : 〈G〉 → GT

can be computed efficiently, the ECDLP instances in 〈G〉 can be transferred to DLP
instances in GT .

These attacks are specific or special purpose as they can solve the ECDLP faster
than Pollard’s rho only on specific classes of elliptic curves. Such specific classes are, for
example, the class of prime-field anomalous curves and the class of supersingular curves.

3.4.1 Isomorphism Attacks on Prime-Field Anomalous Curves

An elliptic curve E defined over a prime field Fp, where #E(Fp) = p, is called a prime-field
anomalous curve. The group E(Fp) has prime order and is thus cyclic. As a consequence
E(Fp) is isomorphic to the additive group (Zp,+) of integers modulo p. In this additive
group, the DLP is defined as the problem of finding l ∈ [0, p− 1] such that

la ≡ b (mod p) (3.6)

with p, a, b ∈ (Zp,+) and a 6= 0.
From Equation (3.6) we can deduce that l = ba−1 mod p, and, thus, we can use the

extended Euclidean algorithm (see Section 2.2.1) to compute a−1 mod p and, hence, solve
the DLP in (Zp,+) efficiently.

CHAPTER 3. SECURITY PROPERTIES OF ELLIPTIC CURVES 24

The SSSA Attack

In 1997, Semaev [Sem98], Smart [Sma99] and Satoh and Araki [SA98] independently
showed how to efficiently compute an isomorphism

φ : E(Fp)→ (Zp,+)

for prime-field anomalous elliptic curves. Hence, this so-called SSSA attack, illustrated
in Algorithm 3, gives a polynomial-time algorithm for the ECDLP in E(Fp). However,
it solely applies to prime-field anomalous curves and cannot be extended to other classes
of elliptic curves. The SSSA attack can easily be circumvented by avoiding curves whose
number of points is equal to the cardinality of the underlying field, i.e, by avoiding curves
where #E(Fp) = p.

Algorithm 3 SSSA algorithm

Input: G ∈ E(Fp), P ∈ 〈G〉 and φ(P) 6= 0.
Output: Integer l s.t. P = lG.

1: a = φ(P), b = φ(G)
2: Find l ∈ [0, p− 1] : l ≡ ba−1 mod p . using the extended Euclidean algorithm
3: return l

3.4.2 The MOV Attack

In the following, we are going to detail the Weil pairing attack. This part is based on the
works [Sil09], [Mil04] and [Aft11]. In 1991, Menezes, Okamoto and Vanestone showed an
approach to attack supersingular curves using the Weil pairing [MOV91]. The so-called
MOV attack reduces the ECDLP in a curve E(Fq) to the DLP in an extension field Fqk
of Fq. The reduction is using an isomorphism between the subgroup of E generated by
G, where G is of order n, denoted by 〈G〉 and the subgroup of n-th roots of unity in
the extension field Fqk . Here, the integer k, which is called the embedding degree, is the

smallest positive integer such that n|(qk − 1).
Here, we present a simplified version of the MOV attack, which can be achieved for

any elliptic curve equipped with a symmetric pairing, such that the embedding degree
is small, i.e., k ≤ 6. This applies solely to supersingular curves. Note that for higher
embedding degrees, the reduction of the ECDLP to the DLP in the subgroup GT of Fqk
gives no advantage over solving the ECDLP directly.

The Pairing

Let 〈G〉 denote an elliptic curve subgroup of prime order p of E(Fq), generated by G, and
GT a multiplicative subgroup of the finite field Fqk of prime order p. A symmetric bilinear
pairing is then a map of the form:

e : 〈G〉 × 〈G〉 → GT . (3.7)

A bilinear pairing has the following important properties:

1. Bilinearity : ∀P,Q,R ∈ 〈G〉:

e(P +Q,R) = e(P,R) · e(Q,R)

e(P,Q+R) = e(P,Q) · e(P,R)

CHAPTER 3. SECURITY PROPERTIES OF ELLIPTIC CURVES 25

2. Non-degeneracy : ∀P ∈ 〈G〉 : if P 6= O then e(P, P) is a generator of GT , i.e.,

e(P, P) 6= 1.

3. Computability : e(P,Q) is efficiently computable for all P,Q ∈ 〈G〉.

The Algorithm

Algorithm 4 states the simplified version of the MOV attack using the symmetric bilinear
pairing e defined in Equation (3.7).

Algorithm 4 Simplified MOV algorithm

Input: G ∈ E(Fq), ord(G) = p where p is prime, P ∈ 〈G〉.
Output: Integer l, s.t. P = lG.

1: α = e(G,G) 6= 1
2: β = e(G,P)
3: Use subexponential algorithm to compute the discrete logarithm of β to the base α,

i.e., find l ∈ N, s.t. β = αl

4: return l

The reduction of the ECDLP in E(Fq) to the DLP in the extension field Fqk of Fq
is feasible due to the bilinearity as well as the non-degeneracy of e. We know from the
non-degeneracy that e(G,G) is a generator element of GT , denoted by g in the following.
We also know due to the bilinearity of e that e(P + Q,R) = e(P,R) · e(Q,R). Thus, we
have

e(G,P) = e(G, lG)
bilinear

=

l∏
i=1

e(G,G) = e(G,G)l = gl

Once we have α = e(G,G) and β = e(G,P), we can solve β = αl in subexponential time
by using index-calculus methods.

Index-Calculus

The index-calculus is a probabilistic method to compute discrete logarithms in some
groups. The method does not apply to every group, but when it does, it is possible
that it yields a subexponential-time algorithm. The following explanations are based on
the details given in [HMV04] and [MVO96], as well as on [Sah12] and [Die12].

We start by illustrating the main idea of index-calculus on the basis of a cyclic group
G. Let G be of order n, generated by α. First, select a factor base. That is a subset
S = {p1, p2, . . . , pt} of G such that a significant fraction of elements of G can be efficiently
expressed as a product of elements from S.

Next, we have to find linear relations which solve logarithms of elements in S. There-
fore, we select random integers k ∈ [0, n− 1] until ak is S-smooth, meaning that ak splits
into elements in S. When such a k is found, ak can be completely factored, i.e.,

ak = pc11 . . . pctt , where ci ≥ 0. (3.8)

When taking the logarithms to the base α of both sides of Equation (3.8), we obtain a
linear equation

k ≡
t∑
i=1

c1 logα p1 (mod n), (3.9)

CHAPTER 3. SECURITY PROPERTIES OF ELLIPTIC CURVES 26

which is a “relation of indices”. Index is the original name for discrete logarithm. In
Equation (3.9) the unknowns are the logarithms of the factor base elements (indices).

We repeat the steps above until we get t + δ relations of the form of Equation (3.9),
where δ is a small positive integer, e.g., δ = 4. The additional δ relations are meant to
ensure that the resulting system of equations, consisting of t + δ relations, has a unique
solution with high probability, i.e., t of the t+ δ equations are linearly independent.

Now, we have to find the logarithms of elements in S. This is achieved by solving
this linear system and, thus, obtaining logα pi for i ∈ [1, t]. Subsequently, we compute
logα β. Therefore, we select random integers k ∈ [0, n− 1] until αkβ is S-smooth and can
be written as linear relation of the form

αkβ =

t∏
i=1

pdii , where di ≥ 0. (3.10)

The last step, in order to obtain the desired logarithm of β, is taking logarithms to the
base α on both sides of Equation (3.10):

logα β = −k +

t∑
i=1

di logα pi mod n.

This is the basic idea of the index-calculus method.

The running time of this method depends heavily on the choice of the factor base S.
As outlined in [HMV04], there is also a trade-off in the size t of S. On the one hand we
want to have a larger t because it increases the probability that a random group element
factors over S. On the other hand we want a small t because then the number of relations
to collect is smaller. Thus, the optimal size t is determined by the proportion of elements
in G that factor over S.

Note that the presented index-calculus method cannot in general be used in a group of
points on elliptic curves. The problem is that there is no equivalence to the prime elements
in such a group and, hence, it is not possible to find an efficient factor base.

Index-Calculus in F∗p. The elements of the multiplicative group of a prime field F∗p
can be regarded as the integers in [1, p − 1]. The evident choice for the factor base S
are the first t prime numbers, where t is at most a prescribed bound B. Every element
of F∗p whose prime factors are ≤ B is B-smooth and, thus, factors over S. In the basic
explanation of the index-calculus method above, we mentioned that the optimal size t of
the factor base S depends on the proportion of elements that factor over S. In the case of
a prime field, the optimal choice of t depends on the distribution of B-smooth integers in
[1, p− 1]. With an optimal choice of t, we can obtain a subexponential-time algorithm for
the DLP in F ∗p . According to [HMV04], the fastest variant of this algorithm to compute
logarithms in F∗p is the number field sieve, which has subexponential running time.

Index-Calculus in F∗2m. The elements of the multiplicative group of a binary field F∗2m
can be regarded as nonzero polynomials in Z2[x] of degree at most m − 1. Thus, the
evident choice for the factor base S is the set of all irreducible binary polynomials of at
most some prescribed bound B. Every element of F∗2m for which it applies that all its
irreducible factors have a degree of at most B, is B-smooth and, thus, factors over S. The

CHAPTER 3. SECURITY PROPERTIES OF ELLIPTIC CURVES 27

optimal size of S in the case of a binary field depends on the distribution of polynomials
that are B-smooth among all the binary polynomials of degree less than m. yields an
subexponential-time algorithm for the DLP in F∗2m . The fastest index-calculus variant
for computing logarithms in F∗2m is Coppersmith’s algorithm and derivatives thereof, as
stated in [HMV04] and [MVO96].

In 2013, Antoine Joux proposed a new index-calculus algorithm in [Jou13a], which
can be efficiently computed in small characteristic. This algorithm is suitable for all finite
fields that are relevant for pairings, as it is the case for the MOV attack. As a consequence,
symmetric pairings on binary curves can be considered as broken.

3.5 Summary

This chapter gave insight into the security properties of elliptic curves. It detailed the
ECDLP as well as the ECDHP, and presented different attacks on the ECDLP on elliptic
curves. Within the stated attacks, we differentiated between two types: Firstly, attacks
that work on the ECDLP as well as on the DLP as they do not employ any special
structure of the elliptic curve. These attacks were so-called generic attacks. Secondly, we
described specific attacks, which make use of a structure provided by the elliptic curve,
such as an isomorphism. This type of attacks applies to a certain class of curves only, e.g.,
supersingular curves. The chapter also gives a rough idea why it is important to choose
the elliptic curve’s parameters carefully.

Chapter 4

Protocols

This chapter gives an overview of four different cryptographic protocols on elliptic curves.
A cryptographic protocol can be seen as a series of computation steps and message ex-
changes between two or more entities. The goal is to achieve a certain security objective,
e.g., a digital signature or a shared secret key, in a secure manner. In this chapter, a sig-
nature scheme, two key-agreement protocols, and a hybrid encryption scheme are going to
be explained. We are also going to detail the objectives of each protocol and give explicit
algorithms thereof.

This chapter is structured as follows. At first, Section 4.1 gives a superficial overview
of the domain parameters which are essential for almost all ECC-based protocols. Then,
in Section 4.2 the Elliptic Curve Digital Signature Algorithm (ECDSA) is introduced and
its signature generation and signature verification is explained, along with a brief glimpse
into public-key validation. The next section, Section 4.3, is dedicated to the Elliptic Curve
Diffie-Hellman (ECDH) key agreement. It is followed by a discussion of the the ECMQV
key agreement in Section 4.4. The last protocol described in this chapter is the Elliptic
Curve Integrated Encryption Scheme (ECIES), which is illustrated in Section 4.5. At the
end, this chapter is briefly summarized in Section 4.6.

4.1 Domain Parameters

Domain parameters are a set of elements to identify a certain elliptic curve. It is essential
that all parties agree on the scheme’s domain parameters, since the scheme usually requires
that all participating entities perform computations on the same curve. The elements
contained in the domain parameters may vary depending on the scheme. The domain
parameters D described below are required for all of the following elliptic-curve schemes.
They specify an elliptic curve E over a finite field Fq, a base point G ∈ E(Fq) and the
base point’s order n. Additionally, they describe an indication field representation used
for the elements in Fq. The domain parameters D = (q, FR, S, a, b,G, n, h) consist of the
following values:

� a field order q, where either q = p and p is a prime > 2, or q = 2m,

� a field representation FR of the representation used for the elements of Fq,

� an optional bitstring seed S if the curve was generated randomly,

� two field elements a, b ∈ Fq (called coefficients) that define the equation of the curve
E over Fq (the equation of E depends on the type of the underlying field),

28

CHAPTER 4. PROTOCOLS 29

� a finite point G = (xG, yG) ∈ E(Fq) of prime order, called the base point,

� the order n of the base point G, and

� the cofactor h = #E(Fq)/n.

If a scheme explicitly uses standardized curves (cf. [Nat13], [Cer00], [LM10]), the domain
parameters are sometimes given as D = (E,G, n) for convenience where E is the stan-
dardized curve, G is a finite point on the curve E (base point) and n is the order of point
G.

4.1.1 Generation and Validation of Domain Parameters

The generation and validation of the domain parameters will not be dealt with in detail in
this work, because in practice the domain parameters are not generated each time by (one
of) the participants since this procedure is quite time consuming and the implementation
itself is quite error-prone. Instead, there are domain parameters for several common field
sizes published by various organizations and institutes, like NIST [Nat13] or SECG [Cer00].
These domain parameters are often called named curves or standard curves. Such a
standard curve is either identified by its unique name or by its unique object identifier
(OID). Both identifiers are defined in the corresponding standardization document. For a
more detailed view on the explicit domain parameter generation and verification we refer
the reader to [JMV01] and [HMV04].

4.2 ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve variant of
the Digital Signature Algorithm (DSA). In 1991, NIST proposed DSA which was then
specified under the name Digital Signature Standard (DSS) in FIPS 186 [Nat00]. In 1992,
Scott Vanstone proposed ECDSA as a response the NIST’s request for public comments
on their DSS [Van92]. Since 1998, ECDSA has been widely standardized. It appears in
the standards ISO/IEC 14888-3 [ISO98], ANSI X9.62 [ANS98], IEEE 1363-2000 [IEE00],
and FIPS 186-3 [Nat13]. A very detailed description of this topic can be found in [JMV01]
which also served as basis for this section.

4.2.1 Signature Generation

The generation of an ECDSA signature is detailed in Algorithm 5. The input of the
ECDSA signature generation algorithm consists of the domain parameters D, a private
key d and the message m to create the signature on.

The function H(m) in Step 4 denotes a cryptographic hash function, such as SHA-1.
The result e of this hash function is required to have a maximum bitlength of n bits. If
the output of H(m) is larger, it can be truncated, such that e represents the n leftmost
bits of H(m).

CHAPTER 4. PROTOCOLS 30

Algorithm 5 ECDSA signature generation

Input: Domain parameters D = (q, FR, S, a, b,G, n, h), private key d, message m.
Output: Signature (r, s).

1: Select a random integer k ∈R [1, n− 1].
2: Q = (x1, y1) = kG . Key generation: k is the ephemeral private key and Q is the

public key
3: r = x1 mod n, if r = 0 go to Step 1.
4: e = H(m) . H denotes a cryptographic hash function, such as SHA-1
5: s = k−1(e+ dr) mod n, if s = 0 go to Step 1.
6: return (r, s).

It is important that the ephemeral private key k, also referred to as the per-message
secret, in Step 1 is generated randomly for every signature and discarded after each
use. These secrets must be kept private at all times, because an adversary knowing the
ephemeral private k that was used to generate a signature (r, s), is to able recover the
signer’s private key d since

d = r−1(ks− e) mod n. (4.1)

Thus, the per-message secrets k have the same security requirements as the private key
d. Furthermore, it is required that per-message secrets never repeat, because this would
enable the recovery of k and subsequently the signer’s private key d, as illustrated in the
following.

Let (r, s1) and (r, s2) be two ECDSA signatures, generated with the same private key
d and the same k on two different messages m1 and m2. Let e1 = H(m1) and e2 = H(m2).
According to Step 5 of Algorithm 5 it applies that s1 ≡ k−1(e1 + dr) (mod n) and s2 ≡
k−1(e2 + dr) (mod n). Consequently, ks1 ≡ e1 + dr (mod n) and ks2 ≡ e2 + dr (mod n).
By subtracting these two equations, we get k(s1 − s2) ≡ e1 − e2 (mod n) and, therefore,
we obtain

k ≡ (s1 − s2)−1(e1 − e2) (mod n),

if s1 6= s2 (mod n), which is the case with overwhelming probability if H is a secure hash
function. Once an adversary has learned k he is able to recover d via Equation (4.1).

4.2.2 Signature Verification

Prior to the actual ECDSA signature verification, it is essential to validate the domain
parameters associated with the signature. In the following, we are going to give a short
explanation of the validation of the signer’s public key.

Public-Key Validation

Public-key validation is essential for almost all elliptic-curve protocols. It was devised
the first time by Johnson in [Joh97]. This validation ensures that a public key has the
requisite arithmetical properties and should primarily prevent malicious insertions of an
invalid public key. In the worst case the use of an invalid public key can void all expected
security properties.

The following checks explicitly validate an ECDSA public key Q associated with valid
domain parameters:

� Check that the point is not at infinity, i.e, Q 6= O.

CHAPTER 4. PROTOCOLS 31

� Check that xQ, yQ are properly represented elements of the underlying field Fq.

� Check that Q ∈ E(Fq).

� Check that nQ = O.

If all these checks are successful, then Q is a valid public key. However, it is neither
ensured that the alleged owner of Q is in possession of the associated private key nor that
this private key was generated at all.

To verify a signature (r, s) on a message m, the verifier V has to obtain the signature
(r, s), the exact domain parameters D the signer used and the signer’s associated public
key Q, which, as the very first step, has to be validated as described above. In practice,
the public key is additionally authenticated, e.g., by an X.509 certificate.

The verification of an ECDSA signature in detail is depicted in Algorithm 6. Note that
the hash function H used in Step 2 is required to be the same that was used to generate
the signature. Again, similar to the generation, the result of H(m) might get truncated
in order to have bitlength of at most n bits.

Algorithm 6 ECDSA signature verification

Input: Domain parameters D = (q, FR, S, a, b,G, n, h), public key Q, message m, signa-
ture (r, s).

Output: Accept or reject the signature.
1: Verify that r, s ∈ [1, n− 1]
2: e = H(m) . H is the same cryptographic hash function as used for signature

generation.
3: w = s−1 mod n
4: u1 = ew mod n, u2 = rw mod n
5: X = u1G+ u2Q
6: if X = O then
7: return (reject)
8: end if
9: v = x1 mod n

10: if v = r then
11: return (accept)
12: else
13: return (reject)
14: end if

Correctness of the Signature Verification

The verification of a signature (r, s) on a message m in Algorithm 6 works correctly,
because, if the signature was generated by a legitimate signer, then it applies that

s ≡ k−1(e+ dr) (mod n).

This can be rewritten as:

k ≡ s−1(e+ dr) ≡ s−1e+ s−1dr (mod n). (4.2)

CHAPTER 4. PROTOCOLS 32

Moreover, inserting w from Step 3 and u1, u2 from Step 4 in Equation (4.2), we get:

k ≡ we+ wdr ≡ u1 + u2d (mod n).

Finally,
X = (x′1, y

′
1) = u1G+ u2Q = (u1 + u2d)G = kG = Q = (x1, y1),

and thus, v = r since r = x1 mod n, v = x′1 mod n.

4.3 ECDH

The Elliptic Curve Diffie-Hellman (ECDH) key-agreement protocol is the elliptic curve
variant of the Diffie-Hellman (DH) key-agreement protocol proposed by Diffie and Hellman
in [DH76]. The goal of this protocol is to establish a shared secret over an insecure channel.
This is then typically used to derive a key for some symmetric cipher by using some key
derivation function. The security of ECDH is based on the difficulty of the ECDHP
(cf. Section 3.2).

The process of the ECDH key agreement is stated in Algorithm 7. As in the previous
section, a basic prerequisite is that both participating parties, denoted by A and B, use
the same domain parameters D. In the first step, A and B both compute an elliptic curve
key pair, i.e., a private key d, which is a random integer in the interval [1, n − 1], and
a corresponding public key Q = dG. Then, both parties exchange their public key QA
and QB, respectively. Now, A computes a point K = (xk, yk) = dAQB and B computes
K ′ = (x

′
k, y

′
k) = dBQA. The points K and K ′ are equal, since

dAQB = dAdBG = dBQA.

Usually, the x-coordinate xk is used as shared secret.
Note that the depicted version uses temporary ephemeral keys which are not necessarily

authenticated. This circumstance contains the risk of a man-in-the-middle attack, since
neither A nor B can verify that the received public key actually belongs to the respective
counterpart. Thus, it is advisable to authenticate the public keys by other means.

In contrast, if the public key of at least one participant is static and known to the
other, the risk of a man-in-the-middle attack is annihilated. However, static public keys
have some other drawbacks, concerning security as well as usage. One obvious drawback
is the acquisition of the counterpart’s key in an authenticated way and that it has to
be kept up-to-date subsequently. Another security drawback is that static keys give no
key-compromise impersonation resilience. Another problem that results from the absence
is the lack of forward secrecy, meaning that if a private key leaks, not only the owner can
be impersonated but also all precedent sessions in which this key was involved in can be
decrypted.

Algorithm 7 ECDH key agreement

Goal: A and B establish a session key.
1: A generates an integer dA ∈R [1, n− 1], computes QA = dAG and sends QA to B.
2: B does:

2.1: Generate dB ∈R [1, n− 1], compute QB = dBG and send QB to A.
2.2: Compute (xk, yk) = dBQA

3: A computes (xk, yk) = dAQB
4: The shared session key is xk.

CHAPTER 4. PROTOCOLS 33

A with D and (dA, QA) B with D and (dB , QB)

RA = kAG, where kA ∈R [1, n− 1] A,RA RB = kBG, where kB ∈R [1, n− 1]

B,RB , tB

tA

sA = (kA + R̄AdA) mod n sB = (kB + R̄BdB) mod n

Z = hsA(RB + R̄BQB) Z = hsB(RA + R̄AQA)

(k1, k2) = KDF (xz) (k1, k2) = KDF (xz)

Figure 4.1: ECMQV key-agreement protocol

4.4 ECMQV

ECMQV is the elliptic curve variant of MQV, a three-pass protocol for key agreement
based on the Diffie-Hellman scheme. The advantage of ECMQV compared to ECDH is
that it is authenticated and thus, it is not susceptible to a man-in-the-middle attack. The
MQV protocol was introduced in 1995 by Menezes, Qu and Vanstone in [MQV95]. Later,
Law et al. [LMQ+03] improved the protocol in order to work with an arbitrary finite
group, and in particular, with elliptic curve groups. ECMQV has been standardized in
ISO/IEC 15946-3 [ISO02], ANSI X9.63 [ANS01], and IEEE 1363-2000 [IEE00].

The transmissions of the ECMQV protocol are depicted in Figure 4.1. The protocol
in detail, based on [LMQ+03] and [HMV04], is stated in Algorithm 8. In the following,
KDF denotes a key derivation function, such as ANSI-X9.63-KDF, and MAC denotes
a secure message authentication code algorithm, such as HMAC. A detailed description of
valid types for KDF and MAC can be found in [Cer09]. For the process of computing
a shared secret Z in the ECMQV protocol, it is essential to know the following. f =
blog2 nc + 1 denotes the bitlength of n, where n is the prime order of the base point G.
Furthermore, if R = (x, y) is a finite elliptic-curve point, then R̄ is defined as the integer
(x̄ mod 2df/2e) + 2df/2e, where x̄ is the integer representation of x.

For the stated version of the protocol it is presumed that both parties have agreed on
the domain parameters D, and that A and B are in possession of a valid elliptic curve
keypair (dA, QA) and (dB, QB), respectively. Furthermore, it is also presumed that A has
an authentic copy of B’s longterm public key QB and vice versa. For ECMQV it applies
that the protocol run terminates with failure if any verification fails.

As we have mentioned in the beginning of this section, the ECMQV protocol is based
on the ECDH key agreement described in Section 4.3. Thus, the authors of [HMV04] call
it an “extension to the ordinary Diffie-Hellman key-agreement protocol”. They also point
out that the quantities sA and sB, computed in Step 3.2 and Step 2.3 of Algorithm 8,
serve as implicit signatures for the ephemeral public keys RA and RB, respectively. sA
can be viewed as a signature, since only A is able to compute it, and also as implicit since
B verifies the validity indirectly, when deriving the shared secret Z in Step 2.3, by using

sAG = (kAG+ R̄AdAG) = RA + R̄AQA.

The same applies for sB, the implicit signature for RB. Unlike the ordinary Diffie-Hellman
key agreement, where the shared secret would be Z = kAkBG, the shared secret in ECMQV

CHAPTER 4. PROTOCOLS 34

Algorithm 8 ECMQV key agreement

Goal: A and B establish a session key.
1: A generates an integer kA ∈R [1, n− 1], computes RA = kAG and sends A,RA to B.
2: B does:

2.1: Perform an embedded public-key validation of RA (see Section 4.2.2).
2.2: Generate kB ∈R [1, n− 1] and compute RB = kBG.
2.3: Compute sB = (kB + R̄BdB) mod n and Z = hsB(RA + R̄AQA).

Verify that the shared secret Z 6= O.
2.4: Use a KDF to derive two shared keys from the x-coordinate of Z:

(k1, k2) = KDF (xz).
2.5: Compute tB = MACk1(2, B,A,RB, RA) and send B,RB, tB to A.

3: A does:

3.1: Perform an embedded public-key validation of RB (see Section 4.2.2).
3.2: Compute sA = (kA + R̄AdA) mod n and Z = hsA(RB + R̄BQB).

Verify that the shared secret Z 6= O.
3.3: Use a KDF to derive two shared keys from the x-coordinate of Z:

(k1, k2) = KDF (xz).
3.4: Compute t = MACk1(2, B,A,RB, RA) and verify that t = tB.
3.5: Compute tA = MACk1(3, A,B,RA, RB) and send tA to B

4: B computes t = MACk1(3, A,B,RA, RB) and verifies that t = tA.
5: The shared session key is k2.

is Z = hsAsBG. The multiplication by h and the check that Z 6= O afterwards, ensure
that Z is of prime order n and, hence, Z ∈ 〈G〉.

To distinguish the authentication tags created by the initiator A and the responder B,
the strings “2” and “3” are included in the MAC inputs in the Steps 2.5, 3.4, and 3.5.
The verification of the authentication tags tA and tB has three functions. A successful
verification assures that the other party has indeed computed the shared secret Z, since
computing such a tag requires knowledge of the key k1, which can only be derived from Z.
It ensures that the communication has not been tampered with, as long as the MAC is se-
cure. And in addition, the entities know the identity of the entity they are communicating
with, since the identities are included in the MAC input.

Note that the ECMQV protocol has been dropped from NSA’s Suite B set of cryptographic
standards. Furthermore, since the ECMQV protocol has some weaknesses, Sarr et al. pro-
posed an improved ECMQV key agreement with additional security properties in [SEB09],
called Fully Hashed Menezes-Qu-Vanstone (FHMQV) protocol.

4.5 ECIES

The Elliptic Curve Integrated Encryption Scheme (ECIES) is a hybrid encryption scheme
and a variant of the ElGamal public-key encryption scheme [ElG85]. A hybrid encryption
scheme combines an asymmetric and a symmetric encryption system. The asymmetric sys-
tem is used to encapsulate the key under which the message is encrypted with a symmetric
encryption system. This offers good performance due to the symmetric encryption without
the requirement that the sender and receiver have to share a common secret beforehand.

CHAPTER 4. PROTOCOLS 35

ECIES was originally proposed in 1997 by Bellare and Rogaway [BR97]. Since then, it
has been modified several times and was finally standardized in ANSI X9.62 [ANS01] and
ISO/IEC 18033-2 [ISO06].

4.5.1 Encryption

The ECIES encryption procedure, as it is stated in Algorithm 9, uses the following cryp-
tographic primitives:

� ENCk1(m) is an arbitrary symmetric encryption scheme where k1 is the key under
which the input m is encrypted. The corresponding decryption function is denoted
by DECk1 .

� KDF denotes a hash-based key derivation function, e.g., ANSI-X9.63-KDF [ANS01].
Such a KDF can generate a key of arbitrary length `. Therefore, in the KDF (x)
the hashes H(x, i) are concatenated until a hash value of ` bits has been generated.
The value i represents a counter that is incremented for every execution of H.

� MAC is a message authentication code, e.g., the 160 bit HMAC-SHA-1-160.

Besides the domain parameters D, another prerequisite for the ECIES encryption is the
public key Q of the intended receiver. Q is required to be a key of a key pair suitable for
elliptic curve cryptography, which consists of a randomly selected private key d ∈ [1, n−1]
and the corresponding public key Q = dG. The two symmetric keys k1, k2 are derived from
the Diffie-Hellman shared secret Z. The key k1 is then used to encrypt the plaintext via the
symmetric encryption function ENC and the key k2 is used to authenticate the output
of ENC via the message authentication code MAC, which thwarts chosen-ciphertext
attacks, since an adversary cannot generate valid ciphertexts on his own. Finally, the
resulting ciphertext (R,C, t) on the plaintext m consists of the sender’s one-time public
key R, the ciphertext C and the authentication code t of C.

Note that, as stated in [HMV04], it is required to derive the symmetric keys (k1, k2) from
xZ as well as from the sender’s one-time public key R in order to ensure that the scheme
does not become malleable. If R is not included, an adversary could replace R with −R in
the ciphertext (R,C, t) and would obtain a different, but valid ciphertext with the same
underlying plaintext as the original ciphertext.

Algorithm 9 ECIES encryption

Input: Domain parameters D = (q, FR, S, a, b,G, n, h), public key Q, plaintext m.
Output: Ciphertext (R,C, t).

1: Select k ∈R [1, n− 1]
2: R = kG and Z = hkQ
3: if Z = O then
4: go to Step 1
5: end if
6: (k1, k2) = KDF (xZ , R) . xZ is the x-coordinate of Z
7: C = ENCk1(m) , t = MACk2(C)
8: return (R,C, t)

CHAPTER 4. PROTOCOLS 36

4.5.2 Decryption

The required input for the ECIES decryption are the domain parameters D, the cipher-
text (R,C, t), and the private key d that is corresponding to the public key Q used for
encryption. The first step is to check whether R is a valid public key. The reason, why
this is important, is described in Section 4.2. The whole decryption process of a cipher-
text (R,C, t) is detailed in Algorithm 10. There, KDF denotes the same key derivation
function that was used for the encryption (Algorithm 9). The same applies for the mes-
sage authentication code MAC in Step 4. DEC denotes the decryption function that
corresponds to the encryption function ENC, as described in Section 4.5.1.

Algorithm 10 ECIES decryption

Input: Domain parametersD = (q, FR, S, a, b,G, n, h), private key d, ciphertext (R,C, t).
Output: Decryption of (R,C, t) (or rejection of the ciphertext).

1: Perform an embedded public key validation of R (see Section 4.2.2).
2: Z ′ = hdR
3: if Z ′ = O then
4: return (reject)
5: end if
6: k1, k2 = KDF (x′Z , R) . x′Z is the x-coordinate of Z ′

7: t′ = MACk2(C)
8: if t′ 6= t then
9: return (reject)

10: end if
11: m = DECk1(C)
12: return m

Correctness of the Decryption

The decryption of a ciphertext (R,C, t) that was generated by a legitimate entity on a
plaintext m works correctly, since

hdR = hd(kP) = hk(dP) = hkQ. (4.3)

The encrypter computes the symmetric keys (k1, k2) = KDF (xZ , R), where (xZ , yZ) =
hkQ and the decrypter computes (k1, k2) = KDF (x′Z , R), where (x′Z , y

′
Z) = hdR. Thus,

by Equation (4.3) both parties compute the same two keys (k1, k2).

4.6 Summary

The chapter gave insight into four cryptographic protocols on elliptic curves. In the
beginning, it explained what domain parameters are and why they are necessary for the
presented protocols. We illustrated the ECDSA signature generation and verification
and touched on the public key validation in general. We also discussed the ECDH key
agreement, a fundamental scheme when it comes to key agreements. On the basis of
ECDH, the ECMQV key agreement was examined and its protocol transmissions were
detailed. The last part of this chapter dealt with ECIES, a hybrid encryption scheme
based on the ElGamal public-key scheme.

Chapter 5

Scalar Multiplication Algorithms

This chapter, based on [HMV04] and [CFA+05], considers various scalar multiplication
algorithms. On elliptic curves, a scalar multiplication, also called point multiplication, is
the multiplication of a point on the curve by a (large) scalar in order to obtain another
point on the same curve. Such multiplication is performed by repeated point addition op-
erations and point doublings. Scalar multiplication is the most time-consuming operation
in cryptographic schemes on elliptic curves. Hence, it is important that scalar multipli-
cations can be efficiently computed. In this chapter, we are going to examine different
methods that provide such efficient computations. The methods presented do not use any
special structure of the elliptic curve.

The first two sections consider multiplication methods for computing kP , where k
is a positive integer and P is a point on an elliptic curve defined over Fq. The very
basic, yet not really practical, multiplication methods are considered in Section 5.1. A
more advanced method for computing kP is examined in Section 5.2. Section 5.3 covers
multiplication methods where the point P is fixed, as it is the case for ECDSA signature
generation. These methods make use of precomputation data that solely depend on P , in
order to decrease execution time. In the last part of this chapter, Section 5.4 deals with so-
called multiple point multiplication techniques, which provide an efficient computation of
kP + lQ, which is, for example, the most costly part of the ECDSA signature verification.
Finally, the chapter is summarized in Section 5.5.

5.1 Basic Point Multiplication Methods

This section gives an overview of some very basic techniques for scalar multiplication.
Although they are intrinsically not really practical, these techniques serve as a basis for
the more advanced multiplication methods that follow later in this chapter.

5.1.1 The Left-to-right Binary Method

The left-to-right binary method as well as its counterpart, the right-to-left binary method,
are the most basic methods for point multiplication on elliptic curves. They are the
additive versions of the basic repeated-square-and-multiply methods for exponentiation.
Thus, we are not going to detail the right-to-left method due to its similarity to the left-
to-right version. Because of its simplicity the left-to-right method will be described only
very briefly in the following.

37

CHAPTER 5. SCALAR MULTIPLICATION ALGORITHMS 38

To obtain kP , where k = (kt−1, . . . , k1, k0) is a positive integer in unsigned binary
representation with t ≈ m = dlog2 qe, and P is a point on E(Fq), the scalar k of bitsize
t is processed from left to right. For every nonzero bit in k, the point P is added to the
designated result Q. Between each of these steps, Q is doubled to ensure the correct place
value of the next bit to process. This method is shown in Algorithm 11.

Algorithm 11 Left-to-right binary method

Input: k = (kt−1, . . . , k1, k0)2 ∈ Z>0, P ∈ E(Fq).
Output: kP .

1: Q = O
2: for i = t− 1 downto 0 do
3: Q = 2Q
4: if k = 1 then
5: Q = Q+ P
6: end if
7: end for
8: return Q

The binary representation of k has a density of approximately t
2 ≈

m
2 . Thus, Algo-

rithm 11 requires m point doubling operations denoted by D and roughly m
2 point addition

operations denoted by A on average. As a consequence, it has an expected running time
of

m

2
A +mD,

where additions are in general more expensive than doublings. In order to reduce the
density of nonzero digits in the representation of the scalar k, and thus reduce the number
of required additions, the so-called non-adjacent form can be used instead of the basic
unsigned binary representation.

5.1.2 The Non-adjacent Form

The non-adjacent form (NAF) representation is a signed digit representation where no two
consecutive digits are nonzero. Every positive integer k has a unique NAF representation
denoted by NAF(k). The integer k in the non-adjacent form of length ` is represented as

k =
`−1∑
i=0

ki2
i where ki ∈ {0,±1}, k`−1 6= 0.

Note that NAF(k) has the least number of nonzero digits of all signed digit representations
of k. If the length of the binary representation of k is m, then the length ` of NAF(k) is

at most m+ 1. For the length `, it is true that 2`

3 < k < 2`+1

3 . Among all NAFs of length
`, the average density of nonzero digits is approximately 1/3.

Example 5.1.1. Consider an integer k = 7 and let ν̄ denote the negative integer −ν.
The binary representation of k is (0 1 1 1)2, calculated in decimal as 4 + 2 + 1 = 7. The
NAF representation of k, denoted by NAF(7), is (1 0 0 1̄)NAF, calculated in decimal as
8− 1 = 7.

CHAPTER 5. SCALAR MULTIPLICATION ALGORITHMS 39

Since subtraction is as efficient as addition on elliptic curves, such a signed represen-
tation is of great interest as it allows a reduction of required additions due to the lower
density of nonzero digits compared to the binary representation. The non-adjacent form of
an integer k can be efficiently computed with Algorithm 12, where the NAF representation
is obtained by repeatedly dividing k by 2 with remainder ui ∈ {0,±1}. If k is odd, the
remainder u is chosen so that (k − ui)/2 is divisible by 2 to ensure that the next digit in
the NAF is 0.

Algorithm 12 Computing the NAF representation

Input: k ∈ Z>0.
Output: NAF(k) = (ut−1, . . . , u1, u0)2 with ui ∈ {0,±1} .

1: i = 0
2: while k ≥ 1 do
3: if k ≡ 1 mod 2 then
4: ui = 2− k (mod 4)
5: k = k − ui
6: else
7: ui = 0
8: end if
9: k = k/2

10: i = i+ 1
11: end while
12: return (ui−1, ui−2, . . . , u1, u0)

Algorithm 13 uses NAF(k) for computing kP . It is a modification of the very basic
left-to-right binary method for point multiplication (Algorithm 11). In this algorithm, the
NAF(k)-representation is processed bitwise from left to right. Depending on the digit’s
sign, for each nonzero digit, the point P is added to or subtracted from the result stored
in point Q. In every step, Q is doubled in order to update the current place value within
the NAF. Thus, Algorithm 13 has an expected running time of

m

3
A +mD.

Algorithm 13 NAF point multiplication

Input: k ∈ Z>0, P ∈ E(Fq).
Output: kP .

1: NAF(k) =
∑`−1

i=0 ui2
i. . (using Algorithm 12)

2: Q = O
3: for i = `− 1 to 0 do
4: Q = 2Q
5: if ui = 1 then
6: Q = Q+ P
7: else if ui = −1 then
8: Q = Q− P
9: end if

10: end for
11: return Q

CHAPTER 5. SCALAR MULTIPLICATION ALGORITHMS 40

To reduce the expected running time of computing kP , a window method can be used,
where in each step w digits of k are processed.

5.2 The Windowed NAF Method

The number of additions for computing kP can be reduced at the costs of additional
memory by using the windowed NAF method.

To do so, k has to be represented in form of a width-w NAF (also NAFw or WNAF),
where w is commonly referred to as the window size or width. WNAF(k) is a representation
k =

∑`−1
i=0 ui2

i, where among w consecutive digits at most one coefficient is nonzero. Each
of these nonzero coefficients ui ∈ [−2w−1+1, 2w−1−1] is odd and u`−1 6= 0. Every positive
integer k has a unique WNAF representation. The length ` of WNAF(k) is at most t+ 1,
where t denotes the length of the binary representation of k. A WNAF(k)-representation
of length ` has an approximate density of nonzero digits of 1/(w+1). Note that for w = 2,
WNAF(k) equals NAF(k).

Example 5.2.1. Let k = 678575 and let x̄ denote the negative integer −x. Then, the
unsigned binary representation of k is

k = (1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1)2,

and the corresponding WNAF(k)-representation for w = 4 is

k = (5 0 0 0 3 0 0 0 0 5̄ 0 0 0 5̄ 0 0 0 1̄)NAFw .

In [Sol00], Solinas describes the process of obtaining a WNAF-representation as a
window of width w that is moved along the binary representation of the scalar k from
right to left. The content of each window is used to output the next entry of WNAF(k).
Algorithm 14 shows in detail how the WNAF(k)-representation can be obtained efficiently.
The integer k is repeatedly divided by 2. If k is odd, the remainder ui = k mods 2w.
Here, mods returns the smallest residue in absolute value, i.e., ui ≡ k (mod 2w), where
ui ∈ [−2w−1, 2w−1 − 1]. Since k is odd in this case, the remainder ui is odd, too. This
ensures that (k − ui)/2 will be divisible by 2w−1 and, thus, the next w − 1 digits are 0.

Algorithm 14 Computing the width-w NAF representation

Input: Window width w, k ∈ Z>0.
Output: NAFw(k).

1: i = 0
2: while k ≥ 1 do
3: if k ≡ 1 mod 2 then
4: ui = k mods 2w

5: k = k − ui
6: else
7: ui = 0
8: end if
9: k = k/2

10: i = i+ 1
11: end while
12: return (ui−1, ui−2, . . . , u1, u0)

CHAPTER 5. SCALAR MULTIPLICATION ALGORITHMS 41

Algorithm 15 illustrates how a WNAF(k)-representation is used for point multiplica-
tion. It is based on the NAF multiplication given in Algorithm 12. At the beginning, iP
for all i ∈ {1, 3, 5, . . . , 2w−1− 1} is precomputed and stored in a table T , where Ti denotes
the i-th element of T . After WNAF(k) is obtained, it is processed from left to right.
Similar to the NAF multiplication, each step requires at least one doubling operation. If
ui 6= 0, the precomputed value Tui is looked up and added to Q or subtracted from Q,
depending on the sign of ui. Hence, this algorithm has an expected running time of

[
1D +

(
2w−2 − 1

)
A
]

+

[
m

w + 1
A +mD

]
.

The first term
[
1D +

(
2w−2 − 1

)
A
]

is the expected running time of the precomputation
step. It is composed of one doubling operation to obtain 2P and 2w−2− 1 point additions
with 2P to compute

[
2w−1 − 1, . . . , 5, 3

]
P . It is possible to do the precomputation step

beforehand for points known a priori, such as base points. This reduces the expected
running time of Algorithm 15 to [

m

w + 1
A +mD

]
.

Algorithm 15 Window NAF point multiplication

Input: Window width w, k ∈ Z>0, P ∈ E(Fq).
Output: kP .

1: Precompute: T = iP for i ∈ {1, 3, 5, . . . , 2w−1 − 1}
2: NAFw(k) =

∑`−1
i=0 ui2

i . (using Algorithm 14)

3: Q = O
4: for i = `− 1 downto 0 do
5: Q = 2Q
6: if ui 6= 0 then
7: if ui > 0 then
8: Q = Q+ Tui
9: else

10: Q = Q− T−ui
11: end if
12: end if
13: end for
14: return Q

5.3 Fixed Point Multiplication Methods

This section describes the fixed-base comb method and the fixed-base comb method with
two tables. These methods are due to Lim and Lee [LL94] and they are two of the fastest
scalar multiplication methods available. As both require intense precomputations, they
are commonly used for multiplications with a fixed point only, i.e., a point known a priori,
such as a generator of an elliptic curve group.

CHAPTER 5. SCALAR MULTIPLICATION ALGORITHMS 42

5.3.1 The Fixed-base Comb Method

In the fixed-base comb method, the unsigned binary representation of a scalar k of a maxi-
mum bitsize t, where t is the curve’s group order in bits, is considered to represent a binary
matrix. This matrix consists of w rows and d columns, where w denotes the window size
and d = dt/we. Therefore, the bit representation of k is prepended with 0s, such that the
length of k is a multiple of w, and then split into w blocks Ki with 0 ≤ i < w of size d, so
that

k = Kw−1‖ · · · ‖K1‖K0.

Thus, each bitstring Ki represents one row of this w × d binary matrix:
K0
...
Ki
...

Kw−1

 =


K0,d−1 · · · K0,0

...
...

Ki,d−1 · · · Ki,0
...

...
Kw−1,d−1 · · · Kw−1,0

 =


kd−1 · · · k0

...
...

k(i+1)d−1 · · · kid
...

...
kwd−1 · · · k(w−1)d


Here, Kj,i denotes the i-th bit of the bitstring Kj and ki denotes the i-th bit of the

unsigned binary representation of the scalar k. The columns of this matrix are then
processed one at a time.

By precomputing the points

[aw−1, . . . , a2, a1, a0]P = aw−12
(w−1)dP + · · ·+ a22

2dP + a12
dP + a0P,

for all possible bit strings [aw−1, . . . , a1, a0], the actual computation can be accelerated.
Algorithm 16 shows the precomputation in detail.

Algorithm 16 Precomputation for the fixed-base comb method

Precompute (compute [aw−1, . . . , a0]P for all bitstrings (aw−1, . . . , a0) of length w):

Input: Window width w, d = dt/we, P ∈ E(Fq).
Output: Table T holding the precomputed points.

1: Q = P
2: T = (P,O)
3: for i = 1 to w − 1 do
4: Q = 2dQ
5: for j = 0 to 2i − 1 do
6: T2i+j = Q+ Tj
7: end for
8: T = (T2i+1−1, . . . , T2i , T)
9: end for

10: return T

The precomputation has expected costs of

(2w − 2) A + ((w − 1)d) D.

The multiplication of the fixed-base comb method, using the precomputed table T , is given
in Algorithm 17.

CHAPTER 5. SCALAR MULTIPLICATION ALGORITHMS 43

Algorithm 17 Multiplication routine of the fixed-base comb method

Input: Window width w, d = dt/we, k = (kt−1, . . . , k1, k0)2, lookup table T generated via
Algorithm 16 with respect to P ∈ E(Fq).

Output: kP .
1: If necessary, pad k on the left with 0s, interpret k as Kw−1‖ · · · ‖K1‖K0, where each
Kj is a length d bitstring, where Kj,i denotes the i-th bit of Kj .

2: Q = O.
3: for i = d− 1 downto 0 do
4: Q = 2Q
5: Q = Q+ [Kw−1,i, . . . ,K1,i,K0,i]2P = Q+ T∑w−1

j=0 Kj,i2j

6: end for
7: return Q

Algorithm 17 has an expected running time of(
2w − 1

2w
d− 1

)
A + (d− 1)D.

For the multiplication, the fixed-base comb method requires approximately as many point
doublings as point additions. To reduce the number of doublings, the so-called fixed-base
comb method with two tables has been introduced.

5.3.2 The Fixed-base Comb Method with Two Tables

The fixed-base comb method with two tables makes use of a second precomputation table
in order to reduce the number of required point doublings approximately by half. This
additional table has the sames size as the first table and contains the precomputations

2e[aw−1, . . . , a2, a1, a0]P = aw−12
e+(w−1)dP + · · ·+ a22

e+2dP + a12
e+dP + a0P,

where e = dd/2e. Algorithm 18 details the required computations to obtain the two tables.

Algorithm 18 Precomputation for the fixed-base comb method with two tables

Precompute (compute [aw−1, . . . , a0]2P and 2e[aw−1, . . . , a0]2P for all bitstrings
(aw−1, . . . , a0) of length w):

Input: Window width w, d = dt/we, e = dd/2e, P ∈ E(Fq)
Output: Tables T, T ′ holding the precomputed points.

1: Q = P, Q′ = 2eQ
2: T = (P,O), T ′ = (Q′,O)
3: for i = 1 to w − 1 do
4: Q = 2dQ, Q′ = 2eQ
5: for j = 0 to 2i − 1 do
6: T2i+j = Q+ Tj , T ′

2i+j
= Q′ + T ′j

7: end for
8: T = (T2i+1−1, . . . , T2i , T), T ′ = (T ′

2i+1−1, . . . , T
′
2i
, T ′)

9: end for
10: return (T, T ′)

CHAPTER 5. SCALAR MULTIPLICATION ALGORITHMS 44

The expected costs for computing T and T ′ are

2 (2w − 2) A + ((e+ d)(w − 1)) D.

Algorithm 19 shows the multiplication using this additional table. Here, the d columns
of the binary matrix are split into a lower and an upper half, each of size e. For each step in
the algorithm, the point [Kw−1,i, . . . ,K1,i,K0,i]P is looked up in the first precomputation
table and the point [Kw−1,i+e, . . . ,K1,i+e,K0,i+e]P is looked up in the second table. By
adding both points to Q at once, the number of required doubling operations is approxi-
mately reduced by half.

Algorithm 19 Multiplication routine of the fixed-base comb method with two tables

Input: Window width w, d = dt/we, e = dd/2e, k = (kt−1, . . . , k1, k0)2, lookup tables T
and T ′ generated via Algorithm 18 with respect to P ∈ E(Fq).

Output: kP .
1: If necessary, pad k on the left with 0s, interpret k as Kw−1‖ · · · ‖K1‖K0, where each
Kj is a length d bitstring, where Kj,i denotes the i-th bit of Kj .

2: Q = O.
3: for i = e− 1 downto 0 do
4: Q = 2Q
5: Q = Q+ [Kw−1,i, . . . ,K1,i,K0,i]P + 2e[Kw−1,i+e, . . . ,K1,i+e,K0,i+e]P =

= Q+ T∑w−1
j=0 Kj,i2j

+ T ′∑w−1
j=0 Kj,i+e2j

6: end for
7: return Q

A multiplication using the fixed-base comb method with two tables has an expected
running time of approximately(

2w − 1

2w
2e− 1

)
A + (e− 1) D.

The two-table method in Algorithm 19 gives a benefit over Algorithm 17 whenever

2w−1(w − 2)

2w − w − 1
≥ A

D
.

5.4 Multiple Point Multiplication Methods

In this section, we are going to discuss two different algorithms for multiple point multipli-
cation. Firstly, we have a look at the simultaneous multiple point multiplication algorithm,
which provides a speed up for calculation kP + lQ. Secondly, we examine the interleaving
method, which provides a fast computation of the sum of v points each multiplied by some
scalar kj , such that Q =

∑v
j=1 kjPj .

5.4.1 The Simultaneous Multiple Point Multiplication Method

The simultaneous multiple point multiplication method offers a speedup for the compu-
tation kP + lQ, which is a computationally expensive step in the ECDSA signature ver-
ification (see Section 4.2). Instead of first computing kP and lQ separately and then

CHAPTER 5. SCALAR MULTIPLICATION ALGORITHMS 45

kP + lQ, the Straus-Shamir trick ([ElG85], [Str64]) is used to carry out these three steps
simultaneously. Therefore, k and l are seen as two t-bit integers in unsigned binary rep-
resentation. Together, they are represented as a 2 × t matrix, called the exponent array.
This matrix is processed column-wise from left to right, where for each column, both rows
are processed at once using a lookup table T with precomputations. Table T contains
all possible values iP + jQ for i, j ∈ {0, 1}. Every column contains two values Ki, Li,
which are interpreted as the value of the i-th bit of k and l, respectively. Thus, in each
step the value for KiP + LiQ is looked up in the precomputation table T and added to
the designated result. Between each column this result is doubled to ensure the correct
place value. Hence, each step or the processing of each column, respectively, requires one
addition and one doubling operation, which is not very efficient.

Figure 5.1: Accumulation step of the simultaneous multiple point multiplication method

To reduce the number of additions, the exponent array can be processed using a window
of size w. This means, in each step w columns of the matrix are processed. Hence, the
array is now processed in d = dt/we steps, requiring a table T with 22w − 1 precomputed
points iP + jQ for all i, j ∈ [0, 2w− 1], as it is depicted in Figure 5.1. Thus, a reduction of
additions can be achieved at the cost of increasing the effort for the precomputation, and
as a consequence, an increased required storage for T . When using a window to process
the exponent array, Ki and Li are interpreted as length w bitstrings, and Ki,j and Li,j
denote the i-th bit of Ki and Li, respectively. The explicit simultaneous multiple point
multiplication operation using a window of size w is detailed in Algorithm 20.

CHAPTER 5. SCALAR MULTIPLICATION ALGORITHMS 46

Algorithm 20 Simultaneous multiple point multiplication

Input: Window width w, d = dt/we, k = (kt−1, . . . , k1, k0)2 ∈ Z>0, l = (lt−1, . . . , l1, l0)2 ∈
Z>0, P,Q ∈ E(Fq).

Output: kP + lQ.
1: Precompute: S = iP, S′ = iQ for i ∈ [0, 2w − 1].
2: Compute Ti,j = Si + S′j for all i, j ∈ [0, 2w − 1].
3: If necessary, pad k and l on the left with 0s, interpret k as Kd−1‖ . . . ‖K1‖K0 and l as
Ld−1‖ . . . ‖L1‖L0, where each Ki, Li is a length w bitstring.

4: R = O
5: for i = d− 1 downto 0 do
6: R = 2wR
7: R = R+ (KiP + LiQ) = R+ TKi,Li

8: end for
9: return R

For the precomputation, T requires a storage size of 22w − 1 points. The expected
running time of Algorithm 20, including the precomputation, is approximately[

(3 · 22(w−1) − 2w−1 − 1)A + (22(w−1) − 2w−1)D

]
+

[(
22w − 1

22w
d− 1

)
A + (d− 1)wD

]
,

where the first term is the expected running time of the precomputation step and the
second term gives the approximate costs of the multiply step.

5.4.2 The Interleaving Multiple Point Multiplication Method

Another technique that can be employed for computing kP + lQ simultaneously is the
interleaving multiple point multiplication method. Different to the simultaneous multiple
point multiplication method, the precomputations, here, do not involve a combination
of the points. Each precomputed value depends only on a single point. Moreover, this
method provides a fast summation of v points, each multiplied by a different scalar kj .
In order to compute

∑v
j=1 kjPj different multiplication methods can be used, as long as

the doubling step can be done jointly. With interleaving, it is possible to combine, for
example, WNAF methods (cf. Section 5.2) with different window sizes, or do some point
multiplications with comb methods (cf. Section 5.3.1).

But, as mentioned in [HMV04], it has to be considered that the number of required
doublings for this method is determined by the method that has to perform the most
doublings among the used methods. Thus, mixing comb methods with other methods is
not recommended, since the benefits of the comb methods may be lost due to the number
of doublings required by the other methods. An interleaving method using the WNAF
method with different window sizes is detailed in Algorithm 21.

CHAPTER 5. SCALAR MULTIPLICATION ALGORITHMS 47

Algorithm 21 Interleaving with NAFs

Input: Number of points v, kj ∈ Z>0, widths wj , and points Pj , where 1 ≤ j ≤ v.
Output:

∑v
j=1 kjPj .

1: Precompute: Pj,i = iPj for i ∈ {1, 3, 5, . . . , 2wj−1 − 1}
2: NAFwj (kj) =

∑`j−1
i=0 uj,i2

i, 1 ≤ j ≤ v . (using Algorithm 14)
3: η = max{`j : 1 ≤ j ≤ v}
4: If necessary, pad uj in the left with 0s to ensure that `j = η. Interpret uj as a length
`j bitstring. where uj,i denotes the i-th bit of uj and 1 ≤ j ≤ v.

5: Q = O
6: for i = η − 1 downto 0 do
7: Q = 2Q
8: for j = 1 to v do
9: if uj,i 6= 0 then

10: if uj,i > 0 then
11: Q = Q+ Pj,uj,i else Q = Q− Pj,−uj,i
12: end if
13: end if
14: end for
15: end for
16: return Q

The algorithm computes
∑v

j=1 kjPj using WNAF(kj) with window size wj . Therefore,

the values iPj for i ∈ {1, 3, 5, . . . , 2wj−1 − 1} and 1 ≤ j ≤ v are precomputed, requiring∑v
j=1 2wj−2 points of storage. The precomputation for each point Pj is the same as the

precomputation of the WNAF multiplication method. After obtaining WNAF(kj) with
window size wj , these WNAFs are processed jointly from left to right. Thus, only a single
doubling of the accumulator Q is required in each step. When processing the WNAFs,
the precomputation value for each uj,i is looked up and added to Q or subtracted from Q,
respectively. Algorithm 21 has an expected running time of|{j : wj > 2}| D +

v∑
j=1

(2wj−2 − 1)A

+

max
`≤j≤v

`jD +

v∑
j=1

`j
wj + 1

A

 ,
where lj denotes the length of WNAF(kj) with window size wj .

5.5 Summary

This chapter gave an overview of different scalar multiplication methods. It detailed some
basic methods in order to provide an idea of the main concept of scalar multiplication. On
this basis, more advanced multiplication algorithms, designed for various purposes, were
discussed. These include the WNAF method as well as fixed point multiplication methods
and multiple point multiplication methods. All of the methods presented in this chapter
have in common that they are generic in the sense that they do not exploit any special
structure of the curve.

Chapter 6

Koblitz Curves

This chapter provides a close look at the so-called binary Koblitz curves. We discuss
the important properties of these curves in general and how these curves can be used to
increase the speed of scalar point multiplications. Moreover, we show how certain common
scalar multiplication methods can be modified to benefit from the provided speedup.

This chapter comprises four sections. In Section 6.1 the properties of Koblitz curves
are detailed along with all curve specific prerequisites for the subsequent sections. In
addition, this section gives a basic idea of how these properties affect the curves’ security
levels. Section 6.2 illustrates different ways of representing scalars in order to make use of
these speedups and how they are efficiently obtained. Section 6.3 deals with those scalar
multiplication methods introduced in Chapter 5 for which adaptions to Koblitz curves are
commonly known. The adaptions of the methods from Chapter 5 which are not covered
here, require an alternative form of scalar representation and are described in detail in
Chapter 7. Finally, in Section 6.4, the chapter is briefly summarized. This chapter is
mainly based on [Sol00], [HMV04], and [CFA+05]. Especially the techniques concerning
solely Koblitz curves are almost all due to Solinas [Sol00].

6.1 Properties

In 1991, Neal Koblitz proposed a family of elliptic curves with arithmetic properties which
offer a speedup for scalar multiplication [Kob91]. These anomalous binary curves are
defined by Equation (2.10) stated in Section 2.3.3. The curve equation is defined over F2

and thus, a2 ∈ {0, 1} and a6 = 1, leading to the equation

Ea : y2 + xy = x3 + a2x
2 + 1. (6.1)

Note that due to the fact that a6 is always 1 for binary Koblitz curves, it is common
practice to denote a2 just as a when used in context of Koblitz curves.

6.1.1 Group Order

The group of these curves Ea is defined over F2m with m prime, and is denoted as Ea(F2m).
As stated in [MVO96], for cryptographic reasons, the group order should be a large prime
or almost prime. Almost prime group order means that it is the product of a large prime

48

CHAPTER 6. KOBLITZ CURVES 49

and a small integer. The only Koblitz curve groups over F2 are

E0(F2) = {O, (0, 1), (1, 0), (1, 1)}
E1(F2) = {O, (0, 1)}.

As F2 is a subfield of F2m , the group E(F2) is a subgroup of E(F2m). Hence, the order
#Ea(F2m) is always divisible by the order of Ea(F2). #Ea(F2) is called the cofactor of
the group order, commonly denoted as h or f , which is

h = #Ea(F2) =

{
4 if a = 0

2 if a = 1.
(6.2)

Due to Equation (6.2), it is obvious that Koblitz curves have an almost prime group order.

6.1.2 Frobenius Endomorphism

As we have already seen, the curve equations of Koblitz curves are defined over F2. Thus,
if a point P = (x, y) is on the curve Ea, then Equation (6.1) also holds for the point
P ′ = (x2, y2), and, hence, P ′ is on Ea too. Due to the Freshman’s dream (see Section 2.1.4),
the mapping

τ(x, y) = (x2, y2), τ(O) = O (6.3)

is a homomorphism, i.e., it applies that τ(P +Q) = τ(P) + τ(Q) for all P,Q ∈ Ea(F2m).
Moreover, as τ(P) ∈ Ea(F2m), τ : Ea(F2m) → Ea(F2m) is an endomorphism on this
particular curve type and is called Frobenius endomorphism.

We know that

(x4, y4) + 2(x, y) = µ · (x2, y2) for all (x, y) ∈ Ea, where (6.4)

µ = (−1)1−a. (6.5)

Writing Equation (6.4) in terms of the Frobenius map (6.3), we get

(τ2 + 2)P = µτ(P) for all P ∈ Ea(F2m), where

τ l(P) denotes the l-fold application of τ to P . Hence, the Frobenius map can be regarded
as a complex number τ satisfying the characteristic polynomial

τ2 + 2 = µτ. (6.6)

Due to the fact that squaring is quite inexpensive on binary curves, the costs for applying
τ are insignificant compared to other operations. Through Equation (6.6), the relation
2P = µτ(P) − τ2(P) holds for all P ∈ E(F2m) which suggests that one can exchange
doublings for applications of τ . Yet, so far this relation does not give us an advantage, as
doubling is exchanged for two applications of τ and an expensive addition. The solution
to this problem is to recode the scalar from base 2 to base τ and thereby trade each of the
expensive point doubling operations for an application of τ , as we are going to see later.

CHAPTER 6. KOBLITZ CURVES 50

6.1.3 The ECDLP on Koblitz Curves

Wiener and Zuccherato [WZ98] discovered that curves equipped with a Frobenius en-
domorphism allow a speedup for solving the elliptic curve discrete logarithm problem
(ECDLP). Similar work has been done independently by Gallant, Lambert, and Van-
stone [GLV00].

On Koblitz curves the parallelized Pollard’s rho collision search algorithm (cf. Sec-
tion 3.3.1) can be sped up by a factor of

√
2m. This is achieved by taking equivalence

classes into account, which are due to the Frobenius endomorphism, and the negation
map.

Consider 〈P 〉 as the subgroup of prime order n of Ea(F2m) generated by point P .
The Frobenius map φ, where φm is the identity map and thus, τm ≡ 1 (mod n), induces
the partitioning of this subgroup into equivalence classes using an equivalence relation
on 〈P 〉. The equivalence relation on 〈P 〉 is defined as S ∼ T if S = ±τ iT for i ∈
{0, 1, . . . ,m − 1}. Due to this relation, on Koblitz curves the prime order subgroup of
the curve can be partitioned into (n − 1)/2m equivalence classes of size 2m and one
additional class containing O. This reduces the search space of the parallelized Pollard’s
rho algorithm by a factor of 2m, which in the following leads to a reduction of the expected
running time by a factor of

√
2m. This speedup for the parallelized Pollard’s rho algorithm

to solve the ECDLP on Koblitz curves is acceptable regarding the curve’s security level,
as it lowers it only by a few bits.

For example, consider the NIST-recommended elliptic curve K-233. On this Koblitz
curve over the binary field F2233 the conventional parallelized Pollard’s rho method requires
approximately 2116 operations and therefore it meets the security level of 112 bits. When
exploiting the Frobenius map together with the negation map on this curve, the expected
running time is reduced by a factor of

√
2 · 233. Thus, the parallelized Pollard’s rho

algorithm then requires approximately 2112 operations. Hence, despite this reduction the
curve still retains the security level of 112 bits. For more detailed information on this
topic, we additionally refer the reader to [HMV04].

6.1.4 Lucas Sequences for τ

Since we will need Lucas sequences for the complex number τ numerous times in the
subsequent part of this chapter, we are going to show here how these are defined.

We have already described the Lucas sequences in general in Section 2.1.6. We know
that they can be generated over quadratic equations and that the parameters p and q for
Lucas sequences are derived from the root of the characteristic polynomial.

The complex number τ satisfies Equation (6.6) and, thus, it follows that the parameter
p = µ, where µ is given in Equation (6.5), and q = 2. Hence, the first Lucas sequence Uk
for τ is defined as

U0 = 0, U1 = 1 and Uk = µUk−1 − 2Uk−2 for k ≥ 2. (6.7)

Accordingly, the second Lucas sequence Vk for τ is

V0 = 0, V1 = µ and Vk = µVk−1 − 2Vk−2 for k ≥ 2. (6.8)

CHAPTER 6. KOBLITZ CURVES 51

6.2 τ-adic Representations

In order to take advantage of the Frobenius endomorphism for scalar multiplication, we
have to convert scalars from base 2 to base τ , which results in a so-called τ -adic represen-
tation. In this section, we are going to take a closer look at the τ -adic NAF representation
and its enhanced version, the reduced τ -adic NAF.

Before we have a look at the conversion of scalars, we have to introduce the norm
function in Z[τ]. The ring Z[τ] is Euclidean with respect to N(·), i.e., it is possible to
perform a division with remainder in Z[τ] so that the norm of the remainder is smaller
than the norm of the divisor. More precisely, the norm N(α) ∈ Z of an element α ∈ Z[τ]
is the integer product of α and its complex conjugate ᾱ.

The norm function is multiplicative, i.e., N(αβ) = N(α)N(β) for all α, β ∈ Z[τ].
Furthermore, N(±1) = 1 and N(α) ≥ 0, where N(α) equals 0 if and only if α = 0. The
norm N(α) of an element α = a0 + a1τ ∈ Z[τ] is given by

N(α) = (a0 + a1τ)(a0 + a1τ̄) = a20 + µa0a1 + 2a21 ∈ Z,

where the complex number τ = µ+
√
−7

2 is the first root of Equation (6.6) and its conjugate

τ̄ is the second root, namely τ̄ = µ−
√
−7

2 . Hence, it is easy to verify that

N(τ) = τ τ̄ = 2 and N(τ − 1) = h, (6.9)

where h is the cofactor given in Equation (6.2), and also that

τ + τ̄ = µ, (6.10)

where µ is given in Equation (6.5). In addition, N(τm − 1) = #Ea(F2m). Due to the fact
that the norm is multiplicative, it follows that N((τm − 1)/(τ − 1)) = #Ea(F2m)/h = n.

In the following, divisibility by τ is important for deriving a τ -adic representation of a
scalar. An element α = a0 + a1τ ∈ Z[τ] is divisible by τ if and only if a0 is even. If that
is the case, then α/τ = (a1 + µa0/2)− (a0/2)τ .

6.2.1 The τ-adic Non-adjacent Form (TNAF)

Similar to the NAF-form of positive integers (cf. Section 5.1.2), there is a unique τ -adic
NAF for every element of Z[τ]. Due to the property of the norm function that N(τ) = 2,
any positive integer k can be represented in the form k′ =

∑l−1
i=0 uiτ

i with ui ∈ {0,±1}.
This so-called TNAF representation is obtained by repeatedly dividing a scalar k,

represented as κ ∈ Z[τ], by τ with remainder ui ∈ {0,±1}, for which N(ui) < N(τ) with
N(ui) ∈ {0, 1} holds. To ensure that no two consecutive digits are nonzero, Solinas showed
that an element κ = k0 + k1τ ∈ Z[τ] is not only divisible by τ if and only if k0 is even,
but also that κ is divisible by τ2 if and only if k0 ≡ 2k1(mod 4). Thus, if κ ∈ Z[τ] is not
divisible by τ then ui ∈ {0,±1} is chosen so that (κ−ui)/τ is divisible by τ to ensure that
the next digit in the TNAF is a 0. The TNAF of an integer can be efficiently obtained
via Algorithm 22.

Solinas showed in [Sol00] that the length l(k) of a TNAF(k) is bounded by

log2(N(k))− 0.54627 < l(k) < log2(N(k)) + 3.5156 (6.11)

when l(k) > 30, and that among all TNAFs of length l the average density of nonzero
digits is ≈ 1/3.

CHAPTER 6. KOBLITZ CURVES 52

Algorithm 22 Computing the τ -adic NAF [HMV04, Algorithm 3.61].

Input: κ = k0 + k1τ ∈ Z[τ]
Output: TNAF(κ) = (ut−1, . . . , u1, u0)τ with ui ∈ {0,±1} .

1: i = 0
2: while (r0 6= 0 ‖ r1 6= 0) do
3: if r0 ≡ 1 mod 2 then
4: ui = 2− (k0 − 2k1 mod 4)
5: k0 = k0 − ui
6: else
7: ui = 0
8: end if
9: tmp = k0, k0 = µk0

10: k0 = k1 + k0/2, k1 = −tmp/2
11: i = i+ 1
12: end while
13: return (ui−1, ui−2, . . . , u1, u0)

According to Equation (6.11), the length of a TNAF(k) is approximately log2(N(k))
which is equal to 2 log2(k), and is twice the length of NAF(k). The Hamming weight
H of a length-l NAF(k) is approximately l

3 log2 k, which applies also to the τ -adic NAF.
Consequently, the Hamming weight of TNAF(k) is twice the Hamming weight of NAF(k).
Hence, replacing the NAF(k) by the TNAF(k) will eliminate doubling operations in the
scalar multiplication methods, but will double the number of additions. To overcome this
problem, Solinas introduced the reduced τ -adic NAF in [Sol00].

6.2.2 The Reduced τ-adic Non-adjacent Form (RTNAF)

In order to obtain a reduced τ -adic NAF, the goal is to find an element ρ ∈ Z[τ] with
ρ ≡ k mod ((τm − 1)/(τ − 1)) and smallest norm possible, in order to compute TNAF(ρ)
which has approximately the length of the binary NAF(k).

Solinas showed that if γ is an element of Z[τ] with γ ≡ k mod (τm− 1) then γP = kP
for all P ∈ Ea(F2m) because (τm−1)(P) = τm(P)−P = P −P = O. He also showed that
if an element ρ ≡ k (mod δ), where δ = τm−1

τ−1 , then ρP = kP with respect to the main
subgroup of order n. In other words, ρP = kP for all points P of order n in Ea(F2m) and,
thus, TNAF(ρ) is equivalent to TNAF(k) for all points of order n, where TNAF(ρ) has
approximately half the length of TNAF(k) and, therefore, has approximately the length of
the binary NAF(k). For the required modulo operation in Z[τ], it is necessary to perform
a division of two elements in Z[τ].

Division in Z[τ]

So, for the reduced τ -adic NAF it is essential to find an element ρ ∈ Z[τ] with ρ ≡ k (mod δ)
and minimal norm. Therefore, we are going to briefly explain how to obtain a quotient
κ ∈ Z[τ] and a remainder ρ ∈ Z[τ] with α = κβ + ρ and N(ρ) as small as possible for any
α, β ∈ Z[τ] with β 6= 0, where it is assured that N(ρ) < N(β).

λ =
α

β
=

αβ̄

N(β)
=

(a0 + a1τ)(b0 + b1τ̄)

N(β)
.

CHAPTER 6. KOBLITZ CURVES 53

We know that τ τ̄ = N(τ) = 2. So, we obtain

λ =
a0b0 + a0b1τ̄ + 2a1b1 + a1b0τ

b20 + µb0b1 + 2b21
.

Now, to get rid of τ̄ in the numerator, we can replace a0b1τ̄ with µa0b1 − a0b1τ because,
as we know from Equation 6.10, τ + τ̄ = µ and, thus, a0b1τ + a0b1τ̄ = µa0b1. We obtain

λ =
(b0 + µb1)a0 + 2a1b1 + (a1b0 − a0b1)τ

b20 + µb0b1 + 2b21

and this can be written as

λ =
g0 + g1τ

N
=
g0
N

+
g1
N
τ = λ0 + λ1τ,

where g0 = a0b0 + µa0b1 + 2a1b1 and g1 = a1b0 − a0b1.
The quotient κ is then the element in Z[τ] close to the complex number λ. To find

such an element κ that is close to the complex number λ = λ0 + λ1τ with λ0, λ1 ∈ Q,
we do a “rounding-off” via the algorithm Solinas stated in [Sol00]. In the following, we
use Round(λ0, λ1) to denote this rounding algorithm. The resulting remainder ρ of the
division satisfies ρ ≡ α (mod β). For the detailed division algorithm that performs these
steps, we refer the reader to [Sol00].

Reduction of an Integer

For the RTNAF, we have to reduce an integer k modulo (τm − 1)/(τ − 1). This can be
achieved via a modification of the previously mentioned division in Z[τ] algorithm. Recall
that δ = (τm − 1)/(τ − 1) has norm n. On the basis of the division in Z[τ], we set the
dividend α to k, i.e., α = k + 0τ , and the divisor δ is given in canonical form d0 + d1τ .
This leads to λ = g0

N + g1
N τ = a0d0+µa0d1

N(δ) + −a0d1
N(δ) τ = k(d0+µd1)

N(δ) + k(−d1)
N(δ) τ . We introduce

two auxiliary values s0 and s1, where s0 = d0 + µd1 and s1 = −d1. When applying these
values to the previous equation, we get

λ =
g0
N(δ)

+
g1
N(δ)

τ =
s0k

n
+
s1k

n
τ.

Note that s0, s1 can be computed efficiently via the Lucas sequence Uk (see Section 6.1.4)
involving µ and the cofactor h:

si =
(−1)i

h
(1− µUm+3−a−i).

Using these modifications, we obtain Algorithm 23 that can be used to reduce an integer
modulo (τm − 1)/(τ − 1).

CHAPTER 6. KOBLITZ CURVES 54

Algorithm 23 Reduction modulo δ = (τm − 1)/(τ − 1)

Input: Integer k ∈ [1, n− 1], s0 = d0 + µd1, s1 = −d1, where δ = d0 + d1τ , N = N(δ).
Output: The integers r0, r1 specifying r0 + r1τ = k (mod (τm − 1)/(τ − 1)

1: d0 = s0 + µs1
2: λ0 = s0k/N
3: λ1 = s1k/N
4: (q0, q1) = Round(λ0, λ1) . (using the “rounding-off”-Algorithm mentioned before)
5: r0 = k − d0q0 + 2s1q1
6: r1 = s1q0 − s0q1
7: return (r0, r1)

A disadvantage of this reduction method is the need for two multiprecision divisions
by N(δ). To circumvent this problem, Solinas proposed a partial reduction algorithm
in [Sol00], which is discussed subsequently.

Partial Reduction

The partial reduction algorithm yields an element ρ′ ∈ Z[τ] that is congruent to k modulo
δ, but unlike the result ρ of Algorithm 23, ρ′ does not necessarily have the smallest possible
norm. The two rational numbers λ0, λ1 in the complex number λ, which require the
multiprecision divisions, are replaced by approximations λ′0, λ

′
1. More precisely, Solinas

replaced the multiprecision divisions in Step 2 and Step 3 of Algorithm 23 with two
multiplications by values of bitsize m+5

2 + C. The constant C ∈ N, denotes the number
of bits of accuracy of the approximations. The choice of C gives a trade-off between the
costs of computing λ′i and the probability that λ′i equals λi. More precisely, the bigger C
is, the more expensive is the computation of λi, but also the higher are the chances that
the result of the partial reduction equals the result of the full reduction.

Algorithm 24 shows this partial reduction. It is based on the algorithm given in [HMV04]
which is slightly more efficient than the one Solinas published in [Sol00], although the ver-
sions are very similar.

Algorithm 24 Partial reduction modulo δ = (τm − 1)/(τ − 1)

Input: Integer k ∈ [1, n− 1], C ≥ 2, s0 = d0 + µd1, s1 = −d1, where δ = d0 + d1τ .
Output: Integers r0, r1 satisfying r0 + r1τ = k partmod δ.

1: k′ = bk/2a−C+(m−9)/2c
2: Vm = 2m + 1−#Ea(F2m)
3: α = 2(m+5)/2, β = 2C

4: for i = 0 to 1 do
5: g′ = sik

′

6: j′ = Vmbg′/2mc
7: λi = b(g′ + j′)/α+ 1

2c/β
8: end for
9: (q0, q1) = Round(λ0, λ1) . (using the “rounding-off”-Algorithm mentioned before)

10: r0 = k − (s0 + µs1)q0 − 2s1q1
11: r1 = s1q0 − s0q1
12: return (r0, r1)

CHAPTER 6. KOBLITZ CURVES 55

Solinas proved that the TNAF (ρ) has a maximum length of m + a and TNAF (ρ′) has
a length of at most m + a + 3 if C ≥ 2. He also stated that there is the possibility that
ρ′ 6= ρ, but with C large enough it is insignificantly small. More precisely, the probability
that ρ′ 6= ρ is bounded by 2−(C−5). So, by reducing the scalar k using Algorithm 24 before
transforming it into a TNAF via Algorithm 22, we get a reduced τ -adic NAF.

6.3 τ-adic Scalar Multiplication Methods

In this section, we are going to show how the scalar multiplication methods explained
in Chapter 5 have to be modified in order to replace the doubling operations by more
efficient applications of the Frobenius endomorphism. The section is mainly based on
[Sol00], [CFA+05], and [HMV04].

6.3.1 τ-adic NAF Point Multiplication Methods

Subsequently, we deal with the τ -adic versions of the two common scalar multiplication
methods: NAF and windowed NAF.

The τ-adic NAF Method

The non-adjacent form multiplication method is, as already mentioned in Section 5.1, a
basic multiplication method. Although this method is not often used in practical applica-
tions, it gives a good picture of how the modification of the scalar multiplication methods
towards τ -adic versions works in general.

At first, the representation of the scalar k has to be changed from base 2 to base τ . In
this case here, we need k to be represented as τ -adic NAF. The conversion is achieved via
Algorithm 22 in combination with Algorithm 24, both explained in the previous section.
Secondly, having such a representation enables us to replace the doubling operation in Al-
gorithm 13 with applications of τ . Algorithm 25 shows this τ -adic version of Algorithm 13,
where in Step 1 and Step 2 the TNAF representation of the scalar k is derived, and in
Step 5 the doubling operation is replaced by an application of τ .

Algorithm 25 TNAF point multiplication

Input: Integer k ∈ [1, n− 1], P ∈ E(Fq).
Output: kP .

1: ρ′ = k partmod δ . (using Algorithm 24)
2: TNAF (ρ′) =

∑l−1
i=0 uiτ

i . (using Algorithm 22)
3: Q = O.
4: for i = l − 1 to 0 do
5: Q = τQ
6: if ui = 1 then
7: Q = Q+ P
8: else if ui = −1 then
9: Q = Q− P

10: end if
11: end for
12: return Q

CHAPTER 6. KOBLITZ CURVES 56

The Windowed τ-adic NAF Method

The width-w TNAF representation, often also called WTNAF or TNAFw, is the τ -adic
analogue of the ordinary width-w NAF representation used in Section 5.2 and likewise
offers a speedup for the TNAF point multiplication method (Algorithm 25) in exchange
for additional memory. As with the ordinary WNAF, the scalar is processed in windows
of size w. For w > 1, every element κ ∈ Z[τ] can be expressed in the form κ =

∑l−1
i=0 uiτ

i

where ul−1 6= 0 and ui ∈ {0} ∪ {±αu : αu ∈ π} with π = {αu ≡ u mod τw : u =
1, 3, . . . , 2w−1 − 1}. Analogously to the ordinary WNAF, there is at most one nonzero
coefficient allowed among w consecutive coefficients.

Simultaneously to the TNAF, we reduce the scalar k via Algorithm 24 before we
compute WTNAF(k) to ensure that the length of the WTNAF is approximately the same
as the one of WNAF(k).

After performing a partial reduction of k, the WTNAF of the resulting element ρ ∈ Z[τ]
is then obtained via Algorithm 26. In this algorithm, ρ is repeatedly divided by τ allowing
a remainder γ ∈ {0,±α1,±α2, . . . ,±α2w−1−1}. More precisely, if ρ is not divisible by τ ,
then the remainder γ = αu with u = ρ mods τw is chosen in such a way that (ρ− αu)/τ
is then divisible by τw−1, ensuring that there is no nonzero value among the next w − 1
coefficients.

In order to be able to compute u, Solinas showed in [Sol00] that an integer value
tk exists that satisfies the same polynomial equation over Z/2kZ as τ over the complex
numbers, i.e., if r0 + r1τ ≡ 0 (mod τk) then r0 + r1tk ≡ 0 (mod 2k). This value tk is
defined as

tk = 2Uk−1U
−1
k (mod 2k) for k ≥ 1,

where (Uk)k≥0 is the first Lucas sequence for τ , stated in Equation (6.7).
Consequently, τ 7→ tw induces a map φw : Z[τ]→ Z/2wZ. Solinas proved that φw(α) =

0 if and only if α is divisible by τw, with α ∈ Z[τ]. It follows that φw, which is a
surjective ring homomorphism, has the kernel {α ∈ Z[τ] : τw divides α}. Thus, each
congruence class of Z[τ]/τwZ[τ] corresponds under φk to an element of Z/2kZ, where
the odd congruence classes of Z[τ]/τwZ[τ] correspond to the odd elements of Z/2kZ.
Hence, the odd numbers {±1,±3, . . . ,±(2w−1 − 1)} are incongruent modulo τw and also
not divisible by τ . Accordingly, the numbers {±α1,±α3, . . . ,±α(2w−1−1)} where αu =
u mod τw are incongruent modulo τw.

When the numbers αu are known, one can obtain WTNAF(ρ), where ρ = k partmod (τm−
1)/(τ − 1), via Algorithm 26 as mentioned before. Note that an integer u = r0 +
r1tw mods 2w is a unique integer in [−2w−1, 2w−1] satisfying u ≡ r0 + r1tw (mod 2w).
In Table 6.1 and Table 6.2, respectively, the values of αu and tw are listed for window sizes
w = 3, 4, 5.

CHAPTER 6. KOBLITZ CURVES 57

www twtwtw uuu uuu mod τwτwτw TNAF(uuu mod τwτwτw) αuαuαu

3 2
1 1 (1) 1
3 τ + 1 (−1, 0,−1) τ + 1

4 10
1 1 (1) 1
3 −τ − 3 (1, 0,−1) τ2 − 1
5 −τ − 1 (1, 0, 1) τ2 + 1
7 −τ + 1 (1, 0, 0,−1) τ3 − 1

5 26
1 1 (1) 1
3 −τ − 3 (1, 0,−1) τ2 − 1
5 −τ − 1 (1, 0, 1) τ2 + 1
7 −τ + 1 (1, 0, 0,−1) τ3 − 1
9 −2τ − 3 (1, 0, 1, 0, 0, 1) τ3α5 + 1

11 −2τ − 1 (−1, 0,−1, 0,−1) −τ2α5 − 1
13 −2τ + 1 (−1, 0,−1, 0, 1) −τ2α5 + 1
15 3τ + 1 (1, 0, 0, 0,−1) τ2α5 − α5

Table 6.1: Expression for αu for a = 0 and 3 ≤ w ≤ 5

www twtwtw uuu uuu mod τwτwτw TNAF(uuu mod τwτwτw) αuαuαu

3 6
1 1 (1) 1
3 −τ + 1 (−1, 0,−1) −τ + 1

4 6
1 1 (1) 1
3 τ − 3 (1, 0,−1) τ2 − 1
5 τ − 1 (1, 0, 1) τ2 + 1
7 τ + 1 (−1, 0, 0,−1) −τ3 − 1

5 6
1 1 (1) 1
3 τ − 3 (1, 0,−1) τ2 − 1
5 τ − 1 (1, 0, 1) τ2 + 1
7 τ + 1 (−1, 0, 0,−1) −τ3 − 1
9 2τ − 3 (−1, 0,−1, 0, 0, 1) −τ3α5 + 1

11 2τ − 1 (−1, 0,−1, 0,−1) −τ2α5 − 1
13 2τ + 1 (−1, 0,−1, 0, 1) −τ2α5 + 1
15 −3τ + 1 (1, 0, 0, 0,−1) τ2α5 − α5

Table 6.2: Expression for αu for a = 1 and 3 ≤ w ≤ 5

The values αu in the tables above are optimized for performance. A detailed explanation
of derivation of these values and their computations can be found in [Sol00].

CHAPTER 6. KOBLITZ CURVES 58

Algorithm 26 Computing the width-w TNAF representation

Input: Window width w, tw, αu = βu+γuτ for u ∈ {1, 3, 5, . . . , 2w−1−1}, ρ = r0 +r1τ ∈
Z[τ].

Output: TNAFw(ρ).
1: i = 0
2: while (r0 6= 0 ‖ r1 6= 0) do
3: if r0 ≡ 1 mod 2 then
4: u = r0 + r1tw mods 2w

5: if u > 0 then
6: s = 1
7: else
8: s = −1, u = −u
9: end if

10: r0 = r1 − sβu, r1 = r1 − sγu, ui = sαu
11: else
12: ui = 0
13: end if
14: tmp = r0, r0 = µr0
15: r0 = r1 + r0/2, r1 = −tmp/2
16: i = i+ 1
17: end while
18: return (ui−1, ui−2, . . . , u1, u0)

Algorithm 27 shows how scalar multiplication on Koblitz curves, using the WTNAF rep-
resentation, is performed efficiently. Due to the approximate length of the WTNAF(ρ)
being m and its average density of 1/(w + 1), a scalar multiplication performed with this
algorithm requires on average 2w−2 − 1 + m

w+1 additions.

Algorithm 27 Window TNAF point multiplication

Input: Window width w, integer k ∈ [1, n− 1], P ∈ E(Fq).
Output: kP .

1: Precompute: Pu = αuP, for u ∈ {1, 3, 5, . . . , 2w−1 − 1}.
2: TNAFw(k partmod δ) =

∑l−1
i=0 uiτ

i. . (using Algorithms 24, 26)
3: Q = O
4: for i = l − 1 downto 0 do
5: Q = τQ
6: if ui 6= 0 then
7: if u > 0 then
8: Q = Q+ Pu
9: else

10: Q = Q− P−u
11: end if
12: end if
13: end for
14: return (Q)

As with WNAF, it is possible to do the precomputation step for points known a priori,

CHAPTER 6. KOBLITZ CURVES 59

such as base points, beforehand reducing the number of additions to m
w+1 .

6.3.2 τ-adic Multiple Point Multiplication Methods

As we have seen in Section 5.4, multiple point multiplications methods are used to speed
up the computation of terms of the form kP + lQ. In the ECDSA signature verification
(see Section 4.2) this computation is a computationally expensive step. These methods
can be adapted for the applications of the Frobenius endomorphism on Koblitz curves too.
Therefore, as with the previous shown methods, some modifications are necessary, mainly
concerning the representations of the precomputations.

The τ-adic Interleaved Multiple Point Multiplication Method

In the following, the interleaved multiple point multiplication method, which we have
explained in Section 5.4.2, is modified in such a way that it can operate with a τ -adic rep-
resentation. As we have already seen before, the interleaved point multiplication method
makes use WNAF representations. Thus, in order to exchange the doubling operation
with an application of τ within this multiplication method, we require the scalars to be
in windowed τ -adic NAF. As a consequence, the precomputation for each point Pj is the
same as for the WTNAF multiplication method.

Algorithm 28 τ -adic interleaving with NAFs

Input: Number of points v, integers kj , widths wj , and points Pj , where 1 ≤ j ≤ v.
Output:

∑v
j=1 kjPj .

1: Precompute: Pj,i = αiPj for i ∈ {1, 3, 5, . . . , 2wj−1 − 1} . (α from Tables 6.1,6.2,
according to wj)

2: TNAFwj (kj partmod δ) =
∑lj−1

i=0 uj,iτ
i, 1 ≤ j ≤ v . (using Algorithms 24, 26)

3: η = max{lj : 1 ≤ j ≤ v}
4: If necessary, pad uj on the left with 0s to ensure that lj = η. Interpret uj as a length
lj bitstring, where uj,i denotes the i-th bit of uj and 1 ≤ j ≤ v.

5: Q = O
6: for i = η − 1 downto 0 do
7: Q = τQ
8: for j = 1 to v do
9: if uj,i 6= 0 then

10: if uj,i > 0 then
11: Q = Q+ Pj,uj,i else Q = Q− Pj,−uj,i
12: end if
13: end if
14: end for
15: end for
16: return Q

6.4 Summary

This chapter introduced the Koblitz curves and their performance advantages when it
comes to scalar multiplication. It contained an explanation of the Frobenius endomorphism

CHAPTER 6. KOBLITZ CURVES 60

and why it applies to this type of elliptic curves. Within this scope, we pointed out how this
endomorphism affects the security levels of Koblitz curves. Furthermore, we detailed the
τ -adic representation of a scalar and its width-w adaption. In this context we discussed
the importance of encoding a scalar to a τ -adic representation and gave algorithms to
efficiently obtain such representations. The last part of this chapter illustrated the τ -adic
versions of the NAF and WNAF multiplication method as well as the τ -adic interleaved
point multiplication method.

Chapter 7

Results

This chapter introduces an improvement of the fixed-base comb methods on binary Koblitz
curves which we proposed in [HW13]. It shows how in this context point doublings can be
traded for applications of the Frobenius endomorphism. Therefore, we are going to intro-
duce a scalar recoding algorithm to obtain an unsigned τ -adic representation of scalars,
which allows us to exchange the doubling steps within the multiplication methods for the
application of the Frobenius endomorphism. In addition, this chapter details a modifica-
tion of the simultaneous multiple point multiplication method as an example of how other
conventional multiplication methods can be improved on Koblitz curves.

The chapter consists of four sections. At the beginning, Section 7.1 discusses the un-
signed τ -adic representation of scalars as well as the modifications to the multiplication
methods that are necessary to take advantage of this scalar recoding. Section 7.2 gives
some details about the software implementations of our findings. In Section 7.3 we are
going to detail the estimated scalar multiplication costs of the discussed scalar multiplica-
tion algorithms and compare the corresponding timings of our software implementations
on various Koblitz curves. The chapter is concluded by a short summary in Section 7.4.

7.1 Speeding Up more Scalar Multiplication Methods on
Koblitz Curves

This section details how the unsigned τ -adic representation can be obtained from a scalar.
Furthermore, it discusses the modifications to the fixed-base comb multiplication methods
as well as the simultaneous multiple point multiplication method that are necessary to
take advantage of this scalar recoding. These multiplication methods are all explained in
detail in Section 5.3 and in Section 5.4.1, respectively.

7.1.1 The Unsigned τ-adic Representation

In order to make use of the advantages of the Koblitz curves (cf. Chapter 6) with the fixed-
based comb methods (cf. Section 5.3.1 and Section 5.3.2), the binary scalar representation
has to be modified. It is necessary to obtain an unsigned τ -adic representation of a scalar
k, containing only 0s and 1s, i.e., k =

∑l−1
i=0 uiτ

i, with ui ∈ {0, 1}. We introduced this
technique in [HW13]. Such a representation can be obtained via Algorithm 29. This
algorithm is a modification of the TNAF algorithm shown in Section 6.2.1.

61

CHAPTER 7. RESULTS 62

Algorithm 29 Computing the unsigned τ -adic representation

Input: κ = r0 + r1τ ∈ Z[τ]
Output: κ represented as bitstring u = (ut−1, . . . , u1, u0)τ .

1: i = 0
2: while (r0 6= 0 ‖ r1 6= 0) do
3: if r0 ≡ 1 mod 2 then
4: ui = 1, r0 = r0 − 1
5: else
6: ui = 0
7: end if
8: tmp = r0, r0 = µr0
9: r0 = r1 + r0/2, r1 = −tmp/2

10: i = i+ 1
11: end while
12: return (ui−1, ui−2, . . . , u1, u0)

In contrast to the TNAF algorithm, the remainder ui in Step 4 of Algorithm 29 is only
allowed to be 1. As with the TNAF-representation the size of this unsigned representation
is approximately twice the size of the ordinary binary representation. Hence, in order to
reduce the size of the resulting representation, it is necessary to perform a reduction by
τm−1
τ−1 beforehand, as explained in Section 6.2.2.

7.1.2 τ-adic Fixed-base Comb Multiplication Methods

The fixed-base comb multiplication methods are two of the fastest scalar multiplication
methods available, when the precomputations can be done beforehand. Hence, it is of
interest to improve them so that they can use the unsigned τ -adic representation to gain
a performance benefit on Koblitz curves.

The τ-adic Fixed-base Comb Method

To exploit the advantages of the unsigned τ -adic representation on Koblitz curves, the pre-
computation as well as the multiplication routine of the common fixed-base comb method
have to be modified. Within the precomputation, it is essential to replace the doublings
by evaluations of the map τ , i.e.,

[aw−1, . . . , a2, a1, a0]τP = aw−1τ
(w−1)d(P) + · · ·+ a2τ

2d(P) + a1τ
d(P) + a0P. (7.1)

As the fixed-base comb multiplication method requires intense precomputations, this mea-
sure signifies a great performance benefit. The modified precomputation is detailed in
Algorithm 30. The resulting table T contains all 2w − 1 points corresponding to Equa-
tion (7.1).

CHAPTER 7. RESULTS 63

Algorithm 30 Precomputation for the fixed-base comb method on Koblitz curves

Precompute (compute [aw−1, . . . , a0]τP for all bitstrings (aw−1, . . . , a0) of length w):

Input: Window width w, d = dt/we, P ∈ E(Fq).
Output: Table T holding the precomputed points.

1: Q = P
2: T = (P,O)
3: for i = 1 to w − 1 do
4: Q = τdQ
5: for j = 0 to 2i − 1 do
6: T2i+j = Q+ Tj
7: end for
8: T = (T2i+1−1, . . . , T2i , T)
9: end for

10: return T

The unsigned τ -adic scalar representation of k, obtained via Algorithm 29, enables us
to replace the doubling operation with an evaluation of the map τ in the multiplication
routine of the comb method. This modified routine, performing an evaluation of τ in
Step 4 instead of a doubling operation, is stated in Algorithm 31. Although not much
effort is required to modify the multiplication method, the resulting performance gain is
tremendous as we are going to see in Section 7.3.

Algorithm 31 Multiplication routine of the fixed-base comb method on Koblitz curves

Input: Window width w, d = dt/we, k = (kt−1, . . . , k1, k0)τ , lookup table T generated via
Algorithm 30 with respect to P ∈ E(Fq).

Output: kP .
1: If necessary, pad k on the left with 0s, interpret k as Kw−1‖ · · · ‖K1‖K0, where each
Kj is a length d bitstring, where Kj,i denotes the i-th bit of Kj .

2: Q = O.
3: for i = d− 1 downto 0 do
4: Q = τQ
5: Q = Q+ [Kw−1,i, . . . ,K1,i,K0,i]τP = Q+ T∑w−1

j=0 Kj,i2j

6: end for
7: return Q

The τ-adic Fixed-base Comb Method with Two Tables

As we showed in Section 5.3.2, the fixed-base comb method with two tables uses a second
table with 2w − 1 precomputed points. Analogous to the τ -adic fixed-base comb method,
the precomputation has to be modified to enable applications of the Frobenius map later
in the multiplication part. The first precomputation table is equal to the one of the
τ -adic fixed-base comb method, stated in Equation (7.1). For the additional table, the
doublings must again be replaced by evaluations of the map τ , which leads to the following
precomputation for the second table:

τ e[aw−1, . . . , a2, a1, a0]τP = aw−1τ
e+(w−1)d(P) + · · ·+ a2τ

e+2d(P) + a1τ
e+d(P) + a0P.

CHAPTER 7. RESULTS 64

After building the first table, we apply τ to each element of this table e = dd/2e times to
build the second lookup table, as is detailed in Algorithm 32. This measure provides an
additional speedup as we trade one addition per element of the second table and additional
w ·e doublings for e applications of τ per element of the second table. For reasonable values
of e, the latter is by far cheaper than a single point addition.

Algorithm 32 Precomputation for the fixed-base comb method with two tables on Koblitz
curves
Precompute (compute [aw−1, . . . , a0]τP and τ e[aw−1, . . . , a0]τP for all bitstrings
(aw−1, . . . , a0) of length w):

Input: Window width w, d = dt/we, e = dd/2e, P ∈ E(Fq).
Output: Tables T, T ′ holding the precomputed points.

1: Q = P
2: T = (P,O), T ′ = (O)
3: for i = 1 to w − 1 do
4: Q = τdQ
5: for j = 0 to 2i − 1 do
6: T2i+j = Q+ Tj
7: end for
8: T = (T2i+1−1, . . . , T2i , T)
9: end for

10: for i = 1 to 2w − 1 do
11: T ′ = (τ eTi, T

′)
12: end for
13: return (T, T ′)

The modified τ -adic multiplication routine using the two precomputation tables which
are obtained via Algorithm 32 is shown in Algorithm 33. Similar to the comb method
employing a single table, the doubling operation in Step 4 is replaced with a much cheaper
evaluation of τ .

Algorithm 33 Multiplication routine of the fixed-base comb method with two tables on
Koblitz curves
Input: Window width w, d = dt/we, e = dd/2e, k = (kt−1, . . . , k1, k0)τ , lookup tables T

and T ′ generated via Algorithm 32 with respect to P ∈ E(Fq).
Output: kP .

1: If necessary, pad k on the left with 0s, interpret k as Kw−1‖ · · · ‖K1‖K0, where each
Kj is a length d bitstring, where Kj,i denotes the i-th bit of Kj .

2: Q = O.
3: for i = e− 1 downto 0 do
4: Q = τQ
5: Q = Q+ [Kw−1,i, . . . ,K1,i,K0,i]τP + τ e[Kw−1,i+e, . . . ,K1,i+e,K0,i+e]τP =

= Q+ T∑w−1
j=0 Kj,i2j

+ T ′∑w−1
j=0 Kj,i+e2j

6: end for
7: return Q

In general, the fixed-base comb method with two tables gives a benefit over the conven-

CHAPTER 7. RESULTS 65

tional comb method whenever

2w−1(w − 2)

2w − w − 1
≥ A

D
. (7.2)

In the τ -adic versions, the doublings costs D are replaced by applications of τ . Since the
costs for τ are small, the right-hand side of Equation 7.2 becomes quite large. Thus,
Algorithm 33 does not give an advantage over Algorithm 31 for window sizes used in
practice.

7.1.3 The τ-adic Simultaneous Multiple Point Multiplication Method

In addition to the fixed-base comb methods, where the main focus of this issue lies on,
we show now an example of how other conventional scalar multiplication methods can be
modified so that they benefit from the unsigned τ -adic representation on Koblitz curves.
For the explanation of the approach we use the example of the conventional simultaneous
multiple point multiplication method described in general in Section 5.4.1.

As we have already seen, it is necessary to apply some changes in order to obtain a τ -
adic version of a multiplication method. At first, the scalars k, l have to be transformed to
base τ . This is achieved via Algorithm 29 in Section 7.1.1. Then, instead of precomputing
iP + jQ for all i, j ∈ [0, 2w − 1], we now compute

αP + βQ for all α, β ∈ {O, 1, τ, τ + 1, τ2, τ2 + 1, . . . , τw−1 + 1}

in Step 1. Furthermore, we replace the multiplication 2wR in Step 6 by w applications
of τ . Algorithm 34 shows this τ -adic simultaneous multiple point multiplication method
where the sets S = αP and S′ = βQ are precomputed at the beginning. As for all of
the scalar multiplication methods in this section, if P or Q is a recurrent point, e.g., a
generator point, the (pre)computation of the corresponding set S or S′, respectively, might
be done independently of the actual multiplication.

Algorithm 34 τ -adic simultaneous multiple point multiplication method

Input: Window width w, d = dt/we, k = (kt−1, . . . , k1, k0)τ , l = (lt−1, . . . , l1, l0)τ , P,Q ∈
E(Fq).

Output: kP + lQ.
1: Precompute: S = αP, S′ = βQ for all α, β ∈ {O, 1, τ, τ + 1, τ2, τ2 + 1, ..., τw−1 + 1}
2: Compute Ti,j = Si + S′j for all i, j ∈ [0, 2w − 1]
3: If necessary, pad k and l on the left with 0s, interpret k as Kd−1‖ · · · ‖K1‖K0 and l as
Ld−1‖ · · · ‖L1‖L0, where each Ki,Li is a length w bitstring.

4: R = O
5: for i = d− 1 downto 0 do
6: R = τwR
7: R = R+ (KiP + LiQ) = R+ TKi,Li

8: end for
9: return R

7.2 Implementation Details

In this section, we are going to detail the important implementation properties of the
τ -adic comb algorithm and the reference implementations of the WTNAF method and

CHAPTER 7. RESULTS 66

the conventional comb algorithm. We have implemented the NIST-recommended elliptic
curves K-163, K-233, K-283,K-408 and K-571, defined in [Nat09], in Java�. For the
underlying binary fields of the curves, we are using fast reductions. The values of these
binary fields are represented as polynomials (cf. Section 2.2) and stored in long-arrays. In
order to perform squarings in linear time complexity, we are using table lookups [SOOS95]
and multiplications that use the windowed left-to-right comb multiplication method. This
method, which is due to Lim and Lee (cf. [HMV04, LD00]), works with precomputed
multiplication lookup tables. For binary field multiplications, we use windows of size
w = 4 and for multiplications with curve parameters, we use windows of size w = 8.
These lookup tables are cached for curve parameters and recurring intermediate values in
the addition/doubling formulas. Furthermore, partial reductions are used to derive the
unsigned τ -adic representation.

We use López-Dahab coordinates [LD98] with the fast formulas given by Lange and
Doche in [Lan04, CFA+05] and by Higuchi and Takagi in [HT00]. Furthermore, we perform
mixed additions in all implementations. Using the López-Dahab coordinate type, mixed
additions take 8M + 5S. However, the multiplication lookup tables for two intermediate
values can be used twice. That lowers the costs to 6M + 2m + 5S. The evaluation of τ
requires 3S and a point doubling, necessary for conventional comb methods, takes 3M+5S.

7.3 Estimated Costs and Timings

This section provides an overview of the estimated scalar multiplication costs of the WT-
NAF and the τ -adic comb multiplication method which are discussed in Section 6.3.1
and Section 7.1.2. We are also going to present the corresponding timings of our soft-
ware implementations, tested on an Intel Core i5-2540M platform running Ubuntu Linux
12.10/amd64 and OpenJDK 7u15/amd64 in server mode.

Table 7.1 lists the costs of squarings and multiplications with precomputed lookup
tables expressed in terms of multiplications on the test platform. On this platform, we get
at most A = 8.2M per mixed addition, D = 3.5M per doubling and T = 0.3M per evaluation
of τ .

F2163 F2233 F2283 F2409 F2571

1S = 0.094M 0.080M 0.077M 0.061M 0.055M

1m = 0.643M 0.717M 0.761M 0.829M 0.939M

Table 7.1: Costs of squarings in relation to multiplications, where S denotes the cost of
one squaring, M the cost of a multiplication and m the cost of a multiplication using cached
precomputation tables of window size w = 4.

In the following, we compare the costs of the WTNAF and the τ -comb method based
on the relative costs given in Table 7.1. The comparison with the WTNAF method is of
great interest since this method exploits the Frobenius endomorphism on Koblitz curves
too. So, for example, on curve K-233 using a window size w = 7 the WTNAF method has
an expected running time of 284.09M, whereas the expected running time of the τ -comb
method is 264.36M. This gives an advantage of 7.46% over the WTNAF method. On curve
K-283 the WTNAF method with w = 8 has expected costs of 314.00M, whereas the τ -comb
method is expected to require only 283.72M, thus, resulting in a speedup of 10.67%. For
w = 9 on curve K-233, the expected running times are 238.45M and 201.45M, respectively.

CHAPTER 7. RESULTS 67

That means a performance gain of 18.37%. Using the same window size on curve K-409,
we get 300.53M compared to 365.85M resulting in a speedup of 9.49%. In Table 7.2, we
compare the timings of one fixed-base scalar multiplication of the τ -comb method with
the WTNAF method and the conventional comb method, discussed in 5.3.1, on various
Koblitz curves using different window sizes. The table shows that the performance gain
of the τ -comb method is up to 25% compared to the WTNAF method and up to 45%
compared to the conventional comb method.

Curve
Window

size
Comb

[µs]
τ-Comb

[µs]
WTNAF

[µs]

Speedup Speedup
w.r.t. w.r.t.
Comb WTNAF

K-163

w=6 276.50 209.06 241.77 1.32x 1.16x
w=7 237.03 196.51 208.73 1.21x 1.06x
w=8 211.65 168.13 194.55 1.26x 1.16x
w=9 192.83 152.97 187.38 1.26x 1.22x

K-233

w=6 511.96 398.87 405.49 1.28x 1.02x
w=7 455.76 341.16 386.22 1.34x 1.13x
w=8 383.59 299.29 356.87 1.28x 1.19x
w=9 343.87 266.21 332.61 1.29x 1.25x

K-283

w=6 738.62 544.43 583.54 1.36x 1.07x
w=7 653.78 489.27 527.23 1.34x 1.08x
w=8 582.79 430.37 509.92 1.35x 1.18x
w=9 508.49 393.47 448.91 1.29x 1.14x

K-409

w=6 1581.53 1113.97 1284.27 1.42x 1.15x
w=7 1383.75 1024.39 1110.81 1.35x 1.08x
w=8 1203.60 889.96 1077.14 1.35x 1.21x
w=9 1060.99 807.13 938.07 1.31x 1.16x

K-571

w=6 3026.80 2135.81 2280.14 1.42x 1.07x
w=7 2627.00 1903.24 2061.80 1.38x 1.08x
w=8 2336.93 1675.88 1865.80 1.39x 1.11x
w=9 2048.58 1581.32 1816.99 1.30x 1.15x

Table 7.2: Comparison of the multiplication timings of the comb, the τ -comb and the
WTNAF methods

7.4 Summary

This chapter introduced modifications to the fixed-base comb methods as well as the si-
multaneous multiple point multiplication method, which allow us to benefit from speedups
available on Koblitz curves, i.e., the possibility of replacing point doublings with applica-
tions of the far more efficient Frobenius endomorphism τ . It explained how to perform
scalar recoding from base 2 to an unsigned base-τ representation and provided the re-
spective algorithm. Furthermore, the algorithms of the modified multiplication methods,
which make use of the base τ representation, were detailed in this chapter. The last part
of this chapter dealt with the implementations of the modified fixed-base comb methods
and gave a detailed performance comparison.

Chapter 8

Conclusions

In this thesis we focused on elliptic curve cryptography in general and scalar multipli-
cation on elliptic curves in particular. At the beginning, the preliminaries provided an
introduction to the arithmetical background of elliptic curves. Based on this, we discussed
the security properties of elliptic curves. Additionally, generic attacks as well as specific
attacks against the ECDLP were explained in order to give an idea of how important the
choice of the curve’s parameters is with respect to security. Then, we detailed several
cryptographic protocols on elliptic curves, more precisely, a signature scheme, two key-
agreement protocols, and a hybrid encryption scheme. These protocols, like almost all
other elliptic curve schemes, involve scalar multiplication operations.

The subsequent part of the thesis was devoted to scalar multiplication methods on ellip-
tic curves. Scalar multiplication is the most expensive operation in elliptic curve schemes.
We showed various multiplication methods with different scopes. Besides the rather im-
practical basic point multiplication methods, the respective chapter covered multiple point
multiplication methods which tend to efficiently compute an expensive step in the ECDSA
signature verification. We also detailed the fixed-base comb multiplication methods which
achieve very high speed at the cost of precomputations and increased memory usage due
to lookup tables.

With the focus on speeding up these fixed-base comb methods, we gave a comprehensive
introduction to binary Koblitz curves. These curves are interesting with regard to scalar
multiplication since Koblitz curves allow trading the doubling operation for an application
of the so-called Frobenius endomorphism which is inexpensive compared to point doubling.
We discussed the WTNAF multiplication method which exploits this endomorphism on
Koblitz curves to gain a performance benefit.

In this context, we introduced an improvement to the fixed-base comb method on
Koblitz curves and showed how doubling operations can be exchanged for far more efficient
applications of the Frobenius endomorphism. To do so, we presented an unsigned τ -adic
representation of scalars. This scalar recoding allows us to transform scalar multiplication
methods, which generally use scalars in binary representation, to τ -adic versions. We
detailed the scalar recoding algorithm and introduced a modified version of the common
fixed-base comb multiplication method that can exploit this unsigned τ -adic representation
and gains a tremendous speedup on Koblitz curves. Software implementations of our
findings as well as the WTNAF method and the conventional comb method in Java�

were used for comprehensive comparisons. For one fixed-base scalar multiplication, the
τ -adic comb method showed a performance improvement of up to 25% compared with the
WTNAF method and an improvement of up to 42% compared with the conventional comb

68

CHAPTER 8. CONCLUSIONS 69

method. We pointed out that the implementation of the τ -comb is straightforward and
requires only little effort. Furthermore, using the example of the simultaneous multiple
point multiplication method, we showed how other scalar multiplication methods that
employ a scalar in binary representation, can be modified to τ -adic versions. To sum up,
we showed that the τ -adic fixed-base comb method we proposed is a good alternative to
other fixed-base multiplication methods.

8.1 Related and Future Work

Several approaches have been proposed with focus on scalar multiplication on Koblitz
curves as well as on improving the fixed-base comb multiplication method. In [ACS04]
the authors proposed a fast scalar multiplication method on Koblitz curves that uses an
optimized τ -adic scalar representation. This representation is obtained as a combination
of telescopic sums and a single point halving operation. With this form of scalar recoding,
the number of group operations required for a scalar multiplication is reduced by roughly
14% without increasing memory usage, resulting in a speedup of at least 12% over the
conventional TNAF method. The representation obtained in this approach was refined
in [AHP05], mainly by optimizing its Hamming weight, resulting in about 25% fewer group
operations.

The authors of [AFLR12] showed how the Frobenius endomorphism τ can be efficiently
combined with the GLV-method by using powers of τ . They are able to decompose scalars
into smaller scalars and then apply interleaved point multiplication to them, setting new
speed records with the help of a low-level implementation. The implementations of these
approaches and a comparison with our proposed method are issues for future work.

The authors of [MHH12] proposed an improved fixed-base comb method for scalar
multiplication. This method combines the Tsaur-Chou method [TC05] with the Lim-Lee
method in order to reduce the number of required elliptic-curve point additions, resulting
in a speedup of 38% compared to the Tsaur-Chou method. Adapting this new fixed-
base comb multiplication method to work with the Frobenius endomorphism, as well as
implementing the approach in order to compare its performance with the τ -adic comb
method, is another issue for future work.

Appendix A

Definitions

A.1 Abbreviations

ANSI American National Standards Institute
DH Diffie-Hellman
DL Discrete Logarithm
DLP Discrete Logarithm Problem
DHP Diffie-Hellman Problem
DSA Digital Signature Algorithm
EC Elliptic Curve
ECC Elliptic Curve Cryptography
ECDH Elliptic Curve Diffie-Hellman
ECDHP Elliptic Curve Diffie-Hellman Problem
ECDLP Elliptic Curve Discrete Logarithm Problem
ECIES Elliptic Curve Integrated Encryption Scheme
ECMQV Elliptic Curve Menezes-Qu-Vanstone algorithm
ECDSA Elliptic Curve Digital Signature Algorithm
FIPS Federal Information Processing Standards
GCD Greatest Common Divisor
KDF Key Derivation Function
MAC Message Authentication Code
MOV Menezes-Okamoto-Vanstone algorithm
MQV Menezes-Qu-Vanstone algorithm
NAF Non-Adjacent Form
NIST National Institute of Standards and Technology
RSA Rivest-Shamir-Adleman cryptosystem
RTNAF Reduced τ -adic Non-adjacent Form
SHA Secure Hashing Algorithm
SSSA Semaev-Smart-Satoh-Araki attack
TNAF τ -adic Non-Adjacent Form
WNAF Windowed Non-Adjacent Form
WTNAF Windowed τ -adic Non-Adjacent Form

70

APPENDIX A. DEFINITIONS 71

A.2 Used Symbols

∀a forall quantifier
∃a existential quantifier
a ∈R [1, n] integer a chosen uniformly at random from the set [1, n]
dae smallest integer not less than a
bac largest integer not greater than a
a! product of all positive integers less or equal than a√
a square root of a real value or a field element

a · b multiplication of integers, finite fields or groups
ab exponentiation of an integer, finite field or group
a | b integer a divides b without remainder
a+ b addition of integers, finite fields or groups
a || b concatenation of the (bit) strings a and b
a mod m remainder of a division from a by m
a mods m smallest remainder in absolute value of a division from a by m
a ≡ b mod n a and b congruent modulo n(
a
b

)
binomial coefficient, i.e.,

(
a
b

)
= a!

b!(a−b)!
a1, . . . , a6 Weierstrass coefficients
A costs of an addition of two elliptic curve points
An affine n space
char(K) characteristic of field K
deg(f) degree of a polynomial f
E elliptic curve in affine or projective Weierstrass form
E(K) group of K-rational points on an elliptic curve
#E(K) number of points in E(K)
∆E discriminant of elliptic curve E
e(P,Q) pairing of P and Q
F finite field
Fq finite field with q elements
G a group
ord(G) order of group G
ordG(x) order of group element x
〈g〉 subgroup generated by g
gcd(a, b) greatest common divisor of the integers a and b
K a field
K∗ field K without 0, i.e., K∗ = K \ {0}
(kt−1, . . . , k0)2 binary expansion of k ∈ N
L/K field extension of field K
logb(a) logarithm of a to base b
logG(P) discrete logarithm of point P with respect to generator G
M costs of a field multiplication
N set of natural numbers
O point at infinity on an elliptic curve
Pn projective n space
R set of real numbers
S costs of a field squaring
|S| cardinality of set S

APPENDIX A. DEFINITIONS 72

τ Frobenius endomorphism
(ut−1, . . . , u0)τ τ -adic expansion of κ ∈ Z[τ]
Un first Lucas sequence
Vn second Lucas sequence
(x, y) affine point on a Weierstrass curve
xP , yP x-coordinate and y-coordinate of the point P
(X : Y : Z) projective point on a Weierstrass curve
Z set of integers
Z+ set of positive integers
Zm set of integers modulo m
Z∗m set of integers modulo m without 0
Z[τ] ring of polynomials in τ with coefficients in Z

Bibliography

[ACS04] Roberto Maria Avanzi, Mathieu Ciet, and Francesco Sica. Faster Scalar Mul-
tiplication on Koblitz Curves Combining Point Halving with the Frobenius
Endomorphism. In Feng Bao, Robert H. Deng, and Jianying Zhou, editors,
Public Key Cryptography - PKC 2004, 7th International Workshop on Theory
and Practice in Public Key Cryptography, volume 2947 of Lecture Notes in
Computer Science, pages 28–40. Springer, 2004.

[ADH94] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang. A subex-
ponential algorithm for discrete logarithms over the rational subgroup of the
Jacobians of large genus hyperelliptic curves over finite fields. In Leonard M.
Adleman and Ming-Deh A. Huang, editors, Algorithmic Number Theory, First
International Symposium, ANTS-I, Proceedings, volume 877 of Lecture Notes
in Computer Science, pages 28–40. Springer, 1994.

[AFLR12] Diego F. Aranha, Armando Faz-Hernández, Julio López, and Francisco
Rodŕıguez-Henŕıquez. Faster Implementation of Scalar Multiplication on
Koblitz Curves. In Alejandro Hevia and Gregory Neven, editors, Progress
in Cryptology - LATINCRYPT 2012 - 2nd International Conference on Cryp-
tology and Information Security in Latin America, Proceedings, volume 7533
of Lecture Notes in Computer Science, pages 177–193. Springer, 2012.

[Aft11] Alex E. Aftuck. The Weil Pairing of Elliptic Curves and Its Cryptographic
Applications. University of North Florida, 2011. http://digitalcommons.

unf.edu/etd/139.

[AHP05] Roberto Maria Avanzi, Clemens Heuberger, and Helmut Prodinger. Minimal-
ity of the Hamming Weight of the T-NAF for Koblitz Curves and Improved
Combination with Point Halving. In Bart Preneel and Stafford E. Tavares, edi-
tors, Selected Areas in Cryptography, 12th International Workshop, SAC 2005,
Revised Selected Papers, volume 3897 of Lecture Notes in Computer Science,
pages 332–344. Springer, 2005.

[ANS98] ANSI. ANSI X9.62-1998: Public Key Cryptography for the Financial Services
Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA). Accred-
ited Standards Committee X9, 1998.

[ANS01] ANSI. ANSI X9.63: Public Key Cryptography for the Financial Services In-
dustry, Key Agreement and Key Transport Using Elliptic Curve Cryptography.
Accredited Standards Committee X9, 2001.

73

http://digitalcommons.unf.edu/etd/139
http://digitalcommons.unf.edu/etd/139

BIBLIOGRAPHY 74

[BBB+12] Elaine Barker, William Barker, William Burr, William Polk, and Miles
Smid. NIST SP800-57:, Recommendation for Key Management Part
1: General (Revision 3). National Institute of Standards and Technol-
ogy, 2012. http://www.http://csrc.nist.gov/publications/nistpubs/

800-57/sp800-57_part1_rev3_general.pdf.

[Ber06] Daniel J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Moti
Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key
Cryptography - PKC 2006, 9th International Conference on Theory and Prac-
tice of Public-Key Cryptography, Proceedings, volume 3958 of Lecture Notes in
Computer Science, pages 207–228. Springer, 2006.

[BF01] Dan Boneh and Matthew K. Franklin. Identity Based Encryption From
the Weil Pairing. IACR Cryptology ePrint Archive, 2001:90, 2001. http:

//eprint.iacr.org/2001/090.

[BK12] Elaine Barker and John Kelsey. NIST SP800-90A: Recommendation for Ran-
dom Number Generation Using Deterministic Random Bit Generators. Na-
tional Institute of Standards and Technology, 2012. http://csrc.nist.gov/

publications/nistpubs/800-90A/SP800-90A.pdf.

[BL14] Daniel J. Bernstein and Tanja Lange. Explicit-Formulas Database. http:

//www.hyperelliptic.org/EFD/index.html, 2014. Online. Last accessed:
2014-04-15.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. In Colin Boyd, editor, Advances in Cryptology - ASIACRYPT 2001,
7th International Conference on the Theory and Application of Cryptology and
Information Security, Proceedings, volume 2248 of Lecture Notes in Computer
Science, pages 514–532. Springer, 2001.

[BR97] Mihir Bellare and Phillip Rogaway. Minimizing the Use of Random Oracles
in Authenticated Encryption Schemes. In Yongfei Han, Tatsuaki Okamoto,
and Sihan Qing, editors, Information and Communication Security, First In-
ternational Conference, ICICS’97, Proceedings, volume 1334 of Lecture Notes
in Computer Science, pages 1–16. Springer, 1997.

[Bro06] Daniel R. L. Brown. Conjectured Security of the ANSI-NIST Elliptic Curve
RNG. IACR Cryptology ePrint Archive, 2006:117, 2006. http://eprint.

iacr.org/2006/117.

[Cer00] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
Standards for Efficient Cryptography, 2000. Available at http://www.secg.

org/download/aid-386/sec2_final.pdf.

[Cer09] Certicom Research. SEC 1: Elliptic Curve Cryptography. Standards for
Efficient Cryptography, May 2009. Available at http://www.secg.org/

download/aid-780/sec1-v2.pdf.

[CFA+05] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange,
Kim Nguyen, and Frederik Vercauteren. Handbook of Elliptic and Hyperelliptic

http://www.http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://www.http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://eprint.iacr.org/2001/090
http://eprint.iacr.org/2001/090
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://www.hyperelliptic.org/EFD/index.html
http://www.hyperelliptic.org/EFD/index.html
http://eprint.iacr.org/2006/117
http://eprint.iacr.org/2006/117
http://www.secg.org/download/aid-386/sec2_final.pdf
http://www.secg.org/download/aid-386/sec2_final.pdf
http://www.secg.org/download/aid-780/sec1-v2.pdf
http://www.secg.org/download/aid-780/sec1-v2.pdf

BIBLIOGRAPHY 75

Curve Cryptography. Discrete Mathematics and Its Applications. Taylor &
Francis, 2005.

[CLO07] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms:
An Introduction to Computational Algebraic Geometry and Commutative Alge-
bra. Number 10 in Undergraduate Texts in Mathematics. Springer, 3rd edition,
2007.

[DF04] David S. Dummit and Richard M. Foote. Abstract Algebra. Wiley, 3rd edition,
2004.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, November 1976.

[Die07] Claus Diem. Diskrete Mathematik für Informatiker (WS 2007/08). Univer-
sity Lecture Notes, Universität Leipzig. http://www.math.uni-leipzig.de/

~diem/skripten/dm-skript.pdf, 2007. Online. Last accessed: 2014-05-01.

[Die09] Claus Diem. Lineare Algebra für Mathematiker (WS 2009/10). University Lec-
ture Notes, Universität Leipzig. http://www.math.uni-leipzig.de/~diem/

skripten/la-mathe-skript.pdf, 2009. Online. Last accessed: 2014-05-01.

[Die12] Claus Diem. What on earth is ”index calculus”? http://ellipticnews.

wordpress.com/2012/05/07/246/, May 2012. Online. Last accessed: 2014-
01-16.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

[Eng99] Andreas Enge. Elliptic Curves and Their Applications to Cryptography - an
Introduction. Kluwer, 1999.

[Flo67] Robert W. Floyd. Nondeterministic Algorithms. Journal of the ACM,
14(4):636–644, October 1967.

[Gal14] Steven Galbraith. ellipticnews - New discrete logarithm records, and the death
of Type 1 pairings. https://ellipticnews.wordpress.com/2014/02/01/

new-discrete-logarithm-records-and-the-death-of-type-1-pairings/,
February 2014. Online. Last accessed: 2014-04-25.

[GLV00] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Improving the
parallelized Pollard lambda search on anomalous binary curves. Mathematics
of Computation, 69(232):1699–1705, 2000.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.

[Han10] Christian Hanser. New Trends in Elliptic Curve Cryptography. Master’s The-
sis, Graz University of Technology, Institute for Applied Information Process-
ing and Communications, Graz University of Technology, April 2010.

[Her96] Israel N. Herstein. Abstract Algebra. Prentice Hall, 3rd edition, 1996.

http://www.math.uni-leipzig.de/~diem/skripten/dm-skript.pdf
http://www.math.uni-leipzig.de/~diem/skripten/dm-skript.pdf
http://www.math.uni-leipzig.de/~diem/skripten/la-mathe-skript.pdf
http://www.math.uni-leipzig.de/~diem/skripten/la-mathe-skript.pdf
http://ellipticnews.wordpress.com/2012/05/07/246/
http://ellipticnews.wordpress.com/2012/05/07/246/
https://ellipticnews.wordpress.com/2014/02/01/new-discrete-logarithm-records-and-the-death-of-type-1-pairings/
https://ellipticnews.wordpress.com/2014/02/01/new-discrete-logarithm-records-and-the-death-of-type-1-pairings/

BIBLIOGRAPHY 76

[HMV04] Darrel Hankerson, Alfred J. Menezes, and Scott A. Vanstone. Guide to Elliptic
Curve Cryptography. Springer Professional Computing. Springer, 2004.

[HT00] Akira Higuchi and Naofumi Takagi. A fast addition algorithm for elliptic curve
arithmetic in GF(2n) using projective coordinates. Information Processing
Letters, 76(3):101–103, 2000.

[HW13] Christian Hanser and Christian Wagner. Speeding Up the Fixed-Base Comb
Method for Faster Scalar Multiplication on Koblitz Curves. In Alfredo Cuz-
zocrea, Christian Kittl, Dimitris E. Simos, Edgar Weippl, Lida Xu, Alfredo
Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar Weippl, and Lida Xu,
editors, Security Engineering and Intelligence Informatics - CD-ARES 2013
Workshops: MoCrySEn and SeCIHD, Proceedings, volume 8128 of Lecture
Notes in Computer Science, pages 168 – 179. Springer, 2013.

[IEE00] IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptogra-
phy. IEEE, New York, 2000.

[ISO98] ISO/IEC. ISO/IEC 14888-3: Information Technology - Security Techniques
- Digital signatures with appendix - Part 3: Discrete logarithm based mecha-
nisms. International Organization for Standardization / International Elec-
trotechnical Commission, 1998.

[ISO02] ISO/IEC. ISO/IEC 15946-3: Information Technology - Security Techniques
Cryptographic Techniques Based on Elliptic Curves Part 3: Key Establish-
ment. International Organization for Standardization / International Elec-
trotechnical Commission, 2002.

[ISO06] ISO/IEC. ISO/IEC 18033-2: Information Technology - Security Techniques
Encryption Algorithms Part 2: Asymmetric Ciphers. International Organiza-
tion for Standardization / International Electrotechnical Commission, 2006.

[IT88] Toshiya Itoh and Shigeo Tsujii. A Fast Algorithm for Computing Multiplica-
tive Inverses in GF(2m) Using Normal Bases. Information and Computation,
78(3):171–177, 1988.

[JMV01] Don Johnson, Alfred J. Menezes, and Scott A. Vanstone. The Elliptic Curve
Digital Signature Algorithm (ECDSA). International Journal of Information
Security, 1(1):36–63, 2001.

[Joh97] Don Johnson. ”Key Validation”. Contribution to ANSI X9F1 working group,
1997.

[Jou00] Antoine Joux. A One Round Protocol for Tripartite Diffie-Hellman. In Wieb
Bosma, editor, Algorithmic Number Theory, 4th International Symposium,
ANTS-IV,Proceedings, volume 1838 of Lecture Notes in Computer Science,
pages 385–394. Springer, 2000.

[Jou13a] Antoine Joux. A new index calculus algorithm with complexity L(1/4 + o(1))
in very small characteristic. IACR Cryptology ePrint Archive, 2013:95, 2013.
http://eprint.iacr.org/2013/095.

http://eprint.iacr.org/2013/095

BIBLIOGRAPHY 77

[Jou13b] Antoine Joux. Discrete Logarithms in GF (26168) [= GF ((2257)24)]. https://

listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;49bb494e.1305, May
2013. Online. Last accessed: 2014-04-25.

[Knu69] Donald E. Knuth. The Art of Computer Programming, volume 2: Seminu-
merical Algorithms. Addison-Wesley Publishing Company, Reading, Mas-
sachusetts, 1969. exercises 6 and 7, page 7.

[KO62] Anatolii A. Karatsuba and Yuri Ofman. Multiplication of Many-Digital Num-
bers by Automatic Computers. In Doklady Akademii Nauk SSSR, volume 145,
pages 293–294, 1962. (Translation in Physics-Doklady 7, pages 595–596, 1963).

[Kob87] Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[Kob89] Neal Koblitz. Hyperelliptic Cryptosystems. Journal of Cryptology, 1(3):139–
150, 1989.

[Kob91] Neal Koblitz. CM-Curves with Good Cryptographic Properties. In Joan
Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, 11th Annual In-
ternational Cryptology Conference, Proceedings, volume 576 of Lecture Notes
in Computer Science, pages 279–287. Springer, 1991.

[KS01] Fabian Kuhn and René Struik. Random Walks Revisited: Extensions of Pol-
lard’s Rho Algorithm for Computing Multiple Discrete Logarithms. In Serge
Vaudenay and Amr M. Youssef, editors, Selected Areas in Cryptography, 8th
Annual International Workshop, SAC 2001 Toronto, Revised Papers, volume
2259 of Lecture Notes in Computer Science, pages 212–229. Springer, 2001.

[Lan04] Tanja Lange. A note on López-Dahab coordinates. IACR Cryptology ePrint
Archive, 2004:323, 2004. http://eprint.iacr.org/2004/323.

[LD98] Julio López and Ricardo Dahab. Improved Algorithms for Elliptic Curve Arith-
metic in GF(2n). In Tavares and Meijer [TM99], pages 201–212.

[LD00] Julio López and Ricardo Dahab. High-Speed Software Multiplication in F2m .
In Bimal K. Roy and Eiji Okamoto, editors, Progress in Cryptology - IN-
DOCRYPT 2000, First International Conference in Cryptology in India, Pro-
ceedings, volume 1977 of Lecture Notes in Computer Science, pages 203–212.
Springer, 2000.

[LL94] Chae Hoon Lim and Pil Joong Lee. More Flexible Exponentiation with Pre-
computation. In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO
’94,14th Annual International Cryptology Conference, Proceedings, volume 839
of Lecture Notes in Computer Science, pages 95–107. Springer, 1994.

[LM10] M. Lochter and J. Merkle. Elliptic Curve Cryptography (ECC) Brainpool
Standard Curves and Curve Generation, 2010.

[LMQ+03] Laurie Law, Alfred J. Menezes, Minghua Qu, Jerome Solinas, and Scott A.
Vanstone. An Efficient Protocol for Authenticated Key Agreement. Design,
Codes and Cryptography, 28(2):119–134, March 2003.

https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;49bb494e.1305
https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;49bb494e.1305
http://eprint.iacr.org/2004/323

BIBLIOGRAPHY 78

[MHH12] Nashwa A. F. Mohamed, Mohsin H. A. Hashim, and Michael Hutter. Im-
proved Fixed-Base Comb Method for Fast Scalar Multiplication. In Aika-
terini Mitrokotsa and Serge Vaudenay, editors, Progress in Cryptology -
AFRICACRYPT 2012 - 5th International Conference on Cryptology in Africa,
Proceedings, volume 7374 of Lecture Notes in Computer Science, pages 342–
359. Springer, 2012.

[Mil85] Victor S. Miller. Use of Elliptic Curves in Cryptography. In Hugh C. Williams,
editor, Advances in Cryptology - CRYPTO ’85,Proceedings, volume 218 of Lec-
ture Notes in Computer Science, pages 417–426. Springer, 1985.

[Mil04] Victor S. Miller. The Weil Pairing, and Its Efficient Calculation. Journal of
Cryptology, 17(4):235–261, September 2004.

[MOV91] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing El-
liptic Curve Logarithms to Logarithms in a Finite Field. In Cris Koutsougeras
and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM Sym-
posium on Theory of Computing, pages 80–89. ACM, 1991.

[MQV95] Alfred J. Menezes, Minghuan Qu, and Scott A. Vanstone. Some new key
agreement protocols providing implicit authentication. In Workshop Record,
2nd Workshop on Selected Areas in Cryptography (SAC’95), pages 22–32, 1995.

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook
of Applied Cryptography. CRC Press, Inc., 1st edition, 1996.

[Nat00] National Institute of Standards and Technology. FIPS PUB 186-2: Digi-
tal Signature Standard (DSS). National Institute of Standards and Tech-
nology, January 2000. Available at http://csrc.nist.gov/publications/

fips/archive/fips186-2/fips186-2.pdf.

[Nat09] National Institute of Standards and Technology. FIPS PUB 186-3: Digital Sig-
nature Standard (DSS). National Institute of Standards and Technology, June
2009. Available at http://csrc.nist.gov/publications/fips/fips186-3/
fips_186-3.pdf.

[Nat13] National Institute of Standards and Technology. FIPS PUB 186-4: Digital
Signature Standard (DSS). National Institute of Standards and Technology,
2013. Available at http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.

186-4.pdf.

[OW99] Paul C. Van Oorschot and Michael J. Wiener. Parallel Collision Search with
Cryptanalytic Applications. Journal of Cryptology, 12:1–28, 1999.

[Pol75] John M. Pollard. A Monte Carlo method for factorization. BIT Numerical
Mathematics, 15(3):331–334, 1975.

[Pol78] John M. Pollard. Monte Carlo methods for Index Computation (mod p).
Mathematics of Computation, 32:918–924, 1978.

[Rib91] Paulo Ribenboim. The Little Book of Big Primes. Springer, 1991.

http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

BIBLIOGRAPHY 79

[Rib00] Paulo Ribenboim. My Numbers, My Friends: Popular Lectures on Number
Theory. Springer, 2000.

[SA98] Takakazu Satoh and Kiyomichi Araki. Fermat quotients and the polynomial
time discrete log algorithm for anomalous elliptic curves. Commentarii Math-
ematici Universitatis Sancti Pauli, 47:81–92, 1998.

[Sah12] Chandan Saha. Computational Number Theory and Algebra - Lecture 21 -
The Index Calculus method. University Lecture Notes, Max-Planck-Institut
für Informatik. http://www.mpi-inf.mpg.de/~csaha/lectures/lec21.pdf,
2012. Online. Last accessed: 2014-02-11.

[SEB09] Augustin P. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A Secure
and Efficient Authenticated Diffie-Hellman Protocol. In Fabio Martinelli and
Bart Preneel, editors, Public Key Infrastructures, Services and Applications -
6th European Workshop, EuroPKI 2009, Revised Selected Papers, volume 6391
of Lecture Notes in Computer Science, pages 83–98. Springer, 2009.

[Sem98] Igor A. Semaev. Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p. Mathematics of Computation,
67(221):353–356, 1998.

[Sil09] Joseph H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in
Mathematics. Springer, 2nd edition, 2009.

[Sma99] Nigel P. Smart. The Discrete Logarithm Problem On Elliptic Curves Of Trace
One. Journal of Cryptology, 12:193–196, 1999.

[Sma01] Nigel P. Smart. An Identity Based Authenticated Key Agreement Protocol
Based on the Weil Pairing. IACR Cryptology ePrint Archive, 2001:111, 2001.
http://eprint.iacr.org/2001/111.

[Sma12] Nigel P. Smart. Cryptography: An Introduction. Ebook, 3rd edition, June
2012. http://www.cs.bris.ac.uk/~nigel/Crypto_Book/.

[Sol00] Jerome A. Solinas. Efficient Arithmetic on Koblitz curves. Designs, Codes,
and Cryptography, 19(2/3):195–249, 2000.

[SOOS95] Richard Schroeppel, Hilarie K. Orman, Sean W. O’Malley, and Oliver
Spatscheck. Fast Key Exchange with Elliptic Curve Systems. In Don Cop-
persmith, editor, Advances in Cryptology - CRYPTO ’95, 15th Annual Inter-
national Cryptology Conference, Proceedings, volume 963 of Lecture Notes in
Computer Science, pages 43–56. Springer, 1995.

[SS06] Berry Schoenmakers and Andrey Sidorenko. Cryptanalysis of the Dual Elliptic
Curve Pseudorandom Generator, 2006. http://eprint.iacr.org/2006/190.

[Str64] Ernst G. Straus. Addition chains of vectors (problem 5125). American Math-
ematical Monthly, 70:806–808, 1964.

[TC05] Woei-Jiunn Tsaur and Chih-Ho Chou. Efficient algorithms for speeding up
the computations of elliptic curve cryptosystems. Applied Mathematics and
Computation, 168(2):1045 – 1064, 2005.

http://www.mpi-inf.mpg.de/~csaha/lectures/lec21.pdf
http://eprint.iacr.org/2001/111
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/
http://eprint.iacr.org/2006/190

BIBLIOGRAPHY 80

[Tes00] Edlyn Teske. On Random Walks For Pollard’s Rho Method. Mathematics of
Computation, 70:809–825, 2000.

[TM99] Stafford E. Tavares and Henk Meijer, editors. Selected Areas in Cryptography
’98, SAC’98, Proceedings, volume 1556 of Lecture Notes in Computer Science.
Springer, 1999.

[Van92] Scott A. Vanstone. Responses to NIST’s proposal. Communications of the
ACM, 35(7):50–52, July 1992.

[Wal98] David A.R. Wallace. Groups, Rings, and Fields. Springer Undergraduate
Mathematics Series. Springer, 1998.

[WZ98] Michael J. Wiener and Robert J. Zuccherato. Faster Attacks on Elliptic Curve
Cryptosystems. In Tavares and Meijer [TM99], pages 190–200.

[YISK11] Masaya Yasuda, Tetsuya Izu, Takeshi Shimoyama, and Jun Kogure. On ran-
dom walks of Pollard’s rho method for the ECDLP on Koblitz curves. Journal
of Math-for-industry, 3:107–112, 2011.

	Introduction
	Contribution
	Outline

	Preliminaries
	Algebraic Background
	Groups
	Rings
	Fields
	Freshman's Dream
	Greatest Common Divisor
	Lucas Sequences

	Binary Fields
	Arithmetics

	Elliptic Curves
	Discriminant and j-Invariant
	Group Law
	Simplified Weierstrass Equations
	Projective Coordinate Types

	Summary

	Security Properties of Elliptic Curves
	Elliptic Curve Discrete Logarithm Problem
	Elliptic Curve Diffie-Hellman Problem
	Generic Attacks
	Pollard's Rho

	Specific Attacks
	Isomorphism Attacks on Prime-Field Anomalous Curves
	The MOV Attack

	Summary

	Protocols
	Domain Parameters
	Generation and Validation of Domain Parameters

	ECDSA
	Signature Generation
	Signature Verification

	ECDH
	ECMQV
	ECIES
	Encryption
	Decryption

	Summary

	Scalar Multiplication Algorithms
	Basic Point Multiplication Methods
	The Left-to-right Binary Method
	The Non-adjacent Form

	The Windowed NAF Method
	Fixed Point Multiplication Methods
	The Fixed-base Comb Method
	The Fixed-base Comb Method with Two Tables

	Multiple Point Multiplication Methods
	The Simultaneous Multiple Point Multiplication Method
	The Interleaving Multiple Point Multiplication Method

	Summary

	Koblitz Curves
	Properties
	Group Order
	Frobenius Endomorphism
	The ECDLP on Koblitz Curves
	Lucas Sequences for tau

	tau-adic Representations
	The tau-adic Non-adjacent Form (TNAF)
	The Reduced tau-adic Non-adjacent Form (RTNAF)

	tau-adic Scalar Multiplication Methods
	tau-adic NAF Point Multiplication Methods
	tau-adic Multiple Point Multiplication Methods

	Summary

	Results
	Speeding Up more Scalar Multiplication Methods on Koblitz Curves
	The Unsigned tau-adic Representation
	tau-adic Fixed-base Comb Multiplication Methods
	The tau-adic Simultaneous Multiple Point Multiplication Method

	Implementation Details
	Estimated Costs and Timings
	Summary

	Conclusions
	Related and Future Work

	Definitions
	Abbreviations
	Used Symbols

	Bibliography

