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Abstract

This work presents an algorithm to detect rigid straight biopsy needles in multi-
view C-arm X-ray images and reconstruction of its tip and orientation in three
dimensional space. Several well known computer vision techniques are applied
to achieve this goal. The processing pipeline described consists of several stages
including a denoising and preprocessing stage with image filtering, computing
a norm for better distinction of needle and background and applying the Radon
transform to determine the orientation, refinement of the latter by utilizing the
random sample consensus paradigm, needle tip detection, reconstruction of the
data to three dimensional space with Direct Linear Transform and improving
robustness by determining deviation in back projection. Afterwards, the results
are visualized by a recently developed application, which facilitates the display
of volumetric data together with polygonal geometry and intersection thereof.
The processing steps are described in detail, a short overview is given about the
surrounding application and finally, the evaluation results of the experiments
on real X-ray imaging data is presented and discussed.

Keywords: medical image processing, multi-view, prostate biopsy, volume
visualization



Zusammenfassung

Diese Arbeit stellt einen Algorithmus zur Detektion von starren, geraden Bi-
opsienadeln in C-Bogen Röntgenbildern aus mehreren Ansichten vor, sowie
die Rekonstruktion ihrer Spitze und die Orientierung im dreidimensionalen
Raum. Zu diesem Zweck werden mehrere bekannte Techniken aus dem Be-
reich der Computer Vision angewandt. Der Verarbeitungsablauf, der beschrie-
ben wird, setzt sich aus mehreren Stufen zusammen bestehend aus Glättung und
Vorverarbeitung, der Berechnung einer Norm zur besseren Unterscheidung zwi-
schen Nadel und Hintergrund und der Radon Transformation zur Bestimmung
der Orientierung, Verfeinerung der letzteren unter Zuhilfenahme des Random-
Sample-Consensus-Paradigmas, der Nadelspitzenfindung, der Rekunstruktion
der Daten in den dreidimensionalen Raum mittels Direkter linearer Transfor-
mation und Verbesserung der Robustheit mittels Feststellung der Abweichung
in der Rückprojektion. Danach folgt die Visualisierung der Ergebnisse mittels
einer kürzlich entwickelten Anwendung zur Anzeige von volumsbasierten Da-
ten in Verbindung mit polygonaler Geometrie und Verschneidungen der sel-
ben. Die einzelnen Verarbeitungsschritte werden detailliert beschrieben, eine
kurze Übersicht über das umgebende Anwendungsgerüst wird gegeben und ab-
schließend werden die Versuchsergebnisse der Experimente mit tatsächlichen
Röntgenbildern präsentiert und diskutiert.

Schlüsselwörter: Medizinische Bildverarbeitung, Multi-View, Prostatabiop-
sie, Volumsvisualisierung
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Chapter 1

Introduction

1.1 Motivation

According to analysis of epidemiological data in past decades such as de-
scribed in [Börgermann et al., 2007], the early detection of a prostate carci-
noma plays a role of increasing importance in medical healthcare, as curative
treatment is most likely to be successful for tumors at stages T1 and T2, i.e.,
the tumor is limited to the gland. Preventive screening involves measuring
of prostate specific antigen (PSA) values and/or digital rectal examination
(DRE).

Since PSA values are not directly related to tumor presence and can al-
ways be measured in blood serum of men - it may even increase noticeably
by mechanical influence such as riding a bicycle - and DRE results depend on
the performing doctor’s experience, the only method to affirm the diagnosis is
prostate punch biopsy either transrectal or perineal. Transrectal ultrasound
(TRUS) guided needle biopsies are current standard in prostate cancer di-
agnosis. It is common practice to take at least six samples – as shown in
Figure 1.1 –, but the number may vary according to prostate and estimated
tumor volume, as depicted in [Serfling et al., 2007].

During prostate biopsy a probe head and a core needle are inserted to
excise a tissue sample from the prostate for histological examination to find
out if cancer or other abnormal cells are present. Since this happens in vivo
with least possible intrusion, the surgeon has no direct visual opportunity to
get feedback on the needle’s exact position apart from the sonogram. Due to
this, the surgeon can not be certain about the exact position of the sample
that was taken. Thus the histologist may only know about the approximate
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(a) (b)

Figure 1.1: Schematic saggital (a) and axial (b) view of sextant
prostate biopsy including possible needle positions.
[Pühse and Semjonow, 2009]

location the tissue comes from and positive samples may only lead to roughly
estimated tumor location and extents.

To overcome this problem, during the biopsy several X-ray photographs
are taken with a C-arm device from different angles so that later on position
and orientation of the needle can be estimated very accurately. A good
approach to locating cancerous tissue would the be to determine a model of
the patient’s organs with a computed tomography as a preliminary stage to
the biopsy, fit this model to the reconstruction from the inter-operative X-
ray images [Maintz and Viergever, 1998], reconstruct the needle within this
model and visualize the result. This will permit the surgeon to quickly receive
feedback of the position of the needle and, if necessary, to adhere to a fixed
predefined pattern of taking a number of samples.

Recent work has already covered the registration of the pre-operative CT
volume dataset and inter-operative X-ray images [Gross, 2008]. In this work
an algorithm to reconstruct the needle’s position and orientation in a robust
way based upon several views as well as a method for visualization of the
result is presented.

1.2 Outline

The remainder of this work is organized as follows. In Section 2 we give a
short overview of similar work that has been done considering the task of
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detecting a needle and basics of the algorithms and principles of the methods
that we apply and software that is used.

The processing pipeline consists of the following stages: detecting the
needle ridge in each image, finding its tip, reconstructing this information in
3D-space and rejecting outliers that would lead to misdetection. The stages
of the algorithm are covered in Section 3 along with a short description of
the framework that this algorithm does fit in. In Section 4 a brief overview
of the visualization part is given and in Section 5 the results are discussed.

Finally, in Section 6 the main issues that have arisen during the experi-
ments are pointed out and suggestions for future work are made.
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Chapter 2

Related work

In this chapter a short overview of a few papers is given that have similar
focus as the presented approach. Additionally, since in this work several well
established methods are applied to accomplish the given task the principles
of these are described shortly.

2.1 Detection of a needle

A lot of research has been put recently into robotic steerable needle insertion
as this seems to be very promising to improve methods in minimal invasive
therapy and surgery in near future. Though most of the papers focus on
different aspects of this task, needle detection seems to play an increasingly
important role.

(a) (b)

Figure 2.1: Needle detection on an X-ray image by
[Glozman and Shoham, 2007]

In [Glozman and Shoham, 2007], an optically controlled flexible needle
steering device is presented, where needle detection in X-ray images plays an
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important role in the feedback loop of the steering control. It is based on
detecting a characteristic shape at the basis of the needle with a normalized
cross correlaton of a template image (see Figure 2.1b) and the X-ray image
(see Figure 2.1a). The needle tip itself is found afterwards by following the
low gradient area that starts at the detected basis feature. Knowing the
length of the needle, the shape detected can easily be verified. Additionally,
the shape of the needle is fitted by a polynomial that smoothes the line.
This approach seems sufficiently robust for testing environments, but as the
authors state it is subject to error due to noise, occlusion by beads and
low contrast of image intensities. Unfortunately, there are no results stated
regarding accuracy and error rates.

Figure 2.2: Needle segmentation described in [Ebrahimi et al., 2003]

In [Ebrahimi et al., 2003] a steering aid for flexible needles is developed
that is intended to operate as an image enhancer to the physician or fully
automatically. In contrast to the method described by Glozman and Shoham
[Glozman and Shoham, 2007], the image of the needle is taken on an ultra
sound basis, where the transducer has to be aligned to the image plane man-
ually once. The needle detection algorithm takes two points on the approxi-
mate needle axis manually determined as an initial value and then performs
the detection. The detection (see Figure 2.2) is based on noise filtering, gra-
dient based edge detection, Hough transform and polynomial fitting of the
needle. It is claimed that the needle detection is very robust, whereas the
detection of the needle tip is not very accurate due to the noise in ultrasound
images, e.g., speckles and signal drop-out, but there are no further results
mentioned.

However, to further improve needle tip detection it is suggested to actively
oscillate the tip with some higher frequency. This is not interfering with the
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steering of the needle and permits the ultra sound device to detect the source
of the frequency easier.

Figure 2.3: Laparoscopic instrument tracking for servoing a robotic camera
holder described in [Voros et al., 2006]
The small yellow dots represent response to edge detection, the
green line depicts the symmetry axis found and the cyan dot
marks the needle tip found.

In [Voros et al., 2006] a new approach to laparoscopic instrument tracking
for controlling a robotic camera holder is presented. Although it is based on
visual feedback and its purpose is not to reconstruct the needle but rather
give a rough estimation of the position of the tip in the image taken by an
endoscopic camera, the principles applied are similar to the approach of this
work.

Since the camera is calibrated and mounted on a calibrated camera holder,
the initialisation is based on stereo vision techniques to reconstruct the in-
sertion point of the instrument in three dimensional space. This is done by
moving the camera to two positions and manually labeling the point. Based
on this manual initialization, the point can be back projected to the image
plane and further processing can be done automatically.

The detection of the instrument is based on four steps. First, all possible
edges are computed by applying a simple gradient method constrained by the
manually labeled insertion point P which is not further mentioned. Due to
the high contrast between the instrument and the surrounding tissue – as can
be seen in Figure 2.3 – this largely yields points at the edge of the instrument.
Utilizing these points, the symmetry axis of the instrument is searched for
by applying a specialized Hough transform centered at P taking only points
attached to a satisfyingly oriented edge into account. After the symmetry
axis is found, the instrument contour is computed by taking into account
symmetry and by applying linear regression. Finally, thresholding the image
profile along the previously found symmetry axis into to two classes and
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determining the class associated to the instrument leads to the instrument
tip. This last step is done either by determining the longest zone for the first
image or by taking the color of the instrument previously detected during
the first evaluation into account.

Although the accuracy of the tip detection needed for servoing a camera
robot is stated to be not very high with ≈ 11 pixels, the results of the method
described above seem sufficiently accurate, as the error between the detected
and a manually labeled tip is smaller than this in 87% of the tested frames.
Detecting the axis of the instrument rarely fails – only one frame was reported
where this was the case –, but detecting the needle seems to be subject to
many error sources, such as specular reflections and low contrast along the
axis.

2.2 Visualization of medical data

Visualization of medical data is a very important area of research, since it
aids physicians in understanding, interpreting and communicating their data.
One of the most challenging tasks in this field is the visualization of volumet-
ric data, i.e., the projection of one or possibly several 3D datasets onto a 2D
image plane. Usually the dataset is given as scalar values or vectors defined
at the nodes on a regular grid. Typically, sources of volume datasets – as far
as the medical domain is concerned – are three dimensional imaging tech-
niques, e.g., Computer Tomography (CT) and Magnetic Resonance Imaging
(MRI), which differ by what characteristics are being scanned. Visualizing
a volume typically involves displaying significant parts such as skin, bones,
organs or tumourous tissue. There exists a variety of methods for this task
that can be categorized as either Surface-Fitting or Direct Volume Rendering
[Elvins, 1992].

Surface-Fitting (SF) methods such as the popular Marching Cubes intro-
duced in [Lorensen and Cline, 1987] and its further improved versions, e.g.,
[Cline et al., 1988, Nielson and Hamann, 1991, Lewiner et al., 2003], aim to
generate an object representation based on planar geometric primitives such
as polygons that mark the target object’s boundary. Geometry generated
by SF algorithms usually can be displayed fast and efficiently as there exist
numerous means by which the rendering of large numbers of primitives is
sped up and changes in viewing and lighting parameters are quickly passed
on to the observer. It is very well suited to display tissue interfaces, but it is
subject to problems due to incorrect handling of small features and branches.
Additionally, low-contrast objects may not be presented very well and mod-
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ifications of the parameters of SF methods require an update of the entire
representation by rerunning the method.

Direct Volume Rendering (DVR) methods differ from SF methods in
that they do not create an intermediate representation based on geometric
primitives but map volume elements (voxels) directly onto the image plane
[Engel et al., 2006]. There exist several techniques that can be categorized
in image-space (also referred to as backward mapping) and object-space or-
der (forward mapping) methods. With ray casting being an image order
method, for every pixel in the image plane a color and opacity is computed
by following an imaginary ray that is cast through the data starting at the
projection center and sampling voxel values for color and opacity along its
way. This straightforward approach results in both optically correctness and
very high quality [Levoy, 1988], but it is computationally expensive as the
data structure has to be traversed for every ray. Other DVR methods such
as Splatting [Westover, 1990] are object order methods that assemble voxel
values in object space and project the result back to image space. With
Splatting, every voxel is convoluted with a three dimensional reconstruction
filter, the so-called reconstruction kernel and accumulated onto the image
plane. An example of a very efficient combination of both paradigms is
Shear-Warp [Lacroute and Levoy, 1994]. Here, the object space is sheared in
order to make viewing rays perpendicular to an intermediate image plane,
i.e., all voxel values of a ray stack upon another. The application of DVR
methods involves the specification of color and opacity transfer functions that
map the values of the source volume to meaningful values, e.g., mapping the
bones-specific intensity of a CT to opaque white, blood to a less opaque red,
skin to transparent beige and so on.

However, perception of volumetric medical data on a 2D screen requires
additional depth cues, such as perspective, shading and the ability to investi-
gate the object from different angles. Since perspective results in a distorted
image and still images are of rather illustrative use, interactivity in terms
of manipulating view point or data representation is one of the key features
of visualization systems. Since DVR methods involve big computational ef-
fort, the emergence of inexpensive programmable graphics processing units
(GPUs) and efficiently programming the same resulted in very good fram-
erates such as described in [Krüger and Westermann, 2003]. An illustrative
description of DVR methods is given in [Pfister, 2004], more detailed infor-
mation can be found in [Engel et al., 2006] especially w.r.t. hardware accel-
eration.

The benefits of visualizing of volumetric data can be further improved by
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displaying additional information, e.g., combining CT and MRI data with
arbitrary geometric objects such as models of surgical instruments. There-
fore, efficient methods need to be applied to tackle this more comprehensive
task.

Recent work presented in [Brecheisen et al., 2008] came up with a GPU
accelerated ray casting solution with a depth peeling algorithm similiar to the
implementation described in [Everitt, 2001] that supports the task of cor-
rectly visualizing intersecting translucent objects by depth sorting polygonal
surfaces. But as it is tightly coupled to the conventional shader model there
exists a performance bottleneck in communication between the depth peeling
shader and the ray casting shader by storing data in global memory. Addi-
tionally, each depth layer requires a further ray casting pass resulting in an
increase in runtime as the number of intersecting objects increases.

Another very recent publication describes the utilization of the Compute
Unified Device Architecture (CUDA) [NVIDIA, 2008] for implementing GPU
accelerated ray casting [Kainz et al., 2009]. They implemented a volume ren-
dering pipeline based on polygon tiling wholly in software, which bypasses
the flaws inherent to the system’s architecture mentioned above. Geometry
is only processed once without the need of recurring alternation of depth
peeling and ray casting passes and data is passed on utilizing the GPU’s fast
shared memory, the access speed of which clearly surpasses global memory
access many times over.

The system described by [Kainz et al., 2009] supports the key features
described above, including the visualization of any selection of the following:

• multiple intersecting grid based volume datasets at diverse resolution,
spacing and orientation with arbitrary two-manifold boundaries or clip-
ping geometry and individual transfer function

• multiple possibly concave or translucent polygonal objects intersecting
any other object

• Constructive Solid Geometry (CSG) operations to classify intersecting
regions and partitioning volumes by polyhedral boundaries – including
application of another transfer function to each partition

Figure 2.4 shows an example scene and an illustrative representation of the
underlying scene graph. Volume data is stored in a volume atlas which is a
single large 3D texture, whereas cylinder and sphere geometry and volume
bounds are kept in common geometry storage. The difference between volume
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Figure 2.4: A scene graph example of the volume renderer described in
[Kainz et al., 2009]. It shows the nodes and their relationship
of a scene graph containing Boolean difference −, intersection ∩
and union ∪ CSG operations, polyhedral objects and different
transfer functions on two instances of the same volume.

10



RELATED WORK

and cylinder and the intersection of volume and sphere are computed and
different transfer functions are applied.

2.3 The Radon transform for line detection

Figure 2.5: The beamer-sensor system the Radon transform can be thought
of.

The Radon transform in general is defined as to integrate functions f
on n-dimensional Euclidean space Rn over all n− 1-dimensional hyperplanes
[Deans, 1983]. In our case, f , that can be considered a two dimensional
distribution, is projected onto all lines by determining all line integrals of f
on some domain D on R2.

f̂ =

∫
L

f(x, y)ds (2.1)

This can also be thought of rotating a parallel beam projector around a
problem domain and simultaneously registering the incoming beams at the
opposite site of the domain, as illustrated in Figure 2.5. A line L can be
denoted by the normal form

p = x cosφ+ y sinφ (2.2)

A straight line becomes a single point in this transformed space, so the prob-
lem of detecting a line can be further reduced to detecting a peak in two
dimensional parameter space, which can be found easily.
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2.4 Random Sample Consensus

For processing experimental data it is often very useful to fit a suitable model
to it by estimating the free parameters of the model and continue to work
with the latter. A basic attempt would be to fit a model to the data in
its entirety, e.g., by minimizing the sum of squared differences. Since this
approach is in general not robust to outliers that may arise due to noisy
data, it is very common to apply the Random Sample Consensus (RANSAC)
paradigm first introduced in [Fischler and Bolles, 1981]. The principle of the
approach is described in Algorithm 2.4.1. The application of it is based on

Algorithm 2.4.1 The RANSAC paradigm

Require:
a data model M with n free parameters
a set of data points P , such that |P | ≥ n
a threshold t
an error tolerance ε
a maximum number of iterations N
• (randomly) select a subset S of n data points from P
while numberofiteration < N do
• instantiate a model M based on S
• use the instantiated model M to determine the subset S∗

- the consensus set - of points in P that are within some error tolerance
ε of M .
if |S∗| > t then
• use S∗ to compute a new model M∗.

. . . . . .return . . .the . . . . .newly. . . . . . . . . . .instantiated . . . . .model. . . .M∗

end if
• randomly select a new subset S

end while
return best fitting M∗ or failure in case of no suitable consensus set was
found

three parameters: A threshold number t, an error tolerance ε and a maximum
number of iterations N . All of these depend on the model and have to be
determined ahead of execution.

The threshold number t is chosen such that the expected number of in-
liers in the data set P is met. It usually relates to a percentage of |P |.
Although it is stated to terminate after a consensus set consisting of more
than t elements was found returning M∗ – marked by the dotted underline

12
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in Algorithm 2.4.1 –, it would as well be possible to limit the execution only
by N and finally return the model M∗ fitting best.

In the majority of the cases the error tolerance ε – also referred to as
distance threshold – is specified according empirical study such that with a
probability α it is an inlier.

The number of iterations N is chosen, such that with a probability p
at least one set S is found that contains no outliers. Given β that denotes
the probability that N iterations in sequence result in failure and αn the
probability that a given set S results in a valid model, by rearranging it
follows that:

N =
log β

log (1− αn)
(2.3)

2.5 The Hessian matrix for ridge detection

The ridge detector we used is based on the Hessian matrix defined in (2.4), as
it is supposed to be very responsive at edges and blobs [Mikolajczyk et al., 2005].
The Hessian matrix is defined as:

H (x, y) =
(
∇T · ∇

)
I =

[
∂2I
∂x2

∂2I
∂xy

∂2I
∂yx

∂2I
∂y2

]
, (2.4)

where∇ denotes the operator
(
∂
∂x
, ∂
∂y

)
, Ixx and Iyy are the second derivatives

of the image intensity I at position (x, y) and Ixy = Iyx is the mixed derivative
in both directions. After performing the eigenvalue decomposition of the
Hessian matrix

λ1,2 =
1

2

[
(H11 + H22)±

√
4H12H21 + (H11 −H22)

2

]
, (2.5)

where |λ1| > |λ2| are the eigenvalues of H (x, y) and

H (x, y) vi = λivi, i ∈ {1, 2} , (2.6)

where v1,2 are the eigenvectors of H (x, y). Decomposition into eigenvalues
and eigenvectors give an indication about local curvature at a specific point.
Simply put, the eigenvector associated to the strongest eigenvalue tends to
point into the direction of the strongest change in data whereas the other
vector points into the direction of least change if there is a big difference
between λ1 and λ2. Eigenvalues themselves provide information about the
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strength of the change in the local neighborhood. Considering ridge detec-
tion, it can be stated, that if ∇Iv1 = 0, the point belongs to a ridge (λ < 0)
or a valley (λ > 0) [López et al., 1999].

In [Frangi et al., 1998] a new approach to vessel enhancement in medi-
cal images is introduced. Although not intended for straight ridge or line
enhancement, the principles behind the algorithm apply very well to these
simplified constraints while providing a very intuitive interpretation. It is
based on the local information gathered by the Hessian matrix for every sin-
gle point of I in 3D space, but can be transfered analogously to 2D space.
By geometrically interpreting a generalized form of (2.6), it can be stated
that a circular neighborhood centered at (x, y) will be mapped by H to an
ellipse, where eigenvectors define the axes and eigenvalues define the extents
associated. For describing a perfectly linear structure, the eigenvalues should
approximate |λ2| ≈ 0 and |λ1| � |λ2| – the sign indicates the polarity. The
measure defined by

RB =
|λ2|
|λ1|

(2.7)

directly relates to the area of the second order ellipse. With increasing |λ2|,
the ellipse becomes more and more circular or blob-like, whereas with in-
creasing |λ1| the ellipse collapses towards a line. If both values approxi-
mate zero, i.e., when the local neighborhood is homogeneous, the measure
rises towards infinity. This relation however does only take geometry in-
formation into account. To further distinguish between bright foreground
and dark background or vice versa, the Frobenius matrix norm is used by
[Frangi et al., 1998], which indicates the magnitude of the derivatives, which
will be low for background values, where only small contrast is given.

S = ||H||F =
√
λ21 + λ22 (2.8)

Combining (2.7) and (2.8) gives the vesselness function for two-dimensional
images,

ν (s) =

{
0 for λ1 > 0

exp
(
−RB

2

2β2

)(
1− exp

(
− S2

2γ2

))
(2.9)

where β and γ are thresholds that may be used to adjust the sensitivity to
RB and S, and the parameter s denotes the scale at which the function is
evaluated. By evaluating the norm at different scales, it can be ensured that
structure with approximately the size of the scale will be found. Eventually,
by maximum projection of ν a structure enhanced image is obtained that
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can be further processed:

ν (x, y) = max
smin≤s≤smax

ν (s) , (2.10)

where smin and smax should be chosen according to the expected size of the
structure to be found, e.g., the width of lines.

2.6 Reconstruction of a point to 3D-space

A very simple linear triangulation method would be to combine the known
coordinates of the points in the image planes xi = PiXi, which can also be
written as

xi × (PiXi) = 0, (2.11)

where Xi are the world coordinates of xi and Pi = (pi,1,pi,2,pi,3)
T are the

respective projection matrices. Reconstruction can be done by bringing the
above into a form of homogeneous equations AX = 0, where A is a compo-
sition of two Equations (2.11) for each image:

u1p
T
1,3 − pT1,1

v1p
T
1,3 − pT1,2

u2p
T
2,3 − pT2,1

v2p
T
2,3 − pT2,2

...
unp

T
n,3 − pTn,1

vnp
T
n,3 − pTn,2


X = 0, (2.12)

where ui and vi are the elements of xi.

However, it is not possible to reconstruct the world coordinates exactly
from several views, but rather it is necessary to estimate them in an opti-
mization function that minimizes some cost function, as the rays that can
be backprojected from the image through their respective camera centers are
skew and the system of Equations (2.12) is overdetermined.

As stated in [Hartley and Zisserman, 2004] this kind of reconstructional
problems can be treated as finding a least-squares solution to Equation (2.12),
i.e. finding X that minimizes AX subject to ‖X‖ = 1
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Chapter 3

Processing pipeline

Figure 3.1: A schematic overview of the processing pipeline with its stages
and its interaction with the entire application.

The chosen approach can be partitioned into several smaller stages, which
can be treated as individual modules as depicted in Figure 3.1. There are a
few components developed by others that perform calculations in advance. A
short overview about them is given in Section 3.1. The implemented stages
are detailed in their respective subsections. In Section 3.2 preprocessing of
images is described including noise reduction and masking of the images.
The approach how the line the needle is aligned to is found is presented in
Section 3.3, followed by a description of how the tip is found along this line
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in Section 3.4. Combining this data to find its representation in world coor-
dinates is outlined in Section 3.5. Finally, in Section 3.6 a short description
is given of the idea of how to filter out wrong results.

3.1 Application Framework

As already stated, this module is part of a more complex application supposed
to assist the surgeon during biopsy of the prostate, i.e., exciting tissue for
histological examination, the ablation of cancerous tissue or the implantation
of low radiating beads that would destroy the former. The knowledge of the
exact location of where the needle intersected with the prostate gland after
taking a sample instead of a coarse description might prove very useful to
further treatment planning.

In [Kainz et al., 2008] a new approach is considered to take several im-
ages with a calibrated mobile C-arm, each of which with maximal mechan-
ical offset – ±45◦ due to limitations in operational range during prostate
biopsies – but minimal femoral influence. For the purpose of reconstruct-
ing camera positions and orientations, a special target with small globes
attached in a specific pattern visible to X-ray imaging has been designed by
[Kainz et al., 2008] and used for reconstruction of the camera orientation and
position relative to the patient. Ahead of the operation, calibration of the
X-ray device is performed by taking a sufficiently large number of images of
the defined structure from different view points and computing the intrin-
sic camera parameters thereafter, i.e., the principal point coordinates, focal
length and distortion coefficients. During the biopsy, the target is placed un-
derneath the patient and images are taken. After undistortion and filtering,
the image positions of the globes are retrieved and used to estimate the ex-
trinsic camera parameters, i.e., rotation and translation in three dimensional
space.

In [Gross, 2008] a fast implementation of a rigid body intensity based
2D/3D registration was introduced, that by utilizing the power of the GPU
computes the parameters of a Euclidean transform that maps a preopera-
tive CT volume from model space to the operating room space defined by
X-ray images taken during intervention. This is done by generating a digi-
tally reconstructed radiograph (DRR), measuring the similarity to the X-ray
images and optimizing the result iteratively until convergence. Eventually,
the knowledge of this rigid transform facilitates intraoperative visualization of
patient data acquired ahead of operation such as CT or MR images combined
with intervention-based data such as the location of surgical instruments.
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Visualization and interaction methods should finally allow the surgeon
to easily access the desired information. The Coin3D1 based visualization
framework described in Section 2.2 is used for visualization of the resulting
data.

3.2 Filtering and masking images

As shown in Figure 3.1, there is work done a priori [Kainz et al., 2008], the
results of which ease the task of detecting the needle in the image, since the
cameras are already calibrated and the images are undistorted. This plays a
very important role, as X-ray images are subject to a very strong pincushion
distortion. Without undistortion the needle located in the image would be
bent depending on the location within the image. Furthermore, the positions
of the small globes are computed during camera pose estimation in an earlier
step, so this information can be used to mask out the small beads.

Due to the fact that all images during a biopsy are taken by the same
machine, the geometry of the viewport showing X-ray data along with meta
data of the patient, which is returned by the image acquisition device, always
stays the same. This implies that a constant mask can be used to mask out
the additional information that is written to the image, such as the name of
the patient and others, so that the focus of all further processing lies on the
actual image area, which is circular in this case.

However, prior to processing the data, a median filter is applied to the
images, since X-ray image sources tend to be subject to so called salt and
pepper noise, i.e., randomly occuring extreme value speckles, and to com-
pute second order derivatives later on which are very sensitive to speckles in
images, rank ordered filtering is a very popular approach to remove such.

3.3 Detecting the line the needle lies on

The core needle which is used to extract the tissue samples is a hollow needle
which contains the tissue sample after a successful shot. It can be considered
an elongated rigid object with a small outer diameter of 1.27mm in case of a
18–gauge needle, which is commonly used for prostate biopsies. When view-
ing the image it can be considered a thick line, so the problem of detecting
the needle orientation in the image is reduced to detecting a line in the image.

1A free scene graph library under GPL - http://www.coin3d.org
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In [Deans, 1983] it is stated, that the Radon transform is strongly related
to the Hough transform, which is commonly used to detect lines in images,
as described in Section 2.3. But applying the Radon transform on the pre-
processed grey value image will most probably not end up in a single point
in parameter space, but rather in very unpredictable results, since the back-
ground will also contribute with a sine function for every point in the image.
Therefore, the image will not be used directly for the Radon transform but
it will be transformed to a different representation to enhance discrimination
of lines against inhomogeneous background.

(a) (b)

Figure 3.2: Eigenvalues |λ1| (a) and |λ2| (b) of the computed tensorfield at
scale σ = 2.5. Values are coded by a jet color map, i.e., a blue
(lowest value) to red (highest) spectrum.

As shown in Figure 3.2, the needle is a very prominent feature in the image
of the stronger eigenvalues – but so are the small globes and the probehead.
By applying Frangi’s norm ν at different scales on the eigenvalues of the
Hessian transform and integrating the results as described in Section 2.5 a
high distinction between the needle and all other objects within the image
can be obtained. What remains is the needle and some very low value ridges
of the patient’s bones and the probehead, as shown in Figure 3.3. Different
scales are essential, since the elongated rigid object includes image features of
variable width. The needle guidance – showing mainly high (red) response
in Figure 3.3 – is obviously much thicker than the needle itself and the thin
feature slightly below the tip – the notch where the tissue specimen is cut
into – gives high response at a lower scale. Thresholding the objectness
norm ν described in Section 2.5 to suppress all values below 30% of the
range of ν and filtering out the response of the small globes by applying
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Figure 3.3: Result after applying Frangi’s norm

the mask generated during preprocessing leaves an almost clutter free image.
This is used along with the conditions for ridge detection defined above as
input to the Radon transform. The result (see Figure 3.4) is then searched
for local peaks after non-maximum suppression. The strongest of which is
most likely to be the ridge of the needle. After the initial orientation of
the needle is found, the image is rotated to align the needle orientation to
the horizontal axis and cropped to small height centered at the needle axis.
Afterwards, every column of this cropped image is examined for local maxima
and presence of masked out area. If the latter is detected, the whole column
is discarded, whereas if only one local maximum is detected along the profile,
the position is considered a needle ridge support point and saved to a list for
further use.

After having assembled all support points in the list, the line best fitting
to these points is determined by applying the RANSAC paradigm described
in Section 2.4. By choosing the error tolerance ε to not exceed one pixel
and setting the maximum number of iterations N to 17 which represents the
number of samples required to find at least one set that contains no outliers
with a probability of 99% while assuming that half the data can be considered
outliers [Hartley and Zisserman, 2004] and setting the threshold number t to
approximately a tenth of the smaller image dimension, most probably the
best consensus set is found given the support points list described above.

To take the possibility into account that the above step results in a slightly
differently oriented ridge caused by, for example, the initial window for ex-
amining the local ridge maxima only partly contained values of the needle,
the steps above describing the assembly and the fitting of the ridge support
points are repeated until convergence, i.e., the line fitting results were nearly
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detail:

(a) (b)

Figure 3.4: (a) shows the Radon transform of an enhanced image. (b) shows
the local neighbourhood of the maximum peak. Values are color
coded as in Figure 3.2

the same, or a maximum iteration number is reached.

3.4 Detecting the needle’s tip

After finding the line that is most probably aligned to the needle, the posi-
tion of the tip of the needle is searched for. All support points that where
identified during the previous step are taken into account. Additional sup-
port points are determined by examining the profile of ridge enhanced values
perpendicular to the ridge. Within a small window the maximum value is
looked up and its position is inserted to the ridge support point list. If no
maximum can be found due to homogenity of the image, the support point
under test is discarded. Of course, the region of interest is restricted by the
iris mask defined earlier, so that the algorithm would not respond to the val-
ues outside. By contrast with Section 3.3, the mask defined for filtering out
the globes is not applied, as the needle tip could have wrongly be classified
as globe there or the tip could be in the vicinity of such a globe. Eventually,
by defining the upmost support point as reference, a one dimensional cross
section of the needle ridge f (x) is obtained (see blue curve in Figure 3.5)
depending on the distance x from the reference point.
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Since after the tip there should be a significant step among the values
registered, the needle’s tip recognition is based on these values. It is now
supposed that the step, that marks the end of the needle provides a very steep
slope with a very low value at the end. Since we would not want to threshold
these values as the variations of the data are too high and occassional peaks
due to high response at the edges of the globes used for pose reconstruction,
we look for the steepest change in the mean level of the assembled ridge
responses. This is done by fitting a unit step function to every point in the
data and computing the sum of squared differences as an error measure. The
function to fit is defined as

g (x) = α + βu (x− γ) , (3.1)

where α and β denote the linear parameters, i.e., offset and height of the step
function, and u (x) denotes the unit step function defined as

u (x) =

{
1, if x ≥ 0

0, if x < 0
. (3.2)

The parameters α and β of g (x) can be derived by finding the least
squares fit of a simple matrix A consisting of a column of ones – representing
the constant offset – and a column of zeros and ones – representing the step
function – to the values of f (x) by utilizing the singular value decomposition
(SVD). Best fitting parameters α and β are estimated ahead of the final error
estimation for every possible value of γ to obtain the maximum parameter
range and further on α and β are set to their minimum and maximum,
respectively.

Now the error measure to be minimized is defined as

e (γ) =
∑
x

(f (x)− g (x))2 (3.3)

subject to the non-linear parameter γ only. By evaluation of e (γ) for every
possible γ that is restricted to the number of distances x from the reference
point, the global minimum of the error can be found and its associated γ can
be translated to the final image coordinates of the tip.

x =

(
u
v

)
(3.4)
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(a)

(b)

Figure 3.5: Needle tip detection based on assembled ridge–enhanced values
f (blue) at the needle ridge, fitted step function (black) and error
function (green).
(a) shows the basis of Figure 5.1a, where the smaller lobe to the
left of the step indicates the presence of a small globe close to
the tip in the image.
(b) shows the basis of Figure 5.1g, where detection of the correct
tip at distance ≈ 70 has failed – possibly due to offset being too
high. This is the worst result obtained.
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3.5 3D-Reconstruction of the needle

After having performed the previous steps to the images it is now possible
to reconstruct the needle (i.e., estimating the position and orientation of the
needle in three dimensional space). As already mentioned earlier, this work
is part of a framework and a lot of work is done and information is gathered
before needle detection is started. The camera calibration matrix and the
external camera matrix (comprising the rotation matrix and the translation
vector) are available from [Kainz et al., 2008] and used for reconstruction.
Of course, this implies the projection matrices that can be computed out of
the internal and external camera matrices are exact, but as their mean re-
projection error implies very high accuracy, it seems sufficient to consider the
cause of errors to be the coordinates obtained by the previous step described
in Section 3.4.

3.5.1 Reconstruction of the needle tip in 3D-space

The solution to this problem is acquired applying the Direct Linear Trans-
form (DLT) – see Algorithm 3.5.1 for the way a single point is reconstructed.
[Hartley and Zisserman, 2004] present a procedure for the general case of
reconstruction of a set of point correspondences in each image, but this al-
gorithm describes a slighty modified form, since there only is a single point
in each image to be reconstructed.

3.5.2 Reconstruction of the needle orientation in 3D-
space

In Section 3.3, a fairly robust solution to detecting the line that supports
the needle is presented. In this Section, another reconstruction method is
described that deals with how the orientation of the needle can be recovered.

For the reconstruction of a line two points need to be known on that line in
every image. If these point pairs happen to correspond to every other pair of
the other images, they can be used to easily recover the line by reconstruction
of each point with the method described above and compute the line vector
with basic vector algebra.

After the previous step, one point in every image and its reconstructed
3D-point are given so far, but finding a second point could turn out difficult.
By observing that the guidance of the needle is thicker than the needle,
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Algorithm 3.5.1 Direct Linear Transform triangulation for one point

Require:
image coordinates

{
x1 = (u1v1)

T , . . . ,xn = (unvn)T
}

,
projection matrices {P1, . . . , Pn}
for i = 1, .., n do
• compute the point normalizing transform matrices

Ti =

 1 0 −ui
0 1 −vi
0 0 1


• transform and normalize the projection matrices

P̃i = TPi, P̂i = P̃i√
tr(P̃T

i P̃i)

end for
• stack each normalized projection matrix’ first and second row vector in
a 2n× 4-dimensional matrix

A = −(p̂1,1p̂1,2 . . . p̂n,1p̂n,2)
T

• compute the singular value decomposition of A

A = UDVT

return with D = diag(d1 . . . dn) and di ≥ di+1

X = V (0 . . . 1)T
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detecting the obviously characteristic position of where the needle leaves the
guidance leads to several other point correspondences that would be sufficient
for the task.

However, this approach seems far too vulnerable to misdetections, and
there exists an easier way, which is less prone to error due to introduction of
additional detection steps. Since we only need to reconstruct the orientation
of the needle, as the tip position has already been computed, the problem
can be stated as to find the intersection of planes that result in a line, which
is always the case if the planes are not parallel or coincide.

Basically, if the planes are given in Hessian normal form,

n · x = −p, (3.5)

where n is the unit normal vector and p is a constant defining the distance
of the plane from origin, for the case of two intersecting planes, the line of
intersection has to be normal to either plane normal, so that the direction of
this line can be computed by the cross product

l = n1 × n2, (3.6)

As the planes defined by the lines in three or more images are not likely to
form a sheaf of planes, i.e., a set of planes having the same line in common,
due to deficiency of numerical precision and measurement errors in image
based line detection and camera pose reconstruction, a general approach can
be formulated as

A =


nT1
nT2
...

nTm

 , (3.7)

where the null space of A gives the optimal orientation of the intersection line
in a least-squares sense. Applying these relations to the problem of finding
the needle orientation leads to the following procedure, again utilizing the
SVD to compute the null space of A:

• Extend the calibration matrix to a homogeneous 4× 4-matrix and re-
compute the projection matrix - which will now be invertible - for each
image.

• Compute the camera center for each image.
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• Compute the 3D-coordinates for the two points of the needle’s line
crossing the border of their respective image with the inverted projec-
tion matrix. An arbitrary z-value can be chosen.

• Compute the normals of the planes that are spanned by these two
position vectors and the camera projection center.

• Stack the normals into a new matrix A and compute the SVD A =
UDVT of this matrix.

• The column vector v of V that corresponds to the smallest eigenvalue
of matrix D will be the best fit to the orientation of intersection of any
two planes w.r.t. geometrical error.

3.6 Improving robustness

After reconstructing the three dimensional point of the needle tip, it is easy
to project this point back onto the images so that it is possible to compute
the distance between the initially detected needle tip in an image and the
back projected needle tip. If only images with this distance below a previ-
ously specified upper limit are passed on and groups of images, where this
value is outside on at least one image, are rejected this makes the procedure
very robust against outliers. If needle detection fails at any stage, it does
not seem very likely that it fails on all three images in a similar way, i.e.,
accidentally detecting an entirely different correspondence than the needle
tip. Furthermore, this did not happen during the experiments at any time,
so this assumption is considered safe.
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Visualization

For visualization purposes, the renderer described in Section 2.2 was used.
To further ease the usage of the latter, a small user interface was created that
encapsulates the back-end implementation of the needle detection by provid-
ing convenient means of selecting the images used for needle reconstruction,
processing the data of the back-end and creation of an Open Inventor compli-
ant output file. There are three use cases that are considered and described
in their subsequent sections. In Section 4.1, a very simple visualization exam-
ple is given, showing the CT volume and six geometric models representing
the biopsy position and orientation as reconstructed. In Section 4.2 a more
sophisticated approach is shown, where the volume and its intersection with
each respective biopsy core location is shown. The original CT volume’s
dimensions shown in the following section was scanned with a resolution of
512× 512× 278 voxels with 0.6875mm× 0.6875mm× 1mm spacing in every
direction, respectively. This was resampled for visualiztion to 256×256×256
voxels to obtain framerates of approximately 3− 5 frames per second.

Unfortunately, visualizing the prostate gland did not work very well due
to several reasons. This task would have required either segmentation of CT
data – which was far beyond the scope of this work –, MR or contrast en-
hanced images – both were not provided – to apply suitable transfer functions
to.
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4.1 Visualization of needle models

The first visualization type is supposed to give qualitative feedback of the
results that where obtained by applying the processing pipeline described in
Section 3,

X =

 x1
x2
x3

 , v =

 v1
v2
v3

 , (4.1)

where X is the reconstructed point and v is the reconstructed orientation of
the line aligned to the needle in 3D space. As the model of the biopsy needle
is aligned to the x-Axis with its tip pointing to 0, the rotation of the model
given by Euler axis u and angle θ can easily be obtained by computing the
cross product and the dot product

u = ex × v, θ = cos−1 (ex · v) (4.2)

By applying Rodrigues’ rotation formula a rotation matrix – also known
as direct cosine matrix – representing the rotation in matrix form can be
obtained:

R = I + u sin (θ) + u · uT (1− cos (θ)) , (4.3)

where I denotes the identity matrix. Incorporating the translation of X and
the rotation of R into a homogeneous transformation matrix A

A =

(
R X
0 1

)
, (4.4)

facilitates further processing in that any combination with further transfor-
mation matrices can be constituted by simple multiplication.

The results of 2D/3D registration as detailed in [Gross, 2008] include

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 , Rx =


1 0 0 0
0 cos(θx) sin(θx) 0
0 − sin(θx) cos(θx) 0
0 0 0 1

 ,

Ry =


cos(θy) 0 − sin(θy) 0

0 1 0 0
sin(θy) 0 cos(θy) 0

0 0 0 1

 , Rz =


cos(θz) sin(θz) 0 0
− sin(θz) cos(θz) 0 0

0 0 1 0
0 0 0 1

 ,

R = RzRyRx, (4.5)
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Figure 4.1: Visualization of reconstructed position and orientation of six
biopsy sampels (Patient A).
The image shows the patient’s volume – located at the pelvis –
smoothed by a 5×5×5-median filter with a transfer function re-
stricted to the bone’s values applied to and needle models located
at the biopsy samples’ positions.

where T refers to translation and R denotes the rotations around x-, y- and
z-axis of the volume’s coordinate system from model space to operating room
space defined by the camera pose estimation in [Kainz et al., 2008]. Incor-
porating a translation matrix C to center the volume ahead of the rotation
and its inverse C−1 prior to translation is commonly referred to as model
transform, by which any homogeneous position vector pmodel ∈ R4 in model
coordinates is mapped to another homogeneous position vector pworld ∈ R4

in world coordinates:

pworld = TC−1RCpmodel = Mpmodel, (4.6)

where M denotes the model transform matrix.

By taking the inverse of M, the world coordinate system is mapped to the
model space of the CT volume. Combining the previously obtained transform
of the needle model A with M−1 gives the transform that maps the needle
model into the coordinate space of the volume. Figure 4.1 shows the volume
obtained by a preceeding CT scan and six biopsy needle models that are
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Figure 4.2: Visualization of intersection with CT volume (Patient A).
This image shows the same volume as in Figure 4.1 – without
smoothing – and biopsy core data located at the biopsy samples’
positions. Speckles are caused by high value speckle noise in the
dataset.

oriented and positioned as implied by the results of needle detection. As
already mentioned in Section 2.2, every geometrical object can have its own
material properties rendered appropriately. As the reconstruction step does
not give hints about the rotation of the needle around its axis, all models
have their longest extent of the bevel located at the anterior side, i.e., it is
pointing towards the head.

4.2 Visualization of samples

In Figure 4.2 another use case is shown, where the volume is intersected with
small cylinders, that represent the biopsy cores. Again, the same geometrical
transformations apply as described in the previous section. It shows the CT
volume of patient A’s pelvis with focus on bone tissue. Each displayed sample
core is an intersection of a properly translated and oriented cylinder of 2mm
radius with the CT data. With the simple approach of loading the volume
for each object, the total memory usage of the graphics card would exceed
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any reasonable dimension, but as the renderer is capable of reusing the same
volume with respect to different region bounding geometry, this was not an
issue.

Whereas the models described in Section 4.1 each have their own mate-
rials, in this case every core object as well as the global volume have their
own transfer function assigned to. This enables the operator to interactively
change the representation of the data on inspection according to personal
preference and optimal output of suspicious tissue properties. The transfer
functions of the cylinders in Figure 4.2 are set to cover the range of values
in the vicinity of the prostate, which are very low due to the soft tissue
properties w.r.t. image acquisition type. In addition, the lowest values were
assigned similar colors as in Figure 4.1 to improve visual discernability of the
needle cores and facilitate comparision between the figures, whereas higher
values gradually map to brighter color with white highlighting the highest
values.

Although the ventral section of the cores displayed,i.e., the rightmost part
in Figure 4.2, approximately reflect the extracted biopsy core, it is worth
noting that the intersected data displayed further away from the tip does not
relate to any extracted specimen, as the soft tissue close to the biopsy gun is
subject to mechanical deformation, which is not simulated in the preoperative
volume data.
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Experimental results

The data available to test consisted of 90 images of three patients with shots
from three different views. To evaluate the errors made the tip of the needle
has been marked by hand on every image. The three available coordinates
are shown in Figure 5.1. Images (a)–(c) of this Figure show the best result
obtained (Patient B), (d)–(f) show a slightly worse result (Patient A) and (g)–
(i) show the worst result (Patient C) of the dataset w.r.t. the mean squared
error between detected tip and labeled tip. For evaluating the accuracy it is
interesting to look at the distances between these coordinates in the images,
as the ground truth is not available in 3D-coordinates. Following the initial
needle tip detection, the distance can be computed between the detected
coordinate x̂ and the labeled coordinate x. To evaluate the results of the
reconstructional step back projection of the reconstructed needle tip from
3D-space coordinate X to the respective image coordinates ˆ̂x is performed
and the distance to the labeled coordinate is computed again. As already
mentioned, the distance between x̂ and ˆ̂x is crucial to the robustness of the
algorithm. It is used as an estimate of the confidence in the reconstructed
data.

In Table 5.1 the underlying values are already restricted to results that
passed outlier rejection. Although the maximum deviation of the recon-
structed tip is very high, 68.35% of the reconstructed data lies within five
pixels of the needle tip, which is roughly the thickness of the needle, which
is most probably accurate enough for application. In Figure 5.2 the results
of the needle tip detection with respect to the back projection classification
of the needle tip error is shown. Although the worst results are rejected on
basis of the distance between the back projected needle tip and the automat-
ically detected tip, such as the result shown in Figures 5.1g and 3.5b, there
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.1: The needle tip labeled, detected and back projected from 3D
reconstruction. The tip positions are colored green for manu-
ally labeled, yellow for image based detection and red for back
projected, the detected needle ridge is represented by the thin
white dashed line. Images (a)–(f) show the local pixel intensities
centered at the manually labeled tip with a radius of 20 pixels,
whereas (g)–(i) show a 100 × 100 pixels wide area to cover the
result.
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d(x, x̂) d(x, ˆ̂x) d(x̂, ˆ̂x)
Patient A – 24 images
minimum 0.480 0.230 0.191
maximum 7.289 14.538 7.931
mean 2.476 3.907 3.448
std deviation 1.734 2.750 1.777
Patient B – 33 images
minimum 0.618 1.160 0.845
maximum 10.717 8.150 7.068
mean 2.450 3.456 2.983
std deviation 2.082 1.935 1.800
Patient C – 33 images
minimum 0.832 0.613 0.778
maximum 23.295 21.180 8.181
mean 4.531 6.407 3.838
std deviation 4.073 4.051 2.022

Entire dataset – 90 images
minimum 0.480 0.613 0.191
maximum 23.295 21.180 8.181
mean 3.248 4.702 3.437
std deviation 3.073 3.280 1.893

Table 5.1: Distances between hand labeled needle tip and image based de-
tection in the first column and the back projection of the recon-
structed needle tip in the second. The third column shows the
difference between first detection and back projection. All values
are measured in pixels.

are many good results discarded indicated by the red bars at d(x, x̂) ≈ 2 due
to their dependency on each other. If one of the detected tips completely
fails, as indicated in Figure 5.1 in the bottom row, all the other results are
discarded as well, since the wrongly detected tip results in a far off back
projection.

On the other hand, there are a few bad results that are not discarded due
to the reconstruction resulting in a back projection closer to the detected
tips than the range specified. This behaviour may arise by reason of the
fitting behaviour of the singular value decomposition. In this situation this
can be thought of a kind of weighted mean of the points in the images. While
the detected points of similar quality drag the back projection towards their
position, the outlier counteracts this effect in proportion to the amount of
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Figure 5.2: Distribution of the absolute detection error.
Green bars represent the number of positive detection results –
Red bars represent the number of negative detection results,
w.r.t. back projection error. Values higher than the limits are
clamped to the maximum value.

its offset compared to the other points. This results in the back projection
being closer to the mass of the detected points and a single bad detection
has to be very far off to be correctly classified by the reprojection step.

In Figure 5.3 all results of the needle tip detection step are visualized at
their position with respect to the manually labeled tip oriented to the up-
right position. It is clearly visible that the main proportion of the correctly
classified tips can be found to the right of the manually labeled tip. This is
assumed to be due to the bevel of the needle tip which cannot be clearly dis-
tinguished from the background tissue of the X-ray image during the course
of manually labeling the needle tips.

As shown in Figure 5.4, it is possible, that the ultra sonic device overlaps
the needle in a way that makes needle detection and thus needle reconstruc-
tion impossible. At the moment this is not handled separately and simply
rejected.
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Figure 5.3: Detected needle tips compared to manually labeled ones.
The blue crosses show the detected needle tips with positive back
projection, the red crosses show the detected needle tips that
were negatively classified. The green circle depicts the manu-
ally labelled needle tip position. The black lines indicate the
needle boundaries in the vicinity of the tip. Only the result of
Figure 5.1g was omitted for scale reasons.

US device
Needle

Figure 5.4: Needle occluded by the ultrasonic device
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Chapter 6

Conclusions

This work presents the design and implementation of the processing pipeline
of a needle detection and reconstruction system intended to be used as one
component in a framework for computer aided biopsy and visualization of the
results incorporating preoperative volumetric imaging data. It takes several
established techniques to accomplish this task, such as the rank order filtering
to preprocess X-ray data, the Radon transform to detect line features in the
image and the robust fitting of line parameters to support points by applying
the RANSAC paradigm. The parts involved to reconstruct the needle’s tip
and orientation are well known nowadays and a lot of research has already
been put into it. Along with the results it can be said that the methods are
very reliable and easy to use. Applying Frangi’s norm to enhance the images
for ridge and tip detection turned out to be very intuitive as well as accurate
for the given task.

Although experimental results show acceptable accuracy in reconstruction
and robustness to noise and clutter in the image there are still many problems
to solve, such as further improvements to the detection of the needle tip so
that the reconstruction can be done with higher accuracy or detecting special
situations such as the occlusion of the needle by the ultrasonic probe head.

Different optimization strategies may lead to a more accurate tip de-
tection, incorporating additional data from the ultrasound device which is
already available during the biopsy or tracking the biopsy gun may further
improve the detection and reconstruction by providing additional initializa-
tion values, other views and pose parameters. Applying different paradigms
of detecting the needle, such as shape based detection may lead to very good
results, as well, although this may result in much longer evaluation times.

However, the system is supposed to be running in a closed loop, which
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causes the results to be available very shortly after taking the X-rays, so
it would be possible to take another set of X-rays if the results are not
convincing due to a lack of accuracy because of the needle tip not being
found during the tip detection.

Since the result may suffer from inaccuracies caused by previous stages,
such as camera calibration and pose reconstruction errors, another approach
would be to reconstruct the needle directly from ultrasound devices and reg-
ister a three dimensional sonogram to the preoperative data.

Visualization of the biopsy results offers even more room for improve-
ments. Clearly, visualizing the histology result of positive samples along with
a probability map of the tumor localization according to a tumor location
probability atlas would be the best result to be received. Furthermore, this
kind of visualization could include a multimodal visualization of the prostate,
its context and the reconstruction results. Based upon this, treatment plan-
ning could be integrated into visualization by modeling and incorporating
treatment results, such as hyperthermal temperature distribution or dose
density of brachytherapy, which is a form of internal radiotherapy.
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