
Michael Moritsch, BSc

Verification of a combined passive HF/UHF
RFID Tag with Universal Verification

Methodology

Master Thesis

MA 719

Graz University of Technology

Institute of Electronics
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Bösch

Supervisor: Ass.-Prof. Dipl.-Ing. Dr.techn. Peter Söser
External Supervisor: Dipl.-Ing. Johannes Schweighofer

Graz, August 2012

Abstract

For every digital design verification is very important. It takes a major part of the
effort and additionally the costs to fix a bug grows exponentially the further the
product gets in the process. Therefore it is important to find failures as early as
possible, best in the RTL-simulation. The Comprehensive Transponder System (CTS)
called RFID platform needs a new Test Bench which allows exhaustive constraint-
random driven verification. The Universal Verification Methodology (UVM) is used
to implement the required verification environment. UVM is a methodology that
allows the development of reusable constraint-random driven Test Benches. Basically
it is a class library implemented in SystemVerilog, a enhancement to Verilog. The
result is a Test Bench that allows the automatic verification of the CTS over several
interfaces. The stimuli are generated randomly and functional coverage is collected
to control what has been verified. The new Test Bench allows a more complete and
easier verification of the device under test.

iii

Kurzfassung

Für jedes digitale Design ist die Verifikation von großer Bedeutung. Sie benötigt
einen Großteil des Aufwandes und außerdem steigen die Kosten um einen Feh-
ler auszubessern exponentiell umso weiter das Produkt in seiner Entwicklung fort-
geschritten ist. Deshalb ist es wichtig, Fehler so früh wie möglich zu erkennen,
am besten schon in der RTL-Simulation. Die Comprehensive Transponder System
(CTS) genannte RFID Plattform benötigt eine neue Test Bench, die eine eingehende
Überprüfung mit eingeschränkt zufälligen Test Vektoren ermöglicht. Die Universal
Verification Methodology (UVM) wurde benutzt um die erforderliche Verifikations-
umgebung zu implementieren. UVM ist eine Methodik, die die Entwicklung einer
wiederverwendbaren Test Bench ermöglicht. Grundsätzlich handelt es sich dabei
um eine Klassen-Bibliothek, welche in SystemVerilog implementiert ist. SystemVe-
rilog ist eine Erweiterung von Verilog. Das Ergebnis ist eine Test Bench die die
automatische Überprüfung des CTS über mehrere Schnittstellen erlaubt. Die Test-
vektoren werden zufällig generiert und zusätzlich wird die “functional coverage”
gesammelt. Diese ermöglicht es zu kontrollieren, was schon überprüft wurde. In
Summe ermöglicht die neue Test-Umgebung eine vollständigere und einfachere Ve-
rifikation des Prüfobjektes.

iv

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, an-
dere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten
Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht
habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008;
Genehmigung des Senates am 1.12.2008

v

Acknowledgement

First of all I would like to thank Ass.-Prof. Dipl.-Ing. Dr.techn. Peter Söser, member
of Institute of Electronics at the Graz University of Technology, for supervising my
thesis.

I would also like to thank Dipl.-Ing. Gerald Hohlweg, head of the Contactless and
Radio Frequency Exploration department (CRE) of Infineon Technologies Austria
AG, for the opportunity to write my thesis in a practical environment.

Special thanks to my supervisor at Infineon Austria in Graz, Dipl.-Ing. Johannes
Schweighofer for his great support.

Furthermore, I would like to thank my colleagues at CRE for the positive and cre-
ative work atmosphere and for plenty of amusing moments.

Last but not least I would like to express my gratitude to my parents Margit and
Peter Moritsch and my sister Petra for supporting me during my whole life.

vi

Contents

1 Introduction 1
1.1 Chapter Overview . 2

2 RFID Systems 3
2.1 EPC Class-1 Generation-2 UHF . 3

2.1.1 Interrogator-to-Tag communications 4

2.1.2 Tag-to-Interrogator communications 5

2.1.3 Tag memory . 6

2.1.4 Link timing . 7

2.1.5 Communication procedure . 9

2.1.6 Commands . 11

2.2 EPC Class-1 HF . 13

3 Serial Peripheral Interface Bus (SPI) 15
3.1 Specifications . 15

3.2 Data Format . 16

3.3 Transfer Modes . 17

4 SystemVerilog 21
4.1 New data types . 21

4.2 Arrays . 22

4.2.1 Packed and unpacked arrays . 22

4.2.2 Dynamic arrays . 23

4.2.3 Associative arrays . 24

4.3 Processes . 24

4.4 Interface . 26

4.5 Classes . 26

4.6 Constrained random generation . 29

4.6.1 Constraint blocks . 29

4.6.2 Randomization Methods . 32

4.7 Coverage . 33

5 Universal Verification Methodology (UVM) 35
5.1 Concept . 35

vii

Contents

5.2 UVM Phases . 35

5.3 Components . 37

5.3.1 Factory . 37

5.3.2 Configuration database . 38

5.3.3 Driver . 39

5.3.4 Monitor . 40

5.3.5 Sequencer . 42

5.3.6 Agent . 42

5.3.7 Scoreboard . 43

5.3.8 Coverage monitor . 43

5.3.9 Environment . 44

5.3.10 Sequences . 45

5.3.11 Test . 46

5.3.12 Top module . 47

6 Device Under Test (DUT) 49

7 Test Bench 51
7.1 Overview . 51

7.2 EPC Agent . 52

7.2.1 Commands . 53

7.2.2 Driver . 57

7.2.3 Monitor . 59

7.3 SPI Agent . 61

7.3.1 Commands . 62

7.3.2 Driver . 63

7.3.3 Monitor . 64

7.4 Scoreboard . 66

7.5 Sequences . 68

7.5.1 Set to a state sequence library 69

7.6 Tests . 74

7.7 Implementation . 74

8 Conclusions 77
8.1 Summary and Results . 77

8.2 Further Work . 78

Bibliography 81

viii

List of Figures

2.1 RFID-System with a passive tag . 3

2.2 PIE encoding used by the interrogator to communicate with the tag. [11] 4

2.3 Preamble and Frame-Sync which are send before each command. [11] 4

2.4 FM0 Sequences [11] . 5

2.5 Miller Sequences [11] . 6

2.6 Tag memory banks and logical addresses. [11] 6

2.7 Link timing [11] . 8

2.8 Tag state diagram. [11] . 10

2.9 Terminating FM0 transmissions EOF [11] 13

2.10 Manchester Sequences [12] . 14

3.1 Serial Peripheral Interface (SPI) in a single master, single slave config-
uration . 15

3.2 Block Write Transfer [14] . 18

3.3 Block Read Transfer [14] . 19

3.4 Read SPI Status [14] . 20

4.1 Overview over the multithreading features of SystemVerilog [2] 25

5.1 Universal Verification Methodology (UVM) Test Bench [10] 36

5.2 UVM Sequence Base Stimulus Generation Architecture [10] 45

6.1 CTS Platform Block Diagram . 50

7.1 Overview blockdiagram of the Test Bench 51

7.2 Inheritance diagram for epc cmd . 53

7.3 If-else tree of the check write method 67

7.4 All possible state transitions . 70

7.5 Functional coverage report of Questa Sim 75

ix

List of Tables

2.1 Link timing parameters [11] . 7

2.2 HF link timing parameters [12] . 14

3.1 SPI modes [16] . 16

3.2 SPI instructions . 17

4.1 Integer data types [5] . 21

7.1 Commands for state transitions . 71

xi

List of Listings

4.1 Array examples [5] . 22

4.2 Dynamic arrays examples [5] . 23

4.3 Specialized processes examples [?] . 25

4.4 Interface example [17] . 26

4.5 Object-oriented examples . 27

4.6 Simple constrained random generation example 29

4.7 Set membership . 30

4.8 Distribution . 30

4.9 If-else inside constraints . 30

4.10 Implications . 31

4.11 Foreach loops, [5] . 31

4.12 Variable ordering, [5] . 31

4.14 Functions inside constraint blocks,[5] 32

4.15 Functional coverage examples . 33

5.3 Driver example . 39

5.4 Monitor example . 41

5.5 Sequencer example . 42

5.6 Agent example . 42

5.7 Environment example . 44

5.8 Sequence example . 45

5.9 Test example . 46

7.1 Realization of the Query command . 55

7.2 Send command task . 57

7.3 FM0 decoding . 59

7.4 Miller decoding . 60

7.5 Manchester decoding . 61

7.6 SPI driver, send command task . 63

7.7 SPI monitor, run phase task (monitoring) 64

7.8 Random variables and constraints of cts_from_open_vseq 72

7.9 Task to run a command to set the tag OPEN 73

7.10 How to use cts_set_state_vseq . 74

xiii

List of Listings

xiv

Acronyms

BLF Backscatter Link Frequency

CDRV coverage driven constraint random verification

CPHA Clock Phase

CPOL Clock Polarity

CTS Comprehensive Transponder System

DUT Device Under Test

EEPROM Electrically Erasable Programmable Read-Only Memory

EPC Electronic Product Code

HF High Frequency

NFC Near Field Communication

NVM Non Volatile Memory

PC Protocol-control

PIE Pulse Interval Encoding

RFID Radio-frequency identification

RFU Reserved for Future Use

RTL Register-transfer level

SPI Serial Peripheral Interface Bus

TLM Transaction-Level Modeling

xv

Acronyms

UHF Ultra High Frequency

UVM Universal Verification Methodology

XPC Extended Protocol Control

xvi

1 Introduction

Verification is a fundamental part of every digital design. Usually 60% to 80% of
design effort goes to verification. Besides, the longer a bug is undetected, the more
expensive it is. To fix a bug during a simulation phase, will not cost a lot. But fixing
a bug after product release can cost millions of dollars to fix. Not to mention the loss
of reputation.

For the verification of a Register-transfer level (RTL) implementation usually a Test
Bench is used. A “Test Bench mimic the environment in which the design will reside.
It checks whether the RTL Implementation meets the design spec or not. This Envi-
ronment creates invalid and unexpected as well as valid and expected conditions to
test the design” [4].

The simplest and fastest way is to write a linear Test Bench. Typically this type of
Test Bench is written in VHDL or Verilog. The stimuli (test vectors) are often hard
coded and the results are checked manually. This approach may be appropriate for
small designs or for a first verification. But it is not adequate for large designs. It is
only possible to hit some corner cases and of course it creates a large effort to control
the results.

The better way is to use coverage driven constraint random verification (CDRV) ar-
chitectures. Constraint random means that the test vectors are not just randomly
generated. The randomization is constrained in a way to only generate exploitable
values. Because every point in the test plan is generated automatically, a mechanism
is needed to tell which points are verified. This mechanism is functional coverage.
Both, VHDL and Verilog are not really applicable to write such a Test Bench. There-
fore the Accellera Systems Initiative developed SystemVerilog. This enhancement
of Verilog offers several constructs to allow the easy development of a CDRV Test
Bench.

Another important point is to develop the Test Bench to be reusable. Especially
when testing large designs this can help a lot to save implementation effort. The
Universal Verification Methodology (UVM) is a methodology to design coverage
driven constraint random Test Benches which consist of reusable components. In
fact UVM is implemented as a SystemVerilog class library.

1

1 Introduction

The aim of this thesis is to develop an UVM based CDRV Test Bench for a Compre-
hensive Transponder System (CTS). Basically the system is a passive Radio-frequency
identification (RFID) tag which supports High Frequency (HF), Ultra High Fre-
quency (UHF) and also Near Field Communication (NFC) communication. The de-
veloped Test Bench should verify the HF/UHF interfaces as well as an also available
Serial Peripheral Interface (SPI) interface. The requirements are that the verification
environment should be modular and reusable as well as easily expandable. Further-
more it should be configurable and constraint random driven.

1.1 Chapter Overview

Chapter 2 outlines Radio-frequency identification (RFID) systems and also describes
the Electronic Product Code (EPC) standard.

In Chapter 3 the Serial Peripheral Interface (SPI) bus is described.

Chapter 4 introduces SystemVerilog and describes new features of this language.

In Chapter 5 of the basics of Universal Verification Methodology (UVM) which is
used to develop the Test Bench are described

Chapter 6 gives a short overview over the Device Under Test (DUT).

Chapter 7 demonstrates the developed Test Bench.

Finally Chapter 8 forms the conclusion of this thesis.

2

2 RFID Systems

Radio-frequency identification (RFID) describes a technique which uses electromag-
netic waves to identify an object. A so called RFID tag basically consists of an an-
tenna, an analog module, a digital logic and a persistent memory. Tags can be dis-
tinguished into passive and active tags. Where active tags have their own power
source, passive ones receives the whole energy from the interrogator/reader (Figure
2.1). The majority of the tags are passive ones.

Interrogator passive
Tag

Data, Energy

Data

Figure 2.1: RFID-System with a passive tag

RFID systems works in many different frequency ranges and there are various dif-
ferent protocols, some are standardized others are not.

The following sections will focus on the two standards which where used in this a
work. They are developed by an organization called EPCglobal and defines a stan-
dard for the 13.56 MHz (HF) and UHF (860 - 960 MHz) frequency bands.

2.1 EPC Class-1 Generation-2 UHF

This specification [11] defines the communication for a passive RFID system at a
frequency range of 860 MHz to 960 MHz. It specifies the analog requirements as
well as the digital ones. The tags are passive which means that the whole energy is
supplied by the interrogator over electromagnetic wave propagation.

3

2 RFID Systems

2.1.1 Interrogator-to-Tag communications

The interrogator transmits data to the tag by modulating the RF carrier. Allowed
modulation techniques are double-sideband amplitude shift keying (DSB-ASK), single-
sideband amplitude shift keying (SSB-ASK), or phase-reversal amplitude shift key-
ing (PR-ASK). The used encoding technique is Pulse Interval Encoding (PIE), shown

Figure 2.2: PIE encoding used by the interrogator to communicate with the tag. [11]

in Figure 2.2. The allowed range for the reference time Tari is 6.25 µs to 25 µs. Before
each command either a preamble or a frame-sync, shown in Figure 2.3, is send. The

Figure 2.3: Preamble and Frame-Sync which are send before each command. [11]

RTcal calibration symbol has the length of data-0 plus the length of a data-1. The tag

4

2.1 EPC Class-1 Generation-2 UHF

calculates a pivot = RTcal/2 and uses it to decide if a symbol is a data-0 (smaller
than pivot) or a data-1 (larger than pivot). The TRcal is used to specify the tag’s
Backscatter Link Frequency (BLF).

BLF =
DR

TRcal
(2.1)

Where DR stands for divide ratio and is defined by the interrogator in the QUERY
command. The allowed values are 64/3 and 8.

2.1.2 Tag-to-Interrogator communications

The tag answers by backscatter modulating the amplitude and/or the phase of the
unmodulated RF carrier. This is done by switching the reflection coefficient of the
tag’s antenna between two states. The data encoding is chosen by the interrogator (in
the QUERY command) and can be either FM0 or Miller encoding. In case of Miller
encoding two, four or eight sub-carrier cycles per bit are possible. Independent of
the encoding the transmission always ends with a dummy-1 symbol. If specified in
the QUERY, before the preamble a pilot tone is sent.

FMo encoding does have a baseband phase inversion at every symbol border. A
data-0 symbol has an additional inversion at the middle of the symbol. Figure 2.4
shows symbol sequences for two bit combinations. FM0 encoding is chosen by set-
ting the M value zero.

Figure 2.4: FM0 Sequences [11]

Miller encoding inserts a baseband phase inversion between two consecutive data-0
symbols. Data-1 symbols have an inversion in the middle of the symbol. Depending
on the M value, a Miller sequence has exactly two, four or eight sub-carrier cycles
per symbol. Figure 2.5 demonstrates some symbol sequences for different values of
M.

5

2 RFID Systems

Figure 2.5: Miller Sequences [11]

2.1.3 Tag memory

The memory is logically divided into four banks (Figure 2.6). Each bank contains
zero or more 16-bit words. Memory manipulating commands operate in word bound-
aries. The memory banks are:

Figure 2.6: Tag memory banks and logical addresses. [11]

• Reserved: contains the kill password and the access password, both are 32-bit
long.

• EPC: contains a StoredCRC, a Protocol-control (PC) word and the Electronic
Product Code (EPC). The PC contains information about, for example, the

6

2.1 EPC Class-1 Generation-2 UHF

length of the EPC or if the tag has a User-memory. The StoredCRC is cal-
culated over the PC and the EPC at power-up. Tags which have the Extended
Protocol Control (XPC) implemented also store two additional words.

• TID: contains an 8-bit ISO/IEC 15963 allocation class identifier and additional
information over custom commands and/or optional features that a tag sup-
ports [11].

• User: is optional and can contain whatever a user wishes.

2.1.4 Link timing

The communication between interrogator and tag has to fulfill several timing re-
quirements, shown in Figure 2.7. The parameters defines the following times:

• T1 defines the time inside which a response is valid. It is the time from the
last rising edge of the last bit of the interrogator transmission to the first rising
edge of the tag response [11]. A tag may exceed T1 in case of a memory access
(for example at a WRITE command the answer has to be inside 20 µs).

• T2 defines the minimum time interval between a tag’s response and a new
command sent by the interrogator.

• T3 is the time an interrogator waits, after T1 expired, before sending a new
command.

• T4 defines the minimum time between two commands.

Table 2.1 shows the minimum, nominal and maximum values for each parameter.
Where Tpri is the period of the response and calculated as:

Tpri =
1

BLF
=

TRcal
DR

(2.2)

FT is the frequency tolerance, for the specification see [11, table 6.19].

Parameter Minimum Nominal Maximum

T1
max(RTcal, 10Tpri) max(RTcal, 10Tpri)

max(RTcal, 10Tpri)
(1− |FT|)− 2µs (1 + |FT|) + 2µs

T2 3.0Tpri 20.0Tpri
T3 0.0Tpri
T4 2.0Tpri

Table 2.1: Link timing parameters [11]

7

2 RFID Systems

Figure 2.7: Link timing [11]

8

2.1 EPC Class-1 Generation-2 UHF

2.1.5 Communication procedure

To be able to manage tag populations every tag has a selected flag (SL) and can be
inventoried in one of four sessions. For each of these sessions an inventoried flag
exists and can either be A or B. These flags can be manipulated with the SELECT
command.

To avoid collisions a singulation method is implemented. For this purpose the tag
has a 15-bit slot counter which is preloaded with a random value between 0 and
2Q − 1. Q has a range from 0 to 15 and is initially set by the QUERY command. Any-
way, the slot counter can also be manipulated with the help of the QUERY ADJUST
as well as the QUERY REP command. The first one increases or decreases the Q
value and the tag generates a new random slot counter value afterwards. The
QUERY REP command simply decreases the slot counter value by one.

Every inventory round starts with a QUERY command. The command specifies a
session, a proper inventoried flag value and a selected flag value. Tags with mis-
matching flags, ignore the command and stay in READY state. If the flags are match-
ing but the slot counter is not equal to zero the tag changes to the ARBITRATE state.
At this moment the slot counter becomes zero, manipulated before by any Query
command, the tag responds with a 16-bit random number (RN16) and the state
changes to REPLY.

After receiving an ACK command, with the same RN16, the tag changes to AC-
KNOWLEDGED and replies the PC word, the stored EPC and the stored CRC
word.

The follow-up command is a REQ RN. Whether the RN16 is valid or not, the tag
answers with a new 16-bit random number (denoted handle) and changes the state.
If the, on the tag stored, access password is not equal to zero the new state is OPEN,
else the tag changes directly to SECURED. Consecutive commands uses the handle
as an identification parameter.

Tags in the OPEN state are able to execute memory manipulating commands like
READ and WRITE as well as the KILL command. Additionally to this commands
in the SECURED state the tag can execute the LOCK command which allows the
user to lock/unlock parts of the memory. To reach the SECURED state the ACCESS
command is used. At last killed tags are in the KILLED state in which they are not
answering to anything. A killed tag stays killed forever.

Figure 2.8 shows all possible states a tag can be in, as well as the permitted transac-
tions between them.

9

2 RFID Systems

Figure 2.8: Tag state diagram. [11]

10

2.1 EPC Class-1 Generation-2 UHF

2.1.6 Commands

This subsection gives a brief overview of all (mandatory) commands of the EPC stan-
dard. Basically only the fields of the commands and, if there is one, of the responses
are explained.

Select is used to manipulate the SL and the inventoried flags of a tag. The com-
mand has a Target field to define which flag should be modified. The Action field
defines how the flag is changed. With the fields MemBank, Pointer and Length a
part of the memory is selected. Only if this part matches with the field Mask the tag
performs the action. The Truncate bit specifies if the tag should truncate the response
on a ACK. Lastly the command is secured by a 16-bit long CRC field.

Query initiates and specifies an inventory round. The DR field defines the TRcal
divide ratio which is used to calculate the BLF. M affects the kind of response coding
technique. If a response contains a pilot tone or not, is defined by TRext. The fields
Sel, Session and Target specify which tags are effected by this command. Q is used
by the tag to calculate the initial value of the slot counter. A 5-bit CRC field secures
the command. A Query may respond with a 16-bit long random number (RN16).

QueryAdjust: Dependent on the UpDn field the tag increases or decreases the Q
value by 1, but only at tags which match the Session specified in the command.
There is no CRC field, but a 16-bit random number as response is possible.

QueryRep decreases the slot counter by 1 at tags with the appropriate session. The
command is not secured and may respond a random number.

ACK: If the random number in the RN field is valid (RN16 in Reply or Acknowl-
edge state, Handle in Open or Secured state), the command respond with [PC,EPC,CRC-
16].

NAK: After receiving the tag returns to ARBITRATE state, except it is currently in
ready or killed state.

11

2 RFID Systems

Req RN returns the handle or a new 16-bit random number. The RN field either
contains the RN16 from a Query or the handle. The command and the response are
secured by a CRC-16.

Read is used to read one or more words from the memory location specified by
the fields MemBank, WordPtr and WordCount. The field RN must contain the valid
handle otherwise the command is ignored. If the location is valid the tag responds
with a one bit header set to 0, the desired data and the handle. Else the header bit
is 1 and an error code is returned. Both command and response are secured by a
CRC-16 field.

Write allows to write a word into the memory on a location specified by MemBank
and WortPtr. The remaining fields are Data and RN which contains the handle. Data
is xored with a 16-bit random number that is calculated by a prior Req RN. In case
of a successful operation the response is [0, handle, CRC-16], else an error code is
returned.

Kill: To kill a tag, two consecutive kill commands are necessary. Each of them con-
tains half of the 32-bit kill password. Additionally there is an RN field with the
handle and a CRC-16 field. The response on the first kill is the handle and a CRC-16.
If the second kill was successful the response is [0, handle, CRC-16]. The kill com-
mand also has an RFU/Recom field which allows to recommission the tag instead
of killing it.

Access: The 32-bit access password is send to the tag via two consecutive com-
mands. Additionally there is the RN and the CRC field. In case of success the tag
replies with the handle secured by a 16 bit CRC.

Lock allows to lock/unlock or permanent lock the kill or access password or one
of the other memory banks. The passwords will not be writeable and not be read-
able if locked. The banks will only be write locked. The Payload field contains the
information which memory is affected and how.

12

2.2 EPC Class-1 HF

2.2 EPC Class-1 HF

This specification [12] defines the communication for a passive RFID system at a fre-
quency range of 13.56 MHz. The main difference to the UHF standard can be found
in the analog area. In this case energy is transmitted over inductive coupling and
the tag to interrogator communication is done with load modulation. This means
that a tag varies its “load” to respond to the reader (for example by switching load
resistors or shunt diodes).

From a protocol point of view there are only minor differences. Additionally to FM0

and Miller encoding, the standard defines Manchester encoding as another possi-
bility for the tag-to-interrogator link. An M value equal to zero means FM0 encod-
ing, one means Miller encoding with eight sub-carriers and two and three means
Manchester encoding. Instead of using a dummy-1 to terminate a transmission an
EOF symbol is used. Figure 2.9 shows the EOF for a FM0 transmission.

Figure 2.9: Terminating FM0 transmissions EOF [11]

Manchester encoding uses transitions in the middle of a symbol to encode bits. A
high to low transition represents a data-0 and a low to high transition a
data-1. A Manchester symbol sequence should have four or eight sub-carrier cycles
per symbol, depending on M. Figure 2.10 presents Manchester encoded sequences
for M equal to two and three.

As well only two link frequencies exist, 424 kHz and 847 kHz. Besides that, the link
timing parameters are different as shown in Table 2.2.

Anyway, also the names of the QUERY, QUERY ADJUST and QUERY REP com-
mands changed to BEGIN ROUND, RESIZE ROUND and NEXT SLOT, as well their
response now has an additional CRC field.

13

2 RFID Systems

Figure 2.10: Manchester Sequences [12]

Parameter Minimum Nominal Maximum
T1 73.1 µs 75.5 µs 77.9 µs
T2 151 µs 1208 µs
T3 Tso f tag
T4 T1Typ + T3Min

Table 2.2: HF link timing parameters [12]

14

3 Serial Peripheral Interface Bus (SPI)

The Serial Peripheral Interface (SPI) describes a synchronous serial bus interface,
which is used to connect digital devices in a master/slave principle. The standard,
named by Motorola, specifies only a few things and gives the user many possibilities
for customization.

3.1 Specifications

Figure 3.1 shows a single master and single slave configuration. Also single master,
multi slave configurations are possible.

SPI
Master

SPI
Slave

SCK

NCS

MOSI

MISO

Figure 3.1: SPI in a single master, single slave configuration

The four specified logic signals have the following purpose:

• SCK: SPI data clock

• NCS: SPI chip select (active low)

• MOSI: Master out, slave in data signal

• MISO: Master in, slave out data signal

15

3 Serial Peripheral Interface Bus (SPI)

The signal names are not specified, therefore alternative naming conventions are also
widely used [16].

The major specification is that read and write operations have to be on different
edges (for example, read on the positive edge and write on the negative one). On
which edge which operation is done depends on the values of the Clock Polarity
(CPOL) and Clock Phase (CPHA) options. These parameters have to be defined by
the master before a transaction. CPOL defines the base (idle) value of the clock,
therefore CPOL = 0 means the clock is idle low, similarly if CPOL = 1 the clock is
idle high. CPHA defines if the data is sampled on the first (CPHA = 0) or on the
second edge after NCS has gone low. Therefore for example if CPOL = CPHA = 0,
data is read on the positive edge and written on the negative. To describe which
configurations are supported, often one of the modes specified in Table 3.1 are used.

Mode CPOL CPHA
1 0 0

2 0 1

3 1 0

4 1 1

Table 3.1: SPI modes [16]

The SPI specification does not define a specific data format or a protocol which has to
be used. Wherefore these things are user specific. In the following the specifications
used by the SPI interface of the Device Under Test (DUT) are presented.

3.2 Data Format

A SPI frame consists of several 16-bit words and the bits are ordered MSB first. There
are four different words:

• The instruction word consists of a 2-bit command field (bit 15 and bit 14), a
Reserved for Future Use (RFU) field (bits 13 to 4) and an optional Non Volatile
Memory (NVM) operation field (bits 3 to 0).

• The address word consists of a 6-bit RFU field (bits 15 to 10) and a 10-bit
address field (bits 9 to 0).

• The data word contains the 16-bit data word. This would either be the data to
read or to write.

16

3.3 Transfer Modes

SPI Command Description
00 RFU
01 Write data
10 Read data
11 Get status

Table 3.2: SPI instructions

The RFU fields are reserved for future use and have to be kept low. The NVM field in
the instruction word refers to the various access modes of the NVM and is optional.
If it is not needed it has to be kept low and the default read or write modes would
be used. Table 3.2 shows the possible values for the 2-bit command field of the
instruction word.

3.3 Transfer Modes

Every transmission starts at the moment the master sets NCS to low. Similarly it
ends if NCS is reset back to high. It is possible to send multiple frames during the
time the chip is selected. By simple changing the instruction it is possible to alter the
mode while the device is selected. There are three possible modes.

Write to the device: Figure 3.2 shows two successive write frames (block write).
First the master selects the device by setting NCS low and afterwards the instruction,
address and write data (WDATA) words are shifted in on MOSI. An inactive (idle)
time between the last bit of WDATA and the first bit of a consecutive instruction is
mandatory in case of data written to the NVM. As it can be seen at the second write
operation an idle phase between two words is allowed. During this time the clock
has to stay in its idle state. To complete the write operations the master sets NCS to
high.

Read from the device: Figure 3.3 demonstrates two consecutive read frames (block
read). The master selects the device by setting the NCS line low. After this, the in-
struction and address words are shifted in on MOSI. The device fetches the data from
the address, which afterwards is shifted out on MISO. The time the device needs to
fetch the data depends on the location. The master has to wait the appropriate time
and must keep the clock idle during waiting.

17

3 Serial Peripheral Interface Bus (SPI)

M
O

SI
I1

5
I2

I1
I0

I3

W
ri

te

In
st

ru
ct

io
n

1
5

1
4

3
0

SC
K

lo
gi

c
'0

'
I1

4
D

1
5

W
D

A
TA

1
5

D
1

4
D

1
D

0

0

A
1

5

A
d

d
re

ss

1
5

A
1

4
A

1
A

0

0

I1
5

I2
I1

I0
I3

id
le

In
st

ru
ct

io
n

1
5

1
4

3
0

lo
gi

c
'0

'
I1

4
D

1
5

W
D

A
TA

1
5

D
1

4
D

1
D

0

0

A
1

5

A
d

d
re

ss
1

5

A
1

4
A

1
A

0

0

id
le

id
le

N
C

S

Figure 3.2: Block Write Transfer [14]

18

3.3 Transfer Modes

M
O

SI
I1

5
I2

I1
I0

I3

R
ea

d

In
st

ru
ct

io
n

1
5

1
4

3
0

SC
K

lo
gi

c
'0

'
I1

4

R
D

A
TA

1
5

0

A
1

5

A
d

d
re

ss

1
5

A
1

4
A

1
A

0

0

I1
5

I2
I1

I0
I3

id
le

In
st

ru
ct

io
n

1
5

1
4

3
0

lo
gi

c
'0

'
I1

4

R
D

A
TA

1
5

0

A
1

5

A
d

d
re

ss
1

5

A
1

4
A

1
A

0

0

id
le

id
le

N
C

S

N
V

M
 (

o
p

t.
)

D
1

5
D

1
4

D
1

D
0

M
IS

O
H

ig
h

 Z
D

1
5

D
1

4
D

1
D

0
H

ig
h

 Z
H

ig
h

 Z

Figure 3.3: Block Read Transfer [14]

19

3 Serial Peripheral Interface Bus (SPI)

Read device status The last mode offers the possibility to read out the device
status. Figure 3.4 shows such an operation. After NCS goes low the instruction word
is shifted in on MOSI. At the moment the slave receives the last bit it starts to shift
out the status word followed by the address word and the data word used by the
last read or write operation. If the last instruction was a read, the data word would
be 0x0000. The status word consists of an RFU field (bits 15 to 7) and an address
error status bit (bit 6) which informs if the last operation has produced an address
error. Further it holds the SPI instruction field (bits 5 and 4) and the NVM operation
field (bits 3 to 0) of the last read or write operation.

MOSI I15 I2 I1 I0I3

Read Status

Instruction
15 14 3 0

SCK

logic '0'
I14

STATUS

15 0

NCS

NVM (opt.)

S15 S14 S1 S0MISO
High Z High Z

SPIAT

15 0

A15 A14 A1 A0

SPIDT

15 0

D15 D14 D1 D0

Figure 3.4: Read SPI Status [14]

20

4 SystemVerilog

SystemVerilog is the first hardware description and verification language (HDVL)
and is a superset of Verilog-2005. It was developed by the Accellera Systems Initiative
which is an “independent, not-for profit organization dedicated to create, support,
promote, and advance system-level design, modeling, and verification standards for
use by the worldwide electronics industry” [1].

SystemVerilog can be divided into two parts, one for modelling hardware designs on
Register-transfer level (RTL) and another for verification. The RTL part is an enhance-
ment of Verilog-2005. The verification part has much more similarities to software
programming languages like C++ or Java then to Verilog. It uses extensive object-
oriented programming techniques and is generally not synthesizable. The remainder
of this chapter is mostly based on [5] and describes the new features of SystemVer-
ilog. Good SystemVerilog references can also be found under [3] and [4].

4.1 New data types

SystemVerilog additionally offers several new integer data types. This new types,
as well as the known types from Verilog, are shown in Table 4.1. In addition to ′0′

shortint 2-state SystemVerilog data type, 16 bit signed integer
int 2-state SystemVerilog data type, 32 bit signed integer
longint 2-state SystemVerilog data type, 64 bit signed integer
byte 2-state SystemVerilog data type, 8 bit signed integer or ASCII character
bit 2-state SystemVerilog data type, user-defined vector size
logic 4-state SystemVerilog data type, user-defined vector size
reg 4-state Verilog-2001 data type, user-defined vector size
integer 4-state Verilog-2001 data type, 32 bit signed integer
time 4-state Verilog-2001 data type, 64 bit unsigned integer

Table 4.1: Integer data types [5]

and ′1′, 4-state types can also have unknown (X) and high-impedance (Z) values.

21

4 SystemVerilog

As an advantage, 2-state types may take less memory and simulates faster. When
converting a 4-state to a 2-state type, the values X and Z will be handled as ′0′.

Besides the real data type, which is similar to double in C, SystemVerilog also offers
the data type shortreal, similar to the C data type float. The void data type allows
functions without a return value.

SystemVerilog also introduces a string data type, which internally is represented as a
dynamic-allocated byte array. Several operations on strings are possible, for example
comparison, concatenation or indexing. There are also a number of special methods
available. For instance the method str.len() returns the number of characters in the
string str. For further details see [5] chapter 3.7.

4.2 Arrays

4.2.1 Packed and unpacked arrays

SystemVerilog makes a differentiation between “packed arrays” and “unpacked ar-
rays”. The first one refers to dimensions declared before the object name, the second
to dimensions declared after the object name (see Listing 4.1 line 1,2).

A packed array is treated as an integer with a user-defined size, with the additionally
advantage to be able to directly access every subfield (e.g. every bit). Such arrays can
only be made of single bit data types (e.g. bit, logic, reg, . . .). SystemVerilog also
allows multidimensional packed arrays.

Unpacked arrays can be made of all data types and also of unpacked arrays. It is
possible to create multidimensional arrays. To specify the size of an unpacked array,
SystemVerilog also accepts a single number instead of a range (Listing 4.1 line 4,5).
1 bit [7:0] a; // packed array

2 int b[7:0]; // unpacked array

3

4 integer c[0:9][0:4]

5 integer d[10][5]; //same as c

6

7 // allowed operations on packed and unpacked arrays

8 //A and B has to be arrays of the same shape and type

9 A = B; // reading and writing the array

10 A[i] = B[j] //read/write an element of the array

11 A[i:j] = B[i:j]; //read/write a slice of the array

12 A[x+:c] = B[y+:c]; //read/write a variable slice of the array

13 A==B, A[i:j] != B[i:j]; // equality operations

14

15 // allowed operations on packed arrays only

22

4.2 Arrays

16 A = 10’b11111111; // assignment from an integer

17 A = A + 3; // treatment as an integer

Listing 4.1: Array examples [5]

The lines 9 to 13 of Listing 4.1 shows which operations can be performed on packed
and on unpacked arrays, whereas the operations at the lines 16 and 17 are only
permitted on packed arrays. Assignments on unpacked arrays are done by assigning
each element of the source array to its corresponding element of the target array.
Packed arrays are treated like a vector, therefore every vector expression can be
assigned to them.

4.2.2 Dynamic arrays

Dynamic arrays are unpacked arrays which size is not known at compile time. Their
size can be set or changed at runtime. It should be mentioned that dynamic arrays
are always indexed from 0 to size-1.

As it can be seen in Listing 4.2, dynamic arrays are declared by leaving the square
brackets empty. The new[] operation is used to allocate or reallocate memory for the
array. The delete() method empties the array, resulting an empty (zero-sized) array.
The current size of an array can be discovered with the help of the size() method.
1 integer a[]; //zero -sized dynamic array of integers

2

3 // declare a dynamic array of 10-bit vectors and create 100 elements

4 bit [10:0] b[] = new[100];

5

6 // double the array size , preserving previous values

7 b = new[200](b);

8

9 int s = a1.size; //save the size of a1 into s

10 b = new[s * 4](b); // quadruple a1 array

11

12 b.delete; // delete the array contents

13 $display("%d", b.size); // prints 0

Listing 4.2: Dynamic arrays examples [5]

23

4 SystemVerilog

4.2.3 Associative arrays

Associative arrays can be seen as a map or dictionary with user-specified key type
and data type. The declaration syntax is:

data_type name [index_type]

The data type can be every type which is allowed for fixed-size arrays. index_type
is the data type of the index, or the wildcard index type (symbolized with *). “If * is
specified, then the array is indexed by any integral expression of arbitrary size. An
index type restricts the indexing expressions to a particular type.” [5].

The elements of an associative array are created in case an entry is written to an index
the first time. The order of the entries depends on the index type and is maintained
by the array itself. Additionally several built-in methods are provided:

• The function int num(), returns the number of entries in the array.

• The function void delete([input index]), deletes the entry with the specified in-
dex, or all entries if no index is specified.

• The function int exists(input index), returns whether an entry with this index
exists or not.

• The function int first(ref index), assigns the value of the first (smallest) in-
dex to the given variable index. The method returns 1 if the element exist, 0
otherwise.

• The function int last(ref index), assigns the value of the last (largest) index to
the given variable index. The method returns 1 if the element exist, 0 otherwise.

• The function int next(ref index), assigns the value of the index next (greater)
to the given index to the variable index. The method returns 1 if the element
exist, 0 otherwise.

• The function int prev(ref index), assigns the value of the index previous (smaller)
to the given index to the variable index. The method returns 1 if the element
exist, 0 otherwise.

4.3 Processes

SystemVerilog introduces three new specialized blocks for modelling combinational,
latched or sequential logic hardware models. The always_comb block is used to model
combinational logic. The sensitivity list is generated automatically from the con-
tained statements. If a latched logic behaviour is intended, the always_latch should

24

4.3 Processes

be used. SystemVerilog also adds the always_ff block to indicate a sequential logic
behavior. When using this specialized blocks the design intent is indicated to simu-
lation, synthesis, and formal verification tools. Listing 4.3 gives a short example for
each process. Also notice the iff in line 5, which allows to add condititions to the @
event control.
1 always_comb

2 a = b & c;

3 always_latch

4 if(ck) q <= d;

5 always_ff @(posedge clock iff reset == 0 or posedge reset)

6 acc <= reset ? 0 : reg + 1;

Listing 4.3: Specialized processes examples [?]

SystemVerilog also improves the multithreading options of Verilog. Figure 4.1 gives
an overview of the features. There are three different ways of waiting for completion

Figure 4.1: Overview over the multithreading features of SystemVerilog [2]

of the threads created by the fork:

• join, waits until all threads completed

• join_any, waits until at least one thread is completed

• join_none, doesn’t wait on completion of any thread

In addition to these three join statements there are two statements which allow one
thread to kill other threads or to wait on their completion. Where the disable fork

25

4 SystemVerilog

operation kills all running threads and the wait fork construct waits for the comple-
tion. If having named begin end blocks it is also possible to kill just one thread by
calling disable name_of_thread.

4.4 Interface

The port model which is used in Verilog to connect modules is not productive for
large modules with hundreds of ports. Therefore SystemVerilog introduces inter-
faces to allow the user to bundle ports. This also reduces the redundancy of port-
name declarations. The keyword modport is used to restrict interface access within a
module by indicating the directions of every variable declared inside the interface.
Besides variables an interface also can have tasks and functions. They allow a more
abstract level of modeling. A short example is given in Listing 4.4
1 interface intf;

2 logic a;

3 logic b;

4 modport in (input a, output b);

5 modport out (input b, output a);

6 endinterface

7

8 module top;

9 intf i ();

10 u_a m (.i1(i));

11 u_b n (.i2(i));

12 endmodule

13

14 module u_a (intf.in i1);

15 endmodule

16

17 module u_b (intf.out i2);

18 endmodule

Listing 4.4: Interface example [17]

4.5 Classes

SystemVerilog offers an object-oriented programming model. This offers several new
possibilities for the design of Test Benches. Like encapsulation, abstraction and a
higher reusability. This chapter focuses on the features and models supported by the
SystemVerilog class model. General knowledge about object-oriented programming
can not be found in here, because this will go beyond the scope of this thesis.

26

4.5 Classes

Classes are declared with the keyword class and they can include attributes (vari-
ables) and subroutines (tasks and functions). SystemVerilog supports a single-inheritance
model. Classes can be parameterized by type. This allows writing more generic
classes which increases the reusability and avoids writing similar code for differ-
ent sizes or types.

Polymorphism is done by labeling a method explicitly with the keyword virtual. By
default all class attributes are declared public. To hide them they have to be marked
either as local or protected.

Like in Java, garbage collection is done automatically. This means, that objects do
not have to be destroyed explicitly.

Listing 4.5 presents a view examples.
1 module main;

2 class classA;

3 // Encapsulation

4 // public variable , visible everywhere

5 int public_var;

6 // protected variable , also visible in inherited classes

7 protected int prot_var;

8 // local variable , only visible inside the class

9 local int local_var;

10

11 // constructor

12 function new(int param);

13 local_var = param + 10;

14 endfunction

15

16 //a function

17 function int get_local_var ();

18 return local_var;

19 endfunction

20

21 function void print ();

22 $display("classA");

23 endfunction

24

25 //a virtual function

26 virtual function void vprint ();

27 $display("classA");

28 endfunction

29

30 virtual function int add();

31 return local_var + prot_var + public_var;

32 endfunction

33 endclass

34

35 // inherited class with a type parameter (default type int)

27

4 SystemVerilog

36 class classB #(type T = int) extends classA;

37 T param_var;

38

39 function new(int param);

40 super.new(param); //call constructor of base clase

41 endfunction

42

43 // override print function

44 function void print ();

45 $display("classB");

46 endfunction

47

48 // override vprint function

49 virtual function void vprint ();

50 $display("classB");

51 endfunction

52

53 // override add function

54 function T add();

55 T result;

56 //call add function of the baseclass

57 //and cast result to type T

58 $cast(result , super.add());

59 return result + param_var;

60 endfunction

61 endclass

62

63 initial begin

64 // object of type classA and param = 10

65 classA a = new(10);

66 // object of type classB with set T to real

67 classB #(real) b = new(20);

68

69 // create new object with param = 20

70 a = new(b.get_local_var ());

71

72 // Polymorphism

73 a = b;

74 a.print (); // prints classA

75 a.vprint (); // prints classB

76 b.print (); // prints classB

77 end

78 endmodule

Listing 4.5: Object-oriented examples

28

4.6 Constrained random generation

4.6 Constrained random generation

Constrained random testing offers many advantages in comparison to a traditional,
direct testing approach. At least with SystemVerilog both approaches can be com-
bined easily.

Generally the course of actions looks like this. Variables can be declared random by
use of the keywords rand or randc. Constraints restrict the legal values that can be
assigned to the random variables. A solver called by the randomize() class method
solves the constraints and generates legal random values. A simple example can be
seen in Listing 4.6. If the structure of the Test Bench and the seed doesn’t change,
the generated random values will be the same in every run.

1 module main;

2 class A;

3 rand integer x;

4 randc integer y;

5 constraint c_x {x < 100;}

6 constraint c_y {y > 10 && y < 90;}

7 endclass

8

9 initial begin

10 A aobj = new();

11 aobj.randomize ();

12 $display("x = %d; y = %d", aobj.x, aobj.y);

13 end

14 endmodule

Listing 4.6: Simple constrained random generation example

The randc keyword defines a variable to be cyclic-random. This means that no value
is repeated until every possible value has been assigned. Only bit and enumeration
types can be declared to be randc. To reduce memory requirements, the maximum
size of such variables should be limited.

4.6.1 Constraint blocks

Constraint blocks are used to restrict the possible values of a random variable. They
are class members and must have a unique name inside the class. However, like
external tasks and function bodies, constraint block bodies can also be declared out-
side a class. Because constraint blocks are class members they can be overridden by
an inherited class, just like virtual tasks and functions. SystemVerilog offers various
instruments which can be used to define constraints.

29

4 SystemVerilog

Set membership : The keyword inside is used to define a set of valid values. If the
negation operator is set before the keyword, all values outside the set are valid. All
values are uniformly distributed. Examples:
1 rand integer x,y;

2

3 //x has to be 0, 2, 10 to 20 or y to 2*y

4 constraint c {x inside {0,2 ,[10:20],[y:2*y]};}

5

6 //x has to be outside the given range

7 constraint c {!(x inside {1,3,10});}

Listing 4.7: Set membership

Distribution : Sometimes another then the uniform distribution is required. In this
case the dist keyword can be used, to weight every value in the set differently. The
solver sums the weights up and valuei will get the probability weighti/weightsum.
To assign a weight to a value there are the := and the :/ distribution operator. The
difference is, if a weight is assigned to a range of values. The := operator assigns the
weight to every value in the range, whereas the :/ assigns the weight to the whole
range.
1 //the weights are 0 = 1; 2 = 2; 10, 11, 12 = 3; 20, 21, 22 = 1

2 //the probability for 0 = 1/15

3 constraint c {x dist {0 := 1, 2 := 2, [10:12] := 3, [20:22] :/ 3};}

Listing 4.8: Distribution

If-else constructs can be used inside a constraint to make the constraining of one
variable depended on another. Example:
1 //If x is smaller 100, y has to be greater 100.

2 //Else , y has to be smaller 100.

3 constraint c {

4 if(x < 100) {

5 y > 100;

6 } else {

7 y < 100;

8 }

Listing 4.9: If-else inside constraints

Implications are basically the same as using an if-else construct. However it has a
shorter notation. Take care that if the condition is false, the generated random values
will be unconstrained, see example below.

30

4.6 Constrained random generation

1 //If x is smaller 100, y has to be greater 100.

2 //If x is greater equal 100, y is unconstrained

3 constraint c {(x < 100) -> (y > 100);}

Listing 4.10: Implications

Foreach loops are used to constrain array elements. They can be used for every
type of array (fixed-size, dynamic, associative, or queue). Listing 4.11 presents some
examples.

1 rand byte A[];

2

3 //Every element of A has to be either 2,4,8 or 16

4 constraint c1 { foreach (A [i]) A[i] inside {2,4,8,16}; }

5

6 //Every element of A has to be greater than twice its index

7 constraint c2 { foreach (A [j]) A[j] > 2 * j; }

8

9 //Each array value is constrained to be greater than the preceding one

.

10 //The implication prevents an out -of -bounds access.

11 constraint c3 { foreach (A [k]) (k < A.size - 1) -> A[k+1] > A[k]; }

Listing 4.11: Foreach loops, [5]

Variable ordering: The solver assigns the random values in a way that, “all combi-
nations of legal values have the same probability of being the solution” [5]. However,
this is not desirable in all cases. For example if a 1-bit variable should constrains a
32-bit data value, as it can be seen in Listing 4.13.

1 rand bit s;

2 rand bit [31:0] d;

3 constraint c { s -> d == 0; }

Listing 4.12: Variable ordering, [5]

Anyway, this will not lead to a 50% probability that d == 0. This is because s and d

are determined together and that’s why there are 233 possible combinations. That is
that the probability of s == 1 is only 1/233. After adding:

1 constraint order { solve s before d; }

s is solved separately and there s == 1 has a probability of 50%, sequentially 50%
of the values of d will be 0.

31

4 SystemVerilog

Functions inside constraint blocks: As it can be seen in Listing 4.14, it is also pos-
sible to use functions inside the constraint block.
1 rand int length;

2 rand bit [9:0] v;

3

4 // function which counts the 1’s inside an array

5 function int count_ones (bit [9:0] w);

6 for(count_ones = 00; w != 0; w = w >> 1)

7 count_ones += w & ’b1;

8 endfunction

9

10 // length is constrained to the output of the function count_ones

11 constraint c1 {length == count_ones(v);}

Listing 4.14: Functions inside constraint blocks,[5]

4.6.2 Randomization Methods

The built-in method randomize() is used to generate random values for all random
variables in the object, subjected to the constraints. If the randomization was exe-
cuted successfully the method returns 1, otherwise 0.

By using randomize() with constraint_block constraints can be declared in-line. This
offers greater flexibility because additional constraints can easily be added to a part
of objects of the same class.

However, it is also possible to control whether a random variable is active or inactive.
If a variable is set inactive it is not randomized by the solver. Disabling or enabling
random variables is done with the rand_mode() method. Every random declared vari-
able automatically has such a method. The syntax is: object.variable.rand_mode(bit
on_off).

In a similar way also constraints can be set active or inactive. Inactive constraints are
not considered by the solver. The syntax is: object.constraint_id.constraint_mode(bit
on_off).

32

4.7 Coverage

4.7 Coverage

Functional coverage answers the “Are we done?” question.

The specification of a coverage model is encapsulated in a coverage group. A cov-
ergroup includes one or more coverage points, cross coverage between coverpoints,
optional formal arguments and coverage options. A sample is taken either on a
specific event (e.g. @(posedge clk)) or manually by calling the sample() method of a
covergroup. However, care is required to take samples only when data is mean-
ingful. Coverage groups are defined between the keywords covergroup and endgroup.
Instances of a covergroup are created with the new operator, just like instances of
classes. It is possible to define covergroups in modules, programms, interfaces, or
classes.

A coverage point contains a set of bins associated with its sampled values or its
value-transitions. The bins can either be explicitly defined or created automatically
by the system. A coverage point is defined with the keyword coverpoint and can have
a optional label. Listing 5.2 demonstrates some examples.
1 typedef enum {IDLE , SEND , RECEIVE} state_t;

2 class A;

3 logic [0:2] x;

4 logic [0:9] y;

5 state_t state;

6

7 covergroup cov;

8 // basic definition; the coverpoint has 8 bins , one for each

9 // possible value of x; the coverpoint is labeled with "cp_x"

10 cp_x: coverpoint x;

11

12 coverpoint y {

13 // creates 2 bins , one for the values 0 to 10 and one for 12

14 bins b_a = { [0:10], 12 };

15

16 // creates 20 bins one for each value;

17 //b_b [100] ,... , b_b [109], b_b [300] ,... , b_b [309]

18 bins b_b[] = { [100:109],[300:309]} };

19

20 // explicitly creates 5 bins which covers the values

21 //from 500 to 1000

22 bins c_b[5] = {[500:1000]};

23

24 // covers all other possible values of y

25 bins d_b = default;

26 }

27

28 coverpoint state {

29 // creates a bin for the transition IDLE to SEND

33

4 SystemVerilog

30 //and one for IDLE to RECEIVE

31 bins b_a[] = (IDLE => SEND , RECEIVE);

32 }

33 endgroup

34 endclass

Listing 4.15: Functional coverage examples

34

5 Universal Verification Methodology
(UVM)

The Universal Verification Methodology (UVM) is a methodology to verify inte-
grated circuit designs, standardised by Accellera. UVM is mainly based on the Open
Verification Methodology (OVM), but also on VMM (Verification Methodological
Manual) and eRM (e Reuse Methodology).

5.1 Concept

Basically UVM is a class library which provides base classes to build a reusable,
constraint-random and coverage-driven Test Bench. The class library is implemented
in SystemVerilog. “The UVM Test Bench architecture is modular to facilitate the
reuse of groups of verification components either in different projects (horizontal
reuse) or at a higher level of integration in the same project (vertical reuse)” [10]. Fig-
ure 5.1 shows the basic blocks of a UVM Test Bench. The communication between
the blocks is done on transaction-level. This is done with Transaction-Level Mod-
eling (TLM). Every component has a well defined TLM interface to communicate
with other components over TLM channels. These encapsulates every component
and isolates it from changes in other components. Thereby it is simple to replace
one component by another, if the interface stays the same. Anyway, this leads to
highly reusable verification components and Test Benches. The transition from TLM
communication to pin level is done by drivers and monitors.

5.2 UVM Phases

In UVM, during execution of a test, every component runs through several phases.
This process is controlled by the UVM phase controller. As soon as all components
have finished a phase, the next one will be executed. Each component has a virtual

35

5 Universal Verification Methodology (UVM)

Figure 5.1: UVM Test Bench [10]

task or function for every phase. By overriding these callback functions, the devel-
oper fills them with appropriate functionality. It is not necessary to implement all
phases in all components.

build
The construction of the Test Bench component hierarchy is done in this phase. Basi-
cally, at first the component is configured and afterwards all direct sub-components
are created. This is the only phase which is, obviously executed top-down.

connect
In this phase the correspondent components are connected.

end of elaboration
At this point it can be assumed that the component hierarchy is created and all
components are connected. This phase can be used to do some final adjustments.

start of simulation
The start of simulation phase is executed just before time zero. It can be utilized to

36

5.3 Components

print some information, like the components hierarchy, or configuration informa-
tion

run
This is the only simulation time consuming phase, therefore it is implemented as
a task. Stimulus generation and checking of the activities of the Test Bench is done
here. In parallel to this phase a bunch of phases is executed. Therefore, instead of
the run phase, some of these can be implemented to reach a finer granularity.

extract
The extract phase is intended to retrieve and process information which was col-
lected during run phase.

check
This phase is used to check the correctness of the extracted data.

report
In this phase the final reports are created and printed out or written to a report
file.

final
Not yet finished operations are completed in this phase.

5.3 Components

This section describes the basic components and other interesting facilities offered
by the UVM class library.

5.3.1 Factory

“The purpose of the UVM factory is to allow an object of one type to be substituted
with an object of a derived type without having to change the structure of the Test
Bench or edit the Test Bench code” [10]. To use the factory some coding conventions
have to be fulfilled:

37

5 Universal Verification Methodology (UVM)

1. Each component or object must be registered at the factory. This can be done
with one of the following registration macros, ‘uvm_component_utils(my_component
) for components or ‘uvm_object_utils(my_object) to register objects.

2. To allow object creation inside the factory, the constructor of a component or
object has to follow a prototype template and it should contain defaults for the
constructor arguments. The constructor of uvm_component class is
function new(string name, uvm_component parent) for uvm_object it is
function new(string name).

3. Instead of creating components or objects via the new() method, this is done
with m_comp = my_comp::type_id::create("my_component", this) or m_obj = my_obj::

type_id::create("my_object").

To substitute an object with a derived one the static function base_class::type_id::

set_type_override(derived_class::get_type()) is used. The next time base_class::type_id

::create(...) is called, an instance of the derived class is returned.

5.3.2 Configuration database

The uvm_config_db class is the central place to save configurations or other information
that are shared between several components or objects. Generally a top component
(e.g. test) puts configurations into the database and later transactor components (e.g.
driver) reads them out. A common use case is to pass virtual interfaces to the drivers
and monitors.

To put something to the database the method

1 void uvm_config_db #(type T = int)::set(uvm_component cntxt ,

2 string inst_name , string field_name , T value);

is used. Where

• T is the type of the element being saved.

• cntxt and inst name defines the scope in which the element is saved.

• field name is the key of the new entry.

• value is the value of the new entry.

Similar to get an object from the database the method

38

5.3 Components

1 bit uvm_config_db #(type T = int)::get(uvm_component cntxt ,

2 string inst_name , string field_name , ref T value);

is used. Where

• T is the type of the element being saved.

• cntxt and inst name defines the scope in which the searched element is saved.

• field name is the key of the searched entry.

• value will be the searched entry, if the get operation was successful.

• the return value is 1 if successful, 0 if not.

5.3.3 Driver

The driver is directly connected to the DUT and translates from TLM level to pin
level. It receives commands (sequence items) from the sequencer, translates them and
drives the appropriate signals. See Listing 5.3 for an example. A driver is derived
from the library class uvm_driver and parameterised with the type of the sequence
item it should handle. In the build phase the driver tries to get the virtual interface
from the configuration database. However, the core functionality is implemented in
the forever loop in the run_phase task. More precisely, in the example, the function-
ality is in the send_cmd() and also in the send_clk() method. First the driver tries to
get a new sequence item from the sequencer. This method blocks until a new item
is available. Next the item is translated and afterwards it is driven to the DUT. After
that the driver signalises the sequencer that the execution of the current item is done.
Optionally a response can be send back to the calling sequence.
1 class spi_driver extends uvm_driver #(spi_cmd);

2 ‘uvm_component_utils(spi_driver);

3

4 spi_agent_config m_cfg; // spi config

5 virtual interface spi_if vif; // interface to spi

6

7 // Constructor

8 function new (string name="spi_driver", uvm_component parent=null);

9 super.new(name , parent);

10 endfunction : new

11

12 // callback function for the build phase

13 function void build_phase(uvm_phase phase);

14 super.build_phase(phase);

15 //get configuration object from config db

39

5 Universal Verification Methodology (UVM)

16 if(! uvm_config_db #(spi_agent_config)::get(this ,"","

spi_agent_config",m_cfg))

17 ‘uvm_fatal("CONFIG_LOAD","Cannot get() ...");

18 vif = m_cfg.vif;

19 endfunction: build_phase

20

21 // callback function for the run phase

22 //start send_cmd and send_clk threads

23 virtual task run_phase(uvm_phase phase);

24 fork

25 send_cmd ();

26 send_clk ();

27 join

28 endtask : run_phase

29

30 // send_cmd

31 //get cmd from sequencer and send it to the dut

32 virtual protected task send_cmd ();

33 ...

34 forever begin

35 //get new sequence item from the sequencer

36 //note: req is declared in uvm_driver

37 seq_item_port.get_next_item(req);

38 //drive item to the dut

39 vif.csn = 0;

40 ...

41 vif.csn = 1;

42 // signalise that the execution is finished

43 seq_item_port.item_done ();

44 // optionally send a response back to the sequence

45 seq_item_port.put_response(rsp);

46 end

47 endtask : send_cmd

48

49 // create and drive the clock

50 virtual protected task send_clk ();

51 real delay = (1000/(2*m_cfg.m_freq));

52 ...

53 endtask : send_clk

54 endclass : spi_driver

Listing 5.3: Driver example

5.3.4 Monitor

Like a driver, the monitor is also connected to the DUT. However, it is a passive
component. The monitor observes the signal lines and converts the observations into

40

5.3 Components

TLM level sequence items. These monitored items are provided to other components
over the monitors analysis port. Listing 5.4 demonstrates a basic example. A monitor
is derived from uvm_monitor. Basically the monitor runs in an endless loop, waiting
on a new operation to start. Afterwards it creates a new sequence item and fills it
with data, by collecting it from the signal lines. If the operation is finished, the item
is written to the analysis port. This will call the callback method of all listeners on
this port.

1 class spi_monitor extends uvm_monitor;

2 ‘uvm_component_utils(spi_monitor);

3

4 virtual interface spi_if vif; // interface to spi bus

5 spi_agent_config m_cfg; //spi config

6 uvm_analysis_port #(spi_cmd) ap; // analysis port

7 spi_cmd m_item; // spi_cmd collected from the bus

8

9 // Constructor

10 function new (string name="spi_monitor", uvm_component parent=null);

11 super.new(name , parent);

12 endfunction : new

13

14 // build phase

15 function void build_phase(uvm_phase phase);

16 ap = new("ap",this);

17 if(! uvm_config_db #(spi_agent_config)::get(this ,"","

spi_agent_config",m_cfg))

18 ‘uvm_fatal("CONFIG_LOAD","Cannot get() ...");

19 vif=m_cfg.vif;

20 endfunction: build_phase

21

22 //run phase

23 // collect spi commands and responses and create a spi_cmd out of

that

24 virtual task run_phase(uvm_phase phase);

25 forever begin

26 //get command

27 m_item = spi_cmd :: type_id :: create ({ get_full_name (),".spi_cmd"});

28 @(negedge vif.sclk);

29 ...

30 ap.write(m_item); // write item to the analysis port

31 end

32 endtask : run_phase

33 endclass : spi_monitor

Listing 5.4: Monitor example

41

5 Universal Verification Methodology (UVM)

5.3.5 Sequencer

A sequencers routes sequence items to a driver. They are generated by sequences.
A sequencer can be supplied by more than one sequence. To do so, it holds a pri-
ority list of all sequence items which should be executed. A virtual sequencer is
not directly connected to a driver. Instead it delegates sequence items or also se-
quences to a “real” sequencer. A sequencer is derived from the parameterised class
uvm_sequencer. Generally all functionality of a sequencer is already implemented in
this library class. Therefore usually a custom sequencer will look just like in Listing
5.5. The main purpose why writing a new class is to parameterise the base class with
the type of the sequence item.
1 class spi_sequencer extends uvm_sequencer #(spi_cmd);

2 ‘uvm_sequencer_utils(spi_sequencer);

3 // constructor

4 function new (string name="spi_sequencer", uvm_component parent=

null);

5 super.new(name , parent);

6 endfunction : new

7 endclass : spi_sequencer

Listing 5.5: Sequencer example

5.3.6 Agent

An agent encapsulates all modules needed to interact with a specific interface of the
DUT. For example an SPI agent holds a sequencer which provides SPI items to a
driver which is capable to drive these to the SPI interface of the DUT. The appro-
priate monitor observes the bin-level signals and creates TLM level SPI sequence
items out of them. Additionally an agent can have an analysis component to per-
form checks. As well there is a configuration object which allows other components
to configure the agent. As it can be seen in Listing 5.6 the base class is uvm_agent. At
the build phase all components are created. They are connected to each other in the
connect phase.
1 class spi_agent extends uvm_agent;

2 ‘uvm_component_utils(spi_agent);

3

4 spi_agent_config m_cfg;

5 // Components of the agent

6 uvm_analysis_port #(spi_cmd) ap; // Analysis port of the Agent

7 spi_driver m_driver; //spi driver

8 spi_sequencer m_sequencer; //spi sequencer

9 spi_monitor m_monitor; //spi monitor

10

42

5.3 Components

11 // Constructor

12 function new (string name="spi_agent", uvm_component parent=null);

13 super.new(name , parent);

14 endfunction : new

15

16 // callback function for the build phase

17 function void build_phase(uvm_phase phase);

18 super.build_phase(phase);

19 if(! uvm_config_db #(spi_agent_config)::get(this ,"","

spi_agent_config",m_cfg))

20 ‘uvm_fatal("CONFIG_LOAD","Cannot get() ...");

21 // create the components of the agent

22 m_monitor = spi_monitor :: type_id :: create("spi_monitor", this);

23 //a passive agent only holds a monitor

24 if(m_cfg.active == UVM_ACTIVE) begin

25 m_sequencer = spi_sequencer :: type_id :: create("spi_seqr", this);

26 m_driver = spi_driver :: type_id :: create("spi_driver", this);

27 end

28 endfunction : build_phase

29

30 // callback function for the connect phase

31 function void connect_phase(uvm_phase phase);

32 //make the monitor analysis port visible outside of the agent

33 ap = m_monitor.ap;

34 if(m_cfg.active == UVM_ACTIVE) begin

35 // connect driver and sequencer

36 m_driver.seq_item_port.connect(m_sequencer.seq_item_export);

37 end

38 endfunction : connect_phase

39

40 endclass : spi_agent

Listing 5.6: Agent example

5.3.7 Scoreboard

An essential part of a self-checking environment is a scoreboard. It verifies the op-
erations collected by the monitors. The composition of a scoreboard depends on the
DUT, but basically it compares actual and expected values and may record statistical
information. The library base class is uvm_scoreboard.

5.3.8 Coverage monitor

A coverage monitor is used to collect functional coverage. This is done with cover-
age functionality supplied by SystemVerilog. It does not essentially have to be in a

43

5 Universal Verification Methodology (UVM)

separate class. The coverage can also be taken in the scoreboard or in the monitor or
somewhere else.

5.3.9 Environment

The environment is somehow the top level class of the Test Bench. It holds agents for
all interfaces of the DUT, a scoreboard and optionally a virtual sequencer and other
analysis components like a coverage monitor. Furthermore there is a configuration
object which allows tests to configure the environment. There is also a base class
for environments, uvm_env. In the example in Listing 5.7 the environment holds two
agents, a virtual sequencer and a scoreboard.
1 class cts_env extends uvm_env;

2 ‘uvm_component_utils(cts_env);

3 // Components of the environment

4 epc_agent m_epc_agent;

5 spi_agent m_spi_agent;

6 cts_scoreboard m_sb;

7 cts_virtual_sequencer m_vsqr;

8

9 // Constructor

10 function new(string name="cts_env", uvm_component parent=null);

11 super.new(name , parent);

12 endfunction : new

13

14 //build phase

15 function void build_phase(uvm_phase phase);

16 super.build_phase(phase);

17 // create sub components

18 m_epc_agent = epc_agent :: type_id :: create("epc_agent", this);

19 m_spi_agent = spi_agent :: type_id :: create("spi_agent", this);

20 m_sb = cts_scoreboard :: type_id :: create("scoreboard",this);

21 m_vsqr = cts_virtual_sequencer :: type_id :: create("vsqr",this);

22 endfunction : build_phase

23

24 // connect phase

25 function void connect_phase(uvm_phase phase);

26 //the virtual sequencer holds instances of the sequencer

27 //in the two agents.

28 m_vsqr.m_epc = m_epc_agent.m_sequencer;

29 m_vsqr.m_spi = m_spi_agent.m_sequencer;

30 // connect the scoreboard to the analysis ports of the agents

31 m_epc_agent.ap.connect(m_sb.epc_ap_imp);

32 m_spi_agent.ap.connect(m_sb.spi_ap_imp);

33 endfunction: connect_phase

34 endclass : cts_env

Listing 5.7: Environment example

44

5.3 Components

5.3.10 Sequences

Sequences are used for stimulus generation. Figure 5.2 demonstrates the architecture
of the sequence based stimulus generation. Generally a sequence creates sequence
items, sends them via a sequencer to a driver. The driver converts the item into
binary signals and drives them to the DUT. Optionally the driver sends a response
back to the sequence.

Sequence

Sequencer Driver DUT

Sequence
item

Sequence
item

UVM Sequence Base Stimulus Generation Architecture

Figure 5.2: UVM Sequence Base Stimulus Generation Architecture [10]

Sequences are uvm_objects, therefore they have a shorter lifetime then components.
Every sequence has a task called body. After the creation of a sequence, this task is
executed and afterwards the sequence can be discarded. The body task is used to
create and execute other sequences, or to create sequence items and send them to a
driver, via a sequencer. The UVM base class is the parameterized class uvm_sequence

#(type REQ=uvm_sequence_item, type RSP=REQ). To execute a sub-sequence or send a se-
quence item, the ‘uvm_do() macros can be used. They support sequences and se-
quence items. In Listing 5.8 line 12 an item is sent to the driver and additional
constraints for the randomization of the item are added. In line 19 a sub-sequence
is executed. A virtual sequence only executes sub-sequences and does not send se-
quence items to a driver.

1 class spi_seq extends spi_base_seq;

2 ‘uvm_object_utils(spi_seq)

3 function new(string name = "spi_seq");

4 super.new(name);

5 endfunction : new

6 virtual task body();

7 spi_cmd cmd;

8 some_seq seq;

9 //use uvm macros to create a spi cmd , add some

10 // constraints , randomize it and send it via a

45

5 Universal Verification Methodology (UVM)

11 // sequencer to the driver

12 ‘uvm_do_with(cmd ,

13 {m_cmd == SPI_WRITE;

14 m_opt_cmd == ’h0;

15 m_address == ’h0001;

16 })

17 //use a macro to execute a sub -sequence. This time after

18 // creation and randomization the body task is executed.

19 ‘uvm_do(seq)

20 endtask: body

21 endclass: spi_seq

Listing 5.8: Sequence example

5.3.11 Test

Each test class defines a test scenario for the Test Bench. A test creates the envi-
ronment, configures the components by setting up configuration objects and starts
sequences. It also configures which version of a component should be created by
overriding the specific entry in the factory. Typically one will create a base test class
in which, among others, the environment is created, configuration objects declared
and maybe a base sequence is started. Derived test classes then configures the com-
ponents and chooses which sequence should be started. Listing 5.9 shows parts of
a base class as well as of a derived test class. In the spi_base_test class the environ-
ment is created and also the configuration object. Also the interfaces are fetched. In
the spi_test class the attributes of the configuration object are set to a specific value.
Also the base sequence is overwritten in the factory. Therefore the create method,
called in in the end_of_elaboration_phase() callback method, will return an instance of
spi_seq. The sequence then is executed during the run_phase().
1 class spi_base_test extends uvm_test;

2 ...

3 cts_env m_env;

4 spi_base_seq m_seq;

5 spi_agent_config m_spi_agent_cfg;

6 // Build phase of the test

7 function void build_phase(uvm_phase phase);

8 super.build_phase(phase);

9 // create environment and configuration object

10 m_env = cts_env :: type_id :: create("env",this);

11 m_spi_agent_cfg = spi_agent_config :: type_id :: create("spi_at_cfg");

12 //get interface from config db

13 if(! uvm_config_db #(virtual spi_if)::get(this , "", "SPI_vif",

m_spi_agent_cfg.vif))

14 ‘uvm_fatal("CONFIG_LOAD","Cannot get() ...");

15 endfunction : build_phase

46

5.3 Components

16

17 virtual function void end_of_elaboration_phase(uvm_phase phase);

18 // create main sequence

19 m_seq = spi_base_seq :: type_id :: create("top_seq");

20 // randomize the sequence

21 m_seq.randomize ();

22 endfunction : end_of_elaboration_phase

23

24 // Run phase of the test

25 virtual task run_phase(uvm_phase phase);

26 phase.raise_objection(this);

27 // start sequence on the sequencer

28 m_seq.start(m_env.m_spi_agent.m_sequencer);

29 phase.drop_objection(this);

30 endtask : run_phase

31 endclass : spi_base_test

32

33 class spi_test extends spi_base_test;

34 ...

35 virtual function void build_phase(uvm_phase phase);

36 super.build_phase(phase);

37 // configure spi agent

38 m_spi_agent_cfg.m_cpol = 1;

39 m_spi_agent_cfg.m_freq = m_spi_agent_cfg.std_freq / 2;

40 // write configuration objects into the db

41 uvm_config_db #(spi_agent_config)::set(this , "*", "spi_agent_config

", m_spi_agent_cfg);

42 // specify that a sequence of type spi_seq should be executed

43 spi_base_seq :: type_id :: set_type_override(spi_seq :: get_type ());

44 endfunction

45 endclass : spi_test

Listing 5.9: Test example

5.3.12 Top module

At least one static module is needed to connect the Test Bench with the DUT and to
create a test object. To start a test the method run_test() is used. There are two ways
to specify which test should be started. One possibility is to call the method with
the class name of the test as an argument. A more flexible option is to use the plus-
argument +UVM_TESTNAME=test_name at the simulator call. However which possibility
is used, the UVM environment automatically creates an object of the specified test
class via the factory.

47

6 Device Under Test (DUT)

The aim of the Comprehensive Transponder System (CTS) called DUT is to have
an RFID platform which supports multiple frequencies and multiple standards. But
still is a small passive tag. At the moment the systems supports the EPC standards
for High Frequency (HF) and Ultra High Frequency (UHF) as well as the Near Field
Communication (NFC) standards ISO/IEC 14443 and ISO 15693.

The CTS project was started some years ago and is currently getting a larger re-
design. Nevertheless,

“The ambition of the project is the integration of multiple radio frequency carrier-
and thus multiple standard technologies into one transponder system without in-
creasing cost and without compromising performance. Although the comprehensive
transponder system supports multiple standards and technologies it may consist
only of one simple antenna and a very small chip both connected using just two
pins like it is the case for existing transponders” [13].

Figure 6.1 shows a basic block diagram of the system. Besides the two contactless
interfaces, there is a sensor interface to allow the connection of sensors, like a tem-
perature or a Hall effect sensor. Additionally the system has an SPI slave interface
which allows a simpler configuration. Also there is a NVM in form of an Electrically
Erasable Programmable Read-Only Memory (EEPROM). Additionally the platform
includes a SPI master interface which allows the communication with other devices.
All these blocks are connected via a Wishbone Bus. The light grey colored blocks are
used by the Test Bench.

The EPC module supports the standards EPC Class-1 Generation-2 UHF as well as
EPC Class-1 HF as they are described in chapter 2. It is divided in two parts. The
analog part is doing for instance the modulation and demodulation, but also detects
if the signal is HF or UHF. The digital part implements the protocol with the help
of a small RISC processor. An older version, implemented as a classic state machine,
can be seen in [8] and [13].

The SPI slave interface can be used to configure the device and offers a direct and
faster access to the NVM. It is basically described in chapter 3. The SPI master uses
another data format and protocol. It is not described in this thesis because it is not
used.

49

6 Device Under Test (DUT)

EPC

SPI Slave
ISO 15693

ISO/IEC 14443

NVM

Sensor IF

w
is

h
b

o
n

e
b

u
s

CTS Platform

SPI Master

Figure 6.1: CTS Platform Block Diagram

50

7 Test Bench

In this chapter the Test Bench is discussed. It is written in SystemVerilog with using
the UVM class library to allow a constraint-random testing. The primary goal was
to write a Test Bench for the EPC block which is getting a large redesign. Later on
an agent for the, also redesigned, SPI slave module was added.

7.1 Overview

Figure 7.1 gives a general overview over the classes and modules of the Test Bench
and the connected DUT.

spi_monitor

spi_driverspi_sequencer

spi_agent

cts_scoreboard

cts_env

epc_monitor

epc_driverepc_sequencer

cts_virtual_
sequencer

cts_sb_config

epc_agent_config

spi_agent_config

configuration

SPI_Slave

EPC

WB

epc_agent

SCK

NCS

MOSI

MISO

clk

rst

rfEnvelope

HfDetected

modulatedOutput

Figure 7.1: Overview blockdiagram of the Test Bench

On the left side is the Test Bench. The top level class is called cts_env. It contains
an agent which handles with the SPI interface (spi_agent), as well as one for the

51

7 Test Bench

EPC interface (epc_agent). They are connected with the appropriate module of the
DUT on the right hand side. This is done via SystemVerilog interfaces (they are not
printed as blocks in the figure). The EPC agent is connected directly to the digital
part of the EPC module. The signals can be seen in the figure and are described in
the following:

• clk: System clock

• rst: System reset

• rfEnvelope: Encoded data input stream

• HfDetected: HF or UHF mode

• modulatedOutput: Encoded data output stream

The SPI agent is connected to the slave via the signals described in chapter 3. The
agents are configured with either the epc_agent_config or the spi_agent_config config-
uration object.

Furthermore the environment holds a virtual sequencer to allow sequences to make
use of both agents. Last but not least the scoreboard holds a model of the DUT
to perform checks and functional coverage. The scoreboard is configured with the
cts_sb_config configuration object.

7.2 EPC Agent

The epc_agent class contains all the components that are needed to drive EPC com-
mands to the EPC module and to collect the responses. The epc_driver catches com-
mands (epc_cmd) from the epc_sequencer, converts them and drives the signal lines.
The epc_monitor receives the symbols, converts them to sequence items (epc cmds
also contains the response) and writes the items to the analysis port. Additionally the
monitor signalises the driver when the response is finished by putting the collected
item onto a separate transaction channel. In some cases (e.g. QUERY commands) the
driver returns the response back to the calling sequence over the response channel
of the sequencer.

The agent is configured by setting the attributes of a epc_agent_config configuration
object and saving it afterwards into the config db. The following attributes can be
set:

• hf uhf: Use HF or UHF mode

• freq: System frequency

52

7.2 EPC Agent

• tari: reference time Tari

• times: A structure for the values of the length of data-0, data-1, delimiter, RT-
Cal, TRCal and PW.

Additionally the object offers two methods to allow an easier and faster configu-
ration. The set_std_values(hf_uhf_e hf_uhf) sets all other attributes to some standard
values dependent on the mode. With set_std_times(hf_uhf_e hf_uhf, real tari) also
the length of tari can be defined. The other times are set as multiples of tari.

7.2.1 Commands

The various EPC commands are implemented as sequence items. All commands are
inherited from the base class epc_cmd. Figure 7.2 figures the inheritance diagram for
epc_cmd and gives an overview of all implemented commands.

epc_cmd

epc_access_cmd

epc_ack_cmd

epc_kill_cmd

epc_lock_cmd

epc_nak_cmd

epc_query_adjust_cmd

epc_query_cmd

epc_query_rep_cmd

epc_read_cmd

epc_req_rn_cmd

epc_reset

epc_select_cmd

epc_write_cmd

Figure 7.2: Inheritance diagram for epc cmd

The base class has three basic variables and several virtual methods. The members
are:

• epc_cmds_e m_cmd: An enumeration type which represents the command code in
a readable form.

• logic m_req_data[]: The remaining part of the command in form of a bit stream
(dynamically allocated).

• logic m_rsp_data[]: The possible response in form of a bit stream (dynamically
allocated).

All the three variables are declared protected, so they can only be manipulated from
inside of this or a inherited class.

The methods offers only rudimentary functionality and some of them will be usually
overwritten in a specialised class.

53

7 Test Bench

• set_req_data(logic data[]): This method sets the fields of the command out of
a bit stream. It necessarily has to be overwritten in a specialised command
class. Typically the monitor uses this method after reading the symbols and
converting them into a bit stream to fill the request part of a command object
with contents. However, in the base method only m_req_data is set to data.

• set_rsp_data(logic data[]): This is the equivalent of the prior method for the
response fields of a command object.

• get_req_data(ref logic data[]): The opposite of set_req_data() is done by this
method. The driver then uses this method to generate a bit stream to send it to
the DUT afterwards.

• set_rsp_data(ref logic data[]): This method simply returns m_rsp_data and is
not declared as virtual.

• is_valid_cmd(): The scoreboard uses this method to perform a basic check if
a valid command was transmitted. In the base class the method proves if the
length of the command (without the command code) is larger than a minimum
size of four bits.

• is_valid_rsp(): Similar to the previous method, this one checks if the response
is valid. In epc_cmd this method does not have a functionality, it always re-
turns false. Therefore classes of commands with responses must override this
method.

• get_cmd(): Simple returns m_cmd;

• get_cmd_name(): Returns the name of the command as a string.

The Query command serves as an example of how a command is implemented.
The other commands are basically realized alike. Listing 7.1 shows the epc_query_cmd

class.

As it can be seen at the lines 8 to 14 all fields of the command are declared as to
be random. There are no constraints inside the class. If desired they are defined at
object creation. The response fields are declared at lines 17 and 18. Understandably
they are not random.

At the lines 28 to 40 a realization of the set_req_data() method can be seen. The bit
stream saved in data is first converted into a packed array, because that makes it
easier to assign the appropriate parts to the fields.

The set_rsp_data() method does the same for the response fields. The checking at
row 48 is needed if a FM0 encoding is used (see also section 7.2.3). Because the crc5

field is only present in HF mode the testing at line 51 is needed.

54

7.2 EPC Agent

At the rows 58 to 68 the creation of a bit stream out of the command fields is demon-
strated. The command code and all other fields are concatenated to one packed array.
Because m_req_data is an unpacked array, the foreach loop is needed to convert tmp to
an unpacked array. Afterwards a 5 bit long CRC is generated and appended to the
bit stream.

The lines 71 to 83 presents the check methods is_valid_cmd() and is_valid_rsp(). They
simply prove if the command or the response bit stream are of valid length and if
the crc check is correct.
1 class epc_query_cmd extends epc_cmd;

2 ‘uvm_object_utils(epc_query_cmd);

3

4 localparam static_size=17;

5 localparam cmd_code=’b1000;

6

7 // command fields

8 rand logic m_dr;

9 rand logic[0:1] m_m;

10 rand logic m_tr_ext;

11 rand logic[0:1] m_sel;

12 rand logic[0:1] m_session;

13 rand logic m_target;

14 rand logic[0:3] m_q;

15

16 // response fields

17 logic[0:15] m_rn16;

18 logic[0:4] m_crc5; //only for HF

19

20 // Constructor

21 function new(string name = "epc_query_cmd");

22 super.new(name);

23 m_cmd = QUERY;

24 endfunction : new

25

26 // set_req_data: sets the fields of the command out of a bitstream

27 // input data: bitstream

28 virtual function void set_req_data(logic data []);

29 logic[0:static_size -1] tmp;

30

31 super.set_req_data(data);

32 for (int i=0; i<static_size; i++) tmp[i] = data[i];

33 m_dr = tmp[4];

34 m_m = tmp[5:6];

35 m_tr_ext = tmp[7];

36 m_sel = tmp[8:9];

37 m_session = tmp[10:11];

38 m_target = tmp[12];

39 m_q = tmp[13:16];

40 endfunction: set_req_data;

55

7 Test Bench

41

42 // set_rsp_data: sets the fields of the response out of a bitstream

43 // input data: bitstream

44 virtual function void set_rsp_data(logic data []);

45 super.set_rsp_data(data);

46

47 // handle dummy -1 if it is still in the data

48 if (m_rsp_data.size() == 17 || m_rsp_data.size() == 22)

49 m_rsp_data=new[m_rsp_data.size()-1](m_rsp_data);

50 for(int i=0; i<16; i++) m_rn16[i] = m_rsp_data[i];

51 if (m_rsp_data.size() > 17)

52 for(int i=16; i<21; i++) m_crc5[i-16] = m_rsp_data[i];

53 endfunction: set_rsp_data;

54

55 // get_req_data

56 // creates a bitstream out of the command fields and generates crc

57 // output data: bitstream

58 virtual function void get_req_data(ref logic data []);

59 logic[0:static_size -1] tmp;

60 logic crc[] = new[5];

61

62 m_req_data = new[static_size];

63 tmp={cmd_code ,m_dr ,m_m ,m_tr_ext ,m_sel ,m_session ,m_target ,m_q};

64 foreach (m_req_data[i]) m_req_data[i] = tmp[i];

65 helpers :: generate_crc(crc , m_req_data);

66 m_req_data = new[m_req_data.size()+crc.size()]({ m_req_data ,crc});

67 super.get_req_data(data);

68 endfunction: get_req_data;

69

70 // is_valid_cmd: simple check if the cmd is valid

71 virtual function bit is_valid_cmd ();

72 return m_req_data.size()==22&& helpers :: is_valid_crc(m_req_data ,5);

73 endfunction: is_valid_cmd;

74

75 // is_valid_rsp: verifies rsp

76 virtual function bit is_valid_rsp ();

77 if (m_rsp_data.size() == 16)

78 return 1;

79 if (m_rsp_data.size() == 21) begin

80 return helpers :: is_valid_crc(m_rsp_data ,5);

81 end

82 return 0;

83 endfunction: is_valid_rsp;

84 endclass : epc_query_cmd

Listing 7.1: Realization of the Query command

56

7.2 EPC Agent

7.2.2 Driver

The driver has two main tasks to do. First creating the clock and sending it to the
DUT. Second getting EPC commands from the sequencer, translating them and driv-
ing the signal lines.

First the driver initializes the DUT by setting the reset line low and then high again.
Next the HfDetected i line is set appropriate to the configuration. After a new se-
quence item is available the driver sends it to the DUT. How this is done can be seen
in Listing 7.2.

1 virtual protected task send_cmd ();

2 logic data [];

3 epc_query_cmd query;

4

5 //send preamble/frame_sync

6 if (req.get_cmd () == QUERY) begin

7 send_preamble ();

8 // update the times

9 $cast(query ,req);

10 if (m_cfg.m_hf_uhf == UHF)

11 m_calc_times.calc_std_times_uhf(query.m_dr);

12 else

13 m_calc_times.calc_std_times_hf(query.m_dr);

14 end

15 else

16 send_frame_sync ();

17

18 //send PIE encoded data

19 req.get_req_data(data);

20 for (int i=0; i<data.size(); i++) begin

21 vif.rfEnvelope_i = 1;

22 if (data[i] == 0)

23 #(m_times.data_0 - m_times.pw);

24 else if (data[i] == 1)

25 #(m_times.data_1 - m_times.pw);

26 vif.rfEnvelope_i = 0;

27 #(m_times.pw);

28 end

29 vif.rfEnvelope_i = 1;

30

31 //wait the appropriate time until sending the next cmd

32 if (req.get_cmd () == SELECT) begin

33 #m_calc_times.T4;

34 end

35 else begin

36 received_rsp = 0;

37 fork

38 begin : wait_for_rsp

57

7 Test Bench

39 @(posedge vif.modulatedOutput_o);

40 received_rsp = 1;

41 end

42 begin : wait_for_T1

43 if (req.get_cmd () == WRITE || req.get_cmd () == LOCK || req.

get_cmd () == KILL)

44 #20ms;

45 else

46 #m_calc_times.T1_max;

47 end

48 join_any

49 disable fork;

50

51 if (received_rsp) begin

52 rsp_finished = 0;

53 wait(rsp_finished);

54 #m_calc_times.T2_min;

55 end

56 else

57 #m_calc_times.T3;

58 end

59 #10;

60 endtask: send_cmd

Listing 7.2: Send command task

First, if the command is a QUERY, instead of a a frame sync a preambel has to be
sent. Also the link timing could have been changed, because the dr parameter is set
in a QUERY. Therefore these times must be updated.

Next, the command is PIE encoded and sent to the DUT. This is simply done by
setting rfEnvelope i high for the appropriate time.

Afterwards the driver has to wait a proper time until sending the next command is
allowed. If it was a SELECT it is simply the time T4. Else, either there is a response
within a time interval or not. Depending on the command the interval is either T1

or 20 ms. In case of a received response, the driver must wait until it is finished
(signalised by the monitor) and the time T2 afterwards. Otherwise the interval to
wait is the time T3.

If it was one of the QUERY commands or a REQ RN the driver puts the response on
the response channel and afterwards it is ready to handle with a new command.

58

7.2 EPC Agent

7.2.3 Monitor

The monitor reads commands and responds from the signal lines, decodes them and
creates sequence items. The sequence items are then provided to the scoreboard.

A negative edge on rfEnvelope i indicates the start of a new command. The preamble
or the frame sync is skipped. The PIE encoded symbols are encoded by measuring
the time between two positive edges. If the time interval is shorter than a pivot
(RTCall/2), the symbol represents a ’0’ else it is a ’1’. This is done until the time
interval is larger then the duration of a data-1 symbol. After the bit stream is col-
lected, the command code is decoded and the appropriate sequence item is created
and filled with data. If the command is a QUERY, the parameters dr, tr ext and M
are saved, because they are needed for the correct decoding of the response. Also
the link times (T1, T2, . . .) are calculated.

Afterward the monitor waits until a new command or a response appears. If it is a
response, the time between the last rising edge of rfEnvelope i (end of command)
and the first falling edge of modulatedOutput o (begin of the response) is measured
and verified. If the interval was to long, an error message is printed. Next the sym-
bols are decoded. Depending on the M parameter and the mode (HF or UHF), the
response is either FM0, Miller or Manchester encoded.

FM0 encoding
The signal is sampled with twice the BLF. The sampling continues until there are
more then three consecutive bits with the same value. Three bits with the same value
are only possible in the preamble. The monitor also proves if the symbol duration is
inside the allowed range.

This sampled data stream is now used to decode the symbols. A ’0’ is represented by
two different sampled values, a ’1’ by two equal ones. Listing 7.3 shows the source
code of the decoding. In line 7 it is checked that there is a phase inversion between
two consecutive symbols.
1 data = new[(data_en.size()-count)/2];

2 for(int i=0; count <data_en.size(); count+=2, i++) begin

3 if (data_en[count] == data_en[count+1])

4 data[i] = 1;

5 else if (data_en[count] != data_en[count+1])

6 data[i] = 0;

7 if (data_en[count -1] == data_en[count]) begin

8 data[i] = 1’bx;

9 ‘uvm_error("FM0 sequence error","No phase inversion occurred!")

10 end

11 end

Listing 7.3: FM0 decoding

59

7 Test Bench

Also the correctness of the preamble is proved, before. A Problem is that in some
cases the dummy-1 is included at the end and in other cases not. The first one hap-
pens when the dummy-1 is represented by a ’11’, the second one by a ’00’. Therefore
this is handled later in the epc_cmd.

Miller encoding
The signal is also sampled with twice the BLF, but it continues only until there are
more then two successive equal values. The BLF is the frequency of the sub-carriers,
this means that the symbol rate is either half, a quarter or an eighth of BLF.

The decoding can be seen in Listing 7.4. A ’0’ is represented by a 2*M long zero-one
sequence (of course also a one-zero). A ’1’ is detected by having the same value at
the beginning and the end of the sequence and consists of two zero-one sequences
in the first and second half (see also lines 12 to 16).
1 data = new[(data_en.size()-count)/(2*M)];

2 for(int i=0; count <data_en.size(); count +=(2*M), i++) begin

3 if (is_a_one(data_en , count , 2*M))

4 data[i] = 1;

5 else if (is_one_zero(data_en , count , 2*M))

6 data[i] = 0;

7 else begin

8 data[i] = 1’bx;

9 ‘uvm_error("MILLER sequence error","Incorrect encoded!")

10 end

11 end

12 protected function bit is_a_one(logic data[], int from , int length);

13 return data[from] === data[from+length -1]

14 && is_one_zero(data , from , length/2)

15 && is_one_zero(data , from+length/2, length/2);

16 endfunction: is_a_one

Listing 7.4: Miller decoding

Certainly also the preamble is checked upon correctness. With Miller encoding, there
is no problem to detect and remove the dummy-1.

Manchester encoding
The signal is still sampled with twice the BLF. The process pursues until more then
2 ∗ Nsc + 1 (Number of sub-carriers) values are equal. This maximum number of the
same values happens at a data-0, data-1 sequence.

The following decoding is done as it can be seen in Listing 7.5. If the first half of a
symbol is zero and the second half a one-zero sequence, the symbol represents a ’1’.
If it is in the inverse order, it is a ’0’.

60

7.3 SPI Agent

1 data = new[(len -count)/(2*M)];

2 for(int i=0; count <len; count +=(2*M), i++) begin

3 if (is_zero(data_en , count , M) && is_one_zero(data_en , count+M, M))

4 data[i] = 1;

5 else if (is_one_zero(data_en , count , M) && is_zero(data_en , count+M,

M))

6 data[i] = 0;

7 else begin

8 data[i] = 1’bx;

9 ‘uvm_error("MANCHESTER sequence error","Incorrect modulated!")

10 end

11 end

Listing 7.5: Manchester decoding

The preamble and the end-of-file are checked as well.

After decoding the data is saved in the sequence item (the EPC command) and pub-
lished over the analysis port. Besides also the driver is informed that the transmission
is finished now.

7.3 SPI Agent

All components needed to communicate with the SPI interface are combined in
the spi_agent class. The spi_sequencer supplies sequence items (the spi_cmds) to the
spi_driver. The driver translates the items into signals and drives them on the lines.
The spi_monitor monitors the signal lines, creates an spi_cmd and offers it over a anal-
ysis port to the scoreboard.

The agent is configured over a spi_agent_config configuration object. The following
attributes can be set:

• m_freq: Frequency of the SPI clock (default 366 kHz).

• m_write_wait_time: Time to wait after a write command (default 3 ms, because
the NVM write is very slow).

• m_read_wait_time: Time to wait after a read command (default 15 µs).

• m_cpol: Value of the clock at idle (default ’1’).

However, if only the SPI interface is tested, the EPC agent is still needed. This is be-
cause the EPC driver generates the system clock and reset for the tag. The frequency
for the SPI only case is 2.2 MHz.

61

7 Test Bench

7.3.1 Commands

Similar to EPC there is a base class, called spi_cmd and an inherited class for each of
the three commands WRITE, READ and STATUS. The base class has the following
attributes, which are needed by all commands.

• m_cmd: Determines the type of the command. It is of the enumeration data
type spi_cmds_e, which has three different values, SPI WRITE, SPI READ and
SPI STATUS. The field also represents the instruction code. The command type
is declared protected.

• m_opt_cmd is for the optional NVM command code

The methods offers basic functionality and most of them are usually overwritten or
rather enhanced in the inherited classes to handle with the additional attributes.

• get_cmd(): returns m cmd since it is protected

• get_cmd_name(): returns the command type in a readable form

• get_req_data(ref logic data[]): Creates the bit stream of the request out of the
attributes of the command. In the base class the method creates the instruction
word. The specialised classes appends the other words, if present.

• set_req_data(logic data[]): Does the opposite of the prior method.

• set_rsp_data(logic data[]): Sets the response attributes out of a bit stream.

• get_rsp_length(): Returns the length of the response. Primary this is needed by
the driver.

• do_status_compare(spi_cmd item): This method is used by the scoreboard to prove
if the response to a STATUS command is valid. It only has a functionality
implemented in spi_read_cmd and spi_write_cmd.

Besides the first two methods all other are declared virtual to allow polymorphism.

As an example for a inherited class the spi_read_cmd has two additional attributes,
m_address to for the address to read from and m_rdata for the responded requested
data.

In the get_req_data() method at first the method of the base class is called. Afterwards
the address is added to the bit stream. set_req_data() works in the same principle.
The command fields are set by the super method, afterwords the address field is
set. In the set_rsp_data() method the responded data is assigned to the attributes.
get_rsp_length() returns the length of the response in bits, which is 16 in this case.
do_status_compare compares the response of a STATUS command with the attributes
of this object and prints errors in case some are not equal.

62

7.3 SPI Agent

7.3.2 Driver

The driver has to generate the SPI clock as well as to transmit the commands to the
DUT.

The clock generating task supports enabling and disabling of the clock signal. As
well as different idle levels (CPOL). This is defined in the configuration object.

The send command task is presented in Listing 7.6. The driver starts at the moment
the system reset is deasserted. After a new request is available from the sequencer
the transmission starts. First the SPI slave is selected and the clock is enabled. Next
the sequence item is transformed into a bit stream (line 14). Afterwards the bits are
driven onto the MOSI signal line. Depending on the CPOL parameter, this is done
either on the rising or the falling edge of SCLK.

If it is a READ the driver now waits a configured time the tag needs to get the
response ready. After that the response is clocked out. The information about the
length of the response is supplied by the sequence item. In case of a WRITE the
driver has to wait for a configured time until the tag is ready again. During waiting
times the clock is disabled. At last the chip is deselected and the driver waits until a
new command is available.

1 virtual protected task send_cmd ();

2 logic req_data [];

3

4 #50ns;

5 @(posedge vif_epc.rst_i);

6 vif.mosi = 0;

7 vif.csn = 1;

8 forever begin

9 seq_item_port.get_next_item(req);

10 vif.csn = 0;

11 #400ns;

12 clk_on = 1;

13

14 req.get_req_data(req_data);

15 //send command

16 foreach(req_data[i]) begin

17 @(negedge vif.sclk iff m_cfg.m_cpol == 1

18 or posedge vif.sclk iff m_cfg.m_cpol == 0);

19 vif.mosi = req_data[i];

20 end

21

22 //wait until rsp is finished

23 @(posedge vif.sclk iff m_cfg.m_cpol == 1

24 or negedge vif.sclk iff m_cfg.m_cpol == 0);

25 if(req.get_cmd () == SPI_READ) begin

26 clk_on = 0;

63

7 Test Bench

27 #m_cfg.m_read_wait_time

28 clk_on = 1;

29 end

30 for(int i=0; i<req.get_rsp_length (); i++) begin

31 @(posedge vif.sclk iff m_cfg.m_cpol == 1

32 or negedge vif.sclk iff m_cfg.m_cpol == 0);

33 end

34 clk_on = 0;

35 if(req.get_cmd () == SPI_WRITE)

36 #m_cfg.m_write_wait_time;

37 else

38 #500ns;

39

40 vif.csn = 1;

41 seq_item_port.item_done ();

42 end

43 endtask : send_cmd

Listing 7.6: SPI driver, send command task

7.3.3 Monitor

The monitor reads SPI commands and their possible response and combines them
to a sequence item. The item is then provided to the scoreboard over an analysis
port.

At first the monitor reads the instruction word to determine which type of SPI
command should be created. Afterwards the appropriate object is created and the
req_data and rsp_data arrays are resized to the required length. Next the remaining
part of the request (if exist) is read from MOSI. After this the response is read from
MISO. With the help of the set methods the sequence item is filled with data and
than published over the analysis port.
1 virtual task run_phase(uvm_phase phase);

2 logic req_data[], rsp_data [];

3

4 forever begin

5 //get command

6 req_data = new[16];

7 @(negedge vif.sclk iff m_cfg.m_cpol == 1

8 or posedge vif.sclk iff m_cfg.m_cpol == 0);

9 foreach(req_data[i]) begin

10 @(posedge vif.sclk iff m_cfg.m_cpol == 1

11 or negedge vif.sclk iff m_cfg.m_cpol == 0);

12 req_data[i] = vif.mosi;

13 end

14

64

7.3 SPI Agent

15 case(spi_cmd :: convert_to_cmd_e(req_data))

16 SPI_WRITE: begin

17 m_item = spi_write_cmd :: type_id :: create ();

18 req_data = new[48](req_data);

19 end

20 SPI_READ: begin

21 m_item = spi_read_cmd :: type_id :: create ();

22 req_data = new[32](req_data);

23 rsp_data = new[16];

24 end

25 SPI_STATUS: begin

26 m_item = spi_status_cmd :: type_id :: create ();

27 rsp_data = new[48];

28 end

29 endcase

30

31 //read remaining request

32 for (int i = 16; i < req_data.size(); i++) begin

33 @(posedge vif.sclk iff m_cfg.m_cpol == 1

34 or negedge vif.sclk iff m_cfg.m_cpol == 0);

35 req_data[i] = vif.mosi;

36 end

37 //read response

38 foreach(rsp_data[i]) begin

39 @(posedge vif.sclk iff m_cfg.m_cpol == 1

40 or negedge vif.sclk iff m_cfg.m_cpol == 0);

41 rsp_data[i] = vif.miso;

42 end

43

44 m_item.set_req_data(req_data);

45 m_item.set_rsp_data(rsp_data);

46 ap.write(m_item);

47 end

48 endtask : run_phase

Listing 7.7: SPI monitor, run phase task (monitoring)

65

7 Test Bench

7.4 Scoreboard

An automatic validation is indispensable for exhaustive constraint-random testing.
Therefore, the scoreboard is one of the major classes in the Test Bench. It holds a
model of the tag and validates the responses of the tag by using it.

The scoreboard, or basically the model, is configured by a configuration object called
cts_sb_config. It is needed to define the model tags memory. There are attributes to
describe the size for each memory block of the EPC memory. It is also possible to
initialize the memory with a file. The path to the file has to be set in the configuration
object. As well the start addresses of each block inside the file has to be defined. The
start address and the memory size are defined in multiples of words.

Additionally, the scoreboard holds three coverage groups to allow the calculation of
functional coverage.

• cmds_cg: This group covers which commands were used during the test run.

• states_cg: covers which states were visited during the test run

• state_trans_cg: This group records which possible state transitions were per-
formed. Figure 7.4 shows which transitions are allowed.

Every check starts in either the write_EPC or the write_SPI method. This methods are
called by the corresponding monitor when writing a sequence item to the analysis
port. In this methods the items are delegated to the appropriate check method. In the
check method the response of the command is verified and the model is updated.
Afterwards the functional coverage groups are sampled.

The check methods are basically large if-else trees. Figure 7.3 shows such a tree for
the write command. Arrows out of the bottom edge of a diamond are to follow in
case the condition is true. Out of the side edges it is for the case the condition is
false. If there is more than one condition or process following, they are executed in
order from left to right. As it can be seen most of the processes print error messages.
This is done by using the ‘uvm_error(ID,msg) or the ‘uvm_fatal(ID,msg) macro. They
print the error in a special format. The error macro prints the message and counts
the errors grouped by ID. The fatal macro prints the message and ends the run. A
fatal is used if the model can not be set to a valid state because of the error. In the
example the ‘uvm_fatal macro is used if the data should be saved into the model.

66

7.4 Scoreboard

tag_state = OPEN or SECURED

rsp_size > 0

invalid cmd handle
invalid cmd invalid rsp

invalid rsp handle valid mem access

fatal: shouldn’t give a rsp fatal: shouldn’t give a rsp fatal: invalid rsp fatal: invalid rsp handle

header = 1

save data in modelfatal: header must be 0

header = 0

error: header must be 0

valid handle

error: should give rsp

rsp_size > 0 tag_state =
ACK or REPLY

error: shouldn’t give rsp tag_state = ARBITRATE

NO

YES

YES

NO

NO

Figure 7.3: If-else tree of the check write method

67

7 Test Bench

7.5 Sequences

Sequences generates sequence items and runs them on a sequencer. Besides they
also run sub-sequences, which then run other sub-sequences or sequence items. The
Test Bench offers several sequences which can be used to generate stimuli.

epc_base_seq is a base class for all sequences concerning the EPC interface. There-
fore all such sequences are subclasses of epc_base_seq. The class holds a reference
to the cts_sb_config configuration object as well as one to epc_agent_config. Further-
more the pre_start() task is implemented to get the configuration objects from the
library.

epc_rand_cmd_seq can be used to run a random EPC command. By default the se-
quence chooses one out of all implemented commands. Obviously, by constraining
the member variable cmd the amount of possible commands can be reduced.

epc_query_adjust_rep_seq either runs a QUERY REP or a QUERY ADJUST. The se-
quence has three random variables. The command variable is constrained in a way
that three out of four commands will be a QUERY REP. The other variables are
session and up_dn which is only for QUERY ADJUST. The possible responded RN16
is saved into the variable rsp_rn16.

epc_do_query_seq only runs a QUERY and catches the response which is then saved
into rsp_rn16. This makes life a bit easier when running a QUERY. The sequence has
a random variable for every field of the command.

epc_set_open_seq sets the tag into the OPEN state. First a QUERY is executed. There
are random variables for the fields sel, session and target, as well as the variable
q_start which defines the Q field. Afterwards a epc_query_adjust_rep_seq is executed
as long as the tag stays in the ARBITRATE state or a maximum count is reached
(defined over the random variable max_count). If the maximum count was reached,
the sequence runs QUERY ADJUST commands with the purpose to decrease Q until
the tag answers. Next an ACK and afterwards a REQ RN command is executed to
set the tag into the OPEN state. In the end the variable rsp_rn16 holds the responded
RN16 and handle the handle.

68

7.5 Sequences

epc_rand_rw_seq can be used to run a random READ or WRITE command. The se-
quence has three random variables, cmd which can be one of the two commands,
handle and mem_bank. To be sure that the commands do a memory access, the handle
have to be constrained to be the right one, at the sequence call. The word ptr is con-
straint depending on the mem bank. In case of a READ, the word count is constrained
depending on the before calculated word ptr and the size of the memory bank.

epc_access_seq runs the two staged access procedure. The random variable
num_cmds_between defines the amount of random commands which should be executed
between the two ACCESS commands. The other two random members defines the
handle and the access password. Usually they are constrained at sequence call.

epc_kill_seq runs the two staged kill procedure. Understandably it is analog to the
epc_access_seq.

spi_base_seq is the base class for sequences using the SPI interface. It holds a refer-
ence to the spi_agent_config configuration object which is loaded during the pre start
phase.

cts_base_vseq is the base class for sequences serving both interfaces. In general these
will be virtual sequences which means that they are only running sub-sequences.

7.5.1 Set to a state sequence library

This library offers the possibility to set the tag from the current state to a possible
successor state. An appropriate randomly chosen command is executed to reach the
desired state. Figure 7.4 shows all possible state transitions and also which com-
mands will lead to this change. In Table 7.1 the commands are listed. Also the con-
ditions which are needed to achieve the desired result are notated. As an example to
get from READY to ARBITRATE a QUERY with matching flags and a slot counter
not equal to zero is needed. To reach the REPLY state the slot counter must be zero.
This can be assured by setting Q to zero. All other (number 90) in the table means
every other command which is not directly mentioned in this group of transitions.

69

7 Test Bench

�����

���������

��	
�

���������

��	
�

��	
� ���������

���

�����

�����

���������

��	
�

�����

���

	��

�������

���������

��	
�

�����

	��

��

��

�������

���������

��	
�

�����

�������

��

��

��

��

�������

��

��

���
�

�����������

��������

��
��

�����������

������

��

��
��
��
��
��

��
���
���

�

��

�����

���

���

��������� �!"#�$�����%�&'��()�

���������* ���%�&'��()�	��

��
��
��
��
��

��
��
��
��
��

��
���

�+�
�,�

�-�

��

��

���,��-����

,�

-�

,�

���
���

+��
,��

-�

���,��-����

��

Figure 7.4: All possible state transitions

70

7.5 Sequences

num command condition
0 SELECT

10 QUERY flags not matching
11 QUERY matching flags and slot != 0

12 QUERY matching flags and slot == 0

20 QUERY REP
21 QUERY REP valid session and slot != 0 or invalid session
22 QUERY REP valid session and slot == 0

30 QUERY ADJUST
31 QUERY ADJUST valid session and slot != 0 or invalid session
32 QUERY ADJUST slot == 0 and valid session
40 ACK invalid RN16

41 ACK valid RN16

50 REQ RN invalid RN16

51 REQ RN valid RN16

60 NAK
70 KILL valid handle and invalid kill pwd
71 KILL invalid handle
72 KILL valid handle and valid kill pwd
80 ACCESS valid handle and invalid access pwd
81 ACCESS invalid handle
82 ACCESS valid handle and valid access pwd
90 all other

Table 7.1: Commands for state transitions

71

7 Test Bench

There is a sequence for every origin state. For example the cts_from_open_vseq is in
charge of setting the tag from OPEN to a follow-up state. Listing 7.8 shows the ran-
domization part of the sequence. At first, desired_state is constrained to the possible
amount of successor states. The idea behind having a non-uniform distribution is
to have a higher probability to reach not easily accessible states. SECURED for ex-
ample is only reachable from OPEN and under certain conditions from ACK. Next,
depending on the selected state the command which should be run is constrained.
Note that RESET is used as a placeholder for random other command (number 90

in the table). If it is needed the distributions can be weighted other than equally.
1 rand tag_state_e desired_state;

2 rand epc_cmds_e next_cmd;

3 rand logic[0:1] desired_session;

4

5 rand logic[0:15] rn16;

6 logic[0:15] returned_rn16;

7 logic[0:15] actual_session;

8

9 constraint follow_up_states {desired_state dist {READY := 2,

10 ARBITRATE := 2, REPLY := 2, OPEN := 3, SECURED := 4, KILLED := 2};}

11 //RESET is a placeholder for random other cmd

12 constraint possible_cmds {

13 desired_state == READY -> next_cmd dist {SELECT := 1, QUERY := 1,

QUERY_REP := 1, QUERY_ADJUST := 1};

14 desired_state == ARBITRATE -> next_cmd dist {QUERY := 1, ACK := 1,

NAK := 1, KILL := 1, ACCESS := 1};

15 desired_state == REPLY -> next_cmd == QUERY;

16 desired_state == OPEN -> next_cmd dist {KILL := 1, ACCESS := 1, ACK

:= 1, RESET := 1};

17 desired_state == SECURED -> next_cmd == ACCESS;

18 desired_state == KILLED -> next_cmd == KILL;

19 }

20 constraint var_order {solve desired_state before next_cmd ;}

Listing 7.8: Random variables and constraints of cts_from_open_vseq

The body() task of the sequence only delegates the work to an appropriate task,
depending on the desired successor state. Listing 7.9 demonstrates such a task. The
purpose of this task is to keep the tag in the OPEN state. As it can also be seen in
the listing above the possible commands are KILL, ACCESS, ACK and a random
other command. For the KILL and ACCESS commands, or better the correspondent
procedure, the particular sequence is used. To match the condition (see also Table
7.1) the handles are constrained to be invalid. The ACK command is run with a valid
RN16. The RESET case is the all other case. This means one out of all not explicitly
in a “OPEN to X” transition used commands.

72

7.5 Sequences

1 virtual protected task to_open ();

2 epc_kill_seq kill;

3 epc_access_seq access;

4 epc_rand_cmd_seq rand_cmd;

5 epc_ack_cmd ack;

6

7 case(next_cmd)

8 KILL:

9 ‘uvm_do_on_with(kill , epc_sqr ,

10 {handle != rn16;

11 num_cmds_between == 0;

12 })

13 ACCESS:

14 ‘uvm_do_on_with(access , epc_sqr ,

15 {handle != rn16;

16 num_cmds_between == 0;

17 })

18 ACK:

19 ‘uvm_do_on_with(ack , epc_sqr ,

20 {ack.m_rn16_cmd == rn16;})

21 RESET:

22 ‘uvm_do_on_with(rand_cmd , epc_sqr ,

23 {cmd != RESET && cmd != SELECT && cmd != QUERY && cmd !=

QUERY_REP

24 && cmd != QUERY_ADJUST && cmd != NAK && cmd != KILL && cmd !=

ACCESS && cmd != ACK ;})

25 endcase

26 endtask: to_open

Listing 7.9: Task to run a command to set the tag OPEN

However, there is the cts_set_state_vseq sequence which offers the simplest and rec-
ommended way to use this library. This sequence is not used like a normal sequence.
Listing 7.10 demonstrates a short how-to demo. The ‘uvm_do() macro is only used to
initialize the sequence because the body() task does nothing. Anyhow, constraints
for the two random variables session and rn16_handle can be defined. This variables
defines the session parameter for QUERY commands and the rn or handle param-
eter for appropriate commands. The set_to_state(desired_state) is the most inter-
esting task. The only parameter defines the desired target state. First the task gets
the current state from the scoreboard and afterwards it calls the appropriate from x
sequence. If it is not possible to reach the desired state from the current one an er-
ror message will be printed. Actually the error message is that the randomization
failed in the from x sequence. Besides no command will be executed. By calling
set_to_state(RAND) the successor state is chosen randomly.

73

7 Test Bench

1 cts_set_state_vseq set_state;

2 ‘uvm_do(set_state)

3 set_state.set_to_state(REPLY);

4 set_state.set_to_state(RAND);

Listing 7.10: How to use cts_set_state_vseq

7.6 Tests

The tests are basically implemented as it is described in section 5.3.11. There are three
base classes defined. epc_base_test for tests using the EPC interface, spi_base_test in
case the SPI interface is used and cts_base_test if both interfaces are needed. As an
example Listing 5.9 shows the base class and a derived class for SPI.

7.7 Implementation

The Test Bench was implemented with the help of the Eclipse SDK and the Design
and Verification Tools (DVT) plug-in. Compiling and simulation were done with
Mentor Graphics Questa Sim 10.0c. The UVM is supported since version 10.0a.

The simulator also provides functional coverage reports. Figure 7.5 shows such a re-
port. The three defined coverage groups, state trans cg, states cg and cmds cg

and how much each of them is covered is presented. Furthermore the coverage
points and their coverage is shown, as well as the corresponding bins. As an ex-
ample, it can be seen that the tag first switched from the READY to the REPLY state,
next to ARBITRATE and afterwards it stays there.

74

7.7 Implementation

Figure 7.5: Functional coverage report of Questa Sim

75

8 Conclusions

This chapter concludes the thesis. It gives a summary over the work and the results.
Besides some words about further work are noted.

8.1 Summary and Results

The aim of this thesis was to develop a coverage driven constraint random verifica-
tion environment with UVM to verify a combined passive HF/UHF RFID tag. To do
so the Test Bench should communicate with the EPC interface as well as with the
SPI interface.

First an introduction over RFID systems was given. Furthermore the EPC standards
for UHF as well as for HF were described in more detail. Also the SPI bus was ex-
plained as well as the protocol used by the interface of the DUT. A significant part is
occupied by an introduction to SystemVerilog. The most important enhancements to
Verilog as well as the new features, like classes or constructs for functional coverage
and constraint randomization, were described. One chapter is dedicated to UVM. In
it the concept as well as the individual components are explained. A prominent part
of the thesis is devoted to the developed Test Bench.

The developed verification environment meets the requirements. It can be extended
easily. For example, a new agent for the NFC interface can be easily integrated into
the Test Bench by adding a correspondent agent to the environment and adding
testing methods to the scoreboard. By following the concept of UVM the individual
components are reusable. Through the configuration objects it is a well configurable
Test Bench. The sequence items (test vectors) can be generated with random val-
ues. Secondary constraints can be defined to limit the possible values. Besides some
coverage groups are defined to obtain functional coverage.

In comparison to the old test environment, the new one allows randomized and
exhaustive testing. A big advantage is also that the new Test Bench is self checking,
whereas with the old one the results have to be checked manually.

77

8 Conclusions

In general it can be said, that the UVM is a powerful verification tool which offers
many options to create a rich verification environment. The creation of the Test Bench
may cost a little bit more effort but the results compensates it easily.

8.2 Further Work

A big chunk is to extend the Test Bench to be able to verify the NFC interface.
Another expansion could be to add some more coverage groups, for example inside
of the commands to receive more specific functional coverage. Besides, because of
some reasons, the EPC driver doesn’t fully support the HF version 2.0.3 protocol.
Therefore the driver should be updated.

78

Appendix

79

Bibliography

[1] Accellera systems initiativey. http://www.accellera.org.

[2] All about fork-join of system verilog. http://learn-systemverilog.blogspot.
de/2009/08/all-about-fork-join-of-system-verilog.html.

[3] systemverilog.in. http://www.systemverilog.in.

[4] Testbench.in. http://www.testbench.in.

[5] Accellera. SystemVerilog 3.1a Language Reference Manual, 2004.

[6] Accellera. Universal Verification Methodology (UVM) 1.1 Class Reference, June 2011.

[7] Accellera. Universal Verification Methodology (UVM) 1.1 User’s Guide, May 2011.

[8] Thomas Andrejka. Msc. Master’s thesis, FH Hagenberg, June 2007.

[9] Mark Glasser. Open Verification Methodology Cookbook. Springer, 1st edition.
edition, 7 2009.

[10] Mentor Graphics. Verification academy. http://verificationacademy.com.

[11] GS1 EPCglobal. EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF
RFID Protocol for Communications at 860 MHz - 960 MHz Version 1.2.0, October
2008.

[12] GS1 EPCglobal. EPC Radio-Frequency Identity Protocols Class-1 HF RFID Protocol
for Communications at 13.56 MHz Version 2.0.3, September 2011.

[13] Johann Heyszl. Msc. Master’s thesis, University of Technology Graz, July 2007.

[14] Infineon Technologies. CRE SPI Interface Specification, 2012. unpublished.

[15] Wikipedia. Radio-frequency identification — wikipedia, the free encyclopedia,
2012. [Online; accessed 12-June-2012].

[16] Wikipedia. Serial peripheral interface bus — wikipedia, the free encyclopedia,
2012. [Online; accessed 11-June-2012].

[17] Wikipedia. Systemverilog — wikipedia, the free encyclopedia, 2012. [Online;
accessed 18-June-2012].

81

http://www.accellera.org
http://learn-systemverilog.blogspot.de/2009/08/all-about-fork-join-of-system-verilog.html
http://learn-systemverilog.blogspot.de/2009/08/all-about-fork-join-of-system-verilog.html
http://www.systemverilog.in
http://www.testbench.in
http://verificationacademy.com

	Introduction
	Chapter Overview

	RFID Systems
	EPC Class-1 Generation-2 UHF
	Interrogator-to-Tag communications
	Tag-to-Interrogator communications
	Tag memory
	Link timing
	Communication procedure
	Commands

	EPC Class-1 HF

	Serial Peripheral Interface Bus (SPI)
	Specifications
	Data Format
	Transfer Modes

	SystemVerilog
	New data types
	Arrays
	Packed and unpacked arrays
	Dynamic arrays
	Associative arrays

	Processes
	Interface
	Classes
	Constrained random generation
	Constraint blocks
	Randomization Methods

	Coverage

	Universal Verification Methodology (UVM)
	Concept
	UVM Phases
	Components
	Factory
	Configuration database
	Driver
	Monitor
	Sequencer
	Agent
	Scoreboard
	Coverage monitor
	Environment
	Sequences
	Test
	Top module

	Device Under Test (DUT)
	Test Bench
	Overview
	EPC Agent
	Commands
	Driver
	Monitor

	SPI Agent
	Commands
	Driver
	Monitor

	Scoreboard
	Sequences
	Set to a state sequence library

	Tests
	Implementation

	Conclusions
	Summary and Results
	Further Work

	Bibliography

