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Abstract

Modern organic solar cells consist of a number of different active and service layers.
At the interfaces shifts in energy levels and charge carrier aggregation can occur.
Any interface modification, intended or arbitrary could have a severe impact on the
performance of photovoltaic devices. The aim of this work is to investigate the influ-
ence of interface dipole layers on the current-voltage characteristics of organic solar
cells. We simulate the device by means of a two-dimensional drift-diffusion model.
The Poisson equation, the drift-diffusion current equations for electrons and holes
as well as the continuity equations for electrons, holes and excitons are discretized
on a two-dimensional mesh and then solved self-consistently in an iteration process.
The input parameters include the HOMO and LUMO levels of the organic semicon-
ductors, the workfunctions of the contacts and the charge carrier mobilities. The
results are discussed considering the electrostatic potential, the local charge carrier
distributions and the current-voltage characteristic of the device.



Zusammenfassung

Untersuchung der Auswirkung von Dipolschichten an Grenzflächen auf
die Effizienz von organischen Solarzellen mit Drift-Diffusionsmodellen

Moderne organische Solarzellen bestehen aus mehreren aktiven Schichten und di-
versen Hilfsschichten. An all diesen Grenzflächen kann es zu Verschiebungen der
Transportniveaus sowie zu Ladungsträgerakkumulation kommen. Jede Art der Grenz-
schichtmodifikation kann die Effizienz von Solarzellen gravierend beeinflussen. Das
Ziel dieser Arbeit ist daher die Untersuchung von Dipolschichten an Grenzflächen
und deren Einfluss auf die Strom-Spannungs-Charakteristik von organischen So-
larzellen. Zur Anwendung kommt dabei eine zweidimensionale Drift-Diffusions-
Simulation. Die Poissongleichung, die Gleichungen für den Drift-Diffusionsstrom
der Elektronen und Löcher sowie die Kontinuitätsgleichungen für Elektronen, Löcher
und Excitonen werden dabei auf einem zweidimensionalen Gitter diskretisiert und in
einem Iterationsprozess selbstkonsistent gelöst. Die wichtigsten materialspezifischen
Eingabeparamter sind die HOMO und LUMO Niveaus der organischen Halbleiter,
die Austrittsarbeiten der Kontakte sowie die Ladungsträgermobilitäten. Die Simu-
lationsergebnisse werden anhand des elektrischen Potentials, der örtlich aufgelösten
Ladungsträgerdichte sowie der Strom-Spannungs-Charakteristik diskutiert.
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1 Introduction

The energy consumption on Earth increases steadily. The reasons range from the
growing world population over the increasing spread of electrical devices to the
continuous growth of industrial production. Nearly all activities in modern daily life
consume energy. Together with the huge problem of global warming, caused partly
by conventional power plants, exploiting alternative energy sources has become a
world wide necessity. The scientific development in this area over the last decade
has been astonishing, yet the current technological standard is not sufficient for
providing electricity based solely on alternative energy sources.

One of the most promising renewable energy sources is of course the sun’s ra-
diation. Photovoltaic devices have already reached a standard allowing them to
become almost mainstream technology for small scale private energy production.
They are almost exclusively based on inorganic materials such as gallium-arsenide
or of course the most common of all, silicon. Yet silicon based solar cells have a
number of disadvantages. The most distinct being the huge production costs of a
single solar cell compared to its power output. This enormous energy consumption
is caused primarily by the silicon purification process. Yet this production step is
vital for solar cell efficiencies.

An alternative to the common inorganic solar cells are photovoltaic devices based
on organic semiconductors. Apart from the reduced material costs organic solar cells
could be printed onto the substrate, which is far less expensive and also faster than
the conventional assembly process of a silicon solar cell. Different layers of the device
can be printed in a roll to roll process onto flexible substrates in far larger dimensions
than is now possible. The great disadvantage of organic solar cells, however, is their
low efficiency. This problem is being tackled by a number of research groups and the
efficiency records have been climbing steadily over the past few years. One crucial
point seems to be the combination of different active materials and service layers.
The phenomena occurring at these interfaces pose new questions and challenges
for the fundamental understanding of the working principal of organic solar cells.
Different aspects have been studied by other research groups. The impact of the
interface morphology on the characteristics of the solar cell has been addressed.
Differences between planar and interdigitated structures as well as nanoparticles
dispersed in a matrix have been studied theoretically [29, 43]. The nanoparticle
phase has also been tackled by experimental groups [30]. The influence of several
material parameters on the shape of the I-V curve has been investigated. Especially
the ratio of the charge carrier mobilities has a great impact on the characteristics.
It can induce s-shaped I-V curves [41, 44]. The origin of the open circuit voltage
has been experimentally tackled by [45]. The first simulations and measurements
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1 Introduction

concerned with dipole layers in organic solar cells have generated a number of new
questions [34, 33].

The main aspect of this work is to investigate the impact of dipole layers formed on
the interface between two organic active layers on the current-voltage characteristic
of solar cells. The simulations are based on solving the Poisson, the drift-diffusion-
current and the continuity equations self consistently on a two-dimensional grid. A
fixed charge density can be placed at the interface. Analogously the energy levels
specified for each material can be shifted to introduce additional potential drops.

In Chapter 2 we give a general overview of different types of solar cells as well as
their basic working principal. The operation regimes of a solar cell and the basic
transport level alignments are discussed. Charge carrier generation and transport
in organic semiconductors are addressed. Lastly the basic semiconductor equations
together with the Poisson equation are introduced.

Chapter 3 deals with the derivation of the drift-diffusion equations stated in Chap-
ter 2. The calculation starts from the Boltzmann equation. The bipolar model as
well as the low density approximation are introduced. The collision and generation-
recombination terms are derived from basic considerations. Rescaling the Boltzmann
equation, performing a Hilbert expansion and comparing the coefficients ultimately
yields the final drift-diffusion and continuity equations.

In Chapter 4 the numerical methods employed for solving the drift-diffusion equa-
tions are described and the used boundary conditions are addressed. Explicitely the
discretization procedure and the Scharfetter-Gummel algorithm are explained. The
temporal evolution is considered by an implicit time step method.

The simulation results are described in Chapter 5. We start by considering the
impact of real contacts including thermionic emission and tunneling from the contact
into the active layer. The injection barrier is thereby influenced by the actual electric
field at the contact region. The differences to the formerly used ohmic contacts are
considerable. Next, the impact of light reflection off the metallic bottom contact
back through the device is analyzed. As well, measured absorption spectra are
introduced, replacing the formerly used fixed absorption coefficients. The charge
separation process at the organic-organic interface as well as the influence of charge
carrier mobility are discussed. The behaviour of the system at various temperatures
is included as a parameter study. Lastly the influence of a dipole layer situated at
the heterojunction on the performance of the solar cell is studied.
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2 General aspects of solar cells

2.1 Working principle of solar cells

Solar cells are devices that convert radiation energy into electrical energy. They con-
sist of a translucent top contact, a bottom contact with a different workfunction and
a semiconducting layer in between. The structure of the active layer varies widely.
A great number of different layouts and material combinations are being tested.
Mainly, one can separate between solar cells operating solely either on inorganic or
organic semiconductors and devices working with a mixture of both called hybrid
cells. The layout therein can range from simple planar heterojunctions over comblike
structures [29] to even inorganic nanoparticles dispersed in an organic matrix [30].

The main differences between organic and inorganic semiconductors are (i) charge
carrier mobility, (ii) densities, (iii) number of intrinsic charge carriers and (iv) elec-
tron and hole generation. In inorganic solar cells the charge carrier densities as
well as the mobilities are orders of magnitudes higher than in organic materials.
Also, there are no intrinsic charge carriers in organic semiconductors. In inorganic
semiconductors a free electron-hole pair is created instantaneously when a photon is
absorbed. Light absorption in an organic semiconductor on the other hand induces
the generation of a bound electron-hole pair, called exciton. The are electrically
neutral structures and are spread over an area of one to several molecules. Excitons
cannot dissociate by thermal activation as their binding energy is far larger than the
thermal energy at room temperature. The only way to create a free electron-hole
pair out of an exciton is dissociation at a donor-acceptor interface, if the HOMO
and LUMO level offsets are greater than the exciton binding energy. In this case it
is energetically possible for the exciton to dissociate.

Common to all solar cells is that the charge carriers, no matter how they were
generated in the first place, need to be extracted to the contacts. The resulting
electric field accelerates the charges to their respective contacts. Figure 2.1 shows a
typical I-V characteristic of a solar cell.
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V

I

ISC

IP

VOC
VP

P

III

III

IV

Figure 2.1: The operation regimes of a solar cell. They are (III) reverse bias, (IV)
solar cell mode and (I) forward bias. The short circuit current Isc, the
open circuit voltage Voc and the maximum power point P , defined by IP
and VP are shown.

The The plot is divided into four quadrants. The interesting one is the fourth,
the power quadrant. It is characterized by a negative current and positive applied
voltage. In this configuration power is generated in the solar cell. The characteristic
currents and voltages indicated in the plot are easily explained. The quantity Isc
is called the short circuit current. It is the current measured, when no voltage is
applied. The open circuit voltage Voc on the other hand is defined as the voltage,
at which there is no current flow I = 0. Other important quantities for describing
solar cells are the so-called maximum power point P , defined by the voltage VP and
the current jP and the fill factor FF . The maximum power point is already defined
by its name. It is the point on the I-V curve, at which maximal power can be gained
from the device. Electrical power is defined as the product of current and voltage.

The fill factor is defined as the ratio of the power in the maximum power point
to the product of the short circuit current and the open circuit voltage

FF =
IPVP
IscVoc

.

The theoretical limit for the efficiency of a single layer solar cell with AM 1.5 ir-
radiation is η ≈ 33 % [16]. This number is calculated by considering the influence
of the bandgap energy. Small bandgap semiconductors absorb nearly all incoming
photons, resulting in a large current, but their open circuit voltage, which is limited
by the bandgap is rather low. A semiconductor with a very large bandgap on the
other hand shows a high open circuit voltage, yet the achievable maximum current
is quite weak. With the optimum bandgap energy the afore mentioned efficiency of
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2 General aspects of solar cells

33 % can be reached.

Energy level alignment

Again considering Fig. 2.1, the energy level alignments in the different quadrants will
be discussed here briefly. We start in the third quadrant. The according potential
landscape is shown schematically in Fig. 2.2.

LUMO

HOMO

top contact

bottom contact

Figure 2.2: Energy level alignment in the device for negative applied voltages. The
contact workfunctions are coloured grey, the HOMO and LUMO levels
black. The workfunction of the top contact (on the right) is shifted above
the workfunction of the bottom contact (right).

In In these plots electrons move downwards along the LUMO level, holes move
upwards in the HOMO level.

The top contact, drawn on the left hand side has a higher potential than the
bottom contact. The LUMO level lies above the HOMO level. Both are inclined
downwards from the top contact to the bottom contact. Electrons are accelerated
down the slope towards the bottom contact, holes in the opposite direction towards
the top contact. Both can gain energy by crossing the jump at the donor acceptor
interface.

At zero applied voltage the short circuit condition is reached. The top and bottom
electrode are just connected. This forces the occupation levels of the two contacts
to the same energetic level, resulting in the potential landscape shown in Fig. 2.3.

LUMO

HOMO

top contact

bottom contact

Figure 2.3: Energy level alignment in the device for zero applied voltages, called
short circuit condition. The workfunctions of the contacts align at the
same energy. The HOMO and LUMO levels are still tilted.
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2 General aspects of solar cells

The contact workfunctions are aligned, the slopes of the HOMO and LUMO levels
are weaker but still oriented in the same direction as before. Drift is still the main
driving force.

If the external voltage is increased further to positive values, the bottom contact
lies energetically higher than the bottom contact. The potential difference gradually
increases until the open circuit condition is reached. The according energy landscape
is depicted in Fig. 2.4.

LUMO

HOMO

top contact
bottom contact

Figure 2.4: Energy level alignment in the device for open circuit conditions. The
applied external voltage exactly compensates the built-in voltage. Con-
sequently the HOMO and LUMO levels are completely flat in either half
of the device. Charge carriers can only move diffusively, there is no drift
force.

In this scenario no current flows. The HOMO and LUMO levels are completely
flat, because the external voltage exactly compensates the built-in voltage Vbi given
by the difference of the two contact workfunctions φ

Vbi = φanode − φcathode .

Actually, in this configuration in organic solar cells there is still some current flow,
caused by diffusion. As explained in more detail in Section 2.2, charge carriers in
organic solar cells are generated solely at the donor-acceptor interface. If there is
no electric field extracting them to the contacts they still move away from the high
density area at the interface by diffusion. And importantly, they diffuse towards the
right contacts as they can not overcome the energetic barrier posed by the interface.
In organic solar cells the external voltage has to be a little higher than according to
the flat band condition in order to stop all current flow.

If the external voltage is still increased more, the slope of the HOMO and LUMO
transport levels changes sign. The levels now rise towards the bottom contact. This
can be seen in Fig. 2.5.
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2 General aspects of solar cells

LUMO

HOMO

top contact

bottom contact

Figure 2.5: Energy level alignment in the device for applied voltages greater than
the open circuit voltage. The transport levels are tilted in the other
direction. Charge carriers drift towards the wrong contact. If the tilt is
large enough they can overcome the potential barrier at the interface.

Charge Charge carriers now drift to the respective opposite contact. Many more
carriers are injected from the contacts into the semiconductor as are generated by
light absorption. They have a high enough potential energy to cross the interface
barrier on their way to the other contact. The current flows in the opposite direction
through the device, it has a positive sign. This corresponds to the first quadrant.
No power is generated in this regime.

2.2 Organic solar cells

Organic solar cells are in many ways different from inorganic ones. The material
parameters, the efficiency, the charge carrier mobilities as well as the charge trans-
port itself differ. But the main difference, which is very relevant for device layouts
and simulations, is the charge carrier generation process. In inorganic solar cells
photons hit the semiconductor and generate instantaneously an electron-hole pair.
In organic devices on the other hand, light creates excitons in the semiconductor.
They are bound electron-hole pairs with a binding energy of Eb ≈ 0.3−0.5 eV, which
act electrically neutral. They therefore are completely uninfluenced by any electric
field in the device and can only move by means of diffusion. If they encounter an
acceptor-donor interface, with an energy offset greater than the exciton binding en-
ergy, they dissociate immediately into a separate electron and hole [3]. How this
process takes place is still not understood in detail. It is, however, logical that the
excitons need to gain more energy by dissociation than their binding energy. The
thermal energy at room temperature, which is about 25 meV is not nearly sufficient
to induce dissociation. The dissociation process is schematically shown in the form
of an energy diagram in Fig. 2.6.
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2 General aspects of solar cells

Figure 2.6: Schematic illustration of the exciton dissociation process. The exciton
diffuses to a donor-acceptor interface, where the electron is transferred
to the acceptor in the LUMO level and the hole to the donor in the
HOMO level. They then move towards their respective contacts [2].

If they do not reach an interface during their lifetime, which is roughly τ ≈ 10−9 s,
they recombine and are lost for energy production.

After dissociation the electrons and holes have to be extracted to the contacts.
They can travel by diffusion and drift, where the diffusion is a not negligible part
in the charge carrier movement. In Fig. 2.7 the generation profiles for an inorganic
and an organic solar cell are depicted.

Figure 2.7: Illustration of the charge carrier generation profile in inorganic (left)
and organic (right) solar cells. In inorganic solar cells free electrons and
holes are created according to Lambert-Beer’s law. They both diffuse in
direction from the top to the bottom of the device in the same direction.
In organic solar cells free charge carriers are only generated at a donor
acceptor interface. Electrons and holes diffuse in opposite directions [3].
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2 General aspects of solar cells

In inorganic solar cells, on the left in Fig. 2.7, free electron-hole pairs are created
throughout the device according to Lambert-Beer’s law (4.39), meaning the electron
and hole concentration decreases steadily from the top of the device to the bottom.
This, in consequence, induces both electrons and holes to diffuse away from the top
downwards. This diffusion current does not aid the process of charge extraction
towards the contacts, because electrons and holes diffuse in the same instead of
opposite directions.

In contrast, the generation profile in organic solar cells, shown in Fig. 2.7 on
the right, is centered sharply around the donor-acceptor interface. In organic solar
cells absorbed light generates excitons, which only dissociate at the donor-acceptor
interface. Hence, there is a strong concentration of electrons and holes on either
side of the interface. The interface functions as a potential barrier because of the
offset in the HOMO/LUMO levels. For that reason electrons can not diffuse into the
acceptor and holes are unable to diffuse into the donor. The diffusion away from the
crowded interface extracts electrons and holes to separate contacts. Thus, diffusion
plays an active part in charge extraction to the contacts in organic solar cells.

2.3 Inorganic solar cells

Nearly all commercial solar cells are of the inorganic type. Most of them consist of
monocrystalline silicon or gallium-arsenide. When they are illuminated, an absorbed
photon directly creates a free electron-hole pair. It is not bound in an excitonic state
as in organic semiconductors. For the extraction of charges to the contacts only drift
forces are responsible. Yet for inorganic solar cells no external voltage needs to be
applied. Their working principal is based on a pn-junction. If a p-type doped and
an n-type semiconductor are connected, a pn-junction is formed. It is schematically
illustrated in Fig. 2.8.

Figure 2.8: At a pn-junction the valence and conduction band get bent, resulting in
an internal electric field [1].

A consequence of the band bending at a pn-junction is an internal electric field.
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2 General aspects of solar cells

This effect is exploited in solar cells for extraction of charge carriers.
The before mentioned high mobility in inorganic semiconducting crystals allows

electrons to move comparatively long distances without noticeable loss. This enables
a different design of the top electrode. A metal grid can be applied to the top silicon
layer allowing enough light to penetrate to the semiconductor. In organic solar cells
a continuous planar contact is necessary. Therefore, a transparent and electrically
conducting material has to be used for the top electrode, which is rather expensive.
Mostly indium-tin-oxide (ITO) is chosen.

The nowadays highest efficiency achievable is around η ≈ 36 %. This value can be
reached by multilayer device layouts of very pure semiconducting crystals. A great
disadvantage of inorganic solar cells, however, is the immense amount of energy
used in the production and recycling process compared to the power generated by
the solar cell. The critical step therein is the purification of silicon.

2.4 Hybrid solar cells

The active layer of hybrid solar cells contains organic and inorganic components.
In the inorganic semiconductor light generates free electrons and holes whereas in
the organic layer excitons are created, a certain percentage of which dissociates at
the donor acceptor interface. To increase the fraction of separating excitons the
distance between generation regions and the interface should be as short as possible.
An ideal structure, therefore, shows an interdigitated donor-acceptor phase [29].
Alternatively, nanoparticles dispersed in a matrix also fulfill this criterion [30]. The
challenge for the nanoparticle structure is to ensure percolation to enable charge
carriers to travel to their collecting contact solely in one or the other material. If
the nanoparticle density is too low, charge carriers get trapped in them and are lost
for transport [31].

2.5 Charge carrier transport in organic
semiconductors

The semiconducting properties of some organic materials are caused by a π-conjugated
electron system. The individual carbon atoms of the chain undergo an sp2 hybridiza-
tion. It is schematically shown in Fig. 2.9 for an ethene molecule (C2H4).
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2 General aspects of solar cells

Figure 2.9: Illustration of an sp2 hybridization in an ethene molecule. One σ- and
two π-bonds are formed [9].

The carbon atoms in the chain are bound by a σ- and a π-bond. The σ-bond
is located on the rotation axis between the two atoms. It is invariant to rotation
of either atom around the binding axis. The two π-bonds are also formed in the
same plane as the σ-bond, yet they lie below and above the former. They are not
rotationally invariant. The π-bond is created by a more or less strong overlap of the
pz orbitals of the carbons. The single orbitals of each atom form two joint orbitals
π and π∗, where the former represents the bonding and the latter the antibonding
molecular orbital. By this form of bonding the electrons are effectively delocalized
over the whole carbon chain. The longer the chain the more orbitals are formed, see
Fig. 2.10.

Figure 2.10: Formation of bonding (π) and anti bonding (π∗) orbitals in a polymer
chain. The longer the chain the more orbitals are formed [9].

The highest of the bonding orbitals is called HOMO and the lowest of the anti-
bonding ones LUMO. HOMO is the acronym of Highest Occupied Molecular Orbital
and LUMO of Lowest Unoccupied Molecular Orbital.

An organic semiconductor has no real band structure like an inorganic crystal.
Electrons are excited into the LUMO level instead of the conduction band. Accord-
ingly holes travel in the HOMO level.

In a polymer solution not all chains have exactly the same length. There is a
distribution of chain lengths with a certain width. Accordingly the HOMO and
LUMO levels of the individual molecules do not lie at the exact same energy. This
results in a Gaussian shaped density of states at these levels, depicted in Fig. 2.11,
instead of a delta peak.

17



2 General aspects of solar cells

Figure 2.11: Due to a distribution of chain lengths the energy of the individual
HOMO and LUMO levels varies. This leads to a Gaussian shaped
density of states instead of sharply defined transport levels [9].

The charge carrier transport process as such can be generally divided into the
intrachain and the interchain transport. By the former one means the charge carrier
transport along one molecule, by the second the transport process from one molecule
to the next. The intrachain transport is enabled by the conjugated system of π or-
bitals. Electrons can easily move along a polymer chain. The transition from one
molecule to the next is described by interchain transport. It has the characteristics
of a hopping transport, where the orbital overlap of the partaking molecules plays a
dominant role. In fact, it determines the mobility of the charge carriers. A main fea-
ture of hopping transport is its characteristic temperature dependence. The process
is thermally activated, the hopping rate increases with temperature. This explains
the positive temperature coefficient of conductivity for organic semiconductors.

Generally, the interchain transport is a limiting factor for the conductivity. Charge
transport along one molecule takes place much faster. As the individual polymer
chains in a semiconductor are randomly oriented, charge carriers travel with the
same mobility in every direction.

For drift-diffusion simulations, however, the individual transport processes are
not considered separately. All influences are appraised and included in one pa-
rameter, the charge carrier mobility µ. The hopping process for instance can
be described by the following field-dependent mobility of the Poole-Frenkel form

µ = µ0 exp
(
γ
√
|E|
)

[12]. Here, µ0 is the mobility without electric field E and γ is

a constant.
There are a number of temperature and field-dependent models for the charge

carrier mobility, yet in this work the simulations were done with fixed mobilities for
each type of charge carrier in each semiconductor.

It should also be mentioned that there are no intrinsic free charge carriers in
organic semiconductors. They either have to be generated by illumination and
subsequent absorption or by injection from the device contacts. Both processes
take place in solar cells.

Drift-diffusion equation for electrons and holes

In a drift-diffusion model two driving forces for charge carrier movement are con-
sidered, drift and diffusion, as the name already states. Drift describes electron
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2 General aspects of solar cells

and hole movement due to an acting electric field. Thereby, electrons and holes are
accelerated in opposite directions.

Diffusive transport is caused by a gradient in the charge carrier density. Electrons
travel away from dense electron concentrations on the one hand because of the acting
electrostatic forces and on the other hand because of the concentration gradient. The
same applies for holes.

As electrons moving in one direction and positively charged holes moving in the
opposite direction generate a current in the same direction, namely the one, in which
the holes are traveling, the total current can be written as the sum

J(x, y, t) = Jn(x, y, t) + Jp(x, y, t) ,

where Jn and Jp are described by [10]

Jn(x, y, t) = q n(x, y, t)µn(x, y)En(x, y, t) + q Dn(x, y)∇n(x, y, t) , (2.1)

Jp(x, y, t) = q p(x, y, t)µp(x, y)Ep(x, y, t)− q Dp(x, y)∇p(x, y, t) . (2.2)

Here n(x, y, t) and p(x, y, t) denote the position- and time-dependent electron/hole
concentrations and En/p the acting electric field. The respective electron/hole mo-
bilities and diffusion constants are denoted by µn/p and Dn/p. They are connected
by the Einstein relation

Dn/p =
kBT

q
µn/p(x, y) ,

with the Boltzmann constant kB, the temperature T and the positive elementary
charge q. These drift-diffusion equations are coupled to the continuity equations for
electrons and holes

∂n(x, y, t)

∂t
− 1

q
∇Jn(x, y, t) = G(x, y, t)−R(x, y, t) , (2.3)

∂p(x, y, t)

∂t
+

1

q
∇Jp(x, y, t) = G(x, y, t)−R(x, y, t) , (2.4)

with the charge carrier generation and recombination rates G and R [11]. They also
are position and time dependent.

The electric field En/p is calculated from the effective electrostatic potential Ψn/p,
described in the next section

En/p(x, y, t) = −∇Ψn/p(x, y, t) . (2.5)

Equations (2.1), (2.2), (2.3), (2.4) will be derived from the Boltzmann equation in
Chapter 3.

19



2 General aspects of solar cells

Poisson equation

The Poisson equation

∇[ε0εr(x, y)∇ψ(x, y, t)] = −ρ(x, y, t) = q [n(x, y, t)− p(x, y, t)] , (2.6)

is used to calculate the position-dependent electrostatic potential ψ(x, y, t) from the
charge densities n(x, y, t), p(x, y, t) and the relative dielectric permittivity εr(x, y).

At this point the charge transport along the HOMO and LUMO levels has to be
considered. Electrons travel at higher energetic levels than holes. Thus, we have to
modify the electrostatic potential in the following way

Ψn/p(x, y, t) = ψ(x, y, t) +
Θn/p(x, y)

q
. (2.7)

In equation (2.7) so-called the generalized potential Ψn/p(x, y, t) for electrons and
holes was introduced. The HOMO and LUMO levels of the donor and acceptor
are denoted by Θn/p. The generalized potential causes the electrostic force acting
on electrons and holes, respectively. It is used to calculate the electric field (2.5)
occuring in equations (2.1) and (2.2).

Exciton movement

As excitons are electrically neutral, they can not be influenced by electric fields.
Hence, the only acting force is caused by the gradient in the exciton density, causing
diffusion. The exciton flux density can be written as

Φex(x, y, t) = −kBTµex∇ex(x, y, t) , (2.8)

where ex(x, y, t) is the exciton density distribution and µex the exciton mobility [11].
It is coupled to the exciton diffusion constant Dex by

kBT

q
µex = Dex , (2.9)

with the Boltzmann constant kB, the temperature T and the elementary charge q.
In equation (2.8) there is only a diffusion term but no drift term. The continuity
equation for excitons is given by

∂ex(x, y, t)

∂t
+

1

q
∇Φex(x, y, t) = Gex(x, y, t)−Rex(x, y, t)−G(x, y, t) , (2.10)

with Gex and Rex the exciton generation and recombination rates. The symbol G
denotes the electron and hole generation rate. It appears in the exciton continuity
equation as a loss term.
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2 General aspects of solar cells

2.6 Solar spectrum

In the sun, nuclear fusion from hydrogen to helium creates energy according to the
famous formula E = mc2, describing the equivalence of mass and energy. After a
very long time photons reach the sun’s surface and leave the star. Their energy
ranges from the infrared to the ultraviolet. After a journey of roughly eight minutes
the photons reach the earth, where they first encounter the atmosphere. On their
way through, processes like reflection and absorption occur, diminishing the light
intensity reaching the surface of the earth. At the equator light hits the earth
at almost 90◦ and therefore travels the shortest distance through the atmosphere.
The intensity reaching the surface is high. Regions lying nearer to either pole receive
lower intensities due to longer light paths through the atmosphere and higher impact
angles. This is shown schematically in Fig. 2.12.

Figure 2.12: Illustration of the path and incidence angle of incoming light. The
intensity reaching the surface of the earth is highest at the equator and
decreases towards the poles [5].

For the simulation the so-called AM 1.5, or air mass 1.5, spectrum was used. It
is plotted in Fig. 2.13.
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Figure 2.13: Wavelength dependence of the AM 1.5 spectrum used for the simu-
lations. It includes the influences of a diffusive sky and diffuse light
reflection off the ground at 48.9◦ latitude [4].

It shows the spectral radiation from the sun reaching the surface of the earth at
48.9◦ of latitude. It includes the impact of a diffusive sky and light reflection off the
ground.

2.7 Charge carrier generation

Light penetrating an absorbing medium loses intensity on the way. The intensity
left after a distance x from the starting point is given by Lambert Beer’s law of
absorption [47]

I(x) =

λmax∫
0

I0(λ) exp [−α(λ)x] dλ , (2.11)

with a wavelength dependent absorption coefficient α(λ) and I0(λ) the solar spec-
trum AM 1.5 described in the previous section. The unit of the intensities in equa-
tion (2.11) is Wm−2nm−1. The integration interval ends at λmax, the maximum
wavelength, which corresponds to the bandgap energy Egap.

When a photon hits a molecule it excites it from the state S0 to S∗. The molecule
then thermalizes back into the state S1. The surplus energy S1 − S0 is released
in form of a strongly bound electron-hole pair, called an exciton. This process is
illustrated schematically in Fig. 2.14.
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Figure 2.14: Schematic illustration of the processes from an incoming photon to a
free charge carrier. A photon excites a molecule from the ground state
S0 to an excited state S∗. After thermalizing to the lower state S1 an
exciton is formed with a certain probability p. It then dissociates into
free charge carriers with the probability f .

The exciton binding energy lies at roughly 0.3−0.5 eV. Mainly two different kinds
of excitons exist, the Frenkel exciton and the Wannier-Mott exciton. The first kind is
very strongly bound with the afore mentioned binding energy. Therefore, the mean
distance between electron and hole is rather short. They may even be located at
the same molecule. Frenkel excitons occur mostly in materials with small dielectric
constants, where the Coulomb interaction is strong.

The Wannier-Mott exciton on the other hand is bound comparatively loosely.
A typical binding energy is of the order of 0.01 eV. As a result the Wannier-Mott
exciton may be dispersed over a few molecules. This type of exciton is mainly found
in semiconductors with high dielectric constants and small band gaps.

For our simulations only Frenkel excitons are of relevance. After generation, the
excitons can diffuse for a certain time, their lifetime τex = 10−9 s (see Section 4.4).
The excitons can not dissociate in the bulk of the semiconductor as their thermal
energy, Eth ≈ 25 meV is far to small to overcome the binding energy. They can only
dissociate into a free electron-hole pair at a donor-acceptor interface, if the HO-
MO/LUMO offset between donor and acceptor is greater than the exciton binding
energy.
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3 Derivation of the drift-diffusion
equations

3.1 The Boltzmann transport equation

Charge carriers in a semiconductor move in the position and momentum space due
to their velocity and existing electric fields. We now consider the paths the particles
take in the six-dimensional phase space which are called trajectories. In the next
step we try to find an expression for the probability of finding a particle at position
x ∈ R3

x, with momentum p ∈ R3 at time t > 0. This probability is given by the
distribution function. We denote it by the symbol F ∈ R3. As it is a function of po-
sition, momentum and time it should be correctly written as F (x, p, t). For the first
considerations we will not include scattering between particles among themselves or
with the lattice. It this case, as the particles move only along their trajectories as
time progresses, we can state that the probability of finding a particle at a specific
point A = (x, p) along the trajectory at time t is the same as the probability of
finding it at an earlier position A′ = (x − vdt, p − Fdt) along the same trajectory
at the according time t− dt. Putting this consideration in the shape of an equation
results in

F (x, p, t) = F (r − vdt, p−Fdt, t− dt) . (3.1)

This holds if the particle moves with velocity v ∈ R3
v′ in position space and a force

F ∈ R3 acts making it change its momentum accordingly.
We now expand (3.1) into a Taylor series with respect to powers of dt. We perform
the expansion in dt up to first order around dt = 0 and get

F (x, p, t) = F (x, p, t) +

(
−v · ∇xF −F · ∇pF −

∂F

∂t

)
,

v · ∇xF + F · ∇pF +
∂F

∂t
= 0 ,

dF

dt
= 0 , (3.2)

where dF
dt

denotes the total differential of F with respect to the time t. Equation
(3.2) states that the occupation probability along a trajectory does not change with
time. If the state is occupied at time t = 0 then it will be occupied at all times t.
This is only a realistic description of the system as long as scattering processes are
excluded. Through such an event particles can be scattered from one trajectory to
another. The momentum of the involved particle is instantaneously changed from p′
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3 Derivation of the drift-diffusion equations

to p, whereas the position only changes afterwards according to the new momentum.
A second influence on the distribution function are source and sink terms. Sources,
sinks and scattering events together can populate an until then empty state, or
depopulate a state. Including these terms in equation (3.2) results in

∂F

∂t
+ v · ∇x f + F · ∇pF =

∂F

∂t

∣∣∣∣
coll

+ s(x, p, t) , (3.3)

where s includes source and sink terms. The steps up to this point are performed
in more detail in [18]. Now we perform a transformation of variables from p to v

∂F

∂p
=
∂F

∂v

∂v

∂p
,

where we have to consider that the momentum p = mv, where m denotes the particle
mass. We also replace the force F by the electrical field E ∈ R3 acting on a particle
with the charge e. With this equation (3.3) reads

∂F

∂t
+ v · ∇x F +

e

m
E · ∇v F =

∂F

∂t

∣∣∣∣
coll

+ s(x, p, t) . (3.4)

The rate of scattering a particle with position vector x, and velocity vector v′ into a
state with position vector x, and velocity vector v at time t is written as P (x, v′ →
v, t). It is assumed to be proportional to the occupation probability F (x, v′, t) of the
starting state (x, v′) at time t. Equally, one has to assume that P (x, v′ → v, t) is
proportional to 1−F (x, v, t), the probability, that the end state (x, v) is unoccupied
at time t. Thus we have

P (x, v′ → v, t) = s(x, v′, v)F (x, v′, t)(1− F (x, v, t)) , (3.5)

with the scattering rate s. To define s precisely, s(x, v′, v)dv′ is the probability that
a particle is scattered from the state (x, v′) into the state (x, v) per unit of time,
with v′ belonging to the volume element dv′ around v′. The form of this scattering
rate is determined by the underlying physics of the considered scattering situation.

The distribution function F (x, v, t) can increase by particles being scattered form
any state (x, v′) into the state (x, v) and it decreases by particles being scattered
out of the state (x, v) into any other state (x, v′). Therefore, the rate of change of
F (x, v, t) is given by the integral over the difference of those two rates taken over
the whole velocity space, resulting in

Q(F ) :=

(
dF

dt

)
coll

(x, v, t) =

∫
R3
v′

[P (x, v′ → v, t)− P (x(v → v′, t)]dv′ . (3.6)
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3 Derivation of the drift-diffusion equations

Inserting (3.5) into (3.6) gives the equation

Q(F )(x, v, t) =

∫
R3
v′

[s(x, v′, v)F ′(1− F )− s(x, v, v′)F (1− F ′)]dv′ , (3.7)

by using the abbreviations

F = F (x, v, t), F ′ = F (x, v′, t) .

Omitting external sources, equation (3.4) in short notation reads by taking into
account (3.7):

∂tF + v · ∇xF +
e

m
E · ∇vF =

∫
R3
v′

[s(x, v′, v)F ′(1− F )− s(x, v, v′)F (1− F ′)]dv′,

x ∈ R3
x , v ∈ R3

v, t > 0 . (3.8)

Velocity and wave vector are directly related to each other by k = mv
~ . We therefore

write the above equations in terms of wave vector k ∈ R3. The collision integral
then reads

Q(F )(x, k, t) =

∫
B

[s(x, k′, k)F ′(1− F )− s(x, k, k′)F (1− F ′)]dk′ , (3.9)

where we have to integrate over the first Brillouin zone B and to define F = F (x, k, t)
as well as F ′ = F (x, k′, t). The Boltzmann equation is now given by

∂tF + v(k) · ∇xF +
e

~
E · ∇kF = Q(F ),

x ∈ R3
x, k ∈ B, t > 0 . (3.10)

Integrating the collision integral with respect to the wave vector k over the first
Brillouin zone results in∫

B

Q(F )dk =

∫
B

∫
B

[s(x, k′, k)F ′(1− F )− s(x, k, k′)F (1− F ′)]dk′dk = 0 . (3.11)

This shows that considering the whole state space no particles are destroyed or
generated through collision processes. It ensures the very important conservation of
particles.

Another significant property of the collision operator is the so-called principle
of detailed balance. It states that in thermal equilibrium as many particles are
scattered into a state (x, k) as are scattered out of it. This means that the scattering
probabilities into a state and out of it are equal:

s(x, k′, k)F ′e(1− Fe) = s(x, k, k′)Fe(1− F ′e) . (3.12)
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3 Derivation of the drift-diffusion equations

Here, Fe denotes the number density in thermal equilibrium. It is given by the
Fermi-Dirac statisitcs:

Fe(k) = FD

(
ε(k)− εF
kBT

)
, (3.13)

FD(u) =
1

1 + exp(u)
, (3.14)

where ε(k) is the considered energy band of the semiconductor, εF denotes the Fermi
energy, kB the Boltzmann constant and T the lattice temperature. Inserting (3.13),
(3.14) into (3.12) and doing a few basic calcutions gives

s(x, k′, k)(F ′e − FeF ′e) = s(x, k, k′)(Fe − FeF ′e) ,

and further

s(x, k, k′) = s(x, k′, k)
F ′e − FeF ′e
Fe − FeF ′e

= s(x, k′, k)
1
Fe
− 1

1
F ′e
− 1

= s(x, k′, k)
1 + exp

(
ε(k)−εF
kBT

)
− 1

1 + exp
(
ε(k′)−εF
kBT

)
− 1

= exp

(
ε(k)− ε(k′)

kBT

)
s(x, k′, k) . (3.15)

Knowing the scattering rate s(x, k, k′), a collision frequency λ can be defined by

λ(x, k) :=

∫
B

s(x, k, k′)dk′ ,

which is reciprocal to the relaxation time

τ(x, k) :=
1

λ(x, k)
.

The relaxation time gives the average time between two consecutive collisions at the
state (x, k). It also represents the time scale on which the number density evolves
or relaxes towards an equilibrium state. Hence, the name relaxation time.
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3 Derivation of the drift-diffusion equations

3.1.1 Low density approximation

In many considered cases the number density F of particles is small

0 6 F (x, k, t)� 1 . (3.16)

In the low density approximation, 1−F (x, k, t) ≈ 1 , the collision integral (3.9) reads

QL(F )(x, k, t) =

∫
B

[s(x, k′, k)F ′ − s(x, k, k′)F ] dk′ . (3.17)

The conservation of particles, ensured by the condition∫
B

QL(F )dk = 0 ,

still holds. The principle of detailed balance in the low density approximation is
now given by

s(x, k′, k)F ′e = s(x, k, k′)Fe . (3.18)

In the low density approximation the Fermi-Dirac statistic can be approximated by
the Maxwell distribution

M(k) = N∗ exp

(
−ε(k)

kBT

)
, N∗ =

∫
B

exp

(
−ε(k)

kBT

)
dk

−1

. (3.19)

We now are allowed to assume that the number density F (x, k, t) in thermal equi-
librium is described by the Maxwell distribution, Fe = M(k) and the principle of
detailed balance reads

s(x, k′, k)M(k′) = s(x, k, k′)M(k) . (3.20)

Inserting (3.19) into (3.20)

s(x, k′, k)N∗ exp

(
−ε(k

′)

kBT

)
= s(x, k, k′)N∗ exp

(
−ε(k)

kBT

)
leads directly to the detailed balance relation

s(x, k, k′) = exp

(
ε(k)− ε(k′)

kBT

)
s(x, k′, k) ,

which is stated in (3.15). The scattering rate s can be rewritten in terms of the
so-called collision cross section Φ :

s(x, k′, k) = Φ(x, k, k′) exp

(
ε(k′)

kBT

)
. (3.21)
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As can be easily verified the collision cross section Φ is symmetric with respect to k
and k′

Φ(x, k, k′) = s(x, k′, k) exp

(
−ε(k

′)

kBT

)
(3.22)

= s(x, k, k′) exp

(
ε(k′)− ε(k)

kBT

)
exp

(
−ε(k

′)

kBT

)
(3.23)

= Φ(x, k′, k) . (3.24)

Inserting (3.24) into (3.17), the collision integral is given by

QL(F )(x, k, t) =

∫
B

[
Φ(x, k, k′) exp

(
ε(k′)

kBT

)
F ′ − Φ(x, k, k′) exp

(
ε(k)

kBT

)
F

]
dk′

=

∫
B

Φ(x, k, k′)

[
exp

(
ε(k′)

kBT

)
F ′ − exp

(
ε(k)

kBT

)
F

]
dk′ . (3.25)

3.1.2 The bipolar model

A semiconductor is characterised by the fact that the Fermi energy lies in the gap
between the top of the valence band and the bottom of the conduction band, the so
called bandgap. Furthermore, the difference between a metal and a semiconductor
is the width of the bandgap. Semiconductors have by far smaller bandgaps than
metals. This allows electrons to be thermally activated from the valence band into
the conduction band. This process shows an exponential dependence on the tem-
perature T . At room temperature, the conduction band is not completely empty
anymore, but still rather scarcely populated by electrons. In the transition from
the valence band to the conduction band, every electron leaves a so-called hole in
the valence band. It is associated with a positive elementary charge. This ensures
charge neutrality over the whole crystal.

Electrons can also be transferred to the conduction band by external energy
sources, for example by shining light onto the semiconductor. Any process that
transfers an electron from the valence band to the conduction band, leaving a hole
in the valence band, is called generation of an electron-hole pair. The inverse process
is called recombination of an electron-hole pair.

The concept of naming a not existing electron in the valence band a hole and
assigning it with the elementary charge q > 0 is an easy and elegant way to describe
the collective motion of the remaining electrons in the valence band. For more
information on the basic physical properties of semiconductors the reader is referred
to [21], [22].

In the following calculations, quantities corresponding to electrons will be denoted
with the index n and holes with the index p. The number densities n and p are
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3 Derivation of the drift-diffusion equations

calculated from their distribution functions Fn and Fp, respectively:

n =

∫
B

Fndk , p =

∫
B

Fpdk ,

as are the current densities

Jn = −q
∫
B

vn(k)Fn dk , Jp = q

∫
B

vp(k)Fp dk ,

with vn, vp the respective electron and hole velocities and q > 0 denoting the el-
ementary charge. They are related to the band diagrams εn(k) and εp(k) by the
relations

vn =
1

~
∇kεn(k) , (3.26)

vp = −1

~
∇kεp(k) . (3.27)

The temporal evolution of the distribution functions is described by the Boltzmann
equations

∂tFn + vn(k) · ∇xFn −
q

~
E · ∇kFn = Qn(Fn) + In(Fn, Fp) , (3.28)

∂tFp + vp(k) · ∇xFp +
q

~
E · ∇kFp = Qp(Fp) + Ip(Fn, Fp) . (3.29)

Hence, Qn and Qp are the electron and hole collision operators, modeling the short
range particle interactions with each other and the environment. They are of the
form (3.11) with the transition rates sn and sp, respectively. They satisfy the detailed
balance relations according to the equations (3.20) and (3.19):

sn(x, k, k′) = exp

(
εn(k)− εn(k′)

kBT

)
sn(x, k′, k) ,

sp(x, k, k
′) = exp

(
εp(k)− εp(k′)

kBT

)
sp(x, k

′, k) .

The operators In and Ip describe generation and recombination processes of electron-
hole pairs. They are given by

In(Fn, Fp) =

∫
B

[g(x, k, k′)(1− Fn)(1− F ′p)− r(x, k, k′)FnF ′p]dk′ , (3.30)

Ip(Fn, Fp) =

∫
B

[g(x, k′, k)(1− F ′n)(1− Fp)− r(x, k′, k)F ′nFp]dk
′ , (3.31)

where g(x, k, k′) gives the rate of generating an electron at the state (x, k) and a hole
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3 Derivation of the drift-diffusion equations

at the state (x, k′). Further, r(x, k, k′) gives the rate of recombination of an electron
at the state (x, k) and a hole at the state (x, k′). The terms in the equation (3.30) are
accounted for as follows. The quantity In(Fn, Fp) gives the rate of electrons gained
or lost in the state (x, k) due to generation and recombination processes. The first
term under the integral, g(x, k, k′)(1−Fn)(1−F ′p), is the gain term due to electrons
being generated in the state (x, k) in combinatin with a hole being generated in any
state (x, k′). A necessary requirement for this process is the fact that the state (x, k)
must not be populated by an electron and the state (x, k′) not by a hole. Hence,
the factors (1− Fn)(1− F ′p) occur.

The second term under the integral, −r(x, k, k′)FnF ′p, is a loss term, easily recog-
nised as such by the minus sign. It describes the reduction of the number of electrons
in the state (x, k) by recombination of electron-hole pairs. Naturally, the electron
state (x, k) and the hole state (x, k′) have to be occupied for a recombination process
to occur.

The term In(Fn, Fp) only accounts for electrons with wave vector k. The wave
vector k′ of the according hole is not specified. Generation and recombination can
occur involving a hole with any wave vector k′. To account for all possible pairings
the integral

∫
B
· · · dk′ over the Brillouin zone has to be taken. The argumentation is

analogous for the hole equation (3.31).
Corresponding to the properties of the collision operators Qn and Qp, we have to

ensure that generation into and recombination from the state (x, k), represented by
the operators In, (3.30) and Ip, (3.31), balance in thermal equilibrium. A sufficient
condition is given by the relation

g(x, k, k′)(1− Fne)(1− F ′pe) = r(x, k, k′)FneF
′
pe

g(x, k, k′)(1− Fne − F ′pe + FneF
′
pe) = r(x, k, k′)FneF

′
pe ,

where Fne/pe stands for the electron/hole distribution in thermal equilibrium given
by the Fermi-Dirac statistics (3.13), (3.14). Bringing r(x, k, k′) to the left side of
the equation and all the other terms to the right side yields

r(x, k, k′) = g(x, k, k′)

{
1

FneF ′pe
− 1

F ′pe
− 1

Fne
+ 1

}
.

Now, we insert the expressions (3.13), (3.14) for the equilibrium distribution func-
tions Fne/pe into this relation:

r(x, k, k′) = g(x, k, k′)

{[
1 + exp

(
εn(k)− εF

kBT

)][
1 + exp

(
−εp(k′) + εF

kBT

)]

−
[
1 + exp

(
−εp(k′) + εF

kBT

)]
−
[
1 + exp

(
εn(k)− εF

kBT

)]
+ 1

}
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Sorting the terms results in

r(x, k, k′) = g(x, k, k′)

{
1 + exp

(
εn(k)− εF

kBT

)
+ exp

(
−εp(k′) + εF

kBT

)
+ exp

(
εn(k)− εp(k′)

kBT

)
− 1− exp

(
−εp(k′) + εF

kBT

)
−1− exp

(
εn(k)− εF

kBT

)
+ 1

}
,

from which we finally obtain the detailed balance relation

r(x, k, k′) = g(x, k, k′) exp

(
εn(k)− εp(k′)

kBT

)
(3.32)

connecting the generation rate g(x, k, k′) and the recombination rate r(x, k, k′).
The space charge density ρ is constituted by electrons, holes and also ionized

impurities, called dopants. The impurity or doping profile will be called C, and
we assume it to be only dependent on the position vector x: C = C(x). By this
assumption we exclude mobile impurities. The doping profile C is given by the num-
ber of positively charged donors minus the number of negatively charged acceptors.
Adding up all contributions to the space charge density leaves

ρ = −q(n− p− C) . (3.33)

By integrating the Boltzmann equations (3.28) and (3.29) over the Brillouin zone
B, a calculation that will be done explicitely in the next section, one obtains

q∂tn− div Jn = −qR , (3.34)

q∂tp+ div Jp = −qR , (3.35)

where R accounts for the generation and recombination of charges. It is expressed
in terms of the distribution functions Fn and Fp:

R = −
∫
B

Ip(Fn, Fp)dk = −
∫
B

In(Fn, Fp)dk .

It has to be noted that the conservation laws (3.34), (3.35) are coupled in a nonlinear
way via R, meaning recombinatin and generation processes. This means that the
total number of each type of charge is no longer conserved, although electrons and
holes can only be generated or destroyed in pairs.

The total current density
J = Jn + Jp , (3.36)

satisfies a continuity equation. This can be verified by a short calculation. Sub-
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stracting (3.34) from (3.35) and using (3.33) and (3.36) gives:

q∂tp− q∂tn+ div Jp + div Jn = 0

q∂t(p− n) + div (Jp + Jn) = 0

−q∂t(n− p) + div J = 0

∂t(−q(n− p)) + div J = 0

∂t(−q(n− p− C))− ∂tC + div J = 0

∂tρ− ∂tC︸︷︷︸
=0

+div J = 0

∂tρ+ div J = 0 (3.37)

The conservation of charge for the whole space is obtained by integrating (3.37) over
the considered volume V :∫

V

∂tρ(x, t)dx+

∫
V

divJ(x, t) dx = 0 ,

where we can make use of the Gauß theorem, to transform the integral over the
volume V into an integral over the surface of V denoted by ∂V :

∂t

∫
V

ρ(x, t)dx+

∫
∂V

J(x, t) dS .

Here, dS is an infinitesimal surface element of ∂V . Under the assumption that there
is no current flow at the surface ∂V , the second integral vanishes, leaving

∂t

∫
V

ρ(x, t)dx = 0 .

The partial derivative of the integral over the charge density equals zero, implying
that the integral over the charge density has the same value at all times:∫

V

ρ(x, t)dx =

∫
V

ρ(x, t = 0)dx , ∀t > 0 .

This means that the total charge in the volume V is conserved.
Again we make use of the low density approximation

0 6 Fn � 1 , 0 6 Fp � 1 , (3.38)

which allows us to set all terms in the collision and generation-recombination inte-
grals that are quadratic in Fn, Fp equal to zero.

Following the example of the collision relaxation time, we can define relaxation

33



3 Derivation of the drift-diffusion equations

times for the charge generation (τG) and recombinatin (τR) processes:

τG(x, k) =

(∫
B

g(x, k, k′)dk′
)−1

, (3.39)

τR(x, k) =

(∫
B

r(x, k, k′)dk′
)−1

. (3.40)

Comparing the order of magnitude of the different relaxation times one finds that the
generation and recombination relaxation times are far larger than the collision relax-
ation times. This complies with the natural assumption that collisions happen more
frequently than generations or recombinations of electron-hole pairs. The collision
relaxation time is of the order of ∼ 10−12 s, whereas the generation-recombination
relaxation times are of the order of ∼ 10−9 s.

3.2 From kinetic to fluid dynamic models by ways of
the mean free path method - the Hilbert
expansion

Solving a kinetic transport model numerically is a very difficult undertaking. We
make the transition to fluid dynamical models for semiconductors. They have the
great advantage of being much more computationally efficient, that means, solving
them numerically on a computer takes a lot less time, than solving the basic kinetic
models. On the other hand, they are still sufficiently accurate for our purposes from
a physical point of view. Not so much information is lost in the transition from
a kinetic to a fluid dynamical description of the system at the micrometer scale.
There are a number of models around. Their general common feature, however, is
the reduced number of independent variables. From a kinetic transport model with
seven independent variables (three space, three velocity, one time coordinate) we go
over to the fluid dynamic model with just four independent variables (three space,
one time coordinate). The dependent variables are usually described by averages
of the phase space number density with respect to the velocity, which are called
moments.

Two different ways to make the transition to fluid dynamic models exist. The
first one, which will also be considered in this thesis exploits the smallness of the
mean free path, which is an order parameter of the given system and describes the
average distance travelled by an electron between two consecutive scattering events.
The second one is a so-called moment method. To close the resulting system of
equations it is necessary to make an assumption concerning the velocity dependence
of the phase space density. This ansatz also contains several time and position
dependent parameters. The ansatz is then inserted into the Boltzmann equation.
The resulting equation is multiplied with a number of independent functions of the
velocity and then integrated over the velocity space. The result of this procedure is
a number of differential equations for the time- and position-dependent parameters
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of the ansatz. As is easily imagined, the moment method requires a certain amount
of experience for choosing an appropriate ansatz. Furthermore, not all occurring
integrals can be solved. In such a case the term in question has to be replaced by a
suitable phenomenological model.

Considering all steps of the calculation, the first method via the mean free path
is easier and will be taken in this thesis. We start with the bipolar model stated in
Section 3.1.2,

∂tFn + vn(k) · ∇xFn −
q

~
E · ∇kFn = Qn(Fn) + In(Fn, Fp) , (3.41)

∂tFp + vp(k) · ∇xFp +
q

~
E · ∇kFp = Qp(Fp) + In(Fn, Fp) , (3.42)

along with the low density approximations (3.16), (3.17) for the collision terms.
We use the expression (3.25) for the collision terms, which leads to the following
relations for the electron and hole collision terms

Qn(Fn) =

∫
B

Φn(x, k, k′)

[
exp

(
εn(k′)

kBT

)
F ′n − exp

(
εn(k)

kBT

)
Fn

]
dk′ , (3.43)

Qp(Fp) =

∫
B

Φp(x, k, k
′)

[
exp

(
−εp(k

′)

kBT

)
F ′p − exp

(
−εp(k)

kBT

)
Fp

]
dk′ . (3.44)

For the generation-recombination rates we use the equations (3.30) and (3.31), where
we also make use of the low density approximation (1− Fn/p) ≈ 1 and the relation
of detailed balance (3.32):

In(Fn, Fp) =

∫
B

[g(x, k, k′)(1− Fn)(1− F ′p)− r(x, k, k′)FnF ′p]dk′

=

∫
B

[g(x, k, k′)− r(x, k, k′)FnF ′p]dk′

=

∫
B

[
g(x, k, k′)− g(x, k, k′) exp

(
εn(k)− εp(k′)

kBT

)
FnF

′
p

]
dk′

= −
∫
B

g(x, k, k′)

[
exp

(
εn(k)− εp(k′)

kBT

)
FnF

′
p − 1

]
dk′ (3.45)

The calculation for holes is analogous and will be skipped here. The resulting ex-
pression is given by

Ip(Fn, Fp) = −
∫
B

g(x, k′, k)

[
exp

(
εn(k′)− εp(k)

kBT

)
F ′nFp − 1

]
dk′ . (3.46)

We assume that the conduction electrons gather around the conduction band min-
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imum and the holes around the valence band maximum. This is the case at room
temperature. Based on this assumption we make the approximation of a parabolic
relation between the energy and wave vector of the electrons and holes:

εn(k) = Ec +
~2

2mn

|k|2 , (3.47)

εp(k) = Ev −
~2

2mp

|k|2 , (3.48)

with Ec, the conduction band minimum, Ev, the valence band maximum and mn

and mp the effective electron and hole masses. Based on these relations, we calculate
the electron and hole velocities according to Eq. (3.26) and (3.27)

vn(k) =
1

~
∇kεn(k) =

1

~
∇k

(
Ec +

~2

2mn

|k|2
)

=
1

~
2~2

2mn

k =
~
mn

k , (3.49)

vp(k) = −1

~
∇kεp(k) = −1

~
∇k

(
Ev −

~2

2mp

|k|2
)

=
1

~
2~2

2mp

k =
~
mp

k . (3.50)

We now introduce the reference velocity

v =

√
kBT

mn

. (3.51)

The choice of this reference velocity is quite plausible if one considers the terms for
the kinetic and thermal energy of an electron:

Ekin =
mnv

2

2
,

Etherm =
kBT

2
.

Setting them equal gives the result

Ekin = Etherm ,

mnv
2

2
=
kBT

2
,

v =

√
kBT

mn

.

Consequently, the reference velocity can be seen as the thermal velocity of an elec-
tron. We define the scaled wave vector

ks =
~

mnv
k , (3.52)

where v is the reference velocity (3.51). We want to measure the velocity of electrons
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in units of this reference velocity:

vns =
vn
v

=
~k
mn

1

v
= ks , (3.53)

where we made use of the relation pn = mnvn = ~k to express vn. This result
immediately justifies the definition of ks, (3.52). The scaled hole velocity is defined
analogously:

vps =
vp
v

=
~k
mp

1

v
=
mn

mp

ks . (3.54)

The collision and generation-recombination relaxation times defined in (3.39), (3.40)
are associated with the corresponding mean free paths, lC and lR, between two
consecutive scattering or recombination-generation events

τC =
lC
v
, τR =

lR
v
,

Collisions happen much more frequently than generations or recombinations, [20],
therefore τR ≈ 10−9 s� τC ≈ 10−12 s. Thus,

lC � lR (3.55)

holds. The ratio of the two mean free paths, denoted by the parameter α2 is very
small

α2 =
lC
lR
� 1 .

The smallness of the parameter α will be exploited later. The next steps taken
are a rescaling of the Boltzmann equations (3.41) and (3.42) by making a variable
transformation to the scaled quantities defined above. This way we introduce the
parameter α to the equation. We then will perform an expansion in terms of powers
of α.

To complete the scaling we also need to convert the position x, time t, the ac-
cording derivatives and the electric field strength into dimensionless variables. This
is done by defining the reference length l0 by

α =
lC
l0
,

which means that α can be interpreted as the scaled mean free path between two
scattering events. In addition, we need the reference time τR and the thermal voltage
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UT = kBT
q

for the scaling procedure:

xs =
x

l0
,

ts =
t

τR
=
tv

lR
=
tvα2

lc
= tα

v

l0
,

Es = E
l0
UT

.

We perform the rescaling explicitely for the electron Boltzmann equation (3.41),
where me make the following substitutions:

∇k =
~

mnv
∇ks ,

∇x =
1

l0
∇xs ,

∂t = α
v

l0
∂ts ,

vn = vvns ,

E = Es
UT
l0
.

To tackle the right side of the Boltzmann equation, we use the fact that the scaled
collision and recombination-generation terms Qns and Ins are linked to the unscaled
terms by the respective relaxation times τC and τR:

Qns =
Qn

1
τC

,

Ins =
In
1
τR

.

Inserting the definitions stated above into equation (3.41) yields

α
v

l0
∂tsFns + vvns

1

l0
· ∇xsFns −

q

~
Es
UT
l0

~
mnv

· ∇ksFns =
1

τC
Qns +

1

τR
Ins

=
v

lC
Qns +

v

lR
Ins

α
v

l0

lC
v
∂tsFns + vvns

1

l0

lC
v
· ∇xsFns −

q

~
Es
UT
l0

~
mnv

lC
v
· ∇ksFns = Qns +

lC
lR
Ins
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In the next steps we use the relations lC = αl0, v2 = kBT
mn

and UT = kBT
q

:

α2∂tsFns + αvns · ∇xsFns − α
qEsUTmn

kBTmn

· ∇ksFns = Qns + α2Ins

α2∂tsFns + αvns · ∇xsFns − αEs · ∇ksFns = Qns + α2Ins .

From here on we will omit the index s for the scaled quantities. The rescaled versions
of the Boltzmann equation for electrons and holes are

α2∂tFn + α{vn(k) · ∇xFn − E · ∇kFn} = Qn(Fn) + α2In(Fn, Fp) , (3.56)

α2∂tFp + α{vp(k) · ∇xFp + E · ∇kFp} = Qp(Fp) + α2In(Fn, Fp) . (3.57)

The scaled collision (Qn/p(Fn/p)) and generation-recombination (In/p(Fn, Fp)) terms
have the same form as the unscaled ones, except that the integration is taken over
R3 instead of the Brillouin zone B. This is allowed, because the charge distribution
function Fn/p is approximately zero everywhere outside the Brillouin zone B. Apart
from the change in integration limits the exponential factors

exp

(
εn(k)

kBT

)
, exp

(
εp(k)

kBT

)
, (3.58)

change into

exp

(
Ecs +

1

2
|ks|2

)
, exp

(
Evs −

mn

2mp

|ks|2
)
, (3.59)

due to the equations (3.47) and (3.48), where the energy Ecs = Ec

kBT
is the scaled

conduction band minimum and Evs = Ev

kBT
the scaled valence band maximum. We

find these changes for the exponential factors by the following basic calculation steps
for electrons

εn(k)

kBT
=
Ec + ~2

2mn
|k|2

kBT
=
Ec + ~2

2mn

m2
nv

2

~2 |ks|2

kBT

=
Ec + mnv2

2
|ks|2

kBT
=
Ec + mnkBT

2mn
|ks|2

kBT
= Ecs +

1

2
|ks|2 ,

and analogously for holes

εp(k)

kBT
=
Ev − ~2

2mp
|k|2

kBT
=
Ev − ~2

2mp

m2
nv

2

~2 |ks|2

kBT

=
Ev − m2

n

2mp
v2|ks|2

kBT
=
Ev − m2

n

2mp

kBT
mn
|ks|2

kBT
= Evs −

mn

2mp

|ks|2 .

At this point we apply a Hilbert expansion. This is an expansion of the distribution
functions of the scaled Boltzmann equations (3.56), (3.57) in terms of powers of the
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scaled mean free path α = lC
l0

:

Fn = Fn0 + αFn1 + α2Fn2 + · · · (3.60)

Fp = Fp0 + αFp1 + α2Fp2 + · · · (3.61)

We insert the Hilbert expansions (3.60), (3.61) into the scaled Boltzmann equations
(3.56), (3.57) and sort the terms in powers of α. The result for the electron equation
reads

∞∑
j=2

αj
∂

∂t
Fn,j−2 +

∞∑
j=1

αj (vn · ∇xFn,j−1 − E · ∇kFn,j−1)

=
∞∑
j=0

Qn(Fn,j) +
∞∑
j=2

αjIn(Fn,j−2, Fp,j−2) .

The equation for holes looks analogously. The coefficients of the terms α0, α1, α2, . . .
have to vanish, since the powers of α are linearly independent. The only term of the
order of α0 = 1 is Qn/p(Fn0/p0), so it immediately follows that

Qn(Fn0) = Qp(Fp0) = 0 . (3.62)

Equation (3.62) has the solutions

Fn0 = n(x, t)Mn(k), Fp0 = p(x, t)Mp(k), (3.63)

with Mn and Mp denoting the scaled Maxwell distributions

Mn(k) =
1

Nc

exp

(
−1

2
|k|2
)
, (3.64)

Mp(k) =
1

Nv

exp

(
− mn

2mp

|k|2
)
, (3.65)

with the constants

Nc = (2π)
3
2 , Nv =

(
2πmp

mn

) 3
2

. (3.66)

Nc and Nv are chosen in a way that ensures that the integrals of the Maxwell
distributions taken over the entire k-space are equal to one, meaning the Maxwell
distributions (3.64), (3.65) are normalized. With this normalization we can identify
the until now unspecified quantities n(x, t), p(x, t) as the scaled position space
number densities of electrons and holes. We now verify that (3.63) are solutions to
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(3.62):

Qn(Fn0) =

∫
R3

Φn

[
exp

(
Ec +

1

2
|k′|2

)
F ′n0 − exp

(
Ec +

1

2
|k|2
)
Fn0

]
dk′

=

∫
R3

Φn

[
exp

(
Ec +

1

2
|k′|2

)
n(x, t)

1

Nc

exp

(
−1

2
|k′|2

)

− exp

(
Ec +

1

2
|k|2
)
n(x, t)

1

Nc

exp

(
−1

2
|k|2
)]

dk′

=

∫
R3

Φn

[
exp (Ec)n(x, t)

1

Nc

− exp (Ec)n(x, t)
1

Nc

]
︸ ︷︷ ︸

=0

dk′ = 0

Qp(Fp0) =

∫
R3

Φp

[
exp

(
−Ev +

mn

2mp

|k′|2
)
F ′p0 − exp

(
−Ev +

mn

2mp

|k|2
)
Fp0

]
dk′

=

∫
R3

Φp

[
exp

(
−Ev +

mn

2mp

|k′|2
)
p(x, t)

1

Nv

exp

(
− mn

2mp

|k′|2
)

(3.67)

− exp

(
−Ev +

mn

2mp

|k|2
)
p(x, t)

1

Nv

exp

(
− mn

2mp

|k|2
)]

dk′

=

∫
R3

Φn

[
exp (−Ev) p(x, t)

1

Nv

− exp (−Ev) p(x, t)
1

Nv

]
︸ ︷︷ ︸

=0

dk′ = 0

Collecting terms of the oder α1 = α and setting the whole coefficient equal to zero
leads to

vn(k) · ∇xFn0 − E · ∇kFn0 = Qn(Fn1) ,

where we insert (3.63) for Fn0

vn(k) · ∇x(n(x, t)Mn(k))− E · ∇k(n(x, t)Mn(k)) = Qn(Fn1) .

Because Mn(k) is no function of x and n(x, t) is no function of k we are allowed to
write

vn(k)Mn(k) · ∇xn(x, t)− E n(x, t) · ∇kMn(k) = Qn(Fn1) .

Here we need the expression for ∇kMn(k),

∇kMn(k) =
1

Nc

∇k exp

(
−1

2
|k|2
)

= − 1

Nc

exp

(
−1

2
|k|2
)
k

= −Mnk = −Mnvn,
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where we used vns = ks of (3.53), here omitting the index s. With this we get

vn(k)Mn(k) · [∇xn(x, t) + E n(x, t)] = Qn(Fn1) ,

as equation for the coefficients of α for electrons.
The calculation for holes is analogous, nevertheless it will be given here explicitely:

vp(k) · ∇xFp0 + E · ∇kFp0 = Qp(Fp1)

vp(k) · ∇x(p(x, t)Mp(k)) + E · ∇k(p(x, t)Mp(k)) = Qp(Fp1)

vp(k)Mp(k) · ∇xp(x, t) + E p(x, t) · ∇kMp(k) = Qp(Fp1)

Calculating ∇kMp(k) gives

∇kMp(k) =
1

Nv

∇k exp

(
− mn

2mp

|k|2
)

(3.68)

=
1

Nv

∇k exp

(
− mn

2mp

(k2
x + k2

y + k2
z)

)
(3.69)

=
1

Nv

exp

(
− mn

2mp

|k|2
)(
−mn

mp

k

)
(3.70)

= −Mp(k)vp ,

where we used vps = mn

mp
ks of (3.54), here omitting the index s, leaving finally

vp(k)Mp(k) [∇xp(x, t)− E p(x, t)] = Qp(Fp1) . (3.71)

For the further steps of the derivation we take advantage of the following lemma,
quoting [17] and [20]:
“ A) A necessary and sufficient condition for the solvability of an equation of the
form

Qn/p(f) = g (3.72)

is ∫
R3

g dk = 0 . (3.73)

If (3.73) holds, (3.72) has a one-dimensional linear manifold of solutions of the form
f = fn/p+qn/pMn/p where fn/p denotes a particular solution and qn/p is a parameter.
B) The equations

Qn(hn) = Mnvn , Qp(hp) = Mpvp (3.74)
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have solutions hn(x, k), hp(x, k) ∈ R3 which satisfy∫
R3

vn ⊗ hn dk = −µn(x)I3 < 0, (3.75)

∫
R3

vp ⊗ hp dk = −µp(x)I3 < 0, (3.76)

where I3 is the three-dimensional unity matrix and a⊗b = abT , for a, b ∈ R3, denotes
the tensor product. Furthermore, the j-th component of hn/p is an odd function of
the j-th component of k and has the form

hn/p,j(k) = h(kj, |Pjk|) ,

where |Pjk| denotes the Euclidian norm of the projection of k onto the plane per-
pendicular to the kj-direction.”
Here we introduce the scaled current densities

Jn(x, t) = µn(∇x n+ nE) , (3.77)

Jp(x, t) = −µp(∇x p− pE) , (3.78)

with the mobilities µn for electrons and µp for holes. The first term denotes current
caused by diffusion due to a gradient in the electron distribution. If electrons are
accumulated at one place they will diffuse away from that area into regions which
are less densely populated. The second term describes drifting electrons. Drift is
caused by an applied external or internal electric field. Both terms are proportional
to the mobility. The larger the mobility, the more current is gained from the same
acting forces. The argumentation is analogous for holes, yet the signs in the formulas
are reversed for the hole case. The overal minus sign takes care of the fact that holes
moving in one direction give the same current as electrons moving in the opposite
direction because of their opposite charge. The minus in front of the drift term is
caused by the fact that holes in an electric field are drawn in the opposite direction
as electrons exposed to the same electric field.
Using the expressions for the scaled current densities (3.77), (3.78) and the above
stated Lemma the solutions to (3.68), (3.71) are

Fn1 = Jn ·
hn
µn
− qnMn , (3.79)

Fp1 = −Jp ·
hp
µp

+ qpMp , (3.80)

where qn and qp are as yet unspecified.
Going further and collecting coefficients of order αn, n > 2 , in the scaled versions

43



3 Derivation of the drift-diffusion equations

of the Boltzmann equation (3.56), (3.57) results in:

∂tFn,j−2 + vn · ∇xFn,j−1 − E · ∇kFn,j−1 = Qn(Fn,j) + In(Fn,j−2, Fp,j−2) , (3.81)

∂tFp,j−2 + vp · ∇xFp,j−1 + E · ∇kFp,j−1 = Qp(Fp,j) + In(Fn,j−2, Fp,j−2) . (3.82)

Looking at (3.56), (3.57), the form of (3.81), (3.82) is immediately obvious. The
partial derivative appears as a coefficient to α2, hence the subscript j − 2, the same
applies to the term In. The coefficients to α appear here with the index j − 1.
The argument of Qn has index j, because in the Boltzmann equation this term is a
coefficient to α0 = 1.
We now consider the special case j = 2. Equations (3.81), (3.82) turn into

∂tFn0 + vn · ∇xFn1 − E · ∇kFn1 = Qn(Fn2) + In(Fn0, Fp0) , (3.83)

∂tFp0 + vp · ∇xFp1 + E · ∇kFp1 = Qp(Fp2) + In(Fn0, Fp0) . (3.84)

We can now make use of the solvability condition (3.72), (3.73). Applying it to
(3.83) we get

∫
R3

∂tFn0︸ ︷︷ ︸
(1)

+ vn · ∇xFn1︸ ︷︷ ︸
(2)

−E · ∇kFn1︸ ︷︷ ︸
(3)

− In(Fn0, Fp0)︸ ︷︷ ︸
(4)

 dk !
= 0 . (3.85)

We now insert (3.63) for Fn0, Fp0 and (3.79) for Fn1, treating the different terms of
the integral separately for easier reading. First we calculate (1) by inserting (3.63)
for Fn0 ∫

R3

∂tFn0dk =

∫
R3

∂t (n(x, t)Mn(k)) dk

=

∫
R3

Mn(k)∂tn(x, t)dk

= ∂t n(x, t)

∫
R3

Mn(k) dk

︸ ︷︷ ︸
=1

= ∂t n(x, t) . (3.86)

In the second line we used that the Maxwell distribution Mn is not a function of
time. We are also allowed to exchange the partial derivative and the integral. Lastly
we exploit the fact that the Maxwell distribution we use is normalized in R3.
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3 Derivation of the drift-diffusion equations

Moving on to part (2) of the integral, we replace Fn1 by (3.79)∫
R3

vn · ∇xFn1dk =

∫
R3

vn(k) · ∇x

(
Jn(x, t) · hn(x, k)

µn(x)
− qnMn(k)

)
dk

=

∫
R3

[
∇x ·

(
vn(k)

Jn(x, t) · hn(x, k)

µn(x)

)
− vn(k) ·Mn(k)∇xqn

]
dk

Here we used that the Maxwell distribution and the electron velocity do not depend
on the position x. Thus, we are allowed to pull vn(k) into the argument of the
differential operator. The term ∇x qn is equal to zero, because qn is just a parameter
as stated in the lemma. The first term can be rewritten as follows

∇x ·
[
vn(k)

Jn(x, t) · hn(x, k)

µn(x)

]
= ∇x ·

[
vn(k)

hn(x, k) · Jn(x, t)

µn(x)

]
= ∇x ·

[
(vn(k)⊗ hn(x, k))

Jn(x, t)

µn(x)

]
.

The validity of the last transformation will be shown here:

vn(k) [hn(x, k) · Jn(x, t)] =

v1

v2

v3

h1

h2

h3

 ·
J1

J2

J3


=

v1h1J1 + v1h2J2 + v1h3J3

v2h1J1 + v2h2J2 + v2h3J3

v3h1J1 + v3h2J2 + v3h3J3


Evaluating the expression including the tensor product yields

[vn(k)⊗ hn(x, k)] Jn(x, t) =
[
vnh

T
n

]
Jn

=

v1

v2

v3

 · (h1, h2, h3)

J1

J2

J3


=

v1h1 v1h2 v1h3

v2h1 v2h2 v2h3

v3h1 v3h2 v3h3

J1

J2

J3


=

v1h1J1 + v1h2J2 + v1h3J3

v2h1J1 + v2h2J2 + v2h3J3

v3h1J1 + v3h2J2 + v3h3J3

 .

We see that both expressions yield the same result. This allows us to rewrite part
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3 Derivation of the drift-diffusion equations

(2) of the integral as follows∫
R3

vn · ∇xFn1dk = ∇x

∫
R3

(vn(k)⊗ hn(x, k)) dk

︸ ︷︷ ︸
=−µn(x)I3

Jn(x, t)

µn(x)

= −∇x I3Jn(x, t)

= −∇x Jn(x, t) , (3.87)

where we used (3.75) of the lemma.
Term (3) of the integral (3.85) equals zero. It can be rewritten as∫

R3

E · ∇kFn1dk = E ·
∮
∂R3

Fn1dSk = 0 , (3.88)

where we used Gauß’ theorem. The distribution function vanishes for |k| → ∞.
Finally we consider part (4) of the integral. For the generation-recombination

term In(Fn0, Fp0) we insert the scaled version of equation (3.45), which yields∫
R3

In(Fn0, Fp0)dk = −
∫
R3

∫
R3

g(x, k, k′)

[
exp

(
Ec +

1

2
|k|2 − Ev +

mn

2mp

|k′|2
)
Fn0F

′
p0 − 1

]
dk′dk

= −
∫
R3

∫
R3

g(x, k, k′)

[
exp

(
Ec +

1

2
|k|2 − Ev +

mn

2mp

|k′|2
)

× n(x, t)p(x, t)
1

Nc

1

Nv

exp

(
−1

2
|k|2
)

exp

(
− mn

2mp

|k′|2
)
− 1

]
dk′dk

= −
∫
R3

∫
R3

g(x, k, k′)

[
exp (Ec − Ev)︸ ︷︷ ︸

Eg

n(x, t)p(x, t)
1

Nc

1

Nv

− 1

]
dk′dk

= −n(x, t)p(x, t)
1

NcNv

exp (Eg)

∫
R3

∫
R3

g(x, k, k′)dk′dk +

∫
R3

∫
R3

g(x, k, k′)dk′dk

= −R . (3.89)

Here we used the abbreviation Eg = Ec−Ev for the scaled bandgap of the semicon-
ductor. The bandgap is the energy difference between the bottom of the conduction
band and the top of the valence band, here implicitely scaled by the factor (kbT )−1.

Combining (3.86), (3.87), (3.88) and (3.89) we get:

∂t n(x, t)−∇x Jn(x, t) = −R . (3.90)
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3 Derivation of the drift-diffusion equations

Doing an analogous calculation for holes results in

∂t p(x, t) +∇x Jp(x, t) = −R , (3.91)

where the recombination-generation rate R is given by

R = A(x)(np− n2
i ) . (3.92)

A(x) and ni are defined as follows:

ni =
√
NcNv exp

(
−Eg

2

)
, A(x) = n−2

i

∫
R3

∫
R3

g(x, k, k′)dk′dk .

Equations (3.90) and (3.91) together with (3.77), (3.78) are the scaled versions of
the drift-diffusion-current equations for semiconductors. The unscaled versions are

Jn = qµn (UT∇x n+ nE) , q∂t n−∇x Jn = −qR ,
Jp = −qµp (UT∇x p+ pE) , q∂t p+∇x Jp = −qR , (3.93)

with the thermal voltage UT = kBT
q

introduced earlier in the calculation as the
reference voltage. Actually there is a relation between the thermal voltage and
carrier mobility. They are connected by the diffusivity D

Dn = µnUT , Dp = µpUT .

The equations
Dn

µn
=
Dp

µp
= UT , (3.94)

are called the Einstein relations. Here the scaled variables are denoted by the
same symbols as the unscaled ones. The scaling chosen in this derivation implies
(kBTmn)

3
2~−3 as reference value for the number densites of electrons and holes.

Considering this, the unscaled recombination-generation rate R is of the form (3.92)
with the unscaled intrinsic number density ni described by

ni =

(
2πkT

√
mnmp

~2

) 3
2

exp

(
− Eg

2kBT

)
.

To be able to simulate processes in semiconductors self-consistently with the electric
field the drift diffusion equations (3.93) have to be complemented by the Poisson
equation. The resulting equations are called the basic semiconductor device equa-
tions. For more detailed information on the derivation of the drift-diffusion-current
equations the reader is referred to [17].
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4 Numerical methods

4.1 Discretization

To solve the drift-diffusion equations (3.93) on a computer we need to discretize
them and solve them at every grid point. The grid spacing is shown schematically
in Fig. 4.1.

i

j

B

B+1

Figure 4.1: Schematic representation of the discretized device. The active layer is
coloured green, the top contact is red and the bottom contact yellow. The
grey cells on the left and right represent ghost points used to include the
proper boundary conditions. In this drawing the y-axis shows downwards
and has indices i, the x-axis goes from left to right, with indices j [31].

We choose a rectangular grid with variable grid spacing in both directions. At
interfaces the grid spacing is finer than in more homogeneous areas. The index in
the y-direction is j ∈ [0, B+1], where j = 0 represents the top contact and j = B+1
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4 Numerical methods

the bottom contact. In the x-direction the index is i ∈ [0, A+ 1], where i = 0, A+ 1
represent the left and right column of ghost points. The lines drawn in Fig. 4.1
represent the cell boundaries. All the necessary quantities like electron and hole
density, electrostatic potential are calculated in the center of each cell.

The Poisson as well as the drift-diffusion-current and continuity equations for
electrons, holes and excitons need to be discretized and solved on this grid. They
form a set of coupled equations. They are solved self-consistently and iteratively
until the change between two consecutive iteration steps is smaller than a given
tolerance level. To simulate the temporal evolution of the system we use an implicit
time step method.

4.2 Poisson solver

We start by discretizing the Poisson equation (2.6)

∇ · [ε0εr(x, y)∇ψ(x, y)] = −ρ(x, y) = q [n(x, y)− p(x, y)] ,

which includes a position dependent relative electric permittivity εr(x, y). In two
dimensions it has the form

∇ · f(x, y) = ∇ ·
(
fx(x, y)
fy(x, y)

)
=
∂fx
∂x

+
∂fy
∂y

= −ρ(x, y) = q [n(x, y)− p(x, y)] , (4.1)

with

f(x, y) = ε0εr(x, y)∇ψ(x, y) = ε0εr(x, y)

(∂ψ
∂x
∂ψ
∂y

)
. (4.2)

For the next step we need a Taylor expansion of fx on the interval [xi − 1
2
∆xi, xi +

1
2
∆xi] and of fy on the interval [yj − 1

2
∆yj, yj + 1

2
∆yj]. From here on we use the

abbreviations

ai = ∆xi = xi+1 − xi ,
bj = ∆yj = yj+1 − yj .

With these expressions we can write the Taylor expansions as

fx(xi+ 1
2
, yj) = fx(xi, yj) +

ai
2

∂fx(x, y)

∂x

∣∣∣∣
(xi,yj)

+O(x2) , (4.3)

fx(xi− 1
2
, yj) = fx(xi, yj)−

ai−1

2

∂fx(x, y)

∂x

∣∣∣∣
(xi,yj)

+O(x2) , (4.4)

fy(xi, yj+ 1
2
) = fy(xi, yj) +

bj
2

∂fy(x, y)

∂y

∣∣∣∣
(xi,yj)

+O(x2) , (4.5)

fy(xi, yj− 1
2
) = fx(xi, yj)−

bj−1

2

∂fy(x, y)

∂y

∣∣∣∣
(xi,yj)

+O(x2) . (4.6)
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We now subtract (4.4) from (4.3), only considering terms up to first order, to obtain

ai + ai−1

2

∂fx(x, y)

∂x

∣∣∣∣
(xi,yj)

= fx(xi+ 1
2
, yj)− fx(xi− 1

2
, yj) ,

∂fx(x, y)

∂x

∣∣∣∣
(xi,yj)

=
fx(xi+ 1

2
, yj)− fx(xi− 1

2
, yj)

1
2
(ai + ai−1)

.

Substrating (4.6) from (4.5) yields the analogous result for the y-coordinate:

∂fy(x, y)

∂y

∣∣∣∣
(xi,yj)

=
fy(xi, yj+ 1

2
)− fy(xi, yj− 1

2
)

1
2
(bj + bj−1)

.

We can now write down the discretized expression for ∇f(x, y)

∇f(x, y)|(xi,yj) =
fx(xi+ 1

2
, yj)− fx(xi− 1

2
, yj)

1
2
(ai + ai−1)

+
fy(xi, yj+ 1

2
)− fy(xi, yj− 1

2
)

1
2
(bj + bj−1)

.

Reinserting (4.2) for f(x, y) yields

ε0 ∇ (εr(x, y)∇ψ(x, y))|(xi,yj) = ε0

[
εr(x, y)∂ψ

∂x

]
(x

i+ 1
2
,yj)
−
[
εr(x, y)∂ψ

∂x

]
(x

i− 1
2
,yj)

1
2
(ai + ai−1)

+ε0

[
εr(x, y)∂ψ

∂y

]
(xi,yj+ 1

2
)
−
[
εr(x, y)∂ψ

∂y

]
(xi,yj− 1

2
)

1
2
(bj + bj−1)

.

(4.7)

To shorten the formulas a bit we use the notation [f(x, y)](xi,yj) = fi,j. Also, we still
have to discretize the spatial derivatives occurring in equation (4.7). The approxi-
mated expressions read

∂ψ

∂x

∣∣∣∣
(x

i+ 1
2
,yj)

≈ ψi+1,j − ψi,j
ai

,
∂ψ

∂x

∣∣∣∣
(x

i− 1
2
,yj)

≈ ψi,j − ψi−1,j

ai−1

∂ψ

∂y

∣∣∣∣
(xi,yj+ 1

2
)

≈ ψi,j+1 − ψi,j
bj

,
∂ψ

∂y

∣∣∣∣
(xi,yj− 1

2
)

≈ ψi,j − ψi,j−1

bj−1

. (4.8)
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We use the discretized derivatives (4.8) and obtain for equation (4.7)

ε0∇ · (εr(x, y)∇ψ(x, y))|(xi,yj) = ε0

εr,i+ 1
2
,j

(
ψi+1,j−ψi,j

ai

)
− εr,i− 1

2
,j

(
ψi,j−ψi−1,j

ai−1

)
1
2
(ai + ai−1)

+ε0

εr,i,j+ 1
2

(
ψi,j+1−ψi,j

bj

)
− εr,i,j− 1

2

(
ψi,j−ψi,j−1

bj−1

)
1
2
(bj + bj−1)

.

(4.9)

We still do not have an explicit expression for the relative electrical permittivity. It
is evident to approximate εr between two grid points by the mean value at the two
neighbouring points

εr,i± 1
2
,j =

εr,i±1,j + εr,i,j
2

, εr,i,j± 1
2

=
εr,i,j±1 + εr,i,j

2
. (4.10)

Equation (4.9) is now inserted into the Poisson equation (4.1), which results in

q
ni,j − pi,j

ε0

=
εr,i+ 1

2
,j

(
ψi+1,j−ψi,j

ai

)
− εr,i− 1

2
,j

(
ψi,j−ψi−1,j

ai−1

)
1
2
(ai + ai−1)

+
εr,i,j+ 1

2

(
ψi,j+1−ψi,j

bj

)
− εr,i,j− 1

2

(
ψi,j−ψi,j−1

bj−1

)
1
2
(bj + bj−1)

. (4.11)

As we see from the terms in equation (4.11), the potential at position (i, j) is de-
termined by the potentials at the four nearest neighbour sites as well as the charge
carrier densities at coordinates (i, j). We can reshape equation (4.11) to gain an
explicit expression for ψi,j, which reads

ψi,j =
1

A
[B + C(ψi+1,j, ψi,j+1) +D(ψi−1,j, ψi,j−1)] , (4.12)

where we introduced the terms

A =
εr,i,j+ 1

2

bj
+
εr,i,j− 1

2

bj−1

+
εr,i+ 1

2
,j

ai
+
εr,i− 1

2
,j

ai−1

, (4.13)

B = q
ni,j − pi,j

ε0

bj + bj−1

2

ai + ai−1

2
, (4.14)

C =
ai + ai−1

2

(
εr,i,j+1

ψi,j+1

bj

)
+
bj + bj−1

2

(
εr,i+1,j

ψi+1,j

ai

)
, (4.15)

D =
bj + bj−1

2

(
εr,i−1,j

ψi−1,j

ai−1

)
+
ai + ai−1

2

(
εr,i,j−1

ψi,j−1

bj−1

)
. (4.16)
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The approximations for the relative permittivity are given in equation (4.10). The
equations (4.12) to (4.16) are valid for i ∈ [1, A] and j ∈ [1, B]. With this calculation
we arrive at a system of equations that needs to be solved. The system consists of
a very large number of individual equations making a iterative solution favourable
to a direct one. An iteration process is numerically very stable. Another advantage
of the iteration approach is the consideration of boundary conditions. In direct
schemes they create new equations that have to be treated in the solving process.
In an iteration process they are automatically included with the starting values of
the iteration, which of course have to be set at the beginning. The easiest choice is
to start at zero and let the system evolve towards the solution.

The evaluation of the potential starts at the top left grid point of the active layer
(depicted in Fig. 4.1), defined by the indices (i = 1, j = 1). It is carried out row-
wise, starting at the top row, i = 1, proceeding from left to right, from j = 1 to
j = B. The last point to be evaluated is (i = A, j = B).

Considering this iteration scheme we can write down equations (4.12) to (4.16)
for the iteration step k + 1,

ψk+1
i,j =

1

A

[
B + C(ψki+1,j, ψ

k
i,j+1) +D(ψk+1

i−1,j, ψ
k+1
i,j−1)

]
,

with

A =
εr,i,j+ 1

2

bj
+
εr,i,j− 1

2

bj−1

+
εr,i+ 1

2
,j

ai
+
εr,i− 1

2
,j

ai−1

,

B = q
ni,j − pi,j

ε0

bj + bj−1

2

ai + ai−1

2
,

C =
ai + ai−1

2

(
εr,i,j+1

ψki,j+1

bj

)
+
bj + bj−1

2

(
εr,i+1,j

ψki+1,j

ai

)
,

D =
bj + bj−1

2

(
εr,i−1,j

ψk+1
i−1,j

ai−1

)
+
ai + ai−1

2

(
εr,i,j−1

ψk+1
i,j−1

bj−1

)
.

4.3 Scharfetter-Gummel algorithm

In this section we will describe the Scharfetter-Gummel algorithm for solving the
drift-diffusion model (3.93). This alogrithm is an approximation scheme based on a
first-order finite difference method. The reason for using this numerical method are
stability concerns. For a simple finite difference method the simulation is not stable.
It will either oscillate heavily or not converge at all.

We start the calculation at the expressions for the electron and hole current den-
sities (2.1) and (2.2)

Jn(x, y, t) = q n(x, y, t)µn(x, y)E(x, y, t) +Dn(x, y)q∇n(x, y, t) , (4.17)

Jp(x, y, t) = q p(x, y, t)µp(x, y)E(x, y, t)−Dp(x, y)q∇p(x, y, t) , (4.18)
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where we already inserted the expression for the thermal velocity (3.94), UT =
Dn/p

µn/p
.

For simplicity the following steps will be demonstrated only for the x component of
the electron equation (4.17). The procedure for more spatial directions is analogous,
as is the case for the hole current. Thus, we start with the one-dimensional equation
for the electron current density given by

xJn(x, y, t) = q n(x, y, t)µn(x, y)xE(x, y, t) +Dn(x, y)q
∂n(x, y, t)

∂x
. (4.19)

When employing the Scharfetter-Gummel algorithm, the given equation, in this
case (4.19), is solved analytically in an interval on the x-axis x ∈ [xi, xi+1] and an
arbitrary value on the y-axis, y = yj. To be able to solve the equation, we make
the assumption that the x-component of the electron current density xJn(x, y, t)
is constant in the interval [xi, xi+1]. We denote the constant value by xJ t

n,i+ 1
2
,j

,

where the index t represents the time. The main feature of the Scharfetter-Gummel
approximation comes into play later, yet it will be explained here very briefly. The
electron density n(x, y, t) has a fixed value at both ends of the interval [xi, xi+1],
given by two boundary conditions. A one-dimensional differential equation has one
degree of freedom. If two boundary conditions are given, as is the case here, another
quantity has to be treated as a variable to conserve the number of degrees of freedom.
For that reason the constant current density xJ t

n,i+ 1
2
,j

is treated as an independent

variable and will be calculated from the electron concentrations at either end of the
interval, given by the boundary conditions. Further on, the so derived equations
for the x- and y-components of both the electron and hole current densities will be
combined with the discretized versions of the continuity equations (3.93).

But let us follow this calculation step by step. As already mentioned, we start
with equation (4.19), assuming a constant electron current density per interval. For
the electron mobility µn and the electron diffusivity Dn in this interval, we use their
corresponding mean values

µn,i+ 1
2
,j =

µn,i,j + µn,i+1,j

2
,

Dn,i+ 1
2
,j =

Dn,i,j +Dn,i+1,j

2
.

Additionally, we assume a linear generalized electric potential Ψ between the two
points xi and xi+1. Thus, we calculate the electric field by the differential quotient,

xEt
i+ 1

2
,j

= −
Ψt
i+1,j −Ψt

i,j

xi+1 − xi
. (4.20)

The electric field xEt
i+ 1

2
,j

is constant in the interval x ∈ [xi, xi+1].

Based on these preliminary discretizations and definitions we solve the differential
equation (4.19). First, we treat the homogenous equation by making an exponential
ansatz. Then a particular solution of the inhomogenous equation has to be found.
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The general solution to the inhomogenous differential equation is then given by
the sum of the homogenous and the particular solution. The homogenous form of
equation (4.19) reads

a n(x, y, t) + b
∂n(x, y, t)

∂x
= 0 ,

with the constant factors

a = q µn,i+ 1
2
,j
xEt

i+ 1
2
,j
, b = q Dn,i+ 1

2
,j .

We insert the ansatz
n(x, y, t) = Ceλx ,

into the homogeneous equation and find

aeλx + λbeλx = 0 .

By solving this equation for λ we see that the homogenous solution is given by

nhom(x, y, t) = Ce−
a
b
x .

A particular solution of Eq. (4.19) can be found as

npart(x, y, t) =

xJ t
n,i+ 1

2
,j

a
. (4.21)

Combining the homogenous and the particular solutions yields the general solution
to the Eq. (4.19):

n(x, y, t) = nhom + npart = Ce−
a
b
x +

xJ t
n,i+ 1

2
,j

a
,

in the interval x ∈ [xi, xi+1] and y = yj. Now we use the boundary conditions fixing
the values of the electron density n(x, y, t) at both ends of the interval:

nti,j = Ce−
a
b
xi +

xJ t
n,i+ 1

2
,j

a
, (4.22)

nti+1,j = Ce−
a
b
xi+1 +

xJ t
n,i+ 1

2
,j

a
. (4.23)

The constant C is calculated from (4.22)

C =
nti,j −

xJt

n,i+ 1
2 ,j

a

e−
a
b
xi

and inserted into (4.23). Some basic calculation steps are performed to obtain the
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following expression for the electron current density

xJ t
n,i+ 1

2
,j

= a
nti+1,j − nti,j exp

[
−a
b
(xi+1 − xi)

]
1− exp

[
−a
b
(xi+1 − xi)

] .

This equation for xJ t
n,i+ 1

2
,j

can be simplified by extending it

xJ t
n,i+ 1

2
,j

=
b

xi+1 − xi

{
nti+1,j

(xi+1 − xi)ab
1− exp

[
−a
b
(xi+1 − xi)

] − nti,j −(xi+1 − xi)ab
1− exp

[
+a
b
(xi+1 − xi)

]} ,

(4.24)
and using the definition of the Bernoulli function

B(x) =
−x

1− ex
.

Inserting this definition into (4.24) yields

xJ t
n,i+ 1

2
,j

=
b

xi+1 − xi

{
nti+1,jB

(
−a
b

(xi+1 − xi)
)
− nti,jB

(
+
a

b
(xi+1 − xi)

)}
.

At this point we reinsert the expressions a = q µn,i+ 1
2
,j
xEt

i+ 1
2
,j

and b = q Dn,i+ 1
2
,j and

obtain

xJ t
n,i+ 1

2
,j

=
qDn,i+ 1

2
,j

xi+1 − xi

{
nti+1,jB

(
−
q µn,i+ 1

2
,j
xEt

i+ 1
2
,j

qDn,i+ 1
2
,j

(xi+1 − xi)

)

−nti,jB

(
+
q µn,i+ 1

2
,j
xEt

i+ 1
2
,j

q Dn,i+ 1
2
,j

(xi+1 − xi)

)}
. (4.25)

The argument of the Bernoulli function can be simplified by using the relation
between the diffusion constant and the mobility (3.94), and expression (4.20) for the
electric field:

q µn,i+ 1
2
,j
xEt

i+ 1
2
,j

q Dn,i+ 1
2
,j

(xi+1 − xi) = − 1

UT

Ψt
i+1,j −Ψt

i,j

xi+1 − xi
(xi+1 − xi)

= −
q(Ψt

i+1,j −Ψt
i,j)

kBT
,

where we made use of UT = kBT
q

, for the thermal voltage, with the Boltzmann

constant kB. Combining this calculation with equation (4.25) results in

xJ t
n,i+ 1

2
,j

=
qDn,i+ 1

2
,j

xi+1 − xi

{
nti+1,jB

(
q(Ψt

i+1,j −Ψt
i,j)

kBT

)
− nti,jB

(
−
q(Ψt

i+1,j −Ψt
i,j)

kBT

)}
,

the x-component of the discretized drift-diffusion current for electrons at time t.
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The procedure for the y-component and the whole calculation for the hole current
are analogous. Here, only the results are given

xJ t
n,i+ 1

2
,j

=
qDn,i+ 1

2
,j

xi+1 − xi

{
nti+1,jB

(
q(Ψt

n,i+1,j −Ψt
n,i,j)

kBT

)
− nti,jB

(
−
q(Ψt

n,i+1,j −Ψt
n,i,j)

kBT

)}
,

(4.26)

yJ t
n,i,j+ 1

2
=
qDn,i,j+ 1

2

yj+1 − yj

{
nti,j+1B

(
q(Ψt

n,i,j+1 −Ψt
n,i,j)

kBT

)
− nti,jB

(
−
q(Ψt

n,i,j+1 −Ψt
n,i,j)

kBT

)}
,

(4.27)

xJ t
p,i+ 1

2
,j

= −
qDp,i+ 1

2
,j

xi+1 − xi

{
pti+1,jB

(
−
q(Ψt

p,i+1,j −Ψt
p,i,j)

kBT

)
− pti,jB

(
q(Ψt

p,i+1,j −Ψt
p,i,j)

kBT

)}
,

(4.28)

yJ t
p,i,j+ 1

2
= −

qDp,i,j+ 1
2

yj+1 − yj

{
pti,j+1B

(
−
q(Ψt

p,i,j+1 −Ψt
p,i,j)

kBT

)
− pti,jB

(
q(Ψt

p,i,j+1 −Ψt
p,i,j)

kBT

)}
.

(4.29)

For the simulations we also need the continuity equations (3.93). They are dis-
cretized by using a first-order finite difference approximation for the spatial deriva-
tives occuring in the continuity equations. The discretized versions of (3.93) read

∂

∂t
nti,j −

1

q

xJ t
n,i+ 1

2
,j
− xJ t

n,i− 1
2
,j

1
2
(xi+1 − xi−1)

− 1

q

yJ t
n,i,j+ 1

2

− yJ t
n,i,j− 1

2

1
2
(yj+1 − yj−1)

= Gt
i,j −Rt

i,j ,

∂

∂t
pti,j +

1

q

xJ t
p,i+ 1

2
,j
− xJ t

p,i− 1
2
,j

1
2
(xi+1 − xi−1)

+
1

q

yJ t
p,i,j+ 1

2

− yJ t
p,i,j− 1

2

1
2
(yj+1 − yj−1)

= Gt
i,j −Rt

i,j ,

where G represents the charge carrier generation rate and R the recombination rate.
To deal with the time derivative we apply an implicit Euler backward method [15],
which yields

nt+∆t
i,j − nti,j

∆t
− 1

q

xJ t+∆t
n,i+ 1

2
,j
− xJ t+∆t

n,i− 1
2
,j

1
2
(xi+1 − xi−1)

− 1

q

yJ t+∆t
n,i,j+ 1

2

− yJ t+∆t
n,i,j− 1

2

1
2
(yj+1 − yj−1)

= Gt+∆t
i,j −Rt+∆t

i,j ,

(4.30)

pt+∆t
i,j − pti,j

∆t
+

1

q

xJ t+∆t
p,i+ 1

2
,j
− xJ t+∆t

p,i− 1
2
,j

1
2
(xi+1 − xi−1)

+
1

q

yJ t+∆t
p,i,j+ 1

2

− yJ t+∆t
p,i,j− 1

2

1
2
(yj+1 − yj−1)

= Gt+∆t
i,j −Rt+∆t

i,j .

(4.31)

Now we have to insert the expressions for the current density, equations (4.26) to
(4.29), into the discretized continuity equations (4.30), (4.31). This yields a system
of very long equations containing nt+∆t and pt+∆t respectively at the five spatial
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positions (i, j), (i+1, j), (i−1, j), (i, j+1), (i, j−1) and the potentials at time t+∆t
at the same spatial positions. The equations also contain nti,j and pti,j respectively,
the electron and hole densities at the coordinates (i, j) at the previous time step
t. This means, we can find expressions for the new densities nt+∆t

i,j and pt+∆t
i,j at

the coordinates (i, j) at time t + ∆t. They depend on the densities of the nearest
neighbours at the same time step t+ ∆t and the densities at the considered location
(i, j) at the previous time step t:

nt+∆t
i,j =

[(
−Rt+∆t

i,j +Gt+∆t
i,j +

nti,j
∆t

)
ai−1 + ai

2

bj−1 + bj
2

+nt+∆t
i+1,jDn,i+ 1

2
,jB

(
Ψt+∆t
n,i+1,j −Ψt+∆t

n,i,j

UT

)
bj−1 + bj

2ai

+nt+∆t
i,j+1Dn,i,j+ 1

2
B

(
Ψt+∆t
n,i,j+1 −Ψt+∆t

n,i,j

UT

)
ai−1 + ai

2bj

+nt+∆t
i,j−1Dn,i,j− 1

2
B

(
Ψt+∆t
n,i,j−1 −Ψt+∆t

n,i,j

UT

)
ai−1 + ai

2bj−1

+nt+∆t
i−1,jDn,i− 1

2
,jB

(
Ψt+∆t
n,i−1,j −Ψt+∆t

n,i,j

UT

)
bj−1 + bj

2ai−1

]

×

[
Dn,i,j− 1

2
B

(
Ψt+∆t
n,i,j −Ψt+∆t

n,i,j−1

UT

)
ai−1 + ai

2bj−1

+Dn,i− 1
2
,jB

(
Ψt+∆t
n,i,j −Ψt+∆t

n,i−1,j

UT

)
bj−1 + bj

2ai−1

+Dn,i+ 1
2
,jB

(
Ψt+∆t
n,i,j −Ψt+∆t

n,i+1,j

UT

)
bj−1 + bj

2ai

+Dn,i,j+ 1
2
B

(
Ψt+∆t
n,i,j −Ψt+∆t

n,i,j+1

UT

)
ai−1 + ai

2bj

+
1

∆t

ai−1 + ai
2

bj−1 + bj
2

]−1

, (4.32)

where i = 1, ..., A and j = 1, ..., B. The following abbreviations were used:

• ai = xi+1 − xi

• bj = yj+1 − yj

• UT = kBT
q

57



4 Numerical methods

For holes the expression reads:

pt+∆t
i,j =

[(
−Rt+∆t

i,j +Gt+∆t
i,j +

pti,j
∆t

)
ai−1 + ai

2

bj−1 + bj
2

+pt+∆t
i+1,jDp,i+ 1

2
,jB

(
Ψt+∆t
p,i,j −Ψt+∆t

p,i+1,j

UT

)
bj−1 + bj

2ai

+pt+∆t
i,j+1Dp,i,j+ 1

2
B

(
Ψt+∆t
p,i,j −Ψt+∆t

p,i,j+1

UT

)
ai−1 + ai

2bj

+pt+∆t
i,j−1Dp,i,j− 1

2
B

(
Ψt+∆t
p,i,j −Ψt+∆t

p,i,j−1

UT

)
ai−1 + ai

2bj−1

+pt+∆t
i−1,jDp,i− 1

2
,jB

(
Ψt+∆t
p,i,j −Ψt+∆t

p,i−1,j

UT

)
bj−1 + bj

2ai−1

]

×

[
Dp,i,j− 1

2
B

(
Ψt+∆t
p,i,j−1 −Ψt+∆t

p,i,j

UT

)
ai−1 + ai

2bj−1

+Dp,i− 1
2
,jB

(
Ψt+∆t
p,i−1,j −Ψt+∆t

p,i,j

UT

)
bj−1 + bj

2ai−1

+Dp,i+ 1
2
,jB

(
Ψt+∆t
p,i+1,j −Ψt+∆t

p,i,j

UT

)
bj−1 + bj

2ai

+Dp,i,j+ 1
2
B

(
Ψt+∆t
p,i,j+1 −Ψt+∆t

p,i,j

UT

)
ai−1 + ai

2bj

+
1

∆t

ai−1 + ai
2

bj−1 + bj
2

]−1

, (4.33)

with i = 1, ..., A and j = 1, ..., B. The following abbreviations were used:

• ai = xi+1 − xi

• bj = yj+1 − yj

• UT = kBT
q

The system of equations (4.32) and (4.33) has to be solved. This is done iteratively
for the same reasons as already explained in Section 4.2. The iteration needs starting
values for nt=0

i,j and pt=0
i,j , which in the simplest case will be chosen as zero. The

evaluation is performed in the same way as for the potential, meaning the calculation
starts at the top left grid point and progresses row wise from left to right to the
bottom right grid point. It then starts again in the top left corner.

We still need explicit information on the charge carrier generation and recom-
bination rates Gt+∆t

i,j and Rt+∆t
i,j . For the generation rate we have to consider the
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exciton distribution. As already stated in Chapter 2, excitons are generated by light
absorption in the organic semiconductor. They then can diffuse until they either
recombine and are lost for the simulation or dissociate into an electron-hole pair.
This behaviour is described by the continuity equation for excitons (2.10)

∂ex(x, y, t)

∂t
= Gex(x, y)−Rex(x, y, t)−G(x, y, t)− 1

q
∇Φ(x, y, t) , (4.34)

where the exciton flux density is given by (2.8)

Φex(x, y, t) = −kBTµex∇ ex(x, y, t) . (4.35)

Here, ex(x, y, t) denotes the exciton density at position (x, y) at time t. The terms
Gex and Rex give the exciton generation and recombination rates. The generation
rate is independent of time as the illumination of the device does not change over
time. The recombination rate, however, is time dependent. G(x, y, t) gives the gen-
eration rate of electron-hole pairs, it equals the dissociation rate of excitons. There-
fore, it is a loss term in the exciton continuity equation. The last term represents
excitons gained or lost at position (x, y) due to exciton diffusion.

The discretized versions of the x- and y-component of (4.35) read

xΦt+∆t
ex,i+ 1

2
,j

= −kBTµex,i+ 1
2
,j

ext+∆t
i+1,j − ext+∆t

i,j

ai
. (4.36)

yΦt+∆t
ex,i,j+ 1

2

= −kBTµex,i,j+ 1
2

ext+∆t
i,j+1 − ext+∆t

i,j

bj
, (4.37)

Next we discretize the exciton continuity equation (4.34), also considering the tem-
poral derivative by an implicit Euler backwards method. It is the same procedure
as for the electron and hole continuity equations. We get

ext+∆t
i,j − exti,j

∆t
=

Gt+∆t
ex,i,j −Rt+∆t

ex,i,j −Gt+∆t
i,j − 1

q

xΦt+∆t
ex,i+ 1

2
,j
− xΦt+∆t

ex,i− 1
2
,j

1
2
(ai + ai−1)

+

yΦt+∆t
ex,i,j+ 1

2

− yΦt+∆t
ex,i,j− 1

2

1
2
(bj + bj−1)


as a result. Inserting the expressions (4.36) and (4.37) into the discretized continuity

59



4 Numerical methods

equation (4.3) yields

ext+∆t
i,j − exti,j

∆t
= Gt+∆t

ex,i,j −Rt+∆t
ex,i,j −Gt+∆t

i,j

+
2kBT

q(ai + ai−1)

[
µex,i+ 1

2
,j

ext+∆t
i+1,j − ext+∆t

i,j

ai
− µex,i− 1

2
,j

ext+∆t
i,j − ext+∆t

i−1,j

ai−1

]

+
2kBT

q(bj + bj−1)

[
µex,i,j+ 1

2

ext+∆t
i,j+1 − ext+∆t

i,j

bj
− µex,i,j− 1

2

ext+∆t
i,j − ext+∆t

i,j−1

bj−1

]
.

Again we are interested in a representation of the form

ext+∆t
i,j = f(exti,j, ex

t+∆t
i+1,j, ex

t+∆t
i−1,j, ex

t+∆t
i,j+1, ex

t+∆t
i,j−1) .

After a few basic calculation steps we obtain

ext+∆t
i,j =

[(
Gt+∆t
ex,i,j −Rt+∆t

ex,i,j −Gt+∆t
i,j +

exti,j
∆t

)
ai−1 + ai

2

bj−1 + bj
2

+
ai + ai−1

2bj−1

Dex,i,j− 1
2
ext+∆t

i,j−1 +
bj + bj−1

2ai−1

Dex,i− 1
2
,jex

t+∆t
i−1,j

+
ai + ai−1

2bj
Dex,i,j+ 1

2
ext+∆t

i,j+1 +
bj + bj−1

2ai
Dex,i+ 1

2
,jex

t+∆t
i+1,j

]

×

[
ai + ai−1

2bj−1

Dex,i,j− 1
2

+
bj + bj−1

2ai−1

Dex,i− 1
2
,j

+
ai + ai−1

2bj
Dex,i,j+ 1

2
+
bj + bj−1

2ai
Dex,i+ 1

2
,j

+
1

∆t

ai−1 + ai
2

bj−1 + bj
2

]−1

, (4.38)

where we made use of the relation (2.9):

• kBT
q
µex,i± 1

2
,j = Dex,i± 1

2
,j ,

• kBT
q
µex,i,j± 1

2
= Dex,i,j± 1

2
.

Altogether we now have three sytems of equations that need to be solved simultane-
ously. Thus, we evaluate the equations (4.32), (4.33) and (4.38) in the active region
defined by i ∈ [1, A] and j ∈ [1, B] iteratively.

60



4 Numerical methods

4.4 Charge generation and recombination rates

To evaluate the equations (4.32), (4.33) and (4.38) we need to specify the different
generation and recombination rates G, R and Gex, Rex.

Exciton generation rate Gt+∆t
ex

In our simulation we assume that all the incoming photons generate excitons. There
are no competitive processes that reduce it. In the simulation light enters the de-
vice through the top electrode passes straight through both semiconductors without
diffraction, is reflected at the back electrode at an angle of 0◦ and travels back to
the top electrode on a straight path, where it leaves the device. On its way through
the organic semiconductors light is absorbed according to Lambert-Beer’s law [47]

I(y = d) = I(y = 0)e−αd , (4.39)

with I(y = 0) denoting the light intensity at the starting point, I(y = d) the intensity
at a distance d from the starting point. The symbol α denotes the absorption
coefficient.

In our simulations the AM 1.5 spectrum is used for the incoming light, see Sec-
tion 2.6. The spectrum is given in units of Wm−2nm−1. Light is absorbed if its
wavelength is smaller than a maximum wavelength λmax = hc

Egap
, with h the Planck

constant and c the speed of light. This maximum wavelength corresponds to the
bandgap energy Egap, meaning the minimal energy difference between the LUMO
and HOMO levels of the organic semiconductors. Only photons with an energy
higher than the bandgap energy can be absorbed.

The intensity at every grid box boundary is calculated as follows for light travers-
ing the device from the top to the bottom contact

I1(xi, yj, λ) = I1
i,j(λ) = I1

i,j−1(λ) exp

[
−αi,j(λ)

∆yj + ∆yj−1

2

]
,

where I1
i,j(λ) is the light intensity of wavelength λ reaching the boundary between the

grid boxes (xi, yj−1) and (xi, yj). The intensity at each grid box boundary (xi, yj)
is calculated from the intensity at the previous grid box boundary (xi, yj−1), for
1 6 j < B and 1 6 i 6 A. The intensity is measured in units of Wm−2nm−1. The
grid spacing ∆y is defined as ∆yj = yj − yj−1. In our simulations the absorption
coefficient αi,j(λ) varies with position and wavelength, as the two semiconductors
have different absorption spectra, see Fig. 5.8. We consider the case j = 0 separately,
using the AM 1.5 spectrum IAM1.5(λ) as starting intensity:

I1
i,0(λ) = IAM1.5(λ) exp

[
−αi,0(λ)

∆y0

2

]
.

For the simulation we need the photon density P 1
i,j at the grid box boundaries

(i,j), not the intensity. It can be calculated from the intensity with the relation
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I = Phν = Ph c
λ
, with the frequency ν, the Planck constant h and the speed of light

c. We must also take the sum over all absorbable wavelengths:

P 1
i,j =

kmax∑
k=1

I1
i,j(λk) ∆λ

λk
hc
.

P 1
i,j is the photon density reaching the boundary between the grid box (xi, yj−1) and

(xi, yj) per unit of time. It is given in units of m−2s−1. Here ∆λ = λk+1 − λk is the
constant grid spacing of the wavelength.

In the next step the intensity of the reflected light is calculated

I2(xi, yj, λ) = I2
i,j(λ) = I2

i,j+1(λ) exp

[
−αi,j+1(λ)

∆yj + ∆yj+1

2

]
,

for 1 6 i 6 A, and B − 1 > j > 0. Again, the case j = B is considered separately

I2
i,B(λ) = I1

i,B(λ) exp [−αi,B+1(λ) ∆yB] .

There is no factor 1
2

in the exponent, because light travels the distance ∆yB
2

twice.
The according photon density of the reflected light at the grid box boundary (i, j)
is evaluated in the same way as for the incoming light

P 2
i,j =

kmax∑
k=1

I2
i,j(λk) ∆λ

λk
hc
.

We are interested in how many photons are absorbed in one grid box per time
unit. It is calculated from the differences in the photon density at the grid box
boundaries in y-direction. This value still has to be divided by the grid box length
in y-direction to give the photon density in units of m−3s−1. Thus, the absorbed
photon density for each grid box (i, j) is calculated by

Gt+∆t
ex,i,j =

2

∆yj + ∆yj−1

(
P 1
i,j−1 − P 1

i,j + P 2
i,j − P 2

i,j−1

)
,

for 1 6 i 6 A and 1 6 j 6 B. This equation includes the contributions of the
incoming and the reflected light.

Exciton recombination rate Rt+∆t
ex,i,j

If an exciton does not encounter an organic-organic interface during a certain period
of time after generation it recombines and is lost for the simulation. This process is
described by the exciton recombination rate

Rt+∆t
ex,i,j =

ext+∆t
i,j

τex
,

62



4 Numerical methods

with the exciton lifetime τex. In the simulation the value is set to τex = 10−9 s. This
value is chosen so that the mean diffusion length before recombination is approxi-
mately σ ≈ 15 nm, [38]. We calculate the exciton diffusion constant Dex from the
equation [38]

σ =
√
Dex τex .

to be Dex = 2.25 · 10−7 m2s−1.

Exciton dissociation rate Gt+∆t
i,j

Next we need an expression for Gt+∆t
i,j , the charge carrier generation rate, which

equals the exciton dissociation rate. It depends on the solar cell. In this work
we only consider solar cells built out of organic semiconductors. In this type of
device excitons can only dissociate at an organic-organic interface [3]. Excitons are
generated by incoming light and diffuse according to their mobility. If they encounter
an organic-organic interface during their lifetime they dissociate immediately. In
this code this behaviour is modelled by using two different lifetimes τ . The value
τ1 = 103 s is the mean time before an exciton dissociates in the organic semiconductor
and τ2 = 10−12 s is the mean time before an exciton dissociates at the organic-
organic interface. These values are chosen to ensure that no excitons dissociate in
the semiconductor and all excitons meeting the interface dissociate instantaneously,
which is the physical situation that we want to reproduce. Thus, these arbitrary
choices of dissociation-lifetimes are justified by the correct physical output they
provide. So we gain the expression for exciton dissociation

Gt+∆t
i,j =

ext+∆t
i,j

τ1

, j 6= B

2
,
B

2
+ 1

Gt+∆t
i,j =

ext+∆t
i,j

τ2

, j =
B

2
,
B

2
+ 1

The interface is situated between the two rows of grid-points characterized by (i, B
2

)
and (i, B

2
+ 1). Excitons dissociate in both of these rows. An exciton dissociating

at (i, B
2

) leaves an electron and a hole at position (i, B
2

). The same goes for the row
(i, B

2
+ 1).

Here, τ1 is chosen much larger than τex and τ2 is still comfortably smaller than τex.
This choice of parameters gives the excitons enough time to diffuse to the interface
before recombining, yet some of them do recombine. Upon reaching the interface,
all excitons dissociate immediately into an electron-hole pair.

Electron-hole recombination rate Rt+∆t
i,j

The electron hole recombination rate is assumed to follow Langevin-recombination
[7]

R(x, y, t) = γ n(x, y, t) p(x, y, t) , (4.40)
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with γ = qµ
ε0εr

and µ = min[µn, µp]. The formula describes a recombination process
that is determined by the electron and hole concentrations at position (x, y) at time
t. It is also directly proportional to the mobility of the slower charge carrier. This
means, the more charge carriers are concentrated at one point and the higher their
mobility, the more likely they are to recombine. It should be noted here that the
direct dependence on the mobility and thus the diffusion constant means that the
Langevin expression models diffusion-controlled recombination.

The discretized version of (4.40) reads

Rt+∆t
i,j = γ nt+∆t

i,j pt+∆t
i,j ,

with γ =
qµi,j
ε0εr

and µi,j = min[µn,i,j, µp,i,j].

4.5 Contacts

The semiconductor-contact interface poses a potential barrier for charge carriers.
Its height is determined by the difference between the contact workfunction and
the electron/hole transport level in the semiconductor given by the LUMO/HOMO
levels. This potential barrier is influenced by the acting electric field in the device. If
the field component perpendicular to the contact rises towards the contact it bends
down the injection barrier enabling a tunneling current, controlled by the barrier
width. If the electric field bends the barrier strongly, its width will be small and
the tunneling current noticeable. If the electric field decreases towards the contact
the barrier is not reduced and no tunneling current can occur. In fact the potential
rises even more.

The calculation will be demonstrated for holes. The electron case is analogous.
We start from the mathematical description of a Schottky barrier at the interface
[23, 24, 25, 26].

U(x, y) = Φ− q2

16πε0εr(x, y = 0)y
− qE⊥(x, y = 0)y , (4.41)

where U is the effective barrier height, Φ the nominal injection barrier given by
the difference between the workfunction of the contact and the HOMO transport
level, and E⊥ the elelectric field component perpendicular to the contact. We take
the values of εr and E⊥ at the contact (y = 0). The injection barrier according to
equation (4.41) is plotted in Fig. 4.2 as a function of the distance from the contact
y. The three differenct cases for E⊥ are shown.
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Figure 4.2: Schottky barrier at the contact-semiconductor interface where the con-
tact is located at y = 0 and the semiconductor is situated at y > 0. The
barrier shapes for E⊥ = 0, E⊥ > 0 and E⊥ < 0 are shown.

For E⊥ > 0 the barrier is bent down by the field. In this case it has a distinct
maximum height. It can be found analytically by taking the derivative of (4.41)
with respect to y and setting it equal to zero. By this method we find that the
barrier has its maximum value at

ymax =

(
q

E⊥(x, y = 0)16πε0εr(x, y = 0)

) 1
2

,

and consequently

Umax(x) = Φ−

√
q3E⊥(x, y = 0)

4πε0εr(x, y = 0)
.

We have to distinguish between two different cases:

• E⊥ < 0: If the electric field is negative, the barrier is not reduced by the
electric field. No thermionic injection or tunneling can occur.

• E⊥ > 0: A positive electric field bends down the injection barrier and thermionic
emission into the semiconductor and tunneling occur, their current densities
being determined by the barrier height and width.

The current density due to thermionic emission in y-direction is given by [27, 25]

Jth(x) = AT 2 exp

(
−Umax(x)

kBT

)
, (4.42)
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with the Richardson constant A and the temperature T . The Boltzmann constant
is denoted by kB. Thermionic emission is, as the name suggests a process primarily
regulated by the temperature. The tunneling current on the other hand is explicitly
temperature independent. It strongly correlates with the width of the potential
barrier. The expression for the tunneling current density in the WKB approximation
is given by [23], [25]

Jtu(x) = Jt

[
E⊥(x, y = 0)

Ett(h(x))

]2

exp

[
− Etv(h(x))

E⊥(x, y = 0)

]
, (4.43)

with the constant factors

Jt =
qΦ2

9(πa0)2~R
, Et =

4Φ
3
2

3qa0

√
R
,

where a0 denotes the Bohr radius and R the Rydberg constant. The functions
h(x), v(h(x)), t(h(x)) are given by

h(x) = Φ−1q

√
qE⊥(x, y = 0)

4πε0εr(x, y = 0)
,

v(h(x)) = [1 + h(x)]
1
2

{
E

(√
1− h(x)

1 + h(x)

)
− h(x)K

(√
1− h(x)

1 + h(x)

)}
,

t(h(x)) = [1 + h(x)]−
1
2

{
(1 + h(x)) E

(√
1− h(x)

1 + h(x)

)
− h(x)K

(√
1− h(x)

1 + h(x)

)}
.

Here E(X ) and K(X ) are the complete elliptic differential integrals of argument X
of first and second kind [27, 25].

The two components Jth and Jtu constitute the current density going from the
contact into the semiconductor. Flowing out of the device we have to consider the
back drift current density Jbd [27] and the interface recombination current density
Jir [27, 25]. They constitute the backflowing current density Jbf

Jbf (x) = Jbd(x) + Jir(x) .

The back drift current density is given by [27]

Jbd =

{
µp(x, y)p(x)Ey(x) E⊥(x) < 0

0 E⊥(x) > 0 .

The interface recombination current density has the form [25]

Jir =
AT 2

n0

p(x) ,
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with the density of occupiable states n0, which is chosen according to [25], the
hole density in the semiconductor p(x) and the hole mobility µp. The above stated
equations have to be discretized. The relative dielectric permittivity εr is taken at
positions (i, j = 1) for the top contact and (i, j = B) for the bottom contact. The
electric field component in y-direction for the top contact is calculated as a mean
value over two rows

E⊥,top,i =
ψi,2 − ψi,0
y2 − y0

,

where the electrostatic potential is denoted by ψ. The field at the bottom contact
is calculated by

E⊥,bottom,i =
ψi,B+1 − ψi,B−1

yB+1 − yB−1

,

The nominal injection barrier Φ entering equation (4.41) for the top contact is given
by

Φ = |Θp,i,1 − Φ1| ,

where Θp,i,1 is the HOMO transport level at spatial position (i, j = 1) and Φ1 denotes
the workfunction of the top contact. The bottom contact is treated analogously.

The current densities Jth, Jtu, Jbd, Jir are evaluated at the top contact for holes
and at the bottom contact for electrons. Electrons are only injected from the bottom
contact. Therefore, equation (4.32) has to be altered for j = B to include the current
densities described above. The terms containing the electron density at the bottom

67



4 Numerical methods

contact, namely nt+∆t
i,B+1, are substituted. The altered version of equation (4.32) reads

nt+∆t
i,B =

[(
−Rt+∆t

i,B +Gt+∆t
i,B +

nti,B
∆t

)
ai−1 + ai

2

bB−1 + bB
2

+ nt+∆t
i+1,BDn,i+ 1

2
,BB

(
Ψt+∆t
n,i+1,B −Ψt+∆t

n,i,B

UT

)
bB−1 + bB

2ai

+
Jth + Jtu

q

ai−1 + ai
2

+ nt+∆t
i,B−1Dn,i,B− 1

2
B

(
Ψt+∆t
n,i,B−1 −Ψt+∆t

n,i,B

UT

)
ai−1 + ai

2bB−1

+ nt+∆t
i−1,BDn,i− 1

2
,BB

(
Ψt+∆t
n,i−1,B −Ψt+∆t

n,i,B

UT

)
bB−1 + bB

2ai−1

]

×

[
Dn,i,B− 1

2
B

(
Ψt+∆t
n,i,B −Ψt+∆t

n,i,B−1

UT

)
ai−1 + ai

2bB−1

+Dn,i− 1
2
,BB

(
Ψt+∆t
n,i,B −Ψt+∆t

n,i−1,B

UT

)
bB−1 + bB

2ai−1

+Dn,i+ 1
2
,BB

(
Ψt+∆t
n,i,B −Ψt+∆t

n,i+1,B

UT

)
bB−1 + bB

2ai

+Dn,i,B+ 1
2

1

UT

Ψt+∆t
n,i,B+1 −Ψt+∆t

n,i,B

bB

ai−1 + ai
2

+
AT 2

n0q

ai−1 + ai
2

+
1

∆t

ai−1 + ai
2

bB−1 + bB
2

]−1

. (4.44)

For the negative electric field in the back drift current term we usedEy =
Ψt+∆t

n,i,B+1−Ψt+∆t
n,i,B

bB
.

Holes are only injected by the top contact, hence the hole equation (4.33) is adapted
analogously for j = 1. For a more detailed description of the contact modelling the
reader is referred to [27].

4.6 Boundary conditions

The simulated device cross section is depicted in Fig. 4.1. The top contact with
coordinates (i, 0) is coloured red, the bottom contact, defined by the indices (i, B+1),
is marked yellow. The ghost points, coloured grey, mark the left and right boundary
of the simulated area. They have coordinates (0, j) for the left column and (A+1, j)
for the right one.
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There are two possibilities of considering the boundaries in x-direction in the
simulation. The first one is to treat the simulated area as the whole device. In this
case the potential at the ghost points is set equal to the potential at the neighbouring
layer of the active area:

ψ0,j = ψ1,j , ψA+1,j = ψA,j ; ∀j ∈ [0, B + 1].

Additionally the current flow across these boundaries must be zero as charge carriers
can only enter and leave the device through the contacts. This can be ensured by
choosing the diffusion constants in these points in the following way:

Dn,0,j = −Dn,1,j , Dn,A+1,j = −Dn,A,j ,

Dp,0,j = −Dp,1,j , Dp,A+1,j = −Dp,A,j ,

Dex,0,j = −Dex,1,j , Dex,A+1,j = −Dex,A,j .

A typical solar cell has an extenstion of about 100 nm in the y-direction but a
few centimeters or even more in the x-direction. Considering this size ratio it seems
reasonable to simulate a cell with dimensions (100 × 100) nm and employ periodic
boundary conditions in x-direction. This is allowed as we can assume the solar cell
to be fairly homogenous in the x-direction. The periodic boundary conditions are
included in the simulation by setting

C0,j = CA,j , CA+1,j = C1,j ; ∀j ∈ [0, B + 1] .

Here, C represents the electrostatic potential ψ, the HOMO level Θp, the LUMO
level Θn, and the electron, hole, and exciton densities n, p, ex.

We additionally must consider the boundary conditions in y-direction. For the
Poisson equation at the top contact we use

ψi,0 = 0 , ∀i ∈ [0, A+ 1] .

The condition at the bottom contact is given by

ψi,B+1 = Uext − Vbi , ∀i ∈ [0, A+ 1] ,

where the externally applied voltage is denoted by Uext. The built-in voltage is called
Vbi. It is defined as the difference in workfunctions of both contacts:

Vbi = Φanode − Φcathode

The exciton density at the top and bottom contact must be set to zero, because of
recombination processes (exciton quenching). We therefore define

exi,0 = exi,B+1 = 0 , ∀i ∈ [0, A+ 1] .

For the continuity equations the boundary conditions for ohmic contacts are given
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by fixing the charge carrier densities at both contacts. We choose the following
densities for top contact (=anode)

ni,0 = 1010m−3 , pi,0 = 1022m−3 ; ∀i ∈ [0, A+ 1]

and for the bottom contact (=cathode)

ni,B+1 = 1022m−3 , pi,B+1 = 1010m−3 ; ∀i ∈ [0, A+ 1] .

For the realistic contact modelling described in Section 4.5 the electron density at
the top contact and the hole density at the bottom contact are set to

ni,0 = pi,B+1 = 1010m−3 , ∀i ∈ [0, A+ 1] .

The electron density next to the bottom contact ni,B and the hole density next to
the top contact pi,1 are determined by equation (4.44) for electrons and an analogous
equation for holes by fixing the current densities Jth, Jtu and Jbf at the interface
between semiconductor and contact.

4.7 Iteration algorithm and initial conditions

Figure 4.3 shows the flowchart of the algorithm for finding a self-consistent solution
of the coupled system of drift-diffusion and Poisson equations.
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Figure 4.3: Flowchart of the simulation algorithm. The self consistent solution of
the Poisson- and drift-diffusion equations performed at each time step is
marked by the dashed line.
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At the top, several input parameters must be handed over to the program. The
necessary data includes the external applied voltage Vext the HOMO and LUMO lev-
els, the relative dielectric constants and the absorption coefficients of the donor and
acceptor and the workfunctions of the contacts. Also required are the electron, hole
and exciton mobilities, the incoming light spectrum and the ambient temperature.
All these quantities are the input parameters of the program.

Before the simulation can be started initial conditions for the charge carrier densi-
ties and the potential have to be specified. We begin the simulation with no charge
carriers or excitons present in the active layer. The electrostatic potential is zero
all throughout the active layer. The workfunctions at the contacts are set at a fixed
value. Summing up the initial conditions gives

nt=0
i,j = pt=0

i,j = ext=0
i,j = ψt=0

i,j = 0 ∀ i ∈ [1, A], j ∈ [1, B] .

Before the iteration process is started the exciton distribution in the device is cal-
culated. Excitons are generated without loss by light falling on the solar cell. The
process is described in more detail in section 4.4. As the exciton generation rate is
not influenced by the potential or the charge carrier densities we can calculate it
up front and store the position dependent generation rate in a matrix. Then the
iteration begins.

First a solution of the Poisson equation is found by the Poisson solver described
in section 4.2. The potential is evaluated row-wise from left to right starting at
position (i = 1, j = 1). The so calculated potential distribution is plugged into
the discretized drift-diffusion equations (4.32) and (4.33) for electrons and holes.
The respective concentrations are calculated iteratively. The iteration process needs
a starting configuration as an input parameter. We begin with vanishing charge
carriers in the active area nstart,i,j = pstart,i,j = 0. Then the new charge carrier
densities are calculated according to the current electric potential, row-wise from
left to right starting at the top left grid point. This procedure is repeated over and
over again always using the values of the previous runthrough as input. In our case
the iterations for the potential and the electron and hole densities are performed
alternately, because these quantities influence each other. This process is performed
until self consistency is reached, yielding ψti,j, n

t
i,j, p

t
i,j. If this is the case the whole

iteration is redone for the next time step, t+ ∆t. We exit the iteration if the change
in the charge carrier densities and the potential from one time step to the next is
smaller than a given threshold value. If this condition is fulfilled we assume to have
reached the steady state.

In the following we can calculate interesting output data as the current density
distribution or the total current running through the device. To obtain a whole I-V
characteristic the whole simulation has to be done for a number of different applied
voltages.

72



5 Simulation results

5.1 Model system

The following results were obtained by using the two-dimensional drift-diffusion
equations described in Chapter 4. The simulation is based on the device layout
shown in Fig. 5.1. All interfaces are planar. Thus a one-dimensional simulation is
adequate. For this thesis a program for two-dimensional simulations was written.
This enables the user to simulate different interface morphologies. The simulations
done in the following all show planar interfaces. We therefore did not write a second
code performing only one-dimensional simulations but used the 2D code reducing the
number of grid points in x-direction to three including the ghost points. The grid-
spacing in x-direction is equal. In y-direction it is not regular. Around the interfaces
between the contacts and the adjoining semiconductor and the heterojunction the
grid points in y-direction are set more closely than in the rest of the device. This
allows us to plot the simulation results in 1D graphs, drawing the simulation results
along the cross section shown as a red line in Fig. 5.1.

Figure 5.1: Schematic drawing of the device layout used for the 1D drift-diffusion
simulations. All interfaces are planar.

At this point we want to introduce the reference system used in this work. All fol-
lowing simulations studying the influence of parameter variations will be compared
to this reference case. The system parameters were chosen to represent a realistic
system:

• Organic semiconductor 1: HOMO = 5.4 eV; LUMO = 3.6 eV
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• Organic semiconductor 2: HOMO = 5.6 eV; LUMO = 4.1 eV

• Mobilities: µn = µp = 10−8 m2V−1s−1 for the entire device [14]

• Exciton diffusion constant: Dex = 2.25 · 10−7 m2s−1

• Dielectric constants: εr,org1 = 3.5 [39], εr,org2 = 4.4 [40]

• Temperature: T= 300 K =̂ room temperature

• Potential at the real contacts: Φ1 = 5.2 V; Φ2 = 4.3 V→ Vbi = 0.9 V

The built-in voltage is defined as the difference in workfunctions Φ1/2 of the two
contacts. It is denoted by Vbi. The electron and hole mobilities are denoted by µn
and µp. The potential drop from the LUMO level of the acceptor to the cathode
is the same as the potential drop from the HOMO level of the donor to the anode.
Thus, electrons and holes encounter the same injection barrier from the contact into
the semiconductor.

The simulation temperature of 300 K is of course not the average operating tem-
perature of a solar cell, yet nearly all experiments are performed at this reference
temperature. To enable comparisons with actual experiments, we choose the same
ambient temperature for our simulations.

The contact modelling used in the reference system is described in Section 4.5.
We also use it in most of the following simulations. In Section 5.2, simulation results
obtained with this realistic contact modelling are compared with simulations using
ohmic contact models.

The reference simulation already includes a reflective back contact as described
in Chapter 4 and the use of wavelength-dependent absorption coefficients for both
semiconductors, see Section 5.3. The absorption spectra of pentacene and C60 [28],
see Fig. 5.8, were used for the donor and acceptor.

For the parameter studies treated in the following sections, only one of the simula-
tion parameters is changed in each case. The used values are given at the beginning
of the section. All not explicitly stated parameters have the same value as in the
reference case.

The 1D plot of this reference simulation is depicted in Fig. 5.2. All simulation
results are plotted at the maximum power point to enable comparisons between
different simulations.
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Figure 5.2: Simulation results for the reference system. Light first penetrates the top
layer organic semiconductor (depicted by the areas coloured in green).
The heterojunction to the second semiconductor (shown in blue) is
clearly visible in all four subplots. The quantities drawn are the electron
density n (top left), the hole density p (bottom left), the electrostatic
potential Ψ (top right) and the exciton density ex (bottom right) and
the current-voltage characteristic (bottom center). The I-V curve for
the dark current is drawn in green, the illuminated current in blue. The
simulated quantities shown in the top four panels are plotted for the
illuminated case at the maximum power point. It is indicated as a red
cross in the current-voltage characteristic.

After these preliminary considerations let us take a closer look at the simulation
results shown in Fig. 5.2. The curves are coloured half in green and half in blue.
This colour scheme is supposed to represent the two different organic semiconductors
contained in the device, as illustrated in Fig. 5.1. Here the green area represents the
electron donor, which is the hole conductor and the blue area the electron acceptor,
which is the electron conductor.

In the top right panel of Fig. 5.2 we find the electrostatic potential Ψ separately
for electrons and holes. The top curve gives the potential acting on electrons, the
lower one on holes. At the heterojunction marked by the change in colour from
green to blue, we find a potential jump in both curves, created by the offsets in
the HOMO and LUMO levels of both semiconductors. In this case the offsets are
not equal for HOMO and LUMO leading to differently sized potential jumps for
electrons and holes.

Below the potential plot we find the panel depicting the exciton density ex. We
see that it decreases quite significantly at the donor-acceptor interface. This is what
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one would expect. As already explained in Chapter 2 excitons are generated all
through the device according to Lambert-Beer’s law of absorption, yet they can
only dissociate at a donor-acceptor interface. Thus, we see the clear decrease in
the exciton density at the interface. Looking closely we also find that the exciton
density slowly decreases from the top contact to the bottom contact. This is caused
by the exponential character of light absorption. As this simulation already includes
a reflective back electrode the effect is not very pronounced. A simulation showing
this effect more clearly is depicted in Fig. 5.9 of Section 5.3.

The electron and hole densities n and p are plotted in the two panels on the left
of Fig. 5.2. In both graphs a distinct jump in concentrations is found at the hetero-
junction. Electrons are found in much higher concentrations in the acceptor (blue
area) and holes in the donor (green). In accord with the differently sized potential
jump for electrons and holes the jump in the density is also larger for electrons than
for holes. The reason for this correlation is that excitons dissociate into free electron-
hole pairs at the interface. These free charge carriers are then literally sucked into
either device half by the strong electric field acting at the interface. This field is
generated by the potential jump at the interface. Thus, in this reference case the
field acting on electrons is a bit stronger than the one acting on holes making the
charge separation for electrons a little faster than for holes. This aspect will be
discussed in more detail in Section 5.4.

A second interesting feature of the electron and hole density distributions is the
behaviour towards the contacts. It can be clearly seen that the electron density rises
distinctly towards the cathode (bottom contact) and the hole density towards the
anode (top contact). This is caused by the realistic contact modelling used for the
simulations as described in Section 4.5. The electrodes actively inject charge carriers
into the semiconductor by thermionic emission and tunneling, thus increasing the
charge carrier density in their vicinity. So the cathode raises the electron concentra-
tion and the anode the hole concentration. This form of contact modelling will be
compared with ohmic contact modelling in Section 5.2.

Lastly we come to the current-voltage characteristics depicted in the bottom most
panel of Fig. 5.2. We find two different curves, one in green and one in blue. Here
these two colours do not represent the two device halves. The blue curve gives
the I-V characteristic of the illuminated device, whereas the green curve shows the
dark current. To better understand the simulation results it is useful to look at the
transport level alignment of the system for different external voltages. Schematic
illustrations plus a short description for distinct points on the I-V characteristic are
given in the following.

At negative applied voltages the level alignment looks like in Fig. 5.3.
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Figure 5.3: Energy level alignment in the device for negative applied voltages. The
contact workfunctions are coloured grey, the HOMO and LUMO levels
black. The workfunction of the top contact (on the left) is shifted above
the workfunction of the bottom contact (right).

Current is flowing from the bottom contact to the top contact, meaning holes
travel from bottom to top and electrons in the opposite direction.

At zero applied voltage we have the short circuit condition meaning the contacts
are both at the same potential as shown in Fig. 5.4.

LUMO

HOMO

top contact

bottom contact

Figure 5.4: Energy level alignment in the device for zero applied voltages, called
short circuit condition. The workfunctions of the contacts align at the
same energy. The HOMO and LUMO levels are still tilted.

The current is still flowing from the bottom contact to the top contact.
Further increasing the externally applied voltage leads to the flat band condition,

because the transport levels for electrons and holes are flat across the device as
shown in Fig. 5.5.
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LUMO

HOMO

top contact
bottom contact

Figure 5.5: Energy level alignment in the device for flat band conditions. The ap-
plied external voltage exactly compensates the built-in voltage, so the
HOMO and LUMO levels are completely flat in either half of the device.
Charge carriers can only move diffusively, there is no drift force driving
the charge carriers from the interface towards the contacts. The strong
electric field at the interface is still present. It separates newly generated
electrons and holes into the two semiconductors.

Under these conditions the charge carriers do not drift anymore from the interface
towards the contacts. The strong electric field at the interface is still present. It
separates newly generated electrons and holes into the two semiconductors. The
only possible form of motion from the interface towards the contacts is diffusion.
Electrons still mostly diffuse from the interface to the bottom contact and holes in the
opposite direction from the interface to the top contact. Charge carriers will move
away from densely populated areas. As free electrons and holes are generated solely
at the heterojunction, they diffuse away from it towards their respective contacts.
This charge carrier extraction due to diffusion only takes place in organic solar cells,
see Section 2.2.

If the applied voltage is increased even further the potential landscape tilts in the
other direction as plotted in Fig. 5.6.

LUMO

HOMO

top contact

bottom contact
-

+

Figure 5.6: Energy level alignment in the device for applied voltages greater than
the open circuit voltage. The transport levels are tilted in the other
direction. Charge carriers drift towards the wrong contact. If the tilt is
large enough they can overcome the potential barrier at the interface.

The open circuit voltage is approximately given by the formula [41, 42]

Voc = Vbi + min{|∆HOMO|, |∆LUMO|}

78



5 Simulation results

It is very important to note that for organic semiconductors the open circuit voltage
is larger than the built-in voltage. If the external exactly compensates the built-in
voltage, charge carriers still diffuse from the interface towards the current contacts,
thus still resulting in negative current. The external voltage has to be increased
even further to suppress this diffusion current. This case is depicted in Fig. 5.6.
Caused by the tilt in the transport levels charge carrier drift towards the ’wrong’
contacts sets in. For one, driven by photogenerated charge carriers drifting from
the interface in the wrong direction. Secondly charge carriers are injected from
the contacts into the semiconductors which additionally drift towards the opposite
contact and thus also contribute to the unwanted positive current. In this process
electrons are injected by the cathode and holes by the anode.

Here, the differences between organic and inorganic solar cells are very relevant
and will be stated in the following.

• Inorganic solar cells
In inorganic solar cells Voc = Vbi. This is the case for the following two
reasons. Firstly, in inorganic semiconductors diffusion plays a negligible
part in the charge carrier extraction towards the contacts as already
explained in Chapter 2. Thus, we can only rely on drift forces driving the
charge carriers out of the device. Now, if Vext = Vbi, as shown in Fig. 5.5, which
is the flat band condition, charge carriers are not subjected to any driving drift
force and thus do not travel towards the contacts. So we find that in inorganic
semiconductors there is no current flow in the flat band situation, thus the
open circuit voltage equals the built-in voltage.

Secondly, if there is any diffusion going on in the device it is neglibly small in
inorganic semiconductors. Apart from that, electrons and holes both diffuse
into the same direction, namely in the direction from the top contact to the
bottom contact. Their two contributions to the current flow would cancel out
as explained in more detail in Chapter 2.

• Organic solar cells
Here Voc > Vbi. The open circuit voltage in this case is larger than the
built-in voltage. In the flat band condition Vext = Vbi charge carriers are
also not subjected to any drift force but they still diffuse from the interface,
where they are generated towards the ’right’ contact. This diffusion current is
quite strong in organic semiconductors, because free charge carriers are only
generated at the heterojunction and accumulate there. Thus, the gradient in
the concentration as well as the electrostatic repulsion lead to charge carriers
moving away from the interface towards their contact, because they can not
overcome the potential barrier at the interface.

The fact that charge carriers in organic solar cells can only be generated at the
donor-acceptor interface has another significant impact. They tend to accu-
mulate at the heterojunction, especially around the flat band condition.
This accumulation of positive charges on one side of the interface and negative
charges on the opposite creates a jump in potential that is superimposed to

79



5 Simulation results

the potential drop already situated at the junction. However, this new poten-
tial drop is oriented in the opposite direction, thus reducing the original
potential drop at the interface. The more charge carriers accumulate, the
lower the energetic barrier gets until at a specific value, defined by the ambient
temperature, charge carriers are able to thermally overcome the barrier. This
effect plays a crucial role in the behaviour of organic solar cells, see Sections
5.6 and 5.8.

Coming now back to Fig. 5.2, we can easily describe the two characteristics. The
dark current (green) is solely created by charge carrier injection from the contacts
into the device. This only sets in at an applied voltage of Voc ≈ 0.9 V. At this point
the energy level alignment already looks like in Fig. 5.6. Electrons are injected by the
cathode and travel towards the anode and vice versa for holes. The external voltage
is large enough to enable them to overcome the potential barrier at the interface.
This results in a positive current. The blue curve of Fig. 5.2 shows the characteristic
of an illuminated solar cell. The current stays at a certain negative value over a
long voltage range before it rises more or less sharply towards zero and positive
values. The current remains at the same value because only a certain number of
charge carriers are generated per time unit, according to the incoming light intensity.
All charge carriers are extracted to the contacts by the built-in voltage. If the
external voltage is negative it even increases the electric field extracting the charge
carriers. If Vext is positive it reduces the built-in field, but the electric field is still
strong enough to extract nearly all charge carriers. Therefore, the current remains
at one value for such a long time. The abrupt rise shortly before Voc is caused
by charge carriers diffusing and drifting towards the ’wrong’ contact, eventually
making the current positive. In the illuminated case there are two contributions.
For one, charge carriers are injected by the contacts and travel towards the respective
opposite contact. This is the contribution of the dark current. Secondly, the free
charge carriers created at the interface also drift towards the ’wrong’ contact, thus
increasing the unwanted positive current even more. As the external voltage is
increased this unwanted positive current quickly compensates the fastly decreasing
negative current until it gets too strong and the overall I-V characteristic reaches
positive current values. With this explanation in mind it is clear that the open
circuit voltage Voc of the illuminated characteristic is strongly bound to the onset
voltage Vonset of the dark current. Once the dark current sets in the photocurrent
quickly gets overcompensated.

5.2 Contacts

In our program ohmic contacts are modeled considering two features:

• They have the same workfunction as the respective HOMO/LUMO level of
the adjoining semiconductor, here meaning the HOMO-level for the hole or
top contact and the LUMO-level for the electron or bottom contact.
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• Their charge carrier densities are held at a fixed value. We choose the hole
concentration at the top contact to be the same as the electron concentration
at the bottom contact. They both have the value ptop = nbottom = 1022 m−3.

The simulation results for ohmic contacts are shown in Fig. 5.7, the ones for real
contacts in Fig. 5.2 of Section 5.1.
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Figure 5.7: Simulation results for the model system described in Section ?? combined
with ohmic contacts. The electron and hole densities n, p (left side) as
well as the electrostatic potential Ψ (top right), the exciton density ex
(in the middle on the right side) and the current-voltage characteristic
(bottom) are shown.

For ohmic contacts the open circuit voltage is larger than the built-in voltage.
The reason for this behaviour could be charges still diffusing to ’their’ contact.
Furthermore the I-V curve bends more sharply and abruptly in the case of real
contacts. That also increases the fill factor in the case of ohmic contacts a little bit.

Next we consider the electron distribution corresponding to the point of maximum
power shown in the upper left panels of Fig. 5.2 and 5.7. The maximum electron
density for ohmic contacts occurs right at the organic-organic interface reaching a
value of nmax ≈ 1.4 · 1024m−3. Roughly the same value holds for holes. The charge
carrier densities at the interface are of the same magnitude for realistic contacts.
This is immediately plausible, because the contact modelling does not influence the
interface. One noticeable difference is the charge carrier density in proximity to the
contacts. In the case of realistic contacts it bends up towards the contact, that is the
electron density rises towards the bottom contact and the hole density towards the
top contact. This does not happen when ohmic contacts are used. The difference
is about three orders of magnitude adjacent to the contact, so it can be called a
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significant impact. This is due to the active injection of charge carriers into the
semiconductor at reals contacts.

The potential distribution has fairly the same shape in both cases except that there
obviously is a difference in the built-in voltage, determined by the workfunctions of
the contacts. These parameters are fixed at the start of the simulation.

The exciton distribution is also the same in both cases which is very reasonable,
because the exciton generation and dissociation does not happen at and is not in-
fluenced by the contacts.

All following simulations are done with the more realistic contact modelling.

5.3 Reflection and absorption

5.3.1 Reflection condition at the bottom contact

We now want to look at the impact of a reflective bottom contact on the performance
of the solar cell. In the simulation, it is assumed that the light travels on a straight
path from the top electrode to the bottom electrode where it gets reflected at an
angle of 0◦ and goes back the same way. Along its path through the device, light
is absorbed by the semiconductor according to the Lambert-Beer law of absorption
(4.39). In this case α is taken from an absorption measurement [28]. We used the
absorption coefficients of pentacene and C60 as a function of wavelength for our
simulations. The according spectra are plotted in Fig. 5.8.
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Figure 5.8: Absorption coefficients of pentacene and C60 in dependence of wave-
length [28].

We used the absorption coefficient of pentacene for the topmost semiconductor
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layer and the one of C60 for the second semiconductor layer. Light diffusion and
refraction are not taken into account.

Figure 5.9 shows the simulation without reflection at the bottom contact. The
plot of the reference case, including a reflecting back electrode can be found in Fig.
5.2 of Section 5.1.
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Figure 5.9: Simulation results for the model system without light being reflected
at the bottom contact. Light travels on a straigt path from the top
electrode to the bottom electrode.

We see a significant increase in the short circuit current from Isc ≈ −17 Am−2

to Isc ≈ −28 Am−2. This is very reasonable because the light passes the device
twice and generates many more excitons which in turn dissociate at the interface,
leading to higher current values. Looking closely one can also notice the change in
the exciton distribution. Without reflection at the bottom contact more excitons
are generated in the top half of the device than in the bottom half. This is very
plausible as less light intensity reaches the second half. But if the light is reflected
back again it first passes the second polymer thereby generating excitons. So on
its way back the light has still more intensity in the bottom half than in the top
half of the device, there producing more excitons as the absorption coefficients of
both materials are approximately the same. Thus, combining both influences the
exciton density is approximately equal in both device halves, yet it is generally a
little elevated compared to the simulation without light reflection.
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5.3.2 Influence of the absorption coefficient on the simulation
results

The program was improved by going from absorption coefficients chosen for each ma-
terial to implementing measured absorption coefficients including their wavelength
dependence. These coefficients were calculated from absorption measurements, [28],
and are plotted in Fig. 5.8. The absorption spectra of pentacene and C60 were
used to represent the two organic semiconductors. Pentacene is a hole conductor
(represented by the green area in Fig. 5.1) and C60 an electron conductor (blue area
in Fig. 5.1). The reference simulation described in Section 5.1 includes the given
spectra plus a reflective back electrode.

Before implementing actual absorption spectra in the program test simulations
with fixed values for the absorption coefficients of the two semiconductors αorg1 and
αorg2 were performed. A simulation done with the specific values αorg1 = 1 · 107 m−1

for the top semiconductor layer and αorg2 = 5·106 m−1 for the bottom semiconductor
layer is shown in Fig. 5.10. The simulation includes light reflection at the back
electrode.
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Figure 5.10: Simulation results for the model system with the absorption coefficients
chosen as αorg1 = 1 · 107 m−1 , αorg2 = 5 · 106 m−1 . Light reflection at
the back contact is included.

We notice at once that with these α values the short circuit current is very high
compared to the reference case (figure 5.2). The open circuit voltage is unchanged as
one would strongly expect, the contact modelling being the same in both simulations.

The exciton distribution, however, shows a difference. Firstly, it is generally higher
throughout the device in the case of fixed absorption coefficients. We have chosen
both α values higher than in the α spectra. Secondly we see a higher concentration
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of excitons in the top semiconductor (represented in green in Fig. 5.1), which can be
expected, knowing the used absorption coefficients. They occur in Lambert-Beer’s
law (4.39) with a minus sign in an exponential factor e−α·d. Consequently, the larger
α the more light is absorbed. In our case this means that the first semiconduc-
tor layer (green) which has a higher α-value absorbs more light than the second
semiconductor and therefore, more excitons are generated in the top device half.

In the case of equal absorption coefficients for both materials, see Fig. 5.11, we
see a marginally higher exciton concentration in the bottom layer of the device than
in the top layer.
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Figure 5.11: Simulation results for the model system with equal absorption coef-
ficients for both semiconductors: αorg1 = αorg2 = 5 · 106 m−1 . Light
reflection at the back contact is included.

Light enters the solar cell through the top contact and gets absorbed steadily on
its way through the device. When it reaches the second semiconductor its intensity
has already decreased due to absorption, therefore less excitons are generated in the
second semiconductor than in the first. The difference in exciton density can be
reduced by introducing a reflective back contact as was done in the previous section,
or by choosing a lower α value for the first semiconductor than for the second. In
the case of equal absorption coefficients for both semiconductors and reflection at
the backside of the solar cell the exciton concentration is approximately the same
in both device halves, as can be seen in Fig. 5.11. So apparently, reflection off the
back contact has a profound impact on the exciton generation. A lot of intensity
reaches the back contact and is now used again for absorption and not neglected
in the simulation. The short circuit current is a little lower than in the case of
αorg1 = 1 · 107 m−1 , αorg2 = 5 · 106 m−1, see Fig. 5.10, because the overall absorption
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is reduced as the first absorption coefficient αorg1 = 5·106 m−1 used for the simulation
shown in figure 5.11 is smaller than for 5.10.

We did another test by swapping the absorption coefficients from Fig. 5.10 and
simulating again, now with the configuration αorg1 = 5 · 106 m−1 and αorg2 = 1 ·
107 m−1. The simulation results are shown in Fig. 5.12.
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Figure 5.12: Simulation results for the model system with the absorption coefficients
chosen as αorg1 = 5 · 106 m−1 , αorg2 = 1 · 107 m−1 . Light reflection at
the back contact is included.

In the I-V curve we see only a slight difference in the short circuit current compared
to Fig. 5.10 and this tiny shift can be explained by the different exciton distributions.
The open circuit voltage remains once again unchanged. Now we come to the exciton
density. We see that the swap in absorption coefficients makes the exciton density
in the second semiconductor even higher than in the first.

All following simulations are performed using the absorption spectra in Fig. 5.8.

5.4 Charge separation at the organic-organic
interface after exciton dissociation

In the simulations, exciton dissociation is implemented in such a way that all ex-
citons, which reach the organic-organic interface by diffusion, dissociate instanta-
neously into an electron-hole pair. The exciton is thus separated into two inde-
pendent and no longer electrically neutral charge carriers. As already described in
Chapter 4, an exciton dissociating in the row above the interface, characterized by
the coordinates (i, B

2
), leaves a hole and an electron at the same position (i, B

2
). The
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same goes for the row beneath the interface, denoted by coordinates (i, B
2

+1). They
newly generated free electrons and holes react to the strong electric field present at
the interface and are literally sucked into their respective transport layers, that is the
top layer (green) for holes and the bottom layer (blue) for electrons. The according
simulation results are shown in Fig. 5.2 of Section 5.1.

A test simulation was done to show the efficiency, with which the electron-hole
pairs are separated by the electric field into the two semiconductors. When an
exciton reaches the interface we mean it reaches the row above the interface, denoted
by coordinates (i, B

2
), or the row below, denoted by coordinates (i, B

2
+ 1). The

interface is situated between those two rows. So if an interface reaches ”the interface”
in this test simulation a hole is instantaneously generated in the last row of the hole
conductor, characterized by the coordinates (i, B

2
), and an electron in the top row

of the electron conductor, characterized by the coordinates (i, B
2

+ 1). The results
are shown in Fig. 5.13.
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Figure 5.13: Simulation results for the model system with fixed charge separation at
the interface. If an exciton dissociates at the interface a hole is instan-
taneously generated in the last row of the top layer and an electron in
the top row of the bottom layer.

We find a difference in the electron and hole densities between the two figures
5.2 and 5.13. It is caused by electrons and holes generated in the wrong layer and
recombining there before they are moved into the ’right’ semiconductor. The electric
field indeed separates the charges very effectively as can be seen by comparing the
I-V curves of figures 5.2 and 5.13, which are almost identical.

We notice that the electron density in the hole conductor (green) in the test
case, see Fig. 5.13 top left panel, is lower than in the reference case, see Fig.
5.2. However, there is no influence on the I-V curve. This is reasonable as the
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electron/hole densities in the respective other conductor are very low anyway. So
if there are a little less or more ’wrong’ charge carriers in each semiconductor it
does not influence the I-V characteristic noticeably. This shows that the charge
separation by the electric field following each exciton dissociation is very effective.
Far less charge carriers are lost due to recombination at the interface as would be
necessary to influence the I-V characteristic.

For the following simulations, we only use the model of charge separation by the
electric field. It is physically more intuitive than the strict separation. And as the
exact nature of the exciton dissociation and charge separation at the interface are
not yet understood in detail, our way of modeling is a reasonable first choice.

5.5 Mobility

All simulations were done with the system parameters according to the model system
described in Section 5.1. Only the charge carrier mobilities in both organic semicon-
ductors were varied and are stated for every simulation. The reference simulation is
shown in Fig. 5.2.

1) The first change in mobility was taken in a way we hoped would improve the
performance of the solar cell. The values chosen were:

Organic semiconductor 1 (top half): µn = 10−8 m2V−1s−1; µp = 10−6 m2V−1s−1.

Organic semiconductor 2 (bottom half): µn = 10−6 m2V−1s−1; µp = 10−8 m2V−1s−1.

The charge carriers have higher mobilities in the device halves adjoining their col-
lective contact, meaning holes move faster in the top half of the device and electrons
in the bottom half. The according simulation results are shown in Fig. 5.14.
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Figure 5.14: Simulation results for the model system with different electron and hole
mobilities in the two semiconductors:
top half: µn = 10−8 m2V−1s−1; µp = 10−6 m2V−1s−1 ,
bottom half: µn = 10−6 m2V−1s−1; µp = 10−8 m2V−1s−1 .

We only see a slight influence on the shape of the I-V curve. The slope near the
open circuit voltage is a bit steeper in case 1) than in the reference case. This is
caused by the increase in the mobility on one half of the device per charge carrier.

We expect no influence on the short circuit current, which indeed is the case as is
clearly observable in Fig. 5.2 and 5.14. Indeed, how fast the charge carriers move
has no influence on how many excitons are generated or on how efficiently they
dissociate at the interface. Therefore, the short circuit current is not influenced
significantly by the charge carrier mobility.

Now we have a look at the electron and hole distributions in the device, depicted
in the panels of the left of Fig. 5.14. We see that the charge carrier density on
the respective opposite half of the device is dramatically lower in case 1) than in
the reference case. This is caused by low mobility in these regions for one type of
charge carrier. Most of them recombine before they can travel far. In the reference
simulation we detect a slight accumulation of charges at the interface. This does not
happen in case 1) because electrons and holes diffuse away faster from the interface
driven by the gradient in charge carrier density.

We do not see an impact on the potential landscape and the exciton distribution.
The potential distribution should be slightly influenced by the charge accumulation
at the interface. The gathering of positive and negative charges at either side of the
organic-organic interface creates an electric field which superimposes the electric
field created by the potential drop at the interface. So the potential difference at
the interface should be reduced a little bit. This can indeed be seen if the charge
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accumulation is more pronounced as will be shown later in Fig. 5.27 and 5.30 of
Sections 5.10 and 5.11. Here the effect is too small to see it on the chosen scale of
the plot.
2) In the next case we increase the mobilities still further by one order of magnitude
in the favoured halves:

Organic semiconductor 1 (top half): µn = 10−8 m2V−1s−1; µp = 10−5 m2V−1s−1.

Organic semiconductor 2 (bottom half): µn = 10−5 m2V−1s−1; µp = 10−8 m2V−1s−1.

The simulation results are shown in Fig. 5.15.
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Figure 5.15: Simulation results for the model system with different electron and hole
mobilities in the two semiconductors:
top half: µn = 10−8 m2V−1s−1; µp = 10−5 m2V−1s−1 ,
bottom half: µn = 10−5 m2V−1s−1; µp = 10−8 m2V−1s−1 .

We expect the same trends as in case 1) but more distinctive. This is indeed
observed for the I-V curves as well as the electron and hole densities.
3) To also study the opposite case we did a simulation with ”reversed” mobilities,
i.e. the following choice of parameter was used:

Organic semiconductor 1 (top half): µn = 10−6 m2V−1s−1; µp = 10−8 m2V−1s−1.

Organic semiconductor 2 (bottom half): µn = 10−8 m2V−1s−1; µp = 10−6 m2V−1s−1.

These mobility settings mean that electrons move faster in the device half adjoining
the hole collecting top contact than in the other half of the device. The same holds
for holes only vice versa. This simulation is expected to show the opposite effects of
case 1). The simulation results are shown in Fig. 5.16.
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Figure 5.16: Simulation results for the model system with different electron and hole
mobilities in the two semiconductors:
top half: µn = 10−6 m2V−1s−1; µp = 10−8 m2V−1s−1 ,
bottom half: µn = 10−8 m2V−1s−1; µp = 10−6 m2V−1s−1 .

As expected, we indeed see a drop in fill factor from case 1) to case 3). We also
expect higher charge carrier densities on the ”wrong” halves of the device, which can
really be observed in Fig. 5.16.

5.6 Temperature dependence of the model system

In the reference case, shown in Fig. 5.2, we see only a slight accumulation of charges
at the organic-organic interface, as already described in more detail in Section 5.1.
It takes the charge carriers a certain time, defined by temperature, mobility and the
gradient in the charge carrier density, to diffuse and drift away from the interface,
where they are generated.

We now look at a simulation done for the same system parameters, but at an
ambient temperature of T = 400 K, plotted in Fig. 5.17.
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Figure 5.17: Simulation results for the model system described in Section 5.1 simu-
lated at an ambient temperature of T = 400 K. Depicted are the elec-
tron and hole densities n and p (left column), the electrostatic po-
tential Ψ (top right), the exciton density ex (middle right) and the
current-voltage characteristic (bottom) for the illuminated (blue) and
dark (green) case.

At first inspection of the I-V curve, we see a noticeable decrease in the open
circuit voltage as well as in the onset of the dark current. They are both correlated,
as one would expect. The change in Voc is caused by the fact that the charge carrier
motion is of course temperature dependent, see equations (4.32) and (4.33). The
charge carriers have a higher thermal energy allowing them to overcome energy
barriers as the one posed by the organic-organic interface more easily. Their large
thermal energy allows electrons and holes to cross the interface at a lower applied
external voltage than at lower ambient temperatures.

A second effect plays a role. The jump in the potential at the interface is reduced
by charges accumulating at either side of the interface. At higher temperatures,
fewer carriers have needed to accumulate to lower the barrier sufficiently to allow
charge carriers to cross it. Therefore, the dark current sets in earlier. We can see
that at T = 400 K the electron and hole densities bend up less at the interface than
in the simulation for T = 300 K, see Fig. 5.2.

The short circuit current is not influenced by the temperature. The fill factor
decreases from FF = 0.79 for T = 300 K to FF = 0.75 for T = 400 K.

We now look at the case of an ambient temperature of T = 200 K. The according
simulation results are shown in Fig. 5.18.
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Figure 5.18: Results for the model system described above simulated at an ambient
temperature of T = 200 K.

This simulation shows, as already suggested by the results of the simulation for
T = 400 K, a significantly increased open circuit voltage of Voc ≈ 1.14 V, again
corresponding with the onset of the dark current. The short circuit current Isc is
not affected. We see a clear increase in the fill factor from FF = 0.79 for T = 300 K
to FF = 0.83 for T = 200 K.

Now considering the electron and hole densities we find that both types of charge
carriers strongly accumulate at the interface, thereby diminishing the energy barrier
located there. The potential barrier reaches the low point of ∆Ψ = 0.2 V for holes.
The dark current of course sets in as soon as one type of charge carrier is able to
overcome its potential barrier at the interface and drift towards the opposite contact.

These observations correspond very well to the simulation done at a temperature
of T = 400 K. Indeed they show the exact opposite effect, as one would expect,
thereby further corroborating the explanation put forward.

5.7 Real system ITO/PEN/C60/Al

We now move on to have a look at the simulation results of the more realistic system
ITO/PEN/C60/Al. The energy levels are given in Tab. ??, [32]:

93



5 Simulation results

Table 5.1: Energy levels of the system ITO/PEN/C60/Al

top contact indium-tin-oxide (ITO) Φ = 4.8 eV
electron donor pentacene (PEN) HOMO=4.9eV, LUMO=3.0eV
electron acceptor (C60) HOMO=5.8eV, LUMO=4.1eV
bottom contact aluminum (Al) Φ = 4.2 eV

However, one always has to take into account that the actual energy levels in a
device can be quite different from the levels in a single material. When bringing two
different materials in contact with each other, various effects can happen at interface,
such as formation of an interface dipole layer, which can shift the transport levels
considerably [35, 36, 37]. This explains the variety of values given in the literature.
We therefore are not bound to one specific value but can vary them a little bit.

The simulation of this system posed considerable convergence problems. The
difficulties result from the large offsets in the HOMO and LUMO levels. We resolved
the situation by updating the electron and hole concentrations per simulation step,
nk, pk more slowly. The applied technique is called mixing:

nknew = σnk−1 + (1− σ)nkold ,

pknew = σpk−1 + (1− σ)pkold .

We achieved good convergence with the choice σ = 0.8, although the simulations
naturally took longer times to finish.

For this system, we again consider a planar junction between the two organic
semiconductors, each of which is 50 nm thick (as in the model system). Non-ohmic
contacts, reflection at the aluminum contact and real absorption spectra of pentacene
and C60 are included in the simulation. The mobilities were chosen to be equal for
electrons and holes in the entire device: µn = µp = 10−8 m2V−1s−1.

The results of the reference simulation performed at an ambient temperature of
T = 300 K are depicted in Fig. 5.19.
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Figure 5.19: Simulation results for the system ITO/PEN/C60/Al calculated at a
temperature of T = 300 K.

We find an unexpected looking I-V curve. The current is zero at a voltage of Voc ≈
1.14 V, but there is already a distinct kink at about Vext ≈ 0.6 V, which corresponds
to the built-in voltage, which is given by the difference of the workfunctions of the
contacts Vbi = Φ1 − Φ2 = (4.8− 4.2) V = 0.6 V.

In our simulations we saw a difference between the I-V curves of layouts with
different energy level alignments:

1. Vbi > min{|∆HOMO|, |∆LUMO|}

2. Vbi < min{|∆HOMO|, |∆LUMO|}

1) In the first case the I-V curves look as discussed earlier in the reference case of
the model system, see Fig. 5.2 of Section 5.1. The current stays at the value of the
short circuit current for a long time until a steep ascent begins shortly before Voc.
No s-shapes or kinks are observed.

2) In the second case of energy level alignments we always observe a kink in the
illuminated current as well as in the dark current at Vext = Vbi. A typical simulation
result is shown in Fig. 5.19. This simulation will be used as a reference case for all
further simulations of the system ITO/PEN/C60/Al.

The above mentioned kink is was always found as long as the condition 2) holds.
Simulations with various level offsets have been performed. The HOMO and LUMO
levels of the semiconductors as well as the workfunctions have been modified always
resulting in the same qualitative shape of the I-V curve. So it seems reasonable to
propose that the kink in the characteristic is not restricted to one special device
layout or due to a certain coincidence. It seems to be a common feature of devices
with energy landscapes according to the condition 2). Kumar et al. also observed
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such a kink in the I-V characteristic of organic solar cells [34]. They attribute this
behaviour to strong interface dipoles. We will consider this explanation also in
Sections 5.9 to 5.11 and show that both the a potential drop at the interface can
be introduced into the system by directly shifting the HOMO/LUMO levels of the
donor and acceptor, or by inserting a dipole layer at the interface.

Here we attempt to give an explanation for this unexpected shape of the current-
voltage characterstic. For this purpose we consider again the transport band align-
ment at different external voltages of in Fig. 5.3 to 5.6 of Section 5.1.

If Vbi < min{|∆HOMO|, |∆LUMO|}, then a certain number of charge carriers can
already cross the potential barrier at Vext = Vbi. The probability of such an event is
very small. If Vext = Vbi+min{|∆HOMO|, |∆LUMO|}, all charge carriers of one type
injected by the contact can cross the interface, because the potential energy they
have at their starting point, the contact, equals the potential energy of the jump at
the interface, see Fig. 5.6. Charge carriers injected by the contacts, reaching the
opposite electrode compose the dark current. Between Vbi and Voc, the illuminated
current also rises with a nearly constant slope before rather abruptly changing the
slope at Voc. The continuous increase in current between Vext = Vbi and Vext = Voc
implies that more and more charge carriers travel in the unwanted direction through
the device. The probability of crossing the energy barrier at the interface gets
larger with higher applied voltage. The increase in the illuminated current from
Vext = Vbi onwards is more pronounced than the rise in the dark current. This is
the case because the illuminated current is composed of the photocurrent plus the
dark current, so we have to take into account both kinds. The dark current has
already been mentioned above. The photocurrent is generated by charge carriers
created at the interface, which move towards the contacts. In this discussed case
they drift towards the ’wrong’ contact, electrons to the anode and holes to the
cathode, meaning that also the photocurrent slowly reverses its direction. These two
contributions together, photo + dark current, explain why the illuminated current
rises more distinctly than the dark current.

Coming back to the reference simulation, we take a look at the electron and
hole densities depicted in the two panels on the left of Fig. 5.19. Electrons and
holes accumulate very strongly on either side of the organic-organic interface. The
maximum electron density is nmax ≈ 1027 m−1 and the maximum hole density is
pmax ≈ 1027 m−1. They both occur at the interface. The charge carrier densities are
also bent upwards at the contact regions, because of the non-ohmic contact simula-
tion. The extreme charge gathering at the interface even bends up the potential in
that region, on top of reducing the potential jump.

The potential jump, to be found in the top right panel of Fig. 5.19, in the
electron transport level is larger than in the hole transport level. The height is
determined by the HOMO and LUMO levels in the two semiconductors. In this
case |∆LUMO| > |∆HOMO| .
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5.8 Temperature dependence of the system
ITO/PEN/C60/Al

Now we come to the temperature dependence of the system ITO/PEN/C60/Al. The
results of the reference case for all following simulations of this system is depicted
in Fig. 5.19 of Section 5.7.

We first look at the changes caused by a higher temperature of T = 400 K. The
according simulation curves are depicted in Fig. 5.20.
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Figure 5.20: Simulation results for the system ITO/PEN/C60/Al calculated at a
temperature of T = 400 K.

We notice that the open circuit voltage has dropped to Voc ≈ 0.9 V. The change
in slope, or kink, at Vext = Vbi = 0.6 V is still visible, but not as distinctively as at
lower temperature. The dark current also still rises a little bit at Vext = Vbi = 0.6 V.

The lowering in the open circuit voltage is not surprising and can be explained by
the fact that the charge carriers can cross higher energy barriers due to their raised
thermal energy, see equations (4.32) and (4.33). This effect was also seen in the
model system, as was the described change in the potential distribution (see Section
5.6). The explanation is again given by the increase in thermal energy.

We now have a look at the simulation results for an ambient temperature of
T = 200 K, shown in Fig. 5.21.
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Figure 5.21: Simulation results for the system ITO/PEN/C60/Al calculated at a
temperature of T = 200 K.

The open circuit voltage has increased compared to the results for T = 300 K. It
is now Voc ≈ 1.33 V. The kink is still there and even more distinctive. The changes
in slope are more abrupt than in the other two cases. The dark current shows the
expected rise at Vext = Vbi and the sharp bend at Vext ≈ 1.33 V.

The potential distribution also has the expected shape. The height of the barrier
in the HOMO level at Voc is reduced to ∆Ψ ≈ 0.3 V. The explanation is analogous as
for T = 400 K, except that the charge carriers have of course lower thermal energy.
Therefore, more charge carriers need to accumulate at the interface to reduce it to
even lower levels as for T = 400 K to enable the charge carriers to cross it.

5.9 Influence of a shift in the vacuum energy level on
the solar cell performance

By inserting a dipole layer at the organic-organic interface, as schematically shown
in Fig. 5.22, a shift ∆Evac of the vacuum energy level is induced [33].
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Figure 5.22: Schematic illustration of a planar heterojunction solar cell with a dipole
layer situated at the organic-organic interface.

Whether the vacuum energy level is raised or lowered is determined by the orien-
tation of the dipole layer. Figure 5.23 shows an illustration of an energy landscape
representative of the ones simulated in this work. The vacuum energy level Evac is
taken as a reference point. All other energies are measured with respect to Evac.
The positive energy axis is directed downwards. Lines drawn lower than Evac in the
following graphics represent positive energies.

Figure 5.23: Schematic illustration of an energy level alignment representative for
the device layouts simulated in this work. The vacuum energy level is
included.

The region highlighted green represents the top semiconductor, the one coloured
blue corresponds to the bottom semiconductor. The black bars on the upper and
lower end of the coloured rectangles depict the respective HOMO and LUMO trans-
port levels of the semiconductors. To the left and right of the coloured rectangles
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another two black lines can be found. They represent the workfunctions of the top
contact (left) and the bottom contact (right). Additionally the vacuum energy level
is drawn.

If the negative charges are situated at the upper side of the interface (left in the
schematic drawings), the vacuum energy level is lowered by a defined amount in the
device half below the interface, meaning in the second semiconductor (blue) and in
the bottom contact. The HOMO and LUMO levels of the semiconductor (blue) are
lowered by the same amount as the workfunction of the bottom contact material
(black). A representative drawing of this situation can be found in Fig. 5.24.

Figure 5.24: Shift in the vacuum energy level induced by a dipole layer situated at
the planar heterojunction of the solar cell. The HOMO, LUMO levels
of the bottom semiconductor (blue) as well as the workfunction of the
bottom contact are shifted accordingly.

The charge density needed to induce a certain defined shift in the vacuum energy
level can be estimated. For this purpose we regard the interface dipole layer as a
parallel plate capacitor. From the known formula for the capacitance C of a parallel
plate capacitor

C =
ε0εrA

d

and the relation between the capacitance and the applied voltage U

Q = CU

the required charge carrier density at the interface ρfix per unit volume can be
calculated. In the above formulas Q is the total charge that can be placed on a
capacitor with capacitance C by applying a voltage U , ε0 is the vacuum permeability
and εr the relative permeabiltiy of the medium. The distance between the two
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parallel plates is named d. The surface area of each plate is denoted by A. As two
materials with different permeabilties meet at the interface we use the mean value of
both εr = εr1+εr2

2
. The total charge on the capacitor Q = ρfixq∆yA is the product of

the charge carrier density ρfix times the elementary charge q times the linespacing
in y-direction ∆y at the interface times the surface area A of the capacitor plates.
The distance d between the plates is also described by the line spacing ∆y at the
interface. As a result we obtain for the fixed charge carrier density at the interface

ρfixq∆yA = ±∆Evacε0εrA

∆y

ρfix = ±∆Evacε0εr
q(∆y)2

, (5.1)

where U = ∆Evac is the shift in the vacuum energy level to be reached.
If the orientation of the dipole layer is reversed, meaning the positive charges

gather at the upper side of the interface the vacuum energy level of the top device
half would be shifted downwards. As only the energy level alignment and not the
absolute values play a role in the simulation, we are allowed to keep the energy
levels of the top device half fixed and shift all energy levels of the bottom device
half accordingly upwards. It is very important to make a connection between this
Section and Section 5.7. In Section 5.7 two fundamentally different cases of energy
level alignment have been introduced and discussed. As just mentioned here, an
interface dipole layer changes the system by shifting the transport and contact levels
with respect to each other. This means that the cases 1) and 2) of Section 5.7 can
be established for a given system by introducing an appropriately oriented interface
dipole layer with a defined dipole moment. This enables us to actively tune a given
system’s I-V characteristic to a dramatic extent.

To conclude these introductory remarks we show two simulations, both done with
the model system parameters of Section 5.1. The first one was done with a fixed
dipole layer at the interface hard written into the code. The negative charges were
situated at the upper side of the interface, the positive charges at the lower side.
To induce a shift of ∆Evac = 0.2 eV both charge carrier densities were given the
equal value of nfix = −pfix = 1.0914 · 1027m−3. The values for nfix and pfix were
calculated from equation (5.1), using εr1 = εr,PEN = 3.5 [39] and εr2 = εr,C60 = 4.4
[40] as material parameters. The simulation results are shown in Fig. 5.25.
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Figure 5.25: Simulation of the model system with no shift in the vacuum energy level,
but with a fixed dipole layer at the organic-organic interface written into
the code. The negative charges are situated at the upper side of the
interface, the positive charges at the lower side. Both charge densities
have the equal value of nfix = −pfix = 1.0914 · 1027m−2 .

As discussed above, the presence of ρfix is equivalent to a shift in the vacuum
energy level ∆Evac. Thus, shifting the HOMO, the LUMO and the contact levels
according to ∆Evac should yield the same result as inserting a dipole layer. Conse-
quently, the second simulation performed has no fixed charges at the interface, but
all energy levels of the second half of the device were shifted by ∆Evac = +0.2 eV.
The simulation results are shown in Fig. 5.26.
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Figure 5.26: Simulation of the model system with a shift in the vacuum energy level
of ∆Evac = +0.2 eV. No additional dipole layer was inserted.

As we see, the simulation results of 5.25 and 5.26 are idential. The two described
methods of simulation are equivalent. As the direct shift of the transport and contact
energy levels can be realised and handled more easily in the program we employ this
method in all further simulations. In the following calculations only the energy levels
of the bottom device half are shifted, the ones of the top device half stay at their
fixed values. The stated shifts ∆Evac always describe the shift of the vacuum energy
level of the bottom device half relative to its original position.

5.10 Impact of interface dipole layers on the model
system

First we want to study the effects of an interface dipole layer on the model system
described in Section 5.1. We again use Fig. 5.2 as the reference case. This reference
simulation includes no shift in the energy levels.

For the first test case the vacuum energy level in the second half of the device
was shifted by ∆Evac = +0.2 V, i.e. the transport levels were adjusted in the blue
marked region plus the bottom contact (see Fig. 5.24). Figure 5.27 shows the
according simulation results.
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Figure 5.27: Simulation results for the model system described above with a shift in
the vacuum energy level of ∆Evac = +0.2 V.

Looking at the top right graph, where the potential is plotted, it can be seen
that the gap in the HOMO and LUMO levels (∆HOMO,∆LUMO) has increased
and the minimal bandgap has decreased, as has the built-in voltage, because the
workfunction of the bottom contact has been shifted as well.

Next we have a look at the electron and hole densities. In the maximum power
point, which is used for both figures, the electron and hole densities reach much
higher values in the case of ∆Evac = +0.2 V than in the reference case. Additionally,
the charge accumulation at the interface is much more distinct in the shifted case
than in the reference case. This holds for the electron density as well as the hole
density. The very prominent gathering of charges is a result of the large jumps in
the HOMO and LUMO levels at the interface. As the external voltage is raised up
to the maximum power point the transport levels reach the flat band condition or
are even tilted a little bit upwards. This induces the electrons to travel towards the
top contact and the holes towards the bottom contact. They are driven partially
by drift and partially by diffusion. On their way to the opposite contact the charge
carriers have to cross the organic-organic interface and the jump in potential situated
there. This jump is increased by the shift of ∆Evac = +0.2 V making it harder for
the charge carriers to cross it. A smaller percentage of charge carriers crosses the
interface at a given voltage.

The electrons are drawn towards the interface from the bottom side and the holes
from the top side by the external voltage. But as they are stuck on their side
more and more electrons/holes gather at the interface. This accumulation itself is a
dipole layer at the interface, which creates an electric field. The field superimposes
the strong local electric field already situated at the interface and weakens it. The
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charge carriers accumulate in such numbers that their own electric field lowers the
potential barrier sufficiently for them to cross the interface.

The massively increased density at the interface of course also heightens the dif-
fusion away from it, but as is clearly visible in Fig. 5.27 this effect does not level
out the charge carrier density.

We now move on to the I-V characteristic of the solar cell. It has the expected
shape, the rise of the light current accords with the rise in the dark current. The
open circuit voltage is Voc ≈ 0.955 V, which is slightly increased compared to the
reference case (Fig. 5.2).

The marginal rise in Voc is contrary to what one would expect. The shift in the
contact workfunction by +0.2 V decreases the built-in voltage from Vbi = 0.9 V to
Vbi = 0.7 V. So one would expect the open circuit voltage to drop as well by about
the same amount. This is obviously not the case. The first reason for the observed
result could be the before mentioned rise in ∆HOMO, ∆LUMO. Charge carriers
need a larger external voltage to cross the interface. However, the shift in Voc is
only small, because the already discussed charge accumulation around the flat band
condition lowers ∆HOMO, ∆LUMO again. Therefore, an only slightly increased
external voltage is needed to make charge carriers cross the barrier.

The short circuit current is not influenced by the shift in the vacuum energy
level. This is the case, because the exciton dissociation rate in our program is not
dependent on the electric field. This is not a physically correct assumption and
should be tackled in a next step to improve the program. At this stage, however, it
is not yet possible to look at the influence of an additional electric field, caused by
an interface dipole layer, on the exciton dissociation and charge generation at the
heterojunction. Consequently, the same short circuit current has to be expected in
all following simulation studies of a shifted vacuum energy level.

The exciton distribution plotted in the bottom right corner is also not influenced
as light absorption in the device is not affected by the dipole layer.

In the next simulation we shift the vacuum energy level by ∆Evac = −0.1 V. The
results are shown in Fig. 5.28.
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Figure 5.28: Simulation results for the model system described above with a shift in
the vacuum energy level of ∆Evac = −0.1 V.

We expect the exact opposite tendencies as in the case ∆Evac = +0.2 V (Fig.
5.27), only less prominent. Indeed we see a lowering of ∆HOMO, ∆LUMO and there
is an increase in the minimal bandgap and the built-in voltage. Actually the jump in
the hole transport level is practically nonexistent. It is reduced to ∆HOMO = 0.1 V
and is still lowered a little bit further by the slight charge accumulation at the
interface, which is noticeable in the electron and hole distributions.

In accordance with the afore mentioned explanation, the charge accumulation is
much less pronounced than in both the other cases ∆Evac = +0.2 V and ∆Evac =
0.0 V. The maximum charge carrier density at the heterojunction is orders of magni-
tude lower for ∆Evac = −0.1 V than in the other two simulations. The charge carrier
density at the contacts always stays practically at the same value. It is primarily
determined by the contact modelling, which in all cases includes the more realistic
contact simulation described in Section 5.2.

The drop in the hole density at the interface is much smaller than the drop in the
electron density. This is caused by the smaller jump in the HOMO level than in the
LUMO level at the interface: ∆HOMO = 0.1 V, ∆LUMO = 0.4 V. Holes can easily
cross the interface in both directions.

We move on to inspecting the I-V characteristic. As already mentioned before,
the short circuit current remains unchanged. The open circuit voltage drops by a
small amount. This is the expected opposite tendency to the case ∆Evac = +0.2 V.
The explanation is analogous. The fill factor is a little lower than for ∆Evac = 0.0 V.

As a last simulation for the model system we have a look at the exaggerated case
of ∆Evac = −0.3 V. This relatively large shift in the vacuum energy level exceeds
the original jump in the HOMO level at the interface, which is ∆HOMO = +0.2 V
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and reduces it to ∆HOMO = −0.1 V. The holes now encounter a potential barrier
on their way to the hole collecting top contact. The potential jump for electrons
is not reversed, it is just diminished from ∆LUMO = 0.5 V to ∆LUMO = 0.2 V.
Electrons can still travel to their contact without hindrance. The simulation results
are shown in Fig. 5.29.
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Figure 5.29: Simulation results for the model system described above with a shift in
the vacuum energy level of ∆Evac = −0.3 V.

One can see the reversed potential jump in the hole transport level in the top
right graph. The barrier is only small, nevertheless it has a dramatic effect on the
I-V curve.

We also see the influence on the hole concentration. At the contacts it reaches
the same value as in the simulation ∆Evac = 0.0 V. The density decreases from the
top contact to the interface, where it abruptly rises. It stays at a higher level in the
electron conductor (blue) than in the hole conductor (green).

Holes are generated next to the interface and need to cross it to reach the top
contact. They can not easily overcome the potential barrier. Hence, they accumulate
at the lower side of the interface.

We now come back to the I-V curves. The dark curve looks normal enough,
leaving aside the quite flat slope at Voc. The light current on the other hand looks
very poor. The fill factor of FF = 0.40 is exceptionally low. The current starts to
rise even at the low value of Vext ≈ 0.2 V and grows steadily until it reaches zero
and positive values. The reason for this behaviour is the potential barrier for holes
traveling from the bottom to the top contact, whereas there is no barrier for holes
moving in the opposite direction.
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5.11 Impact of interface dipole layers on the system
ITO/PEN/C60/Al

We will now study the impact of a shift in the vacuum energy level on the behaviour
of the system ITO/PEN/C60/Al. The reference simulation for this system is shown
in Fig. 5.19 of Section 5.7. In this reference case no shift in the vacuum energy level
is included.

The first test simulation was done with a shift in the vacuum energy level of
∆Evac = +0.5 V. The according results are depicted in Fig. 5.30.
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Figure 5.30: Simulation results for the system ITO/PEN/C60/Al with a shift in the
vacuum energy level of ∆Evac = +0.5 V.

At first sight the features of this simulation are merely more pronounced than
those of the reference simulation, Fig. 5.19. The potential distribution as well as
the electron and hole densities show a larger drop at the interface at the maximum
power point, which is plotted.

The I-V characteristic also looks similar in both cases. Yet here, the slope changes
earlier, even as soon as Vext ≈ 0.15 V, which is roughly the built-in voltage in the
shifted case Vbi = 0.1 V.

The open circuit voltage has not shifted noticeably, but the current around Voc is
much weaker in this case than in the reference case. The dark current again behaves
according to the light current and also rises slightly at Vext ≈ 0.15 V.

Summing up we find that the built-in voltage has decreased by 0.5 V and the gaps
in the HOMO and LUMO levels have increased by the same amount, the potential
at the interface has also changed accordingly in the maximum power point.

Charge carriers accumulate at the interface until their electric field has lowered the
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potential barrier sufficiently for them to cross it. The critical height of the barrier,
at which charge carriers can overcome it is determined by the externally applied
electric field, giving the charge carriers a certain starting potential energy and the
ambient temperature responsible for the thermal energy. The barrier must not be
higher than the sum of both these energies.

The parameter most affected by the slope of the current voltage characteristic is
the fill factor. It is reduced to the meagre level of FF = 0.28.

The next case study was done with an energy shift of the same amount but in
the opposite direction. The vacuum energy level was shifted by ∆Evac = −0.5 V. In
Fig. 5.31 the simulation results are shown.
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Figure 5.31: Simulation results for the system ITO/PEN/C60/Al with a shift in the
vacuum energy level of ∆Evac = −0.5 V.

We immediately notice the different shape of the I-V curve. No kink whatsoever
can be detected. The current stays at the same value until it rises near the open
circuit voltage. This is the typical shape of an I-V curve, which we know from the
model system simulation.
Looking at the shifted energy levels and their alignment

• ITO: Φ = 4.8 eV,

• PEN: HOMO = 4.9 eV,LUMO = 3.0 eV ,

• C60: HOMO = 5.3 eV,LUMO = 3.6 eV ,

• Al: Φ = 3.7 eV,
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we see that we indeed simulated a similar layout. Because of the energy shift, the
condition Vbi > min{|∆HOMO|, |∆LUMO|} of Section 5.7 is fulfilled. As already
stated in that section no kinks appear in the I-V curve under these circumstances.

By increasing the external voltage we compensate the jump in the HOMO/LUMO
levels before we even reach Vbi. Therefore, the charge carriers have no chance of
crossing the interface long before Voc. In Fig. 5.31 we clearly see that they only can
overcome the barrier when the external voltage equals or is bigger than the built-in
voltage, Vext > Vbi = 1.1 V. This corresponds well with the behaviour of the dark
current.

We now have a look at the electron and hole densities. They are less increased at
the heterojunction. This is a very reasonable tendency. The jumps in the potential
are already reduced by 0.5 V, so less charge carriers need to gather to further reduce
them to manageable levels.

The last simulation was done with a shift in the vacuum energy level of
∆Evac = −1.0 V. The simulation results are shown in Fig. 5.32.
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Figure 5.32: Simulation results for the system ITO/PEN/C60/Al with a shift in the
vacuum energy level of ∆Evac = −1.0 V.

The shift in Evac is chosen so that it overcompensates the jump in the HOMO level,
which changes from ∆HOMO = 0.9 eV to ∆HOMO = −0.1 eV. The gap between
the LUMO levels is just reduced from ∆LUMO = 1.1 eV to ∆LUMO = 0.1 eV, it
does not change sign.

The built-in voltage is increased from Vbi = 0.6 V to Vbi = 1.6 V, yet the open
circuit voltage lies far beneath that value, as can be seen clearly in Fig. 5.32. The
fill factor is not very high.

The open circuit voltage reaches a value of Voc ≈ 1.0 V, which stands in stark
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contrast to the built-in voltage of Vbi = 1.6 V. The explanation for this behaviour is
the same as for the analog simulation of the model system, see Fig. 5.29.

The holes encounter an energy barrier on their way from the semiconductor in-
terface to the top contact, but not on the way to the bottom contact, which is
intended as the electron collecting contact. Thus, a larger number of holes travels in
the wrong direction, decreasing the current in the wanted direction. Furthermore,
on their way to the bottom contact holes have more possibilities to recombine with
electrons than in the top half of the device. Through such recombination events the
wanted current is weakened even further, because less electrons reach the aluminum
contact.

These speculations can be verified by looking at the charge carrier densities. The
hole density in the second half (blue) is much too high. It even exceeds the concen-
tration in the first half (green), except at the contacts, where it is predetermined by
the contact modelling. The electron density in the bottom half (blue) on the other
hand is much too low. It is the consequence of the increased recombination in this
device region.
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6 Conclusion

The aim of this thesis is the simulation of the behaviour of organic solar cells with
an interface dipole layer. We specifically study planar heterojunction solar cells con-
sisting of two different organic semiconductors. For this purpose we perform two-
dimensional drift-diffusion simulations based on the self-consistent solution of the
drift-diffusion-current and the continuity equations for electrons, holes and excitons
in combination with the Poisson equation. They are solved on a two-dimensional
mesh with variable grid spacing. The input parameters include the HOMO and
LUMO levels of the semiconductors, the workfunctions of the contacts as well as the
charge carrier mobilities for both active layers. The AM 1.5 solar spectrum is used for
the incoming light intensity. The exciton generation follows Lambert Beer’s law of
absorption. Exciton dissociation is assumed to be independent of the acting electric
field. The charge carrier recombination is assumed to be of Langevin type. The con-
tact modelling includes thermionic emission and tunnelling from the contact into the
semiconductor. This way a number of scenarios were simulated for a model case with
small band offsets and for the realistic system ITO/PEN/C60/Al. The influence of a
fixed dipole layer situated at the planar heterojunction on the current-voltage char-
acteristics is studied. Various combinations of level alignments and dipole moments
are tested. The non-ohmic contact modelling leads to more realistic open circuit
voltages than ohmic contact modelling. Furthermore the reflective back contact in-
creases the short circuit current by a significant amount and thus has to be taken
into account. The main new insight of this thesis was that interface dipole layers
greatly influence the current-voltage characteristic. Firstly they shift the transport
levels and thus change their relative alignment. This can lead to a strong charge
carrier accumulation at the interface, which in turn greatly enhances the diffusion
of electrons and holes. Secondly we found s-shaped current-voltage characteristics if
the built-in voltage is lower than the minimum of the HOMO/LUMO level offsets.
This condition can be regulated by introducing an appropriately strong interface
dipole layer. Thereby the HOMO, LUMO and contact levels can be shifted until
the built-in voltage is larger than the HOMO/LUMO level offsets, which has been
found to yield I-V characteristics without s-shapes and therefore good fill factors.
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