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Abstract

A microphone array along with a beamformer can improve the suppression of background noise
and reverb compared to a single unidirectional microphone. The focus in this thesis is on beam-
forming algorithms based on differential microphone arrays that are able to suppress interfering
signals from different directions without affecting the desired signal from a known target direc-
tion. The array geometries and the algorithms are chosen with the aim to integrate them in
a compact device and use them as a front-end for a speech recognition system. The operating
principle, the design and basic characteristics of first- and second-order differential microphone
arrays are presented and the selected beamforming algorithms are described. The algorithms
are implemented in MATLAB. Recordings with two different microphone types are made: elec-
tret condenser microphone capsules and MEMS-microphones. The algorithms are analyzed by
measuring beam patterns and their performance under real conditions. For the latter, speech
recordings in a reverberant office environment with different scenarios for interfering sources are
made. The evaluation of the performance is done by objective measures and by means of the
word accuracy rate of a speech recognition system.

Kurzfassung

Die Verwendung von Mikrofon-Arrays und entsprechenden Beamforming-Algorithmen kann im
Vergleich zu einem einzelnen gerichteten Mikrofon die Unterdrückung von Hintergrundgeräuschen
und Hall verbessern. Der Fokus dieser Arbeit liegt auf Algorithmen basierend auf differentiellen
Mikrofonarrays, welche die Fähigkeit besitzen Störquellen aus unterschiedlichen Richtungen zu
unterdrücken und dabei die gewünschte Schallquelle aus einer bekannten Richtung verzerrungs-
frei aufzunehmen. Die Auswahl erfolgt mit dem Ziel der Integration in kompakten Aufnah-
megeräten, welche als Vorstufe für Spracherkennungssysteme agieren. Die Funktionsweise, das
Design und grundlegende Charakteristiken von differentiellen Mikrofonarrays werden aufgezeigt
und die ausgewählten Algorithmen beschrieben. Die Implementierung der Algorithmen er-
folgt in MATLAB. Aufnahmen mit zwei unterschiedlichen Mikrofontypen werden durchgeführt:
Elektret-Kondensator-Mikrofonkapseln und MEMS-Mikrophone. Die Analyse der Algorithmen
erfolgt anhand von gemessenen Beampattern und deren Performance unter realen Bedingun-
gen. Dafür werden Sprachaufnahmen in einem halligen Raum mit unterschiedlichen Szenarien
für Störquellen durchgeführt. Die Performance wird anhand von objektiven Maßen und der
Worterkennungsrate eines Spracherkenners evaluiert.
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Differential Microphone Arrays

1
Introduction

1.1. Introduction

In the beginning of the 1930s Harry F. Olson developed the first unidirectional microphone:
the ribbon microphone, which combines mini- and bidirectional capsules to obtain a cardioid
pattern.
An unidirectional microphone enables to attenuate background noise and reverb. In public
address systems it further contributes to prevent feedback. In two-way radio communications,
e.g., the police and ambulance radio communication service, it improves the speech intelligibility.
For some applications the reduction of background noise with a single directional microphone
may not be satisfying, because in practice for a cardioid pattern only about 2dB is achieved [1].

1.2. Motivation

Voice recording is a simple task that can be achieved by means of a single directional microphone.
For Automatic Speech Recognition (ASR) systems it is important that the input signal mainly
contains the desired speech signal. The use of a directional microphone is not always satisfactory,
since every 4 - 5dB improvement of the Signal to Noise Ratio (SNR) may raise the speech
intelligibility by 50% [1]. In Fig. 1.1 a scenario is depicted, where beside the desired speech
signal other interfering signals like music, speech, and other types of noise are present. For ASR,
it is desirable that a system is able to record the target speaker and simultaneously suppress
the interfering sources. This can be realized by means of microphone arrays and beamforming
algorithms, for a compact arrangement preferably with Differential Microphone Arrays (DMAs).

December 10, 2013 – 1 –



1. Introduction

Target Speaker

Figure 1.1: Motivation: Recording of a target speaker in the presence of an interfering speaker and an
interfering music/noise source.

1.3. Objective

The aim of this work is to compare different beamforming algorithms applied to DMAs. The
selection of the array geometries and the algorithms focuses on the possibility to integrate them
in a compact recording device, used as a front-end of a speech recognition system. So relevant
requirements are: a compact arrangement of a small number of microphones, low computational
costs, and the ability to suppress interfering signals from different directions without affecting
the desired signal from a certain direction.
Chosen beamforming algorithms are implemented in MATLAB [2]. The analysis of the algo-
rithms is based on measured beam patterns and the performance in real scenarios. The final
evaluation is done by means of objective measures and a speech recognition system.

1.4. Outline

This thesis is divided into seven chapters. The used signal model and measures are presented
in chapter 2. Chapter 3 covers the basic properties and the design of the first- and second-
order DMAs. In addition, an approach for a more robust implementation is introduced. The
selected beamforming algorithms and their implementations are presented in chapter 4. Chapter
5 gives an overview of the recordings that were made to evaluate the proposed beamforming
algorithms. The measurement results are summarized in chapter 6. A detailed overview is found
in the appendix. The last chapter contains the conclusion and outlook.

– 2 – December 10, 2013
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2
Fundamentals

In [3] a systematic study of DMAs from a signal processing perspective is provided. The notation
and the basic theory are adopted for this thesis. Within this chapter the underlying signal model
is described and some measures are introduced.

2.1. Coordinate System

In this thesis, we consider a three-dimensional Cartesian coordinate system depicted in Fig.
2.1. The center of the coordinate system is close to the center of the first microphone, which
is designated to be the reference microphone. The x-axis points to the target direction. The

Figure 2.1: Coordinate system.

y-axis is perpendicular to the x-axis, and both span the xy-plane including both axes. The
z-axis is perpendicular to the xy-plane. The position of any arbitrary point can be described
by Cartesian coordinates {x, y, z} or polar coordinates {ρ, θ, φ}. For simplicity, in the following
descriptions only two dimensions {x, y} are considered.
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2. Fundamentals

2.2. Signal Model

The following descriptions assume the farfield model in an anechoic space. A source signal
propagates as a plane wave with speed of sound c (see Eq. 5.2) and impinges on a uniform
linear sensor array, that consists of M omnidirectional microphones (see Fig. 2.2). The distance
between two adjacent microphones is δ. The direction of the source signal to the array is
described by the angle θ. The steering vector of length M is

d(ω, cos θ) = [1 e−jωδ cos θ/c · · · e−j(M−1)ωδ cos θ/c]T (2.1)

= [1 (e−jωτ0 cos θ)1 · · · (e−jωτ0 cos θ)M−1]T ,

where T represents the transpose operator, j =
√
−1 the imaginary unit, ω = 2πf the angular

frequency, f > 0 the temporal frequency and τ0 = δ/c the delay between two adjacent sensors
at the angle θ = 0◦.

Figure 2.2: A uniform linear microphone array with processing [3].

With the first microphone as the reference, the mth microphone signal is given by

Xm(ω, θ) = e−j(m−1)ωτ0 cos θS(ω) + Vm(ω),m = 1, 2, ...,M, (2.2)

where S(ω) is the source signal and Vm(ω) is the additive noise at the mth microphone. In
vector notation Eq. 2.2 becomes

x(ω, θ) = [X1(ω, θ) X2(ω, θ) · · · XM (ω, θ)]T (2.3)

= d(ω, cos θ)S(ω) + v(ω), (2.4)

with the noise signal vector

v(ω) = [V1(ω) V2(ω) · · · VM (ω)]T . (2.5)
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2.3. Measures

The beamformer output for a single angular frequency ω and direction θ is

Y (ω, θ) =

M
∑

m=1

Hm(ω)Xm(ω, θ) (2.6)

= h
T (ω)x(ω, θ) (2.7)

= h
T (ω)d(ω, cos θ)S(ω) + h

T (ω)v(ω), (2.8)

where the filter element Hm(ω), m = {1,2,...,M}, is applied to the output signal of each micro-
phone. Thus the filter vector of length M is

h(ω) = [H1(ω) H2(ω) · · · HM (ω)]T . (2.9)

2.3. Measures

Beam pattern

A way to measure the performance of a beamformer is to examine its beam pattern. It describes
the sensitivity of the beamformer to a plane wave impinging on the array from the direction θ,
defined as

B(ω, θ) = d
T (ω, cos θ)h(ω) (2.10)

=

M
∑

m=1

Hm(ω)e−j(m−1)ωτ0 cos θ.

Directivity Factor

The informations of the beam pattern can be summarized to a single value, the directivity factor.
It is defined as the ratio between the beam pattern at a given direction θ = θ0 and the averaged
beam pattern over all directions

G(θ0) =
B2(θ0)

1
π

∫ π
0 B2(θ)dθ

. (2.11)

Directivity Index

The directivity index is defined as

D(θ0) = 10log10(G(θ0)). (2.12)

December 10, 2013 – 5 –
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3
Differential Microphone Arrays

This chapter gives a short introduction to DMAs. The design of first- and second-order DMAs is
discussed, and their basic properties are revealed. Furthermore, an approach for a more robust
implementation is introduced.

3.1. Introduction

Based on the underlying principle, a distinction between additive and differential microphone
arrays (DMAs) is made. The idea behind additive arrays is to synchronize and add the mi-
crophone array sensor outputs. It is meanwhile broadly understood that ’additive arrays’ is
a collective for all the arrays with large inter-element spacing and optimal gain in broadside
direction (perpendicular to the microphone array axis - in case of linear arrays).
DMAs are reacting to the spatial derivatives of the acoustic pressure field. By subtracting
the outputs of two closely spaced omnidirectional microphones the first-order differential of the
acoustic pressure is obtained. An N th-order differential is formed by subtracting two differ-
entials of order N − 1. The response of a N th-order DMA consists of the linear combination
of signals derived from spatial derivatives from order 0 to order N. For the design of DMAs it
is important that the microphone distance δ is small to enable the approximation of the true
acoustic pressure differentials by finite differences between the microphone outputs. Compared
to the acoustic wavelength λ the microphone distance δ is always assumed to be very small.
With δ ≪ λ follows the condition

ωδ

c
= ωτ0 ≪ 2π. (3.1)

It is fulfilled for low frequencies and a small microphone distance δ. This condition also prevents
spatial aliasing.
In contrast to additive arrays, DMAs assume the end-fire direction as the main-steering direction.
This means that the main lobe (θ = 0◦) lies on the microphone array axis. With DMAs only
physically steering is possible, because electronically steering affects the shape of the beam
pattern [3].

– 6 – December 10, 2013



3.2. First-Order DMA

DMAs have the following advantages in comparison to additive arrays:

• compact sensor array arrangement (cf. Eq. 3.1),

• frequency-invariant beam pattern (cf. Eq. 3.12 and 3.23),

• effectivity at low and high frequencies,

• potential to attain maximum directional gain for a given number of sensors.

Disadvantages are:

• high-pass characteristic with a slope of 6N dB/octave (cf. Fig. 3.3(a) and 4.9(a)),

• frequency response depends on the orientation of the array relative to the sound source
(cf. Fig. 3.3(a) and 4.9(a)),

• white noise gain, especially at low frequencies (cf. 3.4 and 3.5).

Regarding the design of filter-and-sum beamformers, the filters for the microphone outputs are
optimized to steer the main lobe to the target direction. For DMAs the filter elements are
designed to steer a certain number of nulls in specific directions [3].
In the next two sections the design of the first- and the second-order DMA is discussed.

3.2. First-Order DMA

For a certain beam pattern, M constraints are given. The filter elements for M microphones are
obtained by solving a linear system of M equations. A first-order DMA requires a two-element
microphone array. For the design of beam patterns, two constraints have to be fulfilled: the
distortionless response (a gain of one at θ = 0◦) and a null within the interval 0◦ < θ ≤ 180◦.
These two constraints can be written as

d
T (ω, cos 0◦)h(ω) = d

T (ω, 1)h(ω) = 1 (3.2)

d
T (ω,α1,1)h(ω) = β1,1, (3.3)

with the design coefficients α1,1 = cos θ1,1 and β1,1 = 0. The first number of the subscript of
α, β and θ corresponds to the order of the DMA, and the second is the element number. The
angle θ1,1 represents the location of the null (β1,1 = 0) in the beam pattern. Eq. 3.2 and Eq.
3.3, written in matrix form, is

[

d
T (ω, 1)

d
T (ω,α1,1)

]

h(ω) =

[

1
0

]

[

1 e−jωτ0

1 e−jωτ0α1,1

]

h(ω) =

[

1
0

]

. (3.4)

The constraint matrix in Eq. 3.4 is a so-called Vandermonde matrix (see appendix A.1). By
solving Eq. 3.4 any first-order DMA can be designed:

h(ω) =
1

1 − ejωτ0(α1,1−1)

[

1

−ejωτ0α1,1

]

. (3.5)
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3. Differential Microphone Arrays

It is known that τ0 = δ/c. For a sensor spacing much smaller than the acoustic wavelength, the
following approximation can be applied:

ex ≈ 1 + x (3.6)

So, by approximating 1 − ejωτ0(α1,1−1) with Eq. 3.6,

h(ω) =
j

(α1,1 − 1)τ0ω

[

1

−ejωτ0α1,1

]

. (3.7)

From Eq. 3.7 the gains H1(ω) and H2(ω) that should be applied at the two microphone outputs
in the structure in Fig. 2.2 (for M = 2) are obtained. By separating Eq. 3.7 into two delay
elements

H1(ω) = 1, (3.8)

H2(ω) = −ejωτ0α1,1 (3.9)

and the output compensation filter

HL(ω) =
j

(α1,1 − 1)τ0ω
, (3.10)

the more common structure mentioned in [4] and depicted in Fig. 3.1(a) is obtained. The
first-order DMA beam pattern is

B(ω, θ) =
j

(α1,1 − 1)τ0ω

[

1 − e−jωτ0(cos θ−α1,1)
]

. (3.11)

By applying Eq. 3.6 to 1 − ejωτ0(α1,1−1) a frequency-independent beam pattern is obtained
according to

B(ω, θ) =
1

1 − α1,1
(cos θ − α1,1) . (3.12)

(a)

  0.2  0.4  0.6  0.8  1

30

210

60

240

90 270

120

300
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180
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Supercardioid

(b)

Figure 3.1: First-order DMA: (a) Common structure; (b) Different beam patterns.
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3.3. Second-Order DMA

The values of α1,1 for the following beam patterns are:

• Dipole: α1,1 = 0

• Cardioid: α1,1 = −1

• Hypercardioid: α1,1 = −1
2

• Supercardioid: α1,1 = − 1√
2

The corresponding patterns are depicted in Fig. 3.1(b). It is clearly visible that by varying the
value of the delay element at the output of the second sensor between 0 and τ0, any common
first-order beam pattern can be obtained.

3.3. Second-Order DMA

A second-order DMA requires a three-element microphone array. Therefore, three constraints
have to be considered:







d
T (ω, 1)

d
T (ω,α2,1)

d
T (ω,α2,2)






h(ω) =





1

β2,1

β2,2











1 e−jωτ0 e−j2ωτ0

1 e−jωτ0α2,1 e−j2ωτ0α2,1

1 e−jωτ0α2,2 e−j2ωτ0α2,2






h(ω) =





1

β2,1

β2,2



 . (3.13)

where −1 ≤ α2,1 < 1, −1 ≤ α2,2 < 1, α2,1 6= α2,2, 0 ≤ β2,1 ≤ 1 and 0 ≤ β2,2 ≤ 1. Here only the
solution for some second-order beam patterns with two distinct nulls in different directions is
presented, for further solutions see [3]. The linear system of equations to solve in this context is







d
T (ω, 1)

d
T (ω,α2,1)

d
T (ω,α2,2)






h(ω) =





1
0
0



 (3.14)

The solution to Eq. 3.14 is

h(ω) =
1

[1 − ejωτ0(α2,1−1)][1 − ejωτ0(α2,2−1)]







1

−ejωτ0α2,1 − ejωτ0α2,2

ejωτ0(α2,1+α2,2






(3.15)

Using the approximation from Eq. 3.6 in the factor term of Eq. 3.15,

h(ω) =
1

−τ2
0 ω2(α2,1 − 1)(α2,2 − 1)







1

−ejωτ0α2,1 − ejωτ0α2,2

ejωτ0(α2,1+α2,2)






. (3.16)

The delays applied to the three microphone outputs are

H1(ω) = 1 (3.17)

H2(ω) = −ejωτ0α2,1 − ejωτ0α2,2 (3.18)

H3(ω) = ejωτ0(α2,1+α2,2); (3.19)
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3. Differential Microphone Arrays

the output compensation filter is

HL(ω) =
1

−τ2
0 ω2(α2,1 − 1)(α2,2 − 1)

. (3.20)

Eq. 3.16, rewritten as

h(ω) =
1

−τ0ω











1
τ0ω(α2,1−1)





1

−ejωτ0α2,1

0



 − ejωτ0α2,2

τ0ω(α2,2−1)





0
1

−ejωτ0α2,1















, (3.21)

shows that the second-order DMA can be implemented as a cascade of first-order DMAs (see
Fig. 3.2(a)). The second-order DMA beam pattern is

B(ω, θ) =
1

−τ2
0 ω2(α2,1 − 1)(α2,2 − 1)

[1 − ejωτ0(α2,1−cos θ)][1 − ejωτ0(α2,2−cos θ)]. (3.22)

Using the approximation from Eq. 3.6 in Eq. 3.22 the frequency-independent beam pattern is

B(ω, θ) =
1

(α2,1 − 1)(α2,2 − 1)
(cos θ − α2,1) (cos θ − α2,2) . (3.23)

The values of α2,1 and α2,2 for the following beam patterns are:

• Cardioid: α2,1 = −1, α2,2 = 0.

• Hypercardioid: α2,1 = −0.81, α2,2 = 0.31.

• Supercardioid: α2,1 = −0.89, α2,2 = −0.28.

• Quadrupole: α2,1 = − 1√
2
, α2,2 = 1√

2
.

The corresponding patterns are depicted in Fig. 3.2(b).
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Figure 3.2: (a) Implementation of the second-order DMA; (b) Different beam pattern.
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3.4. Frequency Response of a First-Order DMA

3.4. Frequency Response of a First-Order DMA

Fig. 3.3(a) shows the frequency response of a first-order cardioid without the compensation of
the output (the sensor spacing is δ = 0.02m). In the low frequency range (f < 2000Hz), the
directional characteristic is independent of the frequency. With increasing frequency the shape
gets more and more deformed, even total cancellation of the desired signal occurs at certain
values. In Fig. 3.3(b) the frequency response of the compensated output (after HL) of the first-
order DMA is depicted. The compensation entails the amplification of uncorrelated white noise,
like the sensor noise. The so-called White Noise Gain (WNG) [3] is, due to the characteristic of
the compensation filter, a problem at lower frequencies. The sensor spacing must be chosen to
be large to resist the WNG. But a large value of δ is in contradiction with the DMA assumption,
which states that δ should be small (see Eq. 3.1). Therefore, there is always a tradeoff between
WNG and a frequency independent beam pattern at higher frequencies. Hence, the sensor
spacing should be selected according to this compromise.
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Figure 3.3: Directional response of a first-order cardioid for selected angles: (a) Without and (b) with equal-
ization. The sensor spacing is δ = 0.02m.

3.5. Minimum-Norm Solution (MNS) for Robust Differential Arrays

3.5.1. Closed-Form Solution

Within this section a solution to mitigate the WNG is presented [3]. For the design of any DMA
of order N , the linear system of N + 1 equations has to be solved:

D(ω,α)h(ω) = β. (3.24)

December 10, 2013 – 11 –



3. Differential Microphone Arrays

The constraint matrix of size (N + 1) × M is

D(ω,α) =













d
T (ω, 1)

d
T (ω,αN,1)

...

d
T (ω,αN,N )













, (3.25)

with the steering vector d(ω,αN,n) of length M , the filter h(ω) of length M and the vectors

α = [1 αN,1 . . . αN,N ]T (3.26)

and

β = [1 βN,1 . . . βN,N ]T (3.27)

of length N+1 containing the design coefficients. Sec. 3.2 and 3.3 only cover the case M = N+1.
The minimum-norm filter in closed form is

h(ω,α,β) = D
T (ω,α)[D(ω,α)DT (ω,α)]−1β. (3.28)

The length of the vectors α and β defines the order of the DMA, and the design coefficient the
shape of the beam pattern. The minimum-norm filter h(ω,α,β) of length M can be longer than
N + 1. By designing a DMA with a number of microphones M > N + 1, robustness against
WNG is achieved. An example is shown in Sec. 3.5.2.

3.5.2. Example - First-Order Cardioid

The parameters to design a first-order cardioid (see Sec. 3.2) are:

α =
[

1 −1
]T

, (3.29)

β =
[

1 0
]T

. (3.30)

With Eq. 3.29 the constraint matrix for M = 4 microphones becomes

D(ω,α) =

[

1 e−jωτ0 e−j2ωτ0 e−j3ωτ0

1 ejωτ0 ej2ωτ0 ej3ωτ0

]

. (3.31)

The solution for the filter vector h(ω,α,β) is obtained by solving Eq. 3.28. The vector contains
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Figure 3.4: Directional response of a first-order cardioid (MNS for 4 microphones) for selected angles. The
sensor spacing is δ = 0.02m.
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3.6. Representative Errors

the four filter elements Hm(ω), for m = 1, 2, 3, and 4, for the microphone array (see Fig. 2.2).
Fig. 3.4 shows the frequency response for the proposed solution with a sensor spacing of δ =
0.02m. For directions other than θ = 0◦ some peaks with a very high amplification are visible.
Depending on the used frequency range this can be ignored or has to be considered for the
design. The improvement of the WNG is demonstrated by a practical realization in Sec. 4.1.1.

3.6. Representative Errors

Fig. 3.5 gives an overview on the representative errors [5] of a DMA.

Figure 3.5: Representative errors for a DMA [5].

Localization and Steering Error

As already mentioned, DMAs are working in the end-fire direction. This means that the target
source lies on the microphone array axis. For an incorrect assumed location, the beam is
physically steered to the wrong direction and so the target source is also attenuated (cf. Fig.
3.1(b)).

Microphone Position Error

The delay element used in a DMA depends on the acoustic delay between two adjacent micro-
phones. If the distance between the two microphones differ from the proper one, the acoustic
delay and the delay element are different, which causes degradation of the performance of the
beamformer (see [6] for more details).

Microphone Error

The microphones of the array may differ from each other due to deviations in fabrication.
Also environmental conditions have influence on the characteristics of the microphones. The
room temperature, air pressure, humidity, etc. may vary, so that the microphone error is also
fluctuating. This causes serious degradation of the performance at lower frequencies. To prevent
this microphone mismatch, it’s necessary to calibrate the microphone array (see [7] for more
details).
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Differential Microphone Arrays

4
Beamforming with Differential Microphone

Arrays

The considered beamforming algorithms within this chapter are classified into two categories.
The first one tries to suppress the interfering sources by directly nullforming towards the corre-
sponding directions. The second category does nullforming towards the target source to estimate
the interfering signals and applies spectral subtraction to determine the target signal. All of the
microphone arrays discussed below consist of omnidirectional sensors.

4.1. Adaptive Differential Microphone Array (ADMA)

4.1.1. First-Order ADMA

To realize a first-order DMA with a variable beam pattern, the structure presented in 3.1(a)
requires an adjustable time delay element τ0. This realization is unattractive for a real-time
implementation. A more efficient way to implement a first-order DMA with variable beam
pattern is the back-to-back cardioid arrangement introduced in [4], as shown in Fig. 4.1. A fixed
beamformer provides two output signals that are combined to obtain the overall beamformer
output. The fixed beamformer outputs are the so-called forward-facing cardioid Cf (ω, θ) and
the backward-facing cardioid Cb(ω, θ), where

Cf (ω, θ) =
[

1 e−jωτ0 cos θ
]

[

1

−e−jωτ0

]

S(ω) (4.1)

and

Cb(ω, θ) =
[

1 e−jωτ0 cos θ
]

[

−e−jωτ0

1

]

S(ω). (4.2)
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4.1. Adaptive Differential Microphone Array (ADMA)

The corresponding beam patterns are depicted in Fig. 4.3(a). The beamformer output normal-
ized by the input spectrum S(ω) is

∣

∣

∣

∣

Y (ω, θ)

S(ω)

∣

∣

∣

∣

= |(Cf (ω, θ) − βCb(ω, θ)) HL(ω)| (4.3)

=

∣

∣

∣

∣

[

1 e−jωτ0 cos θ
]

([

1

−e−jωτ0

]

− β

[

−e−jωτ0

1

])

HL(ω)

∣

∣

∣

∣

, (4.4)

where β is a real constant and HL(ω) the compensation filter (cf. Fig. 4.2). Therefore, the
resulting beam pattern depends on the value of β ranging between 0 ≤ β ≤ 1 (see Fig. 4.3(b)).

Figure 4.1: Schematic implementation of the first-order ADMA using the combination of forward- and
backward-facing cardioids (cf. [4]).

The proposed implementation allows to set a zero in the beam pattern between 90◦ and 270◦.
This restriction is given by the constrained values for β. Every common beam pattern between
a dipole and a cardioid can be realised. It is possible to suppress one interfering source lying
somewhere in the rear half plane by using the suitable value for β.

Optimum β

The optimum value of β minimizes the mean-square value of the beamformer output y(t).
According to Fig. 4.1 the beamformer output in time-domain is

y(t) = cf (t) − βcb(t). (4.5)

Squaring the output and computing the expected value yields

E[y2(t)] = Rcfcf
(0) − 2βRcf cb

(0) + β2Rcbcb
(0), (4.6)

where Rcfcf
(0) and Rcbcb

(0) are the powers of the forward- and backward-facing cardioid signals
and Rcfcb

(0) is the cross-power between the forward- and backward-facing cardioid signals. By
calculating the derivative of Eq. 4.6 with respect to β and setting the result to zero, the optimum
value, which is the optimum Wiener filter for a filter length one, is

βopt =
Rcfcb

(0)

Rcbcb
(0)

(4.7)
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4. Beamforming with Differential Microphone Arrays

Normalized Least Mean Square (NLMS) version

In a time-varying environment the value of β should be updated adaptively to obtain better
results. This can be done by the NLMS-algorithm. This algorithm is computationally inex-
pensive, easy to implement, and offers reasonably fast tracking capabilities. The real valued
time-domain one-tap NLMS algorithm can be written as

βt+1 = βt + µ
y(t)cb(t)

‖cb(t)2‖ + ∆
, (4.8)

with the step-size µ and the regularization parameter ∆.

Compensation Filter HL(ω)

The frequency dependence of the DMA for target direction θ = 0◦ (cf. Fig. 3.3) has to be
compensated up to the cut-off-frequency (red mark in Fig. 4.2(a))

ωc =
π

2τ0
. (4.9)

Hence the ideal compensation filter, proposed in [4], is

HL(ω) =

{

1
2 sin π

c
ω
ωc

, 0 < ω ≤ ωc

1
2 , , otherwise.

(4.10)

Due to the WNG and the minor importance for speech signals, the frequency range of f < 100Hz
can be suppressed. The directional response of the compensated beamformer output is depicted
in Fig. 4.2(b). The notches in the frequency response at higher frequencies are irrelevant,
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Figure 4.2: Directional response of a first-order cardioid for selected angles: (a) Without and (b) with equal-
ization. The sensor spacing is δ = 0.02m.
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4.1. Adaptive Differential Microphone Array (ADMA)

because for a sampling frequency of fs = 16kHz they are already above the nyquist frequency
fn = fs/2.

Beam pattern
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Figure 4.3: Beam patterns of the first-order ADMA: (a) Forward- and backward-facing cardioid; (b) Beam-
former output for different values of β.

Minimum-Norm Solution

Section 3.5 introduces the MNS, that allows to extend a DMA with further microphones by
maintaining the order of the system. The benefit of this extension is also used for the current
implementation. Fig. 4.4 shows schematically the implementation with M = 4 microphones.
The solution lined out in section 3.5.2 provides the input filter elements Hm(ω) for m = {1,

Figure 4.4: Schematic implementation of a first-order adaptive differential microphone using the combina-
tion of forward and backward facing cardioids - MNS.
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4. Beamforming with Differential Microphone Arrays

2, 3, 4}. The forward facing cardioid is built by summing up the filtered inputs. By flipping
the order of the filter elements and again summing up the filtered inputs, the backward facing
cardioid is obtained. The calculation of the beamformer output remains the same, except that
the frequency response of the DMAs is already compensated with the filter elements Hm(ω).
Fig. 4.5 shows the WNG for three different implementations of the current algorithm, with the
parameters used as described in Sec. 4.3. The adaptation variable is fixed to β = 1, where the
highest WNG is reached. The blue line shows the frequency spectrum of the sum of the inherent
noise of two microphones, simulated with white gaussian noise. The red line is the WNG for
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Figure 4.5: WNG of different first-order ADMA implementations for simulated microphone noise.

the conventional implementation from Fig. 4.1. The cyan line shows the WNG for the MNS
implemented with M = 2 microphones and the green line with M = 4 microphones. As can
be seen the implementation with M = 4 microphones features about 12dB less WNG than the
one with M = 2 microphones, for each additional microphone 6dB. The WNG for the MNS
implemented with M = 2 microphones (cyan line) is depicted to show that the MNS entails
only an improvement with a microphone number M > N + 1.
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4.1. Adaptive Differential Microphone Array (ADMA)

4.1.2. Second-Order ADMA

The first-order ADMA is able to suppress adaptively one interfering source lying in the rear half
plane (90◦ ≤ θ ≤ 270◦). An extension that suppresses two interfering sources is the second-order
ADMA presented in [8]. Again, by using a fixed beamformer the base beam patterns are formed
and adaptively combined to obtain the beamformer output pattern (see Fig. 4.6).

Figure 4.6: Block diagram of the second-order ADMA (cf. [8]).

Fixed Beamformer

In section 3.3 the structure of the second-order DMA is presented. It is shown that the second-
order DMA can be implemented as a cascade of first-order DMAs. The second-order structure
used for the fixed beamformer within this section is illustrated in Fig. 4.7. It can be seen that

Figure 4.7: Schematic implementation of an adaptive second-order differential array using only fixed delay
elements.

it is a cascade of the first-order DMA back-to-back cardioid arrangement from Sec. 4.1.1. With
this structure three different beam patters can be generated.
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4. Beamforming with Differential Microphone Arrays

The normalized second-order forward-facing cardioid is

∣

∣

∣

∣

Cff (ω, θ)

S(ω)

∣

∣

∣

∣

=
[

1 e−jωτ0 cos θ e−j2ωτ0 cos θ
]







1

−2e−jωτ0

e−j2ωτ0






, (4.11)

the normalized second-order backward-facing cardioid is

∣

∣

∣

∣

Cbb(ω, θ)

S(ω)

∣

∣

∣

∣

=
[

1 e−jωτ0 cos θ e−j2ωτ0 cos θ
]







e−j2ωτ0

−2e−jωτ0

1






(4.12)

and the normalized second-order toroid is

∣

∣

∣

∣

Ctt(ω, θ)

S(ω)

∣

∣

∣

∣

=
[

1 e−jωτ0 cos θ e−j2ωτ0 cos θ
]







−e−jωτ0

1 + e−j2ωτ0

−ejωτ0






. (4.13)

The corresponding beam patterns are depicted in Fig. 4.10(a).

Adaptive Beamformer

The overall beamformer output is obtained by combining the three fixed beamformer outputs
like depicted in Fig. 4.8. This enables to suppress two disturbing sources lying in the rear half
plane.

Figure 4.8: Block diagram of the second-order adaptive beamformer (cf. [8]).

The output signal of the adaptive beamformer y(t), which corresponds to the error signal e(t),
in time-domain is

e(t) = cff (t) − α(t)T c(t), (4.14)

where the cff (t) is the second-order forward-facing cardioid. The coefficient vector is

α(t) = [ α1(t) α2(t) ]T (4.15)
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4.1. Adaptive Differential Microphone Array (ADMA)

and the signal vector contains the second-order backward-facing cardioid cbb(t) and the second-
order toroid ctt(t),

c = [ cbb(t) ctt(t) ]T . (4.16)

To update the coefficient vector α(t), a standard NLMS-algorithm is used with the following
update equation

α(t + 1) = α(t) + µ
e(t)c(t)

‖c(t)2‖ + ∆
, (4.17)

with the step-size µ and the regularization constant ∆. By constraining the values of the
coefficient vector α with 0 ≤ α1,2 ≤ 1, the zeros in the beam pattern are limited to the rear half
plane within the angle 90◦ to 270◦ (see Fig. 4.10(b)).

Compensation Filter HL(ω)

Fig. 4.9(a) shows the frequency response of the second-order forward-facing cardioid without
the compensation of the output. Due to the second-order differentiator frequency dependence
of the second-order DMA, the compensation filter in Eq. 4.10 has to be applied twice. The
frequency response of the compensated beamformer is depicted in Fig. 4.9(b) (cf. Sec. 4.1.1).
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Figure 4.9: Directional response of a second-order cardioid for selected angles: (a) Without and (b) with
equalization. The sensor spacing is δ = 0.02m.
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Beam pattern
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Figure 4.10: Second-order ADMA beam patterns: (a) Fixed beamformer outputs; (b) Adaptive beamformer
outputs.

Minimum-Norm Solution for the fixed beamformer

Like in Section 4.1.1, also the second-order DMA can be extended with further microphones.
Fig. 4.11 shows the schematic implementation of the fixed beamformer, as an example with five
microphones. In the first stage the structure shown in Fig. 4.4 is implemented twice to obtain
the first-order forward- and backward-facing cardioids. In the second stage three first-order
DMAs are used to obtain the final fixed beamformer outputs.

Figure 4.11: Schematic implementation of the fixed beamformer of the second-order ADMA - MNS.

– 22 – December 10, 2013



4.1. Adaptive Differential Microphone Array (ADMA)

The second-order forward-facing cardioid is

Cff (ω, θ) =
[

Cf1(ω) Cf2(ω)
]

[

1

−e−jωτ0

]

, (4.18)

the second-order backward-facing cardioid is

Cbb(ω, θ) =
[

Cb1(ω) Cb2(ω)
]

[

e−jωτ0

1

]

, (4.19)

and the second-order toroid is

Ctt(ω, θ) =
[

Cf1(ω) Cf2(ω)
]

[

−e−jωτ0

1

]

. (4.20)

The output of the adaptive beamformer is compensated with the filter defined in Eq. 4.10.

Fig. 4.12 shows the maximum WNG for two implementations of the second-order ADMA.
The parameters for the implementations are described in Sec. 4.3. The adaptation variables α1

and α2 are adjusted in a way that the highest possible WNG is reached. The blue line shows
the frequency spectrum of the sum of the inherent noise of three microphones, simulated with
white gaussian noise. The red line represents the WNG of the conventional implementation of
the fixed beamformer (see Fig. 4.7) with M = 3 microphones (α1 = 0, α2 = 1). The green
line represents the WNG of the implementation with M = 5 microphones depicted in Fig. 4.11
(α1 = α2 = 1). With the latter about 12dB less WNG is achieved.
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Figure 4.12: WNG of different second-order ADMA implementations for simulated microphone noise.
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4.1.3. First-/Second-Order Hybrid ADMA

Although the MNS, applied for the second-order ADMA, entails an enhancement regarding
the WNG, the amplification in the low frequency range is still too high for a real usage. An
approach that allows to utilize a second-order ADMA in a real application is a hybrid version in
combination with a first-order ADMA, as depicted in Fig. 4.13 [9]. In the low frequency range
operates a first-order ADMA and for higher frequencies a second-order ADMA is used.

Figure 4.13: Schematic implementation of a first-/second-order hybrid ADMA.

Fig. 4.14 shows the frequency response of the perfect reconstruction filters for the proposed
implementation. The used transition frequency (cutoff frequency of the low-/high-pass filter) in
this example is ft = 1050Hz. For a real implementation the value of the transition frequency
depends on the WNG. A tradeoff between additional performance of the second-order ADMA
and less WNG due to the first-order ADMA has to be made.
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Figure 4.14: Low- and high-pass filter for the first-/second-order hybrid ADMA.
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4.2. DMAs for Spectral Subtraction (SS)

Another approach to suppress disturbing sources is nullbeamforming towards the target source
to estimate the noise and subtract it from a signal containing the whole ambience. In this section
two microphone array geometries are presented and two corresponding beamforming algorithms
are discussed.

4.2.1. Microphone Array Geometries

The two beamforming algorithms introduced below require array geometries with three micro-
phones. Two different geometries presented in [10] are depicted in Fig. 4.15. In geometry 1 (Fig.
4.15(a)) the microphones are arranged in the corners of an isosceles right triangle, whereas in
geometry 2 (Fig. 4.15(b)) the microphones are arranged in the corners of an equilateral triangle.
The radii of the geometries are

r1 =
d√
2

+ rc (4.21)

for geometry 1 and

r2 =
d√
3

+ rc (4.22)

for geometry 2. The microphone capsule radius is considered with rc. By neglecting it, it is seen
that the geometry 2 is more space saving. It is smaller compared to geometry 1 by a factor of
2/3.

(a) (b)

Figure 4.15: Microphone Array Geometries: (a) Geometry 1 - isosceles right triangle; (b) Geometry 2 -
equilateral triangle (cf. [10]).
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4.2.2. Algorithm 1 for SS (Geometry 1)

The idea of the algorithm presented in [11] is to estimate the interfering signals by nullsteering
towards the target direction. The beamformer output is obtained with the SS of the estimated
noise signal from the overall signal. Fig. 4.16 shows the schematic implementation of the
algorithm.

Figure 4.16: Schematic implementation of the algorithm 1 for SS for the microphone array geometry 1.

Fixed Beamformer

The microphone array consists of three omnidirectional microphones arranged as shown in ge-
ometry 1 (cf. Fig. 4.15(a)). Mounted on a surface (xy-plane) this geometry allows nullsteering
to any direction above the surface (z ≥ 0). In the following descriptions the two dimensional
case is considered only, i.e. the directions lying on the surface.
The signal of the first microphone x1(t) corresponds to be the overall signal, containing the sig-
nals from the direction of the target source and the interfering sources. The fixed beamformer
provides two output signals with nullsteering towards the target direction. The two outputs of
the fixed beamformer are

R21(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]





−1

ejωτ21

0



 S(ω) (4.23)

and

R31(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]





−1
0

ejωτ31



 S(ω). (4.24)

The proper delays for the nullsteering are

τ21 =
d

c
cos θ0 (4.25)
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and

τ31 =
d

c
sin θ0, (4.26)

where θ0 is the steering angle. The corresponding beam patterns for a steering angle of θ0 = 0◦

are depicted in Fig. 4.17(a). As can be seen, for this value of the steering angle θ0 an array
geometry with M = 2 microphones would work as well. The noise estimation with R21(ω, θ)
would be enough. The advantage of the used geometry with M = 3 microphones comes into
effect for real applications, where steering, independent of the array orientation, is desired.

Spectral Subtraction

The power spectra of the fixed beamformer outputs are summed up and filtered with the com-
pensation filter HL(ω) to determine the noise estimate

|N(ω, k)|2 =
(

|R21(ω, k)|2 + |R31(ω, k)|2
)

|HL(ω)|2, (4.27)

where R21(ω, k) and R31(ω, k) represent the short-time fourier transforms of the fixed beam-
former output signals. The SS is

|Y (ω, k)|2 =

{

|X1(ω, k)|2 − |N(ω, k)|2, if|X1(ω, k)| > |N(ω, k)|
0, otherwise

. (4.28)

To obtain the output signal the phase information of X1(ω, k) is added.

Y (ω, k) =
√

|Y (ω, k)|2 ej∢X1(ω,k) (4.29)

The corresponding beam patterns are depicted in Fig. 4.17(b).

Compensation Filter HL(ω)

The proposed compensation filter [11] is

HL(ω) =
c
√

2

δω
. (4.30)

Because for the beamformer output signal the musical noise [12] due to the SS is very annoying
and also the target speaker is slightly affected, an additional factor of 1/2 is added to the
compensation filter, so

HL(ω) =
c√
2δω

. (4.31)

This results in less suppression of the interfering sources.
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Beam pattern
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Figure 4.17: Beam patterns for algorithm 1 for SS (geometry 1): (a) Noise estimation; (b) Beamformer
output.

4.2.3. Algorithm 1 for SS (Geometry 2)

Algorithm 1 for SS applied to geometry 2 is depicted in 4.18. For this geometry the fixed
beamformer provides three output signals for the noise estimation.

Figure 4.18: Schematic implementation of the algorithm 1 for SS for the microphone array geometry 2.

Fixed Beamformer

The three outputs of the fixed beamformer are

R21(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 cos (θ−π
3
)
]





−1

ejωτ21

0



S(ω), (4.32)
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R32(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 cos (θ−π
3
)
]







0

−ejωτ21

ejωτ31






S(ω) (4.33)

and

R31(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 cos (θ−π
3
)
]





−1
0

ejωτ31



 S(ω). (4.34)

The proper delays for the nullsteering are

τ21 =
d

c
cos θ0, (4.35)

τ31 =
d

c
cos (θ0 −

π

3
) (4.36)

The corresponding beam patterns for a steering angle of θ0 = 0◦ are depicted in Fig. 4.19(a).

Spectral Subtraction

Compared with the SS in Sec. 4.2.2 only the calculation for the noise estimate changes, the rest
remains the same.

|N(ω, k)|2 =
(

|R21(ω, k)|2 + |R32(ω, k)|2 + |R31(ω, k)|2
)

|HL(ω)|2, (4.37)

where R21(ω, k), R32(ω, k) and R31(ω, k) represent the short-time fourier transforms of the
fixed beamformer output signals. Also for the compensation filter HL(ω) see Sec. 4.2.2. The
corresponding beam patterns are depicted in Fig. 4.19(b).
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Figure 4.19: Beam patterns for algorithm 1 for SS (geometry 2): (a) Noise estimation; (b) Beamformer
output.
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4.2.4. Algorithm 2 for SS (Two Channels)

In contrast to the previous microphone arrays, the algorithm proposed in [13] assumes the
broadside direction. This means that the target source is located orthogonal to the microphone
array axis. For ease of exposition, this section introduces the two-channel approach, and in
the next sections the extension by a third microphone to the proposed geometries (Sec. 4.2.1)
is presented. Fig. 4.20 shows the block diagram of the algorithm. The array consists of two
adjacent microphones with a distance of δ. The processing of the signals is divided into two
layers. In the first one the beamforming and in the second one the SS is performed.

Figure 4.20: Schematic implementation of algorithm 2 for SS (two channels).

Fixed Beamformer

The fixed beamformer provides three output signals. The noise signal N12(ω, θ) is obtained by
null-forming towards the target direction.

N12(ω, θ) =
[

1 e−jωτ0 sin θ
]

[

1
−1

]

S(ω). (4.38)

The two other output signals B12(ω, θ) and B21(ω, θ) are suppressing the signals coming from
the direction corresponding to the delay τ :

B12(ω, θ) =
[

1 e−jωτ0 sin θ
]

[

e−jωτ

−1

]

S(ω) (4.39)

and

B21(ω, θ) =
[

1 e−jωτ0 sin θ
]

[

1

−e−jωτ

]

S(ω). (4.40)
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Spectral Subtraction

For nij(t) and bij(t) the short-time spectral components Nij(ω, k) and Bij(ω, k) are computed
at each frame k for each frequency ω.
In the case that the spectral components of each source do not overlap, the component |M12(ω, k)|
forms the directivity pattern emphasizing the target source direction.

|M12(ω, k)| = min[|B12(ω, k)|, |B21(ω, k)] (4.41)

The SS of the short-time spectral component of |N12(ω, k)| and |M12(ω, k)| is

|Y ′
12(ω, k)|2 =

{

|M12(ω, k)|2 − |N12(ω, k)|2, if|M12(ω, k)| > |N12(ω, k)|
0, otherwise

. (4.42)

Before the reconstruction of the time-domain signal y(t) the short-time spectral component
|Y ′

12(ω, k)| has to be compensated with HL(ω) and needs a phase information, which is obtained
either from B12(ω, k) or B21(ω, k).

Y12(ω, k) =
√

|Y ′
12(ω, k)|2 HL(ω) ej∢B12(ω,k) (4.43)

Compensation Filter HL(ω)

The corresponding compensation filter [13] is

HL(ω) =
1

√

2(1 − cos ωτ0)
(4.44)
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Figure 4.21: Beam pattern for algorithm 2 for SS (two channels): (a) Fixed beamformer outputs; (b) Beam-
former output.

The beam pattern in 4.21(b) shows the back-front ambiguity of the two-channel realization.
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4.2.5. Algorithm 2 for SS (Geometry 1)

Fig. 4.22 shows the extension of the two-channel approach (Sec. 4.2.4) with a third micro-
phone for the array geometry 1 (Fig. 4.15(a)). For this geometry the two-channel method is

Figure 4.22: Schematic implementation of algorithm 2 for SS for array geometry 1.

implemented twice. Therefore the two steering delays

τ21 =
d

c
cos θ0 (4.45)

and

τ31 =
d

c
sin θ0, (4.46)

with the steering angle θ0, are introduced. These additional delay elements are taken into
account for the two-channel method inputs. The calculation of the target-source suppressed and
the target-source emphasized signals is attached in the appendix A.2.
Out of the outputs of the two two-channel methods the magnitude of the final beamformer
output is

|Y (ω, k)| = min[|Y12(ω, k)|, |Y23(ω, k)|]. (4.47)

By adding the phase information, the final beamformer output is

Y (ω, k) =
√

|Y (ω, k)|2 ej∢B13(ω,k). (4.48)

The corresponding beam patterns are depicted in Fig. 4.24(a), 4.24(b) and 4.24(f).
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4.2.6. Algorithm 2 for SS (Geometry 2)

In Fig. 4.23 the implementation of the algorithm 2 for SS for the array geometry 2 (Fig. 4.15(a))
is depicted. The two-channel method is implemented three times. The corresponding steering

Figure 4.23: Schematic implementation of algorithm 2 for SS for array geometry 2.

delays are

τ21 =
d

c
cos θ0 (4.49)

and

τ31 =
d

c
cos (θ0 −

π

3
), (4.50)

with the steering angle θ0. The calculation of the target-source suppressed and the target-source
emphasized signals is attached in the appendix A.3.
The magnitude of the final beamformer output is

|Y (ω, k)| = min[|Y12(ω, k)|, |Y13(ω, k)|, |Y23(ω, k)|] (4.51)

By adding the phase information, the final beamformer output is

Y (ω, k) =
√

|Y (ω, k)|2 ej∢B13(ω,k) (4.52)

The corresponding beam patterns are depicted in Fig. 4.24(c), 4.24(d), 4.24(e) and 4.24(f). In
Fig. 4.24(f) the final beamformer outputs Ygeo1 and Ygeo2 for the different array geometries are
compared. The beam pattern for Ygeo2 is narrower than for Ygeo1.
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Figure 4.24: Beam patterns for algorithm 2 for SS: (a) and (b) for array geometry 1; (c), (d) and (e) for
array geometry 2; (f) Beamformer outputs for both geometries.
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4.3. Implementation

The implementation of each algorithm is based on block processing with the overlap-add method
and 50% overlapping. The used window-type is Hanning and the sampling frequency fs =
48kHz. The remaining processing parameters are summarized in the two sections below.

4.3.1. ADMAs

The following implementations of the adaptive DMAs are investigated:

• First-order ADMA - M = 2 microphones

• First-order ADMA - MNS for M = 4 microphones

• First-/second-order hybrid ADMA - M = 3 microphones

• First-/second-order hybrid ADMA - MNS for M = 5 microphones

The frame size for the block-processing is 28 samples. The value for the step-size is µ = 0.6 and
the regularization constant is ∆ = 10−4. The compensation filter features an amplification of
infinity at f = 0Hz (cf. Eq. 4.10); thus, the first frequency pin for the designed filter is set to
zero.
For the first-/second-order hybrid ADMA with M = 3 microphones the transition frequency is
ft = 1850Hz, and for the first-/second-order hybrid ADMA with MNS for M = 5 microphones
it is ft = 1050Hz.

4.3.2. DMAs for SS

The following algorithms of the DMAs for SS are implemented:

• Algorithm 1 for geometry 1

• Algorithm 1 for geometry 2

• Algorithm 2 for geometry 1

• Algorithm 2 for geometry 2

The frame size for the block-processing is 212 samples. The steering angle for the algorithms is
set to θ = 0◦. The value for the delay element for the algorithm 2 is set to τ = 3/32000s.
All the values were determined empirically to achieve good results according to subjective lis-
tening and also oriented on the PESQ (cf. 6.3.2).
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5
Recordings

To investigate the proposed beamforming algorithms from the previous chapter, measurements of
the beam pattern were made and the performance under real conditions were examined. Within
this chapter, the recording environments, the equipment, the test signals and the recording
parameters are described.

5.1. Recording Environments

The measurements took place in two different rooms at the Signal Processing and Speech Com-
munication Laboratory (SPSC Lab) Graz. The beam patterns of the presented algorithms were
measured in the in-house recording studio. The second recording environment was a small con-
ference room, the Cocktail Party Room (CPR), which allowed to investigate the performance of
the algorithms in a realistic environment.

5.1.1. Recording Studio (Beam Pattern Measurement)

The ideal recording environment for the beam pattern measurement would be an anechoic cham-
ber to approximate free field conditions. By using a time-selective technique [14], the direct
sound is computationally separated from the reflected sound, so that almost any room is suit-
able. The measurement took place in the recording studio at the SPSC Lab with the recording
setup presented in Fig. 5.1. The recording room was air-conditioned with a constant temper-
ature of 24◦C. The loudspeaker was mounted at a height of hLS = 1, 21m. The top of the
microphone array had a height of hMA = 1, 25m with respect to the floor. The rotary construc-
tion, where the stand with the microphone array was placed, had a height of hRC = 0, 14m
(cf. Fig. 5.5). The loudspeaker, with a distance of 1 m to the microphone array, played back
an exponential sine sweep ranging from 100Hz to 8kHz. The sweep was repeated twice so that
cyclical (de)convolution may be applied to easily find the inverse filter [15]. As a reference for the
used sound pressure level the loudspeaker played back white gaussian noise and the A-weighted
equivalent sound level was measured at the center of the microphone array over one minute with
LAeq = 75, 5dB. With this value clipping was avoided. The beam pattern was measured at
increments of 5◦, resulting in 72 sets of data. With the demonstrated setup, it is possible to
measure the beam pattern down to ∆f ≈ 241Hz. This lower bound results from the closest
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reflecting surface: the floor or the cover panel of the rotary construction at certain positions (cf.
Fig. 5.5). The lower frequency limit is defined as

∆f =
c

√

(2h)2 + d2 − d
, (5.1)

where the speed of sound is c = 345.8m/s (cf. Eq. 5.2), the height of the microphone array
related to the cover panel of the rotatory construction is h = 1.11m and the distance between
the loudspeaker and the center of the microphone array is d = 1m (further details can be found
in [14]).

Figure 5.1: Recording setup for the beam pattern measurement in the recording studio (SPSC Lab).

5.1.2. Cocktail Party Room (Realistic Scenarios)

The CPR at the SPSC Lab is a small conference room. The aim of this recording setup was
to simulate different realistic recording scenarios. The setup is demonstrated in Fig. 5.2. The
temperature in the room varied between 31◦C and 33◦C. During the measurements the door
and the window were kept close. The microphone array is placed at the center of the room
and surrounded by six loudspeakers distributed on a circle with a radius of r = 1m. The
height of the top of the microphone array with respect to the floor is hMA = 1, 25m. The
loudspeakers were mounted on a height of hLS = 1, 21m, measured from their bottom (cf. Fig.
5.4). The first loudspeaker (LS1) is acting as the target speaker and the rest as disturbing
sources coming from different directions. In addition to the simulated disturbing sources also
the fan of the measurement-notebook was present. As a reference for the sound pressure level
the loudspeakers were adjusted to reach an A-weighted equivalent sound level of LAeq = 80dB
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by playing back white gaussian noise.

Figure 5.2: Recording setup for realistic scenarios in the CPR (SPSC Lab).

5.2. Recording Equipment

5.2.1. Playback

The playback setup consists of Yamaha MSP5 Studio Loudspeakers connected with the audio
interface Focusrite Liquid Saffire 56. The signals are generated with MATLAB [2] and played
back with PureData [16].

5.2.2. Recording

For the recordings the real-time graphical dataflow programming environment PureData was
used. It enabled straightforward simultaneous audio playback and recording. Two types of
microphones were used, resulting in different recording setups.
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Setup A - Electret Condenser Microphone (ECM) Capsules

The ECM capsules ICC MEO-94PN-01-603 (Fig. 5.6(a) and Fig. 5.6(b)) are omnidirectional
microphones with a diameter of 9.7mm and a thickness of 4.5mm. They exhibit a frequency
range of 20Hz to 16000Hz and feature an SNR of > 40dB. The microphone capsules are
connected via the phantom power adapters AKG MPA VL to the audio interface Focusrite

Liquid Saffire 56.

Setup B - Micro-Electro-Mechanical Systems (MEMS)-microphones

The MP34DT01 are ultra-compact, low-power, omnidirectional, digital MEMS microphones
with a size of 3 × 4 × 1mm. They exhibit a frequency range of 20Hz to 16000Hz and feature
a SNR of 63dB. Up to eight microphones are operating on the STM32 MEMS microphones
application board. Connected to a computer, it is recognized as a standard multi-channel USB
audio device.

5.2.3. Microphone Array Grids

To cover all the microphone array geometries proposed in the previous chapter, the microphone
array grid depicted in Fig. 5.3 was designed. For each microphone type, two grids with different
microphone distances δ were manufactured. The distances are determined by the sampling
frequency. For a sampling frequency of fs = 16kHz the distance is δ = 0.0214m and the
microphone array grid dimensions are 9.7×4.8×0.5mm. For the sampling frequency fs = 24kHz
the distance is δ = 0.0143m, and the microphone array grid dimensions are 12.7 × 6.3 × 0.5m.
This allows to simulate the first- and the second-order ADMAs (Section 4.1) based on sample-

(a)

1
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5 6 7

8

9
10

(b)

Figure 5.3: Microphone array grid: (a) Top view; (b) Isometric view.

by-sample processing, without using fractional delays. The delay element can simply be realised
by a delay of one sample. Due to the fact that in this work the algorithms are implemented with
block processing, this is not important. Maybe it is helpful for a future work. The microphone
array grids with the inserted microphones are depicted in Fig. 5.6. The microphone grid with
the microphone distance δ = 0.0143m is from now on called the small grid and the one with
δ = 0.0214m the large grid.
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5.3. Recordings

5.3.1. Calibration

For the calibration of the microphone array the room was exited with diffuse white gaussian
noise and the microphone signals were recorded for one minute. In addition for the setup A
the microphone preamplifiers were adjusted to obtain the same input level for all microphones.
The resulting gain for each channel is calculated out of the Root Mean Square (RMS) of the
recorded calibration signals.

5.3.2. Test Signals

Beam Pattern Measurement (Recording Studio)

To measure the beam pattern it was necessary to determine the impulse response for all direc-
tions around the microphone array. For the playback a sine sweep ranging from f1 = 100Hz
to f2 = 8000Hz was generated with the MATLAB function generate_sinesweeps.m [15] with
the parameters fs = 48000Hz and N = 17.

Realistic Scenarios (CPR)

The playback signals for the realistic scenarios were generated with MATLAB. For each sce-
nario, four 6-channel WAVE files, each with a different SNR (-6dB, 0dB, 6dB and 12dB), were
generated. The target speaker signal consists of a sequence of german commands from the male
speaker 001 of the GRASS corpus [17]. Within one minute 24 commands are played back. The
target speaker is present in each scenario with the same level. The interfering sources are other
speakers ([17]), music ([18–23]), a vacuum cleaner ([24]) and white gaussian noise. This jammers
are played back from different direction (90◦, 135◦ and 180◦), whereas the target speaker has a
fixed position (0◦). Also the number for the same kind of interferer is changing (# = 1, 2 and
3) and a mixture of different sources is made. There are also scenarios with up to two sources
moving between 90◦ and 270◦ in steps of 45◦. Each scenario lasts one minute.

5.4. Recording Parameters

For the recordings with both setups and both microphone array grid sizes, the sampling fre-
quency remained fs = 48000Hz. By taking the influence of the temperature into account, the
approximate speed of sound in dry (0% humidity) air is

c = (331.3 + 0.606ϑ)
m

s
, (5.2)

where ϑ is the temperature in degrees Celsius (◦C). For the recording studio exhibiting a
temperature of ϑ ≈ 24◦C the speed of sound is assumed to be c ≈ 345.8m/s, and for the CPR
exhibiting a temperature of ϑ ≈ 33◦C the speed of sound is c ≈ 351.3m/s.
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Figure 5.4: Recording setup for realistic scenarios in the Cocktail Party Room (SPSC Lab).

Figure 5.5: Recording setup for the beam pattern measurement in the recording studio (SPSC Lab).
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(a) (b)

(c) (d)

Figure 5.6: Microphone array grids: (a) Small grid with ECMs (δ = 0.0143m); (b) Large grid with ECMs
(δ = 0.0214m); (c) Small grid with MEMS-microphones; and (d) Large grid with MEMS-
microphones.
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6
Experimental Results

In the beginning of this chapter the differences between the ECMs and the MEMS-microphones
are revealed and then selected differences among the beamforming algorithms are demonstrated
based on the results of the large grid with MEMS-microphones. Beside the beam patterns,
the evaluation is performed by means of three measures: Signal-to-Interference-Ratio (SIR),
Perceptual Evaluation of Speech Quality (PESQ), and Word Accuracy (WAcc). For this purpose
the processed files of the beamforming algorithms are downsampled (with anti-aliasing filtering)
to fs = 16kHz. The detailed results for all the recording setups are attached in the appendix.
For algorithm 1 and 2 for SS, only the implementation with array geometry 1 is discussed,
because regarding the results there is no significant difference to geometry 2.

6.1. ECMs vs. MEMS-microphones

During the measurements some problems occurred with the MEMS-microphones. They were
sensitive to noise (induced by electromagnetism) due to the unscreened cables. Furthermore,
there is the problem that the recorded files contain an additional shift of the signals, varying
between 0 and about 2000 samples, but the channels among themselves are synchronous. The
varying shift of the signals is especially a problem for the windowing in the context of the time-
selective technique to determine the beam patterns. The window that separates the direct sound
from the reflected sound has a length of 200 samples. The position of the window depends on the
location of the direct sound in the time signal. Due to the varying shift the position would have to
be estimated separately for each recorded signal. With the help of a cross-correlation between a
chosen reference recording and the remaining 71 recorded sine sweeps the varying shift-correction
is determined. As a consequence, it is sufficient to know the position of the direct sound in the
reference signal. For the recordings of the different scenarios in the CPR, this varying shift is
ignored, because it is irrelevant for the evaluation with the proposed measures. Moreover, the
estimation of the shift is not feasible with a cross-correlation, because the recorded signals are
different. Only for the calculation of the SIR the shift comes into effect, which is discussed in
the corresponding section (see Sec. 6.3.1). The recordings with the ECMs didn’t cause any
problems.
With the recorded signal of the target speaker without any interfering sources the SNR-values
for the microphone-setups are determined. The estimated noise includes the microphone self-
noise and possible room background noise. Setup A (ECMs) features an SNR ≈ 24dB and setup
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B (MEMS-microphones) an SNR ≈ 28dB. The differences regarding the results are revealed in
the conclusion (Sec. 7.1).

6.2. Beam Pattern

Within this section some relevant beam patterns for the proposed beamforming algorithms are
shown. All the patterns are evaluated at a frequency of f = 3360Hz. Fig. 6.1(a) shows the
forward- and the backward-facing cardioids and Fig. 6.1(b) shows the output of the first-order
ADMA (cf. Fig. 4.3) for different values of β.
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Figure 6.1: Measured beam patterns of the first-order ADMA: (a) Forward- and backward-facing cardioid;
(b) Beamformer output for different values of β.

Fig. 6.2(a) shows the beam patterns of the second-order ADMA fixed beamformer and Fig.
6.2(b) the beam patterns of the beamformer output for different values of α1 and α2 (cf. 4.10).
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Figure 6.2: Measured beam patterns of the second-order ADMA: (a) Fixed beamformer outputs; (b) Adaptive
beamformer output for different values of α1 and α2.

Fig. 6.3(a) shows the beam patterns of the fixed beamformer of the algorithm 1 for SS and Fig.
6.3(b) the final output pattern (cf. 4.17).
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Figure 6.3: Measured beam patterns of the algorithm 1 for SS for geometry 1: (a) Fixed beamformer outputs;
(b) Beamformer outputs.

Fig. 6.4 shows the beam patterns of the fixed beamformer of the algorithm 2 for SS and Fig.
6.4(b) the final output pattern (cf. 4.17).
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Figure 6.4: Measured beam patterns of the algorithm 1 for SS for the two-channel method: (a) Fixed beam-
former outputs; (b) Beamformer outputs.

A detailed overview on various beam patterns evaluated at different frequencies is found in the
appendix B. Six different beam patterns are depicted for each recording setup, evaluated at four
frequencies. Shown are the first-order DMA - M = 2 - cardioid (cf. Sec. 4.1.1), the first-order
DMA - MNS for M = 4 - cardioid (cf. Sec. 4.1.1), the second-order DMA - M = 3 - cardioid
(cf. Sec. 4.1.2), the second-order DMA - MNS for M = 5 - cardioid (cf. Sec. 4.1.2), the output
of algorithm 1 for SS for geometry 1 (cf. Sec. 4.2.2), and the output of algorithm 2 for SS also
for geometry 1 (cf. Section 4.2.5).
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6.3. Signal Evaluation

6.3.1. Signal to Interference Ratio (SIR)

To investigate the suppression of the interfering sources the beamformer outputs are evaluated
with the SIR. It is determined as

SIR = 10log

(

Psignal

Pinterference
− 1

)

, (6.1)

with the average power of the whole signal Psignal, containing the target speaker and the at-
tenuated interfering sources, and the average power of the whole signal Pinterference, containing
the interfering sources. The voice activity is determined out of the recorded signal where only
the target speaker is present. As already mentioned in Sec. 6.1 the problem for the recorded
signals of the MEMS-microphones is the introduced variable time-shift. So the voice activity
detection done for the reference signal is not valid for all the recorded signals. For this reason
for the SIR-evaluation the results of the ECMs are used.
Fig. 6.5 shows the results for the large grid with ECMs for three different kinds of interfering
sources: music, vacuum cleaner, and white gaussian noise. The evaluation for the scenarios
with interfering speakers is not useful, because during the breaks of the target speaker, also the
interfering speakers are not always present. The results are the mean over the values evaluated
for each of the scenarios with the different numbers of sources for each kind of interferer. For the
results of the white gaussian noise a correction shift is applied, referable to the downsampling
of the evaluated signals to fs = 16kHz and the according low-pass filtering. This causes mainly
a reduction of the signal power of the white gaussian noise, whereas the speech signal power
remains similar to the initial signal power, according to the respective frequency spectrum.
By considering the results in Fig. 6.5 for all kinds of interfering sources the best values are
achieved with the second-order ADMA (hybrid, MNS: M = 5). For low SNR values the Al-
gorithm 1 for SS performs best. Because of the overlapping frequency spectra of the target
speaker and the interfering sources, especially for white gaussian noise, but also for the vacuum
cleaner, the algorithms for SS have worse values than for musical sources. For white gaussian
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Figure 6.5: SIR for different scenarios (large grid with ECMs).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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noise at SNR-values of 12dB the first-order ADMA (M = 2) reaches even worse values than for
the noisy signal (Fig. 6.5(c)). The algorithm attenuates the interfering source, but additional
white gaussian noise is introduced in the low frequency range due to WNG.

6.3.2. Perceptual Evaluation of Speech Quality (PESQ)

The estimation of the PESQ is based on the ITU standard [25, 26]. From appendix C.1 to
C.4 the detailed results are depicted for all recording setups. The results were obtained by
averaging the values of the scenarios with the same number of interferers. So for each kind and
each number of interfering sources, the results are depicted for the different SNR-values. In
this section the results are averaged over the scenarios with the same kind of interfering sources,
independent of the number. For the large grid with MEMS-microphones this yields the results of
Fig. 6.6. In general for the algorithms with SS, the best PESQ values are obtained. Regarding
the ADMAs it is noticeable that for interfering speakers (Fig. 6.6(a)) and musical sources (Fig.
6.6(b)) the curves are very close to each other, whereas for white gaussian noise (Fig. 6.6(c))
and the vacuum cleaner (Fig. 6.6(d)) the second-order ADMAs are slightly separated from
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Figure 6.6: PESQ for different scenarios (large grid with MEMS-microphones).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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the first-order ADMAs. The implementation of the ADMAs with block-processing is similar
to a subband realization. The coefficients β, α1, and α2 are updated for each frequency bin
independently. So it is possible for the first-oder ADMAs to suppress more than one interfering
source at the same time, presumed that the interferers don’t have overlapping frequency spectra.
This might be the case for interfering speakers and musical sources, but for the vacuum cleaner
and most of all for white gaussian noise, this is not the case. For a varying number of interferers,
this behaviour is illustrated in Fig. C.7(g) to C.7(i) and Fig. C.8(a) to C.8(c).
The overall results for the moving interfering sources are shown in Fig. 6.6(f). The scenarios with
the moving sources were measured to investigate the adaptation of the ADMAs. To interpret
the results, stationary and moving interfering speakers are compared in Fig. 6.7. Fig. 6.7(a) and
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(a) 1×Stationary interfering speaker
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Figure 6.7: PESQ for different scenarios (large grid with MEMS-microphones).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4); -�-
Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5).

6.7(c) show the values for one or two stationary interfering speakers and Fig. 6.7(b) and 6.7(d)
the values for one or two moving interfering speakers. By comparing the results for the same
number of sources, it can be seen that there is no considerable difference. So the adaptation in
the algorithms is done very fast.
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6.3.3. Word Accuracy (WAcc)

For the estimation of the WAcc, a short description of the speech database and the ASR engine
is required.

Speech Database

The training material consists of two different sets: The clean and the random-reverberated set.
The clean one contains 5046 isolated utterances corresponding to 55 male and female speakers:
19 GRASS [17] speakers (with different commands, keywords, and read sentences than in the
test set) and 36 PHONDAT-1 [27] speakers. Two databases are mixed to do the recognition
more robust to speaker variation. To reduce a possible mismatch with the test set, which may
have some reverberation, the clean training set is reverberated with random impulse responses
corresponding to different positions of a typical living room (see [28] for more details). This is
called the random-reverberated training set. The speaker 001 is also included in the training
sets [17].

ASR Engine

The front-end and the back-end have been derived from the HTK-based recognizers of [28–30].
This recognizer is appropriate for a medium vocabulary size. The front-end takes the enhanced
signal and obtains mel frequency cepstrum coefficients (MFCCs) using: 16 kHz sampling fre-
quency, frame shift and length of 10 and 32ms, 1024 frequency bins, 26 mel channels and
13 cepstral coefficients with cepstral mean normalization. Delta and delta-delta features are
also appended, obtaining a final feature vector with 39 components. The back-end employs
a transcription of the training corpus based on 34 monophones (clustered from a previous 44
SAMPA-monophone transcription) to train triphone-HMMs. Each triphone is modeled by a
HMM of 6 states and 8 Gaussian-mixtures/state. The lexicon is a set of 295 words derived
from the German commands of the GRASS corpus [17]. A general bigram is trained using these
commands. Some of the 24 test utterances are included in these commands. By means of an
expansion based on the bigrammar and the triphone transcription of the test lexicon, the final
macro HMMs for the test stage is obtained. The HMMs are trained with the center microphone
signal of the training set without any enhancement.

The WAcc is estimated for both training sets separately. The detailed results are depicted
in the appendix (Sec. C.5 until C.12) and a summary is shown within this section. Fig. 6.8
shows the results for the clean training set and Fig. 6.9 for the random-reverberated training set.
In general for the random-reverberated training set the obtained results are much better. For
both, the results of the ADMAs exhibit a similar behaviour like for the PESQ (concerning the
overlapping frequency spectra of the target speaker and the interfering source). The algorithms
for SS achieve bad results for the random-reverberated training set, especially the algorithm 2.
Due to the narrow beam the output signals of these algorithms are relatively dry compared to
the ones of the ADMAs. This explains also the bad results of the ADMAs for the clean training
set, because the output signals contains a lot of room information, i.e. reverb. But for interfering
speakers the second-order ADMA (hybrid, MNS: M = 5) is still better than the algorithms for
SS (see Fig. 6.8(a)). For all scenarios and both training sets performs the second-order ADMA
(hybrid, MNS: M = 5) the best. The results for the moving sources are not discussed for the
WAcc, because like for the PESQ no significant differences compared to the stationary sources
are noticeable. For the sake of completeness, the averaged results are shown in Fig. 6.8(f) and
6.9(f).
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Figure 6.8: WAcc for different scenarios (large grid with MEMS-microphones - clean training set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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Figure 6.9: WAcc for different scenarios (large grid with MEMS-microphones - random-reverb training set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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7
Conclusion and Outlook

7.1. Conclusion

In this thesis two categories of beamforming algorithms were investigated: adaptive differential
microphone arrays (ADMAs) and differential microphone arrays for spectral subtraction (DMAs
for SS). The former suppresses the interfering sources by nullsteering towards the corresponding
direction. The latter obtains a noise estimate by nullsteering towards the target speaker and
subtracts it from a signal containing the whole environment.
One important criterion for the beamforming algorithms was the ability to suppress interfering
sources without affecting the target speaker. Under ideal conditions (farfield model and anechoic
system) the ADMAs satisfy this criterion, but for real applications the nullforming suppresses
the direct sound of the interfering sources, and some reflections are still present in the beam-
former output signal. Due to the narrower beam of the DMAs for SS, the beamformer outputs
contain less reverb, but a disadvantage is the distortion of the target speaker signal.
The performance of both categories of algorithms is degraded by the white noise gain (WNG)
and microphone array imperfections. A reduction of the WNG is achieved by the implementa-
tion of the DMAs with the Minimum-Norm-Solution (MNS).
Another criterion for the beamforming algorithms was the possibility to use them in a compact
recording device. For DMAs is the distance between two adjacent microphones about 1-3cm.
Various microphone array geometries with up to M = 5 microphones exhibit still a compact
arrangement. Regarding the orientation of the array on the device there is a essential difference
between the ADMAs and the DMAs for SS. Since the ADMAs only allow physically steering,
the orientation depends on the target direction. The DMAs for SS have the advantage that the
microphone array can be arbitrarily steered to a target direction.
Due to the higher SNR of the MEMS-microphone setup, the beamforming algorithms achieve
better results for the MEMS-microphones than for the ECMs.
For the PESQ the DMAs for SS exhibit higher values than the ADMAs. Compared to the noisy
signals, they achieve an improvement of up to 0.8 points. On the contrary, for the WAcc better
results are obtained with the ADMAs. For realistic scenarios an absolute enhancement of up to
60% is reached.

DMAs are a suitable front-end for a speech recognition systems. Their compact arrangement
makes them an interesting alternative to conventional microphone arrays.
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7.2. Outlook

With several approaches an improvement of the results may be achieved. Adaptive algorithms
can be used to compensate for microphone mismatch. The proposed beamforming algorithms
can be improved by more sophisticated methods for spectral subtraction. Further noise reduction
could be achieved by post-processing the beamformer output signals. The performance of the
ASR can further be improved by using the output signals of the beamformer for training or
adaptation.
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A.1. Vandermonde Matrix

The Vandermonde matrix [3] of size M × M has the form

VM =



















1 υ1 υ2
1 . . . υM−1

1

1 υ2 υ2
2 . . . υM−1

2

1 υ3 υ2
3 . . . υM−1

3

...
...

...
. . .

...

1 υM υ2
M . . . υM−1

M



















. (A.1)

The determinant of VM is

det(VM ) =
∏

j i

(υj − υi). (A.2)

The matrix VM is nonsingular, as long as the values of υm are all distinct. To get a closed-form
expression of the inverse of the Vandermonde matrix, the following decomposition is used, with
the upper and lower triangular matrices UM and LM :

V
−1
M = UMLM (A.3)

The elements lij of LM are defined as

lij =















0, i < j

1, i = j = 1
∏i

p=1,p 6=j
1

υj−υp
otherwise

, (A.4)

and the elements uij of UM are defined as:

lij =











1, j = i

0, j = 1

ui−1,j−1 − ui,j−1vj−1 otherwise

, (A.5)

with

u0j = 0. (A.6)
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A.2. Algorithm 2 for SS (Geometry 1)

N12(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]





1

−ejωτ21

0



 X(ω). (A.7)

B12(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]







e−jωτ

−ejωτ21

0






X(ω). (A.8)

B21(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]





1

−ejω(τ21−τ)

0



X(ω). (A.9)

N13(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]





1
0

−ejωτ31



 X(ω). (A.10)

B13(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]







e−jωτ

0

−ejωτ31






X(ω). (A.11)

B31(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]





1
0

−ejω(τ31−τ)



X(ω). (A.12)
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A.3. Algorithm 2 for SS (Geometry 2)

N12(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]





1

−ejωτ21

0



 X(ω). (A.13)

B12(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]







e−jωτ

−ejωτ21

0






X(ω). (A.14)

B21(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]





1

−ejω(τ21−τ)

0



 X(ω). (A.15)

N13(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]





1
0

−ejωτ31



 X(ω). (A.16)

B13(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]







e−jωτ

0

−ejωτ31






X(ω). (A.17)

B31(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]





1
0

−ejω(τ31−τ)



 X(ω). (A.18)

N23(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]







0

ejωτ21

−ejωτ31






X(ω). (A.19)

B23(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]







0

ejω(τ21−τ)

−ejωτ31






X(ω). (A.20)

B32(ω, θ) =
[

1 e−jωτ0 cos θ e−jωτ0 sin θ
]







0

ejωτ21

−ejω(τ31−τ)






X(ω). (A.21)
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B.1. Beam pattern: Small grid with ECMs

B.1. Beam pattern: Small grid with ECMs
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(a) First-order DMA (M = 2) - cardioid
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(c) Second-order DMA (M = 3) - cardioid
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(d) Second-order DMA (MNS: M = 5) - cardioid
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(e) Algorithm 1 for SS (Geometry1) - output
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(f) Algorithm 2 for SS (Geometry1) - output

Figure B.1: Different beam patterns evaluated at four frequencies for the small grid with ECMs.
Legend: — 480Hz; — 960Hz; — 1920Hz; — 3840Hz.
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B.2. Beam pattern: Large grid with ECMs
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(a) First-order DMA (M = 2) - cardioid
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(b) First-order DMA (MNS: M = 4) - cardioid
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(c) Second-order DMA (M = 3) - cardioid
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(d) Second-order DMA (MNS: M = 5) - cardioid
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(e) Algorithm 1 for SS (Geometry1) - output
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Figure B.2: Different beam patterns evaluated at four frequencies for the large grid with ECMs.
Legend: — 480Hz; — 960Hz; — 1920Hz; — 3840Hz.
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B.3. Beam pattern: Small grid with MEMS-microphones
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(d) Second-order DMA (MNS: M = 5) - cardioid
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(e) Algorithm 1 for SS (Geometry1) - output
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(f) Algorithm 2 for SS (Geometry1) - output

Figure B.3: Different beam patterns evaluated at four frequencies for the small grid with MEMS-
microphones.
Legend: — 480Hz; — 960Hz; — 1920Hz; — 3840Hz.
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B.4. Beam pattern: Large grid with MEMS-microphones
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(c) Second-order DMA (M = 3) - cardioid
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(d) Second-order DMA (MNS: M = 5) - cardioid
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Figure B.4: Different beam patterns evaluated at four frequencies for the large grid with MEMS-microphones.
Legend: — 480Hz; — 960Hz; — 1920Hz; — 3840Hz.
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C.1. PESQ: Small grid with ECMs
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(c) 3×Interfering speaker
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(d) 1×Musical source
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(e) 2×Musical source
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(f) 3×Musical source
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(g) 1×White gaussian noise
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(h) 2×White gaussian noise
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(i) 3×White gaussian noise

Figure C.1: PESQ for different scenarios (small grid with ECMs).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.1. PESQ: Small grid with ECMs
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(a) 1×Vacuum cleaner
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(b) 2×Vacuum cleaner
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(c) 3×Vacuum cleaner
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(d) 2×Various interfering sources
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(e) 3×Various interfering sources

−6 0 6 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

SNR [dB]

P
E

S
Q

(f) 1×Moving interfering source
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(g) 2×Moving interfering source

Figure C.2: PESQ for different scenarios (small grid with ECMs).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.2. PESQ: Large grid with ECMs
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(a) 1×Interfering speaker
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(b) 2×Interfering speaker
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(c) 3×Interfering speaker

−6 0 6 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

SNR [dB]

P
E

S
Q

(d) 1×Musical source
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(e) 2×Musical source
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(f) 3×Musical source
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(g) 1×White gaussian noise
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(h) 2×White gaussian noise
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(i) 3×White gaussian noise

Figure C.3: PESQ for different scenarios (large grid with ECMs).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.2. PESQ: Large grid with ECMs
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(a) 1×Vacuum cleaner
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−6 0 6 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

SNR [dB]

P
E

S
Q

(c) 3×Vacuum cleaner
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(d) 2×Various interfering sources
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(e) 3×Various interfering sources
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(f) 1×Moving interfering source
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(g) 2×Moving interfering source

Figure C.4: PESQ for different scenarios (large grid with ECMs).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C. Numerical Results

C.3. PESQ: Small grid with MEMS-microphones
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(b) 2×Interfering speaker
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(c) 3×Interfering speaker
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(e) 2×Musical source

−6 0 6 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

SNR [dB]

P
E

S
Q

(f) 3×Musical source
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(g) 1×White gaussian noise

−6 0 6 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

SNR [dB]

P
E

S
Q

(h) 2×White gaussian noise
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Figure C.5: PESQ for different scenarios (small grid with MEMS-microphones).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.3. PESQ: Small grid with MEMS-microphones
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(a) 1×Vacuum cleaner
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(b) 2×Vacuum cleaner
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(c) 3×Vacuum cleaner
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(d) 2×Various interfering sources
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(e) 3×Various interfering sources
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(f) 1×Moving interfering source
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(g) 2×Moving interfering source

Figure C.6: PESQ for different scenarios (small grid with MEMS-microphones).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C. Numerical Results

C.4. PESQ: Large grid with MEMS-microphones
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(a) 1×Interfering speaker
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(b) 2×Interfering speaker

−6 0 6 12
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

SNR [dB]

P
E

S
Q

(c) 3×Interfering speaker
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(d) 1×Musical source
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(e) 2×Musical source
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(f) 3×Musical source
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(g) 1×White gaussian noise
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(h) 2×White gaussian noise
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Figure C.7: PESQ for different scenarios (large grid with MEMS-microphones).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).

– 72 – December 10, 2013



C.4. PESQ: Large grid with MEMS-microphones
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(a) 1×Vacuum cleaner
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(b) 2×Vacuum cleaner
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(c) 3×Vacuum cleaner
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(d) 2×Various interfering sources
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(e) 3×Various interfering sources
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(f) 1×Moving interfering source
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Figure C.8: PESQ for different scenarios (large grid with MEMS-microphones).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C. Numerical Results

C.5. WAcc: Small grid with ECMs - clean training set
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(a) 1×Interfering speaker
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(b) 2×Interfering speaker
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(c) 3×Interfering speaker
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(d) 1×Musical source

−6 0 6 12
0

10

20

30

40

50

60

70

80

90

100

SNR [dB]

W
A

cc

(e) 2×Musical source
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(f) 3×Musical source
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(g) 1×White gaussian noise
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(h) 2×White gaussian noise
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Figure C.9: Word Accuracy for different scenarios (small grid with ECMs - clean training set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5); -▽-
Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.5. WAcc: Small grid with ECMs - clean training set

−6 0 6 12
0

10

20

30

40

50

60

70

80

90

100

SNR [dB]

W
A

cc

(a) 1×Vacuum cleaner
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(b) 2×Vacuum cleaner
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(c) 3×Vacuum cleaner
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(d) 2×Various interfering sources
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(e) 3×Various interfering sources
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(f) 1×Moving interfering source
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Figure C.10: Word Accuracy for different scenarios (small grid with ECMs - clean training set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).

December 10, 2013 – 75 –



C. Numerical Results

C.6. WAcc: Large grid with ECMs - clean training set
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(a) 1×Interfering speaker
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(b) 2×Interfering speaker
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(c) 3×Interfering speaker
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(d) 1×Musical source
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(e) 2×Musical source
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(f) 3×Musical source
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(g) 1×White gaussian noise
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(h) 2×White gaussian noise
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Figure C.11: Word Accuracy for different scenarios (large grid with ECMs - clean training set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.6. WAcc: Large grid with ECMs - clean training set

−6 0 6 12
0

10

20

30

40

50

60

70

80

90

100

SNR [dB]

W
A

cc

(a) 1×Vacuum cleaner

−6 0 6 12
0

10

20

30

40

50

60

70

80

90

100

SNR [dB]

W
A

cc

(b) 2×Vacuum cleaner
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(c) 3×Vacuum cleaner
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(d) 2×Various interfering sources
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(f) 1×Moving interfering source
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Figure C.12: Word Accuracy for different scenarios (large grid with ECMs - clean training set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C. Numerical Results

C.7. WAcc: Small grid with MEMS-microphones - clean training set
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(a) 1×Interfering speaker
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(b) 2×Interfering speaker
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(c) 3×Interfering speaker
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(d) 1×Musical source
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(g) 1×White gaussian noise
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(h) 2×White gaussian noise
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Figure C.13: Word Accuracy for different scenarios (small grid with MEMS-microphones - clean training
set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.7. WAcc: Small grid with MEMS-microphones - clean training set
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(a) 1×Vacuum cleaner
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(b) 2×Vacuum cleaner
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(c) 3×Vacuum cleaner
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(d) 2×Various interfering sources
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(e) 3×Various interfering sources
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(f) 1×Moving interfering source
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Figure C.14: Word Accuracy for different scenarios (small grid with MEMS-microphones - clean training
set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C. Numerical Results

C.8. WAcc: Large grid with MEMS-microphones - clean training set
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(a) 1×Interfering speaker
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(b) 2×Interfering speaker
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(c) 3×Interfering speaker
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(d) 1×Musical source
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Figure C.15: Word Accuracy for different scenarios (large grid with MEMS-microphones - clean training
set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.8. WAcc: Large grid with MEMS-microphones - clean training set
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Figure C.16: Word Accuracy for different scenarios (large grid with MEMS-microphones - clean training
set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C. Numerical Results

C.9. WAcc: Small grid with ECMs - random-reverb training set
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Figure C.17: Word Accuracy for different scenarios (small grid with ECMs - random-reverb training set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).

– 82 – December 10, 2013



C.9. WAcc: Small grid with ECMs - random-reverb training set
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Figure C.18: Word Accuracy for different scenarios (small grid with ECMs - random-reverb training set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C. Numerical Results

C.10. WAcc: Large grid with ECMs - random-reverb training set
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Figure C.19: Word Accuracy for different scenarios (large grid with ECMs - random-reverb training set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.10. WAcc: Large grid with ECMs - random-reverb training set
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Figure C.20: Word Accuracy for different scenarios (large grid with ECMs - random-reverb training set).
Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA (MNS: M = 4);
-�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid, MNS: M = 5);
-▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C. Numerical Results

C.11. WAcc: Small grid with MEMS-microphones - random-reverb

training set
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Figure C.21: Word Accuracy for different scenarios (small grid with MEMS-microphones - random-reverb
training set). Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA
(MNS: M = 4); -�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid,
MNS: M = 5); -▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.11. WAcc: Small grid with MEMS-microphones - random-reverb training set
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Figure C.22: Word Accuracy for different scenarios (small grid with MEMS-microphones - random-reverb
training set). Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA
(MNS: M = 4); -�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid,
MNS: M = 5); -▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C. Numerical Results

C.12. WAcc: Large grid with MEMS-microphones - random-reverb

training set
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Figure C.23: Word Accuracy for different scenarios (large grid with MEMS-microphones - random-reverb
training set). Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA
(MNS: M = 4); -�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid,
MNS: M = 5); -▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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C.12. WAcc: Large grid with MEMS-microphones - random-reverb training set
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Figure C.24: Word Accuracy for different scenarios (large grid with MEMS-microphones - random-reverb
training set). Legend: -∗- Noisy; -×- First-order ADMA (M = 2); -+- First-order ADMA
(MNS: M = 4); -�- Second-order ADMA (hybrid, M = 3); -⋄- Second-order ADMA (hybrid,
MNS: M = 5); -▽- Algorithm 1 for SS (Geometry 1); -◦- Algorithm 2 for SS (Geometry 1).
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Differential Microphone Arrays

D
Abbreviations

ADMA Adaptive Differential Microphone Array
ASR Automatic Speech Recognition
CPR Cocktail Party Room
DMA Differential Microphone Array
ECM Electret Condenser Microphone
MEMS Micro-Electro-Mechanical Systems
MNS Minimum-Norm Solution
NLMS Normalized Least Mean Square
PESQ Perceptual Evaluation of Speech Quality
RMS Root Mean Square
SIR Signal to Interference Ratio
SNR Signal to Noise Ratio
SPSC Signal Processing and Speech Communication
SS Spectral Subtraction
WAcc Word Accuracy
WNG White Noise Gain
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Differential Microphone Arrays

E
Symbols

ρ radial coordinate
φ elevation
θ azimuth
c speed of sound
ϑ temperature in degrees Celsius (◦C)
h height
hLS height of the loudspeaker
hMA height of the microphone array
d distance between the loudspeaker and the microphone array
ω angular frequency
ωc angular cut-off-frequency
δ distance between two adjacent microphones
λ wave length
τ0 delay between two adjacent microphones at the angle θ = 0◦

M number of microphones
m microphone index
f frequency variable
fs sampling frequency
ft transition frequency
fn nyquist frequency
∆f lower frequency limit for the beam pattern measurement
r radius
xm(t),Xm(ω, θ) mth microphone signal in time and frequency domain
vm(t), Vm(ω) additive noise at the mth microphone in time and frequency domain
Hm(ω) mth filter element
s(t), S(ω) source signal in time and frequency domain
y(t), Y (ω, θ) beamformer output in time and frequency domain
HL(ω) compensation filter
x(ω, θ) signal vector
v(ω) noise signal vector
h(ω) filter vector
d(ω, cosθ) steering vector
D(ω,α) steering matrix
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E. Symbols

B beam pattern
G directivity factor
D directivity index
N DMA order
αN,n design coefficient for the (null)steering angle (DMAs)
βN,n design coefficient for the value at the (null)steering angle (DMAs)
θN,n design coefficient for the angle of the (null)steering (DMAs)
β steering coefficient (first-order ADMA)
α1 steering coefficient (second-order ADMA)
α2 steering coefficient (second-order ADMA)
µ step-size
∆ regularization parameter
cf (t), Cf (ω, θ) first-order forward-facing cardioid in time and frequency domain
cff (t), Cff (ω, θ) second-order backward-facing cardioid in time and frequency domain
cb(t), Cb(ω, θ) first-order backward-facing cardioid in time and frequency domain
cbb(t), Cbb(ω, θ) second-order backward-facing cardioid in time and frequency domain
ctt(t), Ctt(ω, θ) second-order toroid in time and frequency domain
y(t), Y (ω, θ) beamformer output in time and frequency domain
e(t) error signal
Rcf cf

(0) power of the forward-facing cardioid signal
Rcbcb

(0) power of the backward-facing cardioid signal
Rcf cb

(0) cross-power between the forward- and backward-facing cardioid signals
τ21 steering delay
τ31 steering delay
τ delay element (Algorithm 2 for SS (Two Channels))
r21(t), R21(ω, k) fixed beamformer output (Algorithm 1 for SS) in time and frequency

domain
r31(t), R31(ω, k) fixed beamformer output (Algorithm 1 for SS) in time and frequency

domain
r32(t), R32(ω, k) fixed beamformer output (Algorithm 1 for SS) in time and frequency

domain
n(t), N(ω, k) noise signal (Algorithm 1 for SS) in time and frequency domain
nij(t), Nij(ω, k) noise signal (Algorithm 2 for SS) in time and frequency domain
bij(t), Bij(ω, k) suppressing signal (Algorithm 2 for SS) in time and frequency domain
Mij(ω, k) source-emphasized signal (Algorithm 2 for SS)
LAeq equivalent sound level with A-weighting
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