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Abstract
The Extended Finite Element Method (XFEM) allows the consideration of non-
smooth or non-continuous effects in the displacements of arbitrary meshes. This
is achieved by enlarging the approximation space of the standard Finite Element
Method (FEM) with additional enrichment functions.

In this thesis, the XFEM is used to analyze static cracks and quasi-static crack
growth inside of 2-dimensional bodies. Firstly, the basics of the Finite Element
Method are given, followed by a selection of required fundamentals in fracture
mechanics. Afterwards the basics of the XFEM, with a focus on its application
to crack analysis, are shown.

The calculations are implemented using the Python programming language, based
on pySoofea, a computer code for the standard FEM. To describe the cracks in the
actual implementation, level set functions are used. All additional steps compared
with the standard FEM such as finding the crack tip, selection of enriched nodes,
calculation of new integration points, assembling of the stiffness matrix, calculation
of stress intensity factors and the crack growth method are described in detail.

Results of test cases are compared to analytical solutions in order to evaluate the
method. Finally, by quasi-static crack growth the crack paths in a stretched plate
and a beam are evaluated and analyzed.

Kurzfassung
Die Erweiterte Finite Elemente Methode (XFEM) ermöglicht die Betrachtung von
unstetigen und nicht glatten Verschiebungsfeldern in beliebigen Rechennetzen. Dies
wird ermöglicht durch eine Vergrößerung des Approximationsraumes der klassischen
Finite Elemente Methode (FEM) mit zusätzlichen Anreicherungsfunktionen.

In dieser Arbeit wird die XFEM angewandt, um statische Risse und quasi-
statisches Risswachstum in 2-dimensionalen Bauteilen zu untersuchen. Beginnend
mit den Grundlagen der Finiten Elemente Methode und einer Auswahl des
benötigten Basiswissens in Bruchmechanik, werden anschließend die zusätzlichen
Grundlagen für die hier betrachtete Anwendung der XFEM gezeigt.

Die Berechnungen werden in der Programmiersprache Python, aufbauend auf
dem klassischen FEM-Code pySoofea durchgeführt. Für die Beschreibung der
Risse werden Level-Set Funktionen verwendet. Alle zusätzlich zur klassischen
FEM erforderlichen Schritte wie Positionsbestimmung der Rissspitze, Auswahl der
angereicherten Knoten, Bestimmung der neuen Integrationspunkte, Assemblierung
der Steifigkeitsmatrix, Berechnung der Spannungsintensitätsfaktoren und die Riss-
wachstumsmethode werden im Detail beschrieben.

Testfälle mit verfügbaren analytischen Lösungen werden benutzt um die Methode
zu beurteilen. Abschließend erfolgt durch quasi-statische Risswachstumsberechnun-
gen an einer Scheibe und einem Balken die Ermittlung und Analyse des Risspfades.
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1. Basics of the standard Finite
Element Method

The aim of the Finite Element Method (FEM) is to calculate the response of solid
bodies with any boundary conditions aligned. Especially for cases with no available
analytical solution, which is the case for most technical problems, this is the favoured
method. Therefore, the body is split into a finite number of elements. By calculating
the displacement values in the nodes of these elements, the solution can be obtained.

In the following section, the differential 3d stress equilibrium by using the principle
of virtual displacements will lead to the basic equation of the displacement-based
FEM. Additionally, the constitutive law and the stress-strain relation are required.
In the last section, the numerical integration will be shown.

The following derivations in this chapter are based on [5, 6, 2], although we will
use some different notations with regard to the Extended Finite Element Method.

1.1. Differential 3d stress equilibrium

The stress equilibrium is satisfied in every point inside the body as well as on the
surface of the entire domain.

1.1.1. Stress equilibrium inside the body

We think of an infinitesimal cube (dimensions dx, dy and dz) that is cut out of an
arbitrary body. The edges are aligned to the x, y, z - Cartesian coordinate system.
The propriate partial derivatives of the stress vectors σx, σy, σz on each surface
have to be in equilibrium with the body force fB and the inertial force (−ρa):

∂σx

∂x
+
∂σy

∂y
+
∂σz

∂z
+ fB − ρa = 0 (1.1)

Stress vectors (i = x, y, z), body force and inertial force have components in all three
Cartesian coordinate directions:

σi =

σixσiy
σiz

 fB =

f
B
x

fBy
fBz

 − ρa =

−ρax−ρay
−ρaz

 (1.2)

All stress vectors can be arrayed in the stress tensor:

S =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (1.3)

1



1. Basics of the standard Finite Element Method

The first index of the stress components defines the direction of the surface normal
vector, the second index specifies the direction of the component. As the stress
tensor is symmetric it has only 6 independent components. This fact results from
the rotational equilibrium.

1.1.2. Stress equilibrium on the surface of the body

Imagine an arbitrary body with a force load on the surface. For a local point with
normal vector n (components nx, ny, nz), the local surface force fS satisfies the local
equilibrium (Cauchy formula):

fS = σxnx + σyny + σznz = ST · n (1.4)

The surface force has components in all three Cartesian coordinate directions:

fS =

f
S
x

fSy
fSz

 (1.5)

1.2. Strain-displacement relations

Generated by the displacement u (u, v, w in Cartesian coordinate directions x,y,z
respectively), a mesasure for the deformation called strain can be defined. There
are different ways to define strain and, particularly, for small strains we get a simple
form. If displacements and their derivatives are small we can set up equilibrium on
the undeformed body and as a result, the analysis gets linear. In the following, the
strains are specified:

εxx =
∂u

∂x
εyy =

∂v

∂y
εzz =

∂w

∂z
(1.6)

εxy =
1

2

(
∂u

∂y
+
∂v

∂x

)
εyz =

1

2

(
∂v

∂z
+
∂w

∂y

)
εzx =

1

2

(
∂w

∂x
+
∂u

∂z

)
(1.7)

These strains can be combined in the linear strain tensor:

V =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 (1.8)

Also this tensor is symmetric, but has only 3 independent components, which is a
result of constraints that prohibit gaps and overlapping.

1.3. Voigt notation

Taking the symmetry of the stress-tensor and strain-tensor into account, the
components of these tensors can be set up in 1-dimensional (1d) arrays (Voigt

2



1. Basics of the standard Finite Element Method

notation), respectively. As a consequence, handling the following steps will get
easier.

σ =


σxx
σyy
σzz
σxy
σyz
σzx

 ε =


εxx
εyy
εzz

2εxy
2εyz
2εzx

 (1.9)

1.4. Constitutive law

With (1.1) and (1.4) the state of stress for a body under force load is described. With
(1.6) and (1.7) strain can be evaluated out of the displacements. The connection
between stress and strain is given by the material behavior. In general this has the
following form:

S = C : V (1.10)

in index notation:

σij = Cijkl εkl (1.11)

Here C is the elasticity tensor, which is a symmetric, forth-order tensor. In general
it can be a function of the strains. For linear elastic materials a constitutive law is
given by Hooke’s law. With Young’s modulus E, specifying the stiffness, Poisson’s
ratio ν, describing lateral deformation, and the shear modulus G, it can be written
as follows:

εxx =
1

E
(σxx − νσyy − νσzz)

εyy =
1

E
(−νσxx + σyy − νσzz)

εzz =
1

E
(−νσxx − νσyy + σzz) (1.12)

2εxy =
1

G
σxy

2εyz =
1

G
σyz

2εzx =
1

G
σzx (1.13)

with G =
E

2(1 + ν)
(1.14)
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1. Basics of the standard Finite Element Method

Introducing the elasticity matrix and using the Voigt notation this can be rewritten
in a compact form:

σ = C · ε (1.15)

with C =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2

 (1.16)

With this last equation it is possible to solve the system, the 15 unknowns can be
determined by the 3 equations (1.1) or (1.4), the 6 Equations (1.6) and (1.7) and
the 6 Equations (1.15).

1.5. The principle of virtual displacements

In the FEM a weak formulation of the equilibrium is used. Therefore we imagine
small, virtual displacements which fulfill the kinematic restrictions. The virtual
work resulting from these deformations inside the body and on the surface has to
be zero. ∫

V

δuT ·
(
∂σx

∂x
+
∂σy

∂y
+
∂σz

∂z
+ fB − ρa

)
dV+

∫
S

δuT ·
(
fS − σxnx − σyny − σznz

)
dS = 0 (1.17)

By applying Gauss’ theorem and using the symmetry of the stress tensor, the
following form in Voigt notation can be achieved:

−
∫
V

δεTσ dV

︸ ︷︷ ︸
δWint

+

∫
V

δuT fB dV +

∫
S

δuT fS dS

︸ ︷︷ ︸
δWext

+

∫
V

δuTρ(−a) dV

︸ ︷︷ ︸
δWinertia

= 0 (1.18)

For static problems δWinertia is not present. Using (1.15) δWint can be written as
follows:

δWint = −
∫
V

δεTCε dV (1.19)

We have now derived a second form of the equilibrium, which is valid in a domain
and not in a point.

1.6. Fundamental equations for the Finite Element
Analysis

Up to now the whole derivation is exact and could be used for analytical solutions.
But for lots of real problems this is not possible. Therefore a method which is able

4



1. Basics of the standard Finite Element Method

to generate approximate solutions for any case is desired, which leads to a linear
system of algebraic equations.

We split up the whole body into elements, which are connected through their
common nodes (see Figure 1.1).

To get a finite number of unknowns only the displacements in the nodes will be
evaluated. But to calculate ε in (1.19) the displacements in the whole domain are
required. By interpolating the nodal displacements of the element, the displacements
in every point of the element are available. Using at least a linear interpolation allows
to calculate ε in every point.

element (m)

x, u

y, v

z, w

node i of element (m)

ûi

v̂i

ŵi

Figure 1.1. Body discretized with elements

1.6.1. Displacement approximation

The interpolation of a displacement in a point with coordinates x (x, y, z) inside

element m (with n
(m)
el nodes) can be written as:

u(m)(x) =

n
(m)
el∑
i=1

N
(m)
i (x) · ûi with ûi =

ûiv̂i
ŵi

 (1.20)

Thereby N
(m)
i (x) are called shape functions and these functions are described in

Section 1.7. This can also be written with an interpolation matrix H(m) (to improve

5



1. Basics of the standard Finite Element Method

readability the superscript (m) is not denoted in the matrix):

u(m)(x) = H(m)(x) · û with û =



û1

v̂1

ŵ1

...
ûnel
v̂nel
ŵnel


(1.21)

H(m)(x) =

N1(x) 0 0 ... Nnel(x) 0 0
0 N1(x) 0 ... 0 Nnel(x) 0
0 0 N1(x) ... 0 0 Nnel(x)

 (1.22)

1.6.2. Finite Element equilibrium

For derivable functions N
(m)
i (x) it will be possible to define a strain-displacement

matrix B(m)(x) to evaluate the strains from the displacements:

ε(m)(x) = B(m)(x) · û (1.23)

B(m)(x) =



∂N1(x)
∂x

0 0 ...
∂Nnel (x)

∂x
0 0

0 ∂N1(x)
∂y

0 ... 0
∂Nnel (x)

∂y
0

0 0 ∂N1(x)
∂z

... 0 0
∂Nnel (x)

∂z

∂N1(x)
∂y

∂N1(x)
∂x

0 ...
∂Nnel (x)

∂y

∂Nnel (x)

∂x
0

0 ∂N1(x)
∂z

∂N1(x)
∂y

... 0
∂Nnel (x)

∂z

∂Nnel (x)

∂y

∂N1(x)
∂z

0 ∂N1(x)
∂x

...
∂Nnel (x)

∂z
0

∂Nnel (x)

∂x


(1.24)

By using the constitutive law, the stresses can be evaluated:

σ(m)(x) = C(m) ·
(
ε(m)(x)− εI(m)(x)

)
+ σI(m)(x) (1.25)

Here σI(m)(x) are the initial stresses and εI(m)(x) the initial strains. For our further
steps we will set σI(m)(x) = 0 and εI(m)(x) = 0. Now, the Finite Element (FE)
formulation of the equilibrium Equation (1.18) can be gathered. For static problems
with no initial stresses the following equation results:

δûT

[∑
m

∫
V (m)

BT ·C ·B dV (m)

︸ ︷︷ ︸
K(m)

]
û =

δûT

[∑
m

∫
V (m)

HT · fB dV (m)

︸ ︷︷ ︸
F
B(m)
ext

+
∑
m

∫
S(m)

(HS)T · fS dS(m)

︸ ︷︷ ︸
F
S(m)
ext

+FC
ext

]
(1.26)
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1. Basics of the standard Finite Element Method

K =
∑
m

K(m) , FB
ext =

∑
m

F
B(m)
ext , FS

ext =
∑
m

F
S(m)
ext (1.27)

To improve readability the superscript (m) in the integrals was omitted (all
quantities in the integrals are from the specific element m). Here HS is the surface
displacement interpolation matrix, which can be gathered from H. We call K the
global stiffness matrix, FB

ext the body forces, FS
ext the surface forces and FC

ext are the
concentrated nodal forces.

To calculate the displacements û we apply the principle of virtual displacements
for every unknown. Therefore we set δui = 1 and δuj 6=i = 0 for all δui. Collecting
all these equations we get a system of linear equations:

K · û = F with F = FB
ext + FS

ext + FC
ext (1.28)

This formulation implies that the stiffness matrices K(m) have the same shape as
the global stiffness matrix and the forces F(m) have got the same shape as the global
one. Then, the method is called direct stiffness method. This approach has a big
disadvantage, namely, very big element matrices that only have very few non-zero
entries have to be summed up.

Therefore, the size of the local stiffness matrices and the size of the forces are
defined by the number of degrees of freedom for each element. To use this approach,
it is necessary to calculate the global index of a local matrix entry, which can be
achieved with an index list.

1.6.3. Boundaries

Until now the matrix K is singular, because no boundary conditions have been
considered implemented yet. An easy way presented by Wu et al. [25] to implement
basic displacement (Dirichlet) boundaries, which sets a specific degree of freedom
(DOF) to a defined value, will be described. To implement a fixed value for the
displacement ui, the following steps have to be applied on the system of equations
(1.28):

• Substract the desired displacement value multiplied by the concerned entry in
the stiffness matrix for every row in the load vector F.
(F new

j = Fj −Kji · ui ∀j 6= i)

• Enter the value of the displacement multiplied by the main diagonal entry of
the stiffness matrix for the considered DOF row in the load vector.
(Fi = Kii · ui)

• Set the whole row and column of the concerned DOF in the global stiffness
matrix to zero, whereby the element on the main diagonal stays untouched.
(Kij = 0 and Kji = 0 ∀j 6= i)

These steps show the principle approach to implement a boundary condition,
nevertheless, for a computer implementation it may be necessary to adopt this
procedure.

For the implementation of more general boundary conditions see [2].
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1. Basics of the standard Finite Element Method

The second type of boundary conditions are force boundary conditions. In the
displacement based FEM these boundaries can be implemented straight forward by
calculation of the load vector F for the concerned DOFs.

1.7. Standard shape functions

In Section 1.6.1 we use shape functions Ni(x) to evaluate the displacement u
on a specific point x from the displacements ûi in the nodes i of an element.
In most implemented computer codes, these functions are evaluated in a local
coordinate system (r, s, t) for every element. This is advantageous, because for all
elements of the same type the same shape functions Ni(r, s, t) can be used. In the
following, starting with Lagrange polynomials, the shape functions for a first-order
quadrilateral will be shown.

1.7.1. Lagrange polynomials

For the principle considerations we think of a 1d beam (see Figure 1.2).

ri = 1i = 0

r = 1r = −1 r = 0

Figure 1.2. 1d Beam element in natural coordinates

A shape function needs the following attributes at the position ri of node i:

• The shape function Ni(ri) should be 1.

• All other shape functions Nj 6=i(ri) should be 0.

• The sum of all shape functions
∑
j

Nj(r) for the element should be 1.

This enforces that the displacement at node i is exactly the displacement ui and, in
between the nodes, displacements get interpolated.

Functions which are able to fulfill these requirements are the Lagrange polynomi-
als. A general form is given here:

ln−1
j (r) =

n−1∏
i=0
i 6=j

r − ri
rj − ri

(1.29)

For the 1d beam the shape functions which are Lagrange polynomials are specified
below:

N0(r) =
r − 1

−2
and N1(r) =

r + 1

2
(1.30)

8



1. Basics of the standard Finite Element Method

r
1−1

0

Ni(r)

N0(r) N1(r)1

Figure 1.3. Shape function for 1d beam element in natural coordinates

1.7.2. Shape function for quadrilaterals

For a 2-dimensional (2d) quadrilateral element of first order (see Figure 1.4), the
Lagrange polynomials for each direction can be multiplied to get the shape functions.
The resulting shape functions are:

N0(r, s) =
1

4
(1− r)(1− s) N1(r, s) =

1

4
(1 + r)(1− s)

N2(r, s) =
1

4
(1 + r)(1 + s) N3(r, s) =

1

4
(1− r)(1 + s) (1.31)

r

s

i = 0 i = 1

i = 2i = 3

s = 1

s = −1

r = −1 r = 1

Figure 1.4. 2d quadrilateral element in natural coordinates
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1. Basics of the standard Finite Element Method

1.7.3. Isoparametric concept, the Jacobian matrix

If the same interpolation for geometry and displacements is used, it is called
isoparametric concept. The following derivations are shown for the 2d case,
nevertheless an extension to the 3-dimensional (3d) case is straight forward.

Equation (1.32) shows the interpolation of the node positions x̂j with shape
functions to get the position x. In (1.33) this is given in compact form with the
interpolation matrix H(m)(r, s).

x =
∑
j

Nj(r, s) · x̂j with x̂j =

[
x̂j
ŷj

]
(1.32)

x = H(m)(r, s) · x̂ with x̂ =



x̂1

ŷ1

x̂2

ŷ2

...
x̂nel
ŷnel


(1.33)

To be able to calculate derivatives of the displacements, the inverse Jacobian
matrix J−1 is needed. The definition of J and J−1 is shown in the following:

J(r, s) =

[
∂x
∂r

∂x
∂s

∂y
∂r

∂y
∂s

]
(1.34)

J−1(r, s) =

[
∂r
∂x

∂r
∂y

∂s
∂x

∂s
∂y

]
(1.35)

J can easily be evaluated by using (1.32) or (1.33):

J(r, s) =

[∑
j

∂Nj(r,s)

∂r
· x̂j

∑
j

∂Nj(r,s)

∂s
· x̂j
]

(1.36)

J(r, s) =
[

∂H(m)(r,s)
∂r

· x̂ ∂H(m)(r,s)
∂s

· x̂
]

(1.37)

If det(J) 6= 0, J can be inverted to get J−1. Considering the integrals in Equation
(1.26), it is more effective to integrate in the natural coordinate system. For example
the dV (m) has to be calculated in this system as follows (h is the height of the 2d
body):

dV (m) = det(J(r, s)) · dr · ds · h = det(J(r, s)) · dV r (1.38)
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1. Basics of the standard Finite Element Method

1.8. Numerical integration

The following derivation is based on [2] and covers only the most important elements.
For the FEM it is necessary to solve integrals of the form:∫

F (r) dr

∫
F (r, s) dr ds

∫
F (r, s, t) dr ds dt (1.39)

They occur for example in (1.26), in combination with the remarks in (1.38) these
integrals will be solved numerically, with the following basic approach (for 1d):

+1∫
−1

F (r) dr ≈
∑
i

αi · F (ri) (1.40)

Here αi is the weighting factor and F (ri) is the value of the function F at the point
ri. For a general function F (r) this approach cannot be exact, but by the choice of
more points ri the accuracy of the results can be improved. Now the two unknowns
in (1.40) αi and ri have to be evaluated.

There are different methods to do this, for example the Newton-Cotes formulae
with equidistant points ri, where only the αi are solved for. We will use the Gauss
formulas as this approach is very accurate and therefore widely used.

1.8.1. The Gauss formulae

With this method both, αi and ri, have to be calculated. We will use n sampling
points ri (i = 1, ..., n). Lagrange polynomials are used to approximate the function
F , using (1.29) we can identify that the order of these polynomials is n − 1. The
function Ψ(r) is shown in the following, which has the values of F in the sampling
points:

Ψ(r) =
n∑
i=1

F (ri) · ln−1
i (r) (1.41)

A polynomial P (r) of order n is defined, which vanishes at all sampling points:

P (r) =
n∏
i=1

(r − ri) (1.42)

To approximate the function F (r) the following approach is used:

F (r) ≈ Ψ(r)︸︷︷︸
n−1

+P (r)︸︷︷︸
n

·
n−1∑
k=0

(βkr
k)︸ ︷︷ ︸

n−1︸ ︷︷ ︸
order (2n−1)

(1.43)

This polynomial has the order (2n− 1) and its integration leads to:

+1∫
−1

F (r) dr ≈
n∑
i=1

+1∫
−1

ln−1
i (r) dr

︸ ︷︷ ︸
I

F (ri) +
n−1∑
k=0

+1∫
−1

P (r)rk dr

︸ ︷︷ ︸
II

βk (1.44)

11



1. Basics of the standard Finite Element Method

By condition, the integral II in (1.44) should vanish, n equations for the sampling
points ri can be gathered. This implies that the desired integral is approximated
by the integration of a polynomial of order (2n − 1). As a result, polynomials of
order ≤ (2n − 1) are integrated exactly. To calculate the weighting factors αi we
use (1.40) and replace F (r) with Ψ(r) from (1.41) and integrate the equation.

αi =

1∫
−1

ln−1
i (r) dr (1.45)

The (αi)s and (ri)s evaluated for the natural interval have been published by [18].

1.8.2. 2 dimensional integration

For multidimensional integration in rectangular elements, the 1d integral is com-
binded for each direction by multiplying the weighting factors of the 1d case:

1∫
−1

1∫
−1

F (r, s) dr ds =
∑
i,j

αiαjF (ri, sj) (1.46)

In Figure 1.5, the integration points for a quadrilateral element are shown.

r

s

s1 = 0.577...

s0 = −0.577...

r0 = −0.577... r1 = 0.577...

Integration point

Figure 1.5. 2d quadrilateral element with integration points
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2. Selected fundamentals of linear
elastic fracture mechanics

In this chapter, the description of crack behavior from a macroscopic view should be
presented. This is the ‘view’, which is used for the crack calculations in the XFEM.

A crack is a separation through a body, creating a new surface, which is free of
load in most cases. The crack ends in the crack front or for 2d cases in the crack
tip.
The following formulations are based on [13, 17].

2.1. The three modes of fracture

To describe the deformation of a crack, three fracture modes are distinguished (see
Figure 2.1):

• Mode I describes a symmetric crack opening.

• Mode II describes an antisymmetric deformation, where both crack surfaces
move against each other inside the crack plane.

• Mode III desribes a deformation in direction of the crack front. Therefore,
this mode only exists for 3d cases.

opening mode I sliding mode II tearing mode III

Figure 2.1. Modes of fracture

These modes of fracture describe the situation near the crack front, but for some
special cases they can be used for the whole body.
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2. Selected fundamentals of linear elastic fracture mechanics

2.2. Crack tip field - stress intensity factors

Stress intensity factors (SIFs) will be used to describe the deformations and stresses
near the crack tip for each mode. Since later on only 2d case will be considered,
mode III is not shown. A complete description for all modes is given in.

The following solutions for the near tip field in the local Cartesian and polar
coordinate system (see Figure 2.2) can be derived. Here KI is the stress intensity
factor (SIF) for mode I and KII for mode II. We can see that they characterize a
kind of the amplitude for the near tip solutions.

x

y

θ

r

x̃

ỹ

crack surface

crack tip

Figure 2.2. Local crack coordinate system

Mode I: σxxσyy
σxy

 =
KI√
2πr

cos

(
θ

2

)1− sin( θ
2
)sin(3θ

2
)

1 + sin( θ
2
)sin(3θ

2
)

sin( θ
2
)cos(3θ

2
)

 (2.1)

σrrσθθ
σrθ

 =
KI√
2πr

cos( θ
2
)[1 + sin2( θ

2
)]

cos3( θ
2
)

sin( θ
2
)cos2( θ

2
)

 (2.2)

(
u
v

)
=
KI

2G

√
r

2π
(κ− cos(θ))

(
cos( θ

2
)

sin( θ
2
)

)
(2.3)
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2. Selected fundamentals of linear elastic fracture mechanics

Mode II: σxxσyy
σxy

 =
KII√
2πr

−sin( θ
2
)[2 + cos( θ

2
)cos(3θ

2
)]

sin( θ
2
)cos( θ

2
)cos(3θ

2
)

cos( θ
2
)[1− sin( θ

2
)sin(3θ

2
)]

 (2.4)

σrrσθθ
σrθ

 =
KII√
2πr

sin( θ
2
)[1− 3sin2( θ

2
)]

−3sin( θ
2
)cos2( θ

2
)

cos( θ
2
)[1− 3sin2( θ

2
)]

 (2.5)

(
u
v

)
=
KII

2G

√
r

2π

(
sin( θ

2
)[κ+ 2 + cos(θ)])

−cos( θ
2
)[κ− 2 + cos(θ)])

)
(2.6)

with κ = 3− 4ν and σzz = ν(σxx + σyy) for plane strain case

with κ =
3− ν
1 + ν

and σzz = 0 for plane stress case (2.7)

In the derivation of these solutions there are some restrictions as it is only valid
for load free crack surfaces. For the v-component in (2.3) it can be seen that this is
only possible for KI ≥ 0,because then there is no contact between the crack sufaces.

The complete solution would have parts with higher order terms of r. As we are
only interested in the near tip field, these terms can be neglected.

Linear elastic behavior of the material is assumed, although this assumption
cannot be exact. In the crack tip, stresses would get infinite, which no material
is able to stand. In a small zone around the crack tip there are plastic deformations.
If this zone is small enough in comparison to the near tip field, this effect can be
neglected, too.

With the XFEM we will be able to calculate the SIFs and, consequently, have a
description of the near tip field.

2.3. Path independent integral about the crack tip
(J-integral)

Another criterion to describe fracture behavior is the J-integral.
A body of homogeneous, linear elastic material (for a more general derivation see

[13]) with an arbitrary surface ∂V inside, normal vector components to the surface
nj and the volume inside the surface V should be considered without any body force
fB. With the stress components σij, the strains components εij and the Kronecker
delta δjk, the J-Integral in index notation is defined as:

Jk =

∫
∂V

(
1

2
σmnεmnδjk − σij

∂ui
∂xk

)nj dA (2.8)

Using Gauss’ theorem we can find:

Jk =

∫
V

(
1

2
σmn

∂εmn
∂xj

δjk +
1

2

∂σmn
∂εop

∂εop
∂xj

εmnδjk −
∂σij
∂xj

∂ui
∂xk
− σij

∂2ui
∂xk∂xj

)
dV (2.9)
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2. Selected fundamentals of linear elastic fracture mechanics

Using (1.1), (1.6), (1.7), (1.10) and the symmetry of the stress tensor we get:

Jk =

∫
V

(
σmn

∂2um
∂xn∂xk

− σij
∂2ui
∂xk∂xj

)
dV = 0 (2.10)

As Gauss’ theorem demands that the gradient can be calculated, this result is only
valid for bodies without any singularities or discontinuities (for example cracks). In
other cases Jk 6= 0 in general.

Additionally, it can be shown that for linear elastic material behavior, there is a
connection between the SIFs and the J-integral (see [13]):

J =
1

E ′
(K2

I +K2
II) +

1

2G
K2
III (2.11)

with E ′ =
E

1− ν2
for plane strain case

with E ′ = E for plane stress case
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2. Selected fundamentals of linear elastic fracture mechanics

2.4. Crack growth criterion

To describe the crack growth process, a criterion which describes the crack growth
direction from the evaluated displacements is required.

Here, the maximal circumferential stress criterion should be used, which allows
the calculation of the crack growth direction from the SIFs. In Section 4.8.1, it will
be shown, how to calculate the SIFs out of the displacements.

2.4.1. The maximal circumferential stress criterion

This criterion, [7], implies that the crack grows in direction rc, where the
circumferential stress σθθ is maximal.

As σθθ is a principal stress in growth direction and the fact that on principal stress
planes, no shearing stresses occur, θc can be evaluated from σrθ = 0 by addition of the
shear stresses σrθ in (2.2) and (2.5) (a detailed derivation can be found in Appendix
A.1).

KI√
2πr

sin

(
θc
2

)
cos2

(
θc
2

)
+

KII√
2πr

cos

(
θc
2

)[
1− 3sin2

(
θc
2

)]
= 0 (2.12)

KIsin(θc) +KII

(
3cos(θc)− 1)

)
= 0 (2.13)

θc = 2 arctan

1

4

 KI

KII

±

√(
KI

KII

)2

+ 8

 (2.14)

Figure 2.3 shows the new crack direction in the local crack coordinate system
(x, y), starting from the actual crack tip.

x

y

θc

x̃

ỹ

inital crack
actual crack tip

crack growth direction

rc

Figure 2.3. New crack growth direction
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3. Extended Finite Element Method

A polynomial approximation space which is used in the standard FEM, describes a
smooth solution very well. But in many real problems, solutions are non-smooth, for
example discontinuities, singularities, high gradients or other non-smooth solutions
can exist. In solid mechanics some examples for such behavior are cracks, shear
bands, dislocations, inclusions and voids.

There are two approaches to calculate such solutions. The first one is to use a
polynomial approximation space and refine the mesh size in the area of high gradients
or singularities and to orientate the elements to discontinuities. For this method the
mesh has to be adapted if different non-smooth solutions should be described.

The second approach is to enrich the approximation space with problem specific
shape functions. This allows to describe non-smooth solutions independent of the
mesh.

First possibility to change the approximation space is to replace the polynomial
shape functions by problem specific shape functions. This approach is called intrinsic
(see [10]).

We will use another method, where extra shape functions with new unknowns
are added to the standard approximation space, called an extrinsic approach. As a
result of such a method, the number of unknowns is increased.

If all nodes in the entire domain are enriched, it is called ‘global enrichment’. Most
phenomena in solid mechanics are local (cracks, kinks, ...). To implement these
non-smooth effects in the solution only nodes nearby have to be enriched (‘local
enrichment’). This approach is called Extended Finite Element Method (XFEM).
We will focus on fracture mechanics and, therefore, use local enrichments.

All formulations in this chapter are based on [11, 3, 19].

3.1. Local enrichment

Starting from (1.20) the approximation space gets locally enriched. For one extra
enrichment function, the XFEM approximation has the form:

u(x) =
∑
i∈I

Ni(x) · ûi︸ ︷︷ ︸
standard FE approximation

+
∑
i∈Ĭ

N̆i(x) · ψ(x) · âi︸ ︷︷ ︸
enrichment

(3.1)

Thereby, I is the set of all nodes and Ĭ is the set of nodes to be enriched, which is
a subset of all nodes (Ĭ ⊂ I). Ni(x), N̆i(x) are standard shape functions and are
often chosen to be equal. These functions build a partition of unity (PU) over the
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3. Extended Finite Element Method

whole domain, if they are considered in all nodes.∑
i∈I

Ni(x) = 1
∑
i∈I

N̆i(x) = 1 (3.2)

In this expression, ûi are the unknowns for the standard FEM, âi the additional
unknowns from the enrichment. The enrichment function ψ(x) implements the
problem specific insight into the approximation space.

In Figure 3.1, a domain is shown, where some of the nodes are enriched to add
the problem specific information in this local area (e.g. a crack).

element type a

x

y

node of set Ĭ

element type b
element type c

Figure 3.1. Domain of quadrilaterals with enriched nodes

Depending on the number of enriched nodes in an element, three types of
enrichment can be distinguished.

• type a: Here all nodes are enriched, therefore N̆i(x) builds a PU and ψ(x) can
be exactly reproduced.

• type b: Only some of the nodes are enriched. As a consequence of this,
N̆i(x) does not build a PU and therefore, in general ψ(x) cannot be exactly
reproduced. These elements are called ‘blending elements’.

• type c: There are no enriched nodes. Here, the classical FEM approximation
is used.

3.1.1. Shifted enrichment interpolation

In (3.1), it can be seen that this approximation generally does not have the
Kronecker-delta property. As a result it cannot be ensured that u(xi) = ûi. This
fact makes it more diffucult to apply displacement boundary conditions. In addition,
the effort to get displacement data is increased, because for every single point, (3.1)
has to be evaluated.
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3. Extended Finite Element Method

To avoid these disadvantages, a shifted form of (3.1) is used (first suggested in
[4]).

u(x) =
∑
i∈I

Ni(x) · ûi +
∑
i∈Ĭ

N̆i(x) · (ψ(x)− ψ(xi)) · âi (3.3)

Here the enrichment part vanishes at the nodes and, therefore, u(xi) = ûi. As the
enrichment part in (3.3) is only shifted with a constant value, it can be compensated
by the classical FE approximation so that this formulation is still able to reproduce
ψ(x) exactly. But it should be mentioned, that in general along boundaries, the
enrichment parts will be non-zero nevertheless.

3.2. Modelling of cracks

Now we will specialize in the modeling of cracks with the XFEM. Therefore special
enrichment functions for the crack path and the crack tip have to be implemented.

3.2.1. Modelling the crack path

A crack is a strong discontinuity of displacements, crossing the crack all values of
displacements will change abruptly. This behavior can be implemented by a jump
function ψ(x) = ψjump(x) as enrichment function, suggested by [19, 23]. The jump
function changes the value by crossing the crack. Both formulations of (3.4) span
the same approximation space and therefore can be used. Only the values of the
unknowns âi change (see (3.3)). One method to evaluate the values of the functions
(3.4) will be described in Section 3.3.

ψjump(x) =

{
0 : left from crack

1 : right from crack
or ψjump(x) =


−1 : left from crack

0 : on the crack

1 : right from crack

(3.4)

As these enrichment functions are constant outside elements, which are cut by a
crack, the value (ψ(x) − ψ(xi)) is only non-zero in these elements. This implies
that there are no blending elements and that in all other elements standard FEM is
applied.

Therefore, only nodes in elements cut by a crack, are added to the set of enriched
nodes for the crack path Ĭc (see Figure 3.2). Also for not shifted enrichment functions
only these nodes have to be enriched, because with a constant function ψ(x) the
enrichment would span the same space as the standard FEM.

3.2.2. Modelling the crack tip

Cracks end inside the domain with the crack tip. In general the tip is not aligned
with an element edge. Therefore, additional enrichments are required to represent
the tip in the element. In Section 2.2 the analytical solutions for the different
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x

y

crack

set of nodes Ĭc
set of nodes Ĭt

Figure 3.2. Enriched nodes for a crack

fracture modes have been shown. For the tip enrichment, enrichment functions,
which span the whole solutions for Mode I and Mode II (see Section A.4), are used.
The enrichment functions are shown in Figures 3.3, 3.4, 3.5 and 3.6.{

ψ
(i)
tip(x)

}
=

{√
rsin

(
θ

2

)
,
√
rcos

(
θ

2

)
,
√
rsin(θ)sin

(
θ

2

)
,
√
rsin(θ)cos

(
θ

2

)}
(3.5)

The local coordinate system for these enrichment functions can be seen in Figure
2.2. As the coordinate θ is in between −π < θ < π, enrichment function ψ

(1)
tip has a

discontinuity for θ = ±π. The derivatives of all tip enrichment functions are singular
for r = 0, because strains and stresses are singular there.

It should be mentioned that in normal cases, these enrichment functions have to
be evaluated in global coordinates. Then, for each tip, the tip-coordinate xt has to
be stored, to be able to evaluate these functions.

In Figure 3.2 only nodes of the tip element are in the set of nodes Ĭt, which get
enriched. It can be observed that for cracks which are only slightly curved at the
tip, a larger set of nodes Ĭt (e.g. inside a circle with enrichment radius re) provides
better results (see Figure 3.7).

The resulting approximation for a crack with one tip is shown in the following:

u(x) =
∑
i∈I

Ni(x) · ûi +

∑
i∈Ĭc

Ni(x) ·
(
ψjump(x)− ψjump(xi)

)
· âi +

4∑
j=1

∑
i∈Ĭt

Ni(x) ·
(
ψ

(j)
tip(x)− ψ(j)

tip(xi)
)
· b̂(j)

i (3.6)

For a second tip, the last part of this expression has to be implemented a second
time.
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ψ
(1)
tip (x)

x
y

Figure 3.3. Enrichment function ψ
(1)
tip (x)

ψ
(2)
tip (x)

x
y

Figure 3.4. Enrichment function ψ
(2)
tip (x)

ψ
(3)
tip (x)

x
y

Figure 3.5. Enrichment function ψ
(3)
tip (x)

ψ
(4)
tip (x)

x
y

Figure 3.6. Enrichment function ψ
(4)
tip (x)

crack

re

x

y
set of nodes Ĭc
set of nodes Ĭt

Figure 3.7. Enriched nodes for a crack with larger tip enrichment

3.3. Level set functions

In the previous sections, enrichment functions for cracks are shown. The description
of the discontinuity or in general an interface is not mentioned there. This will be
discussed now.

22



3. Extended Finite Element Method

One possibility is to describe the crack path explicitly as a function in Cartesian
coordinates. Then, a complex method which is able to evaluate ψjump(x) as function
of the explicit crack path would be required.

Looking at (3.4) it can be seen that ψjump(x) can easily be evaluated, if a function
describes the crack that changes the sign at the crack.

Therefore, the geometry of the crack will be given by a level set function φ̃(x),
which is zero on the crack and has a different sign on each side of the discontinuity
(see Figure 3.8 a) ).

Then (3.4) can be evaluated with a sign function:

ψjump(x) = sign(φ̃(x)) with sign(ξ) =


−1 : ξ < 0
0 : ξ = 0
1 : ξ > 0

(3.7)

Only the values of the level set function in the nodes will be saved, and in between
they are interpolated with the standard shape function:

φ(x) =
∑
i∈I

Ni(x) · φi with φi = φ̃(xi) (3.8)

With these level set values φi in the nodes, it is very easy to find elements which are
cut by a discontinuity. A detailed description, how this is done, is given in Section
4.3.

Additionally to the crack path description, there is still a second information
about the crack tip(s) required. This is defined by a second level set function φ̃t(x),
which is positive in the area where the crack exists. By considering again only the
values of this level set function in the nodes φti and φi, the crack tips can be found
(see Section 4.4). Having the position of the tips, also (3.6) can be evaluated for
every position x in the domain. In Figure 3.8, the full description of a crack with
level set functions is shown.

φ(x) > 0

φ(x) = 0

φ(x) < 0

φ(x) φt(x)

a) b)x

y

x

y

Figure 3.8. a) Description of crack path by φ(x) and b) crack tip by φt(x)

Any function can be used as level set function, as long as the path where
φ(x) = 0 is on the right position to describe the interface. Certainly, glancing
intersections between φ(x) = 0 and φt(x) = 0 should be avoided to guarantee a
reliable determination of the crack tips.

To describe the crack growth with this level set function, φ(x) and φt(x) have
to be updated for every step. A method how to do this is presented in [22]. The
approach which was used here, will be desribed in Section 4.9.5.
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3. Extended Finite Element Method

3.4. Numerical integration in the context of XFEM

In Section 1.8 the Gauss formulae, a method to calculate integrals numerically, are
presented. It is shown that polynomials can be integrated exactly, by choosing
enough sampling points. By using first-order Lagrange polynomials as shape
functions (see (1.29)), integration of these can always be exactly performed.

As we added enrichment functions, which have discontinuities, to the FE
approximation, this is not possible anymore. The integrands of interest are the
resulting shape functions Ni(x) · ψ?(x) and derivations of them (ψ?(x) is any
introduced enrichment function). As these functions cannot be represented by
polynomials, there is no number of sampling points, which allows exact integration.
Using a lot of sampling points to get acceptable accuracy, costs a lot of computing
time. As we know the positions of the discontinuities in the integration domain, a
much more elegant and efficient way is used.

The idea is to split the integration area into subareas, in which the integrands
can be described more accurately by polynomials.

For elements cut by a crack, the element has to be split into two parts, which
are integrated separately (see Figure 3.9). As the enrichment function ψjump(x) is
constant in each part, the resulting integrand will always be a polynomial and can
be exactly integrated.

To integrate elements that are enriched by the crack tip enrichment functions
ψ

(i)
tip(x), they should be split at the crack to get a better solution (see discontinuity

of ψ
(1)
tip (x) for θ = ±π). In these elements attention should also be paid to the

singularities of the derivatives at the crack tip (r = 0). By increasing the number
of sampling points around this point, accuracy can be increased.

For the implementation in the computer code, only the calculation of new
integration positions and weighting coefficients are necessary. These subelements
are used for integration purposes only. Therefore, this method has no influence
on the number of unknowns or the size of the resulting system of equations. The
actually used method for decomposition of quadrilaterals is described in Section 4.6.

integration area 1

integration area 1

integration area 2

integration area 2

discontinuities

a) b)

Figure 3.9. Integration areas for elements split by a discontinuity
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4. Implementation

In the previous chapters, the theoretical background is given, which is necessary
to implement the XFEM. Nevertheless for real implementations there are lots of
different definitions and algorithms required.

In the following sections, the definitions and algorithms used in the actual
implementation should be described, knowing that lots of other possibilities to realize
an XFEM code exist.

The implementation of this linear XFEM code is done in the Python programming
language, based on pySoofea (python software for object oriented finite element
analysis), a computer code for the non-linear standard FEM , which has been written
on the Institute for Strength of Materials at the Graz University of Technology [14].

To create meshes, the external tool Gmsh , a three-dimensional finite element
mesh generator, is used [12].

All required problem specific informations are defined in a problem specific python
file.

These informations are:

• Displacement constraints in boundary nodes

• Load situation

• Mesh file from Gmsh

• Element type and number of integration points in the element

• Height of the 2d problem

• Material type with material constants

• Number of time markers for crack growth calculation or for changing bound-
aries

• Level set functions φ(x) and φt(x) for each crack

This information describes a standard FEM model and in addition, the level set
functions. Therefore, the calculation process (shown in Figure 4.1) starts with this
information. All other informations, which are required to formulate the XFEM
approximation (3.6) - like crack tip positions - have to be evaluated by the python
code.

Finally, solving the occurring system of linear algebraic equations is done by the
library LAPACK [1]. As a result, the displacements in the nodes (ûi), the unknowns
of the crack path enrichment (âi) and the unknowns of the crack tip enrichment

(b̂
(j)
i , j = 1...4) are determined. Thus, with all these calculated quantities, the

displacements in the whole domain can be evaluated with the help of (3.6).
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Visualisations of the displacement field is done in ParaView (Open Source
Scientific Visualization - www.paraview.org), and in the library Matplotlib [16].

To verify the results and to find bugs in the implementation, the free accessible
XFEM codes in Matlab from the RWTH Aachen University were very helpful [9].

4.1. Calculation process

In Figure 4.1, the whole calculation process is shown. The details of the individual
steps are presented in this chapter.

standard
FEM
model

Level Set
Functions
φ(x), φt(x)

implement
discontinuities

• select enriched nodes
(Section 4.3)
• finding the crack tip
(Section 4.4)
• global indexing
(Section 4.5)
• calculate new integration
points (Section 4.6)XFEM

model

solve system

• calculate B
(m)
x and H

(m)
x

⇒ K
(m)
x ,F

(m)
x (Section 4.7)

• assemble K and F
• solve K · ûx = F

ûi, âi, b̂i

calculate
KI and KII

• domain form of interaction
integral (Section 4.8.1)

KI , KII ,
other

results

implement
crack growth step

• implement crack
growth by level
set modification
(Section 4.9)

only for crack growth analysis

Figure 4.1. XFEM calculation process
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4.2. Entry point and exit point of an interface in
quadrilaterals

As the calculation of the entry and exit point of an interface in an element is required
for several steps in the XFEM, the used approach will be described in this section.
The condition for an existing entry or exit point rP between node i and node (i+ 1)
is:

sign(φi) 6= sign(φi+1) (4.1)

In Figure 4.2, the situation to calculate rP between node 0 and node 1 is shown
exemplarily. For this case rP can be evaluated by:

rP =
φ0

φ1 − φ0

· (r0 − r1) + r0

sP = −1 (4.2)

From this special case a general rule can be found:

rP =
φi

φi+1 − φi
· (ri − ri+1) + ri with φ4 =̂φ0 and r4 =̂ r0 (4.3)

r

φ

φ0

−φ1

rPr0 r1

s = −1

Figure 4.2. Evaluation of element entry point and exit point

4.3. Selection of enriched nodes

The first step to get an XFEM model is to find all nodes, which should be enriched.
The required information is provided by the level set functions.

In Figure 4.3 a simple way to find elements which are cut by interfaces, is pointed
out. By the use of the sign-function of the level set functions, it can be found that
an interface in the element exists, if:∣∣∣∣∣

nel∑
i=1

sign(φi)

∣∣∣∣∣ 6=
nel∑
i=1

1 (4.4)

27



4. Implementation
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Figure 4.3. Possible interfaces described by level set function values φi

As can be seen in Figure 3.7, the selection of enriched nodes does not only depend
on the defined interfaces, but also a larger area around the crack tip can be enriched
with the tip enrichment function. Therefore, the positions of the tips (see Section
4.4) have to be evaluated for a final selection of the enriched nodes. This method
to find the tips is used in every element that fulfills Condition (4.4) for φi and φti.
As a result, we get the tip position and a statement, if there is a tip, a crack path
or no discontinuity in the element (see Figure 4.4).

φt(x) = 0
φ(x) = 0

element with crack path
element with tip
element with no discontinuity

φt(x) < 0

φt(x) > 0

x

y

Figure 4.4. Types of elements that are cut by two interfaces

Then all nodes which are in a defined circle around the tip (Figure 3.7), or which
belong to the tip element (Figure 3.2), get enriched by the tip enrichment function
for the specific tip. ‘Specific’ means that an index which defines the tip, has to
be set for every node, to allow a later calculation of the enrichment function (tip
position is required).

If there are elements with a crack path inside (shown as green elements in Figure
4.4), the crack path enrichment is applied to all nodes in these elements.

Now, all nodes in elements which are cut by two interfaces, are enriched and all
tip enrichments are set up. Other elements which are cut by the crack can be found
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with the help of Condition (4.4) for φi only and:

nel∑
i=1

sign(φti) =

nel∑
i=1

1 (4.5)

By this condition, it can be ensured that elements on the crack interface φ(x) = 0
only on the side φt(x) > 0 get selected. The nodes which belong to these elements,
get enriched with the crack path enrichment function.

As a last step, it is necessary to remove the crack path enrichment for all nodes
which have a crack path enrichment and a crack tip enrichment. If crack growth
should be simulated, the nodes, where the crack path enrichment gets deleted, should
be stored, as the moving tip releases them again and they have to be added (see
Section 4.9.3).

4.4. Finding the crack tip

For elements which are cut by two interfaces, the intersection point of these two
curves should be evaluated. Here we focus on quadrilateral elements, cut by linear
interfaces. Figure 4.5 shows the starting point for this derivation.

r

s

r0 r1

r2r3

Interface 2Interface 1

rt

rP11

rP12

rP22

rP21

r0 =

[
−1
−1

]
r1 =

[
+1
−1

]
r2 =

[
+1
+1

]
r3 =

[
−1
+1

]

Figure 4.5. Quadrilateral cut by two interfaces

Since the shape functions for a quadrilateral are bilinear (see (1.31)), the interfaces
are not linear in the (r, s)-system, in general. But on the boundaries of the element
the shape functions are linear. This can be used to calculate the points rP11, rP12,
rP21 and rP22. As a first step, all four points have to be evaluated by using the
method shown in Section 4.2 four times.
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As already mentioned before, the interfaces are not linear in the element because
of the bilinear shape functions. Therefore, the intersection point will be evaluated in
the (x, y)-system. By calculating the shape functions for these points rP and using
(1.33), the positions of these points xP in the (x, y)-system can be evaluated. With
these points xP , the linear equations of the interfaces are known and the intersection
point can be calculated. Special treatment is requird for interfaces which are aligned
with the y-axis.

xt =



[
xP11

a · (xt − xP21) + yP21

]
for xP11 = xP12[

xP21

b · (xt − xP11) + yP11

]
for xP21 = xP22[

(b · xP11 − a · xP21 + yP21 − yP11)/(b− a)
b · (xt − xP11) + yP11

]
otherwise

with a =
yP22 − yP21

xP22 − xP21

and b =
yP12 − yP11

xP12 − xP11

(4.6)

To find out if the tip is inside the element, rt is calculated from xt (see A.3). The
tip is inside the element if |rt| < 1 and |st| < 1.

If the tip is inside the element, the entry point xte (xP11 or xP12), which is on the
crack, has to be evaluated for the calculation of the crack tip angle θt (see Figure
A.1). xte can be evaluated, with φt(x) from (3.8), by:

xte =

{
xP11 for φt(xP11) > 0
xP12 for φt(xP12) > 0

(4.7)

The crack tip angle can now be calculated:

θt = arctan

(
yte − yt
xte − xt

)
+

[sign(xte − xt) + 1] · π
2

(4.8)

If the tip isn’t inside the element, it has to be verified if the crack goes across
this element (see Figure 4.4). For φt(xP11) > 0 and φt(xP12) > 0 this is the case, as
there is no change in the sign of φt(x).

4.5. Global indexing

To assemble a global stiffness matrix, it is necessary that every DOF (ûi) has a
unique index, which defines the position in the global matrix. In the standard FEM
the number of DOFs per node are constant and for standard elements correspond
to the dimension of the problem. Therefore, it is possible to calculate a global index
for every DOF from the node index.

In the XFEM, the number of DOFs (ûi, âi, b̂i) per node can change. As a result,
indexing is an independent step after all DOFs are assigned. There are different ways
to sort the existing DOFs. The method used is shown exemplarily for a mesh where
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node 5 is enriched by the crack-path enrichment function and node 9 is enriched by
the crack tip enrichment functions.

ûx =

[
û1 v̂1 ... û5 v̂5 â51 â52 û6 v̂6 ... û8 v̂8

û9 v̂9 b̂
(1)
91 b̂

(1)
92 b̂

(2)
91 b̂

(2)
92 b̂

(3)
91 b̂

(3)
92 b̂

(4)
91 b̂

(4)
92 ...

]T
(4.9)

To evaluate the global indices for each DOF, first all nodes which should be

enriched have to be defined. Then, every vector group
(

like [ûi v̂i]
T , [âi1 âi2]T

or
[
b̂

(j)
i1 b̂

(j)
i2

]T )
gets assigned a continuous global index, by counting through all

existing DOFs. The length of these vectors is constant and, therefore, it is possible
to calculate every single index.

4.6. Integration points for elements with an interface

In Section 3.4, it is explained that for numerical integration in elements cut by
a discontinuity, or which have a singularity, special treatment is required. For
discontinuities, the integration area has to be split up, and near singularities an
increased number of integration points should be used. Here, the evaluation of the
positions and weights of these points for quadrilaterals will be shown.

4.6.1. Subelements for quadrilaterals cut by a discontinuity

We will use the integration points of quadrilateral subelements, to calculate the new
integration points. There are two different possibilities how a quadrilateral can be
cut by an interface (shown in Figure 3.9), which can be distinguished by:∣∣∣∣∣

nel∑
i=1

sign(φi)

∣∣∣∣∣ = 0 =⇒ case a)∣∣∣∣∣
nel∑
i=1

sign(φi)

∣∣∣∣∣ = 2 =⇒ case b) (4.10)

Case a)

In Figure 4.6, the quadrilateral subelements for case a) in all three occurring
coordinate systems is shown. Here, a vertical interface in the (x, y)-system is shown.
By (4.1) node i and node (i+ 1) which belong to the edge, crossed by the interface,
can be evaluated.

To get a more general method, which enables to handle all interfaces that split
the element into two parts with two nodes on each side, the indices of the four edge
points r̂originall (l = 0...3) in the original occurring configuration get shifted by the

index i evaluated before. The resulting point r̂referencek belongs to the reference
configuration, shown in Figure 4.6. As in all further steps only the reference
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configuration will be used, the description ‘reference’ for all points r̂referencek is
omitted.

r̂referencek =

{
r̂originalk+i for k + i < 4

r̂originalk+i−4 for k + i ≥ 4
k = 0, 1, 2, 3 (4.11)

The next step is to calculate the node positions of the subelements in the (r, s)-
system. As the position of nodes that are aligned with element edges are known, in
case a) only the positions r̂4 and r̂5 have to be calculated. How r̂4 and r̂5 can be
calculated is shown in Section 4.2.

r̃

s̃

r

s

x

y

r̂4

r̂5

r̂0 r̂1

r̂3 r̂2

1
1

1

2

2

x̂0

x̂1

x̂2

x̂3

Figure 4.6. Quadrilateral subelements for the reference configuration of case a) in
all three occurring coordinate systems

In the following, Table 4.1 shows the quadrilateral subelements with their node
points r̂i.

Table 4.1. Quadrilateral subelements with their node points for case a)

Subelement number node pos. 0 node pos. 1 node pos. 2 node pos. 3

1 r̂0 r̂4 r̂5 r̂3

2 r̂4 r̂1 r̂2 r̂5

Case b)

In Figure 4.7 the quadrilateral subelements for case b) in all three occurring
coordinate systems are shown. In this reference configuration, the interface separates
node 1 from the rest of the element. With index i from condition (4.1), the separated
node can be found. It is important that this rule is used counterclockwise and the
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first index i found is used for the same shifting as in case a) (4.11). Then, the range
of this approach can be enlarged to all quadrilaterals, split by an interface into one
part with three nodes and the rest.

Again, points r̂4 and r̂5 in the (r, s)-system can be evaluated with the method
shown in Section 4.2. All other points are expressed by the now known points. The
positions can be chosen arbitrarily, because also other positions for these points
would be possible.

r̂6 =
r̂4 + r̂5

2
r̂7 =

r̂1 + r̂4

2

r̂8 =
r̂1 + r̂5

2
r̂9 =

r̂7 + r̂8

2
(4.12)
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Figure 4.7. Quadrilateral subelements for the reference configuration of case b) in
all three occurring coordinate systems

In the following, Table 4.2 shows the quadrilateral subelements with their node
points r̂i.

Table 4.2. Quadrilateral subelements with their node points for case b)

Subelement number node pos. 0 node pos. 1 node pos. 2 node pos. 3

1 r̂1 r̂8 r̂9 r̂7

2 r̂4 r̂7 r̂9 r̂6

3 r̂9 r̂8 r̂5 r̂6

4 r̂4 r̂6 r̂3 r̂0

5 r̂6 r̂5 r̂2 r̂3
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4.6.2. Subelements for quadrilaterals with a crack tip

In Figure 4.8, the subelements for the reference configuration are shown, which
are used to calculate the integration points of an element with tip. To increase
integration accuracy near the crack tip, where singular integrants occur, the density
of integration points should be increased near the tip position. This can be achieved
by using quadrilateral subelements with two nodes in the crack tip. As for the
calculation of the crack tip (Section 4.4) the positions r̂4 and r̂5 are already known,
it should be started from this point.

To get a method which is able to create subelements for all possible configuration
of an element with crack tip, again the index of the node coordinates should be
shifted by (4.11). The required shifting index i can be found as follows:

i =


{

1 for r̂4 > 0
3 for r̂4 < 0

and |r̂4| = 1{
2 for ŝ4 > 0
0 for ŝ4 < 0

and |r̂4| 6= 1
(4.13)
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Figure 4.8. Quadrilateral subelements for the reference configuration of a crack tip
interface in all three occurring coordinate systems

In the following, Table 4.3 shows the quadrilateral subelements for the treatment
of crack tips with their node points r̂i.

4.6.3. Positions and weights of integration points from
subelements

Now the Positions of the integration points in the (r, s)-system should be evaluated.
The positions r̃ip of the integration points in the (r̃, s̃)-system are known from the
Gauss Formulas (see (1.44) II). Using the isoparametric concept, the positions
rip for subelement (m̃) can be evaluated with the same interpolation matrix
(H(m̃)(r, s) = H(m)(r, s)) as used in (1.33).
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Table 4.3. Quadrilateral subelements with their node points for elements with a
crack tip

Subelement number node pos. 0 node pos. 1 node pos. 2 node pos. 3

1 r̂0 r̂4 r̂5 r̂5

2 r̂4 r̂1 r̂5 r̂5

3 r̂1 r̂2 r̂5 r̂5

4 r̂2 r̂3 r̂5 r̂5

5 r̂3 r̂0 r̂5 r̂5

rip = H(m̃)(r̃ip, s̃ip) · r̂ with r̂ =


r̂0

ŝ0

...

r̂3

ŝ3

 (4.14)

To calculate the positions xip of the integration points in the (x, y)-system (1.33)
can be used:

xip = H(m)(rip, sip) · x̂ with x̂ =


x̂0

ŷ0

...

x̂3

ŷ3

 (4.15)

The known integration weights α̃i from the Gauss formulae (see (1.45)) of the
subelements have too big values, because they are evaluated in the natural interval
of the subelements.

As the real domain of such a subelement is smaller than the natural interval in
each axis, an approach similar to (1.38) is used. The integration weights αi can be
evaluated with Jr.

Jr(r̃, s̃) =

[
∂r
∂r̃

∂r
∂s̃

∂s
∂r̃

∂s
∂s̃

]
(4.16)

Similar to (1.37) Jr can be calculated by:

Jr(r̃, s̃) =
[
∂H(m̃)(r̃,s̃)

∂r̃
· r̂ ∂H(m̃)(r̃,s̃)

∂s̃
· r̂
]

(4.17)
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Analogous to (1.38) the finite Volume dV r̃ of the subelement in the (r̃, s̃)-system
can be expressed by the finite Volume dV r in the (r, s)-system.

dV r = det(Jr(r̃, s̃)) · dr̃ · ds̃ = det(Jr(r̃, s̃)) · dV r̃ (4.18)

Using (1.46) with already multiplied weighting factors α̃ip for the 2d case, finally αip
can be evaluated : ∫

V r̃

F (r̃, s̃) dV r̃ ≈
∑
ip

α̃ip · F (r̃ip, s̃ip)

∫
V r

F (r, s) dV r =

∫
V r̃

F (r̃, s̃) · det
(
Jr(r̃, s̃)

)
dV r̃ ≈

∑
ip

αip · F (rip, sip)

=⇒ αip = det
(
Jr(r̃ip, s̃ip)

)
· α̃ip (4.19)

In Figure 4.9, a structured XFEM grid of quadrilaterals with a crack inside is shown.
The positions of the integration points are illustrated by the blue points. The
weighting factor of each one relative to the others is given by the size of the point.

To improve clarity of the figure, only two integration points in each direction of
the quadrilateral (subelement) were used. By increasing the number of integration
points in each direction, the integration accuracy in the crack tip element can be
enhanced.

crack

integration point

element cut by discontinuity

element cut by discontinuity

element with crack tip

case a)

case b)

(sampling point)

Figure 4.9. Integration points for a structured grid of quadrilaterals with a crack
discontinuity

4.7. Formulation of matrices in the FE equilibrium

The FE formulation of the equilibrium equation in form (1.26) should be used.
Therefore attention has to be paid to the occurring matrices. As already mentioned
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in Section 1.6.2, it is not effective to use the same global indexing scheme, because
the element matrices would get very big. Therefore, only DOFs which belong to this
element will be considered. Additionally, it is not necessary to use the same order
of DOFs. To enable simple standard- and enrichment-matrices, the following order
is used:

û(m)
x =

[
û1 v̂1... ûnel v̂nel â11 â12 ... ânel1 ânel2

b̂
(1)
11 b̂

(1)
12 ... b̂

(1)
nel1

b̂
(1)
nel2

b̂
(2)
11 b̂

(2)
12 ... b̂

(2)
nel1

b̂
(2)
nel2

...

]T
(4.20)

It should be pointed out that only existing enrichment DOFs are put into this vector.
Therefore, the length of this local ‘displacement’- vector is varying, even for elements
with the same number of standard degrees of freedom.

4.7.1. Evaluation of the strain-displacement matrix

The strain-displacement matrix (see (1.24)) for standard Finite Element Analysis
(FEA) has to be enlarged, to capture all parts of (3.6). For every enrichement an
extra strain-displacement matrix is constructed and afterwards they are combinded.
The first part is the standard B-matrix for the 2d case (row 3, 5, 6 and every third
column are removed from (1.24)).

To build the matrix for the enrichment parts, the derivatives of the resulting shape
functions Ni(x) ·ψ?(x) have to be evaluated by the chain rule (ψ?(x) stands for any
enrichment function). The derivatives of all specific enrichment functions (ψjump(x)

and ψ
(i)
tip(x)) for the crack problem are given in Appendix A.2.

∂ [Ni(x) · ψ?(x)]

∂xi
=
∂Ni(x)

∂xi
· ψ?(x) +

∂ψ?(x)

∂xi
·Ni(x) (4.21)

By using these derivatives, the B
(m)
? (x)-matrices for the enrichment parts of the

approximation can be denoted. Here an example for an element, where node 2 and
node 4 are enriched, is given:

B(m)
? (x) =


∂[N2(x)·ψ?(x)]

∂x
0 ∂[N4(x)·ψ?(x)]

∂x
0

0 ∂[N2(x)·ψ?(x)]
∂y

0 ∂[N4(x)·ψ?(x)]
∂y

∂[N2(x)·ψ?(x)]
∂y

∂[N2(x)·ψ?(x)]
∂x

∂[N4(x)·ψ?(x)]
∂y

∂[N4(x)·ψ?(x)]
∂x

 (4.22)

It should be pointed out that the size of this matrix changes, depending on the
number of enriched nodes. Only for full enriched elements, it has the same size as
the standard B-matrix. To get the extended B-matrix (B

(m)
x ), which fits to the local

DOF order (see (4.20)), the 2d form of the standard- (1.24) and enrichment- (4.22)
matrix have to be combined as shown in the following.

B(m)
x =

[
B(m) B

(m)
jump B

(m)
tip(1) B

(m)
tip(2) B

(m)
tip(3) B

(m)
tip(4)

]
(4.23)
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4.7.2. Evaluation of the interpolation matrix

Also the interpolation matrix (1.22) for the standard FEA has to be enlarged,
to get an equivalent equation to (3.6) in matrix-form. For every enrichment, an
extra interpolation matrix is built before all matrices are assembled to the extended
interpolation matrix H

(m)
x . The first part is the standard interpolation matrix as

shown in (1.22) for the 2d case (last row and every third column are removed).
For the interpolation matrix the ‘effective’ shape functions are required:

N eff
i (x) = Ni(x) · (ψ?(x)− ψ?(xi)) (4.24)

By using these ‘effective’ shape functions the extra interpolation matrices H
(m)
? (x)

for the enrichment parts can be found. Here, an example for an element where node
2 and node 4 are enriched is given:

H(m)
? (x) =

[
N eff

2 (x) 0 N eff
4 (x) 0

0 N eff
2 (x) 0 N eff

4 (x)

]
(4.25)

The size of this matrix is changing depending on the number of enriched nodes
for the specific enrichment ψ?(x).

To get the extended interpolation matrix H
(m)
x , all interpolation matrices are

assembled as shown in the following:

H(m)
x =

[
H(m) H

(m)
jump H

(m)
tip(1) H

(m)
tip(2) H

(m)
tip(3) H

(m)
tip(4)

]
(4.26)

4.8. Evaluation of stress intensity factors

With the SIFs (KI and KII) an ‘amplitude’ for the displacements and stresses in
the crack tip field is defined (see Section 2.2). In the XFEM, these quantities can be
the result of the calculation, or they are required in the formulation of crack growth
criteria. There are different methods to evaluate the SIFs.

Results aquired by the XFEM would allow a direct evaluation of the SIFs, as
linear combination of the calculated crack tip enrichment coefficients b̂

(j)
i [24]. This

approach has been implemented and analyzed for KI on several simple test cases.
The evaluated (KI)s differed significantly from the exact solutions, and therefore,
another method was used, which is standard in the XFEM.

The domain form of the interaction integral is a very accurate approach and for
this reason was used in the implementation. The interaction integral as path integral
is shown in [26], the domain form is given in [20].

4.8.1. Domain form of the interaction integral

Starting at the local tip (x1, x2)-coordinate system (see Figure 4.10), the J-integral
(see (2.8)) for the sum of two states should be evaluated for k = 1. State (1) with

stresses σ
(1)
ij , strains ε

(1)
ij , displacements u

(1)
i and state (2) with stresses σ

(2)
ij , strains

ε
(2)
ij , displacements u

(2)
i .
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Figure 4.10. Paths around crack tip and coordinate system

J
(1)
1 =

∫
Ci

[
1

2
σ(1)
mnε

(1)
mnδj1 − σ

(1)
ij

∂u
(1)
i

∂x1

]
nj dCi

J
(2)
1 =

∫
Ci

[
1

2
σ(2)
mnε

(2)
mnδj1 − σ

(2)
ij

∂u
(2)
i

∂x1

]
nj dCi

J
(1+2)
1 =

∫
Ci

[
1

2
(σ(1)

mn + σ(2)
mn)(ε(1)

mn + ε(2)
mn)δj1 − (σ

(1)
ij + σ

(2)
ij )

∂(u
(1)
i + u

(2)
i )

∂x1

]
nj dCi

(4.27)

The interaction integral for state (1) and (2) is shown in the following:

I
(1,2)
1 = J

(1+2)
1 − J (1)

1 − J
(2)
1 (4.28)

I
(1,2)
1 =

∫
Ci

[
1

2
(σ(1)

mnε
(2)
mn + σ(2)

mnε
(1)
mn)δj1 − σ(1)

ij

∂u
(2)
i

∂x1

− σ(2)
ij

∂u
(1)
i

∂x1

]
nj dCi (4.29)

Using the symmetry of the elasticity tensor (see (1.11)), the following simplification
can be demonstrated:

σ(1)
mnε

(2)
mn = Cmnopε

(1)
op ε

(2)
mn

σ(2)
mnε

(1)
mn = Cmnopε

(2)
op ε

(1)
mn = Copmnε

(2)
mnε

(1)
op = Cmnopε

(2)
mnε

(1)
op (4.30)

I
(1,2)
1 =

∫
Ci

[
σ(2)
mnε

(1)
mnδj1 − σ

(1)
ij

∂u
(2)
i

∂x1

− σ(2)
ij

∂u
(1)
i

∂x1

]
nj dCi (4.31)
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With Equation (2.11) for a 2d case (KIII = 0) and (4.28) a relation between the
interaction integral and the SIFs can be found.

I
(1,2)
1 =

2

E ′

(
K

(1)
I K

(2)
I +K

(1)
II K

(2)
II

)
(4.32)

By setting state (1) to be the actual calculated result and state (2) to be a reference
state, it is possible to evaluate KI and KII .

If state (2) is chosen to be the crack tip field for Mode 1 (KI = 1 and KII = 0),
KI can be evaluated.

K
(1)
I =

E ′

2
I

(1,Mode 1)
1 (4.33)

Analogously to this, KII can be evaluated by choosing state (2) to be the crack
tip field for Mode 2 (KI = 0 and KII = 1).

K
(1)
II =

E ′

2
I

(1,Mode 2)
1 (4.34)

As the contour integral (4.31) is not in a proper form to be evaluated from
FEM results, a domain form of the interaction integral is preferred. Therefore the
integrand is multiplied with a smooth weighting function q(x), which is 1 on Ci and
0 on Co(see Figure 4.11).

Assuming traction free and straight crack surfaces, the interaction integral can
also be evaluated by integration along the path C shown on Figure 4.10, which
consists of Ci +Cc +Co. By implementing the normal vector components ñj of the
enclosed domain Ω which is −nj on Ci, the formulation (4.35) can be obtained.

Co

x1

x2

1

0

q(x)

Figure 4.11. Weighting function q(x) around the crack tip

I
(1,2)
1 = −

∫
C

[
σ(2)
mnε

(1)
mnδj1 − σ

(1)
ij

∂u
(2)
i

∂x1

− σ(2)
ij

∂u
(1)
i

∂x1

]
qñj dC (4.35)
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Applying Gauss’ theorem on this contour integral, an integral in domain Ω can be
created. As these integrals are valid for any arbitrary contour Ci, it can be reduced
to the crack tip, whereby Ω is the whole domain inside Co. Using the fact, that the
derivative of the terms between the brackets with respect to xj is zero (see Appendix
A.5), the following form can be found:

I
(1,2)
1 = −

∫
Ω

[
σ(2)
mnε

(1)
mnδj1︸ ︷︷ ︸
I

−σ(1)
ij

∂u
(2)
i

∂x1︸ ︷︷ ︸
II

−σ(2)
ij

∂u
(1)
i

∂x1︸ ︷︷ ︸
III

]
∂q

∂xj
dΩ (4.36)

4.8.2. Implementation of the interaction integral

To evaluate the interaction integral with the FEM, the weighting function q(x) is
created from values q̂i in the element nodes and interpolated with the standard
shape functions (see (4.37)). Then q(x) can easily be found by setting q̂i = 1 inside
Co and q̂i = 0 outside (shown in Figure 4.12). Using the derivatives of the standard
shape functions and the inverse Jacobian matrix (1.35), the gradient of the weighting
function can be evaluated.

q(x) = H(m)(r, s) · q̂ with q̂ =

 q̂1

...
q̂nel

 (4.37)

x1

x2

Co

q̂i = 1
q̂i = 0

Figure 4.12. Weighting function q(x) created from nodal values q̂i, for a grid around
the crack tip

To calculate the first part of (4.36)-I, the stress from the reference state (2) and
the strain from the actual results are required.

The stress of the reference state (2) can be evaluated from the solutions of the
crack tip field ((2.1) or (2.4)). As these stresses are given in x1, y1-system (Sx1,y1),
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the stresses in the x, y-system (Sx,y) can be evaluated with with the rotation matrix
A (see Figure 4.13).

Sx,y = A · Sx1,y1 ·AT

with Sx,y =

[
σxx σxy

σxy σyy

]
, Sx1,y1 =

[
σx1x1 σx1y1
σx1y1 σy1y1

]
and A =

[
cos
(
θt(i)
)
−sin

(
θt(i)
)

sin
(
θt(i)
)

cos
(
θt(i)
) ] (4.38)

To get the strain in actual state (1), the 2d form of Equation (1.23), with the

matrix B
(m)
x , can be used. The Kronecker symbol δj1 in the (x1, y1)-system can

be considered as shown in the following. In matrix notation, δj1 in the (x1, y1)-

system can be written as δ1j=̂

[
1
0

]
. For the transformation into the (x, y)-system,

the rotational matrix A has to be applied.

A ·
[
1
0

]
=

[
cos(θt(i))
sin(θt(i))

]
(4.39)

=⇒ σ(2)
mnε

(1)
mnδj1=̂

(
σ(2)
mnε

(1)
mn

)
·
[
cos
(
θt(i)
)

sin
(
θt(i)
)] (4.40)

For II in (4.36), the derivatives of the displacements
∂u

(2)
i

∂x1
from the reference state

(2) are shown in Appendix A.6. As these displacements are given in the directions
of the local crack tip coordinate system (x1, y1), they have to be transformed by the
rotation matrix A. [

∂u
∂x1

∂v
∂x1

]
= A ·

[
∂u1
∂x1

∂v1
∂x1

]
(4.41)

The stress σ
(1)
ij can be evaluated by the 2d equivalent of Equations (1.23) and

(1.25) with the matrix B
(m)
x .

The derivatives of the displacements that are required in (4.36) - III can be found

by manipulation of the B
(m)
x - matrix (see (4.23)). With (B

(m)
x )i as the i-th row of

the B
(m)
x - matrix, with (B

(m)
x )3 odd where every second element of (B

(m)
x )3 is set to

zero and with (B
(m)
x )3 even where all other elements of (B

(m)
x )3 are changed to zero,

the derivatives can be evaluated as shown in the following.

∂u(1)

∂x
= εxx = (B(m)

x )1 · û(m)
x (4.42)

∂v(1)

∂y
= εyy = (B(m)

x )2 · û(m)
x (4.43)

∂u(1)

∂y
= (B(m)

x )3 odd · û(m)
x (4.44)

∂v(1)

∂x
= (B(m)

x )3 even · û(m)
x (4.45)
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x

y

x1

y1

θt(i)

Figure 4.13. Local crack coordinate system

From Figure 4.13 the following derivatives can be found:

∂x

∂x1

= cos
(
θt(i)
)

and
∂y

∂x1

= sin
(
θt(i)
)

(4.46)

Using the chain rule, finally the required derivatives can be evaluated:

∂u(1)

∂x1

=
∂u(1)

∂x
· cos

(
θt(i)
)

+
∂u(1)

∂y
· sin

(
θt(i)
)

(4.47)

∂v(1)

∂x1

=
∂v(1)

∂x
· cos

(
θt(i)
)

+
∂v(1)

∂y
· sin

(
θt(i)
)

(4.48)

The stress in reference state (2) has already been evaluated for part I.

4.9. Crack growth by modification of level set
functions

With quasi-static crack growth simulation, the crack path, which results from the
load situation, should be calculated. Here no dynamic effects will be considered and
the crack path will be created step by step. The equilibrium, given in Equation
(1.1) without inertial forces, is satisfied for every step.

A method to evaluate the enrichment functions for the crack path (ψjump(x)) and

the crack tip (ψ
(i)
tip(x)) in the new crack path segment is required. As the crack

growth enrichment function gets evaluated by the value of the level set function for
the crack path, this level set function should be modified for every crack growth step.
To calculate the crack tip enrichment functions, simply the new crack tip position
and crack tip angle have to be evaluated.
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4.9.1. Crack growth process

In the following Figure 4.14, the whole process which is used to generate the XFEM
model for the next step of a crack growth analysis is shown.

KI , KII ,
other

results

calculate crack
growth angle (θc)

• Section 4.9.2

remove tip-,
recover crack path-

enrichment
• Section 4.9.3

calculate element
boundary - crack

intersection points
• Section 4.9.4

modify
level set function

• Section 4.9.5

selection of
enriched nodes

• Section 4.9.6

element
has

crack tip?

XFEM
model

yes

no

Figure 4.14. XFEM crack growth process
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4.9.2. Calculate crack growth angle

In this calculation, a growth length lc in which the growth angle does not change, is
set (see Figure 4.15). Therefore, a criterion for the direction of growth is required.
Here, the maximal circumferential stress criterion, which has already been described
in Section 2.4.1 should be used. Equation (2.14) gives the angle for the next crack
growth segment.

An equal formulation, which is easier to implement (proposed in [24]) is used.
Here θc > 0 for KII < 0 and θc < 0 for KII > 0. A detailed derivation is given in
Appendix A.1.

θc = 2 arctan

[
−2KII/KI

1 +
√

1 + 8(KII/KI)2

]
(4.49)

θc
θt(i)

x

y

y1

x1

actual crack tip (xt)

new crack tip (xtn)

actual crack

l c

Figure 4.15. Crack growth

4.9.3. Remove tip enrichment, recover crack path enrichment

For tip enrichments which are applied inside a radius around the crack tip, these tip
enrichments have to be removed and the path enrichments in this area have to be
recovered (see Figure 4.16). As this is the inverse procedure which is done to select
the tip enrichment nodes, it is advantageous to store all crack path enriched nodes,
which were removed before (see Section 4.3).

The following steps will be applied on all elements along the new crack segment
(green elements in Figure 4.15), starting with the element which has the actual
crack tip inside.

4.9.4. Calculate element boundary - crack intersection points

In this section, the two points, where the new crack segment cuts the boundaries
of a specific element should be evaluated. Therefore, the linear functions, which
describe the element boundary and the crack segment, are defined (see Figure 4.17)
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x

y

enriched with crack path enrichment function
enriched with crack tip enrichment functions

Figure 4.16. Recover crack path enrichment

in Equation (4.50) and (4.51), with xt as previous crack tip position and xi as the
position of the element edges. Evaluating the free parameter α from this system of
equations, the intersection point x

(j)
c can be calculated.

If the calculated point is between xi+1 and xi, an intersection point is found. This
case can be proved by the condition 0 ≤ α ≤ 1. In the following step, we will use
the angle θ = θc + θt(i).

for the crack segment y = tan(θ) · (x− xt) + yt (4.50)

for the element boundary x = α · (xi+1 − xi) + xi (4.51)

=⇒ α =
(yi − yt)− tan(θ) · (xi − xt)

tan(θ) · (xi+1 − xi)− (yi+1 − yi)
(4.52)

Applying this method for i = 0, 1, ..., (nel − 1) two points x
(α1)
c and x

(α2)
c should

be found. To find the entry (x
(1)
c ) and exit (x

(2)
c ) point of the crack segment, the

following approach can be used:

x(1)
c =

{
x

(α1)
c for sign

(
cos(θ)

)
· x(α1)

c < sign
(
cos(θ)

)
· x(α2)

c

x
(α2)
c for sign

(
cos(θ)

)
· x(α1)

c > sign
(
cos(θ)

)
· x(α2)

c

x(2)
c =

{
x

(α1)
c for sign

(
cos(θ)

)
· x(α1)

c > sign
(
cos(θ)

)
· x(α2)

c

x
(α2)
c for sign

(
cos(θ)

)
· x(α1)

c < sign
(
cos(θ)

)
· x(α2)

c

(4.53)

4.9.5. Modify level set function

In order to describe the crack, two level set functions were used. As φt(x) only
describes the position of the crack tips, this level set function will not be used in the
crack growth process, since the position of the crack tip can be calculated easily.

The function φ(x) will be updated by a local modification. Hereby, local means
that the level set function will only be modified in elements, which are cut by the
new crack segment. To modify the level set function, the form which interpolates
level set values on the nodes (φi) will be used (see (3.8)). This reduces the problem
to a modification of nodal values.
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Figure 4.17. Element cut by a new crack segment

As a result of this local approach, the crack path enrichment function ψjump(x)
has to be evaluated in elements which are cut by a crack only. Evaluating the crack
path enrichment function outside these elements, is not required anyway, as the
shifted enrichment is always zero in these elements.

The level set function values φi, which belong to the boundary where the
crack enters the element, already describe the interface correctly on the boundary.
Therefore, these values should remain untouched. To evaluate the level set value in
the other nodes, two possible configurations, of how a quadrilateral can be cut by a
crack interface, have to be distinguished.

configuration a)

+

-

+

-

x

y

+

-

+

+
φl φm

φnφo

φl φm

φnφo

x
(1)
c x

(1)
c

x
(2)
c

crack entry boundary

crack exit boundary

Figure 4.18. Modification of the level set function φ(x) for crack growth in a
quadrilateral; configuration a)

In configuration a), shown in Figure 4.18, one node gets separated by the crack.
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For this configuration, there is only one level set value on the crack exit boundary
left, which has to be evaluated. The value φm is defined by the other level set value
on the crack exit boundary and the position of the crack on this boundary, expressed
by the evaluated parameter α (from (4.52)). Here, φi is the value which should be
evaluated and the neighbouring values φi+1 (counterclockwise) or φi−1 (clockwise)
on the exit boundary.

φi =

{
α

(α−1)
· φi+1 for node i and node (i+ 1) on the exit boundary

(α−1)
α
· φi−1 for node i and node (i− 1) on the exit boundary

(4.54)

With the three just evaluated level set values, the interface is defined on the element
boundary. The last level set value φn defines, if there is a second interface in the
element (not wanted) and the shape of the interface. By defining the interface to
be a straight line, the level set value on the remaining node can be evaluated from
a plane, which gives the level set values inside the quadrilateral. A plane can be set
up by:

φ(x, y) = β1x+ β2y + β3 or (4.55)

φ(x?) = β · x? with x? =

xy
1

 and β =

β1

β2

β3

 (4.56)

To evaluate the unknown parameter vector β, the level set values which are known
can be used (φl, φm, φo should be known on the positions x?l ,x

?
m,x

?
o).

φ = A · β with φ =

 φlφm
φo

 and A =

x?Tlx?Tm
x?To

 (4.57)

=⇒ β = A−1 · φ (4.58)

With this formulation for the plane, finally, the level set value φn, on the last node
position x?n, can be calculated with help of (4.56). However, by using this exact
approach, big oscillations of the level set values occur after some crack growth steps.
To avoid this effect, only the sign of the resulting level set value is used (with φn(old)

to be the previous value and φn(new) to be the exact value on the plane).

φn(corr) = sign
(
φn(new)

)
·
∣∣φn(old)

∣∣ (4.59)

This approach causes a non-linear crack interface (shown in Figure 4.19), but as long
as this curved interface does not exceed any integration point, it has no effect on
the approximation and, therefore, on the results. The crack entry position and
exit position remains untouched, because of the bilinear shape functions of the
quadrilateral.

configuration b)

In configuration b) (shown in Figure 4.20), the crack interface splits the element
into two parts with two nodes. The two level set values on the crack exit boundary
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Figure 4.19. Effect of varying the level set value φn on the crack interface

+

-

-

-

x

y

+

-

+

-
φl φm

φnφo

φl φm

φnφo

x
(1)
c

x
(2)
c

crack entry boundary

crack exit boundary

x
(1)
c

Figure 4.20. Modification of the level set function φ(x) for crack growth in a
quadrilateral; configuration b)

should have the required sign and should define the position of the crack on the
boundary. Therefore, the value of φm is evaluated by:

φm = sign(φl) · abs(φm) (4.60)

Then the value of φn can be evaluated equally to configuration a) by Equation (4.54).
In Figure 4.21 the modification of the level set function φ(x) for a calculated

example is shown.

4.9.6. Selection of enriched nodes

To select the enriched nodes, it has first to be tested, if the crack tip is in the
investigated element. This can be proved by the crack growth length lc, the position
of the previous crack tip xt and an assumed crack point on the crack exit boundary
x

(2)
c of the actual element. The tip is not inside this element if:

l2c >
(
xt − x(2)

c

)2
+
(
yt − y(2)

c

)2
(4.61)
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φ(x) > 0

φ(x) < 0

interface described by φt(x)

crack

a)

b) c)

d) e)

Figure 4.21. Modification of the level set function φ(x) (illustrated by color) with
actual crack for a crack growth example; a) 1st step (inital state), b)
2nd step, c) 3rd step, d) 4th step), e) 10th step

All nodes which belong to elements fulfilling this condition, are enriched with the
crack path enrichment. If there are nodes which are enriched by the tip enrichment
function, this tip enrichment function will be removed, as it stems from the old crack
tip position.

If condition (4.61) is not true, the crack tip is in the element. Then, the new
crack tip coordinate xtn has to be calculated. Figure 4.15 shows the situation for
one crack growth segment.
The crack tip position can be calculated from the old crack tip position xt.

xtn = xt + lc ·
[
cos(θ)
sin(θ)

]
(4.62)

With this point, the new crack tip is defined and the nodes of this element will be
enriched by the crack tip enrichment function. Again it is possible to enrich all nodes
inside a circle around the tip to increase accuracy. Then, all crack path enrichments
inside the circle have to be removed. These removed enrichments should be stored
in a list to be able to recover them for the next crack growth step (see Section 4.9.3).
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The new crack tip position xtn should now be used to calculate the value for the
crack tip enrichment function ψtip(x).

As Figure 4.14 shows, the last three steps of the crack growth process have to be
repeated for every element in the new crack segment. As criterion to find the next
element along the crack, the fact that the two nodes on the crack exit boundary of
the actually investigated element belong to the next element, can be used.
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5. Numerical examples

In the previous chapters the essential background was given. In this section
numerical examples calculated in the created python code are shown.

5.1. Edge crack under tensile stress in a stretched
plate

As first case an edge crack under tensile stress (the red line in Figure 5.1 illustrates
the crack) in a plate should be analyzed. The 2d stress-strain situation should be a
plane strain case.

σ

σ

a

b

c

b/
2

x

y

a = 1mm

b = 2mm

c = 0.5mm

σ = 1N/mm2

E = 210000N/mm2rq

re

ν = 0.3

Figure 5.1. Edge crack under tensile stress in a stretched plate

5.1.1. Analytical solution

The analytical solution for an infinite plate with a crack inside is KI = σ
√
πc [13].

As the analyzed plate has an edge crack with a traction free left edge, a stress
raising effect can be noticed. This effect and the finite dimensions of the plate
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can be described most accurately by the following formulation (0.5% deviation for
c/a < 0.6) [8].

KI = C
( c
a

)
· σ ·
√
π · c with

C
( c
a

)
= 1.12− 0.231

( c
a

)
+ 10.55

( c
a

)2

− 21.72
( c
a

)3

+ 30.39
( c
a

)4

(5.1)

Noticing that this symmetric case has no mode II components, both SIFs can be
evaluated:

KI = 3.542336N/mm3/2 and KII = 0N/mm3/2

5.1.2. Numerical solution

The SIFs should be calculated by the domain form of the interacton integral and
compared to the analytical solution. Different weighting functions q(x) should be
applied. The area, where q(x) = 1, is defined by a circle with radius rq.

To investigate the influence of different crack tip enrichment zones, the size of
the circle (defined by re, see Figure 3.7), which defines this zone, is changed too.
Therefore, the number of unknowns in the linear system of equations changes.

Furthermore, three different meshes should be used, a coarse structured grid, a
fine structured grid and an unstructured grid. Figure 5.2 shows these meshes with
the crack.

To describe the crack, the following level set functions were used:

φ(x, y) = y and φt(x, y) = −x (5.2)

a) b) c)
Figure 5.2. Meshes for the calculation of the edge crack (marked) - a) coarse

structured; b) fine structured; c) unstructured
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In Figure 5.3, the deformed plate as a result of the calculation is shown. To
visualize the deformed figure, on each side of the crack, the displacements were
evaluated with the complete displacement approximation.

+2 · 10−5mm

−2 · 10−5mm

+10−5mm

0mm

−10−5mm

x

y

Figure 5.3. Deformed plate with an edge crack under tensile stress (displacements
multiplied by factor 103); color shading shows y - displacement

In Table 5.1, 5.2 and 5.3 the calculated values of KI for the different meshes
are shown. For the coarse mesh, the weight function with rq = 0.1mm and the
enrichment zone re = 0.1mm would only select the tip element and therefore was
not calculated. The maximal occurringKII value was approximately 10−10N/mm3/2

for the structured meshes and 0.003331N/mm3/2 for the unstructured mesh, which
is a good result.

The coarse mesh shows already good agreement with the analytical solution. As
expected, the fine mesh leads to more accurate results. It is remarkable that the
unstructured mesh can provide approximately the same accuracy as the fine mesh
for this symmetric case.

It can be seen that the variation of KI for different weight functions of the
interaction integral (defined by rq) is very small for all meshes and enrichment
zones. This shows, that there is a good represention of the mode I crack tip field in
the whole plate. For general cases, where the global displacement is not similar to
a crack tip field, the weight function should select a small region around the crack
tip, to avoid other influences. The accuracy also for small regions is very good in
this case, as can be seen from the results.

For this stretched plate with edge crack under tensile stress, the accuracy of the
results explicitly depends on the tip enrichment area. The more nodes around the
crack tip are enriched, the more accurate results can be calculated. It should be
mentioned that this behavior is not expected for curved cracks, as the crack tip field
only describes a straight crack.
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Table 5.1. Calculated KI for structured coarse mesh, for different enrichment zone
and weight functions of the interaction integral

norm. KI KI rq re number of
[−]

[
N/mm3/2

]
[mm] [mm] unknowns

0.959397 3.398507 0.2
0.959284 3.398106 0.3 only tip element 1020
0.959202 3.397817 0.4
0.985415 3.490669 0.2
0.980728 3.474067 0.3 0.2 1236
0.980572 3.473514 0.4
0.982719 3.481122 0.2
0.987635 3.498534 0.3 0.3 1456
0.984588 3.487740 0.4
0.988071 3.500079 0.2
0.988008 3.499856 0.3 0.4 1864
0.990457 3.508530 0.4

Table 5.2. Calculated KI for structured fine mesh, for different enrichment zone and
weight functions of the interaction integral

norm. KI KI rq re number of
[−]

[
N/mm3/2

]
[mm] [mm] unknowns

0.979974 3.471397 0.1
0.980449 3.473079 0.2
0.980398 3.472897 0.3

only tip element 3688

0.980380 3.472834 0.4
0.995483 3.526337 0.1
0.990848 3.509917 0.2
0.990786 3.509695 0.3

0.1 3872

0.990766 3.509626 0.4
0.994006 3.521101 0.1
0.996062 3.528387 0.2
0.994779 3.523840 0.3

0.2 4532

0.994756 3.523761 0.4
0.995933 3.527929 0.1
0.995850 3.527636 0.2
0.996829 3.531102 0.3

0.3 5576

0.996190 3.528840 0.4
0.996899 3.531350 0.1
0.996850 3.531176 0.2
0.996832 3.531114 0.3

0.4 7100

0.997410 3.533161 0.4
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Table 5.3. Calculated KI for unstructured mesh, for different enrichment zone and
weight functions of the interaction integral

norm. KI KI rq re number of
[−]

[
N/mm3/2

]
[mm] [mm] unknowns

0.982228 3.479380 0.1
0.982528 3.480443 0.2
0.982534 3.480465 0.3

only tip element 4338

0.982474 3.480253 0.4
0.995533 3.526511 0.1
0.990632 3.509150 0.2
0.990637 3.509168 0.3

0.1 4546

0.990574 3.508945 0.4
0.994636 3.523334 0.1
0.996233 3.528992 0.2
0.995094 3.524957 0.3

0.2 5230

0.995030 3.524732 0.4
0.996391 3.529551 0.1
0.996464 3.529811 0.2
0.997227 3.532513 0.3

0.3 6458

0.996722 3.530724 0.4
0.997832 3.534655 0.1
0.997829 3.534647 0.2
0.997830 3.534649 0.3

0.4 8306

0.998129 3.535708 0.4
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5.2. Rotated, centered crack under tensile stress in a
stretched plate (mixed mode crack problem)

The first example was a pure mode I case. To analyze the performance of the XFEM
also in mixed mode crack problems, as second example, a rotated, centered crack
under tensile stress in a stretched plate should be investigated (case shown in Figure
5.4).

To allow comparison of the calculated solution to an analytical solution, an infinite
plate with uniaxial stress would be required. The large dimensions of the mesh in
comparison to the crack create a nearly uniaxial stress situation and therefore, the
difference between an infinite plate and this example around the crack tips is very
small. Also for this example plane strain should be assumed.

σ

σ

y

xb
b/

2

a

β

rc

a = 10mm

b = 10mm

rc = 0.5mm

σ = 1000N/mm2

E = 210000N/mm2

ν = 0.3

tip 1

tip 2

Figure 5.4. Rotated, centered crack under tensile stress in a stretched plate

5.2.1. Analytical solution

As reference solution, the solution for an rotated, centered crack under uniaxial
stress for an infinite plate will be used [21]:

KI = σ ·
√
π · rc · cos2(β) (5.3)

KII = σ ·
√
π · rc · sin(β) · cos(β) (5.4)

5.2.2. Numerical solution

To obtain a numerical solution, an unstructured mesh with 4529 quadrilaterals,
shown in Figure 5.5, is used. For this centered crack two crack tips exist. The
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tip enrichment zones, defined by re, which should not overlap are chosen to be
re = 0.3mm. For the evaluation of the SIFs, rq which defines the weighting function
in the interaction integral is set to 0.3mm. The case should be calculated for β = 0◦,
15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 105◦, 120◦, 135◦, 150◦, 165◦, 180◦.

Figure 5.5. Unstructured mesh for the calculation of the rotated, centered crack
(marked) under tensile stress with refined zone in the crack area

The crack is defined by the following two level set functions:

φ(x, y) = tan(β) · x− y and φt(x, y) = r2
c − x2 − y2 (5.5)

Figure 5.6 shows the deformation of the plate with rotated, centered crack for
three different angles β. In Figure 5.7 the calculated results for KI and KII are
shown. The calculated values agree excellently with the analytical ones. Therefore,
it is not possible to differ between the calculated SIFs for each tip in this diagram, as
they are aligned. To show the very small deviation, the normalized SIFs are shown
in Figure 5.8. Here it can be seen that the error is smaller than 1.5%.
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Figure 5.6. Detail of the deformed plate with a rotated, centered crack under tensile
stress (displacements multiplied by factor 5); color shading shows y -
displacement; a) β = 0◦ , b) β = 45◦, c) β = 90◦
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Figure 5.7. KI and KII - numerical solution compared to analytical solution for
rotated, centered crack under tensile stress
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Figure 5.8. Normalized KI and KII with reference to the analytical solution for both
crack tips, for rotated, centered crack under tensile stress
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5.3. Centered, circular crack under biaxial stress in a
stretched plate

All cracks investigated before were straight. To analyze the influence of curves in
a crack, a circular crack should be analyzed. With respect to available analytical
solutions, the load should be a biaxial stress. Again plane strain case for this plate
should be assumed. The whole problem is shown in Figure 5.9.
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rc = 0.5mm

σ = 1000N/mm2

E = 210000N/mm2

ν = 0.3

tip 1

tip 2

σσ

Figure 5.9. Centered, circular crack under biaxial stress in a stretched plate

5.3.1. Analytical solution

For an infinite plate a solution of this circular crack under biaxial stress for different
angles β and radii rc can be given (for tip 2) [21]:

KI =
σ

1 + sin2
(
β
2

)
√
πrcsin(β)

(
1 + cos(β)

)
2

(5.6)

KII =
σ

1 + sin2
(
β
2

)
√
πrcsin(β)

(
1− cos(β)

)
2

(5.7)

By inserting the values of the actual case, the following analytic solutions for different
angles β can be evaluated (see Table 5.4). Taking the symmetry of the circular crack
into account, it can be found that Ktip1

II for tip 1 is −Ktip2
II and that the (KI)s are

equal for both tips.

5.3.2. Numerical solution

Again it is necessary that the mesh has a big area around the crack to get conditions
close to the biaxial stress state. In contrast to the straight cracks, there are some
points which require a finer grid, because
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• the crack path in elements is linear, more elements should be used to get a
good representation of a curved crack.

• the J-integral is only path independent for a straight crack. To get acceptable
accuracy for the calculation of the SIFs, the interaction integral should be
evaluated very close to the crack tip.

• the tip enrichment function describes the displacement for a straight crack and
therefore, a small element with the crack tip inside is advantageous.

Table 5.4. Analytic solutions of KI and KII for the centered, circular crack

β [◦] KI

[
N/mm3/2

]
KII

[
N/mm3/2

]
45 849.305529 351.793869
60 808.064212 466.536090
75 713.002039 547.105707
90 590.817950 590.817950

Therefore, a mesh with very small elements in the middle of the domain and
coarse elements outside is used (26652 elements), see Figure 5.10.

Figure 5.10. Unstructured mesh for the calculation of the centered, circular crack
under biaxial stress with refined zone in the crack area

To describe the circular crack, the following level set functions where used:

φ(x, y) = x2 + y2 − r2
c and φt(x, y) = −

[
|x| · tan

(π
2
− β

)
+ y
]

(5.8)

As first case of this configuration the solution for β = 45◦ was evaluated. The
solution for different enrichment zones, defined by the radius of the enrichment zone
re is given in Table 5.5 (rq = 0.025mm).
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Table 5.5. Calculated KI and KII for different enrichment zones of the circular crack
with β = 45◦

Tip norm. norm. KI KII re number of
KI [−] KII [−]

[
N/mm3/2

] [
N/mm3/2

]
[mm] unknowns

1 1.004304 0.978770 852.961287 −344.325441 tip elem. 53690
1 1.004072 0.978355 852.764076 −344.179343 0.0125 53736
1 0.964658 0.876850 819.289741 −308.470541 0.025 54158
2 1.002081 0.974663 851.073131 342.880292 tip elem. 53690
2 1.002013 0.975060 851.015033 343.020226 0.0125 53736
2 0.945025 0.808187 802.615152 284.315062 0.025 54158

In contrast to the straight edge crack, where the accuracy of the calculation was
increased by bigger enrichment zones, here the inverse effect can be observed. This
effect could be expected, as the crack tip enrichment functions describe the crack tip
field of a straight crack. Enlarging the crack tip enrichment zone, implies a straight
crack near the tip. As this is not correct for curved cracks the accuracy decreases.
Therefore, for all further examples with crack growth only, the tip element will be
enriched with the crack tip enrichment function, to avoid this error.

In Table 5.6, the results of the calculation for different angles β are shown. Here
already the results for crack tip enrichment only in the tip element are given. For
all three angles the results agree very well with the analytical results. With these
results it can be argued that also for curved cracks this method to calculate the
SIFs is very accurate as long as the tip enrichment zone and also the zone of the
weighting function in the interaction integral (defined by rq) are small around the
crack tip.

In Figure 5.11, the displacements of the plate with circular crack are shown.

Table 5.6. Calculated KI and KII for different angles β of the circular crack.
Thereby, only the crack tip element is enriched by the crack tip
enrichment functions

Tip β norm. norm. KI KII number of
[◦] KI [−] KII [−]

[
N/mm3/2

] [
N/mm3/2

]
unknowns

1 45 1.004304 0.978770 852.961287 −344.325441 53690
1 60 1.002949 0.984365 810.447359 −459.241936 53842
1 90 1.007333 0.986883 595.150592 −583.068228 54172
2 45 1.002081 0.974663 851.073131 342.880292 53690
2 60 1.007204 0.981420 813.885188 457.8679829 53842
2 90 0.993311 0.986706 586.865680 582.963491 54172
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a) b)
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Figure 5.11. Detail of the deformed plate with a centered, circular crack under
biaxial stress (displacements multiplied by factor 10); color shading
shows y - displacement; a) β = 45◦ , b) β = 60◦, c) β = 90◦
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5.4. Crack growth under point force load in a beam

In this example, the crack growth in a beam under force load should be investigated.
The case with the inital crack of length c is shown in Figure 5.12.

For the symmetric configuration an unstable straight crack path in the middle
of the beam would be expected [15]. To get stable crack growth in positive x -
direction, symmetry is disturbed by setting the initial crack at x = 0.01mm. Again
the plane strain case should be assumed.

a

b

c

b/
2

x

y
a = 1mm

b = 2mm

c = 0.5mm

F =

100
0
0

 N

E = 210000N/mm2

ν = 0.3

F−F

Figure 5.12. Initial configuration for crack growth analysis under point force load in
a beam

5.4.1. Numerical solution

For this calculation an unstructured mesh with 11446 elements is used, which is
shown in Figure 5.13.

The crack is described by following level set functions:

φ(x, y) = x− 0.01 and φt(x, y) = y − 0.5 (5.9)

The crack growth will be analyzed in a quasi-static manner with a constant
crack growth length and by the maximal circumferential stress criterion as already
described in Section 4.9. Only the tip element will be enriched by the tip enrichment
function and for the radius rq of the weight function in the interaction integral
rq = 0.1mm is chosen. To analyze the influence of the crack growth length lc, three
calculations with different (lc)s where made.

In Figure 5.14, the crack tip positions for every crack growth step are shown
for different crack growth lengths lc. These crack paths agree very well with the
calculated results for a similar test case in [3] and [15].

It can be seen that for these crack growth steps the crack path depends
significantly on lc. This behavior is expected as the real crack path would be a
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Figure 5.13. Unstructured mesh for the crack growth analysis under point force load
in a beam

smooth curve and is approximated by linear segments. A further reduction of the
crack growth step for this mesh would be useless, as the steps would be smaller than
the elements. To improve the accuracy of the calculated crack, a mesh with more
elements and a reduction of lc would be required. In Figure 5.15 the deformed beam
for different crack growth steps with growth length lc = 0.025mm is shown.

0.5

0.4

0.3

0.2

0.1

0

−0.1

−0.2
0 0.10.05 0.250.2 0.30.15

lc = 0.025mm

lc = 0.050mm

lc = 0.100mm

x [mm]

y [mm]

Figure 5.14. Position of the crack tip for the different crack growth lengths lc
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0.03mm

0.02mm

0.01mm

0.00mm

a) b)

d)c)

e)

Figure 5.15. Detail of deformed beam under point force load for different crack
growth steps with growth length lc = 0.025mm (displacements
multiplied by factor 3); color shading shows the magnitude of the
displacement ; a) Step 1 (inital configuration), b) Step 5, c) Step 10,
d) Step 15, e) Step 20

67



5. Numerical examples

5.5. Crack growth from two holes in a plate under
tensile stress

In this example, the crack growth from two holes with an inital crack should
be analyzed. Again, a plate under tensile stress with plane strain assumption is
considered. In Figure 5.16, the initial configuration for this case is shown.

σ

σ

y

xb

b/
2

a

a = 10mm

b = 10mm

c0 = 0.25mm

σ = 1000N/mm2

E = 210000N/mm2

ν = 0.3

tip 1
tip 2

c0 c0

45◦

45◦

dd

d = 2.5mmr

r = 0.25mm

r

Figure 5.16. Initial configuration for crack growth analysis from two holes in a plate
under tensile stress

5.5.1. Numerical solution

For this calculation two unstructured meshes were used. A coarse one with 4874
elements (shown in Figure 5.17), and a mesh with refinement in the crack area with
28726 elements (shown in Figure 5.18).

To describe the two inital cracks the level set functions in (5.10) were used. Hereby,
φt(x, y) is a polynomial which fulfills the conditions φt(0, y) = −1, φt(±2, y) = 0
and φt(±2.4, y) = 0.

φ(x, y) = −x+ 2.25 · sign(x)− y and

φt(x, y) = − 25

576
· x4 +

61

144
· x2 − 1 (5.10)

68



5. Numerical examples

Figure 5.17. Unstructured coarse mesh with 4874 quadrilaterals for crack growth
analysis from two holes in a plate under tensile stress

Figure 5.18. Unstructured, refined mesh with 28726 quadrilaterals for crack growth
analysis from two holes in a plate under tensile stress

The crack growth should be analyzed quasi-statically, with constant crack growth
length lc. Evaluation of the crack growth direction will be done by the maximal
circumferential stress criterion. Only the quadrilateral with the crack tip inside
should be enriched by the crack tip enrichment functions. For the two meshes
different crack growth lengths lc and radii rq of the weighting function in the
interaction integral should be applied.

In Figure 5.19 the calculated crack paths with different crack growth lengths lc
for both meshes are shown. The result for lc = 0.1mm is calculated on the coarse
mesh, the results for lc = 0.05mm and lc = 0.025mm are evaluated on the mesh
with refinement in the crack area.

It can be seen that the propagation is in the same horizonal direction, as calculated
for a simular test case in [19]. Analysing the calculated different crack paths, a
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significant difference between the single solutions can be found. Nevertheless, for a
reduction of the crack growth length lc, the solutions seem to converge to a single
path. From these results it can be concluded that very fine meshes are requird, to
get reproduceable crack paths.

In Figure 5.20 the deformed plate for different crack growth steps is shown.

0

−0.05

−0.1

−0.15

−0.2

−0.25

−0.3

y [mm]
−2.5 −1.5−2 0−0.5 0.5−1 x [mm]1 21.5 2.5

0.3

0.25

0.2

0.15

0.1

0.05

0

y [mm]

lc = 0.1mm lc = 0.025mm lc = 0.05mm

Figure 5.19. Positions of the crack tip for the different crack growth lengths lc and
varying meshes; top: tip 2, bottom: tip 1
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0.015mm 0.03mm0.02mm 0.035mm

a)

d)

c)

b)

e)

Figure 5.20. Detail of deformed plate with two holes for different crack growth steps
with growth length lc = 0.1mm (displacements multiplied by factor 5);
color shading shows y - displacement; a) Step 1(inital configuration),
b) Step 2, c) Step 10, d) Step 20, e) Step 40
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6. Conclusion

The application of the XFEM for quasi-static crack growth made it possible to gain
insight into this method. Here some points of the gathered experience should be
discussed.

Differences to the classical FEM in the implementation

The differences to the classical FEM in the implementation are: varying number
of degrees of freedom per node, varying size of the element stiffness matrices,
implementation of the level set functions, algorithms for the detection of the crack
tips, selection of enriched nodes, evaluation of new integration points and the
calculation of enrichment functions.

Additionally, for crack calculations the SIFs and a crack growth method (here
modification of the level set function) have to be evaluated.

Level set method

Defining the interface of the crack path by level set functions, and storing the values
in the nodes of the mesh, makes it very easy and efficient to evaluate the enrichment
function for the crack path, as it can be calculated simply from these values. For
crack growth analysis this level set function φ(x) has to be modified in each step,
to provide the simple evaluation of the enrichment function of the crack path. In a
discrete formulation of the crack path, this additional effort could be avoided, but
it would cause a more complex evaluation of the crack path enrichment function.

The description of the crack tips by a second level set function φt(x) is straight
forward. For static crack cases it ensures that the crack tip is on the crack path,
as the intersection of both interfaces defines the crack tip. For the evaluation of
the crack tip enrichement functions, φt(x) cannot be used, because the local tip
coordinates r, θ are required. For crack growth simulations a modification of φt(x)
for each step is not necessary, as the crack tip positions for each step are known
from the crack growth critera.

Integration in elements cut by a crack

To perform an accurate integration in elements that are cut by a crack, new
integration points and integration weights are calculated. This is done, by a
division of the elements into subelements and using the integration points of these
subelements. This is the standard approach in the XFEM, because of the high
accuracy of the integration. For implementation in a computer code, this approach
has the big disadvantage that for every element type new rules for spliting the
element into subelements have to be implemented.
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Elements

In this implementation first-order quadrilateral elements were used. For such
elements it has always to be considered that the shape functions of these elements
are bilinear. Therefore, a straight interface in the global coordinate system is not
a straight interface in the local element coordinate system. This fact has to be
considered in some points of the implementation, like the evaluation of the crack tip
position.

For the implementation of any other elements, especially the calculation of the
integration points with subelements would have to be adopted. For higher-order
elements the interface inside the element could be a higher-order polynom and
therefore, more subelements for the calculation of the integration points would
be required. On the other hand, higher-order polynoms would lead to a better
representation of the crack path than polygons.

Domain form of the interaction integral

The evaluation of the SIFs by the domain form of the interaction integral can
be performed very accurately. A disadvantage of this method is that the radius
rq for the weighting function is a new free parameter which influences the result
significantly. Here, an automated evaluaton of rq from the element size is
advantageous.

Crack tip enrichment zone

For simple test cases with straight cracks it has been found that a big tip enrichment
area around the crack tip, defined by the radius re, leads to higher accuracy. Once
curved cracks have to be considered, a big crack tip enrichment zone leads to failures
in the results. As a result of that, for crack growth simulations, where always curved
cracks should be considered, the enrichment of the crack tip element only leads to
better results.

Quasi-static crack growth

The calculation of the crack path by quasi-static crack growth, using the maximal
circumferential stress criterion, is very sensitive to the chosen growth length lc. To
get reproduceable crack paths for quasi-static crack growth, in general, very small
steps lc and therefore very fine meshes are required.

The XFEM is a very good method to consider cracks and other possible interfaces
without creating a specific mesh for that case. In particular, for moving interfaces
or the comparison of results for different interfaces this method is very efficient.
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Appendix A.

Derivations

A.1. Derivation of crack growth direction

In Section 2.4.1 the evaluation of the crack growth direction is shown. Here the
derivation in detail, starting from (2.12), is given.

For θc 6= ±π and ,thus, cos
(
θc
2

)
6= 0, the following expression can be gathered:

KIsin

(
θc
2

)
cos

(
θc
2

)
+KII

[
1− 3 sin2

(
θc
2

)]
= 0 (A.1)

Using sin (θc) = 2 sin
(
θc
2

)
cos
(
θc
2

)
and cos (θc) = 1− 2 sin2

(
θc
2

)
leads to:

KI
sin (θc)

2
+KII

[
1 + 3

cos (θc)− 1

2

]
= 0 (A.2)

Multiplication by factor 2, gives Equation (2.13). To derive the crack growth
direction, Equation (A.1) is used as inital point. Using sin2

(
θc
2

)
= 1 − cos2

(
θc
2

)
gives:

KI

KII

sin

(
θc
2

)
cos

(
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2

)
+

[
3 cos2

(
θc
2
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− 2

]
= 0 (A.3)
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[
3− 2
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(
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Finally, with 1

cos2( θc2 )
= 1 + tan2

(
θc
2

)
the following expressions can be found:
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(A.6)

=⇒ θc = 2 arctan

1

4

 KI

KII

±

√(
KI

KII

)2

+ 8

 (A.7)

By the proof ∂2σθθ
∂θ2

∣∣∣
θc
< 0 for a maximum, it can be found that for KII < 0 the

‘+’-sign and for KII > 0 the ‘−’-sign has to be used. Here ‘±’ can be replaced by
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−sign(KII) for the case KII 6= 0.
For this special case KII 6= 0, it will be shown that (4.49) is equal to (A.7). First
of all, some transformations on the expression between the curly brackets in (A.7)
should be applied.
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Finally, by inserting this expression in (A.7), θc can be evaluated.

=⇒ θc = 2 arctan


−2 KII

KI

1 +

√
1 + 8

(
KII
KI

)2

 (A.9)

From (A.2) it can be seen that for KII = 0, sin
(
θc
2

)
= 0 and therefore θc = 0.

Equation (A.9) fulfills this condition too and is - thus - valid for all (KII)s.

A.2. Derivatives of enrichment functions

In this section the required derivatives for the different enrichment functions ψ?(x)
will be shown.

Derivatives of the crack path enrichment function

With the method shown in Section 4.6, there are no integration points on the
discontinuity of the function, therefore, ψjump(x) is constant in all considered regions.
Thus the derivatives are:

∂ψjump(x)

∂x
=
∂ψjump(x)

∂y
= 0 (A.10)
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Derivatives of the tip enrichment functions

The functions ψ
(i)
tip(r, θ) are given in (3.5). The derivatives should be evaluated on a

specific point x, with xt(i) as tip position and θt(i) the tip angle from tip i (shown
in Figure A.1).

x

y

x1

y1

θ

θt(i)

xt(i)

r

x

tip i

Figure A.1. Tip coordinate systems

The local polar coordinates (r, θ) for any point x can be evaluated by:

r(x, y) =
√

(x− xt(i))2 + (y − yt(i))2 (A.11)

θ(x, y) = arctan

(
y − yt(i)
x− xt(i)

)
− θt(i) (A.12)

As the derivatives with respect to x for a specific position x are required, the
chain rule is used.
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(A.13)

The derivatives of r and θ can be evaluated from (A.11) and (A.12):
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(A.14)
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The derivatives of ψ
(i)
tip can be determined in a straight forward way from (3.5):
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A.3. Calculate local coordinates from global
coordinates for quadrilaterals

In some sections the calculation of the natural coordinates (r, s), for a specific
quadrilateral, from global Cartesian coordinates (x, y) is required. Here, the way to
calculate this is shown. Starting with Equations (1.31) and (1.32) we get:

(rs− r − s+ 1)

4
· x̂0 +

(−rs− s+ r + 1)

4
· x̂1+

(rs+ r + s+ 1)

4
· x̂2 +

(−rs− r + s+ 1)

4
· x̂3 = x

rs · (x̂0 − x̂1 + x̂2 − x̂3)

4︸ ︷︷ ︸
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]
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From the x - component of the equation it follows:

r · (sax + bx) + scx + dx = x

=⇒ r =
x− scx − dx
sax + bx

(A.20)

From the y - component of the equation s can be evaluated:
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To evaluate if there is the ‘+’-sign or the ‘−’-sign in (A.21), firstly, r and s are
calculated with the ‘+’-sign. If this point is inside the element (|r| ≤ 1 and |s| ≤ 1)
this result is used. Otherwise r and s are recalculated with the ‘−’-sign in (A.21)
and this result is used.

A.4. Span of the tip enrichment functions

By comparing the span of the displacements of the crack tip field (2.3) and (2.6),
with the span of crack tip enrichment functions (3.5), they have to be equal.

From (3.5):
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From (2.3) and (2.6):
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With (A.24) and (A.25) it is shown that (A.22) and (A.23) are equal.
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A.5. Details using Gauss’ theorem for the interaction
integral

In Section 4.8.1 the Gauss’ theorem is applied to Equation (4.35). One resulting
term was not considered. Here it is shown that this term is zero. Therefore, the
equilibrium equation (1.1), the strain-displacement relations (1.6) and (1.7), the
constitutive law (1.11) and the symmetry of the stress tensor S and the elasticity
tensor C is used.
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A.6. Derivatives of the analytical crack tip field

In Section 2.2, the analytical solution for a crack tip near field is shown. In this
section the derivatives of these displacements, in the local tip coordinate system
(x1, y1), are shown. As the displacements are given as function of (r, θ), the chain
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Appendix A. Derivations

rule is used:

∂u

∂x1

=
∂u

∂r
· ∂r
∂x1

+
∂u
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∂x1

∂u

∂y1
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· ∂r
∂y1
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∂u
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(A.29)

The derivatives of r and θ can be found with:

r =
√
x2

1 + y2
1

=⇒ ∂r

∂x1

=
x1

r
= cos(θ) (A.30)

=⇒ ∂r

∂y1

=
y1

r
= sin(θ) (A.31)

x1 = r · cos(θ)

1 =
∂r

∂x1

· cos(θ)− r · sin(θ) · ∂θ
∂x1

1− cos2(θ) = sin2(θ) = −r · sin(θ) · ∂θ
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=⇒ ∂θ

∂x1

= −sin(θ)

r
(A.32)

y1 = r · sin(θ)

1 =
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· sin(θ) + r · cos(θ)
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For Mode I the derivatives of u, v can be given as:(
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For Mode II the derivatives of u, v can be given as:(
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(
∂u
∂θ

∂v
∂θ

)
=
KII

2G

√
r

2π

 cos( θ
2

)

2
[κ+ 2 + cos(θ)]− sin( θ

2
)sin(θ)

sin( θ
2

)

2
[κ− 2 + cos(θ)] + cos( θ

2
)sin(θ)

 (A.37)

80



Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[2] K.-J. Bathe. Finite Element Procedures. Prentice-Hall, Englewood Cliffs, 1996.

[3] T. Belytschko and T. Black. Elastic crack growth in finite elements with min-
imal remeshing. International Journal for Numerical Methods in Engineering,
45(5):601–620, 1999.
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