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ABSTRACT

Probabilistic graphical models are used in several areas, including signal processing, artificial in-
telligence, machine learning and physics. Belief propagation is among the most popular message
passing algorithms for dealing with probabilistic inference. This algorithm uses the structure of
the graph representing the conditional dependencies of the random variables in the probabilistic
model to efficiently calculate marginal probability distributions. On the other hand, compu-
tational commutative algebra studies the algorithms for characterizing solutions of systems of
multivariate polynomial equations. One of the main concepts in this theory is that of Gröbner
bases. These bases allow the description of the algebraic and geometric structures generated by
a system of polynomial equations, and can be used to compute the solutions for such equations.
In this thesis, it is shown that belief propagation can be alternatively understood as computing
marginal probabilities by solving a system of polynomial equations. By doing so, the relation-
ship between belief propagation and computational commutative algebra can be explored. The
notion of convergence in belief propagation is analyzed in algebraic terms, which leads to new
conditions for convergence that use the properties of Gröbner bases. These concepts are used
to derive new proofs for the well-known convergence results of the belief propagation algorithm
for graphical models with chain, tree and single loop structures. Furthermore, using the frame-
work of computational commutative algebra, an alternative formulation of belief propagation
is proposed. We denominate this new approach Tarkus belief propagation. This method is ex-
perimentally compared with standard belief propagation and exact inference using a 2× 2 spin
glass. The experimental results show that Tarkus belief propagation is more computationally
expensive and less reliable than standard belief propagation. Nevertheless, this new approach
suggest an interesting insight into the basic principles of probabilistic inference, by showing some
possible applications of methods from computational commutative algebra into the probabilistic
graphical models.





KURZFASSUNG

Probabilistische graphische Modelle werden in unterschiedlichen Bereichen, wie Signalverar-
beitung, Künstliche Intelligenz, Machine Learning oder Physik verwendet. Dabei ist Belief
Propagation eines der am häufigsten verwendeten Message Passing-Algorithmen für probabilis-
tische Inferenz. Dieser Algorithmus verwendet die Struktur des Graphen, welcher die kon-
ditionellen Abhängigkeiten der Zufallsvariablen repräsentiert, um die marginalen Wahrschein-
lichkeitsverteilungen effizient zu modellieren. Kommutative Algebra behandelt Algorithmen
zum Lösen von Systemen multivariater polynomischer Gleichungen. Ein wichtiges Konzept
dabei sind die Gröbnerbasen. Diese Basen beschreiben die algebraischen und geometrischen
Strukturen, welche von einem System polynomischer Gleichungen generiert werden und kann
auch zur Lösung solcher Gleichungen verwendet werden. In dieser Arbeit wird gezeigt, dass Be-
lief Propagation auch als das Berechnen von marginalen Wahrscheinlichkeiten durch Lösen eines
polynomiellen Gleichungssystems verstanden werden kann. Dabei wird auch der Zusammenhang
zwischen Belief Propagation und kommutativer Algebra untersucht. Die Idee der Konvergenz in
Belief Propagation wird algebraisch analysiert, was durch Gröbner Basen zu neuen Bedingungen
für eine solche Konvergenz führt. Diese Konzepte werden dafür verwendet, neue Beweise für
bekannte Konvergenz-Resultate des Belief Propagation Algorithmus für Graphenmodelle mit
Ketten-, Baum- und Single-Loop Strukturen zu finden. Darüber hinaus wird durch die Ver-
wendung von computerisierter kommutativer Algebra eine alternative Formulierung von Belief
Propagation vorgeschlagen. Wir nennen diesen neuen Ansatz Tarkus Belief Propagation. Diese
Methode wird experimentell an einem 2 × 2 Spin Glass sowohl mit der herkömmlichen Belief
Propagation, wie auch mit exakter Inferenz verglichen. Die Resultate zeigen, dass Tarkus Belief
Propagation einerseits mit einem höheren Rechenaufwand einher geht, andererseits ermöglicht
diese Methode interessante Einblicke in die Prinzipien probabilistischer Inferenz.





RESUMEN

Los modelos proabiĺısticos gráficos son utilizados en diversas áreas, incluyendo procesamiento de
señales, inteligencia artificial, aprendizaje automático y f́ısica. Propagación de Creencias es uno
de los algoritmos de paso de mensajes mas usados en el área de inferencia probabiĺıstica. Este
algoritmo usa grafos, cuya estructura representa dependencias condicionales de variables aleato-
rias en los modelos probabiĺısiticos, para calcular eficientemente distribuciones marginales de
probabilidad. Por otra parte, el álgebra conmutativa computacional estudia los algoritmos para
caracterizar las soluciones de sistemas de ecuaciones polinomiales en múltiples variables. Uno
de los conceptos más importantes en esta teoŕıa son las bases de Gröbner. Estas bases permiten
describir los objetos algebraicos y geométricos descritos por un sistema de ecuaciones polinomi-
ales. En esta tesis se muestra que el algoritmo de Propagación de Creencias puede ser entendido
como un método para calcular distribuciones marginales de probabilidad, resolviendo un sistema
de ecuaciones polinomiales. Esto permite explorar la relación entre Propagación de Creencias y
el álgebra conmutativa computacional. La noción de convergencia en este algoritmo es analizada
en términos algebraicos, lo cual lleva a nuevas condiciones de convergencia, las cuales usan las
propiedades de las bases de Gröbner. Estas condiciones son usadas para derivar demostraciones
alternativas de los casos conocidos de convergencia del algoritmo de Propagación de Creencias
en grafos aćıclicos y grafos monociclo. Usando el marco teórico de álgebra conmutativa com-
putacional, se propone una formulación alternativa al algoritmo de Propagación de Creencias, la
cual es denominada Propagación de Creencias Tarkus. Este método es comparado experimen-
talmente con el algoritmo tradicional de Propagación de Creencias e inferencia exacta usando un
vidrio de spin de 2× 2. Los resultados muestran que el método Tarkus es computacionalmente
más costoso e impreciso que el algoritmo original. Sin embargo, esta nueva formulación ofrece
un punto de vista interesante sobre los principios básicos de inferencia probabiĺıstica.
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3.2 Gröbner Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Hilbert’s Nullstellensatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Elimination Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Algebraic Formulation of BP 41
4.1 Convergence of the (L)BP algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Tarkus Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Experiments 53
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Spin Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 2× 2 Spin Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusions 59
6.1 Conjectures and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Maple Code of the TBP for the 2× 2 spin glass 65

B Formal definitions of mathematical structures 68
B.1 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.2 Algebraic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

C Dimension of a Variety 71

D Alternative proof of Theorem 8 75

– xi –



Tarkus Belief Propagation

List of Algorithms

2.1 LBP (·) (Loopy) Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 DivAlg(·) Division Algorithm in K[x1, . . . , xn] . . . . . . . . . . . . . . . . . . . . 34
3.2 Groebner(·) Buchberger’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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1
Introduction

Inference in PGMs is used in a wide range of applications, including signal processing [1], artificial
intelligence [2, 3], and statistical physics [4]. Message Passing Algorithms (MPAs) over PGMs,
are among the most popular methods when dealing with inference [5], due to their simplicity and
computational efficiency [6]. Introduced by Judea Pearl in 1982 [7], the Belief Propagation (BP)
algorithm is an MPA frequently applied in the field of artificial intelligence [2,3], error correcting
codes [8], speech recognition [9] and computer vision [10], among others. This algorithm performs
probabilistic inference iteratively, by exploiting the structure of the graph in a PGM, to efficiently
compute marginal probability distributions [11]. It was shown by Pearl that BP converges to
a solution, and this solution is equal to the true marginal probability distribution for problems
that can be represented by graphical models without cycles [12].

The Loopy Belief Propagation (LBP) algorithm is an extension of BP to graphs with cycles
(also known as loops, and hence the name) [5, 6]. It has been empirically shown that LBP
provides good approximate results, although not necessarily the true marginal probabilities
[5, 13]. However, in general, LBP is not guaranteed to converge to a solution [2, 3]. Yedida
et al. showed a connection between the convergence of the BP and LBP algorithms and the
fixed points of the Bethe free energy [14], a concept first originated in thermodynamics that
represents the available energy of a physical system for performing mechanical work [15]. The
investigation of the fixed points of the Bethe free energy has led to the derivation of convergence
criteria for the LBP algorithm such as the ones proposed by Ihler et al. [16] and Mooij et al. [17].
Weiss showed that the LBP algorithm converges for graphs with a single loop [3].

On the other hand, commutative algebra studies systems of polynomial equations, trying to an-
swer the questions whether such systems have finitely or infinitely solutions, and how to describe
them [18]. Although some of the theoretical foundations of commutative algebra date from the
end of the 19th century, it is only in recent years that it has regained its prominence, due to
the increase of computational power and the development of new algorithms [19]. One of the
most important concepts in commutative algebra is that of Gröbner Bases (GBs), introduced by
Bruno Buchberger in 1965 [19]. Similar to bases of a vector space, a GB is a finite set of poly-
nomials that allows us to represent all members of a (possibly infinite) set of polynomials called
polynomial ring by polynomial combinations of the elements of such a GB. These ideas found
their way into many applications ranging from pure mathematics [20] to signal processing [21]

– 13 –



1 Introduction

and robotics [18].

In this thesis we explore the relationship between BP and computational commutative algebra
by showing that the equations describing the message passing in the BP algorithm can be
understood as a system of polynomial equations. This result allows us to use the concept of
GBs to express convergence criteria for the BP algorithm and to formulate an alternative method
for computing the marginal probabilities.

The methods proposed in this work are only suited for toy examples. However they give an
interesting insight into the basic principles of probabilistic inference, since they show that the
ability of PGMs to represent joint probability distributions as products of conditional probability
distributions can be exploited using purely algebraic methods to answer probabilistic inference
queries.

1.1 Summary of Contributions

1. Convergence of the BP algorithm. Using the framework of computational commuta-
tive algebra, new conditions for convergence of the BP algorithm can be derived. These
conditions make use of the properties of GBs to characterize the solutions of systems of
polynomial equations.

2. Convergence for Graphs without loops and for Graphs with a single loop. Using
the aforementioned convergence conditions, we show that the (L)BP algorithm converges
for graphs without loops and for graphs with a single loop. While these are well-known
results [3, 12], the proofs provided in this thesis present a new and interesting approach,
by using the framework of computational commutative algebra.

3. Tarkus Belief Propagation. An alternative formulation of the BP algorithm using GBs
is proposed. This algorithm exploits the fact that BP can be understood as a system
of polynomial equations, and uses the properties of GBs to find an equivalent system of
equations, that might be easier to solve. Due to the eclectic nature of this new algorithm,
we call it Tarkus Belief Propagation (TBP), as an homage to the 1971 eponymous album
by the british progressive rock band Emerson, Lake & Palmer.

1.2 Organization

The organization of this thesis is summarized as follows:

Chapter 2: In this chapter, the concepts of probabilistic graphical models, as well as probabilis-
tic inference using the Belief Propagation algorithm are briefly reviewed. We emphasize how
equations of message passing can be seen as a system of multivariate polynomial equations.

Chapter 3: In this chapter, an overview of the concepts of algebraic geometry and computational
commutative algebra, which were applied in this work, is presented. The concept of affine
varieties, i.e. a geometric object that represents the set of roots of a system of polynomial
equations, is briefly reviewed. It is shown how we can characterize such varieties using Hilbert’s
Nullstellensatz and GBs.

Chapter 4: In this chapter, an algebraic formulation of the BP algorithm is presented. We use
the message passing equations (MPEs) described by the BP algorithm to define a system of
polynomials, which has an associated affine variety. By computing the GB of such a variety,

– 14 –



1.2 Organization

conditions for convergence can be found. These methods lead to the introduction of the TBP
algorithm. This algorithm computes marginal probability distributions by finding solutions of
the MPEs.

Chapter 5: In this chapter, the methods proposed in Chapter 4 are empirically compared to
LBP and exact inference using a 2× 2 spin glass.

Chapter 6: In the last chapter, the conclusions and future work of this thesis are provided.
Some conjectures about the efficiency and stability of methods of computational commutative
algebra, and its possible applications in PGMs are presented.

– 15 –
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2
Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) have become the method of choice for dealing with
uncertainty and distributions in several research areas including computer vision [10], speech
processing [9], signal processing [1,22], machine learning [13] and in the area of artificial intelli-
gence [23]. By merging graphical models and probabilistic inference, such a framework allows to
transfer concepts and ideas among different application areas [5]. One reason for its popularity
is that qualitative patterns of commonsense reasoning “are naturally embedded within the syntax
of probability calculus” [12, pp. 19].

PGMs describe the way a joint probability distribution over a set of N random variables (RVs)
can be factored into a product of conditional probability distributions, defined over smaller
subsets of RVs [24]. Examples of the well-known statistical models that can be represented as
PGMs are hidden Markov models, Kalman filters and Boltzmann machines [5,11]. The structure
of the graphical model represents the conditional independence between RVs and alleviates the
computational burden for model learning and inference [5, 6].

Among the most popular representations of PGMs are Markov Networks (MN) or undirected
graphical models, Bayesian Networks (BNs), or directed graphical models, and Factor Graphs
(FGs) [5]. Each representation captures different aspects of probabilistic models, and therefore,
has its specific advantages and disadvantages [11]. For the sake of simplicity, in this thesis we
focus only on MNs. Nevertheless the discussion and methods presented in this chapter can also
be extended to BNs and FGs.

If not stated otherwise, the definitions and notation for PGMs used in this thesis are taken from
the tutorial by Pernkopf, Perharz and Tschiatschek [5]. For a more extensive treatment of this
subject, we refer the reader to the standard text by Koller and Friedman [11] and the above
mentioned tutorial. The rest of this chapter is organized as follows: In Sections 2.1 and 2.2,
respectively, a short review of probability theory and graph theory is provided. In Section 2.3
the representation of PGMs using MN is presented. In Section 2.4, the concept of probabilistic
inference is reviewed. We conclude this chapter in Section 2.5, where the BP algorithm for the
case of MNs is described in detail.

– 17 –



2 Probabilistic Graphical Models

2.1 Probability theory overview

The probability distribution of an RV1 can be characterized using its cumulative distribution
function, which is related to the probability density function or the probability mass function,
respectively. These functions are defined as follows:

Definition 1. (Cumulative Distribution Function, Probability Density Function, Prob-
ability Mass Function). The cumulative distribution function (CDF) of an RV X, denoted
as FX(x), is defined as the probability of X taking a value less than or equal to x , i.e.

FX(x) = P (X ≤ x). (2.1)

For a set of N RVs X = {X1, . . . , XN}, the joint CDF is defined as

FX(x) = P (X1 ≤ x1 ∩ · · · ∩XN ≤ xN ). (2.2)

If X is a set of continuous RVs, the probability density function (pdf) is defined as

pX(x) =
∂nFX(x)

∂x1 . . . ∂xn
, (2.3)

where x = {x1, . . . , xN} is an ordered set of N values from R. In the case of X being a set of
discrete RVs, the probability mass function (pmf) is given as

pX(x) = P (X1 = x1 ∩ · · · ∩XN = xN ), x = {x1, . . . , xN} ∈ val(X), (2.4)

where val(X) denotes the set of values which can be assumed by a set of random variables X.

In this thesis, it is assumed that pX(x) represents the underlying probability distribution P and
with slight abuse of notation, pX(x) is itself referred as probability distribution. Whenever it is
clear, the shorthand notation p(x) = pX(x) is used. We focus only on the case of discrete RVs,
and we will restrict p(x) to be discrete. The number of possible states of variable Xi is denoted
as sp(Xi) = |val(Xi)|. For the case of a set of discrete RVs X the number of possible states is
given as

sp(X) =
∏
i

sp(Xi). (2.5)

Definition 2. (Marginal Distribution, Conditional Distribution). Let X, Y and Z be
sets of RVs, where Y ⊆ X and Z = X \Y, i.e. X = Y ∪ Z. The joint distribution over X is
then p(X) = p(Y,Z). The marginal distribution p(Y) over Y is given as

p(Y) =
∑

z∈val(Z)

P (Y,Z = z) =
∑

z∈val(Z)

p(Y, z). (2.6)

The conditional distribution p(Y|Z) over Y conditioned on Z is

p(Y|Z) =
p(Y,Z)

p(Z)
. (2.7)

Using these definitions, we can use the Bayes’ rule to manipulate conditional probability distri-

1 The formal definitions of probability distributions and RVs can be found in Appendix B.1.
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butions. This rule states that

p(Z|Y) =
p(Y|Z)p(Z)

p(Y)
. (2.8)

Definition 3. (Conditional Statistical Independence). Assuming X,Y and Z are mutually
disjoint sets of RVs. X and Z are conditionally statistical independent given Z, denoted as
X⊥Y|Z iff p(X,Y|Z) = p(X|Z)p(Y|Z).

In case that Z = ∅, X and Y are called statistically independent.

The chain rule of probability uses conditional distributions to factorize an arbitrary distribution
as

p(X) = p(X1)

n∏
i=2

p(Xi|Xi−1, . . . , X1). (2.9)

This rule holds for any permutation of the indexes of the RVs X.

2.2 Graph theory overview

Graph theory refers to the study of mathematical structures, which are used to model pairwise
relations between objects [25]. The definitions of graphs, the fundamental structures of this
theory, are presented as follows:

Definition 4. (Graph). A graph G = (X,E) is a tuple consisting in a set of vertices X (also
called nodes), and a set of edges E.

A graph is said to be directed if all edges e ∈ E are directed. Conversely, if all edges are undi-
rected, the graph is said to be undirected. If the set of edges of a graph contains both directed
and undirected edges, the graph is called mixed. For this thesis, only undirected graphical mod-
els are considered, therefore, whenever we are speaking of a graph, we are in fact considering an
undirected graph. We introduce the concepts of neighborhood, cliques and paths, which define
the relationships between vertices in a graph.

Definition 5. (Neighbor, Degree of a Vertex). Let G be a graph and Xi, Xj ∈ X, i 6= j. If
(Xi −Xj) ∈ E, then Xi is a neighbor of Xj. The set of all neighbors of Xi is

NbG(Xi) = {Xj | (Xi −Xj) ∈ E, Xj ∈ X}. (2.10)

The degree of a vertex Xi, denoted by deg(Xi) is the number of edges incident to the vertex [25].
Edges with themselves are counted twice.

Definition 6. (Clique, Maximal Clique) Let G be a graph and C ⊆ X a subset of the nodes
of the graph. C is a clique, if there exists an edge between all pairs of nodes in C, i.e.

∀Ci, Cj ∈ C, i 6= j, : (Ci − Cj) ∈ E. (2.11)

A clique is called maximal, if adding any node X ∈ X \C makes it no longer a clique.

– 19 –



2 Probabilistic Graphical Models

Definition 7. (Path) Let G be a graph. A sequence of nodes Q = (X1, . . . , Xn) is a path from
X1, . . . , Xn if

(Xi −Xi+1) ∈ E, for 1 ≤ i ≤ n− 1. (2.12)

X1

X2

X3 X4

(a) Tree

X1 X2 X3

(b) Chain

X1 X2

X4 X3

(c) Single Loop

Figure 2.1: Graphical representation of different graph structures.

In this thesis, we consider three basic graph structures:

1. Trees are graphs in which any two different nodes are connected by exactly one path. As
an example, consider the tree shown in Figure 2.1 (a), given by

GBTree = ({X1, X2, X3, X4}, {(X1 −X2), (X2 −X3), (X2 −X4)}) . (2.13)

2. Chains are a special case of trees for which the maximal degree is 2 for all vertices X ∈ X.
As an example, consider the chain with three nodes shown in Figure 2.1 (b), given by

GChain3 = ({X1, X2, X3}, {(X1 −X2), (X2 −X3)}) . (2.14)

3. Loops are graphs in which for at least one vertex Xi ∈ X there exists a path from Xi to
Xi. As an example, consider the single loop with four nodes shown in Figure 2.1 (c), given
by

G2×2SG = ({X1, X2, X3, X4}, {(X1 −X2), (X2 −X3), (X3 −X4), (X4 −X1)}) . (2.15)

It can be seen that every finite acyclic graph, i.e. every graph without loops and a finite number
of nodes, can be formed by concatenating trees. A proof of this result is shown in [25, pp.
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311].

2.3 Markov Networks

In this section, we introduce an undirected graphical model, known as Markov Networks (MN),
or Markov Random Fields. Certain factorization and conditional independence properties of a
joint probability distribution can be expressed in such a way. They can be defined as follows:

Definition 8. (Markov Network) A Markov Network is a tuple M = (G,Ψ), where G is an
undirected graph with nodes X = {X1, . . . , XN} representing RVs, and C1, . . . ,CL are maximal
cliques in G. The set Ψ = {ΨC1 , . . . ,ΨCL} is called set of potentials, and ΨCi : val(Ci) 7→ R≥0
are nonnegative functions.

The joint probability distribution of X defined by the MN is given by

pM(X1, . . . , XN ) =
1

Z

L∏
l=1

ΨCl(Cl), (2.16)

where Z is a normalization constant (also referred to as partition function) calculated as

Z =
∑

x∈val(X)

L∏
l=1

ΨCl(x(Cl)). (2.17)

Using the above definition, we can compute the joint probability distribution for the MNs
generated by the example graphs from Section 2.2. These joint probabilities are later used in
Chapter 5. For the tree GBTree, the chain GChain3, and the single loop G2×2SG, respectively, are
given by

pBtree(X1, X2, X3, X4) =
1

Z
ΨX1,X2

(X1, X2)ΨX2,X3
(X2, X3)ΨX2,X4

(X2, X4), (2.18)

pChain3(X1, X2, X3) =
1

Z
ΨX1,X2

(X1, X2)ΨX2,X3
(X2, X3), and (2.19)

p2×2SG(X1, X2, X3, X4) =
1

Z
ΨX1,X2

(X1, X2)ΨX2,X3
(X2, X3)ΨX3,X4

(X3, X4)ΨX4,X1
(X4, X1).

(2.20)

2.4 Probabilistic Inference

In this section, concept of probabilistic inference is briefly reviewed. Lets assume that X, the set
of RVs in a MNM, is now partitioned into the mutually disjoint sets O and Q, i.e. X = O∪Q
and O ∩Q = ∅. The variables O are called observed nodes, referring to the observed evidence
variables, and Q denotes the set of query variables. Given some observations (or evidence), the
task of probabilistic inference using PGMs consists in assessing the marginal or the most likely
configuration of variables [5] . There are two kinds of inference queries:

1. Marginalization: This query tries to infer the marginal distribution of the query variables
Q conditioned on the observation O. Using Eq. (2.7), the conditional probability p(Q|O =
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o) is given by

p(Q|O = o) =
p(Q,O = o)

p(O = o)
. (2.21)

Using Eq. (2.6), the term p(O = o) can be computed as

p(O = o) =
∑

q∈val(Q)

p(Q = q,O = o). (2.22)

2. Maximum a-posteriory (MAP): This query tries to infer the most likely instantiation
of the query variables Q given the observations O, i.e.

q∗ = arg max
q∈Q

p(Q = q|O = o). (2.23)

Both of these queries can be answered directly evaluating the sums in their corresponding equa-
tions. Nevertheless this approach becomes intractable for models with many variables [3, 26].
As an example, let us consider the marginal p(O = o) from Eq. (2.22). Using Eq. (2.5) it can be

seen that the computation of the marginal involves
∏|Q|
i=1 sp(Qi) summations. If we assume that

sp(Qi) = k for all Qi’s, the number of summations required to evaluate the marginal p(O = o)
simplifies to k|Q|. This implies, that the complexity of the computation of the marginal p(O = o)
is O(k|Q|), i.e. it grows exponentially with the number of variables.

MPAs are efficient methods developed for probabilistic inference, by exploiting the factorization
of the joint probability induced by the graph structure [26]. A solution for the marginalization
query, can be found using the BP algorithm, also known as the sum-product algorithm [3, 16].
For solving the MAP query, the corresponding MPAs are the max-product algorithm, or its
alternative formulation in log-domain, the max-sum algorithm [5,11]. The focus of this thesis is
on marginalization queries, i.e. on the sum-product algorithm.

2.5 Belief Propagation

BP is a procedure which calculates the marginal distribution for each unobserved node, con-
ditioned on the observed nodes. BP is an iterative process which can be seen as neighboring
variables passing messages to each other, like: “I, variable Xi, think on how likely is it that you,
variable Xj , are in state xj”. This series of conversations are likely to converge to a consen-
sus after enough iterations, which determines the marginal probabilities of all variables. These
estimated marginals are called beliefs [7].

Formally, let M = (G,Ψ) be a MN, with X = {X1, . . . , XN} variable nodes. A message
µXi→Xj (xj) from (variable) node Xi to (variable) node Xj represents how much Xi believes that
Xj will be in the state xj ∈ val(Xj). The belief bXj (xj) of a variable node Xj to be in state xj is
proportional to the product of all messages from the neighboring factor nodes, i.e. µXi→Xj (xj)
for all Xi ∈ Nb(Xj), i.e.

bXj (xj) =
1

Z

∏
Xi∈Nb(Xj)

µXi→Xj (xj), (2.24)

where Z is a normalization constant, such that
∑

i bXj (xj) = 1. This message passing update
is graphically represented in Figure 2.2. We now prove that the BP algorithm converges to
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... Xi Xj

µXk→Xi (xi)

µXi→Xj (xj)

Xk∈NbG(Xi)
\{Xj}

Figure 2.2: Representation for the message passing from Xi to Xj

the true marginal probabilities for the case of graphs without loops. While this result was first
introduced in [7], in this thesis we present a proof that shows the polynomial nature of the BP
algorithm.

Theorem 1. (Belief Propagation) Let M = (G,Ψ) be an acyclic pairwise MN, i.e. the
maximal cliques consist of only two variables, with X = {X1, . . . , XN} variable nodes. Then the
belief of Xj calculated as in Eq. (2.24) is equal to the marginal probability of Xj, i.e.

pM(Xj) = bXj (xj), (2.25)

if the messages µXi→Xj are computed as

µXi→Xj (xj) =
∑

xi∈val(Xi)

ΨXi,Xj (xi, xj)
∏

Xk∈Nb(Xi)\{Xj}

µXk→Xi(xi). (2.26)

Proof. While the core of this Theorem is the BP algorithm proposed [7], in this proof, we make
emphasis on the polynomial nature of the MPE described by Eq. (2.26). Using the conditional
independence relations described by the MN allow us to algebraically manipulate the beliefs.
Without loss of generality, we compute bX1(x1). The variables in X can be relabeled, such that
G has the tree structure shown in Figure 2.3, where X1 is the root. We use I11 = Nb(X1) =
{XI1

1
, . . . , XI1

m
} to denote the neighbor variable nodes of X1, i.e. the nodes located in level I1.

The set Ik+1
Iki

= Nb(XIki
) \ {XIk−1

j
} denotes the neighbors of variable node XIki

, i.e. the i-th

variable node in level Ik, that are entirely in level Ik+1. We use xIki
as a shorthand notation

for xIki
∈ val(XIki

). Substituting the messages from Eq. (2.26) in Eq. (2.24), the beliefs can be
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IY . . . I2 I1

X
IY1

. . .

... X
I21

. .
.

... ... X
I11

. . .

... X
I2
j

X1

. .
. ...

...

X
IYn

. . . . . . X
I1m

Figure 2.3: Topology of a general tree used for the proof of Theorem 1

computed as

bX1(x1) =
1

Z

∏
Xi∈I1

1

µXi→X1(x1)

=
1

Z

∑
x
I11

ΨXI1 ,X1(xI1
1
, x1)

∏
Xk∈I2

I11

µXk→XI11
(xI1

1
)

× . . .

×

∑
x
I1m

ΨX
I1m
,X1(xI1

m
, x1)

∏
Xk∈I2

I1m

µXk→XI1m
(xI1

m
)

 . (2.27)

Expanding every product of the form
∏
k µk→i(xi) results in

∏
Xk∈I2

I1
i

µXk→X
I1
i

(xI1
i
) =

∑
x
I2
j

ΨX
I2
j
,X

I1
i

(xI2
j
, xI1

i
)

∑
x
I3
l

ΨX
I3
l
,X

I2
j

(xI3
l
, xI2

j
)

(

. . .

∑
xIYz

ΨXIYz
,X

I
Y−1
y

(xIY
z
, xIY−1

y
)

 . . .

 . . .

 . (2.28)
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Using that the sum is distributive over products (see Section 3.1), and that every potential is
pairwise defined, the above equation can be written as∏

Xk∈I2
I1
i

µXk→XI1
i

(xI1
i
) =

∑
x
I2
j

· · ·
∑
x
IYz

ΨX
I2
j
,X
I1
i

(xI2
j
, xI1

i
) . . .ΨX

IYz
,X
IY−1
y

(xIYz , xIY−1
y

). (2.29)

Here we recognize that the above equation is the sum over all states xIki
∈ val(XIki

) of variable

nodes XIki
in levels I2, . . . , IY along the path that started in XI1

i
. Because of the tree structure

of the graph, there is no variable XIkq
that belongs the neighborhoods of both XIk−1

i
and XIk−1

j

for all i 6= j. Hence, every pairwise potential appears only once, and there is only a summation
in every variable, (i.e. the maximal degree of every pairwise potential is 1). It can be seen, that
this statement is not true in loopy graphs. Substituting Eq. (2.29) in Eq. (2.27) results in

bX1(x1) =
1

Z

∑
x
I11

ΨX
I11
,X1(xI11

, x1)
∑
x
I2
j

· · ·
∑
x
IYz

ΨX
I2
j
,X

I1
i

(xI2j
, xI1i

) . . .ΨX
IYz

,X
I
Y−1
y

(xIYz , x
IY−1
y

)


︸ ︷︷ ︸

µX
I11
→X1(x1)

× . . .

×

∑
x
I1m

ΨX
I1m

,X1(xI1m , x1)
∑
x
I2
j′

· · ·
∑
x
IY
z′

ΨX
I2
j′
,X

I1
i′

(xI2
j′
, xI1

i′
) . . .ΨX

IY
z′
,X

I
Y−1
y′

(xIY
z′
, x
IY−1
y′

)


︸ ︷︷ ︸

µX
I1m
→X1

(x1)

=
1

Z

∑
x
I11

· · ·
∑
x
IYn

ΨX
I11
,X1(xI11

, x1) . . .ΨX
IYn

,X
I
Y−1
z

(xIYn , x
IY−1
z

). (2.30)

Comparing the right-hand-side of the above equation with Eq. (2.16), the belief bX1(x1) simplifies
to

bX1(x1) =
∑
xI1

· · ·
∑
xYn

pM(X1, . . . , XYn), (2.31)

which according with Eq. (2.6), is the marginal probability pM(X1).

It should be noted, that the messages per se do not necessarily represent probabilities and need
to be normalized. Nevertheless, to avoid numerical instabilities [2,3,16], a common formulation
of the MPE defined by Eq. (2.26) includes a normalization as follows:

µXi→Xj (xj) = Zi→j
∑

xi∈val(Xi)

ΨXi,Xj (xi, xj)
∏

Xk∈Nb(Xi)\{Xj}

µXk→Xi(xi), (2.32)

where Zi→j is a normalization constant2 such that∑
xj∈val(Xj)

µXi→Xj (xj) = 1. (2.33)

The above equations can be understood as a system of polynomial equations, where the messages
µXi→Xj (xj) and the normalization constants Zi→j are the variables. Theorem 1 guarantees that
as long as the graph has a tree-like structure, the beliefs calculated obtained from message

2 Since the potentials are strictly positive functions, it is easy to see that Zi→j > 0. Contrary to references
[3, 5, 11, 14, 16], in this thesis we decided to define this constant as a multiplicative factor, in order to use the
theoretical framework of commutative algebra from Chapter 3. A similar formulation can be found in [17].
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passing converge to the true marginals. The reason behind this exactness is attributed to the
fact that in a tree-like graph, messages received by a node from its neighbors are independent.
This does not always hold in presence of loops, which make the neighbors of a node correlated
and therefore, the messages are no longer independent [26]. Nevertheless, convergence of BP in
graphs with cycles has been experimentally confirmed for many applications [27]. This Loopy
Belief Propagation for general graphs has been successfully applied in many areas [5,14]. In this
case, the (L)BP, shown in Algorithm 2.1, is said to converge to a solution [5, 11, 16], although
not necessarily to the true marginals, if there is a finite k > 0 such that

µ
(k)
Xi→Xj (xj) = µXi→Xj (xj). (2.34)

Algorithm 2.1: LBP (·) (Loopy) Belief Propagation

(Adapted from [26])
input : a MN M = (G, {ΨC1 , . . . ,ΨCL});

maximum number of iterations kmax;
requested precision ε

output: the set of beliefs {bXj (xj) | Xj ∈ X}

Initialize messages m
(0)
Xi→Xj (xj) = 1 for all pairs of variable nodes Xi, Xj for which

(Xi −Xj) ∈ E.
for k = 1: kmax do
∀(Xi −Xj) ∈ E:

1. Update:

m
(k)
Xi→Xj (xj) :=

∑
xi∈val(Xi)

ΨXi,Xj (xi, xj)
∏

Xl∈Nb(Xi)\{Xj}

m
(k−1)
Xl→Xi(xi). (2.35)

2. Compute normalization constant:

Z
(k)
i→j :=

1∑
xj∈val(Xj)m

(k)
Xi→Xj (xj)

(2.36)

3. Normalize messages:

µ
(k)
Xi→Xj (xj) := Z

(k)
i→jm

(k)
Xi→Xj (xj) (2.37)

if |µ(k+1)
Xi→Xj (xj)− µ

(k)
Xi→Xj (xj)| < ε ∀(Xi −Xj) ∈ E then

break;

if k = kmax then
return UNCONVERGED;
else for Xi ∈ X do

bXi(xi) :=
∏
Xj∈Nb(Xi)

µXj→Xi(xi)

return {bXj (xj) | Xj ∈ X}
;

The work of Yedidia et al. represents perhaps the most significant breakthrough in the study
of convergence of the (L)BP algorithm. Their work came with the insight that the (L)BP
converge to stationary points of an approximate free energy, known as Bethe free energy in
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statistical physics [14,27]. The investigation of the fixed points of the Bethe free energy has led
to the derivation of convergence criteria for the (L)BP algorithm. Following this work, several
convergence criteria for BP have been proposed, including the work of Ihler et al. [16] and Mooij
et al. [17]. Using results from linear algebra, Weiss showed that the LBP algorithm converges
for graphs with a single loop [3].

In Chapter 4, a reformulation of this convergence condition in terms of computational commu-
tative algebra is given. In order to do so, we use the fact that the equations describing the
messages involved in BP can be seen as a system of multivariate polynomials, and thus, solv-
ing the convergence problem is analog to the problem of finding the solutions of a system of
polynomial equations.
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Tarkus Belief Propagation

3
Computational Commutative Algebra

As discussed in Chapter 2, the Belief Propagation algorithm can be interpreted as finding the
roots of a system of polynomial equations. This system is explicitly shown in Eq. (2.32) and Eq.
(2.33). Therefore it would be interesting to investigate some theoretical background that allows
us to manipulate and solve such a system. In this chapter, the framework of computational
commutative algebra used for this purpose is provided. If not stated otherwise, the definitions
and notation are taken from the book by Cox, Little and O’ Shea [18]. We refer the reader to
this standard text for a more extensive treatment of this subject.

The rest of this chapter is structured as follows: In Section 3.1, a short overview of the basic
concepts of algebraic geometry and commutative algebra is provided. In Section 3.2, the concept
of Gröbner Basis is reviewed. In Section 3.3, the Hilbert’s Nullstellensatz and its connection to
the existence and number of solutions of a system of polynomial equations are discussed. We
close this Chapter with the basics of elimination theory as well as some applications to solving
systems of polynomial equations.

3.1 Algebraic Geometry

Algebraic Geometry is the study of systems of polynomial equations and its relation with ge-
ometrical objects. The solutions of a system of polynomial equations form a geometric object
called variety, whose corresponding algebraic object is called ideal. These concepts allow us
to answer such questions as whether a system of polynomial equations has finitely or infinitely
many solutions, and how to characterize them [18,19]. We begin our discussion about solutions
of polynomials by defining the basic algebraic structures called rings and fields. A more formal
definition of these structures is provided in Appendix B.2.

Definition 9. (Ring) A ring is a triple (A,+, ·), where A is a set, and · and + are binary
operations defined on A for which the following conditions are satisfied:

1. (associative) (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) ∀ a, b, c ∈ A.

2. (commutative) a+ b = b+ a and a · b = b · a ∀a, b ∈ A.
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3. (distributive) a · (b+ c) = a · b+ a · c ∀a, b, c ∈ A.

4. (identities) There are 0, 1 ∈ A such that a+ 0 = a and a · 1 = a ∀a ∈ A.

5. (additive inverse) Given a ∈ A, there is b ∈ A such that a+ b = 0.

A common example of a ring is the set of all integer numbers Z. As a notation remark, in this
work, Z≥0 denotes the set of all integers equal or larger than zero.

Definition 10. (Field) A field is a triple (K,+, ·), where K is a set, and · and + are binary
operations defined on K for which the following conditions are satisfied

1. (associative) (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) ∀ a, b, c ∈ K,

2. (commutative) a+ b = b+ a and a · b = b · a ∀a, b ∈ K,

3. (distributive) a · (b+ c) = a · b+ a · c ∀a, b, c ∈ K,

4. (identities) There are 0, 1 ∈ K such that a+ 0 = a and a · 1 = a ∀a ∈ K,

5. (additive inverse) Given a ∈ K, there is b ∈ K such that a+ b = 0,

6. (multiplicative inverse) Given a 6= 0 ∈ K, there is c ∈ K such that a · c = 1

Common examples of fields are the set of all rational numbers Q, the set of real numbers R and
the set of complex numbers C. With this definitions, we can study the most important algebraic
structure used in this thesis, a polynomial ring.

Definition 11. (Monomial, Total degree, Polynomial, Polynomial Ring) Given a field
K; x1, . . . , xn; a1, . . . , an ∈ K and α1, . . . , αn ∈ Z≥0, a monomial in x1, . . . , xn is a product in
the form

xα1
1 . . . xαnn . (3.1)

The total degree of a monomial is given as

|α| =
n∑
i

αi. (3.2)

As a shorthand notation, we will write xα1
1 . . . xαnn = xα. A polynomial f in x1, . . . , xn with

coefficients in K is a finite linear combination of monomials, that can be written as

f =
∑
α

aαx
α. (3.3)

The set of all polynomials in x1, . . . , xn with coefficients in K is called a polynomial ring, denoted
by K[x1, . . . , xn], which satisfies all the conditions of a commutative ring for the sum and product
of polynomials.

A field K is said to be algebraically closed if it contains the roots of every non-constant polynomial
f ∈ K[x1, . . . , xn]. The field of real numbers R is not algebraically closed, because f(x) = x2 + 1
has no root in R. On the other hand, C is an example of an algebraically closed field. Using
these definitions, it is possible to introduce the basic geometric objects called varieties.

Definition 12. (Affine Space, Affine Variety) Let K be a field and n ∈ Z≥0. The set

Kn = {(a1, . . . , an) : a1, . . . , an ∈ K} (3.4)
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is called the affine space over K. Furthermore, let f1, . . . , fs be polynomials in K[x1, . . . , xn],
then the set

V(f1, . . . , fs) = {(a1, . . . , as) ∈ Kn : fi(a1, . . . , as) = 0 ∀ 1 ≤ i ≤ s} (3.5)

is called the affine variety defined by f1, . . . , fs over the affine space Kn.

Figure 3.1: Example of a Variety in R3: Paraboloid 1
2
x2 + 2y2 − z = 0

As an example, Figure 3.1 shows the variety V(12x
2 + 2y2 − z) ⊂ R3, i.e. the paraboloid given

by the set of all points that satisfy 1
2x

2 + 2y2 − z = 0.

The analog algebraic objects that allow us to characterize varieties are ideals. These objects can
be defined as follows:

Definition 13. (Ideal, Finitely generated Ideal, Basis of an Ideal) A subset of a poly-
nomial ring I ⊂ K[x1, . . . , xn] is an ideal if it satisfies the following conditions:

1. 0 ∈ I,

2. a, b ∈ I ⇒ a+ b ∈ I and

3. if a ∈ I and b ∈ K[x1, . . . , xn], then ab ∈ I.

A finitely generated ideal, is the one that can be generated by a finite set of polynomials
{f1, . . . , fs}, called basis, defined as

〈f1, . . . , fs〉 = {f | f = g1f1 + · · ·+ gsfs, gi ∈ K[x1, . . . , xn]}. (3.6)

The concept of an ideal is similar to that of a vector subspace in linear algebra, while the notion
of a basis of an ideal is analog to the basis of a vector space [18]. The relationship between
finitely generated ideals and varieties can be stated in the following lemma:

Lemma 1. Let I ⊂ K[x1, . . . , xn] be an ideal and V(I) ⊂ Kn be an affine variety given by

V(I) = {(a1, . . . , an) ∈ Kn : f(a1, . . . , an) = 0 ∀f ∈ I}. (3.7)

If I = 〈f1, . . . , fs〉, then V(I) = V(f1, . . . , fs).
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The proof of this lemma can be found in [18, pp. 79]. This result guarantees that the affine
variety of a system of polynomial equations is exactly the same as the variety of the ideal gener-
ated by the polynomials of such a system. The following lemma further explores the relationship
between varieties and ideals, by connecting the concepts of bases and varieties of an ideal:

Lemma 2. If f1, . . . , fs and g1, . . . , gt are bases of the same ideal I ⊂ K[x1, . . . , xn], i.e.
〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 it follows that V(f1, . . . , fs) = V(g1, . . . , gt).

The proof of this lemma can be found in [18, pp. 33]. This result is interesting, because it states
that different bases of the same ideal are associated with the same variety. Using this lemma,
the problem of finding the roots of a system of polynomial equations can be simplified by finding
an appropriate basis which generates the same ideal (and thus, the same variety).

3.2 Gröbner Basis

Next, we introduce the concept of ordering, which proves to be very useful at characterizing
monomials, polynomials, ideals and varieties [18,20].

Definition 14. (Monomial ordering) A monomial ordering is any relation > on a set of
monomials {xα | α ∈ Zn≥0}, which satisfies the following conditions:

1. > is a total ordering on Zn≥0, which means that only one of the three possibilities of
α, β ∈ Zn≥0 should be true, i.e.

xα > xβ, xα = xβ, xβ > xα, (3.8)

2. if α > β and γ ∈ Zn≥0, then α+ γ > β + γ, and

3. every nonempty subset of Zn≥0 has a smallest element under >.

Some important monomial orderings are the lexicographic ordering, or lex order, the graded
lexicographic ordering, or grlex order, and the graded reverse lexicographic order, or grevlex
order [20,28]. These orderings are defined as follows:

Definition 15. (Lex order, Grlex order, Grevlex order). Let α, β ∈ Zn≥0. We denote

1. Lexicographic ordering: α >lex β if in the vector difference α− β = [α1− β1, . . . , αn− βn]
the leftmost nonzero entry is positive.

2. Graded Lexicographic ordering: α >grlex β if |α| =
∑n

i=1 αi > |β| =
∑n

i=1 βi, or |α| = |β|
and α >lex β.

3. Graded reverse lexicographic ordering: α >grevlex β if |α| > |β|, or |α| = |β| and the
rightmost nonzero entry of α− β is negative.

With the concept of ordering, we can use the following terminology to describe the structure of
a polynomial:

Definition 16. (Multidegree, Leading Coefficient, Leading Monomial, Leading Term).
Let f =

∑
α aαx

α be a nonzero polynomial in K[x1, . . . , xn], and > be a monomial ordering, then
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3.2 Gröbner Basis

1. Multidegree:

multideg(f) = max(α ∈ Zn≥0 : aα 6= 0), (3.9)

where the maximum is taken with respect to the ordering >.

2. Leading Coefficient:

LC(f) = amultideg(f) ∈ K. (3.10)

3. Leading Monomial:

LM(f) = xmultideg(f) ∈ K[x1, . . . , xn]. (3.11)

4. Leading Term:

LT(f) = LC(f) · LM(f) ∈ K[x1, . . . , xn]. (3.12)

Definition 17. (Least common multiple, S-polynomial) Let f, g ∈ K[x1, . . . , xn] be two
polynomials, with multideg(f) = α and multideg(g) = β, and then let γ = (γ1, . . . , γn) with
γi = max(αi, βi). The least common multiple of LM(f) and LM(g) is given by

l.c.m(LM(f),LM(g)) = xγ . (3.13)

The S-polynomial of f and g is defined as

S(f, g) =
l.c.m(LM(f),LM(g))

LT(f)
f − l.c.m(LM(f),LM(g))

LT(g)
g. (3.14)

Using these concepts, it is possible to generalize the algorithm for dividing a polynomial by
another polynomial in one variable to an algorithm for dividing a polynomial by a set of polyno-
mials in several variables. The main idea is that given F = (f1, . . . , fs), an s-tuple of polynomials
in K[x1, . . . , xn], and a monomial ordering >, a polynomial f ∈ K[x1, . . . , xn] can be written as

f = a1f1 + · · ·+ asfs + f
F
, (3.15)

where a1, . . . , as, f
F ∈ K[x1, . . . , xn], and either f

F
= 0 or f

F
is a linear combination of monomi-

als, none of which is divisible by any of LT(fi), . . . ,LT(fs). In this context, f
F

, the remainder
of f on division by F, is called normal form of f . Algorithm 3.1 shows how to compute

a1, . . . , as, f
F

. A proof for this algorithm can be found in [18, pp. 64].

We are interested in using these concepts to test if a polynomial f ∈ K[x1, . . . , xn] shares zeros
with a set of polynomials {f1, . . . , fs} ⊂ K[x1, . . . , xn]. This problem can be formulated as deter-
mining if f ∈ I, with I = 〈f1, . . . , fs〉. Geometrically speaking, using Lemma 1, this is equivalent
as deciding whether V(I) lies on the variety of V(f). This is known in the literature as the Ideal
Membership problem [18]. We can intuitively understand this problem with an example. Let
us assume, that we have a system of polynomial equations F = 0, and an polynomial equation
f = 0 such that f ∈ F. We are interested in determining if f = 0 has common solutions to
F \ {f} = 0. Finding a systematic way to knowing if such solutions exist would be helpful to
determine if a system of polynomial equations has a solution. The Ideal Membership problem
can be solved using a special kind of bases called Gröbner Bases. They can be characterized
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Algorithm 3.1: DivAlg(·) Division Algorithm in K[x1, . . . , xn]

(Taken from [18])
input : f1, . . . , fs, f

output: a1, . . . , as, f
F

Initialize a1 := 0; . . . ; as := 0; f
F

:= 0 and p := f
while p 6= 0 do

i := 1
divocc := false
while i ≤ s and divocc := false do

if LT(fi) divides LT(p) then

ai := ai + LT(p)
LT(fi)

p := p− LT(p)
LT(fi)

fi
divocc := true

else
i := i+ 1

if divocc = false then

f
F

:= f
F

+ LT(p)
p := p− LT(p)

using the following Theorem:

Theorem 2. (Gröbner Basis) Given I ⊂ K[x1, . . . , xn] an ideal, and a fixed monomial order,
the following statements are equivalent

1. G = {g1, . . . , gt} is a GB for I.

2. Let LT(I) be the set of leading terms of elements of I and 〈LT(I)〉 the ideal generated by
those elements, then

LT(I) = 〈LT(gi), . . . ,LT(gt)〉. (3.16)

3. (Ideal Membership) For f ∈ K[x1, . . . , xn], f ∈ I iff f
G

= 0, i.e. the remainder of f on
division by G is zero.

4. (Buchberger’s Criterion) S(gi, gj)
G

= 0 for all pairs of polynomials gi, gj ∈ G.

Proof. (Taken from [18])

1⇔ 2. Statement 2 is the definition of a GB. To prove that this is a basis for I, i.e.

I = 〈g1, . . . , gt〉 = {h | h = h1g1 + · · ·+ htgt, hi ∈ K[x1, . . . , xn]}, (3.17)

Dickinson’s Lemma and the Hilbert Basis Theorem are required. These results can be found in
[18, pp. 71 and pp. 76, respectively].

1 ⇔ 3. Let’s suppose that f ∈ I. Since G is a basis for I, f can be written as f = h =

h1g1 + · · ·+htgt. Comparing with Eq. (3.15) it follows that f
G

= 0. Conversely, if f
G

= 0, and
G is a GB, it is trivial to see that f lies in I.
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3⇔ 4. Let’s assume that G is a GB of I. Using Eq. (3.14), we can write the S-polynomial as

S(gi, gj) =
l.c.m(LM(gi),LM(gj))

LT(gi)
gi −

l.c.m(LM(gi),LM(gj))

LT(gj)
gj

= higi + hjgj , (3.18)

which means that S(gi, gj) ∈ I. By Statement 3, this means that S(gi, gj)
G

= 0. For the sake

of brevity, the proof of the converse statement, i.e. starting from S(gi, gj)
G

= 0, show that G is
a GB of I, is omitted here, but it can be found in [18, pp. 85].

The third statement of this theorem suggests a method for transforming an arbitrary basis F of
an ideal I into a Gröbner basis. Such a method was first proposed by Bruno Buchberger in 1965
[19], and is shown in Algorithm 3.2. Nevertheless, this algorithm is computationally expensive
since it involves the computation of all pairs of S-polynomials, and therefore heavily depends on
a good selection of the monomial ordering [29, 30]. A weak criterion to avoid the computation
of some useless S-polynomials, i.e. a criterion to determine beforehand if an S-polynomial is
reduced to zero, and thus, avoid computing the remainder using the generalized division algo-
rithm, is presented in the following proposition:

Proposition 1. Given a finite set G ⊂ K[x1, . . . , xn] and polynomials f, g ∈ G, such that

l.c.m(LT(f),LT(g)) 6= LT(f),LT(g), then S(f, g)
G

= 0.

Algorithm 3.2: Groebner(·) Buchberger’s Algorithm

(Taken from [18])
input : F = {f1, . . . , fs}, a basis for I, and >, a monomial ordering
output: G = {g1, . . . , gt} a GB for I

Initialize G := F
geq := false
while geq = false do

G
′

:= G
for each pair {p, q}, p 6= q in G

′
do

if l.c.m(LT(p),LT(q)) 6= LT(p),LT(q) then

S := S(p, q)
G
′

, using DivAlg(S(p, q),G
′
)

if S 6= 0 then
G := G ∪ {S}

if G
′

= G then
geq := true

The proof for this proposition can be found in [18, pp. 104]. More recent alternatives to
Buchberger’s algorithm like the F4 algorithm by Faugére [30], include more sophisticated criteria
to avoid the computation of useless S-polynomials, as well as linear algebra techniques to improve
the performance of the generalized division algorithm. Such methods are included in most
commercial computer algebra systems. However it should be noted that the performance of these
algorithms heavily depends on K, i.e. the field in which the coefficients of the polynomials lie,
and a good selection of a monomial ordering. It has been experimentally shown that computing
a GB with respect to the grevlex order is usually faster than computing a GB with respect to the
lex order or the grlex order [31]. The Gröbner bases described by Theorem 2 are not unique,
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Algorithm 3.3: rGB(·) Reduced Gröbner Basis

(Taken from [18])
input : G = {g1, . . . , gt}, a GB basis for I
output: G

′
= {p1, . . . , ps} a reduced GB for I

for gi ∈ G do
gi := 1

LC(gi)
gi

for gi ∈ G do
if gi ∈ 〈LT(G \ {gi})〉 then

G := G \ {gi}

for gi ∈ G do

pi := gi
G\{gi}, using DivAlg(gi,G \ {gi})

return G
′

= {p1, . . . , ps}

i.e. for an ideal I, several GBs can be found. This leads to the definition of reduced Gröbner
bases. In addition to the conditions above, further requirements for a GB to be a reduced GB
are that LC(g) = 1, and no monomial of g lies in 〈LT(G \ {g})〉 for all g ∈ G. A reduced GB is
unique for a given monomial order. A full proof of this conditions lies beyond the scope of this
thesis, but it can be found in [18, pp. 92]. An algorithm for computing a reduced GB is shown
in Alg. 3.3.

3.3 Hilbert’s Nullstellensatz

One of the most important applications of GBs is determining if a system of polynomial equa-
tions has a solution. This can be interpreted geometrically as knowing whether the variety
generated by such a system is non-empty. Hilbert’s Nullstellensatz answers this question.

Theorem 3. ((Weak) Hilbert’s Nullstellensatz) Let K be an algebraically closed field and
let I ⊂ K[x1, . . . , xn] be an ideal satisfying V(I) = ∅. Then I = K[x1, . . . , xn].

A proof by induction can be found in [18, pp. 170]. A criterion for determining the existence of
common zeros of polynomial equations can be expressed as follows:

Corollary 1. Let K be an algebraically closed field, and {f1, . . . , fs} ⊂ K[x1, . . . , xn] be a set of
polynomials. Then if the reduced Gröbner basis of the ideal generated by these polynomials with
respect to any ordering is G = {1}, they do not have a common zero.

Proof. (Taken from [18])

The ideal generated by G is I = 〈1〉, which can be written as

I = {h | h = hi · 1, hi ∈ K[x1, . . . , xn]}, (3.19)

which means that every polynomial hi ∈ K[x1, . . . , xn] is also an element of I, and therefore
K[x1, . . . , xn] ⊂ I. Since by definition I ⊂ K[x1, . . . , xn], this implies that I = K[x1, . . . , xn], and
therefore, by the weak Nullstellensatz, V(I) = ∅. From Lemma 1, it follows that V(I) = V(1).
Since G is the basis of the ideal generated by {f1, . . . , fs ∈ K[x1, . . . , xn], i.e. I = 〈f1, . . . , fs〉 =
〈1〉. Using Lemma 2, V(f1, . . . , fs) = V(1) = ∅, and therefore, the polynomials {f1, . . . , fs} do
not have common zeros in K.
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The following proposition allows us to generalize the above result to the case of non-reduced GBs:

Proposition 2. Let G be a GB for the ideal I with respect to a fixed monomial ordering >
and let c ∈ K[x1, . . . , xn] be a constant polynomial. The reduced GB G

′
of I with respect to the

monomial ordering > is given by G
′

= {1} iff c ∈ G.

Proof. First, we show that if c ∈ G, it follows that G
′

= {1}. We construct G
′

using Algorithm
3.3. Without loss of generality, the GB can be written as G = {f1, . . . , c, . . . , fs}. Dividing all
polynomials in G by their leading coefficients results in

G
′

=

{
f1

LC(f1)
, . . . , 1, . . . ,

fs
LC(fs)

}
. (3.20)

It is easy to see that 〈1〉 = K[x1, . . . , xn]. Since 1 ∈ G
′
and all polynomials fi

LC(fi)
∈ K[x1, . . . , xn],

it follows that fi
LC(fi)

∈
〈

LT(G
′ \
{

fi
LC(fi)

}〉
for all fi’s in G not equal to c, and hence, all of

these polynomials are discarded from G
′
. Finally, it follows that the only polynomial remaining

in G
′

is 1, and therefore, G
′

= {1}.

Now, it we show that if G
′

= {1}, it follows that c ∈ G. Assuming that G
′

= {1} implies that
the polynomial fi

LC(fi)
, with fi 6= 1 in the original non-reduced GB G, lies in the ideal generated

by the leading monomials of the polynomials in G minus the leading monomial of the leading

monomial of fi, i.e. fi
LC(fi)

∈
〈

LT(G
′ \
{

fi
LC(fi)

}〉
. This is true for all polynomials fi 6= 1 ∈ G.

Adding these polynomials to G
′

results in

G
′

=

{
1,

f1
LC(f1)

, . . . ,
fs

LC(fs)

}
. (3.21)

Finally, multiplying every polynomial in G
′

by its leading coefficient, which is a constant in K,
results in G = {c, f1, . . . , fs}, with c a constant. This means that c ∈ G.

It follows from this proposition, that if a constant polynomial is an element of the GB of the
ideal generated by a system of polynomial equations, the affine variety of such a system is empty,
and therefore, the system has no solution.

We are now interested in determining whether an affine variety V(I) is a finite set. This question
can be answered knowing the dimension of this variety, but a more thorough discussion about
the concept of dimension of a variety lies beyond the scope of this chapter. A more formal
treatment of this concept is provided in Appendix C.

Definition 18. (Zero-dimensional Ideal) An ideal I ⊂ K[x1, . . . , xn] is called zero-dimensional
if the affine variety V(I) is a finite set.

It follows from the previous definition that a system of polynomial equations has only a finite
number of solutions if the ideal generated by those polynomials is zero-dimensional. The fol-
lowing theorem provides a method for determining if a system of equations has finitely many
solutions:

Theorem 4. Let V(I) ⊂ Kn be an affine variety and I ⊂ K[x1, . . . , xn] be an ideal, > be a
graded monomial ordering in K[x1, . . . , xn], and G a GB for I with respect to such ordering. I
is zero-dimensional iff for each i, 1 ≤ i ≤ n, there is some mi ≥ 0 such that xmii = LT(g) for
some g ∈ G.
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The proof of this theorem is omitted here, since it uses results from the formal definition of
dimension of a variety, but it is included in Appendix C. The following result proposes a quan-
titative estimate of the number of solutions of a system of polynomial equations:

Proposition 3. Let I ⊂ K[x1, . . . , xn] be an ideal in an algebraically closed field with GB
G = {g1, . . . , gt} such that LT(gi) = xmii . Then it follows that the variety V(I) contains at most
m1 ×m2 × · · · ×mn points.

The proof of this proposition can be found in Appendix C.

3.4 Elimination Theory

Given a system of polynomial equations F ⊂ K[x1, . . . , xn], elimination theory allows us to
use the theoretical framework of commutative algebra to find the solutions to F = 0 in two
steps:

1. (Elimination Step) Find a consequence gt(xn) = 0 ∈ K[x1, . . . , xn] of the original equations
in F, which involves only xn, i.e. eliminates all other variables x1, . . . , xn−1 from the system.

2. (Extension Step) Once gt = 0 is solved, determine values of xn that could extend these
solutions to solutions of the original system F = 0.

In order to generalize these ideas, the following definition is required:

Definition 19. (Elimination Ideal) Let I = 〈f1, . . . , f2〉 ∈ K[x1, . . . , xn] be an ideal. The l-th
elimination ideal Il is the ideal given by

Il = I ∩K[xl+1, . . . , xn] (3.22)

The l-th elimination ideal consists of all consequences of f1 = · · · = fs = 0 which eliminate the
variables x1, . . . , xl, and is an ideal of K[xl+1, . . . , xn]. Therefore, the elimination of variables
x1, . . . , xl consists of finding nonzero polynomials in Il. The following theorem allows us to do
that systematically:

Theorem 5. (Elimination Theorem) Let I ⊂ K[x1, . . . , xn] be an ideal, and G its GB with
respect to the lex order. Then for every 0 ≤ l ≤ n the set

Gl = G ∩K[xl+1, . . . , xn] (3.23)

is the GB of the l-th elimination ideal Il

The proof of this theorem can be found in [18, pp. 117]. Using this result, a strategy for solv-
ing systems of polynomial equations f1 = · · · = fs = 0 using GBs can be found in Algorithm
3.4. In this way, solving systems of polynomial equations using the formalisms of GBs repre-
sents a natural generalization of the Gaussian algorithm for solving systems of linear equations
[18].

Compared to the grlex, the grevlex and other monomial orderings, computation of GBs with
respect to the lex order is often more difficult. Therefore, a usual strategy for finding the zeros
of a system of polynomial equations that generate a zero-dimensional ideal is to compute the
GB of such an ideal with respect to a more efficient monomial ordering then to convert this GB
into a lexicographic GB [29,33]. Among the most popular ordering-conversion methods for GBs
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Algorithm 3.4: PolySolve!(·) Solutions of a system of polynomials

(Taken from [18])
input : F = {f1 = 0, . . . , fs = 0}, a system of polynomial equations in K[x1, . . . , xn]
output: Sols the set solutions of F

Assume: I = 〈f1, . . . , fs〉 is zero-dimensional.
Sols := ∅
G := Groebner(F, >lex), the GB of 〈f1, . . . , fs〉 with respect to the lex order
G := rGB(G), the reduced GB of 〈f1, . . . , fs〉
r := Roots(gn), the roots of generator in xn by applying one-variable techniques (including
numerical methods such as Newton-Raphson [18,32])
Sols := Sols ∪ {r}
for i := 1 : n− 1 do

Compute r := Roots(gn−i) the roots of the generator in xi applying back substitution.
Sols := Sols ∪ {r}

return Sols

are the Gröbner Walk [33] and the FGLM [31] algorithms. These methods are built-in in most
commercial computer algebra systems. Worth mentioning is the work of Jean Charles Faugère,
who has not only contributed with the development of the F4 and FGLM algorithms, but also
wrote the standard Groebner package in MAPLE.
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Tarkus Belief Propagation

4
Algebraic Formulation of BP

Using the framework of computational commutative algebra presented in Chapter 3, it is possi-
ble to express an alternative formulation of the Belief Propagation algorithm. In order to do so
we need to formalize the notion of the system of polynomials that represent the message passing
equations:

Definition 20. (Associated set of polynomials of a MN) Given a MN M and its system
of MPE defined by the BP algorithm, i.e. the message updates from Eq. (2.32) and the nor-
malization constraints from Eq. (2.33) (Section 2.5), its associated set of polynomials (ASP)
FM ⊂ K[µ1→2(x1), . . . , µ2→1(xn), Z1→2, . . . , Z2→1] is given as

FM =

{
µi→j(xj)− Zi→j

∑
xi

Ψi,j(xi, xj)
∏

k µk→i(xi)∑
xj
µi→j(xj)− 1

: ∀ {i, j, k} ∈ G, xi ∈ val(i)

}
(4.1)

It is important to remark that the variables of the polynomials in FM are the messages µi→j(xj)
and the normalization constants Zi→j . To avoid cluttered notation, the shorthand notation
F = FM will be used, whenever it is clear that the set is associated with the MN M. As an
example, the ASP of the MN of the tree shown in Figure 2.1, whose graph GBTree is given in
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Eq. (2.13), with binary variables val(X) = {x, x̄} ∀Xi ∈ X is given as

FBtree =



µ1→2(x)− Z1→2

(
ΨX1,X2

(x, x) + ΨX1,X2
(x̄, x)

)
µ1→2(x̄)− Z1→2

(
ΨX1,X2

(x, x̄) + ΨX1,X2
(x̄, x̄)

)
µ2→1(x)− Z2→1

(
ΨX1,X2

(x, x)µ3→2(x)µ4→2(x) + ΨX1,X2
(x, x̄)µ3→2(x̄)µ4→2(x̄)

)
µ2→1(x̄)− Z2→1

(
ΨX1,X2

(x̄, x)µ3→2(x)µ4→2(x) + ΨX1,X2
(x̄, x̄)µ3→2(x̄)µ4→2(x̄)

)
µ2→3(x)− Z2→3

(
ψX2

(x)ΨX2,X3
(x, x)µ1→2(x)µ4→2(x) + ΨX2,X3

(x̄, x)µ1→2(x̄)µ4→2(x̄)
)

µ2→3(x̄)− Z2→3

(
ψX2

(x)ΨX2,X3
(x, x̄)µ1→2(x)µ4→2(x) + ΨX2,X3

(x̄, x̄)µ1→2(x̄)µ4→2(x̄)
)

µ2→4(x)− Z2→4

(
ψX2

(x)ΨX2,X4
(x, x)µ1→2(x)µ3→2(x) + ΨX2,X4

(x̄, x)µ1→2(x̄)µ3→2(x̄)
)

µ2→4(x̄)− Z2→4

(
ψX2

(x)ΨX2,X4
(x, x̄)µ1→2(x)µ3→2(x) + ΨX2,X4

(x̄, x̄)µ1→2(x̄)µ3→2(x̄)
)

µ3→2(x)− Z3→2

(
ΨX2,X3

(x, x) + ΨX2,X3
(x, x̄)

)
µ3→2(x̄)− Z3→2

(
ΨX2,X3

(x̄, x) + ΨX2,X3
(x̄, x̄)

)
µ4→2(x)− Z4→2

(
ΨX2,X4

(x, x) + ΨX2,X4
(x, x̄)

)
µ4→2(x̄)− Z4→2

(
ΨX2,X4

(x̄, x) + ΨX2,X4
(x̄, x̄)

)
µ1→2(x) + µ1→2(x̄)− 1

µ2→1(x) + µ2→1(x̄)− 1

µ2→3(x) + µ2→3(x̄)− 1

µ2→4(x) + µ2→4(x̄)− 1

µ3→2(x) + µ3→2(x̄)− 1

µ4→2(x) + µ4→2(x̄)− 1



.

(4.2)

The rest of this chapter is structured as follows: In Section 4.1, we revisit the condition of
convergence of the BP in terms of determining the dimension and cardinality of VM, the affine
variety generated by the associated set of polynomials of a MN. In Section 4.2 an equivalent
alternative to the BP algorithm using Gröbner basis is proposed.

4.1 Convergence of the (L)BP algorithm

In Chapter 2, it was shown that convergence of the iterative (L)BP algorithm required the mes-
sage updates calculated with Eq. (2.37) to converge to the normalized messages after enough

iterations, i.e. µ
(k)
Xi→Xj (xj) = µXi→Xj (xj). This is equivalent to the following proposition:

Proposition 4. Let M be a MN and F be the ASP of M. The (L)BP algorithm converges to
a solution (not necessarily the true marginals), if the system of equations defined by the set F
as vector (i.e. each polynomial fi ∈ F represents the i-th component of vector F) vanishes.

Proof. From the message update rule from Eq. (2.37), we have that

µ
(k)
Xi→Xj (xj)− Z

(k)
i→j

∑
xi∈val(Xi)

ΨXi,Xj (xi, xj)
∏

Xl∈Nb(Xi)\{Xj}

m
(k−1)
Xl→Xi(xi) = 0. (4.3)

Using Eq. (2.36), we have that m
(k−1)
Xl→Xi(xi) = 1

Z
(k−1)
l→i

µ
(k−1)
Xl→Xi(xi), which substituting in the above

equation results in

µ
(k)
Xi→Xj (xj)− Z

(k)
i→j

∏
l

1

Z
(k−1)
l→i

∑
xi∈val(Xi)

ΨXi,Xj (xi, xj)
∏

Xl∈Nb(Xi)\{Xj}

µ
(k−1)
Xl→Xi(xi) = 0.

(4.4)
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4.1 Convergence of the (L)BP algorithm

By construction, the messages computed with Algorithm 2.1 satisfy that∑
xj∈val(Xj)

µ
(k)
Xi→Xj (xj)− 1 = 0. (4.5)

Using the convergence criterium µ
(k)
Xi→Xj (xj) = µXi→Xj (xj), we can rewrite Eq. (4.4) and Eq.

(4.5) as

µXi→Xj (xj)− Zi→j
∑

xi∈val(Xi)

ΨXi,Xj (xi, xj)
∏

Xk∈Nb(Xi)\{Xj}

µXk→Xi(xi) = 0

∑
xj∈val(Xj)

µXi→Xj (xj)− 1 = 0, (4.6)

where Zi→j = Z
(k)
i→j

∏
l

1

Z
(k−1)
l→i

. This condition is valid for every message. Comparing Eq. (4.6)

with Eq. (4.1) implies that convergence of the (L)BP algorithm is ensured if F = 0 has a
solution.

It is easy to see, that using the convergence condition from Proposition 4, we can use compu-
tational commutative algebra to analyze conditions for convergence of the (L)BP algorithm. A
criterion for convergence can be stated as follows:

Lemma 3. Let F be the ASP of M, a MN, and GF be the reduced Gröbner basis of I, the
ideal generated by F with respect to an arbitrary monomial ordering. The BP algorithm does
not converge to a solution if:

1. GF = {1}, i.e. there is no solution to F = 0,

2. I is not zero-dimensional, i.e. there are infinitely many solutions to F = 0.

Proof. Let V(I) be the affine variety of I. Since I = 〈f1, . . . , fD〉 by construction, then, by
Lemma 1, V(I) = V(f1, . . . , fD) for fi ∈ F, i.e. the set of solutions of the system F = 0.

Assuming that GF = {1}means that V(I) = ∅, which implies that the system F = 0 do not have
a solution, and thus the convergence condition from Proposition 4 is not satisfied. The result
follows directly from Corollary 1 and is a consequence of the weak Nullstellensatz (Theorem 3).

If I is not zero-dimensional then, by definition, the variety V(I) is not a finite set, and thus,
F = 0 has infinitely many solutions. This implies that the BP algorithm doesn’t converge to a
fixed point.

Using the above Lemma and properties of the GB, a method for determining the convergence
of the BP algorithm can be expressed in the following Theorem:

Theorem 6. (Convergence of BP) Let F ⊂ K[µ1, . . . , µD] be the ASP of an MN M, and
GF be the reduced GB of I, the ideal generated by the polynomials in F, with respect to some
monomial ordering >. The BP algorithm converges to a solution if for every variable µi there
exists an element gj ∈ GF whose leading term is LT(gj) = µmii , and the number of fixed points
is bounded by m1 × · · · ×mD.

Proof. If there exists an ordering > such that the leading term of some gj ∈ GF can be written
as LT(gj) = µmii , means that 〈LT(I)〉 = µmii . From Theorem 4 follows that I is zero-dimensional.
Furthermore, it also follows that GF 6= {1}, since GF is a reduced GB. Hence, by Lemma 3, this
means that the conditions for existence of solutions of F = 0 are satisfied. From Proposition 3,
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4 Algebraic Formulation of BP

it follows that the variety V(I) has at most nsols solutions, with 1 ≤ nsols ≤ m1 × · · · ×mD.
Hence, BP converges to a solution.

Let’s illustrate this results with a binary Markov chain with 3 nodes, MMChain3, whose graph
is given by Eq. (2.14), (Fig. 2.1). The ASP of MMChain3 is given by

F =



µ1→2(x)− Z1→2 (ΨX1,X2(x, x) + ΨX1,X2(x̄, x))

µ1→2(x̄)− Z1→2 (ΨX1,X2(x, x̄) + ΨX1,X2(x̄, x̄))

µ2→1(x)− Z2→1 (ΨX1,X2(x, x)µ3→2(x) + ΨX1,X2(x, x̄)µ3→2(x̄))

µ2→1(x̄)− Z2→1 (ΨX1,X2(x̄, x)µ3→2(x) + ΨX1,X2(x̄, x̄)µ3→2(x̄))

µ2→3(x)− Z2→3 (ΨX2,X3(x, x)µ1→2(x) + ΨX2,X3(x̄, x)µ1→2(x̄))

µ2→3(x̄)− Z2→3 (ΨX2,X3(x, x̄)µ1→2(x) + ΨX2,X3(x̄, x̄)µ1→2(x̄))

µ3→2(x)− Z3→2 (ΨX2,X3(x, x) + ΨX2,X3(x, x̄))

µ3→2(x̄)− Z3→2 (ΨX2,X3(x̄, x) + ΨX2,X3(x̄, x̄))

µ1→2(x) + µ1→2(x̄)− 1

µ2→1(x) + µ2→1(x̄)− 1

µ2→3(x) + µ2→3(x̄)− 1

µ3→2(x) + µ3→2(x̄)− 1



(4.7)

If we let the variables be lexicographically ordered as

µ2→3(x̄) >lex µ2→3(x) >lex µ2→1(x̄) >lex µ2→1(x) >lex Z2→3 >lex Z3→1

>lex Z2→1 >lex Z1→2 >lex µ3→2(x̄) >lex µ3→2(x) >lex µ1→2(x̄) >lex µ1→2(x), (4.8)

the GB of the ideal generated by F with respect to the lex order is given by

GF =



µ1→2(x)− q1
(q1+q2)

µ1→2(x̄)− q2
(q1+q2)

µ3→2(x)− q11

(q11+q12)

µ3→2(x̄)− q12

(q11+q12)

Z1→2 − 1
(q1+q2)

Z3→2 − 1
(q11+q12)

Z2→1 − q11+q12

(q11q3+q11q5+q12q4+q12q6)

Z2→3 − q1+q2
(q1q7+q1q9+2q2q8)

µ2→1(x)− q11q3+q12q4
(q11q3+q11q5+q12q4+q12q6)

µ2→1(x̄)− q11q5+q12q6
(q11q3+q11q5+q12q4+q12q6)

µ2→3(x)− q1q7+q2q8
(q1q7+q1q9+2q2q8)

µ2→3(x̄)− q1q9+q2q8
(q1q7+q1q9+2q2q8)



, (4.9)
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4.1 Convergence of the (L)BP algorithm

where the factors q1, . . . , q12 are calculated as

q1 = ΨX1,X2(x, x) + ΨX1,X2(x̄, x)

q2 = ΨX1,X2(x, x̄) + ΨX1,X2(x̄, x̄)

q3 = ΨX1,X2(x, x)

q4 = ΨX1,X2(x, x̄)

q5 = ΨX1,X2(x̄, x)

q6 = ΨX1,X2(x̄, x̄)

q7 = ΨX2,X3(x, x)

q8 = ΨX2,X3(x, x̄)

q9 = ΨX2,X3(x̄, x)

q10 = ΨX2,X3(x̄, x̄)

q11 = ΨX1,X2(x, x) + ΨX1,X2(x̄, x)

q12 = ΨX1,X2(x, x̄) + ΨX1,X2(x̄, x̄). (4.10)

We can see that there is a polynomial g ∈ G for each variable µi→j(k), whose leading term can
be written in form LT(g) = (µi→j(k))m, with m = 1 for all variables. It follows from Theorem 6
that the BP algorithm for a MN with tree nodes converges to a single solution. We can expand
this result to a general finite Markov Chain as follows:

Theorem 7. The BP algorithm converges to a solution for the MN M being a Markov Chain.

X1 X2 . . . XN−1 XN

Figure 4.1: Graph of a Markov Chain with N nodes.

Proof. LetM be the MN of a Markov Chain with N nodes shown in Figure 4.1. We consider F,
the ASP ofM with RVs that have m states, to be a set of polynomials that depends only on the
message variables. The normalization constants are absorbed by the potentials Ψj,l(·, ·)’s, since
the normalization constants were introduced to avoid numerical instability, and are, therefore,
not strictly necessary. F can be written as

F =



µ1→2(x1)−
∑m

i=1 Ψ1,2(xi, x1)

...

µ1→2(xm)−
∑m

i=1 Ψ1,2(xi, xm)

...

µi→i+1(xj)−
∑m

l=1 Ψi,i+1(xl, xj)µi−1→i(xl)

...

µN→N−1(xj)−
∑m

i=1 ΨN,N−1(xi, xj)

...

µi+1→i(xj)−
∑m

l=1 Ψi+1,i(xl, xj)µi+2→i+1(xl)

...



. (4.11)
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Let the message variables be lexicographically ordered as

µN−1→N (xm) >lex · · · >lex µN−1→N (x1) >lex · · · >lex µ2→1(xj)

>lex µN→N−1(xm) >lex · · · >lex µ1→2(x1). (4.12)

Given the above ordering of the message variables, it can be seen, that we can relabel each
message variable and potential by assigning them a unique integer ID. By doing so, in the rest
of this proof, we use the shorthand notation µi for representing a message variable µj→l(k) and
ψi to represent a potential Ψj,l(·, ·). In the ASP described in Eq. (4.11) we identify two different
forms of polynomials, namely,

I. µi − ψi, and

II. µi −
∑m

o=1 ψoµo.

It can be seen that LT(fi) = µi for every polynomial in F, because of the chosen lex order of the
message variables. We can compute now the GB with respect to the lex order using Buchberger’s
algorithm.

First we make G = F. We proceed to calculate the S-polynomials of all pairs of polynomials
in G. From the definition of S-polynomials, given two polynomials f and g, it follows that
S(f, g) = −S(g, f). Therefore, we have to compute only three different types of S-polynomials,
namely S(µi − ψi, µj − ψj), S(µi − ψi, µj −

∑m
l ψlµl) and S(µi −

∑m
l ψlµl, µj −

∑m
n ψnµn).

1. S(µi − ψi, µj − ψj)

Both polynomials belong to the nodes in the extrema of the chain. Without loss of gen-
erality, we assume that µj >lex µi. We notice that l.c.m(µi, µj) = µiµj , and therefore, by
Proposition 1, the remainder of the division of S(I,I) by G is zero. Nevertheless, as an
example, we compute this case explicitly. Using Eq. (3.14), the S-polynomial is given by

S(µi − ψi, µj − ψj) = ψjµi − ψiµj (4.13)

Using the generalized division algorithm, the normal form of S(I,I) can be computed as

a1 : ψj
a2 : −ψl

µi − ψi ψjµi − fiµj −ψiµj
µj − ψj −ψjµi +ψiψj

... −ψiµj +ψiψj
+ψiµj +ψiψj

0 → S(µi − ψi, µj − ψj)
G
.

(4.14)

2. S(µi − ψi, µj −
∑m

l ψlµl)

In this case we have that l.c.m(µi, µj) = µiµj , and hence S(µi − ψi, µj −
∑m

l ψlµl)
G

= 0.

3. S(µi −
∑m

l ψlµl, µj −
∑m

n ψnµn)

Finally, in the last case we also have that l.c.m(µi, µj) = µiµj . Therefore, it follows that

S(µi − ψi, µj −
∑m

l ψlµl)
G

= 0.
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4.1 Convergence of the (L)BP algorithm

Since all of the reductions of the S-polynomials satisfy Buchberger’s criterion (Theorem 2), no
S-polynomial is added to the GB, hence G = F is a (non reduced) GB. Since there is no constant
polynomial c in F, it follows that c /∈ G. Therefore, by Proposition 2, the reduced GB is not
{1}. Furthermore, since all the leading terms are of the form LT(gi) = µi for gi ∈ G, the variety
V(F) has only one point, and therefore it converges to a solution.

It is possible to use the proposed convergence criteria to give an alternative proof to the conver-
gence of the BP algorithm for graphs with a single loop. As already stated in Chapter 2, this is
a well known result proved by Weiss in [3], using linear algebra techniques.

Theorem 8. The BP algorithm converges to a solution for the MN M being a single loop.

Proof. Consider the MN of a single loop with N nodes and m-ary variables shown in Figure
4.2. Similarly to the above theorem, we consider F, the ASP of M be a set of polynomials
that depend only on the message variables, i.e. the normalization constants are absorbed by the
potentials Ψj,l(·, ·)’s. This ASP can be written as

F =



µ1→2(x1)−
∑m

l=1 Ψ1,2(xl, x1)µN→1(xl)

...

µ1→2(xm)−
∑m

l=1 Ψ1,2(xl, xm)µN→1(xl)

...

µi→i+1(xj)−
∑m

l=1 Ψi,i+1(xl, xj)µi−1→i(xl)

...

µi+1→i(xj)−
∑m

l=1 Ψi+1,i(xl, xj)µi+2→i+1(xl)

...



. (4.15)

Let the message variables be lexicographically ordered as in Eq. (4.12). Using the same short-

X1 . . . Xi

XN . . . Xi+1

Figure 4.2: Graph of the MN of a single Loop with N variable nodes

hand notation for the message variables and factor potentials introduced in Theorem 7, we see
that all polynomials in the above ASP are of the form µi −

∑m
l ψlµl, but in this case µi is not

always the leading term.

We use Buchberger’s algorithm to compute the GB with respect to the lexicographical order.
First, we make G = F. Next, we have to calculate the S-polynomials of all pairs of polynomials
in G. However, we note that this is similar to the third case of S-polynomials in the proof of
Theorem 7. Using the same argument, the least common multiple of the leading terms of each
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combination of polynomials is

l.c.m

(
LT

(
µi −

m∑
l

ψlµl

)
,LT

(
µj −

m∑
p

ψpµp

))
=


µiµj if µi, µj are the LTs,

ψwµiµw if µi, ψwµw are the LTs,

ψwµjµw if ψwµw, µj are the LTs,

ψwψuµuµw if ψuµu, ψwµw are the LTs,

ψiµi if ψiµi, µi are the LTs.

(4.16)

By Proposition 1, it follows that the remainder of the division of S
(
µi −

∑m
l ψlµl, µj −

∑m
p ψpµp

)
by G is zero in all cases except if ψiµi, µi are the leading terms of the polynomials. The S-
polynomial for this case is given as

S

(
µi −

m∑
l

ψlµl, µj −
m∑
p

ψpµp

)
=
µj
ψi
−

m∑
l

ψlµl −
1

ψi

∑
p

ψpµp, (4.17)

which is not a constant polynomial. Adding this polynomials to G, and noticing that no poly-
nomial in F is a constant, by Proposition 2, the reduced GB with respect of the lexicographical
order is not {1}. This implies that the system of equations defined by F = 0 has a non-empy
set of solutions. Furthermore, for every message variable µi there is a polynomial g ∈ G such
that LT(gi) = µi. Therefore, by Theorem 6, it follows that the BP algorithm converges in this
case.

Another proof for this theorem using linear algebra and theory of determinants can be found
in Appendix D, since solving systems of linear equations using GBs is equivalent to Gaussian
elimination. In the following theorem, we show that using the proposed convergence criteria,
the convergence of the BP algorithm for graphs with a tree-like structure can be proved:

Theorem 9. (Convergence for Trees) The BP algorithm converges to a solution for the MN
M having a tree-like structure.

Proof. Let M be the MN of a tree with N nodes and m-ary variables shown in Figure 4.3.
Similarly to the above theorems, we consider F, the ASP of M be a set of polynomials that
depend only on the message variables, i.e. the normalization constants are absorbed by the
potentials Ψj,l(·, ·)’s. The ASP of M can be written as

F =



µ1→I1(x1)−
∑m

l=1 Ψ1,I1(xl, x1)

...

µ1→I1(xm)−
∑m

l=1 Ψ1,I1(xl, xm)

...

µo→o+1(xj)−
∑m

l=1 Ψo,o+1(xl, xj)
∏
u∈Nb(o)\{o+1} µu→o(l)

...


. (4.18)

Let the message variables be lexicographically ordered as
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IY . . . I2 I1

XIY1

. . .

... XI2
1

. .
.

...
... XI1

1

. . .

... XI2
j

X1

. .
. ...

...

XIYN
. . . . . . XI1

m

Figure 4.3: Graph of a tree with N nodes.

µX
IY−1
z
→X

IY−2
y

(xm) >lex · · · >lex µX
IY−1
z
→X

IY−2
y

(x1) >lex µX
IY−1
z
→X

IY
N

(xm) >lex . . .

>lex µX
IY−1
z
→X

IY
N

(x1) >lex · · · >lex µX
I11
→X1(xm) >lex · · · >lex µX

I11
→X1(x1)

>lex µX
I11
→X

I21

(xm) >lex · · · >lex µX
I11
→X

I21

(x1) >lex · · · >lex µX1→XI11
(xm)

>lex · · · >lex µX1→XI11
(x1). (4.19)

Using the same shorthand notation for the message variables and factor potentials introduced
in Theorem 7, we see that there are two types of polynomials in the above ASP, namely

I. µi − ψi, and

II. µj −
∑m

l=1 ψl
∏
p µp.

Let us compute the GB with respect to the lex order using Buchberger’s algorithm. First,
we make G = F. Since given two polynomials f and g it follows that S(f, g) = −S(g, f),
we have to consider only three different types of S-polynomials, namely S(µi − ψi, µj − ψj),
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S(µi − ψi, µj −
∑m

l ψl
∏
p µp) and S(µi −

∑m
l ψl

∏
p µp, µj −

∑m
l ψl

∏
p µp). We notice that,

given the structure of the graph, the leading term of every polynomial fi ∈ F is LT(fi) = µi.

1. S(µi − ψi, µj − ψj)

Both polynomials belong to the nodes in the extrema of the tree. Computing the least
common multiple of the these two polynomials result in l.c.m(µi, µj) = µiµj , and therefore,
by Proposition 1, the remainder of the division of S(µi − ψi, µj − ψj) by G is zero.

2. S(µi − ψi, µj −
∑m

l ψl
∏
p µp)

The least common multiple of these two polynomials is l.c.m(µi, µj) = µiµj , and hence,

the normal form is S(µi − ψi, µj −
∑m

l ψl
∏
p µp)

G
= 0.

3. S(µi −
∑m

l ψl
∏
p µp, µj −

∑m
l ψl

∏
q µq)

Finally, in the last case we also have that the least common multiple of the two polyno-
mials is l.c.m(µi, µj) = µiµj . Therefore, the normal form of S(µi −

∑m
l ψl

∏
p µp, µj −∑m

l ψl
∏
q µq) vanishes, i.e. S(µi −

∑m
l ψl

∏
p µp, µj −

∑m
l ψl

∏
q µq)

G
= 0.

Since no S-polynomial was added to G, it follows that G is a non reduced GB with no constant
polynomial. From Proposition 2, the reduced GB with respect to the lex order is not equal to
{1}. Hence, the system F = 0 has a solution. We notice that for every message variable µi there
is a polynomial g ∈ G such that LT(g) = µi. By Theorem 6, this result ensures convergence for
the BP algorithm for graphs with a tree-like structure.

4.2 Tarkus Belief Propagation

We are interested in using the methods of commutative algebra, specially Gröbner bases, to com-
pute the beliefs similar to the LBP algorithm. Such method is proposed in the following theorem:

Theorem 10. (Tarkus Belief Propagation) Let M, be a MN with variable nodes X =
{X1, . . . , XN}. The beliefs {bXj (xj) | Xj ∈ X} computed with Algorithm 4.1 are a solution to
the MPEs described by the (L)BP algorithm.

Proof. Let F be the ASP of M. By construction, GF is the reduced GB of the ideal generated
by F with respect to the monomial ordering >. The function ConvCrit(GF) returns true if for
every variable µi there is a polynomial g in GF whose leading term is of the form LT(g) = µmii .
This follows directly from Theorem 6, and guarantees that the ideal generated by F is zero-
dimensional, and thus, the BP converges to a solution.

In case ConvCrit(GF) = true, the GB GF is transformed into a reduced GB with respect to
the lex order. This can be done using the Gröbner Walk [34], or the FGLM [31] algorithms.
The reason to do so, is because computing a basis with respect to the lex order is usually not
very efficient [18]. Using PolySolve(GF) (Alg. 3.4) to compute the zeros of the polynomials in
GF is equivalent to computing the points in the variety V(F), the solutions to F = 0, i.e. the
solutions to the MPEs.

The algorithm presented above is interesting, due to the fact that it uses methods coming
from seemingly disjoint areas of mathematics (commutative algebra and probability theory) to
perform inference in PGMs. Nevertheless, it should be noted that this algorithm is only suited
for small problems. The main reason for this, is that the complexity of computing GBs for
general ideals is known to be O(kp(N)), with p(N) a polynomial on the number of variables N
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Algorithm 4.1: TBP (·) Tarkus Belief Propagation

input : FM, the associated set of polynomials of a MN M
output: the set of beliefs {bXi(xi) | Xi ∈ X}
G := Groebner(FM, >), the Gröbner basis of the ideal generated by FM respect to monomial
ordering >
GF := rGB(G), the reduced GB of the ideal generated by FM

if ConvCrit(GF) is true then
GF := tGB(GF, >lex), where tGB is an algorithm to transform GF into a GB with respect
to the lex ordering (like Gröbner Walk or FGLM)
µ = PolySolve!(GF), the solutions of F = 0
for Xi ∈ X do

bXi(xi) :=
∏
Xj∈Nb(Xi)

µXj→Xi(xi)

return {bXj (xj) | Xj ∈ X}

else
return UNCONVERGED

function(ConvCrit)
input : G, a reduced GB for ideal generated by F with variables vars = {µ1, . . . , µD}
output: Boolean
ii := 0
for µi ∈ vars do

if LT(g) = µmii , for some g ∈ G and mi ∈ Z≥0 then
ii := ii +1

if ii = D then
return true

else
return false

and k a constant [35], while the worst case complexity3 of computing the true marginals for
systems with m-ary RVs is O(mN ) [5]. This means, that using TBP to compute the marginals
for a general graph could be a more complex problem than calculating the actual marginal
probabilities. Nevertheless, it should be noted, that several more optimistic complexity bounds
for computing GBs of ideals with a particular structure have been derived, and newer and more
efficient methods for computing GBs are being constantly developed [30,35].

3 It has been shown that using the junction trees, the complexity of performing exact inference on an undirected
graphical model is exponential with the size of the largest clique [5].
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5
Experiments

In this chapter, the we present an experiment to show the performance of the TBP proposed in
Chapter 4. In order to do so, we compute the beliefs of a 2× 2 spin glass using TBP and LBP.
This model is simple enough to analytically compute the true marginal probabilities [17].

The rest of this chapter is structured as follows: In Section 5.1 the experimental setup for
computing the beliefs using both TBP and LBP is described, and in Section 5.2, a brief overview
of spin glasses using the Boltzmann distribution and the Ising model is provided. Section
5.3 compares the results of the beliefs computed with TBP and LBP and the true marginal
probabilities for a binary spin glass. We conclude this chapter in Section 5.4, with the discussion
of these results.

5.1 Experimental Setup

In order to compute the beliefs, the TBP from Algorithm 4.1 was implemented in MAPLE 18.
The build-in F4 method by Faugère [30] was selected to compute the GBs. This algorithm is
known for its efficiency in computing GBs for zero-dimensional ideals with coefficients in Q, the
set of rational numbers [36, 37]. The code for this implementation can be found on Appendix
A. The standard LBP from Algorithm 2.1 was implemented in MATLAB R2013a.

A 2 × 2 spin glass M2×2SG, as shown in Figure 5.1, with binary states x = −1 and x̄ = 1, is
used for this experiments. The joint probability distribution for this MN is given by the Ising
model, described in the following section. The beliefs computed with TPB and LBP are then
compared with the analytical closed form solution of the true marginals.

5.2 Spin Glass

Although the theory behind spin glasses model originated in the context of statistical physics,
its scope has been expanding far beyond its original goal of explaining actual spin glass materials
[38]. This framework is an example of a system that has an extremely complex structure but,
nevertheless can be subject of rigorous systematic analyses, and its analytical treatment has been
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recognized as an important tool in the study of information processing tasks, error correcting
codes, image restoration and optimization problems, among others [38]. A spin glass is an
example of a disordered system, where the term “glass” comes from the analogy of the system
with the positional disorder of atoms in a conventional glass [38]. Classically, it refers to a
disordered magnet, in which the spins are stochastically positioned4.

The Boltzmann distribution, for particles (represented by binary random variables X1, . . . , XN )
with energy E(X1, . . . , XN ) is given by

p(X1, . . . , XN ) =
1

Z
exp (−E(X1, . . . , XN )), (5.1)

where Z is a normalization constant. From classical analytical mechanics [39, 40], the total
energy of a system can be represented by its Hamiltonian function H, which can be understood
as is the sum of kinetic and potential energy. Spin glasses belong to the class of quenched
disordered systems, in which the disorder in the system is explicitly present in the Hamiltonian,
under the form of random couplings J, θ, i.e. H = H(J, θ, x1, . . . , xN ), with xi representing the
state of Xi.

The Hamiltonian of a 2D spin glass with pairwise interactions in an external field using the Ising
model [15,17] is given by

H(J, θ, xi, . . . , xN ) = −
N∑
j>i

Jijxixj −
N∑
i

θixi, (5.2)

where Jij are the couplings of the interactions Xi and Xj and θi represents the interaction of
an external field with Xi. Substituting Eq. (5.2) in the Boltzmann distribution from Eq. (5.1),
the joint probability distribution results in

p(X1, . . . , XN ) =
1

Z
exp

 N∑
j>i

Jijxixj +

N∑
i

θixi

 . (5.3)

This joint distribution can be represented using the formalisms of a MN M, where the every
particle Xi represents a variable node. Comparing Eq. (5.3) with Eq. (2.16), we can write the
potentials as

ΨXi,Xj (xi, xj) = φi,j(xi, xj)φj(xj), (5.4)

where the factors φi,j(xi, xj) and φj(xj) are given by

φi,j(xi, xj) = exp(Jijxixj) and φj(xj) = exp(θjxj). (5.5)

5.3 2× 2 Spin Glass

In Figure 5.1 the passing of the messages between the variable nodes is explicitly shown. We
assume that the couplings and the external field are uniform, i.e. Jij = J if there is an edge

4 Spin is an intrinsic form of angular momentum carried by elementary particles and atomic nuclei. Associated
with this angular momentum is a magnetic moment [39].
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X1 X2

X4 X3

µX1→X2

µX2→X3

µX3→X4

µX4→X1

µX2→X1

µX3→X2

µX4→X3

µX1→X4

Figure 5.1: Message passing on a 2 × 2 Spin Glass.

between Xi and Xj and θi = θ [17]. The ASP for this spin glass is

F2×2SG =



µ1→2(x)− Z1→2 (ΨX1,X2
(x, x)µ4→1(x) + ΨX1,X2

(x̄, x)µ4→1(x̄))

µ1→2(x̄)− Z1→2 (ΨX1,X2
(x, x̄)µ4→1(x) + ΨX1,X2

(x̄, x̄)µ4→1(x̄))

µ1→4(x)− Z1→4 (ΨX1,X4
(x, x)µ2→1(x) + ΨX1,X4

(x̄, x)µ2→1(x̄))

µ1→4(x̄)− Z1→4 (ΨX1,X4(x, x̄)µ2→1(x) + ΨX1,X4(x̄, x̄)µ2→1(x̄))

µ2→1(x)− Z2→1 (ΨX1,X2(x, x)µ3→2(x) + ΨX1,X2(x, x̄)µ3→2(x̄))

µ2→1(x̄)− Z2→1 (ΨX1,X2(x̄, x)µ3→2(x) + ΨX1,X2(x̄, x̄)µ3→2(x̄))

µ2→3(x)− Z2→3 (ΨX2,X3
(x, x)µ1→2(x) + ΨX2,X3

(x̄, x)µ1→2(x̄))

µ2→3(x̄)− Z2→3 (ΨX2,X3
(x, x̄)µ1→2(x) + ΨX2,X3

(x̄, x̄)µ1→2(x̄))

µ3→2(x)− Z3→2 (ΨX2,X3
(x, x)µ4→3(x) + ΨX2,X3

(x, x̄)µ4→3(x̄))

µ3→2(x̄)− Z3→2 (ΨX2,X3
(x̄, x)µ4→3(x) + ΨX2,X3

(x̄, x̄)µ4→3(x̄))

µ3→4(x)− Z3→4 (ΨX3,X4
(x, x)µ2→3(x) + ΨX3,X4

(x̄, x)µ2→3(x̄))

µ3→4(x̄)− Z3→4 (ΨX3,X4
(x, x̄)µ2→3(x) + ΨX3,X4

(x̄, x̄)µ2→3(x̄))

µ4→1(x)− Z4→1 (ΨX1,X4(x, x)µ3→4(x) + ΨX1,X4(x, x̄)µ3→4(x̄))

µ4→1(x̄)− Z4→1 (ΨX1,X4(x̄, x)µ3→4(x) + ΨX1,X4(x̄, x̄)µ3→4(x̄))

µ4→3(x)− Z4→3 (ΨX3,X4(x, x)µ1→4(x) + ΨX3,X4(x, x̄)µ1→4(x̄))

µ4→3(x̄)− Z4→3 (ΨX3,X4
(x̄, x)µ1→4(x) + ΨX3,X4

(x̄, x̄)µ1→4(x̄))

µ1→2(x) + µ1→2(x̄)− 1

µ1→4(x) + µ1→4(x̄)− 1

µ2→1(x) + µ2→1(x̄)− 1

µ2→3(x) + µ2→3(x̄)− 1

µ3→2(x) + µ3→2(x̄)− 1

µ3→4(x) + µ3→4(x̄)− 1

µ4→1(x) + µ4→1(x̄)− 1

µ4→3(x) + µ4→3(x̄)− 1



, (5.6)

where the potentials ΨXi,Xj (xi, xj) are given by Eq. (5.4).

– 55 –



5 Experiments

Let the message and normalization constant variables ve lexicographically ordered as

Z4→1Z4→3 >lex Z3→4 >lex Z3→2 >lex Z2→3 >lex Z2→1

>lex Z1→4 >lex Z1→2µ4→3(x̄) >lex µ4→3(x)µ4→1(x̄)

>lex µ4→1(x) >lex µ3→4(x̄) >lex µ3→4(x) >lex µ3→2(x̄)

>lex µ3→2(x) >lex µ2→3(x̄)µ2→3(x) >lex µ2→1(x̄)

>lex µ2→1(x) >lex µ1→4(x̄) >lex µ1→4(x) >lex µ1→2(x̄) >lex µ1→2(x). (5.7)

As an example of the TBP algorithm, we show the explicit computation of the belief bX1(x), i.e.
the belief that the RV X1 is in state x, for J = θ = 0. The GB with respect to the lex order
of the ideal generated by F2×2SG for this particular choice of the couplings J and θ is given by

GF =



µ1→2(x)− 1
2

µ1→2(x̄)− 1
2

µ1→4(x)− 1
2

µ1→4(x̄)− 1
2

µ2→1(x)− 1
2

µ2→1(x̄)− 1
2

µ2→3(x)− 1
2

µ2→3(x̄)− 1
2

µ3→2(x)− 1
2

µ3→2(x̄)− 1
2

µ3→4(x)− 1
2

µ3→4(x̄)− 1
2

µ4→1(x)− 1
2

µ4→1(x̄)− 1
2

µ4→3(x)− 1
2

µ4→3(x̄)− 1
2

Z1→2 − 1
2

Z2→1 − 1
2

Z3→2 − 1
2

Z2→3 − 1
2

Z3→4 − 1
2

Z4→3 − 1
2

Z1→4 − 1
2

Z4→1 − 1
2



. (5.8)

Using Eq. (2.24), the bX1(x) is computed as

bX1(x) =
1

Z

∏
Xi∈Nb(X1)

µXi→X1(x)

=
1

Z
µX4→X1(x)µX2→X1(x)

=
1

Z
× 1

2
× 1

2
=

1

4Z
. (5.9)

– 56 –



5.4 Discussion

Similarly, the belief for X1 being in state x̄ is given by

bX1(x̄) =
1

Z

∏
Xi∈Nb(X1)

µXi→X1(x̄)

=
1

Z
µX4→X1(x̄)µX2→X1(x̄)

=
1

Z
× 1

2
× 1

2
=

1

4Z
. (5.10)

Since bX1(x)+bX1(x̄) = 1, the normalization constant is Z = 1
2 . Substituting Z in bX1(x) results

in

bX1(x) =
1

4× 1
2

=
1

2
. (5.11)

Given the simplicity of this spin glass, the true marginal probability RV X1 in state x can
be analytically computed using a näıve approach. Substituting Eq. (5.3) in Eq. (2.6), and
performing all the summations, this marginal probability is given by

p(X1) =
∑
x2

∑
x3

∑
x4

p2×2SG(X1, X2, X3, X4)

=
e2(−Jx+J+θx+θ)

(
2e2(Jx+J+2θ) + e4(Jx+J+3θ) + 2e2(Jx+J+4θ) + e4Jx+8θ + e4J + e4θ

)
4e4(J+θ) + e8(J+2θ) + 4e4(J+3θ) + 4e4J+8θ + e8J + 2e8θ

. (5.12)

As stated in Chapter 2, this approach to perform exact inference becomes infeasible for a large
number of variables. More efficient alternatives for performing exact inference are transforming
the graph into a Junction tree and the Variable elimination algorithm for triangulation of graphs
[11].

For this experiment, we computed the belief of RV X1 being in state x using TBP and LBP,
with the coupling with the external field, θ, ranging from −3 to 3 with a step-size of 0.2 and
the coupling of the pairwise interactions between RVs, J , ranging from −2 to 2 with a step-size
of 0.2. These beliefs are shown in the the top row of Figure 5.2. On the bottom row of this
figure, the absolute error between the computed beliefs and the true marginal probabilities is
shown, as well as the absolute difference between the beliefs computed with TBP and the beliefs
computed with LBP. In Figure 5.3, the number of solutions of the TBP algorithm for couplings
J and θ in the above mentioned ranges is shown.

5.4 Discussion

In Figure 5.2, it can be seen that for positive couplings, both TBP and LBP converge to the true
marginals. This is an expected result, since both TBP and LBP are not necessarily supposed
to converge to the true marginals, but usually offer a relatively good approximation. The mean
squared error (MSE) for the TBP compared with the true marginals is 0.16, while the MSE
for the LBP compared with the true marginals is only 0.03. However, the MSE for the TBP
compared with the LBP is only 0.06.

We can see in Figure 5.3, that there are 4 solutions to the MPE in the range J ∈ [−2, 2] and
θ ∈ [−3, 3], exempt for the line at θ = 0, where there is only one solution. This shows the
existence of a finite number of solutions, as proved in Corollary 8.

As commented previously, one of the main issues with the TBP algorithm is that it has the com-
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Figure 5.2: Comparison of Beliefs calculated by TBP, LBP and the true marginals for the 2 × 2 spin glass.
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Figure 5.3: Number of solutions of the TBP algorithm for the 2 × 2 spin glass.

putational limitations of the algorithms to calculate GBs. In particular, most of the algorithms
in MAPLE only work with rational numbers. In order to avoid this kind of errors, specially
since the potentials are defined in terms of transcendental functions, a rounded version of the
potential factors was introduced as

φi,j(xi, xj) =
round (γ exp(Jijxixj))

γ
and φj(xj) =

round (γ exp(θjxj))

γ
, (5.13)

where γ is a parameter that controls the precision. This introduces a round-off error in the
coefficients of the polynomials in the ASP, which means, that we are actually finding the solutions
for a slightly different system of equations than the original.
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6
Conclusions

In this thesis, the task of inference using probabilistic graphical models was reviewed using the
framework of computational commutative algebra. In particular, we used the concepts of ideals,
varieties and Gröbner bases, to determine a convergence criterion for Belief Propagation, and to
formulate a new algorithm for computing the marginals probabilities of distributions given by a
Markov network.

It should be remarked that convergence of the BP algorithm in the case of Markov chains, Trees
and Single Loops are well known results in the literature [3,5,11]. Nevertheless, it is interesting
to see that these known results can also be explained using the framework of commutative
algebra.

However, as noted in Section 4.2, the proposed TBP can only be used for solving small toy-
problems. This is due to the fact that Gröbner bases are in general very expensive to com-
pute [35], and they heavily depend on a good selection of the monomial ordering. Another more
technical-related problem is that (almost) all commercial computer algebra packages have only
support for polynomial ideals with coefficients in Q [37], instead of floating point numbers.

6.1 Conjectures and Future Work

The preliminary results obtained during the realization of this thesis motivate the following
conjectures and propositions for future work:

• The problem of finding a good monomial ordering for TBP (including a good lexicograph-
ical order of the variables of the polynomials in the ASP) is equivalent to the problem of
finding a good random variable ordering in the Variable Elimination (VE) algorithm for
triangulation of graphs [11].

The VE algorithm represents an alternative to MPAs for performing exact inference in
PGMs. VE uses the factorization properties induced by the conditional independence of
the random in the joint probability distribution defined by a PGM to iteratively eliminate
random variables from the joint distribution, and therefore, marginalize it. It can be seen
that the process of elimination could be also explained with the semantics of elimination
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theory. This could lead to the use of criteria and heuristic methods from VE to find optimal
orderings of the message variables in the set of polynomials associated with a graphical
model (and vise versa).

• Relationship between algebraic independence of the polynomials of ASP F and statistical
independence of the variables in M.

It is said that elements φ1, . . . , φr ∈ K[V] are algebraically independent over K, the
collection of all polynomial functions φ : V 7→ K, if there is no nonzero polynomial
p(φ1, . . . , φr) ∈ K[V] with coefficients in K that vanishes, i.e. p(φ1, . . . , φr) = 0 [18].
It can be (non-trivially) proved, that the maximal number of algebraically independent
elements in the coordinate ring K[V] equals the dimension of the variety V ⊂ Kn (see
[18, pp. 478]). Using the concept of coordinate ring (see Appendix C) it can be seen that
the messages computed as in Eq. 2.32 are coordinate functions of the variety V(F). This
notion is related to the dimension of V(F), and hence, the notion of algebraic independence
in K[V].

It would be interesting to explore the relationship of statistical independence of the random
variables in M and the algebraic independence of the polynomials in F, and to derive
conditions that relate the graph structure to the dimension of the variety of the ASP
generated by such graph.

• Border Basis-based Tarkus Belief Propagation.

As pointed out throughout Chapter 3 and Chapter 4, the computation of Gröbner Bases
relies on both a good selection of the monomial ordering and the field in which the coef-
ficients of the polynomials lie. An interesting alternative to GBs are Border Bases (BB).
BBs use the concept of order ideal O, which is a subset of the set of monomials in a poly-
nomial ring that is closed under divisors, i.e. if f ∈ O and the residual of the division of f
by g is zero imply that g ∈ O [41]. It has been shown that given a monomial ordering >,
the elements of a reduced GB with respect to that ordering are exactly the border basis
polynomials corresponding to the minimal generators of the border term ideal [41,42].

BBs have some advantages over GBs, since they are independent of the monomial ordering,
and they are numerically more stable than GBs. BB are more robust agains slight changes
in the coefficients of some polynomials generating an ideal I. [41, 43]. These properties
would address directly several issues of the GB-based TBP discussed in Section 5.4.
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A
Maple Code of the TBP for the 2× 2 spin glass

# Convergence Criterion

ConvCrit := proc (Eq, Vars)

global V, IsZD, NSols;

V := Groebner[SuggestVariableOrder](Eq, Vars);

IsZD := Groebner[IsZeroDimensional](Eq, plex(V));

if IsZD = true then

NSols := PolynomialIdeals[NumberOfSolutions]

(PolynomialIdeals[PolynomialIdeal](Eq, variables = {V}))

else

NSols := infinity

end if;

if NSols <> 0 then true else false

end if

end proc;

# TBP for 2 by 2 spin glass

TBP2x2 := proc (J, th)

global x1, x2, Dig, F, f, F12, F14,

F23, F34, f1, f2, f3, f4, EqsNorm, vars, Marg,

MargVars, MargNVars, GB, mssgs, mrgs, nsols;

# Potentials

x1 := 1;

x2 := 2;

Dig := 10;

F := proc (X, Y) options operator, arrow;

round(evalf(exp(J*X*Y))*Dig)/Dig

end proc;

f := proc (X) options operator, arrow;

round(evalf(exp(th*X))*Dig)/Dig

end proc;

F12 := Matrix(2, 2, [F(-1, -1), F(1, -1), F(-1, 1), F(1, 1)]);
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F14 := Matrix(2, 2, [F(-1, -1), F(1, -1), F(-1, 1), F(1, 1)]);

F23 := Matrix(2, 2, [F(-1, -1), F(1, -1), F(-1, 1), F(1, 1)]);

F34 := Matrix(2, 2, [F(-1, -1), F(1, -1), F(-1, 1), F(1, 1)]);

f1 := Matrix(2, 1, [f(-1), f(1)]);

f2 := Matrix(2, 1, [f(-1), f(1)]);

f3 := Matrix(2, 1, [f(-1), f(1)]);

f4 := Matrix(2, 1, [f(-1), f(1)]);

#Associated set of polynomials

EqsNorm := [-a1*m12x1+f1(x1)*F12(x1, x1)*m41x1+f1(x2)*F12(x2, x1)*m41x2,

-a1*m12x2+f1(x1)*F12(x1, x2)*m41x1+f1(x2)*F12(x2, x2)*m41x2,

-a2*m14x1+f1(x1)*F14(x1, x1)*m21x1+f1(x2)*F14(x2, x1)*m21x2,

-a2*m14x2+f1(x1)*F14(x1, x2)*m21x1+f1(x2)*F14(x2, x2)*m21x2,

-a3*m21x1+f2(x1)*F12(x1, x1)*m32x1+f2(x2)*F12(x1, x2)*m32x2,

-a3*m21x2+f2(x1)*F12(x2, x1)*m32x1+f2(x2)*F12(x2, x2)*m32x2,

-a4*m23x1+f2(x1)*F23(x1, x1)*m12x1+f2(x2)*F23(x2, x1)*m12x2,

-a4*m23x2+f2(x1)*F23(x1, x2)*m12x1+f2(x2)*F23(x2, x2)*m12x2,

-a5*m32x1+f3(x1)*F23(x1, x1)*m43x1+f3(x2)*F23(x1, x2)*m43x2,

-a5*m32x2+f3(x1)*F23(x2, x1)*m43x1+f3(x2)*F23(x2, x2)*m43x2,

-a6*m34x1+f3(x1)*F34(x1, x1)*m23x1+f3(x2)*F34(x2, x1)*m23x2,

-a6*m34x2+f3(x1)*F34(x1, x2)*m23x1+f3(x2)*F34(x2, x2)*m23x2,

-a7*m41x1+f4(x1)*F14(x1, x1)*m34x1+f4(x2)*F14(x1, x2)*m34x2,

-a7*m41x2+f4(x1)*F14(x2, x1)*m34x1+f4(x2)*F14(x2, x2)*m34x2,

-a8*m43x1+f4(x1)*F34(x1, x1)*m14x1+f4(x2)*F34(x1, x2)*m14x2,

-a8*m43x2+f4(x1)*F34(x2, x1)*m14x1+f4(x2)*F34(x2, x2)*m14x2,

-1+m12x1+m12x2,

-1+m14x1+m14x2,

-1+m21x1+m21x2,

-1+m23x1+m23x2,

-1+m32x1+m32x2,

-1+m34x1+m34x2,

-1+m41x1+m41x2,

-1+m43x1+m43x2];

# Variables for the ASP

vars := [m12x1, a1, m12x2, m14x1, a2, m14x2, m21x1, a3, m21x2, m23x1,

a4, m23x2, m32x1, a5, m32x2, m34x1, a6, m34x2, m41x1, a7,

m41x2, m43x1, a8, m43x2];

# Marginal equations

Marg := [m21x1*m41x1-Marg1x1, m21x2*m41x2-Marg1x2, m12x1*m32x1-Marg2x1,

m12x2*m32x2-Marg2x2, m23x1*m43x1-Marg3x1, m23x2*m43x2-Marg3x2,

m14x1*m34x1-Marg4x1, m14x2*m34x2-Marg4x2];

MargVars := {Marg1x1, Marg1x2, Marg2x1, Marg2x2,

Marg3x1, Marg3x2, Marg4x1, Marg4x2};

MargNVars := [-MargN1x1+Marg1x1/(Marg1x1+Marg1x2),

-MargN1x2+Marg1x2/(Marg1x1+Marg1x2),

-MargN2x1+Marg2x1/(Marg2x1+Marg2x2),

-MargN2x2+Marg2x2/(Marg2x1+Marg2x2),

-MargN3x1+Marg3x1/(Marg3x1+Marg3x2),

-MargN3x2+Marg3x2/(Marg3x1+Marg3x2),

-MargN4x1+Marg4x1/(Marg4x1+Marg4x2),

-MargN4x2+Marg4x2/(Marg4x1+Marg4x2)];
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# TBP

if ConvCrit(EqsNorm, vars) = true then

# Compute GB with respect to lex ordering using the built-in F4 algorithm

GB := Groebner[Basis](EqsNorm, plex(V), method = maplef4);

nsols := NSols; mssgs := solve(GB, {V});

# Compute the solutions for the messages

mssgs := evalf(mssgs);

mrgs := evalf(subs(mssgs, Marg));

# Calculate the beliefs

mrgs := solve(mrgs, MargVars);

mrgs := evalf(subs(mrgs, MargNVars));

mrgs := solve(mrgs, indets(mrgs));

evalf(subs(mrgs, MargN1x1))

end if

end proc:
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B
Formal definitions of mathematical structures

B.1 Probability theory

In this section, the formal definitions of probability distribution and random variable are pro-
vided. These definitions are taken from [5].

Definition 21. (Outcome Space, Event Space, Probability Distribution,Probability
Space). Let Ω be an outcome space, the set of all outcomes of an experiment, and Σ an event
space over Ω, the set of all possible outcomes. A probability distribution over (Ω,Σ) is a function
P : Σ 7→ R that satisfies Kolmogorov’s axioms:

1. 0 ≤ P (σ) ≤ 1, ∀σ ∈ Σ.

2. P (Ω) = 1.

3. If σi ∩ σj = ∅, then P (σi ∪ σj) = P (σi) + P (σj), ∀σi, σj ∈ Σ, i 6= j.

A probability space is formed by the triplet (Ω,Σ, P ).

Definition 22. (Random Variable). Given a probability space (Ω,Σ, P ), a random variable
(RV) is a function X : Ω 7→ R which satisfies the following properties:

• “X ≤ x” = {ω ∈ Ω | X(ω) ≤ x} is an event for every x ∈ R,

• for the events “X = −∞” = {ω ∈ Ω: X(ω) = −∞} and “X =∞” = {ω ∈ Ω | X(ω) =∞}
it must hold that P (X = −∞) = P (X =∞) = 0,

• val(X) = {x ∈ R | ∃ω ∈ Ω: X(ω) = x} is the image of a RV X.

X = {X1, . . . , Xn} represents an ordered set of n RVs, and x = {x1, . . . , xn} an ordered set of
n values from R. The set of values which can be assumed by a set of random variables X is
denoted as val(X).
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B.2 Algebraic structures

In this section, the formal definitions of the algebraic structures used in this work is provided.
These definitions are taken from [45].

Definition 23. (Operation ). An operation · on a set X is a function · : X× X 7→ X.

Definition 24. (Semigroup). The tuple (X, ·) is called a semigroup if the operation · : X×X 7→
X is associative, i.e.

x · (y · z) = (x · y) · z, ∀x, y, z ∈ X (B.1)

Definition 25. (Neutral element). Let · be an associative operation on X.

• e ∈ X is a left neutral element for ·, if e · x = x ∀x ∈ X,

• e ∈ X is a right neutral element for ·, if x · e = x ∀x ∈ X,

• e ∈ X is a neutral element for ·, if e is both left and right neutral element for ·.

Definition 26. (Monoid) A triple (X, ·, e) is a monoid, if (X, ·) is a semigroup, and e is a
neutral element for ·.

Definition 27. (Inverse) Let (X, ·, e) be a monoid, and let

a · b = e, (B.2)

for a, b ∈ X. We say that a is a left inverse of b and b is a right inverseof a. Furthermore, if x
is a left inverse of a, and z is a right inverse for a, it follows that x = z.

It can be proved, that if the inverse of an element of a monoid exists, it is unique [45, pp. 5].

Definition 28. (Group, Commutative group) A triple (X, ·, e) is a group, if every element
in X has an inverse. Furthermore, if · is a commutative operation, we say that the group is a
commutative group.

Using these concepts, the formal definitions of a ring and a field can be expressed as follows:

Definition 29. (Ring, commutative ring) A quintuple (A,+, ·, 0, 1) is a ring if the following
conditions are satisfied:

1. (A,+, 0) is a commutative group.

2. (A, ·, 1) is a monoid.

3. · distributes over + for both sides, i.e.

r · (s+ t) = (r · s) + (r · t), ∀r, s, t ∈ A (B.3)

and

(s+ t) · r = (s · r) + (t · r) ∀r, s, t ∈ A. (B.4)

If operation · is commutative, the ring is called a commutative ring.
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Definition 30. (Field) A quintuple (K,+, ·, 0, 1) is a field if (K,+, ·, 0, 1) is a commutative
ring and (K \ {0}, ·, 1) is a commutative group.
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C
Dimension of a Variety

In this appendix, a formal definition of the dimension of an affine variety, as well as proofs for
some of the results presented in Chapter 3 are provided. All the notation and definitions are
taken from the standard text by Cox et. al. [18]. We start this discussion presenting the concept
of quotients of polynomial rings.

Definition 31. (Congruence modulo I, Equivalence classes, Quotient of a polynomial
ring) Let I ⊂ K[x1, . . . , xn] be an ideal, and f, g ∈ K[x1, . . . , xn]. If f − g ∈ I, f and g are said
to be congruent modulo I, denoted as

f ≡ g mod I. (C.1)

Congruence modulo I partitions K[x1, . . . , xn] into a collection of disjoint sets called equivalence
classes. For any f ∈ K[x1, . . . , xn], the class of f is the set

[f ] = {g ∈ K[x1, . . . , xn] : g ≡ f mod I}. (C.2)

The set of equivalence classes for congruence modulo I, given by

K[x1, . . . , xn]/I = {[f ] : f ∈ K[x1, . . . , xn]}, (C.3)

is called the quotient of K[x1, . . . , xn] modulo I.

Since K[x1, . . . , xn] is a ring, it is easy to see that the sum and product of equivalence classes
in K[x1, . . . , xn] yield the equivalence classes of the sum and the product of the elements of the
classes, i.e.

[f ] + [g] = [f + g]

[f ] · [g] = [f · g]. (C.4)

Definition 32. (Coordinate ring, coordinate function) Let V ⊂ Kn be an affine variety.
The coordinate ring, denoted by K[V], represents the collection of all polynomial functions
φ : V 7→ K.

The i-th coordinate function on V is a function [xi] : V 7→ K, such that at each variable xi from
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the polynomial ring K[x1, . . . , xn] give a polynomial function whose value at point p ∈ V is the
i-th coordinate of p.

The sum and product of ideals can be expressed in terms of the intersection and union of
varieties, respectively. More formally, this means, given ideals I = 〈f1, . . . , fs〉,J = 〈g1, . . . , gt〉 ⊂
K[x1, . . . , xn] and their respective varieties V(I),V(J) ⊂ K, the sums and products of ideals are
given by

I + J = 〈f1, . . . , fs, g1, . . . , gt〉 −→ V(I) ∩V(J)

I · J = 〈figj : 1 ≤ i ≤ r, 1 ≤ j ≤ s〉 −→ V(I) ∪V(J). (C.5)

Using these results, we can proceed to define the dimension of a variety as follows:

Definition 33. (Coordinate subspace, Dimension of a Variety) A coordinate subspace
is a vector subspace in Kn defined by setting some subset of variables x1, . . . , xn equal to zero.

Let V be a variety which is the union of a finite number of coordinate subspaces of Kn. Then
the dimension of V, denoted by dimV, is the largest of the dimensions of the subspaces.

It can be proved that the variety of every monomial ideal is a finite union of coordinate sub-
spaces in Kn [18, pp. 440]. We can now explore how to compute dimV and its connection with
the number of solutions of a system of polynomial equations.

Proposition 5. (Affine Hilbert function) Let I be a proper monomial ideal of K[x1, . . . , xn],
and let aHFI(s), known as the affine Hilbert function, be the number of monomials of total
degree ≤ s that do not lie in I for all s ≥ 0, then

1. for all s sufficiently large, the affine Hilbert function is equal to a polynomial, known as
affine Hilbert polynomial, given by

aHFI(s) =
d∑
i=0

bi

(
s

d− i

)
, (C.6)

where bi ∈ Z and b0 is positive.

2. The degree of the affine Hilbert polynomial is the maximum of the dimensions of the coor-
dinate subspaces contained in V(I)

3. Let I ⊂ K[x1, . . . , xn] and > be a graded monomial order. Then I has the same affine
Hilbert function as the monomial ideal 〈LT(I)〉

A full proof of this proposition is beyond the scope of this thesis, but the interested reader can
find it in [18, pp. 458]. This leads to the following theorem:

Theorem 11. (Dimension theorem) Let V(I) be an affine variety, where I = I(V) ⊂
K[x1, . . . , xn]. Using a graded monomial ordering on K[x1, . . . , xn], the dimension of the va-
riety is given by

dim V(I) = deg aHF〈LT(I)〉(s)

= maximum dimension of a coordinate subspace in V(〈LT(I)〉). (C.7)

Proof. (Taken from [18])

Using Lemma 1, and third statements of Proposition 5, it follows that the affine Hilbert poly-
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nomial of I is the same as the respective function from the monomial ideal 〈LT(I)〉 i.e.

aHFI(s) = aHF〈LT(I)〉(s). (C.8)

From here, using the second part of Proposition 5, by definition, the dimension of the variety
V(I) is given by the degree of the affine Hilbert function of I, and thus, equal to the degree of
the affine Hilbert function of 〈LT(I)〉.

Finally, the above theorem helps establishing a criterion to determine whether an affine variety
has finitely many points:

Corollary 2. Let V(I) ⊂ Kn be an affine variety. Then the cardinality of V(I), i.e. the
number of elements in V(I), is finite iff dim V(I) = 0.

Proof. (Taken from [18])

Suppose that V(I) has finitely many elements a1, . . . , am ∈ Kn, and let > be a graded monomial
ordering on K[x1, . . . , xn]. Then the polynomial in variable xi and the i-th components of the
elements of V(I), given as

f =
m∏
j=1

(xi − aij ), (C.9)

lies in I(V), which means that LT(f) = xmi ∈ 〈LT(I(V))〉, for all 1 ≤ i ≤ n. This means that
V(〈LT(I(V))〉) = {0}, i.e. the dimension of all coordinate subspaces in V(〈LT(I)〉) is zero. By
Eq. (C.7) of Theorem 11, this implies that dim V(I) = 0.

Let’s now suppose that dim V(I) = 0. To show that V(I) is finite, it suffices to show that for
each i, 1 ≤ i ≤ n, there can be only finitely many distinct i-th coordinates for the points of V(I).
From Proposition 5, and the Dimension Theorem, this means that the affine Hilbert polynomial
is a constant C for s sufficiently large. This mean that the classes [1], [xi], [x

2
i ], . . . , [x

s
i ] are s+ 1

vectors in a vector space of dimension C ≤ s and hence, they must be linearly dependent, that
is, there are constants ai such that

[0] =

s∑
j=0

aij [x
j
i ] =

 s∑
j=0

aijx
j
i

 . (C.10)

However this implies that
∑s

j=0 aijx
j
i is a nonzero polynomial in I(V)≤s, the ideal of polynomials

that vanish on V of degree at most s, which vanishes on V. This implies that that there are
only finitely manly distinct i coordinates among the points of V, for all 1 ≤ i ≤ n, which means
that the cardinality of V must be finite.

We can use these results to prove Theorem 4 and Proposition 3. For easiness of reading, the full
formulation of these results is reproduced in this appendix.

Theorem 12. Let V(I) ⊂ Kn be an affine variety and I ⊂ K[x1, . . . , xn] be an ideal, > be a
graded monomial ordering in K[x1, . . . , xn], and G, a GB for I with respect to such ordering. I
is zero-dimensional iff for each i, 1 ≤ i ≤ n, there is some mi ≥ 0 such that xmii = LT(g) for
some g ∈ G.

Proof. (Taken from [18])
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C Dimension of a Variety

If I is zero-dimensional, dim V(I) = 0. It follows from the proof of Corollary 2, that for each
variable xi, 1 ≤ i ≤ n, there is some mi for which xmii ∈ 〈LT(I)〉. Since G is a GB for I, therefore,
from Theorem 2, 〈LT(I)〉 = 〈LT(G)〉, which means that xmii ∈ 〈LT(G)〉 = 〈LT(g1), . . . ,LT(gt)〉,
for g1, . . . , gt ∈ G. Hence, xmii = LT(g) for some g ∈ G.

Assuming now, that for each i, 1 ≤ i ≤ n, there is some mi ≥ 0 such that xmii = LT(g)
for some g ∈ G. This implies that xmii ∈ 〈LT(G)〉. Since G is a GB for I, it follows that
〈LT(G)〉 = 〈LT(I)〉. From the proof of Corollary 2, this means that dim V(I) = 0, and therefore,
I is zero-dimensional.

Proposition 6. Let I ⊂ K[x1, . . . , xn] be an ideal in an algebraically closed field with GB
G = {g1, . . . , gt} such that LT(gi) = xmii . Then it follows that the variety V(I) contains at most
m1 ×m2 × · · · ×mn points.

Proof. (Taken from [18])

Since G is a GB for I, it follows that xmii ∈ 〈LT(I)〉 for each i, 1 ≤ i ≤ n. Then, by definition,
the monomials xα1

1 . . . xαnn for αi ≥ mi are all in 〈LT(I)〉, which means that the monomials which
are not in the ideal generated by 〈LT(I)〉 must have αi ≤ m1 − 1 for each i. This means that
there can be at most m1 × · · · ×mn monomials not generated by 〈LT(I)〉.
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Tarkus Belief Propagation

D
Alternative proof of Theorem 8

To show the convergence of the BP algorithm in case of single loops, here we use techniques
from linear algebra, which provides a slightly different flavor to the proof presented in Chapter 4.
Nevertheless, as stated in Chapter 3, for linear systems, solving a system of equations using GBs
is equivalent to Gaussian elimination. For easiness of reading, the full text of the theorem is
reproduced here.

Theorem 13. The BP algorithm converges to a solution for the MN M being a single loop.

X1 . . . Xi

XN . . . Xi+1

Figure D.1: Graph of the MN of a single Loop with N variable nodes

Proof. LetM be the MN of a single loop with N variable m-ary variable nodes shown in Figure
D.1. If we consider F, the ASP of M to be a system of polynomials of the message variables
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D Alternative proof of Theorem 8

only, i.e. the normalization constants are absorbed by the factors, the ASP of M is given as

F =



µ1→2(x1)−
∑m

l=1 Ψ1,2(xl, x1)µN→1(xl)

...

µ1→2(xm)−
∑m

l=1 Ψ1,2(xl, xm)µN→1(xl)

...

µi→i+1(xj)−
∑m

l=1 Ψi,i+1(xl, xj)µi−1→i(xl)

...

µi+1→i(xj)−
∑m

l=1 Ψi+1,i(xl, xj)µi+2→i+1(xl)

...



. (D.1)

This system of equations can be written in vector form as

~µ = Ψ~µ, (D.2)

where ~µ is a vector containing all messages, and Ψ is a matrix containing the potentials, respec-
tively given as

~µ =



µX1→X2(x1)

...

µXN→X1(xm)

µX1→XN (x1)

...

µX2→X1(xm)


, and Ψ =

(
Ψ1 0
0 Ψ2

)
, (D.3)

and the block matrices Ψ1 and Ψ2, which represent the potentials in the MPEs of the messages
that go in the clockwise direction and in the counter-clockwise direction respectively, are given
as

Ψ1 =


0 . . . A1

A2

A3 0
0

. . .

AN

 Ψ2 =


0 . . . A′1

A′2
A′3 0

0
. . .

A′N

 . (D.4)

The matrices Ai ∈ Rm×m comprise the pairwise potentials ΨXi,Xj (xi, xj), given as

Ai =


ΨXi,Xj (xi1 , xj1) . . . ΨXi,Xj (xi1 , xjn)

...
...

ΨXi,Xj (xin , xj1) . . . ΨXi,Xj (xin , xjn)

 (D.5)

From linear algebra, we know that system has a solution as long as det(Ψ) 6= 0. Expanding the
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determinant of Ψ we have

det(Ψ) = det(Ψ1) det(Ψ2)

= det




0 . . . A1

A2

A3 0
0

. . .

AN



det




0 . . . A′1

A′2
A′3 0

0
. . .

A′N



 (D.6)

From basic linear algebra we know, that switching a row on a matrix inverts the sign of its
determinant. By switching the rows corresponding to the matrix A and A′ to the end, and
moving all other rows upwards, we end up having two diagonal block matrices. Since the same
number of switches where performed in matrices Ψ1 and Ψ2, then the sign of the determinant
remains the same, i.e.

= det




A2 0

A3

. . .

0 AN

A1



det




A′2 0

A′3
. . .

0 A′N
A′1




=

N∏
i=1

det(Ai)
∏
i=1

det(A′i)

=

N∏
i=1

det(Ai) det(A′i) (D.7)

From here we can see, that det(Ψ) 6= 0 since by construction det(Ai), det(A′i) 6= 0. Therefore,
the system converges to a solution.
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