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Abstract

This work presents two main contributions for the computational understanding of dy-
namic scenes. The first contribution are spacetime forests defined over complementary
spatial and temporal features for naturally occurring dynamic scene recognition. The ap-
proach is focused on fast execution rates for online classification of natural scenes. There
are three key novelties in this work. The first is the introduction of a novel descriptor
that exploits the complementary nature of spatial and temporal information. Second, a
forest-based classifier is used to learn a complementary multi-class representation of the
feature distributions. This aspect supports high class discrimination with great compu-
tational efficiency. Third, the video is processed in temporal slices with scale matched
preferentially to scene dynamics over camera motion. Slicing allows for efficient, incre-
mental processing by evaluating the input sequence online, with increasing confidence
for longer temporal inputs. Further, slicing enables handling temporal alignment as latent
information in the classifier, which leverages the high temporal diversity in the spacetime
texture patterns.

The second contribution is the Bags of Spacetime Energies (BoSE), a unified bag
of visual word (BoW) framework for dynamic scene recognition. In particular, this part
builds on densely sampled features that uniformly capture the spatial and temporal struc-
ture of the video with oriented filter energies. Following the recent image classification
literature, where BoW approaches are well established to achieve good performance, a
number of feature encoding methods are evaluated for BoW-based spatiotemporal scene
classification. Next, by building on encoded bags of spacetime energies, it is shown that
global motion compensation can improve performance on scenes captured with signif-
icant camera motion, though at the cost of decreased performance on scenes captured
from a static camera. A novel feature pooling method is introduced to pool the encoded
spacetime features based on their temporal energy in the frequency domain. This dynamic
pooling approach especially increases performance when camera motion is present, but
does not compromise performance when camera motion is absent.



The proposed methods are experimentally validated on two publicly available dy-
namic scene datasets to document their outstanding performance. A substantial improve-
ment on the previous state-of-the-art is achieved, with an increased robustness to camera
motion where previous approaches have experienced difficulty. Specifically, the presented
BoSE framework outperforms the previous state-of-the-art by improving the classification
accuracy by 20% and 19% on the two respective datasets.

The insights of this thesis can have a substantial influence on the design of dynamic
scene classification approaches. More generally, the outstanding performance of the pre-
sented spacetime recognition framework suggests application to a variety of other areas,
such as event retrieval, video indexing, or object and activity localization.



Kurzfassung
Diese Arbeit präsentiert zwei bedeutende Beiträge für das maschinelle Verstehen von
dynamischen Szenen. Der erste Hauptteil der Forschungsarbeit beschreibt Spacetime Fo-
rests, definiert über räumliche und zeitliche Bildmerkmale, zur Erkennung von natürlich
auftretenden dynamischen Szenen. Der Fokus dieses Ansatzes ist auf das Erzielen schnel-
ler Laufzeiten gerichtet. Es werden drei wichtige Neuerungen vorgestellt: Erstens wird ei-
ne neuartige Beschreibung eingeführt, welche das komplementäre Wesen von räumlichen
und zeitlichen Bildmerkmalen ausnützt. Zweitens wird ein spezieller Random Forest
Klassifikator verwendet um eine komplementäre Mehrfachklassen-Repräsentation aus den
Bildmerkmalen zu lernen. Dies erlaubt eine effektive Diskriminierung der Klassen bei
gleichzeitig hoher Effizienz. Drittens werden die Bildmerkmale aus zeitlichen Teilen der
Eingangssequenzen extrahiert um mit den zeitlichen Merkmalen vorzugsweise die dy-
namischen Aspekte der Szene, anstelle der Kamerabewegung, zu erfassen. Außerdem
ermöglicht das Aufspalten in zeitliche Teile eine inkrementelle Klassifizierung der Ein-
gangssequenz mit steigender Genauigkeit über die Zeit. Ein weiterer Vorteil ist die
Möglichkeit die Vielfältigkeit der Raum-Zeit Texturen aus den Sequenzen zu erlernen.

Der zweite Schwerpunkt dieser Arbeit ist die Entwicklung eines einheitlichen bag-
of-visual-word (BoW) Systems zur Erkennung dynamischer Szenen. Dieser Teil baut auf
dicht extrahierte lokale Bildmerkmale, welche mithilfe orientierter Filter die zeitliche und
räumliche Energie der Videos modellieren. Die primitiven Bildmerkmale werden in eine,
für dynamische Szenenerkennung effektive, Zwischenrepräsentation codiert, welche an-
hand einer systematischen Evaluierung populärer Codierungsmethoden bestimmt wird.
Darüber hinaus wird gezeigt, dass die Verwendung von Kamera-Stabilisierungsmethoden
die Erkennungsrate für Videos mit Kamerabewegungen zwar verbessert, beim Erkennen
von statisch aufgenommenen Szenen jedoch zu einer Verschlechterung führt. Abschlie-
ßend wird ein neuartiges Konzept zur Sammlung der codierten Raum-Zeit Merkmale, ba-
sierend auf der zeitlichen Energie im Frequenzbereich, eingeführt. Dieser Ansatz erhöht
die Erkennungsrate besonders bei dynamischer Kameraführung, beeinträchtigt die Resul-
tate aber nicht falls keine Kamerabewegung vorliegt.



Die vorgestellten Methoden werden auf zwei öffentlichen Datensätzen experimentell
validiert. Hierbei wird eine erhebliche Verbesserung der Erkennungsrate, verglichen mit
dem derzeitigen Stand der Technik, demonstriert. Im Detail beträgt die absolute Steige-
rung der Genauigkeit auf den beiden Datensätzen 20% bzw. 19%.

Die Erkenntnisse dieser Arbeit können einen erheblichen Einfluss für das Entwerfen
von Algorithmen zur dynamischen Szenenerkennung haben. Darüber hinaus schlagen die
herausragenden Resultate der präsentierten Ansätze zur Raum-Zeit Erkennung weitere
verwandte Anwendungen vor, wie etwa das Erkennen von Ereignissen, Objekten oder
Aktivitäten.



  
Senat 

 
 
Deutsche Fassung: 
Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008 
Genehmigung des Senates am 1.12.2008 
 
 
 
 
 
 

EIDESSTATTLICHE  ERKLÄRUNG 
 
 
 
Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die 
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich 
entnommenen Stellen als solche kenntlich gemacht habe. 
 
 
 
 
 
 
Graz, am ……………………………    ……………………………………………….. 
         (Unterschrift) 
 
 
 
 
 
 
 
 
 
Englische Fassung: 
 
 

STATUTORY DECLARATION 
 

 

I declare that I have authored this thesis independently, that I have not used other than the declared 

sources / resources, and that I have explicitly marked all material which has been quoted either 

literally or by content from the used sources.  

 
 
 
 
 
……………………………    ……………………………………………….. 
 date        (signature) 
 
 





Contents

Contents

Contents iii

List of Figures vi

Acknowledgements vii

1 Introduction 1

2 Related Work 5
2.1 Features for dynamic scene recognition . . . . . . . . . . . . . . . . . . 6
2.2 Datasets for dynamic scene recognition . . . . . . . . . . . . . . . . . . 7
2.3 Bag of visual word representations . . . . . . . . . . . . . . . . . . . . . 10
2.4 Learning scenes from features . . . . . . . . . . . . . . . . . . . . . . . 13

3 Spacetime Forests with Complementary Features for Dynamic Scene Recog-
nition 15
3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Complementary spacetime orientation descriptor . . . . . . . . . . . . . 18

3.2.1 Spatial information . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Temporal information . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Efficiency via separable and steerable Filters . . . . . . . . . . . 24
3.2.4 Pooling of multiscale energies . . . . . . . . . . . . . . . . . . . 24
3.2.5 Local contrast normalization . . . . . . . . . . . . . . . . . . . . 25
3.2.6 Chromatic information . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.7 Temporal slice-based aggregation . . . . . . . . . . . . . . . . . 29

3.3 Spacetime forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Multi class random forests for recognition . . . . . . . . . . . . . 32
3.3.2 Learning dynamic scenes . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Recognizing dynamic scenes . . . . . . . . . . . . . . . . . . . . 34

i



Contents

3.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 CSO video descriptor . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 STRF classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Invariance to scale variations . . . . . . . . . . . . . . . . . . . . 36

3.5 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.1 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.3 Exploration of the spacetime pyramid parameter space . . . . . . 43
3.5.4 Computational time . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Bags of Spacetime Energies
for Dynamic Scene Recognition 49
4.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Preliminaries and related work . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Support vector machines for classification . . . . . . . . . . . . . 53
4.2.2 Pyramid match kernel . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Feature coding and pooling methods . . . . . . . . . . . . . . . . 54
4.2.4 Scene representation . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Local spacetime descriptor . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.1 Spacetime orientation features . . . . . . . . . . . . . . . . . . . 61
4.3.2 Local contrast normalization . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Chromatic features . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.4 Coarse-scale dynamic features for pooling . . . . . . . . . . . . . 66
4.3.5 Filtering details . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Feature extraction on stabilized temporal slices . . . . . . . . . . . . . . 68
4.5 Temporal slice combination

based on histogram intersection . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Feature pooling based on static and dynamic energies . . . . . . . . . . . 73

4.6.1 Local Decomposition into dynamic spacetime energies . . . . . . 74
4.6.2 Dynamic spacetime pyramid . . . . . . . . . . . . . . . . . . . . 78
4.6.3 Summary of the implemented recognition procedure . . . . . . . 80

4.7 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.7.1 Comparison of feature coding methods . . . . . . . . . . . . . . 85
4.7.2 Temporal slice-based stabilization using different camera motion

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.3 Temporal slice combination based on histogram intersection . . . 95
4.7.4 Feature pooling based on static and dynamic energies . . . . . . . 97
4.7.5 Varying the size of the codebook . . . . . . . . . . . . . . . . . . 105
4.7.6 Comparison with the state-of-the-art . . . . . . . . . . . . . . . . 106

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ii



Contents

5 Summary and Outlook 113

A Image stabilization
with global motion estimation 115
A.1 Translational motion model . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2 Affine motion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 119

iii





List of Figures

List of Figures

1.1 Examples for low inter class differences and large intra class variations. . 3

2.1 Sample scenes from the Maryland and YUPENN datasets. . . . . . . . . 9

2.2 Feature vector extraction in a local coding and spatial pooling scheme. . 12

3.1 Overview of the proposed dynamic scene classification framework. . . . . 17

3.2 2D Gaussian third derivative filters capture spatial orientation structure. . 19

3.3 3D Gaussian third derivative filters capture oriented spacetime structure. . 20

3.4 Vertices of the dodecahedron are used as the filtering directions to uni-
formly sample the spacetime domain. . . . . . . . . . . . . . . . . . . . 22

3.5 Temporal slice of an avalanche sequence filtered with oriented spatial fil-
ters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Marginalized spacetime energies for a temporal slice of an avalanche se-
quence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Dynamic energies for a temporal slice of a waterfall sequence obtained
by convolution with spatiotemporal filters. . . . . . . . . . . . . . . . . 28

3.8 Temporal slice-based processing for on-line recognition. . . . . . . . . . 29

3.9 Spacetime volume description by one spacetime energy channel (static/-
dynamic energy) and pooling of the features in a spatiotemporal pyramid
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.10 Spacetime forest construction. . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 Classification performance measured by the out-of-bag error rate when
training the random forest separately with spatial and spatiotemporal ori-
entation as well as colour components. . . . . . . . . . . . . . . . . . . 41

3.12 Performance of CSO on YUPENN, with 3 outer scales. . . . . . . . . . . 44

3.13 Performance of CSO on YUPENN, when pooled from the finest outer
scale only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Proposed BoW Representation for Dynamic Scene Recognition. . . . . . 51

v



List of Figures

4.2 Distribution of spatiotemporal oriented energies of a windmill sequence
form the YUPENN dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Five oriented spacetime energies of the temporal slice and the unstruc-
tured energy channel for a windmill sequence. . . . . . . . . . . . . . . . 64

4.4 Histogram intersection kernel for the temporal slices of an avalanche se-
quence shown above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Distribution of spatiotemporal oriented pooling energies of a street se-
quence form the YUPENN dataset. . . . . . . . . . . . . . . . . . . . . . 77

4.6 Slice aggregation of spatiotemporal oriented energy distributions from a
16 frames temporal slice of a Windmill sequence. . . . . . . . . . . . . . 84

4.7 Classification rate for merging visual words in temporal slices with unsta-
bilized as well as stabilized features. . . . . . . . . . . . . . . . . . . . . 95

4.8 Dynamic average-pooling for VQ codes. Classification rate for merging
visual words in temporal slices. . . . . . . . . . . . . . . . . . . . . . . 99

4.9 Comparison of the proposed BoSE method to the SFA approach on Mary-
land. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.10 Comparison of the proposed BoSE method to the SFA approach on YU-
PENN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



Acknowledgements

I would like to express my deep gratitude to my advisor Axel Pinz for his invaluable
guidance and support. In our fruitful discussions he always gave me new insights when I
was struggling to pursue my ideas and with his deep and broad knowledge of science he
taught me how to write a paper and give a clear presentation. I am also grateful for his
fundamental support that made my research stay at the York University Toronto possible.
Thanks to Richard P. Wildes for hosting me in the Vision Lab at York University. I am very
fortunate to have him as my co-advisor. His boundless enthusiasm for computer vision
research and his ability to keep a clear overview, even for very complex problems, were
a key factor for my progress during my time in Toronto. Special thanks to all my friends
and colleagues for making my time as a graduate student very enjoyable and memorable.
Finally, I want to profoundly thank my parents who made all this possible with their
unconditional support.





1
Introduction

For humans it seems like a trivial task to recognize and interpret the rich visual world
where they find themselves. For a computer, however, the automatic categorization of
complex natural scene types is a fundamental research problem. Computer vision re-
searchers have developed algorithms for representing and learning the complex source of
visual information in natural scene images for several decades. Still, no extant automated
system rivals the level of performance achieved by humans.

The task of scene categorization is to find the categories (e.g. beach, city, river) to
which the input sequence belongs. Humans are able to perform this task with speed
and accuracy [82, 84] and with little attention to the objects present in the scene [61].
Such a holistic understanding of the scene is also pursued by popular representations and
algorithms for scene categorization [32, 58, 73], where local features are used to describe
a complex scene straightforwardly, without intermediately extracting semantics of the
objects in the scene.
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Chapter 1. Introduction

The modeling of visual objects in space and time is a crucial component for a wide
range of applications including the representation of dynamic scenes. Beyond the sci-
entific interest in dynamic scene classification, many useful applications have emerged.
With the fast expansion of video data present in the Internet (e.g., YouTube) and the in-
creasing amount of video-enabled devices (e.g., smartphones), a huge amount of data is
generated daily. Therefore, human inspection becomes impossible in these situations.
Hence, automatic systems for recognition and organization of video are in high demand.

Such systems could further be helpful in surveillance or safety applications; e.g. cam-
eras monitoring spacetime events such as forest fires or avalanches. Although this increas-
ing demand has triggered recent research activity, state-of-the-art classification frame-
works are still far from human recognition performance. The amount of information and
variability present in images of diverse natural scenes calls for an approach that is able
to handle multiple classes, scales and temporal variations, yet still be efficient in training
and recognition.

Several aspects can make the automatic recognition of dynamic scenes a difficult task.
One can imagine that videos of the same scene may look very different when captured
from different camera viewpoints, variations in illumination, (motion) clutter, etc. Fur-
thermore, the variability in visual appearance and dynamics of scenes from the same
category may be significant. Figure 1.1 illustrates such intra and inter-class variations
taken from the Maryland [90] and YUPENN [27] dynamic scene datasets. Sequences
from three different classes are depicted in Figure 1.1(a), where very little difference in
spatial appearance can be observed. Hence, a distinction between these classes, based on
spatial appearance only, becomes very challenging. Further sequences, showing different
instances of a landslide class, are illustrated in Figure 1.1(b). Due to the large variations
within the class, learning a model that represents common, distinctive properties of these
sequences is a very difficult task on its own.

2



Rushing River 

Rushing River 

Waterfall 

Waterfall 

Fountain 

(a) Images from three different classes with similar appearance.

(b) Images from landslide sequences with large differences in appearance.

Figure 1.1: Examples for low inter class differences (a) and large intra
class variations (b) from the YUPENN (a) and the Maryland (b)
datasets.
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Chapter 1. Introduction

The goal of this thesis is the analysis and modeling of spatiotemporal image struc-
tures for recognition of natural world sequences. Scenes are recognized on the basis of
their image spacetime appearance, e.g., as forest fire vs. beach vs. city. The thesis is
organized as follows. In the next chapter, related work on the representation and clas-
sification of dynamic natural scenes is given. Subsequently, the thesis introduces two
different representations for dynamic scenes. A novel method for dynamic scene recog-
nition with complementary features used by spacetime forests is presented in Chapter 3.
This representation describes each temporal subset (i.e. slice) of a video with a single fea-
ture vector, capturing complementary histograms of spatial and temporal filter responses,
as well colour distributions. The focus of this approach is on fast, online processing of
video. Efficiently extracted features are directly pooled in a vector representation and
classified using a decision tree classifier. Chapter 4 introduces a codebook-based ap-
proach for dynamic scene recognition. Local spacetime regions are represented by single
feature vectors and decomposed into visual codewords to provide a large degree of invari-
ance to intra-class variations in appearance. A sequence is subsequently represented by
spatiotemporal aggregation of the mid-level feature codes and classified using discrimi-
native one-vs-rest classifiers. Conclusions and ideas for further improvement are given in
Chapter 5.

Interestingly, a striking result of this work is that only a very small amount of tem-
poral information is necessary to achieve state-of-the-art performance in dynamic scene
classification.

4



2
Related Work

While static scene recognition from single images has been researched extensively (e.g.

[32, 58, 62, 65, 73, 83, 94, 96, 102]), relatively little research has considered video-based
dynamic scene recognition [27, 67, 90], even though the availability of temporal informa-
tion should provide an additional means for classifing scenes visually. The reason for the
relatively small amount of previous work in the dynamic scene recognition area might be
that the task of dynamic scene recognition requires new descriptors, since popular tem-
poral features such as optical flow or spatial features such as gradient histograms, are not
able to capture the dynamic texture information properly [27, 29]. On the other hand,
static scene recognition relies on the large pool of previous work on image descriptors.
Another reason for the slow progress in this area might be the lack of a large and well-
designed dataset of dynamic scenes; however, this problem has recently been addressed
by Derpanis et al. in [27], where a large and diverse database of dynamic scene categories
is proposed.

5



Chapter 2. Related Work

2.1 Features for dynamic scene recognition

The problem of dynamic scene recognition was first tackled by Marszalek et al. in the
context of human action classification [67]. Since, in realistic videos, human actions are
often correlated with the scene classes, they show that automatically extracted context of
natural dynamic scenes can improve action recognition. Similar, as in their work in [53],
Laptev et al. attempt to recover the motion from optical flow measurements and conse-
quently use histograms of optical flow to describe human actions and scene dynamics.
While these features have proven to be effective for action categorization [53, 81], Der-
panis et al. [27] have shown that optical flow achieves low performance for modelling the
dynamics of natural scenes. The reason is assumed to be that the optical flow constraint,
i.e. the brightness constancy assumption, does not hold for dynamic patterns exhibiting
specularities and flickering lighting, e.g., in textures of water, fire, or lightning.

Doretto et al. [30] have used linear dynamical systems to model successfully the
stochastic properties of dynamic textures. Limited by the first-order Markov property and
linearity assumption, this model has shown poor performance for dynamic scene classifi-
cation in [90]. Shroff et al. [90] propose a method with fuses static and dynamic features
in a chaos-theoretic system to classify “in-the-wild” dynamic scenes.

Due to the lack of appropriate for evaluation, Shroff et al. [90] also introduced a
dataset, consisting of amateur footage from the Internet. All the videos have been col-
lected from Youtube, except for the ”Boiling Water” sequences that have been taken from
the DynTex database http://projects.cwi.nl/dyntex/index.html. Therefore, these videos in-
clude camera motion and even scene cuts. As the videos contain camera movement only
for some classes, e.g., tornado or avalanche, while other classes are free from camera
movement, e.g., street traffic or fountain, it is not clear if the algorithms capture temporal
regularities introduced by camera motion and scene cuts, or the dynamic attributes of the
scene.

With the purpose of isolating temporal dynamics of the objects and surfaces in the
scenes from the movement induced by the camera, Derpanis et al. [27] present a new
dataset with stabilized camera settings. Furthermore, they systematically investigate the
impact of low-level feature representations on dynamic scene classification. By compar-
ing spatial appearance, temporal dynamics and joint spatial appearance and dynamic fea-
tures they conclude that using features that jointly model spatial appearance and temporal

6



2.2. Datasets for dynamic scene recognition

dynamics provided overall best performance for recognizing dynamic scenes.

Most recently, Theriault et al. [95] proposed an approach based on slow feature analy-
sis (SFA) [109]. They learn motion features from filter responses that are reputed to model
primate V1 cortical operations, as they result from local maxima of spatially oriented,
multiscale Gabor filters [86]. The slowest varying features among these are identified by
computing their temporal derivatives, and are coded using a trained dictionary. After en-
coding, the slow features are pooled into a feature vector by applying max-pooling to the
whole video in spatial pyramidal regions. A linear support vector machine is subsequently
used to classify the videos.

The approach proposed in the present thesis is based on local measurements of ori-
entation. This feature type has been used for both static [58, 73, 94] and dynamic [27]
scene classification. In using local orientation measurements that have been aggregated
into texture patches, these approaches build on research in both static [4] and dynamic
[29] texture analysis that use similar primitives. Application of such measurements to
dynamic image analysis additionally has been shown useful in a variety of areas, perhaps
most related to current concerns are image motion estimation [1, 38, 91] and human action
characterization [28]. While their previous application to dynamic scene recognition has
led to state-of-the-art performance, it also has shown notable limitations when confronted
with significant camera motion [27].

2.2 Datasets for dynamic scene recognition

As mentioned in the previous section, concomitant to the ongoing progress in representa-
tions, new challenging datasets, reflecting real-world scenes, have been introduced. These
datasets provide sequences, which present scenes with high intra-class variability; e.g.

various shapes, poses, and appearances, with diverse illumination and foreground clutter.

Currently there exist two publicly available datasets for natural dynamic scene clas-
sification. The “Maryland in-the-wild” [90] dataset consists of amateur videos from the
Internet and therefore is confounded with unconstrained camera movement. On the other
hand, the “YUPENN Dynamic Scenes data set” [27] consists of scenes recorded from a
stabilized camera setting. The algorithms proposed in this thesis are evaluated on both
of these datasets. Figure 2.1 shows examples of the two datasets and Table 2.1 further
compares the datasets in various aspects.

7



Chapter 2. Related Work

Maryland “In-The-Wild” YUPENN Dynamic Scenes
Number of classes 13 14
Number of videos per class 10 30
Camera movement unconstrained stabilized
Scene cuts yes no
Average resolution 308 × 417 pixels 250 × 370 pixels
Average duration 617 frames 145 frames
Standard dev. of duration 531 frames 21 frames

Table 2.1: Properties of the Dynamic scene datasets used in this thesis.

It is also notable that the Maryland dataset contains large variations in video dura-
tion, while all videos in the YUPENN dataset have approximately the same duration.
Both datasets contain large intra-class variability, with the Maryland dataset exhibiting
extreme intra-class differences for some specific classes only, e.g., avalanche and land-
slide. Moreover, since the videos in the datasets are collected from various sources, they
vary in terms of resolution, framerates, scale, illumination, and camera viewpoint. Such
circumstances additionally challenge the recognition algorithms.

8



2.2. Datasets for dynamic scene recognition

(a) Maryland “In-The-Wild” [90]

(b) YUPENN Dynamic Scenes data set [27]

Figure 2.1: Sample scenes from the Maryland (a) and YUPENN (b) datasets. 9



Chapter 2. Related Work

2.3 Bag of visual word representations

Previous work, e.g., [25, 93], has shown that the use of intermediate representations im-
proves performance in classification tasks. Bag-of-word (BoW) methods were initially
proposed for text retrieval systems [47] and later on adopted for visual classification meth-
ods [60, 93]. These approaches first build a dictionary of visual words (i.e. codewords),
which represents a visual vocabulary to describe the local appearance of objects, images
or image sequences. To classify unknown inputs, the appearance of a new query is de-
scribed by the visual words and recognized by using a trained classifier on the visual
vocabulary. In scene categorization, the idea is motivated by the success of similar tech-
niques in classifying image textures as distributions of so-called textons. Intermediate
texton representations are generated from various descriptors of local image appearance.
For example, Leung and Malik [60] create textons by quantizing filterbank responses,
Varma and Zisserman [99] show that describing small local patches is sufficient, and
Lazebnik et al. [57] apply affine covariant detectors to account for viewpoint changes and
non-rigid deformations.

Certainly, the BoW methodology seems very appealing for situations where categories
are sought. Contrary to specific instance search, the categorization process happens at a
very generic level, where large diversity may occur among specific instances of a class.
Representing instances by using a discrete number of visual words assures this generality.
Robustness to viewpoint changes, occlusions, clutter and other deformations (e.g., spa-
tial translations) is given by modelling the input signal as an orderless distribution of the
codewords. Consequently, the BoW representation does not capture any information of
the spatial layout of the visual words. However, for modelling scenes, spatial information
can be very descriptive and should not be discarded entirely. For example, a visual word
describing a sky region is expected to be on top of the image. Enhanced BoW represen-
tations have been developed with generative models [7, 9, 32, 54], discriminative visual
vocabularies [49, 70, 112] and geometric verification [3, 56]. The most popular technique
for enhancing BoW methods, however, is spatial pyramid matching (SPM). To add spa-
tial information Lazebnik et al. [58] partition the image into increasingly fine sub-regions.
By concatenating the BoW-histograms for each sub-region grid cell they include coarse
information about the spatial arrangement of the visual words. This method has been
highly successful in image classification and has triggered the proposal of many succes-
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sive methods relying on this concept. A general SPM framework can be described by
three successive steps [104, 113] (see Figure 4.1 for an illustration):

• Feature extraction: In this stage low-level descriptors are applied at interest point
locations or regular locations in a dense grid. Frequently used descriptors are GIST
[73], SIFT [63], HOG [26], colour moments [115], spacetime extensions of image
features, e.g., HOG3D [50], 3DSIFT [85], local trinary patterns [114], spatiotempo-
ral oriented energy (SOE) descriptors [106], as well as optical flow features. Some
interest point detectors include Harris/Hessian corners with respective spacetime
extensions [52, 107].

• Coding: This step transforms local descriptors into codes with desirable properties
such as compactness, sparseness or statistical independence [10]. A trained code-
book is applied to each feature point to quantize the descriptors either by hard vector
quantization (a code with only one non-zero component, i.e. one visual word) [58]
or by soft vector quantization that assigns several codes, either by focusing on spar-
sity [111] or locality [104]. Codebooks are typically created by simple K-means
clustering.

• Pooling: The codewords are collected from local sub-regions and summarized in a
histogram. Several neighbouring cells at different levels (i.e. grid sizes) are used to
collect the local codes based on averaging [58] or max-pooling [104, 111] within
a spatial cell. Subsequently, the pooled feature encodings, e.g., histograms count-
ing the visual word occurrences for average pooling, are concatenated into a final
feature vector that describes the visual input.

Improved coding [10, 19, 104, 111] and pooling strategies [11, 14, 34, 46] have been
extensively researched over the past years, with particular success at increasing classifi-
cation performance. The proposed work here focuses on feature extraction and pooling
and uses well-established methods for coding [58, 78, 104].
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Figure 2.2: Feature vector extraction in a local coding and spatial pooling
scheme.
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2.4 Learning scenes from features

Several machine learning methods are applicable for classification tasks in computer vi-
sion. The three most prominent supervised learning methods are (i) Support Vector Ma-
chines (SVM) [22], that construct a maximum-margin hyperplane in a high-dimensional
space to separate the data linearly; (ii) Boosting [36], which combines many simple clas-
sifiers, based on weights for emphasising poorly classified examples; and (iii) Decision
Forests [23], which consist of an ensemble of decision trees, where each tree recursively
splits the input data for classification.

Although the classifier choice does not have the same impact on recognition perfor-
mance as a carefully designed feature representation, it has an exceptional influence on
the classification speed. Generally, non-linear classifiers, such as SVMs with non-linear
kernel functions, provide the best results, but at cost of a long processing time. On the
other hand, linear classifiers, such as SVMs with linear kernels, Boosting, or decision
forests provide a good trade-off between classification speed and performance. There-
fore, if speed is important, linear classifiers are preferred for most applications; further,
a recent trend has been to linearly approximate non-linear kernels for a better trade-off
[101].

In this thesis, two specific instantiations of machine learning concepts are used. In
the approach presented in Chapter 3 weak learners are used in the spatial, temporal and
chromatic domain explicitly. By combining many simple classifiers, a Boosting variant
(e.g., AdaBoost [36]) or decision tree classifiers (e.g., Random Forests [12]) are well
suited for this task. The fundamental learning algorithm in this chapter is chosen to be a
Random Forest, since this classifier is very fast to train and evaluate, whereas AdaBoost
is relatively slow in the training stage.

The second approach presented in this thesis is a codebook-based BoW method. It
has been shown that BoW models combined with histogram intersection SVM kernels
achieve high classification accuracy [58] when used with vector quantized codes. Similar
as in the popular spatial pyramid approach [58], the work presented in Chapter 4 uses the
pyramid match kernel of Grauman and Darrell [39] to compare feature sets, encoded by
vector quantization. For sparse coded features, however, linear SVM kernels achieve even
better performance [111] and therefore are applied.
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3
Spacetime Forests with Complementary

Features for Dynamic Scene Recognition

This chapter first introduces a novel descriptor to capture the appearance and motion of
natural scenes (Section 3.2). These complementary features allow the representation and
classification of the scenes to be suited to the classes. Use of feature complementarity
is useful because some classes may be better represented and distinguished by a specific
type of feature; e.g., a street traffic sequence may be best represented by motion infor-
mation, while a forest fire sequence is better represented by appearance information. The
second part of the chapter (Section 3.3) introduces a specific random forest instantiation
that classifies the sequences in an incremental, bottom up manner. This approach allows
fast incremental predictions with increasing confidence over time. Finally, Section 3.5
empirically evaluates the quality of the proposed method.
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Chapter 3. Spacetime Forests with Complementary Features for
Dynamic Scene Recognition

3.1 Contributions

In the light of previous research, the present work makes three main contributions. First,
a novel descriptor is presented that encodes several frames of a video into complementary
information. Separate spatial and temporal orientation measurements are aggregated in
spacetime pyramids. Distinct from previous application of spatiotemporal orientation to
dynamic scenes [27], separation of spatial and temporal orientation allows those compo-
nents to be differently weighted in classification. Note that, in contrast to the features
proposed in this chapter, the BoW approach presented in Chapter 4 builds on spacetime
features that uniformly capture spatial and temporal orientation structure.

The second contribution is a specific instantiation of a random forest classifier, ap-
plied to dynamic scene recognition. This spacetime forest allows for automatic deter-
mination of the most discriminative features to separate the classes based on appearance
and dynamics with computational efficiency. The approach allows the classifier to learn
different weights for different class discriminations; e.g. a beach sequence may be bet-
ter represented by its motion information, while a forest fire sequence might be better
distinguished by its spatial appearance.

The third contribution is the processing of video in incremental temporal slices in a
bottom up manner with scale matched preferentially to scene dynamics (in comparison to
camera motion). This strategy allows for temporal alignment to be treated as latent in the
classifier, efficient processing and robustness to large temporal variation across time (e.g.

from camera motion), even while capturing intrinsic scene characteristics. Previous dy-
namic scene research has suffered in the presence of camera motion [27] and has provided
little consideration of on-line processing concerns.

The approach has been evaluated on two publicly available datasets [27, 90], and
has been presented at the British Machine Vision Conference 2013 [33]. Results show
that it achieves a new state-of-the-art in dynamic scene recognition. Figure 3.1 gives an
overview of our multi-class recognition framework.
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Figure 3.1: Overview of the proposed dynamic scene classification frame-
work. (a) The input sequence is divided into cuboids using a spa-
tiotemporal pyramid representation. τ temporal slices are cre-
ated to process the frames in a sliding window approach. (b,c)
The cuboids are filtered by banks of multscale, σ, oriented filters
along equally separated directions, θ, in image spacetime (b) and
space (c) to capture both dynamic and static appearance informa-
tion. (d) Filter responses cast weighted votes in spacetime ori-
entation cells. (e) The class of each temporal slice is determined
via likelihood voting, using a multi-class random forest classifier.
Subsequently, all slice-based classifications are combined across
the entire input.
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3.2 Complementary spacetime orientation descriptor

This section puts forth a novel descriptor for dynamic scene representation that is based
on the complementary combination of several different primitive measurements. Spatially
oriented measurements are used to capture static image appearance and are combined with
spatiotemporally oriented measurements to capture image dynamics. Filtering operates at
multiple scales to capture the multiscale characteristics of natural scenes. Furthermore,
colour channels are included to capture complementary chromatic information. Interest-
ingly, evidence from biological systems suggests that they exploit similar complementary
feature combination in their visual processing [31, 37, 41, 76, 103].

3.2.1 Spatial information

Oriented spacetime energy measurements are used as building blocks of the descriptor.
Spatial appearance information is extracted via application of multiscale filter banks that
are further tuned for spatial orientation. In the spatial domain, 2D Gaussian third deriva-
tive filters (as shown in Figure 3.2),

G
(3)
2D(θi, σj) = κ2D

∂3

∂θ3
i

exp

(
−x

2 + y2

2σ2
j

)
, (3.1)

with θi denoting orientation, σj scale, and κ2D a normalization constant, are applied to
yield a set of multiscale, multiorientation measurements according to

ES(x; θi, σj) =
∑

Ω

|G(3)
2D(θi, σj) ∗ I(x)|2, (3.2)

where I is an image, x = (x, y)> spatial coordinates, ∗ convolution, Ω a local aggregation
region and subscript S appears on ES to denote spatial orientation.
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x 

y 

Figure 3.2: 2D Gaussian third derivative filters capture spatial orientation
structure. Green colour indicates positive and blue colour neg-
ative segments. Best viewed in colour.
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3.2.2 Temporal information

To analyze the oriented spatiotemporal structure of the input data, 3D Gaussian third
derivative filters

G
(3)
3D(θi, σj) = κ3D

∂3

∂θ3
i

exp

(
−x

2 + y2 + t2

2σ2
j

)
(3.3)

are used. Figure 3.3 visualizes the spatiotemporal filter for a specific orientation.

x 

y 

t 



Figure 3.3: 3D Gaussian third derivative filters capture oriented spacetime
structure. Green colour indicates positive and blue colour nega-
tive segments. Best viewed in colour.

Specifically, dynamic information is extracted via application of 3D Gaussian third
derivative filters, G(3)

3D(θi, σj) with κ3D a normalization constant, and θi and σj now de-
noting the 3D filter orientations and scales, respectively, applied to the spacetime volume,
V , indexed by x = (x, y, t)>, as generated by stacking all grayscale video frames of a
sequence along the temporal axis, t, to yield

EST (x; θi, σj) =
∑

Ω

|G(3)
3D(θi, σj) ∗ V(x)|2, (3.4)

with subscript ST on EST to denote spatiotemporal orientation. At every spacetime loca-
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3.2. Complementary spacetime orientation descriptor

tion x, the local oriented energy EST (x; θi, σj) measures the power of local (σj) oriented
structure along each considered orientation θi.

To uniformly sample the 3D spacetime domain, the filter orientations are chosen along
the vertices of a dodecahedron. The 10 antipodal directions of the 20 dodecahedron ver-
tices are discarded since these would induce redundant energy responses in (3.4). There-
fore, the 10 employed directions are denoted as follows:

θi ∈


 0

φ

φ−1

 ,

−φ
−1

0

φ

 ,

 φ

φ−1

0

 ,

 0

−φ
φ−1

 ,

φ
−1

0

φ

 ,

−φφ−1

0

 ,

 1

1

−1

 ,

−1

1

1

 ,

−1

1

−1

 ,

−1

−1

−1


 (3.5)

with φ =
√

5+1
2

being the golden ratio. The `2 norm is applied to normalize each vector in
(3.5). An illustration of these directions is given in Figure 3.4.
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Figure 3.4: Vertices of the dodecahedron are used as the filtering directions θi
to uniformly sample the spacetime domain. Antipodal directions
are removed due to redundancy during energy filtering.
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Following previous work in spacetime texture analysis [29], the spatiotemporal re-
sponses, (3.4), are further combined to yield measures of dynamic information indepen-
dent of spatial appearance, as follows. In the frequency domain, motion occurs as a plane
through the origin [105]. To yield measures sensitive only to dynamic orientation, irre-
spective of spatial orientation, the spacetime energies in equation (3.4) are combined by
summing the energies across all orientations consistent with a single frequency domain
plane. To span orientation space in a plane, N + 1 basis directions for an N th derivative
3D Gaussian are needed [35]. Let the plane be defined by its unit normal, n̂, then a basis
set of N + 1 equally spaced directions within the plane is calculated by

θ̂i = cos

(
πi

N + 1

)
θ̂a(n̂) + sin

(
πi

N + 1

)
θ̂b(n̂), (3.6)

with 0 ≤ i ≤ N and

θ̂a(n̂) =
n̂× êx
‖n̂× êx‖2

, (3.7)

θ̂b(n̂) =
n̂× θ̂a(n̂)

‖n̂× θ̂a(n̂)‖2

, (3.8)

where N = 3 is the order of the employed Gaussian derivative filter and êx denotes the
unit vector along the x-axis in the Fourier domain.

By steering the responses consistent with a frequency domain plane n̂, it is possible
to determine the energy along it

EMST (x; n̂, σj) =
N∑
i=0

EST (x; θi, σj), (3.9)

with θi one of N + 1 equally spaced orientations (3.6) consistent with the frequency
domain plane and N = 3 is the order of the employed Gaussian derivative filters; for
details see [29]. Since the summation of the energies (3.9) is located around the temporal
frequency axis, the resulting measurements express a smooth approximation of the en-
ergy along the particular spacetime orientation n̂, independent of the spatial orientation.
Therefore, the dynamic energiesEMST capture image dynamics consistent with a plane in
the Fourier domain and are invariant to spatial appearance. Here, the subscript MST on
EMST serves to denote that the spatiotemporal measurements have been “marginalized”
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with respect to purely spatial orientation.

3.2.3 Efficiency via separable and steerable Filters

Because convolution is a linear operation, the image only needs to be filtered with four and
ten basis filters, for the spatial and temporal energies, respectively, to create responses for
arbitrary orientations θ as linear combinations of these basis set volumes [35]. Another
aspect for efficiency is separability. The G(3) filters are easily separable by expressing
them as the outer product of one-dimensional vectors. Consequently, the features are
very inexpensive to compute. Due to the separability, each of the basis set volumes are
computed by 1D convolutions in x, y (for G(3)

2D) or in x, y and t (for G(3)
3D). Moreover, this

can be implemented very efficiently by using a fast Fourier transform [75] algorithm.

3.2.4 Pooling of multiscale energies

Previous spacetime filtering approaches [27] to dynamic scene recognition tend to exhibit
decreased performance when dealing with scenes captured with camera motion, in com-
parison to scenes captured with stationary cameras. A likely explanation for this result is
that the approaches have difficulty in disentangling image dynamics that are due to cam-
era motion vs. those that are intrinsic to the scenes. Here, it is interesting to note that
camera motion often unfolds at coarser temporal scales (e.g., extended pans and zooms)
in comparison to intrinsic scene dynamics (e.g., spacetime textures of water, vegetation,
etc.); however, previous approaches have made their measurements using relatively coarse
temporal scales and thereby failed to exploit this difference. In the present approach this
difference in temporal scale is captured by making use of only fine scales, σ, during spa-
tiotemporal filtering, (3.4), so that they are preferentially matched to scene, as opposed to
camera, dynamics.

The orientation measurements, (3.2) and (3.9), can be taken as providing measures of
the signal energy along the specified directions, θi. This interpretation is justified by Par-
seval’s theorem [75], which states that the sum of the squared values over the spacetime
domain is proportional to the sum of the squared magnitude of the Fourier components
over the frequency domain; in the present case, the squared values of the orientation se-
lective filtering operations are aggregated over the support regions, Ω.
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3.2. Complementary spacetime orientation descriptor

3.2.5 Local contrast normalization

The linear filter responses in equation (3.4) are sensitive to image contrast. Owing to the
bandpass nature of the Gaussian derivative filters, the oriented energy features are invari-
ant to additive photometric variations (e.g., as might arise from overall image brightness
change in imaged scenes). To further provide for invariance to multiplicative photometric
variations, each orientation selective measurement in (3.2) and (3.9) is normalized with
respect to the sum of all filter responses at that point according to

ÊS(x; θi, σj) =
ES(x; θi, σj)∑N

i=1ES(x; θi, σj) + ε
(3.10)

for the purely spatially oriented measurements, (3.2), and similarly for the dynamic mea-
surements, (3.9), to yield a correspondingly normalized set of measurements, ÊMST . Note
that ε is a small constant added to the sum of the energies over all orientations. This bias
operates as a noise floor and avoids numerical instabilities at low overall energies. Fur-
ther, the contribution of ε in this `1-normalization process (3.10) is explicitly added to the
set of filtering results. Calculated by

ε̂S =
ε∑N

i=1ES(x; θi, σj) + ε
, (3.11)

to capture lack of spatial orientation structure in a region. Moreover, an analogously de-
fined ε̂MST is added to capture lack of spatiotemporal structure. For example, notice that
for regions that are devoid of oriented structure, the sum in the numerator will be domi-
nated by ε so that the ratio will tend to 1 and thereby be indicative of lack of (orientation)
structure.

A benefit of feature construction via convolution, (3.2) and (3.4), is the natural gen-
eration of smooth overlap between adjacent cuboids, which avoids border effects without
the need for additional normalization and interpolation, as, e.g., required for gradient ori-
entation features [26].
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An example for multiscale, multiorientation spatial energies, extracted from a tempo-
ral slice of an avalanche sequence, is shown in Figure 3.5. Temporal energies for the same
temporal slice across several directions (n̂) are shown in Figure 3.6. Note that this scene
is captured with fast camera jitter and therefore the horizontal and vertical flicker chan-
nels exhibit the strongest responses. Another example for temporal energies, extracted
from a waterfall scene captured by a static camera setting is shown in Figure 3.7. One
observes large filter responses for the static orientation in regions of zero image velocity
and large energies for downward motion capturing the waterfall dynamics. Further, the
ε̂MST channels indicates regions with lack of spatiotemporal orientation structure.

σ1 

σ2 

σ3 

Figure 3.5: Temporal slice of an avalanche sequence filtered with oriented
spatial filters at four orientations (θ) and three scales (σ), varying
each scale by one octave. Furthermore the ε̂S channel indicates
homogeneous regions in the image.
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    static 

Figure 3.6: Marginalized spacetime energies for a temporal slice of an
avalanche sequence filtered with spatiotemporal filters. The se-
quence is captured with fast camera jitter. Energies across ten
motion directions are shown by steering the frequency domain
plane n̂; moreover, the ε̂MST channel indicates homogeneous re-
gions in the image sequence. The horizontal and vertical flicker
channel show the most dominant responses due to the fast camera
movement.
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    static 

Figure 3.7: Dynamic energies for a temporal slice of a waterfall sequence ob-
tained by convolution with spatiotemporal filters. Energies across
six motion directions are shown by steering the frequency domain
plane n̂; moreover, the ε̂MST channel indicates homogeneous re-
gions in the image sequence. Strong energies in the downward
motion channel are observed across the waterfall.
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3.2.6 Chromatic information

Chromatic information can greatly influence (static) object and scene recognition [97] and
also has proven useful in previous work on dynamic scene recognition [27, 90]. Corre-
spondingly, chromatic information is incorporated in the present dynamic scene descriptor
by adding three more measurements at each point in the image sequence taken as CIE-
LUV colour space observations [110]. Other colour spaces also were considered (RGB,
HSV, CIE-Lab [110]); however, LUV led to slightly better results in preliminary investi-
gation.

3.2.7 Temporal slice-based aggregation

The complementary spacetime orientation measurements presented so far are defined
pointwise across a video sequence. For the purpose of on-line classification of the en-
tire video into a scene class, the local descriptors are summed across time, t, within τ
discrete temporal slices of equal duration. This operation yields a set of temporally ag-
gregated images, which are referred to as temporal slices. Fig. 3.8 illustrates the temporal
parcelling of an avalanche sequence, taken from the Maryland dataset. Temporal slicing
is motivated by the desire for incremental processing that can allow for efficient, on-line
operation. Use of short-term parceling of the measurements also is well matched with the
restriction to use of fine temporal scales during spatiotemporal filtering to favour scene
over camera dynamics. During classification (Sec. 3.3) each temporal slice initially is
classified individually, with the individual classifications subsequently combined to yield
overall classification for the video.

. . . 

t 
x y 

t 

1 2 3 4 τ 

Figure 3.8: Temporal slice-based processing for on-line recognition.

Having established temporal slices for an input video, the complementary measure-
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ments are processed in successive temporal slices across the video. Each slice is hierar-
chically aggregated into histograms to form a spatiotemporal pyramid, analogous to that
used previously for static [58] and dynamic [27] scene analysis. At each level of the pyra-
mid, each temporal slice is broken intoX×Y ×T 3D cuboids (see Fig. 3.1(a)), with filter
measurements collapsed into histograms within each cuboid, as illustrated in Fig. 3.1(d).
The support of the cuboid at any given level of the pyramid corresponds to its outer scale
[51]; indeed, it corresponds to the aggregation region Ω in the filtering equations, (3.2)
and (3.4). Moreover, the adjacency structure of the cuboids capture the overall scene
layout. For each cuboid, the histograms are l1-normalized, to represent a distribution of
chromatic, multiscale oriented spacetime energy and lack of oriented structure (via ε̂). Let
Mθ,Mn̂, Mσθ and Mσn̂ be the number of spatial orientations, spatiotemporal orientations
and their (inner) scales considered in the multiscale oriented filtering operations, resp.
Then, the dimension of each histogram is the quantity (Mθ+1)×Mσθ+(Mn̂+1)×Mσn̂+3,
with 1 added to the number of orientations due to ε̂, and 3 the number of colour chan-
nels. The histograms for all cuboids are concatenated into a final feature vector, v, that
comprises the Complementary Spacetime Orientation descriptor (CSO) to characterize a
temporal slice of the video. Figure 3.9 shows a schematic of the feature vector extraction
for one specific spacetime energy channel of a temporal slice at an outer spacetime scale
of X × Y × T = 2× 2× 1.
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Figure 3.9: Spacetime volume description by one spacetime energy chan-
nel (static/dynamic energy) and pooling of the features in a
spatiotemporal pyramid structure. Only a single outer scale
(2× 2× 1) is illustrated.
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3.3 Spacetime forests

In the present work, a Random Forest (RF) classifier is employed for its ability to combine
several cues for multi-class prediction, as well as their increased speed in the training and
testing processes over traditional classifiers. Here, the classes correspond to different
dynamic scenes (e.g., beach vs. city, etc.) and the feature vectors correspond to the CSO
descriptors defined in the previous section. In this section, a particular instantiation of
RFs, termed spacetime Random Forests (STRF) are defined.

3.3.1 Multi class random forests for recognition

RF classifiers have been introduced for character recognition in [2] and were extended
by [12]. Further applications include fast keypoint tracking and feature matching [59],
object recognition [71, 108], image classification [8] and segmentation [89]. Detailed
descriptions of Random Forests may be found in the literature [2, 12, 23, 24].

RFs are an ensemble of F decision trees {Tk}Fk=1 learned by random feature selection.
Each decision tree is used independently to classify the input feature vector, v, based on
the leaf node at which the corresponding feature vector arrives. Hence, the leaf nodes of
all trees hold the posterior distribution P (c|v) over the classes c ∈ {1, . . . , C}.

3.3.2 Learning dynamic scenes

Note that previous work [27, 90] collapsed temporal information during training and test-
ing and therefore discarded possible important temporal cues. Further, collapsing across
the entire temporal extent of a video may have limited the ability of previous approaches
to disentangle scene dynamics from camera motion.

During training, the temporal alignment of the video slices are treated as latent; cor-
respondingly, each temporal slice of each training video generates its own feature vector
according to procedures of Sec. 3.2. This approach allows leveraging of the high temporal
diversity in the spatiotemporal patterns.

Each tree is constructed by drawing a random bootstrap sample from the training set.
Bootstrapping in the training stage allows maximum training efficiency [24] and avoids
over-fitting [2] to generalize well in practice. Further randomness is introduced in the
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Figure 3.10: Spacetime forest construction. As some classes may be better
represented by specific feature types, the node optimization pro-
cess in each tree of the spacetime random forest is restricted to
a single feature type.

node optimization step by selecting a random subset m of the feature vector’s dimension
to be considered in a random threshold test for determination of the best split for each
node. Here, the split is selected as that which maximizes the information I in the final
class distribution, after splitting into a left (L) and right (R) node:

I = H(Q)−
∑

i∈{L,R}

|Qi|
|Q|

H(Qi), (3.12)

where H(Q) = −
∑

c∈C p(c)log(p(c)) is the Shannon entropy, p(c) the proportion of
classes in Q belonging to class c and | · | denotes the size of the set at a given node. Tests
are selected for all nodes recursively until the growing process is stopped when no further
information gain is achieved. The final class distributions at the leaves are calculated as
the ratio between the number of feature vectors of each class and the total number of
features which reach the leaf after training.

As some classes may be better represented by specific feature types, the node opti-
mization process in each tree is restricted to a single feature type. To best separate the
classes with the CSO descriptor, the input for the RF is first structured into the three
complementary feature channels: spatial orientation, (marginalized) spatiotemporal ori-
entation and colour. Then, the channels are used to train F

3
trees each, to best distinguish

the classes, based on a particular channel only. An illustration is shown in Figure 3.10.
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Lastly, these complementary trees are merged to obtain the spacetime forest {Tk}Fk=1.

3.3.3 Recognizing dynamic scenes

For classification, the feature vectors, vτ , of scenes to be recognized are again decom-
posed into the three distinct channels and sent simultaneously through the respective com-
plementary trees until the corresponding leaves are reached. Here, τ is the temporal slice
of the input volume where the feature is extracted. Each tree gives a classification by
voting for the class labels according to the class distribution pk(c|vτ ) of the leaf which is
reached by vτ in tree k.

Given the resulting set of tree predictions, they are combined in two stages to yield a
classification at each temporal instance. First, the prediction results of the forest for the
current temporal slice, τ , are calculated as a simple averaging of the leaf distributions pk
in the F trees in the forest

P τ (c|vτ ) =
1

F

F∑
k=1

pk(c|vτ ). (3.13)

Using this prediction, a class label can be assigned to each temporal slice via

cτ = arg max
c
P τ (c|vτ ). (3.14)

Second, to yield a final classification across all temporal slices available up to a given
time, the class likelihoods for each slice are treated as temporal predictions and once
again combined via averaging

P (c|v) =
1

τ

τ∑
l=1

P l(c|vl). (3.15)

The current classification of the video is then given as

c = arg max
c
P (c|v). (3.16)
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3.4 Implementation details

3.4.1 CSO video descriptor

In the current implementation, Mθ = 4 and 10 in the oriented filtering operations, (3.2)
and (3.4), resp., as those numbers span orientation space for the order and dimension-
ality of filters employed [35]. Here, it is of note that orientation selective filters other
than Gaussian derivatives might have been used (e.g., oriented Gabor filters[43]); how-
ever, the chosen filters enjoy the advantage of particularly efficient implementation owing
to separability and steerability [35]. In any case, the results of the spatiotemporal filter-
ing, (3.4), are further combined to capture frequency domain planes, (3.9), parameter-
ized by n̂ corresponding to motion along the leftward, rightward, upward and downward
directions as well as static (zero velocity) and flicker (infinite velocity). For each ori-
entation, spatial filtering is performed at Mσθ = 4 different scales, starting at σ = 2,
varying coarser by octave; spatiotemporal filtering is performed at Mσn̂ = 1 relatively
fine scale (σ = 2) in preference for capturing short term temporal variations. To avoid
border effects at the start and the end of the volumes, the filtering is performed with
a temporal offset of half of the largest filter size used. During normalization, (3.10),
ε = 500. The spacetime pyramid is constructed at 4 levels with number of cuboids
(X × Y × T ) ∈ {(8× 8× 1), (4× 4× 1), (2× 2× 1), (1× 1× 1)}. Pyramids are con-
structed for each temporal slice of an input video, with the length of temporal slices set
to 16 frames. To represent the colour distribution in each cuboid, a 3 bin histogram of the
CIE-LUV colour channels is employed.

3.4.2 STRF classifier

Even if the training data exhibits the same number of videos for each class, they may
have different durations. Therefore, the classifier would be severely biased towards the
classes containing long videos. To compensate for these differences, priors are used in
the training stage subsampling process. These are given by the inverse of the number of
temporal slices τ of all videos from a specific class c in the training set. For all experi-
ments a multi-class STRF with 500 trees for each of the three feature channels (i.e., spatial
orientation, (marginalized) spatiotemporal orientation and colour) of the video descriptor
is trained. At each split node, a random sample of m features is drawn for consideration
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in splitting [12]. In particular, m = blog2Dc, where D is the feature vector dimension-
ality. The best split of the random tests, determined by Eq. (3.12), is used to split the
node. For training the node splits, each tree uses a random bootstrap sample consisting
of two thirds of the training data. The error rate for observations left out of the training
data is monitored as out-of-bag error rate and may be used as an unbiased estimate of the
classification performance of each tree trained on a bootstrap sample [12].

3.4.3 Invariance to scale variations

To provide a degree of robustness to scale variations of image capture (e.g., due to variable
zoom), the multiscale filtering (parametrized by σ in (3.2) and (3.4)) may be performed
multiple times for each training video, but with the particular set of scales considered
shifted by a different amount each time. This approach allows for a range of imaged
scene scales, σj , to be captured at any given image capture resolution. During training, a
feature vector is constructed for each set of shifted scales and used separately as training
data for the forest. While this approach is somewhat redundant in processing of scale, it
will allow for a scene class to be recognized at any of the given scale shifts while only
sending a single set of scales into the forest. Notice that since the forests have been built
with various scale shifts during training, a feature vector derived from an imaged scene at
any of those shifts (i.e., variable resolutions) will be captured properly.

Since the underlying datasets of the experimental validation all provide a similar scale
(i.e. all videos are captured at a similar zoom), the scale invariant implementation is not
used in this work. Essentially, by running the experiments with the scale invariant im-
plementation, identical performance was achieved in preliminary investigations on these
datasets.
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3.5 Experimental evaluation

This section evaluates the proposed approach for dynamic scene recognition on the Mary-
land “In-The-Wild” [90] and YUPENN Dynamic Scenes [27] datasets, consisting of 13
and 14 classes with 10 and 30 videos per class, respectively. As shown in Section 2.2,
the datasets contain videos showing a wide range of natural dynamic scenes (avalanches,
traffic, forest fires, waterfalls etc.); see Tables 3.1 and 3.2 where complete listings can
be read off the left most columns of the tables. A notable difference between the two
datasets is that the Maryland dataset includes camera motion, while the YUPENN dataset
does not.

3.5.1 Evaluation methodology

To be consistent with previous evaluations in [27, 90], we use the same evaluation pro-
tocol as the authors of the datasets; i.e. a leave-one-video-out recognition experiment.
For a systematic evaluation of the contributions of (i) the video descriptor (CSO), (ii)
classifier (STRF), and (iii) the use of temporal slicing and priors for classification, these
components are evaluated separately in the remainder of this section.

For the sake of comparison, several alternative video descriptors and classifiers are
considered that have shown strong performance in previous evaluations [27, 90]. De-
scriptors considered are GIST [73] + HOF [67], GIST + chaotic dynamic features (Chaos)
[90] and Spatiotemporal Oriented Energies (SOE) [27]. All of these approaches include
colour histograms [40], as this addition generally increases classification performance
[27, 90]. Furthermore, the performance of the recently introduced approach by Theri-
ault et al. [95], that based on Slow Feature Analysis (SFA), is shown. The classifiers
considered are Nearest-Neighbor (NN), Support Vector Machine (SVM), Random Forest
(RF) and the proposed Spacetime Random Forest (STRF). NN and SVM are included, as
they have been employed in previous evaluations [27, 90]; RF is a random forest trained
uniformly across all components of the training vectors, which is included for the sake of
comparison to the proposed STRF, which trains separate trees for the spatial and temporal
orientation as well as colour components. The alternative approaches build their feature
vectors by collapsing across all temporal frames; for the sake of comparison, the pro-
posed approach is shown processing temporal information in several ways: Use a single
temporal slice for classification (RF and STRF, τ = 1); average the CSO feature vectors
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calculated for individual slices across the entire video (RF, τ =all); combine individual
slice classifications across the entire video (STRF, τ = all) according to the proposed
averaging (3.15), i.e. the complete proposed approach. Results are shown in Tables 3.1
and 3.2 for the Maryland and YUPENN datasets, respectively.

3.5.2 Results

Maryland “In-The-Wild”

Descriptor
HOF+ Chaos+

SOE SFA
CSO

GIST GIST (proposed)
Classifier NN NN SVM NN RF SVM RF RF STRF STRF

Temporal τ all all all all all all 1 all 1 all
Avalanche 20 40 60 10 40 60 40 50 60 60
Bo. Water 50 40 60 50 50 70 80 80 80 80
Ch. Traffic 30 70 70 80 60 80 90 100 80 90
Forest Fire 50 40 60 40 10 10 30 50 80 80
Fountain 20 70 60 10 50 50 40 50 90 80

Iceberg Co. 20 50 50 10 40 60 50 40 60 60
Landslide 20 50 30 50 20 60 20 40 20 30

Sm. Traffic 30 50 50 70 30 50 60 50 60 50
Tornado 40 90 80 60 70 70 70 60 90 80

Volcanic Er. 20 50 70 30 10 80 50 80 50 70
Waterfall 20 10 40 20 60 50 50 50 50 50

Waves 80 90 80 80 50 60 70 70 60 80
Whirlpool 30 40 50 40 70 80 80 50 80 70

Overall 33 52 58 42 43 60 57 59 66 68

Table 3.1: Average classification rates for different video descriptor and clas-
sifier combinations on the Maryland dataset. The combination of
diverse, informative feature channels (CSO) with a suitable classi-
fier (STRF) gives overall best results.

In comparison to the most closely related descriptor (SOE1) running under the same
classifier (RF), it is seen that the proposed CSO features improve overall performance in
the presence of camera motion (Maryland dataset) from 43% to 57% recognition accu-
racy using only a single temporal slice (τ = 1), with an additional boost to 59% when
feature vectors are combined across all slices (τ =all). In contrast, when camera motion
is not present (YUPENN), the performance of the two feature sets under the same clas-
sifier is essentially indistinguishable (81% vs. 82%). These results support the ability

1Recall that SOE derives from integrated spatiotemporal filtering, (3.4), without temporal slicing, and
without the proposed separation into complementary spatial, (3.2), and temporal, (3.9), components.
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YUPENN Dynamic Scenes data set

Descriptor
HOF+ Chaos+

SOE SFA
CSO

GIST GIST (proposed)
Classifier NN NN NN RF SVM RF RF STRF STRF

Temporal τ all all all all all 1 all 1 all
Beach 87 30 90 93 93 97 100 100 100

Elevator 87 47 90 100 97 97 97 97 100
Forest Fire 63 17 87 67 70 80 83 76 83
Fountain 43 3 50 43 57 47 53 40 47
Highway 47 23 73 70 93 67 70 67 73

Lightning S. 63 37 90 77 87 90 90 93 93
Ocean 97 43 97 100 100 90 90 90 90

Railway 83 7 90 80 93 87 90 90 93
Rushing R. 77 10 90 93 87 93 93 97 97
Sky-Clouds 87 47 93 83 93 87 90 100 100

Snowing 47 10 50 87 70 47 43 57 57
Street 77 17 87 90 97 93 90 97 97

Waterfall 47 10 47 63 73 67 70 80 76
Windmill F. 53 17 73 83 87 93 87 93 93

Overall 68 23 79 81 85 81 82 84 86

Table 3.2: Average classification rates for different video descriptor and clas-
sifier combinations on the YUPENN dataset. The complementary
feature channels of the CSO descriptor, combined with the STRF
classifier, achieves best results.

of the proposed approach to capture intrinsic scene dynamics with robustness to camera
motion. Further allowing the classifier to consider the complementary feature compo-
nents separately (STRF) shows even better performance whether with τ = 1 slice or with
combination across τ =all slices.

More generally, the proposed approach’s 68% accuracy on the Maryland dataset im-
proves on Chaos+GIST under SVM by 10%. Further, its accuracy of 86% on the YU-
PENN dataset sets a new state-of-the-art for that case as well (even with SOE given the
advantage of RF-based classification, which it did not enjoy in its original application
to dynamic scenes [27], but which is included here for fair comparison). In comparison
to the recently published approach based on slow feature analysis (SFA) 2 by Theriault
et al. [95], the proposed method outperforms SFA by 8% on Maryland and 1% on YU-
PENN. Indeed, while all other compared approaches show high variation in performance
between the two datasets, the proposed approach provides the best overall performance

2Consider the erratum with the correct classification rates of SFA on http://webia.lip6.fr/
˜theriaultc/sfa.html
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in both cases. Moreover, best overall performance is attained even when only a single
temporal slice of 16 frames is processed (CSO, STRF, τ = 1).

The complementary nature of the CSO descriptor components is illustrated explicitly
in Fig. 3.11(a) and 3.11(b). The figure shows estimates of cross-validation performance
as indicated by the out-of-bag error rate [12] when training the random forest with spatial
and temporal orientation as well as colour information separately. It is seen that differ-
ent classes are better distinguished by different types of information; correspondingly,
their combination provided by the proposed approach (Table 3.1 and Table 3.2) yields
improved classification performance.

Examination of class confusions made by the proposed approach is presented in Ta-
ble 3.3. The confusion matrix exhibits dominant diagonal entries. One observes that most
of the confusions are between intuitively similar scenes, e.g., Smooth Traffic classified as
Chaotic Traffic, or Waterfalls classified as Fountains. Note, however, that some confu-
sions on the Maryland dataset are rather diffuse, e.g., the Landslide class. This may be
explained by the large variations within these classes.
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(a) Maryland “In-The-Wild”
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(b) YUPENN Dynamic Scenes data set

Figure 3.11: Classification performance measured by the out-of-bag error
rate when training the random forest separately with spatial and
spatiotemporal orientation as well as colour components of the
CSO descriptor. A single temporal slice of each clip is used for
training.
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Iceberg Co. 1 1 1 6 1

Landslide 1 2 2 3 1
Sm. Traffic 3 1 5 1
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Beach 30
Elevator 30

Forest Fire 25 1 3 1
Fountain 14 1 2 1 1 1 7 3
Highway 22 1 2 2 1 2

Lightning S. 1 28 1
Ocean 3 27

Railway 27 2 1
Rushing R. 1 29
Sky-Clouds 30

Snowing 2 1 4 2 1 17 1 2
Street 1 29

Waterfall 2 1 3 1 23
Windmill F. 1 29

Table 3.3: Confusion matrices for both datasets, using CSO descriptor and
STRF classification.
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3.5.3 Exploration of the spacetime pyramid parameter space

As each tree in the forest is constructed on only two-thirds of the training set, the data left
out of the training set may be used to provide an unbiased estimate of cross-validation
performance [12]. Here, the classification performance on the out-of-bag data for training
a random forest with different spacetime grid sizes is evaluated. The spacetime pyramid
is constructed at different levels with number of cuboids in the range of (X × Y × T ) ∈
{(4× 4× 1), . . . , (16× 16× 16)}. Figure 3.12 shows the effect of this different outer-
scale grid sizes on the YUPENN dataset. Note that in this particular case the whole
clip is used for training (no slicing), as temporal slices are generated implicitly by ap-
plying a temporal grid. One observes that finer grids, which lead to a higher feature
dimensionality, increase overall classification accuracy up to a certain point where the
representation over-fits the underlying volumes. In all cases, a good trade-off between
dense spatial description and good generalization can be achieved with a grid size of
(X × Y × T ) = (8 × 8 × 1). Note, however, that the YUPENN dataset does not in-
clude much temporal variation, since all the classes, besides Elevator, consist of constant
spacetime textures over time. Therefore, Figure 3.12 also indicates, that collapsing the
temporal information is as effective as separate temporal grids. This is a consequence
of the continuous spatiotemporal patterns, captured by a static camera, in the YUPENN
dataset.
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Figure 3.12: Performance of CSO on YUPENN, with 3 outer scales used, the
grid size of the finest outer scale is listed. Sparse grids, such as
4 × 4 × 1 and too dense grids, e.g., 16 × 16 × 16 lower the
classification accuracy of the forest.

44



3.5. Experimental evaluation

Next, the impact of discarding the coarse grids of the pyramid representation is in-
vestigated (e.g. only using a 8 × 8 × 1 grid for representation and discarding the coarse
grids 4× 4× 1 and 2× 2× 1). Figure 3.13 shows different spacetime grids, when only a
single outer scale is used; i.e. only the finest grid. The average decrease in performance,
compared to using the full spatial pyramid (Figure 3.12) is minor. This suggests that the
most discriminative information is captured by the finest spatial pyramid levels.
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Figure 3.13: Performance of CSO on YUPENN, when pooled from the finest
outer scale only, i.e., the coarse grids of the spatial pyramid are
not used.
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3.5.4 Computational time

The current implementation is written in Matlab and may be further optimized. In terms
of execution speed, the full proposed approach computes a feature vector for a 16 frame
slice in 4 seconds (due to separable and steerable filtering) and takes an additional 5

milliseconds on average to report a class label. As shown in Section 3.5.2, even using
a single temporal slice of the input sequence yields high-quality results. Therefore, the
approach allows state-of-the-art scene classification, being within 2% accuracy of the
best performance across both datasets (also attained by the proposed approach, but using
a complete set of slices), in nearly real time. Moreover, filtering and random forests are
readily parallelizable for GPU implementations.
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3.6 Conclusion

This chapter has presented a novel approach to dynamic scene recognition based on three
key ideas. First, different scenes are best characterized in terms of different combinations
of spatial, temporal and chromatic information. Correspondingly, the CSO descriptor has
been introduced that affords complementary consideration of spatial and spatiotemporal
orientation as well as colour information. Second, a particular instantiation of random
forests, STRF, has been introduced that allows the complementary components of the
CSO descriptor to be exploited during classification. Third, temporal slicing with scale
matched to intrinsic scene dynamics has been employed. Matching the scale of spatiotem-
poral filtering to scene dynamics allows for recognition that is robust to camera motion.
Slicing also allows for efficient, incremental processing of video as well as treatment of
temporal alignment as latent during classification. In empirical evaluation relative to a va-
riety of previous algorithms for dynamic scene recognition, including the previously most
effective ones, the proposed approach has yielded superior accuracy in dynamic scene
recognition, both with and without camera motion.

A limitation of the proposed approach is that spacetime features are aggregated over
relatively large spatial regions and therefore only capture a smooth approximation of the
spatiotemporal energy in a region. The next chapter will overcome this problem by rep-
resenting local spacetime features, encoded as visual words, that are used for a deeper
representation of the image sequence. However, despite the better representation, local
feature encoding enforces a higher feature dimensionality and is computationally expen-
sive. Therefore, due to the inherent computational efficiency of the approach presented
in this chapter, it is well suited for applications with relevance to real-world scenarios,
including video indexing and browsing as well as surveillance and monitoring. Integra-
tion of CSO and STRF with such applications would serve as an interesting direction for
future research.
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4
Bags of Spacetime Energies

for Dynamic Scene Recognition

This chapter extends the idea of temporal slicing introduced in Chapter 3. In contrast to
the approach presented in Chapter 3, the extracted features here capture unified spatial
and temporal orientation structure of a local region.

The proposed approach models dynamic scenes with Bags of Spacetime Energies
(BoSE). The well-established BoW image classification architecture is applied. Local
spacetime features are extracted from a training set to build a visual codebook that is used
to project these feature distributions into a mid-level representation. Finally, the local
feature codes are pooled over a spatiotemporal pyramid to form the global representation
for classification.
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In the last decade, the state of the art in image classification and object recognition
is dominated by three general steps: (i) In the feature extraction step, low-level descrip-
tors are extracted either from interest points or densely from regular locations. (ii) The
coding step generates intermediate bag of visual word (BoW) representations that trans-
form local features into more effective representations for the underlying task, and (iii)
the pooling step accumulates encoded features over pre-defined regions. Spatial pyramid
matching (SPM) [58] is typically employed to embed weak geometric information by us-
ing increasingly finer subregions for pooling, while still providing important properties of
spatial invariance (see Figure 4.1 for an illustration).

A recent BoW approach [95] to dynamic scene recognition uses purely spatial de-
scriptors and their variation over time. These features are transformed in several stages,
resulting in a relatively complex system with numerous components. Therefore, it is not
very clear which modules are essential for good performance. For example, the authors of
[95] claim that the use of slowly varying features is essential for the performance of their
approach; however, they only report results for the full SFA system, without discussing
the benefit of mid-level feature coding for dynamic scene classification.

The present work builds on an evaluation [27] of different feature types for dynamic
scene recognition, where it has been shown that features, jointly capturing spatial and
temporal structure, are performing best for the task. Also the results of CSO+STRF in
Chapter 3 have demonstrated that using spatial and temporal features is important for good
recognition performance. However, in contrast to these approaches, the method presented
in this chapter only focuses on local spatiotemporal features (specifically, CSO+STRF is
based on local temporal, but non-local spatial features). After evaluating several popular
feature coding strategies for the proposed local spacetime features, a carefully-designed
BoW model, i.e. the Bags of Spacetime Energies (BoSE), for dynamic scene recognition
is introduced. An overview of the framework is shown in Figure 4.1. One striking result of
this work is that a well-designed representation, combined with common feature encoding
concepts, outperforms all previous dynamic scene categorization approaches from the
literature as well as CSO+STRF by a significant margin.
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Figure 4.1: Proposed Representation for Dynamic Scene Recognition. First,
spatiotemporal oriented primitive features are extracted from a
temporal subset of the input video. Second, features are en-
coded into a mid-level representation learned for the task and also
steered to extract dynamic pooling energies. Third, the encoded
features are pooled via a novel dynamic spacetime pyramid that
adapts to the temporal image structure, as guided by the pooling
energies. The pooled encodings are concatenated into vectors
that serve as the final representation for online recognition.
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4.1 Contributions

This chapter makes several substantial contributions to dynamic scene classification. First,
a novel feature representation based on a weighted aggregation of local fine-scale space-
time energies is proposed. Second, an evaluation of several novel encoding methods
[19] for dynamic scene recognition is presented. Third, based on the outcome of this
evaluation, the proposed local spacetime features are encoded via the locally constrained
linear coding (LLC) approach [104] to form a general BoW model applicable to visual
recognition tasks. While the FV representation [78] has recently shown state-of-the-art
results for scene classification from a single image [48], object detection [20, 21], face
verification [92], or action and event recognition [74], this does not appear to hold for
dynamic scene understanding, where the present work indicates that LLC [104] performs
especially well for the representation of highly dynamic scenes. Fourth, the impact of im-
age stabilization for factoring out camera motion prior to feature extraction is explored.
Fifth, to tailor the model specifically for dynamic scene recognition, a pooling scheme
based on scene dynamics is proposed that directly builds on the encoded features. There-
fore, the proposed pooling method inherits important local properties of the features and
further originates efficiently as a by-product in the feature extraction process, i.e., the
visual words are pooled based on their temporal energy in the frequency domain which
is computed efficiently from linear combinations of the extracted feature responses. An
additional contribution of this chapter is the application of a temporal slice combination
technique based on histogram intersection kernels.

The selected feature, encoding and pooling approaches have been assembled into
a complete system for dynamic scene recognition, i.e., the Bags of Spacetime Ener-
gies (BoSE). The presented methods are extensively evaluated by applying them to the
two publicly available dynamic scene recognition datasets, Maryland [90] and YUPENN
[27]. The proposed BoSE framework with the novel pooling scheme achieves overall
best recognition accuracy on both scenes captured with and without camera motion. The
experiments reveal the most crucial aspects for good performance and demonstrate that a
carefully designed spacetime BoW model substantially outperforms the previous state of
the art in the dynamic scene recognition literature.
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4.2 Preliminaries and related work

The first part of this section reviews support vector machines and the pyramid match
kernel for comparison between sets of features. The second part of the section introduces
well-established codebook generation, feature encoding and pooling methods from the
literature of object recognition and scene classification.

4.2.1 Support vector machines for classification

Support Vector Machines (SVMs) are discriminative classifiers that learn decision bound-
aries with a maximum margin for binary classification problems. The margin is defined
as the distance between the separating hyperplane and the closest positive and negative
training labels.

For training data consisting of feature vectors vi ∈ Rd and corresponding class labels
ci ∈ {−1,+1}, the algorithm searches a hyperplane w · v − b = 0, which best separates
the data based on the maximum margin to the nearest training examples (i.e. the support
vectors). Therefore, the separating plane is only influenced by the closest training exam-
ples. Here, w ∈ Rd is the normal vector to the hyperplane and b is the distance of the
hyperplane to the origin.

If the data is not linearly separable, soft margin SVMs, proposed by Cortes and Vapnik
[22], allow misclassified examples during training by adding a slack variable ξi to each
training example vi. The slack variable is computed by a loss function f(vi) and adds a
misclassification penalty to the SVMs objective function:

min
w,ξ,b

{
1

2
‖w‖2 + C

n∑
i=1

ξi

}
(4.1)

subject to
ci(w · vi − b) ≥ 1− ξi, ξi ≥ 0 (4.2)

Minimizing ‖w‖ assures maximum distance between the hyperplane and its support
vectors (i.e. 2

‖w‖ ), while minimizing over the slack variables ξi assures a small error on
the training data. Therefore, the optimization process is a tradeoff between a large margin
and a small error penalty. This tradeoff between regularization and constraint violation is
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controlled by the parameter C.

4.2.2 Pyramid match kernel

As reviewed in the previous section, SVMs are linear classifiers, which classify based on
a dot product between the feature point vi and a learned hyperplane. The replacement
of the dot product by a kernel function makes nonlinear feature separation possible. The
hyperplane is then constructed in a transformed, possibly high dimensional, feature space.
Comparison of two features v, z ∈ Rd is achieved by using a dot product k(v, z) =

φ(v) · φ(z), where k(v, z) : Rd × Rd → R is the kernel function.

In [39], Grauman and Darrell propose the pyramid match kernel for matching hierar-
chical histogram pyramids with the intersection as similarity measure. The intention of
the pyramid match kernel is to match two sets of features at different resolutions in the
feature space. This is achieved by generating histograms of varying bin-size and counting
the number of features that land in the corresponding bin. For measuring the similarity
between two histograms H i

l (v), H i
l (z) at level l, the histogram intersection is applied as

Hl =
∑
i

min(H i
l (v), H i

l (z)), (4.3)

where i denotes histogram bins. Since matches found at level l are also included in
matches at a coarser level l + 1, Grauman and Darell [39] assign higher weights to simi-
larity scores at finer levels. Therefore, the pyramid match kernel computes the weighted
change of intersection at each of the L histogram levels

k(v, z) =
L∑
l=1

1

2L−l+1
(Hl −Hl+1). (4.4)

4.2.3 Feature coding and pooling methods

Recently, research activity for improving feature encoding and spatial pooling for BoW
based object classification approaches has increased drastically.

For visual scene recognition tasks, several different coding procedures exist to convert
local features vi ∈ RD into more effective local representations fi ∈ RK . To further
convert the local codes into a global feature representation a spatial pooling operation ρ
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is applied.

In this section, several popular strategies for encoding vi with a trained codebook
B ∈ RD×K , i.e. vector quantization, locality constrained linear coding, and (improved)
Fisher vectors, as well as the two existing basic spatial pooling methods, i.e. average
pooling and max pooling, are reviewed.

4.2.3.1 Codebook generation

Traditionally, a codebook with K visual words is learned in an unsupervised manner, e.g.

by using K-means to cluster the descriptor space into K significant regions. Given N
training features v1, . . . ,vN ∈ RD, the K-means algorithm searches assignments of the
features to K sets Si with cluster centres µ1, . . . ,µK ∈ RD such that the sum of squares
error within the sets is minimized

arg min
µi

K∑
i=1

∑
vj∈Si

‖vj − µi‖
2 . (4.5)

This assures that each feature vector is assigned to the cluster set with the nearest mean.
After convergence, the codebook B = b1, . . . ,bK ∈ RD is correspondingly given by
the K mean vectors µ1, . . . ,µK ∈ RD. The method proposed in this chapter uses the
approximated nearest neighbour algorithm based on randomized test-bin-first KD-tree
forests from [72], implemented in the VLFeat toolbox [100]. This allows convenient
run-times by solving the cluster assignment (4.5) with an approximate nearest neighbour
search.

4.2.3.2 Encoding via vector quantization

Vector quantization (VQ) is the most common encoding approach. This baseline coding
method assigns one single codeword to each local descriptor v1, . . . ,vN , based on the
minimum distance in the D-dimensional feature space

arg min
fi

N∑
i=1

‖vi −Bfi‖2 , (4.6)

with the constraints ‖fi‖0 = 1, ‖fi‖1 = 1, fi � 0 such that only a single code with unit
weight is assigned. By restricting the cardinality of fi only the codeword with the smallest
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Euclidean distance in the feature space is assigned to each local descriptor vi. Thus, fi

consists of only one non-zero element, indicating the nearest visual word in B.

4.2.3.3 Encoding via locality constrained linear coding

Using only a single codeword does not incorporate distances in the feature space dur-
ing coding, discards much descriptive information and is sensitive to noise [55, 66, 98].
Therefore, recent work has shown that using a representation of sparse codes achieves
much higher classification performance [10, 11, 14, 19, 34, 46, 87, 104, 111]. Sparsity
is achieved via regularization, since assigning too many codewords to a single descriptor
would lead to overfitting. Lately, the most frequently used coding approach is Locality-
constrained Linear Coding (LLC) introduced by Wang et al. [104]. LLC uses a sparse
representation of local codes in the feature space. Each local feature vi is encoded by
M � K codewords bi which exhibit the lowest Euclidean distance to vi.

arg min
1>fi=1

N∑
i=1

‖vi −Bfi‖2 + λ ‖di �Bfi‖2 . (4.7)

where � is the component-wise product and di ∈ RK denotes the locality adaptor which
measures the similarity of the codewords to the given feature vector vi:

di = exp

(
dist(vi,B)

σ

)
, (4.8)

where dist(vi,B) is the Euclidean distance between vi and the codewords b1, . . . ,bM ,
and σ controls the exponential weighting. It is notable that the coding speed for LLC is
considerably higher than for vector quantization, because, not only the nearest neighbour,
but the M nearest neighbours have to be sought for all the local features. To achieve rea-
sonable encoding run-times this can be performed by an approximate nearest neighbour
search [19].

4.2.3.4 Encoding via Fisher vectors

Fisher kernels combine generative methods, that concentrate on the modelling of a joint
conditional distribution, and discriminative approaches, which focus on direct discrimi-
nation with a trained distribution [42, 78]. In contrast to a discriminative approach, gen-
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erative methods are able to create new feature vectors by sampling from the modelled
class-conditional distribution. Fisher vectors (FV) [19, 78, 80], that are a special case of
the more general Fisher kernels, learn the distribution of local descriptors vi ∈ RD by
using a Gaussian Mixture Model (GMM) p(vi|θ), with parameters θ = (wk, µk,Σk, k =

1, . . . , K):

p(vi|θ) =
K∑
k=1

wkpk(vi|µk,Σk), (4.9)

with the components

pk(vi|µk,Σk) = (2π)−
D
2 |Σk|−

1
2 exp

(
−1

2
(vi − µk)>Σ−1

k (vi − µk)
)
, (4.10)

where | · | denotes the determinant and, for the kth Gaussian, wk is the prior weight,
fulfilling the constraint

∑K
k=1wk = 1, µk the mean vector, and Σk the covariance matrix.

For each of the K codewords, a Gaussian encodes the relative frequency (wk), the mean
(µk) and the variation around the mean (Σk). For lower computational cost, the covariance
matrices are restricted to be diagonal, since any distribution can be approximated with
arbitrary precision by a weighted sum of Gaussians with diagonal covariances [78].

The Fisher vectors are used to represent the difference (first and second order) of a
feature set and the average distribution of the training features, modelled by the GMM.
Training of the K(2D+ 1) GMM parameters is realized with the Expectation Maximiza-
tion (EM) algorithm. For each of the k = 1, . . . , K mixtures, the posterior probability
p(k|vi,θ) for a feature vector vi is given as

p(k|vi,θ) =
wkpk(vi|µk,Σk)∑K
j=1 wjpj(vi|µk,Σk)

. (4.11)

Following [19], for each Gaussian mixture k, the mean and covariance vectors are given
by

Φ
(µ)
k =

1

N
√
wk

N∑
i=1

p(k|vi,θ)Σ
− 1

2
k (vi − µk) (4.12)

and

Φ
(Σ)
k =

1

N
√

2wk

N∑
i=1

p(k|vi,θ)[(vi − µk)Σ−1
k (vi − µk)− 1] (4.13)

The final Fisher vector Φ(FV) is created by stacking the first and second order differences
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between the descriptors vi and the K trained mixtures

Φ(FV) = [Φ
(µ)
1 ,Φ

(Σ)
1 , . . . ,Φ

(µ)
K ,Φ

(Σ)
K ]. (4.14)

Note that this step implicitly performs a pooling of the local features into a vector rep-
resentation. Consequently, the 2DK-dimensional FV Φ(FV) encodes the differences be-
tween a set of test feature vectors and a learned GMM distribution from the training
features.

Improved Fisher vectors

Regarding normalization of Φ(FV), Perronnin et al. [80] show that by using signed square
rooting applied to each element of the FV, classification performance of Fisher vectors
can be improved:

Φ(IFV)
k = sign(Φ(FV)

k )|Φ(FV)
k |

− 1
2 . (4.15)

Finally an `2 normalization is applied to yield the final improved Fisher vector (IFV).
Further recent work as well has shown that using this normalization consistently improves
the quality of the representation [45, 48, 79].

4.2.3.5 Average-pooling

A non-local representation is created by pooling the local feature codes fi ∈ RK in spatial
(sub-)regions by applying a feature pooling function ρ that delivers a joint distribution of
codes in a given spatial region across all N locations.

Average pooling creates a histogram by summing all feature codes fi in a regionR:

ρavg(R) =
1

|R|
∑
i∈R

fi, (4.16)

where |R| denotes the number of visual words in regionR. This operator is equivalent to
a `1-norm of the encoded feature statistics. Note that pooling in the region of interest is
orderless and therefore provides invariance for local transformations, but also assumes a
uniform spatial distribution of the local codes.
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4.2.3.6 Max-pooling

Since average pooling is susceptible to noise [111], the max pooling operation is widely
used for image classification. In the max-pooling procedure, only the strongest instance of
each codeword occurring in all code vectors fi over a regionR is used for representation

ρmax(R) = max
i∈R

f
(k)
i , for k = 1, . . . , K, (4.17)

which conforms to the l∞-norm of the encoded features. Max-pooling focuses on only the
most salient codes in the local pooling region and therefore has been shown to be more
discriminative than average pooling [11, 34, 104, 111].

Generally, for each visual word bk, the pooling operation can be described by a single
equation

ρ(p) =
N∑
i=1

(
(f

(k)
i )p

) 1
p

, (4.18)

where p = 1 for average pooling and p =∞ for the max-pooling operation.

It is notable that both average and max pooling discard the spatial distributions of the
local codes. Advanced pooling techniques which consider geometric consistency during
the statistical summarization process (4.18) have gained considerable attention in recent
works. Feng et al. [34] have proposed a weighted `p-norm spatial pooling method to
account for class-specific spatial feature distributions during pooling. By assuming that
visual words of certain classes exhibit specific geometric properties they learn the spa-
tial distribution for individual words to achieve higher discriminative pooling results. The
training is performed to maximize the class separability by considering a local smoothness
constraint on the spatial correlation of adjacent features. Cao et al. [14] enforce geomet-
ric consistency by using superpixel segments to generate more semantically meaningful
spatial layouts (than traditional SPM) when pooling local codes into BoW histograms.
Jia et al. [46] adaptively learn receptive fields to get better spatial regions for pooling.
They adopt the idea of over-completeness by first using a large number of possible spatial
regions and subsequently train a classifier with structured sparsity to only use a sparse
subset of all the features. While these recent advances in pooling are more flexible, they
do not adapt dynamically to the time varying information that is present in a given dy-
namic scene and their utility will thereby be limited in application to this problem domain.
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4.2.4 Scene representation

The features developed in the upcoming Section 4.3 are used to construct an intermedi-
ate BoW representation. The encoding methods presented in this section are employed,
combined with the respective pooling methods used in the original publications. As in the
original publication, the pyramid match kernel is preferable for VQ-based encoding [58].
Therefore, for features encoded by vector quantization, BoW histograms are accumulated
which is equivalent to average pooling. For LLC encoded features, the max-pooling op-
eration [104] is needed for good performance when coupled with a linear SVM classifier.
Fisher vectors are also favourably compared by linear SVM, e.g., [45, 80].

The visual words are pooled using a spatiotemporal hierarchy. For pooling the visual
words within the same temporal instance, spatial pyramid matching (SPM) [58] is used to
employ coarse geometric information into the final feature vector. The weak spatial layout
of the scene is captured by pooling in grids of size (X×Y ×T ) ∈

{
(2l × 2l × 1)

}2

l=0
, with

three outer scales [51] corresponding to l = 0, 1, 2. Note that for l = 0 the representation
is equivalent to an orderless BoW.

Following the original publications, the pooled features in each region are normal-
ized properly. The vector quantized BoW histograms are normalized in each region using
the `1-norm. In contrast, the `2-norm is applied to FV, IFV, as well as to LLC encoded
features after they are pooled within the grid cells and concatenated into a global feature
vector. This is important for classification with linear SVMs for which `2-normalization
is optimal [101]. Note that the difference between FV and IFV is that prior to the `2-
normalization IFVs are individually normalized via signed square rooting in each spa-
tiotemporal subregion (4.15).

When comparing feature codes from different temporal instances of a sequence, cam-
era, as well as scene dynamics may cause the captured image content to appear at different
locations over time. Two approaches are investigated to temporally pool the visual words:
Section 4.5 combines temporal slices, based on the amount of intersection between the
visual words, and Section 4.6 proposes a novel method to pool the codewords based on
their dynamic energies.
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4.3 Local spacetime descriptor

In this section the representation for dynamic scene description is presented. In compar-
ison to Chapter 3, the descriptor is based on spatiotemporal oriented measurements that
jointly capture spacetime image appearance and dynamics. Local chromatic information
is encoded by including colour channels. All features are extracted by filtering the input
sequence at multiple scales to capture the multiscale characteristics of natural scenes.

4.3.1 Spacetime orientation features

To extract the representation of spacetime orientation the input volume is filtered with
oriented filters. Similar to the CSO descriptor in Section 3.2, the proposed approach uses
3D Gaussian third-derivative filters as illustrated in Figure 3.3.

Filtering is performed at different 3D orientations θi and scales σj . To uniformly
sample the 3D spacetime domain, the same filter orientations (3.5) as in Section 3.2 are
used. The responses are point-wise squared and integrated to yield oriented spacetime
energy measurements

E(x; θi, σj) = G3D(σj) ∗ |G(3)
3D(θi, σj) ∗ V(x)|2, (4.19)

where G3D(σj) is a three-dimensional Gaussian with integration scale σj , x = (x, y, t)>

are spacetime coordinates, V is the grayscale spacetime volume and ∗ denotes convolu-
tion.

Convolution with G3D serves to blur the filter responses, thereby ameliorating phase
sensitivity and suppressing noise. Furthermore, a smooth overlap between adjacent lo-
cations results, which avoids border effects without the need for additional normaliza-
tion and interpolation, as, e.g., required for gradient orientation features [63]. In con-
trast to previous work using similar oriented filter responses for dynamic scene recogni-
tion, which immediately aggregated filter responses over some support region (e.g., [27]),
here local responses are desired to drive subsequent encoding and correspondingly local
smoothing is appropriate.

In Figures 4.2 and 4.3, the spatiotemporal energies for the employed filter orienta-
tions are depicted for a sample sequence showing a windmill farm. The energies collect
dynamic information, see e.g. the dominant energies in Figure 4.3(b) capturing the move-
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ment of the rotating rotor blades, as well as spatial information, see e.g. the energies in
Figure 4.2(d), reaching high values for spatial orientation structure on the ground of the
scene.
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(a) Windmill sequence (b) E(x; θ1, σ1) (c) E(x; θ2, σ1)

(d) E(x; θ3, σ1) (e) E(x; θ4, σ1) (f) E(x; θ5, σ1)

Figure 4.2: Distribution of spatiotemporal oriented energies of a windmill
sequence form the YUPENN dataset. (a) shows a 16 frame slice
from the sequence. (b)-(f) shows the distribution of the first five
oriented energies, calculated using Gaussian derivative filtering
and weighted accumulation over the filter support region (4.19).
Warmer colours indicate larger filter responses.
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(a) E(x; θ6, σ1) (b) E(x; θ7, σ1) (c) E(x; θ8, σ1)

(d) E(x; θ9, σ1) (e) E(x; θ10, σ1) (f) Eε(x;σ1)

Figure 4.3: Five oriented spacetime energies of the temporal slice of length
16 frames in 4.2(a) are shown in Figure (f)-(e) and (f) illustrates
the no structure channel. Warmer colours indicate larger filter
responses.
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4.3.2 Local contrast normalization

Similar as in (3.10), the spacetime orientation measurements are normalized with respect
to the sum of all aggregated filter responses at a point to provide multiplicative photomet-
ric invariance,

Ê(x; θi, σj) =
E(x; θi, σj)∑|θ|

k=1 E(x; θk, σj) + ε
, (4.20)

where |θ| denotes to the number of orientations, i.e. 10, and the noise bias ε avoids nu-
merical instabilities at low overall energies. Again, to explicitly capture lack of oriented
structure (i.e. homogeneous regions) another feature channel,

Êε(x;σj) =
ε∑|θ|

k=1 E(x; θk, σj) + ε
, (4.21)

is added to the contrast-normalized filter responses of (4.20). Figure 4.3(f) shows Êε(x;σj)

for a windmill sequence, where large responses are seen in the unstructured sky region.

4.3.3 Chromatic features

Previous evaluations in [27, 90], and in Chapter 3, showed that integrating colour cues
is useful for dynamic scene categorization. Chromatic information is incorporated in the
present spacetime descriptor by aggregation of three locally weighted spacetime colour
measurements as

Ck(x;σj) = G3D(σj) ∗ Vk(x), (4.22)

where k is one of the three colour channels, G3D(σj) is a three-dimensional Gaussian fil-
ter with integration scale σj , x = (x, y, t)> are spacetime coordinates, V is the image se-
quence and ∗ denotes convolution. The CIE-LUV colour space [110], i.e. k ∈ {L,U, V },
is employed. It is of special note that the colour measurements are taken at the same scales
as the spatiotemporal orientation measurements (4.19). Overall, at each sampled point,
in the spatiotemporal image volume, V , yields a locally defined, primitive feature vector,
vi, that is formed by concatenating the normalized, multiscale orientation measurements,
(4.20), with the measures of unstructuredness, (4.21), and colour, (4.22).

Preliminary experiments, in which the spacetime filtering (4.19) was applied sepa-
rately to each of the three colour channels, led to lower recognition performance than
explicitly capturing the local chromatic distribution as in (4.22). This result is explained
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by the fact that separate spatiotemporal filtering on colour channels captures redundant
information that is already encoded in the grayscale orientation measurements (4.19).

4.3.4 Coarse-scale dynamic features for pooling

The presented feature pooling method in this work builds on the coarse scale motion
characteristics of the local features to be pooled. In order to provide robustness to camera
movement, the spacetime filtering and integration in equation (4.19) is performed for rel-
atively fine scales σj only. Coarse scale motion characteristics are extracted similar to the
marginalized spatiotemporal orientation measurements EMST , introduced in Chapter 3.
For convenience, the respective equations for extracting marginalized spacetime energies
are replicated in (4.23)-(4.24). Large scale spatiotemporal information is first extracted
by aggregating the 3D Gaussian third derivative responses over a 3D regionR.

ER(x; θi, σj) =
∑
x∈R

|G(3)
3D(θi, σj) ∗ V(x)|2, (4.23)

whereR is a rectangular spacetime region defined by {Rx,Ry,Rt} and centred at x. The
reason for using a rectangular aggregation region is to be consistent with the rectangular
pooling grids of a spatiotemporal pyramid.

Note that the phase dependency of the Gaussian third derivative filters is neutralized
due to the summation over a spatiotemporal support region. Thus, the measures of sig-
nal energy in (4.19) and (4.23) are a function of spatiotemporal orientation and contrast
only. For the proposed pooling method, only the dynamics of the features are relevant.
To remove spatial information from the initial spatiotemporal orientation measurements,
(4.23), they are summed across all orientations consistent with a single frequency do-
main plane [105]. Let the plane be defined by its unit normal, n̂, then measurements of
orientation consistent with this plane are given as

ED(x; n̂, σj) =
N∑
i=0

ER(x; θ̂i, σj), (4.24)

with θ̂i denoting the equally spaced orientations consistent with n̂.

For the purpose of capturing image motion in various directions, a set of 11 space-
time energies ED(x; n̂, σj) are computed by steering the frequency domain plane n̂ =
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[n̂x, n̂y, n̂t]
>:

• n̂s = [0, 0, 1]> ⇐⇒ static/no motion/orientation orthogonal to the image plane

• n̂r = [1, 0, 1]> ⇐⇒ rightward motion,

• n̂l = [−1, 0, 1]> ⇐⇒ leftward motion,

• n̂u = [0, 1, 1]> ⇐⇒ upward motion

• n̂d = [0,−1, 1]> ⇐⇒ downward motion,

• n̂ru = [ 1√
2
, 1√

2
, 1]> ⇐⇒ diagonal rightward and upward

• n̂lu = [− 1√
2
, 1√

2
, 1]> ⇐⇒ diagonal leftward and upward

• n̂ld = [− 1√
2
,− 1√

2
, 1]> ⇐⇒ diagonal leftward and downward

• n̂rd = [ 1√
2
,− 1√

2
, 1]> ⇐⇒ diagonal rightward and downward

4.3.5 Filtering details

The filters scales employed are σ = {1, 2} with local filter support regions of (x, y, t)> ∈{
(13, 13, 13)>, (25, 25, 25)>

}
pixels. For normalization, a bias of ε = 500 is used for

computing the `1-norm in (4.20). Notably, owing to the separability and steerabilty of the
underlying filtering operations, the features can be extracted with modest computational
expense.
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4.4 Feature extraction on stabilized temporal slices

Features computed in the spatiotemporal domain (e.g., optical flow, temporal gradients,
or spacetime filtering employed in the previous section) are susceptible to camera move-
ment. There exist several ways to remove disturbing camera movement from video. These
methods typically first estimate the global image motion, then apply motion compensa-
tion, followed by an image inpainting to complete the missing image parts [68]. In this
work only the first two steps are applied, since, here, the goal of stabilization is to facilitate
spacetime feature extraction.

It has been shown recently that stabilization prior to feature extraction can improve
recognition performance. For example, for the action recognition task, Jain et al. [44]
achieve a significant performance improvement by compensating the dominant (camera)
motion with an affine optical flow estimate. For pedestrian detection, Park et al. [77] show
that very simple motion features, based on temporal differences calculated on weakly
stabilized video frames, are able to achieve a five-fold reduction in false-positives. They
use coarse scale Lucas-Kanade optical flow to align neighbouring frames, i.e.. they choose
a large support window for the local flow estimation.

The estimation of the global image motion between the frames can be achieved either
directly from optical flow measurements [5, 18, 68, 116] or by feature-based methods
[13, 15, 16, 117]. The latter are generally faster than optical flow based alignment but
more susceptible to errors.

To find the dominant motion for sequences with multiple moving objects, the appli-
cation of robust methods, e.g., RANSAC to estimate a planar homography, can be very
tricky. For dynamic content, these methods are prone to errors in cases where large re-
gions of the image consist of moving foreground objects, and therefore are not applicable
for the domain of dynamic scene recognition where, e.g., videos showing waterfalls ex-
hibit large regions with dominant foreground motion.

For this reason, i.e. that finding the dominant background motion and separating it
from the motion of the independently moving foreground objects is an unsolved prob-
lem, the stabilization approach in this work searches a global transformation between the
frames. This allows the approach to be fairly robust to highly dynamic scenes with a large
degree of foreground motion. Different camera motion models may be used for stabi-
lization, e.g., 2D translational models, translational + rotational + scaling models, affine

68



4.4. Feature extraction on stabilized temporal slices

models, or 8-parameter homography models. In this particular work, global optical flow
measurements are used to estimate the motion parameters using a translational and an
affine motion model. Both models are evaluated explicitly in Section 4.7.

Similar to [69], global motion estimation [5] is used to estimate the inter-frame image
transformation in order to stabilize the temporal slices of the video. First, the global mo-
tion between adjacent frames is estimated to chain the transformation of all frame pairs,
starting from the centre frame of the slices, to get centre-frame relative motion estimations
for all frames in a slice. The inter-frame motion is estimated by the hierarchical model
proposed by Bergen et al. [5] and only applied for stabilization if a reliability measure is
fulfilled. A description of the inter-frame motion estimation is given in Appendix A.

Does stabilization improve overall classification performance?

To evaluate the effect of different stabilization methods, several experiments are per-
formed on both dynamic scene datasets: (1) YUPENN, that is captured by a static camera
and (2) Maryland, which contains severe camera movement in several sequences. The
minimum eigenvalue threshold (A.9), used to assure reliability of the optical flow esti-
mation, is set to T = 104. Vector quantized feature codes are used for classification. To
examine the influence of stabilization on overall recognition performance, each experi-
ment is repeated 10 times due to the randomization in the codebook generation. Table 4.1
summarizes the potential benefits on classification performance for applying slice-based
stabilization prior to feature extraction. The average classification rates for 10 experi-
ments and the respective standard deviations of the individual experiments are reported.
Both motion models discussed in this section are considered. As expected, stabilization
negatively affects the classification performance on the YUPENN dataset, since the sta-
bilization procedure may only introduce new motion effects by applying it to an already
stabilized sequence, whereas on the Maryland dataset a benefit of the slice-based stabi-
lization can be observed. Considering the different motion models in the stabilization
method, little difference between a translational and an affine model can be found. How-
ever, by visually inspecting the stabilized sequences, the translational model produced
more reasonable results, as it did not produce any scaling artefacts in the videos.

Detailed experimental results on stabilization can be found in the in Section 4.7.2.
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YUPENN Dynamic Scenes Dataset

Stabilization method no stabilization translational affine
Classification rate (%) 94.68 ± 00.50 93.71 ± 00.21 92.92 ± 01.04

Maryland “In-The-Wild” Dataset

Stabilization method no stabilization translational affine
Classification rate (%) 65.51 ± 01.64 67.98 ± 00.94 66.92 ± 01.37

Table 4.1: Overall classification accuracy for different stabilization methods.
Recognition rates drop slightly on the already stabilized YUPENN
dataset. Contrarily, the feature extraction on stabilized slices facil-
itates recognition on the Maryland dataset.
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4.5 Temporal slice combination
based on histogram intersection

Previous approaches to dynamic scene recognition tend to collapse all image measure-
ments over time [27, 90, 95]. Although pooling the features over time leads to a richer
feature representation (i.e. all the available information is pooled from a given video),
severe changes in visual appearance, e.g. due to camera movement or scene dynamics,
may cause distortion errors in the resulting feature vector. The proposed temporal slice
based aggregation avoids such distortions by pooling the features from very small dura-
tions. However, the amount of information captured by a single feature vector is thereby
significantly lower.

The pyramid match kernel proposed by Grauman and Darrell [39], in combination
with the traditional spatial pyramid [58], offers a convenient way to combine adjacent
temporal slices based on the similarity of their histograms in the feature space.

Consider the 20 temporal slices of an example video shown in Figure 4.4. The his-
togram intersection between the local feature codes of each slice is illustrated below. The
intersection kernel (4.4) varies between 1 for identical feature histograms and 0 for his-
tograms without any intersecting bin. The construction of a representative feature vector
for the whole clip by feature pooling across all temporal slices would integrate severe
distortions in the pooled feature vector due to the dissimilarity of the individual slices.

This section investigates the possible benefit of combining similar adjacent temporal
slices, i.e. the question “does temporal combination allow pooling to yield richer feature
representations for classification” is investigated.

To that end, the pyramid match kernel between feature vectors, pooled from adjacent
temporal slices, is examined. Adjacent BoW histograms H are merged, only if the his-
togram intersection k between all the features in the temporal neighbourhood N is above
a slice merge threshold γ:

H(fj) = H(fj) +H(fk) iff ∀j, k ∈ N : k(fj, fk) > γ. (4.25)

where + denotes bin-wise summation. The resulting combined BoW histograms are sub-
sequently `1 normalized prior to classification. The comparison in equation (4.25) can
be implemented efficiently, by searching all diagonal sub-matrices having only elements
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Figure 4.4: Histogram intersection kernel for the temporal slices of an
avalanche sequence shown above. Abscissa and ordinate labels
indicate slice numbers.

larger than γ in the precomputed classification kernel. For the corresponding experi-
ments, presented in Section 4.7.3, γ is varied between 0 (merge all slices) and 1 (merge
only identical feature histograms). An example is visualized in Figure 4.4, where the
BoW histograms of all slices from number 13 to 17 exhibit relatively large intersection
values and therefore could be merged as in (4.25).
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4.6 Feature pooling based on static and dynamic energies

As previously shown in Section 4.4, cancelling the global image motion produces better
spacetime image features when recognizing scenes captured with camera motion. How-
ever, for statically captured scenes, a performance loss is implied as the scene dynamics
influence the stabilization algorithm inevitably.

This section addresses the aforementioned problem from another angle, i.e. the feature
pooling step. Since, in SPM, features are pooled from spatial subregions, highly dynamic
features (i.e. visual words with coarse scale image motion) are likely to be pooled from
different spatial cells over time. Therefore, features that significantly change their spatial
location across time should be pooled adaptively in a correspondingly dynamic fashion.
For example, global image motion induced by a camera pan could cause the image fea-
tures to move with time and pooling that is tied to finely specified image location will fail
to capture this state of affairs. Similarly, when regions change their spatial relations with
time, pooling should adapt. In such situations, a lack of appropriately dynamic pooling
will degrade recognition performance, as features pooled at one location will have moved
to a different location at a subsequent time and thereby be at risk of improper matching.
Significantly, this challenge persists if the pooling positions are hierarchically arranged
[58] or even more adaptively defined [14, 34, 46], but without explicit attention to tem-
poral changes in pooling regions. In contrast, features that retain their image positions
over time (i.e., static patterns) can be pooled within finer, predefined grids, e.g., as with
standard spatial pyramid matching (SPM) [58]. Indeed, even highly dynamic features that
retain their overall spatial position across time (i.e., temporally stochastic patterns, such
as fluttering leaves on a bush and other dynamic textures) can be pooled with fine grids.
Thus, it is not simply the presence of image dynamics that should relax finely gridded
pooling, but rather the presence of larger scale coherent motion (e.g., as encountered with
global camera motion).

This section presents a novel spatial pooling method for collecting the feature codes
fi in a region. The proposed method integrates the local scene dynamics into the pooling
process. Dynamic features with coarse scale motion are intended to be pooled without
geometric context, whereas static features are pooled by using increasingly finer SPM
grids. The local dynamic information (4.24) is extracted closely related to the encoded
features (4.19) and therefore provides a very intuitive and efficient strategy to enhance
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the two existing pooling strategies in the literature: (i) Average-pooling (4.16), where the
encoded spacetime features are counted additively in each region using histograms; and
(ii) max-pooling (4.17), that, for each visual word, allocates the maximum response of
the spacetime feature encodings in a given region. As described above, by following the
original publications, a common hierarchical partitioning into spatial regions of size 1×1,
2× 2, and 4× 4 is employed to involve geometry in the pooling process.

4.6.1 Local Decomposition into dynamic spacetime energies

When locally pooling the encoded features from dynamic scenes, highly dynamic fea-
tures that significantly change their location are likely to be pooled from different spa-
tial regions in the spatial pyramid matching (SPM) scheme. Especially for highly dy-
namic scenes, or scenes captured with relatively large camera movement, this can sub-
stantially degrade recognition performance when using SPM. Here, to facilitate pooling,
dynamic coefficients are introduced, based on the feature’s local motion characteristics in
the Fourier domain.

For this purpose, the multiscale spacetime energy decomposition (4.24) is used, which
delivers spacetime energy factored into static energy (ED(x; n̂s, σj)), and energy across
several directions (ED(x; n̂∗, σj))1. The spacetime region size R describes the window
for integrating the filter measurements and therefore regulates the scale of the motion
energy. Note that this shares some analogy with the scale in optical flow based motion
estimation, e.g., the window size in Lucas-Kanade flow [64].

The goal is to estimate coarse-scale motion that is used as a prior when incorporating
geometric information in the pooling process. By setting the integration regionR accord-
ing to the smallest spatial region in the SPM partitioning, the estimated energy decompo-
sition becomes robust to fine motions, but sensitive to coarse-scale motions. Therefore,
the computed energy coefficients indicate objects moving at a scale-order of the finest
grid in the spatial pyramid.

Let V(x) denote the spacetime slice in the filtering process (4.23) with width Vw,
height Vh and duration Vt. Then, for a hierarchical 3-level spatial pyramid with the finest
grid size of 4×4, the integration region for the energy responses is set to {Rx,Ry,Rt} ={Vw

4
, Vh

4
,Vt
}

.

1with ∗ corresponding to the motion directions employed in 4.3.4, i.e., r, l, u, d, ru, lu, rd, ld
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The aggregated spacetime energies are not able to distinguish between coherent mo-
tion (e.g., as exemplified by large scale motion resulting from camera movement) and in-
coherent motion (e.g., as exemplified by stochastic dynamic textures) [1, 106]. Therefore,
opponent-motion channels are added by computing the absolute arithmetic difference be-
tween energies of opponent directions

ED|r−l|(x;σj) = |ED(x; n̂r, σj)− ED(x; n̂l, σj)| (4.26)

ED|u−d|(x;σj) = |ED(x; n̂u, σj)− ED(x; n̂d, σj)| (4.27)

ED|ru−ld|(x;σj) = |ED(x; n̂ru, σj)− ED(x; n̂ld, σj)| (4.28)

ED|lu−rd|(x;σj) = |ED(x; n̂lu, σj)− ED(x; n̂rd, σj)| (4.29)

to yield a set of dynamic energies representing coherent image motion in 4 equally spaced
directions (horizontal (r− l), vertical (u−d) and two diagonals (ru− ld and lu− rd)). In
contrast to the individual motion direction consistent energy samples from (4.24), the op-
ponent motion channels explicitly capture coherent motion across various directions. For
example, a spatial region with a stochastically moving spacetime pattern, e.g. the leaves of
a tree in the wind can exhibit large motions in several specific directions n̂; however, after
taking the absolute arithmetic difference from opponent directions, the coherent motions
(4.26)-(4.29) of such stochastic spacetime texture patterns are approximately zero. On
the other hand, regions that are dominated by a single direction of motion (i.e. coherent
motion regions) will yield a large response in the most closely matched channel.

The coherent motion energies are `1 normalized together with the static energy chan-
nel that indicates lack of coarse motion,

ÊDΛk(x;σj) =
EDΛk(x;σj)∑

i∈Λ E
D
Λi

(x;σj) + ε
, ∀k ∈ Λ, (4.30)

to yield a pointwise distribution of static, coherent, as well as unstructured energy via the
normalized ε indicating homogeneous regions,

ÊDε (x;σj) =
ε∑

i∈ΛE
D
Λi

(x;σj) + ε
, (4.31)

(4.32)

with Λ = {s, |r − l|, |u− d|, |ru− ld|, |lu− rd|}.
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Since, regions without motion or with only fine scale motion (indicated by ÊDs ), as
well as homogeneous regions (indicated by ÊDε ), should be pooled with geometric infor-
mation, static energy is arithmetically combined with unstructured energy as

ÊDs+ε(x;σj) = ÊDs (x;σj) + ÊDε (x;σj), (4.33)

to yield the final set of (coherent) motion directions

Λ = {s+ ε, |r − l|, |u− d|, |ru− ld|, |lu− rd|} . (4.34)

The visual features are extracted with multiple scales σj . Since the same (multiscale)
basis filters are steered for the encoded local features as well as for the dynamic pooling
energies, the final set of multiscale pooling energies is computed by combination across
scale

ẼDΛk(x) =
1

|σ|

|σ|∑
j=1

ÊDΛk(x;σj), ∀k ∈ Λ, (4.35)

where |σ| denotes the number of scales.

In Figure 4.5, the dynamic pooling energies for a temporal subset of a street sequence
are shown. Filtering is performed by Gaussian third derivative filters of scale σ = {1, 2}
with local filter support of (x, y, t)> ∈

{
(13, 13, 13)>, (25, 25, 25)>

}
. For the purpose of

proper illustration, the temporal support of the largest G(3)
3D filter is depicted in Figures

4.5(a)-4.5(c). Figure 4.5(d) depicts the central frame of the filtered sequence and 4.5(e)-
4.5(i) show the decomposition of the filtered sequence into a distribution of static and
directional dynamic energies. Observe that the static + unstructured channel consists of
large responses for stationary image structures, e.g., the buildings in the scene, as well
as for homogeneous regions such as the sky in the centre of the scene. Whereas the
foreground red car’s dynamic energy can be decomposed into several coherent motion
channels with a large part originating from the horizontal motion channel, i.e., ÊD|r−l|(x),
shown in Figure 4.5(f). Note that fine-scale motions, such as the moving cars in the
background, are not captured by the coherent motion channels (Fig. 4.5(f)-4.5(i)) and
therefore exhibit strong responses in the static channel 4.5(e), which is appropriate as
they form (part of) the background dynamic texture. Due to `1-normalization (4.30) the
energies across all channels sum to one.
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Figure 4.5: Distribution of spatiotemporal oriented pooling energies of a
street sequence form the YUPENN dataset. (a), (b), and (c) show
the first 8, center 8 and last 9 frames of the filter support region.
(e)-(i) show the decomposition of the sequence into a distribution
of spacetime energies indicating rigidity/homogeneity in (e), and
coarse coherent motion for several directions in (f)-(i). Warmer
colours indicate larger filter responses.
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4.6.2 Dynamic spacetime pyramid

Every temporal slice of the image sequence is represented by a single feature vector com-
puted from a set of locally pooled feature descriptors. The pooling process extracts im-
portant statistics based on the feature codes in the pooled region.

A spatiotemporal pyramid is proposed here that specifically captures spatial and tem-
poral information as described in the following four steps. First, to keep weak geom-
etry information of the pooled encodings, a traditional 3 level spatial pyramid of size{

(2l × 2l × 1l)
}2

l=0
is constructed for each temporal slice of the input video, resulting in

M = 21 regions {Rm}Mm=1. Second, for pooling at the coarsest level l = 0, i.e. in the
region without geometric grid, R1, classical average- or max-pooling is applied. Third,
in regions with geometric grids i.e. l > 0 and {Rm|m > 1}, the static pooling energies
ÊDs+ε are used as geometric coefficients, emphasizing the local contribution of each visual
word. Fourth, to explicitly pool features favourably from regions with coherent motion,
four more channels Λ = {|r − l|, |u− d|, |ru− ld|, |lu− rd|} are added. Due to the
coarse-scale motion of these features, the lowest pyramid scale l = 0 is used for those.
Therefore, the final spatiotemporal pyramid encodes a temporal slice inM+4 = 25 chan-
nels, with each channel capturing specific spatial and temporal properties of the pooled
codewords.

4.6.2.1 Dynamic average-pooling

For average pooling, the statistics f̃
(k)
i of the kth codeword in a given region of interest

Rm are then pooled as

f̃ (k)
m =

1

|R1|
∑
x∈R1

f (k)(x), for m = 1 (4.36)

f̃ (k)
m =

1

|Rm|
∑
x∈Rm

ÊD|s+ε|(x)f (k)(x), for 2 ≤ m ≤M (4.37)

f̃ (k)
m =

1

|R1|
∑
x∈R1

ÊDΛm−M (x)f (k)(x), for M + 1 ≤ m ≤M + 4, (4.38)

where |Rm| denotes the number of words in region Rm.

The stationary coefficients ÊD|s+ε| assign higher weights to all features pooled from
regions with a spatial grid (4.37). Note that these static weights ÊD|s+ε| are `1-normalized
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together with the dynamic energies that indicate coarse scale coherent motion. Therefore,
dynamic features with coarse scale motion characteristics are given low weights when
pooling in spatial grids of the SPM. To explicitly model the visual words with coarse
scale dynamics, equation (4.38) pools features with specific directions. For example,
visual words on horizontally moving objects are pooled with high corresponding weights
ÊD|r−l| to explicitly capture horizontally moving image structures in the dynamic spacetime
pyramid.

4.6.2.2 Dynamic max-pooling

For a specific visual word, max-pooling finds the most salient response in a region Rm.
The proposed dynamic max-pooling operation finds the location x

(k)
m of a response, which

is salient and exhibits some desired dynamics, by using the local distribution of the image
dynamics as a geometric prior. Again, the dynamic energy distribution ÊD is used as a
weighting for the pooling locations and four more channels are again added to explicitly
capture the coarse-scale motion without geometric context

x(k)
m =


arg max

x∈R1

f (k)(x) for m = 1

arg max
x∈Rm

ÊD|s+ε|(x)f (k)(x) for 2 ≤ m ≤M

arg max
x∈R1

ÊDΛi(x)f (k)(x) for M + 1 ≤ m ≤M + 4,

(4.39)

with Λ = {|r − l|, |u− d|, |ru− ld|, |lu− rd|}. The statistic signature for the kth visual
word is then given as

f̃ (k)
m = f (k)(x(k)

m ). (4.40)

A concatenation generates the final description of Rm by the code vector
f̃m = [f̃

(1)
m , f̃

(2)
m , · · · , f̃ (K)

m ]> ∈ RK . This pooling procedure is termed as dyn-max in the
remainder of this thesis.

Another closely related dynamic max-pooling alternative is evaluated in this thesis.
This method differs from the (dyn-max) method above in the way that the static energies
are used only for the finest grid of the spatial pyramid, i.e., 4 × 4 × 1, and only the
energies indicating coherent horizontal and vertical motion (no diagonals) are added as
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an orderless BoW:

x∗m =


arg max
x∈Rm

f (k)(x) for 1 ≤ m ≤ 5

arg max
x∈Rm

ÊD|s+ε|(x)f (k)(x) for 6 ≤ m ≤M

arg max
x∈R1

ÊDΛm−M (x)f (k)(x) for M + 1 ≤ m ≤M + 2

, (4.41)

with Λ = {|r − l|, |u− d|}. This dynamic max-pooling alternative is subsequently termed
as dyn-max-alt. For this approach, dynamic features can be pooled without (i.e. at pyramid
level l = 0), or with coarse geometric information (i.e. at pyramid level l = 1). However,
at the finest pyramid level (i.e., l = 2), static features shall be pooled favourably. The
main idea for this alternative is that dynamic features are more probable to generate an
error at the finest pyramid scale. Moreover, as dynamic features are likely to be pooled in
all coarse pyramidal regions (i.e., {Rm}5

m=1), only two directional dynamic channels are
added explicitly in equation (4.41).

Finally, a global feature vector f̃ , representing a temporal slice, is concatenated by
stacking the descriptors f̃m of all dynamic spacetime pyramid channels and an SVM clas-
sifier is consequently used to predict the class label of the temporal slice.

4.6.3 Summary of the implemented recognition procedure

1. Sliding window local feature extraction. The video is processed in a tempo-
ral sliding window by dense extraction of normalized oriented spacetime energies
(4.19) and colour distributions (4.22), with the |θ| = 10 filter orientations (3.5), one
unstructured channel (Êε), and three LUV colour channels. All measurements are
taken at |σ| = 2 relatively fine scales (see the filtering details in Section 3.2.3) to
describe only the local spacetime orientation structure of the video. The resulting
multiscale spacetime orientation features of dimensionD = (|θ|+1+3)×|σ| = 28

are extracted densely over a spatiotemporal grid by varying x in spatial steps of 8
pixels and temporal steps of 16 frames. Note that the largest employed scale uses
25-tap filters and therefore the descriptors are extracted with spatial and temporal
overlap.

2. Codebook generation. For VQ and LLC, the codebook entries are learned by
quantizing the extracted descriptors from the training sequences with K-means.
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To maintain low computational complexity, a random subset of features from the
training set, consisting of a maximum of 5000 descriptors from each training se-
quence, are used to learn a visual vocabulary of size K = 200 codewords. An
approximated nearest neighbour (ANN) search [100] based on KD-tree forests [72]
is used for clustering. In the case of Fisher vector coding, a GMM withKGMM = 50

mixtures is fitted to the subsampled training descriptors. Moreover, the impact of
varying the vocabulary size is evaluated in the remainder of this thesis.

3. Feature coding. The local spacetime descriptors are encoded via vector quanti-
zation (VQ), locality constrained linear coding (LLC), Fisher vectors (FV), or im-
proved Fisher vectors (IFV). The parameters in LLC are set to the default values
from the original publication [104]; i.e. the considered neighbouring visual words
are set to M = 5 and the projection parameter is set to λ = 10−4. Further, an ANN
algorithm [100] is applied for searching the M nearest neighbours.

4. Feature pooling. A l = 3 level SPM is used to maintain weak spatial information
of the features extracted in each temporal instance. The resulting 21 pooling regions
from spatial grids of size 2l × 2l create a 21×K = 21× 200 = 4200 dimensional
feature vector for VQ and LLC encoding and a 21 × 2 ×KGMM × D = 21 × 2 ×
50 × 28 = 58800 dimensional feature vector for Fisher encoding. The pooling is
performed by taking the average (VQ), maximum (LLC) of the encoded features, or
by taking the first and second order differences between the local descriptors and the
trained GMM distribution for FV and IFV. Dynamic pooling adds four additional
code vectors for the coherent motion channels to yield 25×K = 5000 dimensional
feature vectors.

Further pooling experiments are performed with the proposed dynamic energies
(4.24) in a dynamic average and dynamic max pooling fashion, for VQ and LLC
encoded features, respectively. The dynamic energies in (4.24) are computed effi-
ciently by steering the basis filter responses from step 1.

5. Learning and Classification. Each set of encoded features pooled from the same
temporal instance generates a feature vector. For training, all feature vectors ex-
tracted from the training set are used to train a one-vs-rest SVM classifier. The
histogram intersection kernel (4.4) is used for vector quantized features, while a
linear SVM is applied for Fisher and LLC coded features. `2 normalization is ap-
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plied to the feature vectors used in a linear SVM. The LIBSVM implementation
[17] is used to find the hyperplane that separates the data points with a maximum
margin in the feature space. The SVM’s regularization loss trade-off parameter C
is set after cross validation on the training data.

During classification, each feature vector of a test video is classified by the one-vs-
rest SVM to yield a temporal prediction. All temporal predictions are subsequently
combined to yield an overall classification of the video by the majority of the tem-
poral class predictions.
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4.7 Experimental evaluation

This section evaluates the proposed codebook-based approach for dynamic scene recog-
nition on the Maryland “In-The-Wild” [90] and YUPENN Dynamic Scenes [27] datasets.
A leave-one-video-out recognition experiment is again used for consistency with previous
evaluations in [27, 90]. The structure of the experiments is six-layered. At first (Section
4.7.1), the best encoding method, in the context of dynamic scene understanding, is sought
for the proposed spacetime orientation features in Section 4.3. This evaluation includes
novel feature coding methods [19] that either base on local codeword statistics (vector
quantization and locality constrained linear coding), or the difference between the code-
words and features to encode (Fisher vector coding). Second, Section 4.7.2 discusses the
benefit of factoring out the global image motion by camera stabilization of temporal video
slices. This is followed by experiments on the combination of similar temporal feature
statistics with histogram intersection in Section 4.7.3. An evaluation of the novel dy-
namic pooling framework is given in Section 4.7.4 and the effect of different vocabulary
sizes is examined in Section 4.7.5. Finally, in Section 4.7.6 the full proposed approach is
compared with the state-of-the-art in dynamic scene classification.

Intra-slice based feature aggregation

In this chapter, results for three different approaches to aggregate the features from a
temporal slice, and therefore to collapse temporal information, are reported. These are:
(i) mean-aggregation, that computes the average of all features along the temporal axis
of a slice, (ii) max-aggregation, that selects the maximum feature response along the
temporal axis of a slice, and (iii) mid-aggregation, that aggregates the features from the
temporal centre of the slice. Note that this intra-slice based aggregation differs from
the final pooling step of the coded features, since it operates on the extracted features
directly, prior to the conventional coding and pooling steps reviewed in Section 4.2.3.
As examples, the intra-slice based feature aggregation of three oriented energies, i.e. the
energies in Figure 4.2(f), 4.3(b) and 4.3(e), is shown Figure 4.6. The overall difference
between the aggregation methods is very small. The reason lies within the Gaussian
smoothing of the filter measurements in equation (4.19).
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Figure 4.6: Slice aggregation of spatiotemporal oriented energy distributions
from a 16 frames temporal slice (i.e. 0 ≤ t ≤ 15) of a Wind-
mill sequence (a). The respective energies shown in Figure
4.2(f),4.3(b) and 4.3(e) are pooled by taking the central frame
of the slice ( (b), (e), and (h) ), the average of the slice ( (c),(f),
and (i) ), or the maximum of the slice ( (d), (g), and (j) ).
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4.7.1 Comparison of feature coding methods

The effect of different encoding methods on the recognition performance is compared in
this section. The investigated coding approaches are vector quantization (VQ), locality
constrained linear coding (LLC), Fisher vectors (FV), and improved Fisher vectors (IFV),
as reviewed in Section 4.2.3.

Stabilization Maryland dataset YUPENN dataset
method VQ LLC FV IFV VQ LLC FV IFV

Unstabilized 65.38 69.23 63.85 66.92 94.52 95.48 91.43 96.19
Translational 70.00 73.08 66.92 67.69 93.33 94.05 93.57 95.71
Affine 69.23 74.62 67.69 68.46 92.38 93.10 89.29 95.48

Table 4.2: Average dynamic scene recognition accuracy with different fea-
ture coding methods. The classification performance averaged
over all classes is shown for encoded spacetime features, extracted
from unstabilized as well as stabilized sequences.

In Table 4.2, The overall recognition performance for the four different encoding
approaches is listed when using different camera stabilization methods prior to feature
extraction. On both datasets very competitive performance is achieved by the LLC en-
coding. Again, it can be seen that, for all methods, camera stabilization improves the
classification performance on the Maryland dataset and decreases the performance on the
YUPENN dataset. However, only the IFV encoding is able to maintain very close to the
same degree of performance when applying camera stabilization to the YUPENN dataset.
On the Maryland dataset, the higher order Fisher vector encodings are outperformed by
LLC. This is interesting, given the fact that for other image classification tasks Fisher
vectors are generally performing superior [19], or at least equally [48], to sparse coding
methods such as LLC.

85



Chapter 4. Bags of Spacetime Energies
for Dynamic Scene Recognition

4.7.2 Temporal slice-based stabilization using different camera mo-
tion models

The following results comparing the different stabilization approaches are reported as
best performance achieved for the listed parameters. Due to the randomization in the
K-means clustering and quantization in the codebook generation process, results may
vary for subsequent experiments with fixed parameters. For average results from several
experiments please consider the comparison in Table 4.1.

Image stabilization for vector quantized (VQ) features

For the reported results in Tables 4.3-4.6, vector quantization is used as coding scheme
and the histogram intersection kernel is applied for classification in an SVM. The Ta-
bles show the classification performance for different motion models during stabilization,
slice alignments in classification and slice aggregation in feature extraction. First, con-
sider the motion model that describes either a translational (2 parameters) or an affine (six
parameters) model in the optical flow estimation procedure (A.3). Comparing the trans-
lational to the affine motion model, it can be seen that the more complex affine model
improves performance when camera motion is present. Compare Table 4.3 to 4.4, where
e.g. for the Landslide class, that is captured with a large degree of camera movement,
performance grows significantly with the more complex affine model. However, a more
complex motion model leads to a higher deficit in recognition accuracy on statically cap-
tured sequences. Compare Table 4.5 to 4.6, where e.g., the Windmill Farm class is rec-
ognized with lower accuracies under an affine motion model. This is due to the rotational
movement of the rotor blades, which causes the stabilization algorithm to rotate the whole
sequence and therefore decrease the quality of the extracted features. Second, the slice

alignment can be either collapsed, which uses one feature vector for each video, or la-
tent, that creates a feature vector for each temporal slice. Here, it can be observed that
latent alignment yields overall better results on the Maryland dataset, whereas on the
YUPENN dataset collapsing all visual words over time yields slightly higher recognition
rates. This can be attributed to the larger amount of information captured by each feature
vector for collapsed slice alignment. The low result for collapsing temporal information
on Maryland is due to the large degree of temporal variation present in this dataset (e.g.,
the Landslide class, with high temporal variation is classified poorly with collapsed slice
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information). Despite the slight benefit of collapsing temporal slices on YUPENN, latent
temporal alignment is preferred, due to the advantage of online classification and better
performance on the Maryland dataset. Third, the slice aggregation can be either mean,
max, or mid, that takes the average, maximum or centre measure of the features in each
temporal slice for encoding. In Tables 4.3-4.6 it is observable that changing from mean
to max aggregation has little effect on the performance achieved, with mean aggrega-
tion leading to overall more stable results. The mid-aggregation method produced similar
results as the mean-aggregation approach and therefore is omitted here for clarity.

Translational motion model

Slice alignment collapsed collapsed latent latent
Slice aggregation mean max mean max

Avalanche 20 30 60 60
Boiling Water 90 90 70 70
Chaotic Traffic 90 90 90 80
Forest Fire 90 90 90 90
Fountain 70 60 60 30
Iceberg Collapse 80 80 70 70
Landslide 30 20 40 40
Smooth Traffic 80 80 70 70
Tornado 70 80 90 90
Volcanic Eruption 60 70 70 80
Waterfall 80 70 70 70
Waves 100 100 90 100
Whirlpool 10 40 40 50

Overall 66.92 69.23 70 69.23

Table 4.3: Average recognition rates for different slice alignment and aggre-
gation strategies on the Maryland dataset. A translational stabi-
lization is applied prior to feature extraction.
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Affine motion model

Slice alignment collapsed collapsed latent latent
Slice aggregation mean max mean max

Avalanche 20 20 40 30
Boiling Water 90 90 70 70
Chaotic Traffic 90 90 100 80
Forest Fire 80 90 90 90
Fountain 50 50 40 40
Iceberg Collapse 70 70 60 60
Landslide 60 40 60 40
Smooth Traffic 60 70 70 70
Tornado 80 80 100 100
Volcanic Eruption 50 50 50 50
Waterfall 70 90 80 70
Waves 100 90 100 90
Whirlpool 10 50 40 40

Overall 63.85 67.69 69.23 63.85

Table 4.4: Stabilizing the Maryland dataset: Average classification rates for
different slice alignment and aggregation strategies. An affine sta-
bilization is applied prior to feature extraction.
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Translational motion model

Slice alignment collapsed collapsed latent latent
Slice aggregation mean max mean max

Beach 93 97 97 100
Elevator 97 97 97 97
Forest Fire 93 93 87 87
Fountain 83 83 80 83
Highway 97 100 100 97
Lightning 93 97 93 97
Ocean 100 100 100 100
Railway 97 97 100 100
Rushing River 90 90 87 90
Sky-Clouds 93 90 93 90
Snowing 100 100 97 93
Street 100 100 100 100
Waterfall 83 80 93 80
Windmill Farm 100 97 83 83

Overall 94.29 94.29 93.33 92.62

Table 4.5: Stabilizing the YUPENN dataset: Average classification rates for
different temporal slice alignment and aggregation strategies. A
translational stabilization is applied prior to feature extraction.
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Affine motion model

Slice alignment collapsed collapsed latent latent
Slice aggregation mean max mean max

Beach 93 93 93 93
Elevator 97 97 97 97
Forest Fire 93 93 87 90
Fountain 80 77 83 87
Highway 100 97 100 93
Lightning 93 93 93 93
Ocean 100 100 100 97
Railway 93 93 97 93
Rushing River 97 93 93 93
Sky-Clouds 90 83 97 97
Snowing 100 97 93 93
Street 93 93 97 97
Waterfall 80 83 90 87
Windmill Farm 93 87 83 80

Overall 93.10 91.43 93.10 92.14

Table 4.6: Stabilizing the YUPENN dataset: Average classification rates for
different temporal slice alignment and aggregation strategies. An
affine stabilization is applied prior to feature extraction.
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Image stabilization for locality constrained linear coding (LLC)

Since varying the temporal feature aggregation made little difference in the previous ex-
periments, it is now fixed to mid-aggregation which takes the centre measure of the fea-
tures in each temporal slice for the subsequent encoding. In Tables 4.7 and 4.8, the recog-
nition rates for LLC encoded features, extracted from stabilized sequences are shown. A
direct comparison between unstabilized and stabilized performance is given for the in-
dividual classes. Overall, a similar trend as for VQ codes can be observed. The more
complex the motion model gets, the larger is the performance gain on Maryland (see
Table 4.7) and the lower gets performance on YUPENN (see Table 4.8).

Stabilization method

Unstabilized Translational Affine

Avalanche 60 60 70
Boiling Water 70 70 70
Chaotic Traffic 80 90 90
Forest Fire 90 90 90
Fountain 70 70 80
Iceberg Collapse 50 60 60
Landslide 60 50 50
Smooth Traffic 70 60 50
Tornado 90 90 90
Volcanic Eruption 70 80 90
Waterfall 60 80 90
Waves 70 100 100
Whirlpool 60 50 40

Overall 69.23 73.08 74.62

Table 4.7: Stabilizing the Maryland dataset: Recognition accuracy for LLC
encoded spacetime features extracted from stabilized frames.
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Stabilization method

Unstabilized Translational Affine

Beach 100.00 96.67 90.00
Elevator 96.67 96.67 96.67
Forest Fire 93.33 90.00 90.00
Fountain 83.33 83.33 86.67
Highway 100.00 96.67 90.00
Lightning Storm 96.67 96.67 93.33
Ocean 100.00 100.00 100.00
Railway 100.00 100.00 96.67
Rushing River 93.33 86.67 96.67
Sky-Clouds 96.67 100.00 93.33
Snow 93.33 96.67 96.67
Street 100.00 100.00 100.00
Waterfall 83.33 76.67 80.00
Windmill Farm 100.00 96.67 93.33

Overall 95.48 94.05 93.10

Table 4.8: Stabilizing the YUPENN dataset: Recognition accuracy for LLC
encoded spacetime features extracted from stabilized frames.
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Image stabilization for improved Fisher vectors (IFV)

The impact of stabilization on IFV encoded features is shown in Tables 4.9 and 4.10, for
the Maryland and YUPENN datasets, respectively. The same trend in performance as for
VQ and LLC coding can be observed; however, here it is remarkable that stabilization
only causes a slight drop in performance on YUPENN (from 96.19% to 95.48%). It is
also noteable that, among the other feature encodings, IFV is the only encoding which is
able to perform flawlessly on the Snow class (under a latent temporal alignment). Thus,
it seems that IFV is able to better encode fine visual information (e.g., snowflakes).

Stabilization method

Unstabilized Translational Affine

Avalanche 60 60 70
Boiling Water 60 60 60
Chaotic Traffic 70 90 70
Forest Fire 70 70 80
Fountain 70 60 80
Iceberg Collapse 60 70 70
Landslide 50 50 50
Smooth Traffic 70 60 70
Tornado 90 80 70
Volcanic Eruption 60 80 70
Waterfall 70 70 70
Waves 90 100 90
Whirlpool 50 30 40

Overall 66.92 67.69 68.46

Table 4.9: Stabilizing the Maryland dataset: Recognition accuracy for IFV
encoded spacetime features extracted from stabilized frames.

Note that detailed results are not reported for the basic FV encoding, as it performs
significantly worse than IFV (see Table 4.2).
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Stabilization method

Unstabilized Translational Affine

Beach 96.67 100.00 96.67
Elevator 96.67 96.67 96.67

Forest Fire 93.33 90.00 93.33
Fountain 90.00 93.33 86.67
Highway 100.00 96.67 96.67

Lightning Storm 96.67 96.67 96.67
Ocean 100.00 100.00 100.00

Railway 100.00 100.00 96.67
Rushing River 96.67 90.00 96.67

Sky-Clouds 96.67 96.67 96.67
Snow 100.00 100.00 100.00
Street 100.00 100.00 100.00

Waterfall 83.33 80.00 86.67
Windmill Farm 96.67 100.00 93.33

Overall 96.19 95.71 95.48

Table 4.10: Stabilizing the YUPENN dataset: Recognition accuracy for IFV
encoded spacetime features extracted from stabilized frames.
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4.7.3 Temporal slice combination based on histogram intersection

In Figure 4.7, the classification performance on the two considered datasets (i.e. Maryland
in 4.7(a) and YUPENN in 4.7(b)) is plotted for stabilized as well as unstabilized feature
extraction. Similar visual word histograms of adjacent temporal slices are merged accord-
ing to equation (4.25). The merging threshold γ is increased from 0 (merge all slices) to
1 (merge only identical feature histograms). Both plots indicate that combining adjacent
slices does not provide any significant performance gain on either one of the datasets. In
fact, there is no observable pattern as both plots show large fluctuations. Consequently,
no merging at all, i.e. γ = 1, provides the best choice, as it allows for fast online classifi-
cation with lowest latencies.
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Figure 4.7: Classification rate for merging visual words in temporal slices
with unstabilized as well as stabilized features. On Maryland,
stabilization increases performance notably on this dataset. On
YUPENN, since the dataset is captured by a stabilized camera,
the stabilization prior to feature extraction leads to a minor per-
formance decrease.

The conclusion of this section is that combining similar temporal slices does not gen-
erally facilitate classification performance. One reason is that there is not much discrim-
inative information that can be inferred from similar (e.g. adjacent) temporal slices. Al-
ternatively, if there are large differences in inter-slice based appearance, the results in
this section demonstrate that the classifier is able to learn the rich spatiotemporal pat-
terns of the dynamic scene sequences, even if the same sequence exhibits large variations
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in spacetime appearance. This conclusion can also be drawn from the results using a
random forest classifier in Chapter 3. Furthermore, the histogram intersection approach
limits the encoding to vector quantization and average pooling, since advanced coding
strategies such as sparse coding tend to achieve decreased recognition performance when
combined with intersection kernels [111].
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4.7.4 Feature pooling based on static and dynamic energies

In this section, the proposed energy based pooling methods are evaluated. In Section
4.7.4.1, the presented dynamic average pooling approach from Section 4.6.2.1 is applied
to VQ feature codes and Section 4.7.4.2 analyses the proposed dynamic max pooling
methods from 4.6.2.2 with LLC encoded features. Note that any combination of encod-
ing and pooling is possible; however, these choices have been made because max-pooling
is necessary for good performance of LLC [104] and average-pooling works best for VQ
codes [10]. Further, note that Fisher vectors implicitly perform a pooling step by calcu-
lating the first (4.12) and second order (4.13) differences between the trained parametric
model and a set of descriptors in a given region. Therefore, FVs and IFVs are not evalu-
ated with the proposed dynamic pooling operations.

4.7.4.1 Dynamic average-pooling for vector quantized codes

The extracted spacetime features are coded via vector quantization and pooled via dy-
namic averaging (see Section 4.6.2.1) of all codewords in a spatial region of a temporal
slice. Results for different temporal feature aggregation, as well as different stabilization
strategies are given in Tables 4.12. It is of special interest to compare the overall classifi-
cation performance of the proposed dynamic pooling with the average pooling used in the
accuracies reported in Table 4.1, which is replicated here in Table 4.11, for convenience.

YUPENN dataset

Stabilization method no stabilization translational affine
Classification rate (%) 94.68 ± 00.50 93.71 ± 00.21 92.92 ± 01.04

Maryland dataset

Stabilization method no stabilization translational affine
Classification rate (%) 65.51 ± 01.64 67.98 ± 00.94 66.92 ± 01.37

Table 4.11: Performance for average pooling of the VQ codewords from
mean-aggregated features in unstabilized/stabilized temporal
slices.

Regarding camera motion, one observes, that when using dynamic pooling the perfor-
mance on the YUPENN dataset does not decrease as significantly as for average pooling

97



Chapter 4. Bags of Spacetime Energies
for Dynamic Scene Recognition

when applying stabilization prior to the feature extraction process (comparing 4.12 to
4.11). On the Maryland dataset, in contrast to the results for classic average pooling in
Table 4.11, the performance does not generally increase when applying stabilization, but
already yields best performance when used on features extracted without camera stabi-
lization. Generally, the proposed dynamic pooling increases performance on both datasets
(with and without camera motion) and therefore is superior to stabilization prior to feature
extraction.

Maryland YUPENN
Stabilization Temporal aggregation
method mean max mid mean max mid

Unstabilized 69.23 66.15 68.46 94.28 95.95 95.00
Translational 66.92 66.92 66.15 94.52 95.00 93.57
Affine 69.24 68.46 69.24 93.57 93.57 93.09

Table 4.12: Classification rate for dynamic average-pooling of VQ codes in
unstabilized as well as stabilized temporal slices.
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Figure 4.8 shows the results for dynamic average-pooling, combined with the tempo-
ral slice combination based on histogram intersection, evaluated in the previous section
(4.7.3). It can again be observed that the combined pooling from adjacent slices does
not generally increase recognition performance on both datasets, even with the dynamic
pooling approach.
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Figure 4.8: Dynamic average-pooling for VQ codes. Classification rate for
merging visual words in temporal slices with unstabilized as well
as stabilized features. Two stabilization models and three differ-
ent temporal feature aggregation methods are compared.
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4.7.4.2 Dynamic max-pooling for LLC-based codes

Results for LLC encoding and the three variants of max-pooling, i.e., classic max-pooling
(4.17), dynamic max-pooling (4.39), and the dynamic max pooling alternative (4.40), are
shown in Table 4.13. Each experiment is repeated 5 times, due to the randomization in the
codebook generation; i.e., the subsampling of training data and the random intitalization
in K-means clustering. One observes that the proposed dynamic max-pooling (dyn-max)
outperforms the conventional max-pooling by around 6%. The alternative max-pooling
(dyn-max-alt), which uses static energy coefficients only for max-pooling in the finest
spatial grid as well as only added horizontal and vertical BoWs performs slightly worse.

Pooling max dyn-max dyn-max-alt

Avalanche 64.00 ± 5.48 66.00 ± 5.48 72.00 ± 8.37
Boiling Water 70.00 ± 0.00 70.00 ± 0.00 70.00 ± 0.00
Chaotic Traffic 76.00 ± 5.48 82.00 ± 4.47 78.00 ± 4.47
Forest Fire 86.00 ± 5.48 90.00 ± 0.00 86.00 ± 5.48
Fountain 70.00 ± 0.00 70.00 ± 0.00 68.00 ± 4.47
Iceberg Collapse 50.00 ± 0.00 58.00 ± 4.47 60.00 ± 0.00
Landslide 60.00 ± 0.00 60.00 ± 0.00 60.00 ± 0.00
Smooth Traffic 70.00 ± 0.00 70.00 ± 0.00 70.00 ± 0.00
Tornado 90.00 ± 0.00 88.00 ± 4.47 90.00 ± 0.00
Volcanic Eruption 66.00 ± 5.48 68.00 ± 8.37 68.00 ± 8.37
Waterfall 64.00 ± 5.48 96.00 ± 5.48 82.00 ± 4.47
Waves 78.00 ± 10.95 88.00 ± 4.47 88.00 ± 4.47
Whirlpool 60.00 ± 0.00 78.00 ± 4.47 74.00 ± 5.48

Overall 69.54 ± 0.42 75.69 ± 1.17 74.31 ± 0.88

Table 4.13: Maryland dataset: Classification accuracy for the individual
classes when using different pooling methods. Latent slice align-
ment, LLC encoding and no stabilization prior to feature extrac-
tion is used.

The significant performance gain due to dynamic max-pooling on the Maryland dataset
may be attributed to the severe camera movement contained in this dataset. Since camera
movement generally manifests itself at coarse temporal scales and the proposed dynamic
pooling method favourably pools from locations without coarse motion, it is able to focus
on informative features describing scene properties, rather than camera dynamics.
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The experiments for different max-pooling strategies applied for classification on the
YUPENN dataset are shown in Table 4.14. The proposed approach achieves exceptional
high recognition rates of over 95%. A minor performance improvement of around 0.5%
is obtained by the proposed dynamic max-pooling method. It is remarkable, that even
for scenes captured with a stationary camera, the proposed dynamic pooling increases
performance. One reason is that coherently moving objects are specifically matched by
the dynamic pooling channels in equation (4.40). For example, vertically moving visual
words from a waterfall sequence will be explicitly matched, since these are favourably
pooled within the ÊR|u−d| channel of the dynamic spacetime pyramid.

Pooling max dyn-max dyn-max-alt

Beach 100.00 ± 0.00 100.00 ± 0.00 97.78 ± 1.92
Elevator 96.67 ± 0.00 96.67 ± 0.00 96.67 ± 0.00
Forest Fire 94.00 ± 1.49 93.33 ± 0.00 96.67 ± 0.00
Fountain 83.33 ± 0.00 86.00 ± 1.49 84.44 ± 1.92
Highway 100.00 ± 0.00 100.00 ± 0.00 98.89 ± 1.92
Lightning 96.67 ± 0.00 96.67 ± 0.00 96.67 ± 0.00
Ocean 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Railway 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Rushing River 93.33 ± 0.00 96.67 ± 0.00 94.44 ± 1.92
Sky-Clouds 96.67 ± 0.00 96.67 ± 0.00 96.67 ± 0.00
Snowing 93.33 ± 0.00 96.67 ± 0.00 93.33 ± 0.00
Street 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Waterfall 84.00 ± 1.49 82.67 ± 1.49 81.11 ± 1.92
Windmill Farm 100.00 ± 0.00 100.00 ± 0.00 98.89 ± 1.92

Overall 95.57 ± 0.21 96.10 ± 0.21 95.40 ± 0.27

Table 4.14: YUPENN dataset: Classification accuracy for the individual
classes when using different pooling methods. Latent slice align-
ment, LLC encoding and no stabilization prior to feature extrac-
tion is used.
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Collapsed temporal pooling of LLC codes

Next, the slice alignment for LLC-based encoded features is investigated. Recall that
latent temporal alignment produces a feature vector for each temporal slice which is indi-
vidually classified. Collapsed temporal alignment, however, aggregates the feature codes
from all temporal slices in a sequence into the same feature vector which is used for
classification. The previous evaluations in this section report results for latent temporal
alignment.

Classification rates for collapsed alignment are reported in Tables 4.15 and 4.16 for
Maryland and YUPENN, respectively. Note that max-pooling is still performed for each
temporal slice separately, only the features are aggregated into a single vector before SVM
classification. Both Tables indicate that, regardless of the pooling operation, the approach
performs much worse than with latent slice alignment (see Tables 4.13 and 4.14).

Pooling max dyn-max dyn-max-alt

Avalanche 14.00 ± 5.48 20.00 ± 7.07 22.00 ± 8.37
Boiling Water 80.00 ± 0.00 72.00 ± 8.37 68.00 ± 8.37
Chaotic Traffic 70.00 ± 0.00 62.00 ± 14.83 82.00 ± 10.95
Forest Fire 84.00 ± 5.48 96.00 ± 5.48 90.00 ± 7.07
Fountain 32.00 ± 10.95 24.00 ± 11.40 28.00 ± 8.37
Iceberg Collapse 30.00 ± 0.00 24.00 ± 5.48 30.00 ± 12.25
Landslide 22.00 ± 10.95 12.00 ± 13.04 14.00 ± 8.94
Smooth Traffic 34.00 ± 5.48 40.00 ± 14.14 42.00 ± 13.04
Tornado 80.00 ± 0.00 60.00 ± 14.14 74.00 ± 5.48
Volcanic Eruption 18.00 ± 10.95 26.00 ± 5.48 20.00 ± 0.00
Waterfall 56.00 ± 5.48 30.00 ± 18.71 42.00 ± 8.37
Waves 74.00 ± 5.48 72.00 ± 8.37 76.00 ± 5.48
Whirlpool 32.00 ± 10.95 26.00 ± 18.17 22.00 ± 4.47

Overall 48.15 ± 0.42 43.38 ± 2.64 46.92 ± 1.80

Table 4.15: Maryland dataset: Classification accuracy for the individual
classes when using different pooling methods. Collapsed slice
alignment, LLC encoding and no stabilization prior to feature
extraction is used. The performance drops severely due to the
collapsing of the max-pooled features over time.

An especially large degree of performance loss can be observed on the Maryland
dataset (compare Table 4.13 with Table 4.15), which might be due to the large temporal
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Pooling max dyn-max dyn-max-alt

Beach 92.67 ± 1.49 91.33 ± 1.83 90.00 ± 0.00
Elevator 96.67 ± 0.00 96.67 ± 0.00 96.67 ± 0.00
Forest Fire 90.00 ± 0.00 87.33 ± 1.49 88.89 ± 3.85
Fountain 72.00 ± 2.98 70.00 ± 0.00 71.11 ± 1.92
Highway 96.67 ± 0.00 94.00 ± 1.49 94.44 ± 1.92
Lightning 88.00 ± 2.98 91.33 ± 4.47 87.78 ± 3.85
Ocean 89.33 ± 1.49 90.00 ± 0.00 91.11 ± 1.92
Railway 100.00 ± 0.00 95.33 ± 2.98 95.56 ± 1.92
Rushing River 96.67 ± 0.00 96.67 ± 0.00 96.67 ± 0.00
Sky-Clouds 86.67 ± 0.00 86.67 ± 0.00 87.78 ± 1.92
Snowing 96.67 ± 0.00 96.00 ± 1.49 96.67 ± 0.00
Street 100.00 ± 0.00 98.67 ± 2.98 100.00 ± 0.00
Waterfall 77.33 ± 1.49 80.00 ± 0.00 81.11 ± 1.92
Windmill Farm 96.67 ± 0.00 96.67 ± 0.00 98.89 ± 1.92

Overall 91.38 ± 0.11 90.76 ± 57 91.19 ± 0.41

Table 4.16: YUPENN dataset: Classification accuracy for the individual
classes when using different pooling strategies for LLC codes.
Collapsed slice alignment is applied.

variations in the dataset. Interestingly, for vector quantized codes the slice alignment
does not have a large influence on recognition performance, as reported previously in
Section 4.7.2. The reason is assumed to be that the spatial average pooling used in the VQ
approach is analogue to the temporal averaging in the collapsed temporal alignment. On
the other hand, when collapsing max-pooled LLC codes (by averaging) this leads to the
large performance deficit reported in Tables 4.15 and 4.16. A more promising strategy for
LLC-based features might be a max-selection over all temporal slices. However, this is not
evaluated further since the latent temporal alignment allows for fast online classification.
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4.7.4.3 Dynamic energy pooling or camera stabilization?

This section compares the efficiency of the proposed dynamic energy pooling with the
feature extraction on stabilized temporal slices. The previous evaluations in this the-
sis have shown, that LLC encoded features perform best for recognizing dynamic scenes.
Therefore, the performance of LLC-based feature codes that are pooled either via conven-
tional max-pooling, or the proposed dynamic max-pooling, under application of different
camera stabilization methods, is evaluated here.

Stabilization Maryland dataset YUPENN dataset
method max pooling dyn-max pooling max pooling dyn-max pooling

Unstabilized 69.23 77.69 95.48 96.19
Translational 73.08 74.62 94.05 95.24
Affine 74.62 77.69 93.10 94.05

Table 4.17: Dynamic scene recognition accuracy with LLC encoded features
for different pooling and camera stabilization methods. The pro-
posed dynamic max-pooling allows best performance on data
with a high degree of coarse scale motion (Maryland), as well as
on dynamic scene sequences captured from static cameras (YU-
PENN).

In Table 4.17 the averaged overall classification rate for variations in the camera stabi-
lization method prior to feature extraction is listed. On both datasets, the novel dynamic
max-pooling leads to best performance. Conventional max-pooling is outperformed by a
margin of 8.46% and 0.71% for Maryland and YUPENN, respectively. This is a very en-
couraging result, since, on Maryland, the proposed dynamic pooling clearly outperforms
camera stabilization methods and, for the YUPENN dataset, this shows that there is still
a performance increase from an already almost saturated accuracy of 95.48%. Based
on this outcome, the proposed BoSE system makes use of LLC encoding and dynamic
max-pooling, without applying camera stabilization prior to spacetime feature extraction.
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4.7.5 Varying the size of the codebook

The final analysis of parameter variations in this thesis investigates the impact the vocab-
ulary size in the feature encoding. The number of visual words, K, that represents the
number of centroids in the BOW representation, and KGMM, which denotes the number
mixtures used in the GMM for Fisher vectors, is varied.

Table 4.18 presents the average performance for various sizes of the codebook. The
resulting dimension of the feature vector for a single slice is listed as well. When in-
creasing the codebook size, performance decreases from a certain point. One can observe
that on the Maryland dataset a more complex codebook leads to a performance decrease,
while on the YUPENN dataset an increased vocabulary size yields better performance up
to a feature vector dimension of around 50000. For lowering the dimension of the final
feature vector, principal component analysis could be applied to the encoded features.
Generally, a low size of the vocabulary decreases discriminativity between the classes.
On the contrary, a large vocabulary makes it difficult to find similar codewords within
instances of the same class, as features, describing similar visual input, will be mapped to
different codewords. This explains the performance decrease for larger codebooks on the
Maryland dataset, because it exhibits higher intra-class variations than YUPENN.

LLC encoding

K 100 200 400 1000 2000

Feature dimension 2500 5000 10000 25000 50000

Maryland 69.23 77.69 75.38 75.38 73.85
YUPENN 94.52 96.19 95.95 97.62 97.38

IFV encoding

KGMM 10 20 50 100 150

Feature dimension 11760 23520 58800 117600 176400

Maryland 64.62 67.69 66.92 66.92 66.15
YUPENN 93.57 95.00 96.19 95.95 95.24

Table 4.18: Recognition accuracy for different codebook sizes when using
LLC encoded features pooled via the proposed dynamic max-
pooling (i.e. BoSE), as well as IFV encoded features.
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4.7.6 Comparison with the state-of-the-art

The proposed approach is compared to the CSO+STRF approach from the previous chap-
ter and additionally to several alternative methods that have shown best performance pre-
viously [27, 90]. The methods are GIST [73] + (histograms of flow) HOF [67], GIST +
chaotic dynamic features (Chaos) [90], spatiotemporal oriented energies (SOE) [27] and
slow feature analysis (SFA) [95].

Tables 4.19 (Maryland dataset) and 4.20 (YUPENN dataset) compare the performance
of the proposed Bags of Spacetime Energies (BoSE) system with the state-of-the-art. The
BoSE consists of densely extracted local oriented spacetime energies (4.23) and colour
distributions (4.22) that are encoded by LLC and pooled via the proposed dyn-max-
pooling. Detailed description and parameter choices are given in Section 4.6.3. Note that
the performance of SFA differs from that reported in their original paper [95]. According
to the authors, this discrepancy is caused by a bug in the original implementation and the
results presented here are the correct ones. An error report and the correct recognition
rates can be found on the SFA website 2.

For both datasets, BoSE performs considerably better than the CSO+STRF approach
from Chapter 3, which has defined a new state-of-the-art in classification and execution
rates. On the Maryland dataset, the novel BoSE representation achieves a competitive
average accuracy of 78% when coupled with a simple linear SVM classifier. When com-
paring to other approaches, one striking result is the 100% recognition accuracy for the
Waterfall class. The proposed BoSE approach’s 96% accuracy on the YUPENN suggests
that performance is saturated on this dataset. One remarkable result on this dataset is the
87% recognition rate for the Fountain class, which exhibits huge intra-class variations in
the background and only a small amount of common foreground (i.e. the fountain itself).
Overall, BoSE is able to best represent the classes, by modelling the visual words with
locally encoded spacetime energies that are pooled based on their dynamics.

2http://webia.lip6.fr/˜theriaultc/sfa.html
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Maryland “In-The-Wild”

Features
HOF+ Chaos+

SOE SFA
CSO BoSE

GIST GIST (proposed)
Classifier NN SVM NN RF SVM STRF STRF SVM SVM
Temporal τ all all all all all 1 all 1 all
Avalanche 20 60 10 40 60 60 60 50 60
Boiling Water 50 60 50 50 70 80 80 60 70
Chaotic Traffic 30 70 80 60 80 80 90 70 90
Forest Fire 50 60 40 10 10 80 80 70 90
Fountain 20 60 10 50 50 90 80 60 70
Iceberg Collapse 20 50 10 40 60 60 60 40 60
Landslide 20 30 50 20 60 20 30 50 60
Smooth Traffic 30 50 70 30 50 60 50 60 70
Tornado 40 80 60 70 70 90 80 90 90
Volcanic Eruption 20 70 30 10 80 50 70 60 80
Waterfall 20 40 20 60 50 50 50 100 100
Waves 80 80 80 50 60 60 80 70 90
Whirlpool 30 50 40 70 80 80 70 70 80
Overall 33 58 42 43 60 66 68 65 78

Table 4.19: Classification accuracy for different video descriptor and classi-
fier combinations on the Maryland dataset.

YUPENN Dynamic Scenes dataset

Features
HOF+ Chaos+

SOE SFA
CSO BoSE

GIST GIST (proposed)
Classifier NN NN NN RF SVM STRF STRF SVM SVM
Temporal τ all all all all all 1 all 1 all
Beach 87 30 90 93 93 100 100 97 100
Elevator 87 47 90 100 97 97 100 97 97
Forest Fire 63 17 87 67 70 76 83 90 93
Fountain 43 3 50 43 57 40 47 80 87
Highway 47 23 73 70 93 67 73 93 100
Lightning Storm 63 37 90 77 87 93 93 97 97
Ocean 97 43 97 100 100 90 90 100 100
Railway 83 7 90 80 93 90 93 93 100
Rushing River 77 10 90 93 87 97 97 93 97
Sky-Clouds 87 47 93 83 93 100 100 93 97
Snowing 47 10 50 87 70 57 57 97 97
Street 77 17 87 90 97 97 97 100 100
Waterfall 47 10 47 63 73 80 76 83 83
Windmill Farm 53 17 73 83 87 93 93 100 100
Overall 68 23 79 81 85 84 86 94 96

Table 4.20: Recognition rates for the best performing descriptor and classifier
combinations on the YUPENN dataset.
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Since BoSE builds on very similar features as CSO+STRF, the improvement of 10%
accuracy on both datasets indicates the importance of a local mid-level BoW representa-
tion and the dynamic pooling procedure. However, on Maryland, CSO+STRF performs
better when just a small amount of temporal information is used (i.e., when just τ = 1

slice is used for prediction), and it allows for overall faster classification, since it does
not require clustering (i.e., K-Means) and coding (i.e., LLC) steps. Nevertheless, both
proposed approaches are able to incrementally classify the videos in an online manner.

Confusion tables for the proposed BoSE approach are shown in Table 4.21. It can
be observed that most of the confusions are between visually similar scene classes. For
example, on Maryland, Avalanche is confused with Landslide, or Iceberg Collapse with
Volcanic Eruption. On YUPENN, confusions only occur between highly similar classes,
e.g., classes showing dynamic water textures, i.e., Fountain, Rushing River and Waterfall.
Some instances of these classes are illustrated in Figure 1.1(a).
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Maryland “In-The-Wild”
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Avalanche 6 1 1 1 1
Boiling Water 7 1 1 1

Chaotic Traffic 9 1
Forest Fire 9 1

Fountain 7 1 1 1
Iceberg Collapse 1 6 2 1

Landslide 1 1 6 1 1
Smooth Traffic 1 2 7

Tornado 9 1
Volcanic Eruption 1 1 8

Waterfall 10
Waves 1 9 1

Whirlpool 2 8
YUPENN Dynamic Scenes dataset
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Beach 30
Elevator 29 1

Forest Fire 28 1 1
Fountain 26 3 1
Highway 30

Lightning St. 1 29 1
Ocean 30

Railway 30
Rushing River 1 29

Sky-Clouds 1 29
Snowing 1 29

Street 30
Waterfall 1 1 3 25

Windmill Farm 30

Table 4.21: Confusion matrices for BoSE on both datasets. The columns
show the predicted labels of the classifier, while the rows list the
actual ground truth label.

109



Chapter 4. Bags of Spacetime Energies
for Dynamic Scene Recognition

Confidence interval for codebook based approaches

To investigate the degree of performance variation originating from the randomization
in the feature coding step, Figures 4.9 (Maryland dataset) and 4.10 (YUPENN dataset)
compare the proposed dynamic scene classification framework to the SFA algorithm of
Theriault et al. [95], in several subsequent experiments with a fixed set of parameters. To
produce those results the implementation kindly provided from the authors of [95] was
used. The SFA parameters were set to the optimal ones for the Maryland dataset listed
in [95]. The bar plots show the average classification performance for each class as well
as the standard deviation, indicated by the confidence interval of the corresponding error
bar. Compared to SFA, which gives an overall accuracy of 54.92%± 1.60% on Maryland
and 76.90%± 1.81% on YUPENN, the proposed method obtains competitive recognition
accuracies of 75.69% ± 1.17% and 96.10% ± 0.21%, respectively. This corresponds to a
substantial absolute performance gain of 20.77% and 19.20% over the recently published
SFA approach of Theriault et al. [95].

0 10 20 30 40 50 60 70 80 90 100

Avalanche
Boiling Water

Chaotic Traffic
Forest Fire

Fountain
Iceberg Collapse

Landslide
Smooth Traffic

Tornado
Volcanic Eruption

Waterfall
Waves

Whirlpool
Overall

Mean accuracy (%) 

BoSE Theriault et al.

Figure 4.9: BoSE vs SFA [95] on the Maryland dataset. The class specific
recognition accuracy as well as the average accuracy (Overall) is
shown. The bar widths correspond to the average and the error
bars indicate the respective standard deviations for each class.
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0 10 20 30 40 50 60 70 80 90 100

Beach
Elevator

Forest Fire
Fountain
Highway

Lightning Storm
Ocean

Railway
Rushing River

Sky-Clouds
Snow
Street

Waterfall
Windmill Farm

Overall
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BoSE Theriault et al.

Figure 4.10: Comparison of the proposed BoSE method to the SFA approach
[95] on the YUPENN dataset. Classification performance for
each class and averaged over classes (Overall) is shown. The
bar widths correspond to the mean of the recognition rates for 5
subsequent experiments and the error bars show the respective
standard deviations.
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4.8 Conclusion

This chapter has proposed BoSE, a generic BoW framework for dynamic scene recog-
nition. Local spacetime orientation structure is extracted via application of multiscale,
multiorientation filters and weighted aggregation of the resulting energy responses cou-
pled with multiscale colour cues. Based on an evaluation of several popular feature cod-
ing methods, the local spacetime energies are projected into a mid-level representation
by using a learned visual vocabulary. It has been shown, that the application of image
stabilization leads to better performance on data confounded with camera motion, how-
ever, it degrades performance on scenes captured from a static camera. Finally, a novel
spatiotemporal pooling strategy has been introduced, that aggregates the encoded space-
time features in a spatiotemporal pyramid representation, based on their dynamics in the
frequency domain. The performance of the proposed framework has been verified in
rigorous evaluations, where it has been shown that a carefully designed BoW model out-
performs the state of the art significantly. The outstanding performance of the presented
spacetime recognition framework for dynamic scene classification suggests that it could
also be used in a variety of other areas, such as event retrieval, video indexing, or object
and activity localization.
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5
Summary and Outlook

In this chapter, a summary of the findings presented elsewhere in this thesis is given,
followed by thoughts for future work. This thesis has addressed the problem of computa-
tional dynamic scene understanding. Recognition of dynamic scenes is relevant to several
machine vision tasks such as the retrieval and ranking of video in search engines. Fur-
thermore, scene understanding can be very useful when used as contextual information,
for example, when reasoning about actions or activities in videos

This thesis provided several significant contributions, including two generic frame-
works for visual recognition that were tuned specifically for dynamic scene classification.
The proposed representations rely on oriented spacetime energy features, computed by
applying oriented filters to the video. During spatiotemporal filtering, the filter scale has
been matched to intrinsic scene dynamics, which allows for recognition that is robust to
camera motion. A novel concept of temporal slicing has been introduced that temporally
samples local descriptors from the video with a constant temporal spacing. Slicing allows
for efficient, incremental online classification of video as well as treatment of temporal
alignment as latent during classification.
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The recognition approach presented in Chapter 3 is focused on fast, online processing
of video. Temporal slices of the input sequences have been described by spatiotemporal
aggregation of complementary histograms of efficiently extracted spatial and temporal
filter responses, as well colour distributions. These complementary spacetime orientation
(CSO) features were directly pooled in a vector representation. Next, a spacetime random
forest (STRF) classifier was introduced that allows the complementary components of
the CSO descriptor to be exploited during classification. In empirical evaluation, this
approach has shown highly competitive recognition performance in nearly real time, with
the ability of accurate recognition when only a very short amount of temporal information
is processed.

The second dynamic scene classification framework presented in this thesis is based
on bags of spacetime energies (BoSE). This approach models the local spatiotemporal ori-
entation structure, as well as the local chromatic distribution by a sparse, over-complete
spacetime dictionary. An extensive evaluation has shown the benefit of video stabilization
and feature coding for dynamic scene classification. The outcome of these investigations
is that a general spacetime BoW model is able to significantly outperform all previous
approaches to dynamic scene recognition. Finally, the introduction of a novel spatiotem-
poral pooling method, which directly builds on the dynamics of the aggregated features,
has further improved recognition accuracy, especially when large temporal diversity is
present.

For ongoing work, it is planned to automatically learn the first-level feature descriptors
from video for producing even more discriminative and robust representations. Following
the current progress in the deep learning literature, highly discriminative filters should
be learned to represent the input by an over-complete dictionary. Similar as the hand-
crafted Gaussian derivative filters employed in this work, these learned filters should also
be separable to allow for computational convenience. Furthermore, an important follow-
on to the currently learned intermediate-level representations (e.g., those documented in
Chapter 4), as well as any learned primitive features, would be the development of an
analysis that explains exactly what has been learned. In particular, from a scientific point
of view it is essential to understand what properties of the world and/or image signal
are being abstracted by these learned representations that enable the classifier to improve
recognition in comparison to not making use of these representations.
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A
Image stabilization

with global motion estimation

Assuming constant brightness over adjacent frames, with I t denoting the frame at time t,
the transformation between frames I t and I t−1 is expressed by

I t(x + ut,t−1) = I t−1(x), (A.1)

where I t(x) is the image intensity at position x and time t, x = (x, y)> are the spatial
coordinates and ut,t−1 is the computed motion field between the adjacent frames. The
least squares solution to this problem is to find the motion field which minimizes the sum
of squared differences (SSD)

εSSD(ut,t−1) =
∑
x

[I t(x + ut,t−1)− I t−1(x)]2. (A.2)
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For small transformations, the brightness constancy assumption may be linearised by ap-
plying a Taylor series expansion and omitting higher order terms:

εSSD(ut,t−1) ≈
∑
x

[I t(x) +∇I t(x)> · (ut,t−1)> − I t−1(x)]2

=
∑
x

[I tt (x) +∇I t(x)> · (ut,t−1)>]2 (A.3)

with∇I = (Ix, Iy) being the partial derivatives of the intensity function I with respect to
the spatial coordinates (x, y)>, and It being the partial derivative of I with respect to the
temporal coordinate t.

A.1 Translational motion model

The least squares problem (A.3) can be rewritten to a set of linear equations by setting the
SSD to zero. For a translational motion model the estimate of the motion can be found by
solving the following set of linear equations:

Au = b (A.4)

with

A =

( ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

)
,u =

(
u

v

)
and b = −

(∑
IxIt∑
IyIt

)
. (A.5)

A.2 Affine motion model

If the camera motion is approximated by an affine transformation

u(x, y) = ax + bxx+ cxy

v(x, y) = ay + byx+ cyy,
(A.6)

the motion is modelled by a local affine transformation in the image plane, consisting of
rotation, dilation, shear and translation.

For an affine motion model the motion estimate can be found by solving the following
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set of linear equations [6]:
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(A.7)

Image motion is estimated in a hierarchical alignment procedure as described in [5].
The motion is estimated within an image pyramid, starting at the coarsest resolution in
order to recover large motions and ending at the finest resolution for small displacements,
by applying the velocity estimates at each level.

For the translational motion model, the frame to warp is transformed by the estimated
constants (u, v)>t,t−1 at all coordinates (x, y)>. In case of the affine motion model, the
coordinates are transformed according to the estimated affine parameters ax . . . cy. After
applying the transformations to all frames of a slice, missing image regions due to the
warping are trimmed to generate the final stabilized sequence. For the case of large es-
timated camera motion, the video is only trimmed to a minimum width or height of 100
pixels.

Before applying a transformation to the slices, a reliability measure for the flow esti-
mate is computed. The reason is that video frames without sufficient gradient structure,
for example, black frames in lightning sequences, would provide unreliable motion esti-
mates. The reliability measure is calculated on the second moment matrix by considering
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the minimum eigenvalue of the structure tensor

A =

( ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

)
, (A.8)

where eigenvalues scale in proportion to the gradient energy. Note that, by definition, A

has non-negative eigenvalues, i.e. it is symmetric positive semi-definite. By inspecting the
eigenvalues of matrix A, it is possible to find image regions with a lack of texture. Large
eigenvalues of A indicate highly textured image frames. In the present work the minimum
eigenvalue criterion of Shi and Tomasi [88] is used to discard structureless images. This
distinction has been previously used for finding good features to track [88]. A motion
estimate is incorporated in the proposed stabilization only if the minimum eigenvalues of
adjacent frames are both above a threshold:

min
(
λtx, λ

t−1
x

)
> T, (A.9)

where λtx and λt−1
x are the smallest eigenvalues of frame I t and I t−1, respectively.
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