
Virtual 3D World for Physics
Experiments in Higher

Education
Implementation of Physics Experiments in a Virtual World

MASTER THESIS

Author:
Stefan Berger,

Graz University of Technology

April 12, 2012
© Copyright by Stefan Berger

Supervisor:
Univ.-Doz. DI Dr.techn. Christian Gütl,
Graz University of Technology

Co-Supervisor:
Associate Director V. Judson Harvard,
Massachusetts Institute of Technology

Physikexperimente für
Hochschulen in einer virtuellen

3D-Welt
Implementierung von Physikexperimenten in einer

virtuellen Welt

MASTERARBEIT

Autor:
Stefan Berger,

Technische Universität Graz

12. April 2012
© Copyright: Stefan Berger

Betreuer:
Univ.-Doz. DI Dr.techn. Christian Gütl,
Technische Universität Graz

Associate Director V. Judson Harvard,
Massachusetts Institute of Technology

Abstract

E-learning software has the ability to enhance students performance signifi-
cantly. The improvements in hard- and software over the last decade en-
ables developers to implement extendible real-time simulations to increase
the learning effect. Not only e-learning software does benefit from the ad-
vancement of technology, but also virtual worlds. Especially high-speed In-
ternet which is broadly available nowadays is essential for the use of virtual
3D worlds with complex functionalities.

Only recently has research in the field of e-learning discovered the po-
tential of virtual worlds. For teaching it has several advantages over the
conventional “real-world” approach. The range of applications is manyfold;
students can, e.g. meet in-world for course preparation or studying at any
time. Teachers, on the other hand, can hold lectures attended by students
from any geographic location. In other words, virtual worlds can be used as
a distance education tool.

This thesis presents a prototype leveraging the potential of virtual worlds
combined with computer simulations and video games in e-learning. An
existing educational physics software implementing simulations and games
is ported to a three-dimensional virtual world. The prototype combines the
advantages of its components and features concepts such as collaborative
learning, distance education and computer-based training. Furthermore, the
resulting prototype is customizable with little, or no programming skills,
depending on what to customize. This behavior allows teaching personnel to
adapt the solution towards their needs.

By analyzing the theoretical background of collaborative learning, simu-
lations and games in education, and virtual worlds together with their cur-
rent application the conceptional requirements for the prototype are defined.
After discussing the implementation details the usage of the prototype is de-
scribed. Finally, a summary is given with possible improvements and future
work suggestions.

Kurzfassung

E-learning Software kann die Lernleistung von Studenten markant erhöhen.
Die Verbesserungen bei Hard- und Software des letzten Jahrzehnts erlau-
ben es Entwicklern, erweiterbare Echtzeitsimulationen zu implementieren.
Diese wiederum können verwendet werden, um den Lerneffekt zu erhöhen.
Aber nicht nur E-learning Software profitiert vom Fortschritt der Technolo-
gie, sondern auch Virtuelle Welten. Vor allem das heute weitreichend verfüg-
bare schnelle Internet ist erforderlich, um virtueller 3D Welten mit komplexer
Funktionalität zu verwenden.

Noch vor nicht allzu langer Zeit hat die Forschung im Bereich E-learning
das Potential virtueller Welten für sich entdeckt. In der Lehre haben diese
Welten viele Vorteile gegenüber dem konventionellen Ansatz. Das Anwen-
dungsgebiet ist vielfältig. Zum Einen können sich Studenten in den Wel-
ten unabhängig von der Tageszeit zur Kursvorbereitung treffen. Andererseits
können Vortragende in der virtuellen Welt Vorlesungen halten, also sie zum
Fernunterricht verwenden.

Diese Arbeit beschreibt einen entwickelten Prototypen, der das Potential
von virtuellen Welten in Verbindung mit Computer-Simulationen und Video-
spielen auszunützen versucht. Eine bestehende Physik-Simulationssoftware,
die Simulationen und Spiele implementiert, wird dazu in eine dreidimensio-
nale virtuelle Welt portiert. Der Prototyp vereint die Vorteile seiner Ein-
zelkomponenten. Konzepte wie gemeinschaftlichem Lernen, Fernlehre und
Computer-Based Training werden dabei thematisiert. Der implementierte
Prototyp ist, ohne, oder mit wenig Programmierfähigkeit anpassbar. Dies
ist vor allem für Lehrpersonal wichtig um die Lösung auf ihre Bedürfnisse
anpassen zu können.

Mit der Analyse der Theorie über gemeinschaftliches Lernen, Simulatio-
nen und Spiele in der Lehre und virtuelle Welten, sowie deren derzeitigen
Einsatz werden in dieser Arbeit die konzeptionellen Anforderungen an den
Prototypen aufgestellt. Nach der Beschreibung der Implementierungsdetails
wird die Verwendung des Prototypen erklärt. Als letztes folgt die Zusam-
menfassung, die mögliche Verbesserungen und Vorschläge für zukünftige Er-

weiterungen enthält.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources / resources, and that I have explicitly
marked all material which has been quoted either literally or by content from
the used sources.

April 12, 2012
date signature

Acknowledgments

Although the stay at the MIT was not my first longer stay in a foreign
country, this experience was new with many respects. I want to thank all the
people who supported me in the US, making my stay a lot more comfortable.
Especially to mention, Fabio Ricardo and Josh Schuler, who pretty much
organized my housing, and Meg Westlund at CECI who not only helped me
out with all the organizational staff, but also with every-day life problems.
Generally, I want to thank the CECI stuff for their support. I really enjoyed
the friendly atmosphere at the institute.

Many thanks also to Christian Gütl who was giving me the opportunity
to work at MIT in the first place. He also gave good advice to improve the
contents of this thesis.

Thanks also to my family and friends for their support during my stay,
and during the writing of my thesis. Various coffee breaks with them helped
me to keep a clear head during the thesis writing phase. Special thanks to
my girlfriend Susi who did not only visit me in the United States, but also
gave me a warm welcome when I was back in Austria.

Last, but not least, I want to give special thanks to those people who
took the long journey to visit me in the United States. Those are Johanna
and Martin, Sabine and her sister, and Birgit and Matthias.

Thank you!

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Structure . 2

2 Collaborative Learning 5
2.1 Terms and Definitions . 5
2.2 Foundations . 6
2.3 Studies on the learning impact 8
2.4 Summary . 9

3 Simulations and Games in Education 11
3.1 Terms and Definitions . 11
3.2 History . 13
3.3 Benefits and Problems . 15
3.4 Summary . 16

4 Virtual Worlds 19
4.1 Terms and Definitions . 19
4.2 History . 20
4.3 Virtual Worlds in Education 22
4.4 Examples of virtual worlds in teaching 24

4.4.1 The River City project 24
4.4.2 Quest Atlantis . 25
4.4.3 Meta-Institute for Computational Astrophysics 27

4.5 Summary . 28

5 Conceptual Model 31
5.1 Combination of a Simulation Framework and a Virtual 3D

World . 31
5.2 TealSim . 33

5.2.1 Software Architecture 34

I

II CONTENTS

5.3 Open Wonderland . 36
5.3.1 Software Architecture 37

5.4 Summary . 38

6 Implementation of the components 41
6.1 Requirements on an abstract level 41
6.2 Additional 3D support for TealSim 42

6.2.1 Implementation of JME Primitives 43
6.2.2 Descriptive data types 51
6.2.3 The Viewer . 56

6.3 Preparing TealSim for Client-Server use 58
6.3.1 Synchronization of the 3D Objects 58
6.3.2 Splitting the Simulation Engine 59
6.3.3 Preparing TealSim for the PD server 69

6.4 The OW Module . 72
6.4.1 Simulation Selection Functionality 73
6.4.2 Creating a Simulation 75
6.4.3 The Control Panel . 81
6.4.4 Starting the Simulation and synchronizing Engine States 82
6.4.5 Synchronizing the Swing User Interface 84
6.4.6 Performance improvements on the server side 89

6.5 Implementation of a Multi-player Simulation 90
6.6 Summary . 92

7 Installation and Usage of the Module 95
7.1 Installation via OW’s web interface 95
7.2 Using simulations in-world . 96
7.3 Summary . 98

8 Lessons Learned 101

9 Summary and Outlook 103

Acronyms 105

List of Figures 108

List of Tables 109

Bibliography 119

Chapter 1

Introduction

Virtual worlds are a technology which has been evolving for about twenty
years. Within these worlds many people represented by their in-world avatars
can work together or meet for other purposes. The technology was firstly
used by multi-player games such as Doom and Quake in the 1990s. When
the computational power as well as the connection speed between the peers
increased more complicated and realistic applications such as Second Life
(SL)1 were feasible (Messinger et al., 2009). Due to this improvements in
technology web-based e-learning systems are becoming an interesting field in
computer education (Li & Zhao, 2008).

1.1 Motivation
In Scheucher, Bailey, Gütl, and Harward (2009) a prove of concept showed
that MIT’s internet-accessible physics experiments (iLabs) can be integrated
within a virtual 3D world. In order to visualize a 3D model of the chosen ex-
periment in-world parts of MIT’s TealSim physics e-learning software where
used. TealSim is a physics simulation software which aims to improve the
students’ performance of well-visited courses. It does so by providing a wide
range of simulations the students can study prior to the classes. Teachers
can adapt the software by defining simulations specifically for their courses
without sophisticated software development skills. This behavior of Teal-
Sim turns out to be beneficial for this thesis’ approach; to run simulations
and games within a virtual world, creating an efficient collaborative learn-
ing environment. Such a collaborative online learning system can increase
the learning performance of students significantly compared to conventional
collaborative learning (Mukti, Razali, Ramli, Zaman, & Ahmad, 2005).

1http://secondlife.com/

1

http://secondlife.com/

2 CHAPTER 1. INTRODUCTION

For the stated reason, TealSim was used as simulation and game frame-
work for this work. In contrast to Scheucher et al. (2009) not only a single
simulation was defined and placed into a virtual world, but the whole frame-
work was ported to run within the world. During the implementation process,
TealSim itself was parly refactored and improved in terms of object-oriented
design. Additionally, support for the 3D back-end of the chosen virtual world
was implemented.

As target environment to run the simulations on, a virtual world with
three-dimensional graphics support is required. The choice fell on Open
Wonderland (OW)2, version 0.5. It is free open-source software and is highly
extendible using a module concept. It runs on a variety of platforms and
already implements many useful features for teaching, such as blackboards,
3D-spatial audio, and so forth. Elements such as images and 3D models can
be added to the world simply by drag-and-drop, making the world easily
usable even for unexperienced users.

1.2 Thesis Structure
This work is split into two main parts, as well as a Chapter bridging be-
tween the two parts. The first part contains the theory behind the prototype
including the used terms, some history as well as advantages and disadvan-
tages of the used technologies. The second part consists of practical issues
including implementation details and the usage of the software.

In Chapter 2 the theoretical foundations of collaborative learning are
explained. After the description of the term “collaboration” different types of
collaborative learning are described briefly. Subsequently, an overview of the
history of the topic is given. Lastly, studies about the effect of collaborative
learning on students are summarized.

Chapter 3 investigates computer simulations and video games in the field
of education. First, different definitions and characteristics of simulations
and games are given. Subsequently, differences between these two terms are
pointed out. The history of video games and simulations in education was
highly influenced by the history of psychology. Thus, the history Section
of this Chapter contains relevant foundations of this discipline as well. Fi-
nally, the benefits and problems with games and simulations in e-learning
are discussed.

In Chapter 4 virtual worlds are discussed. A definition of the term is
given through distinctive characteristics. After stating the most important

2http://openwonderland.org/

http://openwonderland.org/

1.2. THESIS STRUCTURE 3

facts of the virtual worlds’ history the impact on education is summarized,
raising the main advantages of virtual worlds in education. In order to show
the possibilities of this technology in education some similar projects making
use of it are described briefly.

Chapter 5 is the bridging Chapter to the practical part of this thesis. It
investigates how to combine a virtual world with computer simulations and
video games in order to create a collaborative environment. The concept is
outlined and the reasons for using the specific frameworks are stated. Ad-
ditionally, both frameworks are described with respect to their functionality
and their software design.

The practical part of this thesis starts with Chapter 6. It describes
how the prototype was implemented in terms of design and implementation.
Changes in the TealSim software are discussed as well as possible alterna-
tive approaches. Chapter 7 describes the resulting software from the user’s
perspective; how to install it and how to use it. For better understanding
the Chapter is supplemented with screen shots. While Chapter 8 states some
lessons learned by stating general problems with the authors solutions, Chap-
ter 9 gives a final conclusion on the project. This contains the outcome as
well as future work suggestions.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Collaborative Learning

In this Chapter the foundations of collaborative learning including the psy-
chological and technical research are explained. Both, the importance of
collaboration in e-learning and the problems will be discussed.

2.1 Terms and Definitions
Due to the various usages of the term collaborative learning Dillenbourg
(1999) does not recommend any specific definition. However, he gives a
broad definition stating that collaborative learning “is a situation in which
two or more people learn or attempt to learn something together”. Similarly,
Gokhale (1995) sees in collaborative learning “an instruction method in which
students work in groups toward a common academic goal”. The latter defi-
nition focuses rather on teaching. Additionally, the term “two or more” is
replaced by “a group of students” making the definition more specific towards
the need of this thesis.

Thagard (1997) focuses on the term collaboration itself putting it into
four contexts. However, only three of these contexts are relevant to learning:

• Teacher-apprentice. One characteristic of this type of collaboration is
an asymmetry of knowledge by the participants. The apprentice who in
case of teaching is the student aims to gain knowledge from the teacher.

• Peer-similar. Contrary to teacher-apprentice collaboration, the col-
laborators have a similar, but not necessarily identical knowledge of
the subject. The term peer-similar refers rather to collaboration in re-
search. People working on a similar subject are working together. How-
ever, the term can be easily adapted to collaborative learning where the
peers are typically represented by students in a similar grade.

5

6 CHAPTER 2. COLLABORATIVE LEARNING

• Peer-different. This context occurs when researchers of different fields
collaborate in order to achieve a common goal. In learning this type of
collaboration happens among students of different grades or knowledge.

The differentiation of collaboration into these contexts is useful in learning.
However, a distinctive categorization with respect to the contexts is not
always possible.

Collaboration is often used synonymously with the term cooperation.
There is no agreement on the difference of these two terms (Dillenbourg,
Baker, Blaye, & O’Malley, 1996). However, Roschelle and Teasley (1995) de-
fine differences of collaborative and cooperative problem solving. Cooperation
means splitting work in portions where each member of the group executes
one portion. With collaboration the focus lies on “the mutual engagement of
participants in a coordinated effort to solve the problem together”.

The term computer-supported collective learning (CSCL) can be defined
as a “joined intellectual effort by a learning community” which “is supported
by means of computer programs and media” (Gütl et al., 2012). In various
resources the term computer-enabled collective learning (CECL) is found as
well. It will be used synonymously with CSCL in this work.

2.2 Foundations
Early research in collaboration focused on the individuals and their function-
ing within a group. During the 1970s and 1980s this trend was supported
by cognitivism which is individual-centered (for details on cognitivism see
Section 3.2). Later the focus was put on the group itself. The studies on col-
laborative learning tried to find correlations of parameters such as group size,
communication media or type of the task and their learning impact. Since
this parameters correlate with each other the studies could not be successful
in creating a link between one of the parameters and the effect of collabo-
ration. Subsequently, the focus was put on the influence of the mentioned
variables to mediating interaction (Dillenbourg et al., 1996).

The general focus of studies evolved in time from the individual to the
group (see Figure 2.1). Subsequently, the three approaches described in
Dillenbourg et al. (1996) are listed and explained briefly:

• The socio-constructivist approach suggests social interactions among
the people within a group to increases the learning performance. This
is due to differences in the knowledge or perspectives of the partici-
pants. To come to a common solution the learners have to argue with
each other. This “socio-cognitive conflict” does not necessarily lead to

2.2. FOUNDATIONS 7

Socio-constructivist Socio-cultural Shared cognition

individual focus group focus

Figure 2.1: This Figure contains the three research approaches of collabora-
tion studies stated by Dillenbourg et al. (1996). The approaches
are ordered by focus which is equal to the order of historical
appearance.

better performance. However, another aspect, namely the generation
of communication among learners beneficial.

• The socio-cultural approach descends sociocultural theory which was
mainly developed by Vygotsky in the 1920s and 1930s (John-Steiner
& Mahn, 1996). In the socio-cultural approach the focus lies “on the
causal relationship between social interaction and individual cognitive
change”. With this individual cognitive change of the participants their
own understanding is improved. As the socio-constructivist approach
this approach also requires differences in knowledge of participating
learners (Dillenbourg et al., 1996).

• Lastly, the shared cognition approach is not concerned about individual
learners, but about the group as a whole. Thus, it focuses much more on
the social aspects around the learners. For this approach no difference
among the participants in terms of knowledge is necessary.

All of these approaches can be beneficial depending on the task and the
participants. The socio-cultural approach, e.g., is predominantly used for
adult-child pairs whereas the socio-cognitive requires a similar developmental
level (Dillenbourg et al., 1996).

From the technological perspective impulses to establish CSCL appeared
in the 1980s. Previously, learning software had focused on the individual
and thus, had isolated the learner (Stahl, Koschmann, & Suthers, 2006).
Later, the idea of solving problems in collaborative learning with networked
computers became attractive for people working on learning applications
(Hoadley, 2010). Predecessors of today’s collective learning environments
(CLEs) such as ENFI, CSILE, and the 5th dimension started facilitating
chats and other communication methods. This way they provided technol-
ogy to foster meaning-making processes by organizing social activities. In the

8 CHAPTER 2. COLLABORATIVE LEARNING

mid-1990s CSCL systems began to emerge following the socio-constructivist
approach. The benefits of providing communication channels became more
obvious; students who are brought together this way are keen to construct
knowledge. Additionally, guidance to support the task is provided (Stahl et
al., 2006). With enhanced network technology, most notably the world-wide
web, the CSCL tools have become more and more powerful. CLEs use this
technology and are nowadays a widespread technology.

2.3 Studies on the learning impact
Several studies have contributed to the knowledge about collaborative learn-
ing. Most of them see positive effects to the learning performance. Ellis,
Klahr and Siegler, e.g., found that a group of students has the potential to
perform better than its best individual alone (as cited in Stevens et al., 2005).
However, different studies use different approaches for investigation. As de-
scribed in Crook (1998) early studies typically consisted of a pre-test, the
group work and a post-test. This approach, however, is criticized for some
reasons. Firstly, for simplicity reasons the studies only investigated small
groups. Thus, the question if collaboration does occur within small groups is
often not considered at all. Secondly, the number of utterances of the group
members is taken as a direct indicator for the degree of collaboration. This
assumption hides the dynamics of collaboration. Lastly, the degree of con-
sidering the cognitive structures of the participants is rather low. In order
to overcome this problems, Crook suggests focusing on three features. Those
are intimacy, supply of external sources and previous quality of interpersonal
relations of participants.

Another interesting approach is given by Nova, Wehrle, Goslin, Bourquin,
and Dillenbourg (2007) who investigate so-called awareness tools in collab-
oration. The term “awareness” refers to information about other, distant
peers. Such information includes presence, identity, location and so forth.
This is very important because an individual has to have some idea of the
partners viewpoint in order to collaborate well. This way the learning pro-
cess itself is enhanced since “it forces the learner to reason more deeply on
the domain and to perceive the task from a second viewpoint”. The study
used a video game platform for psychological experiments called “Spacem-
iners”. With using a game the authors see advantages in engagement of the
participants. The players were put into collaborating pairs. Questionnaires
during the game as well as open interviews after the game were used to gain
results for three postulated hypothesis. Firstly, providing awareness tools
should improve the participants performance significantly. This hypothesis

2.4. SUMMARY 9

was proven to be true by an increased achieved game score. Secondly, the ac-
curacy of the mutual modeling should be increased. Mutual modeling refers
to the shared understanding achieved by sharing the game experience of both
partners. Tests did not show any improvements with respect to this issue.
Lastly, the mutual modeling accuracy should increase with time. Every pair
played the game three times. Although there is a slight improvement the
last assumption could not be proven to be correct. However, awareness tools
seem to help the participants anticipating the partners intents.

In a similar study Gutwin and Greenberg (1999) examined the effect
of awareness tools in real-time distributed groupware. There are specific
problems which can be tackled by awareness tools. Those occur especially
if the screen cannot show the whole workspace at once and different users
see different parts of the environment. The study mainly focuses on some
usability aspects. Those are:

• The task completion time as a performance measure.

• The communication efficiency evaluated by number of words partici-
pants speak.

• The participant’s perceived effort as a subjective measure.

• The participant’s overall preference as a more general subjective mea-
sure.

• Strategy use focuses on how the task was carried out.

The results of the study showed partly improvements when using awareness
tools and partly not. Significant improvements are gained especially with
respect to the task completion time and the communication efficiency on
some tasks.

Challenging problems of today’s collaborative learning include the time
consuming implementation of tools as well as collaborating groups very differ-
ent levels of knowledge or skills. Such participants tend to become passive
when collaborating with others and thus, do not commit to the positive
learning outcome of the group (Gütl, 2011).

2.4 Summary
In this Chapter different aspects of collaboration and cooperation are ex-
plained. This topic benefits from psychology research as well as from the
improvement of technology in recent years. As described by Thagard (1997),

10 CHAPTER 2. COLLABORATIVE LEARNING

one can distinguish collaborative learning among students only and, more
similar to traditional teaching, collaboration with the help of a teacher. Both
types can be beneficial in education.

The improvement in technology with respect to computer connectivity
and computer performance enables the utilization of CSCL, which has be-
come a powerful tool in education. A multitude of studies lead to improve-
ments in this field. As an example, awareness tools can easily be integrated
in collaborative learning tools and enhance the learning outcomes.

A problem to be tackled in collaborative learning is the passiveness of
weaker students. Enhancing engagement may be a proper way but is de-
pending on the topic and, more influenceable, on the CSCL environment. A
utility known to be highly engaging are games. Those, together with simula-
tions are worth investigating and will be explained in the following Chapter.

Chapter 3

Simulations and Games in
Education

Computer simulations and video games play an important role in education.
This introductory Chapter presents basic background of the topic and de-
scribes relevant terms used throughout this thesis. Beneficial features of the
use of games and simulations in education will be pointed out and discussed.

3.1 Terms and Definitions
Whereas a simulation is often referred to as an abstraction or simplification
of real-life (Akilli, 2007), this thesis uses the term with respect to computer
simulations. These can be defined as “programs that contain a model of a
system, or a process” (de Jong & van Joolingen, 1998) or, rather process-
oriented, as “a method for studying complex systems that has had applications
in almost every field of scientific study” (Winsberg, 2010). These definitions
apply well to the field of education. Since this thesis focuses on simulations
in physics, the term physics experiment refers to simulations rather than to
real-world experiments.

For the term game many definitions can be found. For Dempsey, Lu-
cassen, Haynes, and Casey (1996) it is “a set of activities” which is “rule-
guided and artificial in some respects” and involves competition. According
to Narayanasamy, Wong, Fung, and Rai (2006) a game can also be defined as
“a goal-directed and competitive activity that involves some form of conflict,
conducted within a framework of agreed rules”. Akilli (2007) adds fun and
creativity to the definitions above. It is “a competitive activity that is creative
and enjoyable in its essence, which is bounded by certain rules and requires
certain skills”. In Juul (2003) a more formal approach is used for defining

11

12 CHAPTER 3. SIMULATIONS AND GAMES IN EDUCATION

Pen and paper
roleplaying

[—: 1]

Free-form play

[—: 1]

Hypertext
fiction

[—: 2, 5]

Ring-a-ring-
roses

[—: 2, 3, 5, 6]

Open-ended
simulations

[—: 3]

Movies/story-
telling

[—: 2, 4, 5]

Games of pure
change

[—: 4]

Change-based
gambling

[—: 4, 6]

Skill-based
gambling

[—: 6]

Traffic,
Noble war

[—: 6]

5. Player
attatched to
outcome

6. Negotiable
consequences

1. Fixed rules

2. Variable
outcome

3. Valorization
of outcome

4. Player
effort

Conway‘s
game of life;
watching a
fireplace

[—: 3, 4, 5]

GAMES

BORDERLINE
CASES

NOT
GAMES

Figure 3.1: This image shows the game diagram with its six game features
according to Juul (2003). Some borderline cases and some non-
games are stated. Those lack in one of the features (indicated by
the arrows).

games. Six features essential for games are identified (see Figure 3.1):

1. Fixed Rules. The rules of a game have to be unambiguous and must
be clearly defined.

2. Variable and Quantifiable outcome. There must be different outcomes
possible in a game. The goal must be clear and beyond discussion.

3. Valorization of the outcome. The value of an outcome for the player
can be better or worse. A higher number of points is, e.g., usually

3.2. HISTORY 13

a better outcome. In general it is harder to achieve better outcomes
which makes a game challenging.

4. Player effort. The effort of a player influences the outcome. A higher
effort mostly leads to a better outcome. Similarly to the valorization
of the output this feature corresponds to making games challenging.

5. Attachment of the player to the outcome. The players feeling corre-
sponds to aspects of the outcome. A player may feel happy when
winning or sad when losing.

6. Negotiable consequences. Real-life consequences can be linked to a
games outcome. Non-negotiable consequences include e.g., injuries in
sports. The time effort when playing a game can also be counted to non-
negotiable consequences. If a game lacks all negotiable consequences
this feature is not fulfilled.

The features involve the previously mentioned aspects for defining a game.
Additionally separating games from non-games is possible in a formal way.

Compared to simulations, games have additional structural elements.
Those are, e.g. play, a goal or competition (Prensky, 2001). This applies for
physics simulations as well. By adding such elements, physics experiments
become games which can have several advantages over plain simulations.
Another property of a Game is the linearity of the event sequence. In most
games a player solves a challenge and advances to the next exercise. This
does not change when the game is played repeatedly. The order of the events
remains the same, no matter how the player advances. With simulations
however, a player’s decision can have an impact on the subsequent behav-
ior of the whole simulation. Different branches of possible outcomes can be
reached in one and the same simulation (Gredler, 1996).

3.2 History
Using games or simulations in education is not a new approach; it dates
back to Chinese games in 3000 B.C. (Dempsey et al., 1996). The rising pop-
ularity in the 1950s declined later when the basic-skills movement appeared
(Gredler, 1996). Over the last 20 years however, the importance of simu-
lations and games has risen significantly. The research in that field was
strongly influenced by the progress in the field of psychology. Paraskeva,
Mysirlaki, and Papagianni (2010) mention the most important psychologic
frameworks for simulations and games in e-learning during the last decades

14 CHAPTER 3. SIMULATIONS AND GAMES IN EDUCATION

namely behaviorism, cognitivism and constructivism. Subsequently, these
frameworks with their influences on educational games and simulations are
described briefly.

Behaviorism was introduced as early as 1913 by John B. Watson in his ar-
ticle “Psychology as the Behaviorist Views It”. It criticized the main method
in psychology, namely introspection, for being too subjective and thus not
scientific. Instead of being a science of consciousness psychology should be
a science of behavior (Baum, 1994). The focus is put on investigating rele-
vant stimuli and their response rather than self-observation. With learning
in games behaviorism sees the player matching questions (stimuli) and an-
swers (responses). As soon as the player finds a correct match, learning has
occurred (Paraskeva et al., 2010). This involves playing sequences repeat-
edly until finding a solution. The fact that most players do so increases the
learning effect (Egenfeldt-Nielsen, 2006).

Later increasing criticism of behaviorism lead to the cognitive counter-
revolution. Cognitivism was established in the field of psychology (Miller,
2003). It suggests that all processes in mind, learning included, are cogni-
tive. Problem solving is achieved by gathering facts, constructing hypothesis
and finally making inferences (Dreyfus, 1991). Hence, cognitivism focuses on
the process between stimulus and response. When used in education the
focus lies on structuring and organizing data to make it easier for a student
to gain information (Dark & Winstead, 2005). For educational games the
cognitive approach suggests building intrinsic motivation. This is done by
challenging the player’s knowledge with game experience. Learning material
is presented in different forms. This eliminates one main concern with behav-
iorism, namely training one single solution of a problem while not knowing
any schemas behind. The need of extrinsic motivation in behaviorism games
is also a critical point avoided by the cognitive approach (Egenfeldt-Nielsen,
2006).

Constructivism has its roots in cognitivism. It postulates “that each in-
dividual mentally constructs the world of experience through cognitive pro-
cesses” (R. A. Young & Collin, 2004). Thus, the focus is put on construction
rather than on discovering reality (Smith & Ragan, 1999). cognitive pro-
cesses are mainly the interaction with content, other people or ideas. The
constructed meaning differs with the learner because of different previous
knowledge, attitude, beliefs, and so forth (van Eck, 2007). In educational
simulations following a constructive approach the learner will build a simu-
lation in order to gain knowledge. In discovery learning, which is construc-
tivist based, e.g., the process of learning is achieved in four phases, namely
the generation of hypothesis, the design of experiments, the interpretation of
the outcoming data, and the regulation of learning (de Jong & van Joolingen,

3.3. BENEFITS AND PROBLEMS 15

1998). The major difference to the cognitive approach is the design of the ex-
periments by the learner. With games, the constructive approach lets both,
the player and the game construct the game experience (van Eck, 2007).
This requires an educational game to ensure that the player is constructing
knowledge. From the game developers perspective this is not easy to realize
(Egenfeldt-Nielsen, 2006).

3.3 Benefits and Problems
Various studies have contributed to the effects of computer games and simu-
lations in e-learning. While many studies see positive effects on the learning
outcome, Russell (1999) devoted a whole book to prove the opposite. “The
No Significant Difference Phenomenon” contains a collection of reports, all
concluding that no technology increases the learning effect significantly (as
cited in Molenda & Sullivan, 2003). Different fields in educational science
provide different explanations for such results. Subsequently, some represen-
tative cases are mentioned.

In discovery learning de Jong and van Joolingen (1998) find some char-
acteristic problems. Those can, however, be overcome by problem-specific
support to the learner. Many learners have, e.g., problems with the step of
finding hypothesis. This is often due to a lack of basic knowledge in the
subject. To solve that issue the learner can be supplied with additional in-
formation within the simulation environment. Some authors even suggest
to give a set of hypothesis to choose the right one from. Other problems
are addressed by giving feedback to the learner. Overall, applications using
discovery learning need to be aware of shortcomings which, however, can be
avoided by adding additional help.

A similar solution is given by Yeo, Loss, Zadnik, Harrison, and Treagust
(2004) for the research field of interactive multimedia, which did unexpect-
edly not increase the learning effect of students. Again, this problem was
overcome by giving additional guidance. The effect of providing different de-
grees of such guidance is inspected in a study by González-Cruz, Rodríguez-
Sotres, and Rodríguez-Penagos (2003). In an undergraduate course on the
subject of biochemy three groups of students were using a simulation tool
supplementary to their practical. The degrees of guidance in the groups
were detailed, intermediate and minimal, respectively. The students wrote
reports and took an exams. The results of the study were different for the
reports and the exams. Student groups with higher degree of guidance per-
formed best with the reports while a lower degree of guidance rather lead
to better exam marks. The authors conclude that the effect on the exam is

16 CHAPTER 3. SIMULATIONS AND GAMES IN EDUCATION

due to the feedback the students received on their reports prior to the exam.
The understanding on the other hand increases with the degree of guidance.

Despite the problems with simulations and games in education there are
many studies showing positive effects. When examining several studies with
games, Egenfeldt-Nielsen (2006) states that “findings on [the] learning out-
come are positive and promising”. In an overview of studies within the
last ten years given by Rutten, van Joolingen, and van der Veen (2012) the
studies are grouped in four categories. In the first category the outcome
of simulation-based enhancement of traditional instruction is investigated.
Rather than comparing different simulation-supported teaching systems with
each other this studies are trying to find differences in teaching when simu-
lations are added to the teaching system. Studies investigating the impact
on traditional instruction in general are investigated as well as simulations
as preparation to laboratory activities. The fields are manyfold; chemistry,
biology, and physics, including mechanics, electronics and optical physics.
All of the studies found positive outcomes on the learning performance, al-
though one study could not detect a positive long-term effect. When used
for preparation to laboratory students with learning deficiencies can profit
more than others, which can be valuable in teaching.

Beside the impact on the learning performance simulations and games
also address other important improvements for learners. Stelzer, Brookes,
Gladding, and Mestre (2010) investigated the introduction of a prelecture
simulation in a physics course on electricity and magnetism. A high improve-
ment of the perception of the course was achieved which lead to a positive
attitude of the students to physics in general. Additionally, the difficulty
of the course was rated much lower after the introduction of the simulation
although the demands of the course did not change. Similarly, Durán, Gal-
lardo, Toral, Martínez-Torres, and Barrero (2007) find a positive influence
on the students’ satisfaction when using Matlab/Simulink simulations for an
electrical engineering course. This improvement has also positive effects to
the cognitive domain. By providing intrinsic motivation to learners (Hod-
hod, Cairns, & Kudenko, 2011) simulations and games seem to meet the
expectations stated by Prensky (2001) who sees in them “a fabulous way to
learn”.

3.4 Summary
Simulations and video games only differ by some structural elements as well
as with the linearity of the event sequence. Thus, both can technically be
realized in similar ways. The Chapter has summarized the two terms, espe-

3.4. SUMMARY 17

cially with respect to their history which includes the underlying psycholog-
ical frameworks.

According to the studies previously mentioned video games and simula-
tions are not only commercially successful but can also be a powerful learning
tool. They not only have the ability to increase learning performance, but
also seem increase the students’ interest in the given subject. However, games
and simulations do not automatically perform well when used in education.
Guidance and help has to be provided to the student. A promising approach
is to combine collaborative learning and games. This way the guidance can
be given by other participants.

Technically a link between CSCL and games can be established with
virtual worlds. This technology provides a collaborative environment and
can also be used to play games or to run simulations. Virtual worlds can be
seen as a collaboration tool advanced in technology. From this perspective
they are worth further investigation.

18 CHAPTER 3. SIMULATIONS AND GAMES IN EDUCATION

Chapter 4

Virtual Worlds

The field of e-learning often leverages newly emerging technologies. Virtual
worlds have been proven to be an applicable technology. This Chapter in-
troduces the field of virtual worlds by giving definitions and giving some
background of their history. Subsequently, the current features of virtual
worlds with their implications on education are pointed out. Lastly, exam-
ples of educationally used virtual worlds are given and explained briefly.

4.1 Terms and Definitions
The two words of virtual world are described separately in Bartle (2004).
According to this a world is seen as “an environment that its inhabitants
regard as being self-contained”. The term virtual is somewhere between real
and imaginary. It is described as “that which isn’t, having the form or
effect of that which is”. The definition of both words combined given by Bell
(2008) is “a synchronous, persistent network of people, represented as avatars,
facilitated by networked computers”. The various terms of this definition are
described as follows:

• A synchronous communication is necessary in order to maintain the
concept of “common time” among the participants. This common time
is essential for social activities within the virtual world.

• The persistence of a virtual world lets the world keep functioning even
while a participant is not in-world.

• The central term network of people indicates the need of participants
communicating and affecting one another in a virtual world.

19

20 CHAPTER 4. VIRTUAL WORLDS

• The avatar representation of real people can be graphical or textual. It
can perform actions initiated by a human agent.

• A last a very important property of virtual worlds is the facilitation by
networked computers. There is no other way to perform the complex
actions required for the data management of a virtual world.

According to this definition all the terms above must apply in oder to be
a virtual world. Such terms do not need to be assembled to a definition
in a formal way. More generally a set of characteristics can be given. Choi
and Baek (2011) summarize the characteristics presented in previous studies.
Table 4.1 states the characteristics by author. Some studies shown address

Researchers Distinct media characteristics
Whitelock, Brna
& Holland(1996)

Representational fidelity, Immediacy of control, Pres-
ence

Brna (1999) Representational fidelity, Immediacy of control, Pres-
ence, Social fidelity (including social familiarity and so-
cial reality), Immediacy of discourse, Social presence

Book (2004) Shared Space, graphical user interface (GUI), Immedi-
acy, Interactivity, Persistence, Socialization/Commu-
nity

Dickey (2005) Illusion of 3-D space, Avatars, Interactive chat environ-
ment

Lehdonvirta
(2006)

Numerous users, Real-time interaction, Geometric
space, Avatars, Persistency

Table 4.1: Characteristics of Virtual Worlds (Choi & Baek, 2011)

virtual 3D worlds rather than virtual worlds in general. 3D functionality
can be seen as an additional feature two-dimensional virtual worlds do not
provide. Thus, definitions will only add 3D-specific characteristics and all
non-3D terms will apply to virtual worlds in general.

4.2 History
Appearing in the 1970s, one of the first systems fulfilling the definition of
a virtual world to a high extend were multi-user dungeons (MUDs) (Bartle,
2010; Damer, 2008). Those accept connections from multiple users and pro-
vide a “world” with “rooms” stored in a database (Curtis & Nichols, 1994).

4.2. HISTORY 21

One of the first feature added to the earliest versions of MUD was an open-
ended world increasing the players “personal freedom”. In the late 1980s the
avatars in MUDs became capable of adding content to the world. In order to
add functionality to the content scripting functionality was added in “MOO”
(MUD, Object-Oriented). Other important innovations in the early 1990s’
MUDs were event triggering and non-player characters (NPCs). During that
time a division in two categories of the worlds occurred. One group focused
on providing a game-play environment and the other one on social purposes.
With the appearance of the world wide web commercial game-play MUDs
became profitable. The introduction of graphics was perhaps the last impor-
tant evolvement step of MUDs to current virtual worlds. The first graphical
MUDs appeared in the mid-1990s and were developed by extending earlier
text-based MUDs by graphic elements (Bartle, 2010). Such worlds are not
any more referred to as MUDs. Whereas for the game-play worlds the term
massively multi-player online role-playing game (MMORPG) is used, social
worlds are now called virtual worlds.

Although many MUDs were used as video games and the history of both
overlap video games in general can be seen as another root of virtual worlds.
The history of video games starts with coin-operated arcade games in the
early 1970s. Many features of current virtual worlds were added later.
Whereas in early games the player had to follow a specific path the free-
dom for the player to move around and create elements in the world started
increasing with “Populous” in 1989. The next step was to connect player
and thus, creating multi-user environments. Firstly, LAN-games appeared.
They started with ego-shooters in the early 1990s. The players could move
their avatars in the games’ world and play against each other. However, with
LANs it is necessary for the players to meet physically. With the increased
data rate of the Internet this was not necessary as the first games utilizing
this new media appeared in the mid-1990s. In “The Sims” and its sequels
the ability of creating the world was combined with Internet connectivity
to create a multi-user environment. Features as choosing the avatars skin
color or decorating the avatars home were available. With the emerge of
MMORPG, as e.g., “World of Warcraft”, millions of player started playing
in virtual environments. This evolution of games set many foundations for
nowadays virtual worlds (Messinger et al., 2009).

Despite having several characteristics of virtual worlds earlier systems
such as PLATO are not seen as direct predecessors to virtual worlds. They
did not influence the authors of later predecessors (Bartle, 2010). In contrast
Messinger et al. (2009) see in social networks a root of virtual worlds. Some
features influencing virtual worlds are given:

22 CHAPTER 4. VIRTUAL WORLDS

• User profiles including personal text and image data can be created.

• Friends can be added giving them additional permissions compared to
normal users on the social network.

• A multitude of new media elements such as chats, friend invitations
and so forth is provided.

• As with today’s virtual worlds, different social networks are made for
different purposes (e.g., professional introductions).

An overview of the history of social networks is given by Boyd and Ellison
(2007). According to them the first social network site was SixDegrees.com
launched in 1997. It implemented features such as creating profiles, list-
ing friends and surfing friends lists. However, it is considered to have been
ahead of its time and the site was closed in 2000. Additional functionality
was added by subsequent sites such as LiveJournal and LunarStorm. This
functionality included guest books, diary pages and friend recommendations.
With the business network Ryze.com a new wave of social networks started
in 2001. Due to the high number of new launches the term “Yet another
social networking service” appeared. Many of these services focused on spe-
cific types of media (e.g., YouTube on video broadcasting) or types of user
interests. The latter specialization is also found in virtual worlds.

4.3 Virtual Worlds in Education
In this Section the influence of today’s virtual 3D worlds to education is
examined. Unique properties of such world lead to specific benefits which
are later described.

The effects of 3D virtual learning environments to students is investigated
by Dalgarno and Lee (2010). Their model of learning in such environments
is shown in Figure 4.1. Unique properties distinguishing 3D virtual environ-
ments from other learning resources are summarized into two groups, namely
representational fidelity and learner interaction. These properties lead to a
construction of identity by the player and a sense of presence within the
environment. Another effect supporting the learner is the interaction with
other people (co-presence). Through learning tasks which make use of the
advantages of the environments several learning benefits are identified. Sub-
sequently, those benefits are mentioned and explained shortly:

• Spatial knowledge representation. This point refers to the quality of
the representation of an object within the virtual world. Virtual 3D

4.3. VIRTUAL WORLDS IN EDUCATION 23

3D VIRTUAL LEARNING ENVIRONMENTS

Representational fidelity Learner interaction

Sense of
presence

Construction
of identity Co-presence

AFFORDED LEARNING TASKS

L E A R N I N G B E N E F I T S

Figure 4.1: Learning process in 3D virtual worlds (Dalgarno & Lee, 2010).

models, e.g., are closer to real-world objects than 2D models. This can
be used in many fields of science education (Dalgarno & Lee, 2010).

• Experiential learning. This term does not refer to the experiential learn-
ing theory, but to experiential learning tasks impossible to accomplish
in the real world. Studies exploring this property can, e.g., deal with
nuclear power plants or astronaut training (Dalgarno & Lee, 2010).

• Engagement. Engaged learning means “that all student activities in-
volve active cognitive processes” and the “students are intrinsically mo-
tivated to learn due to the meaningful nature of the learning environment
and activities” (Kearsley & Shneiderman, 1999). Engagement can be
enhanced by allowing users to create content, solve problems, make
decisions and reflect those (Dickey, 2005). This features are all avail-
able in virtual worlds. Engagement itself leads to a positive attitude
towards the subject in the learner (Iqbal, Kankaanranta, & Neittaan-
mäki, 2010).

• Contextual learning. Since virtual worlds with their avatars can model
real-world situations almost one-by-one a context is easier recognizable
in-world. Divers, e.g., can recall more of their skills when they are
underwater. A situation which can be built in a 3D virtual world

24 CHAPTER 4. VIRTUAL WORLDS

realistically. Thus, the transfer of knowledge and skills is increased
(Dalgarno & Lee, 2010).

• Collaborative learning. The benefits of collaborative learning in educa-
tion as well as in general are described in Chapter 2.

4.4 Examples of virtual worlds in teaching

4.4.1 The River City project1

River city is a multi-user virtual environment (MUVE) for learning purposes
developed at Harvard university. The main idea is to put the learner from
the 21st century into a city from the late 1800s called “River City”. The
participant is thus equipped with 21st century’s knowledge which is to be
used in the earlier time period. The purpose of the river city project is
to teach scientific inquiry. Topics are mostly regarding health and biology.
The project is especially designed to improve the performance of students
who have problems with learning in middle school. Such students are often
disengaged and can hardly be motivated. MUVEs are similar to the en-
tertainment and communication media the students use in their free time.
With the river city project it is investigated if this fact helps in teaching stu-
dents with under-average learning performance. (Dieterle & Clarke, 2007;
Ketelhut, Dede, Clarke, Nelson, & Bowman, 2007)

In Figure 4.2 the user interface of river city is shown. Participants can
communicate with each other through the chat window at the bottom. On
the right side a workspace window including help functionality is provided.
The contents of this window changes depending on the situation of the avatar
in the virtual world. The world itself is inhabited not only by the users’
avatars but also contains computer-based agents as well as digital media
objects. (Ketelhut, B. C. Nelson, Clarke, & Dede, 2010)

A beneficial way to accomplish inquiry learning within the world is de-
scribed in Ketelhut, B. C. Nelson, et al. (2010). The students are put into
small groups where investigate water-borne, airborne and insect-borne ill-
nesses in town. After collecting data the groups postulate their hypothesis.
Those are tested and a lab report has to be written. Finally, the groups com-
pare their results among each other discussing causal relationships within the
environment.

The river city project was shown to have a positive influence to the stu-
dents engagement in inquiry process. An indicator for this is the use of differ-

1http://muve.gse.harvard.edu/rivercityproject

http://muve.gse.harvard.edu/rivercityproject

4.4. EXAMPLES OF VIRTUAL WORLDS IN TEACHING 25

Figure 4.2: The River City user interface with its fields (Source: “River City
Interface,” 2007)

ent information sources used by the students as well as a continually increas-
ing “commitment to the activities of inquiry throughout the data-gathering
period”(Ketelhut, B. C. Nelson, et al., 2010). Additionally, problems with low
attendance of students to a course and disruptive behavior can decrease (B.
Nelson, Ketelhut, Clarke, Bowman, & Dede, 2005). In the subject of biology a
significant increase of knowledge is achieved as well (Ketelhut, B. C. Nelson,
et al., 2010). Overall, this MUVE shows many advantages of such worlds for
education.

4.4.2 Quest Atlantis
Quest Atlantis (QA)2 is a 3D MUVE for children focusing on educational ac-
tivities. The players are confronted with a story-based context, namely “the
social, cultural, and environmental decay of the mythical world of Atlantis”.
The players goal is to save Atlantis. To achieve that the players can navigate
their avatars through different worlds representing Atlantis in terms of unity,

2http://questatlantis.org/

http://questatlantis.org/

26 CHAPTER 4. VIRTUAL WORLDS

culture, health and ecology, respectively. Different tasks have to be fulfilled
to achieve the games goal, e.g. investigating facts about an animal in order
to save the environment. (M. Young, Schrader, & Zheng, 2006)

As with many other MUVEs, the user interface of QA consists of several
windows (see Figure 4.3). Among other features information about other

Figure 4.3: The QA user interface with the 3D view of the world on the left,
the chat window at the bottom, and the conversation window
with the game character on the right. (Source: Barab, Pettyjohn,
Gresalfi, Volk, & Solomou, 2012)

players within the same world can be viewed. The user interface can be
customized by the user to a high extend.

In Barab, M. Thomas, Dodge, Carteaux, and Tuzun (2005) the three
basic design foundations of QA are described. The world itself is seen “at
the intersection of education, entertainment, and social commitment”. The
design has to take these three aspects into account. The education aspect is
followed by involving the students in domain-related activities rather than
only using other results for summary. The entertainment aspect refers mainly
to engagement of the participants which can be easily achieved in MUVEs.
Lastly, the social commitment ensures that all users are able to direct their
own activity.

The used principles within QA lead to positive effects shown in many
studies (e.g., Barab, Pettyjohn, Gresalfi, Volk, & Solomou, 2012; M. K.

4.4. EXAMPLES OF VIRTUAL WORLDS IN TEACHING 27

Thomas, Barab, & Tuzun, 2009). Not only learning performance can be in-
creased, but also the enjoyment of the students. Problems that can occur
with QA are security issues and lack of implementation support (technical
and social).

4.4.3 Meta-Institute for Computational Astrophysics
Meta-Institute for Computational Astrophysics (MICA)3 is a “scientific or-
ganization based entirely in virtual worlds”. It is not restricted to a specific
virtual world and has used Quaq4 and SL. In this virtual worlds MICA holds
frequent seminars and lectures (see Figure 4.4). The project intends mainly

Figure 4.4: Screenshot of a weekly held MICA astrophysics seminar. (Source:
Djorgovski et al., 2010)

to demonstrate the advantages of virtual worlds in scientific research and to
develop new tools to be used for such research. Although MICA focuses on
astrophysics the technology can be adapted for use in other fields (Djorgovski
et al., 2010).

As stated in Hut (2007) experiments concerning astrophysics can often
not be done in a laboratory. This is due to the spatial dimensions as well
as the amounts of energy this science has to deal with. Figure 4.5 shows a
simulation with some objects which are attracted to each other by gravity.
In Farr, Hut, Ames, and Johnson (2009) this simulation is explained in more

3http://www.mica-vw.org
4Now OpenQuaq. Site: http://code.google.com/p/openqwaq/

http://www.mica-vw.org
http://code.google.com/p/openqwaq/

28 CHAPTER 4. VIRTUAL WORLDS

Figure 4.5: Screenshot of a gravity simulation. (Source: Farr, Hut, Ames, &
Johnson, 2009)

detail. The simulation itself is implemented in OpenSim5, a virtual world
which implements the SL protocol and thus, can be used with a SL client.
The world comes with a physics engine which was adapted in order to fit
the requirements of the gravity simulation. Users can collaboratively place
point mass objects in the virtual world and then run the simulation. After
watching the simulation the users can discuss the outcomes with each other.

Problems with the simulation were detected with respect to scalability.
With many objects the simulation cannot be run in real-time. Although
experiments often exceed the feasible number of objects Farr et al. (2009)
see a powerful tool in this application in a virtual world.

4.5 Summary
Virtual worlds are closely linked to collaborative learning as well as to simula-
tions and video games. They can be used as a tool for collaborative learning.
This Chapter has focused on the technology virtual worlds use as well as with
their unique properties. The latter let virtual worlds provide functionality
which can foster the learning process. Virtual worlds come with all concep-

5http://opensimulator.org/

http://opensimulator.org/

4.5. SUMMARY 29

tual advantages of earlier collaboration tools and use technology such as high
fidelity audio and 3D graphics to become more realistic.

Despite the promising features a lot of research on virtual worlds is yet
to be done. Persistent worlds may lead students into an immersive environ-
ment enabling them to perform tasks otherwise only possible in real world.
However, technologies such as virtual worlds and educational video games
are not beneficial for themselves; they only provide features which have to
be used properly. The next Chapter will introduce the idea of this thesis
based on the mentioned technologies.

30 CHAPTER 4. VIRTUAL WORLDS

Chapter 5

Conceptual Model

Based on the three previous introductory Chapters this Chapter introduces
the idea of this thesis–an approach to enhance teaching in the subject of
physics using the previously described technologies. To implement the ap-
proach two frameworks were used. These are described later in this Chapter.

5.1 Combination of a Simulation Framework
and a Virtual 3D World

The combination of a virtual world as collaborative learning environment,
computer simulations and video games aims at improving the students’ learn-
ing performance as well as their satisfaction with learning physics. All of the
stated technologies have the ability to satisfy both aims.

As stated in Section 2.3 the benefits of collaborative learning environ-
ments on the students’ learning performance are backed by several studies.
Further improvement can be achieved by awareness tools giving the user in-
formation of other users. As described by Nova et al. (2007), Gutwin and
Greenberg (1999), they enhance task completion time and communication
efficiency which leads to a higher learning performance. Such tools are often
already included within virtual worlds.

Computer simulations and video games, on the other hand, can provide
intrinsic motivation to enhance the learning performance. As shown in sev-
eral studies (e.g., Durán et al., 2007; Stelzer et al., 2010) the attitude of the
students towards physics can be enhanced. Problems with games and simu-
lations in e-learning can be overcome by providing problem-specific support
to the learner. Virtual worlds have the capability to show materials. Addi-
tionally, multiple users including teachers can provide feedback and guidance
to the learner without being physically at the same place. As explained in

31

32 CHAPTER 5. CONCEPTUAL MODEL

Section 3.3 feedback and guidance are required to achieve good learning per-
formance.

Two of the benefits of virtual 3D worlds mentioned by Dalgarno and Lee
(2010) (see Section 4.3) also play an important role, especially in physics. The
first is the spatial knowledge representation in 3D, which can be necessary
to understand the topic properly. Secondly, elements invisible in real-world
allow enhanced experiential learning. With electromagnetism, e.g., otherwise
tiny simulation elements can be scaled to any size. Additionally, concepts
such as field lines, invisible in real-world experiments, can be shown.

The thoughts above lead to an approach of merging a virtual world with a
physics simulation software. The approach is shown in Figure 5.1. A virtual

Simulation 1

Game 1

Simulation/Game framework

Teacher Students

Teacher’s avatar Students’ avatars

additional Material

defines

play

Instructions
Feedback

places use

VIRTUAL WORLD

Figure 5.1: Concept for using a simulation framework inside a virtual world.
Simulations and games defined by the teacher are placed within
the virtual world together with additional material providing
problem-specific support to the students.

world hosts physics simulations and simulation games. Additional material
can be added to the world in order to guide the students and give them
information of the simulations and games. The virtual world also provides
communication channels such as audio and text chats. This allows the stu-
dents to collaborate among each other through their avatars. Additionally,

5.2. TEALSIM 33

a teacher can provide feedback, give instructions, or discuss outcomes of a
simulation with the students.

With this approach a teacher is free to customize the learning environment
within the virtual world. Problem-specific data in form of materials can be
chosen by the teacher to be placed near the experiments. Also, tools such
as a blackboard can be added. Some virtual worlds already provide such
functionality. Thus, no additional work needs to be dedicated to introduce
it. However, defining simulations and games needs to be reasonably simple
to be made by teachers of physics. Particularly, no advanced programming
skills can be assumed. Thus, the framework to be used needs to provide a
simple interface for defining games and simulations.

A critical point with teaching software is usability (Squires & Preece,
1999). The software should be practical to use for both, teachers and stu-
dents. The physics simulation framework used for this work is highly cus-
tomizable by teachers; simulations may be written with little programming
skills. Thus, a teacher in physics can adapt a simulation without the help of
a software developer.

The frameworks used for the implementation are described subsequently.
They are both freely available and open source.

5.2 TealSim
TealSim is a part of MIT’s Technology-Enabled Active Learning (TEAL)1

project. This project was launched in 1994 (Belcher, 2001) and defines a
learning structure for courses with larger numbers of students. The project
aims to improve the students’ understanding by using simulation and vi-
sualization software (Dori & Belcher, 2003). TealSim is such a simulation
software for the field of physics in higher education capable of running var-
ious simulations or games. It provides a simple interface for defining new
simulations. This allows people with little experience in software develop-
ment to implement simulations with a variety of features, e.g. the use of
external 3D models. Thus, teaching personnel can construct simulations for
their courses by themselves with little effort. On the other hand TealSim is
extendible for programmers whenever new functionality of physical objects
are needed. In Figure 5.2 the user interface is shown. A user can choose
a simulation from the menu bar and change parameters on the right-hand
side. The start of the simulation is triggered by pressing the “play”-button
at the bottom. Simulation parameters can be changed while the simulation
is running. The window on the left-hand side shows the 3D representation

1http://web.mit.edu/8.02t/www/802TEAL3D/

http://web.mit.edu/8.02t/www/802TEAL3D/

34 CHAPTER 5. CONCEPTUAL MODEL

HelpV i e wExamplesMechanicsElectro-MagneticFi le

Field Visualization

Electric Potential

Electric Field: Grass Seeds

Parameters

-5.0Individual particle charge:

1 2Plate 2 - Number of charg.. .

5.0Individual particle charge:

1 2Plate 1 - Number of charg.. .

Figure 5.2: The GUI of TealSim with the “Capacitor” simulation.

of the simulation objects. With most simulations the user can change the
point of view by dragging the 3D model. Such mouse interaction behaviors
can be defined when defining a simulation. Additionally, TealSim provides
valuable features to analyse the ongoing simulation, e.g. showing electric or
magnetic fields. Some of those features as e.g. field lines are calculated in
real-time while the simulation is running. When such elements are shown
during the whole simulation a better understanding of the physics behind
the simulation can be achieved.

5.2.1 Software Architecture
The implementation of TealSim follows the Model-View-Controller (MVC)
design pattern. With this pattern the software is logically split into three
components (Burbeck, 1992). Those are:

• The model representing the visual elements as descriptive data. It also
defines the behavior of the elements, i.e., the proper reactions to inputs.

• The view is responsible for rendering the elements and is usually directly
part of the user interface.

• The controller is the glue between the components. The user input goes

5.2. TEALSIM 35

through the controller which then reacts properly by updating model
and view.

As shown in Figure 5.3 TealSim consists of several components. The
simulation makes the model within the MVC pattern. Whenever a concrete
simulation is implemented this element is the only object to be defined. It

Engine
SimulationViewer

SimPlayer

othersRendered
Elements

Node3DCanvas3D
Low-Level Graphics

In
cr

ea
sin

g
ab

st
ra

ct
io

n
Le

ve
l

Figure 5.3: This Figure shows the main components of the TealSim software.
At the highest abstraction level the three elements of the MVC
pattern are shown. In a simulation various simulation elements
can be defined. At the lowest abstraction level the 3D graphic
elements represent the scene-graph as well as the canvas needed
for rendering.

creates all the simulation elements; e.g. the 3D elements, the user interface
and the type of the simulation engine needed. This is the part of TealSim
which has to be easy to extend since simulations should be definable by
teachers or lecturers. In order to achieve simplicity a simple interface is
defined and a lot of code is already provided for standard cases.

The simulation engine is responsible for all the physics calculations. In
order to compute a simulation step it has to know about all the objects in the
simulation in order to retrieve their physical parameters. Within the engine
all the low-level physics are implemented. Currently, the basic simulation
engine and an electromagnetic simulation engine is provided. However, new
engines with additional capabilities can easily be added by TealSim develop-
ers. This can be necessary when new simulations with new physical behaviors
are used.

36 CHAPTER 5. CONCEPTUAL MODEL

A simulation is loaded by the SimPlayer representing the controller in the
MVC model. It creates all the components including the simulation engine
and the simulation itself and also represents the user interface. GUI elements
defined in a simulation are put to the right place of the actual user interface.

The last major element is the viewer. It displays the 3D simulation ele-
ments on a canvas using the Java3D2 rendering library. During the imple-
mentation of this work the support of an additional rendering library was
added (see Section 6.2). Another responsibility of the viewer is to report
user interactions on the 3D elements of the currently loaded simulation.

5.3 Open Wonderland
OW is an open source virtual 3D world entirely written in Java programming
language (Vani & Mohan, 2010). It is runnable on every computer running
with either Windows, Linux, Mac OSX or Solaris operating system. This is
a major advantage over proprietary virtual worlds such as SL. OW provides
a full immersive environment with many features, e.g. high fidelity audio. In
order to describe the key features the role of different types of users can be
pointed out:

• Content developers are the constructors of the virtual world. They can
add static 3D models by simply dragging and dropping files into the
world (Slott, 2010a). By using a cell-concept static models are handled
the same way as implemented content (e.g. animations) which makes
it easier to place elements in world.

• Ordinary users log on to the virtual world by starting a Java Web
Start application with a click on the server’s web page. The virtual
world can be explored with a highly customizable avatar giving each
user a unique appearance. Users can communicated with each other
by immersive audio, but also by interacting with elements in the world
(e.g. blackboards) or a provided chat window.

• A OW server is usually configured by a server administrator. The con-
figuration is accessible by a web interface covering all administrative
functionality. This functionality includes enabling GUI-Applications
installed on the server in-world, saving and restoring snapshots of the
world, enabling security restrictions and uploading modules. Such mod-
ules are extensions to the virtual world. Many of them can be found

2http://j3d.org/

http://j3d.org/

5.3. OPEN WONDERLAND 37

in the module warehouse3.

• The last important group of users are Software developers. Those can
add new functionality by implementing modules. OW provides an API
which makes it fairly easy to develop a module. These extensions can
extend nearly every implemented feature making the application very
flexible. Most modules, however, add at least some visible elements
together with interaction functionality to the virtual world.

The client-server architecture of OW allows the user to run the application
without an explicit installation. With the Java Web Start technology updates
are made automatically and resources can be loaded dynamically while the
application is running.

5.3.1 Software Architecture
OW consists of a set of base components. In Figure 5.4 an overview of this
components is given. On the server side a Glassfish application server4 is

SharedApplication
Server

Darkstar
Server

Voice Bridge

Glassfish Application Web-Server

SoftPhoneOpen Wonderland ClientWeb Browser

Client side

Server side

Figure 5.4: Client and server components of OW

responsible for managing the other three server-side services. The client can
3http://openwonderland.org/module-warehouse/module-warehouse
4http://glassfish.java.net/

http://openwonderland.org/module-warehouse/module-warehouse
http://glassfish.java.net/

38 CHAPTER 5. CONCEPTUAL MODEL

start services, stop services, or change parameters using the web interface
provided by Glassfish. The shared application server lets OW show applica-
tions started on the server within the virtual 3D world. Such applications
can then be rendered within the virtual world on a two-dimensional pane.
The voice bridge is a jVoiceBridge5 audio mixer which supports high-fidelity
stereo sound. It is used for sharing the voice among the in-world avatars. It
also supports connections to remote soft phones.

The Project Darkstar (PD)6 server is the middleware OW runs on. This
high-performance game server with high scalability provides a communica-
tion interface to exchange messages to the clients as well as an API for the
application running on a server. The server-side components of OW make
use of the shared application server and the voice bridge. The OW client
is a Java application establishing a connection to the server during a log-
in process. In oder to realize the 3D graphics the JMonkeyEngine (JME)7

rendering library is used. Unfortunately it lacks multi-threading support.
For that reason MTGame runs on top of it in order to add the required
functionality. Compared to earlier versions of OW which were using Java3D
the combination of JME with MTGame provides a significant increase of
scalability and performance.

One of the most powerful features of OW is its extendibility. To extend
the functionality so-called “modules” are used. Those can easily be added
or removed through the Glassfish web interface by server administrators.
Because modules are a quite powerful in OW many built-in features are
implemented as modules, hence do not need to be added to the core of the
software (Slott, 2010b). In order to be noticed by OW a module has to fulfill
requirements, such as implementing OW interfaces.

5.4 Summary
This Chapter intends to describe the concept of this work. The goal is
to make TealSim runnable within OW. If this is achieved, advantages for
teaching of both, virtual 3D worlds and simulations can be combined. Ad-
ditionally, the users can benefit of unexpected advantages. Since TealSim
allows teachers to define games, a multi-player game can be implemented
and played by many participants at the same time in-world.

Although Scheucher et al. (2009) showed a prove of concept with an
older version of OW and TealSim, this previous work lacks in scalability and

5http://java.net/projects/jvoicebridge/
6Now continued as RedDwarf Server (http://www.reddwarfserver.org/)
7http://www.jmonkeyengine.com/

http://java.net/projects/jvoicebridge/
http://www.reddwarfserver.org/
http://www.jmonkeyengine.com/

5.4. SUMMARY 39

uses only one single simulation. In this thesis porting the whole TealSim
framework is attempted. The subsequent Chapters will describe the imple-
mentation and the results of this attempt.

40 CHAPTER 5. CONCEPTUAL MODEL

Chapter 6

Implementation of the
components

This Chapter describes the implementation details done for this thesis. In or-
der to understand this Chapter properly some software programming knowl-
edge is required. Some basics in Java programming language and in software
architecture are recommended.

6.1 Requirements on an abstract level
In order to have as many simulation running within OW the TealSim frame-
work will need to be ported to run within the virtual world. When this goal
is achieved the resulting software can be used for a variety of fields within
physics. From the perspective of software development the requirements can
be defined as follows:

• As many TealSim simulations as possible should be runnable in OW
with little special for single simulations. Most of the features of the
simulations should be supported.

• Defining a simulation, e.g. by a teacher of a physics course, in TealSim
should not become more complicated with the adapted code. Further-
more, the changes to this simulation-defining interface should be kept
minimal since teachers are already used to the old interface.

• Neither the software design nor its performance should be influenced
negatively. Possible improvements to this measures should be imple-
mented.

41

42 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

• The software must be easily to install on every OW server. Thus the
software should be packed into a OW module which can be uploaded
by the web interface as shown in Chapter 7.2.

• TealSim should still be runnable as desktop version after the changes.

• The advantage of having TealSim run in a virtual world should be
pointed out by defining a new simulation.

These requirements lead to several implementation steps applied to TealSim
and OW:

1. Since the 3D output of TealSim should later be rendered by the virtual
world, OW’s graphics back-end has to be added to TealSim.

2. In OW TealSim will have to run in a client-server mode. Thus, the
simulation functionality has to be split into according two parts. Since
TealSim should still work as desktop version as well, this implementa-
tion step will lead to a TealSim version where components can run in
either client-server mode or single-user desktop mode.

3. A OW module has to be created instantiating the needed components
in client-server mode from TealSim. All OW-specific code-parts will
have to be added to the module.

In all of these steps the previously mentioned requirements are to be kept
in mind. The subsequent Sections contain explanations of the steps in more
detail.

6.2 Additional 3D support for TealSim
As described in Section 5.2.1, TealSim uses Java3D for the three dimensional
graphics output. In contrast, OW uses MTGame on top of the JME library.
The latter was developed for OW but can also be used by other software.
The concepts in Java3D are quite different from the ones in a JME/MTGame
application (see Table 6.1). The scene-graph is built up with different ob-
jects. Fortunately, TealSim uses abstract elements to represent scene-graph
elements. Thus, low-level back-ends for these abstract elements can be imple-
mented for different graphic engines, including the JME/MTGame system.

In order to do so TealSim has to be prepared for the additional graphics
engine. This includes mainly (a) providing the framework with the needed
libraries including all dependencies and (b) implementing a factory in order to

6.2. ADDITIONAL 3D SUPPORT FOR TEALSIM 43

Java3D JME
OpenGL back-end built-in JOGL or LWJGL
3D-model import implementable built-in
Scene-graph deep flat
SG object-geometry relation has-a is-a

Table 6.1: Differences of Java3D vs. JME

be able to select the desired graphic output (Java3D or JME). Additionally,
the simulation definitions of TealSim need to be refactored wherever Java3D
code has been used directly instead of the element abstractions.

For point (a) the source of MTGame needs to be downloaded via sub-
version1 from the MTGame repository2. Before compilation all dependency
libraries including native-code assemblies. The needed libraries are:

• A slightly adapted version of JME,

• the physics library JBullet3,

• the JOGL4 OpenGL front-end for Java,

• and the Java real-time library javolution5.
As stated in Table 6.1 LWJGL can also be used as OpenGL back-end instead
of JOGL. However, for this work, JOGL was used.

In order to use both, the Java3D and the JME library, and to be able to
select between those, a factory method design pattern according to Gamma,
Helm, Johnson, and Vlissides (1994) is applied. Through the factory, shown
in Figure 6.1, the needed library-specific objects are instantiated. This ap-
proach is easily extendible to more additional back-end libraries. The graph-
ics output is initially set to a default value (e.g. Java3D output), but the
factory provides functionality to set the needed value. This will be needed
particularly when TealSim is used in OW since JME output is mandatory
here.

6.2.1 Implementation of JME Primitives
As subsequent step of the implementation of a scene factory the JME primi-
tives have to be implemented as well. Since those primitives must be usable

1http://subversion.tigris.org/
2http://openwonderland-mtgame.googlecode.com/svn/trunk
3http://jbullet.advel.cz/
4http://kenai.com/projects/jogl/
5http://javolution.org/

http://subversion.tigris.org/
http://openwonderland-mtgame.googlecode.com/svn/trunk
http://jbullet.advel.cz/
http://kenai.com/projects/jogl/
http://javolution.org/

44 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

SceneFactory

−theFactory:TSceneFactory

+setFactory(TSceneFactory factory):void
+makeNode(TRendered element):TNode3D
+makeNode(NodeType type):TNode3D
+makeViewer():AbstractViewer3D
+loadModel(String path):TNode3D
…

TSceneFactory

+makeNode(TRendered element):TNode3D
+makeNode(NodeType type):TNode3D
+makeViewer():AbstractViewer3D
+loadModel(String path):TNode3D
…

1

1

teal.render.scene package

SceneFactoryJ3Dimplements

SceneFactoryJME

implements

Figure 6.1: A simplified class diagram for the factory responsible for instan-
tiating either Java3D or JME objects. The SceneFactory class
holds an instance of one of the concrete factories (to the right)
which is actually constructing the needed element.

in the same way as the Java3D version they have to implement the same
interface. Because of differences between Java3D and JME the implementa-
tions of those two libraries also differ.

Figure 6.2 shows the Java3D scene-graph as it is implemented in TealSim.
All drawable simulation elements in TealSim have to build such a scene-graph
when they are to be drawn for the first time. The inner nodes of the graph
contain mainly transforms, i.e. scale, rotation, and translation of the branch.
The leaf node represents the object to be drawn. TealSim does not use the
node classes of the Java3D library directly, but wraps its own classes around
those. A base node called Node3D holds the Java3D-native inner nodes for
applying two transforms and to change the node’s visibility. Every subclass
of Node3D adds the needed leaf nodes to the scene-graph.

In Figure 6.3 a class diagram of the JME scene-graph is shown together
with the added Java interfaces. These interfaces have to be used by TealSim’s
simulation elements rather then the actual JME or Java3D node classes. Ide-
ally, only one single interface is defined for all nodes in TealSim. This inter-

6.2. ADDITIONAL 3D SUPPORT FOR TEALSIM 45

mSwitch:Switch

mTransform:TransformGroup

mContents:TransformGroup

Node3D

mShape:Shape3D Geometry

Appearance

1 *

1

1

ShapeNode

in
he
rit

s

teal.render.j3d package

Figure 6.2: The Java3D low-level scene-graph with the surrounding TealSim
object (dashed). The switch node is purely responsible for the
visibility.

face will declare methods for setting and getting transforms, colors and so
forth. The previously introduced factory could then return an object imple-
menting such an interface for all possible nodes. However, some nodes such
as field line nodes require special treatment and therefore have to implement
extended interfaces. Therefore a hierarchy of interfaces has to be defined and
applied to both, the JME and Java3D node classes.

The implementation of the nodes must result in the same appearance
as the Java3D implementation on TealSim’s 3D-window. As in Java3D the
Node3D class is derived from the inner node class of the library. On order
to be conform with all simulations the class hierarchy is kept the same as in
Java3D. Singe JME scene-graph nodes are more powerful than the ones of
Java3D; inner nodes are e.g. capable of setting their own visibility reducing
the depth of the graph by one element. Additionally, transforms can not only
be applied to inner nodes but also to leaf nodes, reducing the depth further.
This leads to a JME implementation of Node3D which contrary to the Java3D

46 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

com.jme.scene.Node

Node3D

TNode3D

ShapeNode

TShapeNode

FieldLineNode

ImageNodeLineNode HelixNode

implements

implements

teal.render.jme

teal.render.scene

Figure 6.3: Node class hierarchy in JME part (incomplete) including the gen-
eral interfaces (top right).

implementation only consists of a single JME scene-graph object. Thus, there
is no need for keeping references to multiple JME objects. The interface of
a TealSim node is implemented by forwarding calls to the JME node class.
Visibility and transform are applied directly to Node3D. Subclasses then
add geometry as needed for the specific object. Since JME comes with many
predefined shapes, such as a sphere, a box and so forth, only few objects need
to be constructed vertex by vertex manually. In contrast to Java3D where
geometries are referenced by the scene-graph leafs, the JME scene-graph leafs
are geometries. This makes sharing one geometry instance among more than
one leaf node impossible.

Although most spatial elements provided in TealSim are fairly easy to
port to JME, some need special treatment.

Field line nodes

The FieldLineNode class is the 3D representation of a field line. In TealSim
field lines are symmetric around an axis (mostly the y axis). Thus, field lines
can be defined by a single line geometry and a number of clones around the
symmetry axis. The clones are distributed evenly within the 360 degree field
around the axis. Figure 6.4 shows a simulation with 3 field lines. Each of

6.2. ADDITIONAL 3D SUPPORT FOR TEALSIM 47

them has 25 clones.

Figure 6.4: Field lines with clones

The main advantage of referencing a line compared to having an object for
each line instance is the lower memory consumption and the higher perfor-
mance. The vertices of the line are stored and the referencing nodes change
only their rotation around the rotation axis. Without making use of this
feature the computationally intensive drawing of the field lines would take
too much time.

Both Java3D and JME contain a mechanism for sharing nodes. The
Java3D scene-graph is shown in Figure 6.5. A scene-graph branch to refer-
ence as well as a link to this branch for every clone are constructed. With
an additional transform element a different rotation for every clone can be
applied. With JME this behaves slightly differently (see Figure 6.6). The
link to the template branch must be compatible with the referenced template
branch. This is mainly due to the incompleteness of the JME library. Oth-
erwise, a single inner node object with attached leaf nodes could be taken in
conjunction with a linking shared node object. However, in JME link nodes
are only implemented for triangle mesh geometries. In computer graphics
field lines are represented by lines. In order to be able to link to such lines a
SharedLine class was implemented. As with Java3D the different rotations

48 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

mSwitch:Switch

mTransform:
TransformGroup

mContents:
TransformGroup

mPick:Shape3D

mLines:Group

clone:CloneNodeclone:CloneNode

clone.mContents:
TransformGroup

:Link

mShare:SharedGroup

mShape:Shape3D
lineGeo:LineStripArray

clone.mContents:
TransformGroup

:Link

Node3D

links
to

Figure 6.5: The filed line node scene-graph for Java3D. Transforms do not
apply, since the branch is attached to the top switch-node. The
shared group at the bottom contains a branch representing a field
line. The Link node which will be created for each field line clone
references to this template.

are applied by an inner node further up in the scene-graph.
In TealSim field lines are defined by a number of vertices representing

the template line, per-vertex color information and the number of clones
to be displayed. Since this parameters differ from other graphics objects a
new interface to be used by the scene factory has to be defined. In order
to keep the Java3D code mostly unchanged, its methods are given by the
Java3D field line node. The method to set the geometry takes a float array
with the line vertices and the per-vertex colors. For JME this arrays have to
be converted to Java NIO-buffers. Since Java3D works with 3-dimensional
colors as opposed to JME’s 4-dimensional colors, the interface only support
three dimensions. Thus, the color buffer of the JME line has be converted
as well.

6.2. ADDITIONAL 3D SUPPORT FOR TEALSIM 49

:Node3D

NonLines:NodeLines:Node

clone:Node

:SharedLine :SharedLine

clone:Node

:SharedLine :SharedLine

lineGeo1:Line lineGeo2:Line
links to links tolinks to

links
to

Figure 6.6: The field line node scene-graph for JME defines the line geometry
template in the Line objects at the bottom. The clone nodes link
to these objects via a SharedLine object.

While a simulation is running the line geometry often changes with ev-
ery single calculation step. Therefore, synchronization has to be facilitated
to avoid concurrency problems. In Java3D this is done by using the syn-
chronized keyword provided by Java. In our case this locks the method for
changing the geometry with the node object as lock. In MTGame any change
to the part of the scene-graph which is currently displayed has to run in the
so-called renderer thread. In order to minimize the load of this thread the
vertex data in the geometry update method has to be prepared first. Then it
will be passed to the renderer thread. This process does need any additional
synchronization mechanisms such as locks, since the critical code is always
executed by the same thread, namely the renderer thread.

Array nodes

These elements are capable of handling an array of TealSim scene-graph
nodes. This is mainly used for field direction grids shown in Figure 6.7.
Similarly to the field line nodes an interface to array nodes has to be defined.
This interface has to be implemented by both, the Java3D and the JME
node allowing polymorphic usage of both implementations. TealSim needs
the array node to have access to every single element of the array. This is
done by indexed access as well as by an iterator.

In Java3D the implementation of the array node uses a collection pro-
vided by Java to store all elements. Since a JME node is already capable of

50 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

Figure 6.7: A field direction grid internally consists of a number of arrows
held by an array node. The arrows point into the direction of the
field.

handling scene-graph nodes as children. For that reason no additional data
members are needed in the JME implementation. Thus, the implementa-
tion of the interface is simple. The calls can be forwarded to the JME node
and an iterator class with bounds checking has to be defined. Since for the
application of a field direction grid every member of the array is accessed fre-
quently while the simulation is running, some thread-safety features need to
be added. Similarly to the field line nodes this is done by delegating critical
code to the renderer thread.

External 3D models

TealSim must be capable of adding 3D-models created by 3DStudio-max6.
As an example, the wires shown in Figure 6.7 are such an externally created

6http://www.3dstudio-max.com/

http://www.3dstudio-max.com/

6.2. ADDITIONAL 3D SUPPORT FOR TEALSIM 51

model. The 3DS format supports various features which makes writing an
importer complicated. Fortunately, JME already comes with such an im-
porter. Additional information about the model are needed to load a model
correctly:

• The path to the model file.

• A position offset vector needed since coordinate origins within the 3DS
file may differ from the JME or Java3D system.

• A scaling vector.

• Optionally a path to the textures of the model. If this data is not given,
the textures are assumed to be in the same directory as the 3DS file.

This information is stored within a container class. The model file must be
accessible. When TealSim is later used within OW access to the artwork
must be provided. Some additional tweaks such as rotating the model by
270 degrees around the x-axis need to be applied. These are adaptions to
compensate conceptual differences between JME and the 3DS format.

6.2.2 Descriptive data types
The concepts in computer graphics often allow different data types to describe
the appearance of the scene. This includes colors, materials, transforms and
bounding volumes. Java3D uses different data types and classes for these
features as JME. Various design and implementation decisions were made to
be compatible with both graphic libraries. Those are described subsequently.

Colors are used in TealSim not only to make the scene colorful, but also
to indicate values, e.g. the strength of the field at a certain point of a field
line. Colors can be represented in different ways. Different color models can
be distinguished. TealSim uses a RGB-based color model which is supported
by both, Java3D and JME. A transparency valued is then added to the
color model. Furthermore, the color of an object is defined by four colors;
ambient, diffuse, specular, and emissive. At data type level TealSim uses
four three-dimensional color vectors, one for each of the four colors. The
three dimensions store the value of the red, green, and blue color component,
respectively. Additionally, a single float is used to represent the transparency.
JME used four-dimensional color vectors exclusively. The additional value
holds the transparency value, one for each of the four object colors.

Colors are only one of the definable material properties in TealSim, the
others being shininess, cull mode and face mode. The shininess is represented
as float. TealSim uses values between 0 and 1. Since JME uses a range

52 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

between 0 and 128 the values have to be converted. With the culling mode
faces can be hidden. Front-face culling, e.g., allows an object to be visible
only from the backside. A similar concept is the face mode. Its effect on the
rendering is shown in Figure 6.8. Spatial object are represented by vertices;

filled wireframe points

Figure 6.8: Different face modes shown with the example of a cube.

a number of consecutive 3-dimensional vectors. The face mode specifies if
these vertices should be rendered as points, as line segments connecting the
vertices in order, or as areas filling the area between the line segments. Both
Java3D and JME only support the latter two modes. A points mode can
only be achieved by workarounds. Since no TealSim simulation makes use of
it currently it is not implemented yet.

To be able to use a common data structure for all mentioned material data
a class was introduced. It stores four-dimensional color vectors for ambient,
diffuse, specular and emissive color, respectively. Additionally, the shininess
is stored as float and the culling mode as well as the face mode as integer
mask values. The material class can be used externally by simulations as well
as internally by rendered objects. Setter and getter methods are provided to
be compatible with both, three-dimensional colors with a single transparency
values and four-dimensional colors. Simulations can set a material object on
a scene-graph node in order to apply the material. For Java3D nodes the
material is stored internally within an Appearance object which is referenced
by the leaf nodes of the scene-graph (see Figure 6.2). In JME materials are
applied directly to any scene-graph node, including inner nodes by using state
classes. Nodes deeper down the scene-graph can overwrite states of upper
node objects. By applying a default material state to the top node Java3D’s
default material settings can be applied. This assures the scene to be in the
same appearance when no material is explicitly defined by the simulation.

Another issue where Java3D and JME differ are transforms. These are
used for rotating, scaling and translating scene-graph nodes. Figure 6.9 shows
an object diagram indicating how transforms are applied in Java3D. Trans-
form groups are inner nodes of the scene-graph used for applying transforms.
The actual transforms are stored in a container class called Transform3D.
Internally a single matrix is used to store scale, translation and rotation. In

6.2. ADDITIONAL 3D SUPPORT FOR TEALSIM 53

TransformGroup

+setTransform(Transform3D trans):void
+getTransform(Transform3D trans):void

Transform3D
−mat:double[]
+get(Matrix4d matrix):void
+get(Matrix3d rotation):void
+get(Quat4d rotation):void
+get(Vector3d translation):void
+getScale(Vector3d):void

+set(Matrix4d matrix):void
...

+setScale(Vector3d):void
…

1

1

Figure 6.9: Object diagram: Java3D’s transforms

JME those three transforms are stored separately (see Figure 6.10); transla-
tion and scale in a 3D vector, and the rotation in a quaternion. The getter
and setter methods for all transforms are defined in JME’s base class for
scene-graph elements. Thus, transforms can be applied not only inner nodes,
but also leaf nodes.

In TealSim transforms can be set to the most abstract scene-graph node
class Node3D which wraps around Java3D or JME scene-graph classes. To be
compatible to the previous Java3D-only implementation, the transforms are
passed as Java3D transform objects. The JME implementation has to convert
this transform object by obtaining translation, rotation and scale. When
the node’s transform getter method is called the conversion is performed
the other way by constructing a Java3D transform object out of the node’s
transforms.

The last remaining data types to be usable by both, Java3D and JME
are bounding volumes. This volumes mark the outer bound of a displayed
object. It can then e.g. be used to determine if the object is within the field
of view and thus, has to be rendered. The following bounding volumes are
provided by Java3D and/or JME:

• A bounding sphere (Java3D and JME) defined by a center point and a
radius.

• An axis-aligned bounding box (Java3D and JME) defined either by two

54 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

Spatial

−localTranslation:Vector3f
−localRotation:Quaternion
−localScale:Vector3f
…
+getLocalTranslation():Vector3f
+getLocalRotation():Quaternion
+getLocalScale():Vector3f

+setLocalTranslation(Vector3f trans):void
+setLocalRotation(Quaternion rot):void
+setLocalRotation(Matrix3f rot):void
+setLocalScale(Vector3f scale):void
…

Node Geometry

Figure 6.10: Class diagram: JME’s transforms

opposite corner points, or by a center point and dimensions to all three
axes.

• A bounding polytope (Java3D only) defined by surrounding half-spaces.

• A bounding capsule (JME only) defined by a center point, a line segment
and a cap sphere radius.

• An oriented bounding box (JME only) defined by the eight corners of
the box.

TealSim simulations only uses bounding volumes available in Java3D. The
bounding sphere is represented with the same parameter in both, the Java3D
and the JME library. This is not the case with the axis-aligned bounding
box. While in JME this volume is defined by a center point c and an extend
e to each axis, Java3D uses two opposite corner coordinates u and l of the
volume. In Figure 6.11 those two approaches are shown. Since the extend
e is a vector from the volume’s center to the upper point, the center-extend
representation can be converted to the upper-lower-point representation by
simple vector additions with the three-dimensional vectors:

~l = ~c− ~e

6.2. ADDITIONAL 3D SUPPORT FOR TEALSIM 55

l

u

c

-z

y

x

Figure 6.11: Bounding box coordinates

~u = ~c+ ~e

Bounding capsules are not implemented by JME. Thus, capsules, when used
by simulations, are converted to surrounding bounding spheres when JME
is used.

With respect to software design bounding volumes are implemented by
using an abstract class inherited by the specific bounding volume classes (see
Figure 6.12). Such a hierarchy is needed in TealSim as well. The nodes

Bounds

AxisAlignedBoundingBoxBoundingSphere OtherBoundingVolume

Figure 6.12: Class hierarchy of bounding volumes

have an interface to set and get the current bounding box. The new bounds
data type uses the center-extend model for axis-aligned bounding boxes. The
JME representation needs to be converted as shown above. The reason for
choosing this model is not to change much in the simulation implementations.
Previously, Java3D’s bounding volumes were used directly. They have to be

56 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

replaced by the newly defined TealSim bounding volumes. The Java3D and
JME-specific code handles the conversions. This allows TealSim to extend
to other graphic libraries in the future.

6.2.3 The Viewer
TealSim’s GUI is implemented with Java swing components. It shows up
some control panels and a 3D panel showing the 3D graphics. The class
responsible for this is the viewer. Since it is a swing panel it can fill the
provided space for the 3D window in the GUI. That viewer also holds the
scene-graph and the lights as well as the canvas where the 3D scene is drawn
to. It is only used on the desktop version of TealSim and not needed in OW.

As with the scene-graph object the viewer is created by the scene factory
(see also Figure 6.1). This way the needed implementation is returned.

rootEntity:Entity rc:RenderComponent

sceneRoot:Node zbuf:ZBufferState

mFog:FogState

shader:
GLSLShaderObjectsState

Figure 6.13: Object diagram of the viewer’s root entity. Properties of the
scene such as fog and the z-buffer state are added to the scene-
graph’s root node.

In order to implement such a viewer for JME more detailed information
about MTGame is needed. In MTGame a scene is based on entities repre-
senting an element or a group of elements in the scene, and their components.
Entities are important for the thread management of MTGame (Twilleager,
2008). The JME implementation in TealSim uses two entities, namely a root
entity and a camera entity. An object diagram of the root entity and its
linked objects is shown in Figure 6.13. In order to show a scene a render
component has to be attached to the root entity. This component is capable
of holding a scene-graph to be rendered as well as nodes for the light. The
viewer implements methods to add and remove scene-graph objects which
will be added to the root node of the scene-graph. To become part of the
scene entities have to be registered at the so-called “world manager”. Since
only one of these objects should be available the class was implemented as

6.2. ADDITIONAL 3D SUPPORT FOR TEALSIM 57

singleton (see Gamma et al., 1994). However, for the use in OW the instance
of the world manager must be settable.

defaultCam:Entity :ProcessorCollectionComponent

eventProcessor:
OrbitCameraProcessor

cameraListener:
AWTInputComponent

mCanvas:Canvas

cc:CameraComponent

cameraSG:Node

cameraNode:
CameraNode

camera scene-graph

Figure 6.14: Object diagram of the camera entity

The second entity needed is the camera entity (see Figure 6.14). A camera
component holding the scene-graph of the camera is attached to the entity.
In TealSim the 3D model is static, i.e. it does not move or rotate. If the user
wants to zoom or to see the scene from different perspectives the camera is
moved. This requires a camera scene-graph of at least two elements; an inner
parent node and the camera node itself. Additionally a processor to move
the camera is linked to the entity by a corresponding component. Processors
are used in MTGame to fulfill specific tasks. The orbit camera processor
manages the user input with the help of an input listener. It moves the
camera accordingly. The input listener needs a link to the canvas which
must be created as stated in Twilleager (2008); through the render manager
obtained by the world manager.

The camera component needs information regarding the field of view, the
aspect ration, clipping distances and so forth. The parameters have to be set
such that the view is nearly equal to the view with Java3D implementation.
Some of the parameters can also be influenced by the simulation. The viewer
interface includes setter methods for those.

58 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

6.3 Preparing TealSim for Client-Server use
Since OW consists of client-side code and server-side code, TealSim will have
to run on OW as client-server software. Although the OW-specific code
will be put into the OW module (see Section 6.4), some TealSim has to be
prepared for that. This Section describes the changes made for this step.
Possible alternative approaches are discussed as well. The communication
between client and server is also an issue addressed in this Section. The OW
module should eventually scale up well and use as little bandwidth as possi-
ble. On the other hand all the shared data should be perfectly synchronous
among all clients.

6.3.1 Synchronization of the 3D Objects
A part of TealSim which has to be synchronized among all clients and the
server are the three dimensional objects. Simulations use representative
classes, so-called “rendered objects”. This objects hold all physical prop-
erties and create the according scene-graph nodes for the 3D representation
using the scene factory described in Section 6.2. Thus, rendered objects store
all the relevant data the simulation will need to run.

Since some parts of the simulation will run on both, the client and the
server side, the rendered elements will also be needed on both sides. Because
nothing will be drawn on the server side, scene-graph objects do not need
to be stored there. However, any changes applied to the rendered objects
during the simulation on the server will have to be sent to the client. This
could be avoided by running the whole simulation on the client side, which
is impractical due to synchronization issues (see Section 6.3.2).

Having all of the rendered objects on both the server and the client side
has the advantage of being able to do parts of the calculations on the client
and parts on the server. This is necessary since the data representing some
elements cannot be transferred whenever the data changes. Field lines are
the most obvious case. In most simulations a single field line consists of 200
data points and possibly as many color specifications. One point requires
three floats. This sums up to 1600 bytes needed for a single field line. While
a simulation is running, the field line data has to be calculated with every
frame, i.e. 20 times a second. This leads to more than 31 kilobytes per second
needed to be transferred during the simulation to each client for one single
field line. Some simulations contain more than five field lines and whenever
there are many users logged in, the traffic on the server increases to an
intractable amount. A field direction grid also produces a lot of data since
the length and rotation will have to be transferred for every single arrow.

6.3. PREPARING TEALSIM FOR CLIENT-SERVER USE 59

Since all the rendered objects can be found on the client side, the field lines
and the field direction grid can be calculated and displayed on the client side
only. This overcomes the problem of the need to transfer all the data points
of a field line. The needed computational power is also divided since the
client and the server can do different tasks.

The approach requires to serialize the rendered objects in order to send
them to the client. If calculations are to be on the server they have to
be serializable anyway. PD needs this behavior. However, transferring and
distributing the serialized rendered objects with every change is not possible
due to the big bandwidth utilization. Instead the objects can be transferred
this way after they are created and be synchronized with update messages.

The dependence on the underlying graphic output primitive classes com-
pletely vanishes with this solution. The actual scene-graph objects only need
to be created on the client side. If an other graphic library is used the scene-
graph objects can be implemented for the desktop version of TealSim. Those
objects can be used on the client side with the client-server version.

6.3.2 Splitting the Simulation Engine
The simulation engine is capable of all calculation in the simulation. This
Section describes the changes made on the simulation engine part of Teal-
Sim to prepare it to work as client-server version. First the engine prior
to the changes is explained. Subsequently, the changes made are discussed.
Alternative approaches are also stated and discussed.

Engine functionality

The simulation engine is capable and responsible for the simulation calcula-
tions. It is given a list with all elements it needs from the simulation. This
elements called “simulation rendereds”are marked by an interface. When the
simulation is running the internal data of the simulation rendered elements
is calculated 20 times a second. Several types of forces are taken into ac-
count for that. The simulation runs in four steps with the according methods
implemented:

• doReorder,

• doDynamic,

• update,

• and doRefresh.

60 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

The doReorder step resolves all the collisions occurring between the ob-
jects at the beginning of the step. The objects rearranged are those who have
a so-called “collision controller” attached. With the help of this controller
those elements are repeatedly reordered until there is no collision any more.
Some of the elements need to be told if the positions have changed after the
collision resolving step. For this purpose a call-back method is implemented.
Usually this call-back is used to set internal properties, e.g. the position, to
a previously calculated shadow value. Further information about this values
are given in the doDynamic step paragraph.

In the doDynamic step the actual integration of the objects occurs fol-
lowing the laws of physics. Only so-called “integratable” objects are affected
by this step. These objects place the internal values, such as velocity, posi-
tion, mass, charge, and so forth, into a single double array. This array can
then be obtained by the engine and the values are used for the calculations.
Additionally, the object need to provide derivative values to the engine. The
calculations are done by the engine in several iterations. After each iteration
the values are written back to the simulation rendered object. Those objects
store the values as shadow values. After the last iteration, the objects are
informed of the end of the doDynamic step.

To tell the integratable objects to apply the shadow values to the actual
ones, the update phase calls a method to each relevant object. In order to
save runtime the objects need to check if the dependent value is different
from the actual before setting it.

The last step is the doRefresh step which consists of two phases. The first
phase only effects specific object, called “spatials”. These elements need to
perform post-step calculations. An example are field lines which are com-
puted after each step with the updated positions, charges, and so forth, of the
objects influencing the field line. In the second phase the viewer is instructed
to render the whole updated scene. For that purpose the viewer will forward
the rendering call to all the objects to be rendered.

A part of the class hierarchy of TealSim prior to the changes is shown in
Figure 6.15. Two engine types are implemented, a general simulation engine
and a derived electromagnetic engine capable of handling electromagnetic
simulations. The simulation itself contains the information which engine will
be need. Besides the electromagnetic engine, different other types, such as
a biochemical or a kinetic engine are declared. Previously, each of the types
related to a specific engine class. However, the current implementation of the
simulation engine covers all, but the electromagnetic simulation functionality.

The engine is created according to the type specified in the simulation
and is then referenced by the engine control. This object connects the user
interaction with the simulation engine, i.e., it provides buttons to start,

6.3. PREPARING TEALSIM FOR CLIENT-SERVER USE 61

SimEngine

#renderedObjs:List<TRendered>
#integratableObjs:List<Integratable>
…
−doReorder():void
#doDynamic():void
#update():void
+doRefresh():void

+syncAddSimElement(TSimElement e):void
+syncRemoveSimElement(TSimElement e):void
…

EMEngine

#eField:EField
#gField:GField
#bField:BField
#pField:PField
…
+syncAddSimElement(TSimElement e):void
+syncRemoveSimElement(TSimElement e):void
+getEField():EField
…

EngineControl

#worldThread:Thread
+setEngine(TEngine model):void
+getEngine():TEngine
…

TEngine

+UNKNOWN_ENGINE:int=0
+BIOCHEM_ENGINE:int=1
+KINETIC_ENGINE:int=2
+EM_ENGINE:int=3
…

Runnable

+run():void

TEngineControl

+getSimState():int
+setSimState(int s):void
+not():void
+init():void
+start():void
+step():void
+resume():void
+stop():void

1 1

implements

implements

implements

Figure 6.15: Class diagram: previous simulation engine

stop, pause the simulation, and so forth. In order to provide the buttons
the engine control needs to be a swing object which can be integrated to the
TealSim’s GUI. On play-button click, the engine control starts the simulation
by running the engine in its own thread. This way the engine is set to running
mode and will run the simulation by performing the four simulation steps
repeatedly. The different protection states of the four methods for each
simulation step indicate previous poor design of code changes. This issue

62 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

has to be resolved when the engine is adapted. When the engine is not in the
running state only the doReorder step and the doRefresh step is executed.

Every step should take around about the same amount of time. This
time can be specified by the simulation. By default it is 50 milliseconds. If
there is still time left after the four simulation steps the rest of the time is
waited with a sleep call on the thread. The engine contains methods to add
new elements. Those can be called while the simulation step is executed. In
this case the elements are stored in a temporary list and are then added or
removed after the calculations. This avoids concurrency problems with the
element lists.

The electromagnetic simulation engine adds functionality to the simu-
lation engine top class. It stores some data in its members so they can be
accessed with additional methods. Mostly, these are field objects. Four types
of fields can be handled by the electromagnetic engine:

• electric field,

• gravity field,

• magnetic flux field and

• Pauli field.

The engine does not need to provide much functionality for these fields since
the calculations occur in the simulation objects itself and in the field objects.
The latter store references to all field-creating simulation elements. They are
capable of calculating the field force at every coordinate when needed.

The electromagnetic engine’s role is only to provide quick access to these
elements specific to electromagnetism. It keeps the elements in internal lists
the application can step through during the simulation step. The lists are
built when the engine is initialized and whenever an object is added to the
simulation.

Design of a new class hierarchy

The design of TealSim allows to add new types or subtypes of engines by
inheriting from the existing ones. However, if it should be used on a client-
server system this becomes tricky. If some parts of the engine should run
on the server it would run on PD. This requires some restrictions for the
code (see also Section 6.3.3). Synchronization among PD’s managed objects,
e.g., is done exclusively by PD itself. If the engine contains synchronization
mechanisms deadlocks can occur. Such code restrictions requires TealSim

6.3. PREPARING TEALSIM FOR CLIENT-SERVER USE 63

to provide both, desktop-specific and client-server-specific code to run the
engine.

Figure 6.16 shows a possible class hierarchy if the client-server functional-

AbstractSimEngine

SimEngineAbstractEMEngine ServerSimEngine

ServerEMEngineEMEngine

Figure 6.16: Extending desktop version by inheritance. Three instances of
each, the simulation engine and the electromagnetic engine are
declared. This results in problems such bad extendibility.

ity is added with additional inheritance classes. Code needed in the desktop
version as well as in the client-server version will be placed in two abstract
classes, namely one general and one electromagnetic abstract engine. Both
of these two classes can be extended by classes specific to the desktop version
and the client-server version. With this approach the client-server-specific en-
gine classes could be implemented within an OW module whereas the desktop
version of the engine comes with TealSim. Thus, TealSim would provide the
same functionality as before, but with enhanced extendibility used by the
OW module.

However, this approach comes with many disadvantages. First, it is not
easily extendible. If a client engine is needed two different classes would
have to be added. One for the general simulation engine and one for the
electromagnetic simulation engine. This code is very likely to be very similar
if not identical. Thus, the code would be copied from one class to the other
having a bad influence on the maintainability. If changes are to be made on
that copied code they would have to be applied to both added classes. Adding
a new engine type, such as a kinetic engine leads to the same problems.

A closer look on the problem reveals two abstraction levels in the code
hierarchy; the engine type (general and electromagnetic) and the application

64 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

AbstractEngine

#impl:AbstractEngineImpl
…
+AbstractEngine(int engineType)
…

ServerEngineSimEngine ClientEngine

AbstractEngineImpl

EMEngineImpl

1 1

Abstraction Implementation

Figure 6.17: The engine class hierarchy using the bridge design pattern. On
the left the class hierarchy for the application types (desktop,
client-server) are shown. The implementation (right) imple-
ments the different engine types (general and electromagnetic).

type (desktop version and OW server-side version). In Gamma et al. (1994)
exactly this problem is addressed. The solution to this is to build two class
hierarchies and to use one of them as the abstraction and one as implemen-
tation hierarchy. Figure 6.17 shows the resulting class hierarchy. The design
patter used is called “bridge”. The abstraction hierarchy holds the classes for
different application types, while the implementation builds a hierarchy of
engine types. The abstraction maintains a reference to the implementation.
Compared to the pure-inheritance approach shown in Figure 6.16 a client
engine for the client side of the client-server version is added to the abstrac-
tions. Only one additional class is needed for that. This way, duplicated
code is avoided. In order to separate the code of TealSim and OW the server
engine and the client engine will be put into the OW module.

The implementation is instantiated when the abstraction is constructed.
This is achieved by using the existent engine type integer bit masks. Such
an integer value is passed to the constructor of the abstraction class which
then instantiates the implementation accordingly. The abstraction itself has
all the functionality which is not engine-type-specific. The only functional-
ity remaining in the implementation are to add, remove and obtain specific
elements. This can, however, change in the future. Then additional func-
tionality may become engine-type-specific and will have to be put from the
abstraction to the implementation.

Adding and removing elements must be part of the abstraction’s interface,

6.3. PREPARING TEALSIM FOR CLIENT-SERVER USE 65

which can be accessed from other parts of the application. The implementa-
tion has to be informed of every element which should be added or deleted.
Hence, it can store the element if relevant. A getter method is harder to
implement. Previously, the electromagnetic engine was equipped with getter
methods for relevant objects, e.g. the fields. Since those are now managed by
the implementation class, a unified getter functionality is implemented. This
prevents the engine from having to add a method to the abstraction for every
single element (e.g., for each of the four fields). Instead, simulation elements
can be obtained by type. For that purpose getter methods are provided. Not
only engine-type-specific elements, but also types from the abstraction can
by obtained by such methods. Two versions are currently implemented for
single objects and collections, respectively:

• Retrieving the object by a class type object. With the help of Java’s
reflection an object representing the class type is given as parameter
to the getter method. The method uses Java’s generics and replies the
required object of the parameter class.

• Getting the object by an enumeration type. With this approach an
enumeration of all gettable objects must be defined. The getter method
takes the enumeration type as parameter.

The prior approach has the advantage of returning the needed data type.
Neither type casts with the returned object, nor a declaration for every pos-
sible returned object is necessary. Especially for fields this approach proves
to be simple and effective. With basic data types which are used more often,
however, stating the type may be insufficient. The enumeration-approach
overcomes this problem. However, the advantages of the first approach van-
ish. Currently, both methods are implemented. Internally the gettable ob-
jects are stored in maps with class type or enumeration type as key. This
provides O(logn) runtime with class types and O(1) runtime with enumera-
tions. For class types this is quicker than using nested if-clauses. Type maps
are contained by both, the abstraction and the implementation. If an object
is requested the abstraction will first try obtain the object from its own list
and then from the implementation’s list.

There is also an other approach of using the bridge pattern which is log-
ically better. The engine type could be the abstraction and the application
type the implementation. However, this is hardly possible in our case because
of synchronization issues with PD. Since the server parts of the code should
not contain any synchronization behavior, synchronization would have to be
part of the implementation. Since a lot of code is affected by synchronization

66 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

issues in the desktop version, the separation between abstraction and imple-
mentation would leave a lot of engine-type-specific code in the abstraction.
With this behavior the bridge pattern does not have any advantages over the
pure-inheritance approach.

Separating Server and Client engine

The functionality of the engine has to be balanced properly among client
and server side. If the whole simulation is processed by the client, only little
simulation data has to be transferred, because it is generated on each client.
However, this approach would require enormous synchronization efforts dur-
ing the simulation run. The engine state with all simulation objects needs to
be the same on each client. The user interactions would have to go through
the server to be applied on all clients synchronously. This would already
require some adaption to the engine code. On the other hand, if the whole
simulation is calculated on the server the synchronization among the client
is reduced to a minimum. Only the results have to be sent to the clients.
However, as discussed in Section 6.3.1 this is not possible because of the
high network bandwidth utilization with the field lines and the field direc-
tion grid. Those elements have to be computed on the client side anyway.
They will not need to be perfectly synchronous among all clients, because as
representations of the field they do not interact with other simulation ele-
ments. Additionally, synchronizing the field-creating elements will keep the
field lines synchronous automatically. Calculating some parts on the client
also splits up the computational power between the client and the server.
This saves CPU utilization on the server. All the code running on the server
side has to run on PD. Therefore it must be adapted as described in Sec-
tion 6.3.3. There is also the possibility of writing a PD service which would
overcome that problem. However this approach comes with many disadvan-
tages. Running a service enables running code “parallel” to the tasks in PD.
In this case the thread must be synchronized by hand. The scalability pro-
vided by PD is also compromised because the service may not be restricted
in the use of computational power on the server. In case of OW the whole
virtual world could be slowed down. For that reason this approach was not
followed. Thus, all the engine code running on the server has to be made
compatible with PD. One calculation step of the server-side engine can be
processed as a PD task. If the engine is in the running state the task can be
scheduled repeatedly. PD provides functionality to schedule tasks in such a
way. The time between the executions as well as the waiting time until the
task is executed for the first time can be specified. The task is invoked when
PD calls a method required by a responsible interface. This interface, and

6.3. PREPARING TEALSIM FOR CLIENT-SERVER USE 67

thus the method, have to be implemented by the server-side engine.
In order to estimate how much engine code needs to be run on the server

a closer look on some specific simulations is necessary. Unfortunately some of
them are not deterministic. The “Capacitor” simulation for example starts
with randomly distributed charges. During the simulation charges can be
added or removed. The less deterministic simulations are the harder is it to
synchronize them among clients. To avoid that problem the engine has to
run mostly on the server. As mentioned above, it is not a problem to put
the field line and direction grid calculation to the client. It is even possible
to omit the calculation of these field-depending shapes synchronously to the
other calculations. This might be necessary if the client is too slow for such
frequent calculations.

The calculations which have to be done on the client happen inside the
doRefresh step. As mentioned previously, this is the last phase of the engine
calculation. The spatial objects affected by this step are mainly the field
directions grid and the field lines. Subsequently the rendering is initiated.
These steps are needed on the client side, i.e. the doRefresh step will happen
there.

The integration done by the doDynamic step performs the main calcula-
tion phase of a whole engine step. For synchronization reasons, this will have
to happen on the server. The doReorder step is a preparation step for the
integration and will therefore happen where the doDynamic step happens;
on the server. The update step is needed to perform updates to the simula-
tion objects. These updates concern mostly internal descriptive values which
are replaced by shadow values stored temporarily during the simulation step.
This replacement has to happen prior to the doRefresh step since this phase
may need the values. Because the doRefresh phase does not need to be ex-
ecuted on the server the update phase can also be skipped here. After the
integration the clients have to receive the values and can then perform the
update and doReorder step. Fortunately, the data needed to be sent to the
client is already there and used in the doDynamics step. All the changed
data is contained by the so-called “dependent values”. A simple call on the
engine can retrieve all the shadow values as a single array of doubles, this
array will be sent to the clients. The client can then update all their object
by setting the retrieved dependent values on the simulation objects.

The order of the integratables simulation elements in the according list in
the engine plays a role in this case. Since this order corresponds to the array
with all the dependent values, the order on the clients’ integratable list must
be the same as on the server. This can be accomplished by sending the order
to the clients. After setting the shadow values of the client engine the update
step can be performed to set the actual property values of the elements to

68 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

the shadow values. Subsequently, the client engine is ready to perform the
doRefresh step in order to calculate the field lines or perform other actions
done in this step. Lastly, the client engine triggers the rendering.

:TaskManager serverEngine:ServerEngine

clientEngine:ClientEngine

1.schedulePeriodicTask(
serverEngine, 0.05, 0.05)

2.run()

2.1.doReorder()
2.2.doDynamic()
3.1.getDependentValues(…)

3.2.setDependentValues(…)

4.1.update()
4.2.doRefresh()

Figure 6.18: Communication diagram for the engine execution step. Net-
work communication is indicated by the line segment for
simplification.

The whole process of a simulation step is shown in Figure 6.18. First
the engine is registered at the task manager of PD. With this registration
the task manager also gets information of when and how frequently the task
should be performed. The task manager then triggers the run method of
the engine periodically. The server-side engine can now do the server-side
calculation step and retrieve the dependent values to be sent to the clients.
On the client side the relevant objects are updated with the dependent values
and the remaining calculation steps are performed.

With the discussed method all dependent values are transferred to each
client every simulation step. This can lead to a high bandwidth utilization
at the server. In the capacitor simulation, e.g., there are 24 point charges
per default. Each charge has got three dependent values for the position and
the velocity, respectively, and one for the charge. Since all of these seven
values are 64 bit doubles the transferred data is more than 10 kilobits per
step and client. With 20 steps per second this value multiplies up to more
than 200kbps, which is not always accessible. In order to reduce this amount
some methods are possible:

6.3. PREPARING TEALSIM FOR CLIENT-SERVER USE 69

• Using floats instead of doubles for the dependent values. This would
reduce the amount of data which needs to be transferred to 50%. If the
engine still uses doubles internally the double array would have to be
converted into a float array which would take too much time. Another
possibility is to use floats in the engine instead of double. This can
possibly lead to rounding errors. Additionally, many other elements in
TealSim would have to be changed to use floats.

• Transferring only the changed data. Unfortunately, it is not easy to
determine the values which have changed. This can possibly only be
done by comparing each value to the previous one. Another problem
would be that additional information would be needed about what
values are skipped for transfer. Simply setting all depending values on
the client side would not be possible any more since some of the values
are in the array and some are not. Another similar possibility is to
transfer only value differences and to compress the data. Since several
numbers will not have changed, a number of zeroes will occur in the
data which compresses well. However, difference transmission relies on
all data to be transferred in order to be synchronous.

• Not sending values which are not needed on the client side. There are
several unneeded dependent values. With the point charges for exam-
ple those are the velocities. The position is needed for rendering and
the charges are needed if field lines have to be calculated. It is not
easily to determine if a value is needed on the client. This is sometimes
simulation-specific and would therefore need specific adaptions for sin-
gle simulations. As it is with the transferring of only changed data it
would not be possible to set the clients dependent values with a simply
call.

The three methods could be combined arbitrarily. Because of their drawbacks
in terms of performance and the increased complexity none of these methods
were implemented. A test with several clients and different applications to
test the bandwidth was successful.

6.3.3 Preparing TealSim for the PD server
All the code running on the server needs to be ready for PD execution. This
forces the code to fulfill some additional requirements explained subsequently.

PD’s first priority is to make client-server applications scalable. For this
purpose the execution is split up into tasks. Every task has got a certain
amount of time to be executed. If it has not finished after that time it is

70 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

interrupted and rescheduled. Splitting the execution into tasks avoids hav-
ing a single task blocking the whole execution. A task always runs as an
atomic state change. If it is interrupted the state prior to the task execution
is reestablished. That functionality is implemented in PD using serializa-
tion. The objects are arranged to logic groups, each of them represented by
a so-called “managed object” class object. In PD a marker interface exists
for such objects. Classes implementing this interface are serialized and de-
serialized at once with all of their members. PD holds all managed objects
in their serialized form. If a task needs any data of them this objects will be
de-serialized. Synchronization between the managed objects is done by PD.
If a task tries to write to a managed object while another task accesses it the
task will be closed and rescheduled for later execution. Reading one man-
aged object by more than one task is allowed. After a task has successfully
processed to its end the used managed objects are stored and are replace the
previous versions of the objects. If a task cannot be completed the previ-
ous versions of the managed objects are kept and can be de-serialized again
whenever another task (or the same rescheduled task) require it. Code run
on PD has to follow several guidelines (“RedDwarf Application Tutorial,”
2010):

• All objects must implement the serializable interface. Without that
the mentioned atomicity of a task cannot be provided. PD throws an
exception if an object not being serializable.

• A single managed object must not contain too much data. Otherwise
the de-serialization and re-serialization process would take too much
time and the task will be thrown away very often.

• All inner classes should be static since the time taken for the serializa-
tion increases significantly if they are not.

• Synchronization blocks must not be used among managed objects and
their members. Since PD uses its own locks those can conflict with the
ones the user defined code uses. This can easily lead to a deadlock.

• Static fields which are not constant vanish on re-serialization. Although
this problem can be solved with Java semantics another problem with
this fields appear. Such fields are specific to a single Java virtual ma-
chine. This behavior undergoes the feature of PD to run on more than
one virtual machine.

• Java’s exception base class java.lang.Exception should never be
caught. This is because PD uses its own exceptions which would in

6.3. PREPARING TEALSIM FOR CLIENT-SERVER USE 71

this case be caught by the user code. This is especially important for
debugging and testing new functionality since the exception base class
is often used together with such approaches.

• No objects except managed objects themselves should be referenced by
more than one managed object. After the first serialization process
they will not be identical any more since a new object is created on
re-serialization.

Most of the problems are relatively easy to overcome in TealSim. The Java’s
exception base class should be used very rarely in Java code anyway. Non-
constant static fields are sometimes used for singleton objects. For such
purposes PD provides functionality to bind an object to a name, i.e., a Java
String. However, for compatibility reasons PD code should not be put into
TealSim. Such code parts can be replaced in OW with classes defined in the
OW module. Fortunately, this was not necessary since all the non-constant
static fields used on the server side could be removed.

To pull synchronization functionality out of the code is rather difficult
with existing software. Most of the synchronized blocks needed on the server
side are placed in the original engine. With the new engine class design
explained in Section 6.3.2 those synchronization code-blocks needed for the
desktop implementation are put into the desktop version of the engine. The
base class, which the server-side engine extends, does not contain any syn-
chronization code.

Non-static inner classes can access the members of the parent class. This
is the case because a reference is held internally. The non-static inner classes
can be replaced by static ones where these reference to the parent object is
maintained manually. This makes the code a little more complicated but
makes the serialization needed on the PD server much quicker. The process
of replacing the non-static inner classes does not effect the definitions of the
simulations at all and is therefore not problematic.

Since no dependencies on PD must not be added to TealSim, the interface
for managed objects must not be used there. PD provides a wrapper class
for the purpose of converting any object to a managed object. This will later
be used within the OW module.

To make all the needed code serializable usually forces a lot of code
changes. However, with TealSim the effort is acceptably low because most
of the classes were already designed to be serializable. This is mostly due
to TealSim’s functionality of saving and reloading the current simulation
state, which requires the elements to be serialized. The swing components
for the user interface are serializable anyway. One problem with serializabil-
ity occurs with the bounding volumes. Those are not only needed in the

72 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

low level graphics but also within the simulations and at several other parts
of the code. Originally the Java3D bounding volumes were used, but those
do not implement the corresponding interface to be serializable. For that
reason manually implemented bounding volumes are replacing the Java3D
ones outside the low level graphic packages. Further information about the
implemented bounding volumes is given in Section 6.2.2.

With another class of Java3D used in TealSim the same problem was ad-
dressed differently. The three-dimensional transform class occurs only two
times in TealSim outside the Java3D-specific package. Therefore it was kept
and the serialization was done by Java’s object serialization customization.
Normally, Java stores all non-transient member objects of an object recur-
sively on serialization. This default behavior can be overwritten by imple-
menting two methods in the class to be serialized manually. These two
methods will then be called by the virtual machine on serialization and de-
serialization, respectively (Greanier, 2000). The serialization method triggers
the default serialization first. Then the data representing the transform is
written to the object stream responsible for the actual serialization. Trans-
forms can be represented by a 4× 4 matrix. In Java, these 16 double values
are passed to the object stream. On de-serialization they can be retrieved and
a transform object according to these values is constructed. The transform
member has to be marked transient, since a non-serializable object leads to
a runtime error when serialization is attempted. In some cases members do
not need to be re-serialized at all. This happens mostly when the member is
used for caching.

6.4 The OW Module
After having the desktop version of TealSim able to run with JME and
MTGame an OW module can be implemented. As mentioned in Section 5.3.1
such modules, when constructed and implemented, they can be loaded dur-
ing run-time via a simple web interface. Eventually, such a module consists
of a single jar file. In our case this file will contain all needed TealSim com-
ponents as well as the OW-specific files. Generally, a module consists of the
following components:

• Server-side code put into a server package,

• client-side code put into a client package,

• code to be distributed to both, client and server put into a common
package

6.4. THE OW MODULE 73

• and artwork put into a separate directory within the module, called
“art”.

The module components are zipped into a single jar file consisting of a server-
side jar and a client-side jar. The prior archive contains all classes in the
server package and in the common package, whereas the client-side archive
needs to contain the client and the common package, as well as the artwork.
For the TealSim module the needed TealSim classes and their dependencies
are needed as well. To add them a new “lib” folder is added to the module.
TealSim is put to this directory as a jar file including all needed classes.

OW as well as its modules use apache ant7 to build. Prior to any coding
the build configuration file has to be adapted to make use of the TealSim
archive. The environment path has to be adapted such that this archive is
found and for both, the client and the server parts, the archive is put into the
dependency list. That list has also to be extended by other modules needed
by the modules, such as the “AppBase” module. Additional functionality to
compile and pack the TealSim archive was also added to the ant file. This is
especially needed when code changes in TealSim relevant to the OW module
are necessary.

Artwork in TealSim mainly consists of 3D models in 3ds-format. In
TealSim they are packed into an archive. For simplicity reasons the models
are copied unpacked to the OW module’s “art” directory. When the module
is uploaded via the web interface the artwork is placed in the OW filesystem.
It can be accessed there by the module code via an URL resolver built into
OW. Within the TealSim module this artwork is only needed by the scene
factory and its functionality to load external 3D models (see Section 6.2.1). In
the module a new scene factory is defined by inheriting the TealSim version.
It only extends the functionality by resolving the path according to the OW
filesystem. Since all displaying functionality is needed on the client side, the
created factory is placed into the client package of the OW module.

6.4.1 Simulation Selection Functionality
One module should be capable of showing different simulations (but only one
at a time) within the virtual 3D world. For that purpose a mechanism needed
to be implemented to select a simulation. From the user’s perspective, the
functionality can be provided by the module properties. The user can sim-
ply right-click on the module’s graphics and select the according properties
window. A drop-down menu with all available simulations will appear. The

7http://ant.apache.org/

http://ant.apache.org/

74 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

user can now choose the desired simulation. With a module such a func-
tionality can be added by implementing a special interface recognized by
OW. This interface declares a number of methods responsible for the needed
functionality.

Firstly, the name of the property panel needs to be retrievable. OW
provides localization functionality in order to support different languages.
Text strings displayed to the user are represented by keys. The translated
text for each key is stored in text files with their filenames suffixed by a
two-character language code. OW provides functions to read the translated
values by file name. The correct suffix of the filename is chosen according to
the clients operating system settings. In order to support different languages
the name of the properties panel is replied using the described language
functionality. For that purpose language bundle files are provided for English
and German language. Extending to other languages is possible by simply
adding a new bundle file with the language-specific suffix and the translations
stored in it.

Another important method the properties factory has to implement is
used by OW to hand a CellPropertiesEditor object. It is needed by the
module properties class to retrieve the current server state class and to make
changes on it. Without this functionality it would be hardly possible to
apply changes with the use of the properties dialog. A second purpose of
the cell properties editor is to indicate changes the user made in the prop-
erties GUI. This will affect provided buttons, such as the “Apply” and the
“Cancel” button. They will be enabled or disabled depending on whether
the properties were changed or not. A click on a button will also trigger a
call to corresponding methods declared in the properties window interface.
Of these methods, only the one to apply changes is used. It sets the chosen
simulation on the server state, retrieved from the properties editor.

Lastly, a Java swing panel to be shown to the user needs to be retrievable
by OW. This panel will then be shown to the user. In our case the panel needs
to hold a drop-down list with all available simulations, together with a short
description text. As shown in Figure 6.19 the properties class is implemented
such that it is the panel. Thus, it will return itself when asked for the panel
object. The available simulations are represented internally as an array of
strings and will be instantiated using Java’s reflection functionality. The
advantage of using a string array is the low memory utilization as well as the
simple extension. By adding a new string with the simulation name to the
array any new simulation in TealSim runnable in client-server mode can be
added to the dialog.

The last functionality of the properties class is to act as an action lis-
tener to changes to the properties panel. It registers itself as listener to the

6.4. THE OW MODULE 75

:TealSimCellProperties

:JPanel
:PropertiesFactorySPI:ActionListener

:JLabel simulationSelection
:ComboBox

implements implements

Figure 6.19: Object diagram of the properties dialog. The implemented prop-
erties class (center) implements the interface for showing a prop-
erties window in OW. It also serves as action listener to react
on user interaction and as panel showing up.

drop down list. This allows the properties object to react whenever the user
chooses another simulation. The properties editor will be used to change the
behavior of the buttons to apply, cancel or restore the changes.

6.4.2 Creating a Simulation
As shown in Figure 6.20 the process of loading the simulation is rather com-
plicated. The according components of TealSim need to be informed about
the other main elements. Most of them hold references to each of the others.
The SimPlayerApp class represents the entire user interface in the desktop
version. First it creates the framework, in this case the so-called “player”.
Subsequently, the simulation is created. This happens whenever the user
chooses a simulation. It is then given by a string which directly corresponds
to the package and class name of the simulation. This way the simulation
object can be loaded with Java’s reflection functionality. The created simu-
lation contains all the elements and parameters needed. It is passed to the
player’s initialization. For the OW version both, the client and the server
side will need their own player. In a first step the player creates the engine.
The needed engine type is obtained from the simulation object. The engine
can then be instantiated as described in Section 6.3.2. The last main compo-
nent needed is the viewer. With the desktop version the proper scene factory
class instantiates the viewer. On the client side a client-specific viewer is
created directly by the player. Since the server does not display anything all
the steps including the viewer are skipped on OW’s server side. The viewer
is then added to the engine. This is necessary with the desktop version and

76 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

:SimPlayerApp

:SimPlayer sim:
TSimulation

viewer
:AbstractViewer3D

eng:
SimEngine

1.new
3.load(sim)

2.creates

3.9.setGUI(…)
3.11.addElements(guiElms)

3.3.creates

3.1.getEngineType()
3.6.setEngine(eng)
3.7.setFramework(this)
3.8.getGUI()
3.10.getGuiElements()
3.12.getEngineControl()
3.13.initialize()

3.2.creates by engine type
3.4.addRenderEngine(viewer)
3.5.setSimulation(sim) 3.5.1.getEngineControl()

3.5.2.getDeltaTime()
3.5.4.getSimElements()

3.5.3.setDeltaTime(time)
3.5.5.addSimElements(elms)

3.5.6.setSimulation(sim)

Figure 6.20: Communication diagram of the creation of a Simulation with
TealSim’s Desktop version (slightly simplified)

the OW module’s client side. There is the possibility of adding more than
one viewer to the engine. However, this is not completely implemented in
TealSim yet.

The next step is to hand a reference of the simulation to the engine.
This allows the engine to obtain all the needed values for the simulation
step. This includes e.g. the time a simulation step should require. Most
importantly the engine obtains all the simulation objects which are needed
for the simulation. The engine can then hand the simulation to the viewer
which grabs all drawable 3D-objects from the simulation. Since there is no
viewer on the server side, this step is skipped there. Passing the simulation
to the viewer via engine rather than directly adds a lot of unnecessarily
complicated code. This will have to be changed in TealSim in the future.

After the engine and the viewer are aware of the simulation a reference to
to engine as well as to the player needs to be established in the simulation.

6.4. THE OW MODULE 77

This is necessary because some simulations are not only containers for all the
elements, but do also contain functionality influencing the actual simulation.
On the desktop version the player then obtains a GUI object which specifies
how the user interface looks like. Figure 6.21 shows how the frames are

:TFramework :TGUI

:MenuBar viewPane controlPane

HelpV i e wExamplesMechanicsElectro-MagneticFi le

Field Visualization

Electric Potential

Electric Field: Grass Seeds

Parameters

-5.0Individual particle charge:

1 2Plate 2 - Number of charg.. .

5.0Individual particle charge:

1 2Plate 1 - Number of charg.. .

Figure 6.21: The elements in TealSim’s user interface with their object hi-
erarchy and there place of display (incomplete). The player of
class interface TFramework holds TealSim’s GUI object (inter-
face TGUI). Their descendents in terms of the Java swing object
hierarchy are arranged to form the user interface.

arranged with this GUI in the desktop version of TealSim. To the left there is
the view pane displaying the three dimensional output and the engine control
buttons. The control pane on the right contains elements the user needs to
influence the simulation. This control pane is wrapped by a scroll pane which
is not shown in the Figure. It is needed whenever the simulation needs too
many elements to be shown in the control pane at once. All of the elements
in the Figure are of Java sing classes and are nested as shown. The GUI object
is responsible for placing its underlying elements. By implementing the TGUI

78 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

interface defined in TealSim a new arrangement can simply be accomplished
and is done within the OW module. This newly implemented class does not
have to show the 3D-window because the 3D simulation elements are shown
directly and rendered by OW. Thus, the view pane, originally holding the
engine control elements as well, is replaced by an engine-control pane put
beneath the control pane.

With the next simulation initialization step the elements to be shown in
the GUI are obtained from the simulation object by the player. Subsequently,
they are added to TealSim’s GUI object. The engine control then needs to
be set to its initial state. On the desktop version this implicitly starts the
engine thread and thus the main simulation loop. However, there are no
calculations made yet. Additionally to starting and stopping the engine,
the engine control does also represent the panel with the “play”, “resume”,
“pause” buttons and so forth. On OW’s server side no engine control is
needed since the engine’s states are set mainly by the user interactions on
the client side. Whenever an according message is retrieved from the client
the engine’s state is changed directly. On the client side an engine control
is used similarly to the desktop version. However, it does not start the
engine thread on initialization. It has additional responsibilities as sending
informations about user clicks on its buttons to the server. The enabling and
disabling of the buttons are synchronized by the client’s engine control (see
Section 6.4.4). Because the functionality is very similar but extended to the
desktop versions engine control the client-side engine control will be derived
directly from TealSim’s desktop version.

The last step of the simulation loading is to initialize the simulation by
calling a corresponding method. Some elements need the engine to be instan-
tiated to be initialized properly. Previously, the engine was created directly
within the simulation’s constructor. This implementation could not handle
different engines on the client side and on the server side. For flexibility
reasons the engine was late-bound to the simulation. With this solution the
simulation only indicates what type of engine is needed. Elements who need
the engine to be already created can now use the simulation’s initialization
method to perform their engine-specific initialization. This step needs some
changes in TealSim’s simulation definition, which is not desirable. However,
the changes are minor and were thus permitted.

Instantiating a simulation can be time consuming. The main components
as well as all simulation objects and swing components need to be created.
Three possible ways for instantiating the whole simulation can be found for
the OW module:

1. The simulation can be created on each client when it logs on. This

6.4. THE OW MODULE 79

leads, however, to immediate synchronization problems since many sim-
ulations contain e.g. code with randomized initial values. The clients
must therefore synchronize the simulation objects after creation. Since
there are many different simulations, decisions would have to be made
which client overrules the others. It seems to make more sense to create
only one simulation object.

2. If the simulation is instantiated on the server the randomized parts of a
simulation do not raise a synchronization problem. Once the simulation
is created it can be distributed to the clients. Both, the server player
and the client player can then do the initialization in their own way.
PD already provides functionality to transfer an initial state whenever
a client logs on. This functionality could directly be used to transfer
the simulation to the client. The main problem with this approach is
the long time it takes to create all the objects. Some tests made clear
that for some simulations PD is not able to create the objects within
the time a task can run. Increasing this time on the OW server would
break the requirement of being able to run the module on every OW
server without code changes.

3. To overcome the problem with PD the simulation can be instantiated
on a client and then be sent to the server. The server then distributes
the simulation to all the clients. Delegating the creation to one partic-
ular client is not possible because this client possibly disconnects before
sending the simulation to the server. For that reason the server tells
all the clients to create the simulation as long as it does not receive a
simulation from a client. The first simulation received is then used and
sent to all clients.

In Figure 6.22 the instantiation process of a simulation is shown. When the
second client logs on the first one has not yet instantiated the simulation. For
that reason the server tells the second client to create the simulation as well.
In a similar case, namely when the simulation is changed while more than one
client is logged on, the server will tell all the clients to create a simulation.
When the server has received the simulation for the first time from a client it
omits simulations received subsequently. The first simulation is distributed to
all clients. Whenever a new client logs on the current, it receives the current
copy. Then, the client’s player can initialize the simulation as described
previously.

The described behavior requires some extra code and makes the module
slightly more complicated. However, for previously mentioned reasons some
simulations could not be created purely on the server. In future versions more

80 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

Server Client 1 Client 2 Client 3

log on

create simulation

log on

create simulation

ready, simulation data

simulation data

simulation data

log on

simulation data

Figure 6.22: Sequence diagram of simulation instantiation and distribution.
As soon as the server has got a simulation from a client, it does
send it to all other clients.

of the creation code probably happens on the client (see also Chapter 9). In
this case the module is already prepared and there would be less changes to
the code.

One additional issue with the client-server version is the creation of object
IDs. Such identification numbers will be used for synchronization. For that
reason all the elements to be synchronized must have an unique identifier.
Such elements are marked by an interface in TealSim. Classes not defined in
TealSim should never be used within the simulation. Those would not imple-
ment the interface and, hence, no unique ID could be given to the elements.
Java provides the creation of Universally Unique Identifiers (UUIDs) which
is used for ID creation.

After the server has initialized the simulation all the references to the
server-specific elements have to be removed. Otherwise the serialization pro-
cess would also pack these elements and send them to the clients. In the
first place the simulation object is affected. It is used as an action listener by
some simulations, which add some execution code within the listener method.
This code often has to be executed only once, i.e. on the server side. Doing
otherwise may have strange effects and break the synchronization among the
clients. Thus, all elements having the simulation object as action listener

6.4. THE OW MODULE 81

will have to remove this reference. This occurs particularly often with swing
objects. On the client side an other action listener can be added instead of
the simulation. This allows the client to detect actions to be performed on
the server side.

6.4.3 The Control Panel
Most of the user interaction in TealSim happens with the swing user interface.
Parameters within a simulation can be changed, the view can be changed
(e.g. whether field lines show up or not) or the simulation can be started or
stopped using this interface. OW provides functionality as a module called
“AppBase” for that purpose. It can render light-weight swing components
onto a two-dimensional pane within the virtual world. User interactions
are also possible as simply as with swing programming. However there is
no synchronizing among clients implemented in the AppBase module. This
would break the modularity of OW since synchronization should always be
customized with knowledge of the actual application and therefore has to be
implemented specifically.

:BasicRenderer :Cell

:App2DCellRenderer :App2DCell :App2D :Window2D

:App2DCellRendererJME :WindowSwing

:TealSimRenderer :TealSimCell :TealSimApp :TealSwingWindow

Teal Module

AppBase Module

Wonderland

Figure 6.23: Class diagram of module’s client-side swing components (sim-
plified)

Figure 6.23 shows the class hierarchy of a cell using the AppBase module.
In order to define any ordinary cell OW’s cell base class has to be extended.
The cell represents an object within the virtual world with a reference to a
cell renderer. The AppBase module can be placed between the base OW cell

82 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

implementation and the TealSim cell, i.e., TealSim’s classes are derived from
the already extended AppBase classes rather than from OW’s base classes.
The additional App2D class is extended in order to set the pixel scale of the
swing panel and to specify the control behavior of the window. The latter is
set to allow multiple users to use the panel concurrently. The WindowSwing
class is extended to specify the actual light-weight swing panel to be shown.
The cell maintains a reference to this object and will set TealSim’s client
simulation player as panel to be displayed. The width and height of the
panel are also specified here. Usually, modules using the AppBase module
do not need to inherit its renderer. However, the TealSim module does need
the renderer to render not only the 2D panel with the swing panel, but also
the 3D content of the simulation. Thus, the renderer had to be extended.
An additional scene-graph branch is added to show the additional content.

6.4.4 Starting the Simulation and synchronizing En-
gine States

With the previously explained functionality the cell is capable of showing a
simulation with the 3D objects and the swing elements on the OW clients.
The next step is to actually run a simulation which requires a lot of synchro-
nizing among the clients and the server.

Firstly, the buttons at the engine control have to be synchronized. They
can be either enabled, i.e. clickable, or disabled. When a simulation shows up
some buttons are already disabled. The pause button, e.g., cannot be pressed
when the simulation is not started yet. However, as soon as the user clicks
on “play” the pause button has to be enabled. In order to synchronize the
buttons’ ability to be clicked this information has to be sent to the server and,
subsequently, to all other clients whenever a click event occurs on the engine
control’s buttons. The server should not need any information regarding
enabled or disabled buttons. However, it has to do the communication among
the client, and thus, some server-side coding will be necessary. Fortunately,
an OW module exists to maintain states among the clients without adding
additional server-side code, the SharedState module. It encapsulates the
server-side code. In order to used it, the building setup needs to be modified
as stated previously. The SharedState module is implemented as a so-called
“component”. OW components can be added to a cell, providing additional
functionality. Theoretically, every component can be added to every cell.
The user can assign components to cells in-world using OW’s user interface.
In case of the TealSim cell the shared state component has to be added to
the cell in any case. This can be achieved by a simple declaration in the

6.4. THE OW MODULE 83

server-side cell code.
With the SharedState module a map is provided. It maps strings to

shared objects. The latter can be booleans, integers or strings. For the
engine control’s buttons, one entry in this map is used. A shared integer
representing the buttons’ state as bit mask is the object the chosen key maps
to. The SharedState module also provides functionality to add state-change
listeners. In the TealSim module such a listener is used by the clients to
notice changes to the enabled-state of the buttons on an other client. Newly
logged in clients need to obtain the state shortly after login from the map
itself.

Clicking a button at the client’s engine control user interface must not
only affect the button enabled mask, but also the state of the engine. If the
user clicks on the “step” button one simulation step should be executed. For
that purpose the call is forwarded to the client engine which fires a property
change event. The client cell, capable of communicating with the server, is
a property change listener to the engine and sends the message about the
pressed button to the server. An according message class handleable by PD
has to be implemented. For that purpose OW’s CellMessage base class is
inherited. The class can hold any serializable object and will be transferred
between clients and the server. In case of the engine message it holds engine
state changes as well as all the other communication regarding the engine.
On the server side a message receiver to such message classes is defined. For
the engine messages the message receiver is a static inner class of the server-
side representation of the engine. This is helpful because it is within the
same scope as the engine itself and has therefore access to the engine’s class
members. The receiver is derived from a base class provided by OW. Thus, it
can make use of OW’s messaging mechanisms, including registering a receiver
object. A method of this object will be called whenever an according message
is received. To enable the functionality the object has to be registered with
the according message class. Whenever an engine message with an engine
state changed is received a handler method in the server-side engine is called
with the new state as parameter. Since the message receiver will reside in
an managed object internally used by OW, it should not contain ordinary
references to any objects held by other managed objects including the engine.
Because PD serializes managed objects as a whole, an object referenced by
two different managed objects would be re-serialized in both managed object,
leading to two different instances of the object. To hold references to other
managed objects PD provides a so-called “managed reference” pointer. The
engine message receiver will use such a reference to maintain a reference to
the managed object surrounding the server-side engine.

Whenever the engine is informed of a state change, it will have to react

84 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

accordingly. It stops the simulation if it is already running. A PD task can be
used to execute a simulation step. PD comes with a scheduler. A task class
will have to implement an according interface declaring a call-back method
which the scheduler will call on task execution. In the TealSim module an
inner class of the engine serves as task class. It is created by the engine itself
and will call a doStep method on the engine. This will trigger an execution
step. If the user clicks on the “step” button, the task will only be scheduled
once. PD also provides the functionality of scheduling a task repeatedly.
This is used when the user clicks on “run”. The same task is now executed
until the user clicks on any other button. The repeatedly scheduled task can
be stopped with a handle returned by PD when on scheduling.

After every calculation step the clients will have to be informed of the
changed simulation objects. As mentioned in Section 6.3.2 this synchroniza-
tion will be performed by sending the dependent values to each client. These
values, held by the simulation objects, can be obtained from the engine which
caches the values after each simulation step for performance reasons. In order
to transmit the array the engine message class is reused. The dependent val-
ues are stored as a single array of type double. The order of the data is only
defined by the order of the simulation elements in the data vector holding
the simulation elements in the engine. In order to guarantee the same order
on all clients, the order has to be initially transferred to the clients together
with the simulation. With the same order of dependent values, the clients
can now update their simulation elements and perform the final doRefresh
engine step.

The user can also reset a simulation which reinitializes the simulation
objects. This step is implemented within the simulation classes. When the
user clicks on the “reset” button, an engine message with the new state will
be delivered to the server. As soon as the engine gets the information, the
simulation will be stopped and the according method in the simulation class
can be called. Subsequently, the dependent values are retrieved and stent to
the clients in order to synchronized all participants.

6.4.5 Synchronizing the Swing User Interface
Similarly to the simulation elements some of the swing elements have to be
synchronized among the clients as well. This is a rather complicated task
since those elements are heterogeneous. Elements not influencing the server
engine can be synchronized using the SharedState module. However, some
of them are connected with TealSim’s “routes” to simulation elements. The
server needs to be informed about everything influencing the simulation. On
the other hand, some of the swing elements do not have to be synchronized

6.4. THE OW MODULE 85

among clients at all. Those are e.g. check boxes indicating whether field lines
are shown or not. Every client can select on its own whether the field lines
are shown or not.

Visualization Control

TealSim’s visualization control class is responsible for any visualization of
fields. It is a swing panel and added to the user interface in most of the elec-
tromagnetic simulations. In Figure 6.24 the panel is shown. The simulation

Field Visualization

Magnetic Potential

Magnetic Field: Iron Filings

Vertex Coloring

4 0
4 0 7 91

Number of . . .

Field Lines

2 0
2 41 20

Resolution

Show Vector Field Grid

Figure 6.24: The visualization control within TealSim’s GUI. It contains
options to show client-specific visual data as well as buttons for
showing analytical data.

defines which of the elements are shown to the user. Those not needed are
set to be invisible. The first three entries concern the field direction grid and
the field lines. The user can choose whether those are shown and how many
of them are displayed. For the field lines the vertex coloring can be enabled
showing different colors for different strengths of the field along a field line.
All those elements do not need to be synchronized since every user should be
able to set this options individually. The mechanisms to influence the view
(e.g. for hiding the field lines when the user disables the check box) on the
client side work exactly the same way as with the desktop version of TealSim.
Therefore they do not need to be adapted for the OW version at all.

Whenever any of the buttons below is clicked the simulation is paused
and the requested representation of the field is calculated. During the calcu-
lation the progress bar in the swing window indicates the current progress.
When the calculation is completed a 2D panel as shown in Figure 6.25 with

86 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

Figure 6.25: Display of electric potential in the “Charge by Induction” sim-
ulation

the requested visual representation is shown. Such user interaction requires
synchronization among the clients and also with the server. The server is
responsible for pausing the running simulation. The other clients need to
know they should calculate and display the requested view. With the desk-
top version the engine’s state is changed after a click on one of the buttons.
In the OW version the client-side engine object replaces the desktop-version
engine. The client-side cell class is registered as a property change listener to
the client-side engine listening for a change of the simulation state. With this
mechanism the server is informed whenever the engine state should change.
This causes the server to stop the simulation when the user clicks on one of
the buttons on the visualization control.

In order to inform the other clients that they should show up the panel
with the field representation the SharedState component is used. For every
visualization control object an entry is put into the shared map. The value is
an integer with the flag indicating what button was pressed. The integer keys
for the buttons were already used in the swing interface of the desktop version
and were thus already defined in TealSim. On every client a listener class
is registered to the map entry. This class is also used for every additional
functionality regarding button clicks on a visualization control. The user

6.4. THE OW MODULE 87

clicks are emulated on the other clients by calling the visualization control’s
listener call-back method with the same parameter object as it would be
called on the event of a user click. This parameter is an action class defined
in TealSim.

The last issue with the synchronization of the visualization control is
to get the client side of the module to know whether the user has clicked
a button. For that purpose the code in the visualization control class is
changed slightly. As stated above an action is triggered on every user click.
The visualization control object itself listens to all those actions. Its code
is adapted to store a list of all the actions where the visualization control is
registered as action listener. Additionally, a new method to add an external
listener to all of those actions is introduced. The external listener is declared
within the OW module and can now recognize all relevant clicks on the
visualization control.

Routes to simulation elements

Routes are a concept for wiring values of simulation elements together. In
most cases a swing user interface element is coupled with a value of a physical
simulation element. The value of a slider, e.g., can directly change the charge
value of a point charge. When defining a simulation such a route can simply
be added to any simulation element. A method for doing this is declared in
an interface implemented by almost all of TealSim’s elements. Routes can
also be removed from an object during execution. They are represented by
classes implementing the property change listener interface. This way they
can be added directly as a listener to any swing component. Whenever an
event occurs the routes forward the call to the target object.

With the desktop version of TealSim the according target method of the
simulation element can be called directly by the route object. With a route
from a slider to a point charge, e.g., this happens whenever the user moves the
slider. The changed values of the point charge are recognized by the engine
when the next engine step is performed, and thus, influence the simulation
even while the simulation is running. With the OW version of TealSim the
slider values will have to be transferred to the server because the charges effect
the server-side engine calculations. The sliders also need to be synchronized
among the clients. This is done by sending the values back to the clients.
The server also has to store the new values in order to be able to send them
to newly logged on clients. The slider values of the simulation stored on the
server side must be kept up to date. After creation of the simulation the
server only keeps a copy of the simulation in order to distribute it to new
clients.

88 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

In order to detect user interactions on swing components a property
change listener is introduced to the client side of the OW module. It is
an inner class of the client-side player. On initialization of the simulation
it is instantiated and registered to all needed swing components. If a pro-
cessed swing component has subcomponents they are also parsed recursively.
Whenever a user clicks on a GUI component or changes any value a call-back
method of the property change listener will automatically be called. with the
fired event. In this case an event container is constructed and packed into
a newly defined event message object which will later be sent to the server.
The event container contains the property change event and the ID of the
source object which will be a simulation element. The ID will replace the
object since it does not make sense to transfer the client-side object to the
server. On the server side the ID will be translated to the actual object hold-
ing the id. With a property-change call on the server-side representation of
the source the client-side event is emulated and triggers the needed events
on the server. Subsequently, the message previously received by the server
is sent to all the clients. They process the message in a similar way as the
server does. The identifier will be resolved to an object and the property
change event will be applied to this object.

A problem with this approach is that the network between client and
server cannot be synchronized. If several property changes happen with the
same object within a short time their order can mix up. This is very likely
to happen with the sliders. When a user drags a slider the value changes
frequently. This will possibly lead to a feedback loop. In this case one value
will be transmitted to the server and then sent back to the clients. In the
mean time the client value has changed because the user has dragged the
slider further. While the new value is about to reach the server the old one
comes back to the client. The old value is applied again causing the slider
to jump back to the old value. Every value change triggers a new sending
event. This is usually stopped by the server since it does neither process
nor forward a message to the client if the property value has not changed.
However, this mechanism does not work when the values change quickly since
the property value will alternate between two or more values. This causes
a slider to continuously jump between different values. The effect is worse
if two different clients change the same GUI element. To reduce the effect
the frequency of event messages triggered by a single object is limited. The
less frequently a client is allowed to send such data to the server the more
unlikely are the synchronization problems to occur. However, if the network
speed to a user is lower and therefore the latency is higher the problem still
occurs. The transmission frequency of the synchronization messages cannot
be made arbitrarily long since the user interaction would be delayed too long.

6.4. THE OW MODULE 89

Additional synchronization mechanisms are still to be implemented.

6.4.6 Performance improvements on the server side
The server-side part of the module must be implemented with respect to
performance issued. PD requires all server-side objects to be split into log-
ical units, so-called “managed objects”. A managed object is serialized and
de-serialized as a whole. If it is to heavy the serialization process takes a
long time and performance suffers. Thus, the server side of the TealSim
module was split into managed object as shown in Figure 6.26. Running a

:TaskManager

:EngineRunner

:ServerPlayer

theEngine:ServerEngine

tmpEngine:ServerEngine

:TealSimCellMO

:ChannelComponentMO

:EngineMessageReceiver

:ClientEventReceiver

newEvents:ScalableHashMap

Figure 6.26: The server-side managed objects with references. The arrows
indicate managed references. Blocks inside other blocks are ref-
erenced as members by the surrounding object.

simulation needs special treatment, since it requires a lot of resources. The
simplest implementation would have the server-side player holding all the ele-
ments needed for the simulation. This includes the engine with its simulation-
and swing elements and the simulation object. Hence, the server-side sim-
ulation step would work similarly as with the desktop version. A message
from the client would trigger the engine to start the simulation. Whenever a
user interacts with the swing user interface the changed value is transmitted
to the server where the server-side swing element is updated. This update
would trigger changes in the simulation elements through routes automat-
ically. Whenever a new client logs on the server can transmit the current
state to it.

90 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

However, this simple approach does not work since the player holding all
other TealSim elements is much to big to be serialized during a PD task.
Additionally, the server-side swing elements should not be updated while the
server is highly utilized for the same reason. The implemented solution to
this problem uses an additional managed object containing only a temporary
engine with its simulation elements. This engine only exists while the sim-
ulation is running. It can be created by using PD’s serialization behavior;
the permanent engine, held by the player, places a reference to itself into
another managed object. When this managed object is re-serialized it con-
tains a deep-copy of the permanent engine holding only elements needed for
the simulation. An engine runner implements PD’s Task interface and runs
the temporary engine to which it maintains a managed reference. During
the simulation user interactions will not update the swing components of the
simulation. Instead, only the simulation elements the corresponding routes
point to are updated. The changes to the swing elements are stored within a
map, enabling the cell to update the GUI when the simulation has stopped.
If a single swing element is updated more than once, only the last change
needs to be stored. An event receiver listening for such client events is imple-
mented as an inner class of the cell. This allows it to access the event update
list, the temporary engine and the player through the cell. When a client
logs on during a running simulation the simulation object prior to execution
is sent together with all updates. The client can then recover the current
state. When the execution is stopped the update list has to be applied to
the swing elements. Additionally the permanent engine has to be updated.
For that purpose the dependent values of the temporary engine are retrieved
and applied to the permanent engine, automatically updating the simulation
elements’ dependent values. The temporary engine can now be thrown away.
When the engine is not running, the element update procedure is switched
to the normal one.

6.5 Implementation of a Multi-player Simu-
lation

In order to make use of the virtual world a new simulation was implemented.
As stated in Chapter 3 games are a promising way to learn physics. In
TealSim several games are already implemented for that reason. One of
those was extended to be played by three clients at the same time. The
players of the game have to communicate with each other during the game
with respect to the physics. As stated in Section 5.3 OW provides several

6.5. IMPLEMENTATION OF A MULTI-PLAYER SIMULATION 91

communication channels including 3D spatial audio.

Figure 6.27: Implemented three-player video game in OW

Figure 6.27 shows the implemented game. The simulation shows three
charges. Their charge values can be changed using the three sliders in the
swing window. According to the charge values the three charges attract or
repulse each others. The two blue charges above cannot change their position
but the third charge can. The goal of the game is to navigate the movable
charge through the horseshoe-shaped body until it reaches the exit on the
bottom right hand side. This can only be done by changing the charge values
properly while the charge is moving. The colors of the charges change with
their charge value. Every user can switch on or switch of the field lines.

The simulation was added to TealSim and can therefore also be used
with the desktop version. In that case it is not easy to play though, since

92 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

one user will have to change the values of the three sliders during the game.
The implementation of the team game was rather simple. An other, already
existent game was reused and adapted for three players. In the original game
there was only one slider which was needed to change the charge value of the
moving charge. The values of the other two charges remained the same. To
adapt the simulation to a three player game two sliders were added. Their
values were coupled with the charge values of the other charges using routes.

6.6 Summary
This Chapter has explained the major implementation steps towards running
TealSim simulation in OW. This was achieved in three steps:

1. Adding JME 3D-graphics support to TealSim. This included imple-
menting all 3D scene-graph elements used by TealSim as well as the
support for external modules. With the process of enabling different
graphic back-ends much previously Java3D-dependent code was refac-
tored. This lead to a cleaner separation of the graphics back-end in
TealSim. The desired back-end can be selected through an introduced
factory.

2. Preparation of TealSim for use as client-server architecture. Some con-
siderations about how the synchronization is going to happen were to
be made without actually changing TealSim. The engine was split
such that it is extendible by the later implemented OW module. The
preparation did not just prepare TealSim for OW but also cleaned the
engine’s threading model. TealSim was not made dependent of OW
with this step.

3. The OW module was implemented defining all OW-specific elements.
Additionally, a mechanism to switch to other simulation was developed.
This allows the OW user to put several different simulations in time
into the virtual world. Although some performance tweaks needed to
be implemented, there was also a focus on clean design.

In order to demonstrate the advantages of using TealSim within a virtual
world a multi-player learning game was implemented. Such an implementa-
tion can be done by people with little programming skills, such as physics
teachers. Theoretically, all of the simulation provided by TealSim can be used
within OW. However, many simulations do not follow the implementation
guidelines and need to be fixed before being runnable in OW.

6.6. SUMMARY 93

The whole implementation lead to improvements concerning object-orient
design in TealSim. However, due to a lack of implementation time there is
a lot of room for further improvements. Mostly issues with direct influence
on the performed implementation were resolved. Additional speed improve-
ments are also possible and necessary in order to have more than a single
simulation run at once.

94 CHAPTER 6. IMPLEMENTATION OF THE COMPONENTS

Chapter 7

Installation and Usage of the
Module

In this Chapter the implemented module is explained from the user’s per-
spective. This covers the installation on an OW server as well as the usage
afterwards. For better understanding several screen shots are added. All
the explained details require a running OW server with access to the server
administration.

7.1 Installation via OW’s web interface
The module will be compiled using the ant command. The resulting Java
archive file represents the module and has to be uploaded to the OW server.
OW comes with a JavaEE Glassfish application server and a corresponding
web interface. This interface can be accessed via any arbitrary web browser.
The default port is 8080. It is however possible to configure OW’s web server
to run on arbitrary ports. Apart of some external links to the web page of
the Open Wonderland Foundation1, the shown home page (see Figure 7.1)
contains two functional buttons; one to start the OW client as explained in
Section 7.2, and one to be redirected to the administration page. This page
is shown in Figure 7.2. To the left a menu to select specific pages is shown.
The “Manage Modules” page provides an upload form to deploy the module
to the server. A list of all installed modules is also provided on this page.
The user can select any installed module to be removed. After a change with
modules is done the PD server needs to be restarted. This can be done by
selecting the “Manage Server” page and clicking the “restart” link beside the
PD entry (see Figure 7.2, top).

1http://openwonderland.org

95

http://openwonderland.org

96 CHAPTER 7. INSTALLATION AND USAGE OF THE MODULE

Get Java...

Welcome to Open Wonderland
The Open Wonderland Client launches using Java Web Start,
which automatically downloads the latest version of the software
when you click the launch button. To get started, all you need is a
current version of Java installed on your system.

For more information:
Open Wonderland QuickStart Guides
Open Wonderland Web Site
Documentation Wiki
Help Forum

Server Administration
For more information:

Server Administration Console Guide
Launching Wonderland Clients using Java Web Start
Configuring Open Wonderland for Firewalls, NATs, and Proxies

Server: localhost, Port: 8080
Version: 0.5

Figure 7.1: Home page of OW’s web interface

7.2 Using simulations in-world

After the module is deployed it can be loaded in-world. The OW client is
started with a click on the “Launch” button on the home page of the web
interface. The login window appears, and a user name can be chosen. A
TealSim cell can be loaded by selecting “TealSim Cell” at the dialog shown
after clicking the “Insert” and “Object...” item at the task bar. Figure 7.3
shows the cell after it is loaded. The default simulation loaded is the “Ca-
pacitor”. In OW TealSim looks very similar to its desktop version. On the
right hand side a control panel is shown and the simulation can already be
started or stopped. The main visual difference is the simulation’s 3D window
which is constructed directly in-world rather than within a window next to
the control panel.

To prevent them from unintended clicks users will have to take control
of the panel before it can be accessed. This is done by right-clicking on the
panel. The menu shown at the right bottom of Figure 7.3 providing a “Take
Control” item appears. This menu can also be used to open the properties of
the cell. As shown in Figure 7.4 some “Capabilities” of the selected cell can be
changed within the object editor showing up after clicking on “Properties...”.

7.2. USING SIMULATIONS IN-WORLD 97

Home

Manage Server

Edit Placemarks

Manage Apps

Manage Content

Manage Groups

Manage Modules

Manage Worlds

Monitor Server

Server Admin

Server: tealsim, Port: 9091
Version: 0.5-dev (rev. 4526)

refresh: never 15 sec. 60 sec.

Manage Server
Server Components (edit)

Name Location Status Actions

Web Administration Server localhost Running log

Voice Bridge localhost Running stop restart edit log

Shared Application Server localhost Running stop restart edit log

Darkstar Server localhost Running stop restart edit log

Stop all, Start all, Restart all

Home

Manage Server

Edit Placemarks

Manage Apps

Manage Content

Manage Groups

Manage Modules

Manage Worlds

Monitor Server

Server Admin

Server: tealsim, Port: 9091
Version: 0.5-dev (rev. 4526)

!"#"$%&!'()*%+

,#+-"**&"&.%/&!'()*%

0%*%1-&"&#%/&2'()*%&345&-'&6#+-"**&"#(&1*617&,#+-"**8& & !"##$%&'()%

,#+-"**

,#+-"**%(&!'()*%+

!'()*%&."2%
!'()*%

9%:+6'#
;%+1:6<-6'#

"==':("#1%+ >?@A
96+)"*&"==':("#1%+&-'&2'>%B&:'-"-%B&"#(

+1"*%&1%**+

Figure 7.2: The upload process of a module to the server. The top image
shows the server administration main page. With a click on the
marked link the bottom page shows up showing the upload func-
tionality.

The frame on the right hand side changes according to the selected capability.
In order to switch to another simulation the “TealSim Cell” capability has to
be selected. The “Properties” frame now shows a drop-down menu with all
possible TealSim simulations. The desired simulation can now be changed
and confirmed by pressing the “Apply” button.

If more than one simulation should be placed in-world, the user can either
load a second cell in the same way, or use OW’s cell duplication functionality.

98 CHAPTER 7. INSTALLATION AND USAGE OF THE MODULE

Figure 7.3: Cell after it is loaded

The latter is done by a right-click on the existing cell. The menu should then
show a “Duplicate” entry. An arbitrary number of simulations can be added
this way. Every single added TealSim cell can be customized with respect to
size, position, and simulation type.

7.3 Summary
This Chapter gave instructions how to use the implemented module from the
system administrator’s and the user’s perspective. Since OW provides a web
interface it is fairly easy to install the module. Loading a simulation can be
achieved by using the menu bar. Simulations can be handled in the same
way as most of the other objects within the virtual world; they can be moved,
re-sized, or duplicated intuitively. Switching to other simulations is realized
with a special menu within the object properties. The tight integration within
OW allows faster familiarization of the user with the module. However, since
the focus of this work lied mainly on providing functionality, style features

7.3. SUMMARY 99

Figure 7.4: Properties window of the TealSim cell

such as fancy graphics were mostly omitted.

100 CHAPTER 7. INSTALLATION AND USAGE OF THE MODULE

Chapter 8

Lessons Learned

Working at a renowned facility such as the Massachusetts Institute of Tech-
nology represented a great opportunity to the author. This Chapter summa-
rizes my personal gains in experience during the stay at MIT together with
general thoughts about the project.

Although I had previous experience with studying abroad the research at
MIT opened some new perspectives. After being welcomed warmly by the
CECI stuff I was helped out not only regarding my work, but also regarding
every-day life. This included information about local facilities, the registra-
tion process and the structures at MIT. A desk with all the equipment I
needed, most notably a desktop computer, were provided. Off-topic prob-
lems such as defective hardware were always addressed by the CECI stuff,
saving me time and effort and enabling me to stay with the topic. Although
I previously experienced the problems occurring with distraction, I did not
expect such a difference. After all, I owe a good amount of the project’s
outcome to the well-organized environment.

A similar enhancement compared to previously implemented projects
were achieved by the regular presence of people working on the project as
well as people intending to use the software. This allows a close cooperation
among these participants. Examples are

• Nicole Yankelovich, executive director of OW, who provided feedback
at OW user level,

• Jonathan Kaplan, OW developer, who was often capable of giving ad-
vice on implementation problems and bugs in the OW software,

• Phil Bailey, former TealSim developer, who had many informations
regarding TealSim and often discussed implementation issues with me,

101

102 CHAPTER 8. LESSONS LEARNED

• Mark Bessette who gave feedback concerning 3D-graphic design and
brought in ideas regarding that field, and

• John Belcher, professor teaching physics, and thus a potential user of
the system.

All these different peers have different views on the project and can therefor
bring in many ideas and provide feedback from different points of view. Their
regular presence helped a lot during the design and implementation phase
and gave me a good idea of the importance of close cooperation.

One of the most challenging parts was getting familiar with the used
frameworks. Both, TealSim and OW are fairly unstable. TealSim has been
adapted by several different programmers over the past two decades. Since
this leads to many inconsistencies, lack of communication among previous
developers is presumed. OW is a fairly new project under rapid develop-
ment. The changes with the current version including the new 3D graphic
engine as well as the forced changes regarding the ownership of the project
represents a challenge to the project. Getting into the matter was there-
fore difficult. This, however, allowed me to get a deeper understanding of
many interesting technologies including computer graphics, parallelization,
client-server architectures and serialization.

Furthermore, the rather short time forced me to manage my time properly.
Time management was very critical. This tought me to always remember
the use of efficiency mechanisms such as the 80/20 rule (see Koch, 1999).
This leads to less frustration with less important issues. Preparation time
to get familiar with frameworks is necessary, but a hands-on approach often
shortens the familiarization time. This was especially applied to computer
graphics. When building scene-graphs in JME I iteratively learned how the
underlying concepts behave. It is, however, important not to drift towards
a trial-and-error approach. The project was an ideal test field that will help
to shape my future career.

Chapter 9

Summary and Outlook

This work presented an approach to provide a collaborative learning environ-
ment for physics students. For that purpose a virtual 3D world, namely Open
Wonderland (OW), and the TealSim physics simulation framework were com-
bined. The choices for this particular frameworks were mainly made because
of their extendability, flexibility and free availability. Within the virtual
world not only the simulations can be placed, but also additional learning
material for course preparation and for in-world courses. TealSim is well-
suited for the use in undergraduate physics lectures. Teachers with only
little programming skills are able to define their own simulations or simula-
tion games.

Technically, the approach was realized by adapting TealSim to run in
OW. The TealSim framework was adapted to optionally be runnable in
client-server mode. This is necessary to fully run most of the predefined sim-
ulations within the virtual world. OW prove to be flexible and user-oriented,
but also to be in an early stage of development. However, it was well suited
for this thesis purpose. In order to point out the advantage of the simula-
tion software within a 3D virtual world compared to the desktop version a
multi-player e-learning game was implemented. Tests showed the software’s
capability to manage several avatars playing at the same time. Since some
stableness issues with both environments were detected a lot of effort was
taken to overcome such shortcomings. The fact that both used environments
are open source software helped decrease this effort slightly.

The implementation does not claim completeness in any respect. The au-
thor can suggest some major improvements which are described subsequently.
The first issue occurs because the focus lied on providing the functionality.
Consequently, little attention was payed to the world around the users. There
is a positive social effect when groups of people meet (Callaghan, McCusker,
Losada, Harkin, & Wilson, 2009) which can be increased by a virtual world

103

104 CHAPTER 9. SUMMARY AND OUTLOOK

which is more similar to real-world. There is also a potential in enhancing
the usability. This could e.g. be achieved by providing a three-dimensional
user interface to control the simulations and games. Compared to the current
implementation with the swing windows this approach seems to be closer to
real world.

Another concern, which was often neglected because of the focus on func-
tionality implementation, is the usability of the software. The following
minor changes regarding this topic are recommended:

• The distance between the 2D swing window and the three dimensional
simulation is currently not changeable by the user. Especially when the
simulation should be placed within small 3D-spaces as buildings this
functionality is essential. For better usability the mechanism to change
the distance should be similar to the position change mechanisms built
in OW.

• Currently, the 3D elements of the simulations are scaled to a diagonal
width of three meters. This size cannot be changed without editing
the Java source code. An additional dialog for changing the size of the
3D and the 2D parts separately is needed. Again, the interface for this
functionality should be similar to what is already used in OW.

• The dialog for changing the simulation in-world is just a simple drop-
down menu. Since well-designed user interfaces increase the accep-
tance and satisfaction of the users (Rodriguez, Borges, Murillo, Ortiz,
& Sands, 2002) this user interface should be refactored.

In order to achieve the functionality for the first two points the cell could
be split into two cells, one for the 3D components and one for the swing
components. This way OW’s mechanism to resize, move and scale cells could
be applied to both parts separately.

One major issue with the implementation is performance. The imple-
mented module scales up well for more than a dozen users depending on the
simulation. However, some speed improvements can still be made by pulling
elements from the server to the client and by optimizing the server-to-client
network traffic.

Although many different simulations are supported not all of them work
out of the box within the implemented OW module. Many simulations are
not fulfilling the specifications. In order to use them with the module they
have to be refactored. So far only electromagnetic simulations were tested.
With the other simulations in TealSim a broad spectrum of different physics
simulations could be used within OW.

Acronyms

OW Open Wonderland

SL Second Life

JME JMonkeyEngine

QA Quest Atlantis

MUVE multi-user virtual environment

CSCL computer-supported collective learning

CECL computer-enabled collective learning

CLE collective learning environment

MICA Meta-Institute for Computational Astrophysics

MUD multi-user dungeon

MMORPG massively multi-player online role-playing game

MVC Model-View-Controller

GUI graphical user interface

NPC non-player character

TEAL Technology-Enabled Active Learning

PD Project Darkstar

UUID Universally Unique Identifier

105

106 ACRONYMS

List of Figures

2.1 Approaches in collaboration studies 7

3.1 Game definition . 12

4.1 Learning process in 3D virtual worlds 23
4.2 River City user interface . 25
4.3 Quest Atlantis user interface 26
4.4 MICA seminar . 27
4.5 Gravity simulation . 28

5.1 Concept for simulation framework inside a virtual world . . . 32
5.2 TealSim screenshot . 34
5.3 TealSim components . 35
5.4 Client and server components of OW 37

6.1 Class diagram: The scene factory 44
6.2 Java3D scene-graph with class hierarchy 45
6.3 Node class hierarchy in JME part 46
6.4 Field lines with clones . 47
6.5 Field line node scene-graph for Java3D 48
6.6 Field line node scene-graph for JME 49
6.7 Field direction grid . 50
6.8 Face modes . 52
6.9 Object diagram: Java3D’s transforms 53
6.10 Class diagram: JME’s transforms 54
6.11 Bounding box coordinates . 55
6.12 Class hierarchy of bounding volumes 55
6.13 Object diagram: viewer’s root entity 56
6.14 Object diagram: camera entity 57
6.15 Class diagram: previous simulation engine 61
6.16 Extending desktop version by inheritance 63
6.17 Engine class hierarchy using the bridge design pattern 64

107

108 LIST OF FIGURES

6.18 Communication diagram: engine execution step 68
6.19 Object diagram: properties dialog 75
6.20 Communication diagram: creation of a simulation 76
6.21 Elements in TealSim’s user interface 77
6.22 Sequence diagram: simulation instantiation and distribution . 80
6.23 Class diagram: client-side swing components 81
6.24 Visualization control in GUI 85
6.25 Display of electric potential 86
6.26 Managed objects on the server side 89
6.27 Implemented three-player video game in OW 91

7.1 Home page of OW’s web interface 96
7.2 Uploading a module . 97
7.3 Cell after it is loaded . 98
7.4 Properties window of the TealSim cell 99

List of Tables

4.1 Characteristics of Virtual Worlds 20

6.1 Differences of Java3D vs. JME 43

109

110 LIST OF TABLES

Bibliography

Akilli, G. K. (2007). Games and Simulations: A New Approach in Education?
In D. Gibson, C. Aldrich & M. Prensky (Editors), Games and simulations
in online learning: Research and development frameworks (Pages 1–20).
Information Science Publishing.

Barab, S., Pettyjohn, P., Gresalfi, M., Volk, C., & Solomou, M. (2012, Jan-
uary). Game-based curriculum and transformational play: designing to
meaningfully positioning person, content, and context. Computers & Edu-
cation, 58(1), 518–533. doi:10.1016/j.compedu.2011.08.001

Barab, S., Thomas, M., Dodge, T., Carteaux, R., & Tuzun, H. (2005). Making
learning fun: quest atlantis, a game without guns. Educational Technology
Research and Development, 53, 86–107. doi:10.1007/BF02504859

Bartle, R. A. (2004). Designing virtual worlds. New Riders Games Series.
New Riders.

Bartle, R. A. (2010). From MUDs to MMORPGs: the history of virtual
worlds. In J. Hunsinger, L. Klastrup & M. Allen (Editors), International
handbook of internet research (Pages 23–39). Springer Netherlands. doi:1
0.1007/978-1-4020-9789-8_2

Baum, W. (1994, March). Understanding behaviorism: Science, behavior, and
culture. Behavior analysis and society series. HarperCollins College Pub-
lishers.

Belcher, J. (2001). Studio Physics at MIT. MIT Physics Annual. Retrieved
22 August 2011, from http://web.mit.edu/physics/news/physicsatmi
t/physicsatmit_01_teal.pdf

Bell, M. W. (2008, July). Toward a definition of “virtual worlds”. Journal of
Virtual Worlds Research, 1(1). Retrieved from http://journals.tdl.or
g/jvwr/article/view/283/237

111

http://dx.doi.org/10.1016/j.compedu.2011.08.001
http://dx.doi.org/10.1007/BF02504859
http://dx.doi.org/10.1007/978-1-4020-9789-8_2
http://dx.doi.org/10.1007/978-1-4020-9789-8_2
http://web.mit.edu/physics/news/physicsatmit/physicsatmit_01_teal.pdf
http://web.mit.edu/physics/news/physicsatmit/physicsatmit_01_teal.pdf
http://journals.tdl.org/jvwr/article/view/283/237
http://journals.tdl.org/jvwr/article/view/283/237

112 BIBLIOGRAPHY

Boyd, D. M., & Ellison, N. B. (2007, December). Social network sites: defi-
nition, history, and scholarship. Journal of Computer-Mediated Communi-
cation, 13(1), 210–230. doi:10.1111/j.1083-6101.2007.00393.x

Burbeck, S. (1992). Applications programming in smalltalk-80(tm): How to
use model-view-controller (MVC). Retrieved 13 October 2011, from http:
//st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

Callaghan, M., McCusker, K., Losada, J., Harkin, J., & Wilson, S. (2009, De-
cember). Teaching engineering education using virtual worlds and virtual
learning environments. In Advances in computing, control, telecommunica-
tion technologies, 2009. ACT ’09. international conference on (Pages 295–
299). doi:10.1109/ACT.2009.80

Choi, B., & Baek, Y. (2011, December). Exploring factors of media charac-
teristic influencing flow in learning through virtual worlds. Computers &
Education, 57(4), 2382 –2394. doi:10.1016/j.compedu.2011.06.019

Crook, C. (1998, April). Children as computer users: the case of collaborative
learning. Computers & Education, 30(3-4), 237–247. doi:10.1016/S0360-
1315(97)00067-5

Curtis, P., & Nichols, D. (1994, February). MUDs grow up: social virtual re-
ality in the real world. In Compcon spring ’94, digest of papers. (Pages 193–
200). doi:10.1109/CMPCON.1994.282924

Dalgarno, B., & Lee, M. J. W. (2010). What are the learning affordances
of 3-d virtual environments? British Journal of Educational Technology,
41(1), 10–32. doi:10.1111/j.1467-8535.2009.01038.x

Damer, B. (2008, July). Meeting in the ether: A brief history of virtual worlds
as a medium for user-created events. Journal of Virtual Worlds Research,
1(1). Retrieved 21 October 2011, from http://journals.tdl.org/jvwr/
article/download/285/239

Dark, M. J., & Winstead, J. (2005). Using educational theory and moral
psychology to inform the teaching of ethics in computing. In Proceedings of
the 2nd annual conference on information security curriculum development
(Pages 27–31). InfoSecCD ’05. New York, NY, USA: ACM. doi:10.1145/
1107622.1107630

Dempsey, J. V., Lucassen, B. A., Haynes, L. L., & Casey, M. S. (1996, April).
Instructional applications of computer games. Annual meeting of the Amer-
ican Educational Research Association, New York City.

http://dx.doi.org/10.1111/j.1083-6101.2007.00393.x
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://dx.doi.org/10.1109/ACT.2009.80
http://dx.doi.org/10.1016/j.compedu.2011.06.019
http://dx.doi.org/10.1016/S0360-1315(97)00067-5
http://dx.doi.org/10.1016/S0360-1315(97)00067-5
http://dx.doi.org/10.1109/CMPCON.1994.282924
http://dx.doi.org/10.1111/j.1467-8535.2009.01038.x
http://journals.tdl.org/jvwr/article/download/285/239
http://journals.tdl.org/jvwr/article/download/285/239
http://dx.doi.org/10.1145/1107622.1107630
http://dx.doi.org/10.1145/1107622.1107630

BIBLIOGRAPHY 113

Dickey, M. D. (2005, April). Three-dimensional virtual worlds and distance
learning: two case studies of active worlds as a medium for distance edu-
cation. British Journal of Educational Technology, 36(3), 439–451. doi:10.
1111/j.1467-8535.2005.00477.x

Dieterle, E., & Clarke, J. (2007). Multi-user virtual environments for teaching
and learning. In P. M. (Editor). Encyclopedia of multimedia technology and
networking. Hershey, PA: Idea Group, Inc.

Dillenbourg, P. (1999). Collaborative learning: cognitive and computational
approaches. Advances in learning and instruction series. Pergamon.

Dillenbourg, P., Baker, M., Blaye, A., & O’Malley, C. (1996). The evolution
of research on collaborative learning. In E. Spada & P. Reiman (Editors).
Learning in humans and machine: towards an interdisciplinary learning
science (Pages 189–211). Oxford: Elsevier.

Djorgovski, S. G., Hut, P., McMillan, S., Vesperini, E., Knop, R., Farr, W.,
& Graham, M. J. (2010). Exploring the use of virtual worlds as a scien-
tific research platform: the meta-institute for computational astrophysics
(MICA). In F. Lehmann-Grube, J. Sablatnig, O. Akan, P. Bellavista, J.
Cao, F. Dressler, …G. Coulson (Editors), Facets of virtual environments
(Volume 33, Pages 29–43). Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering. Springer
Berlin Heidelberg. doi:10.1007/978-3-642-11743-5_3

Dori, Y. J., & Belcher, J. (2003). Effect of visualizations and active learning
on students’ understanding of electromagnetism concepts. Proceedings of
the Annual Meeting of the National Association for Research in Science
Teaching (NARST).

Dreyfus, H. L. (1991, June). Socratic and platonic sources of cognitivism (J.
Smith, Editor). Philosophical studies series. Kluwer Academic Publishers.

Durán, M., Gallardo, S., Toral, S., Martínez-Torres, R., & Barrero, F. (2007,
January). A learning methodology using matlab/simulink for undergrad-
uate electrical engineering courses attending to learner satisfaction out-
comes. International Journal of Technology and Design Education, 17, 55–
73. doi:10.1007/s10798-006-9007-z

van Eck, R. (2007). Building artificially intelligent learning games. In D.
Gibson, C. Aldrich & M. Prensky (Editors), Games and simulations in
online learning: Research and development frameworks (Pages 271–307).
Information Science Publishing.

http://dx.doi.org/10.1111/j.1467-8535.2005.00477.x
http://dx.doi.org/10.1111/j.1467-8535.2005.00477.x
http://dx.doi.org/10.1007/978-3-642-11743-5_3
http://dx.doi.org/10.1007/s10798-006-9007-z

114 BIBLIOGRAPHY

Egenfeldt-Nielsen, S. (2006, August). Overview of research on the educational
use of video games. Digital kompetanse, 3, 184–213. Retrieved 25 August
2011, from http://www.itu.dk/~sen/papers/game-overview.pdf

Farr, W., Hut, P., Ames, J., & Johnson, A. (2009, May). An experiment in
using virtual worlds for scientific visualization of self-gravitating systems.
Journal of Virtual Worlds Research, 2(3).

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994, November). De-
sign patterns: Elements of reusable object-oriented software (1st edition).
Addison-Wesley.

Gokhale, A. A. (1995). Collaborative learning enhances critical thinking.
Journal of Technology Education, 7(1).

González-Cruz, J., Rodríguez-Sotres, R., & Rodríguez-Penagos, M. (2003).
On the convenience of using a computer simulation to teach enzyme kinet-
ics to undergraduate students with biological chemistry-related curricula.
Biochemistry and Molecular Biology Education, 31(2), 93–101. doi:10.100
2/bmb.2003.494031020193

Greanier, T. (2000). Discover the secrets of the java serialization api. Re-
trieved 30 August 2011, from http://java.sun.com/developer/techni
calArticles/Programming/serialization/

Gredler, M. M. (1996). Educational games and simulations: a technology in
search of a (research) paradigm. In D. H. Jonassen (Editor). Handbook of
research for educational communications and technology: A project of the
association for educational communications and technology (1st edition).
Macmillan Library Reference USA.

Gütl, C. (2011). The support of virtual 3d worlds for enhancing collaboration
in learning settings. In F. Pozzi & D. Persico (Editors). Techniques for fos-
tering collaboration in online learning communities: Theoretical and practi-
cal perspectives (Pages 278–299). doi:10.4018/978-1-61692-898-8.ch016

Gütl, C., Scheucher, B., Bailey, P. H., Belcher, J., dos Santos, F. R., & Berger,
S. (2012). Towards an immersive virtual environment for physics experi-
ments supporting collaborative settings in higher education. In A. K. M.
Azad, M. E. Auer & V. J. Harward (Editors). Internet accessible remote
laboratories: Scalable e-learning tools for engineering and science disciplines
(Pages 543–562). doi:10.4018/978-1-61350-186-3.ch028

Gutwin, C., & Greenberg, S. (1999, September). The effects of workspace
awareness support on the usability of real-time distributed groupware.

http://www.itu.dk/~sen/papers/game-overview.pdf
http://dx.doi.org/10.1002/bmb.2003.494031020193
http://dx.doi.org/10.1002/bmb.2003.494031020193
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://dx.doi.org/10.4018/978-1-61692-898-8.ch016
http://dx.doi.org/10.4018/978-1-61350-186-3.ch028

BIBLIOGRAPHY 115

ACM Transactions on Computer-Human Interaction, 6, 243–281. doi:10.
1145/329693.329696

Hoadley, C. (2010, July). Roles, design, and the nature of CSCL. Computers
in Human Behavior, 26(4), 551–555. doi:10.1016/j.chb.2009.08.012

Hodhod, R., Cairns, P., & Kudenko, D. (2011). Innovative integrated ar-
chitecture for educational games: challenges and merits. In Z. Pan, A.
Cheok, W. Müller & X. Yang (Editors), Transactions on edutainment v
(Volume 6530, Pages 1–34). Lecture Notes in Computer Science. Springer
Berlin / Heidelberg. doi:10.1007/978-3-642-18452-9_1

Hut, P. (2007). Virtual laboratories and virtual worlds. Proceedings of the
International Astronomical Union, 3(Symposium 246), 10. doi:10.1017/S
1743921308016153

Iqbal, A., Kankaanranta, M., & Neittaanmäki, P. (2010). Engaging learners
through virtual worlds. Procedia - Social and Behavioral Sciences, 2(2),
3198–3205. doi:10.1016/j.sbspro.2010.03.489

John-Steiner, V., & Mahn, H. (1996). Sociocultural approaches to learning
and development: a vygotskian framework. Educational Psychologist, 31(3),
191–206. doi:10.1207/s15326985ep3103&4_4

de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning
with computer simulations of conceptual domains. Review of Educational
Research, 68(2), 179–201. doi:10.3102/00346543068002179

Juul, J. (2003). The game, the player, the world: looking for a heart of game-
ness. In Conference of the digital games research association.

Kearsley, G., & Shneiderman, B. (1999). Engagement theory: a framework
for technology-based teaching and learning. Retrieved 17 October 2011,
from http://home.sprynet.com/~gkearsley/engage.htm

Ketelhut, D. J., Dede, C., Clarke, J., Nelson, B., & Bowman, C. (2007).
Studying situated learning in a multi-user virtual environment. Assess-
ment of problem solving using simulations Mahwah NJ Lawrence Erlbaum
Associates, 54(0310188), 37–58.

Ketelhut, D. J., Nelson, B. C., Clarke, J., & Dede, C. (2010). A multi-user
virtual environment for building and assessing higher order inquiry skills
in science. British Journal of Educational Technology, 41(1), 56–68. doi:1
0.1111/j.1467-8535.2009.01036.x

http://dx.doi.org/10.1145/329693.329696
http://dx.doi.org/10.1145/329693.329696
http://dx.doi.org/10.1016/j.chb.2009.08.012
http://dx.doi.org/10.1007/978-3-642-18452-9_1
http://dx.doi.org/10.1017/S1743921308016153
http://dx.doi.org/10.1017/S1743921308016153
http://dx.doi.org/10.1016/j.sbspro.2010.03.489
http://dx.doi.org/10.1207/s15326985ep3103&4_4
http://dx.doi.org/10.3102/00346543068002179
http://home.sprynet.com/~gkearsley/engage.htm
http://dx.doi.org/10.1111/j.1467-8535.2009.01036.x
http://dx.doi.org/10.1111/j.1467-8535.2009.01036.x

116 BIBLIOGRAPHY

Koch, R. (1999). The 80 20 principle: The secret of achieving more with less.
Crown Business.

Li, Z., & Zhao, X. (2008). The design of web-based personal collaborative
learning system (WBPCLS) for computer science courses. In F. Li, J. Zhao,
T. Shih, R. Lau, Q. Li & D. McLeod (Editors), Proceedings of the 7th
international conference on advances in web based learning (Volume 5145,
Pages 434–445). ICWL ’08. Berlin, Heidelberg: Springer. doi:10.1007/97
8-3-540-85033-5_43

Messinger, P. R., Stroulia, E., Lyons, K., Bone, M., Niu, R. H., Smirnov,
K., & Perelgut, S. (2009). Virtual worlds – past, present, and future: new
directions in social computing. Decision Support Systems, 47(3), 204–228.
Online Communities and Social Network. doi:10.1016/j.dss.2009.02.0
14

Miller, G. A. (2003, March). The cognitive revolution: a historical perspec-
tive. Trends in Cognitive Sciences, 7(3), 141–144. doi:10.1016/S1364-66
13(03)00029-9

Molenda, M., & Sullivan, M. (2003). Issues and trends in instructional tech-
nology: Treading water. In Educational media and technology yearbook 2003
(Bd. 28;Bd. 2003, Pages 3–20). Libraries Unlimited.

Mukti, N. A., Razali, D., Ramli, M. F., Zaman, H. B., & Ahmad, A. (2005).
Hybrid learning and online collaborative enhance students? performance.
Advanced Learning Technologies, IEEE International Conference on, 481–
483. doi:10.1109/ICALT.2005.166

Narayanasamy, V., Wong, K. W., Fung, C. C., & Rai, S. (2006, April). Dis-
tinguishing games and simulation games from simulators. Computers in
Entertainment, 4. doi:10.1145/1129006.1129021

Nelson, B., Ketelhut, D. J., Clarke, J., Bowman, C., & Dede, C. (2005).
Design-based research strategies for developing a scientific inquiry curricu-
lum in a multi-user virtual environment. Educational Technology, 45(1),
21–27.

Nova, N., Wehrle, T., Goslin, J., Bourquin, Y., & Dillenbourg, P. (2007).
Collaboration in a multi-user game: impacts of an awareness tool on mutual
modeling. Multimedia Tools and Applications, 32, 161–183. doi:10.1007/s
11042-006-0065-8

http://dx.doi.org/10.1007/978-3-540-85033-5_43
http://dx.doi.org/10.1007/978-3-540-85033-5_43
http://dx.doi.org/10.1016/j.dss.2009.02.014
http://dx.doi.org/10.1016/j.dss.2009.02.014
http://dx.doi.org/10.1016/S1364-6613(03)00029-9
http://dx.doi.org/10.1016/S1364-6613(03)00029-9
http://dx.doi.org/10.1109/ICALT.2005.166
http://dx.doi.org/10.1145/1129006.1129021
http://dx.doi.org/10.1007/s11042-006-0065-8
http://dx.doi.org/10.1007/s11042-006-0065-8

BIBLIOGRAPHY 117

Paraskeva, F., Mysirlaki, S., & Papagianni, A. (2010). Multiplayer online
games as educational tools: facing new challenges in learning. Computers
& Education, 54(2), 498–505. doi:10.1016/j.compedu.2009.09.001

Prensky, M. (2001). “simulations”: are they games? In Digital game-based
learning (1st edition). E-Libro. McGraw-Hill.

RedDwarf application tutorial. (2010). Retrieved 1 February 2012, from http:
//sourceforge.net/apps/trac/reddwarf/raw- attachment/wiki/
Documentation/RedDwarf%20ServerAppTutorial.odt

River City Interface. (2007). Retrieved 22 December 2011, from Harvard
University: http://muve.gse.harvard.edu/rivercityproject/view/r
c_views_interface.htm

Rodriguez, N., Borges, J., Murillo, V., Ortiz, J., & Sands, D. (2002). A study
of physicians’ interaction with text-based and graphical-based electronic
patient record systems. In Computer-based medical systems, 2002. (cbms
2002). proceedings of the 15th IEEE symposium on (Pages 357–360). doi:1
0.1109/CBMS.2002.1011405

Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowl-
edge in collaborative problem solving. In C. O’Malley (Editor), Computer-
supported collaborative learning (Pages 69–97). Berlin: Springer.

Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012, January). The
learning effects of computer simulations in science education. Computers
& Education, 58(1), 136–153. doi:10.1016/j.compedu.2011.07.017

Scheucher, B., Bailey, P. H., Gütl, C., & Harward, V. J. (2009). Collabo-
rative virtual 3d environment for internet-accessible physics experiments.
International Journal of Online Engineering (iJOE), 5, 65–71.

Slott, J. (2010a). Project wonderland (v0.5): importing 3d models. Retrieved
10 August 2011, from http://code.google.com/p/openwonderland/wik
i/OpenWonderland

Slott, J. (2010b). Project wonderland v0.5: working with modules. Retrieved
10 August 2011, from http://code.google.com/p/openwonderland/wik
i/OpenWonderland

Smith, P. L., & Ragan, T. J. (1999). Instructional design (2nd edition). John
Wiley & Sons Inc.

http://dx.doi.org/10.1016/j.compedu.2009.09.001
http://sourceforge.net/apps/trac/reddwarf/raw-attachment/wiki/Documentation/RedDwarf%20ServerAppTutorial.odt
http://sourceforge.net/apps/trac/reddwarf/raw-attachment/wiki/Documentation/RedDwarf%20ServerAppTutorial.odt
http://sourceforge.net/apps/trac/reddwarf/raw-attachment/wiki/Documentation/RedDwarf%20ServerAppTutorial.odt
http://muve.gse.harvard.edu/rivercityproject/view/rc_views_interface.htm
http://muve.gse.harvard.edu/rivercityproject/view/rc_views_interface.htm
http://dx.doi.org/10.1109/CBMS.2002.1011405
http://dx.doi.org/10.1109/CBMS.2002.1011405
http://dx.doi.org/10.1016/j.compedu.2011.07.017
http://code.google.com/p/openwonderland/wiki/OpenWonderland
http://code.google.com/p/openwonderland/wiki/OpenWonderland
http://code.google.com/p/openwonderland/wiki/OpenWonderland
http://code.google.com/p/openwonderland/wiki/OpenWonderland

118 BIBLIOGRAPHY

Squires, D., & Preece, J. (1999). Predicting quality in educational software::
evaluating for learning, usability and the synergy between them. Interacting
with Computers, 11(5), 467–483. doi:10.1016/S0953-5438(98)00063-0

Stahl, G., Koschmann, T., & Suthers, D. (2006). Computer-supported collab-
orative learning: an historical perspective. In R. K. Sawyer (Editor). The
cambridge handbook of the learning sciences (Pages 409–426). Cambridge
Handbooks in Psychology. Cambridge University Press.

Stelzer, T., Brookes, D. T., Gladding, G., & Mestre, J. P. (2010). Impact of
multimedia learning modules on an introductory course on electricity and
magnetism. Amerian Journal of Physics, 78(7), 755–759. doi:10.1119/1.
3369920

Stevens, R., Soller, A., Giordani, A., Gerosa, L., Cooper, M., & Cox, C.
(2005). Developing a framework for integrating prior problem solving and
knowledge sharing histories of a group to predict future group performance.
In Collaborative computing: networking, applications and worksharing, 2005
international conference (Page 9 pp.). doi:10.1109/COLCOM.2005.1651209

Thagard, P. (1997, June). Collaborative knowledge. Noûs, 31(2), 242–261.
doi:10.1111/0029-4624.00044

Thomas, M. K., Barab, S. A., & Tuzun, H. (2009). Developing critical imple-
mentations of technology-rich innovations: a cross-case study of the imple-
mentation of quest atlantis. Journal of Educational Computing Research,
41, 125–153. doi:10.2190/EC.41.2.a

Twilleager, D. (2008). MTGame programming guide. Retrieved 25 January
2012, from http://openwonderland-mtgame.googlecode.com/svn/trun
k/doc/MTGameProgGuide.pdf

Vani, V., & Mohan, S. (2010). Interactive 3d class room: a framework for
web3d using J3D and JMF. In Proceedings of the 1st amrita acm-w cele-
bration on women in computing in india (24:1–24:7). A2CWiC ’10. New
York, NY, USA: ACM. doi:10.1145/1858378.1858402

Winsberg, E. (2010). Science in the age of computer simulation. University
of Chicago Press.

Yeo, S., Loss, R., Zadnik, M., Harrison, A., & Treagust, D. (2004). What
do students really learn from interactive multimedia? a physics case study.
Amerian Journal of Physics, 72(10), 1351–1358. doi:10.1119/1.1748074

http://dx.doi.org/10.1016/S0953-5438(98)00063-0
http://dx.doi.org/10.1119/1.3369920
http://dx.doi.org/10.1119/1.3369920
http://dx.doi.org/10.1109/COLCOM.2005.1651209
http://dx.doi.org/10.1111/0029-4624.00044
http://dx.doi.org/10.2190/EC.41.2.a
http://openwonderland-mtgame.googlecode.com/svn/trunk/doc/MTGameProgGuide.pdf
http://openwonderland-mtgame.googlecode.com/svn/trunk/doc/MTGameProgGuide.pdf
http://dx.doi.org/10.1145/1858378.1858402
http://dx.doi.org/10.1119/1.1748074

BIBLIOGRAPHY 119

Young, M., Schrader, P. G., & Zheng, D. (2006). MMOGs as learning environ-
ments: an ecological journey into quest atlantis and the sims online. Inno-
vate: Journal of Online Education, 2(4). Retrieved 23 December 2011, from
http://www.innovateonline.info/index.php?view=article&id=66

Young, R. A., & Collin, A. (2004). Introduction: constructivism and social
constructionism in the career field. Journal of Vocational Behavior, 64(3),
373–388. Special Issue on Constructivism, Social Constructionism and Ca-
reer. doi:10.1016/j.jvb.2003.12.005

http://www.innovateonline.info/index.php?view=article&id=66
http://dx.doi.org/10.1016/j.jvb.2003.12.005

	Introduction
	Motivation
	Thesis Structure

	Collaborative Learning
	Terms and Definitions
	Foundations
	Studies on the learning impact
	Summary

	Simulations and Games in Education
	Terms and Definitions
	History
	Benefits and Problems
	Summary

	Virtual Worlds
	Terms and Definitions
	History
	Virtual Worlds in Education
	Examples of virtual worlds in teaching
	The River City project
	Quest Atlantis
	Meta-Institute for Computational Astrophysics

	Summary

	Conceptual Model
	Combination of a Simulation Framework and a Virtual 3D World
	TealSim
	Software Architecture

	Open Wonderland
	Software Architecture

	Summary

	Implementation of the components
	Requirements on an abstract level
	Additional 3D support for TealSim
	Implementation of JME Primitives
	Descriptive data types
	The Viewer

	Preparing TealSim for Client-Server use
	Synchronization of the 3D Objects
	Splitting the Simulation Engine
	Preparing TealSim for the PD server

	The OW Module
	Simulation Selection Functionality
	Creating a Simulation
	The Control Panel
	Starting the Simulation and synchronizing Engine States
	Synchronizing the Swing User Interface
	Performance improvements on the server side

	Implementation of a Multi-player Simulation
	Summary

	Installation and Usage of the Module
	Installation via OW's web interface
	Using simulations in-world
	Summary

	Lessons Learned
	Summary and Outlook
	Acronyms
	List of Figures
	List of Tables
	Bibliography

