
Master’s Thesis

Developing a document management
system for Infineon using i* for

requirements engineering

Marco Lautischer, BSc
m.lautischer@student.tugraz.at

Matr. No. 0631079

————————————–

Institute for Knowledge Management
Graz University of Technology

Graz University of Technology

Supervisor: Dipl.-Ing.Dr. techn. Markus Strohmaier

Klagenfurt, March 2012

Abstract

Creating and introducing new software is a tedious process where plenty of things
can go wrong. Therefore every step has to be well-considered and designed
in detail. Particularly, if several stakeholders with different requirements are
involved in the creation process, initial efforts in requirements engineering are
absolutely essential to come to a successful project outcome.

The topic of this master’s thesis was advertised by the Infineon Technologies
Austria AG, to improve the management of their "Test Engineering Processes".
The following chapters demonstrate the requirements engineering process using
the i* Framework - an agent-oriented approach - to specify, design and create a
document management system for Infineon. The main challenges and appropriate
solutions appearing from project start until the software is used inside the com-
pany are addressed. The realization of the system is also presented, where the
requirements of different departments, as well as of various sites are considered.
The practical usage of i* to come to terms with this problem is based on the
theoretical input of previous work. This framework is initially used to determine
the stakeholders and their requirements on the software with the assistance of
graphical models. Afterwards different implementation possibilities are analyzed
and evaluated to find the best-fitting technology. This thesis also provides some
background knowledge on requirements engineering and the i* Framework with
its notation.

Keywords: Requirements Engineering, i*, i* Framework, Document Manage-
ment System, Strategic Dependency Model, Strategic Rationale Model

Kurzfassung

Die Erstellung und Einführung einer neuen Software ist ein langwieriger Pro-
zess, bei dem Vieles schief gehen kann. Deshalb muss jeder Schritt ordentlich
durchdacht und ausführlich geplant werden. Sind mehrere Interessensvertreter
mit unterschiedlichen Wünschen in den Erstellungsprozess involviert, so ist die
Durchführung einer Anforderungsanalyse absolut notwendig, um das Projekt
erfolgreich abschließen zu können.

Die Aufgabenstellung dieser Masterarbeit wurde von der Infineon Technolo-
gies Austria AG ausgeschrieben, um die Verwaltung interner Testprozesse zu
verbessern. Die folgenden Kapitel demonstrieren den gesamten Prozess der Anfor-
derungsanalyse unter Verwendung des i* Frameworks - einer agenten-orientierten
Herangehensweise - um ein Dokumentenmanagementsystem für die Firma Infine-
on zu spezifizieren, planen und umzusetzen. Die größten Herausforderungen vom
Projektstart bis zur Verwendung der Software innerhalb der Firma, werden ange-
führt und entsprechende Lösungen präsentiert. Weiters wird die Realisierung des
Systems, die sämtliche Vorstellungen der unterschiedlichen Abteilungen und sogar
anderer Firmenstandorte berücksichtigt, dargestellt. Die praktische Verwendung
von i* für Lösungen dieser Problemstellung basiert auf dem theoretischen Input
bisheriger Arbeiten. Dieser Framework wird zunächst verwendet, um mit Hilfe
von grafischen Modellen sämtliche Interessensvertreter und deren Anforderungen
an die Software zu identifizieren. Anschließend werden damit unterschiedliche Im-
plementierungsmöglichkeiten analysiert und evaluiert, um dadurch die geeignetste
Technologie zu finden. Diese Arbeit liefert außerdem einige Hintergrundinforma-
tionen über die Thematik der Anforderungsanalyse und das i* Framework bzw.
deren Notation und Verwendung.

Schlagworte: Anforderungsanalyse, Requirements Engineering, i*, i* Frame-
work, Dokumentenmanagementsystem, Strategic Dependency Model, Strategic
Rationale Model

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources / resources, and that I have explicitly marked
all material which has been quoted, either literally or by content from the used
sources.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,
andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den be-
nutzten Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich
gemacht habe.

Ort Datum Unterschrift

Master
Typewritten text
Klagenfurt

Master
Typewritten text
13.03.2012

Acknowledgments

At this point I want to thank to my advisor. Dipl.-Ing. Dr. techn. Markus Stroh-
maier supported my idea of an industrial master thesis at Infineon Technologies
Austria AG as an excellent supervisor and for suggesting me such a perfect fitting
theoretical background. During the entire process he gave me answers to my
questions and offered assistance and useful ideas and proposals.

I also want to thank my supervisor at the Infineon Villach, Johann Brandner, and
the internal leader of this project, Mario Nußbaumer for giving me support and
providing the needed information to plan and realize this project. Additionally,
my gratitude goes to all colleagues, that amused my working days and gave me a
good time at the company.

Last but not least I would like to express my gratitude to my family for giving
me the possibility and financial support to study at the University of Technology
in Graz and of course my girlfriend Claudia for motivating me and being there
for me at any time.

Klagenfurt, March 2012 Marco Lautischer

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Objective . 2
1.3. Thesis Outline . 3

2. Related Work 5
2.1. Requirements Engineering . 5

2.1.1. Introduction . 5
2.1.2. Definitions . 9
2.1.3. Approach . 13

2.2. i* . 14
2.2.1. Introduction to i* . 15
2.2.2. Notation . 16
2.2.3. Usage . 25

3. Requirements Analysis and System Design 33
3.1. Requirements Elicitation . 33

3.1.1. Actor Identification . 33
3.1.2. Strategic Dependencies . 37
3.1.3. Strategic Rationale . 40

3.2. Technology Choice . 44
3.2.1. Potential Technologies . 44
3.2.2. Goal Evaluation . 46
3.2.3. Technology Decision . 50

4. Implementation 53
4.1. Architecture . 53
4.2. File Crawler . 55
4.3. Graphical User Interface (GUI) 56
4.4. Tomcat Server . 57
4.5. Search Index . 61

i

5. Results and Validation 63
5.1. Requirement Categories . 63

5.1.1. Search Functionality . 64
5.1.2. Project Progress . 69
5.1.3. Data Storage . 69
5.1.4. Information Creation . 71
5.1.5. Review Functionality . 71
5.1.6. Rights Management . 73

5.2. Unclear Requirements . 74

6. Conclusion and Outlook 76
6.1. Contribution . 76

6.1.1. Actual Project Status . 77
6.1.2. Challenges . 77

6.2. Future Work . 78

A. i* Models 80
A.1. Goal Evaluation . 80

B. Implementation Details 84
B.1. Embedded Solr . 84
B.2. Search Index . 85
B.3. Property Files . 86

Bibliography 87

ii

List of Figures

2.1. Structure of the Waterfall Model (adapted from [Partsch, 2010,
p.3]). 6

2.2. Success in software projects (adapted from [Partsch, 2010, p.5]). . 6
2.3. Role distribution in projects (adapted from [Becker and Huber, 2008,

p.4]). 7
2.4. Ambiguity rate in software requirements [Wieringa and Persson, 2010,

p.238]. 12
2.5. The requirements engineering approach [IEEE, 1998a, p.15]. . . . 15
2.6. i* notation of actors. 17
2.7. i* notation of the association links. 18
2.8. i* notation of the dependency link. 19
2.9. i* notation of the actor boundary. 20
2.10. i* notation of additional nodes. 21
2.11. i* notation of the contribution links. 23
2.12. Contribution types grouped by positive and negative support

[Chung et al., 2000, p.64]. 23
2.13. i* notation of the decomposition link. 24
2.14. i* notation of the means-end link. 25
2.15. Requirements elicitation process with i* [Liu et al., 2003, p.2]. . . 26
2.16. SD model example: e-commerce system (adapted from [Yu et al., 2001,

p.4]). 27
2.17. SR model example: e-commerce system (adapted from [Yu et al., 2001,

p.5]). 28
2.18. Identification of knowledge dependencies [Strohmaier et al., 2007,

p.4]. 29
2.19. Identification of supportive means [Strohmaier et al., 2007, p.5]. . 29
2.20. Re-conceptualization of supportive means [Strohmaier et al., 2007,

p.5]. 30
2.21. Individual impacts in the goal evaluation process [Chung et al., 2000,

p.74]. 32

3.1. Identified stakeholders of the software system. 34
3.2. Stakeholders, related with association links. 36

iii

3.3. The strategic dependency model. 38
3.4. Strategic dependency sub-model. 39
3.5. Strategic rationale model. 41
3.6. Strategic rationale sub-model. 42
3.7. Strategic rationale sub-model for the document management system. 45
3.8. Strategic rationale sub-model for the search engine. 46
3.9. Document management system sub-model - Evaluation Step One. 47
3.10. Document management system sub-model - Evaluation Step Two. 49
3.11. Crawler sub-model - Evaluation Results. 51

4.1. Component diagram. 54
4.2. Class diagram of the file crawler application. 56
4.3. Class diagram server application. 58
4.4. Class details ServerConfig. 59
4.5. Class details FileEntry. 61
4.6. Class details PropertyEntry and Common. 62

5.1. Screenshot User Interface - Home. 65
5.2. Screenshot GUI - Project choice. 66
5.3. Screenshot GUI - Regular search. 67
5.4. Screenshot GUI - Project specific search. 68
5.5. Screenshot GUI - Project progress. 70
5.6. Screenshot GUI - Assignment of files. 72
5.7. Screenshot GUI - File reviews. 73
5.8. Screenshot GUI - Public folder. 74

A.1. Search engine evaluation results - IT. 81
A.2. Search engine evaluation results - Passive User. 82
A.3. Search engine evaluation results - Revisor. 83

B.1. Required libraries for embedded Solr. 85
B.2. Required libraries for embedded Solr. 85
B.3. Structure of a property file. 86

iv

List of Tables

2.1. Requirement categories (adapted from [Wieringa and Persson, 2010,
p.236]). 12

4.1. Structure of the configuration file of the crawler. 55
4.2. Structure of the configuration file of the server. 60

v

List of Abbreviations

API Application Programming Interface

CSS Cascading Style Sheets

DMS Document Management System

FR Functional Requirements

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

JSP Java Server Pages

KM Knowledge Management

NFR Non-Functional Requirements

RE Requirements Engineering

SDM Strategic Dependency Model

SRM Strategic Rationale Model

SRS Software Requirements Specification

vi

1. Introduction

1.1. Motivation

Infineon Technologies is one of the largest producers of semi-conductors all over the
world. The location in Villach is in charge of production and development. Here,
among other things, the test development is situated, to which a lot of attention
is given by the company. This division accomplishes predefined test processes for
a huge amount of projects. Each test process consists of different milestones that
are processed sequentially. To finish one milestone, several important files need
to be created, finished and reviewed first. For project leaders, it is essential to
know the actual status of each project at any time.

For many years, the Infineon Villach has stored all information about its "Test
Engineering Processes" in different folders on network hard discs. Changes to
these files get distributed among the integrated and entitled persons per email
or are stored in shared directories. Because of the huge amount of data and
differences in folder structure, folder names, file names etc. it is hard to retrieve
needed information. The different file-versions appearing during one test process
complicate the clarity of the project information and the assignability of files to
milestones.

Because of these facts, a new file management of such test-engineering-specific
information is needed that includes functionality for information search and
retrieval by offering a simple user interface, that can easily be used by all
employees without a big effort.

Such central file management brings benefits for everyday work by reducing lost
time and frustration caused by not finding the right information or data loss.
Furthermore, it reduces double work and improves the cooperation within one
location and between the different facilities of the company.

The development of such huge software must be handled with care and initial
efforts in planning and design are needed to make it usable and reliable. Require-
ments engineering - or short RE - is part of the analysis- and design phase and
helps to identify the scope and framework conditions of the project at initial state

1

1.2. Objective 2

and before the implementation starts. This affects the project-success in a positive
way and avoids expensive and time-consuming changes in late development phases.
Another reason for the increasing importance of requirements engineering is the
growing relevance of software in almost every branch of industry and the resulting
competition to high quality [Partsch, 2010, p. 6ff].

1.2. Objective

The initial steps of the project are lead by the project vision, that is defined by
[Brandner, 2011] as follows:

"Every time a user needs information or documents about one specific
project, he opens an intranet site or a simple tool, where he can easily
find it. Changes do not get distributed per mail or in a shared directory,
as it is done now, but only with the new software. The acceptance
of this system is one of the main goals and there must not exist a
comparable tool."

The contribution of this master thesis is the whole process of realizing this loose
and undefined vision. Following steps are included:

• Introduction to knowledge management (KM): a short theoretical introduc-
tion to the term knowledge management is given to the employees of the
test development division, that are called "test engineers". This provides
an overview of the different architectures and techniques in KM and shows
different possibilities on how such visions can be realized. This input also
helps to recognize the current situation and to improve communication and
understanding throughout the whole development process.

• Requirements engineering (RE): to specify how to realize this vision, the
requirements are acquired first. Therefore the requirements engineering
process needs to be walked through, where stakeholders’ wishes and demands
are figured out. The gathered information is visualized with drawable
elements defined in the i* Framework that offers an agent-oriented approach
to the requirements engineering process. Two different i* models, created
with the open source software "Open OME" can be seen as a visualization of
the stakeholders’ requirements on the software and the different dependencies
among themselves [Yu and Liu, 2000].

• Technology choice: the choice of the best-fitting technology is one impor-
tant step in this project. This can be found out with the help of the

1.3. Thesis Outline 3

created i* models: the strategic dependency model that defines the require-
ments, and the strategic rationale model that expands the first model by
internal rationales to obtain a high detail level and better analysis possibili-
ties. After goal evaluation, different labels are assigned to the i* elements
[Yu and Liu, 2000]. They ease the technology choice by adding a status to
each node [Yu and Liu, 2000, p.7]:

– satisficed

– partially satisficed

– conflicted

– unknown

– partially denied

– denied

• Specification of the software: before the software is implemented, a software
specification is created, that describes useful libraries and the different
components of the system with its structures. It gives an overview of the
functionality of the tool and acts like a guideline during the whole fulfillment
process. It also defines the underlying conditions and acts like a book of
reference if questions arise.

• Implementation: the software is implemented according to the specification
taking into account internal restrictions.

• Testing: before the system is introduced, it is tested for a certain amount
of time. This avoids bugs and other problems appearing during usage. It is
very important that the software is able to run for a long period of time
without any additional effort and with little maintenance.

• Introduction of the system: the last part of this work is the introduction of
the system, where new possibilities are presented to the users and how they
can use the functionality of the software.

1.3. Thesis Outline

This work is structured mainly into six chapters.

1.3. Thesis Outline 4

• Chapter 1 discusses the motivation for this master thesis. This includes
introducing the company that advertised for this project and stating the
actual situation and problems that need to be solved. An overview of all the
steps that are performed to plan and design a new software-based system -
in this case a document management system - within a company, is given.

• Chapter 2 gives a theoretical introduction into the main topics dealt with
in this work and presents examples of the most relevant literature in the
context of this thesis. First the term requirements engineering is described,
the advantages are shown and the approach is listed. Other important terms
are defined here. Then the i* Framework, its notation in form of drawable
elements with certain rules and its usage are presented. A small practical
example helps to understand how the different models can be created and
how they improve the identification of stakeholders and requirements. The
last topic gives general information about document management, the
different possibilities to create such a system and its benefits.

• Chapter 3 presents how the process from gathering the requirements from
stakeholders up to the creation of the different models with i* is performed.
The reader is informed how the implementation-technology is chosen by
showing and describing the created models and the performed goal analysis.
The selection is also justified.

• Chapter 4 details the implementation of the software by describing how
the chosen technology is used and how the tool is structured. Some fig-
ures help to understand the interaction of different components and the
communication between them.

• Chapter 5 shows the output of the project. This is done by analyzing and
describing the finished software and comparing it with the distinguished
requirements. The reader gets an impression of how far the requirements
of the different stakeholders are fulfilled and what requirements are not
satisfied at all.

• Chapter 6 sums up the performed work and describes statements and
satisfaction of the involved parties in form of a conclusion. Problems during
the development can also be seen here. Ideas for potential extensions and
improvements are given.

2. Related Work

This chapter provides a theoretical introduction into this practical project by
giving background information on the following topics:

• Requirements Engineering

• The i* Framework

• Document Management Systems

For each topic, the relevance for this project is highlighted and important literature
is presented.

2.1. Requirements Engineering

2.1.1. Introduction

Constructing software-based systems desires a lot of planning and design to
restrict and avoid mistakes or bugs that produce problems and harm the software.
Because of that fact, software-engineering became an own discipline during the
60s. This discipline focused on the development of reliable software with high
quality, low costs and a predictable delivery date. At that time different process
models were explored and introduced [Partsch, 2010, p.1ff]. The first model is
shown in figure 2.1.

The waterfall model is categorized into different phases; the first one - "Analysis
and Definition" - serves the discovery and the clarification of requirements and
furthermore the goal setting. This model is used in the defined order, in which
all phases are performed after another with only few or no iteration. Boundaries
are not hard and sometimes phases overlap, but the approach remains the same
[IEEE, 1990, p.81]. The simple model does not completely correlate with reality
and in practice its properties often cannot be kept [Partsch, 2010, p.3ff]. That
is a reason why today many different approaches like incremental development,

5

2.1. Requirements Engineering 6

Figure 2.1.: Structure of the Waterfall Model (adapted from [Partsch, 2010, p.3]).

Figure 2.2.: Success in software projects (adapted from [Partsch, 2010, p.5]).

2.1. Requirements Engineering 7

rapid prototyping or the spiral model, defined by the IEEE (The Institute of
Electrical and Electronics Engineers) in [IEEE, 1990], exist.

All the effort spent in the software engineering discipline, the analysis and
discovering of engineering processes and the introduction of different models over
the last four or five decades could not eliminate the technical and economic risks
of planning and realizing extensive software-based systems. Figure 2.2 shows
that the amount of successful IT projects is smaller than one third, what is a
considerable small amount [Partsch, 2010, p.5f].

[Becker and Huber, 2008] analyze the low success rate of about one third in IT
projects. The authors see the reason why projects fail rather in the so-called
"soft facts" than in the development technology. Their study focuses on the
elicitation of different problems appearing in projects. The participants come
from different working environments and play different roles in projects. The
percentage distribution of quoted roles is shown in figure 2.3.

Figure 2.3.: Role distribution in projects (adapted from [Becker and Huber, 2008,
p.4]).

The poll rating confirms the assumption of the authors and states that the biggest
influence on project failure is given by partially unknown targets or intentions
and a lack of information as well as communication. Other risks appear within
the size of project teams and the missing trust between the team members.

2.1. Requirements Engineering 8

Chosen technologies or procedure models are not the trigger for the bad outcome
[Becker and Huber, 2008, p. 8ff].

[Partsch, 2010] states that about half of the problems appearing in software
projects are caused by aspects that can be assigned to requirements engineering.
Examples of such aspects are listed below [Partsch, 2010, p.6ff]:

• Insufficient end-user integration: users should be involved at the beginning
of the development process, which leads to a user-centered design and
implementation and avoids complex and expensive changes later on.

• Incomplete requirements: during the realization process, requirements often
change or new requirements appear. This is a well-known problem but
frequently too little attention is paid to it.

• Unclear objectives: it is problematic if the target is not clear and it is
not exactly known what actually should be reached by a certain project.
Unclear targets lead to incomplete requirements and this has a negative
effect on efficient system design. Subsequent changes in requirements and a
booming effort are the results.

• Inherent complexity of the task in hand: high complexity is caused by
a big range of available information, the unrealistic expectations of the
contracting authority and the diverse relationships between the different
components. Each restriction, added by appropriate stakeholders, increases
the complexity level.

• Communication: communication is - in the face of the huge amount of
available communication technologies - still problematic, difficult and ini-
tiator of many problems. That is because of the different types of people
with dissimilar background knowledge, fields of interest and roles, working
together at the start of a project.

An additional problem, according to [Partsch, 2010], is the mutual dependency
and reliability between those aspects. The existence of one such negative fact
often results in the support of another one. As an example, the interdependency
between complexity and clear targets is used: the bigger the complexity, the
harder it is to make a complete and precise description which then can lead to
unclear objectives [Partsch, 2010, p.6].

Finding and constructing a satisfying solution for the above mentioned problems
is the main goal of all efforts in requirements engineering, that include, amongst
others, the following actions [Partsch, 2010, p.7]:

• Stronger involvement of all stakeholders.

2.1. Requirements Engineering 9

• Clear separation of concerns and responsibility.

• Usage of an adequate notation to visualize precise, consistent and complete
requirements.

• Identification of key requirements that are written down. Some space for
later changes should be planned here.

• Taking the whole development process into account within the requirements
engineering scope.

Requirements engineering has a big influence on the development process as for
example mentioned by [Brooks, 1987, p.8] in an article that says [Partsch, 2010,
p.7]:

"The hardest single part of building a software system is deciding
precisely what to build. No other part of the conceptual work is as
difficult as establishing the detailed technical requirements, including
all the interfaces to people, to machines, and to other software systems.
No other part of the work so cripples the resulting system if done wrong.
No other part is more difficult to rectify later."

So, it can be said that requirements engineering is a kind of key phase in the
development process of software-based systems. If it is performed efficiently,
it brings benefits by trying to reduced the nearly 4/5 rejection and reworking
costs from projects that are caused by mistakes in requirements engineering
[Partsch, 2010, p.7f].

2.1.2. Definitions

Some of the new words and technical terms that were used in the introduction
have not been given a description yet. In this subsection those expressions are
precisely defined and characterized for a better understanding.

Requirements

Requirements are defined in a variety of ways. The IEEE lists the following three
meanings of the word requirement in [IEEE, 1990, p.62]:

2.1. Requirements Engineering 10

"(1) A condition or capability needed by a user to solve a problem or
achieve an objective.

(2) A condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, specification, or
other formally imposed documents.

(3) A documented representation of a condition or capability as in (1)
or (2)."

In [Partsch, 2010] requirements are described as statements about tasks and
performances to be fulfilled by a certain system or product, a process or a person,
involved in this process. These statements contain answers to some questions
[Partsch, 2010, p.25]:

• Why is a certain system needed?

• What is the scope of services, the system should include?

• Are there restrictions that need to be observed?

Several aspects are used to classify requirements. The distinction between
functional- and non-functional requirements is the most important one and
mandatory for this project.

Functional requirements describe what a system or a software should be able
to perform, according to the conceptual formulation. In other words, the be-
havior of that system is described by defining how to act on certain inputs
[Chung et al., 2000, p.6].

Non-functional requirements (NFR) describe how a system performs its tasks.
This is in any case harder to check (than the what) because it cannot be tested
automatically. Each non-functional requirement needs to be evaluated sepa-
rately. Amongst others, requirements on the software performance and the
external interface, restrictions in design and quality criteria are included here
[Chung et al., 2000, p.13f].

A listing of classification criteria for requirements and a description can be found
in [IEEE, 1998a, p.6].

2.1. Requirements Engineering 11

Requirements Engineering

According to [Partsch, 2010] the term requirements engineering can be described
as the sum of activities that need to be performed at the beginning of a project,
usually in the "Analysis- and Design phase". The target of these initial steps
is the elicitation, definition, description and analysis of all requirements on the
system that needs to be designed and implemented. The three most important
subtasks in requirements engineering are listed as follows [Partsch, 2010, p.20f]:

• Determination of requirements

• Documentation of requirements

• Analysis of the requirements description

The process of analyzing the requirements is also defined in [IEEE, 1990, p.62f]
as:

"The process of studying user needs to arrive at a definition of system,
hardware, or software requirements" and "The process of studying and
refining system, hardware, or software requirements."

[Garlan, 1994] gives another perspective on the term requirements engineering.
The author describes the role of software architecture in requirements engineer-
ing as a correlation of problem space and solution space. While requirements
engineering - which aims at the determination of the problem-dimensions - can
be assigned to the first term, software architecture - which tries to design the
structure of a solution out of a set of requirements - applies to the second one.
So the dynamic relation between the problem-identification and the specification
of its solution needs to be understood.

Software Requirements Specification

The software requirements specification (SRS), or often described as requirements
document is created at the end of the requirements engineering process and
contains the results of this process. Here, all the acquired requirements to a
system are written down with a detailed and precise description. The content of
such document is listed in [Partsch, 2010, p.32ff], where also quality criteria are
quoted. A further definition to the SRS, including a schedule of properties for all
the requirements in this document, is given by [IEEE, 1998a, p.4].

A recent approach in performing requirements documentation is described in
[Brill et al., 2010]. The authors propose the use of ad-hoc videos as an additional

2.1. Requirements Engineering 12

representation, particularly for early requirements. Their study deals with the
comparison of videos and textual representation under time pressure. The
advantage of this new way of documentation is a clearer impression on the
functionality of a system, where the usage is easier to understand. This helps the
stakeholders to give better feedback and avoids misunderstanding in the initial
steps of the project.

[de Bruijn and Dekkers, 2010] show the problems of the ambiguity in software
requirements that are documented in natural language. The case study - in which
a huge project that takes about 21 man years is analyzed - detects, that less
than 10% of the requirements are totally clear. The resulted ambiguity of the
evaluated requirement categoreis is visualized in figure 2.4. Table 2.1 lists the
15 categories, in which can be seen, that too less effort is given to avoid unclear
requirements.

Figure 2.4.: Ambiguity rate in software requirements
[Wieringa and Persson, 2010, p.238].

ID Category % of total ID Category % of total
1 Functionality A 19,00% 9 Functionality F 4,66%
2 Functionality B 13,98% 10 Usability 4,30%
3 Functionality C 8,96% 11 Security 3,94%
4 Functionality D 8,60% 12 Data model 3,94%
5 Functionality E 7,53% 13 Reliability 3,23%
6 Infrastructure 6,81% 14 Performance 2,51%
7 Maintainability 5,02% 15 Functionality G 2,51%
8 Software features 5,02%

Table 2.1.: Requirement categories (adapted from [Wieringa and Persson, 2010,
p.236]).

2.1. Requirements Engineering 13

System

When we talk about a system in this project a software-based systems is meant.
In [Partsch, 2010, p.23] the term system is defined as an entity consisting of
different components that are cut off its environment after a certain criteria.
All subsystems communicate and interact with each other to achieve the same
goal. A software-based system is a system that contains at least one software
component.

Model

A model in the context of RE, according to [Partsch, 2010], serves as an abstrac-
tion of reality. Therefore, the complexity of facts is reduced and the essential
features are highlighted. That leads to a better understanding of the different
stakeholders and gives a better basis of communication, discussion and develop-
ment. Thus, models are very important for the requirements engineering process.
The challenge, when to use what kind of model is also mastered in this book.
The characteristics of models are listed as follows [Partsch, 2010, p.35ff]:

• Mapping: every model has its original, that again can be a model.

• Pragmatic feature: the model is able to replace the original, if some condi-
tions are fulfilled.

• Abbreviation: a model only contains the relevant attributes of the original,
but new attributes can be added.

2.1.3. Approach

[IEEE, 1998a, p.15] specifies the development of system requirements as an
iterative process, consisting of four sub-processes:

• Identification of requirements: in this step the aggregate set of system
requirements is gathered. By identifying the requirements, several parties
like customers, the system environment and the technical community need
to be considered. It has to be ensured, that the collection is complete
and none of the requirements is stated twice. Strategies and techniques to
perform this step are listed in [IEEE, 1998a, p.16f].

2.2. i* 14

• Construction of well-formed requirements: the requirements, that are al-
ready available as raw statements, are given a well form. This means that
they are transformed to a statement of need, that is necessary, short and def-
inite where conditions like qualitative or quantitative measures are defined.
Well-formed requirements are easily readable and they contain simple words
and phrases, a uniform arrangement and grammatically correct language.
They are also testable.

• Organization of requirements: next, a structure is added, according to a
comparative definition method. The requirements are grouped by patterns
and properties and attributes are defined. In this phase, priorities are added
to the requirements that refer to the inputs of customers; also technical
approaches are accounted. To perform this organization into ordered sets,
different schemes exist. In most cases requirements are assembled into a
hierarchy of capabilities in the way that general capabilities are decomposed
into subordinate requirements or by the use of network links.

• Representation of requirements: The last sub-process aims at finding the
best way to represent the requirements for all the stakeholders that are
involved in a project and who need to understand, review, accept or use the
SRS. In most cases one single representation form is not enough because
the diversity of individuals working with the requirements necessitates the
consideration of the different communities. Another reason for combining
representation methods is that some representations make it hard to retrieve
specific information, show interactions or relate information in different
places. Automated tools can help by generating different representations.

The requirements engineering approach is visualized in figure 2.5, where the inter-
action between sub-processes can be seen. In [IEEE, 1998a, p.19] the following
representation methods are listed:

• Textual representation like papers or electronic documents.

• Representation models like physical, symbolic or graphical models or proto-
types.

2.2. i*

In this section the i* Framework is described and advantages and new opportunities
are listed. The different elements of this framework are enumerated, described
and their notation is visualized with images. Practical examples are given to
show how to create the different models and how to perform evaluation.

2.2. i* 15

Figure 2.5.: The requirements engineering approach [IEEE, 1998a, p.15].

2.2.1. Introduction to i*

As described in chapter 2.1.2, models are abstractions of the reality that improve
the understanding of its original. In software- and information system engineering,
techniques that deal with conceptual modeling have been used for many years.
These techniques try to find, describe and analyze the implemented behaviors
and structures of software in form of static relationships - they are used in entity-
relationships models as well as in class diagrams - and dynamic or behavioral
properties - they are used in process models as well as in state-based formalisms.
The permanent development of new and much more complex software systems in
the last decade and their fusion with the social environment of humans, brings a
new challenge for developers [Yu, 2009, p.1ff].

An attempt to come to terms with this new challenge is performed with the i*
modeling framework, that is proposed and described by Eric Yu in [Yu, 1995].
It brings social understanding into the traditional system engineering process
by focusing on social actors. They can be described as active entities in form
of humans, hardware, software or a mixture of them, that perform independent
actions - with individual goals, beliefs, abilities and commitments. How many
goals of a certain actor can be reached under a given relationship-structure
is the main task of the analysis phase. The term i* stands for distributed
intentionality and it brings intentionality to the context of social networks that
consist of autonomous actors [Yu, 2009, p.2ff]. Since 1998 it has become part of
an international standard [Yu, 2011].

2.2. i* 16

With the i* Framework also other problems can be solved. In [Liu et al., 2003]
a methodological framework for analyzing security and privacy concerns is pre-
sented, that is based on agent-based models. With these models, better and richer
descriptions and analysis techniques can be used that help to choose between
alternatives, discover conflicts and synergies and give a better understanding
for implications and consequences. The main purpose of this methodological
framework is the identification and handling of security and privacy goals in the
very early steps of a project. Therefore the elicitation of security and privacy
requirements is integrated into the usual requirements engineering process and is
performed together with the addressing of functional and non-functional require-
ments. With the help of the i* Framework, new ways of analysis can be realized,
where for example potential attackers, malicious intentions or vulnerabilities can
be found, which leads to a secure software [Liu et al., 2003].

The i* Framework can be used as a graphical representation with different
elements, that are combined to build models. Another usage of the i* Framework
- beside the graphical one - is the use of the meta-framework, where semantics and
constraints of i* are embedded [Mylopoulos et al., 1990], [Liu et al., 2003].

2.2.2. Notation

The i* Framework contains a set of predefined elements that can be used to create
different models. This subsection explains the variety of elements and shows the
graphical appropriate notations.

Actors

An actor is the central construct in the conceptual modeling procedure of i*. It is
an active entity that is involved in the system to be created and is able to perform
actions independently. Each actor follows individual goals and beliefs [Yu, 2009,
p.3f]. To achieve them, it is able to use one’s own know-how to carry out actions
observing certain restrictions and commitments. Actors are able to intentionally
depend on each other. The term actor is rather complex and therefore it is a kind
of hypernym for three more specialized and concrete elements, that are visualized
in figure 2.6 [Horkoff et al., 2006, p.5f]:

• Role: a role is an abstract form of a social actor that contains several
characteristics, responsibilities or expectations. Its behavior can be easily
transferred to other social actors as well. A role can be played by an agent
and all dependencies of the role apply to him as well.

2.2. i* 17

• Agent: an agent is the concrete form of an actor, with physical manifestations.
It can be a specific human, machine or software. The agent contains its
individual functionalities and capabilities and is able to play one or more
roles. Its behavior and characteristics cannot be easily transferred to other
social actors like those from a role. The dependencies of the agent result
from the roles he is playing.

• Position: a position is a collection of many roles that are assigned to one
specific agent. It can be said that the agent occupies the position, that again
covers different roles [Liu et al., 2003, p.2ff], [Horkoff et al., 2006, p.5ff].

Figure 2.6.: i* notation of actors.

Association Links

Actors can be related among themselves with so-called association links. The
following six links are defined in [Abdulhadi et al., 2007] and their notation is
presented in figure 2.7:

• Is-part-of Association: this relation visualizes actors - roles, positions or
agents - that are comprised of subparts in form of other actors. Each actor
in such collection is taken to be intentional.

• ISA Association: two actors of the same type can be connected with this
association, that describes generalization. Like in some object oriented
programming languages, the derived actor is a specialized case of its more
general parent.

• Plays Association: it connects an agent to a specific role by showing that
the role is played by that agent. The agent’s identity and the responsibilities
of the role do not effect each other.

2.2. i* 18

• Covers Relationship: with this relation, a position can be connected to
several roles. It shows what roles are covered by a certain position.

• Occupies Relationship: to visualize that an agent occupies a specific position
- and furthermore that it plays all the roles that it covers - this relationship
is used.

• INS Relationship: this relation stands for the instantiation of an actor to a
more specific entity of the same type, the instance.

Figure 2.7.: i* notation of the association links.

Strategic Dependency Links

To model the social aspect of i*, dependency links are introduced. They describe
dependencies among actors regarding the fulfillment of goals, the performance of
tasks or the furnishing of a certain resources. A dependency between two actors
is called strategic, because it gives the depender - the one who relies on the other
actor (who is called dependee) - the possibility to benefit from new opportunities
and makes them vulnerable to not receiving what they need. The several types of
dependencies are shown in figure 2.8. They are differentiated by the dependum,
the central item of the dependency [Yu, 2009, p.1ff], [Abdulhadi et al., 2007]:

• Goal dependency: in this case, the dependum is stated as an assertion. The
depender wants the dependee to fulfill this assertion but does not specify
how the goal should be achieved. This gives the dependee total freedom in
decision making.

2.2. i* 19

• Task dependency: the dependum can also be stated as an activity in a
task dependency. Here, the depender wants the dependee to carry out
a task with specified activities. Therefore he has already made decisions
on how the dependum should be performed, what reduces the freedom of
the dependee. Because of the fact, that such specification is usually not
complete, the dependee is still able to act on his own with respect to the
constraints.

• Resource dependency: if the dependum is a physical or informational object,
this is modeled as a resource dependency, where the depender wants the
dependee to allocate the certain entity. The entity is provided in the form
of a resource that can be consumed by the depender. All the effort that is
needed to produce the dependum is brought single handed by the dependee.

• Softgoal dependency: the last dependency centers on a dependum in form
of a quality requirement. This dependency is very similar to the goal
dependency. The only difference lies in the criteria for achievement which
is not exactly defined from the start in the softgoal dependency and further
elaboration steps like the consultation between the involved actors are
needed.

Figure 2.8.: i* notation of the dependency link.

The influence of failing and not providing the dependum by the dependee can be
further distinguished. The different levels of dependency strengths describe the
degrees of vulnerability of the depender [Abdulhadi et al., 2007]:

• Open (Uncommitted) dependency: this is the weakest dependency. If the
dependee fails, the depender is influenced only in a small extent. An open

2.2. i* 20

dependency is notated with an "O" at both sides of the dependency link.

• Open dependency: this is the default dependency and has no additional
label. Here, the absence of the dependum causes some depender actions -
that are performed to reach a certain goal - to fail.

• Critical dependency: this is the hardest dependency where all actions of the
depender - that are performed to reach a certain goal - fail, if the dependum
is not obtained by the dependee.

Actor Boundary

Actor boundaries are used to describe the internal makeup of an actor. It includes
elements such as goals, tasks or resources and their relations between each other.
All elements within the boundary are explicitly desired by a certain actor. Figure
2.9 shows an actor with its boundary in form of dotted line.

Figure 2.9.: i* notation of the actor boundary.

Elements within an actor’s boundary

Within the boundaries of an actor, all the elements that are used as dependum
in dependency links can be utilized. In contrast to the external dependencies,
elements may be accomplished internally. The following elements can be used
to describe the actor’s internal setup [Abdulhadi et al., 2007], [Liu et al., 2003,
4.ff]:

2.2. i* 21

• Goals: a goal can be separated to a hard- or a softgoal. While the first one
describes a function, the second one stands for a quality requirement, where
the criteria for the satisfaction of the goal is not entirely clear and it depends
on the point of view of the actor. Hardgoals can be achieved differently
by tasks that are connected to them with means-end links, what is further
described later. If at least one task is satisfied, the goal is accomplished.
Softgoals instead are described by the contribution links from other elements.

• Tasks: a task describes an activity that is performed by agents. It can be
divided into subgoals, softgoals, subtasks or resources. This is done through
the so-called decomposition link. To accomplish a task, all sub-elements
need to be accomplished as well.

• Resources: a resource describes the availability of a physical or informational
entity, without specifying how this entity is going to be achieved.

• Beliefs: a belief stands for an assumption, domain characteristic or environ-
mental condition that is thought to be true by the actor. Contrary to a
goal, the actor does not explicitly want the condition to become satisfied.

Figure 2.10.: i* notation of additional nodes.

Contribution Links

The influence of any other element on a softgoal can be described with contribution
links. They define the way of contributing to the achievement of the quality
requirement and its strength. This additional information is the most important
decision criteria in the analysis phase, where one has to choose between alternative
tasks that achieve the same goal. The links And and Or are used to refine a certain
softgoal into more specific ones [Yu, 2009, p.6f]. There are nine contribution links
defined in [Abdulhadi et al., 2007] and in [Chung et al., 2000] as follows:

2.2. i* 22

• Make: make is a positive contribution that provides sufficient positive
support. That means, if one offspring is satisficed and connected via this
linkage, its parent is satisficed as well.

• Help: it is a positive contribution that only brings partial positive support.
A satisficed offspring that is connected via this linkage is not strong enough
to satisfice the parent on its own. The parent can only be partially satisficed.

• Some+: this contribution is definite a positive one and it gives positive
support. It can be either a make or a help relation, so the strength of the
contribution - meaning if the support is sufficient or partial - is not defined.
Therefore a satisficed offspring that is connected via this kind of relation
can set the parent softgoal either to satisficed or to partially satisficed.

• Break: the break contribution is the contrary of the make contribution. It is
a negative relation that provides sufficient negative support. If one offspring
is satisficed and connected via this linkage, it gives the parent sufficient
negative support so that it gets denied.

• Hurt: hurt is the contrary of the help contribution. It is a negative contri-
bution that provides partial negative support. If a satisficed offspring is
connected via this linkage, it is not sufficient enough to deny the parent on
its own. The parent can only be partially denied.

• Some-: this relation provides negative support in form of either a hurt or
a break contribution. Therefore the strength of the influence is unknown.
The connection from a satisfied offspring via this linkage causes the parent
softgoal to be denied or partially denied.

• Unknown: such contribution is of unknown sign and of unknown strength.
The influence on a parent softgoal is therefore either a positive or negative
one with a partial or sufficient extent.

• Or: an or contribution is used to refine a certain softgoal by a group of more
specific offspring. If one of them is satisficed, its parent can do so as well.

• And: the last contribution again relates a group of offspring to their parent.
If all offspring are satisficed, the parent is satisficed too.

In i* the contribution links are sometimes visualized by an arrow containing the
proper label, what can be seen in figure 2.11. The arrows point from the offspring
to the parent, that is a softgoal [Abdulhadi et al., 2007].

Figure 2.12 illustrates the contribution types that relate a single offspring to a
parent, grouped by the polarity of their support.

2.2. i* 23

Figure 2.11.: i* notation of the contribution links.

Figure 2.12.: Contribution types grouped by positive and negative support
[Chung et al., 2000, p.64].

2.2. i* 24

Decomposition Link

Decomposition links are used to divide a task into its subparts. To illustrate the
notation, figure 2.13 shows a simple division of a task in all possible sub-elements
that are subgoals, softgoals, subtasks and resources. Each element can appear in
an arbitrary quantity. To accomplish the parent task, all sub-elements need to be
accomplished as well [Abdulhadi et al., 2007].

• Task - Goal: if the task contains one or more subgoals, alternatives on how
to achieve them can be considered. The activities to achieve the goal are
not specified.

• Task - Task: a subtask limits its parent to a certain action. It can again be
decomposed into its sub-elements.

• Task - Resource: in this decomposition it is important whether the entity is
available or not.

• Task - Softgoal: the softgoal represents a quality requirement of the certain
task. Such decomposition is useful to choose between alternatives in the
further decomposition of a task [Abdulhadi et al., 2007].

Figure 2.13.: i* notation of the decomposition link.

Means End Link

Such a link combines a task (describing the means) with a goal (describing the
end). It shows the ways a goal can be achieved. Figure 2.14 visualizes the

2.2. i* 25

graphical notation of that link in form of an arrow pointing from a task to a
goal.

Figure 2.14.: i* notation of the means-end link.

2.2.3. Usage

As mentioned in section 2.2.1 the i* Framework is used to analyze the domain
requirements. The analysis steps are defined in [Liu et al., 2003, p.2] as follows:

• Actor identification: in the first step, the actors of the system are identified
- who really is involved in the system? Every actor can be assigned a role
or be further differentiated into agents and positions. Step 1 in figure 2.15
shows this initial step where human actors as well as existing machine actors
are identified. After one iteration in the analysis procedure, new actors and
system agents are created. This is described by step 5 in figure 2.15. Here,
first design choices are made and new functional entities are added.

• Goal/Task identification: now the high-level objectives of agents in form of
hard- and softgoals are shaped (step 2 in figure 2.15). This tells what different
actors want to achieve. Tasks, resources and beliefs are used to describe
further characteristics (see section 2.2.1). Step 3 (in figure 2.15) shows the
refinement process. Here, hardgoals, softgoals and tasks are sophisticated
with means-end, decomposition and contribution links. The refinement is
done several times until the model is precise enough to serve as a basis for
design decisions.

• Dependency identification: here, the dependency relations between the
actors are added to show how actors relate to each other (step 4 in figure
2.15). This relations are visualized by dependency links (see section 2.2.1),
that describe intentional relations rather than information exchange flows.

2.2. i* 26

By performing the analysis steps, different models can be created to deal with
different problems. The strategic dependency (SD) model shows a network of
actors with its mutual dependencies. It can be created out of an recursive walk
through steps 3, 4 and 5 in figure 2.15. The strategic rationale (SR) model is
built upon the SD model and internal rationales of the different actors are added.
Each goal, softgoal, resource or task dependency gets a delegation relationship
across the boundary of every actor [Liu et al., 2003, p.2].

Figure 2.15.: Requirements elicitation process with i* [Liu et al., 2003, p.2].

Strategic Dependency Model

The strategic dependency (SD) model makes use of dependency links to construct
a network of actors and the intentional dependencies among themselves. Actors
can also be connected with association links to show how they relate to each
other. To define the strength of dependencies, vulnerabilities can be used. The
analysis of this model gives information about opportunities and vulnerabilities of
all the actors involved in the system, that needs to be constructed. An example
of such model is provided by figure 3 that shows a simple scenario of a buyer-
driven e-commerce system with a middleman. The construction of the SD model
needs the recursive execution of steps 3, 4 and 5 that were shown in figure 2.15
[Liu et al., 2003, p.4f], [Yu et al., 2001, p.3f] .

2.2. i* 27

Figure 2.16.: SD model example: e-commerce system (adapted from
[Yu et al., 2001, p.4]).

Strategic Rationale Model

The strategic rationale (SR) model is an extension of the strategic dependency
model and it describes the rationales behind different dependencies. Therefore the
actor’s internal rationales are added to the existing relations. Each dependency
from the SD model is delegated by an internal relationship within the actor
boundary. That model makes use of goals, tasks, resources and beliefs. Goals can
be achieved by tasks through means-end links, tasks can be precisely described
with decomposition links and the influence of other elements on softgoals can be
shown through contribution links. Figure 2.17 shows the internal rationales for
the buyer-driven e-commerce system with a middleman.

In the analysis phase, the SR model helps to choose between alternative tasks
that are able to fulfill the same goal. The decision is influenced by the way they
affect the softgoals. To construct the SR model, steps 2, 3 and 4 in figure 2.15
are run through iteratively [Yu, 2009, p.6f], [Liu et al., 2003, p.4f].

i* extensions

[Strohmaier et al., 2007] introduces a method to analyze the effectiveness of
knowledge transfer instruments that is based on i*. This method is designed to
facilitate the knowledge transfer between knowledge workers which can be seen
as one of the main challenges in knowledge management. Some approaches to
come to terms with this goal have already existed in form of so-called "knowledge

2.2. i* 28

transfer instruments". They analyze the problem from different points of view
[Strohmaier et al., 2007, p.1]:

→ technological: the technological approach can be realized by knowledge
management systems or knowledge infrastructures.

→ organizational: on organizational level, the "Experience Factory" concept
helps to improve the knowledge transfer.

→ social: examples are communities of practice.

Figure 2.17.: SR model example: e-commerce system (adapted from
[Yu et al., 2001, p.5]).

Many studies showed the importance to regard stakeholders and their goals by
analyzing the knowledge transfer effectiveness. Their motivation and acceptance
also play an important role in the quality criteria. The traditional approaches
pay less attention to modeling the goals and intentions of knowledge transfer
participants and instruments. Therefore the new Knowledge Transfer Agent
(KTA) Modeling Method is introduced as an extension of the i* Framework. It is
split up into three phases with different levels of detail and analysis possibilities.
This opens the possibility to choose the phase that fits best to the requirements
of a certain situation [Strohmaier et al., 2007, p.12f].

2.2. i* 29

Level 1 - Identification of knowledge dependencies: Here, the strategic knowledge
dependencies of actors are identified in form of dependency links. The dependum
in form of knowledge is an extension of the i* Framework that helps to identify
knowledge risks in organizations or knowledge networks and communities.

Figure 2.18.: Identification of knowledge dependencies [Strohmaier et al., 2007,
p.4].

Level 2 - Identification of supportive means per dependency: This level describes
how the knowledge transfer takes place by adding communication channels and
storage objects. The first item is used for intentional knowledge transfer from
sender to receiver like a face-to-face communication or phone call. The second
item is used to store information and make it usable for other actors. Both
elements can be connected to a knowledge dependency through means-end links.
To assign different means to the same end helps to find alternative knowledge
transfer instruments.

Figure 2.19.: Identification of supportive means [Strohmaier et al., 2007, p.5].

2.2. i* 30

Level 3 - Re-conceptualization of supportive means: In the highest level of detail,
the knowledge dependencies and its supportive means are transformed to an
individual agent, the Knowledge Transfer Agent. This represents the own pursuit
of goals and the possibility for dependencies that this element has in practice.
The re-conceptualization opens the possibility to analyze the goal achievement of
knowledge transfer instruments and revokes the need of the additional elements,
that were introduced in previous steps.

Figure 2.20.: Re-conceptualization of supportive means [Strohmaier et al., 2007,
p.5].

[Strohmaier et al., 2007] also illustrates how the Knowledge Transfer Agent Mod-
eling Method can be combined with existing concepts by applying the three
procedures on the "Experience Factory", an approach that aims at the facilitation
of knowledge transfer between software developers. It is demonstrated, that the
advanced modeling methods help to answer additional questions, that could not
be addressed before.

Goal Evaluation

The way goals are evaluated with i* can be formalized by an algorithm.
[Horkoff and Yu, 2009a] describe such an algorithm that assigns qualitative eval-
uation labels to elements of the i* models. The defined labels are satisficed,
partially satisficed, conflicted, unknown, partially denied and denied. Two steps
are performed by this algorithm:

• Assignment: this is the initial step, where one or more evaluation labels
are assigned to elements. The decision on performing this step considers an
interesting domain question.

2.2. i* 31

• Propagation: in the next step, the propagation of the first labels are
constructed over the whole model. To perform the propagation, several
guidelines exist. [Chung et al., 2000] illustrates this process in two proce-
dures. First, the "individual impact" of an offspring to its parent according
to the specific contribution link is determined. After that, parents with more
than one offspring are handled. This is done by combining all the individual
impacts into a single label, where sometimes judgments of the domain
expert are needed. Figure 2.21 shows the individual impacts of an offspring
to its parent under different circumstances, that are [Chung et al., 2000,
p.72f]:

– Make: this relation propagates satisficed and denied from the offspring
to the parent.

– Help: the help relation weakens satisficed to partially satisficed and
denied to partially denied.

– Some+: here, the parent receives a weaker label with the same direction
as the offspring. This means that satisficed or partially satisficed
becomes partially satisficed and denied or partially denied becomes
partially denied.

– Break: break propagates the inverted label as the make contribution,
where satisficed goes to denied and denied goes to satisficed.

– Hurt: it is the inverted help contribution. Satisficed becomes partially
denied and denied becomes partially satisficed.

– Some-: the parent gets the inverted label of the some+ contribution.
Satisficed or partially satisficed result in partially denied and denied
or partially denied result in partially satisficed.

– Unknown: the unknown contribution propagates unknown to the parent.

The combination of individual impacts to a single label is done by choosing
the minimal label out of a strict order: conflicted ≤ unknown ≤ denied ≈
satisficed. Partially satisficed and partially denied need to be transformed
by the developers into one of the four labels, according its direction. Ex-
pertise with non functional requirements and knowledge of the domain and
development provide help for this choice. Sometimes the given situation
makes it hard for developers to come to an obvious decision. In that case
they have the possibility to extent the rules by changing the resulting parent
to one of the weaker labels (partially satisficed or partially denied). This
results in handling the resolution during subsequent evaluation as input

2.2. i* 32

type. Therefore the rules of the label satisficed and denied of figure 2.21
could be used by weakening the resulted value [Chung et al., 2000, p.76ff].

Figure 2.21.: Individual impacts in the goal evaluation process
[Chung et al., 2000, p.74].

3. Requirements Analysis and
System Design

This chapter describes how the requirements are elicited and sorted out in this
project to create a basis for the design of the system. Furthermore, it shows
how it is possible to thereby satisfy the different stakeholders. Examples and
figures state how the requirements are mapped to the different i* models and
how they are used and analyzed to find the best fitting technology for the project
realization. Another focus of this chapter is to state arguments and justifications
for the chosen technology.

3.1. Requirements Elicitation

3.1.1. Actor Identification

In the first weeks, several meetings and talks with employees and different
stakeholders are performed to help on understanding the statements of the problem
and to give a theoretical introduction to the term knowledge management. With
the information that is acquired in the meetings, the strategic dependency model
- that is described in chapter 2.2.3 - is created according the defined steps.

Initially, the active entities that are involved in this project are identified in form
of agents and roles. The involved parties can be humans, hardware, software or
a combination of them. The result of this first step is shown in figure 3.1. The
following actors are determined:

• Passive User : the Passive User agent is an operator of the software, the one
with the most restricted access. He just utilizes the Management Tool to
request information. Therefore he performs search queries to find needed
data and watches the project progress. This kind of actor does not influence
the existing data but only reads out the needed project specific information.
Because of the inter-site collaboration within the company, the software
must offer the possibility for inter-site search and retrieval. The passive

33

3.1. Requirements Elicitation 34

Figure 3.1.: Identified stakeholders of the software system.

user needs a simple and usable interface for his work that represents the
requested information in a clear way. Despite the huge amount of data, he
does not ask for long waiting times for his requests.

• Active User : the Active User, that is modeled as an i* agent - is able to
maintain the Management Tool in a certain way. He makes changes to the
information content by adding and adapting data. This actor is responsible
for keeping the project data up to date and for continuously updating the
project progress by assigning files to milestones. So his know-how is of
importance. To perform gapless records the data management must be
usable and unified and a proper user interface needs to be provided. The
Active User also requires a simple and efficient storage for project specific
documents and the possibility for inter-site knowledge deployment.

• Revisor : this user has the rights to review documents that are assigned to
the system and thereby contributes to the correctness of the information
content. The reviewed data must be identified properly. The possibility to
label documents helps this actor to monitor the progress of a test project,
to identify missing files for a milestone and to advise the project owner in
that case.

• Developer : the Developer is added as stakeholder for the sake of completeness.
He also plays a role in the dependency network because he chooses the
technology and brings his know-how to the realization process. This agent
wants to restrict the effort to an assessable one and desires freedom according

3.1. Requirements Elicitation 35

the environment in pursuing his target, the implementation and preparation
of a useful and accessible software-based system.

• IT : this actor represents the IT department of the company. It provides
the needed environment capabilities and is able to define security standards
and other restrictions for the development. The Management Tool needs
to consider all the rules that are issued by this party like the prohibition
to use software that needs a license. The software must be realized in a
way that minimizes the maintenance effort for the IT department, that is
responsible for keeping internal software in good condition.

• Company : the Company as actor is interested in the accomplishment of this
project, because internal processes are improved. Furthermore this update
bring savings in money and time. The company provides the funds for the
project.

• Management Tool : this agent is the central element of the project and
represents the management tool that is introduced to the company in form
of a software-based stakeholder. The application needs to be implemented
and prepared in a way that takes account of all requirements from the
different stakeholders. The more demands are fulfilled, the merrier it is. A
proper technology is chosen that fits best in this specific statement of the
problem and gives the freedom to squeeze the software to the claimed shape.
This actor is implemented by the developer and accepted and maintained
by the IT.

As the main actors are determined, the relation-network is created to represent
the concrete situation of the company. It shows what rights are allocated to the
different internal divisions and how they are able to use the software. Therefore
some new actors need to be added. To set up the connections between the actors,
association links are used. This step is visualized in figure 3.2.

The connection between the concrete departments of the company and the agents
for the three user types that were identified in the last step is modeled with roles.
For each type, a proper role is added, that respectively depends on a concrete
user agent.

• Active SW User : this role is played by actors, that operate as active software
users. The role depends on the agent Active User to offer the resource of a
concrete user.

• Passive SW User : it describes the role that is played by actors performing
the work of a passive software user. A dependency exists to the concrete
Passive User agent.

3.1. Requirements Elicitation 36

• SW Admin: the role of the software administrator is only played by those
agents, that are privileged to perform reviews of existing content. It depends
on the concrete agent Revisor.

Figure 3.2.: Stakeholders, related with association links.

There are three main departments of the company involved in this project:

• Production: this agent represents an employee of the production department.
Such actor only behaves as a Passive User that is restricted to read-only
access. That is because the production is not directly involved to the test
engineering processes and does not always bring the needed know-how to
add or change test documentations. Nevertheless, there are many situations
in which information about the test engineering process is needed and the
tool is used to allocate it.

• Test Engineer : with this agent an employee of the test development depart-
ment is modeled. This actor brings the appropriate know-how to keep the
information content of the system up to date because he is directly involved
in certain projects. On the other hand he also needs to watch the project
progress and to request certain documents via the search engine. Therefore
he can play the role of an Active User as well as those of a Passive User.

• PRM: according to the usage of the new software, the so-called product
managers are similar stated as Test Engineers because they also appear both
as Active and Passive User.

3.1. Requirements Elicitation 37

The supervisors of two departments are stated as separate elements, because they
are equipped with different permissions:

• Test Concept Engineer : this agent is a Test Engineer with additional per-
missions. He acts like a supervisor for the Test Engineers and is able to
play all three possible roles. To model the inheritance, the ISA relation is
used. A Concept Engineer has control functionality and is responsible for
reviewing milestone specific files. He is also interested in monitoring the
project progress and reacting on blockades in form of missing or wrong
information.

• PRM Admin: the PRM Admin is the supervisor of the PRM and is similar to
the Test Concept Engineer. He also plays all three roles and follows related
same interests.

3.1.2. Strategic Dependencies

After relating the actors’ elements in form of goals, tasks and resources are added
according to the rules of the strategic dependency model. They help to visualize
the stakeholder’s suggestions by defining dependencies among actors. In this case
mainly dependencies from and to the Management Tool exist, because this actor
is the central element of the project. The final SD model is shown in figure 3.3.

Because of the fact, that the produced models are very complex and a detailed
description would blast the scope of this work, we only focus on the sub-model
of the Active User, which is marked with the red square in the SD model (figure
3.3). The sub-model is shown in figure 3.4.

The Active User depends on the software that is created through six softgoals,
that can be described as quality requirement, where the criterion of achievement
is not exactly defined from the beginning.

• maintainability be provided : the customized document management system
needs to be maintainable for the Active User, who is responsible for its
content. He wants to add new data and update the existing one. Another
point that can be assigned to this softgoal is the possibility to add new
projects to the system and indicate it to the search engine.

• unified document management be provided : there should only be one central
tool to manage all relevant documents. Instead of using emails, shared
directories or other tools, the documents should be managed only by the
new software. This avoids problems due to different versions of specific test
documents.

3.1. Requirements Elicitation 38

Figure 3.3.: The strategic dependency model.

3.1. Requirements Elicitation 39

Figure 3.4.: Strategic dependency sub-model.

• possibility for inter-site knowledge deployment be provided : products are
often treated in different sites and in different countries. To ease the
information transfer, the new software should provide a possibility for
inter-site knowledge deployment.

• gapless records be performed : the Active User needs to perform gapless
records to keep the content up to date. Therefore, it is important that
performing such records is simple, can be done quickly and furthermore is
accepted by every active user.

• usability of data management be provided : the usability of the data manage-
ment is a very important point for the Active User. No complex processes are
allowed to be introduced that need further trainings or lead the operators to
make mistakes. Usability helps to ensure the utilization of the new software.

• efficient document storage be provided : documents containing project infor-
mation need to be stored in an efficient way where everyone can find them.
It should be possible to open or adapt a file in a common way.

Moreover, the Active User depends on the Management Tool that provides two
resources. In these cases he wants the software to provide or allocate physical or
informational objects:

3.1. Requirements Elicitation 40

• user interface [add/modify] : the software needs to provide a user interface
that allows adding new data to the system and modifying or removing
existing data. Also the assignment of data to milestones is performed by
this interface.

• new information: the Active User wants the system to provide and visualize
information that has been added to the system.

To be able to adapt or modify the existing information of the system, the Active
User depends on the new software upon the task dependency adapt information.
In that case, the object of the dependency is an activity.

On the other side, the new software depends on the Active User who provides the
softgoal information be kept up to date and the resource know-how. While the first
one signifies that the system can only be used properly if the information is kept
up to date, the second one shows that knowledge of the Active User is required to
create it.

The current model helps to structure and furthermore to understand what require-
ments need to be considered by creating the new software and where they come
from. The different stakeholders and their needs are visualized in this model.
Because of the fact that such figure can be easily understood and that it gives a
broad overview of all factors of influence, it can be perfectly used in meetings as
conference criteria.

3.1.3. Strategic Rationale

Based on the SD model, the internal relations are added to show the reasons
for dependencies and the influence of softgoals. This is done by appending and
relating internal goals, tasks, resources and beliefs according to the rules of the
strategic rationale model. The additional information brings much more details
to the model and it describes why the requirements exist. The analysis of this
model can help to make decisions, like in our case, the choice between different
technologies to implement this information system. The internal relations of the
software tool are not modeled at this point because first it has to be clarified,
what the potential technologies are.

An overview of the SR model is given by figure 3.5. The complexity of this model
is much higher than the one of the SD model. Therefore the figure serves as an
overview and again we only focus on the sub-model showing the Active User. It
is marked with a red square in the strategic rationale model. The sub-model is
presented in figure 3.6.

3.1. Requirements Elicitation 41

External dependencies of the Active User to the Management Tool and the other
way around remained the same in the SR model. The circle-icon of the Active
User is opened to see the internal boundary, where new elements are added.

Figure 3.5.: Strategic rationale model.

The goal information creation be provided of the Active User represents the need to
create information to the system. This goal can be achieved by the task perform
information creation, that is split into the following subtasks:

• create new information is one task to perform information creation. It describes
the process of bringing new information to the Management Tool that
consists of create new documents and enter information. Creating new
information depends on the Management Tool upon the allocation and
visualization of information that has been added to the system.

3.1. Requirements Elicitation 42

• adapt existing information is one task to attain the goal perform information
creation. It is part of the task dependency between the Active User and the
Management Tool and can be further divided into choose information to be
changed and create changes.

Figure 3.6.: Strategic rationale sub-model.

The resource know-how is part of the dependency link from the Management Tool
to the Active User. It can be associated with both parent tasks and is modeled as
a sub-resource. This illustrates, that the Active User needs a certain knowledge to
create new information and to adapt existing one.

A lot of softgoals exist within the boundary of the Active User :

• efficient document-storage be provided represents the softgoal that acts like
a dependum between the Active User and the Management Tool. This
means that it is part of the dependency link between the two actors. To be
able to model internal rationales, this element is stated twice, as external

3.1. Requirements Elicitation 43

dependency as well as internal rationale. This softgoal signifies that the
user requires an efficient storage for his project documents.

• maintainability/controllability be provided represents the internal rationale
of the dependency link to the Management Tool. The Active User requires
an easy possibility for maintaining the system and its search index. This
softgoal has a positive influence on the first one, what is shown by the some+
relation.

• The softgoal interface to create/store information be provided indicates that
the information creation process can only be performed if an interface is
provided by the Management Tool. This interface must also offer functional-
ity to store information. Its provision saves time and resources and builds
the basis to make the software usable, what furthermore helps to perform
gapless records. Another positive effect is given by this softgoal in form of
an increased maintainability and controllability of the management tool.

• gapless records be performed is part of three dependencies between the user
and the software. This internal softgoal wants the Management Tool to
provide functionality for knowledge deployment within different sites, a
unified document management and the functionality to easily perform gap-
less records. All of these dependencies come together to make continuously
records and updates of information possible.

• creation process be quick stands for the disinterest of the Active User to
perform information creation if it takes a lot of time. A quick creation
process has a positive effect on performing gapless records.

• creation process be simple signifies that this actor is not willing to perform
complex processes just to create information within the system. This
softgoal has a positive influence on two other softgoals, namely creation
process be quick and less background knowledge for the software needed.

• less background knowledge for the software needed shows that the user wants
to be able to use the software on its own. He does not want to be addicted
to additional information or courses just to create information within the
system. If only few background knowledge is needed, the usability of the
data management is increased.

• usability of data management be provided represents the desire to a usable
data management. This softgoal is part of a dependency link between
the Active User and the Management Tool and it influences the softgoals
creation process be simple, gapless records be performed as well as interface
to create/store information be provided in a positive way.

3.2. Technology Choice 44

3.2. Technology Choice

One big challenge in creating a software-based system is the technology decision.
As the requirements are elicited, the amount of possible technologies are in fact
restricted, but in most cases there is still more than one way to implement and
realize a certain system.

3.2.1. Potential Technologies

In this project after clarifying and modeling the stakeholder’s needs, at least two
possible implementation types remain:

• Traditional Document Management System

The requirements could be satisfied by a traditional document management
system or short DMS. In that case only one software element exists that is
used for adding and modifying information. Also the storage and representa-
tion of files is performed here with the help of an internal database. Without
that kind of software, the data cannot be touched by users. Additional
functionality in form of comments, search functionality, right management,
etc. can also be used by a document management system.

The company already works with two types of document management
systems, the so-called "Documentum" and a similar tool called "TPac".
Both system are completely integrated and maintained by the IT sector, so
no further requests and checks need to be performed. If one of these two
DMS could be adapted according to the stakeholder’s needs it would save a
lot of time, work and problems.

• Search Engine

Another approach to fulfill the requirements is to implement a kind of
search engine in form of an intranet page. The search engine contains a
search index, where only metadata of the files are stored. Another tool
that fills the search index with data is needed as well. Such application can
be implemented in form of a file crawler that walks periodically through
the file system and indicates metadata or in form of a file monitor, that
observes the file system and indicates changes. A data storage is provided
separately in form of network shares.

By constructing and introducing a new software-based system to the com-
pany, several guidelines and restrictions must be considered. The basic
requirement determines that the software must be easily maintainable and

3.2. Technology Choice 45

independently runnable without further help for a long time period. The
system also needs to be accepted by the IT department.

Figure 3.7.: Strategic rationale sub-model for the document management system.

Each of the two approaches brings benefits on one side and drawbacks on the
other side and the decision is not an easy one. The idea of coming to terms with
this decision is to add each technology to the strategic rationale model (shown
in figure 3.5) and to perform a goal evaluation with the algorithm described in
[Strohmaier et al., 2007].

Modeling technologies require background knowledge and a deeper understanding
in the functionality of each environment. By modeling both possibilities, two
different SR models appear, where the internal relations of all stakeholders around

3.2. Technology Choice 46

the software remain the same. Also the dependencies of and to the external
parties do not change. The differences between these two models lie in the way
how dependencies are treated inside the management tool. The results are shown
in figures 3.7 and 3.8.

Figure 3.8.: Strategic rationale sub-model for the search engine.

3.2.2. Goal Evaluation

On implementing a huge software-based system with more than one stakeholder,
a great number of requirements need to be considered. In most cases, it is
absolutely impossible to fulfill exactly all the demands because some of them are

3.2. Technology Choice 47

contradictory. The target is to find the best fitting technology to accomplish the
highest fraction of all goals and softgoal and furthermore, the most important ones.
The varieties on internal relations of the software that occur between the different
technologies, effect the satisfiability of goals and softgoals. To know whether the
impact is positive or negative, goal evaluation - as described in chapter 2.2.3 - is
performed on both models.

Figure 3.9.: Document management system sub-model - Evaluation Step One.

At the beginning, one or more goals or softgoals of the software’s internal rationales
are chosen. Then its influence to adjacent elements is simulated as a propagation
in two steps. Modeling the individual impacts in the first propagation step is
done according to the rules of figure 2.21. To make this step reasonable, it
is shown in form of a sub-model in figure 3.9. This example demonstrates an
extract from the evaluation of the first mentioned technology, the traditional
document management system, where an already known tool is adapted to fulfill

3.2. Technology Choice 48

the requirements of the stakeholders. The Active User with its internal rationales
and the Management Tool with a subset of internal relations are visualized.

The starting points in our sub-model are marked with red cycles. Their labels
- they are all marked as satisficed - result from evaluating the entire internal
rationales from figure 3.7. The first propagation is split up into different iterations.
Each iteration handles the impact of the actual parent nodes to their child nodes.
In the subsequent iteration, the child nodes become the new parents and again
the influence on their child nodes are simulated. To understand how the iterations
are performed, they are visualized with colored arrows and links that differ for
each iteration. The legend, that can be found in the top right hand corner of the
figure, shows the notation for the used labels and assigns colors to the overall
five iterations.

Individual impacts can be detected easily if an element is influenced by just one
other node, or all the incoming labels are of the same type. In such cases, the
proper label of this element is set at the end of each run. If there are more
impacts with varied meanings on one specific element, the label conflict is used
in the first propagation.

For example the goal central architecture be used is a starting point in our
evaluation process. In the first iteration, this node affects all of its child nodes in
a positive way. After this iteration, only the softgoal unified document management
be provided can be finally labeled and the others show conflicts. While the softgoal
gapless records be provided further affects the first child node of the starting point,
unified document management be provided shows additional influence on its first
two children. Because of that fact, inter-site deployment of knowledge be provided
and maintainability be provided are marked as conflicted. The final label for the
softgoal unified document management be provided requires decision of the domain
expert, because the some+ relation can be either a make or a help relation. In
this particular case, the influence is not that strong and the partially satisficed
label fits better.

The affects of contribution links can thus be distinguished by predefined rules. In
the case of strategic dependencies, the label is taken over from the dependee over
the dependum to the depender. To give an example, the task provide functionality
to adapt information transfers the label satisficed to the resource new information
and furthermore to the task adapt existing information from the Active User. If
decomposition links are used, the parent is satisfied if all sub-elements are marked
as satisficed. This happens in iteration three, where the two subtasks create new
information and adapt existing information give the label satisficed to their parent
task perform information creation.

3.2. Technology Choice 49

Figure 3.10.: Document management system sub-model - Evaluation Step Two.

3.2. Technology Choice 50

After modeling the individual impacts, all conflicted elements are handled. The
different effects of each node are summed up in propagation step two, what can
be seen in figure 3.10. The approach is again split up in five iterations, each
visualized in a different color. Here, only the conflict labels from propagation step
one are of importance - they are marked with red cycles. To get an understanding
on how the labels within red cycles are set, all incoming influences to those nodes
are illustrated by small red symbols at the peak of contribution links and upon
dependency linkages. The domain expert needs to consider all red-marked labels
before the final label can be set.

If we look at the softgoal data management be provided, two transferred labels can
be identified. The resource data management interface shows a positive influence
and the task adapt existing software a negative one upon the target softgoal.
Because of the double meaning of the some+ and the some- relation, the labels
satisficed or partially satisficed on one side and denied or partially denied on the
other side resulted in the conflict in propagation step one. Providing the resource
data management interface is indeed good for the usability of the data management.
However, by adapting an existing software with a relative high complexity, instead
of creating a new, simple software with the appropriate functionality, the negative
impact on the softgoal usability of data management be provided is higher than
the positive one. Therefore the softgoal data management be usable is marked as
partially denied and this label is transferred via the dependum usability of data
management be provided to the internal rationale of the dependee.

Such assessment is performed for every single conflicted label to see the final
results of the goal evaluation. The internal softgoal gapless records be performed
is a special case in propagation step two. All together, there are eight influences
to this node, six are positive, modeled with the partially satisficed label and two
are negative, indicated with the partially denied label. One could say that the
resulting label is a compelling case because the relation from positive to negative
is like six to two, but under consideration of the domain knowledge, the negative
effects from a missing usability and a time-consuming creation process lead to an
unknown labeled softgoal.

3.2.3. Technology Decision

The decision between two technologies is normally made according to the analysis
of the entire results of the goal evaluation. For the choice in our sub-scenario, the
goal evaluation for the second mentioned technology, the search engine running
on an intranet site together with a helper tool to provide information, is still
missing. The approach on this evaluation is on the analogy of those from the

3.2. Technology Choice 51

document management system, visualized in figures 3.9 and 3.10. Therefore, only
the results after both propagation steps are shown for the second technology in
figure 3.11.

To highlight the different impacts on the satisfaction of stakeholders’ demands
that are caused by the different technologies, the internal elements are marked
with colored cycles. Goals, softgoals, resources and tasks with the same label as
outcome in both technologies are marked with a blue cycle, signifying a neutral
position in contrast to the compared sub-model. Improvements are identified
with green and degradations relating to figure 3.10 with red cycles.

Figure 3.11.: Crawler sub-model - Evaluation Results.

In our example scenario the technology choice can be greatly facilitated by the
goal evaluation. The second technology shows no degradations in the polarity of
all internal elements. A big part of them has the same positive label meaning
that these requirements can be fulfilled by both technologies. There are also some
softgoals that can only be accomplished if the second technology is chosen:

3.2. Technology Choice 52

• usability of data management be provided

• less background knowledge for SW needed

• creation process be simple

• creation process be quick

The achievement of the softgoal gapless records be performed is unknown for
technology one, but satisficed for technology two. The insight of this evaluation
advises to realize the Management Tool by implementing a new software-based
system consisting of a search engine with a proper search index and a helper tool
that fills the index.

The goal evaluation of the complete SR models also shows clear benefits on
choosing this technology. As a result, technology two is used to realize this
project. Further information on the goal evaluation can be found in the appendix.
Chapter A lists the results of other stakeholders in form of several sub-models.
Comparisons between the possible approaches are again visualized with colored
cycles.

4. Implementation

This chapter shows how the software is implemented and the whole system is
realized whilst taking into account requirements of the different stakeholders and
guidelines as well as restrictions appearing within the company. It is described
how the chosen technology is used and how the different parts of the software
are structured and furthermore used. To understand the interaction of different
components and the communication between them, figures are used.

4.1. Architecture

The architecture of the system can be described by figure 4.1. The main compo-
nents are the following:

• Crawler: the Crawler is an independent Java application that provides
information for the search index. It reads configuration information out of
proper files and iterates through all listed project paths to calculate and
send important metadata of every contained file to the server.

• GUI: the GUI that is supplied in form of an intranet page contains two
main functionalities. Search requests with various parameters need to
be performed and additional file manipulation is offered to handle mile-
stone specific functionality, like calculating the project progress or exerting
influence on the file status by assigning or reviewing documents.

• Tomcat Server: both components, the Crawler and the GUI, communicate
via HTTP to the Tomcat server, that offers its functionality in form of
servlets. All together, four of them exit. The entire functionality is divided
into different categories according to its purpose. Such servlet handles
different types of input and chooses the right treatment. Thereby, it
communicates to the search index.

• Search Index: the search index is realized with the enterprise search platform
Apache Solr. This open source project is driven by the "Apache Software
Foundation" and it offers easy access to the functionality of an extended

53

4.1. Architecture 54

Figure 4.1.: Component diagram.

4.2. File Crawler 55

full text search. The storage of needed information is also performed with
the help of the Solr application.

4.2. File Crawler

To provide information to the search index, the crawler regularly runs on the
existing network drives to capture information. The list of projects that need
to be observed is outsourced to a configuration file and read in on application
start-up. Every time a new project is introduced by test engineers, a new line is
added to this document. Its structure is described by table 4.1.

[Project Name]; [Absolute Path]
M1234; \\drive1\M1234\
M2312; \\drive1\M2312\
M4233; \\drive3\M4233\

...

Table 4.1.: Structure of the configuration file of the crawler.

The crawler touches all files inside the predefined projects, calculates needed
information and transfers it within a HTTP request to the IndexEngine. Addi-
tional, milestone-specific information is stored in separate property documents
when a file is assigned to a milestone or it is released by a software admin. If
such document exists for a given filename, also the additional information is read
out and added to the HTTP request.

This Java application makes use of some data classes that define routines to
calculate information out of files and properties. A helper class is also included,
which holds the entire definitions and useful information that is used by more than
one other class. All of these additional classes are used by the server application
as well. This avoids double held code and improves the maintainability of the
whole system. The structure of the crawler application is described by the class
diagram of figure 4.2. The data and helper classes get described in detail in
section 4.4. Its structure is shown by figures 4.5 and 4.6.

To ensure the regular execution of the program and furthermore the up-to-dateness
of the search index, the crawling tool is exported as a runnable ".jar file". The
internal job server of the company starts this file daily.

4.3. Graphical User Interface (GUI) 56

Figure 4.2.: Class diagram of the file crawler application.

• TDocScoutCrawler : this class is the core element of the crawler application.
It contains functionality to read out the crawler configuration and to walk
through all files of the given file paths. The communication with the server
is also initiated here.

• ServerConnector : the ServerConnector holds functionality to communicate
with the servlets of the Tomcat server. It is used to indicate new file
information, delete the complete index and commit changes to the index.
Project names are also registered through this class and the possibility to
indicate a reload of the server configuration is given.

4.3. Graphical User Interface (GUI)

The GUI is realized with Java Server Pages (JSP) to create dynamic HTML
code. It is accessible via the intranet platform from any location of the Infineon
Technologies AG. Layout and functionality of this page are optimized for Internet
Explorer 9 because this is the common browser in the company. The design is
adjusted to the company standards to fit to other intranet sites.

The heart of the user interface is the index.jsp that holds the functionality for
search queries as well as those for milestone specific actions. The interface consists
of different HTML div-elements, that are styled with Cascading Style Sheets
(CSS). If an action is triggered by the user, the interface communicates via HTTP

4.4. Tomcat Server 57

requests to the proper servlet. After realizing the requested event, the response
is visualized.

The search functionality is used by entering a search term and pressing the "start
search" button. If a project is selected, the scope of the retrieval process is
restricted from the entire projects to this specific one. The search results contain
information about the name, path and type of each file. The search term can
be used to create own queries by using terms from the Apache Lucene parser
syntax (described in [Carlson, 2006]). This gives the user freedom to create an
individual search request, what improves the findability of information.

If the project progress is prompted, needed information is requested from the
FileProcessingEngine. It is defined for each milestone what files are needed to
complete it. The interface visualizes the file status with colors.

4.4. Tomcat Server

The Apache Tomcat server is already introduced in the company and adminis-
trated by the IT department. Any access underlies certain restrictions and can
only be realized via tickets from the so-called "HelpDesk" platform. This server
provides the environment for the enterprise application, that in turn represents
the logical part of the management tool. The entire functionality is grouped
to four servlets - derived from the Java class "javax.servlet.http.HttpServlet" -
according to its purpose. A servlet handles different types of input and chooses
the right treatment. Thereby it communicates to the search index via the HTTP
protocol. In most cases it additionally produces a proper response and redirects
it to the user interface. The structure of the server application is visualized in
figure 4.3 in form of a class diagram. Descriptions of the blank classes are shown
in figures 4.4, 4.5 and 4.6.

• IndexEngine: the IndexEngine reads out the type of action that needs to
be performed. Thereby it distinguishes between indexing new information
in form of a FileEntry object, updating the list of indicated project names
and reloading the server configuration.

• FileProcessingEngine: this servlet is needed to calculate and furthermore
show the project progress by providing milestone information. It detects
files that are assigned to a project and figures out its file status that can
be not assigned, unreleased or released. The FileProcessingEngine is also
able to execute new assignments of test documents to milestones and file
reviews. Permissions to assigned files are regulated through the internal

4.4. Tomcat Server 58

Figure 4.3.: Class diagram server application.

4.4. Tomcat Server 59

right management of the company and therefore are the same as those
on network drives. Sometimes read access for released files is desired to
be provided for every user of the intranet site. Therefore a public folder
is introduced that ensures unrestricted read access to all comprised files.
Moreover this servlet is responsible for storing a copy of selected files to
this folder when they get released.

• SearchEngine: the SearchEngine is responsible for conducting regular and
restricted, project-specific search requests. Therefore, it communicates with
the search index to retrieve needed information. The response is redirected
to the user interface in form of instances of the class SearchResponse. The
servlet also contains functionality to check the availability of the search
index and to read out the list of indicated project names as well as required
files of each milestone and to inquire specific fields from a search index
entry.

• DeletionEngine: this servlet is called to delete specific fields or the whole
search index. It reads out the requested type of action and processes it
without redirecting a response to the GUI.

• SearchResponse: the SearchResponse is a helper class, that is used by the
SearchEngine. It bundles information that is important for the result of a
regular search request, in particular name, path and type of one file.

Figure 4.4.: Class details ServerConfig.

• ServerConfig: the configuration information for the server part is outsourced
to a proper file. It contains information about important or required files for
each milestone and gives the possibility to provide read access for every user,

4.4. Tomcat Server 60

independent of their rights on the network file system. The ServerConfig
class reads out this configuration information and holds it as members. It
also requests the list of indicated project names and provides functionality
to reset the configuration. Finally, this class holds and initializes an object
of the class EmbeddedSolrServer, that represents the Apache Solr index in
its embedded version. Further information on the search index is given in
section 4.5.

Table 4.2 describes the structure of the server configuration file. First, the
milestone is stated, followed by the description of the important file, that is also
shown in the GUI. The unique "Tag" field is needed for internal use. The last
parameter is optional and only added to public releases.

[Milestone]; [Description]; [Tag]; [True(optional)]
M3; Test Concept M3; file-M3-1; true
M3; TCAF; file-M3-2;
M4; Test Concept M4; file-M4-1;
M4; Tester Resource Overview BE; file-M4-2;
M4; Tester Resource Overview FE; file-M4-3;
M4; Test Time Roadmap / Estimation; file-M4-4; true
...

Table 4.2.: Structure of the configuration file of the server.

Beside the crawler, the server application also makes use of the classes FileEntry,
PropertyEntry and Common from the "data" package.

• FileEntry: this data class represents the entry of one single file from the
search index. The crawler creates one FileEntry object for each file in his
search scope. All contained members are calculated and filled out automati-
cally by the constructor. This object is then transported to the IndexEngine
servlet, that induces the storage of the information. A PropertyEntry object
is also added as a member that contains information that is read from the
property file.

• PropertyEntry: a PropertyEntry represents the additional data that needs
to be stored once the status gets changed by an assignment or release of an
already indicated file. If such property information is available, it is read
out automatically and added to the appropriate FileEntry. Java properties
are used to store the additional information on the file system. They are
created by the FileProcessingEngine.

4.5. Search Index 61

• Common: Common represents a helper class with many constant definitions;
among others, paths to configuration and log files, parameter names for the
HTTP transfer, formats for storing and visualizing dates, error descriptions
and return messages are defined. It also provides the functionality to create
output to the logfile and to construct error messages in HTML format.

Figure 4.5.: Class details FileEntry.

4.5. Search Index

Apache Solr is based on the previously introduced and perhaps better known
"Lucene Java Library". It offers a powerful full-text search functionality with
lots of additional advantages. Different interfaces are provided to communicate
with other applications. In this project, the HTTP API is used to implement
information exchange between the servlets and the search index via the Hypertext
Transfer Protocol. Solr needs a Java Servlet Container like the Apache Tomcat,
to be runnable. In general it is used as a separate application. In this project,

4.5. Search Index 62

the concept of "Embedded Solr" is implemented, where no separate Java process
is needed and the functionality can be used inside the management tool through
the Solrj Java API [Efendi et al., 2007].

Figure 4.6.: Class details PropertyEntry and Common.

The data storage is also provided by this innovation. Indicated information is
archived in different file segments and stored on the web space of the server appli-
cation. The data is stored and represented in XML format. Further information
about the search platform Solr and descriptions and tutorial on how to install
and use it, can be found in [Foundation, 2007a] and [Foundation, 2007b], as well
as in [Hatcher et al., 2011]. The usage of Solrj is shown in [Ryan et al., 2011].

5. Results and Validation

In this chapter the results of the project are presented. The final management tool
is described in detail and visible parts are presented with graphics. Procedures
are justified by comparing parts of the software with the selected requirements.

5.1. Requirement Categories

The functionality of the resulting software is based on the set of requirements from
different stakeholders. To make the analysis and argumentation less complex,
the requirements are grouped in categories. Their realization is then shown and
further described. Dependencies from figure 3.3 and internal rationales from
figure 3.5 are used to create the list of categories. The following elements are
contained:

• Search functionality: a unique search tool is needed, that offers the possi-
bility for an inter-site information retrieval. A simple and usable interface
should be provided, that delivers and represents high quality results. Infor-
mation about certain projects should be distinguishable to others and an
overview of all available projects should be given.

• Project progress: the progress of each test project should be visualized
for users. This information is needed by employees or sites that work on
different milestones within the same project or are somehow involved to it.
People in authority want to be up to date relating to problems and delays
appearing inside the project progress to stick to the planned deadlines.

• Data storage: the information storage should be as simple as possible.
Employees must not be confused by introducing new processes just to store
and use documents of any type. It is highly appreciated that all files can
be found on the familiar network drives and are accessible via the windows
explorer.

63

5.1. Requirement Categories 64

• Information creation: creating and modifying information within the soft-
ware should be an easy procedure where a simple user interface is required.
It must be possible to deploy knowledge from different sites. Nothing should
stand in the way to perform continuous and gapless records to keep the
information up to date.

• Review functionality: especially superiors and project managers desire a
possibility to review added information and to ensure correctness of the
content. Reviewed or released files must be distinguishable from others and
clearly visualized.

• Rights management: different access rights on the content of the manage-
ment system should be provided for user groups. Sensitive project data
must not become accessible for restricted users due to leaks in the rights
management of the software. The assignment of permissions is desired to
take less time and all procedures must be realizable easily and quickly.

5.1.1. Search Functionality

The search functionality is realized by a graphical user interface to provide the
resource user interface[search]. To fulfill the goal possibility for inter-site search be
provided the GUI is realized in form of an intranet page of the company. The
internal network is accessible for different sites and ensures a central entrance to
the content of the management tool (softgoal search tool be unified). As already
mentioned in the last chapters, the style of this site is adjusted to the standards
of the company and is constructed in a very simple way and no unimportant
functionality is included. This accomplishes the softgoal usability of search be
provided. The information content is restricted so that a brief summary of the
syntax that can be used inside the search term to increase the quality of the
results (softgoal search functionality be of high quality). To ensure a quick retrieval
process, the file index is kept rather small and only relevant data and file links
are stored. Figure 5.1 shows the layout of the GUI.

A link to the internal Wiki is added on the top right hand side of the page. By
following this link, users are able to find information on how to use the new
document management system; also the search syntax is described more precisely
and examples are shown there. Instructions to create the required files of each
milestone, and furthermore to complete it, are also part of this Wiki, that helps
to satisfy the softgoal no background knowledge needed.

The user has the possibility to retrieve information of the entire indicated data
or to restrict the scope to a desired project. Therefore, he changes the value of

5.1. Requirement Categories 65

Figure 5.1.: Screenshot User Interface - Home.

5.1. Requirement Categories 66

the dropdown list that indicates the actual project, what is shown in figure 5.2.
The default value "all" adds no additional information to the search request and
the query is evaluated on the whole content of the search index. If a project is
selected, only project specific information can be encountered (resource project
specific information).

In the final implementation, the amount of calculated search results is limited
to 1000 to avoid long waiting times if a very common search term causes a huge
amount of hits. It is also redundant to produce a higher amount of results because
nobody wants to go through all of them. Moreover, in such cases, restrictions
are added by using elements of the defined search syntax. This maximum can be
easily changed to any other value.

Figure 5.2.: Screenshot GUI - Project choice.

The resource information representation is provided in form of search results that
consist of three parts. The first element is the filename; it is highlighted because
in many cases this information is enough to identify the desired dataset. After
that, the file type is listed; in common cases it just contains the proper ending.
For unknown file types a mapping can be performed so that a short description
gives the user information about the structure of the result. To give an example,
a file that ends on ".tsf" contains specific test results. The file type in that case
could be: "Test Results". Finally the absolute file path is shown in form of a link.
This information helps users to choose the needed data and gives him a quick
access to it. Figure 5.3 and 5.4 visualize the search functionality by searching for
the term spec in the entire index as well as in project "M1298".

5.1. Requirement Categories 67

Figure 5.3.: Screenshot GUI - Regular search.

5.1. Requirement Categories 68

Figure 5.4.: Screenshot GUI - Project specific search.

5.1. Requirement Categories 69

5.1.2. Project Progress

Every time a project is selected via the dropdown menu, the proper milestone
bar appears, that satisfies the softgoal project progress be shown. The first two
milestones are different and no required files exist for them, so they are removed
and number three to nine are visualized. Each entry of the menu bar shows the
list of important files. This information is stored in the server configuration and is
loaded on server startup. Figure 5.5 presents the progress of the project "M1298",
where milestone four is at an initial state.

The resource monitor functionality for the project progress is provided by adding
colored file statuses. They give an overview about the project progress and help
to identify problems. If no data is assigned, the status "not assigned" is indicated
by a dark gray color as regular text. The proper button enables the relation of
concrete information to an important file. If data is assigned, a button to perform
reviews appears.

5.1.3. Data Storage

The way of storing test data in the company is not altered by using this application.
Test engineers are able to use the same common network drives to store their
project information to satisfy the softgoal usability of data management be provided.
Every document can be directly accessed, modified or deleted via the file system
(resource user interface [add/modify]) to provide the basis for gapless records
(softgoal gapless records be performed). The new software-based system supplies
additional features and helps to visualize and manage the projects. Changes on
the file system are updated to the search index after the next crawler run. In
the first runs inside the company, the interval is set to "daily", but it can easily
be changed when needed. If files get assigned to milestone, the search index is
adapted immediately. After the assignment of new files that are not in the scope
of the crawler, they can nonetheless be found via the GUI.

The use of network drives as data storage is efficient and accomplishes the softgoal
efficient document-storage be provided ; no further effort in maintenance is needed
(softgoal maintenance effort be minimal). The IT department is responsible for
the enlargement of memory, if it becomes tight. Only the storage of project
folders that are entered to the configuration file can be correlated with the new
management tool. The task adapt information is accomplished by the possibilities
to adapt existing information on network drives and to assign files.

5.1. Requirement Categories 70

Figure 5.5.: Screenshot GUI - Project progress.

5.1. Requirement Categories 71

5.1.4. Information Creation

The resource new information can be provided in two ways, by indicating file specific
information through the crawler application and by file assignments caused by
active users. The scope of the crawler is defined in the configuration file. If new
projects are started, their names and absolute paths need to be added here. The
content of the new project is indicated on the next iteration of the crawler. File
assignments are performed by users of the system via the intranet page of the
user interface, what accomplishes the softgoal unified document management be
provided. The possibility for inter-site knowledge deployment is also given and
the softgoal inter-site deployment of knowledge be provided is fulfilled.

The button "Assign File" is used to relate the proper information to a required file.
A browser window appears and users can choose their preferred file. The server
then automatically adds property information in form of the actual timestamp
and the username of the person that triggers this action. The status of the file
changes to "unreleased" and is indicated with a red colored link by the GUI.
After data is assigned, the button to perform the review is enabled. Property
information is stored in a property file to announce it to the crawler application
on the next startup and indicated to the search index as well.

The assignment of files is presented in figure 5.6. It shows the same milestone
as figure 5.5 but this time in an advanced stage where required information is
created and assigned properly.

5.1.5. Review Functionality

Before a milestone can be finalized, all required files must be released to fulfill
the softgoal correctness of information be secured. The resource review functionality
is provided in form of the "review" button inside the GUI (resource user interface
[revision]) and the proper file status. Only justified users are allowed to review a
milestone specific file, whose status becomes "released" - indicated by a green link.
If an already released file gets changed again, the status is set back to "unreleased"
and the Revisor agent must perform another content check. Advises due to wrong
content are given to authors per email or in person (softgoal possibility to make
advises be given).

It is not allowed that people review files that they have produced on their own.
To realize this restriction, the username of the assigner must be different to those
of the reviewer. Additional property information is added, namely the timestamp

5.1. Requirement Categories 72

Figure 5.6.: Screenshot GUI - Assignment of files.

5.1. Requirement Categories 73

of the review and the name of the reviewer. The file status is also adapted to the
property file and inside the search index.

In figure 5.7, most of the required information of milestone four is released. The
review of the "Test Time Roadmap / Estimation" is still missing. After this
review, the milestone is completed and the project progress moves on to milestone
five.

Figure 5.7.: Screenshot GUI - File reviews.

5.1.6. Rights Management

The access to the content of the management system is regulated with access
privileges (softgoal rights management be provided). There is no need to manually
give additional permissions to users because the right management has already
been done for the network file system. User groups are introduced with various
rights on different folders. If users require additional rights for specific projects,
they request permissions from the superior or from the IT department. This sim-
plifies the right management process and secures its uniformity, what furthermore
has a positive influence on the softgoal system security be given.

5.2. Unclear Requirements 74

Some files only contain data that is not in strict confidence. Those files can be
provided for all users of the management system when they are marked properly
in the server configuration. After their release they are automatically transferred
to a public folder. This accomplishes the softgoal functionality for public access be
provided. In addition to the existing property information, represented by the
user interface, a link to the public folder is added. Users without read access to
the project folders are able to follow the new linkage to obtain the needed access.
Figure 5.8 shows the representation of this functionality. In this case, "Target
Test Specification BE" has been marked in the configuration file.

Figure 5.8.: Screenshot GUI - Public folder.

5.2. Unclear Requirements

It is not always possible to entirely fulfill the requirements of all stakeholders. In
this project, there are also some requirements that seem to be fulfilled but the
completion cannot be totally assured for the whole life cycle of the software. The
following "unclear requirements" can be named:

• system security be given: the security of the new system is very important for
the IT department. Attackers should neither have the possibility to gather
confidential information from the management tool nor be able to receive
access to harm the server or other internal technologies of the company.

Many kind of attacks are averted by the IT department because the software
runs as an intranet site with certain restrictions. The system is furthermore
implemented in a way, where no security gaps arise and confidential data
can be protected by permissions on the file system. Nevertheless, so shortly

5.2. Unclear Requirements 75

after the introduction of the system it cannot absolutely be ensured that
there will never be attacks on the system - even if they are harmless.

• maintenance effort be minimal : the maintenance effort for the IT department
should be minimal. Therefore, the system does not need any additional
effort for keeping the system runnable. These requirements are anyhow
marked as "unclear" because in future the need for maintaining the software
could appear; for example if the company changes the server-side technology,
modifies the data storage on the network file system or introduces new
restrictions. In such cases, the IT department may need to adapt the tool
or to change the setup to meet the requirements of the new environment.

• correctness of information be secured : a correct search index is essential to
fulfill the softgoal search functionality be of high quality. Provisions that keep
the search index correct are already made, but users also need to contribute
to a correct index:

– Project specific information must be stored in the correct project folder,
to find it via restricted search requests.

– If assigned files are deleted, the status of the required file becomes
"not assigned" again. New data needs to be assigned to complete the
milestone.

– Revisors must perform revisions seriously to ensure the correctness of
the content.

– Already released files must be reviewed again if changes are made.

6. Conclusion and Outlook

This chapter sums up the results of the performed work in form of a conclu-
sion. The usage of the software in the company and the biggest hurdles during
the development process are shown. Finally, ideas for future extensions and
improvements are given.

6.1. Contribution

The goal of this thesis was to plan, design, implement and introduce a new software
for managing project specific test documents within the Infineon Technologies
Austria AG. The requirements engineering process has been performed with the
help of the i* Framework, an agent- and goal-oriented approach. According to
the i* notation, different models were created to detect the requirements for the
management tool and to help on choosing an appropriate technology.

The strategic dependency model gave an overview about all available stakeholders
and showed their dependencies. It helped to identify the requirements that
needed to be considered to create the software and showed where they came
from. To perform further analysis, the rationales behind the dependencies were
added to the SD model. The strategic rationale model visualized the reasons
for dependencies and their treatment by modeling two potential technologies for
the realization of the management tool. A goal evaluation was performed to
calculate the labels of goals and softgoals of each actor. This gave an impression
about which requirements can be fulfilled if a certain technology is used. This
information helped to choose the best-fitting technology where the highest amount
of requirements are satisfiable.

The software has been implemented under consideration of internal restrictions.
The architecture and the structure of the implementation were visualized and
described. The resulted management tool was shown and its functionality was
thereby compared with the requirements of the stakeholders. An analysis clarified

76

6.1. Contribution 77

why the certain parts of the software were created in that special way. Further-
more, it was shown which requirements have been fulfilled and which remained
"unclear".

The work at the company showed that in real-life, the requirements engineering
process can be as hard or even harder than the technical realization. The
development process took eight months and the whole requirements engineering
process including the choice of the technology took more than half of this time.

6.1.1. Actual Project Status

At this time, the software is introduced to the company and has already been in
common use. It runs stable on the Apache Tomcat Server and is supplied with
new data by the crawler every day. All stakeholders are trained and able to use
the functionality of the software via the graphical user interface. There is one
internal leader for the project who is responsible for managing configuration files
and giving a hand on using the system. This person has been involved in the
project for the whole development process and has additional technical knowledge
as well as privileges for performing restarts of the search index and for causing
reloads of the server configuration. In cases of unexpected behavior or problems,
the project leader establishes contact to the IT department to ask for further
support.

During the first months, project-specific knowledge for all current and already
completed projects is transferred to the management tool. The search functionality
is able to find project data of all projects immediately. Nevertheless, the project
progress and its milestones can only be visualized correctly if the right information
is manually assigned by involved parties. Very old projects that were finalized
many years ago, are sometimes not really needed any more. In such cases, only the
information for the final milestone is assigned by hand for the sake of completeness;
previous milestones are left empty.

If new projects are created and processed, the system can be used more efficiently.
The entire functionality emerges when the project progress is simultaneously
transported to the search index from the beginning of a test project.

6.1.2. Challenges

Some challenges and hurdles that appeared during the development process are
listed in this chapter.

6.2. Future Work 78

• Knowledge exchange: to be able to think about solutions of the problem, it
was necessary to understand the internal test processes and circumstances
from different points of view. There were several technical terms that
complicated this initial training. Before realistic requirements could be
determined, knowledge also needed to be transferred to the test engineers.
They were given an overview about possible solutions.

• Changes in requirements: although the requirements were well elaborated
and planned at the beginning, small changes occurred during the develop-
ment process. Some stakeholders altered their requirements and completely
new needs appeared. Even if these changes were few, their realization cost
more time later on.

• IT support: the headquarter of the IT department is stationed in another
facility of the company. Thus, there was no in-house contact person for
supporting the introduction process of a new software and everything was
communicated via the "HelpDesk" intranet page, the communicator and the
telephone. It was hard to find the responsible person for a certain problem
and solutions were costly elaborated. The development on the Tomcat
server was tedious because server restarts due to changes on the software
could only be performed by the IT headquarter and also server logs needed
to be requested.

6.2. Future Work

The current implementation fulfills the majority of stakeholders’ requirements.
Nevertheless, there are several improvements and extensions of the document
management system and the data storage that could be realized in future:

• Standardization of the folder structure: the actual folder structures of the
network drives are not standardized. It is not clear how a consistent naming
can be performed and which content belongs to which folder on the project
drive. A standard would help to keep the structure of new projects uniform.

• Creation of new projects: additional functionality can be added to the
software, that bundles things that need to be done if a new project is
created; for example creating a predefined folder structure on the network
drive or adding the project to the crawler configuration.

• Extension of the Wiki page: the Wiki page, that acts like a help page for
the usage of the management tool, can be extended by a FAQ area or a
forum.

6.2. Future Work 79

• Admin area: an administrative area can be added to the GUI, where the
content of the page and the server configuration can be adapted by qualified
persons.

• Email notification: the actual process of reviewing files can be improved
by an automatic email notification between the assigner and the revisor
of information. If users complete their milestones, the supervisor gets a
request to review the information. If the review is done, the notification is
sent back to the assigner.

A. i* Models

This appendix chapter gives further details of the technology choice. It shows the
results of the goal evaluation for the remaining actors.

A.1. Goal Evaluation

Figure 3.11 already showed the evaluation results for the Active User. The
following figures visualize the evaluation results for the actors IT, Passive User
and Revisor. Like in section 3.2.2, differences to the evaluation of technology one
are highlighted with colored cycles.

Figure A.1 shows the varying impacts on the requirements of the IT department
that are caused by the different technologies. The implementation of the search
engine has a negative effect on the maintainability and the security of the system,
what is argued in chapter 5.2.

The evaluation of the Passive User and the Revisor (figures A.2 and A.3) only
show improvements for choosing technology two.

80

A.1. Goal Evaluation 81

Figure A.1.: Search engine evaluation results - IT.

A.1. Goal Evaluation 82

Figure A.2.: Search engine evaluation results - Passive User.

A.1. Goal Evaluation 83

Figure A.3.: Search engine evaluation results - Revisor.

B. Implementation Details

This appendix chapter shows further details of the implementation of the man-
agement tool. It mainly focuses on the "embedded version" of Apache Solr, the
configuration of the search index and the structure of property files.

B.1. Embedded Solr

The first implementation of the system used the Apache Solr search index the
common way - as a separate web application on the Tomcat server. Therefore,
another web application was requested. The GUI communicated via HTTP
requests to the servlets, that again performed HTTP requests to the Apache
Solr application. This passing of information was time consuming and made the
document management system depending on two server applications.

The final implementation uses the "embedded version" of Apache Solr that is pro-
vided by the Solrj Java AP. The ServerConfig class holds an EmbeddedSolrServer
object and is responsible for the initialization and the assignment of the home
path of the index - the path to the proper folder on the web space of the requested
server application. The index can be modified directly from this member object.
For each file, an object with the type SolrInputDocument is created, where all
indicated fields are added in key-value pairs. The new object is then appended
to the index by the add() functionality of the EmbeddedSolrServer. The added
information is buffered by the server and taken over after a call of the commit()
function.

To be able to use the embedded functionality, several external libraries must
be included (see figure B.1) which are part of different projects of the Apache
Software Foundation. Apache Solr is used in version 3.4 that has been released
on the 14 th of September 2011.

If the Solr server does not work properly, it gets restarted automatically by the
server application. This ensures steadiness of the document management system
and reduces the maintenance effort. Furthermore, the duration of crawler runs is
reduced to half of them in the final implementation.

84

B.2. Search Index 85

Figure B.1.: Required libraries for embedded Solr.

B.2. Search Index

The search index is configured via the "schema.xml" that is found in the "conf"
folder of the Solr distribution. Here, the indicated fields are defined as shown in
figure B.2. Values for the first five elements are calculated out of each indicated
file and represented by the FieldEntry class. Information for the other elements
are stored in property files.

Figure B.2.: Required libraries for embedded Solr.

B.3. Property Files 86

B.3. Property Files

Property files are used to store additional file-information that is created by the
server application on file assignments and file reviews. The FileProcessingEngine
servlet uses the PropertyFile class to store this additional information in key-value
pairs. The absolute path of the corresponding file is used to calculate the path
of the property file, that actually lies on the web-space of the server application.
With the help of property files, the crawler is able to recognize project specific
information like the belonging to a milestone of a certain project. If there are
problems with the actual index or the index is even damaged or deleted, there
is no reason to panic because it gets restored automatically on the next crawler
run.

A property file is deleted by the system if the corresponding file is no longer
assigned to a project. Therefore, regular users do not need access to property
files and only the internal project leader is familiar of their existence and is able
to change them. Figure B.3 shows the structure of a property file for released
data.

Figure B.3.: Structure of a property file.

Bibliography

[Abdulhadi et al., 2007] Abdulhadi, S., Horkoff, J., Yu, E., and Grau, G.
(2007). istarguide. URL:http://istar.rwth-aachen.de/tiki-index.php?
page=i*+Guide [Last visited on 20.01.2012].

[Becerra-Fernandez and Sabherwal, 2010] Becerra-Fernandez, I. and Sabherwal,
R. (2010). Knowledge management: Systems and Processes. M.E. Sharpe,
Armonk, New York.

[Becker and Huber, 2008] Becker, C. and Huber, D. E. (2008). Die bilanz des
(miss)-erfolges in it-projekten - harte fakten und weiche faktoren. URL:http:
//d-nb.info/99200375X/34 [Last visited on 10.11.2011].

[Borgida et al., 2009] Borgida, A. T., Chaudhri, V. K., Giorgini, P., and Yu, E. S.
(2009). Conceptual Modeling: Foundations and Applications, Essays in Honor
of John Mylopoulos. Springer, Berlin.

[Brandner, 2011] Brandner, J. (2011). Web-based process documentation.

[Brill et al., 2010] Brill, O., Schneider, K., and Knauss, E. (2010). Videos vs. use
cases: Can videos capture more requirements under time pressure? In Require-
ments Engineering: Foundation for Software Quality, pages 30–44. Springer-
Verlag. URL:http://www.springerlink.com/content/p8225h4ku4171474/.

[Brittain and Darwin, 2007] Brittain, J. and Darwin, I. F. (2007). Tomcat: The
Definitive Guide, 2nd Edition. O’Reilly, second edition.

[Brooks, 1987] Brooks, F. (1987). No silver bullet essence and acci-
dents of software engineering. Computer Vol. 20 No. 4, pages 10–
19. URL:http://people.eecs.ku.edu/~saiedian/Teaching/Sp08/816/
Papers/Background-Papers/no-silver-bullet.pdf.

[Carlson, 2006] Carlson, P. (2006). Apache lucene - query parser syntax.
URL:http://lucene.apache.org/java/2_9_1/queryparsersyntax.pdf.

[Chung et al., 2000] Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J. (2000).
Non-Functional Requirements in Software Engineering. Kluwer Academic
Publishers, Boston/Dordrecht/London.

87

http://istar.rwth-aachen.de/tiki-index.php?page=i*+Guide
http://istar.rwth-aachen.de/tiki-index.php?page=i*+Guide
http://d-nb.info/99200375X/34
http://d-nb.info/99200375X/34
http://www.springerlink.com/content/p8225h4ku4171474/
http://people.eecs.ku.edu/~saiedian/Teaching/Sp08/816/Papers/Background-Papers/no-silver-bullet.pdf
http://people.eecs.ku.edu/~saiedian/Teaching/Sp08/816/Papers/Background-Papers/no-silver-bullet.pdf
http://lucene.apache.org/java/2_9_1/queryparsersyntax.pdf

Bibliography 88

[de Bruijn and Dekkers, 2010] de Bruijn, F. and Dekkers, H. L. (2010). Ambigu-
ity in natural language software requirements: A case study. In Requirements
Engineering: Foundation for Software Quality, pages 233–247. Springer-Verlag.

[Efendi et al., 2007] Efendi, F., Rowe, S., Grindstaff, D., James, and Hatcher, E.
(2007). Embedded solr. URL:http://wiki.apache.org/solr/EmbeddedSolr
[Last visited on 24.09.2011].

[Foundation, 2007a] Foundation, T. A. S. (2007a). Introduction to the solr
enterprise search server. URL:http://lucene.apache.org/solr/features.
html [Last visited on 27.01.2012].

[Foundation, 2007b] Foundation, T. A. S. (2007b). Solr tutorial. URL:http:
//lucene.apache.org/solr/tutorial.html [Last visited on 27.01.2012].

[Fowler and Scott, 2003] Fowler, M. and Scott, K. (2003). UML Distilled: A
Brief Guide to the Standard Object Modeling Language. Addison-Wesley, USA.

[Garlan, 1994] Garlan, D. (1994). The role of software architecture in require-
ments engineering. URL:http://www.cs.cmu.edu/afs/cs/project/able/
ftp/sareqts-re94/sareqts-re94.pdf.

[Hatcher et al., 2011] Hatcher, E., Sundling, P., and Ryan (2011). Solr
wiki. URL:http://wiki.apache.org/solr/SolrInstall [Last visited on
14.09.2011].

[Horkoff and Yu, 2009a] Horkoff, J. and Yu, E. (2009a). Evaluating goal achieve-
ment in enterprise modeling – an interactive procedure and experiences.
URL:http://www.cs.toronto.edu/pub/eric/PoEM09-JH.pdf [Last visited
on 06.03.2012].

[Horkoff and Yu, 2009b] Horkoff, J. and Yu, E. (2009b). A qualitative, interactive
evaluation procedure for goal- and agent-oriented models. URL:http://www.
cs.utoronto.ca/~jenhork/Papers/Horkoff_CAISEForum.pdf [Last visited
on 06.03.2012].

[Horkoff et al., 2006] Horkoff, J., Yu, E., and Grau, G. (2006). istar-
quickguide. URL:http://istar.rwth-aachen.de/tiki-index.php?page=
iStarQuickGuide [Last visited on 24.01.2012].

[IEEE, 1990] IEEE (1990). Ieee standard glossary of software engineer-
ing terminology. URL:http://www.idi.ntnu.no/grupper/su/publ/ese/
ieee-se-glossary-610.12-1990.pdf.

[IEEE, 1998a] IEEE (1998a). Ieee guide for developing system requirements speci-
fications (ieee std 1233-1998). URL:http://asaha.com/download/MNDcxMTg-.

http://wiki.apache.org/solr/EmbeddedSolr
http://lucene.apache.org/solr/features.html
http://lucene.apache.org/solr/features.html
http://lucene.apache.org/solr/tutorial.html
http://lucene.apache.org/solr/tutorial.html
http://www.cs.cmu.edu/afs/cs/project/able/ftp/sareqts-re94/sareqts-re94.pdf
http://www.cs.cmu.edu/afs/cs/project/able/ftp/sareqts-re94/sareqts-re94.pdf
http://wiki.apache.org/solr/SolrInstall
http://www.cs.toronto.edu/pub/eric/PoEM09-JH.pdf
http://www.cs.utoronto.ca/~jenhork/Papers/Horkoff_CAISEForum.pdf
http://www.cs.utoronto.ca/~jenhork/Papers/Horkoff_CAISEForum.pdf
http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuide
http://istar.rwth-aachen.de/tiki-index.php?page=iStarQuickGuide
http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf
http://www.idi.ntnu.no/grupper/su/publ/ese/ieee-se-glossary-610.12-1990.pdf
http://asaha.com/download/MNDcxMTg-

Bibliography 89

[IEEE, 1998b] IEEE (1998b). Ieee guide for information technology — system
definition — concept of operations (conops) document (ieee std 1362-1998
(r2007)). URL:http://web.ecs.baylor.edu/faculty/grabow/Fall2011/
csi3374/secure/Standards/IEEE1362.pdf.

[Liu et al., 2003] Liu, L., Yu, E., and Mylopoulos, J. (2003). Security and privacy
requirements analysis within a social setting. Proc. of the 11th International
Requirements Engineering Conference (RE’03), pages 151–161. URL:http:
//www.cs.toronto.edu/pub/eric/RE03.pdf.

[Mylopoulos et al., 1990] Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis,
M. (1990). Telos: representing knowledge about information systems. ACM
Transactions on Information Systems Vol. 8 No. 4, pages 325–362. URL:http:
//doi.acm.org/10.1145/102675.102676.

[Partsch, 2010] Partsch, H. (2010). Requirements-Engineering systematisch: Mod-
ellbildung fuer softwaregestuetzte Systeme. Springer, Berlin, Heidelberg.

[Ryan et al., 2011] Ryan, Noble, P., Mangar, S., and Szott, S. (2011). Solrj.
URL:http://wiki.apache.org/solr/Solrj [Last visited on 25.09.2011].

[Schwartz, 2006] Schwartz, D. G. (2006). Encyclopedia of Knowledge Management.
Idea Group Reference.

[Strohmaier et al., 2007] Strohmaier, M., Aranda, J., Yu, E., Horkoff, J., and
Easterbrook, S. (2007). Analyzing knowledge transfer effectiveness - an agent-
oriented modeling approach. In HICSS, page 188. IEEE Computer Soci-
ety. URL:http://kmi.tugraz.at/staff/markus/documents/2007_HICSS_
Knowledge-Transfer.pdf.

[Strohmaier et al., 2008] Strohmaier, M., Horkoff, J., Yu, E., Aranda, J., and
Easterbrook, S. (2008). Can patterns improve i* modeling? two ex-
ploratory studies. In REFSQ ’08: Proceedings of the 14th international
conference on Requirements Engineering, pages 153–167, Berlin, Heidelberg.
Springer-Verlag. URL:http://kmi.tugraz.at/staff/markus/documents/
2008_REFSQ08_Patterns.pdf.

[Wieringa and Persson, 2010] Wieringa, R. and Persson, A. (2010). Requirements
Engineering: Foundation for Software Quality: 16th International Working
Conference, REFSQ 2010. Springer, Berlin, Heidelberg.

[Yu, 1995] Yu, E. (1995). Modelling Strategic Relationships for Process Reengi-
neering. PhD thesis, Department of Computer Science, University of
Toronto, Toronto, Canada. URL:ftp://ftp.db.toronto.edu/pub/eric/
DKBS-TR-94-6.pdf.

http://web.ecs.baylor.edu/faculty/grabow/Fall2011/csi3374/secure/Standards/IEEE1362.pdf
http://web.ecs.baylor.edu/faculty/grabow/Fall2011/csi3374/secure/Standards/IEEE1362.pdf
http://www.cs.toronto.edu/pub/eric/RE03.pdf
http://www.cs.toronto.edu/pub/eric/RE03.pdf
http://doi.acm.org/10.1145/102675.102676
http://doi.acm.org/10.1145/102675.102676
http://wiki.apache.org/solr/Solrj
http://kmi.tugraz.at/staff/markus/documents/2007_HICSS_Knowledge-Transfer.pdf
http://kmi.tugraz.at/staff/markus/documents/2007_HICSS_Knowledge-Transfer.pdf
http://kmi.tugraz.at/staff/markus/documents/2008_REFSQ08_Patterns.pdf
http://kmi.tugraz.at/staff/markus/documents/2008_REFSQ08_Patterns.pdf
ftp://ftp.db.toronto.edu/pub/eric/DKBS-TR-94-6.pdf
ftp://ftp.db.toronto.edu/pub/eric/DKBS-TR-94-6.pdf

Bibliography 90

[Yu, 2011] Yu, E. (2011). i* an agent- and goal-oriented modelling framework.
URL:http://www.cs.toronto.edu/km/istar/ [Last visited on 30.01.2012].

[Yu et al., 1998] Yu, E., Bois, P. D., Dubois, E., and Mylopoulos, J. (1998). From
organization models to system requirements - a "cooperating agents" approach.
URL:http://www.cs.toronto.edu/pub/eric/CoopIS95.pdf.

[Yu et al., 2011] Yu, E., Giorgini, P., Maiden, N., and Mylopoulos (2011). Social
Modeling for Requirements Engineering. The MIT Press.

[Yu and Liu, 2000] Yu, E. and Liu, L. (2000). Modelling trust in the i* strategic
actors framework. In Proc. of the 3rd Workshop on Deception, Fraud and
Trust in Agent Societies at Agents2000, pages 3–4. Springer-Verlag. URL:ftp:
//ftp.cs.utoronto.ca/pub/eric/Trust00.ps.gz.

[Yu et al., 2001] Yu, E., Liu, L., and Li, Y. (2001). Modelling strategic actor
relationships to support intellectual property management. In Proceedings
of the 20th International Conference on Conceptual Modeling: Conceptual
Modeling, pages 164–178, London, UK, UK. Springer-Verlag. URL:ftp://ftp.
cs.utoronto.ca/pub/eric/ER01-sub.pdf.

[Yu, 2009] Yu, E. S. (2009). Social modeling and i*. In Conceptual Modeling:
Foundations and Applications, pages 99–121, Berlin, Heidelberg. Springer-
Verlag.

http://www.cs.toronto.edu/km/istar/
http://www.cs.toronto.edu/pub/eric/CoopIS95.pdf
ftp://ftp.cs.utoronto.ca/pub/eric/Trust00.ps.gz
ftp://ftp.cs.utoronto.ca/pub/eric/Trust00.ps.gz
ftp://ftp.cs.utoronto.ca/pub/eric/ER01-sub.pdf
ftp://ftp.cs.utoronto.ca/pub/eric/ER01-sub.pdf

	Contents
	Introduction
	Motivation
	Objective
	Thesis Outline

	Related Work
	Requirements Engineering
	Introduction
	Definitions
	Approach

	i*
	Introduction to i*
	Notation
	Usage

	Requirements Analysis and System Design
	Requirements Elicitation
	Actor Identification
	Strategic Dependencies
	Strategic Rationale

	Technology Choice
	Potential Technologies
	Goal Evaluation
	Technology Decision

	Implementation
	Architecture
	File Crawler
	Graphical User Interface (GUI)
	Tomcat Server
	Search Index

	Results and Validation
	Requirement Categories
	Search Functionality
	Project Progress
	Data Storage
	Information Creation
	Review Functionality
	Rights Management

	Unclear Requirements

	Conclusion and Outlook
	Contribution
	Actual Project Status
	Challenges

	Future Work

	i* Models
	Goal Evaluation

	Implementation Details
	Embedded Solr
	Search Index
	Property Files

	Bibliography

