
Master’s Thesis

Smart Adaptive User Interfaces

for enhancing User Experience

in Enterprise Applications on Mobile Devices

Michael Geier, BSc.

Institute for Information Systems and Computer Media (IICM)

Graz University of Technology

Supervisor:

Assoc. Prof. Andreas Holzinger, PhD, MSc, MPh, BEng, CEng, DipEd, MBCS

Graz, March 2012

<This page intentionally left blank>

Masterarbeit

(Diese Arbeit ist in englischer Sprache verfasst)

Smarte, adaptive Benutzerinterfaces zur

Verbesserung der User Experience für

Business-Anwendungen auf mobilen Endgeräten

Michael Geier, BSc.

Institut für Informationssysteme und Computer Medien (IICM)

Technische Universität Graz

Betreuer:

Univ.-Doz. Ing. Mag. Mag. Dr. Andreas Holzinger

Graz, März 2012

<This page intentionally left blank>

Page 5 of 172

Abstract

User interfaces have become an essential part in the development of mobile

applications. However, mobile workers usually are in complex and hectic work places.

The main challenge is to design the user interface in such a simple manner, that the end

user can completely concentrate on his/her task - not the device; a possible solution is

on smart adaptation (El-Bakry et al., 2010). Consequently, the designer needs to know

the limits of context and systems and that mobile end-users interact differently

(Holzinger and Errath, 2007).

Based on usability evaluations of enterprise framework-based desktop applications a

novel usability checklist for mobile business applications was elaborated, specifically

focusing on the properties of modern smartphone and tablet computer applications by

regarding context-based adaptivity and supporting simplicity of operation. Usability

consultancy activities of an enterprise framework-based mobile application are

documented within this work as well.

This work also focuses on applying smart adaptivity for hiding complexity from the end

user by not restraining functionality at the same time (Crosby et al., 2001). Following

the hypothesis that simpler user interfaces increase the performance of end-users, an

experiment for evaluating the performance of smart adaptive user interfaces on mobile

touch-based devices was carried out.

Page 6 of 172

Keywords

Mobile Computing, Context Aware Computing, Adaptive User Interfaces, Enterprise

Applications, Usability Tests

ÖSTAT-Topics

1161 40 % 1157 40 % 1140 15 % 1138 15 %

1161 = Human-Computer Interaction (HCI)

1157 = Usability Research

1140 = Software-Engineering

1138 = Informationssysteme

ACM Classification

H.3, H.4, H.5, H.5.1

H. Information Systems,

H.5 INFORMATION INTERFACES AND PRESENTATION (I.7),

H.5.2 User Interfaces (D.2.2, H.1.2, I.3.6);

Subjects: Graphical user interfaces (GUI), Input devices and strategies (e.g., mouse,

touchscreen)

Page 7 of 172

<This page intentionally left blank>

Page 8 of 172

Zusammenfassung

Benutzeroberflächen wurden zu einem wesentlichen Teil in der Entwicklung von

mobilen Anwendungen. Allerdings befinden sich mobile Arbeiter häufig in komplexen

und hektischen Arbeitsumgebungen. Die größte Herausforderung ist es, die

Benutzeroberfläche so einfach zu gestalten, dass sich der Endverbraucher ganz auf seine

Aufgabe konzentrieren kann – nicht auf das Gerät; eine mögliche Lösung ist intelligente

Anpassung (El-Bakry et al., 2010). Folglich muss der Designer die Grenzen des

Kontexts und der Systeme kennen und wissen, dass mobile Endnutzer unterschiedlich

interagieren (Holzinger und Errath, 2007).

Basierend auf Usabilityevaluierungen existierender, Enterprise Framework-basierter

Desktopsoftware wurde eine Usabilitycheckliste für mobile Businessanwendungen

ausgearbeitet, die auf die speziellen Erfordernisse von Anwendungen von modernen

Smartphones und Tablet-Computern eingeht und sowohl kontextbasierte Adaptivität

berücksichtigt als auch die Einfachheit der Bedienung in den Vordergrund rückt.

Außerdem werden im Rahmen dieser Arbeit Usabilityberatungstätigkeiten einer

Enterprise Framework-basierten mobilen Anwendung dokumentiert.

Diese Arbeit fokussiert außerdem auf die Anwendung von intelligenter Anpassung zur

Verbergung von Komplexität vor dem Endbenutzer bei gleichzeitiger Erhaltung der

Funktionalität (Crosby et al., 2001). Der Hypothese folgend, dass einfachere User

Interfaces die Performanz von Endbenutzern steigert, wurde ein Experiment, das die

erhöhte Performanz bei Verwendung von adaptiven User Interfaces auf touch-basierten

Geräten belegen soll, durchgeführt.

Page 9 of 172

Schlüsselwörter

Mobile Computing, Context Aware Computing, Adaptive User Interfaces, Enterprise

Applications, Usability Tests

ÖSTAT-Fachgebiete

1161 40 % 1157 40 % 1140 15 % 1138 15 %

1161 = Human-Computer Interaction (HCI)

1157 = Usability Research

1140 = Software-Engineering

1138 = Informationssysteme

ACM Klassifikation

H.3, H.4, H.5, H.5.1

H. Information Systems,

H.5 INFORMATION INTERFACES AND PRESENTATION (I.7),

H.5.2 User Interfaces (D.2.2, H.1.2, I.3.6);

Subjects: Graphical user interfaces (GUI), Input devices and strategies (e.g., mouse,

touchscreen)

Page 10 of 172

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than

the declared sources / resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

Graz, March 12
th

 2012 ………………………………………………

 Michael Geier

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere

als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen

wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Graz, 12. März 2012 ………………………………………………

 Michael Geier

Page 11 of 172

Danksagung / Acknowledgments

I would like to thank Boom Software AG for the good partnership, especially Joachim

Schnedlitz, CEO of Boom Software AG, who made the cooperation possible, and

Roman Bobik, our contact person during our work with Boom. Furthermore, I would

like to thank the test users who spent time for the thinking aloud tests. Also, I would

like to thank Peter Treitler for the good cooperation during the work at Boom Software

AG. Finally, I would like to thank my supervisor, Andreas Holzinger, for his continuous

support during my work.

Michael Geier

Graz, March 12
th

 2012

Page 12 of 172

Abbreviations

API Application Programming Interface

CLR Common Language Runtime

CMS Content Management System

DBMS Database Management System

HCI Human–Computer Interaction

HE Heuristic Evaluation

HTML HyperText Markup Language

ICT Information and Communication Technology

IDE Integrated Development Environment

IME Input Method Editor

ISO International Organization for Standardization

ITU
International Telecommunication Union, UN agency for information and

communication technologies

JDK Java Development Kit

LAN Local Area Network

MCF Mobile Context Factor

MS Microsoft

MVC Model View Controller

NAN Not A Number

NFC Near Field Communication

OO Object-oriented

OS Operating System

PC Personal Computer

RIA Rich Internet Application

RIM Research In Motion

SD Secure Digital

SDK Software Development Kit

Page 13 of 172

SIM Subscriber Identity Module

SUS System Usability Scale

TA Thinking Aloud

TBBP Time Between Button Presses

UCD User Centered Development

UCD User Centered Design

UE Usability Engineering

UI User Interface

UMUX Usability Metric for User Experience

UX User Experience

UXD User Experience Design

UXR User Experience Research

W-LAN Wireless Local Area Network

WPF Windows Presentation Foundation

WWW World Wide Web

XAML Extensible Application Markup Language

XML Extensible Markup Language

XP Extreme Programming

XU Extreme Usability

Page 14 of 172

Table of Contents

1. Introduction and Motivation for Research .. 17

1.1. Structure of this Thesis .. 22

2. Theoretical Background and Related Work .. 23

2.1. Mobile Devices .. 23

2.1.1. Mobile Computing Da Capo... 26

2.1.2. Mobile Computing Today .. 28

2.1.3. Future of Mobile Computing .. 30

2.1.4. Device Types .. 33

2.1.5. Mobile Platforms .. 37

2.1.6. Input, Sensors, and UI controls .. 42

2.1.7. Showcase UI Creation .. 51

2.2. Enterprise Applications .. 54

2.3. User Experience ... 56

2.3.1. User Experience vs. Usability vs. Accessibility 56

2.3.2. Usability Engineering ... 59

2.3.3. Evaluation Methods .. 61

2.3.4. Heuristic Evaluation ... 68

2.3.5. Thinking Aloud... 75

2.4. Adaptive User Interfaces.. 76

2.4.1. Context-awareness .. 76

2.4.2. Adaptive vs. adaptable UIs ... 78

3. Materials and Methods .. 80

3.1. Boom Software AG.. 80

3.1.1. The Enterprise Framework ... 81

3.1.2. Future Development ... 88

Page 15 of 172

3.2. Usability Consultancy .. 89

3.2.1. Mobile App ... 89

3.2.2. Usability Evaluation ... 92

3.2.3. Leseratte.. 93

3.2.4. HE ... 96

3.2.5. Leseratte 2.0.. 98

3.2.6. TA ... 101

3.2.7. Usability Guidelines ... 104

3.3. AUIs vs. Non-AUI Experiment ... 105

3.4. HE Checklist for Mobile Devices .. 111

4. Results ... 113

4.1. Usability Consultancy .. 113

4.1.1. Mobile App ... 113

4.1.2. Results of HE .. 115

4.1.3. Results of TA .. 118

4.1.4. Implementation and Guidelines .. 120

4.2. AUIs vs. Non-AUI Experiment ... 121

4.3. HE Checklist for Mobile Devices .. 130

5. Lessons Learned .. 136

6. Conclusion ... 138

7. Future Work... 139

8. List of Figures.. 140

9. List of Tables ... 142

10. Glossary ... 143

11. References ... 145

A. Appendix ... 154

Page 16 of 172

<This page intentionally left blank>

Page 17 of 172

1. Introduction and Motivation for Research

Mobile devices become more and more important nowadays. End users want to be

online not only at home with their desktop computers. Mobile computers, which allow

being online even outside, on the way to work, or in leisure time, gain more and more

popularity. This fact was also recognized by famous web services, such as the social

network Facebook. Formerly available as websites for desktop browsers only,

applications or special web pages for mobile devices such as smartphones or tablet

computers were created. According to the Google Play website (formerly Android

Market)
1
 currently more than one hundred million users have installed the mobile

Facebook application. This shows a vast interest in mobile usage of this social network.

Although social networks might be used for work as well as for leisure activities, there

are also more serious business scenarios in which mobile applications (applications

running on mobile devices, short: apps) are used in enterprises for enhancing

productivity. Figure 1 shows the trend to mobile connectivity. Cellular phone

subscriptions per 100 inhabitants are raising year by year as well as mobile-broadband

subscriptions.

With the new class of mobile applications for devices such as smartphones and tablets,

new challenges arise. Mobile devices are usually smaller and therefore more portable

than common desktop computers or notebooks. Additionally, computational power and

many other properties differ. Obviously, the computational power of small mobile

devices is not that high than the computational power of current average desktop

computers. However, it is high enough for most applications. Anyway, software

engineers have to consider that they are not developing software for desktop computers

and therefore should not waste resources by accessing hardware extensively.

More limitations and challenges to consider when developing software for mobile

devices include relatively low battery life and the danger of unstable and often changing

network connection states.

1
 Google Play / Android Market: https://play.google.com/store or https://market.android.com

https://play.google.com/store
https://market.android.com/

Page 18 of 172

Apart from the points mentioned above, mobile devices have smaller screens than

desktop computers and are usually operated differently. Instead of using a mouse and a

keyboard a touchscreen is often used as main input device. Also, the high portability

raises the problem that input is often made in situations where end-users might be

distracted by environmental factors (for example during walking, in a noisy or bright

environment or even while driving, which is not recommended).

Figure 1: Global ICT developments, 2001-2011. Source: ITU2

One of the most important points to consider when developing software for mobile

devices is that the application is usable even on devices having the properties mentioned

before. Therefore, user interfaces (UIs) have become an essential part in the

development of mobile applications. End users not only expect well designed but also

intuitively operable and simple but at the same time powerful user interfaces. Current

smartphones and tablet computers, for example, often provide a large touchscreen for

2
 ITU: International Telecommunication Union, http://www.itu.int/ITU-D/ict/statistics/

0

10

20

30

40

50

60

70

80

90

100

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011*

P
er

 1
0
0
 i

n
h
ab

it
an

ts

Global ICT developments, 2001-2011*

Mobile-cellular telephone
subscriptions

Internet users

Fixed telephone lines

Active mobile-broadband
subscriptions

Fixed (wired)-broadband
subscriptions

* Estimate. Source: ITU World Telecommunication /ICT Indicators database

http://www.itu.int/ITU-D/ict/statistics/

Page 19 of 172

most of the user input. Therefore, a well-designed user interface must fulfill the

expectations end users have when intuitively touching the screen.

Mobile devices are used more and more in professional environment as well. However,

mobile workers are often in complex and hectic work places. For mobile workers who

work outdoor, potentially under rough conditions, it is essential to have easy, quick and

intuitive user interfaces. Being outdoor might also complicate receiving help for

operational problems. Remote help via telephone might be difficult, especially if the

mobile device running the problematic app is the telephone at the same time. Apart

from issues concerning the user interface, mobile workers should not have to care about

synchronizing data or similar technical aspects. Therefore, in the professional but also in

the nonprofessional area the main challenge is to design the user interface and the

operation of the software in such a simple manner, that the end user can completely

concentrate on his/her task - not the device. However, at the same time the user

interface and the application must not lose functionality.

But what makes a user interface simple? Experienced end users might feel patronized

by too simple user interfaces which hide advanced features. From the inexperienced end

user’s point of view a user interface which simultaneously provides all available

features on the screen might be confusing or distracting. So, simple must not necessarily

have the same meaning for all types of end users. Some might consider a simple UI as

UI which does not hide any features; others might consider a simple UI as UI which

does hide unimportant features. Figure 2 shows a satiric comparison of simple user

interfaces compared to a more complex user interface.

Page 20 of 172

Figure 2: Simple vs. complex user interfaces (found in Lorz (2010))

One possible solution for addressing the challenge mentioned in the previous paragraph

is on smart adaptation (El-Bakry et al., 2010). Adaptive user interfaces (AUIs) are user

interfaces which are modified dynamically in a way that the special

demands/requirements/needs of individual end users are satisfied. In other words,

adaptive user interfaces can be used to present the end user a UI which is tailored to the

special needs of the end user (Germanakos P., 2009). Smart adaption means that

adaptive user interfaces should not arbitrarily make certain parts less accessible by

hiding functions in submenus. Instead, the system should take the context into account

for deciding which parts of the UI are currently needed and which are not.

The term context has many different meanings (Yuan-Kai, 2004, Schmidt, 2000) and

includes the end user’s experience, special abilities of the users, current needs and

feelings as well as environmental factors (surrounding light, noise, location, …) and the

system’s or the device’s current state (Schmidt (2000) called the latter “situational

context”). Also, time must not be forgotten when referring to the context. According to

Schmidt et al. (1999) the term context is defined as “that which surrounds, and gives

Page 21 of 172

meaning to something else” in The Free On-line Dictionary of Computing. All relevant

contextual factors should be taken into account when designing adaptive user interfaces.

For retrieving information about the situational context a large amount of sensors is

available in current smartphones and tablet computers. However, one of the big

challenges in this area is to determine the variables used as basis for developing

different adaptions (Germanakos P., 2009). Consequently, the designer needs to know

the limits of context and systems and that mobile end-users interact differently

(Holzinger and Errath, 2007).

Today, location is mostly used for determining the environmental context. But location-

awareness is only one part of context-awareness (Schmidt et al., 1999). Combined data

from different sensors can give a more holistic understanding of the current context

(Gellersen et al., 2002).

The key question about smart adaptive user interfaces is “Do simpler user interfaces

which were created using smart adaption enhance the performance of end users?”

Therefore we assume that smart adaption for simplifying user interfaces which meet the

special requirements of the current context do enhance the performance and try to

support this statement by conducting an experiment.

Page 22 of 172

1.1. Structure of this Thesis

The work consists of four main sections plus three sections including the lessons

learned, a conclusion, and future work. Lists of figures and tables, a glossary, a list of

references can be found before the appendix.

This section not only provides an overview of the work but also explains why research

on this topic is important. Section 2 describes terms and theoretical concepts around the

topics mobile devices, user experience, adaptive user interfaces, and enterprise

applications. Existing literature was studied to give an overview of the development and

the state-of-the-art of relevant technologies.

Section 3 presents the practical work which was conducted within the context of this

work. This includes the usability consultancy activities for Boom Software AG but also

the development and the design of an experiment for comparing the performance of an

adaptive user interface in contrast to a non-adaptive user interface as well as the

documentation of the elaboration of a usability checklist for mobile devices.

In Section 4, the outcomes of the practical work are discussed.

Finally, the lessons learned during the work on this thesis and during the practical work

are stated, a conclusion is made and work to be done in the future is mentioned. The

work also includes a list of figures, tables and references as well as a glossary for the

most used and the most important terms.

Page 23 of 172

2. Theoretical Background and Related Work

This section covers concepts and foundations of the main areas this work is about:

Smart Adaptive User Interfaces, User Experience, Enterprise Applications, and Mobile

Devices. Starting with basics about mobile computing, mobile devices and mobile

applications in Section 2.1, an explanation of enterprise applications follows in Section

2.2. The term user experience as well as usability in general and usability of mobile

devices in particular are discussed in the following Section 2.3. Finally, adaptive user

interfaces are covered in Section 2.4.

Before it is went on with the first subsection, we define the term user interface (UI). A

user interface is the interaction point between a person and a device. The person

interacting with the device (the user) operates the device via the user interface. The user

interface must not necessarily be a graphical user interface (GUI). UIs can also be

haptic interfaces, command line (text based) interfaces or other types of interfaces. On

current mobile devices such as smartphones, tablet computers or notebooks the user

interface mostly is a graphical user interface operated via touchscreen or via mouse and

keyboard.

2.1. Mobile Devices

The focus of this subsection is on mobile computing and mobile devices. Before we

describe current mobile device types and the future trend in mobile computing, we will

give a short overview of the historical development of mobile devices. We will

distinguish between notebooks, tablet computers, different types of mobile phones, such

as smartphones, feature phones, classic cell phones, and other mobile devices.

The umbrella term mobile computing is strongly related to mobile devices and describes

any technology that enables people to access information and which supports them in

daily workflows independent of location (Holzinger and Errath, 2007).

When creating mobile applications, one has to face the fact that the capabilities of

mobile devices are different than the capabilities of desktop computers or notebooks. In

this work we are also talking about the challenges of porting business applications to

mobile devices (i.e. smartphones and tablets). However, we do not consider games or

Page 24 of 172

applications which make vast use of advanced graphics. Such applications have

different needs in respect to optimization of power consumption and input devices.

The applications we are talking about can be created mostly with the default controls

provided by different SDKs (software development kits). This includes controls such as

labels, text boxes, buttons, lists, single images, tab controls and so forth. This is what

common business applications are usually composed of.

However, the domains for mobile devices are numerous. Mobile devices are nowadays

not only used in the private sector and in businesses. Also in the area of health care, in

the area of e-learning, in the area of sports, and in many more areas mobile devices are

used. Larger mobile devices, such as notebooks or netbooks, are often not suitable for

situations where high portability is required. Also, notebooks might be too expensive

and overkill for certain scenarios. Holzinger et al. (2005b) proposed the use of mobile

phones instead in the area of e-learning. The advantages of mobile phones are that they

are not only highly portable but also relative inexpensive. Therefore, most of the

students possess one – in contrast to a notebook.

Table 1 presents a comparison of the hardware capabilities and properties of a typical

notebook and a typical smartphone from the year 2011. The most drastic differences can

be seen in the display size, the input methods, the computational power and the power

supply.

Display size. The display size is limited on most mobile devices. One challenge is to

create applications which make optimal use of the limited screen dimensions. The user

interface should provide high functionality and be simply usable at the same time.

When porting websites or desktop applications to mobile devices it must always be

asked whether full functionality is required or whether it makes sense to limit the

functionality of the mobile application. If the mobile application may have limited

functionality compared to the non-mobile application, which features can be left out? It

might be feasible to port only certain parts of the desktop software to the mobile device.

In certain cases it might also be feasible to add extra features to the mobile application

which cannot be found in the desktop version. These questions have to be decided from

case to case. However, concepts such as smart adaption of user interfaces could always

contribute to simpler user interfaces.

Page 25 of 172

 Notebook Smartphone

Screen size 15’’ to 17’’ 4’’

Screen resolution 1280 x 768 480 x 800

Input devices Physical keyboard, mouse,

sound recording (e.g. used

for speech recognition)

Touchscreen, virtual keyboard,

sound recording, camera,

positioning and GPS sensors,

accelerometers, other sensors

Computational

power
3

About 30 GFLOPS/s About 50 MFLOPS/sec

Typical power

supply

Battery and AC Mostly on battery

Battery life 8 hours on battery One to two days (in stand-by

mode). Several hours in use.

Usage Mostly stationary Mobile only

Table 1: Comparison of Notebook and Smartphone

Another challenge in the area of screen sizes of mobile devices is to create applications

which run on several different device types with different screen sizes. The popular

Android operating system, for example, is available for many different device types,

such as smartphones and tablet computers. When developing applications for Android it

must either be ensured that the application works with all imaginable screen sizes, or the

availability of the application must be limited to devices with supported screen sizes. In

general, this challenge is also present in the area of desktop systems; however, the

screen size divergency between screens for desktop computers is usually relatively low.

Also, due to the in general relatively large screen sizes, divergences do not have such a

high impact compared to mobile devices.

Input. Although pointing and clicking is somehow similar to touching, there are several

differences to consider. Using fingers and a touchscreen, it is not possible with current

3
 Measured by Linpack for Android on Nexus S and a Linpack based benchmark for Intel Core i5.

Page 26 of 172

technologies for the mass market to simply point somewhere (without clicking). Popups

triggered by “MouseOver”-events are therefore useless in the mobile touchscreen world.

Also, using a mouse it is much easier to click on a precise point on the screen than using

clumsy fingers. Also the so called “fat finger” problem has to be considered when

touchscreens are used for input (Siek et al., 2005). The problem addresses the issue that

fingers may hit the wrong target if the targets are small and close to each other. Also the

fact that fingers hide the part of the screen under the finger is a problem especially on

small touch-based devices (Baudisch and Chu, 2009). The positive aspects of using

touch for input are new intuitive ways of operating such devices. Multi-touch screens

make it possible to use more than one finger at the same time and therefore allow new

ways of interaction.

Computational power and power supply. When creating mobile applications it must

be taken into account that the computational power of mobile devices is limited.

Although smartphones are powerful enough for running even complex applications

nowadays, their computational power still cannot be compared to desktop computers.

Complex and long calculations should be avoided on mobile devices as they also reduce

battery life drastically. Although the stand-by time of modern smartphones is acceptable

(about two days), the charging level of the battery goes down rapidly when the device’s

hardware is under high load.

2.1.1. Mobile Computing Da Capo

Already in 1908, a patent was issued to Nathan B. Stubblefield (Stubblefield, 1908) for

a mobile phone device. However, the first cellular network as we know it today was

established 76 years later in Japan
4
. In September 1983 the first commercial mobile

phone was released by Motorola: The DynaTAC (Dynamic Adaptive Total Area

Coverage) 8000X by Motorola
5
. The first PDA (Tandy ZOOMER, short for

4
 Source: http://scienceray.com/physics/the-history-of-mobile-phones/, last visited 07/02/2012

5
 Source: http://www.focus.de/digital/handy/mobilfunkgeschichte/tid-10733/der-urahn-der-handys-

motorola-dynatac-8000x_aid_310544.html, last visited 07/02/2012

http://scienceray.com/physics/the-history-of-mobile-phones/
http://www.focus.de/digital/handy/mobilfunkgeschichte/tid-10733/der-urahn-der-handys-motorola-dynatac-8000x_aid_310544.html
http://www.focus.de/digital/handy/mobilfunkgeschichte/tid-10733/der-urahn-der-handys-motorola-dynatac-8000x_aid_310544.html

Page 27 of 172

"consumer") was introduced by Palm in 1992. It had 1 MB RAM, 4 MB ROM, a

monochrome LCD display (resolution: 320 x 256 pixels)
6
.

Figure 3: Tandy ZOOMER, source: 8bit-micro.com

Apple’s Newton Message Pad (1993) was a tablet computer having 640 kilobytes of

RAM and an ARM CPU with 20 MHz. It was supplied with power using four AAA

batteries which lasted six to eight hours. The display resolution was 240x336 (Forman

and Zahorjan, 1994).

The first smartphone (Figure 4) was designed by IBM in 1992 and included several

applications, such as calendar, address book, world clock, calculator, note pad, email,

and games (Lobo et al., 2011). It was operated via touchscreen.

Most of the early devices did not sell well due to the high price, the low performance

and the large size. But already in 1994 Forman and Zahorjan stated that wireless

internet connections are essential in mobile computing (Forman and Zahorjan, 1994).

Security issues and low bandwidths are still challenges to be dealt with. Providing

location-dependent information is one obvious feature mobile devices can provide. Low

power capacity has to be regarded when designing mobile applications.

6
 Source: http://www.8bit-micro.com/tandy-zoomer-z-pda.htm, last visited 07/02/2012

http://8bit-micro.com/
http://www.8bit-micro.com/tandy-zoomer-z-pda.htm

Page 28 of 172

Figure 4: The first Smartphone “Simon” by IBM 1994

(Source: Wikimedia Commons, own work by user Bcos47)

Since 1999 RIM produces BlackBerry phones
7
 which have relatively large screens and

offer e-mail and organizer functionalities. RIM’s operating system BlackBerry OS is

extensible with third-party applications. BlackBerry phones are typically operated with

a built-in hardware keyboard and a track pad, later versions also via touchscreen.

Up to 2007 so called feature phones became more and more popular. Feature phones are

mobile phones which provide additional functions such as a calendar, a music player or

simple games, but are usually small sizes and do not provide touchscreens.

2.1.2. Mobile Computing Today

Since Apple introduced the iPhone in 2007
8
, smartphones as we know them today (large

touchscreens dominating the device) became more and more popular. Two years later,

when the Open Handset Alliance (founded by Google in 2007)
9
 introduced their

smartphone operating system Android
10

 the market was opened for other smartphone

producers. The Linux-based open source operating system Android can be run on any

capable device while iOS, Apple’s operating system for mobile devices, is only allowed

to be run on Apple devices - the iPhone and later the iPod Touch and the iPad.

7
 http://us.blackberry.com/company.jsp

8
 https://www.apple.com/

9
 http://www.openhandsetalliance.com/

10
 http://www.android.com/

https://www.apple.com/
http://www.openhandsetalliance.com/
http://www.android.com/

Page 29 of 172

Currently, the most popular operating systems for smartphones and tablets are iOS by

Apple and Android by Google. As shown in studies by Gartner and Nielsen (Table 2

and Figure 5) these operating systems have the highest market share. Windows Phone

as young but promising operating system, currently has a very low market share and is

contained within “other” operating systems in the market share statistics. It is predicted

by Gartner that the Android operating system stays the most popular mobile operating

system for the next few years.

 OS 2010 2011 2012 2015

Symbian 111,577 89,930 32,666 661

Market Share (%) 37.6 19.2 5.2 0.1

Android 67,225 179,873 310,088 539,318

Market Share (%) 22.7 38.5 49.2 48.8

Research In Motion 47,452 62,600 79,335 122,864

Market Share (%) 16.0 13.4 12.6 11.1

iOS 46,598 90,560 118,848 189,924

Market Share (%) 15.7 19.4 18.9 17.2

Microsoft 12,378 26,346 68,156 215,998

Market Share (%) 4.2 5.6 10.8 19.5

Other Operating Systems 11,417.4 18,392.3 21,383.7 36,133.9

Market Share (%) 3.8 3.9 3.4 3.3

Total Market 296,647 467,701 630,476 1,104,898

Table 2: Worldwide Mobile Communications Device Open OS Sales to End Users by OS (Thousands of Units).

Source: Gartner (April 2011)

Page 30 of 172

Figure 5: Smartphone Penetration and OS Share, third quarter 2011, USA. Source: Nielsen

2.1.3. Future of Mobile Computing

Currently clear trends concerning the future of mobile computing and of mobile devices

can be observed. According to a new Gartner study
11

 Mobile devices – especially

smartphones and tablets – do more and more replace desktop computers. Devices are

getting more compact and at the same time more powerful. Sensors are integrated in

more and more mobile devices. Location-aware computing becomes more popular and

the integration of NFC (Near Field Communication) readers proceeds. Portable devices

with large screens (tablet computers) are also gaining popularity. Also the so-called

Internet of things or Internet of devices grows – even faster than the desktop Internet

(Schilit, 2011).

Forrester research has published the expected technology trends for the upcoming two

years (Figure 6). Business intelligence is expected to be a field which will underlie the

highest changes and will have the highest impact in the near future. Business

intelligence refers to collecting and analysis of (big) business-related data in order to

optimize the company’s strategy. The relevance of mobile apps and application

11
 Found via http://www.telekom-presse.at/Gartner_Tablets_und_Smartphones_bedrohen_den_PC-

Markt.id.18689.htm, last visited 05/02/2012

http://www.telekom-presse.at/Gartner_Tablets_und_Smartphones_bedrohen_den_PC-Markt.id.18689.htm
http://www.telekom-presse.at/Gartner_Tablets_und_Smartphones_bedrohen_den_PC-Markt.id.18689.htm

Page 31 of 172

platforms is estimated to play an important role in the near future as well. Mobile

platforms are expected to change to a high degree within the next two years.

Figure 6: Ranking of technology trends 2012-2014. Source: Forrester Research, Inc. via

http://www.cio.de/knowledgecenter/bi/2292300/

http://www.cio.de/knowledgecenter/bi/2292300/

Page 32 of 172

According to Gartner the top 10 strategic technologies for 2012 include (cited

(shortened) from Gartner’s Weblog
12

):

 Media Tablets and Beyond: Users can choose between many different devices

and form factors.

 Mobile-Centric Applications and Interfaces: UIs with windows, icons, menus,

and pointers will be replaced by mobile-centric interfaces emphasizing touch,

gesture, search, voice and video. Applications themselves are likely to shift to

more focused and simple apps that can be assembled into more complex

solutions. These changes will drive the need for new user interface design skills.

Application user interfaces that span a variety of device types are needed.

 Contextual and Social User Experience: Context-aware computing uses

information about an end-user or objects environment, activities, connections

and preferences to improve the quality of interaction with that end-user or

object. A contextually aware system anticipates the user’s needs and proactively

serves up the most appropriate and customized content, product or service.

 Internet of Things: The Internet of Things (IoT) is a concept that describes how

the Internet will expand as sensors and intelligence are added to physical items

such as consumer devices or physical assets and these objects are connected to

the Internet.

 App Stores and Marketplaces: Application stores by Apple and Android provide

marketplaces where hundreds of thousands of applications are available to

mobile users. Gartner forecasts that by 2014, there will be more than 70 billion

mobile application downloads from app stores every year.

 Next-Generation Analytics: Analytics is growing along three key dimensions:

From traditional offline analytics to in-line embedded analytics. This has been

the focus for many efforts in the past and will continue to be an important focus

for analytics. From analyzing historical data to explain what happened to

analyzing historical and real-time data from multiple systems to simulate and

predict the future. Over the next three years, analytics will mature along a third

12
 http://www.gartner.com/it/page.jsp?id=1826214, article from October 18, 2011, “Gartner Identifies the

Top 10 Strategic Technologies for 2012“, last visited 30/01/2012.

http://www.gartner.com/it/page.jsp?id=1826214

Page 33 of 172

dimension, from structured and simple data analyzed by individuals to analysis

of complex information of many types (text, video, etc…) from many systems

supporting a collaborative decision process that brings multiple people together

to analyze, brainstorm and make decisions. Analytics is also beginning to shift

to the cloud and exploit cloud resources for high performance and grid

computing.

 Big Data: The size, complexity of formats and speed of delivery exceeds the

capabilities of traditional data management technologies; it requires the use of

new or exotic technologies simply to manage the volume alone.

 In-Memory Computing: Gartner sees huge use of flash memory in consumer

devices, entertainment equipment and other embedded IT systems.

 Extreme Low-Energy Servers.

 Cloud Computing.

Gartner points out that the variety of devices will grow and that touching will stay an

important way for interaction with mobile devices. Also contextual information will be

used for customizing applications to the need of the end-user. Also (historical) data

analysis for prediction purposes is an important field in the future as well as

collaborative decision processes. More and more big and complex data is to be handled

and analyzed.

Location-based services will be more widely used in the future and GPS receivers will

be integrated in more and more mobile devices. However, security and privacy concerns

slow this development down (Vaughan-Nichols, 2009). Solving the privacy issues

related to location-based services will therefore be a big challenge in the future.

2.1.4. Device Types

In the next few paragraphs we will gain an overview of the large variety of different

mobile device types. Therefore definitions from different sources were collected and

compared. We will see that in some cases a clear distinction between the device types is

not easy to make (for example for the terms notebook and laptop). In everyday speech

certain technically different device types are used as synonyms (for example tablet PC,

tablet computer). In general, devices which are more or equally portable than notebooks

Page 34 of 172

and have independent power supply (i.e. can run on battery) are usually included in the

class of mobile devices. However, it has to be clarified that within this work, when

referring to mobile devices, in most cases smartphones or tablet computers are meant as

the focus of this work is on mobile devices with touchscreens.

Notebooks and Laptops. According to Oxford Dictionaries (OD) a notebook is “a

laptop computer, especially a small, slim one”, while a laptop is defined as “a computer

that is portable and suitable for use while travelling.”

According to the Cambridge Advanced Learner's Dictionary & Thesaurus (CALDT) a

laptop is “a computer which is small enough to be carried around easily and is designed

for use outside an office”. CALDT does not provide a definition for notebooks in the

sense of portable computers.

Subnotebook. According to the pcmag.com encyclopedia a subnotebook is “a laptop

computer that weighs less than four pounds. In order to reduce weight, subnotebooks,

also called "ultraportables" or "ultralights," often eliminate built-in CD/DVD drives.”

Netbook. According to Oxford dictionaries a netbook is “a small laptop computer

designed primarily for accessing Internet-based applications.” The pcmag.com

encyclopedia defines a netbook as “a subnotebook computer in the $200 to $400 U.S.

dollar range (as of 2010). […] netbooks have screens in the 8"-10" [...]. The term was

coined by Intel in 2008 for machines that used its Atom microprocessor.”

Tablet PC. According to pcmag.com encyclopedia a tablet PC is “a tablet computer

that runs Windows”. According to Oxford Dictionaries a tablet PC is “a small portable

computer that accepts input directly on to its screen rather via than a keyboard or

mouse”. According to the Cambridge Advanced Learner's Dictionary & Thesaurus

tablet PC is “a small computer with a screen that you can write on using a special pen

or that you can connect a keyboard to”. A tablet PC can also be seen as special

notebook which is mostly used with touch input.

Page 35 of 172

Ultra-mobile PC. An ultra-mobile PC (UMPC) is, according to the pcmag.com

encyclopedia, “a lightweight, small tablet PC with an on-screen keyboard introduced in

2006. Weighing two pounds or less and using a hard drive for all content, the Ultra-

Mobile PC (UMPC) runs under the Windows Tablet PC operating system with Touch

Pack software.”

Tablet computer. According to pcmag.com encyclopedia a tablet computer is “a

general-purpose computer contained in a single panel. Its distinguishing characteristic

is the use of a touch screen as the input device. Modern tablets are operated by fingers,

whereas earlier tablets required a stylus”. Tablet computers are also called tablets.

Tablets are a larger version of smartphones, but basically provide similar functionality.

Due to the larger (screen) size of tablets they target other usage scenarios than

smartphones.

Smartphone. According to Oxford Dictionaries a Smartphone is “a mobile phone that

is able to perform many of the functions of a computer, typically having a relatively

large screen and an operating system capable of running general-purpose

applications”. According to the Cambridge Advanced Learner's Dictionary &

Thesaurus a Smartphone is “a mobile phone that can be used as a small computer”.

When we talk about smartphones in every-day life we typically mean a mobile

telephone having a large touchscreen as main input device which runs a feature-rich

operating system providing an API for running apps from third-party developers.

Feature phone. According to Oxford Dictionaries a feature phone is “a mobile phone

that incorporates features such as the ability to access the Internet and store and play

music but lacks the advanced functionality of a smartphone”.

Mobile Phone and Cell phone. According to Oxford Dictionaries and to the

Cambridge Advanced Learner's Dictionary & Thesaurus a cell phone simply is “a

mobile phone”. According to Oxford Dictionaries a mobile phone is “a telephone with

access to a cellular radio system so it can be used over a wide area, without a physical

connection to a network”.

Page 36 of 172

Other device types. Devices such as the iPod Touch are very similar to smartphones;

however, the capability for connecting to cellular networks is missing. However, there

are many more device types than the types listed above. Portable music players,

navigation devices, e-book readers, and portable gaming consoles are only four

examples. Also very small devices which can be integrated into clothes or even can be

implanted into the body may be considered as mobile devices. Another example for

mobile devices are digital pens. There are aims to make paper interactive by using

digital pens which transmit their location on the paper to the connected device (Signer et

al., 2007) .

As stated before, this work focuses on mobile devices which can be classified as

smartphones or tablet computers which are mainly operated using a touchscreen,

without stylus. Therefore we will now take a closer look on these devices and we will

ask how especially smartphones influence our lives.

Smartphones are very powerful devices – even more powerful than average desktop

computers around the year 2000. Therefore smartphones can also be considered as

portable computers having a telephone function. More and more people exchange their

cell or feature phones with smartphones although the price of smartphones is

significantly higher than the price of feature phones. Table 3 lists some positive and

some negative aspects of modern smartphones compared to classic (cell) phones.

However, based on the trend mentioned above that more and more people are getting

smartphones, it can be concluded that the positive aspects of smartphones seem to

dominate the negative effects.

Page 37 of 172

 Positive aspects Negative aspects

S
o
ci

al

Allows to be always connected

with the workplace and friends via

social networks.

Owner is always contactable - even

at mistime.

Allows to look for information

everywhere and anytime. Privacy issues.

Supports private reporting in areas

where free press is constrained.

Web surf behavior cannot be

supervised and controlled easily by

parents.

Status symbol (for those who have

one).

Missing status symbol might

pressure children.

T
ec

h
n
ic

al

Powerful hardware in one

relatively small device (sensors,

large screen). Relatively expensive.

One device replaces several

devices (camera, music player,

satellite navigation system) Shorter battery life.

Extendable software via apps.

Relatively large compared to small

feature phones.

Table 3: Positive and negative aspects of smartphones compared to classic (cell) phones.

2.1.5. Mobile Platforms

There are several different mobile operating systems available nowadays. The most

popular systems are currently iOS by Apple and Android by the Open Handset Alliance

(see Section 2.1.2). More current operating systems for mobile devices include

Windows Phone (Microsoft, 2010), Bada OS (Samsung, 2009), BlackBerry OS (2002),

Symbian (Nokia/Accenture), and webOS (Palm, 2009).

Page 38 of 172

Figure 7: World-wide smartphone mobile OS market share. Image source: Wikimedia Commons, own work

by user milominderbinder2; data originally from Gartner.

According to Net Applications’ service netmarketshare.com in end of 2011 iOS and

Android are the most popular platforms in the mobile segment. On desktop computers

Microsoft’s Windows has a market share of more than 90 percent, while Apple’s

operating systems have a market share of about 6 percent. Since the beginning of 2011,

when Nokia and Microsoft announced a partnership
13

, Windows Phone 7 is another

candidate for a future popular smartphone and tablet operating system.

Mobile platforms usually include the operating system, a documented API which makes

operating system functions available for third-party developers, and web services which

are provided by the OS vendor. For unified publishing of apps most OS vendors offer a

platform for publishing native apps. Most of the current operating systems for

smartphones and tablets are capable of running both so called native apps and HTML5

apps. A so-called HTML5 app (also RIA, Rich Internet Application) basically is a

website which often makes vast use of HTML5 and JavaScript features
14

. The website

can be displayed in any browser and is usually designed and programmed in a way that

the site resembles the design and the behavior of a native smartphone app. The main

properties of a HTML5 app are: Platform independency, instantly updateable from

server side, inability to access all device features (such as certain sensors), lack of

13
 http://www.bbc.co.uk/news/business-12427680, post from 11/02/2011, last visited 11/02/2012.

14
 Differences to earlier HTML versions: http://www.w3.org/TR/html5-diff/, last visited 04/02/2012

http://www.netmarketshare.com/
http://www.bbc.co.uk/news/business-12427680
http://www.w3.org/TR/html5-diff/

Page 39 of 172

smooth integration in the system, not monetizable via the operating system provider’s

billing infrastructure (Android Market (Google Play) / Apple App Store).

Native apps do not run in inside a browser. They are – as the browser itself –

programmed for the native mobile operating system’s API. The main properties of

native apps are: Platform dependency, seamless integration in the OS-environment,

higher performance, possibility of using all available hardware and software

capabilities. From now on the term app refers to native apps if not stated otherwise.

Native apps, in contrast, are executed directly by the operating system’s execution

environment. The following enumeration lists the names of the execution environments

of the operating systems Android, iOS, and Windows Phone.

 Android: DVM (Dalvik Virtual Machine), Linux and Java-based

 iOS: Objective C Sandbox

 Windows Phone 7: Silverlight, .NET-based, therefore C# and Visual Basic .NET

are, amongst others, supported programming languages.

Table 4 lists the main differences between native applications and web applications.

Although native apps might run faster than HTML5 apps most apps don’t really need

the speed of native execution. But on the other hand on mobile devices where

performance is expensive the app development should keep this fact in mind.

Developing software using platform-specific tools might be easier and certain tasks are

easier to perform in native apps. In contrast, apps have to be developed for every

operating system to be supported. HTML apps run on any operating system where a

HTML5 capable browser is available (usually built-in).

Page 40 of 172

Native App HTML5 app

Runs natively on the OS’ platform and

therefore usually faster.

Runs in a browser.

Different technological frameworks More or less
15

 same technological

framework.

Possibility of using all intended hardware

features.

Restricted possibilities for accessing

hardware.

Usage of platform’s billing system. Third-party billing system must be used.

Look-and-feel corresponds to the OS. UI can be designed to approximate the

desired look-and feel.

Deployment of apps unified by app stores

/ marketplaces.

No unified app distribution framework.

Table 4: Differences between native apps and HTML5 apps.

When developing and publishing native apps for the different platforms there are

several differences to regard between the platforms of Apple, Google, and Microsoft:

 The hardware capabilities of phones running the mentioned operating systems

are similar. However, Apple’s iOS is bound to very few device types, the iPod,

the iPhone, and the iPad, while for Android there are no such strict restrictions.

 The programming languages used for developing native apps differ, however.

Apps for iOS are written in Objective C, apps for Android are written in Java,

apps for Windows Phone 7 are usually written in C# or Visual Basic .NET. Also

the language for defining user interfaces differs amongst the different operating

systems. The development of iOS applications is bound to Apple computers, the

development of Windows Phone applications is bound to Windows PCs.

Applications for Android can be developed on Windows PCs, Apple computers

and on machines running Linux.

15
 Different browsers implement different implementations for interpreting HTML/CSS and for

JavaScript execution.

Page 41 of 172

 Apps are checked for certain criteria before being published on the operating

system’s app shop. The restrictiveness, however, differs greatly. Apple apps

have to pass a quality check before being approved; Microsoft also requires

certain criteria to be met. Google, in contrast, has very few mandatory quality

criteria.

App distribution services. Apps can be published by developers by using an app

distribution service – a service provided by the mobile operating system’s vendors for

unifying the app distribution for their systems. The different OS vendors use different

names for their service: Apple (for iOS) calls it App Store
16

, until March 2012 Google

(for Android) called it Market
17

 (now Google Play), and Microsoft (Windows Phone)

calls it Marketplace
18

. From now on, when referring to a generic app distribution

service, the terms app shop or app distribution service will be used. For developers it is

possible to publish apps for free as well as for a certain fee. When selling apps via one

of the app distribution services currently all three companies keep back 30 percent of

the fee. The amount of the fee can be chosen freely by the app’s publisher (however,

there is a lower and an upper limit). In December 2011 the Android Market exceeded 10

billion app downloads
19

. There are also app shops for RIM’s BlackBerry (App World)

and for Nokia phones (Nokia Store).

According to http://androidistic.com
20

 more than 37 percent of the apps hosted in the

Android app store are categorized as game or entertainment App. More than ten percent

are categorized as social or communication. The other half of the apps are from many

different categories, such as system tools, travel guides, music players and many more.

16
 http://itunes.apple.com/us/genre/mobile-software-applications

17
 https://market.android.com/

18
 http://www.windowsphone.com/marketplace

19
 http://android-developers.blogspot.com/2011/12/10-billion-android-market-downloads-and.html

20
 http://androidistic.com/961/android-market-growth-chart-2012/

http://androidistic.com/
http://itunes.apple.com/us/genre/mobile-software-applications
https://market.android.com/
http://www.windowsphone.com/marketplace
http://android-developers.blogspot.com/2011/12/10-billion-android-market-downloads-and.html
http://androidistic.com/961/android-market-growth-chart-2012/

Page 42 of 172

2.1.6. Input, Sensors, and UI controls

An input method (or input method editor, IME) is an application which creates or

translates input for other applications. Examples for input methods are soft keyboards

(on-screen software keyboards), hand-writing recognizers, and hard keyboard

translators
21

. Input devices, in contrast, are physical devices such as physical keyboards

for creating input for applications. Touch input is very common and popular nowadays

and provides a very intuitive way of interaction. Clicking by tapping and scrolling by

moving the finger are just two examples for natural interaction with touch screens

(Rieman et al., 2008).

Although much input on mobile devices with touch screens is made by touching and

selecting predefined values, text input via on-screen keyboard is still widely used.

However, applications that require text input often annoy users (Longoria, 2001).

Therefore it is important to reduce text input to a minimum (Holzinger et al., 2006). An

alternative for text input via on-screen keyboard is handwriting recognition. Already

before the era of the smartphones, there were aims to bring handwritten text to

computers (Tappert et al., 1990). On tablet PCs - often used as (paper) notebook

replacement - handwriting recognition aims not only to preserve the classic paper

notebook feeling, but also to speed up text entry (Pittman, 2007). However, studies also

show that users prefer soft qwerty/qwertz keyboards over handwriting for text input

(Holzinger et al., 2010). On small devices users still prefer tapping over handwriting

recognition.

Some on-screen keyboards use techniques for speeding up text input, such as prediction

of the word to be typed. However, it has been shown that input via predictive keyboards

is not more effective than input via standard soft keyboard (Lewis, 1999). SpreadKey, a

predictive soft-keyboard system (Merlin and Raynal, 2010) dynamically makes the

most probable characters more accessible. It was shown by Merlin and Raynal that

SpreadKey turns the input easier and less tiring physically. KeyGlasses (Raynal and

Vigouroux, 2005) also uses character prediction to display the most probable next

characters in accessible positions on the soft keyboard. However, it could not be shown

21
 http://developer.android.com/resources/articles/on-screen-inputs.html

http://developer.android.com/resources/articles/on-screen-inputs.html

Page 43 of 172

that KeyGlasses is a better solution than a simple classic non-predictive qwerty soft

keyboard.

One advantage of soft keyboards compared to physical (hardware) keyboards is that

buttons can appear or disappear according to the interaction context. However,

according to the “engadget” weblog (Melanson, 2010) Microsoft created an adaptive

hardware keyboard where the button labels can be exchanged similar to software

keyboards on current smartphones. The key captioning is realized with LCD panels.

One disadvantage of software keyboards is the lack of tactile feedback. It reduces input

performance (Lee and Zhai, 2009).

In order to exploit the feature of soft keyboards to dynamically exchange of buttons

depending on the interaction context, text fields should always specify the expected

input type using metadata. This enables soft keyboards to adapt the key configuration in

a way that keys which are more likely to be used for certain input types, appear in

exchange for less likely used keys. For text boxes which expect an e-mail address, for

example, an “@” key appears while the question mark key “?” disappears.

Several enhancements such as an offset zoom decrease the user’s anxiety in using the

device. Offset zoom means to display the currently pressed soft key character next to (or

above) the pressed key a second time. This addresses the problem that fingers hide the

part of the display which is currently below the finger. However, no performance gain

can be achieved by using offset zoom (Martin et al., 2009).

Another way for (text) input is speech recognition. Speech recognition (White, 1976) in

the area of mobile devices becomes more and more popular nowadays. In 2011 Apple

introduced a speech recognition system for the iPhone 4S called Siri. But also Microsoft

and Google make improvements in speech recognition (Tsimhoni et al., 2004, Baker et

al., 2009).

Visions of even more natural interaction with computers are 15 years old (Ishii and

Ullmer, 1997): Tangible User Interfaces where users interact with devices by moving

and touching objects in their environment. Microsoft’s Surface is a similar concept as

the ClearBoard or metaDESK devices described in the paper mentioned above.

Exploiting context (Rodden et al., 1998) is an important concept for creating adaptive

user interfaces and also for reducing the need for manual (text) input. For perceiving the

environment and for collecting contextual information sensors of modern smartphones

Page 44 of 172

and tablets can be used. Modern smartphones and tablets are supplied with a vast

amount of different sensors and input devices:

 Touch-related: Soft keyboard, Gestures

Software (on-screen) keyboards are used for text input. The term gesture refers

to moving one or more fingers on the touch surface. Gestures based on more

than one finger are called multi-touch gestures. Gestures are mostly used for

navigation or manipulation of UI objects, but also gesture-based text input is

possible.

 Haptic: Accelerometer

Accelerometers are sensors for registering accelerations or movement of the

device. This can be used, for example, for registering shaking of the device.

 GPS sensor, Gyroscope, Magnetic sensor, Height sensor

Sensors for determining the device’s location and orientation can be used for

adapting the user interface to the device’s current locational context.

Determining the desired screen orientation or prefilling text boxes in forms

based on the device’s location are currently widely used features in several apps.

 Audio: Microphone

Recording audio can be used for speech recognition as well as for song

recognizing or for using the device as audio recorder.

 Optical sensors: Cameras (front, back), Brightness sensor

Many smartphones have two built-in cameras. One is located on the same side

as the display, which is mostly used for video conferences; one is located on the

back side of the device, mostly used for taking photographs. However, the

cameras can also be used for scanning barcodes, QR codes or other objects for

speeding up (text) input. Brightness sensors are sensors which register the

brightness of the environment, mostly for adapting the brightness of the screen

automatically in order to make reading more comfortable. However, the

environment’s brightness can also be used for contextual inferences

(inside/outside, day/night, cloudy/sunny).

Page 45 of 172

 Other sensors: Proximity sensor

Proximity sensors are used for determining whether the user holds the phone to

his/her ear or not. If the phone is held to the ear the proximity sensor reports that

an object is near to the device’s screen and disables it to save energy, as the user

cannot see the screen anyway.

 Physical devices: Physical keyboard, External classic input devices (mouse,

keyboard): Also with smartphones and tablets it is possible to use physical

keyboards and mice.

 NFC reader

NFC can be used to easily transmit small amounts of data between two devices

without the need for pairing (as in the case of Bluetooth).

For giving feedback there are also several different output devices available in current

smartphones and tablets:

 Optical: 2D high-resolution color screens, in some devices even 3D-screens or

secondary screens, and (flash)lights.

 Audio: Speaker

Used for audio feedback and text-to-speech functions.

 Haptic: Vibrator

Used for giving haptic feedback

Touch input seems to be very well accepted and easy to learn, even amongst non-

computer literate people and elderly people (Holzinger, 2002, Holzinger, 2003).

Devices with touchscreens and well-designed user interfaces are especially useful in

hospitals, where patients can, for example fill out questionnaires while they are waiting

for their examination, for the reception by the doctor, or during other spare times

(Holzinger et al., 2006) Direct input of questionnaire answers by the patients makes

error prone and time consuming copying of filled out paper sheets unnecessary. This

saves time which can be used for direct contact with the patient and improves the

overall quality of the interaction between doctors and their patients.

Page 46 of 172

Touching with fingers is a very intuitive way for interaction, however, it was shown that

in a professional medical context styluses are preferred over finger-based input

(Holzinger et al., 2008a). So not in all cases touching with fingers necessarily is the best

method for interacting with touch screens.

Input via stylus hast the advantage that input can be made more precisely and writing

similar to writing on sheets of paper (for example for handwriting recognition) is made

possible. For addressing the problem of imprecise touching using fingers Vogel and

Baudisch (2007) developed a system called Shift which makes it possible to make more

precise selections by finger. Shift shows a copy of the touched screen location and

shows a pointer representing the selection point of the finger if the finger is placed over

a small target. However, for further improving the precision of touch input via finger it

must be better understood how people touch touchscreens (Holz and Baudisch, 2011).

Another problem with touch input using fingers is that the user’s “fat fingers” also

cover the areas the user intends to touch. To circumvent this problem Wigdor et al.

(2007) developed a mobile device which can be operated from the back side (Figure 8).

In addition by using back-of-device interaction it is possible to create very small touch

devices (Baudisch and Chu, 2009).

Figure 8: Concept sketch of LucidTouch: a pseudotransparent device (Wigdor et al., 2007)

There are also aims to make mouse and keyboard based user interfaces easier usable

with touchscreens (Foulk et al., 2009).

For blind people input via touchscreen is problematic. Tinwala and MacKenzie (2009)

presented a method for eyes-free text entry on touchscreen phones. Auditory and tactile

stimuli are used to give feedback to the visually impaired user.

Page 47 of 172

In the next few paragraphs we want to ask “What are the most frequent user interface

controls and hardware components used in current smartphone applications?” in order

to get an overview of current typical mobile apps. To answer this question first 237

randomly selected apps were investigated. In another investigation Austria’s 27 top-

ranked apps in Google’s Android Market (now called Google Play) were investigated.

First investigation: Permissions required by 237 apps. Looking at the permissions

Android applications request, we can see that on a phone with 237 different, randomly

selected apps for different purposes (including games) 69 (29,1 percent) require

permissions for accessing fine or coarse location data such as GPS data or location data

from the cellular network, 29 (12,2 percent) access the camera for recording images

(including barcode scans) or videos, 13 (5,5 percent) access the Bluetooth module, 12

(5,1 percent) record audio, four (1.7 percent) require access to NFC technologies (RFID

reader) and 203 (85,7 percent) require full access to the internet. However, we have to

keep in mind that some apps need the internet access permission just for downloading

advertisement. This means that the number of applications actually needing internet

access for their main functionality is slightly lower.

The fact that more than 29 percent of the investigated apps access location data supports

the statement by Schmidt (2000) that location is a concept that is well understood. Apps

for displaying the public transport schedule, for example, make use of the location data

for create an ordered list of nearest bus stops. Within the study NFC was mostly used

for scanning RFID tags which inform the app about the situational context. Using fixed

tags in different rooms, for example, informs the app in which room the device

currently is. This can be used to mute the phone when entering the conference room.

(Krishnamurthy et al., 2006) show the possibilities of the NFC technology in

combination with mobile phones. The camera and audio recording devices are often

used for replacing manual text input. An Internet connection in combination with

sensors can be used to download more information about the current context, such as

information about the current location, and may improve the adaption of the user

interface. Table 5 summarizes the mentioned numbers.

Page 48 of 172

Permission Needed by

Location (fine or coarse) 69 29,1%

NFC 4 1,7%

Internet 203 85,7%

Bluetooth 13 5,5%

Camera 29 12,2%

Record audio 12 5,1%

Table 5: Analysis of permissions needed by 237 randomly selected apps

Second investigation: Austria’s top 27 apps. A similar analysis of the usage of

sensors was made by investigating Austria’s 27 top-ranked Android applications

(excluding games). The popularity ranking is determined by Google using a secret

ranking algorithm. Certainly the ranking is influenced by the user's current location.

Therefore Austria-related apps could be found in the ranking, such as the ÖAMTC

(Austrian automobile club) app or the Krone.at app (the app of an Austrian newspaper).

Other investigated apps include YouTube, Google Maps, Facebook, Skype, WhatsApp

Messenger, Barcode Scanner, Shazam, wetter.com, TuneIn Radio and the IMDb app.

User account and internet access: One third of the investigated apps require or allow

using a user account in order to receive personalized information. More than 75 percent

of the investigated apps use an internet connection for their main functionality. This

means that apps which try to access the internet just for downloading advertisement did

not count. More than 60 percent of the apps using the internet are not working at all

without network access. The remaining apps using the internet are usable without

internet connection, but often only with limited functionality or cached data.

Sensor usage: 22 percent of the investigated apps use the geolocation hardware

capabilities either for their main functionality (map applications) or for prefilling input

controls so that the end user does not have to type or select his/her current location by

himself/herself. 18.5 percent of the apps use the built-in camera to scan barcodes or QR

tags in order to speed up user input. One third of the applications uses other applications

to perform a task. For dialing a telephone number from inside an application the dialer

application is started by simply tapping the phone number, for example.

Page 49 of 172

UI Controls: Buttons, Lists, Text input controls are the most frequently used controls in

current smartphone applications. Tabs are often used to structure screen contents.

Context menus and gestures are less frequently used. One reason might be that they are

often overlooked by the end-users as there is no visual clue that they are available.

The most widely used control is, as expected, the simple button, which starts an activity

or an operation by tapping it. Nearly 90 percent of the investigated apps include it in

their user interface. The second widely used control is the vertically scrollable list. More

than 80 percent of the apps use lists mostly containing text items. 50 percent of the lists

are "infinite" lists, i.e. lists which are dynamically filled with content from remote

servers when scrolling down to the bottom. 22 percent use horizontal lists, mostly for

displaying images.

Text input boxes are used by about 60 percent of the investigated apps. 43 percent of the

apps using text input boxes assist the end user when typing by displaying input

suggestions. 37 percent of the investigated apps use tabs for navigating between several

screens and to structure content. Ten percent of these apps support switching the current

tab by swiping to the left or to the right. 18.5 percent of the apps provide context menus

when tapping and holding a screen item (mostly list items) for about one second.

About 20 percent of the apps support gestures, most of them multi-touch gestures for

two fingers. The most used gesture is to spread two fingers for using the zoom function.

The number of 20 percent can be explained by looking at the apps using Google maps,

which supports zooming and rotating with gestures: About 10 percent of the apps use a

Google maps control.

Table 6 summarizes the mentioned observations. Table cells containing a “1” mean that

the app does contain/use/support the corresponding feature, control, or hardware.

Page 50 of 172

Table 6: Summary of the usage of phone features of current apps.

We could see that data exchange with internet servers is widely used in current

smartphone applications. Other hardware components used, in descending commonness,

are: Geolocation, Camera, Audio, Bluetooth, and NFC. Modern mobile applications

could make even more use of the new capabilities of modern smartphones in order to

simplify operation. Some ideas for using smartphone hardware and sensors include:

 Automatic settings or adaptions depending on the current location.

 Integration of QT tag scanning or NFC Tag reading capabilities to speed up text

input

 Use of multi-touch-gestures for speeding up interaction and for making it more

intuitive

Page 51 of 172

The disadvantage of heavy use of the smartphone's hardware is that the currently very

limited battery life is reduced even more. Therefore, software designers have to

carefully trade off the usage of such technologies for battery life.

Previously, the screens of current smartphones were described as relatively large. In

relation to the device this statement is true, but for most applications the screen size

could be even larger. This leads to new requirements to user interfaces running on such

devices. While on desktop computers with large 19'' screens much information can be

displayed at the same time, this is not possible on smartphone screens. This fact makes

it necessary to present only the most important subset of the currently needed

information. Such context dependent presentation is crucial for not overwhelming the

end-user with too much information.

In order to create clearly arranged applications on small screens often tabs are used for

structuring screen contents. Websites which were ported to apps for smartphones may

display more or less the same information as the app does. However, the app may

display the different regions of one web page in different tabs. The YouTube app for

Android, for example, displays the comments, the related videos, and the general

information in three separated tabs, while the YouTube website displays this

information in different regions of the website. For switching between tabs more and

more current apps allow switching between the single tabs by supporting the swipe

gesture.

For larger devices, such as tablets, concepts such as Android’s Fragments
22

 are used,

where the screen is separated into two or more independent, but connected regions.

2.1.7. Showcase UI Creation

Creating and designing user interfaces is an essential part when creating a software

product. Therefore, we exemplarily demonstrate the creation of user interfaces for the

Android operating system and the Windows Phone operating system in this subsection.

At first, however, some basic terms are defined.

22
 Android Fragments: http://developer.android.com/guide/topics/fundamentals/fragments.html, last

visited 07/02/2012

http://developer.android.com/guide/topics/fundamentals/fragments.html

Page 52 of 172

Control or View. A control or a view is a single UI element such as a text box or a

button. Usually several different controls are displayed at the same time on the screen

inside a Window or Layout. More examples for controls are: ListView (a container for

several views which are displayed as scrollable list), TextView (a text label), Spinner

(dropdown box), RadioButton (option for multiple choice selections). The mentioned

names are the names of the views for the Android operating system. There are similar

controls for Windows Phone, however, named differently.

Activity. According to the Android documentation
23

 “an activity is a single, focused

thing that the user can do”. Usually an activity creates and represents a “window” the

user can interact with.

On Android as well as on Windows it is possible to define the user interface in an

XML-based markup language or by creating the corresponding objects from Java

(Android) or C#/Visual Basic .NET (Windows) program code. It is also possible to

dynamically load XML UI definitions at runtime.

The following XML code defines the left user interface shown in Figure 9 on Android.

01 <?xml version="1.0" encoding="utf-8"?>

02 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

03 android:layout_width="match_parent"

04 android:layout_height="match_parent"

05 android:orientation="vertical" >

06

07 <TextView

08 android:id="@+id/textView1"

09 android:layout_width="wrap_content"

10 android:layout_height="wrap_content"

11 android:text="Hello world!"

12 android:textAppearance="?android:attr/textAppearanceLarge" />

13

14 <Button

15 android:id="@+id/button1"

16 android:layout_width="match_parent"

17 android:layout_height="wrap_content"

18 android:text="OK" />

19 </LinearLayout>

23
 Android Documentation – Activity: http://developer.android.com/reference/android/app/Activity.html,

last visited 07/02/2012

http://developer.android.com/reference/android/app/Activity.html

Page 53 of 172

Windows Phone and WPF for .NET Windows (desktop) applications use the same

XML-based language for defining user interfaces: XAML (Microsoft, 2009). The

program code for Windows Phone apps is usually written in a .NET language such as

C# or VisualBasic.NET. The following XML code defines the right user interface

shown in Figure 6 on Windows Phone.

01 <phone:PhoneApplicationPage

02 x:Class="WindowsPhoneApplication1.MainPage"

03 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

04 [...]

13 SupportedOrientations="Portrait" Orientation="Portrait"

14 shell:SystemTray.IsVisible="True">

15

16 <Grid x:Name="LayoutRoot" Background="Transparent">

17 <Grid.RowDefinitions>

18 <RowDefinition Height="Auto"/>

19 <RowDefinition Height="*"/>

20 </Grid.RowDefinitions>

21

22 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

23 <TextBlock x:Name="PageTitle" Text="Hello World" Margin="9,-7,0,0" />

24 <Button x:Name="Button" Content="OK" />

25 </StackPanel>

26 </Grid>

27 </phone:PhoneApplicationPage>

Figure 9: Basic layouts in Android (left) and Windows Phone (right).

Page 54 of 172

2.2. Enterprise Applications

As the name suggests, enterprise software typically is software which is used by

enterprises. However, there are more detailed definitions about the term enterprise

software. Stephen Adkins defined Enterprise Systems
24

 with systems which have the

following attributes (quoted from officevision.com):

 Availability - the assurance that a service/resource is always accessible

 Scalability - the ability to support the required quality of service as the load

increases

 Reliability - the assurance of the integrity and consistency of the application and

all of its transactions. The ability to provide a required reliability service level

depends on the close coordination of the hardware, networking, operating

system, storage subsystem, application framework, and application software.

 Security - the ability to allow access to application functions and data to some

users and deny them to others

 Interoperability - the ability of the system to share data with external systems

and interface to external systems.

 Leveragability - the ability that stored data, programmed logic, and other

system resources available anywhere in the enterprise should be accessible from

everywhere in the enterprise

 Maintainability - the ability to correct flaws in the existing functionality without

impacting other components/systems

 Extensibility - the ability to add/modify functionality without impacting existing

functionality

 Manageability - the ability to manage the system in order to ensure the

continued health of a system with respect to scalability, reliability, availability,

performance, and security.

24
 http://www.officevision.com/pub/p5ee/definitions.html, originally posted at

http://www.nntp.perl.org/group/perl.p5ee/2001/10/msg6.html

http://www.officevision.com/pub/p5ee/definitions.html
http://www.nntp.perl.org/group/perl.p5ee/2001/10/msg6.html

Page 55 of 172

 Portability - the ability of the software to run on a variety of hardware and

operating system configurations

 Accessibility - the ability to access system functions through different user

agents and in different human languages

Adkins further states that, when systems have these attributes, they are such that large

enterprises can invest substantial corporate resources in them.

Another definition for enterprise applications is provided by Gartner. According to

Gartner’s glossary enterprise applications are “Software products designed to integrate

computer systems that run all phases of an enterprise's operations to facilitate

cooperation and coordination of work across the enterprise. The intent is to integrate

core business processes (e.g., sales, accounting, finance, human resources, inventory

and manufacturing). The ideal enterprise system could control all major business

processes in real time via a single software architecture on a client/server platform.

Enterprise software is expanding its scope to link the enterprise with suppliers, business

partners and customers.”

In computer science the term enterprise framework relates to the development

environment and the base technology for creating enterprise applications. The

pcmag.com encyclopedia defines an enterprise framework as “a complete environment

for developing and implementing a comprehensive information system. Enterprise

frameworks provide pre-built applications, development tools for customizing and

integrating those applications to existing ones as well as developing new applications.

They may also provide a workflow component.” Also processes, methodologies, and

architectural practices are often called frameworks (Sessions, 2007). During the work

with Boom Software AG (see Sections 3 and 4) we worked with Boom’s BORA

framework.

When porting desktop (enterprise) applications to mobile devices the special constraints

but also the special abilities of mobile devices must be considered. In different locations

in this work the specialties of mobile devices are mentioned. Often it is feasible to

implement only parts of the desktop software for mobile devices due to the different

domains compared to desktop computers. Lumsden (2008) states that there is a risk of

losing “positive” experience when porting desktop software to mobile devices.

Page 56 of 172

Therefore, in the professional domain, there is often room for improvement concerning

the user experience of mobile applications.

2.3. User Experience

In this section we will discuss the term user experience (UX) and related terms such as

usability and accessibility. According to Forlizzi and Battarbee (2004) the term user

experience is associated with a wide range of meanings. It is not always easy to distinct

between the terms user experience and usability. Sometimes, these two terms are even

used as synonyms. However, as we will see later, user experience covers a wider field

than usability. According to Hassenzahl and Tractinsky (2006) UX is about technology

that fulfills more than just instrumental needs, however, there is a lack of empirical

research on this topic. According to Bevan (2009) there is a definition of the term user

experience in the ISO FDIS 9241-210 standard: User Experience is “a person's

perceptions and responses that result from the use and/or anticipated use of a product,

system or service.” Further it is stated that “user experience includes all the users’

emotions, beliefs, preferences, perceptions, physical and psychological responses,

behaviors and accomplishments that occur before, during and after use”.

Lumsden (2008) states that user experience is a term used to describe cognitive,

affective, and social responses that are induced by the use of a product or service.

Further, Lumsden (2008) points out that due to the dynamic use context of mobile

devices and due constraints of mobile devices user experience evaluations are of special

importance for mobile applications.

2.3.1. User Experience vs. Usability vs. Accessibility

According to Bevan (2009) the term usability is defined in ISO FDIS 9241-210 as

follows: Usability is “the extent to which a product can be used by specified users to

achieve specified goals with effectiveness, efficiency and satisfaction in a specified

context of use”, where the term context of use refers to environmental and personal

characteristics. According to Nielsen (2003) usability is defined by the following five

quality components:

Page 57 of 172

 Learnability: How easy is it for users to accomplish basic tasks the first time

they encounter the design?

 Efficiency: Once users have learned the design, how quickly can they perform

tasks?

 Memorability: When users return to the design after a period of not using it,

how easily can they reestablish proficiency?

 Errors: How many errors do users make, how severe are these errors, and how

easily can they recover from the errors?

 Satisfaction: How pleasant is it to use the design?

Further, Nielsen provides the following definitions:

 Utility = whether it provides the features you need.

 Usability = how easy & pleasant these features are to use.

 Useful = usability + utility.

There is a large number of international standards concerning with usability of software

(Bevan, 2001). According to Bevan these standards can be classified into the following

categories:

 The use of the product (effectiveness, efficiency and satisfaction in a particular

context of use).

 The user interface and interaction.

 The process used to develop the product.

 The capability of an organization to apply user-centered design.

A survey showed that user experience is interpreted in a similar way as usability, but

with the addition of anticipation and hedonic responses (Bevan, 2009). Based on the

ISO definitions for usability and UX cited above, Bevan (2009) reasons that if user

experience includes all behavior, it presumably includes the user’s effectiveness and

efficiency. Bevan further concludes that there are there are two distinct objectives of

Page 58 of 172

user experience: Optimizing human performance and optimizing user satisfaction with

achieving both pragmatic and hedonic goals. Laugwitz et al. (2008) call user experience

criteria soft criteria while usability criteria are called hard criteria. They further state

that both are of similar relevance for the end user.

For elderly or inexperienced people it is important to consider several questions in

addition to common usability questions. Not only elderly users often have anxieties

related to the usage of computers. However, the elderly are often of the opinion that the

benefits associated with computer use fail to outweigh the necessary effort (Holzinger et

al., 2008b). Holzinger et al. were able to quantify the questions of elderly users in the

form of usability metrics (Table 7).

Table 7: Analogies between user anxiety and metrics (Holzinger et al., 2008b)

Another term related to user experience and usability is accessibility. In common

language, the term accessibility means that media, buildings or any other objects are

reachable - or accessible – for every human being without any restrictions, even if the

individual is handicapped. In the area of software engineering accessibility refers to the

operation of computers and computer programs. Accessible software uses, amongst

others, sufficiently high-contrast colors, easily accessible user interface elements (for

example buttons which are large enough and therefore easy to touch or to click),

metadata which can be accessed by text-to-speech technologies for describing screen

contents for visually impaired people, and other technologies for simplifying interaction

with the application.

Page 59 of 172

According to Billi et al. (2010) accessibility id defined differently in different ISO

standards. On the one hand accessibility is brought in relation to people with

performance limitations (ISO/IEC Guide 71), on the other hand - according to ISO 9241

- "accessibility addresses the full range of user capabilities and is not limited to users

who are formally recognized as having a disability." Microsoft
25

 explains accessibility

with “ensuring that programs and functionality are easily available to the widest range

of users, including those who have disabilities and impairments.”

2.3.2. Usability Engineering

The goal of usability engineering (UE) is to create user interfaces with good usability.

Therefore, the task of usability engineers is to create and to improve but also to test user

interfaces. Usability engineers must not only have knowledge about computer science

issues, but also about psychology, cognitive science, and fields related to human

perceiving and processing of visual information.

Usability Engineering often follows a spiral four phase procedure model (analysis, draft,

development, and test) and a three step production model: paper mock-up, prototype,

and final product (Holzinger et al., 2005a). According to Holzinger and Brown (2008a)

good usability engineering combines complex back-end functionalities with a well

operated, attractive, effective and efficient user interface, with full regard to efficiency.

The STAR model (Stage, Types, Aims, Resources) can help to bring the theory of user

centered software development into practice. The model suggests considering four

relevant points when developing a prototyping/test strategy: the design stage including

the initial concept, different types of prototypes, the aims of the evaluation, and the

available resources. For prototyping different models are possible, depending on the

aims: vertical prototypes, where certain features are implemented in-depth, horizontal

prototypes, where the top-level UI is working, but no in-depth functionality is available,

and scenario prototype, where only functionality of parts of the UI for certain scenarios

is available (Holzinger and Brown, 2008a).

25
 Microsoft User Experience Guidelines – Accessibility: http://msdn.microsoft.com/en-

us/library/windows/desktop/bb545462.aspx, last visited 07/02/2012

http://msdn.microsoft.com/en-us/library/windows/desktop/bb545462.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb545462.aspx

Page 60 of 172

An important point in user interface design is that user interfaces should be designed in

a way that the users do not have to focus on handling the software or the device. Instead

user interfaces should be designed user-centered which means that the focus lies on

reaching the users goal in a most simple intuitive and efficient way (El-Bakry et al.,

2010).

One problem in testing and evaluating UIs is that the UI to test has to be built before. If

it turns out that changes have to be made, adapting the UI might be expensive in terms

of both time and money. To circumvent this problem rapid prototyping can be applied

or paper mockups can be created prior to implementing the user interface. UI prototypes

usually only provide mock functionality or only parts of the logic behind the user

interface are implemented. Studies show that it is essential to integrate usability

engineering at a very early stage of development to ensure cost-effectiveness and to

even have the possibility to integrate most findings into the final product (Holzinger et

al., 2011a).

A new approach in usability engineering combines the aspects of Extreme Programming

(XP) and Usability Engineering (UE) to a concept called Extreme Usability (XU).

(Holzinger et al., 2005a). As in XP, concepts of UE are brought to an extreme in XU.

The concept of XP includes the support of communication in small teams, focus on

simplicity, frequent releases and small development iterations, and constant customer

feedback. This results in a high ability to react to changing demands. In XU these

concepts are combined with the best practices of UE. This includes making the

customer continually aware of usability aspects and performing tests continuously

(Holzinger et al., 2005a).

In usability engineering different user groups are to be distinguished. Everyone who

uses software is a user, regardless the reason for using the software. Test users are users

who use software in order to test software, either on one's own initiative or based on the

instructions of someone else, such as a usability evaluation expert. End-users are the

target users of a software product, the users who are using the product in order to get

benefit from it. It is also possible that end users are used as test users at the same time,

for example during field evaluations.

Figure 10 illustrates the correlation between single user types.

Page 61 of 172

Figure 10: Users, end-users and test users.

Although UE has such great practical relevance usability engineering seems not to be of

great relevance in current curricula at schools or universities. UE is integrated very little

and far too late in software engineering education (Holzinger et al., 2005a).

2.3.3. Evaluation Methods

For evaluating usability many different methods exist. There are methods which are

performed by usability experts only, but also methods in which non-expert users work

with the software to be tested, often under surveillance of one or more usability experts.

For measuring the user experience or the usability of a system questionnaires are widely

used, but also more sophisticated methods such as eye tracking are common techniques

in certain areas. Eye Tracking, for example, is a helpful analysis tool for usability

issues (Crosby et al., 2001). Eye tracking can reveal other information than

questionnaires or methods where users are asked for providing information, such as

thinking aloud tests. According to Cooke (2006) eye tracking can tell where but not why

users look for certain information. However, the information about the “where” can be

analyzed more deeply when using eye tracking than with user interviews or

questionnaires.

In general, usability evaluation methods can be classified into inspection methods and

test methods. Inspection methods are mainly performed by usability professionals while

test methods are performed by test users under supervision of usability professionals.

Users

End

users

Test

users

Page 62 of 172

The different evaluation methods are best applicable in different states of the

development of software. Also the required time and the amount of needed test users

differ from method to method. This makes not every method applicable in any situation.

The usability evaluator has do decide which method suits best in the current situation or

in the current development stage of the software. Table 8 provides an overview of six

common usability evaluation methods and lists important properties.

Table 8: Comparison of usability evaluation techniques (Holzinger, 2005)

Test methods involve test users who use software to be tested. The users’ behavior is

recorded and evaluated by usability experts. For the field observation method the users

are observed at their workplaces during normal operation of the software. The goal is to

keep the influence (intrusion) by the observing person(s) to a minimum.

Questionnaires are often combined with other methods and are usually simple and

quick to perform. The thinking aloud test method is described in more detail later in this

work.

Inspection methods are methods where usability experts inspect the software to be

evaluated. During a cognitive walkthrough the end user’s behavior is simulated for

given tasks. Action analysis focuses on the actions users performed while using the

software under test. Keystrokes and mouse movements are recorded in order to get

detailed information about the user’s actions. However, no information about the

Page 63 of 172

reasons for the user’s actions is available. The heuristic evaluation is described later in

this work. The information about the described methods is taken from Holzinger (2005)

and also available in Holzinger (2010).

The mentioned test methods are “local” methods, i.e. the usability professional and the

test user are at the same spatial and temporal location. Remote usability testing allows

testing software for usability issues even when the tester or the test monitor (Andreasen

et al., 2007) is located in different locations. There are two types of remote usability test

methods to distinguish: synchronous and asynchronous methods. Synchronous testing is

conducted in real time but the test monitor is separated spatially from the test subjects,

while for asynchronous methods the test monitor and the test subjects are separated both

spatially and temporally (Andreasen et al., 2007). The following list mentions several

remote usability methods (Bruun et al., 2009, Andreasen et al., 2007):

 Audio/video/text conferences or reporting

 Screen capturing/screenshots

 Questionnaires

 Interviews

 Auto logging

 User-reported critical incident reporting

 Unstructured problem reporting

 Forum/Diary

All mentioned methods have advantages and disadvantages. User-reported critical

incident reporting method, for example, might be problematic because users might not

be able to report their critical incidents for different reasons. Castillo et al. (1998) have

investigated, whether users are able to report their own critical incidents. It has been

shown that users actually are able to do so and that the method is working well.

Automatic logging of mouse tracks, click locations and key presses lacks the personal

feedback of the user if not combined with other methods such as interviews.

Hilbert and Redmiles (1999) describe how user interface events can be used to gain

usability-related information. User interface events, such as clicks or menu selections

Page 64 of 172

are recorded for later analysis. Methods such as sequence detection, where sequences of

user actions are recorded and compared with a predefined action sequence can help to

detect usability issues. But also generating and analyzing visualizations, for example of

mouse click locations, are useful in certain situations.

Evaluation methods such as task analysis require not only expertise in software

engineering. For a holistic understanding also competence in at least philosophy,

psychology, sociology, and ergonomics is necessary (Diaper and Stanton, 2004).

Evaluation of Mobile Applications. Typical usability evaluation methods and

heuristics (see heuristic evaluation, Section 2.3.4) which are applicable to desktop

software might not effectively be applied to a mobile phone (Heo et al., 2009).

Therefore Heo et al. (2009) developed a checklist-based framework for usability

evaluation tailored to feature phones. The evaluation is separated into four parts: Task-

based evaluation, Logical User Interface (LUI) based evaluation, Physical User

Interface (PUI) based evaluation, and Graphical User Interface (GUI) based evaluation.

For each of the parts a checklist was created. The Task-based Checklist focuses,

amongst others, on the areas efficiency of procedure and stability of use, the LUI based

checklist focuses for example on information architecture and menu label wording, the

PUI based checklist deals for example with ergonomic considerations of buttons etc.,

and the GUI based checklist contains items for font type and size, display style and

color, and more.

Lumsden (2008) presents and compares techniques for evaluating context-aware mobile

user interfaces: Focus group, Wizard of Oz, Game-based, and Field evaluation: Focus

group sessions are meetings of a selected group of people discussing a specific topic.

By evaluating the discussion insight into user needs and opinions can be gained. The

focus group method can be used for evaluating concepts or high-level user

requirements.

When applying the Wizard of Oz evaluation method test users interact with a partly

implemented user interface. The responses of the unimplemented parts are generated at

test time dynamically by the usability researcher.

Game-based evaluation means that a realistic task environment is artificially created

for the evaluation session(s). In contrast to Game-based evaluation field evaluation is

Page 65 of 172

conducted in natural environments. However, field evaluation needs a stable and

reliable system (Lumsden, 2008).

Table 9 compares the mentioned methods. One or more plus signs (+) indicate the

appropriateness of the corresponding method, while one ore minus signs (-) means that

the corresponding method is less appropriate.

Table 9: Guidelines for the appropriateness of different evaluation techniques for context-aware mobile user

interfaces (Lumsden, 2008)

Billi et al. (2010) present a unified two-step methodology for evaluating mobile

applications taking into account both accessibility and usability – accessibility

evaluation in the first step, followed by a usability evaluation in a second step.

Objectivity and usability evaluations. According to Bevan and Curson (1997) there

are no objective criteria for usability. However, in order to make the usability of

different systems comparable, usability scales were developed. Finstad (2010) mentions

some scales for measuring usability via questionnaires:

Page 66 of 172

 Software Usability Measurement Inventory (SUMI, 50 items) (Kirakowski

and Corbett, 1993). SUMI is a questionnaire for measuring the quality of use of

software. Quality of use is defined as the extent to which a product satisfies

stated and implied needs when used under stated conditions (Bevan, 1995).

According to the SUMI website the questionnaire is mentioned in the ISO 9241

standard as method of testing user satisfaction. The current version (4.0) can be

viewed at http://sumi.ucc.ie/en/. Questions include “The instructions and

prompts are helpful” or “The software hasn't always done what I was

expecting”. The possible choices are Agree, Disagree, or Undecided.

 Questionnaire for User Interface Satisfaction (QUIS) (Chin et al., 1988). The

questions of QUIS, such as “Use of terms throughout system: inconsistent/

consistent”or “Error messages: unhelpful/helpful” must be answered on a Likert

scale from 0 to 9. A online version can be found at

http://hcibib.org/perlman/question.cgi?form=QUIS.

 Computer System Usability Questionnaire can be used to measure the

satisfaction with the usability of computer systems (Lewis, 1995). Questions

include “I feel comfortable using this system” or “The organization of

information on the system screens is clear”. An online version is provided at

http://hcibib.org/perlman/question.cgi.

 System usability scale (SUS, 10 items) (Brooke, 1996).

The system usability scale probably is the most well-known usability scale. It

subjectively measures the usability of a system based on a Likert scale. Finstad (2010)

mentions that SUS was standardized by Intel because of its good performance

characteristics, in addition to being free and relatively compact. The SUS includes 10

questions (Brooke, 1996):

1. I think that I would like to use this system frequently

2. I found the system unnecessarily complex

3. I thought the system was easy to use

http://sumi.ucc.ie/en/
http://hcibib.org/perlman/question.cgi?form=QUIS
http://hcibib.org/perlman/question.cgi

Page 67 of 172

4. I think that I would need the support of a technical person to be able to use this

system

5. I found the various functions in this system were well integrated

6. I thought there was too much inconsistency in this system

7. I would imagine that most people would learn to use this system very quickly

8. I found the system very cumbersome to use

9. I felt very confident using the system

10. I needed to learn a lot of things before I could get going with this system

All questions (items) are answered based on a Likert scale with five grades for each

item. The final usability score is calculated based on the schema describes by Brooke

(1996). The result of the calculation is a value between 0 and 100, where a larger value

stands for better usability. But what exactly does a certain value mean and which values

are good values? In order to answer this question Bangor et al. (2008) evaluated the

SUS (Figure 11). Based on an empirical investigation they found that a score of 50 does

not mean that the tested product is half as good as a product scored with 100.

Figure 11: Meaning of SUS values (Bangor et al., 2008).

Finstad (2010) has proposed a new metric for user experience (Usability Metric for User

Experience - UMUX). Although the metric’s name refers to user experience, UMUX is

a usability evaluation questionnaire similar to SUS. However, UMUX only consists of

four questions by having a similar reliability, validity, and sensitivity as SUS. It was

designed to be an alternative to SUS and correlates with the SUS at about 80 percent

(Finstad, 2010). The four questions are the following:

Page 68 of 172

1. [This system’s] capabilities meet my requirements.

2. Using [this system] is a frustrating experience.

3. [This system] is easy to use.

4. I have to spend too much time correcting things with [this system].

In contrast to SUS the Likert scale has seven graduations (SUS: five).

Ghahramani (1998) claims the invention of a method for objectively measuring

usability. The method measures the performance of users, measured by the time needed

for performing a task, on the one hand and the user satisfaction on the other hand.

Evaluating complex adaptive systems in the use context increases the appropriateness of

the final design. Also actual end-users must be involved as participants because of their

intimate knowledge of mobile use context and domain-specific tasks (Lumsden, 2008).

2.3.4. Heuristic Evaluation

Heuristic evaluation is a usability inspection method which is performed by usability

experts. Supported by set of usability rules the user interface under test is inspected

systematically. These rules are also called heuristics. According to Oxford Dictionaries

heuristic means “enabling a person to discover or learn something for themselves”.

Another meaning from computer science is “proceeding to a solution by trial and error

or by rules that are only loosely defined”. During heuristic evaluations rules are used to

support the decision process and for supporting the usability expert’s inspection

procedure.

Heuristic evaluations should usually be done by several usability experts in parallel. The

results of each expert should then be consolidated. The reason is that more usability

experts usually find more usability issues. By four experiments conducted by Nielsen

and Molich (1990) it was empirically shown that a heuristic evaluation should be

performed by at least three to five usability experts (Figure 12) in order to find many

usability problems. However, a more common rule, similar to the rule for the required

number of thinking aloud test users (Holzinger, 2006), might be appropriate: Depending

on the complexity to the inspected software, the number of usability experts should be

increased as long as the number of new issues found is larger than a certain threshold.

Page 69 of 172

Figure 12: Proportion of usability problems found by aggregates of size 1 to 30 (Nielsen and Molich, 1990)

The advantages of heuristic evaluation include a low need both time and equipment. At

the same time, as the evaluation is done by usability experts, different usability issues

might be revealed than by performing usability test methods where test users are

involved.

Usability heuristics were developed by different authors. Nielsen (1994c) published ten

usability heuristics, Shneiderman and Plaisant (2004) published “Eight Golden Rules of

Interface Design”, and Raymond and Landley (2004) also published several rules of

usability. There are more sources available, but already when comparing the heuristics

by the mentioned authors certain overlaps can be discovered.

Nielsen’s ten usability heuristics:

 N1 Visibility of system status

 N2 Match between system and the real world

 N3 User control and freedom

 N4 Consistency and standards

 N5 Error prevention

 N6 Recognition rather than recall

 N7 Flexibility and efficiency of use

 N8 Aesthetic and minimalist design

 N9 Help users recognize, diagnose, and recover from errors

 N10 Help and documentation

Page 70 of 172

Shneiderman’s Eight Golden Rules of Interface Design:

 S1 Strive for consistency: The same design, terminology should be used

throughout the system. Also operation should be consistent.

 S2 Enable frequent users to use shortcuts: Experienced users should have the

possibility to use shortcuts and advanced features such as macros.

 S3 Offer informative feedback: There should always be feedback for actions.

For infrequent and/or major actions the feedback should be more intense.

 S4 Design dialog to yield closure: Dialogs or dialog sequences should make

clear when the task is completed by providing feedback.

 S5 Offer simple error handling: If an error cannot be prevented beforehand

(which should always be prioritized) a simple way for handling the error should

be provided.

 S6 Permit easy reversal of actions: A simple undo function should be provided.

 S7 Support internal locus of control: Users should feel that they started an action

(not the system) and have full control over the system.

 S8 Reduce short-term memory load: As little information as possible should be

necessary to be remembered by the user (for example between single screens).

Raymond’s Rules of Usability:

 R1 Rule of Bliss: Allow your users the luxury of ignorance.

 R2 Rule of Distractions: Allow your users the luxury of inattention.

 R3 Rule of Flow: Allow your users the luxury of attention.

 R4 Rule of Documentation: Documentation is an admission of failure.

 R5 Rule of Least Surprise: In interface design, always do the least surprising

thing.

 R6 Rule of Transparency: Every bit of program state that the user has to reason

about should be manifest in the interface.

 R7 Rule of Modelessness: The interface's response to user actions should be

consistent and never depend on hidden state.

 R8 Rule of Seven: Users can hold at most 7±2 things at once in working storage.

Based on new studies Farrington (2011) lowers this number to three to four.

Page 71 of 172

 R9 Rule of Reversibility: Every operation without an undo is a horror story

waiting to happen.

 R10 Rule of Confirmation: Every confirmation prompt should be a surprise.

 R11 Rule of Failure: All failures should be lessons in how not to fail.

 R12 Rule of Silence: When a program has nothing surprising to say, it should

say nothing.

 R13 Rule of Automation: Never ask the user for any information that you can

automatically detect, copy, or deduce.

 R14 Rule of Defaults: Choose safe defaults, apply them unobtrusively, and let

them be overridden if necessary.

 R15 Rule of Respect: Never mistake keeping things simple for dumbing them

down, or vice-versa.

 R16 Rule of Predictability: Predictability is more important than prettiness.

 R17 Rule of Reality: The interface isn't finished until the end-user testing is

done.

Pierotti (2000) supplemented Nielsen’s heuristics with more heuristics and also presents

a detailed checklist implementing Nielsen’s and the other heuristics. The following list

only lists the heuristics relevant for usability evaluation which are not already part of

Nielsen’s rule set.

Pierotti’s heuristics:

 P1 Skills: The system should support, extend, supplement, or enhance the user’s

skills, background knowledge, and expertise - not replace them.

 P2 Pleasurable and Respectful Interaction with the User: The user’s interactions

with the system should enhance the quality of her or his work-life. The user

should be treated with respect. The design should be aesthetically pleasing- with

artistic as well as functional value.

As mentioned above, overlaps can be observed when comparing the single heuristics

listed before. Table 10 presents the aim for consolidating heuristics covering similar

Page 72 of 172

areas to categories C1 to C11. Before, the single heuristics were numbered with unique

IDs, such as N1 or R9. Also the identified categories were assigned a unique ID ranging

from C1 to C11.

Category Nielsen Shneiderman Raymond & Landley Pierotti

C1 Feedback N1 VisSysStat S3 InfFeedback,

S4 DlgYieldClsr

R1 Transparency,

R2 Silence

C2 Input R5 Defaults

C3 Match N2 MatchSysWorld

C4 User control,

Flexibility

N3 UC&Freedom,

N7 Flexibility

S2 Shortcuts,

S7 SuppIntLocus

R3 Modelessness,

R9 Automation,

R16 Predictability

P1 Skills

C5 Undo S6 Reversal R4 Reversibility

C6 Consistency N4 Consistency S1 Consistency R6 Least Surprise,

R3 Modelessness

C7 Errors N5 ErrorPrevention,

N9 RecovrFromErrors

S5 SimpleErrHandl R14 Failure,

R10 Confirmation

C8 Short-term mem. N6 RecognRTRecall S8 RedShrtTrmMemLd R7 Distractions, R8 Seven

C9 Design N8 AestheticMinDesgn R11 Bliss, R12 Flow,

R13 Respect

P2 RespInteract

C10 Documentation N10 Help&Doc R15 Documentation

C11 UI Testing R17 Reality

Table 10: Assignment of different heuristics to categories

According to the Measuring Usability blog
26

 Weinschenk and Barker (2000) created a

list of 20 heuristics based on different sources using the card sort method which was

also used by Lowry (2008):

 User Control: The interface will allow the user to perceive that they are in

control and will allow appropriate control.

 Human Limitations: The interface will not overload the user's cognitive, visual,

auditory, tactile, or motor limits.

 Modal Integrity: The interface will fit individual tasks within whatever modality

is being used: auditory, visual, or motor/kinesthetic.

26
 http://www.measuringusability.com/blog/he-cw.php, last visited 07/02/2012.

http://www.measuringusability.com/blog/he-cw.php

Page 73 of 172

 Accommodation: The interface will fit the way each user group works and

thinks.

 Linguistic Clarity: The interface will communicate as efficiently as possible.

 Aesthetic Integrity: The interface will have an attractive and appropriate design.

 Simplicity: The interface will present elements simply.

 Predictability: The interface will behave in a manner such that users can

accurately predict what will happen next.

 Interpretation: The interface will make reasonable guesses about what the user

is trying to do.

 Accuracy: The interface will be free from errors

 Technical Clarity: The interface will have the highest possible fidelity.

 Flexibility: The interface will allow the user to adjust the design for custom use.

 Fulfillment: The interface will provide a satisfying user experience.

 Cultural Propriety: The interface will match the user's social customs and

expectations.

 Suitable Tempo: The interface will operate at a tempo suitable to the user.

 Consistency: The interface will be consistent.

 User Support: The interface will provide additional assistance as needed or

requested.

 Precision: The interface will allow the users to perform a task exactly.

 Forgiveness: The interface will make actions recoverable.

 Responsiveness: The interface will inform users about the results of their actions

and the interface's status.

It cannot be avoided that heuristic evaluation is to a certain degree subjective due to

different interpretations of the rules by the different usability evaluators. Additionally,

as Figure 12 suggests, the results of heuristic evaluations are usually not complete.

There might be more issues which could not be found during the heuristic evaluation.

The mentioned heuristics originally were designed for desktop systems. But there also

exist usability heuristics for other types of software than desktop software. There are

Page 74 of 172

heuristics for games (Korhonen and Koivisto, 2006) and for mobile devices mobile

devices (Lowry, 2008). However, heuristics applicable for modern devices such as

smartphones with multi-gesture capabilities are still rare. Especially detailed checklists,

such as the checklist by Pierotti (2000), are missing. However, heuristic evaluation for

mobile devices might be problematic as contextual influences are only poorly

represented (Po et al., 2004). Varsaluoma (2009) states that heuristic evaluation and

other existing usability evaluation methods must be redesigned in order to create more

awareness of the mobile context. Po et al. (2004) experimented with a method called

Contextual Walkthrough which includes the situational context into a Heuristic

Walkthrough. A Heuristic Walkthrough is the combination of heuristic evaluation with

scenarios of use.

Ji et al. (2006) developed a usability checklist for evaluating user interfaces of mobile

phones, however, the checklist targets feature phones and not smartphones. Also Bertini

et al. (2006) worked on appropriating heuristics for mobile devices.

Lobo et al. (2011) collected rules for designing websites for smartphones: Mobile

websites should comply with several simple common rules: Keep it Simple, Simplify

User Input, Scroll Vertically Only, Multiple Versions of the Website. The latter rule

means that on the server side it should be detected whether a mobile device or a desktop

client accesses the website. Depending on the browser type a mobile or a desktop

version of the same website should be sent to the client (Holzinger and Errath, 2007).

Lowry (2008) described a methodology for creating heuristics for mobile devices,

however, currently there is only a little amount of work dealing with heuristics for

modern mobile devices such as current smartphones and tablets with large multi-touch

screens. (Varsaluoma, 2009) stated that the context of use is also important when

heuristically evaluating mobile applications. So, in order to get reliable usability

measures it is important to understand and to consider the context of use (Bevan and

Macleod, 1994).

Page 75 of 172

During the work with Boom Software AG Boom software was heuristically evaluated

based on adapted checklists by Pierotti (2000), Nielsen (1994a), Raymond and Landley

(2004), and the fluid project
27

. More information can be found in Sections 3.2.4 and

4.1.2. Additionally, within this work a checklist for heuristically evaluating mobile

devices was created. The list is based on checklists and heuristics by Pierotti (2000),

Nielsen (1994a), Raymond and Landley (2004), Ji et al. (2006), the fluid project,

Microsoft, Google, and Apple. The list certainly is not complete, but it covers many

potential usability issues and is a good starting point for further elaboration. For more

information about the usability checklist see Sections 3.4 and 4.3. The full checklist can

be found in Appendix A.

2.3.5. Thinking Aloud

The thinking aloud (TA) test method originates from the problem solving sciences from

the year 1932 (Holzinger, 2006) and was later also brought to computer science. It is a

method of good practical applicability (Holzinger, 2006). For thinking aloud tests test

users are asked to perform predefined tasks while being supervised by the usability

experts. For later analysis of the user’s behavior during the tasks the sessions are

recorded in audio and video.

According to Nielsen (1994b) tree to five test users are sufficient. However, it might be

necessary to increase the amount of test users. In practice it is often reasonable to stop

the thinking aloud test when no more information can be gained (Holzinger, 2006).

In general, thinking aloud tests should be applied in early development stage of the user

interface because later it might be difficult to implement the suggested changes. With

thinking aloud tests insight into the thinking processes of the test users can be gained.

This information might be very helpful for further design decisions. However, the

results of thinking aloud tests might be biased because usually such tests are performed

in artificial environments under artificial conditions. Also test users often behave

differently when being under supervision. This effect is called Hawthorne Effect

27
 fluidproject.org - An open, collaborative project to improve the user experience of community source

software (http://wiki.fluidproject.org/display/fluid/Usability+Evaluation+Questions), last visited on

05/02/2012.

http://wiki.fluidproject.org/display/fluid/Usability+Evaluation+Questions

Page 76 of 172

(McCarney et al., 2007). Additionally, verbalizing information may influence cognitive

processes (Ericsson and Simon, 1980).

Another problem is that some test users feel uncomfortable about expressing their

thoughts verbally or simply forget to do so. Therefore it is necessary to constantly

remind the test users to speak out what they are thinking.

Time and equipment requirements of TA are relatively high compared to other usability

evaluation methods. TA can, however, be applied in very early development stages

using paper mockups (Holzinger and Brown, 2008b). Using paper mockups in early

development stages has the advantage that they can be easily changed based on the

feedback of the test users.

Thinking aloud tests are usually accompanied by questionnaires about the tested

software and about the background knowledge of the test users. Later in this thesis, in

Section 3.2.6, the methodology of the thinking aloud tests applied during this work are

described.

2.4. Adaptive User Interfaces

Smart adaptive user interfaces (AUIs) are one way to satisfy the special needs of end

users (El-Bakry et al., 2010). Adaptive user interfaces can be used to present the end

user a UI which is tailored to the special needs of the end user (Germanakos P., 2009).

Therefore, AUIs can be modified even at runtime in a way that the needs of certain end

users are satisfied. However, one of the big challenges in this area is to determine the

variables used as basis for developing different adaptions (Germanakos P., 2009).

Criteria might include the background knowledge of the end user, the environment in

which the application is used, technical criteria or combinations of those criteria.

Context-awareness is the keyword in this context.

2.4.1. Context-awareness

According to Oxford Dictionaries the term context is defined as follows: Context is “the

circumstances that form the setting for an event, statement, or idea, and in terms of

which it can be fully understood”. Being aware of the current context makes it possible

to adapt oneself to the context.

Page 77 of 172

The idea of context-awareness is not new. Schilit et al. (1994) introduced context-

awareness for ubiquitous computing in 1994. However, the capabilities of mobile

devices have changed drastically since 1994.

Nowadays, smartphones with powerful processors and large, bright touch screens are in

the pockets of many professionals, students and even children. Software providing

different modes for different user groups is available, such as ArcheoApp (Holzinger et

al., 2011b), which provides modes for students, tourists and children. In this case the

professional context is taken into account for an adaption of the software. The topic

context awareness and adaptation in mobile learning is also discussed in (Yuan-Kai,

2004).

Schmidt (2000) describe an application for PalmPilot called Context NotePad. They

also define the term implicit human-computer interaction which describes the concept

of interaction based on situational context rather than on explicit GUI manipulation.

Comprehensive user profiles where also visual, cognitive and emotional-processing

parameters are included may improve the performance of adapted Web-based content.

Evaluation results demonstrate the effectiveness of incorporating human factors in Web-

based personalized environments (Germanakos et al., 2009). Also Bevan and Azuma

(1997) emphasize the importance of considering human factors in usability design.

According to Lumsden (2008) context-aware mobile user interfaces are developed to

improve the user experience by adapting the system behavior, based on a model of

relevant use context factors. Also Biel et al. (2010) recognize the importance of

considering the mobile usage context when designing mobile applications and

evaluating usability. Therefore so called mobile context factors (MCFs) were defined:

properties of the environment, user, device, task, and application.

One challenge is to give the bare sensor data a meaning (Schmidt et al., 1999). What

does it mean if a brightness sensor reports 20 percent lightness and an acoustic noise

sensor reports a sound pressure level of 20 dB? These values must be translated to a

higher-level contextual meaning such as “indoors/outdoors”, “engaged in conversation”,

“in a meeting” so that the application can react accordingly. Korpipaa et al. (2003)

present a framework for the Symbian platform which implements such a mapping from

low-level sensor date to a high-level representation of context. Instead of just using

Page 78 of 172

snapshots of the current sensor data analyzing time series of sensor data can be useful

for forming higher-level contexts (Himberg et al., 2001).

But also displaying different content based on the current context falls in the area of

context-awareness. Lemlouma and Layaida (2004) present a platform independent

system based on a web service which is able to display different content based on the

current user settings, the user profile, and other criteria such as network connection

speed.

Context sensitivity for text input is widely used by mobile applications and software

keyboards. Soft keyboards can change the keyboard layout in a way that symbols which

are not likely to be used are replaced by other symbols or characters. For enabling this

feature, software developers have to define an expected input type for text boxes (e.g.

“text”, “email”, or “number”). This not only works for native mobile applications, but

also for web pages using HTML5.

2.4.2. Adaptive vs. adaptable UIs

It has to be differentiated between adaptive and adaptable user interfaces. Adaptable UIs

are adapted by software developers at design or implementation time manually, while

adaptive software adapts itself at runtime automatically based on data gained from the

end-user or the environment.

Customization is a concept in enterprise software where highly adaptable software can

be developed for customers. The software usually builds on a framework which allows

creating software which is tailored to the needs of the customer by combining existing

software components to a whole system.

Mash-ups allow end-users to customize a user interface by (re)combining existing UI

components (widgets) to a personalized UI. Such a customized user interface allows the

end user to focus on his/her special needs. Taptu is a popular social network aggregation

app which makes use of UI mash-ups.

What are the benefits of adaption? Adaptive UIs make it possible to provide the

simplest user interface suitable for the current context. As stated before, the hypothesis

is that simpler user interfaces enhance performance. But what does performance exactly

mean and how can performance be measured on mobile devices?

Page 79 of 172

Better performance not only means that less time is needed to execute a certain task, but

also that the task is done with a lower error rate. On mobile devices as well as on non-

mobile devices, the performance can be measured by measuring the time needed for a

certain task and to what extent the task was accomplished. The challenge when

measuring performance on mobile devices is that screen capturing and capturing of

input may technically be more difficult because of a lack of tools, computational power

and storage space. Also touch input is harder to track and to interpret than keyboard

input.

What are the benefits of adaptability? Easily adaptable UIs make it possible for

enterprises to customize the UI of an app without much effort. This leads to less

expensive and to less time-consuming adaption processes. Usually adaptable software is

designed in a modular way where single independent components can be combined to a

new product. Later, Boom Software AG’s framework for Total Customizing will be

presented where more advantages of adaptable and customizable software will be

pointed out.

Page 80 of 172

3. Materials and Methods

In this section the methods and materials for the practical part of this work are

described. First, in Section 3.1 the company we worked with – Boom Software AG– is

introduced. The technology Boom Software AG uses for developing software is

presented and the relation between the usability team (Peter Treitler and Michael Geier)

and Boom Software AG (from now on referred as Boom) is described. In Section 3.2

the work with Boom and the goal of our work with Boom is explained. Finally, in

Sections 3.3 and 3.4, the focus is on usability on mobile devices presenting an

experiment about adaptive user interfaces and usability heuristics tailored to mobile

devices.

3.1. Boom Software AG

Boom Software AG (www.boomsoftware.com) mainly creates easily and highly

adaptable software for maintenance management and production control. Founded in

1995 by Joachim Schnedlitz, Boom currently has about 50 employees. Boom’s

headquarter is situated in Leibnitz, Styria, Austria.

Boom’s concept of highly adaptable software is called Total Customizing. This means

that the software can be customized to the needs of their customers to a high degree.

“Boom Software is the first software developer in the area of maintenance management

software to offer total customization and, as a result, the highest possible benefit for the

customer.” – Boom Software AG.

Boom has developed a framework which is the base technology for the Total

Customizing concept and supports easy creation and adaptation of enterprise software.

Boom also offers complete, adaptable products based on their framework. Maintenance

Manager and Production Manager are two examples. Maintenance Manager is a system

for management, standardization and optimization of maintenance processes for

facilities and infrastructure. Production Manager is software for optimization and

documentation of production processes as well as for supporting quality assurance. ÖBB

http://www.boomsoftware.com/

Page 81 of 172

TS GmbH, IKB AG (Innsbrucker Kommunalbetriebe AG), austriamicrosystems AG,

Steyr-Daimler-Puch GmbH, and MAV – Hungarian Railways PLC are some of Boom’s

customers using Maintenance Manager or Production Manager.

The information provided about Boom Software AG is either available at

www.boomsoftware.com or was taken from documents provided to us during our work

with Boom. Also information about discussions with our contact person, Roman Bobik,

is used for this work. However, all information about Boom or Boom technology

presented in this document was authorized by Boom for publication.

3.1.1. The Enterprise Framework

BORA (Business Oriented Rapid Adaption) is the name of Boom’s framework which

supports the Total Customizing concept. It is important to point out that customizing

and Total Customizing describe different concepts. While the term customizing refers to

the generic customization of software, Total Customizing is a concept where the base

framework is built in a way that the application which is created based on the

framework is highly customizable. Additionally, according to our contact person

Roman Bobik, the BORA framework “allows reducing the technical efforts from about

80% to approximately 20% of the project volume by minimizing redundant and hard

technical tasks and provides the developer with a clear software development process –

from requirements analysis, rapid prototyping to deployment and maintenance.”

All applications developed by Boom (for example Maintenance Manager and

Production Manager) are based on their Model-View-Controller (MVC) based

framework. Figure 13 illustrates the concept of Total Customizing the BORA

framework suggests.

http://www.boomsoftware.com/

Page 82 of 172

Figure 13: Total Customizing with Boom’s BORA framework (source: Boom)

Figure 14: BORA framework - main components (source: Boom)

BORA is not only an internal design and development method as well as a set of unified

software development tools based on Microsoft's .NET Framework, but also a technical

basis, an application framework and a standard. All Boom products are based on the

methodologies and tools specified by BORA. According to Bora Man, head of the

BORA team, the BORA Framework allows to focus on the development goals by

reducing the need for solving technical issues. All software products created with

BORA consist of modules, which can be combined to a whole product.

The reader shall remind that it must be differentiated between adaptive and adaptable

software. The aim of Total Customizing is to create adaptable software – adaptivity is

not the primary goal. Adaptable (or customizable) software is adapted by the software

developers usually at design and implementation time while adaptive software adapts

“itself” automatically at runtime based on the application’s context.

Page 83 of 172

Figure 14 shows a schema of the BORA framework. BORA consists of several

components: The persistence layer, the workflow and events engine, the business

modules, the user interface, and the reporting module. The core framework is the central

component of BORA. Metadata is used for modeling applications based on the

framework. The framework creates the application based on the model description. The

following paragraphs give a more detailed description of the single modules.

Persistence Layer. The persistence layer translates the OO-model to a relational

database. The O/R-mapper which is part of the BORA framework is able to translate

complex OQL queries so that developers do not have to write any SQL.

Core Framework. The central element of the core framework is the object broker

which manages the business objects including caching and transactions. Also, the core

framework provides functionality for defining and checking rules, security, sessions,

scripting and more.

Workflows & Events. Event-driven workflows are started by changing the states of

objects. Workflows can be simple operations such as the calculation of a value as well

as complex sequences of commands.

Business Modules. This part combines the components mentioned above (model, rules,

events, ...) to single modules. Modules can be core services (e.g. user management) as

well as subsystems (e.g. warehouse management) or whole applications (e.g. Boom

Maintenance Manager). All modules can be combined at any layer.

User Interface. BORA's UI framework automatically considers the parts mentioned

above when creating the user interface. This makes it possible to create working user

interfaces without writing any line of program code.

Reporting. Apart from mainly OLTP (Online-Transaction-Processing) based core

functions most of the business modules need to create reports. BORA provides a

component to define and to export reports which also considers the parts mentioned

Page 84 of 172

above. Reusing definitions for labels, headings and other parts both in the user interface

and in reports makes the output consistent.

When generating the application, the BORA framework does not explicitly generate

source code from the model, but instead abstract classes are pre-generated. The actual

concretion is derived at run-time from the model description which makes it possible to

make changes even at the customer's place without the need for recompiling the

application. A more detailed view on BORA’s core components (Figure 15) clarifies the

strict separation between abstract specifications (right part) and the implementation by

the system (left part).

The common generative approach of similar systems, where source code is generated

from a model, for example defined in UML, has several disadvantages compared to the

BORA approach: First, the common generative approach is more error prone than the

BORA model because in the common generative approach the generated code must be

merged with changes to previously generated code. Secondly, the common generative

approach is more time-consuming because in every trip post-processing in necessary.

Figure 15: Detailed view on BORA’s core components (source: Boom)

Page 85 of 172

Advantages of Boom’s BORA approach include: Modular concept and therefore high

reusability of single modules, good scalability, simple interfaces and separation of

business logic and user interface. As basic forms and user interfaces can be created very

quickly, rapid prototyping can be realized to get feedback in an early stage of

development. Minimization of time-to-market, focusing on the problem – not on

technical issues, flexible adaptation, a unified development process, upgrading of

applications without the need for changing customer-specific settings, minimization of

the risk for cost overrun and easy internationalization are more properties which result

from the usage of the BORA framework.

During the work with Boom we experienced that the enterprise framework allows quick

creation of basic applications using a database in the background when creating the

tutorial application Leseratte (see Section 3.2.3). Using a data model designer (Boom

BORA Designer) the data model and the corresponding database schema is created

without the need for writing any C# code. Boom BORA Designer also creates a Visual

Studio solution containing the resulting application which implements default behavior.

The default behavior can be customized in following steps. Using Visual Studio (or any

text editor) XML files defining the UI and other parts of the system such as business

rules can be edited in order to create a customized application. Changes to the XML

files can even be made during execution of the application - the changes can be loaded

at runtime and immediately influence the look and/or the behavior of the application.

For implementing special features or for overriding default functionality C# can be used

as programming language. As BORA-based applications require a database in the

background, a DBMS such as Microsoft SQL Server, SQL CE, Oracle, firebird, or DB2

must be available.

The following XML snippets, taken from Boom’s BORA presentation slides, give

examples of the used XML language for defining the data model, storage mapping,

business rules, and the graphical user interface.

Page 86 of 172

Example class repository:

01 <Package Name="TAnf">
02 <Entity Name="TAnf" CID="-389585192">
03 <InterfaceRef RefCID="2109958077" />
04 <Property Name="PkgCount" EntityRef="10"
05 MultiplicityMin="1" MultiplicityMax="1" />
06 <Property Name="PkgWeight" EntityRef="13"
07 MultiplicityMin="1" MultiplicityMax="1" />
08 <!-- ... -->

Example storage mapping:

01 <entity name="TAnf" dataSource="default">
02 <table name="tabTAnf">
03 <oid column="TAnfID" />
04 <field name="PkgCount" column="PaketAnzahl" />
05 <field name="PkgWeight" column="Gewicht" />
06 <field name="PkgVolume" column="Volumen" />
07 <!-- ... -->
08 <assocEnd name="Requestor" column="AnfUserID" />
09 <assocEnd name="RequPlant" column="AnfWerkID" />
10 <!-- ... -->

Example Business Rules:

01 <rulesRepository>
02 <entity name="TAnf" type="save">
03 <range min="1" max="99">PkgCount</range>
04 <rule>
05 <expression>DelvrDate >= FetchDate</expression>
06 <textArgs>DelvrDate, FetchDate</textArgs>
07 <text>[0] darf nicht vor [1] liegen.</text>
08 </rule>
09 <!-- ... -->

Example GUI de:

01 <entity name="TAnf">
02 <feature name="PkgCount">
03 <style><title lang="de-AT">Anzahl VPE</title></style>
04 </feature>
05 <!-- ... -->
06 <form>
07 <section><style>
08 <title>Anforderung bearbeiten/hinzufügen</title>
09 </style>
10 <feature edit="none">OID</feature>
11 <feature>Name</feature>
12 <feature gui="dropdown">TransportType</feature>
13 <feature>CCtr</feature>
14 <!-- ... -->

Page 87 of 172

The GUI definition language for Windows Applications is based on XAML, while the

generic UI definitions are written in another XML dialect.

Boom’s three development areas include core development, domain development, and

application development. The core development relates to the development of the base

technology BORA. Few experts are part of the core development, i.e. the development

of the base framework BORA, while the majority of the software engineers focus on the

application development. Application developers use the BORA framework for creating

adapted applications for Boom’s customers. Domain development relates to the

development of base products such as BMM or BPM which can be further customized.

Figure 16 illustrates the mentioned development areas.

Figure 16: Boom’s three development areas (source: Boom)

A typical development process at Boom starts with defining the customer requirements.

From the requirements, an application model is created and then a default application is

created from the model. Finally, the created default application is adapted to the special

customer requirements.

Figure 17: Boom’s simplified process model for software development (source: Boom)

Page 88 of 172

According to Bobik, Boom’s software solutions tend to be very consistent when

speaking of processes, navigation and user interface design because many parts of the

user experience composed from well-tested user interface components and navigation

concepts which are part of the base framework BORA.

“Since all of our and our partner’s software solutions build on these UI concepts we are

very concerned to improve the usability of these components. By improving them we

make more than 20.000 users more productive every day.”

– Roman Bobik, Boom Software AG.

3.1.2. Future Development

During our work with Boom Software AG we identified two directions the company

wants to establish or improve. First, Boom will respect the need for mobile applications.

While Boom’s main focus has historically been on Desktop-Software for Microsoft

Windows, over the years it was heavily invested in creating a HTML-based UI-layer for

BORA-applications in order to bring specific parts of Boom applications to the world of

occasionally-connected mobile devices such as smartphones and tablets. Therefore,

Boom will further expand their technology to mobile devices such as Android-based

devices or Windows-based Tablet PCs in the near future. The future goal is to

supplement the existing desktop system with mobile applications. The goal is not to port

the whole desktop application to a mobile device, but only parts which are needed

outside the company's headquarters. The decision whether to go HTML5 or to create

native mobile applications hasn’t been taken yet.

Secondly, it is strived for further improvement of the usability of Boom software. As

the reader will see later, the overall usability already is on a high level; however, there

are some minor issues to be resolved. Additionally, the awareness of usability should be

raised amongst the developers at Boom Software AG and company-wide usability

guidelines, providing BORA-developers with a simple checklist of dos and don’ts,

should establish a unified understanding and implementation of usability.

Page 89 of 172

3.2. Usability Consultancy

During the work with Boom Software AG we acted as consultants in usability

questions. We accompanied the development of a prototype for a mobile Android client

and at the same time we performed usability evaluations of existing desktop software.

Apart from the following Section 3.2.1, the order of this section’s subsections

corresponds to the chronological order of the work at Boom.

3.2.1. Mobile App

During the work with Boom we had the opportunity to follow the development of a

prototype for a mobile Android application which is based on the BORA framework.

The purpose of the mobile application is to implement parts of the desktop user

interface module for mobile devices. The prototype of the app is to be used as digital

task sheet. The goal is to make printed task sheets redundant and to speed up the task

reporting for the customer.

Figure 18 shows a screenshot of the latest version of the Android app. The screenshot

shows the user’s open task list. It also shows that there are four open tasks and that the

data is currently synchronized (bottom). The synchronization feature is important for

countryside workers because it is not guaranteed that there is always an Internet

connection available. As stated in the introduction of this work, outside workers often

have to work under rough conditions. Also outside workers do not have access to

immediate help from colleagues or a help center in case of technical troubles. Therefore

good usability and error prevention is particularly crucial.

The mobile application only implements the presentation layer which creates the UI

based on an XML UI description received from the application server. It is up to the

client software how to interpret the UI description and how to finally render the UI.

Input on the mobile device is sent back to the server which then processes the input

data.

Page 90 of 172

Figure 18: Mobile Android app for task sheets

The platform independent XML description generally describes the UI layout consisting

of sections, text input boxes, labels and other controls. When the client application

receives the UI description the client interprets it in a way it looks and behaves best for

the device type the software runs on. Therefore the final UI could theoretically look

completely different on different devices. However, there are standards which require

the UIs to be rendered ant to behave similarly in order to have a certain recognition

value. The concept is similar to SaaS (Software as a Service) with the difference that the

client is not necessarily a web browser but can also be a specialized client application.

Languages which describe user interfaces are called user interface markup languages.

UIML (User Interface Markup Language), XAML (Extensible Markup Language),

XUL (XML User interface Language) are popular examples for UI markup languages.

Most user interface markup languages are based on XML (El-Bakry et al., 2010). There

can be different levels of detail in describing a UI using such a markup language. There

are languages which allow to define UIs very detailed including exact measures and

positions, but there are also languages which intentionally only allow specifying

relatively abstract UI descriptions (e.g. only relative positions of controls, no concrete

measures or positions). The latter type of UI description language allows the client

which finally renders the UI to adapt the UI to the screen dimensions of the device.

Page 91 of 172

The advantages of such a distributed approach where the client application is only

responsible for rendering and for forwarding user input include:

 Only the frontend app has to be published to the customers.

 Changes in the backend which do not affect the frontend can be made without

the need for updating the frontend application.

 Even changes in the frontend can be made without updating the frontend app by

changing the UI definition on server side.

 Changes in the UI have only to be made once on the server side. All the clients

on different operating systems automatically provide the new UI without the

need for updating the client applications.

A disadvantage of systems as described above is the lack of flexibility in UI design.

Also, retaining platform independency by supporting multiple different device types

(such as desktop and mobile systems) at the same time might be difficult in some cases.

If, for example, multi-touch gestures should be supported by mobile applications the

desktop application must properly handle the gesture instructions as well.

In general, a UI description can be written in any suitable, machine readable language.

For reasons of standardization, simplicity, and (human) readability XML might be a

good choice. More compact representations (some binary format, for example) might be

necessary in case of very low bandwidth. However, in practice the size of the UI

description data should not be relevant as, once submitted, this data is usually cached on

the client side.

Of more importance is the format in which data is exchanged between the client

application and the server. Again, XML could be used for the reasons mentioned above.

The big disadvantage of XML is that XML is large in terms of bandwidth requirements.

This might not be a problem when using W-LAN or HSDPA connections or when the

amount of data to be transmitted is low anyway. In case of slow connections (e.g.

UMTS) which is still used on the countryside, and in case of large amounts of data the

Page 92 of 172

proper choice of the data description language might be relevant for stability and

reliability of the mobile software and for acceptable user experience.

In a meeting with the app developers we tried to give advice and we discussed certain

aspects of the mobile application for task sheets. The discussion identified certain

potential issues and led to some improvements of the application. The results of the

meeting are discussed in Section 4.1.1.

3.2.2. Usability Evaluation

Another part of the work with Boom Software AG was the evaluation of existing user

interfaces as well as new user interfaces components for Boom’s desktop applications.

We applied the heuristic evaluation (HE) inspection method as well as the thinking

aloud (TA) test method.

We heuristically evaluated three existing products - two productive systems and one

application for demonstration and teaching purposes. For optimal results we got the

opportunity to evaluate the two productive systems (Boom Maintenance Manager and

Target Manager) under realistic conditions, i.e. with real data.

In a further step the application for demonstration and teaching purposes (“Leseratte”)

was extended with newly developed, partly experimental and yet unused controls. These

controls were then tested for usability issues. Design and layout of the application were

similar to the design and the layout of software used at clients due to the fact that all

Boom applications build on the same framework. This allowed us to draw conclusions

from the evaluated software to other Boom software in certain cases.

For the heuristic evaluation checklists of several sources were combined to one large set

of checklist items. Some not applicable checklist items had to be removed; others had to

be added in order to comply with the special needs of the tested business software.

The thinking aloud tests were conducted with nine test users. The common number of

test users (according to Nielsen (1994b) about five) was intentionally exceeded in order

to get most accurate results. Also, the rule of thumb that about five test users are

sufficient is disputable. A better rule of thumb is to stop the thinking aloud tests

whenever no more new information is gained (Holzinger, 2006). One goal for the

Page 93 of 172

thinking aloud tests was to cover as many different user types as possible (still targeting

the potential end users of the tested system).

Summing up, there were three different goals to reach by performing the usability tests.

First, specific and applications currently used by Boom’s clients should be tested for

usability issues. Secondly, the overall structure of boom applications should be revised.

Third, newly developed controls/components should be tested for usability flaws.

The documentation of the progress of our work and the communication was done via

Boom’s Support Manager – a web-based bug tracking, communication and support

platform.

3.2.3. Leseratte

The work on the usability evaluation of Boom software started with getting an

introduction to Boom’s BORA technology. For developers who want or need to get

familiar with the BORA framework Boom provides a tutorial in which a simple

application is built. The application is named Leseratte (German for bookworm) and

implements a simple book management software for libraries.

As first step we created the application based on the tutorial. After that, when we gained

more insight into Boom’s framework, we started with the first usability evaluations of

BORA-based software. First, we heuristically evaluated the tutorial application

Leseratte, and then we evaluated two applications used by Boom in the real world. For a

detailed description of the methodology of the heuristic evaluation refer to Section

3.2.4. Based on the results of the heuristic evaluation of Leseratte we proposed changes

in order to improve the usability of the tutorial application. As next step the usability of

new UI controls, developed by Boom, were to be tested. In order to test these controls

we integrated them into the improved version of the Leseratte application. This new

version of the Leseratte (“Leseratte 2.0”) was used as object to be tested in a thinking

aloud test with nine test users. In Section 3.2.6 we will describe the methodology of the

thinking aloud tests.

In the remaining lines of this subsection the development of the basic tutorial version of

Leseratte is described, the design and the development of Leseratte 2.0 follows in

Section 3.2.5.

Page 94 of 172

As mentioned above Leseratte is the name of the application built during a tutorial

Boom provides for software developers who want to get familiar with the BORA

framework. The first steps in the tutorial explain how to install Boom BORA Designer.

During the tutorial Boom BORA Designer is used to define the data model and to

generate the application and the database schema from the data model (Figure 19). The

tutorial further explains how to adapt the user interface by modifying the XML UI

definition files and introduces the topic event handling. It is also demonstrated how to

implement a search feature and how extend the UI with custom features, such as a copy

function for single datasets. Figure 20 shows a part of the tutorial web page which led to

our first version of the library software (Figure 21).

Figure 19: Leseratte tutorial – screenshot of Boom BORA Designer

Page 95 of 172

Figure 20: Leseratte tutorial – UI definition

Figure 21: Screenshot of the tutorial version of Leseratte

When the tutorial-based development of the application was finished, some – preferably

real – data was needed for populating the database. Therefore a C# program was written

which was used to automatically import real book data using Google’s Books API.

Page 96 of 172

3.2.4. HE

The first step was to select the applications to be tested. Together with Boom Software

we agreed on inspecting three different applications. First, the tutorial application

Leseratte was evaluated during a pilot inspection. Secondly, Boom Maintenance

Manager (BMM, native Windows client and web client) and Target Manager (TM,

native Windows client) were evaluated. TM is a system for customer tie and customer

acquisition, supports communication with customers, efficient fundraising as well as for

internal administration. BMM is a system for management, standardization and

optimization of maintenance processes for facilities and infrastructure.

The second step was to collect and to develop a set of heuristics suitable for Boom

software. Rule sets from different sources were reviewed and merged to one rule set

applicable for the software to be tested. The single rules (for example “Can users cancel

out of operations in progress?” by Pierotti’s rule set (Pierotti, 2000)) were assigned to

categories similar to the categories C1 to C12 as described in Section 2.3.4 in order to

get a better overview and to avoid duplicates. All in all 315 rules were collected and

applied during the heuristic evaluation. When collecting the rules most of the rules

which obviously were not applicable for the software to be tested were excluded.

However, there was still one or the other rule which was not well applicable in certain

situations and therefore ignored. Other rules had to be re-interpreted for the current

situation.

Example: The rule which origins from times where text terminals were used “Is reverse

video or color used to indicate that an item has been selected?” (source: Pierotti) must

be reinterpreted in a way that it fits into the current GUI world. That is, the rule could be

interpreted as “Are list items highlighted in an easily recognizable way to indicate that

an item has been selected?” However, we saw that, even though some of the found rules

originate from relatively old times, many rules still have validity. Some rules might

even be timeless, such as “Is vocabulary familiar to the intended user, avoiding system-

oriented terms?” (source: fluid). Table 11 exemplarily shows some rules used for the

heuristic evaluation of Boom Software.

Page 97 of 172

C1 Feedback (N1 Visibility of system status and also S3, S4, R1, R2):

Pierotti Do menu instructions, prompts, and error messages appear in the same

place(s)?

Pierotti In multipage data entry screens, is each page labeled to show its relation to

others (page numbers, ...)?

fluid Does a page's title accurately describe its purpose?

C5 User control, Flexibility (N3 User control and freedom and also S2, S7, R3,

R9, R10, P1):

Pierotti Can users cancel out of operations in progress?

Pierotti Can users reduce data entry time by copying and modifying existing data?

Pierotti If the system uses a pointing device, do users have the option of either clicking

on menu items or using a keyboard shortcut?

C8 Errors (N9 Help users recognize, diagnose, and recover from errors and also

N5, S5, R14):

Pierotti Do prompts imply that the user is in control?

fluid Can users easily recover from errors, unintended actions, or actions that did

not lead to desired results (eg undo, back)?

fluid Is confirmation required when an action is difficult or impossible to undo?

Table 11: Examples of checklist items from different categories.

Finally, the evaluation was performed by the usability test team (Peter Treitler and

Michael Geier). First, all three applications (four different user interfaces) were

inspected independently by the two usability experts. The software was not only

explored based on common use cases defined by Boom but also freely without any

restrictions. The use cases helped us to gain knowledge about the common usage of the

software. Then, the independently collected results were merged and discussed by the

usability team. Finally, a detailed report was written for each application. The results

were presented and discussed with Boom. Within this work the results of the heuristic

evaluation are presented and discussed in Section 4.1.2. The proposed changes for

Page 98 of 172

BMM and TM are subject to be implemented by Boom Software AG. The proposed

changes on Leseratte, however, were implemented by the usability team. The resulting

application Leseratte 2.0 was supplemented with more features and test object for the

thinking aloud tests.

3.2.5. Leseratte 2.0

After the heuristic evaluation of the Leseratte application, BMM, and TM, an improved

and extended version of Leseratte was designed and implemented (Leseratte 2.0). The

goal was to implement the changes we proposed during the heuristic evaluation as well

as the integration of Boom’s newly developed UI controls in order to evaluate their

usability during a thinking aloud test.

For the design of Leseratte 2.0 UI mockups were created and a concept for an extended

data model was elaborated. Figure 22 and Figure 23 show the UI mockups created using

the open source software Pencil
28

. Figure 24 shows a diagram representing the extended

data model. Figure 25, Figure 26, and Figure 27 show screenshots of the resulting

application. The pie chart, the tiled list view, and the calendar view are three of the new

controls to be tested for usability issues.

Figure 22: Mockup for Leseratte 2.0 – Start page and book overview.

28
 Pencil: http://pencil.evolus.vn, last visited 02/02/2012

http://pencil.evolus.vn/

Page 99 of 172

Figure 23: Mockup for Leseratte 2.0 – customer list.

Figure 24: Data model of Leseratte 2.0

Page 100 of 172

Figure 25: Screenshot of final Leseratte 2.0 – Start page and book overview.

Figure 26: Screenshot of final Leseratte 2.0 - List of authors.

Page 101 of 172

Figure 27: Screenshot of final Leseratte 2.0 – Timeline and book search pane.

3.2.6. TA

In order to test newly developed controls and components we created an application

called Leseratte 2.0 which contains the new controls on the one hand and resembles the

general structure of typical Boom applications on the other hand. We invited nine users

to participate in our TA test (one pilot test user and eight test users). The test users were

mostly relatively inexperienced in using computers, but did at least operate computers at

work. This user type is the usual target user of the tested enterprise software.

The test procedure for each test was the following:

1. Reception

2. Short explanation what the test is about and explanation of the test procedure.

3. Request for reading the information document.

4. Request for signing the confidentiality agreement and the agreement sheet.

5. Request for filling out the questionnaire about background knowledge.

6. Check for proper computer settings suitable for the test candidate (mouse speed,

keyboard position, screen position)

Page 102 of 172

7. Activation of the audio, video and screen recording devices.

8. Practical part of the TA test (execution of the predefined tasks).

9. Interview.

10. Request for filling out the feedback questionnaire.

The duration of one test session was approximately 60 minutes. We mainly followed

Andrew’s suggested procedure for performing thinking aloud tests (Andrews, 2011).

Before the practical part of the test started, we asked the test users to fill out a form

about their background knowledge related to computer usage and usage of business

software (step 5). Then, the predefined tasks (step 8) were handed out as single paper

sheets, one for each task. Figure 28 shows a photo of some of the task sheets. The test

users had a certain amount of time to execute the task. If the predefined time was

exceeded the current task was aborted and the next task sheet was handed out. In the

subsequent interview (step 9, Figure 30) the test user was asked some general questions

as well as questions about the specific events of his or her test. Finally, the test users

were asked to fill out a questionnaire about the tested software and the thinking aloud

test itself. All communication between the usability test team and the test users and all

interaction with the application were recorded for later analysis (audio, video, screen

capturing; see Figure 29).

The usability team created protocols for each test session and analyzed the recordings

taken during the tests. All mentioned issues but also all positive feedback was regarded.

In a next step the issues were ranked by subjective severity and by the number of people

who reported the issue. Finally, a comprehensive report was created; the results were

presented and discussed with Boom Software.

Page 103 of 172

Figure 28: Task cards for the thinking aloud tests.

Figure 29: Thinking aloud screen capturing with face recording.

Figure 30: Thinking aloud interviews with test user and the usability team and feedback form.

Page 104 of 172

3.2.7. Usability Guidelines

One goal of the project of evaluating Boom software was to create usability guidelines

for current and future developments. The test results of both the heuristic evaluation and

the thinking aloud tests were finally discussed with Boom and each reported issue from

HE and TA was categorized into one of the following categories: Product specific issue,

BORA specific issue and Guideline.

Product specific issues are issues which are directly related to the tested customized

product and are only present in the tested version of the product. Fixing this issue in the

tested product has no effect on other products.

BORA specific issues are issues of the base framework and therefore affect all Boom

applications as all Boom applications build on BORA. Fixing this issue affects all

products using the corresponding feature.

Guideline-classified issues are issues which should be included in the usability

guidelines for software developers in order to make them aware of the usability

problem. The guidelines should be applied by every Boom developer who creates or

customizes software based on the BORA framework now or in the future.

The consolidated results from HE and TA and the elaborated guidelines were presented

to the Boom developers during a workshop in March 2012. The result of the

consolidation of the evaluation results can be found in Section 4.1.4.

Page 105 of 172

3.3. AUIs vs. Non-AUI Experiment

Good usability of applications on mobile devices is important due to relatively small

screen sizes and possible operation in harsh environment or in stressful situations.

However, the importance of good usability of mobile applications is not higher than for

desktop applications. The requirements of mobile usability are simply different. The

reasons range from other input methods over different screen sizes up to the high

mobility of smartphones or tablets.

Therefore, these special properties must be considered when engineering mobile

software. Smart adaptive user interfaces might be one solution for user interfaces in

such special conditions. Smart adaptive UIs use the available space more efficiently

than conventional user interfaces and display the simplest user interface appropriate for

the current context. Therefore, according to the hypothesis stated in the introduction,

smart adaptive UIs make the interaction with the end-user more efficient.

An experiment was designed to measure the performance of an adaptive user interface

in contrast to a non-adaptive user interface on mobile devices in order to test the

hypothesis that that simpler user interfaces created by smart adaption enhance the

performance of end users. The adaption is made by regarding the current state of the

application, i.e. the previous input. The input button array is adapted by reducing the

selection space, i.e. only offering appropriate options for the current context (Schmidt,

2000). The resulting reduction of the maximum number of simultaneously visible

buttons makes it possible to make the single buttons larger. A reduction of the needed

number buttons is also reached by hiding less frequently used functions.

The keystrokes made by the participant users were recorded and sent to a web service

for later remote analysis of the performance of the participants of the experiment. A

more detailed description of the test method follows later in this subsection.

The non-adaptive user interface provides a static array of buttons. These buttons are

always visible, regardless of the current context. This resembles a classic calculator

device with physical buttons.

It is expected that the adaptive user interface is perceived as simpler than the non-

adaptive user interface by the users operating the calculator. Further, it is expected that

the performance is higher when using the adaptive UI.

Page 106 of 172

For the experiment a smartphone application for the Android operating system (app)

was developed. The application is a calculator for basic mathematical expressions. The

user interface mainly consists of (a) a TextView (i.e. an area to display text) for

displaying the entered mathematical expression at the top of the screen, (b) another

TextView for displaying the result and (c) an array of buttons which - when pressed –

append the pictured number, operator or function name to the mathematical expression

and display the new expression in (a) (Figure 31). If the currently displayed expression

is valid (e.g. balanced parenthesis, all binary operators having two operands, and other

criteria) the result is calculated and displayed immediately in (b). Otherwise “Invalid

Expression” is displayed.

Two different versions of the button array area (c) were implemented: a non-adaptive

version and an adaptive version. On first start of the application a random UI is selected.

In a message box the user can decide by unchecking a checkbox not to participate in the

experiment. In the preferences screen the user can choose to switch the user interface

from adaptive to non-adaptive or vice-versa. Also, when using the adaptive user

interface the screen can be rotated for using the application in landscape mode. In order

to save space in landscape mode the TextViews (a) and (b) are positioned side by side.

Figure 31: AdaptiveCalc – non-adaptive and adaptive UI

Page 107 of 172

Design and Development. There was a choice to be made when designing the

experiment whether to let the user make the decision of choosing the user interface or to

disallow the change of the UI. The reasons for the decision to allow the user to change

the UI were the following. First, by letting the user choose the user’s UI preferences can

be found out. If users use a certain UI more often it is likely that the more often used UI

is the one which is better accepted by the users. Secondly, as the app should be

distributed via the Android Market, the goal was to make the app attractive for as many

potential end users as possible. Restricting the functionality to one UI, however, does

not support the attractiveness of an application.

Using this model of letting the end-user choose the desired UI might, however, bias the

performance measurements. The knowledge of using the adaptive or the non-adaptive

user interface might influence the behavior of the end users and lead to unnatural typing

behavior.

The goal of the experiment is to find out the favored UI by the end users and to take and

to compare performance measures, keeping in mind the biasing issues mentioned above.

The application was developed using an agile software development process, as the

effort for creating the app should be kept low. However, for some Android-independent

components (classes) test-driven development was applied. Unit tests were written

before the implementation of the single methods. The goal was to pass all tests after the

implementation was done. The user interface was developed afterwards. Android unit

tests were written for testing the proper functionality of the UI. Also a short thinking

aloud test with two test users were performed in order to reveal misbehavior and design

issues of the user interface before publishing the app on the Android Market (see later).

For evaluating the mathematical expressions the open-source library

de.congrace.exp4j
29

 was used. In order to improve the precision of the mathematical

operations Java’s BigDecimal type was used instead of double, which is used in the

default implementation of exp4j. According to the project’s website the library uses the

shunting-yard algorithm for parsing mathematical expressions.

29
 exp4j project page: http://projects.congrace.de/exp4j/

http://projects.congrace.de/exp4j/

Page 108 of 172

For network communication Apache’s HttpComponents Client library was used.

Network connection is needed for sending the recorded keystrokes to the web service

(see later).

The user interface basically consists of two TextViews (a) and (b) (see above).

TextView (a) was put inside a HorizontalScrollView. The array of buttons was arranged

using a TableLayout and TableRows.

Figure 32: Design of the adaptive button array on paper

Figure 32 shows the first design of the adaptive user interface on paper. It also shows

the context-related rules for displaying the single buttons. The rules are of the form

<previous symbol(s)> <possible next symbol> (\|<possible next symbol>)*

where the term symbol corresponds to digits, operators, function names, parenthesis, or

dots. The numbers next to the single rules in Figure 32 refer to the required number of

visible buttons for the corresponding button configuration.

The app was developed using the Eclipse IDE (Figure 33) and Google’s Android SDK.

JUnit and Android’s JUnit extensions were used to implement the unit tests.

Page 109 of 172

Figure 33: AdaptiveCalc development using Eclipse

Test users. As stated before, the application was published on the Android Market
30

.

Anyone who was interested could download and use the application. Measurements

were taken automatically during normal operation of the calculator. These

measurements were sent to a web service which stores the collected results for

subsequent analysis. End users are informed about the background measurement

activities via the app description and via an AlertBox on first start and can disable the

measurements without affecting the features of the calculator.

Collecting results. The Android application records the keystrokes made by the users,

if not deactivated. The records are sent via HTTP POST request to a webserver where

the records are saved for later analysis. For collecting and evaluating the test data a

server-side script was written in PHP. The PHP script receives and stores the data

received from the app in a mysql database. The script also creates a HTML report from

the stored records when called with the corresponding GET parameter. The report

contains values calculated from the single records, such as the average time needed

between key presses and the average number of times the clear button was pressed per

30
 AdaptiveCalc on the Android Market:

https://market.android.com/details?id=com.mickbitsoftware.adaptivecalc (published in February 2012)

https://market.android.com/details?id=com.mickbitsoftware.adaptivecalc

Page 110 of 172

calculation. For more information about the measured values and about the results of

the experiment, please refer to Section 4.2.

The following measurements are taken during operation of the calculator: Pressed

buttons, time between button presses, selected mode (adaptive or non-adaptive), and

result of the calculation. A string of the form

<uimode>(;<ms>:<button>)+;<ms>;<result>

is recorded for each session. A session starts when bringing the calculator activity into

view or when starting a new calculation (i.e. a new “session” or expression) and ends

when the activity is left by the user or when the entered expression is cleared. <uimode>

is a placeholder for a string representing the current user interface mode (“auiport”

(AUI portrait), “auiland” (AUI landscape), or “nonaui” (non-AUI)), <button> is a string

representing the pressed button (for example “1” or “+”) and <ms> is the timestamp of

the key press. The last <ms> represents the time when clearing the expression and

therefore resetting the display and ending the session. <result> is either the string “ok”

or “nan” (not a number) and represents the result of the corresponding calculation.

After a session has ended, the recorded session measurement string is sent to the web

service if a network connection is available. Otherwise, the string is stored in a local

database on the device for later transmission. The next time the app tries to send a

session measurement string to the web service it also checks the local database for

previously unsent data and also sends all previously unsent data, if possible.

Within a time period of approximately one month 408 single calculations (sessions)

were recorded. For an analysis of the results all 408 single session strings (records) were

separated into four groups. The first group only contains records from the adaptive user

interface (portrait) version; the second group only contains records from the adaptive

user interface (landscape) version; the third group only contains records from the non-

adaptive user interface version; the fourth group contains invalid records.

Then, certain values were calculated from the collected records in order to evaluate the

end-user’s performance and acceptance of the user interface types.

As performance measures the average time between button presses was calculated for

the single user interface types as well as the error rate. For evaluating the user

Page 111 of 172

acceptance interviews were conducted and the number of calculations made with each

user interface was counted. To be more precise, for measuring the users’ performance,

the median time between button presses was calculated first for each session; then, the

average of the medians was calculated for each of the groups AUI (portrait), AUI

(landscape), and non-AUI. Using the median has the advantage that spike values are

flattened. Spike values might result from thinking times or waiting times of the end

users. These times must not be considered in the performance evaluation. The time

between single keystrokes is used as performance measurement because the single tasks

and therefore the total time needed for one session differs as there were no predefined

tasks to accomplish for the end users. A more detailed explanation and the experiment’s

results are presented in Section 4.2.

3.4. HE Checklist for Mobile Devices

As we saw during the HE of Boom software, heuristic evaluation can be a powerful

instrument for detecting usability flaws. However, heuristics and especially detailed

checklists tailored to current smartphones or tablets are rare. The aim of this part of the

work was to fill this gap and to provide a checklist which can be used as basis for future

extension to create a more comprehensive set of rules.

As stated in Section 2.3.4, usability heuristics are principles or rules for user interface

design. There exist relatively vague rule sets but also very detailed and concrete rule

sets. Vague rule sets are applicable in many different situations and for different

systems. Very concrete rules, however, might not be applicable in certain situations or

for certain scenarios. But more detailed rules might be more beneficial for usability

testers because the hints what issues to check for are more concrete. Nielsen’s ten main

usability principles, for example, are applicable to many different types of user

interfaces. Detailed checklists, in contrast, must be tailored to certain types of systems,

such as enterprise desktop systems or mobile applications. However, also within

detailed checklists certain items might be applicable for different systems.

Most of the existing usability heuristics concentrate on graphical or even textual

desktop systems where users typically use mouse and keyboard for interacting with the

system. Recent heuristics regard mobile devices such as classic mobile phones. The

Page 112 of 172

newest generation of mobile devices combines mobility with relatively large finger-

operated (multi) touchscreens and several more hardware features such as GPS sensors,

cameras or RFID readers.

The goal in this part of the work is not to develop general usability heuristics for mobile

applications but a detailed checklist for modern smartphone and tablet applications,

similar to the rule set for text-bases desktop applications by Pierotti (2000). Therefore,

existing checklists and guidelines for desktop computers were revised and end-user

feedback of different mobile apps was considered. Applicable checklist items based on

heuristics used for the work with Boom Software AG were included as well as rules

from other sources, such as from Microsoft’s, Apple’s, and Google’s usability

guidelines. The developer websites of all major companies which provide OS for

mobile systems such as smartphones, provide usability guidelines for software

developers. However, these guidelines are either very general or very system-specific –

the degree of detail differs greatly between the single guidelines. Also, the foci of the

guidelines differ. The following list mentions some of the sources for usability or user

experience guidelines by different companies.

 Windows Mobile 6.5: Design Guidelines:

http://msdn.microsoft.com/en-us/library/bb158602.aspx

 Windows Phone 7: User Experience Design Guidelines for Windows Phone:

http://msdn.microsoft.com/en-us/library/hh202915%28v=VS.92%29.aspx

 Android: http://developer.android.com/guide/practices/ui_guidelines/index.html

 Apple iOS: iOS Human Interface Guidelines: http://developer.apple.com

/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/Introducti

on/Introduction.html

 Nokia: Guidelines for Mobile Interface Design: http://www.developer.nokia.com

/Community/Wiki/Guidelines_for_Mobile_Interface_Design

The consolidated usability checklist for mobile applications created during this work

can be found in the Appendix A. Section 4.3 picks out some checklist items in order to

briefly discuss them.

http://msdn.microsoft.com/en-us/library/bb158602.aspx
http://msdn.microsoft.com/en-us/library/hh202915%28v=VS.92%29.aspx
http://developer.android.com/guide/practices/ui_guidelines/index.html

Page 113 of 172

4. Results

This section describes the results of the work described in Section 3. This includes the

work with Boom Software AG concerning the Android mobile client as well as the

usability evaluation of the desktop software (HE and TA). Also the resulting guidelines

are briefly discussed. Additionally, the results of the experiment about adaptive user

interfaces (AdaptiveCalc) introduced in Section 3.3 are presented and a short report

about the created usability checklist for mobile applications introduced in Section 3.4 is

made.

4.1. Usability Consultancy

This section presents the outcome of the usability consultancy activities and the

evaluation of Boom software. First, in Section 4.1.1, the latest prototype of the mobile

application is reviewed and suggested improvements are presented. Secondly, in

Sections 4.1.2 to 4.1.4, the results of the usability evaluation of Boom’s desktop

software are presented, as well as Boom’s implementation of usability guidelines.

4.1.1. Mobile App

During a meeting about the mobile application for task sheets (see Section 3.2.1)

potential usability issues were discussed. The latest version of the app at that time

(August 2011) was reviewed.

The issues discussed include the size of the list entries of the task list, the display of the

status bar and issues related to screen rotation. In the following paragraphs the found

issues and the implementation of the fixes are discussed.

In the first versions of the app the UI was not properly adapted in landscape orientation.

In our feedback we reported that in landscape mode the app should adjust the layout in a

way that space is used more efficiently. The latest, improved version of the app hides

the filter buttons at the top of the screen (captions “Offen” (open) and “Erledigt” (done))

and shows an additional column on the left instead (Figure 35). The column indicates

the state of the task according to the two possibilities open and done.

Page 114 of 172

Figure 34: Task list - Mockup and screenshot of latest app version

Figure 35: Task list in landscape mode (screenshot of latest app version)

Also, the proper size of the list entries was discussed. Originally, the height of the list

entries was low. During the discussion it was figured out that only few list entries are

expected to be shown in the list at the same time. Therefore, we suggested to make the

list entries larger in order to use more of the free space on the one hand and to make the

list entries easier touchable on the other hand (Figure 34, Figure 35).

Figure 36 shows a form created dynamically by the XML-based UI description.

However, the form as shown in the figure was created for testing purposes only. There

is a guideline rule which disallows nesting of captioned sections (see Section 4.1.4).

This rule is intentionally violated in the screenshot for testing purposes.

Page 115 of 172

Figure 36: Task form - Mockup and latest version screenshot

Further, it was discussed whether to show Android’s status bar or not. The advantage of

showing the status bar is that notifications can be seen during operation of the software.

A disadvantage is that the status bar needs some space on the screen. In the case of a

business application where e-mails or messages might be received frequently we came

to the conclusion that it is feasible to show the status bar.

During operation of the software we also discovered a technical error message which

did not provide information for solving the problem. Similar issues were also reported

while testing Boom’s desktop software, as the reader will see later. Therefore we

suggested that such error messages are replaced with error messages which do provide

suggestions for solving the problem on the one hand and do blame the system wherever

possible – not the user. This rule is based on heuristics from different sources about

error handling, for example from Andrews (2006).

4.1.2. Results of HE

The usability of the desktop applications Leseratte, Boom Maintenance Manager

(BMM, native Windows client and web client) and Target Manager (TM, native

Windows client) was reviewed during the heuristic evaluation of Boom software. In this

section the results of the evaluation are described. As a complete report of the results

would go beyond the scope of this work, some exemplary results are presented at this

Page 116 of 172

point. The complete, approximately 100 pages report consisting of several single

documents (checklists and detailed reports for each application and a summary) was

provided to Boom Software AG.

The overall usability of the tested applications was good. However, there are several

minor issues and some issues concerning the simplicity and the comfort in certain

situations. The most problematic applications were Leseratte and the BMM web client.

The issues in Leseratte can be explained with certain inconsistencies in the tutorial but

also with the fact that the tutorial should not be too complicated for beginners. Ignoring

the Leseratte and tutorial-specific issues and focusing on the features provided by the

framework instead, only very few issues can be reported due to the simplicity of the

application.

The BMM web client has issues with missing feedback and error messages as well with

the general complex layout of combined tree and tab navigation. Due to the complexity

of the problem to solve with the software, a certain complexity of the software must be

accepted. However, there were certain inconsistencies found which could be removed

and therefore simplify the handling.

BMM windows client handled the complexity very well and was easy operable. TM

also provided good overall usability, however, there were certain issues with waiting

times without feedback, unclear controls and some other minor limitations.

Positive points were the good overall consistency and the nice look and feel, flexible

window arrangement mechanisms, in general good forms and error handling. Nice

details such as direct opening of detail pages in case of only one single search result or

drag & drop support in certain screens emphasize the positive impression. Some more

negative points include technical error messages at some places (users are not interested

in too much information or even confused), error messages which do not give hints how

to solve the problem, and sometimes unclear icons and buttons which are in unexpected

locations on certain screens.

Figure 37 and Figure 38 illustrate two more problems found during the heuristic

evaluation. All found issues were reported as illustrated as shown in Figure 39. Every

single issue got a unique identifier and a title as well as a description. The location of

the issue was recorded or, if necessary how to reproduce the error was explained. The

Page 117 of 172

heuristics that led to the identification of the issue were reported and in many cases a

screenshot was attached to the corresponding issue.

Figure 37: Issue found via HE: Dropdown box for only four items. Better: Radio buttons.

Figure 38: Issue found via HE: Too many tabs and last tab not visible.

Figure 39: HE – Example for one of the issues in the report for BMM

All found issues were finally ordered by subjective severity. The severity rating was

calculated by the average rating of the independent ratings of the usability test team.

The severity rating ranged from zero to five, five representing the highest severity.

Page 118 of 172

However, the issues we reported should also be evaluated by Boom and their customers

in order to figure out the concrete relevance for Boom and their customers.

4.1.3. Results of TA

As for the HE report, more than 100 pages were created during the TA tests (50 pages

final report plus protocols, filled out forms and instruction documents for the test users).

Discussing every aspect in detail would go far beyond the scope of this work, therefore

only some exemplary results are presented at this point. The complete report was

provided to Boom Software AG and all collected material was shared.

The overall comments of the test users were positive. Especially the simplicity and the

simple navigation were honored by the test users. The modern look-and-feel and the

possibility of detailed searches got positive feedback as well. Issues were reported in

connection with filter functions of lists and tables. Also the sometimes cumbersome

workflow when adding new data was mentioned in a negative context. Some potential

helpful functions were not recognized by some users. Other functions were viewed as

not particularly useful but at least “nice to look at”.

Figure 40 and Figure 41 show examples of test user feedbacks and how they were

reported in the report.

Figure 40: Thinking aloud test - example of positive feedback.

Page 119 of 172

Figure 41: Thinking aloud test – example of negative feedback.

All found issues were rated by a subjective severity rating. The rating ranging from zero

to four, where zero means no issue and four means big issue, was made by the usability

test team independently. Finally an average value was calculated. The severity ratings

were not only influenced by the personal opinion but also by the opinion perceived from

the test users. Also the number of people who reported an issue was counted. All issues

were finally ranked by the average severity rating and the number of reporting test

users. For further analysis of the sessions each test session was protocolled and

analyzed later by the usability experts.

All in all 15 distinct positive impressions, 41 negative impressions, 17

recommendations, and 6 remarks were collected. Although there were more negative

impressions than positive impressions, it doesn’t mean that the application has bad

usability. As we saw during the thinking aloud tests, people are way more likely to

mention negative impressions than positive ones. This is also shown by the fact that

Page 120 of 172

users answered the question “Would you use the program for yourself?” with a clear

“yes” (1.56 of 7, where 1 means “yes” and 7 means “no”).

4.1.4. Implementation and Guidelines

In the last step during the usability evaluation of Boom’s desktop software all reported

issues from HE and TA were put together and analyzed with the goal of improving the

software by implementing certain changes immediately on the one hand, and by

creating usability guidelines for Boom’s software developers on the other hand. Based

on a cost estimate by Boom and based on the severity ratings of the usability team the

found issues were ordered from “big issue and easy to solve” to “small issue and hard to

solve”. Additionally, the issues were categorized into three groups: Product specific,

framework specific, and guideline.

Based on the results of our research, based on the collected material about usability, and

based on the results of the usability evaluations Boom’s web documentation for BORA

was extended with the chapter UI-Design Guidelines and therefore included in the

BORA standard. This new chapter consists of several subchapters, such as Common UI

Principles and UI-Design using BORA. The latter includes subchapters for with rules

for designing forms, lists, menus and common design rules. Also a checklist was added

for validating the standard-conformity of the created UI. Figure 42 shows a part of the

chapter Rules for Forms, which contains, amongst many others, rules such as “do not

use nested captioned sections in forms” or rules about the proper usage of form titles

and icon design.

Page 121 of 172

Figure 42: Web page of Boom’s new usability documentation – rules for forms

According to Boom, BORA-specific issues are already partly solved based on our

feedback. In the near future Boom aims for implementing the remaining issues which

were sufficiently high prioritized.

Many common rules elaborated for Boom’s desktop software are also applicable for

mobile software, for example for tablet PCs. However, in the future the rules must be

extended to cover the special properties of mobile devices. The usability checklist for

mobile applications described within this work (Section 4.3) is a first step to this goal.

4.2. AUIs vs. Non-AUI Experiment

This section covers the presentation of the results of the experiment about adaptive user

interfaces (AdaptiveCalc) described in Section 3.3. The experiment was about a

performance comparison between an adaptive user interface and a non-adaptive user

interface. The aim of the experiment was to support the hypothesis that the performance

on simple adaptive user interfaces is higher than on complex user interfaces providing

no adaption. A calculator application with two different user interfaces was developed

and published in the Android market for being able to reach many users within a short

period of time.

Page 122 of 172

Both the user acceptance and the performance of each user interface were evaluated

during the experiment. The acceptance was evaluated by interviews and by recording

the number of calculations made with each of the user interfaces. The performance was

measured by calculating the average time between button presses (TBBP) on the one

hand, and by calculating the error rate by counting the number of clear button presses on

the other hand.

Figure 43 and Figure 44 show the cumulated values Average of the medians of the

TBBPs and Error rate for the AUI (portrait) and the non-AUI. The figures illustrate that

after about 240 calculations both values stabilized around the presented values (i.e. the

cumulated values after 408 calculations).

Figure 43: Time between button presses.

500

600

700

800

900

1000

1100

1200

1300

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 408

Average of the medians of the TBBPs

AUI (port) non-AUI

Page 123 of 172

Figure 44: Error rate (clear presses / total number of button presses).

User acceptance. Interviews with six test users were conducted for gaining information

about the strengths and the weaknesses of the two user interface types. Before

interviewing the six test users, three were asked to do several calculations with the non-

adaptive UI, the other three test users were asked to do the same calculations with the

adaptive UI (Figure 45). When finished, the UI was switched and the users were asked

to do several more calculations with the other user interface. The predefined

calculations included simple summations as well as calculations using functions.

0

0,02

0,04

0,06

0,08

0,1

0,12

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 408

Error rate

AUI (port) non-AUI

Page 124 of 172

Figure 45: Test user calculating with AdaptiveCalc.

During the interviews the users were asked to describe which user interface they liked

more and why. Four users reported to prefer the AUI, one user reported to prefer the

non-AUI, and one did not decide for one certain UI. Table 12 summarizes the thoughts

of the users. In the table, a plus sign refers to a positive impression while a minus sign

refers to a negative impression. The column “#users” contains the number of test users

who gave the according feedback.

Relates to (+/-) Feedback #users

AUI (+) The buttons are larger 6

AUI (+) I like that you only see what is currently relevant. 4

AUI (-) It is confusing that the buttons (dis)appear. 2

Non-AUI (+) All buttons are always visible – it is clear what functions

are available.

2

Non-AUI (-) Buttons are quite small. 2

Table 12: Summary of the user’s answers during the interview

Number of calculations. During the test period 408 calculations were reported to the

server. 198 of the counted calculations were made with the AUI in portrait mode (8 in

landscape mode) while 133 calculations were made with the non-AUI (only portrait

mode possible). 69 calculations were filtered out because of very short and/or invalid

calculations (for example when users only entered an opening parenthesis or only one

Page 125 of 172

number). These numbers are illustrated in Figure 46. Including the invalid calculations

249 sessions were started in AUI (portrait) mode (61 %), 9 in AUI (landscape) mode

(2.2 %), and 150 in non-AUI mode (36.8 %). The 408 calculations were made by

approximately 25 different users. The number of users can only be estimated because no

user data was recorded. The estimate is based on the number of personally contacted

test users and on the number of installations reported by Android’s publishing service.

As on the first run of the application the user interface was selected randomly with an

equally distributed likelihood, it can either be concluded that

 users tend to switch to and stay in the AUI mode or

 that the users who started with the AUI had significantly more to calculate or

simply preferred calculating with AdaptiveCalc than with another calculator.

Figure 46: Total number of calculations with AdaptiveCalc.

Performance. The performance of the calculations made was measured remotely and

reported to a server. A server-side script recorded and evaluated the incoming results.

As performance measures both the error rate e and the typing speed was used. The error

rate e was calculated in number of clear button presses |c| divided by the total number of

button presses |b|.

(1)

198

133

8
69

Total number of calculations

AUI (portrait)

non-AUI

AUI (landscape)

not considered

Page 126 of 172

The typing speed s was determined by calculating the average of the medians of the

times between single button presses b of each single recorded calculation Ri.

∑ ̃

(2)

where

 (3)

and ̃ refers to the median function.
 refers to the time when button press j was made

during a calculation R. b1 denotes the first button press within one calculation,

denotes the last button press within one calculation. The difference

 is the

time between single button presses (TBBP) bj and bj+1. One single calculation is also

called record and identified by a unique index i. |R| represents the total number of

calculations (records).

Using the median has the advantage that spike values are flattened. Spike values might

result from thinking times, reading times or waiting times. These times must not be

considered in the performance evaluation. Additionally, very large TBBPs (> 5000 ms

or 3500 ms, see later) were ignored. Very large TBBPs are associated with long

thinking times or breaks by the user but certainly not with looking for certain buttons.

The time between single button presses was used as performance measure because the

single tasks and therefore the total time needed for one calculation differed, as there

were no predefined tasks (and therefore no predefined expression length) to accomplish

for the end users.

Figure 47 and Figure 48 show examples of the TBBPs of two different calculations. In

the diagrams the single TBBPs are placed along the x-axis in chronological order. So

the leftmost bar of the bar chart represents the TBBP of the button presses b1 and b2.

The height of the bars (y-axes) represents the corresponding TBBP in milliseconds

(

).

The nineteen bars in Figure 47 show the time needed between the twenty button presses

of the corresponding calculation. The calculation was 45.95 + 29.45 + 38.95 - 20 with

the result 94.35. The corresponding record was

Page 127 of 172

auiport;1328716355011:4;1328716355581:5;1328716356431:.;1328716357069:9;13287

16357787:5;1328716359378:+;1328716360167:2;1328716360790:9;1328716361441:.;13

28716361985:4;1328716362487:5;1328716363452:+;1328716364328:3;1328716364840:8

;1328716365464:.;1328716366014:9;1328716366496:5;1328716367613:-

;1328716368135:2;1328716368653:0;1328716371512;ok

Figure 47: Comparison of average and median of TBBPs (long calculation)

0 ms

200 ms

400 ms

600 ms

800 ms

1000 ms

1200 ms

1400 ms

1600 ms

1800 ms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Comparison of Average and Median of TBKs

TBBP

Average

Median

Page 128 of 172

Figure 48: Comparison of average and median of TBBPs (short calculation)

As mentioned before, incomplete calculations were filtered out. The following example

shows an incomplete calculation. Here, the user only entered an opening parenthesis and

then pressed the clear button two times. “nan” (not a number) in the end of the line

indicates that there was no valid result for the corresponding calculation.

auiport;1328699930271:(;1328699931276:[clear];1328699931486:[clear];132869993

1487;nan

Typing speed. The average times of the median times between single button presses

(TBBPs) were calculated as described above. The results were 836.1 ms for AUI

(portrait) mode, 947.5 ms for non-AUI mode (Figure 49). The values for AUI

(landscape) mode are not included as there were only eight results collected. In average

the TBBPs were 111 ms lower in AUI mode than in non-AUI mode. Therefore an

average calculation including 10 button presses is performed more than one second

faster in AUI mode than in non-AUI mode. A cutoff of 5000 ms means that all TBBPs

larger than 5000 ms were ignored as larger TBBPs can be considered as thinking times

or calculation breaks. When using a lower cutoff of 3500 ms the values were 803.4 ms

for AUI (port) and 917.9 ms for non-AUI.

0 ms

500 ms

1000 ms

1500 ms

2000 ms

2500 ms

3000 ms

3500 ms

4000 ms

4500 ms

5000 ms

1 8 15 22 29 36

Comparison of Average and Median of TBKs

TBBP

Average

Median

Page 129 of 172

Figure 49: Average medians of TBBPs (cutoff at 5000 ms).

Figure 50: AdaptiveCalc – clear presses per total button presses.

Error rate. The error rate (number of clear button presses divided by total number of

button presses) was slightly higher in AUI mode: 0.069 in AUI (portrait) mode and

0.062 in non-AUI mode (Figure 50). This means that on 100 button presses the clear

button is – in average - pressed 6.9 times in AUI mode, while in non-AUI mode clear is

only pressed 6.2 times.

780

800

820

840

860

880

900

920

940

960

AUI (portrait) non-AUI

Average medians of TBBPs

(cutoff at 5000 ms)

0,05

0,052

0,054

0,056

0,058

0,06

0,062

0,064

0,066

0,068

0,07

AUI (portrait) non-AUI

Clear presses per total

button presses

Page 130 of 172

Figure 51: Perfect calculations.

Looking at the number of “perfect calculations” (calculations where no “clear” button

press was involved, except for clearing the whole calculation in the end of the

calculation) the AUI (portrait) UI has 83.33 % perfect calculations while the non-AUI

only has a number of 79.7 % perfect calculations (Figure 51).

Conclusion. The results of the experiment suggest that the overall acceptance of the

simple AUI is better than the acceptance of the complex non-AUI. Also the typing

speed when using the AUI was better in average. The error rate was slightly higher in

AUI mode. Due to the high similarity of the error rate results we can say that the overall

performance of the AUI at least was not worse than when using the non-AUI.

4.3. HE Checklist for Mobile Devices

Based on different sources and based on the experience of the author of this thesis a

usability checklist for smartphone and tablet applications was created. The resulting list

is a list which covers general guidelines as well as more specific guidelines. However,

the degree of specificity is limited in order to keep the check items applicable to most

platforms. For detailed, platform-specific guidelines the reader shall refer to the

developer documentation of the respective mobile platform. Platform-specific

77,00%

78,00%

79,00%

80,00%

81,00%

82,00%

83,00%

84,00%

AUI (portrait) non-AUI

Perfect calculations

Page 131 of 172

guidelines include icon design guidelines as well as guidelines on handling system

notifications or similar system-specific points.

The guidelines developed for smartphones and tablets are as general as possible but

target applications similar to applications of the two currently most spread operating

systems Android and iOS, plus Windows Phone. Generalized rules might have to be

adapted to the current situation or to the capabilities of the operating system. Hardware

buttons, for example, are not present on all devices. Therefore rules mentioning

hardware buttons have to either be ignored or applied to always visible software

buttons.

The single rules were categorized into groups of thematically similar issues (see also

Section 2.3.4). This section only gives some examples of checklist items. For the full

checklist, please refer to Appendix A of this work.

C1 Feedback

4 Apple Is feedback subtle, but clear?

15 Ji et al. Scroll bar: Is it possible to predict the quantity of contents

through the scroll bar?

Table 13: Examples of checklist items for C1 Feedback

Both checklist items for C1 Feedback (Table 13) were found in checklists or guidelines

for mobile devices. However, both rules are probably valid for desktop applications as

well.

C2 Input

1 - Is the need for text input reduced to a minimum?

6 Pierotti Are the valid answers for a question listed? (Nielsen: Provide

lists of choices and picking from lists)

Table 14: Examples of checklist items for C2 Input

Table 14 lists examples of checklist items for C2 Input. The rule to reduce text input to

a minimum was inspired by the statement of Longoria (2001) that text input annoys

users. The second example also aims to reduce typing requirements.

Page 132 of 172

C3 Match (Match between system and the real world)

6 Nielsen Is the conceptual model familiar to the user?

15 fluid Is vocabulary familiar to the intended user, avoiding system-

oriented terms?

26 - Are user interface elements (buttons, …) large enough?

27 - Are gestures like swiping used?

Table 15: Examples of checklist items for C3 Match

Concepts used in everyday life support the understanding of user interfaces. The rules

categorized in C3 Match (Table 15) support this idea. Swiping gestures, often used for

switching screens, resembles turning over paper pages.

C4 User control, Flexibility

3 Ji et al. Connect: Is there a way to stop the process of connection?

20 fluid Is there a home/start page link?

33 - Is it possible to deactivate vibration or sound feedback?

38 Android Is the state of the app preserved during unexpected

interruptions and properly restored when resuming (e.g. phone

calls)?

Table 16: Examples of checklist items for C4 User Control, Flexibility

Table 16 (C4 User control, Flexibility) presents some example items for supporting the

ability to control the application. Especially for mobile devices the ability of controlling

the mobile data transfer is important. Also proper handling of unexpected interruptions

such as incoming phone calls is required.

C5 Undo/Reversal

3 Pierotti Do functions that can cause serious consequences have an undo

feature?

6 Nielsen Is it obvious how to undo actions?

Table 17: Examples of checklist items for C5 Undo/Reversal

Page 133 of 172

The rules for C5 Undo/Reversal (Table 17) are mostly applicable to both mobile apps

and desktop applications.

C6 Consistency (and standards)

5 - If gestures are used, are common gestures used instead of

proprietary gestures? (Also, don't override default system

gestures)

10 (Pierotti) Is the number of different colors limited?

30 Microsoft Button control text should be concise and typically be a verb

40 Android Do context menus identify the selected item? (e.g. "Edit

contact", not just "Edit")

Table 18: Examples of checklist items for C6 Consistency

Rules for C6 Consistency (Table 18) are also mostly applicable for both desktop and

mobile applications. However, the rule set of this category may be expanded by several

mobile device or touchscreen specific items. Rules originally specifying concrete values

(“Are there no more than four to seven colors?”), were changed a to more unspecific

phrasing (“Is the number of different colors limited?”). The concrete values must be

revised and validated for mobile devices, as the original rule was designed for text-

based desktop systems.

C7 Error handling and prevention

3 Pierotti Are data inputs case-blind whenever possible?

10 fluid Is confirmation required when an action is difficult or

impossible to undo?

Table 19: Examples of checklist items for C7 Error handling and prevention

C7 Error handling and prevention (Table 19) is important for most systems regardless

the device type the application is running on. As the example checklist items show,

case-blindness and undo features are helpful even on mobile devices.

Page 134 of 172

C8 Short-term memory (Recognition rather than recall)

10 - If gestures are not obvious, is the number of different gestures

limited and are they easy to remember?

20 Apple Do controls look tappable?

11 Microsoft Do map controls and long lists fill the whole available screen

space in order to avoid excessive scrolling?

30 - Are sliders, radio buttons or other touchable controls preferred

to text input?

37 - Do all screens (activities) support both portrait and landscape

screen orientation?

42 Apple Is scrolling preferred over reducing the content size?

Table 20: Examples of checklist items for C8 Short-term memory

Supporting the short term memory (C8, Table 20) is recommended for mobile

applications as well as for non-mobile applications. However, there are special aspects

to regard for mobile applications. Therefore, rules for small screen sizes as well as touch

input related rules were added.

C9 Design (Aesthetic and minimalist design)

7 - Are animations and transitions smooth?

32 Pierotti Are the most frequently used functions in the most accessible

positions?

Table 21: Examples of checklist items for C9 Design

Many rules in C9 Design (Table 21) are applicable to both desktop systems and mobile

systems. However, most of the rules have to be implemented differently. The

animations and transitions, for example, must comply with the platform-specific design

guidelines. The “most accessible position” on smartphones might be the lower right

corner of the screen if the user operates the phone with only one hand and one thumb.

On other devices the most accessible position might differ.

Page 135 of 172

C10 Documentation (Help and documentation)

10 fluid Is help information focused on the user's task?

18 Pierotti Can users easily switch between help and their work?

Table 22: Examples of checklist items for C10 Documentation

Examples for rules for checking the documentation quality can be found in C10

Documentation (Table 22). In the rules can be summarized a few words by stating that

the documentation should be helpful and not hinder the usage of the actual application.

These rules are applicable not only for desktop applications; however, comprehensive

on-device documentation for mobile software is rare. When selecting “help” in Android

applications, often simply the web browser is opened displaying a help website.

C11 Testing (see Appendix A) stresses the importance of usability tests. These rules are

actually not used during the heuristic evaluation but should be regarded all the time. The

rules were included for completeness because they were included in the source

documents as well.

Page 136 of 172

5. Lessons Learned

During the work with Boom Software AG we had the opportunity to gain insight into

the processes and the methods of a real business company. It was interesting to see how

business software engineering works from an elevated point of view. This means that

we got insight into many different areas of the software development at Boom – starting

from the core framework development up to customer relations and application

development. What we learned was that, when developing for customers, the customer

preferences have top priority, even though the personal preferences or even objective

criteria suggest something different. Of course, customers are always informed about

that, but they are the ones who have the last word. Additionally, there is always a

certain dependency from the customers, which always results in a certain risk for every

project.

During the thinking aloud tests we learned that people’s behavior and personal

preferences may differ to a very high degree. For one person an application cannot be

too sober, for another person the same application is way too “boring” and colorless.

Also the “thoughts-to-speech” behavior of test users differs greatly. Some were very

motivated in speaking out their thoughts; others had to be motivated to talk again and

again. We also learned that detailed usability evaluations can be very time consuming.

The analysis of the thinking aloud tests took longer than expected and the heuristic

evaluation is time consuming as well when inspecting complex applications. When

comparing the test results of HE and TA it could be seen that HE is more detailed in

some cases, however TA probably focuses more on the issues end users really find

disturbing.

Another interesting effect was observed during the TA tests. For many people it seems

to be much easier to talk about problems and things they don’t like than about things

they like. We collected 15 distinct positive impressions, 41 distinct negative

expressions, and 17 distinct recommendations, although the overall usability was rated

“very good” by most of the test users. Example: When reviewing a text with some

spelling errors the readers will probably criticize every single misspelled word.

However, it is very unlikely that readers will positively mention every correctly spelled

word.

Page 137 of 172

During the creation of the mobile-specific checklist it could be seen that the basic rules

for usability seem to be valid for different kinds of systems. For covering certain

scenarios or features of modern devices, however, the rules have to be altered or

expanded. Some rules are even not applicable at all. However, it was interesting to see

that some ancient rules, originally created for text-based user interfaces, still have

validity for modern touch-based mobile user interfaces.

During literature studies it was found that adaptive user interfaces are in general seen as

good tool for improving usability. However, in practice only few applications can be

found which extensively implement the concept of adaptivity. This shows that effort

must be put into bringing good scientific ideas into practice. For the performance

comparison of the non-adaptive and the adaptive user interface the design, the

conduction, and the evaluation of a scientific experiment was practiced – a new

experience for me as software engineer.

According to literature and according to discussions with people coming from the

enterprise area, usability is still underestimated during software engineering. For Boom

Software AG usability has a high significance – this is not only proven by the

conduction of extensive usability tests during this work, but also by the overall good

results. However, Boom admits that there is even more work to be done in this area.

Additionally, in software engineering education usability should get a higher value. At

Graz University of Technology there are courses dealing with Web usability, user-

centered design and data visualization. However, a broader education in this area might

help to increase the usability awareness amongst students. As one-year guest student at

the Faculty of Engineering (LTH), Lund University it could also be seen that there was

a strong focus on all sorts of technical aspects. Usability engineering issues were,

however, disregarded.

Summarizing, it can be said that during this work I had the opportunity to get insight

into areas I would never have gotten insight into without this work. The work differed

from the classic software engineering and informatics topics learned during my studies

not only because I got insight into the work of a real mid-sized company. It also showed

that in software engineering there is more to be done than data modeling, programming

and functional testing of software. And, in one part of the work, even scientific work

was practiced.

Page 138 of 172

6. Conclusion

In this work several aspects of user interface design and testing were discussed. The

terms user experience, usability and accessibility were discussed as well as different

usability evaluation methods. The greater and greater importance of mobile devices and

the importance of good usability of mobile applications was stressed. It was also

pointed out that in the enterprise sector usability should be an integral component in

application development as well. The advantages of adaptive user interfaces in terms of

usability on mobile, hence usually small devices were explained and confirmed by a

small experiment. The results of the experiment suggest that adaptive user interfaces

may help to improve the usability of applications and the performance of end users.

This result coincides with other literature sources.

The usability of enterprise desktop software by Boom Software AG was evaluated using

the methods heuristic evaluation and thinking aloud. Comparing the results of both

evaluations it can be seen that both methods found similar issues, however, HE seems to

focus more on details while TA focuses more on general and practically relevant issues.

It is unsure whether the issues found via HE affect the perceived usability by the end-

users, i.e. are practically relevant. Despite the support of a checklist, HE probably did

not find all issues. When applying TA it cannot be said as well that all issues were

found because the perception of certain issues might not be spoken out by the test users.

The results of both applied methods cannot be directly compared within this work

because different applications and different application versions were evaluated.

Based on the results of the usability evaluations of enterprise software, usability

guidelines for Boom software were elaborated. The guidelines will help to ensure the

quality of current and future developments by Boom Software AG.

For conducting the heuristic evaluation a checklist tailored to enterprise desktop

software was elaborated. This checklist was further extended and modified in order to

create a basic checklist for evaluating applications for mobile devices – specifically for

current smartphones and tablets. The created checklist is not complete, but provides a

basic reference point for heuristic evaluations of modern mobile applications. As Boom

is about to expand their technology to mobile devices, this checklist might be the basis

for future heuristic evaluations of Boom’s mobile applications.

Page 139 of 172

7. Future Work

Future work to be done in the area of usability evaluation on mobile devices include the

development of usability evaluation methods tailored to mobile devices regarding the

special properties of such devices – especially of current smartphones and tablets.

Heuristic evaluation tailored to mobile devices must be further elaborated for current

smartphones and tablet computers, especially detailed checklists for such devices must

be extended. The usability checklist for mobile applications developed during this work

must be improved and expanded in order to get the highest benefit. The rules listed in

Appendix A are a good starting point.

In software development, engineers must always keep in mind that usability is a key

factor for success of their application. Therefore, the importance of usability must be

stressed more – not only in education but also in the professional area. Usability testing

should be an integrated component in every software development process.

Specifically for Boom Software AG, the elaborated usability guidelines and

improvement suggestions must be further applied to their software and the awareness

for usability issues must be raised amongst the application developers. In the future,

regular usability tests will help to maintain a good user experience with Boom software.

As adaptivity might be a good way for improving usability, especially for applications

running on mobile devices with relatively small screens, more use cases for better

practical applicability should be developed in order to bring AUIs to real world

applications. New developments in the area of smartphones and tablets, such as new

sensors and the upcoming NFC technology must be integrated in future usability

considerations.

Due to a lack of good software tools for supporting usability tests such as thinking aloud

on mobile devices, better tools must be developed. Usability testing software for mobile

devices similar to desktop software which allows screen capturing, accessing webcams,

and key logging is required. Such software should allow using the device’s internal

front camera for recording the face of the test user and integrate touch logging as well as

screen capturing and audio recording and recording of the current device’s context

(orientation, position, ambient light, …).

Page 140 of 172

8. List of Figures

Figure 1: Global ICT developments, 2001-2011. Source: ITU 18

Figure 2: Simple vs. complex user interfaces (found in Lorz (2010)) 20

Figure 3: Tandy ZOOMER, source: 8bit-micro.com ... 27

Figure 4: The first Smartphone “Simon” by IBM 1994 ... 28

Figure 5: Smartphone Penetration and OS Share, third quarter 2011, USA. Source:

Nielsen .. 30

Figure 6: Ranking of technology trends 2012-2014. Source: Forrester Research, Inc. via

http://www.cio.de/knowledgecenter/bi/2292300/ .. 31

Figure 7: World-wide smartphone mobile OS market share. Image source: Wikimedia

Commons, own work by user milominderbinder2; data originally from Gartner. 38

Figure 8: Concept sketch of LucidTouch: a pseudotransparent device (Wigdor et al.,

2007) ... 46

Figure 9: Basic layouts in Android (left) and Windows Phone (right). 53

Figure 10: Users, end-users and test users. ... 61

Figure 11: Meaning of SUS values (Bangor et al., 2008). ... 67

Figure 12: Proportion of usability problems found by aggregates of size 1 to 30 (Nielsen

and Molich, 1990)... 69

Figure 13: Total Customizing with Boom’s BORA framework (source: Boom) 82

Figure 14: BORA framework - main components (source: Boom) 82

Figure 15: Detailed view on BORA’s core components (source: Boom) 84

Figure 16: Boom’s three development areas (source: Boom) .. 87

Figure 17: Boom’s simplified process model for software development (source: Boom)

 .. 87

Figure 18: Mobile Android app for task sheets .. 90

Figure 19: Leseratte tutorial – screenshot of Boom BORA Designer 94

Figure 20: Leseratte tutorial – UI definition ... 95

Figure 21: Screenshot of the tutorial version of Leseratte.. 95

Figure 22: Mockup for Leseratte 2.0 – Start page and book overview. 98

Figure 23: Mockup for Leseratte 2.0 – customer list. .. 99

Page 141 of 172

Figure 24: Data model of Leseratte 2.0 .. 99

Figure 25: Screenshot of final Leseratte 2.0 – Start page and book overview. 100

Figure 26: Screenshot of final Leseratte 2.0 - List of authors. 100

Figure 27: Screenshot of final Leseratte 2.0 – Timeline and book search pane. 101

Figure 28: Task cards for the thinking aloud tests.. 103

Figure 29: Thinking aloud screen capturing with face recording. 103

Figure 30: Thinking aloud interviews with test user and the usability team and feedback

form. ... 103

Figure 31: AdaptiveCalc – non-adaptive and adaptive UI ... 106

Figure 32: Design of the adaptive button array on paper ... 108

Figure 33: AdaptiveCalc development using Eclipse... 109

Figure 34: Task list - Mockup and screenshot of latest app version 114

Figure 35: Task list in landscape mode (screenshot of latest app version) 114

Figure 36: Task form - Mockup and latest version screenshot..................................... 115

Figure 37: Issue found via HE: Dropdown box for only four items. Better: Radio

buttons. ... 117

Figure 38: Issue found via HE: Too many tabs and last tab not visible. 117

Figure 39: HE – Example for one of the issues in the report for BMM 117

Figure 40: Thinking aloud test - example of positive feedback. 118

Figure 41: Thinking aloud test – example of negative feedback. 119

Figure 42: Web page of Boom’s new usability documentation – rules for forms........ 121

Figure 43: Time between button presses. ... 122

Figure 44: Error rate (clear presses / total number of button presses). 123

Figure 45: Test user calculating with AdaptiveCalc. ... 124

Figure 46: Total number of calculations with AdaptiveCalc. 125

Figure 47: Comparison of average and median of TBBPs (long calculation).............. 127

Figure 48: Comparison of average and median of TBBPs (short calculation) 128

Figure 49: Average medians of TBBPs (cutoff at 5000 ms). 129

Figure 50: AdaptiveCalc – clear presses per total button presses. 129

Figure 51: Perfect calculations. .. 130

Page 142 of 172

9. List of Tables

Table 1: Comparison of Notebook and Smartphone .. 25

Table 2: Worldwide Mobile Communications Device Open OS Sales to End Users by

OS (Thousands of Units). ... 29

Table 3: Positive and negative aspects of smartphones compared to classic (cell)

phones. .. 37

Table 4: Differences between native apps and HTML5 apps. 40

Table 5: Analysis of permissions needed by 237 randomly selected apps 48

Table 6: Summary of the usage of phone features of current apps. 50

Table 7: Analogies between user anxiety and metrics (Holzinger et al., 2008b) 58

Table 8: Comparison of usability evaluation techniques (Holzinger, 2005) 62

Table 9: Guidelines for the appropriateness of different evaluation techniques for

context-aware mobile user interfaces (Lumsden, 2008) ... 65

Table 10: Assignment of different heuristics to categories .. 72

Table 11: Examples of checklist items from different categories. 97

Table 12: Summary of the user’s answers during the interview 124

Table 13: Examples of checklist items for C1 Feedback ... 131

Table 14: Examples of checklist items for C2 Input .. 131

Table 15: Examples of checklist items for C3 Match .. 132

Table 16: Examples of checklist items for C4 User Control, Flexibility 132

Table 17: Examples of checklist items for C5 Undo/Reversal 132

Table 18: Examples of checklist items for C6 Consistency ... 133

Table 19: Examples of checklist items for C7 Error handling and prevention 133

Table 20: Examples of checklist items for C8 Short-term memory 134

Table 21: Examples of checklist items for C9 Design ... 134

Table 22: Examples of checklist items for C10 Documentation 135

Page 143 of 172

10. Glossary

Adaptive user interface. User interface which is altered at runtime in order to satisfy

the the special needs of the end user by regarding the current context.

App. Short for application. However, in everyday speech the term app is often used

especially when meaning mobile applications for mobile platforms which can usually be

bought in an app store or app market.

Context. All circumstances which influence the current situation.

Control. A basic user interface component such as a text box or a button. A user

interface is usually composed of several controls.

End user. The target users of software. End users are the people who use the software

at their workplaces or for getting benefits from the usage. Test users in contrast are

people who use software for the purpose of testing software. Therefore test users might

be end users at the same time if a usability evaluation method such as field observation

is applied.

Heuristic evaluation. Usability inspection method conducted by usability experts.

Usability experts review software by a set of heuristics or guidelines. Also detailed

checklists can be used in order to support the reviewing process.

Input method. An independent component (typically software) which makes data input

to a UI control possible. Example: a soft keyboard which allows text input to text boxes.

Mobile device. Computer which is small and lightweight enough to be carried around.

Examples of mobile devices are smartphones and tablet computers, but also Netbooks

and music players.

Page 144 of 172

Soft keyboard. A software on-screen keyboard which allows entering text without a

physical keyboard. Often used on smartphones or tablet computers.

Test user. Users who use software during a usability study for evaluating the usability

of the application.

Thinking aloud. A usability test method where test users are encouraged to speak out

loud all their thoughts in order to get insight into the thinking processes and the reasons

for the single actions.

Total Customizing. A concept followed by Boom Software AG which makes it

possible to create highly customizable software and allows quick reactions to changed

customer needs.

Usability. The degree of effectiveness, efficiency, and satisfaction when using a product

which is used to reach a specific goal.

User (software). Any user of software. This includes end users as well as test users or

even software developers who try newly developed features.

User experience. Relates to the whole experience a user has while using a product.

User experience goes beyond usability and also includes emotions and feelings.

User interface. The interface between the system’s internals and the user. Via the user

interface the user can interact with the system. Additionally, the system gives feedback

to the user via the user interface.

Page 145 of 172

11. References

ANDREASEN, M. S., NIELSEN, H. V., SCHRÖDER, S. O. & STAGE, J. What happened to

remote usability testing?: An empirical study of three methods. CHI '07: Proceedings

of the SIGCHI conference on Human factors in computing systems, 2007 New York,

NY, USA. ACM, 1405-1414.

ANDREWS, K. 2006. Andrews Allgemeine Usability Heuristiken [Online]. Available:

http://courses.iicm.tugraz.at/hci/practicals/materials/de/he/heuristiken.pdf [Accessed

10 January 2012].

ANDREWS, K. 2011. Human Computer Interaction - Thinking Aloud [Online]. Available:

http://courses.iicm.tugraz.at/hci/practicals/materials/en/ta [Accessed 10 January 2012].

BAKER, J. M., DENG, L., GLASS, J., KHUDANPUR, S., LEE, C.-H., MORGAN, N. &

O'SHAUGHNESSY, D. O. 2009. Research Developments and Directions in Speech

Recognition and Understanding, Part 1. IEEE Signal Processing Magazine, 26, 75-80.

BANGOR, A., KORTUM, P. T. & MILLER, J. T. 2008. An Empirical Evaluation of the

System Usability Scale. International Journal of Human-Computer Interaction, 24,

574-594.

BAUDISCH, P. & CHU, G. Back-of-device interaction allows creating very small touch

devices. Proceedings of the 27th international conference on Human factors in

computing systems, 2009 Boston, MA, USA. 1518995: ACM, 1923-1932.

BERTINI, E., GABRIELLI, S. & KIMANI, S. Appropriating and assessing heuristics for

mobile computing. Proceedings of the working conference on Advanced visual

interfaces, 2006 Venezia, Italy. 1133291: ACM, 119-126.

BEVAN, N. 1995. Measuring Usability as Quality of Use. Software Quality Journal, 4, 115-

130.

BEVAN, N. 2001. International standards for HCI and usability. International Journal of

Human-Computer Studies, 55, 533-552.

BEVAN, N. What is the difference between the purpose of usability and user experience

evaluation methods? Proceedings of the Workshop UXEM'09 (Interact 2009), 2009

Uppsala, Sweden.

BEVAN, N. & AZUMA, M. Quality in Use: Incorporating Human Factors into the Software

Engineering Lifecycle. Proceedings of the 3rd International Software Engineering

Standards Symposium (ISESS '97), 1997. IEEE Computer Society, 169.

http://courses.iicm.tugraz.at/hci/practicals/materials/de/he/heuristiken.pdf
http://courses.iicm.tugraz.at/hci/practicals/materials/en/ta

Page 146 of 172

BEVAN, N. & CURSON, I. Methods for Measuring Usability. Proceedings of the sixth IFIP

conference on human-computer interaction, 1997.

BEVAN, N. & MACLEOD, M. 1994. Usability measurement in context. Behaviour &

Information Technology, 13, 132-145.

BIEL, B., GRILL, T. & GRUHN, V. 2010. Exploring the benefits of the combination of a

software architecture analysis and a usability evaluation of a mobile application.

Journal of Systems and Software, 83, 2031-2044.

BILLI, M., BURZAGLI, L., CATARCI, T., SANTUCCI, G., BERTINI, E., GABBANINI, F. &

PALCHETTI, E. 2010. A unified methodology for the evaluation of accessibility and

usability of mobile applications. Universal Access in the Information Society, 9, 337-

356.

BROOKE, J. 1996. SUS: A quick and dirty usability scale. Usability evaluation in industry.

BRUUN, A., GULL, P., HOFMEISTER, L. & STAGE, J. Let your users do the testing: a

comparison of three remote asynchronous usability testing methods. CHI '09:

Proceedings of the 27th international conference on Human factors in computing

systems, 2009 New York, NY, USA. ACM, 1619-1628.

CASTILLO, J. C., HARTSON, H. R. & HIX, D. Remote usability evaluation: can users report

their own critical incidents? CHI 98 conference summary on Human factors in

computing systems, 1998 Los Angeles, California, United States. 286736: ACM, 253-

254.

CHIN, J. P., DIEHL, V. A. & NORMAN, K. L. Development of an instrument measuring user

satisfaction of the human-computer interface. Proceedings of the SIGCHI conference

on Human factors in computing systems, 1988 Washington, D.C., United States. 57203:

ACM, 213-218.

COOKE, L. Is Eye Tracking the Next Step in Usability Testing? International Professional

Communication Conference, 2006 IEEE, 23-25 Oct. 2006 2006. 236-242.

CROSBY, M. E., IDING, M. K. & CHIN, D. N. 2001. Visual Search and Background

Complexity : Does the Forest Hide the Trees? In: BAUER, M., GMYTRASIEWICZ, P.

& VASSILEVA, J. (eds.) User Modeling 2001. Springer Berlin / Heidelberg.

DIAPER, D. & STANTON, N. 2004. The Handbook of Task Analysis for Human Computer

Interaction.

EL-BAKRY, H. M., RIAD, A. M., ABU-ELSOUD, M., MOHAMED, S., HASSAN, A. E.,

MASTORAKIS, N., KANDEL, M., ZADEH, L. & KACPROZYK, J. Adaptive User

Interface for Web Applications. WSEAS International Conference Proceedings Recent

Advances in Computer Engineering, 2010. WSEAS, 190-211.

Page 147 of 172

ERICSSON, K. A. & SIMON, H. A. 1980. Verbal Reports as Data. Psychological Review, 87,

215–251.

FARRINGTON, J. 2011. Seven plus or minus two. Performance Improvement Quarterly, 23,

113-116.

FINSTAD, K. 2010. The Usability Metric for User Experience. Interacting with Computers, 22,

323-327.

FORLIZZI, J. & BATTARBEE, K. Understanding Experience in Interactive Systems.

Proceedings of the 2004 conference on Designing Interactive Systems (DIS 04), 2004.

ACM, 261-268.

FORMAN, G. H. & ZAHORJAN, J. 1994. The Challenges of Mobile Computing.

COMPUTER, 27, 38-47.

FOULK, E., HAY, R., SCOTT, K., SQUIERS, M. D., TESAR, J., COHEN, C. J. & JACOBUS,

C. J. 2009. Method for Controlling a Graphical User Interface for Touchscreen-

Enabled Computer Systems. United States patent application.

GELLERSEN, H. W., SCHMIDT, A. & BEIGL, M. 2002. Multi-Sensor Context-Awareness in

Mobile Devices and Smart Artifacts. Mobile Networks and Applications, 7, 341-351.

GERMANAKOS, P., TSIANOS, N., LEKKAS, Z., MOURLAS, C. & SAMARAS, G. 2009.

Realizing Comprehensive User Profile as the Core Element of Adaptive and

Personalized Communication Environments and Systems. Comput. J., 52, 749-770.

GERMANAKOS P., T. N., LEKKAS Z., MOURLAS C., BELK M., & SAMARAS G. 2009.

Towards an Adaptive and Personalized Web Interaction using Human Factors. In:

ANGELIDES, M. (ed.) Advances in Semantic Media Adaptation and Personalization.

Taylor & Francis Group.

GHAHRAMANI, B. 1998. Method for measuring the usability of a system. Sep 15, 1998.

HASSENZAHL, M. & TRACTINSKY, N. 2006. User experience - a research agenda.

Behaviour & Information Technology, 25, 91-97.

HEO, J., HAM, D.-H., PARK, S., SONG, C. & YOON, W. C. 2009. A framework for

evaluating the usability of mobile phones based on multi-level, hierarchical model of

usability factors. Interacting with Computers, 21, 263-275.

HILBERT, D. M. & REDMILES, D. F. 1999. Extracting usability information from user

interface events. ACM Computing Surveys (CSUR), 32, 384-421.

HIMBERG, J., KORPIAHO, K., MANNILA, H., TIKANMAKI, J. & TOIVONEN, H. T. T.

Time series segmentation for context recognition in mobile devices. Data Mining,

Page 148 of 172

2001. ICDM 2001, Proceedings IEEE International Conference on, 2001 2001. 203-

210.

HOLZ, C. & BAUDISCH, P. Understanding touch. Proceedings of the 2011 annual conference

on Human factors in computing systems, 2011 Vancouver, BC, Canada. 1979308:

ACM, 2501-2510.

HOLZINGER, A. User-Centered Interface Design for Disabled and Elderly People: First

Experiences with Designing a Patient Communication System (PACOSY).

Proceedings of the 8th International Conference on Computers Helping People with

Special Needs, 2002. 684035: Springer-Verlag, 33-40.

HOLZINGER, A. Finger instead of mouse: touch screens as a means of enhancing universal

access. Proceedings of the User interfaces for all 7th international conference on

Universal access: theoretical perspectives, practice, and experience, 2003 Paris, France.

1765461: Springer-Verlag, 387-397.

HOLZINGER, A. 2005. Usability engineering methods for software developers.

Communications of the ACM, 48, 71-74.

HOLZINGER, A. 2006. Thinking-aloud eine Königsmethode im Usability Engineering. OCG

Journal, 31, 4-5.

HOLZINGER, A. 2010. Process Guide for Students for Interdisciplinary Work in Computer

Science/Informatics: Instructions Manual - Handbuch für Studierende, Books on

Demand.

HOLZINGER, A. & BROWN, S. Low cost prototyping: Part 1, or how to produce better ideas

faster by getting user reactions early and often. Proceedings of the 22nd British HCI

Group Annual Conference on People and Computers: Culture, Creativity, Interaction -

Volume 2, 2008a Liverpool, United Kingdom. British Computer Society, 213-214.

HOLZINGER, A. & BROWN, S. Low cost prototyping: Part 2, or how to apply the thinking-

aloud method efficiently. Proceedings of the 22nd British HCI Group Annual

Conference on People and Computers: Culture, Creativity, Interaction - Volume 2,

2008b Liverpool, United Kingdom. 217-218.

HOLZINGER, A. & ERRATH, M. 2007. Mobile computer Web-application design in

medicine: some research based guidelines. Universal Access in the Information Society

International Journal, 6, 31-41.

HOLZINGER, A., ERRATH, M., SEARLE, G., THURNHER, B. & SLANY, W. From

Extreme Programming and Usability Engineering to Extreme Usability in Software

Engineering Education (XP+UE->XU). Proceedings of the 29th annual international

conference on Computer software and applications conference, 2005a. IEEE Computer

Society, 169-172.

Page 149 of 172

HOLZINGER, A., HÖLLER, M., SCHEDLBAUER, M. & URLESBERGER, B. 2008a. An

Investigation of Finger versus Stylus Input in Medical Scenarios. Proceedings of the Iti

2008 30th International Conference on Information Technology Interfaces, 433-438.

HOLZINGER, A., NISCHELWITZER, A. & MEISENBERGER, M. 2005b. Lifelong-learning

support by m-learning: example scenarios. eLearn, 2005, 2.

HOLZINGER, A., SAMMER, P. & HOFMANN-WELLENHOF, R. Mobile computing in

medicine: designing mobile questionnaires for elderly and partially sighted people.

Proceedings of the 10th international conference on Computers Helping People with

Special Needs, 2006 Linz, Austria. 2098051: Springer-Verlag, 732-739.

HOLZINGER, A., SCHLÖGL, M., PEISCHL, B. & DEBEVC, M. Preferences of Handwriting

Recognition on Mobile Information Systems in Medicine. Proceedings of the 2010

International Conference on e-Business (ICE-B), 2010. 120-123.

HOLZINGER, A., SEARLE, G., KLEINBERGER, T., SEFFAH, A. & JAVAHERY, H. 2008b.

Investigating Usability Metrics for the Design and Development of Applications for the

Elderly. In: MIESENBERGER, K., KLAUS, J., ZAGLER, W. & KARSHMER, A.

(eds.) Computers Helping People with Special Needs. Springer Berlin / Heidelberg.

HOLZINGER, A., WACLIK, O., KAPPE, F., LENHART, S., ORASCHE, G. & PEISCHL, B.

Rapid Prototyping On The Example Of Software Development In Automotive Industry.

Proceedings of the 8th International Conference on electronic Business and

Telecommunications, 2011a. SciTec, 57-61.

HOLZINGER, K., LEHNER, M., FASSOLD, M. & HOLZINGER, A. Archaeological

Scavenger Hunt on Mobile Devices: From e-Education to E-Business - A triple adaptive

mobile application for supporting Experts, Tourists and Children. ICETE 2011 8th

International Joint Conference on e-Business and Telecommunications, 2011b Sevilla,

Spain. SciTec, 131-136.

ISHII, H. & ULLMER, B. Tangible Bits: Towards Seamless Interfaces between People , Bits

and Atoms. CHI '97 Proceedings of the SIGCHI conference on Human factors in

computing systems, 1997.

JI, Y. G., PARK, J. H., LEE, C. & YUN, M. H. 2006. A Usability Checklist for the Usability

Evaluation of Mobile Phone User Interface. International Journal of Human-Computer

Interaction, 20, 207-231.

KIRAKOWSKI, J. & CORBETT, M. 1993. SUMI: the Software Usability Measurement

Inventory. British Journal of Educational Technology, 24, 210-212.

KORHONEN, H. & KOIVISTO, E. M. I. 2006. Playability heuristics for mobile games.

Proceedings of the 8th conference on Human-computer interaction with mobile devices

and services - MobileHCI '06, 9.

Page 150 of 172

KORPIPAA, P., MANTYJARVI, J., KELA, J., KERANEN, H. & MALM, E. J. 2003.

Managing context information in mobile devices. Pervasive Computing, IEEE, 2, 42-

51.

KRISHNAMURTHY, S., CHAKRABORTY, D., JINDAL, S. & MITTAL, S. Context-Based

Adaptation of Mobile Phones Using Near-Field Communication. Mobile and

Ubiquitous Systems - Workshops, 2006. 3rd Annual International Conference on, 17-21

July 2006 2006. 1-10.

LAUGWITZ, B., HELD, T. & SCHREPP, M. Construction and Evaluation of a User

Experience Questionnaire. Proceedings of the 4th Symposium of the Workgroup

Human-Computer Interaction and Usability Engineering of the Austrian Computer

Society on HCI and Usability for Education and Work, 2008 Graz, Austria. 1484388:

Springer-Verlag, 63-76.

LEE, S. & ZHAI, S. 2009. The performance of touch screen soft buttons. Proceedings of the

27th international conference on Human factors in computing systems - CHI '09, 309.

LEMLOUMA, T. & LAYAIDA, N. Context-aware adaptation for mobile devices. Mobile Data

Management, 2004. Proceedings. 2004 IEEE International Conference on, 2004 2004.

106-111.

LEWIS, J. 1995. IBM computer usability satisfaction questionnaires: psychometric evaluation

and instructions for use. International Journal of Human-Computer Interaction, 7, 57-

78.

LEWIS, J. R. Input rates and user preference for three small-screen input methods: Standard

keyboard, predictive keyboard, and handwriting. PROCEEDINGS OF THE HUMAN

FACTORS AND ERGONOMICS SOCIETY 43RD ANNUAL MEETING, VOLS 1

AND 2, 1999 PO BOX 1369, SANTA MONICA, CA 90406-1369 USA. HUMAN

FACTORS AND ERGONOMICS SOC, 425-428.

LOBO, D., KASKALOGLU, K., FOX, H. & SRISANGKHAJORN, M. T. 2011. A Synergic

Approach to Web Usability for Smartphones. Engineering, 6, 65-69.

LONGORIA, R. 2001. Designing Mobile Applications: Challenges, Methodologies, and

Lessons Learned. Usability Evaluation and Interface Design.

LORZ, A. 2010. Mobile Usability Testing (presentation slides) [Online]. Available: http://tu-

dresden.de/die_tu_dresden/zentrale_einrichtungen/mz/veranstaltungen/konferenzen/201

0/5.wud_in_dresden_2010/world_usability_day_2010-

Dateien/Praesentationen/WUD2010_Lorz.pdf [Accessed 2 February 2012].

LOWRY, G. 2008. Creating Heuristics for the Evaluation of Mobile Devices. Napier

University.

LUMSDEN, J. 2008. User Interface Design and Evaluation for Mobile Technology.

http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/mz/veranstaltungen/konferenzen/2010/5.wud_in_dresden_2010/world_usability_day_2010-Dateien/Praesentationen/WUD2010_Lorz.pdf
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/mz/veranstaltungen/konferenzen/2010/5.wud_in_dresden_2010/world_usability_day_2010-Dateien/Praesentationen/WUD2010_Lorz.pdf
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/mz/veranstaltungen/konferenzen/2010/5.wud_in_dresden_2010/world_usability_day_2010-Dateien/Praesentationen/WUD2010_Lorz.pdf
http://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/mz/veranstaltungen/konferenzen/2010/5.wud_in_dresden_2010/world_usability_day_2010-Dateien/Praesentationen/WUD2010_Lorz.pdf

Page 151 of 172

MARTIN, B., ISOKOSKI, P., JAYET, F. & SCHANG, T. 2009. Performance of finger-

operated soft keyboard with and without offset zoom on the pressed key, New York,

New York, USA, ACM Press.

MCCARNEY, R., WARNER, J., ILIFFE, S., VAN HASELEN, R., GRIFFIN, M. & FISHER,

P. 2007. The Hawthorne Effect: a randomised, controlled trial. BMC Medical Research

Methodology, 7, 30.

MELANSON, D. 2010. Microsoft Adaptive Keyboard prototype debuts at center of UIST

Student Innovation Contest [Online]. Melanson, Donald. Available:

http://www.engadget.com/2010/08/12/microsoft-adaptive-keyboard-prototype-debuts-

at-center-of-uist-s/ [Accessed 12 October 2011].

MERLIN, B. & RAYNAL, M. Evaluation of SpreadKey system with motor impaired users.

ICCHP'10 Proceedings of the 12th international conference on Computers helping

people with special needs, July 2010. 112-119.

MICROSOFT 2009. Xaml Object Mapping Specification 2009.

NIELSEN, J. 1994a. Enhancing the Explanatory Power of Usability Heuristics.

NIELSEN, J. 1994b. Estimating the number of subjects needed for a thinking aloud test. Int. J.

Hum.-Comput. Stud., 41, 385-397.

NIELSEN, J. 1994c. Heuristic evaluation. In: NIELSEN, J. & MACK, R. L. (eds.) Usability

Inspection Methods. New York, NY: John Wiley & Sons.

NIELSEN, J. 2003. Usability 101: Introduction to Usability [Online]. Available:

http://www.useit.com/alertbox/20030825.html [Accessed 10 February 2012].

NIELSEN, J. & MOLICH, R. Heuristic evaluation of user interfaces. Proceedings of the

SIGCHI conference on Human factors in computing systems: Empowering people,

1990 Seattle, Washington, United States. 97281: ACM, 249-256.

PIEROTTI, D. 2000. Heuristic Evaluation - A System Checklist [Online]. Available:

http://www.stcsig.org/usability/topics/articles/he-checklist.html [Accessed 18 January

2012].

PITTMAN, J. A. 2007. Handwriting recognition: Tablet PC text input. COMPUTER, 40, 49-54.

PO, S., HOWARD, S., VETERE, F. & SKOV, M. B. 2004. Heuristic Evaluation and Mobile

Usability: Bridging the Realism Gap. Work, 49-60.

RAYMOND, E. S. & LANDLEY, R. W. 2004. The Art of Unix Usability [Online]. Available:

http://catb.org/~esr/writings/taouu/html/index.html [Accessed 11 February 2012].

http://www.engadget.com/2010/08/12/microsoft-adaptive-keyboard-prototype-debuts-at-center-of-uist-s/
http://www.engadget.com/2010/08/12/microsoft-adaptive-keyboard-prototype-debuts-at-center-of-uist-s/
http://www.useit.com/alertbox/20030825.html
http://www.stcsig.org/usability/topics/articles/he-checklist.html
http://catb.org/~esr/writings/taouu/html/index.html

Page 152 of 172

RAYNAL, M. & VIGOUROUX, N. 2005. KeyGlasses: Semi-transparent keys to optimize text

input on virtual keyboard. ASSISTIVE TECHNOLOGY RESEARCH SERIES, 16, 713-

717.

RIEMAN, J., HIITOLA, K., HEINE, H., YLI-NOKARI, J., KALLIO, M. & KAKI, M. 2008.

Input On Touch User Interfaces. United States patent application.

RODDEN, T., CHERVEST, K., DAVIES, N. & DIX, A. Exploiting Context in HCI Design for

Mobile Systems. Workshop on Human Computer Interaction with Mobile Devices,

1998.

SCHILIT, B., ADAMS, N. & WANT, R. Context-Aware Computing Applications. Mobile

Computing Systems and Applications, 1994. WMCSA 1994. First Workshop on, 8-9

Dec. 1994 1994. 85-90.

SCHILIT, B. N. 2011. Mobile Computing: Looking to the Future. COMPUTER, 44, 28-29.

SCHMIDT, A. 2000. Implicit human computer interaction through context. Personal

Technologies, 4, 191-199.

SCHMIDT, A., BEIGL, M. & GELLERSEN, H.-W. 1999. There is more to context than

location. Computers & Graphics, 23, 893-901.

SESSIONS, R. 2007. A Comparison of the Top Four Enterprise-Architecture Methodologies

[Online]. Available: http://msdn.microsoft.com/en-us/library/bb466232.aspx [Accessed

7 February 2012].

SHNEIDERMAN, B. & PLAISANT, C. 2004. Designing the User Interface: Strategies for

Effective Human-Computer Interaction (4th Edition), Pearson Addison Wesley.

SIEK, K., ROGERS, Y. & CONNELLY, K. Fat Finger Worries: How Older and Younger Users

Physically Interact with PDAs. 2005. 267-280.

SIGNER, B., GROSSNIKLAUS, M. & NORRIE, M. C. 2007. Interactive paper as a mobile

client for a multi-channel web information system. World Wide Web-Internet and Web

Information Systems, 10, 529-556.

STUBBLEFIELD, N. B. 1908. Wireless Telephone. United States patent application.

TAPPERT, C. C., SUEN, C. Y. & WAKAHARA, T. 1990. The state of the art in online

handwriting recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12, 787-808.

TINWALA, H. & MACKENZIE, I. S. Eyes-free Text Entry on a Touchscreen Phone. Science

and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International

Conference, 2009. IEEE, 83-88.

http://msdn.microsoft.com/en-us/library/bb466232.aspx

Page 153 of 172

TSIMHONI, O., SMITH, D. & GREEN, P. 2004. Address entry while driving: Speech

recognition versus a touch-screen keyboard. HUMAN FACTORS, 46, 600-610.

VARSALUOMA, J. 2009. Scenarios in the Heuristic Evaluation of Mobile Devices:

Emphasizing the Context of Use. Evaluation, 332-341.

VAUGHAN-NICHOLS, S. J. 2009. Will Mobile Computing's Future Be Location, Location,

Location? COMPUTER, 42, 14-17.

VOGEL, D. & BAUDISCH, P. Shift: a technique for operating pen-based interfaces using

touch. Proceedings of the SIGCHI conference on Human factors in computing systems,

2007 San Jose, California, USA. 1240727: ACM, 657-666.

WEINSCHENK, S. & BARKER, D. 2000. Designing Effective Speech Interfaces, Wiley.

WHITE, G. M. 1976. Speech Recognition: A Tutorial Overview. Computer, 9, 40-53.

WIGDOR, D., FORLINES, C., BAUDISCH, P., BARNWELL, J. & SHEN, C. Lucid touch: a

see-through mobile device. Proceedings of the 20th annual ACM symposium on User

interface software and technology, 2007 Newport, Rhode Island, USA. 1294259: ACM,

269-278.

YUAN-KAI, W. Context awareness and adaptation in mobile learning. Wireless and Mobile

Technologies in Education, 2004. Proceedings. The 2nd IEEE International Workshop

on, 2004 2004. 154-158.

Page 154 of 172

A. Appendix

The following table shows the list of rules created for usability evaluation of mobile

touch-based devices. The list must not be considered complete. However, the list can be

used as starting point for further development of smartphone- and tablet-tailored rules.

Most of the rules are based on existing rules; however, many are slightly changed in

order to match the modern world of mobile user interfaces. The source column specifies

the author of the corresponding rule or of the rule which was used as starting point for

the adapted rule. It cannot be excluded that certain rules are also mentioned by other

authors than the authors specified in the list. However, for the author of this thesis the

author(s) mentioned in the list was/were the primary source(s) for the corresponding

rule.

Some rules were altered in a way that very concrete values were removed in order to

make the rule more generic. Example: “Are there no more than twelve to twenty icon

types?” was changed to “Is the number of icon types limited?” As the original rule was

valid for desktop systems, it is disputable whether these values are still valid for modern

UIs of mobile devices.

Some rules are based on the personal experience of the author of this thesis. The

personal experience was collected either during conversations with colleagues, during

reading feedback to different apps or during practical work on mobile app development.

More than 300 rules which are applicable in most situations were collected for the

following list. However, it might be necessary to adapt or to reinterpret certain rules in

order to match the requirements or the platform the software is developed for. Some

rules might not be applicable at all for certain software. The expert usability evaluator

has to make the proper decision how to apply the single rules.

Page 155 of 172

ID Source Rule

C1 Feedback

1 Nielsen Is feedback timely and accurate?

2 Pierotti Is there some form of system feedback for every user action?

3 Nielsen Is feedback provided for all actions?

4 Apple Is feedback subtle, but clear?

5 Nielsen Is status information provided? / Is the user kept informed

about what is giong on?

6 Pierotti After the user completes an action (or group of actions), does

the feedback indicate that the next group of actions can be

started?

7 Pierotti If there are observable delays in the system’s response time, is

the user kept informed of the system's progress?

8 Pierotti Are response times appropriate to the task?

9 Nielsen Is shown that input has been received?

10 Nielsen Indicate progress in task performance

11 - Are all and only useful features available for the current

context?

12 Pierotti Does the system provide visibility? That is, by looking, can the

user tell the state of the system and the alternatives for action?

13 Ji et al. Slider: Is the extent of increase and decrease that slider

represents easy to recognize?

14 Ji et al. Tabs: Is the visual discrimination between selected item and

unselected item clear?

15 Ji et al. Scroll bar: Is it possible to predict the quantity of contents

through the scroll bar?

16 Ji et al. Connect: Is connection success or failure properly notified?

17 Ji et al. Connect: Is there a visual display to show the process of

loading?

Page 156 of 172

18 Ji et al. Connect: Is loading/connection success or failure properly

notified?

Captions and messages

19 Pierotti Does each window have a title?

20 Pierotti Does every screen have a heading that describes the screen

contents?

21 Pierotti Do menu instructions, prompts, and error messages appear in

the same place(s)?

22 Pierotti In multipage data entry screens, is each page labeled to show

its relation to others (page numbers, ...)?

23 fluid Does a page's title accurately describe its purpose?

24 Pierotti Is the menu-naming terminology consistent with the user's task

domain?

25 (fluid) Does every list entry have a visible unique ID (where

applicable)?

Icons

26 Nielsen Are icons and other visual indicators shown?

27 Pierotti Is there a consistent icon design schema and stylistic treatment

across the app?

28 Does the icon design match the platform's icon design?

29 Pierotti Are icons labeled?

30 (Pierotti) Is the number of icon types limited?

Selections and visibility of UI state

31 Pierotti If multiple options can be selected in a menu or dialog box, is

there visual feedback about which options are already selected?

32 Pierotti Is there visual feedback when objects are selected or moved?

33 Pierotti Is the current status of an UI object clearly indicated?

34 Pierotti Do GUI menus make obvious which item has been selected?

35 Pierotti Do GUI menus make obvious whether deselection is possible?

Page 157 of 172

36 Nielsen Direct manipulation: visible objects, visible results (Apple:

Directly manipulate onscreen objects instead of using separate

controls)

37 - Is vibration or sound used to get feedback when a touch-button

is pressed?

38 Pierotti Is a single, selected item clearly visible when surrounded by

unselected icons?

C2 Input

1 - Is the need for text input reduced to a minimum?

2 - Are default values prefilled wherever possible?

3 - Can suggestions for text entry fields be edited before

submitting the query?

4 - Are hardware keyboards supported?

5 - Do all text boxes provide metadata which describes the

expected content of the text box (email address, telephone

number, normal text, …)

6 Pierotti Are the valid answers for a question listed? (Nielsen: Provide

lists of choices and picking from lists)

7 Ji et al. When input text, is the indication of current input location

appropriate?

Usage of hardware capabilities and sensors

8 - Are default values taken from external sensors (e.g. GPS

coordinates, street names, etc.)?

9 - Are useful suggestions proposed for text entry fields?

10 - Is QR tag reading supported for text input?

11 - Is Barcode reading supported for numeric input?

12 - Is the GPS sensor used for prefilling text input boxes or for

preselection?

13 - Is direct camera access used to speed up image input?

14 - Can voice recognition be used for text entry?

Page 158 of 172

15 - Is the device's hardware, such as proximity sensors or

microphones, used for enhancing usability, where applicable?

C3 Match (Match between system and the real world)

Conventions

1 Pierotti If shape is used as a visual cue, does it match cultural

conventions?

2 Pierotti Do the selected colors correspond to common expectations

about color codes?

3 Nielsen Follow real-world conventions

Familiarity

4 Pierotti Are icons concrete and familiar?

5 Pierotti On data entry screens, are fields described in terminology

familiar to users?

6 Nielsen Is the conceptual model familiar to the user?

7 Nielsen Is the user’s background knowledge used?

8 Nielsen Learnable through natural, conceptual model

9 Nielsen Does the screen representation match the real world?

Language, texts, and numbers

10 Pierotti For question and answer interfaces, are questions stated in

clear, simple language?

11 Pierotti When prompts imply a necessary action, are the words in the

message consistent with that action?

12 Nielsen Is the user’s language spoken and are familiar terms and

natural language used?

13 Nielsen Are metaphors from the real world used? (Apple: e.g. files and

folders, playback controls, dragging gestures)

14 fluid Is plain language used?

15 fluid Is vocabulary familiar to the intended user, avoiding system-

oriented terms?

16 Pierotti Does the system automatically format numbers consistently?

Page 159 of 172

Menus

17 Pierotti Are menu choices ordered in the most logical way, given the

user, the item names, and the task variables?

18 Pierotti If there is a natural sequence to menu choices, has it been used?

19 Pierotti Do menu choices fit logically into categories that have readily

understood meanings?

Forms and dialogs

20 Pierotti Do related and interdependent fields appear on the same

screen?

21 Pierotti Do GUI menus offer activation: that is, make obvious how to

say "now do it"?

22 Pierotti Has the system been designed so that keys with similar names

do not perform opposite (and potentially dangerous) actions?

23 fluid Is the order of information natural and logical?

Environment

24 - Are compass and GPS sensors used for establishing a relation

between screen content and the real world?

25 - Is augmented reality used?

Accessibility

26 - Are user interface elements (buttons, …) large enough?

27 - Are gestures like swiping used?

28 - If multi-touch gestures are used are the corresponding

functions also reachable with single touches?

29 - Are multi-touch gestures used for example spreading fingers

for zooming?

30 - Are available gestures obvious?

31 - Is ambient light considered when displaying information on the

screen?

Page 160 of 172

C4 User control, Flexibility

1 Pierotti If the system has multipage data entry screens, can users move

backward and forward among all the pages in the set?

2 Pierotti/Nielsen Can users cancel out of operations in progress and is it possible

to resume the operation later?

3 Ji et al. Connect: Is there a way to stop the process of connection?

4 Pierotti Can users reduce data entry time by copying and modifying

existing data?

5 Pierotti Are menus broad (many items on a menu) rather than deep

(many menu levels)?

6 Pierotti If the system has multiple menu levels, is there a mechanism

that allows users to go back to previous menus and is it

possible to change the earlier menu choice?

7 Pierotti Can users move forward and backward between fields or dialog

box options? (Keyboard provides "Next" button?)

8 Nielsen Are there clearly marked exits in the app or during long

operations?

9 Nielsen Modelessness: Is users allowed to do what they want?

10 Pierotti If the system supports both novice and expert users, are

multiple levels of error message detail available?

11 Pierotti Does the system allow novice users to enter the simplest, most

common form of each command, and allow expert users to add

parameters?

12 Nielsen Accelerators should be provided

13 Nielsen User tailorability to speed up frequent actions

14 Nielsen System should be efficient to use

15 Nielsen User interface should be customizable

16 Nielsen Hardware button core functions should be supported

17 Nielsen Interaction with the system should feel natural

18 fluid Can repetitive actions or frequent activities be made easier?

Page 161 of 172

19 fluid Are there features (e.g. a site map, navigation bar) that help

users find content and navigate?

20 fluid Is there a home/start page link?

21 Pierotti Can users choose between iconic and text display of

information, where applicable?

22 Pierotti If the system supports both novice and expert users, are

multiple levels of detail available.

23 Pierotti/Nielsen Are users the initiators of actions rather than the responders?

24 Pierotti Does the system perform data translations for users?

25 Pierotti Do field values avoid mixing alpha and numeric characters

whenever possible?

26 (Pierotti) When fields have fixed lengths does the cursor automatically

jump to the next field when all fixed-length data was entered?

27 Pierotti Do the selected input device(s) match user capabilities?

28 Pierotti Are important keys larger than other keys? (Also applicable for

on-screen keyboards)

29 Pierotti Does the system correctly anticipate and prompt for the user's

probable next activity?

30 - Can long lists quickly be scrolled through?

31 - Is it possible to directly jump to certain entries (e.g. starting

letters) in ordered lists?

32 - If a data connection is used, can the user decide whether to use

the mobile data connection, Wi-Fi or another data connection

(if available)?

33 - Is it possible to deactivate vibration or sound feedback?

34 - Does the application ask the end user before it sets a - in terms

of time, money battery life or data volume - potentially costly

action?

35 - Is it possible to deactivate/configure security questions?

36 - Do the standardized buttons (search, menu, home, back,

volume control) work as intended by the platform?

Page 162 of 172

37 Pierotti For data entry screens, are partially filled screens saved?

38 Android Is the state of the app preserved during unexpected

interruptions and properly restored when resuming (e.g. phone

calls)?

39 - Is form input saved as intended by the platform? (e.g. is form

input saved on pressing back-button? Or should it only bes

saved when pressing an OK button?)

40 - If an application partly depends on a functioning

internet/network connection, can the non-network dependent

functions be accessed anyway?

41 Pierotti Are vertical and horizontal scrolling possible in each window

(where applicable)?

System integration

42 Nielsen Is the application well-integrated in the rest of the system? (see

also C8 and C9)

43 - Does the design of the application match the rest of the system?

44 - Is direct access to other apps possible (dialler, navigation, ...)?

45 - Is sending a text message and/or calling a telephone number

possible directly from the application?

46 - Is sending an email to an email address possible directly from

the application?

47 - Is navigation to addresses supported directly from the

application by using the appropriate app?

48 - Are home screen widgets provided, where useful?

49 - Are operating system notifications/messages properly handled?

C5 Undo/Reversal

1 Pierotti Can users easily reverse their actions? (Nielsen: "Forgiveness:

make actions reversible")

2 Pierotti Is there an "undo" function at the level of a single action, for

single data entries, and/or for a complete group of actions?

Page 163 of 172

3 Pierotti Do functions that can cause serious consequences have an undo

feature?

4 Pierotti If the system allows users to reverse their actions, is there a

retracing mechanism to allow for multiple undos?

5 Nielsen If undo is supported, redo should be supported as well (where

applicable)

6 Nielsen Is it obvious how to undo actions?

C6 Consistency (and standards)

Standards

1 Pierotti Have industry or company formatting standards been followed

consistently in all screens within a system?

2 Pierotti Have industry or company standards been established for menu

design, and are they applied consistently on all menu screens in

the system?

3 Nielsen Is the system conform to platform interface conventions?

4 fluid Are well-known pictures and symbols used? (e.g. "?" for help,

"<" for back, "i" for information).

5 - If gestures are used, are common gestures used instead of

proprietary gestures? (Also, don't override default system

gestures)

Attention

6 Pierotti Are attention-getting techniques used with care?

7 (Pierotti) Is blinking content avoided?

8 (Pierotti) Is the number of font sizes and styles limited?

9 Microsoft Always use the system font unless brand guidelines mandate

divergence.

10 (Pierotti) Is the number of different colors limited?

11 Pierotti Sound: Are soft tones used for regular positive feedback, harsh

for rare critical conditions?

Page 164 of 172

12 Pierotti Are attention-getting techniques used only for exceptional

conditions or for time-dependent information?

13 Pierotti Have pairings of high-chroma, or spectrally extreme colors

been avoided?

14 Pierotti Are high-value, high-chroma/intense colors used to attract

attention?

Labels, texts, and numbers

15 Nielsen Consistency: Are same things expresses in the same way?

16 Pierotti Has heavy use of all uppercase letters on a screen been

avoided?

17 fluid Is the use of all-upper-case text limited to acronyms?

18 Pierotti If applicable, are integers right-justified and real numbers

decimal-aligned?

19 Pierotti Are field labels consistent from one data entry screen to

another?

20 Pierotti Do field labels appear to the left of single fields and above list

fields?

21 Pierotti Is a legend provided if color codes are numerous or not obvious

in meaning?

22 Pierotti Do on-line instructions appear in a consistent location across

screens?

23 Pierotti Is the most important information placed at the beginning of

prompts or messages?

24 Pierotti Are user actions named consistently across the system?

25 Pierotti Are entities named consistently across the system?

26 Pierotti If the system has multipage data entry screens, do all pages

have the same title?

27 Pierotti If the system has multipage data entry screens, does each page

have a sequential page number?

28 Nielsen Show similar info at same place on each screen

29 fluid Do links match destination titles?

Page 165 of 172

30 Microsoft Button control text should be concise and typically be a verb

Menus, commands, and navigation

31 Pierotti Are menu items presented and aligned in the same way?

32 Pierotti Are menu choice names consistent, both within each menu and

across the system, in grammatical style and terminology?

33 Pierotti Are commands used the same way and do they mean the same

thing in all parts of the system?

34 fluid Is navigation consistent and intuitive?

35 fluid Are similar operations or tasks performed in similar ways?

36 Nielsen Consistency: Do same things look the same?

37 Android Are context menus (right click on desktop systems, long tap on

many touch-based mobile OS) only used as shortcuts? I.e., are

all context menu actions also available at other locations?

38 Android In context menus: Are all selection-specific commands

separated from global commands?

39 Android In context menus: Are the most frequently used commands

placed first?

40 Android Do context menus identify the selected item? (e.g. "Edit

contact", not just "Edit")

Platform consistency

41 - Do the device's (hardware) navigation buttons work as

expected?

42 - If available, do hardware buttons (search, volume, back)

behave as expected / as intended by the platform? (Android:

Don't take over the back key unless you absolutely need to)

43 Android Notifications and App Widgets should provide consistent back

behavior (mostly Android specific)

44 Android Are the operating system's notification and messaging services

used rather than self-developed systems?

Page 166 of 172

C7 Error handling and prevention

Error prevention

1 Pierotti/Nielsen Does the system prevent users from making errors whenever

possible?

2 Pierotti Are menu choices logical, distinctive, and mutually exclusive?

3 Pierotti Are data inputs case-blind whenever possible?

4 Pierotti Are the buttons that can cause the most serious consequences

located far away from low-consequence and high-use buttons?

5 Pierotti Does the system warn users if they are about to make a

potentially serious error?

6 Pierotti Does the system intelligently interpret variations in user input?

(Nielsen: Understand the user’s language)

7 Pierotti Do text input fields indicate the number of characters left, if

there is a maximum number of characters?

8 Pierotti Do fields in data entry screens and dialog boxes contain default

values when appropriate?

9 (fluid) Do UI components provide help or hints about the expected

input?

10 fluid Is confirmation required when an action is difficult or

impossible to undo?

11 Pierotti Are users prompted to confirm commands that have drastic,

destructive consequences?

12 (Pierotti) Is it possible to add multiple datasets on a single screen?

Error messages

13 Pierotti Are prompts stated constructively, without overt or implied

criticism of the user?

14 Pierotti Do prompts imply that the user is in control?

15 Pierotti Are prompts brief and unambiguous.

16 Pierotti Are error messages worded so that the system, not the user,

takes the blame?

Page 167 of 172

17 Pierotti If humorous error messages are used, are they appropriate and

inoffensive to the user population?

18 Pierotti Are error messages grammatically correct?

19 Pierotti Do error messages avoid the use of exclamation points?

20 Pierotti Do error messages avoid the use of violent or hostile words?

21 Pierotti Do error messages avoid an anthropomorphic tone?

22 Pierotti Do all error messages in the system use consistent grammatical

style, form, terminology, and abbreviations?

23 Pierotti Do messages place users in control of the system?

24 Pierotti Do error messages inform the user of the error's severity?

25 Pierotti Do error messages suggest the cause of the problem?

26 Pierotti Do error messages indicate what action the user needs to take

to correct the error?

Error recovery

27 Pierotti If an error is detected in a data entry field, does the system

place the cursor in that field or highlight the error?

28 Pierotti If the system supports both novice and expert users, are

multiple levels of error-message detail available?

29 fluid Can users easily recover from errors, unintended actions, or

actions that did not lead to desired results (eg undo, back)?

C8 Short-term memory (Recognition rather than recall)

1 Nielsen Is the users’ memory load minimized?

2 fluid Does the application support user memory?

3 (Nielsen) Is the principle of seeing-and-touching followed rather than

remembering-and-typing?

4 Nielsen Is direct manipulation supported? (visible objects, visible

results)

5 Pierotti Are prompts, cues, and messages placed where the eye is likely

to be looking on the screen?

Page 168 of 172

6 Pierotti Is there an obvious visual distinction made between "choose

one" menu and "choose many" menus/lists?

7 Pierotti Have frequently confused entity/data pairs been eliminated

whenever possible?

8 Nielsen Is the repertoire of available actions made salient?

9 fluid Are illustrations provided for important concepts?

10 - If gestures are not obvious, is the number of different gestures

limited and are they easy to remember?

11 - Is there a quickly accessible documentation?

12 (Nielsen) Does the application cooperate well with other applications?

(e.g. direct dialling of phone numbers instead of remembering

them and copying them manually, see also C4)

13 - Are graphical representations preferred to textual

representations, where applicable? (e.g. phone unlocking via

drawing a visual pattern rather than entering a character

sequence (password))

Forms and dialogs

14 Pierotti Is all data a user needs visible at each step in a multistep data

entry screen?

15 Pierotti Does the system gray out or hide inactive or useless UI

controls? (Android: Dim or hide menu items that are not

available in the current context)

16 Pierotti Are items grouped into logical zones, and are headings used to

distinguish between zones?

17 Pierotti Are zones/groups clearly separated by borders, lines, color,

letters, bold titles, rules lines, or shaded areas?

18 Pierotti Are size, boldface, underlining, color, shading, or typography

used to show relative quantity or importance of different screen

items (if applicable)?

19 Pierotti Do data entry screens and dialog boxes indicate when fields are

optional? Are optional data entry fields clearly marked?

Page 169 of 172

20 Apple Do controls look tappable?

Labels, icons, and colors

21 Pierotti Is color coding consistent throughout the system?

22 Pierotti Is color used in conjunction with some other redundant cue?

23 Pierotti Are field labels close to fields?

24 Nielsen Show icons and other visual indicators

25 Pierotti Is the first word of each menu choice the most important?

C9 Design (Aesthetic and minimalist design)

1 Nielsen Is it easy to discriminate action alternatives?

2 fluid Is no unnecessary material displayed ("clutter")?

3 fluid Can users suppress distracting effects? (sound, penetrantly

recurring message boxes, ...)

4 - Can touchable regions (buttons, …) easily be recognized? / Is it

easy to recognize that a certain area is touchable?

5 - Is the contrast high enough to be able to read the display even

outside or in a bright environment?

6 - Does the user interface react immediately after input?

7 - Are animations and transitions smooth?

8 fluid Can foreground elements - either text or images - be easily

distinguished from the background?

9 fluid Is there adequate contrast within images?

10 fluid Are related UI elements grouped?

11 Microsoft Do map controls and long lists fill the whole available screen

space in order to avoid excessive scrolling?

12 Microsoft Is indicated that pages can be switched by swiping to the right

or to the left by showing parts of the content which will appear

after swiping to the corresponding direction?

13 Nielsen Is the application well-integrated in the rest of the system and

does the design match the rest of the system? (see also C4)

Page 170 of 172

14 - Is an adaptive user interface used which is adapted

automatically at runtime based on the application's context?

15 Apple Are standard UI controls preferred to customized controls

wherever possible?

Lables and texts

16 Pierotti Is only (and all) information essential to decision making

displayed on the screen?

17 Pierotti Does each data entry screen have a short, simple, clear,

distinctive title?

18 Pierotti Are field labels brief, familiar, and descriptive?

19 fluid Are sentences and paragraphs short and to the point?

20 Pierotti Are prompts expressed in the affirmative, and do they use the

active voice? (to continue with the desired operation the user

should have to answer an "are you sure?" prompt with "yes")

21 Pierotti Are menu titles brief, yet long enough to communicate?

Icons, images, and colors

22 Pierotti Are all icons in a set visually and conceptually distinct?

23 Pierotti Does each icon stand out from its background?

24 Pierotti Is each individual icon a harmonious member of a family of

icons?

25 Pierotti Has excessive detail in icon design been avoided?

26 Pierotti Has color been used with discretion?

27 Pierotti Has color been used specifically to draw attention,

communicate organization, indicate status changes, and

establish relationships?

28 Apple, Android Are high resolution images available which are suitable even

for large screen sizes? Therefore the images must usually be

provided in different resolutions.

Input

29 Pierotti Are typing requirements minimal in forms?

Page 171 of 172

30 - Are sliders, radio buttons or other touchable controls preferred

to text input?

31 - Are radio buttons preferred to dropdown boxes in case of a low

number of available choices?

32 Pierotti Are the most frequently used functions in the most accessible

positions?

33 Pierotti Does the system complete unambiguous partial input on a data

entry field?

Performance

34 - Does the app not waste battery power by performing

unnecessary or unoptimized operations?

35 - Does the app not waste battery power by not disabling unused

sensors?

Screen orientation and size / support for different screen and device types

36 - Is the device's orientation sensor used to adapt the UI to the

device's orientation?

37 - Do all screens (activities) support both portrait and landscape

screen orientation?

38 - Are multiple screen sizes supported (including tablets and

smartphones)?

39 - Are uncommon screen sizes and ratios supported?

40 - Are multiple (secondary) screens supported?

41 - Is the application optimized all supported screen/device types?

42 Apple Is scrolling preferred over reducing the content size?

C10 Documentation (Help and documentation)

1 Pierotti If menu items are ambiguous, does the system provide

additional explanatory information when an item is selected?

2 Pierotti Are there memory aids for commands, either through on-line

quick reference or prompting?

Page 172 of 172

3 Pierotti Is the help function visible; for example, a key labeled Help or

a special menu?

4 Pierotti Is the help system interface (navigation, presentation, and

conversation) consistent with the navigation, presentation, and

conversation interfaces of the application it supports?

5 fluid Is help information and/or documentation easy to search?

6 Pierotti Help system's navigation: Is information easy to find?

7 Pierotti Help system's presentation: Is the visual layout well designed?

8 Pierotti Help system: Is the information accurate, complete, and

understandable?

9 Pierotti Help system: Is the information relevant?

10 fluid Is help information focused on the user's task?

11 Pierotti Help information: Goal-oriented (What can I do with this

program?)

12 Pierotti Help information: Descriptive (What is this thing for?)

13 Pierotti Help information: Procedural (How do I do this task?)

14 Pierotti Help information: Interpretive (Why did that happen?)

15 Pierotti Help information: Navigational (Where am I?)

16 Pierotti Is there context-sensitive help?

17 Pierotti Can the user change the level of help information detail?

18 Pierotti Can users easily switch between help and their work?

19 Pierotti Is it easy to access and return from the help system?

20 Pierotti Can users resume work where they left off after accessing

help?

21 fluid Are illustrations provided to make help instructions easier to

understand?

C11 UI Testing

1 Raymond &

Landley

The interface isn't finished until the end-user testing is done.

2 Apple Were custom UI elements user-tested thoroughly?

