
Georg STÜTZ

Sharing of small vectorial Boolean
functions: A side-channel

countermeasure

MASTER THESIS

written to obtain the academic degree of a Master of
Science (MSc)

Master programme Mathematical Computer Science

Graz University of Technology

Adviser:
Univ.-Prof. Dr. Vincent Rijmen

Institute of Applied Information Processing and
Communications

March 2012

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

. .
date

. .
(signature)

Acknowledgements

Firstly, I would like to thank my advisers Vincent Rijmen and Martin Schläffer
for their guidance and support on this thesis. Special thanks go to Martin,
for the endless time and the effort he spent on discussions and corrections of
this thesis.

Secondly, I would like to thank my parents Franz and Isolde Stütz who
supported me in every possible way throughout my whole studies. I also
want to thank my girlfriend, Kristina, as well as my friends and colleagues
who have always been there for me.

A

Abstract

The field of side-channel analysis poses a major threat to cryptographic de-
vices. By the use of statistical analysis of measurements of physical side
channel information, like instantaneous power consumption, hardware imple-
mentations become vulnerable to practical attacks. Several masking counter-
measures have been proposed which start from idealized hardware models.
Applied to real hardware, devices still leak information about the processed
values. The reasons are hardware effects, like glitches or timing delays, to-
gether with the fact that intermediate values are not independent of the
unmasked function inputs. Nikova et al. propose a countermeasure with low
hardware requirements, based on secret sharing. The approach of Nikova et
al. is to guarantee the independence of intermediate values by the use of a
secret sharing scheme.

In this thesis we analyze secure implementations according to this se-
cret sharing approach of affine equivalent S-boxes. We characterize three
required properties balancedness, correctness and non-completeness in dif-
ferent representations of secure implementations of vectorial Boolean func-
tions. We analyze the method of direct sharing for equivalence classes un-
der affine transformation equivalence. We present an approach to construct
a balanced, correct and non-complete implementation for a given vectorial
Boolean function. We show that it is easy to fulfill only two of the three re-
quired properties, like correctness and non-completeness or correctness and
balancedness. For simple S-boxes also all three properties can be fulfilled.
However it remains open if there exist secure implementations which fulfill
all three properties for cryptographically strong S-boxes.

B

Kurzfassung

Seitenkanalattacken stellen eine große Bedrohung für kryptografische Hard-
ware dar. Hardware Implementationen werden durch die Verwendung statis-
tischer Methoden zur Analyse von Messungen aus Seitenkanal-Informationen,
wie dem Stromverbrauch, anfällig für praktische Attacken. Diverse Maskier-
ungs-Gegenmaßnahmen gegen Seitenkanalattacken, welche von idealisierten
Eigenschaften der Hardware ausgehen, wurden vorgestellt. Bei der Anwen-
dung dieser Gegenmaßnahmen auf echte Implementationen, arbeiteten die
Gegenmaßnahmen nicht wie behauptet. Ursachen dafür sind Eigenschaften
der Hardware, wie Glitches oder Verzugszeiten, sowie der Umstand, dass die
Zwischenergebnisse nicht unabhängig von den unmaskierten Eingabeparame-
tern sind. Nikova et al. schlagen eine Gegenmaßnahme vor, welche niedrige
Anforderungen an die Hardware stellt und auf Secret Sharing basiert. Der
Ansatz von Nikova et al. ist es, die Unabhängigkeit der Zwischenresultate
durch Verwendung eines Secret Sharing Schemas zu garantieren.

In dieser Arbeit werden sichere Implementierungen von affin äquivalenten
S-Boxen mit dem Secret Sharing Schema von Nikova et al. betrachtet. Wir
charakterisieren drei notwendige Bedingungen, balancedness, correctness und
non-completeness in unterschiedlichen Repräsentationen von vektorwertigen
Boolschen Funktionen. Ferner untersuchen wir die Methode des direct sharing
für Klassen unter affiner Äquivalenz. Wir präsentieren Methoden um Realisie-
rungen von vektorwertigen Boolschen Funktionen zu konstruieren, sodass die
Eigenschaften balancedness, correctness und non-completeness erfüllt sind.
Desweiteren zeigen wir, dass es einfach ist, nur zwei der drei notwendigen Ei-
genschaften zu erreichen, wie balancedness und correctness oder correctness
und non-completeness. Für einfache S-Boxen können ebenfalls alle drei Ei-
genschaften erreicht werden. Es bleibt jedoch offen, ob sichere Realisierungen
für kryptografisch starke S-Boxen existieren.

i

Contents

1 Introduction 1
1.1 Outline of this thesis . 2

2 Boolean functions 4
2.1 Introduction to Boolean functions 4

2.1.1 Definitions . 4
2.1.2 Affine mappings . 6
2.1.3 Representations of Boolean functions 6

2.2 Walsh Hadamard transformation 8
2.3 Balanced Boolean functions 11
2.4 Vectorial Boolean functions 15
2.5 Criteria for Boolean functions in cryptography 17

2.5.1 Algebraic degree . 18
2.5.2 Nonlinearity . 18
2.5.3 Balancedness . 19
2.5.4 Other criteria . 20

3 Side-Channel Analysis 21
3.1 Introduction . 21

3.1.1 Hardware in cryptography 21
3.1.2 Types of attacks on cryptographic hardware 22
3.1.3 Power consumption . 23

3.2 Simple power analysis . 25
3.2.1 Description . 25

3.3 Differential power analysis . 26
3.3.1 Description . 26
3.3.2 Attacks based on the correlation coefficient 28
3.3.3 Attacks based on alternatives 29
3.3.4 Attacks based on the distribution 31
3.3.5 Higher order attacks 32

3.4 Selection of countermeasures 33

ii

CONTENTS iii

3.4.1 Software countermeasures 33
3.4.2 Hardware countermeasures 34
3.4.3 Summary . 36

4 Secret sharing 38
4.1 Introduction to secret sharing 39

4.1.1 Simple shared control schemes 39
4.1.2 Threshold schemes . 39

4.2 Masking schemes . 41
4.2.1 Glitches in a masked AND gate 42

4.3 Secret sharing used in this thesis 44
4.3.1 Overview . 44
4.3.2 Terminology . 44
4.3.3 Requirements . 45
4.3.4 Sharing linear transformations 47
4.3.5 Implementing nonlinear functions 47
4.3.6 Pipelining . 49
4.3.7 Limitations . 51
4.3.8 Decomposition of functions 51
4.3.9 Shared multiplication in GF(4) 53

4.4 Sharing of affine equivalent S-boxes 54
4.4.1 Introduction to affine equivalent S-boxes 54
4.4.2 Sharing of affine equivalent S-boxes 55

4.5 Summary . 59

5 Sharing of affine equivalent S-boxes 60
5.1 Characterizing properties in the truth table 60

5.1.1 Balancedness in the truth table 61
5.1.2 Non-completeness in the truth table 61
5.1.3 Correctness in the truth table 61
5.1.4 Balancedness and correctness 62
5.1.5 A truth table search 63

5.2 Sharing of 3× 3 S-boxes with algebraic degree ≤ 2. 66
5.2.1 Introduction . 66
5.2.2 Class S3

0 . 68
5.2.3 Class S3

1 . 69
5.2.4 Class S3

2 . 70
5.2.5 Class S3

3 . 71
5.3 Add correction terms . 72

5.3.1 Overview . 72

CONTENTS iv

5.3.2 Search potential correction terms for each share func-
tion Fij . 73

5.3.3 Find potential correction terms for each bit 73
5.3.4 Combine 2 S-box bits and check for balancedness . . . 74
5.3.5 Combine all bits and check for balancedness 74
5.3.6 Results . 75

5.4 A randomized approach . 75
5.4.1 Description . 75
5.4.2 Results . 76

5.5 Fix two bits and construct the third bit 77
5.5.1 Overview . 77
5.5.2 Constructing the third bit 78
5.5.3 Results . 79

5.6 Extending 3×3 S-boxes to 4×4 S-boxes with algebraic degree
≤ 2. 79

5.7 Summary . 79

6 Walsh transformation of S-boxes 81
6.1 Finding properties in the Walsh transformation 81

6.1.1 The balancedness property 81
6.1.2 The non-completeness property 82
6.1.3 The correctness property 82

6.2 Walsh transformation for the unshared S-boxes 83
6.3 Walsh transformation of Class S3

2 84
6.3.1 Observations on S-box candidates in class S3

2 84
6.4 Summary . 85

7 Conclusions 86

List of Figures

3.1 Schematic representation of a CMOS inverter 24
3.2 MDPL AND and OR gate . 36

4.1 Schematic representation of a masked AND gate 42
4.2 Decomposition of a function f into functions g and h 52

v

List of Tables

2.1 Correspondence between the truth table and the values of the
sign function . 5

2.2 Truth table of the function f 7
2.3 Truth tables of the functions f1 and f2 7
2.4 Discrete Fourier transform and Walsh transform of the func-

tion f . 10

3.1 Transitions of the value q in a CMOS gate 25

4.1 Number of affected gates when a glitch occurs 43
4.2 Number of invertible Boolean functions 54

5.1 Schematic representation of the non-completeness property . . 64
5.2 Correction terms up to degree three for 3× 3 S-boxes in vari-

ables u1, u2, u3, v1, v2, v3, w1, w2, w3. 72
5.3 Results for the randomized approach on Class S3

3 with alge-
braic degree 2 . 76

5.4 Results for the randomized approach on Class S3
3 with alge-

braic degree 2 . 77
5.5 List of mandatory free terms for the first bit in class S3

3 78
5.6 List of correction terms for the first bit in class S3

3 79

vi

Chapter 1

Introduction

In 1996 Kocher presented Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems [30] and founded with it the field
of modern side-channel analysis. Up to that time the focus of attacking
cryptographic hardware devices was to attack the underlying cryptographic
principle. Kocher, on the other hand, highlighted in his work [30] the leakage
of secret information through physical channels of hardware implementations
of cryptographic principles. His work led to a change of awareness since se-
cure cryptographic principles became breakable by their implementation in
hardware.

Nowadays side-channel attacks pose a major threat to cryptographic de-
vices. The reasons for this can be found in low requirements for attacks, e.g.
low information about implementation details. On the other hand it is hard
to construct devices that emit no information, since for example each device
needs to consume some power.

However a major research for countermeasures to prevent side-channel
leakage has been made in the last decades. The general idea of mostly all
countermeasures is to introduce randomness into the calculation in order to
distort the side-channel leakage. These countermeasures can be employed in
software [43] or in hardware. Hardware countermeasures can be applied on
the algorithmic level, like masking an AES S-box [36] or on the gate level
as algorithmic independent approach, like dual rail pre-charge logic styles
[70, 50]. But research showed that these methods do not always work as
proposed [43, 36, 68].

These countermeasures do not work as claimed, since the masked inter-
mediate values from the calculations are not independent of the unmasked
inputs. Chari et al. [17] and Nikova et al. [44, 45] counter this circumstance
by using secret sharing techniques. The idea of this approach is that if the
input values of the cryptographic function are split up into new inputs in

1

CHAPTER 1. INTRODUCTION 2

such a way that subsets of the new inputs become statistically independent
of the primary inputs. By using these new inputs, the intermediate values
and hence the side-channel information, becomes independent of the primary
inputs. This secret sharing technique has to be designed in such a way, that
a output results, which is correct with respect to the primary inputs.

In this thesis we employ the sharing technique introduced by Chari et al.
in [17] and extended by Nikova et al. in [44, 45] to S-boxes of small size. We
therefore analyze certain properties of these S-boxes and present approaches
to share small S-boxes.

1.1 Outline of this thesis

This thesis is organized as follows.
Chapter 2 will be dedicated to an introduction to Boolean functions. We

will introduce a variant of the discrete Fourier transformation, called the
Walsh-Hadamard transformation. We will further discuss balanced Boolean
functions and vectorial Boolean functions, which both play an important role
in the rest of the thesis. Finally we will discuss criteria of Boolean functions
when used in cryptographic applications.

Chapter 3 will handle the topic of side-channel attacks. We start this
chapter with a general introduction to side-channel leakage of hardware de-
vices. We then introduce the Simple Power Analysis, a first side-channel
analysis method presented by Kocher in [30]. We continue with the Differen-
tial Power Analysis, which is a more sophisticated analysis method to analyze
huge number of power traces. We further discuss variants of the Differential
Power Analysis method and close the chapter with a consideration of state
of the art countermeasures against side-channel attacks.

Chapter 4 will be dedicated to a general introduction to secret sharing
schemes. We will cover the field of multi-party computation protocols and
common masking schemes. We will also discuss a common problem of mask-
ing schemes in the presence of certain hardware effects, called glitches. The
rest of this chapter will be dedicated to the secret sharing scheme which will
be used for the rest of this thesis. We will present the results from Nikova et
al. [44, 45], who prove the security of this sharing method. Finally we will
talk about secure sharing of affine equivalent S-boxes.

Chapter 5 will analyze certain properties of shared functions in truth ta-
bles and cover several approaches to build secure sharings for given S-boxes.
We thereby only consider representatives of classes under the affine equiv-
alence relation. We present known realizations of 3 × 3 S-boxes, introduce
correction terms and search methods to find secure sharings.

CHAPTER 1. INTRODUCTION 3

Chapter 6 will handle affine equivalent S-boxes under the aspect of the
Walsh transformation. We characterize certain properties which are impor-
tant in order to obtain a secure sharing, by mean of the Walsh transforma-
tion. We further investigate on the Walsh-transformation of the shared and
unshared classes of 3× 3 S-boxes.

Chapter 2

Boolean functions

Boolean functions play an important role in game theory [74, 38], coding
theory [35, 9], the design of combinational logic [76, 85], complexity theory
[73, 79] and many more. In general, Boolean functions are mappings between
Boolean algebras which were introduced by the mathematician George Boole
in 1847. However Boolean functions also play an important role in the field
of cryptography where cryptographic transformations like (linear) feedback
shift registers ((L)FSR) in stream ciphers or S-boxes in block ciphers can be
constructed by combining nonlinear Boolean functions.
In this chapter we will first give formal definitions of Boolean functions and
related properties of them in Section 2.1. In Section 2.2 and Section 2.3 we
will describe the discrete Fourier transformation and address the topic of
balanced Boolean functions. In Section 2.4 we will assess the topic of vec-
torial Boolean functions. In Section 2.5 we will describe criteria for Boolean
functions in cryptography.

2.1 Introduction to Boolean functions

2.1.1 Definitions

In this thesis we often associate the set {0, 1} with the finite field F2, contain-
ing two elements. Fn2 denotes the set of all binary vectors of length n and is
viewed as an F2-vector space. Since some additions of bits are considered in
Z (with characteristic 0) and some are considered in F2 (with characteristic
2) we denote additions in Z with + and additions in F2 with ⊕. Addition
of vectors in Fn2 are denoted with + since F n

2 can be identified with F2n the
field with 2n elements.

4

CHAPTER 2. BOOLEAN FUNCTIONS 5

Definition 2.1.1: A Boolean function in n variables is a function

f : Fn2 → F2.

The set of all Boolean functions from Fn2 → F2 is denoted by BFn. The set
BFn has size 22n .

Definition 2.1.2 ([13]): The sign function χ : F2 → R× is the only non-
trivial group homomorphism, that is χ(0) = 1, χ(1) = −1 or in general
χ(a) = (−1)a = 1− 2a.
For a Boolean function f we define the sign function of f to be

fχ : Fn2 → R× fχ := (−1)f(x) = 1− 2f(x).

It is obvious that (f ⊕ g)χ = fχgχ holds for all Boolean functions f and
g. To deduce a formula for the product of two Boolean functions we take a
look at the truth Table 2.1 and get the formula [19]

χ(a⊕ b) + 2χ(ab) = 1 + χ(a) + χ(b) for all a, b ∈ F2.

Thus, the following formula [19] holds for all f, g ∈ BFn

2(fg)χ = 1 + fχ + gχ − (f ⊕ g)χ

a b a⊕ b ab χ(a) χ(b) χ(a⊕ b) χ(ab)
0 0 0 0 1 1 1 1
0 1 1 0 1 -1 -1 1
1 0 1 0 -1 1 -1 1
1 1 0 1 -1 -1 1 -1

Table 2.1: Correspondence between the truth table and the values of the sign
function

Definition 2.1.3: For x ∈ Fn2 the Hamming weight wH(x) of x is the number
of nonzero coordinates of x. More formally, let N = {1, . . . , n} then the
Hamming weight of x is

wH(x) = |{i ∈ N : xi 6= 0}| .

The set {i ∈ N : xi 6= 0} is called the support of x.
For a Boolean function f the Hamming weight of f is the size of the support
of the function f , that is

wH(f) = |{x ∈ Fn2 : f(x) 6= 0}|

CHAPTER 2. BOOLEAN FUNCTIONS 6

2.1.2 Affine mappings

Next we want to introduce an important class of transformations on Boolean
functions, the so called affine (coordinate) transformations.

Definition 2.1.4 ([13]): Let L : Fn2 → Fn2 be a linear transformation and
t ∈ Fn2 be a vector. Then the mapping

x 7→ L(x) + t

is an affine mapping. The linear mapping L can also be represented as an
element of Fn×n2 , that is the set of n × n matrices over F2. The mapping is
called invertible if L is an invertible linear mapping. This is equivalent to

∃L′ ∈ Fn×n2 : L · L′ = L′ · L = I

where I denotes the identity matrix in Fn×n2 .

The set of invertible affine mappings forms an algebraic group A with the
multiplication operation defined as:

(M, t) · (N, u) = (MN, t+Mu),

where (M, t) and (N, u) are two invertible affine mappings with M,N ∈ Fn×n2

and t, u ∈ Fn2 . To calculate the order of the group A it suffices to calculate
the number of invertible matrices over the field F2, which is the order of the
general linear group GL(n,F2).

|GL(n,F2)| =
n−1∏
i=0

(2n − 2i) = 2
n(n−1)

2

n∏
i=1

(2i − 1) < 2n
2

(2.1)

So by combining the number of invertible matrices with the number of
vectors of length n in F2 we get:

|A| = 2n ·
n−1∏
i=0

(2n − 2i) = 2
n(n+1)

2

n∏
i=1

(2i − 1) ≤ 2n+n2

(2.2)

Equations (2.1) and (2.2) can be found in [34].

2.1.3 Representations of Boolean functions

We now want to take a look at the representation of Boolean functions which
can be done in several ways. We only want to take two representations into
account, namely the representation using its truth table and by the algebraic

CHAPTER 2. BOOLEAN FUNCTIONS 7

normal form (ANF).
To represent a Boolean function f with its truth table, all values x ∈ Fn2 and
all values f(x) are simply written in a table. Of course this representation
is not very practical, especially for large n since the size of the table grows
exponential in n.
The representation with the algebraic normal form is the one which is most
usually used in cryptography and is the representation of the Boolean func-
tion f : Fn2 → F2 as n-variable polynomial, [13]:

f(x) =
⊕

I∈P(N)

aI

(∏
i∈I

xi

)
=
⊕

I∈P(N)

aIx
I , (2.3)

where N = {1, . . . , n} and P(N) denotes the power set of N . Since every bit
in F2 equals its own square the exponents for each coordinate xi are at most
1. Before we consider the uniqueness of the ANF we want to take a look at
a small example.

Example: Let f be the function with the following truth Table 2.2

x1 x2 f(x1, x2)
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.2: Truth table of the function f

This function can be split up into the following two nontrivial atomic
functions f1 and f2, such that f = f1 + f2. The truth tables of f1 and f2 are
listed in Table 2.3: The function f1 takes value 1 ⇔ 1⊕ x1 = 1 and x2 = 1,

x1 x2 f1(x1, x2) f2(x1, x2)
0 0 0 0
0 1 1 0
1 0 0 1
1 1 0 0

Table 2.3: Truth tables of the functions f1 and f2

that is⇔ (1⊕x1)x2 = 1. It follows that the ANF of f1 equals x2⊕x1x2. For
the function f2 we get that f2 takes value 1 ⇔ x1 = 1 and 1 ⊕ x2 = 1. We
obtain that the ANF of f2 is x1 ⊕ x1x2. By adding both functions we finally
get the ANF of f = f1 ⊕ f2 = x1 ⊕ x2.

CHAPTER 2. BOOLEAN FUNCTIONS 8

We now want to take a look at the existence and the uniqueness of the
ANF. What we did in the example above was, that we applied the Lagrange
interpolation method [13] to the function f which yields a polynomial in
F2[x1, . . . , xn]/(x2

1⊕x1, . . . , x
2
n⊕xn) which is the quotient ring F2[x1, . . . , xn]

modulo (x2
1 ⊕ x1, . . . , x

2
n ⊕ xn) which is an ideal. This implies that the map-

ping from every polynomial P ∈ F2[x1, . . . , xn]/(x2
1 ⊕ x1, . . . , x

2
n ⊕ xn) to the

corresponding function x ∈ Fn2 → P (x), is surjective on the set of functions
BFn. Since the sets BFn and F2[x1, . . . , xn]/(x2

1 ⊕ x1, . . . , x
2
n ⊕ xn) have the

same size this mapping is one to one.

Definition 2.1.5 ([35]): For a Boolean function f the algebraic degree of

f =
⊕

I∈P(N)

aIx
I

is defined as

deg(f) :=

{
−∞, if f ≡ 0

maxI∈P{|I| : aI 6= 0}, for all nonzero functions f
.

Definition 2.1.6: A Boolean function f is called linear if deg(f) = 1 and
f(0) = 0 which is equivalent to aI = 0 for I = ∅.
The function f is called affine if deg(f) = 1.
The function f is called quadratic if deg(f) = 2.

In the next section we will introduce a useful tool when it comes to analyze
Boolean functions.This tool is the so called discrete Fourier transform.

2.2 Walsh Hadamard transformation

When analyzing Boolean functions, the framework of the discrete Fourier
transform often turns out to be a very useful tool. The Fourier transform
[13] also called Hadamard transform is the linear mapping which maps any
Boolean function f ∈ BFn to the function f̂ defined on Fn2 by

f̂(u) =
∑
x∈Fn

2

f(x)(−1)x·u (2.4)

where x · u denotes the usual inner product, which is

x · u =
n⊕
i=1

x1 · u1.

CHAPTER 2. BOOLEAN FUNCTIONS 9

There exists a simple divide-and-conquer algorithm to compute f̂ , which
is called the Fast Fourier Transform (FFT). We list this algorithm below.

Algorithm 1 ([13]): For every a = (a1, . . . , an−1) ∈ Fn−1
2 and every an ∈ Fn2

the following holds

f̂(a1, . . . , an) =
∑

(x1,...,xn−1)∈Fn−1
2

(−1)a·x [f(x1, . . . , xn−1, 0)

+(−1)anf(x1, . . . , xn−1, 1)] .

Let the vectors in the truth-table of f be ordered in lexicographic order with
the bit of highest weight on the right. Further let g0(x) = f(x1, . . . , xn−1, 0)+
f(x1, . . . , xn−1, 1) and g1(x) = f(x1, . . . , xn−1, 0) − f(x1, . . . , xn−1, 1). Then
the table of f̂ equals the concatenation of the tables of the discrete Fourier
transformation of the functions g0 and g1.

1. Write the truth-table of f , in which the binary vectors of length n are
in lexicographic order as above.

2. Let f0 be the restriction to Fn−1
2 × {0} and f1 be the restriction to

Fn−1
2 × {1}. Now replace the values of f0 by those of f0 + f1 and those

of f1 by f0 − f1.

3. Apply step 2 recursively to the functions which are now obtained in
the places of f0 and f1.

This algorithm terminates after n2n steps, when the recursion in step 3
arrives in functions in one variable each. After these n2n steps the global
table gives the values of f̂ .

Remark: Note that the value of f̂(0) equals the Hamming weight wH(f). By

computing f̂ ⊕ g(0) we get the Hamming weight of f⊕g, which is the number
of elements of the set {x ∈ Fn2 : f(x)⊕ g(x) 6= 0} = {x ∈ Fn2 : f(x) 6= g(x)}.
This is also called the Hamming distance dH of f and g denoted by dH(f, g).

Applying the above described discrete Fourier transformation to the sign
function χf of f yields

f̂χ(u) =
∑
x∈Fn

2

fχ(x)(−1)x·u =
∑
x∈Fn

2

(−1)f(x)⊕x·u. (2.5)

The discrete Fourier transformation of the sign function of f is called the
Walsh-transformation (or Hadamard-Walsh-transformation) of f .

CHAPTER 2. BOOLEAN FUNCTIONS 10

Remark: [13] Since fχ(u) equals 1− 2f(u) the following holds for all u ∈ Fn2

f̂χ(u) = 2nδ0(u)− 2f̂(u) (2.6)

where δ0 denotes the indicator function for the 0-vector, i.e. δ0(u) = 1 if and
only if u equals the 0-vector. δ0 is also called the Dirac symbol.
If we evaluate equation 2.6 at value 0 and transform it we get

wH(f) = f̂(0) = 2n−1 − f̂χ(0)

2
. (2.7)

Applying f ⊕ la to relation 2.7 where la = a · x gives:

dH(f, la) = wH(f ⊕ la) = 2n−1 − f̂χ(a)

2
. (2.8)

Example: Let f = x1 ⊕ x3 ⊕ x1x3 ⊕ x2x3. Then the truth table, the discrete
Fourier transform and the Walsh transform of f are listed in Table 2.4.

x1 x2 x3 x1x3 x2x3 f(x) fχ(x) f̂(x) f̂χ(x)
0 0 0 0 0 0 1 4 0
0 0 1 0 0 1 -1 0 0
0 1 0 0 0 0 1 2 -4
0 1 1 0 1 0 1 -2 4
1 0 0 0 0 1 -1 -2 4
1 0 1 1 0 1 -1 -2 4
1 1 0 0 0 1 -1 0 0
1 1 1 1 1 0 1 0 0

Table 2.4: Discrete Fourier transform and Walsh transform of the function f

We now want to take a look at some useful properties of the Fourier
transformation.

Lemma 2.2.1 ([13]): Let E be any subspace of the vector space Fn2 and let
l be any linear form on E which is not null. Then∑

x∈E

(−1)l(x) = 0. (2.9)

Proof: Since the linear form l is not null, the support of l is an affine hyper-
plane of E and has 2dim E−1 = |E|

2
elements. Hence,

∑
x∈E(−1)l(x) is a sum

over an equal amount of 1’s and −1’s and therefore it is null. �

CHAPTER 2. BOOLEAN FUNCTIONS 11

Theorem 2.2.2 ([13]): Let E be any subspace of the vector space Fn2 and
let 1E be its indicator function, i.e. 1E(x) = 1 if and only if x ∈ E. Then:

1̂E = |E|1E⊥ , (2.10)

where E⊥ denotes the orthogonal complement of E and is defined as E⊥ =
{x ∈ Fn2 |∀y ∈ E : x · y = 0}. In particular let E = Fn2 then 1̂E = 2nδ0.

Proof: Let u ∈ Fn2 arbitrary, then we have 1̂E(u) =
∑

x∈E(−1)x·u. If for

x ∈ E the linear form x 7→ x ·u is not null on E then 1̂E(u) is null, according

to Lemma 2.2.1. For the case that x · u = 0, i.e. u ∈ E⊥, then 1̂E(u) = |E|.
�

We will dedicate the next section to balanced Boolean functions.

2.3 Balanced Boolean functions

As we see in Section 2.5, balanced Boolean functions play an important role
in cryptography. We start with a definition of balancedness. Informally
speaking, balancedness means that a Boolean function yields each value in the
image set equally often. We want to give a formal definition of balancedness
as next.

Definition 2.3.1 ([13]): A Boolean function f : Fn2 → F2 is called balanced
if it takes every value 2n−1 times.

Remark: Note that a Boolean function f is balanced if and only if f̂χ(0) = 0.

When it comes to the design of cryptographic functions or the properties
of the composition of Boolean functions it is not always obvious which com-
positions lead to balanced Boolean functions.
In the following we denote for a Boolean function f by |f |1 = wH(f) the
Hamming weight of f and by |f |0 = wH(f ⊕ 1) = 2n− |f |1. Thus, we get for
a balanced function f that |f |1 = |f |0 = 2

n
2 .

We start how the property of balancedness is effected by the elementary
Boolean operations AND, OR and NOT which are denoted by f ·g, f⊕g⊕f ·g
and 1 ⊕ f . Other elementary Boolean operations like NAND or NOR can
easily be constructed out of the above mentioned functions.

Theorem 2.3.1 ([16]): Let f1 : Fm2 → F2 and f2 : Fn2 → F2 be any non-
constant Boolean function. Further let X1 and X2 be the set of input vari-
ables for the functions f1 and f2 with X1 ∩ X2 = ∅. Then F (X1, X2) =
g(f1(X1), f2(X2)) is not balanced, if g is one of the functions AND, OR,
NAND or NOR.

CHAPTER 2. BOOLEAN FUNCTIONS 12

Proof: Let |f1|1 = n1 and |f2|1 = n2. Without loss of generality let g be the
OR function. If F (X1, X2) is balanced, the following equation must hold for
the hamming weight of f1(X1)⊕ f2(X2)⊕ f1(X1)f2(X2):

n1 · 2n + n2 · 2m − n1 · n2 = 2m+n−1

n1 · 2n + ()2m − n1) · n2 = 2m+n−1

2n−1 − 2n−1

2m

n1
− 1

= n2.

Since n2 is an integer, this implies that 2m

n1
is an odd number. However, this is

impossible, since otherwise 2m would be divisible by an odd number. Hence
f(X1, X2) can not be balanced. �

Next we show a necessary and sufficient condition for a Boolean function
to be balanced.

Theorem 2.3.2 ([16]): A function f : Fn2 → F2 is balanced if and only if
there exists a bijection π on the set Fn2 such that for all α ∈ Fn2 the following
two conditions hold:

1. π(α) 6= α and

2. f(α) 6= f(π(α)).

The proof of this theorem does not lead to much insights on the compo-
sition properties of balanced functions and therefore is omitted here.
Next we want to take a look at disjunctive compositions of functions.

Theorem 2.3.3 ([16]): Let f : Fn2 → F2 be a Boolean function with input
set X1. Let further be g : Fm+1

2 → F2 be a Boolean function with input set
X2∪{p} (i.e. (p,X2) 7→ g(p,X2)) on which we require that X1∩(X2∪{p}) =
∅. Let F (X1, X2) = g(f(X1), X2). If f(X1) and g(p,X2) are balanced, then
F (X1, X2) is also balanced.

Proof: Let |X1| = m and |X2| = n. Since f(X1) and g(p,X2) are balanced,
|f |1 = 2m−1 and |g|1 = 2(n+1)−1 = 2m. We have to show that |F |1 = 2m+n−1.
Let therefore kg

pd
be the Hamming weight of g with value d ∈ F2 assigned

to the variable p, that is kg
pd

= wH(g(d,X2)). By using this notation the

Hamming weight of F (X1, X2) is given by

|F |1 = kgp0 · |f |
1 + kgp1 · |f |

1 = |f |1 ·
(
kgp0 + kgp1

)
= 2m−1 · |g|1 = 2m+n−1.

⇒ F (X1, X2) is a balanced function. �

CHAPTER 2. BOOLEAN FUNCTIONS 13

This theorem and its proof can easily be extended for the case of k
balanced functions f1, . . . fk instead of the function f . The requirement
X1 ∩ X2 = ∅ has of course to be generalized to Xi ∩ Xj = ∅ for all pairs
i 6= j of input sets of the functions.
We now want to bring up a small example which illustrates the theorem
above

Example: Let f(a, b) = a ⊕ b and g(p, c, d) = p ⊕ p · c ⊕ d. The sets X1

and X2 are X1 = {a, b} and X2 = {c, d}. The composition of the functions
F (a, b, c, d) = g(f(a, b), c, d) = a ⊕ b ⊕ a · c ⊕ b · c ⊕ d. By evaluating all 24

possible values for {a, b, c, d} it can easily be verified that F is a balanced
function.

We now want to take a look at disjunctive compositions in which one of
the involved functions is not balanced.

Definition 2.3.2 ([16]): A Boolean function f(x1, . . . , xn) is said to be bal-
anced with respect to xi if and only if

wH(f(x1, . . . , xi−1, 0, xi+1, . . . , xn)) = wH(f(x1, . . . , xi−1, 1, xi+1, . . . , xn))

=
1

2
wH(f(x1, . . . , xn)).

Theorem 2.3.4 ([16]): Let f(X1) be an unbalanced Boolean function and
g(p, X2) be a balanced Boolean function withX1∩X2 = ∅. Then F (X1, X2) =
g(f(X1), X2) is balanced if and only if g(p,X2) is balanced with respect to
p.

Proof: We start the proof with direction ⇒. As in the proof of Theorem
2.3.3 let kgp denote the Hamming weight of g(1, X2). Suppose F (X1, X2) is

balanced. Then |F (X1, X2)|1 = 2m+n−1 where |X1| = m, |X2| = n and

kgp |f |
1 + (2n − kgp) · (2m − |f |

1) = 2m+n−1

which yields kgp · (2m − 2 |f |1) = 2m+n−1 − 2n |f |1. Since f(X1) is unbalanced

2m+n−1 − 2n |f |1 6= 0 and we can divide both sides by 2m − 2 |f |1 and get

kgp =
2m+n−1 − 2 |f |1

2m − 2 |f |1
= 2n−1.

Since the Hamming weight of wH(g(p,X2)) = 2n we just showed that g(p,X2)
is balanced with respect to p.
The direction⇐ remains to prove. Suppose g(p,X2) is balanced with respect

CHAPTER 2. BOOLEAN FUNCTIONS 14

to p. Then kgp = 2n−1 and the Hamming weight of F (X1, X2) can be written
as:

|F (X1, X2)| = kgp |f |
1 + (2n − kgp) · (2m − |f |

1)

= 2kgp |f |
1 + 2m+n − kgp2m − 2n |f |1

= 2m+n−1.

Therefore we get that F (X1, X2) is balanced. �

A simple corollary out of Theorem 2.3.4 is the following one:

Corollary 2.3.5 ([16]): If f(X) is an unbalanced Boolean function and
c 6∈ X. Then the function g(X, c) = f(X)⊕ c is balanced.

Theorem 2.3.6 ([16]): Let F (X1, X2) = g(f(X1), X2) with X1 ∩ X2 = ∅
and |X2| = n. Let g(p,X2) be balanced with respect to p. Then F (X1, X2)
is balanced if and only if g(p,X2) is balanced.

Proof: It suffices to prove sufficiency, since the necessity follows from Theo-
rems 2.3.3 and 2.3.4. Let F (X1, X2) be balanced and let |X1| = m. Then of
course |F (X1, X2)|1 = 2m+n−1 and:

2m+n−1 = kgp |f |
1 + (2m − |f |1) · (|g|1 − kgp)

= 2n |f |1 + 2m |g|1 − |f |1 |g|1 − 2m+n−1.

This gives us
|g|1 (2m − |f |1) = 2m+n−1 − 2n |f |1 .

Since f is non-constant |f |1 6= 2m and therefore (2m − |f |1) 6= 0. So we can
divide by (2m − |f |1) and finally get |g|1 = 2n, which is equivalent to the
balancedness of g(p,X2). �

As next we want to consider non-disjunctive compositions of Boolean
functions.

Theorem 2.3.7 ([16]): Let F (X1 ∪X2) = g(f(X1), X1 ∩X2, X2 \X1) be a
Boolean function. Further let for all combinations λ of X1 ∩X2 let

|g(1, λ,X2 \X1)|1 = |g(0, λ,X2 \X1)|1 .

Then the function F (X1 ∪X2) is balanced if and only if g(p,X2) is balanced
with respect to p.

Proof: Let X1 ∩ X2 = {x1, . . . , xk} and let d1, . . . , dk ∈ F2. Further let
|X1| = m and |X2| = n. The Hamming weight of F can be expressed as

|F |1 =
∑

(d1,...,dk)∈Fk
2

(
kg
p,x

d1
1 ,...,x

dk
k

· kf
x
d1
1 ,...,x

dk
k

+ kg
p⊕1,x

d1
1 ,...,x

dk
k

· kf⊕1

x
d1
1 ,...,x

dk
k

)
(2.11)

CHAPTER 2. BOOLEAN FUNCTIONS 15

Since for all combinations of (d1, . . . , dk) ∈ Fk2 |g(1, d1, . . . , dk, X2 \X1)| =
|g(0, d1, . . . , dk, X2 \X1)| holds, the equation 2.11 simplifies to:

|F |1 =
∑

(d1,...,dk)∈Fk
2

(
kg
p,x

d1
1 ,...,x

dk
k

(
kf
x
d1
1 ,...,x

dk
k

+ kf⊕1

x
d1
1 ,...,x

dk
k

))
= 2m−k ·

∑
(d1,...,dk)∈Fk

2

kg
p,x

d1
1 ,...,x

dk
k

= 2m−kkgp.

So we can deduce that the function F (X1 ∪ X2) is balanced if and only if
2m−kkgp = 2m+n−k−1 which is equivalent to the balancedness of g(p,X2) with
respect to p. �

The next corollary follows directly from Theorem 2.3.7.

Corollary 2.3.8 ([16]): Let f(X1) be a Boolean function. Then f(X1)⊕X2

is balanced if X2 \X1 6= ∅.
The following theorem makes a similar statement like Theorem 2.3.1, but

for non-disjunctive compositions of functions.

Theorem 2.3.9 ([16]): Let f1(X1) and f2(X2) be any non-constant Boolean
functions and let X1 ∩X2 = x. Then g(f1(X1), f2(X2)) is unbalanced if g is
one of the functions AND, OR, NAND or NOR and f1, f2 6∈ {x, 1⊕ x}.

The proof of this theorem can be found in [16]. In the next Section we
will give a short overview about vectorial Boolean functions

2.4 Vectorial Boolean functions

In this section we discuss vectorial Boolean functions. Vectorial Boolean
functions are functions which map from Fn2 to Fm2 . For the case m = 1
Boolean functions, which only produce a single output, result and are of
course included in the set of all vectorial Boolean functions.

Notation: Let F be a vectorial Boolean function mapping from Fn2 to Fm2 .
Then we call F an (n,m) function.

For an (n,m) function F , the Boolean functions (f1, . . . , fm) define the
function F , i.e. F (x) = (f1(x), . . . , fm(x)). The functions (f1, . . . , fm) are
called the coordinate functions of F .

The representation of (n,m) can easily be extended from Boolean func-
tions. For Boolean functions we listed the representation in truth-table and

CHAPTER 2. BOOLEAN FUNCTIONS 16

in algebraic normal form (ANF). The representation via truth table extends
to a table of size 2n ×m and the ANF of an (n,m)-function is the ANF of
its coordinate functions.
The algebraic degree of an (n,m)-function is by definition the global degree
of its ANF and is therefore the maximum degree of its coordinate functions.

Definition 2.4.1 (VecCarlet10): Let F be an (n,m) function and v ∈ Fm∗2 ,
where Fm∗2 denotes the vector space Fm2 without the 0 vector, i.e. Fm∗2 =
Fm2 \{0}. Then v ·F is a component function of F . The set of all component
functions of F is spanned by the coordinate functions of F , without the null
function if the coordinate functions are F2-linearly independent.

As in the previous section we want to define the Walsh transform of
vectorial Boolean functions.

Definition 2.4.2 ([14]): The Walsh transform of a vectorial Boolean func-
tion F is a mapping from Fn2 to Fm2 . It maps any ordered pair (u, v) ∈ Fn2×Fm∗2

to the value of the Walsh transform of the component v · F .

(u, v) ∈ Fn2 × Fm∗2 7→ v̂ · Fχ(u) =
∑
x∈Fn

2

(−1)v·F (x)⊕x·u (2.12)

The multiset of values of the Walsh transform of F , which can be seen as a
matrix (

v̂ · Fχ(u)
)
u∈Fn

2
v∈Fm∗

2

,

is called the Walsh spectrum of F . The multiset of the absolute values of the
Walsh spectrum of F is called the extended Walsh spectrum and the set of

(u, v) such that v̂ · Fχ(u) 6= 0 is called the Walsh support of F .

For Boolean functions we introduced in definition 2.1.4 the set of affine
coordinate transformations. For (n,m)-functions we can transform both sides
of the function, this means we can not only transform the input variables as
in the case of Boolean functions, but also the output of the (n,m)-function.
We call an affine transformation left affine transformation if we compose F
with an affine automorphism on the left. The same notation holds for right
affine transformations.

As for Boolean functions, we want to give the definition for a balanced
vectorial Boolean function.

Definition 2.4.3 ([14]): Let F be an (n,m) function. Then F is balanced,
if it takes every value in Fm2 the same number of times, that is 2n−m.

Note that if n = m, which is the case for most S-boxes, balanced is
equivalent to bijective.

CHAPTER 2. BOOLEAN FUNCTIONS 17

Theorem 2.4.1 ([33]): An (n,m)-function is balanced if an only if its com-
ponent functions are balanced. That is, if and only if, for every v 6= 0, v ∈ Fm2
the function v · F is balanced.

Proof: For b ∈ Fm2 let ϕb be the indicator function of F−1(b) = {x ∈ Fn2 :
F (x) = b}. Then the following relation is true for all (n,m) functions, all
x ∈ Fn2 and all b ∈ Fm2 :

∑
v∈Fm

2

(−1)v·(F (x)+b) =

{
2m, if F (x) = b

0, otherwise
= 2mϕb(x). (2.13)

This holds, since the function v 7→ v · (f(x) + b) is linear and therefore it is
either balanced or null. Thus∑

x∈Fn
2

∑
v∈Fm

2

(−1)v·(F (x)+b) = 2m
∣∣F−1(b)

∣∣ = 2mwH(ϕb). (2.14)

Hence the discrete Fourier transform of the function v 7→
∑

x∈Fn
2
(−1)v·F (x)

equals the function b 7→ 2m |F−1(b)|. We know from the previous section
that a Boolean function has constant Fourier transform if and only if it is
null at every nonzero vector. We therefore can deduce that F is balanced if
and only if the function v 7→

∑
x∈Fn

2
(−1)v·F (x) is null for all v ∈ Fm2 \ {0}. �

In the next section we will discuss criteria for Boolean functions when
used in cryptography.

2.5 Criteria for Boolean functions in cryptog-

raphy

In this section we want to list some main cryptographic properties of Boolean
functions. All these properties aim at the two fundamental principles in the
design of cryptographic systems, which were introduced by Shannon [60] more
than half a decade ago. These two principles are confusion and diffusion.
Confusion scopes at masking any algebraic structure of the system and is
closely related to the complexity of the involved Boolean function. The
second principle, diffusion, aims at distributing any minor change in the
input, like the data or the key, over all outputs. To quantify the resistance of a
cryptographic system against the known attacks, fundamental characteristics
were introduced [40, 53, 61]. We start with the algebraic degree in Section
2.5.1 and continue with the nonlinearity in Section 2.5.2. In Sections 2.5.3
and 2.5.4 we review the property of balancedness and list other criteria.

CHAPTER 2. BOOLEAN FUNCTIONS 18

2.5.1 Algebraic degree

We start with the algebraic degree of Boolean functions. Since Boolean func-
tions with low algebraic degree make the higher differential attack [29, 32]
easier, functions with high algebraic degree are preferred.
It is known that when n, the number of variables of the Boolean function,
tends to infinity, random Boolean functions almost surely have algebraic de-
gree at least n − 1. This holds because the number of Boolean functions of
degree at most n − 2 equals

∑n−2
i=0

n/i = 22n−n−1 and is negligible compared
to the number 22n of all Boolean functions. It should also be noted, that the
algebraic degree is invariant under affine transformations.

2.5.2 Nonlinearity

The next characteristic which is important to Boolean functions in cryp-
tography is the so called nonlinearity. The nonlinearity is a measure of
the distance from the Boolean function to all affine functions. We say that
there is a correlation between a Boolean function f and a linear function l if
dH(f, l) is different from 2n−1. It should be noted that any Boolean function
has correlation with some linear function. This correlation should be small
since the existence of affine approximations of the Boolean function which
are involved in an cryptosystem allows to build attacks on this system. This
field of research is called linear cryptanalysis [83, 39]. The nonlinearity of a
Boolean function f is the Hamming distance between f and any affine func-
tion. To counter attacks the nonlinearity of a cryptographic function must
be high and is surely one of the most important cryptographic criteria. It
can easily be seen that the nonlinearity also is an affine invariant.
To compute the nonlinearity of a function f we investigate the Walsh-trans-
form of f : let la = a · x be any linear function. According to relation 2.8 we
have that dH(f, la) = 2n−1 + 1

2
f̂a(a) and we deduce

dH(f, la ⊕ 1) = 2n−1 +
1

2
f̂a(a).

So we get that the nonlinearity of f is equal to

nl(f) = 2n−1 − 1

2
max
a∈Fn

2

∣∣∣f̂χ(a)
∣∣∣ . (2.15)

We see that a function has high nonlinearity if all the values of the Walsh-

transform have small absolute value. It can be shown that maxa∈Fn
2

∣∣∣f̂χ∣∣∣ ≥

CHAPTER 2. BOOLEAN FUNCTIONS 19

2n/2 and this implies that

nl(f) ≤ 2n−1 − 2
n
2
−1. (2.16)

Nonlinearity of a vectorial Boolean function

We now want to take a look at the nonlinearity of vectorial Boolean functions.
The notion of nonlinearity has been generalized by Nyberg [46].

Definition 2.5.1 ([46]): The nonlinearity nl(F) of an (n,m)- function F
is the minimum nonlinearity of all the component functions of F . More
formally this is

nl(F) := min
v∈Fm∗

2

nl(v · F).

So the nonlinearity of an (n,m) function F is the minimum Hamming
distance between the component functions of F and all affine functions on n
variables. The nonlinearity is often used as a quantification of the resistance
of an S-box against a linear attack. The nonlinearity of a (n,m)-function is a
left and right affine invariant. Another property of the nonlinearity is that in
the case that F is a permutation, we have that nl(F) = nl(F−1). By taking
a look at the definition of the nonlinearity nl(F) we see why this holds:

nl(F) = 2n−1 − 1

2
max

(u,v)∈Fn
2×Fn

2
(u,v)6=(0,0)

∣∣∣∣∣∣
∑
x∈Fn

2

(−1)v·F (x)⊕u·x

∣∣∣∣∣∣ .
By exchanging x with F−1 we get the desired result.

The reason why a high nonlinearity is important for block ciphers lies in
the linear attack introduced by Matsui [39]. The linear attack tries to find
good linear approximations of the involved functions in the block cipher.
It therefore uses triples (α, β, γ) of binary strings such that, a block m of
plaintext and a key k being randomly chosen. The bit α · m ⊕ β · c ⊕ γ ·
k is null with probability different from 1/2. The attack is more efficient
if the probability is more distant to 1/2. These above illustrated linear
approximations work less good, the higher the nonlinearity of the block cipher
is.

2.5.3 Balancedness

Another important property of Boolean functions, when used in cryptogra-
phy, is balancedness. We want to recall definition 2.3.1.

Definition 2.5.2 ([13]): A Boolean function f : Fn2 → F2 is called balanced
if it takes every value 2n−1 times.

CHAPTER 2. BOOLEAN FUNCTIONS 20

Though not so important for block ciphers, we want to state a general-
ization to balancedness, the so called resiliency.

Definition 2.5.3 ([13]): Let f : Fn2 → F2 be a Boolean function and let
further be m ∈ N. The function f is called an m−resilient function if any
of its restrictions obtained by fixing at most m of its input coordinates xi is
balanced.

We also want to state how to analyze the m-resiliency of a given Boolean
function f .

Theorem 2.5.1 ([83]): Let f be an n variable Boolean function. Then f
is m-resilient if and only if f̂χ(u) = 0 for all u ∈ Fn2 such that wH(u) ≤ m.

Equivalently, f is m-resilient if and only if f is balanced and f̂(u) = 0 for all
u ∈ Fn2 suc that 0 < wH(u) ≤ m.

2.5.4 Other criteria

There exist many more cryptographic criteria like the Strict Avalanche Cri-
terion [78] introduced by Webster and Tavares or the algebraic immunity of a
Boolean function which is the minimum degree of a nonzero Boolean function
such that f · g = 0 (this means that g is an annihilator of f) or (f ⊕ 1)g = 0
(this is equivalent to that g is a multiple of f). For further information on
the topic of cryptographic criteria of Boolean functions we may refer to the
Chapter about Boolean functions [13] in the Book [18].

Chapter 3

Side-Channel Analysis

Several measures to quantify the security of a cryptographic algorithm have
been proposed in the literature [66]. Of course these criteria only cover the
properties of the algorithm itself, but not its implementation. Alas, it turned
out that even if a cryptographic algorithm is secure in a theoretical manner,
it still can be attacked by a number of practical attacks on its implementa-
tion. One class of these attacks are so called side-channel attacks which we
will discuss in this chapter.

The following chapter is organized as follows. In Section 3.1 we give a
short overview on implementations of cryptographic algorithms and attacks
on hardware devices. In Section 3.2 we present the simple power analysis,
a method introduced by Kocher in [30]. In Section 3.3 we focus on the
differential power analysis, also introduced by Kocher in [31]. Finally we
give a short overview on countermeasures against side-channel attacks in
Section 3.4.

3.1 Introduction

In this section we shortly discuss the topic of hardware implementations of
cryptographic algorithms, give a common classification of attacks on hard-
ware devices and regard the power consumption of a CMOS gate.

3.1.1 Hardware in cryptography

Security in modern systems needs to achieve three goals: confidentiality in-
tegrity and authenticity [41]. In modern systems this is achieved by using
cryptographic algorithms like the Data Encryption Standard (DES) [57] or

21

CHAPTER 3. SIDE-CHANNEL ANALYSIS 22

more commonly the Advanced Encryption Standard (AES) [22]. A block
cipher is a mathematical function which transforms some data, called plain-
text, by the use of some secret information, called key, into random-looking
text, called ciphertext. Due to Kerkhoff’s principle the details about the
cryptographic algorithm are assumed to be known. The only information
which is kept secret is the key. For a good first overview about the topic
of cryptography we refer to the book by Menezes et al. [41] or the book by
Schneier [57].
To execute a cryptographic algorithm, usually a computer or specially de-
signed hardware is used. We differentiate between two sorts of cryptographic
devices. The first type is called dedicated cryptographic hardware, like a
smart card, whose only purpose it is to perform cryptographic operations.
The second type is called general purpose hardware, like a field programmable
gate array (FPGA). The other method to implement a cryptographic algo-
rithm on a computer is by the use of cryptographic software, for example the
JavaTMcryptographic extension library (Java-JCE) [1].

3.1.2 Types of attacks on cryptographic hardware

In the following we give a short classification of attacks on cryptographic
devices. We generally distinguish between the following two criteria. The
first criterion is whether an attack is active or passive.

• Active attacks: In an active attack the attacker tries to reveal or
extract the secret information of a cryptographic device by interfering
the normal operation. This can either be done in an invasive or non-
invasive way.

• Passive attack: In a passive attack the attacker only observes the
behaviour of the cryptographic device. For example an attacker could
measure the power consumption or execution time of the device during
its operation.

The second criterion is the interface which is used on the cryptographic
device to attack the device.

• Invasive attack: In an invasive attack, the attacker typically starts
with decomposing the device under attack. By the use of a probing
device, an attacker can get access to the different parts of the device,
which is usually an integrated circuit. An invasive attack can be pas-
sive, if the probing station is used only to observe the signals. In con-
trary an invasive attack is active if the attacker tries to induce faults
over the probes on the device.

CHAPTER 3. SIDE-CHANNEL ANALYSIS 23

Invasive attacks form the most powerful class which an attacker can
mount on a cryptographic device. However only few publications exist
on this topic, since they normally require expensive hardware. Impor-
tant publications are for example from Anderson [5] and Skorobogatov
[62].

• Semi-invasive attack: In a semi-invasive attack the device is also
demounted, but in contrast to an invasive attack, no electrical contact
to the device is made.

In a passive semi-invasive attack the attacker usually tries to read out
memory cells of the device without probing the device itself. An attack
that has been performed in this way has been published by Samyde et
al. in [56].
In an active semi-invasive attack the attacker usually tries to induce
faults in the device under attack. Common methods for provoking
these faults are X-rays, electromagnetic fields or light. A successful
attack using light to induce faults on the device has been published by
Sundström and Alvandpour in [67].

• Non-invasive attack: In a non-invasive attack the attacker normally
operates with the device as it is. This means that the attacker only
uses directly accessible interfaces. Most importantly to note is that
there is no evidence left behind after the attack has been performed.
Clearly these attacks form a serious threat to cryptographic devices.
In a passive non-invasive attack, usually called side-channel attack,
the attacker tries to reveal the secret of a device by measuring the
execution time, the power consumption or its electromagnetic field.
These three different side-channels lead to timing attacks [30], power
analysis attacks [31] and electromagnetic attacks [23, 54] respectively.
In an active non-invasive attack the attacker usually tries to induct
faults through the accessible interfaces. This can be done for example
by clock glitches or power glitches. For a survey on this kind of attacks
we refer to [6].

In this thesis we only consider passive non-invasive attacks on the cryp-
tographic devices which implement the cryptographic algorithms, or mathe-
matical functions on which we investigate.

3.1.3 Power consumption

In this section we want to take a closer look into the power consumption of
digital circuits. These circuits like FPGAs or Application Specific Integrated

CHAPTER 3. SIDE-CHANNEL ANALYSIS 24

Circuits (ASICs) all contain basic modules called logic cells. These logic
cells take one or more logic inputs and map these to logic values on the
output, according to the function these cells represent. To implement logic
cells in hardware, complementary metal-oxide semiconductor (CMOS) [77]
transistors are commonly used.

For CMOS based integrated circuits it is known, that the total power
consumption of the circuit is the sum of the power consumptions of all logic
cells that make up the circuit. Hence, the total power consumption strongly
depends on the number of logic cells and the connections between these
cells. We illustrate below the model of an inverter as the simplest form of a
logic cell. Figure 3.1 displays the model of a CMOS inverter. The circuit is
powered by a constant power supply VDD. The input of the circuit is denoted
by a and the output is denoted by q.

Figure 3.1: Schematic representation of a CMOS inverter with lumped ca-
pacitances. [36]. The circuit is provided by a constant supply voltage VDD
and has the input signal a and output signal q. The lumped capacitances
are denoted by CL.

The power consumption of such an inverter can be divided into two parts.
The static power consumption Pstat, which is consumed by the circuit when
there is no switching activity. The second part is the dynamic power con-
sumption Pdyn which is consumed by the circuit when there is switching
activity in the circuit. In Table 3.1 we list the four transitions that can occur
at the node q. The node q has the value qt−1 at time t − 1 and has the
value qt at time t. The power that is consumed to perform the transition is
denoted by P00 . . . P11. Further we denote by p00 . . . p11 the probability that
these transitions occur.

In standard CMOS logic the power consumptions P00 and P11 are nearly

CHAPTER 3. SIDE-CHANNEL ANALYSIS 25

qt−1 qt Power Probability
0 0 P00 p00

0 1 P01 p01

1 0 P10 p10

1 1 P11 p11

Table 3.1: Transitions of the value q in a CMOS gate at time t.

the same. Due to the characteristic of the circuit, the power consumptions
P01 and P10 are not equal. Further it is known that

P00 ≈ P11 � P10 6= P01. (3.1)

Hence an attacker can use this knowledge (3.1) for an attack. For more details
on how to use this information we refer to Section 3.2 and Section 3.3 where
Simple Power Analysis and Differential Power Analysis are discussed. For
a thorough analysis of the characteristic power consumption of the CMOS
inverter we refer to the book of Mangard et al. [36].

3.2 Simple power analysis

Simple power analysis (SPA) has first been introduced by Kocher et al. in
[31]. The idea of a simple power analysis attack is, to find a direct connection
between the power trace of a cryptographic device and the processed values.
Usually SPA works with very few power traces but therefore needs a detailed
knowledge about the implementation of the cryptographic algorithm. We
start with a description of SPA attacks.

3.2.1 Description

As already noted above, an SPA attack operates on power traces of a cryp-
tographic device. In an SPA attack the following fact is exploited. When
the cryptographic device encrypts some data d with the key k the power
consumption of the device becomes a function f(d, k) of the key and the
processed data. If there is enough knowledge about the implementation, the
attacker can investigate on the points of interest in the power trace, where
the data gets processed.
Normally an SPA operates with very few or in the very extreme just one
power trace. If there is only one power trace, the attack is called single-shot
SPA. If there are a few traces available the attack is called multiple-shot
SPA. On the multiple-shot SPA we can further distinguish between multiple

CHAPTER 3. SIDE-CHANNEL ANALYSIS 26

power traces with the same plaintext, which gets processed multiple times or
multiple power traces with different plaintext.

To deduce the key or parts of the key in an SPA, the attacker usually has
to derive the key from the power trace by a visual inspection. Examples of
SPA attacks can for example be found in the book of Mangard et al. [36].

3.3 Differential power analysis

The differential power analysis (DPA) is the most common side-channel at-
tack. The reason is, that no detailed information about the specific imple-
mentation or detailed knowledge about the hardware is needed. We conquer
this lack of knowledge with statistical tools and, in contrast to SPA, with a
large number of power traces.

We start in Section 3.3.1 with a general description of the method. In
Section 3.3.2 we describe how we use the correlation coefficient in a DPA
attack. We discuss alternatives to the correlation coefficient in a DPA attack
in Section 3.3.3 and describe distribution based attacks in Section 3.3.4.
Finally we describe higher order DPA attacks in Section 3.3.5.

3.3.1 Description

We start with a short description of the method. The idea behind a DPA
attack is to find out how the power consumption at fixed moments of time
depends on the processed data. To find this dependence we need a huge
number of power traces. The advantage of a DPA attack, in contrast to an
SPA attack, is that we do not need detailed information about the device.
It suffices to know which cryptographic algorithm is used. The disadvantage
is that the attacker needs to posses the device for a longer period of time to
gain the large number of traces.

We now discuss the general 5 steps of a DPA attack [36].

• Step 1 – Choose an intermediate result of the algorithm: In
the first step we choose an intermediate result of the algorithm which is
used inside the device. The intermediate result needs to be a function
f(d, k) where d is some known data and k is the key or at least some
part of the key. Note that we need to know which data d is processed
in this step.

CHAPTER 3. SIDE-CHANNEL ANALYSIS 27

• Step 2 – Measure the power consumption: In this step we
measure the power consumption of the device while it processes D
different data blocks. The processed data d must be known for all D
recorded power traces. These known data values get written in a vector
d = (d1, . . . , dD), where di is the processed data from the i-th run. We
refer to the recorded power trace that corresponds to the processed data
block di with ti = (Ti,1, . . . , Ti,T) where T is the length of the trace. We
refer to the set of vectors ti with the D × T matrix T. Note that it is
mandatory that the power traces, that are written in the same column
in the matrix T are caused by the same operation of the algorithm.

• Step 3 – Calculate hypothetical intermediate values: In this
step we calculate for each possible choice of k a hypothetical interme-
diate value. We further write all possible values for k into the vector
k = (k1, . . . , kK). K denotes the total number of possible values for
the key k. This vector k is normally called key hypotheses. Given the
vector d of data values and the vector k of key hypotheses, we can
easily calculate hypothetical intermediate values vi,j = f(di, kj) for all
D process runs and all K key hypotheses. This calculation results in a
D ×K matrix V. Since we calculated the intermediate results for all
key hypotheses kj, one of the columns of V contains the intermediate
values that were calculated by the real device during the D runs. We
refer to this column with ck, hence kck is the key which is used inside
the device. So the goal for the further steps is to determine which
column of V has been processed by the device.

• Step 4 – Map intermediate values to power consumption val-
ues: In this step we map the hypothetical intermediate values V to a
map of hypothetical power traces H. To do so, we simulate the power
consumption of the device when it processes the intermediate results
vi,j. Out of this simulation we obtain the hypothetical power values
hi,j, which we write into a D ×K matrix H.

• Step 5 – Comparison of hypothetical power values with the
real power consumption: The final step of a DPA attack consists of
a comparison between the columns hi of the matrix H with each column
tj of the matrix T. This means, that we compare the hypothetical
power traces for each possible key k with the recorded power trace.
We store the result of this comparison in a matrix R which has size
K×T . The matrix R consists of entries ri,j which are the result of the
comparison between hi and tj. The comparison is based on methods
which are discussed later in this section. The only important detail to

CHAPTER 3. SIDE-CHANNEL ANALYSIS 28

note about these methods is, that the value ri,j is higher, the better
the compared vectors match.

The intermediate value that has been chosen in step 1 needs to be pro-
cessed by the device at some time. We refer to to this position of the
power traces with ct. Hence column tct contains the power consump-
tion values that correspond to the intermediate values vck. Based on
these values vck the hypothetical power consumption values hck have
been simulated. Hence the columns hck and tct are strongly related.
Accordingly the value rck,ct is the highest value in the matrix R.
Note that in practice it is possible that all values of R are low. In this
case the number D of power traces is usually just too low. If there are
more elements in the matrices H and T, the relationship between the
matrices can be determined more precisely.

In the next sections we describe how to determine the relationship be-
tween the columns hi and tj.

3.3.2 Attacks based on the correlation coefficient

In this section we discuss the most common way to measure the linear relation
between hi and tj, the so called correlation coefficient. There exists a well
established theory for the correlation coefficient which can be used to model
statistical properties of a DPA attack. We start with a definition of the
correlation coefficient.

Definition 3.3.1 ([36]): Let x and y be two random variables. Then the
correlation ρ between x and y is

ρ(x, y) =
cov(x, y)√

Var(x)Var(y)
=

E [(x− E[x]) · (y − E[y])]√
Var(x)Var(y)

(3.2)

To use the correlation coefficient in a DPA attack, we calculate the cor-
relation coefficients between the vectors hi and tj for i ∈ {1, . . . , K} and
j ∈ {1, . . . , T} in step 5. This gives the linear dependence between the vec-
tors hi and tj. We now give a formula to calculate the values ri,j of the
matrix R.

ri,j =

∑D
d=1(hd,i − E[hi]) · (td,j − E[tj])√∑D

d=1(hd,i − E[hi])2 ·
∑D

d=1(td,j − E[tj])2

(3.3)

Since we do not know the true distribution of hi and tj we replace the values
E[hi] and E[tj] with the estimator which is the mean value of the sample hd,i

CHAPTER 3. SIDE-CHANNEL ANALYSIS 29

and td,j. We denote the mean values of hi and tj with h̄i and t̄j. Hence we
get the following formula for the values ri,j:

ri,j =

∑D
d=1(hd,i − h̄i) · (td,j − t̄j)√∑D

d=1(hd,i − h̄i)2 ·
∑D

d=1(td,j − t̄j)2

(3.4)

There has been numerous research on DPA attacks, for example by Örs
et al. [47] who attack ASIC AES implementations. In [63] Standaert et
al. attack standard FPGA implementations of the DES. Tillich and Herbst
attack software countermeasures against side-channel analysis in [69].

In the following section we describe alternatives to the correlation coeffi-
cient.

3.3.3 Attacks based on alternatives

We now present some alternatives to the correlation coefficient to determine
the relation between the vectors hi and tj. For example Kocher et al. [31]
used the difference-of-means method before using the correlation coefficient
as a distinguisher. For all the methods we list below, the attack runs for the
steps 1,2,3 unchanged. The first difference is in step 4, when we map the
matrix V to the matrix H. In step 4 we need to change the power model
since the methods below only allow a binary power model. Binary means in
this case that there is either power consumed, which results in hi,j = 1, or
no power consumed which results in hi,j = 0.
The next difference is of course in step 5 when we need to calculate the matrix
R. We describe below how this is done for the alternative methods.

Difference of means

We start with the difference of means method to determine the relation
between hi and tj. The basic idea behind this method is based on the
following observation. When creating the matrix H we assume that the
power consumption values are different for some intermediate values than for
all the other intermediate values. To check if a key hypothesis ki is correct,
we split the matrix T into two sets of rows according to the vector hi. We
do this in the following way. We put the rows of T in the first set which
correspond to the indices of the zeros of hi. The second set of rows of T
contains the rows which correspond to the indices of the ones of hi. We
denote with m0i the vector of mean values of the rows from the first set of
the matrix T. Analogously we denote with m1i the vector of mean values of
the rows from the second set. The key hypothesis ki turns out to be correct,

CHAPTER 3. SIDE-CHANNEL ANALYSIS 30

if there is a significant difference between m0i and m1i at some point in time.
The result of a DPA attack with the difference of means method is a matrix
R where each row of R corresponds to the difference between m0i and m1i

for one key hypothesis ki.

Distance of means

Next we present the distance of means method to determine the correct
key hypothesis. The distance of means method is an improvement of the
difference of means test. The reason is that the distance of means test also
uses the standard deviation of the values. We describe the method below.
We proceed as in the difference of means test and split the matrix T as before.
The next step is to compare the means of the two sets with the distance of
means test. We therefore calculate the values ri,j as follows [36]:

ri,j =
m1i,j −m0i,j

si,j
(3.5)

where si,j denotes the standard deviation of the difference distribution of the
two sets.

Generalized maximum-likelihood testing

Last we describe a method which was proposed by Agrawal et al. [2]. The
method is based on the generalized maximum likelihood testing [28].

For using this method in a DPA attack, we proceed as in the difference of
means test and split the matrix T as before into a 0-bin and 1-bin. We then
extend the matrix H by an additional column hK+1 which contains a random
sequence of zeros and ones. This column is called the null hypothesis.
In step 5 of the DPA attack we now compare the K key hypotheses to the
null hypothesis hK+1. The idea of this comparison is that under the wrong
key hypothesis, the signals in the 0-bin and 1-bin have similar distributions
due to a random separation in the two bins. Hence, we cannot detect much
difference, compared to the null hypothesis. For the correct key hypothesis,
the distribution of signals in the 0-bin differs from the distribution in the 1-
bin. Hence there is a difference compared to the null hypothesis. The formula
to calculate the values ri,j can be found with a detailed explanation of it in
[2]. Agrawal et al. state in [2] that their method needs fewer power traces
compared to the difference of mean method, in order to derive the correct
key. Note, that the due to the random generation of the null hypothesis, the
generalized maximum-likelihood testing is not deterministic.

CHAPTER 3. SIDE-CHANNEL ANALYSIS 31

3.3.4 Attacks based on the distribution

In this section we present DPA attacks that use distinguishers which compare
the distribution of the real power traces and the hypothetical power traces.
We present the mutual information attack proposed by Gierlichs et al. in
[25] and the Kolmogorov-Smirnov distinguisher proposed by [80] below. Note
that a DPA attack that uses one of these distinguishers runs unchanged up
to step 5. The difference in step 5 is that we compare the distribution of the
vectors hi and tj with the distinguishers presented below.

Mutual information attack

Mutual information measures the total information shared between two ran-
dom variables X and Y . This measure is expressed in bits. The mutual
information [60], expressed via the entropies of X and Y , is

I(X;Y) = H(X)−H(X|Y), (3.6)

where H(X) is the entropy of X and H(X|Y) the entropy of X|Y . The
mutual information satisfies 0 ≤ I(X;Y) ≤ H(X), where the lower bound
is reached if and only if X and Y are independent. The upper bound is
achieved if Y completely determines X.

When we use the mutual information as a distinguisher for the key hy-
potheses, we calculate the mutual information between the power traces and
the hypothetical power traces under a key hypothesis. Hence we calculate
values ri,j such that

ri,j = I(ti; hj)

If the key hypothesis is wrong, the mutual information will be 0 or very
low, due to the independence of the variables. If the key hypothesis is correct,
and the point in time for the power trace t is wrong, the mutual information
will also be zero or very low again. If the point in time and the key hypothesis
are correct the mutual information I(ti; hj) is greater than zero. Hence, the
two vectors ti and hj are dependent by definition.

The mutual information is a functional of probability distributions. When
we use the mutual information in a DPA attack, the true distributions of
the samples (power traces) are not known. Hence we have to estimate the
distribution of the samples. This is explained in detail in [25]. Gierlichs et al.
report in [25] that the MIA works as a “generic” distinguisher, which means
that a key recovery is possible even in the absence of a good power model.
The MIA is adaptable to higher order attacks, since the mutual information
extends well to multi-variate distributions. Whitnall et al. report in [80] that
the MIA is sensitive to noise in the power measurements.

CHAPTER 3. SIDE-CHANNEL ANALYSIS 32

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test [65] is a non-parametric statistical test
for distinguishing between distributions. The distance between the empirical
cumulative distribution functions (CDF) of two samples A = {Ai|1 ≤ 1 ≤ n}
and B = {Bj|1 ≤ j ≤ m} is measured by the KS test statistic. It tests
whether the two sets of samples have been drawn from the same distribution.
The KS test statistic is defined as K(A‖B) = supx∈A∪B |FA(x)− FB(x)|
where FA and FB are the empirical CDFs, i.e.

FA(x) =
1

n

n∑
i=1

1Ai≤x

where 1Ai≤x is the indicator function taking the value 1 if and only if A1 ≤ x.
Informally, a KS distinguisher measures the maximum distance between

the distribution of the global traces T and the distribution of the conditional
traces T|hi. The formula to calculate the values from a KS distinguisher can
be found in [80]. However the values are high for a correct key hypothesis
and low for the remaining key hypotheses.

Whitnall et al. report in [80] that the KSA is more robust against noise
than the MIA. Another advantage of the KSA compared to the MIA is,
that there is no use of estimating the underlying probability density func-
tions. Since the KS test extends for bivariate distributions, the KSA can be
extended to second-order DPA.

3.3.5 Higher order attacks

Higher order DPA attacks were defined by Kocher et al. in [31], as a DPA
attack that combines one or more samples within one single power trace.
This allows us to distinguish DPA attacks of different orders.

Definition 3.3.2 ([43]): An nth-order DPA attack makes use of n different
samples in the power trace, that correspond to n different intermediate values
of the cryptographic algorithm.

For example in a second order DPA attack the event under investigation
typically is the fact that two intermediate values which occur at different
time, are equal (or different).
In practice higher order attacks are more difficult to mount than first-order
attacks. Daemen et al. describe in [20] that second-order DPA attacks need
a more complex layout, increased memory and processing requirements, as
well as an increased number of power consumption traces. Though higher

CHAPTER 3. SIDE-CHANNEL ANALYSIS 33

order attacks are more complex, several publications on higher order attacks
have been made [43, 64, 48, 24].

3.4 Selection of countermeasures

In the following section we analyze countermeasures against DPA attacks.
We first discuss countermeasures on the software level. We then analyze
countermeasures on the algorithmic level and the gate level. Both are hard-
ware countermeasures. We start with software countermeasures below.

3.4.1 Software countermeasures

When a cryptographic algorithm is implemented on a general purpose hard-
ware, like a generic 8051-based microcontroller, the reduction of side-channel
leakage on the hardware side is not possible. The only freedom that remains
is to modify the implementation of the cryptographic algorithm in software.
A standard procedure to reduce side-channel leakage is to introduce random
masks in the software. Consider for example the following code which takes
some data as input and modifies the data with the use of the secret key. For
simplicity we assume that the data is combined with the secret key by an
xor operation.

1: Function1(data)

2: {

3: result = data ^ SecretKey;

4: . . .

5: other operations . . .

6: }

As long as we have control over the data which is processed by Function1,
this implementation is vulnerable to a DPA attack in line 3. As a common
countermeasures, we modify the routine as follows.

1: Function2(data)

2: {

3: RandomMask = rand();

4: Temp = data ^ RandomMask

5: result = Temp ^ SecretKey;

6: . . .

7: other operations . . .

8: }

CHAPTER 3. SIDE-CHANNEL ANALYSIS 34

This function Function2 is safe from first-order DPA attacks [43], since we do
not know the values which get processed in the operation where the secret key
is involved. However Messerges showed in [43] that Function2 is vulnerable
to second-order DPA attacks on the lines 3 and 5. The author further points
out that for a second-order DPA attack a more detailed knowledge about the
implementation is needed, since an attacker must know which points in the
power consumption trace are important.

3.4.2 Hardware countermeasures

The general goal of hardware countermeasures against side-channel attacks
is, to try to make the power consumption of the circuit independent of the
processed values. Usually this is done by adding randomness to the circuit.

Algorithmic countermeasures

We start by presenting a countermeasure on the algorithmic level. The idea
of this approach is to add a side-channel countermeasure, for example a
masking scheme, to the algorithm. We present an approach from Mangard
et al. [36] for a masked AES [22] implementation below.

Since all AES operations are linear except for the SubBytes step, we only
focus on masking the S-box. The AES S-box consists of 256 Bytes and is
generated by determining the multiplicative inverse for a given element in
F∗256. The masking scheme, by Mangard et al. [36], is based on the S-box
architecture described by Wolkerstorfer et al. in [82]. Wolkerstorfer et al.
use a composite field arithmetic to represent the field F256. The authors of
[82] represent elements of F256 as linear polynomials vhx+vl with vh, vl ∈ F16.
Hence, F256 is a quadratic extension of F16.

To compute the inverse of an element in F256 we can use the following
formulas, which can be computed in F16 [36]:

(vhx⊕ vl)−1 = v′hx+ v′l
v′h = vh · w′

v′l = (vh + vl) · w′

w′ = w−1

w = (v2
h · p0) + (vh · vl) + v2

l

(3.7)

These operations are calculated modulo a polynomial that is fixed when
the quadratic extension is defined. p0 is defined in compliance with this
polynomial.

CHAPTER 3. SIDE-CHANNEL ANALYSIS 35

When we want to calculate the inverse of a masked input in F256, we
first map the input as well as the mask to the composite field representation.
A linear mapping for this has been described by Wolkerstorfer et al. in
[82]. Since the mapping is linear, it can be masked easily. The input of the
inversion in F16 becomes than (vh +mh)x+ (vl +ml). The goal of Mangard
et al. [36] is that all inputs and outputs of the inversion are masked. Thus
the authors of [36] want to achieve the following representation.

((vh +mh)x+ (vl +ml))
−1 = (v′h +m′h)x+ (v′l +m′l)

This can be achieved by the following formulas [36]:

v′h +m′h = vh · w′ +m′h
v′l +m′l = (vh + vl) · w′ +m′l
w′ +m′w = w−1 +m′w
w +mw = (v2

h · p0) + (vh · vl) + v2
l +mw

(3.8)

To calculate the inversion in F16 of the element w, Mangard et al. represent
F16 as quadratic extension of F4. The formulas (3.8) can be used again to
calculate the inversion of the masked input in F4. In the field F4 inversion of
elements is equal to squaring, hence x−1 = x2 for all x ∈ F4.

Pramstaller et al. have reported in [52] that an implementation of this
masked S-box is two to three times larger and slower than an implementation
of an unmasked AES S-box.

Mangard et al. describe in [36] the vulnerability of this masked S-box to
second order DPA attacks. The authors describe an attack in which they use
the correlation coefficient as a distinguisher. The power consumption mea-
surements of the implementation were taken during the first AES encryption
round. The issue for the side-channel leakage in the circuit are certain hard-
ware effects, called glitches. We refer to Section 4.2 for a description of these
hardware effects.

Gate based countermeasures

We now present countermeasures which are based to counter side-channel
leakage on the gate level. Special logic design styles have been proposed for
this purpose like Wave Dynamic Differential Logic (WDDL) proposed by Tiri
et. al. in [70] or Masked Dual-Rail Pre-charge Logic (MDPL) introduced by
Popp and Mangard in [50]. We will discuss the MDPL logic style below.

The concept of both logic styles is to balance the power consumption of
the gate transitions from 0 7→ 1 and 1 7→ 0, see equation (3.1). Mangard

CHAPTER 3. SIDE-CHANNEL ANALYSIS 36

and Popp try to achieve this by implementing the following idea. To bal-
ance the power consumption they use a Dual-Rail Pre-charged (DRP) logic
style. DRP logic styles have the property that the transitions need the same
amount of power, if all pairs of complementary wires are perfectly balanced.
This means that they have the exact same capacity load, which in practice
is very hard or even impossible to guarantee. To handle this problem, they
further use a masking scheme for the logical values. This means that a logical
value d is represented as dm = d ⊕ m where m is a mask value which gets
updated in every clock cycle. In Figure 3.2 an AND gate and an OR gate in
MDPL style are shown.

Figure 3.2: AND and OR gate in MDPL style [68], with inputs
(am, ām, bm, b̄m,m, m̄) and outputs (qm, q̄m). MAJ represents a majority gate.

Popp and Mangard state in [50] that their design can improve side channel
leakage caused by the difference of loading capacitances between to comple-
mentary logic gates. Suzuki and Saeki describe however in [68] that the
circuit is vulnerable to side-channel leakage caused by the difference of delay
time between the input signals of the MDPL gates.

3.4.3 Summary

The problem why these countermeasures do not work in practice is, that
the processed values are not independent of the input values like data and
key. Hence, information about the input values is leaked through the side-
channels. In the next chapter we will present a different approach against
side-channel leakage. We therefore try to achieve that the input values of

CHAPTER 3. SIDE-CHANNEL ANALYSIS 37

logical circuits are independent of the input values of the cryptographic al-
gorithm.

Chapter 4

Secret sharing

In this section we introduce the concept of secret sharing or multi-party com-
putation (MPC). The goal is, to enable multiple parties a mutual computa-
tion over their inputs, by keeping these inputs private. For example consider
the following problem. Given a set of millionaires who want to determine
which of them is richest, without revealing their net worth. This problem is
called the millionaires problem and was suggested by Yao in 1982 in [84].
Another approach to MPC is the so called secret sharing. The idea of se-
cret sharing is to start with a secret and divide it into pieces. These pieces
are called shares and are distributed amongst the parties. The collection of
specific subsets of the parties information allows the reconstruction of the
original secret. If two or more shares are required, for example to trigger an
critical action, a secret sharing scheme may serve as a shared control scheme.
When we talk about secret sharing schemes in this chapter, we want to keep
in mind the following idea. We first split the input x of a cryptographic func-
tion in a certain way to inputs x1, . . . , xn such that each xi with i ∈ {1, . . . , n}
is independent of x. When we then use these xi as inputs, the intermediate
results will be independent of the original input x. Hence no side-channel
information which is leaked from these intermediate values gives information
about the value x.

The chapter is organized as follows. We start in Section 4.1 with an
introduction to sharing schemes. In Section 4.2 we will take a closer look on
masking schemes. In Section 4.3 we will introduce the secret sharing we use
in this thesis and prove its security against side-channel attacks. Section 4.4
will cover the sharing of affine equivalent S-boxes.

38

CHAPTER 4. SECRET SHARING 39

4.1 Introduction to secret sharing

In this section we give a short introduction to secrete sharing methods. We
start in Section 4.1.1 with simple shared control schemes and continue in
Section 4.1.2 with threshold schemes.

4.1.1 Simple shared control schemes

We start with a simple shared control scheme for two parties. The goal is,
to share a secret S, 0 ≤ S ≤ m − 1 for m ∈ N, such that no single party
has knowledge about the secret S (except a trusted third party). We use the
following method to share the secret S between the two parties. A trusted
third party T generates a random number S1 such that 1 ≤ S1 ≤ m − 1
and gives the numbers S1 and S2 = S − S1 mod m to two parties A and B
respectively. To employ the secret value S, both A and B have to supply
their secrets S1 and S2. By addition modulo m the secret S can be recovered.
Assume that A and B are trusted not to collude, then neither A nor B has
any information about the secret S, since their information is a random
number between 0 and m− 1.
We can generalize this scheme to share the secret S between t parties. The
procedure works as follows: The trusted third party T generates t−1 random
numbers Si, such that 1 ≤ S1 ≤ m− 1, for all i ∈ {1, . . . , t− 1. The parties
P1, . . . , Pt−1 get the random Si, where the party Pt gets St = S −

∑t−1
i=1 Si.

To recover the original secret S, the secretes Si, for i ∈ {1, . . . , t} are added
modulo m, i.e. S =

∑t
i=1 Si mod m.

4.1.2 Threshold schemes

We now want to introduce so called threshold schemes.

Definition 4.1.1 ([41]): Let S be a secret number and t, n ∈ N with t ≤ n.
Let further T be a trusted third party. A (t, n) threshold scheme is a method
by which T calculates secret shares Si, 1 ≤ i ≤ n from S, and distributes
them securely to the parties Pi, such that the following is true:

• Any t or more parties who join their secrets may easily recover S.

• Any t − 1 or fewer parties who join their secrets my not recover the.
secret S

A perfect threshold scheme is a threshold scheme in which the knowledge of
t− 1 or fewer shares gives no advantage about the secret S, to an opponent
over knowing no shares.

CHAPTER 4. SECRET SHARING 40

Before we present an example of a (t, n) threshold scheme, we want to
generalize the definition of a (t, n) threshold scheme.

Definition 4.1.2 ([11]): A (c, t, n) ramp scheme, where 1 ≤ c < t ≤ n, is a
sharing of secrets among n parties, such that

1. Any set of at least size t parties can reconstruct the secret.

2. Any set of at most c parties has absolutely no information on the secret.

So a (t, n) threshold scheme is a (t−1, t, n) ramp scheme. As an example
of a (t, n) threshold scheme, we present Shamir’s threshold scheme [59]. This
threshold scheme is based on polynomial interpolation of univariate polyno-
mials. The essential idea in this scheme is, that a univariate polynomial of
degree t−1 is uniquely defined by t points (xi, yi) such that xi 6= xj for i 6= j.

Algorithm 2 (Shamir’s (t, n) threshold scheme – Setup [41]):
Input: A secret S ≥ 0 which should be distributed among n parties
Output: A distribution of n shares to n parties.

1. The trusted party T chooses a prime p ≥ max(S, n) and defines a0 = S.

2. T chooses randomly t − 1 independent coefficients a1, . . . , at−1, such
that 0 ≤ ai ≤ p− 1. This defines the random polynomial

f(x) =
t−1∑
i=0

aix
i ∈ Zp[x].

3. T computes the secrets Si = f(i) mod p for 1 ≤ i ≤ n.

4. T distributes the tuple (i, Si) to the party Pi for 1 ≤ i ≤ n.

Algorithm 3 (Shamir’s (t, n) threshold scheme – Pooling of shares [41]):
Input: Any group of t parties Pi with shares (i, Si)
Output: The secret S Calculate the coefficients of the polynomial f(x) as
follows

f(x) =
t∑
i=1

Si
∏

1≤j≤t
j 6=i

x− j
i− j

. (4.1)

Recover the secret S by calculating f(0) = a0 = S.

The method (4.1) to obtain the coefficients aj for 0 ≤ j ≤ t− 1 is called
Lagrange interpolation method [8].

CHAPTER 4. SECRET SHARING 41

Before we go on, we shortly want to discuss some properties of Shamir’s
secret sharing scheme. The scheme does not depend on unproven assump-
tions (e.g., the difficulty of number-theoretic problems), unlike many crypto-
graphic schemes and can easily be extended for new parties without impact
on existing shares. It is a perfect sharing scheme, since given the knowledge
of t− 1 or fewer shares, all values 0 ≤ S ≤ p− 1 remain equally probable.

We give two more definitions of properties related to secret sharing pro-
tocols.

Definition 4.1.3 ([7]): A secret sharing protocol is t-private if any set of
at most t parties cannot disrupt the communication or compute additional
information than they could solely from their set of private inputs and out-
puts.
A secret sharing protocol is t-resilient if no set of at most t parties can inter-
fere on the correctness of the outputs of the remaining parties.

To demonstrate the power of secret sharing protocols we state the follow-
ing theorem from Ben-Or et al.

Theorem 4.1.1 ([7]): For every function f and t < n/2 there exists a t-
private protocol.

The proof of this theorem can be found in [7].

4.2 Masking schemes

In this section we discuss a special case of secret sharing, called masking. The
idea of masking is to try to randomize the intermediate values of a crypto-
graphic algorithm [42]. If this randomization succeeds, the power consump-
tion does not correlate with the intermediate values anymore. We present
the most common masking scheme below and analyze its behavior under the
influence of certain hardware effects, called glitches [37].

Glitches are the transitions which occur at the output of a gate, before
the gate switches to the correct output. More information about glitches can
be found in literature about VLSI design, for example in [55].

We now illustrate the most common masking scheme, which is Boolean or
linear masking. In Boolean masking a mask is added to the input variable by
an XOR operation. More formally, let x ∈ F2 be an input of a combinational
circuit and m ∈ F2 a random value. Then we get the masked input xm ∈ F2

by adding the value m to x, i.e xm = x⊕m.

CHAPTER 4. SECRET SHARING 42

4.2.1 Glitches in a masked AND gate

Mangard et al. have showed in [37] how glitches can affect a traditionally
masked AND gate. We present their approach below.
We therefore use the implementation of Trichina et al. for the masked AND
gate [71], which is illustrated in Figure 4.1. As illustrated in Figure 4.1, the
masked AND gate has the inputs xm = x⊕mx, ym = y⊕my, mx, my and mz.
The outputs are the random mask mz and the masked result zm calculated
as follows:

zm = xmym ⊕ (myxm ⊕ (mxym ⊕ (mxmy ⊕mx))) (4.2)

The order in which the XOR sums are evaluated is not arbitrary, since con-
sider for example the sum mxym ⊕ mxmy = ymx which leaks information
about y.

Assume that a glitch occurs on the input ym. Since the propagation of this
glitch depends on the values mx and xm, the power consumption of the circuit
depends on the number of gates, that are affected by the propagation of that
glitch. Table 4.1 shows, that the power consumption depends on the values
of mx and xm. We deduce that the mean power consumption is different for
x = 0 and x = 1, hence the power consumption leaks information about the
value of x. Glitches on any of the other inputs cause a similar leakage of
information.

Figure 4.1: Schematic representation of a masked AND gate [44]

Though many different masking schemes have been proposed, like [4], [10]
and [72], all of them have been broken again [3], [26] and [75]. The reason

CHAPTER 4. SECRET SHARING 43

x mx xm AND XOR
0 0 0 0 0
1 0 1 1 1
1 1 0 1 2
0 1 1 2 2

Table 4.1: Number of affected gates in the circuit shown in Figure 4.1, when
a glitch occurs on input ym

why these approaches do not work is, that there is no independence between
the processed values and the inputs of the calculation.

CHAPTER 4. SECRET SHARING 44

4.3 Secret sharing used in this thesis

Below we introduce a sharing scheme which is used for the rest of this thesis.
We start by giving a short overview of the sharing approach and linking it
to MPC protocols.

4.3.1 Overview

In this thesis we use secret sharing schemes to share the input variables
which are processed by a given function, like an S-box, or more generally
a given combinational circuit. We therefore split each input-variable into
s ∈ N additive shares. This approach has been proposed by Chari et al. in
[17]. They extensively describe their approach for the case s = 2 but do
not investigate how nonlinear operations should be realized. Nikova et al.
examine how this sharing scheme can be extended to nonlinear functions in
[44]. Before we start with the terminology, we want to draw a connection to
MPC protocols.

We started this section with an introduction to MPC. The approach by
Nikova et al. [44] is a (1, s, s) ramp scheme, since firstly the output of all
parties is needed to compute the output of the circuit. Secondly each input
xi is used in several functions and each two functions together possibly use
all inputs.

4.3.2 Terminology

We now start with an introduction on the terminology which is used for the
rest of the work.

We denote stochastic variables by small characters x, y, . . . and samples
of these variables by capital characters X, Y, We further denote by P(x =
X) the probability that the stochastic variable x takes the value X, where
probability is the number of times a variable x takes the value X, divided by
the number of values that the input x can take.

Notation: We denote for a variable x the vector of s ∈ N additive shares xi
by x̄ = (x1, . . . , xs) and split x up into s shares by x =

⊕s
i=1 xi.

Notation: For a function with n ∈ N input variables x1, . . . , xn which are
all split up into s shares we write:

(x̄1, . . . , x̄n) = (x1,1, . . . , x1,s, . . . , xn,1, . . . , xn,s)

such that xi =
⊕s

j=1 xi,j for all i ∈ {1, . . . , n}.

CHAPTER 4. SECRET SHARING 45

Let f be a function with n ∈ N inputs. Let further denote Q the number
of different values the input vector (X1, . . . , Xn) of f can take. Then Qs is
the number of different values that the vector of input shares (X̄1, . . . , X̄n)
can take. We limit our work to secret sharing schemes where the following
holds

P(x̄1 = X̄1, . . . , x̄n = X̄n) = Q1−sP(x1 =
s⊕
j=1

X1,j, . . . , xn =
s⊕
j=1

Xn,j). (4.3)

This means that any bias, which is present in the joint distribution of the
shares (x̄1, . . . , x̄n) is based on a bias in the distribution of the unshared
variables (x1, . . . , xn). Hence we have the following: Let (X̄1, . . . , X̄n) and
(Ȳ1, . . . , Ȳn) be two shares of the vector (X1, . . . , Xn). (That means Xi =⊕s

j1
Xi,j =

⊕s
j1
Yi,j for all i ∈ {1, . . . , n}.) Then

P(x̄1 = X̄1, . . . , x̄n = X̄n) = P(x̄1 = Ȳ1, . . . , x̄n = Ȳn).

4.3.3 Requirements

In this section we present the requirements which are necessary in order
to achieve a secure secret sharing scheme. We start with the property of
correctness. When we split a function f into the sum of s functions f1, . . . , fs
we naturally require that the sum of these s functions gives the correct output
for all input combinations of the function f and f1, . . . , fs respectively. We
formalize this in the following definition.

Definition 4.3.1 (Correctness[44]): Let (z1, . . . , zm) = F (x1, . . . , xn) be a
vectorial Boolean function from Fn2 to Fm2 . Then the set of functions

Fi(x̄1, . . . , x̄n) for i ∈ {1, . . . , s}

is a sharing (or realization) of F if and only if

(z1, . . . , zm) = F (x1, . . . , xn) =
s⊕
i=1

Fi(x̄1, . . . , x̄n) ∀(x1, . . . , xn) ∈ Fn2

(4.4)
and all shares (x̄1, . . . , x̄n) satisfying

⊕s
j=1 xi,j = xi for all i ∈ {1, . . . , n}.

The next property we need is the so called non-completeness. Before we
go into the definition, we need to define the following notation.

Notation: We write x̄i for the vector which is independent of share i, i.e:

x̄i = (x1, . . . , xi−1, xi+1, . . . , xs).

CHAPTER 4. SECRET SHARING 46

The second property treats the independence of the inputs of the functions
f1, . . . , fs of the original input of the function f . To achieve this we require
for a function fi that each vector of input shares is missing at least one
component. This means that we require for the function fi that only inputs
with share index unequal to i. More formally only x̄i1, . . . , x̄

i
n serve as input

of the function fi. This property is formalized for all s share functions of f
in the following definition.

Definition 4.3.2 (Non-completeness[44]): Let zj = Fj(x̄1, . . . , x̄n) be a shar-
ing of the function z = F (x1, . . . , xn) with s shares. Then the set of functions
Fj for j ∈ {1, . . . , s} is said to fulfill the non-completeness property if and
only if every function Fj for j ∈ {1, . . . , s} is independent of at least one
share of each input variable xi for i ∈ {1, . . . , n}. Without loss of generality,
we require that Fj is independent of xi,j for all i ∈ {1, . . . , n} and for all
j ∈ {1, . . . , s}:

z1 =F1(x1,2, x1,3, . . . , x1,s, . . . , xn,2, xn,3, . . . , xn,s) = F1(x̄1
1, . . . , x̄n

1)

z2 =F2(x1,1, x1,3, . . . , x1,s, . . . , xn,1, xn,3, . . . , xn,s) = F2(x̄1
2, . . . , x̄n

2)

...

zs =Fs(x1,1, x1,2, . . . , x1,s−1, . . . , xn,1, xn,2, . . . , xn,s−1) = Fs(x̄1
s, . . . , x̄n

s)

Let F̄ : Fn·s2 7→ Fm·s2 be a sharing of the vectorial Boolean function F :
Fn2 7→ Fm2 with s shares. Then F̄ fulfills the non-completeness property if
and only if all sharings of each coordinate function of F fulfill the non-
completeness property.

Next we want to list the so called uniformity property. When we share
a set of outputs z1, . . . , zm to z̄1, . . . , z̄m we require that ⊕sj=1zi,j and zi are
identically distributed. In other words, we require that every set of shared
output values {(z̄1, . . . , z̄m)}, that share the output value (z1, . . . , zm), occur
equally likely as the output value (z1, . . . , zm). We formalize this in the
following definition.

Definition 4.3.3 (Uniformity[44]): A sharing (z̄1, . . . , z̄m) = F̄ (x̄1, . . . , x̄n)
of (z1, . . . , zm) = F (x1, . . . , xn) is uniform, if the distribution of the shares of
the output satisfies

P(z̄1 = Z̄1, . . . , z̄m = Z̄m) = Q1−sP

(
z1 =

s⊕
j=1

Z1,j, . . . , zm =
s⊕
j=1

Zm,j

)
(4.5)

provided that the distribution of the shares of the input satisfies (4.3).

We give an example of this requirement below.

CHAPTER 4. SECRET SHARING 47

Example: Assume we have a function F mapping from F4
2 to F2

2. Let (a, b, c, d)
be the inputs of the function F and (e, f) be the output of the function.
When we share this function F with three shares, we expand the input to
(a1, a2, a3, b1, . . . , d3) and the output to (e1, . . . , f3). Assume further that the
input (a, b, c, d) = 1011 gives the output (e, f) = 10. Then we want that
every set of combinations of (e1, e2, e3, f1, f2, f3) with e1 + e2 + e3 = 1 and
f1 + f2 + f3 = 0 occurs equally likely.

If F is an invertible function, for example an S-box, then property (4.5)
is satisfied by invertible sharings. This is equal to the condition that every
vector (Z̄1, . . . , Z̄m) is reached for exactly one input vector (X̄1, . . . , X̄n). In
the case of S-boxes uniformity is equivalent to balancedness.

4.3.4 Sharing linear transformations

Let F : Fn2 7→ Fm2 be a linear function. Then we can share this function F ,
with s ∈ N shares, by using the linearity of the function F . Let (z1, . . . , zm) =
F (x1, . . . , xn) then we get the sharing of F by setting

(z1,i, . . . , zm,i) = F (x1,i+1, . . . , xn,i+1), 1 ≤ i < s

(z1,s, . . . , zm,s) = F (x1,1, . . . , xn,1).

Since the function F is linear we have that :

(z1, . . . , zm) =
s∑
j=1

(z1,j, . . . , zm,j) =
s∑
j=1

F (x1,j, . . . , xn,j)

= F

(
s∑
j=1

x1,j, . . . , xn,j

)
= F (x1, . . . , xn)

It is clear that such an implementation of a linear function does not leak
any information about the values (x1, . . . , xn) and consequently no informa-
tion about the values (z1, . . . , zm), even in the presence of glitches. In the
next section we will present the theorem by Nikova et al. and investigate on
the implementation of nonlinear functions.

4.3.5 Implementing nonlinear functions

We start with the main theorem of this section. The theorem makes a state-
ment about the following idea. If the share zi,j does not depend on the input
shares x1,j, . . . , xn,j, then zi,j cannot be correlated to x1, . . . , xn. Hence if we
only use x̄j1, . . . , x̄

j
n as inputs of the functions fi,j the results z1,j, . . . , zm,j and

all intermediate values cannot be correlated to x1, . . . , xn.

CHAPTER 4. SECRET SHARING 48

Theorem 4.3.1 ([44]): Let (z1, . . . , zm) = F (x1, . . . , xn) be a function and
(z̄1, . . . , z̄m) = F̄ (x̄1, . . . , x̄n) be a sharing of F . If F̄ satisfies properties 4.3.1,
4.3.2 and (4.3), then each of the output shares zi,j is statistically independent
of the input variables xi. Furthermore the same holds for all intermediate
values that are computed during the computation of the output shares. Par-
ticularly this holds for physical quantities like power consumption, electro-
magnetic radiation etc., since these are functions of the intermediate values.

Proof: Without loss of generality we prove this theorem for the output vari-
able z1. To prove the theorem, we show that an arbitrary function, which
only depends on a subset of the shared inputs is statistically independent of
the input variables x1, . . . , xn.
Let φ(x̄1

1, . . . , x̄
1
n) be an arbitrary function of the n× (s− 1) input variables

xi,j 1 ≤ i ≤ n and 2 ≤ j ≤ s.

P(φ = Φ) =
∑

X̄1,...,X̄n

φ(X̄1
1 ,...,X̄

1
n)=Φ

P(x̄1 = X̄1, . . . , x̄n = X̄n)

=
∑

X̄1
1 ,...,X̄

1
n

φ(X̄1
1 ,...,X̄

1
n)=Φ

∑
X1,1,...,Xn,1

P(x̄1 = X̄1, . . . , x̄n = X̄n)

Since Xi =
⊕s

j=1 Xi,j, we can change variables and replace X1,1, . . . , Xn,1 by
X1, . . . , Xn. By the use of (4.3) we obtain:

P(φ = Φ) =
∑

X̄1
1 ,...,X̄

1
n

φ(X̄1
1 ,...,X̄

1
n)=Φ

Q1−s
∑

X1,...,Xn

P(x1 = X1, . . . , xn = Xn)︸ ︷︷ ︸
=1

=
∑

X̄1
1 ,...,X̄

1
n

φ(X̄1
1 ,...,X̄

1
n)=Φ

Q1−s

Next we compute the conditional probability

P(φ = Φ|x1 = X1, . . . , xn = Xn)

=
∑

X̄1,...,X̄n

φ(X̄1
1 ,...,X̄

1
n)=Φ

P(x̄1 = X̄1, . . . , x̄n = X̄n|x1 = X1, . . . , xn = Xn)

=
∑

X̄1
1 ,...,X̄

1
n

φ(X̄1
1 ,...,X̄

1
n)=Φ

∑
X1,1,...,Xn,1

P(x̄1 = X̄1, . . . , x̄n = X̄n|x1 = X1, . . . , xn = Xn)︸ ︷︷ ︸
S

CHAPTER 4. SECRET SHARING 49

The terms in the sum S are zero except for exactly one combination of
X1,1, . . . , Xn,1 which satisfies

Xi =
s⊕
j=1

Xi,j.

We can conclude from (4.3) that in this case P(x̄1 = X̄1, . . . , x̄n = X̄n|x1 =
X1, . . . , xn = Xn) = Q1−s. Therefore we can conclude that φ and x1, . . . , xn
are statistically independent. �

It is important to note that there are no assumptions made in theorem
4.3.1 about the behavior of the circuit or the used hardware technology. This
means that even in the presence of glitches the theorem holds.

Theorem 4.3.2 ([44]): The minimum number s of shares required to imple-
ment a product of D variables with a sharing satisfying property 4.3.1 and
4.3.2 is given by

s ≥ D + 1 .

Proof: We prove this theorem by listing a method to assign the terms of a
product of D factors with s shares each to the output shares such that the
properties 4.3.1 and 4.3.2 are fulfilled. Collect in the first output share all
terms that do not contain the first share of any of the inputs. Collect in the
second output share all terms that contain the first share of any of the inputs,
but not the second share of any of the inputs. By continuing this way, collect
in output share j all the terms containing the input shares 1, . . . , i − 1, but
not input share i. Only if s− 1 ≥ D, there are no terms left after the step s.

We can conclude that the minimum number of shares to implement a
nonlinear function is ≥ 3. Nikova et al. report in [44] that the number of
gates increases with a factor of s2, when changing over from 1 share to s
shares.

4.3.6 Pipelining

When we share a cryptographic algorithm like the AES [22], which uses a
number of transformation rounds that transform the input into the final
output, it suffices to focus on the sharing of one round. Since the output of a
round is the input of the next round we need to ensure that (4.3) is fulfilled.
To ensure (4.3) we require that the sharing fulfills (4.5). Before we state
a theorem which uses this requirement, we start a more general approach
below.

Pipelining is a hardware implementation technique where a logical circuit
with l levels gets split up into two circuits with l/2 levels. These levels get

CHAPTER 4. SECRET SHARING 50

separated by a register which stores the intermediate result of the first stage
until the active phase of the next clock cycle. Though pipelining introduces
latency, the additional clock cycles can be made up by increasing the clock
frequency [82].

The separation of a logical circuit can also reduce the number of shares
and the number of gates required to implement a function that has to be
protected against side-channel analysis in the presence of glitches. Another
advantage of this approach is, that registers that store the results at the end
of a stage bound the propagation of glitches and delays.

We now give a result by Nikova et al. [44] about the security of pipelined
implementations.

Theorem 4.3.3 ([44]): Consider a pipelined sharing consisting of r com-
binational layers and r registers. 1 register for the final output and r − 1
registers for the intermediate values. The function that computes the inter-
mediate value yi,j,t at stage t is denoted by fi,j,t. The power consumption in
the circuit that implements fi,j,t is denoted by Pi,j,t. We further assume that
the distribution of the shares of the input satisfies (4.3). Since this condition
needs to be fulfilled at the input of each pipelining stage which is formed by
the output of the previous stage, we require that the functions fi,j,t satisfy
property 4.3.3.
Under these conditions the following holds: No linear combination of the
power consumptions Pi,j,k is statistically correlated to any of the input vari-
ables xi nor to any of the output variables yi.

Proof: We prove that for an arbitrary but fixed choice of the linear coefficients
ci,j,t, the covariance

cov

(∑
i,j,t

ci,j,tPi,j,t, y1

)
= 0.

We start this proof with the definition of the covariance

cov

(∑
i,j,t

ci,j,tPi,j,t, y1

)
= E

[
y1

∑
i,j,t

ci,j,tPi,j,t

]
− E[y1]E

[∑
i,j,t

ci,j,tPi,j,t

]
=
∑
i,j,t

ci,j,t (E[y1Pi,j,t]− E[y1]E[Pi,j,t])

Since by our assumptions each of the functions fi,j,t satisfies properties 4.3.1
and 4.3.2, we know that y1 and Pi,j,t are statistically independent. Therefore
we can conclude that E[y1Pi,j,t] = E[y1]E[Pi,j,t]. �

CHAPTER 4. SECRET SHARING 51

4.3.7 Limitations

Theorem 4.3.3 states that if the properties correctness 4.3.1, non-complete-
ness 4.3.2 and uniformity 4.3.3 are fulfilled, the proposed sharing method
is secure against a linear combination of side-channel leakage. Hence the
method from Nikova et al. [44] is secure against a higher order DPA attack
which uses the correlation coefficient. In [45] the authors simulate such a
DPA attack on the shared Noekeon S-box [21]. Their results show, that
the shared S-box is secure against a DPA attack which uses the correlation
coefficient as measure.
However the proposed sharing method is not designed to be secure against an
attack which uses nonlinear combinations of intermediate values. An example
for such an attack is a mutual information analysis (MIA) [25]. However a
MIA attack is more sensible to noise in the power traces, compared to an
attack with the correlation coefficient. The authors of [45] performed a MIA
attack on the simulated shared Noekeon S-box without adding noise to the
simulation. The result was that they did not succeed to perform a successful
MIA attack for the shared implementation due to the noise characteristic of
the combinational circuit.

4.3.8 Decomposition of functions

As we have seen in theorem 4.3.2, the number of shares to realize a function
rises with the algebraic degree of the function. An idea to realize the sharing
of a function f with higher algebraic degree is, to decompose the function
f into functions g and h such that f(x) = h(g(x)) for all x in the domain
of f . The goal in this decomposition is of course to lower the number of
shares needed to realize a sharing for g and h. In Figure 4.2 we illustrate
a decomposition of a function f into functions g and h such that f(x) =
g(h(x)). On the right hand side the shared decomposition is illustrated.

To apply theorem 4.3.3 we need to ensure in such a decomposition that
the output of the function h fulfills the uniformity property (4.5). To ensure
the resistance against glitches and timing delays in this approach we have to
install a glitches and timing delays resistant layer between the functions h
and g.

Nikova et al. decompose in [44] the NOEKEON S-box [21]. The S-box
of the cipher NOEKEON is a function with algebraic degree 3. Hence a
sharing with three shares is not possible. To share the S-box with three
shares, the authors of [44] decompose the function into two functions with
algebraic degree 2. Due to this decomposition the authors of [44] manage to

CHAPTER 4. SECRET SHARING 52

Figure 4.2: The two diagrams on the left show a schematic representation of
a decomposition of a function f into functions g and h. The illustration on
the right hand side shows the shared decomposition with inputs x1, x2, x3,
intermediate values y1, y2, y3 and outputs z1, z2, z3.

share this S-box with three shares.

Decomposition of Present

We now present a result from Poschmann et al. [51] for the block cipher
PRESENT [12]. Present is a lightweight block cipher designed for constrained
hardware. Each round of this block cipher consists of an XOR with the
roundkey, a substitution layer and a permutation layer. The only nonlinear
transformation is the substitution layer which consists of 16 applications
of the same four bit S-box S. The S-box can be described with inputs
x, y, z, w ∈ F2 and outputs S(x, y, z, w) = (s3, s2, s1, s0) as follows:

s3 = xyw + xzw + yzw + xz + yz + yw + zw + x+ z + w + 1

s2 = xyw + xzw + xz + yw + zw + x+ y + w + 1

s1 = xzw + xyw + yzw + xy + xz + yw + zw + x+ z + w

s0 = yz + yw + zw + x+ y

The algebraic degree of this S-box is three. To share the S-box with three
shares, Poschmann et al. [51] decompose S into S(x) = G(H(x)), with
quadratic functions G and H. To construct these functions G and H the au-
thors describe in [51] a search method. We give the functions H(x, y, z, w) =
(h3, h2, h1, h0) and G(x, y, z, w) = (g3, g2, g1, g0) in ANF below [51]:

h3 = y + z + w g3 = xw + y + z + w

h2 = y + z + 1 g2 = zw + x

h1 = zw + yw + z + x+ 1 g1 = xw + y + z

h0 = xy + xz + yz + 1 g0 = yw + z

In the next section we want to list the shared multiplication in F4 as an
example for the sharing of a nonlinear non-balanced function.

CHAPTER 4. SECRET SHARING 53

4.3.9 Shared multiplication in GF(4)

In this section we present the shared multiplication in the field with four
elements denoted by F4 which is a result form Nikova et al. [44]. For an
easier representation of the field F4 the authors of [44] use so called normal
bases. This means that the field F4 is considered as a vector space over F2

with basis elements {v = 01, v2 = 10}. Hence we get that every element
x ∈ F4 has a representation as x = av + bv2 with a, b ∈ F2. (a, b) are then
called the coordinates of x. To represent the multiplication of two elements
x ∈ F4 and y ∈ F4 with coordinates (a, b) ∈ F2

2 and (c, d)F2
2 respectively

we make use of the following formula [44] where we denote by (e, f) the
coordinates of the product of x and y.

(e, f) = (a, b)× (c, d)⇔

{
e = (a+ b)(c+ d) + ac

f = (a+ b)(c+ d) + bd
(4.6)

The authors of [44] share this multiplication with three shares. In other
words the multiplication is represented as

(e1 +e2 +e3, f1 +f2 +f3) = (a1 +a2 +a3, b1 +b2 +b3)×(c1 +c2 +c3, d1 +d2+d3)

To obtain a uniform sharing, the authors use the concept of correction terms,
which will be introduced in Section 5.3. We list the functions for a shared
multiplication in F4 below [44]:

e1 =(a2d2 + a2d3 + a3d2 + b2c2 + b2c2 + b3c2 + b2d2 + b2d3 + b3d2)

+ (a3 + b2c2 + b3c3 + a2c2)

e2 =(a1d3 + a3d1 + a3d3 + b1c3 + b3c1 + b3c3 + b1d3 + b3d1 + b3d3)

+ (a1 + a3 + d1 + b1c1 + b3 + c3 + a1d1)

e3 =(a1d1 + a1d2 + a2d1 + b1c1 + b1c2 + b2c1 + b1d1 + b1d2 + b2d1)

+ (a1 + d1 + b1c1 + b2c2 + a2c2 + a1d1)

f1 =(a2c2 + a2c3 + a3c3 + a2d2 + a2d3 + a3d2 + b2c2 + b2c3 + b3c2)

+ (c3 + d3 + a2c2 + a3c3 + b2d2 + b3d3)

f2 =(a1c3 + a3c1 + a3c3 + a1d3 + a3d1 + a3d3 + b1c3 + b3c1 + b3c3)

+ (c3 + d1 + d3 + a3c3 + b1d1 + b3d3)

f3 =(a1c1 + a1c2 + a2c1 + a1d1 + a1d2 + a2d1 + b1c1 + b1c2 + b2c1)

+ (d1a2c2 + b1d1 + b2d2)

In the next section we will analyze how to share affine equivalent S-boxes.

CHAPTER 4. SECRET SHARING 54

4.4 Sharing of affine equivalent S-boxes

In this section we are introducing affine equivalent S-boxes. When analyzing
properties for all possible S-boxes of a fixed size, it is useful to classify the
set of S-boxes under a proper equivalence relation. The reason is, that the
number of possible invertible functions from n inputs to n outputs is 2n!. We
start this section with an introduction to affine equivalent S-boxes. We then
present, as a result of this thesis, a theorem about sharing of affine equivalent
S-boxes.

4.4.1 Introduction to affine equivalent S-boxes

In this section we define affine equivalent S-boxes. We start with a recall of
the definition of affine equivalence from Section 2.1.

Definition 4.4.1 (affine equivalent S-box[34]): Two S-boxes S1, S2 : Fn2 →
Fn2 are called affine equivalent if and only if there exist two invertible affine
mappings A1, A2 such that S2 = A−1

2 ◦ S1 ◦ A1. Where an affine mapping
A can be written as A(x) = L(x) + c for L ∈ Fn×n2 and c ∈ Fn2 . The affine
mapping A is called invertible if and only if detL 6= 0.

In Table 4.2 we give the numbers of invertible Boolean functions from
Fn2 7→ Fn2 and the numbers of invertible Boolean functions under affine equiv-
alence.

n 1 2 3 4 5

Number of invert-
ible Boolean func-
tions

2 24 40320 2092278988800 263130836933693
530167218012160
000000

Number of in-
vertible Boolean
functions under
the equivalence of
affine transforma-
tion

1 1 4 302 256996604112396
3092

Table 4.2: Number of invertible Boolean functions from Fn2 7→ Fn2 and number
of invertible Boolean functions under affine equivalence for n = 1 . . . 5.

As we see, the number of equivalence classes under this equivalence re-
lation is relatively small compared to the number of all possible invertible

CHAPTER 4. SECRET SHARING 55

Boolean functions.

4.4.2 Sharing of affine equivalent S-boxes

In the following we analyze if it suffices to find a sharing for one representa-
tive of a class under affine equivalence to obtain a sharing for all S-boxes in
this class. We therefore are of course interested in sharings which fulfill the
correctness 4.3.1, non-completeness 4.3.2 and balancedness 4.3.3 properties.

Let S1 and S2 be two affine equivalent n bit S-boxes. That means that
there exist two invertible affine mappings A1 = L1 + b1 and A2 = L2 + b2

with L1, L2 ∈ GLn(F2) and b1, b2 ∈ Fn2 such that we can write the S-boxes in
the following way

S2(x) = L−1
2 S1 (L1 · x + b1) + b2 ∀x ∈ Fn2

For the following we split this transformation into two parts

S̃1(x) = S1 (L1 · x + b1) (4.7)

S2(x) = L−1
2 S̃1 (x) + b2 (4.8)

We start by analyzing the transformation 4.7. Since x 7→ L1 · x + b1 is a
bijective mapping on Fn2 , for invertible linear mappings L1, we can construct
a bijective mapping on Fn·s2 , where s denotes the number of shares, as follows.
For x = (x1, . . . , xn) ∈ Fn2 we denote by x̄ ∈ Fn·s2 the shared vector of x, with
shares xi,j, j ∈ {1, . . . , s} for all coordinates i ∈ {1, . . . , n}. We order the
shares in the shared vector x̄ in the following way

x̄ = (x1,1, x2,1, . . . , xn,1, x1,2, . . . , xn,2, . . . , x1,s, . . . , xn,s) ∈ Fn·s2 .

We further require that

xi =
s⊕

k=1

xi,k ∀i ∈ {1, . . . , n}.

We now construct an affine bijective mapping on Fn·s2 by setting

L̄1 =


L1 0 · · · 0

0 L1
. . . 0

...
. 0

0 · · · 0 L1

 ∈ Fn·s×n·s2 , b̄1 =


b1

0
...
0

 ∈ Fn·s2 .

CHAPTER 4. SECRET SHARING 56

By defining the mapping on F n·s
2 by setting

x̄ 7→ L̄1 · x̄ + b̄1, (4.9)

we get a bijective mapping on Fn·s2 since detL̄1 6= 0⇔ detL1 6= 0.

We now focus on equation 4.7:
For the S-box S̃1 : Fn2 7→ Fn2 , with coordinate functions Fi : Fn2 7→ F2 for
i ∈ {1, . . . , n}, we write

S̃1(x) =

 F1(x)
...

Fn(x)

 ∈ Fn2 .

For the shared S-box S̃s1, with coordinate functions Fi,j for i ∈ {1, . . . , n}
and j ∈ {1, . . . , s} we write

S̃s1(x̄) =



F11(x̄)
F21(x̄)

...
Fn1(x̄)

...
F1s(x̄)

...
Fns(x̄)


∈ Fn·s2 .

To obtain the correctness property 4.3.1, we require that

Fi =
s⊕

k=1

Fi,k ∀i ∈ {1, . . . , n}.

We now again construct a mapping on F n·s
2

x̄ 7→ L̄−1
2 · x̄ + b̄2 (4.10)

by setting L̄−1
2 and b̄2 as denoted as below.

L̄−1
2 =


L−1

2 0 · · · 0

0 L−1
2

. . . 0
...

. 0
0 · · · 0 L−1

2

 ∈ Fn·s×n·s2 , b̄2 =


b2

0
...
0

 ∈ Fn·s2 .

CHAPTER 4. SECRET SHARING 57

As for the mapping (4.9), the mapping x̄ 7→ L̄−1
2 · x̄ + b̄2 is invertible if and

only if detL2 6= 0.

Theorem 4.4.1: Let S1 and S2 be two affine equivalent S-boxes. If there ex-
ists a sharing with s shares for the S-box S1 that fulfills the correctness 4.3.1,
balancedness 4.3.3 and the non-completeness property 4.3.2, then there also
exists a sharing with s shares for the S-box S2 which fulfills the correctness,
balancedness and non-completeness property.

Proof: In the following we prove, that the balancedness, correctness and
non-completeness property are invariant under the transformations (4.9) and
(4.10).
We begin with the property of balancedness. Since the above described
mappings (4.9) and (4.10) are bijective on Fn·s2 , the S-box S2 fulfills the
uniformity property if we apply these mappings.
Next we show, that the mappings (4.9) and (4.10) preserve the correctness
property. Since the mapping (4.9) only operates on the input variables of
S-box S1, we assume without loss of generality, that S2 = L−1

2 S1(x) + b2.
Since there exists a correct sharing for the S-box S1 we can write the S-box
S2 as follows:

L−1
2 S1(x) + b2 = L−1

2

 F1(x)
...

Fn(x)

+ b2

= L−1
2

 F11(x̄) + · · ·+ F1s(x̄
...

Fn1(x̄) + · · ·+ Fns(x̄

+ b2

= L−1
2

 F11(x̄)
...

Fn1(x̄)

+ · · ·+ L−1
2

 F1s(x̄)
...

Fns(x̄)

+ b2

=

 F̃1(x)
...

F̃n(x)

+ b2 = S2(x)

What remains to proof is the property of non-completeness. Therefore we
again consider without loss of generality only the case where S2(x) = S1(L1x+
b1) and assume further that b1 = 0 ∈ F n

2 since addition of constant terms
does not affect the non-completeness property. We now take a closer look at
the transformation from S-box S̄s1 into the S-box S̄s2:

CHAPTER 4. SECRET SHARING 58

Ss1(L̄1 · x̄) =

 F11(L̄1 · x̄)
...

Fns(L̄1 · x̄)

 =

 F11(L̄1 · x̄1)
...

Fns(L̄1 · x̄s)


=

 F11

(
L̄1 · (0, . . . , 0, x1,2, . . . , xn,2, . . . , x1,s, . . . , xn,s)

)
...

Fns
(
L̄1 · (x1,1, . . . , xn,1, . . . , x1,s−1, . . . , xn,s−1, 0, . . . , 0)

)


=

 F11 (0, . . . , 0, x̃1,2, . . . , x̃n,2, . . . , x̃1,s, . . . , x̃n,s)
...

Fns (x̃1,1, . . . , x̃n,1, . . . , x̃1,s−1, . . . , x̃n,s−1, 0, . . . , 0)


=

 F11(x̃1)
...

Fns(x̃
s)

 =

 F11(x̃)
...

Fns(x̃)

 = Ss2(x̃).

�

As we have shown in theorem 4.4.1 it suffices to concentrate on represen-
tatives of classes under affine equivalence, to obtain a sharing for that class.

Assume we have a sharing S̄ : Fn·s2 7→ Fn·s2 for a given S-box S. Then
we can construct more sharings of the S-box S out of S̄ by adding vectors
a ∈ Fn·s2 such that these vectors a do not violate the correctness property.
The addition of vectors a ∈ Fn·s2 clearly does not affect the balancedness
property, since the transformation S̄ 7→ S̄ + a is bijective for all a ∈ Fn·s2 .
We now want to formalize the set of vectors which do not affect the correct-
ness property of the S-box S̄. We therefore define the set Cn··· as follows

Cn··· :=

x ∈ Fn·s2 : x =

x1
...

xn

 , with xi ∈ Fs2 and wH(xi) is even.


The cardinality of the set Cn··· is 2n·(s−1). Hence we can construct 2n·(s−1)

sharings out of the sharing S̄ which of course fulfill the balancedness, cor-
rectness and non-completeness property.

CHAPTER 4. SECRET SHARING 59

4.5 Summary

In this chapter we have discussed multiple techniques of secret sharing. We
have seen that it is, in order to obtain a secure sharing scheme, important
to fulfill certain criteria. Namely these are, the non-completeness property
to gain independent intermediate results and in consequence gain resistance
against hardware effects like glitches. The uniformity property to resist sta-
tistical attacks, especially when considering pipelined implementations or
cryptographic functions which contain multiple identic round transforma-
tions. Of course it is mandatory that the obtained sharing fulfills the correct-
ness property. We have also seen that it suffices to focus on representatives
of classes under affine equivalence in order to share the entire classes.

Chapter 5

Sharing of affine equivalent
S-boxes

In the following chapter we are examining two different approaches for con-
structing realizations for given vectorial Boolean functions, such that these
realizations are balanced, correct and non-complete. The first approach uses
the truth table to evaluate the requirements. The second approach is to
work with the ANF. We will see, that in both approaches there are proper-
ties which are easy to evaluate, and properties which are difficult to evaluate.
The main focus of this chapter are 3 × 3 S-boxes with algebraic degree at
most two. We only investigate representatives of the equivalence classes un-
der affine equivalence presented in Section 4.4.

In Section 5.1 we will characterize the properties balancedness 4.3.3, cor-
rectness 4.3.1 and non-completeness 4.3.2 using the truth table of a shared
function. In Section 5.2 we will analyze the equivalence classes of 3 × 3 S-
boxes under affine equivalence. Sections 5.3, 5.4 and 5.5 will describe three
more methods to find realizations which fulfill the balancedness, correctness
and non-completeness properties. Finally we will describe in Section 5.6 the
extension of 3× 3 S-boxes to 4× 4 S-boxes.

5.1 Characterizing properties in the truth ta-

ble

In this section we characterize the properties balancedness 4.3.3, non-com-
pleteness 4.3.2 and correctness 4.3.1 in the truth table of a shared function.
We start with the property of balancedness in Section 5.1.1 and describe the
property of non-completeness in the truth table in Section 5.1.2. In Section

60

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 61

5.1.3 we analyze the property of correctness in the truth table of a shared
function and describe a method to directly construct a balanced and correct
truth table for a shared function. In Section 5.1.5 we describe a search based
method to construct a balanced, correct and non-complete realization for a
given S-box.

5.1.1 Balancedness in the truth table

We start with a recall of the definition of balancedness for a vectorial Boolean
function F .

Definition 5.1.1 ([14]): Let F be an (n,m) function. Then F is balanced,
if it takes every value in Fm2 the same number of times, that is 2n−m.

Hence, we see that a function F is balanced by means of its truth table,
if we see each output value exactly n−m times. In the case of an S-box this
is equivalent to, that we see each output value exactly once.

5.1.2 Non-completeness in the truth table

Let F be a function mapping from Fn2 to Fm2 and F̄ be its realization with s
shares mapping from Fn·s2 to Fm·s2 . Let further be x1, . . . , xn and y1, . . . , ym
the inputs and outputs of F respectively and x̄1, . . . , x̄n and ȳ1, . . . , ȳm be the
inputs and outputs of F̄ respectively. Since F̄ fulfills the non-completeness
property, we know that the output shares yi,j for all i ∈ {1, . . . ,m} are
independent of the input shares xk,j for all k ∈ {1, . . . , n}. We now char-
acterize the non-completeness property in the truth table of F̄ . Assume
we reorder the columns of input values in the truth table of F̄ such that
the input columns become x1,1, x2,1, . . . , xn,1, x1,2, . . . , xn,s. We arrange the
columns of the output values analogously such that the columns become
y1,1, y2,1, . . . , ym,1, y1,2, . . . , ym,s. Hence the first m columns of the output val-
ues are now independent of the first n columns of input values. If the input
values are ordered lexicographically, we can see that the first 2n·(s−1) rows
of the output values y1,1, y2,1, . . . , ym,1 recur 2n times. A similar observation
can be made for the output shares with index j if we reorder the columns of
the input values according to the input shares with index j.

5.1.3 Correctness in the truth table

Let F be a function mapping from Fn2 to Fm2 and F̄ be its realization with s
shares mapping from Fn·s2 to Fm·s2 . Let further be x1, . . . , xn and y1, . . . , ym
the inputs and outputs of F respectively and x̄1, . . . , x̄n and ȳ1, . . . , ȳm be

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 62

the shared inputs and shared outputs of F̄ respectively. We can characterize
the correctness property in the truth table of F̄ by performing the following
comparison. We first sum the columns ⊕sj=1xi,j = x̂i for all i ∈ {1, . . . , n}
and ⊕sj=1yi,j = ŷi for all i ∈ {1, . . . ,m}. We then check if the function output

F (X̂1, . . . , X̂n) equals the values stated in ŷ1, . . . , ŷm for all (X̂1, . . . , X̂n) ∈
(x̂1, . . . , x̂n). Thus, we do not observe the correctness of a function F̄ with
respect to a function F directly in the truth table.

5.1.4 Balancedness and correctness

In this section we show that it is possible to construct a truth table for the
function F̄ which fulfills the properties balancedness 4.3.3 and correctness
4.3.1 with respect to F . We describe this construction below.

Algorithm 4: Input: A vectorial Boolean function F : Fn2 7→ Fm2
Output: A correct and balanced truth table of a function F̄ : Fn·s2 7→ Fm·s2

with respect to F
For each row i in the truth table of F perform the following steps:

1. The entries in that row i correspond to an assignment (X1, . . . , Xn) of
the input variables x1, . . . , xn and the function output (Y1, . . . , Ym) =
F (X1, . . . , Xn).

2. Construct the set XX1,...,Xn of all possible assignments (X̄1, . . . , X̄n) of
the variables x̄1, . . . , x̄n such that ⊕sj=1Xi,j = Xi for all i ∈ {1, . . . , n}.

3. Construct the set YY1,...,Ym of all possible assignments (Ȳ1, . . . , Ȳm) of
the outputs ȳ1, . . . , ȳm such that ⊕sj=1Yi,j = Yi for all i ∈ {1, . . . ,m}.
Note that the size of the set XX1,...,Xn is 2n·(s−1) and the size of the set
YY1,...,Ym is 2m·(s−1).

4. Write the elements of the set XX1,...,Xn in the columns x̄1, . . . , x̄n of the
truth table of F̄ and write the elements of the set YY1,...,Ym 2n−m times
in the columns ȳ1, . . . , ȳm.

The steps 1 – 4 are performed for all possible 2n assignments (X1, . . . , Xn)
of the inputs x1, . . . , xn and corresponding outputs (y1, . . . , ym). The Algo-
rithm 4 constructs a balanced and correct truth table for the function F̄ with
respect to the function F . Generally this construction does not result in a
function F̄ which fulfills the non-completeness property.

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 63

5.1.5 A truth table search

We now present a first approach to construct a shared S-box which fulfills
all three properties. We operate on the truth table of the shared S-box. The
approach is basically a search method which tries to find the truth table of
the shared S-box, such that the shared S-box fulfills the balancedness 4.3.3,
correctness 4.3.1 and non-completeness 4.3.2 properties. We describe this
search for quadratic 3× 3 S-boxes below.

The approach works as follows. We first consider the property non-
completeness and balancedness for each output share in the truth table. We
then employ the correctness property to the method. Finally we add the
algebraic degree of the resulting functions into the search.

Let S be a 3× 3 S-box with inputs (u, v, w) ∈ F3
2 and outputs (x, y, z) ∈

F3
2, i.e. S(u, v, w) = (x, y, z). We define the shared inputs and outputs as

(u1, u2, u3, v1, v2, v3, w1, w2, w3) ∈ F9
2 and (x1, x2, x3, y1, y2, y3, z1, z2, z3) ∈ F9

2

respectively.
The non-completeness property demands, that every output must be in-

dependent of at least one share of each input. Without loss of generality we
require that the outputs x1, y1 and z1 are independent of the inputs u1, v1

and w1. This means that the outputs x1, y1 and z1 can be seen as functions
with only 6 inputs. The fact that the output x1 is independent of the in-
put u1 means, that for all choices of (U2, U3, V1, V2, V3,W1,W2,W3) ∈ F8

2 the
following holds

x1(0, U2, U3, V1, V2, V3,W1,W2,W3) = x1(1, U2, U3, V1, V2, V3,W1,W2,W3).

The same holds for the inputs v1 and w1. Hence, we get that the output func-
tion of x1 only depends on the inputs (u2, u3, v2, v3, w2, w3). We call the se-
quence of outputs of x1 which only depends on the inputs (u2, u3, v2, v3, w2, w3)
as X1 ∈ F6

2. The same holds for the outputs y1 and z1, we name these se-
quences Y1 and Z1 respectively. Since X1,Y1 and Z1 are independent of
(u1, v1, w1), we get that these sequences repeat 23 = 8 times in the truth
table. We illustrate this in Table 5.1.

Since we want that the resulting truth table is balanced, we deduce that
the sequences X1,Y1 and Z1 must contain the same number of 1′s as 0′s. This
reduces the possible choices for X1 to

(
26

25

)
≤ 261. By combining all possible

sequences X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3 (that is, we combine all possible
choices of X1 with all possible choices of Y1 with all . . . possible choices of Z3)
we deduce, that the search space for three shared bits, to obtain a balanced
and non-complete truth table is smaller or equal to 261·9 = 2549

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 64

u1 v1 w1 u2 v1 w1 u1 v1 w1 x1 y1 z1 x2 y2 z2 x3 y3 z3

0 0 0 0 0 0 0 0 0 > ∗ � ? ~ �
...

...
... o o o o o o X1 Y1 Z1

...
...

...
...

...
...

...
... 0 o o o o o o

...
...

...
...

...
...

...
... 1 o o o o o o

...
...

...
...

...
...

...
...

... o o o o o o X1 Y1 Z1
...

...
...

...
...

...
... 0 1 o o o o o o

...
...

...
...

...
...

... 1 0 o o o o o o
...

...
...

...
...

...
...

...
... o o o o o o X1 Y1 Z1

...
...

...
...

...
...

...
... 0 o o o o o o

...
...

...
...

...
...

...
... 1 o o o o o o

...
...

...
...

...
...

...
...

... o o o o o o X1 Y1 Z1
...

...
...

...
...

...

0 1 1 o o o o o o
...

...
...

...
...

...

1 0 0 o o o o o o
...

...
...

...
...

...
...

...
... o o o o o o X1 Y1 Z1

...
...

...
...

...
...

...
... 0 o o o o o o

...
...

...
...

...
...

...
... 1 o o o o o o

...
...

...
...

...
...

...
...

... o o o o o o X1 Y1 Z1
...

...
...

...
...

...
... 0 1 o o o o o o

...
...

...
...

...
...

... 1 0 o o o o o o
...

...
...

...
...

...
...

...
... o o o o o o X1 Y1 Z1

...
...

...
...

...
...

...
... 0 o o o o o o

...
...

...
...

...
...

...
... 1 o o o o o o

...
...

...
...

...
...

...
...

... o o o o o o X1 Y1 Z1
...

...
...

...
...

...
1 1 1 1 1 1 1 1 1 > ∗ � ? ~ �

Table 5.1: Schematic representation of a truth table with valid non-
completeness property for the outputs x1, y1 and z1. X1,Y1 and Z1 are the
sequences which are described in Section 5.1.5.
The various symbols (>, ∗,�, ?,~,�) in the columns x2, x3, y2, y3, z2 and z3

refer to the output of the output shares x2, x3, y2, y3, z2 and z3.

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 65

We now employ the correctness property to reduce the size of the search
space. We therefore construct the third share of each output bit via the
correctness property. Assume we already have the outputs of x1 and x2 fixed
by the choice of sequences X1 and X2, then we can simply deduce the output
x3 via the correctness property 4.3.1. This gives

x3 = x− x1 − x2 = x+ x1 + x2.

Hence we can limit a theoretical search to all combinations of all possible bal-
ance sequences X1,Y1,Z1,X2,Y2,Z2. We deduce that the size of the search
space is smaller or equal to 261·6 = 2366.

If we assume that the desired share functions have algebraic degree 2, we

can reduce the search space for each shared output bit to 2((6
2)+(6

1)+1) = 222.
Hence we get that the size of the search space is smaller or equal to 222·6 =
2132.

We can enhance the effort of this search by using the following technique.
We start by presenting the idea of this method. Instead of combining all
possible choices for the outputs (x1, x2, x3, y1, y2, y3, z1, z2, z3) in one major
loop, we combine subsets of these outputs separately.

The method works as follows. We store all possible combinations of out-
puts of x1, x2 and x3 in a table such that (x1, x2, x3) form a correct and
balanced output for the first output. We do the same processing for the
second output bit, with the outputs (y1, y2, y3). We now reduce both tables
in the following way. We combine each possible combination of (x1, x2, x3)
with each possible combination of (y1, y2, y3) and keep only combinations
of (x1, x2, x3) and (y1, y2, y3) which form a balanced output (i.e. as a func-
tion from F9

2 7→ F6
2). For the third output bit we also store all possible

combinations of outputs of z1, z2 and z3 in a table such that (z1, z2, z3)
form a correct and balanced output. We can now reduce the tables of out-
puts (x1, x2, x3) and (y1, y2, y3) further by combining both with the outputs
(z1, z2, z3). After this step only combinations in (x1, x2, x3), (y1, y2, y3) and
(z1, z2, z3) remain such that the combination of any two output vectors for ex-
ample (x1, x2, x3, z1, z2, z3) forms correct and balanced functions. Finally we
check all combinations of the remaining table entries in (x1, x2, x3), (y1, y2, y3)
and (z1, z2, z3) for balancedness.

Since we do not know how many combinations remain after each of the
steps, we can not estimate its true efforts. By estimating the worst case we
get, that the size of the search space is 2366, or alternatively for quadratic
share functions 2132, as before.

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 66

5.2 Sharing of 3 × 3 S-boxes with algebraic

degree ≤ 2.

In this section we use the ANF, which was introduced in Section 2.1 and
Section 2.4, as representation of Boolean functions. We start with an intro-
duction to sharing with the ANF. We further determine which of the four
classes of affine equivalent 3× 3 S-boxes can be shared with three shares by
only varying the assignments of the input variables.

5.2.1 Introduction

Assume we have a realization F̄ (x̄1, . . . , x̄n) for a given function F (x1, . . . , xn).
Then we can easily check if the properties non-completeness and correctness
are fulfilled, if we examine the ANF of both functions. We simply check the
non-completeness property by controlling the input set of each coordinate
function of F̄ . To check the correctness of the function F̄ with respect to
F we proceed as follows. For each coordinate function Fi of F evaluate the
equality of the polynomials Fi(⊕sj=1x1,j, . . . ,⊕sj=1xn,j) and ⊕sj=1Fi,j. Thereby
Fi,j denotes the coordinate functions of F̄ and s the number of shares.

On the other hand, if we have the ANF of a function F , we cannot check
the balancedness of F without evaluating all possible inputs of F . Thus,
given a function F̄ in ANF, we can easily detect if te function fulfills the
non-completeness and correctness property, but we cannot directly verify
the balancedness of the function.

Direct sharing

We now describe how we build a function F̄ : F9
2 7→ F9

2 which fulfills the non-
completeness and correctness properties for a given function F : F3

2 7→ F3
2.

Let S be an arbitrary S-box mapping from F3
2 7→ F3

2 with algebraic degree at
most two. Then S can be written as

S(u, v, w) =

 F1(u, v, w)
F2(u, v, w)
F3(u, v, w)

 =
α1uv + β1uw + γ1vw + δ1u+ ε1v + ζ1w + η1

α2uv + β2uw + γ2vw + δ2u+ ε2v + ζ2w + η2

α3uv + β3uw + γ3vw + δ3u+ ε3v + ζ3w + η3

with coordinate functions F1, F2, F3 inputs (u, v, w) ∈ F3
2 and coefficients

αi, βi, γi, δi, εi, ζi, ηi ∈ F2 for i ∈ {1, 2, 3}. To share this S-box we replace
u, v, w with ū, v̄, w̄, where ū = (u1 + u2 + u3), v̄ = (v1 + v2 + v3) and w̄ =
(w1 + w2 + w3). We further expand the set of coordinate functions. We

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 67

therefore replace Fi with (Fi1, Fi2, Fi3) for all i ∈ {1, 2, 3}. What remains
is, to assign the shared terms of the functions F1, F2, F3 to the functions
F11, F12, . . . , F32, F33. We therefore proceed as follows for every function Fi:

• assign linear terms with share index j to function Fi,j−1.

• assign quadratic terms with indices j and j + 1 to function Fi,j−1.

• assign quadratic terms with only index j to Fi,j−1

At the end of this assignment the functions F11, F12, . . . , F32, F33 fulfill the
non-completeness and correctness property such that

F11 + F12 + F13 = F1(ū, v̄, w̄)

F21 + F22 + F23 = F2(ū, v̄, w̄)

F31 + F32 + F33 = F3(ū, v̄, w̄).

The above described assignment is called direct sharing, if the above de-
scribed assignment gives a balanced function and was introduced by Nikova
et al. in [44]. To share the decompositions of the block ciphers Noekeon
[44] and Present [51] (see Section 4.3.8) direct sharing has been successfully
applied.

Notation: We call the terms ui · vj with i 6= j fixed terms, since they have
to be assigned to the share function Fk with k = {1, 2, 3} \ {i, j}. On the
other hand we call terms which depend only on one share index free terms.

Assignments of free terms

We now describe a set of assignments of free terms, which is used later on
in this section. The idea is, to not fix the assignment of a free term, but
rather verify all assignments of the free term for balancedness, that fulfill
the correctness and non-completeness property. However, we only consider
assignments such that the number of free terms which are assigned to each
share function of one bit is equal.

Let S be a 3×3 S-box and TS be the set of all free terms, when we share S
with three shares. Let further FS := {F11, . . . , F33} be the set of coordinate
functions. The mapping

τ : TS → FS defined by t ∈ TS 7→ τ(t) ∈ FS

is called assignment. We call the assignment τ correct, if and only if the
assignment of all free terms in TS yields correct functions F11, . . . , F33 with

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 68

respect to S. The assignment τ is called non-complete, if and only if the
functions F11, . . . , F33 fulfill the non-completeness property 4.3.2. The as-
signment τ is called equated, if and only if all share functions Fij of each
output bit have an equal number of free terms assigned. That is |τ−1(Fi,1)| =
|τ−1(Fi,2)| = |τ−1(Fi,3)| for all i ∈ {1, 2, 3}.

We define the set of assignments AS, which we use for the rest of this
section, to be

AS := {τ : TS → FS|τ is correct, non-complete and equated}.

Note that all assignments in AS fulfill the correctness 4.3.1 and non-
completeness property 4.3.2. What remains to be evaluated is the property
of balancedness 4.3.3. We start with the analysis of the four equivalence
classes below.

5.2.2 Class S3
0

We start with class S3
0 and state one representative S0 of this class in ANF

below:

F1(u, v, w) = u

F2(u, v, w) = v

F3(u, v, w) = w

As we see, this S-box has algebraic degree one and is therefore a lin-
ear S-box. Applying affine transformations to this S-box S0, preserves the
algebraic degree. Hence, the class S3

0 contains all affine S-boxes. Sharing
this S-box S0 with the method of direct sharing provides a shared S-box
S̄0 which fulfills all required properties. This S-box S̄0 stays correct, non-
complete and balanced if we apply permutations to the shared output bits
(i.e. ((F11, F12, F13), (F21, F22, F23), (F31, F32, F33)) that do not violate the
non-completeness property. Consequently we get 8 S-boxes. We list one
of them below.

F11(ū, v̄, w̄) = u2, F12(ū, v̄, w̄) = u3, F13(ū, v̄, w̄) = u1

F21(ū, v̄, w̄) = v2, F22(ū, v̄, w̄) = v3, F23(ū, v̄, w̄) = v1

F31(ū, v̄, w̄) = w2, F32(ū, v̄, w̄) = w3, F33(ū, v̄, w̄) = w1

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 69

5.2.3 Class S3
1

The next equivalence class S3
1 has algebraic degree 2. We state the S-box S1

as a representative of this class in ANF below:

F1(u, v, w) = u+ wv

F2(u, v, w) = v

F3(u, v, w) = w

To evaluate the number of assignments that yield a correct, balanced and
non-complete realization in AS1 it suffices to check different assignments of
the free terms for the functions F11, F12, F13 with a fixed assignment of the
functions F21, F22, F23, F31, F32, F33. The reason is, that the functions F2 and
F3 are linear. If one assignment of the functions F21, F22, F23, F31, F32, F33

gives a balanced shared S-box, then all assignments in AS1 for the functions
F21, . . . , F33 give a balanced S-box, since different assignments of F21, . . . , F33

correspond to a permutation of output columns in the truth table and there-
fore do not affect the balancedness.

It further suffices to only check on those assignments of the free terms in
the functions F11, F12, F13 that cannot be transformed into one another, by
interchanging variables. For the functions F11, F12, F13 there are exactly two
such different assignments. We list them both below:

F11(ū, v̄, w̄) = v2w3 + v3w2 + v2w2 + u2

F12(ū, v̄, w̄) = v1w3 + v3w1 + v3w3 + u3

F13(ū, v̄, w̄) = v1w2 + v2w1 + v1w1 + u1

(5.1)

F11(ū, v̄, w̄) = v2w3 + v3w2 + v2w2 + u3

F12(ū, v̄, w̄) = v1w3 + v3w1 + v3w3 + u1

F13(ū, v̄, w̄) = v1w2 + v2w1 + v1w1 + u2

(5.2)

Both assignments (5.1), (5.2) of the functions F11, F12, F13 yield a correct,
balanced and non-complete S-box. Hence we get 16 realizations that fulfill
the correctness, balancedness and non-completeness property out of all 16 as-
signments in AS1 . For the sake of completeness we list one of this realizations

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 70

of the S-box S1 below.

F11(ū, v̄, w̄) = v2w3 + v3w2 + v2w2 + u2

F12(ū, v̄, w̄) = v1w3 + v3w1 + v3w3 + u3

F13(ū, v̄, w̄) = v1w2 + v2w1 + v1w1 + u1

F21(ū, v̄, w̄) = v2

F22(ū, v̄, w̄) = v3

F23(ū, v̄, w̄) = v1

F31(ū, v̄, w̄) = w2

F32(ū, v̄, w̄) = w3

F33(ū, v̄, w̄) = w1

5.2.4 Class S3
2

Below we state the S-box S2 as representative of the third equivalence class
S3

2 under affine equivalence:

F1(u, v, w) = u+ wu+ wv

F2(u, v, w) = v + wu

F3(u, v, w) = w

As for the class S3
1 we only check for balancedness on different assignments

of the free terms of the functions F11, F12, F13 and F21, F22, F23 for a fixed
assignment of the functions F31, F32, F33. For this S-box S2 this means that
we have to check 8 different assignments for the property of balancedness.
Out of these 8 possible shared S-boxes, one S-box is balanced. Hence we get
that 8 out of the 64 possible assignments from the set AS2 yield a realization
of the S-box S2. We list one realization of the S-box S2 below.

F11(ū, v̄, w̄) = v2w3 + u2w3 + v3w2 + u3w2 + v2w2 + u2w2 + u3

F12(ū, v̄, w̄) = v1w3 + u1w3 + v3w1 + u3w1 + v3w3 + u3w3 + u1

F13(ū, v̄, w̄) = v1w2 + u1w2 + u2w1 + v2w1 + v1w1 + u1w1 + u2

F21(ū, v̄, w̄) = u2w3 + u3w2 + u2w2 + v3

F22(ū, v̄, w̄) = u1w3 + u3w1 + u3w3 + v1

F23(ū, v̄, w̄) = u1w2 + u2w1 + u1w1 + v2

F31(ū, v̄, w̄) = w2

F32(ū, v̄, w̄) = w3

F33(ū, v̄, w̄) = w1

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 71

We observe in the share functions of the first output bit, that the free
terms u1w1, u2w2, u3w3 and u1, u2, u3 are not assigned to the same output
share. Thus, u2w2 and u2 need to be assigned to different shares, contrary
to the method of direct sharing.

5.2.5 Class S3
3

We now show S-box S3 as a representative of the fourth equivalence class S3
3

in ANF below:

F1(u, v, w) = u+ vu+ w

F2(u, v, w) = v + vu+ w + wv

F3(u, v, w) = vu+ wu+ wv

As for the previously discussed classes we only check on different as-
signments for the free terms of the functions F11, F12, F13, F21, F22, F23 and
F31, F32, F33. There are 4 different assignments in each case for the functions
F11, F12, F13 and F31, F32, F33 and 8 different assignments for the functions
F21, F22, F23. Thus we get 128 different assignments of free terms on which
we have to check the property of balancedness. Unfortunately none of them
fulfills the balancedness property. Below we list one unbalanced sharing of
the S-box S3.

F11 = u3v2 + u2v3 + u3v3 + u2 + w3

F12 = u3v1 + u1v3 + u1v1 + u3 + w1

F13 = u2v1 + u1v2 + u2v2 + u1 + w2

F21 = v2w3 + v3w2 + u2v3 + u3v2 + v3w3 + u2v2 + v3 + w2

F22 = v1w3 + v3w1 + u1v3 + u3v1 + v1w1 + u3v3 + v1 + w3

F23 = v1w2 + v2w1 + u1v2 + u2v1 + v2w2 + u1v1 + v2 + w1

F31 = v2w3 + v3w2 + u2v3 + u3v2 + u2w3 + u3w2 + v2w2 + u3w3 + u2v2

F32 = v1w3 + v3w1 + u1v3 + u3v1 + u1w3 + u3w1 + v3w3 + u1w1 + u3v3

F33 = v1w2 + v2w1 + u1v2 + u2v1 + u1w2 + u2w1 + v1w1 + u2w2 + u1v1

In the next section we will describe an approach to search for a balanced
sharing for this S-box, and accordingly all members of the class S3

3 , by adding
additional terms.

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 72

constant: 1
linear: u1, u2, u3, v1, v2, v3, w1, w2, w3

quadratic: u1v1, u2v2, u3v3, u1w1, u2w2, u3w3, v1w1, v2w2, v3w3

cubic: u1v1w1, u2v2w2, u3v3w3

Table 5.2: Correction terms up to degree three for 3× 3 S-boxes in variables
u1, u2, u3, v1, v2, v3, w1, w2, w3.

5.3 Add correction terms

In this section we describe how we may find a balanced 4.3.3 realization, if
we start with a function F̄ : Fn·s2 7→ Fm·s2 which fulfills the correctness 4.3.1
and non-completeness 4.3.2 property for a function F : Fn2 7→ Fm2 . Since we
do not know how to turn this function F̄ directly into a balanced, correct
and non-complete function, we perform a search which we describe in detail
below for the case n = m = s = 3.

5.3.1 Overview

The search we describe in this section is based on the following idea. If
we add certain terms to the shares of one output bit, such that the non-
completeness 4.3.2 and correctness 4.3.1 property stay valid, the output of
the involved share functions change. Accordingly the distribution of the
output changes. Thus, if we add the right terms to the share functions, we
may get a balanced 4.3.3 function.

We call terms that are applicable for this procedure correction terms. In
order to keep the functions correct, we have to add a correction term to an
even number of shares of one output bit, or not at all. Hence, we can add any
linear term, or quadratic and cubic terms that have the same share index.
For a better understanding we list the set of possible correction terms up to
algebraic degree three in Table 5.2.

When working with three shares, adding a correction term an even num-
ber of times to the shares of one output bit means that we add a term to
exactly two shares of one output bit. This preserves the correctness property,
since by adding a correction term twice, it cancels out when summing over
all share functions for one bit.

Since we do not know which correction terms, or which combinations
of correction terms yield a balanced realization, we describe a search based
approach below. To reduce the search space, any knowledge about which

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 73

combinations of correction terms are more applicable, or which combinations
of correction terms are inapplicable at all, would be useful.

In the following sections 5.3.2 – 5.3.5 we describe a procedure, which
searches for a balanced, correct and non-complete realization with three
shares for a given 3 × 3 S-box, by adding combinations of correction terms.
This procedure is divided into four steps, which are described in sections
5.3.2 – 5.3.5. In Section 5.3.2 we search for correction terms for each out-
put share function. In Section 5.3.3 we search for correction terms for each
shared output bit, which fulfill the balancedness 4.3.3 and correctness 4.3.1.
In Section 5.3.4 we only keep correction terms which give a balanced function
when we combine any two shared output bits. Finally in Section 5.3.5 we
search for correction terms which give a balanced realization.

5.3.2 Search potential correction terms for each share
function Fij

In the first step we deterministically add possible sums of correction terms
to the function Fij. We then evaluate, if the resulting Boolean function is
balanced (i.e. the number of 1’s is 256). If Fij is balanced, the correction
terms are stored for the further steps. This step is performed for all functions
Fij for i, j ∈ {1, 2, 3}.

5.3.3 Find potential correction terms for each bit

To preserve correctness, the list of correction terms from Section 5.3.2 is
examined for each output bit in the following way. We only keep sums of
correction terms, such that each occurring correction term is added at most
twice to the shared output bit.

For example we could add the following terms to the functions F11, F12

and F13 of the unbalanced realization of the S-box S3 from class S3
3 . We add

the terms w3 + w2, w1 + w3 and w2 + w1 to F11, F12 and F13 respectively.
The addition of these terms corresponds to a reassignment of the free terms
w1, w2 and w3. This leads to the following functions:

F11 = u3v2 + u2v3 + u3v3 + u2 + w3 + (w2 + w3)

F12 = u3v1 + u1v3 + u1v1 + u3 + w1 + (w3 + w1)

F13 = u2v1 + u1v2 + u2v2 + u1 + w2 + (w1 + w2)

We of course only keep such sums of correction terms in this step, which
lead to a balanced function from F9

2 to F3
2. This step is performed for every

output bit of the S-box.

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 74

5.3.4 Combine 2 S-box bits and check for balancedness

An arbitrary combination of the correction terms from Section 5.3.3 does in
general not lead to a balanced output for the shared S-box. Because of this,
we now combine the correction terms of two output bits from Section 5.3.3,
such that their combination leads to a balanced function from F9

2 to F6
2.

For example we could add the following correction terms to the functions
F11, F12, F13, F21, F22 and F23 of the unbalanced realization of the S-box S3

from class S3
3 . We add the correction terms w3 + w2, w1 + w3 and w2 + w1

to the functions F11, F12 and F13 respectively, as above. And add v2 + v3,
v1 + v3 and v1 + v2 to the functions F21, F22 and F23 respectively. This leads
to the following functions:

F11 = u3v2 + u2v3 + u3v3 + u2 + w3 + (w2 + w3)

F12 = u3v1 + u1v3 + u1v1 + u3 + w1 + (w3 + w1)

F13 = u2v1 + u1v2 + u2v2 + u1 + w2 + (w1 + w2)

F21 = v2w3 + v3w2 + u2v3 + u3v2 + v3w3 + u2v2 + w2 + v3 + (v2 + v3)

F22 = v1w3 + v3w1 + u1v3 + u3v1 + v1w1 + u3v3 + w3 + v1 + (v1 + v3)

F23 = v1w2 + v2w1 + u1v2 + u2v1 + v2w2 + u1v1 + w1 + v2 + (v1 + v2)

This step is performed for all pairs of output bits, which are (1, 2), (1, 3)
and (2, 3).

5.3.5 Combine all bits and check for balancedness

In the last step we check for all combinations of remaining correction terms,
if the resulting function is balanced. For this evaluation we only take cor-
rection terms into account, which lasted after Section 5.3.4. We check the
balancedness property for the following combinations of correction terms in
the three output bits. We test all remaining correction terms of the first
output bit with all remaining correction terms of the second output bit with
all remaining correction terms of the third output bit. Since the remaining
correction terms of all three output bits are combined with each other, the
run-time of this step is cubic in the number of remaining terms after Section
5.3.4 from the first, second and third output bit. To check if any of the above
described combinations results in a balanced function, we have to evaluate
the resulting function F̄ for all 29 combinations of the input variables and
check if every output value occurs equally likely. In the case of an S-box
equally likely means exactly once.

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 75

5.3.6 Results

In this section we discuss the limits of the above described approach and
present our results.
Enumeration over all possible choices of the 22 correction terms, listed in
5.2, for each output bit leads to a search space size of 266. Hence we limit
our search in the following way. We only use correction terms with algebraic
degree at most 2. This limits the number of correction terms for each bit to
18 and would lead to an overall search space size of 254. Since this is still not
practical, we further limit the number of correction terms, which are added
to the functions Fij, to 5.
We now list the results for Sections 5.3.2 –5.3.5.

In Section 5.3.2, where we search for all possible sums of correction terms,
which meet the above described limitations, we find about 800 possible cor-
rection terms for each function Fij. In Section 5.3.3 we find between 1000
and 9000 potential correction terms for each bit. At the end of Section 5.3.4
there remain between 0 and 500 potential correction for each of the three
output bits. At the end of Section 5.3.5 never any corrections terms re-
mained. Increasing the maximum algebraic degree of the correction terms or
the maximum number of correction terms for each function Fij did not lead
to better results due to the running time of the procedure.

5.4 A randomized approach

In this section we randomize the approach from Chapter 5.3. We randomize
the presented search method, by choosing random sums of correction terms
in the first steps of the method. We describe the details of this approach in
Section 5.4.1. In Section 5.4.2 we present the obtained results.

5.4.1 Description

As already noted above, we alter the deterministic search method from Sec-
tion 5.3 by randomizing this search. The idea of this modification is to
randomly choose sums of correction terms, instead of picking them in a de-
terministic way. Of course we only choose sums of correction terms, which
lead to a balanced function Fij : F9

2 7→ F2.
We therefore alter the selection procedure of correction terms from Section
5.3.2. To achieve comparable results and maximize the success rate of the
method, we fix the number of sums of correction terms which get chosen in
this step. The progressive sections 5.3.3 – 5.3.5 remain unaltered.

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 76

5.4.2 Results

Tables 5.3 and 5.4 show the average numbers of remaining terms after Sec-
tions 5.4.1, 5.3.3 and 5.3.4 which were obtained out of a control sample with
size 25. The numbers of remaining functions after Section 5.3.5 is omitted.
The reason is that there never remained any combinations of sums of correc-
tion terms which led to a correct, balanced and non-complete realization. We
therefore start in section 5.4.1 with 512 balanced sums of correction terms for
each of the nine functions Fij. The values which are listed for Section 5.4.1
refer to the average numbers of random choices of correction terms which
were needed to obtain 512 balanced sums of correction terms. It can be
observed, that the randomized search behaves better, when the algebraic de-
gree is lower. It also behaves better when the maximum number of correction
terms, which are added to the functions Fij, is lower.

maximum Hamming weight: 4 6 8 10 12
bit 1 2111 788 579 564 561

Section 5.4.1 bit 2 2592 864 592 553 554
bit 3 2977 899 594 558 541
bit 1 1901 591 489 510 461

Section 5.3.3 bit 2 2294 657 450 498 481
bit 3 2419 695 462 466 463
bit 1 9 0 0 3 0

Section 5.3.4 bit 2 44 6 3 5 4
bit 3 15 0 0 2 0

Table 5.3: The table shows the average number of remaining terms after
each Section 5.4.1, 5.3.3 and 5.3.4 for correction terms with algebraic degree
at most two. Maximum Hamming weight refers to the maximum number of
correction terms which are added to each function Fij.

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 77

maximum Hamming weight: 4 6 8 10 12 14
bit 1 5293 1548 917 820 805 797

Section 5.4.1 bit 2 6413 1685 921 823 817 805
bit 3 7187 1726 959 833 813 814
bit 1 872 186 106 101 89 83

Section 5.3.3 bit 2 1116 184 111 96 84 84
bit 3 989 205 104 80 83 92
bit 1 0 0 0 0 0 0

Section 5.3.4 bit 2 10 1 0 0 0 0
bit 3 1 0 0 0 0 0

Table 5.4: The table shows the average number of remaining terms after each
Section 5.4.1, 5.3.3 and 5.3.4 for correction terms with algebraic degree at
most three. Maximum Hamming weight refers to the maximum number of
correction terms which are added to each function Fij.

5.5 Fix two bits and construct the third bit

In this section we describe another approach on how to find a balanced
sharing for a given S-box.

5.5.1 Overview

We start by presenting the general idea of this approach. If we choose func-
tions for certain output shares, we might be able to construct the remaining
output shares, such that the resulting function fulfills the correctness 4.3.1,
balancedness 4.3.3 and non-completeness 4.3.2 property. More precisely we
fix all share functions for certain output bits. Clearly, this choice of fixed
functions has to fulfill the correctness, balancedness and non-completeness
properties. We then try to construct the share functions of the remaining
output bits. We do this by using an indefinite polynomial and the use of
the constraints for the desired functions. The constraints in this case are the
correctness, non-completeness and balancedness property. More precisely
we use a search for the remaining output shares, since we can only provide
correctness and non-completeness, when constructing the share functions in
ANF.

We describe this approach below for 3 × 3 S-boxes which we share with
three shares. We further fix 6 share functions which belong to two output
bits and try to find the remaining three share functions.

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 78

5.5.2 Constructing the third bit

As already mentioned, we start with a balanced function from F9
2 7→ F6

2.
These 6 functions are the functions which define the correct output of two
shared bits. To find the functions for the third bit, we use the approach of
an indefinite polynomial over F2[x1, . . . , x9].
We start to analyze this approach by listing the possible terms for one share
function. We get 1 constant, 6 linear, 15 quadratic, 16 cubic and 19 terms
of higher order which sums up to 56 indefinites for one share. This gives a
total of 168 indefinites for all three shares of one bit.
To limit the number of indefinites we make use of the following two facts:

1. The algebraic normal form is unique. (see Section 2.1)

2. The function we search for must fulfill the correctness property.

This fixes all the indefinites for the terms which have different indices (fixed
terms). What remains are the free terms:

• If a term is part of the original function, that means that the term must
occur because of the correctness property, then we need one indefinite
for each share where the term could fit.

• If the term is not part of the original function then, since the term
must occur twice or not at all, we only need one indefinite for both
occurrences.

We apply this method to the first bit of class S3
3 . This means we start

with two balanced output bits (F2, F3) : F9
2 7→ F6

2 and try to find a function
F1 that fulfills our required properties 4.3.3, 4.3.1 and 4.3.2.
We list in Table 5.5 the free terms which must be part of the final function.

F11 = u3v2 + u2v3+ u2v2 u3v3 u2 u3 w2 w3

F12 = u3v1 + u1v3+ u1v1 u3v3 u1 u3 w1 w3

F13 = u2v1 + u1v2+ u1v1 u2v2 u1 u2 w1 w2

Table 5.5: List of mandatory free terms for the first bit in class S3
3

The following terms, listed in Table 5.6 are the terms which have to occur
twice or not at all.

By summing up over all indefinites, we get 21 indefinites for the first bit.

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 79

F11+ = v2 v3 u2w2 u3w3

F12+ = v1 v3 u1w1 u3w3

F13+ = v1 v2 v3 u1w1 u2w2

v2w2 v3w3 v2u2w2 v3u3w3

v1w1 v3w3 v1u1w1 v3u3w3

v1w1 v2w2 v1u1w1 v2u2w2

Table 5.6: List of correction terms for the first bit in class S3
3

5.5.3 Results

We tried several sharings in AS3 for the fixed functions, as well as correction
terms on this 6 fixed functions. None of these calculations for the third bit
led to a balanced S-box for class S3

3 .
The reason, why we did not get any results with this approach might be,
that it is not possible to adjust the balancedness of the S-box with only
three functions.

5.6 Extending 3 × 3 S-boxes to 4 × 4 S-boxes

with algebraic degree ≤ 2.

In this section we shortly discuss the relation between some classes of 3× 3
S-boxes with algebraic degree ≤ 2 and 4×4 S-boxes. Namely we can expand
the classes S3

1 , S3
2 and S3

3 . Let therefore S be a representative of one of the
classes S3

1 , S3
2 or S3

3 . Then we can transform the S-box S(u, v, w) = (y1, y2, y3)
into an 4× 4 bit S-box S̃ by setting S̃(u, v, w, x) = (y1, y2, y3, x).
Consequently we can share the corresponding 4×4 if we can share the classes
S3

1 , S3
2 and S3

3 . Recall that we were only able so far to share the classes S3
1

and S3
2 . The class S3

3 and its corresponding 4× 4 class remain unshared.

5.7 Summary

In this chapter we have analyzed realizations of affine equivalent S-boxes. We
started with a characterization of the properties balancedness, correctness
and non-completeness in the truth table of a realization. We analyzed the
method of direct sharing for the equivalence classes under affine equivalence.
We presented an approach whose idea it is to add terms to the function
without violating the correctness property. We analyzed this method for
the deterministic version and presented run-time results for the randomized

CHAPTER 5. SHARING OF AFFINE EQUIVALENT S-BOXES 80

version. We can summarize that it is easy to fulfill only two of the three
required properties, like correctness and non-completeness or correctness and
balancedness. However it remains open if there exist realizations which fulfill
all three properties for certain types of S-boxes like the class S3

3 .

Chapter 6

Walsh transformation of affine
equivalent S-boxes

In this chapter we will use the Walsh-transformation to analyze S-boxes.
We will therefore point out how the the properties balancedness 4.3.3, non-
completeness 4.3.2 and correctness 4.3.1 can be found in the Walsh spectrum.
We will further analyze representatives of affine equivalent S-boxes by means
of the Walsh transformation.

We start in Section 6.1 with the representation of the above named prop-
erties in the Walsh transformation of a vectorial Boolean function. In Section
6.2 we will list the Walsh transformations for the four representatives of 3×3
S-boxes presented in Chapter 5.2. In Section 6.3 we study the Walsh trans-
formation of balanced and unbalanced sharings of a representative of class
S3

2 .

6.1 Finding properties in the Walsh transfor-

mation

In the following we draw a connection between the properties which are
needed to obtain a secure sharing for a given S-box and the Walsh transfor-
mation. We start with the property of balancedness below.

6.1.1 The balancedness property

We recall from Chapter 2 that a Boolean function f is balanced if and only if
f̂χ(0) = 0. We further recall that a vectorial Boolean function is balanced if
every component function is balanced. Hence we get that an (n,m)-function

81

CHAPTER 6. WALSH TRANSFORMATION OF S-BOXES 82

F is balanced if for every v 6= 0, v ∈ Fm2

v̂ · Fχ(0) = 0.

Hence we deduce that a vectorial Boolean function F is balanced if the first
row of the matrix (

v̂ · Fχ(u)
)

u∈Fn
2

v∈Fm∗
2

is zero.

6.1.2 The non-completeness property

Let F be a vectorial Boolean function mapping from Fn2 7→ Fm2 . Assume
further that the first coordinate function F1 : Fn2 7→ F2 is independent of the
first input, i.e. F1(0,x) = F1(1,x) for all x ∈ Fn−1

2 . Then F̂1χ(1,u) = 0 for all
u ∈ Fn−1

2 . To see this we go into the definition of the Walsh-transformation.

F̂1χ(1,u) =
∑
x∈Fn

2

(−1)F1(x)⊕x·(1,u)

=
∑

x∈Fn−1
2

(
(−1)F1(0,x)⊕(0,x)·(1,u) + (−1)F1(1,x)⊕(1,x)·(1,u)

)
=
∑

x∈Fn−1
2

(−1)F1(0,x)
(
(−1)(0,x)·(1,u) + (−1)(1,x)·(1,u)

)
=
∑

x∈Fn−1
2

(−1)F1(0,x) ((−1)x·u − (−1)x·u) = 0

Consider now a shared coordinate function Fi,j of some vectorial Boolean
function. Then, due to the non-completeness property Fi,j is independent

of all shares with index j. Hence we get that F̂i,jχ(u) = 0 for all vectors u
which have at least one coordinate un+i = 1 for some n ∈ N0.

Consequently we get that v̂ · Fχ(u) = 0 for all vectors v that combine only
functions with the same share index j and all vectors u as described above.

6.1.3 The correctness property

Finally we want to take a look at the property of correctness. Let F be an
(n,m) function which we share with s shares with the realization F̄ . When
we look at the Walsh transformation of the function F̄ we only consider
vectors v ∈ Vm·s and u ∈ Vn·s with

Vk·s =
{
x ∈ Fk·s2 |xn+j = 1 for j ∈ {1, . . . , s}, n ∈ I, for I ∈ P({1, . . . , k})

}
.

CHAPTER 6. WALSH TRANSFORMATION OF S-BOXES 83

The set Vm·s is the set of vectors, which sum up all share functions of
subsets of the m output bits. The set Vn·s is the set of vectors, which
sum up all shares of subsets of the n inputs. The correctness 4.3.1 prop-
erty requires that the sum of all share functions Fi,j(x̄1, . . . , x̄n) is equal to
Fi(⊕sj=1x1,j, . . . ,⊕sj=1xn,j) for all (x̄1, . . . , x̄n) and for all coordinate functions
i ∈ {1, . . . ,m}. Hence, we only consider vectors v ∈ Vm·s and u ∈ Vn·s. Thus
we get in the Walsh transformation the following equation:

v̂ · F̄χ(u) = 2n·(s−1) ·̂̃v · Fχ(ũ)

with ṽ = (vm, v2m, . . . , vm·s) and ũ = (un, u2n, . . . , un·s).

6.2 Walsh transformation for the unshared S-

boxes

We now list the Walsh transformations for representatives of the four classes
of 3×3 S-boxes. For each of the four classes we give the Walsh transformation
on the left hand side and in a graphical form on the right hand side. Black
squares indicate thereby nonzero values in the corresponding matrix.

Class S3
0 :



8 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0
0 0 8 0 0 0 0 0
0 0 0 8 0 0 0 0
0 0 0 0 8 0 0 0
0 0 0 0 0 8 0 0
0 0 0 0 0 0 8 0
0 0 0 0 0 0 0 8


1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Class S3
1 :



8 0 0 0 0 0 0 0
0 4 4 0 0 4 −4 0
0 0 4 4 0 0 4 −4
0 4 0 4 0 −4 0 4
0 0 0 0 8 0 0 0
0 4 −4 0 0 4 4 0
0 0 4 −4 0 0 4 4
0 −4 0 4 0 4 0 4


1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

CHAPTER 6. WALSH TRANSFORMATION OF S-BOXES 84

Class S3
2 :



8 0 0 0 0 0 0 0
0 4 0 4 0 4 0 −4
0 0 8 0 0 0 0 0
0 4 0 4 0 −4 0 4
0 0 0 0 8 0 0 0
0 4 0 −4 0 4 0 4
0 0 0 0 0 0 8 0
0 −4 0 4 0 4 0 4


1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Class S3
3 :



8 0 0 0 0 0 0 0
0 0 0 0 4 4 −4 4
0 −4 0 4 4 0 4 0
0 4 0 4 0 −4 0 4
0 4 4 0 4 0 0 −4
0 4 −4 0 0 4 4 0
0 0 4 −4 0 0 4 4
0 0 4 4 −4 4 0 0


1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

6.3 Walsh transformation of Class S3
2

In this section we investigate on multiple sharing variants of the representa-
tive S2 of class S3

2 . We further take a look at the Walsh transformation of
balanced and unbalanced S-box candidates in class S3

2 .

6.3.1 Observations on S-box candidates in class S3
2

We start with a look at the Walsh transformation of the 64 S-box candidates
Si2 of the set AS2 . As described in Chapter 2 this results in matrices (Mi ∈
Z512×512) for i ∈ {1, . . . , 64}. We thereby observe, that the rank of the matrix
Mi equals the number of different values we get from the S-box candidate
Si2. We describe this more formally below. Let therefore Si2 be one of the 64
S-boxes from the set AS2 and Mi the matrix

Mi =
(

̂v · Si2(u)
)
v∈F9

2

u∈F9
2

then it can be observed that

rank(Mi) =
∣∣{x ∈ F9

2|∃u ∈ F9
2 : Si2(u) = x}

∣∣ .
This means that for a balanced shared S-box we obtain that rank(M) = 512.

CHAPTER 6. WALSH TRANSFORMATION OF S-BOXES 85

We now want to take a closer look at one of the non-balanced shared
S-boxes from the set AS2 in class S3

2 . We state one of these correct and
non-complete and non-balanced shares of the S-Box S2 below.

F11(ū, v̄, w̄) = v2w3 + u2w3 + v3w2 + u3w2 + v2w2 + u2w2 + u3

F12(ū, v̄, w̄) = v1w3 + u1w3 + v3w1 + u3w1 + v3w3 + u3w3 + u1

F13(ū, v̄, w̄) = v1w2 + u1w2 + u2w1 + v2w1 + v1w1 + u1w1 + u2

F21(ū, v̄, w̄) = u2w3 + u3w2 + u2w2 + v2

F22(ū, v̄, w̄) = u1w3 + u3w1 + u3w3 + v3

F23(ū, v̄, w̄) = u1w2 + u2w1 + u1w1 + v1

(6.1)

We now take a closer look on the first row of the Walsh transformation matrix
M of this vectorial Boolean function (6.1). This is the row where u = 0. We
investigate this row for the following function (with functions F31, F32, F33 as
in Section 5.2.4).

Note, that the only difference between function (6.1) and the balanced
function listed in Section 5.2.4 is the different assignment of the variables vi
in the second bit. By investigating the first row for unbalanced component
functions we are of course interested in the smallest choice of coordinate
functions. Since every further choice leads to an unbalanced component
function as well. The minimum choices are: (F11, F21, F22), (F12, F22, F23)
and (F13, F21, F23).

6.4 Summary

In this chapter we have characterized the properties balancedness 4.3.3, non-
completeness 4.3.2 and correctness 4.3.1 by means of the Walsh transfor-
mation. We investigated on the Walsh transformation of a non-balanced
sharing of an S-box in class S3

2 . We further gave the Walsh transformations
of representatives of the classes S3

0 , S3
1 , S3

2 and S3
3 .

Chapter 7

Conclusions

In this thesis we focused on countermeasures against side channel attacks on
cryptographic devices. In particular we focused on a sharing scheme which
is provable secure against first order DPA attacks.

We concentrated on the characterization of the properties balancedness,
correctness and non-completeness in different representations of vectorial
Boolean functions. We illustrated that the properties balancedness and non-
completeness can be verified easy by using the truth table. On the other hand
we pointed out that the ANF is beneficial in verifying the properties correct-
ness and non-completeness. We further characterized the required properties
by means of the Walsh transformation and demonstrated that combinations
of two properties can be achieved by construction in both representations.
We also presented multiple methods to construct realizations that fulfill all
three properties.

Secure sharing of n bit S-boxes for large n is a hard problem especially
when the algebraic degree of the function rises. We have seen that it was
not even possible to construct a secure realization for an S-box in class S3

3

with algebraic degree 2. If we relinquish one of the properties, construction
of such realizations becomes much easier but are insecure instead. We leave
the existence of a secure realization for class S3

3 and the related 4 × 4 bit
S-box class as open problem for future work.

We see several possibilities to extend our work. Firstly, it might be rea-
sonable to explore properties of correction terms, in order to deduce more
sophisticated methods when constructing balanced, correct and non-complete
realizations.

Secondly, it might be possible to restudy the desired properties balanced-
ness, correctness and non-completeness by exploring connections to different
research fields like Coding theory.

Thirdly, one might investigate on the open question if it suffices to focus

86

CHAPTER 7. CONCLUSIONS 87

on Boolean functions for realizations with algebraic degree d, if the function
for which the realization is constructed has algebraic degree d.

Bibliography

[1] JavaTMcryptography extension (IAIK-JCE). http://http://jce.

iaik.tugraz.at.

[2] Agrawal, D., Rao, J. R., and Rohatgi, P. Multi-channel attacks.
In CHES (2003), C. D. Walter, Çetin Kaya Koç, and C. Paar, Eds.,
vol. 2779 of Lecture Notes in Computer Science, Springer, pp. 2–16.

[3] Akkar, M.-L., Bevan, R., and Goubin, L. Two power anal-
ysis attacks against one-mask methods. In FSE (2004), B. K. Roy
and W. Meier, Eds., vol. 3017 of Lecture Notes in Computer Science,
Springer, pp. 332–347.

[4] Akkar, M.-L., and Giraud, C. An implementation of des and aes,
secure against some attacks. In Çetin Kaya Koç et al. [15], pp. 309–318.

[5] Anderson, R. J. Security engineering - a guide to building dependable
distributed systems (2. ed.). Wiley, 2008.

[6] Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., and
Whelan, C. The sorcerers apprentice guide to fault attacks. IACR
Cryptology ePrint Archive 2004 (2004), 100.

[7] Ben-Or, M., Goldwasser, S., and Wigderson, A. Completeness
theorems for non-cryptographic fault-tolerant distributed computation
(extended abstract). In STOC (1988), J. Simon, Ed., ACM, pp. 1–10.

[8] Berrut, J.-P., and Trefethen, L. N. Barycentric lagrange inter-
polation. SIAM Review 46, 3 (2004), 501–517.

[9] Blahut, R. E. Algebraic Codes for Data Transmission, 1 ed. Cam-
bridge University Press, July 2002.

[10] Blömer, J., Guajardo, J., and Krummel, V. Provably secure
masking of aes. In Selected Areas in Cryptography (2004), H. Handschuh

88

http://http://jce.iaik.tugraz.at
http://http://jce.iaik.tugraz.at

BIBLIOGRAPHY 89

and M. A. Hasan, Eds., vol. 3357 of Lecture Notes in Computer Science,
Springer, pp. 69–83.

[11] Blundo, C., Santis, A. D., and Vaccaro, U. Efficient sharing of
many secrets. In STACS (1993), P. Enjalbert, A. Finkel, and K. W.
Wagner, Eds., vol. 665 of Lecture Notes in Computer Science, Springer,
pp. 692–703.

[12] Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C.,
Poschmann, A., Robshaw, M. J. B., Seurin, Y., and Vikkel-
soe, C. Present: An ultra-lightweight block cipher. In CHES (2007),
P. Paillier and I. Verbauwhede, Eds., vol. 4727 of Lecture Notes in Com-
puter Science, Springer, pp. 450 – 466.

[13] Carlet, C. Boolean Models and Methods in Mathematics, Com-
puter Science, and Engineering. Cambridge University Press, 2010,
ch. Boolean Functions for Cryptography and Error Correcting Codes,
pp. 257 – 397.

[14] Carlet, C. Boolean Models and Methods in Mathematics, Computer
Science, and Engineering. Cambridge University Press, 2010, ch. Vec-
torial Boolean Functions for Cryptography, pp. 398 – 469.

[15] Çetin Kaya Koç, Naccache, D., and Paar, C., Eds. Crypto-
graphic Hardware and Embedded Systems - CHES 2001, Third Interna-
tional Workshop, Paris, France, May 14-16, 2001, Proceedings (2001),
vol. 2162 of Lecture Notes in Computer Science, Springer.

[16] Chakrabarty, K., and Hayes, J. Balanced boolean functions. Com-
puters and Digital Techniques, IEE Proceedings - 145, 1 (1998), 52 – 62.

[17] Chari, S., Jutla, C. S., Rao, J. R., and Rohatgi, P. Towards
sound approaches to counteract power-analysis attacks. In Wiener [81],
pp. 398–412.

[18] Crama, Y., and Hammer, P. Boolean Models and Methods in Math-
ematics, Computer Science, and Engineering. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, 2010.

[19] Cusick, T., and Stănică, P. Cryptographic Boolean functions and
applications. Academic Press/Elsevier, 2009.

[20] Daemen, J., Peeters, M., and Assche, G. V. Bitslice ciphers and
power analysis attacks. In Schneier [58], pp. 134–149.

BIBLIOGRAPHY 90

[21] daemen, J., Peeters, M., Assche, G. V., and Rijmen, V. Nessie
proposal: NOEKEON. http://www.cryptnessie.org, 2000.

[22] Daemen, J., and Rijmen, V. The Design of Rijndael: AES - The
Advanced Encryption Standard. Springer, 2002.

[23] Gandolfi, K., Mourtel, C., and Olivier, F. Electromagnetic
analysis: Concrete results. In Çetin Kaya Koç et al. [15], pp. 251–261.

[24] Gierlichs, B., Batina, L., Preneel, B., and Verbauwhede, I.
Revisiting higher-order dpa attacks:. In CT-RSA (2010), J. Pieprzyk,
Ed., vol. 5985 of Lecture Notes in Computer Science, Springer, pp. 221–
234.

[25] Gierlichs, B., Batina, L., Tuyls, P., and Preneel, B. Mutual
information analysis. In Oswald and Rohatgi [49], pp. 426–442.

[26] Golic, J. D., and Tymen, C. Multiplicative masking and power
analysis of aes. In Jr. et al. [27], pp. 198–212.

[27] Jr., B. S. K., Çetin Kaya Koç, and Paar, C., Eds. Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Work-
shop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers
(2003), vol. 2523 of Lecture Notes in Computer Science, Springer.

[28] Kay, S. M. Fundamentals of statistical signal processing: estimation
theory. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[29] Knudsen, L. R. Truncated and higher order differentials. In FSE
(1994), B. Preneel, Ed., vol. 1008 of Lecture Notes in Computer Science,
Springer, pp. 196–211.

[30] Kocher, P. C. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In CRYPTO (1996), N. Koblitz, Ed.,
vol. 1109 of Lecture Notes in Computer Science, Springer, pp. 104–113.

[31] Kocher, P. C., Jaffe, J., and Jun, B. Differential power analysis.
In Wiener [81], pp. 388 – 397.

[32] Lai, X. Higher order derivatives and differential cryptanalysis. Kluwer
Academic Publishers, 1994, p. 227.

[33] Lidl, R., and Niederreiter, H. Finite Fields. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2008.

http://www.cryptnessie.org

BIBLIOGRAPHY 91

[34] Lorens, C. S. Invertible boolean functions. IEEE Transactions on
Electronic Computers, 13 (1964).

[35] MacWilliams, F. J., and Sloane, N. J. A. The Theory of Error-
Correcting Codes (North-Holland Mathematical Library). North Hol-
land, June 1988.

[36] Mangard, S., Oswald, E., and Popp, T. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007.

[37] Mangard, S., Popp, T., and Gammel, B. M. Side-channel leakage
of masked cmos gates. In CT-RSA (2005), A. Menezes, Ed., vol. 3376
of Lecture Notes in Computer Science, Springer, pp. 351–365.

[38] Marichal, J.-L. The influence of variables on pseudo-boolean func-
tions with applications to game theory and multicriteria decision mak-
ing. Discrete Applied Mathematics 107, 1-3 (2000), 139–164.

[39] Matsui, M. Linear cryptoanalysis method for des cipher. In EURO-
CRYPT (1993), pp. 386–397.

[40] Meier, W., and Staffelbach, O. Nonlinearity criteria for crypto-
graphic functions. In EUROCRYPT (1989), pp. 549–562.

[41] Menezes, A., van Oorschot, P. C., and Vanstone, S. A. Hand-
book of Applied Cryptography. CRC Press, 1996.

[42] Messerges, T. S. Securing the aes finalists against power analysis
attacks. In Schneier [58], pp. 150–164.

[43] Messerges, T. S. Using second-order power analysis to attack dpa
resistant software. In CHES (2000), Çetin Kaya Koç and C. Paar, Eds.,
vol. 1965 of Lecture Notes in Computer Science, Springer, pp. 238–251.

[44] Nikova, S., Rijmen, V., and Schläffer, M. Secure hardware
implementation of non-linear functions in the presence of glitches. In
ICISC (2008), P. J. Lee and J. H. Cheon, Eds., vol. 5461 of Lecture
Notes in Computer Science, Springer, pp. 218 – 234.

[45] Nikova, S., Rijmen, V., and Schläffer, M. Secure hardware
implementation of nonlinear functions in the presence of glitches. J.
Cryptology 24, 2 (2011), 292–321.

[46] Nyberg, K. Perfect nonlinear s-boxes. In EUROCRYPT (1991),
pp. 378 – 386.

BIBLIOGRAPHY 92

[47] Örs, S. B., Gürkaynak, F. K., Oswald, E., and Preneel, B.
Power-analysis attack on an asic aes implementation. In ITCC (2)
(2004), IEEE Computer Society, pp. 546–552.

[48] Oswald, E., Mangard, S., Herbst, C., and Tillich, S. Prac-
tical second-order dpa attacks for masked smart card implementations
of block ciphers. In CT-RSA (2006), D. Pointcheval, Ed., vol. 3860 of
Lecture Notes in Computer Science, Springer, pp. 192–207.

[49] Oswald, E., and Rohatgi, P., Eds. Cryptographic Hardware and
Embedded Systems - CHES 2008, 10th International Workshop, Wash-
ington, D.C., USA, August 10-13, 2008. Proceedings (2008), vol. 5154
of Lecture Notes in Computer Science, Springer.

[50] Popp, T., and Mangard, S. Masked dual-rail pre-charge logic: Dpa-
resistance without routing constraints. In CHES (2005), J. R. Rao
and B. Sunar, Eds., vol. 3659 of Lecture Notes in Computer Science,
Springer, pp. 172–186.

[51] Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H.,
and Ling, S. Side-channel resistant crypto for less than 2,300 ge. J.
Cryptol. 24 (April 2011), 322 – 345.

[52] Pramstaller, N., Oswald, M. E., Mangard, S., Gürkaynak,
F. K., and Häne, S. A masked aes asic implementation. In Proceedings
of Austrochip 2004 (2004), M. L. Erwin Ofner, Ed., pp. 77 – 81.

[53] Preneel, B., Leekwijck, W. V., Linden, L. V., Govaerts, R.,
and Vandewalle, J. Propagation characteristics of boolean functions.
In EUROCRYPT (1990), pp. 161–173.

[54] Quisquater, J.-J., and Samyde, D. Electromagnetic analysis
(ema): Measures and counter-measures for smart cards. In E-smart
(2001), I. Attali and T. P. Jensen, Eds., vol. 2140 of Lecture Notes in
Computer Science, Springer, pp. 200–210.

[55] Rabaey, J. M., Chandrakasan, A., and Nikolic, B. Digital
integrated circuits: A design perspective, 2ed ed. Prentice Hall, 2004.

[56] Samyde, D., Skorobogatov, S. P., Anderson, R. J., and
Quisquater, J.-J. On a new way to read data from memory. In
IEEE Security in Storage Workshop (2002), pp. 65–69.

BIBLIOGRAPHY 93

[57] Schneier, B. Applied cryptography - protocols, algorithms, and source
code in C (2. ed.). Wiley, 1996.

[58] Schneier, B., Ed. Fast Software Encryption, 7th International Work-
shop, FSE 2000, New York, NY, USA, April 10-12, 2000, Proceedings
(2001), vol. 1978 of Lecture Notes in Computer Science, Springer.

[59] Shamir, A. How to share a secret. Commun. ACM 22, 11 (1979),
612–613.

[60] Shannon, C. E. Communication Theory of Secrecy Systems. Bell
System Technical Journal 28, 4 (1949), 656 – 715.

[61] Siegenthaler, T. Correlation-immunity of nonlinear combining func-
tions for cryptographic applications. IEEE Transactions on Information
Theory 30, 5 (1984), 776–780.

[62] Skorobogatov, S. P. Semi-invasive attacks – A new approach to
hardware security analysis. Tech. Rep. UCAM-CL-TR-630, University
of Cambridge, Computer Laboratory, Apr. 2005.

[63] Standaert, F.-X., Örs, S. B., Quisquater, J.-J., and Preneel,
B. Power analysis attacks against fpga implementations of the des. In
FPL (2004), J. Becker, M. Platzner, and S. Vernalde, Eds., vol. 3203 of
Lecture Notes in Computer Science, Springer, pp. 84–94.

[64] Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gier-
lichs, B., Medwed, M., Kasper, M., and Mangard, S. The
world is not enough: Another look on second-order dpa. In ASIACRYPT
(2010), M. Abe, Ed., vol. 6477 of Lecture Notes in Computer Science,
Springer, pp. 112–129.

[65] Stephens, M. A. Edf statistics for goodness of fit and some compar-
isons. Journal of the American Statistical Association 69, 347 (1974),
730–737.

[66] Stinson, D. R. Cryptography - theory and practice. Discrete mathe-
matics and its applications series. CRC Press, 1995.

[67] Sundström, T., and Alvandpour, A. A comparative analysis of
logic styles for secure ic’s against dpa attacks. 2005 Norchip (2005),
297–300.

BIBLIOGRAPHY 94

[68] Suzuki, D., and Saeki, M. Security evaluation of dpa countermea-
sures using dual-rail pre-charge logic style. In CHES (2006), L. Goubin
and M. Matsui, Eds., vol. 4249 of Lecture Notes in Computer Science,
Springer, pp. 255–269.

[69] Tillich, S., and Herbst, C. Attacking state-of-the-art software
countermeasures-a case study for aes. In Oswald and Rohatgi [49],
pp. 228–243.

[70] Tiri, K., and Verbauwhede, I. Place and route for secure stan-
dard cell design. In CARDIS (2004), J.-J. Quisquater, P. Paradinas,
Y. Deswarte, and A. A. E. Kalam, Eds., Kluwer, pp. 143–158.

[71] Trichina, E., Korkishko, T., and Lee, K.-H. Small size, low
power, side channel-immune aes coprocessor: Design and synthesis re-
sults. In AES Conference (2004), H. Dobbertin, V. Rijmen, and A. Sowa,
Eds., vol. 3373 of Lecture Notes in Computer Science, Springer, pp. 113–
127.

[72] Trichina, E., Seta, D. D., and Germani, L. Simplified adaptive
multiplicative masking for aes. In Jr. et al. [27], pp. 187–197.

[73] Vollmer, H. Introduction to Circuit Complexity: A Uniform Ap-
proach. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[74] Von Neumann, J., and Morgenstern, O. Theory of games and
economic behavior / by John Von Neumann and Oskar Morgenstern.
Princeton University Press, Princeton :, 1944.

[75] Waddle, J., and Wagner, D. Towards efficient second-order power
analysis. In CHES (2004), M. Joye and J.-J. Quisquater, Eds., vol. 3156
of Lecture Notes in Computer Science, Springer, pp. 1–15.

[76] Wakerly, J. F. Digital design - principles and practices. Prentice Hall
Series in computer engineering. Prentice Hall, 1990.

[77] Wanlass, F., and Sah, C. Nanowatt logic using field-effect metal-
oxide semiconductor triodes. Institute of Electrical and Electronics En-
gineers, 1963, pp. 32–33.

[78] Webster, A. F., and Tavares, S. E. On the design of s-boxes.
In CRYPTO (1985), H. C. Williams, Ed., vol. 218 of Lecture Notes in
Computer Science, Springer, pp. 523–534.

BIBLIOGRAPHY 95

[79] Wegener, I. The complexity of Boolean functions. Wiley-Teubner,
1987.

[80] Whitnall, C., Oswald, E., and Mather, L. An exploration of the
kolmogorov-smirnov test as competitor to mutual information analysis.
IACR Cryptology ePrint Archive 2011 (2011), 380.

[81] Wiener, M. J., Ed. Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings (1999), vol. 1666 of Lecture Notes
in Computer Science, Springer.

[82] Wolkerstorfer, J., Oswald, E., and Lamberger, M. An asic
implementation of the aes sboxes. In CT-RSA (2002), B. Preneel, Ed.,
vol. 2271 of Lecture Notes in Computer Science, Springer, pp. 67–78.

[83] Xiao, G.-Z., and Massey, J. L. A spectral characterization of
correlation-immune combining functions. IEEE Transactions on Infor-
mation Theory 34, 3 (1988), 569–571.

[84] Yao, A. C.-C. Protocols for secure computations (extended abstract).
In FOCS (1982), IEEE Computer Society, pp. 160–164.

[85] Yeap, G. K. Practical Low Power Digital VLSI Design. Springer, Aug.
1997.

	Introduction
	Outline of this thesis

	Boolean functions
	Introduction to Boolean functions
	Definitions
	Affine mappings
	Representations of Boolean functions

	Walsh Hadamard transformation
	Balanced Boolean functions
	Vectorial Boolean functions
	Criteria for Boolean functions in cryptography
	Algebraic degree
	Nonlinearity
	Balancedness
	Other criteria

	Side-Channel Analysis
	Introduction
	Hardware in cryptography
	Types of attacks on cryptographic hardware
	Power consumption

	Simple power analysis
	Description

	Differential power analysis
	Description
	Attacks based on the correlation coefficient
	Attacks based on alternatives
	Attacks based on the distribution
	Higher order attacks

	Selection of countermeasures
	Software countermeasures
	Hardware countermeasures
	Summary

	Secret sharing
	Introduction to secret sharing
	Simple shared control schemes
	Threshold schemes

	Masking schemes
	Glitches in a masked AND gate

	Secret sharing used in this thesis
	Overview
	Terminology
	Requirements
	Sharing linear transformations
	Implementing nonlinear functions
	Pipelining
	Limitations
	Decomposition of functions
	Shared multiplication in GF(4)

	Sharing of affine equivalent S-boxes
	Introduction to affine equivalent S-boxes
	Sharing of affine equivalent S-boxes

	Summary

	Sharing of affine equivalent S-boxes
	Characterizing properties in the truth table
	Balancedness in the truth table
	Non-completeness in the truth table
	Correctness in the truth table
	Balancedness and correctness
	A truth table search

	Sharing of 3 x 3 S-boxes with algebraic degree <= 2.
	Introduction
	Class S0
	Class S1
	Class S2
	Class S3

	Add correction terms
	Overview
	Search potential correction terms for each share function
	Find potential correction terms for each bit
	Combine 2 S-box bits and check for balancedness
	Combine all bits and check for balancedness
	Results

	A randomized approach
	Description
	Results

	Fix two bits and construct the third bit
	Overview
	Constructing the third bit
	Results

	Extending 3 x 3 S-boxes to 4 x 4 S-boxes with algebraic degree <= 2.
	Summary

	Walsh transformation of S-boxes
	Finding properties in the Walsh transformation
	The balancedness property
	The non-completeness property
	The correctness property

	Walsh transformation for the unshared S-boxes
	Walsh transformation of Class S2
	Observations on S-box candidates in class S2

	Summary

	Conclusions

