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Abstract

Two superconducting germanium based Skutterudite compounds (LaPt4Ge12 and

BaPt4Ge12) were tried to be modified to get good thermoelectric properties, by sub-

stitution. A sample series of LaPt4Ge12−xSbx with x < 5 could be produced by arc

melting and annealing at 800◦C for 10 days. The sample composition and quality was

analyzed by X-ray powder diffraction at room temperature and in the electron microscope

with micro probe analysis. The critical temperature Tc for superconductivity decreases

very rapidly with increasing the Sb content x = 0,Tc = 8.27 K; x = 0.5,Tc = 5.20 K.

They are type II BCS superconductors, which was verified by susceptibility and speci-

fic heat measurement. Seebeck effect increases from 3 µV/K for x = 0 to 43 µV/K

for x = 5 at room temperature, resistivity at room temperature also increases with in-

creasing antimony amount. The main reason for the the rapid increasing of the Seebeck

coefficient is the charge carrier density, which was determined by Hall measurement. Fur-

thermore phonon properties were investigated by thermal expansion and heat capacity

measurement.
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Kurzfassung

An zwei supraleitenden Germanium basierten Skutterudit Verbindungen (LaPt4Ge12 und

BaPt4Ge12) wurde versucht, diese durch gezielte Substitution so zu verändern, dass sie

gute thermoelektrische Eigenschaften aufweisen. Eine Probenreihe von LaPt4Ge12−xSbx

mit x < 5 konnte durch Schmelzen im Lichtbogenofen und Glühen bei 800◦C für 10

Tage hergestellt werden. Die Zusammensetzung und Qualität der Proben wurde mittels

Röntgen- Pulverdiffraktometrie und im Elektronenmikroskop mittels micro probe analy-

sis festgestellt. Die kritische Temperatur Tc der Supraleitung sinkt sehr schnell mit einer

Erhöhung des Sb-Gehalts: x = 0,Tc = 8.27 K, x = 0.5,Tc = 5.20 K. Die supraleitenden

Proben sind Typ-II, BCS Supraleiter, was mittles Messung der Suszeptibilität und der spe-

zifischen Wärme verifiziert wurde. Der Seebeck- Koeffizient steigt bei Raumtemperatur

von 3 µV/K für x = 0 auf 43 µV/K für x = 5. Der Widerstand bei Raumtempera-

tur steigt ebenso mit zunehmender Menge an substituiertem Antimon. Der Grund für

die rasche Erhöhung des Seebeck-Koeffizienten ist die verringerte Ladungsträgerdichte,

welche mittels Hall-Messung ermittelt wurde. Außerdem wurden Gittereigenschaften

durch Messung der thermischen Ausdehnung und der Wärmekapazität untersucht.
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1. Introduction

1 Thermoelectricity as well as thermal conductivity and electrical conductivity is a bulk

property driven by a temperature gradient or an electric field. However its the most fas-

cinating one. If a temperature gradient is applied to a conductor without an electric field

not only a heat flow occurs, but also electric current, due to thermodiffusion. Because

of the charge of the electrons a field in the opposite direction is created. In order to

measure this current the circuit has to be closed. Fig. 1.1 left, illustrates such a closed

Figure 1.1.: Left: closed circuit; if material 1 and 2 are different thermoelectric cur-
rent flows. Right: open circuit; if material 1 and 2 are different potential
difference is generated

circuit. If material 1 and material 2 are the same, the same current flows in the left and

the right arm of the circuit and so it cancels out and can not be measured, although

it still is there. In order to measure this effect two different materials have to be used.

The right side of Fig. 1.1 shows an open circuit; the observed thermoelectric potential is

proportional to temperature difference and to the difference in thermoelectric properties

of the bulk materials. It does not depend on size or dimension of the conductors, as-

suming that the dimensions are large compared to the mean free path of the electrons.

1From references: [1], [2], [3] and [4]
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1. Introduction

This thermoelectric potential was first observed in metals where Seebeck coefficients

were around 10µV/K. Later, semiconductors were started to be investigated with much

higher Seebeck coefficients, around 100µV/K but also with higher resistivities. The best

thermoelectric materials are somewhere in between; see section 2.2. Thermoelectric de-

Figure 1.2.: thermoelectric device; taken from [4]

vices are made of a p- and a n-type legs connected with a metal; connected in series with

the next couple, see Fig. 1.2. This increases the provided voltage. Using this devices to

produce electrical energy out of thermal energy (for example waste heat) is the reason

for intense research in this area. Such devices are small and work without moving parts

and would therefore be very stable. Still the efficiency is quite low, so until now they are

mainly used for niche applications, like power supply in space and conventional, mechani-

cal heat engines are still much more efficient. According to Vining [2] the most promising

applications for thermoelectric generator systems are small scaled (size and power scale)

waste energy converters.

2



2. Theoretical aspects

2.1. Superconductivity

1 Superconductivity is a quantum mechanical phenomenon; it is the vanishing of the elec-

trical resistance in certain materials below a characteristic temperature TC, a characteris-

tic field HC and a characteristic current JC. At lower temperatures the superconducting

state resists higher magnetic fields or currents. For conventional Type I superconductors,

the most simple case, the relation between TC and HC is given in Eqn. 2.1 and shown

in Fig. 2.1.

HC(T ) = H0
C

[

1−
(

T

TC

)2
]

(2.1)

The critical current, that can also destroy the superconducting state, is approximately

T/Tc

0.0 0.2 0.4 0.6 0.8 1.0 1.2

H
c
/H

c
(0

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 2.1.: Temperature dependence of the critical field

reached when the induced magnetic field at the surface of the sample equals the critical

field. The superconducting state is also defined by the Meissner- Ochsenfeld effect. For

small fields a superconductor can expel all applied magnetic fields by surface currents. It

1From reference [5]
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2. Theoretical aspects

is then a perfect diamagnetic material, with B ≡ 0 within it.

B = µ0(H +M) = 0 χ =
dM

dH
= −1 (2.2)

While cooling down a sample in a field (FC) under TC shielding currents arise in the su-

perconductor surface. These currents create a field, such that inside the superconductor

the applied and the induced field exactly cancel, while outside they add. This makes

superconductivity being a thermodynamic state.

2.1.1. BCS theory

2 The BCS theory is a microscopic theory of superconductivity, introduced 1957 by John

Bardeen, Leon N. Cooper and John R. Schrieffer. The theory includes the formation of

Cooper pairs out of electrons, caused by the presence of an attractive potential, coming

from the lattice vibrations (electron-phonon-interaction). The wave function for these

paired electrons is adjusted to minimize the free energy and gives the basis of the BCS

theory. The gain of energy by the formation of Cooper pairs, out of electrons near

the Fermi level, gives rise to an energy gap around the Fermi level. The gap size is

proportional to ωD, the Debye frequency because of this electron-phonon-interaction.

Furthermore there is an exponential dependence on U, the electron-phonon-interaction

potential and N(EF), the density of states at the Fermi level.

∆ = 2~ωD exp
−1

N(EF )U
(2.3)

The electronic part of the thermal conductivity is small as there are no states at EF

(because of the gap). The critical field, the transition temperature and the critical

current are quantified by the energy gap and therefore strongly influenced by the density

of states at the Fermi level. The connection to the transition temperature is Eqn. 2.4.

kBTC ≈ 1.13~ωD exp
−1

N(EF )U
(2.4)

A magnetic field as well as a current (connected over Biot Savart law) cause an energy

effort to exclude this field. This energy is proportional to B2 so the critical field is where

this excluding energy is equal to the gap energy. The temperature dependence of the

2From reference [6]
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2.1. Superconductivity

gap around TC is in generally Landaus theory of second order phase transition.

∆(T )/∆0
∼= 1.74

√

1− T/TC (2.5)

CS

γTC
= 8.5 exp−0.82∆0

kBT
(2.6)

The energy gap is often experimentally measured employing the specific heat Eqn. 2.6.

γ stands for the Sommerfeld coefficient. CeS is the specific heat of the superconducting

state and in a real measurement it is gained by measuring also the specific heat of the

normal state Cn (using a magnetic field H > HC) and subtracting it. The specific heat

jumps at a fixed value at T = TC and falls off exponentially.

∆C

Cn

(T = TC) ≡
CeS − Cn

Cn

|T=CC
= 1.43 (2.7)

2.1.2. Type I / type II superconductors

3 Type I superconductors switch, while increasing the magnetic field, abruptly from Meiss-

ner state to normal state. This means switching from no penetration of magnetic field

to full penetration at the critical field HC . Increasing the magnetic field to Hc1, type

II superconductors switch from Meissner state to a mixed state. There, vortices carry

flux lines with an elementary amount of flux φ0 =
h
2e
. Increasing until the second critical

magnetic field Hc2 the flux increases continuously until full flux penetration is reached in

the normal state. The Ginzburg-Landau theory was originally introduced as a phenome-

nological theory of phase transitions. For temperatures close TC the Ginzburg-Landau

equations can be obtained from the BCS theory. Type I and type II superconductors are

explained as a result of considerations concerning the temperature dependence of two

characteristic length: the coherence lengths ξ and the penetration depth λ. The density

of Cooper pairs nS = |ψ(~r)|2 changes with this characteristic coherence length ξ. The
penetration depth λ of the magnetic field can be gained from the London equations. Fig.

2.3 shows the meaning of λ and ξ and how they change starting from the surface. The

interface energy between the superconducting phase and the normal conducting phase

can be positive or negative. A negative interface energy means that the interface is as big

as possible and that causes a division in small superconducting (without flux) and normal

conducting (with flux) areas. This can be done until the quantum limit and is then a

stable type II superconducting mixed state. The connection to the two parameters λ and

3From references [7], [8], [9], [10] and [11]
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2. Theoretical aspects

Figure 2.2.: interface energy in connection with λ and ξ; picture taken from [9]

ξ can be explained over the two energies connected with this parameters: the energy

EB, that is necessary to eject the the magnetic field and the energy Ec gained by the

condensation of the Cooper pairs. If λ >> ξ the interface energy is positive, energy is

needed to build this interfaces - type I superconductors. If λ << ξ, the energy needed

to eject the the magnetic field at this surface E′B is smaller than the energy gained by

the condensation at this surface E′c so the difference of this energy is the surface energy,

that favors having big surfaces. This is realized as cylinder vortices with magnetic flux

lines and normal conduction state inside and superconducting state outside .

Figure 2.3.: Magnetization properties of Type I and Type II superconductors; picture
taken from [10]
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2.2. Optimization and selection of thermoelectric materials

2.2. Optimization and selection of thermoelectric

materials

4 The transport parameters that influence the thermoelectric performance are carrier

concentration, carrier mobility and effective mass, and lattice thermal conductivity. Op-

timization of this parameters is complex and a lot of times excludes each other.

The figure of merit ZT is used to compare the efficiency of Thermoelectric devices. It

is defined as :

ZT =
S2σT

λ
(2.8)

where S is the Seebeck coefficient, λ is the thermal conductivity, σ the electrical conduc-

tivity and T the temperature.

2.2.1. Free charge carrier concentration

All the factors of Eqn. 2.8 are strongly influenced by the number of free charge carriers.

The electrical conductivity depends on the the carrier concentration n and the mobility

µ:

σ = neµ (2.9)

For the electronic part of the thermal conductivity (in metals the dominating part) the

WiedemannFranz law is valid:

λel
σ

= LT = constT (2.10)

with L the Lorenz number. So for metals the optimization of thermoelectric performance

is limited to the optimization of the Seebeck coefficient, which is also strongly influenced

by the charge carrier concentration. The Seebeck coefficient, for a single parabolic band

with high charge carrier concentrations at high temperatures, can be written as:

S =
8π2k2B
3eh2

m∗T
( π

3n

)2/3

(2.11)

Figure 2.4 taken from [14] shows the optimum of the charge carrier concentration for

Bi2Te3. It is at about 10
19 − 1021carriers/cm3 which is in the range of an heavily doped

semiconductor.

4From references [12], [13] and [14]
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2. Theoretical aspects

Figure 2.4.: Optimum of ZT with respect to charge carrier concentration. It is a com-
promise between the influence on of the free charge carrier concentration
on the thermal conductivity κ, the Seebeck coefficient α and the electri-
cal conductivity σ. A typical range for good thermo electrical materials is
1019 − 1021carriers/cm3. Taken from reference: [14]

8



2.2. Optimization and selection of thermoelectric materials

2.2.2. Mobility and effective mass

5 Seebeck coefficient depends not only on the charge carrier density, but also on the

effective mass, Eqn. 2.11. To get a big voltage between the hot and the cold end it is

important to have only one type of charge carrier (electrons and holes move from the hot

to the cold end). This is fulfilled by Fermi levels near the edge of a band gap. The sharper

and higher the edge the better the Seebeck coefficient. A sharp and high edge at the

density of states for single parabolic band model is equivalent to an high effective mass

m*. High mobility increases the ZT by increasing the electric conductivity, Eqn.2.9.

Mobility and effective mass are generally conflicting parameters, heavy charge carriers

cause a low mobility. But mobility is also influenced by scattering processes, like electron

phonon scattering, scattering with impurities, defects and grain boundaries.

2.2.3. Lattice thermal conductivity

6 Considering Eqn. 2.8 and Eqn. 2.10 as well as the right side of Fig. 2.4 it can be seen

that the electronic part of the thermal conductivity and of the electrical resistivity give a

constant contribution (L̃) to the value of ZT. For metals ZT is mainly determined by the

Seebeck coefficient. The lattice part of the thermal conductivity is tried to be minimized

independently. So the material should be glass like for phonons and crystal like for

electrons. One approach to reduce thermal lattice conductivity is to form nanostructured

materials to increase phonon scattering on surfaces. Another is point defect scattering,

by inducing vacancies or site substitutions. Clathrates and skutterudites form a cage that

can be filled or partly filled with weakly bound big atoms, so called "rattlers". These

"rattlers" are have been thought to move independently from the cage and act as some

center of scattering. More likely the rattling effect is part of an more general cause of

low lattice thermal conductivity λl: a large unit cell. The number of phonon modes is

3N, with N the number of atoms per unit cell. Every material has 3 acoustic modes

and 3N-3 optical modes if there is more than one atom in each unit cell (N>1). The

heat transport is performed primarily by the acoustic modes, because the group velocity

of the high frequent optical modes is very low or even zero. The optical modes give a

contribution to the internal energy and therefore to the heat capacity but not in a direct

manner to the thermal conductivity.

5From reference [12]
6From reference [14]
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2. Theoretical aspects

Figure 2.5.: density of states calculation of the Reference material LaPt4Ge12 taken from
[17]. p Ge states are the dominating contribution at the Fermi level

2.2.4. Ge based skutterudites

7 The two superconducting, metallic compounds: BaPt4Ge12 and LaPt4Ge12 consist on

a framework of Ge and Pt, electronically stabilized by La/Ba cations. Looking at Fig.

2.5 for LaPt4Ge12 it can be observed that further electrons are needed to shift the Fermi

energy towards the gap in the electronic density of states (DOS). For BaPt4Ge12 Fig.

2.6 shows the density of states (taken from [15]). Zintl phases consist of anions

and cations, that donate their electrons to the electronegative anions. The bonding

model is a mixture of ionic and covalent contributions. Classical Zintl phases (also called

polar intermetallics) are valence balanced and semiconductors. An example for this is

the prototype of the skutterudites CoAs3. Zintl chemistry can be used to predict the

electrical properties of the compounds through valence electron count. An increasing

valence imbalance leads from semi conducting to metallic behavior; for more details see

also reference [12]. Comparing LaPt4Ge12 with semi conducting CoAs3 the structure has

12 electrons less from using As instead of Ge, 4 electrons more from using Pt instead

of Co and three extra electrons from the filler Atom La. This very simple consideration

predicts that LaPt4Ge12 shows p-type metallic behavior and that adding to this structure

in some way 5 electrons leads to a semiconductor. For LaPt4Ge12 this was done by

substituting Ge by Sb LaPt4Ge12−xSbx x = 0,1,2,3,4,5,6,7. It can be seen later that this

predictions is in quite good agreement with the experimental results.

7From reference [15], [12], [16] and [17]
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2.2. Optimization and selection of thermoelectric materials

Figure 2.6.: density of states calculation of the Reference material BaPt4Ge12 taken from
[15]. The upper figure shows a relativistic calculation while the lower figure
shows a non relativistic one. p Ge states are the dominating contribution at
the Fermi level

11



2. Theoretical aspects

2.3. Transport phenomena

2.3.1. Boltzmann equation

8 In order to describe a gas of N equal particles a probability distribution function f(r̃, k̃, t)

for one particle is used. f(r̃, k̃, t)d3rd3k is the number of particles in the phase space

volume d3rd3k. For metallic materials heat and charge transport is mainly performed by

electrons. So in this case f0(r̃, k̃, t), the equilibrium probability distribution function is the

Fermi-Dirac equation.

f0(E(~k)) =
1

1 + exp E(~k)−µ
kBT

(2.12)

Transport means having a non equilibrium state. In order to get the Boltzmann transport

equation we have to consider forces that give electrons a reason to move (∆T, ~E, ~B) and

developing over the time dt.

f(~r + ~̇rdt,~k + ~̇kdt, t+ dt)− f(~r,~k, t) = 0 (2.13)

Without scattering processes we get Eqn. 2.13, called Liouville´s equation. This equation

says that, the distribution function stays constant while following a path in the phase

space in time and is valid for conservative systems. The number of particles in the phase

space volume d3rd3k is equal to the number of particles in d3(r + vt)d3(k + (F/~)dt).

(

∂

∂t
+ ~̇k∇~k + ~̇r∇~r

)

f(~r,~k, t) = 0 (2.14)

Development in a Taylor series and considering only first order terms leads to Eqn. 2.14.

(

∂

∂t
+ ~̇k∇~k + ~̇r∇~r

)

f(~r,~k, t) =

(

∂f

∂t

)

coll

(2.15)

Now considering besides the external forces also scattering processes, the equation ends

up in Eqn. 2.15. Particles are scattered into or out of the phase space volume elements

d3rd3k, d3(r + vdt)d3(k + (F/~)dt).

∂f

∂t
= −~v∇~rf −

e

~

(

~E + ~v × ~B
)

∇~kf +

(

∂f

∂t

)

coll

(2.16)

8From references [18], [19], [20] and [21]
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2.3. Transport phenomena

Using ∂k̃
∂t
= F̃

~
= e

~

(

Ẽ + ṽ × B̃
)

and ∂r̃
∂t
= ṽ leads to Eqn. 2.16, the Boltzmann equation.

The first term of the right side of Eqn. 2.16 stands for diffusion and the second is the

result of external forces. In stationary case ∂f
∂t
= 0 this two terms have to be balanced by

the scattering term. Generally, this scattering term is described with the probability of

a particle changing from a quantum state k to k’ Pk,k′ ∝ 〈k′ |H| k〉. The relaxation time
approach 2.17 for the scattering terms is based on the idea that the difference between

the static distribution f0 and f decays exponentially with the relaxation time τ .

(

∂f

∂t

)

coll

=
f − f0
τ

(2.17)

For the case of stationary forces ∂f
∂t
in Eqn. 2.16 is neglected.

f − f0
τ

= ~v∇~rf +
e

~

~E∇~kf (2.18)

Considering a temperature gradient in the Fermi Dirac distribution:

f0(~k)⇒ f0(~k, ~r) =
1

exp ǫ(~k)−µ
kBT (~r)

+ 1
(2.19)

For small differences from equilibrium state ṽ(k̃)∇r̃f(k̃, r̃) ∼= ṽ(k̃)∇r̃f0(k̃, r̃) and

Ẽ(k)∇k̃f(k̃, r̃)
∼= Ẽ(k)∇k̃f0(k̃, r̃), see [22], and the relations 2.20, 2.21 and 2.22 we get a

simplified Boltzmann equation, Eqn. 2.23.

∇kf0 =
∂f0
∂ǫ
∇kǫ =

∂f0
∂ǫ

~~v(~k) (2.20)

∇~rf0(~k, ~r) =
∂f0
∂T
∇~rT (2.21)

∂f0
∂T

= −
(

ǫ− µ

T

)

∂f0
∂ǫ

(2.22)

f − f0
τ

=

[

−eE +
(ǫ− µ)

T
∇~rT

]

~v~k
∂f0
∂ǫ

(2.23)

For small differences from the equilibrium state g(k̃) = f(k̃)− f0(k̃) the linearized Boltz-

mann equation, Eqn. 2.23 is derived, in order to have an expression of f(k̃), only depending

on first order terms f0(k̃). The transport integrals are derived for the case B=0, starting

with Eqn. 2.18.
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2. Theoretical aspects

2.3.2. Transport integrals

9 The simplification of the Boltzmann equation finally is an expression for f(k̃, r̃) depending

on first order deviations of f0.

f(~k, ~r) = f0(~k)− τ

[

eE − (ǫ− µ)

T
∇~rT

]

~v~k
∂f0
∂ǫ

(2.24)

The definition of heat the current from a microscopic point of view is the sum of the

energy (ǫ− µ) transported with the velocity ṽ over all particles.

~q =
V

4π3

∫

(ǫ− µ)~vrf(~k, ~r)d
3k (2.25)

Similarly, the electrical current can be defined as the sum of the electric charge trans-

ported from all particles.

~j =
V

4π3

∫

e~vrf(~k, ~r)d
3k (2.26)

Combining Eqn. 2.25 and 2.26 with 2.24 gives the microscopic expressions for heat and

electrical current.

~q =
V e

4π3

∫

~vr~vr(ǫ−µ)τ
(

−∂f0
∂ǫ

)

~Ed3k− V

4π3T

∫

~vr~vr(ǫ−µ)2τ
(

−∂f0
∂ǫ

)

∇~rTd
3k (2.27)

~j =
V e2

4π3

∫

~vr~vrτ

(

−∂f0
∂ǫ

)

~Ed3k − V e

4π3T

∫

~vr~vr(ǫ− µ)τ

(

−∂f0
∂ǫ

)

∇~rTd
3k (2.28)

In order to simplify and find the connection to the macroscopic equations transport

integrals are defined with:

Kn =
V

4π3

∫

~vr~vrτ(ǫ− µ)n
(

−∂f0
∂ǫ

)

d3k (2.29)

what ends in two short equations for q̃ and j̃.

~q = eK1
~E − 1

T
K2∇~rT (2.30)

~j = e2K0
~E − e

T
K1∇~rT (2.31)

Using border conditions macroscopic transport quantities (electrical resistivity, thermal

conductivity, thermopower) are derived.

9From references [23], [13], [24], [22] and [21]
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2.3. Transport phenomena

2.3.3. Electrical resistivity

10 ρ is defined as inverse proportionality factor of current density and field strength Ẽ. ρ

is tensor in non-isotropic media. Assuming the typical border conditions for measuring:

Ẽ 6= 0,∇r̃T = 0, B̃ = 0, and using Eqn. 2.31 leads to the current density:

~j = e2K0
~E = ρ−1 ~E (2.32)

ρ−1 = e2K0 (2.33)

Solving the transport integral K0, assuming an isotropic medium and free electrons (see

reference [25], page 102,103) Eqn. 2.34 is achieved. This equation looks very similar to

the semi- classical Drude model, with τ(EF), indicating that only the electrons on the

Fermi surface participate in conduction and m∗ the effective mass instead of the electron

mass.

ρ−1 =
e2τ(EF )

m∗
n (2.34)

Searching a model for the temperature dependence of the resistivity it is important consi-

dering the different causes of resistivity. The strongest impact on resistivity at high tem-

perature in metals is the electron- phonon scattering. Other sources derive from lattice

imperfections or impurities and are here considered as temperature independent. Other

scattering terms might come from electron electron scattering (for low temperatures)

or magnetic moments. The very important Matthiessen rule assumes that scattering

processes are independent and so the inverse relaxation times can be added.

1

τ
=
∑ 1

τi
(2.35)

Bloch- Grüneisen- model

The Bloch-Grüneisen equation is an equation that describes the electron- phonon scat-

tering and the resulting resistivity. Its a variation type calculation of lowest order based

on a spherical free electron band structure and a spherical Debye phonon spectrum of a

single longitudinal branch.

ρ(T ) = ρ0 + c2ΘD

(

T

ΘD

)5 ∫ ΘD/T

0

z5dz

(exp z − 1)(1− exp−z) (2.36)

10From references [22], [25] and [26]
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2. Theoretical aspects

For high temperatures (T >> ΘD) the Bloch- Grüneisen term is proportional to the

temperature. For low temperatures ρph ∝ T5.

2.3.4. Thermal conductivity

11 The macroscopic law of heat conduction, the Fourier law, states that the time rate

of heat transfer through a material is proportional to the negative temperature gradient.

~q = −λ∇~rT (2.37)

measuring border conditions: j̃ = 0,∇r̃T 6= 0, B̃ = 0 used in Eqn. 2.31 gives an expression

for the electric field:

~E =
K1

eTK0

∇~rT (2.38)

Now combining with Eqn. 2.30

~q = eK1
K1

eTK0

∇~rT −
1

T
K2∇~rT = − 1

T

(

K2 −
K2

1

K0

)

∇~rT ≡ λ∇~rT (2.39)

λ = − 1

T

(

K2 −
K2

1

K0

)

(2.40)

In order to find a model that describes the temperature dependence of the thermal

conductivity we consider the thermal conductivity λ as a sum of the electronic contribu-

tion λel and the lattice contribution λl. The electronic contribution is, like the resistivity,

influenced by interactions of the electrons with static imperfections and interactions with

phonons. For metals this λel is connected with the resistivity with the Wiedemann Franz

law.

λel =
L0t

ρ
(2.41)

The Lorenz number L0 is 2.45 ∗ 10−8WΩ/K2. The phonon contribution can be described

by the Callaway model, explained in detail in reference [27]. The Callaway model uses

Debye phonon distribution and is approximated with vs =
kBΘD

~(6π2n)1/3
and x = ~/kBT by:

λl =
kB
2π2vs

(

kb
~

)3

T 3

∫

ΘD
T

0

τCx
4ex

(ex − 1)2
dx (2.42)

11From references [22], [27] and [21]
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2.3. Transport phenomena

This model uses Matthissen rule and sums over the relaxation times of different scattering

events.
1

τC
=

1

τU
+

1

τD
+

1

τB
+

1

τel−ph
(2.43)

The considered scattering mechanism are: Umklapp processes τU, defect scattering τD,

boundary scattering τB and electron- phonon scattering τel−ph, see reference [21].

1

τU
∝ T 3x2e

−ΘD
2T

1

τD
∝ x4T 4

1

τB
∝ const

1

τel−ph
∝ Tx.

(2.44)

2.3.5. Thermopower

12 The thermopower (thermoelectric power, Seebeck effect) of a material is the induced

thermoelectric voltage in response to a temperature difference across that material.

~E = S∇~rT (2.45)

The measurement border conditions are, like for thermal conductivity, j̃ = 0,∇r̃T 6=
0, B̃ = 0, so we use Eqn. 2.38 and compare with the definition of the Seebeck coefficient:

~E = − K1

eTK0

∇~rT = S∇~rT (2.46)

S = − K1

eTK0

(2.47)

2.3.6. ZT figure of merit

13 In order to compare the thermoelectric properties of new materials it is important to

have a value that compares the efficiency in therms of material properties, not of impacts

like the temperature difference, size of the device or the resistivity of the user. This value

is the dimensionless quantity ZT. It is defined in Eqn. 2.8. The connection between ZT

12From reference [22]
13From reference [28]
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2. Theoretical aspects

and efficiency is (approximated by neglecting the losses of Joule heating):

µ =
W

Q
=
T1 − T0
T1

√

1 + Z
2
(T1 − T0)− 1

√

1 + Z
2
(T1 − T0) +

T0

T1

(2.48)

The left part is the definition of the efficiency with W, the provided electric power divided

by used thermal energy Q provided by the heat source. The right part consists of the

Carnot efficiency multiplied by a a part that includes Z, the material specific properties.

2.3.7. Charge carrier density - Hall effect

14 The Hall effect can be used to measure the charge carrier density. This is done by

using a magnetic field Bz and an electric field Ex , applied perpendicular. Due to the

Lorentz force there will also be a current in a right angle to the surface of magnetic- and

electric field vector. For only one type of charge carrier (electrons or holes) the charge

carrier concentration can be determined as follows:

Ey = −
eτ

m
ExBz (2.49)

Using j = ne2τEx

m
, RH is defined as

RH =
Ey

jxBz

= − 1

ne
(2.50)

With Ey the resulting field due to Lorenz force, RH the hall constant and n the charge

carrier density.

2.4. Heat capacity

15 The specific heat capacity is the amount of heat required to increase the temperature

of a specified amount of solid by one Kelvin. The amount of solid can be specified by

weight or mol. Heat can be stored by electrons, by lattice vibrations, and by all particles

and quasi particles one can think of. Assuming this contributions as independent we start

with Eqn. 2.51:

C(T ) = Cel + Cp + Cmag + Cnuc (2.51)

14From reference [24]
15From references [6] and [18]
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2.4. Heat capacity

With the specific heat expressed in state variables

CV = T

(

∂S

∂T

)

V

=
∂U

∂T V,N
(2.52)

Cp = T

(

∂S

∂T

)

p

=
∂H

∂T V,N
(2.53)

and the internal energy defined as the integral over the spectral density of the internal

energy, depending of the energy ǫ, the density of states at this energy D(ǫ) and the

occupation distribution function f(ǫ).

U =
∑

ks

ǫ(ks)f(ǫ(ks), T ) =

∫

ǫD(ǫ)f(ǫ)dǫ (2.54)

2.4.1. Electronic contribution

16 The specific heat for free electrons is proportional to T, see Eqn.2.55. A qualitative

understanding can be gained by the following assumptions: Not all electrons N can absorb

thermal energy, only the ones in the region of ǫF. The size of this region increases with

temperature because the Fermi function smears out with increasing temperature and

therefore there are free possible states in a broader energy region that can participate.

So the amount of electrons that give contribution to the heat capacity is the T
TF
th part of

all N electrons. Each one of these electrons has a thermal energy of kBT, so the internal

energy is proportional to U ∝ NT
TF
kBT and the specific heat to Cel =

∂U
∂T
∝ 2NkB

T
TF
. A

proper derivation, see reference [24] gives 2.55.

Cel =
1

3
π2D(ǫF )k

2
BT =

1

2
π2NkB

T

TF
(2.55)

2.4.2. Contribution of the lattice

17 Using Eqn. 2.54, the expression for the internal energy of phonons, summed over all

polarisations p:

U =
∑

p

∫

~ω

exp ~ω
kBT

− 1
D(ω)dω (2.56)

16From reference [24]
17From references [25] and [29]
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2. Theoretical aspects

With Eqn. 2.52 we get an expression for the specific heat:

CV,latt = kB
∑

p

∫

D(ω)

(

~ω
kBT

)2

exp ~ω
kBT

(

exp ~ω
kBT

− 1
)2 dω (2.57)

Now we still need a model for D(ω).

Einstein model

The Einstein model uses a phonon density of states according to:

D(ω) = Nδ(ω − ω0) (2.58)

with Eqn. 2.57 the specific heat ends up in

CV,latt = 3kBN

(

~ω
kBT

)2

exp ~ω
kBT

(

exp ~ω
kBT

− 1
)2 (2.59)

Debye model

In this model the phonon density of states increases like ω2 until the the so called Debye-

frequency and is zero above this Debye frequency. Similar to the Fermi level, the cut-off

is chosen such that the total number of states is 3N (3N =
∫ ωD

0
D(ω)dω.

D(ω) =
3V ω2

2π2c3
=
9Nω2

ω3
D

(2.60)

Eqn. 2.60 assumes a linear dispersions relation with c, the speed of sound and the Volume

L3 = V. The integral runs from ω = 0 to ω = ωD.

CV,latt =
9N

ω3
D

∫ ωD

0

(

~ω
kBT

)2

exp ~ω
kBT

(

exp ~ω
kBT

− 1
)2ω

2dω (2.61)

Later CV is used, normed per mol, so the equation we use for fitting and extracting the

Debye temperature is the following:

CV,latt = 9Rn

(

T

ΘD

)3 ∫ xD

0

(

x4ex

(ex − 1)2

)

(2.62)
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2.5. Thermal expansion

with n the number of atoms per formula unit and R = kB∗NA, R gas constant, kB Boltz-

mann constant and NA the Avogadro constant. For low temperatures ωD is substituted

with ∞ and we get the famous T3 Debye law, with ~ωD

kBT
= ΘD

T
:

CV,latt =
12π4

5
Rn

(

T

ΘD

)3

= βT 3 (2.63)

while for high temperatures we end up in the classical law from Dulong- Petite: CV = 3R.

The Debye Model only cares about the acoustic branches (linear dispersions relation

approximation) where all three branches are replaced by one intermediate. For lattices

with a base of more than one atom there are three acoustic and 3p-3 optic branches. A

model for D(ω) is then:

D(ω) = N

(

9ω2

ω3
D

+

3p−3
∑

i=1

δ(ω − (ωE)i)

)

(2.64)

2.5. Thermal expansion

18 Thermal expansion is described by the relative length change of the sample coming

from the change of particle displacement with the temperature.

∆l/l(T0) =
〈x〉T − 〈x〉T0

x0
(2.65)

Thermal expansion is a phenomenon that can be described with the help of anharmonic

contributions to the internal energy of phonons. The potential, before described with a

quadratic term of the particle displacement (harmonic oscillator) is now extended by a x3

and x4 term. Physically, the first term should describe the asymmetry of repulsive forces

between the ions and the second term describes a weakening of the potential for large

Amplitudes.

2.5.1. Model debye einstein approach

19 Eqn. 2.66 is the potential energy (including anharmonic terms) with respect to the

particle displacement x.

U(x) = cx2 − gx3 − fx4 (2.66)

18From references [30], [24], [31] and [32]
19From references [31] and [24]

21



2. Theoretical aspects

In order to calculate the average lattice displacement depending on temperature, we use

the Boltzmann distribution:

〈x〉T =
∫ −∞
∞ x exp−βU(x)

∫ −∞
∞ exp−βU(x)

(2.67)

Solving this equation, neglecting terms higher T3 Eqn. 2.68 is gained, with G = 15
16

g2

c3
− 8f

c2

and F = 35
16

(

15
4

g2f
c5
− 3f2

c4

)

.

〈x〉T =
3g

4c2
(kBT )[1−G(kBT )− F (kBT )

2] (2.68)

For some reason the thermal energy kBT is now expressed with the internal energy of the

lattice (including Debye and Einstein modes). Furthermore a T2 part is added in order

to consider the influence of free electrons.

〈x〉T =
3g

4c2
[ǫ−Gǫ2 − Fǫ3] (2.69)

with ǫ the internal energy of the phonons:

ǫ =

{

(

3

p

)

3kBT

(

T

ΘD

)3 ∫ ΘD/T

0

z3dz

expz − 1
+

(

p− 3

p

)

kBΘE

expΘE/T − 1

}

(2.70)

2.5.2. Grüneisen-parameter

20 Thermodynamic assumptions lead to the Grüneisen- parameter. The coefficient of

thermal expansion is defined as the degree of expansion divided by the change in tem-

perature. Using the definition of the bulk modulus B = −V
(

∂P
∂V

)

T
, we obtain α in

dependence of the pressure.

α =
1

3V

(

∂V

∂T

)

P

=
1

3B

(

∂P

∂T

)

V

=
1

l

(

∂l

∂T

)

P

(2.71)

Now we express the pressure in terms of the internal energy:

P = −
(

∂U

∂V

)

S

(2.72)

20From reference [32]
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2.5. Thermal expansion

The internal energy in Eqn. 2.54 can now be used to express α in terms of

energy/frequency. Considering Eqn. 2.52, CV is also expressed by the internal energy.

Eqn. 2.73 and 2.74 shall point out the similarity of these two measurable values.

α =
1

3B

∑

ks

∂

∂V
~ωks

∂

∂T
f(ωks, T ) (2.73)

CV =
∑

ks

~ωks

V

∂

∂T
f(ωks, T ) (2.74)

Using the Bose Einstein distribution f(ωks,T) =
1

expβ~ωks −1
and considering each mode k,

s separately, the Grueneisen- parameter is microscopic defined as

Γks = −
V

ωks

∂ωks

∂V
= −∂(ln(ωks))

∂(ln(V ))
(2.75)

and connected with the macroscopic world by Eqn. 2.76 and 2.77.

Γ = −
∑

ks ΓksCV ks
∑

ksCV ks

(2.76)

α =
ΓCV

B
(2.77)
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3. Experimental design

Two sample series (LaPt4Ge12−xSbx x = 0, 1, 2, 3, 4, 5, 5.1, 6, 7 and BaPt(4−x)IrxGe12

x = 1, 2, 3, 4) were produced and analyzed with respect to physical and chemical pro-

perties.

3.1. Sample preparation

Samples with a mass of 1-1.5 g were prepared by arc melting of the pure elements in argon

atmosphere and annealing afterwards. The loose of weight of La and Ba was corrected

by using 2 weight % more La/Ba. The standard annealing temperature was 800◦C for

10 days, but there were also made experiments at 750◦C and 900◦C in order to improve

the solubility. Samples were sealed in quarz tubes for annealing and quenched afterwards

in water. As the LaPt4Ge12−xSbx series samples were very brittle, one ball milled and

hot pressed sample was produced with the nominal composition LaPt4Ge8Sb4. This was

done by three arc melted samples ball milled in a Vario Planetenmühle, Pulverisette 4

(ball milling in argon athmosphere). Inside a glovebox the nanosized powder was filled

into a cylinder with a diameter of 10mm. A hot press HP W 200/250-2200-200-KS

(FCT Systeme GmbH) was used for hot pressing samples for 30min at 700◦C. For more

details see reference [33].

3.2. Structure analysis

1 All samples were analyzed, in as cast condition as well as annealed, by X-ray powder

diffraction at room temperature using pulverized samples. Using monochromatic CuKα1

radiation (λ = 0.154051 nm) and a Huber Guinier detection system imaging plate it is a

powerful tool to identify phases. Using pure silicon as internal standard (lattice parameter

5.43095 Å at RT) lattice parameters were calculated by least squares approximation

1From reference [30]
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3.3. Heat capacity

of elected peaks. Rietveld refinement of the crystal structures was made for all the

samples, using the program FullProf. All dense and not too brittle samples (as cast

condition/annealed) were embedded, polished and viewed in the electron microscope.

Energy dispersive X-ray analysis (EDX) was used to identify the phases observed in the

backscattered electrons (BSE) scanning picture. Combination of the EDX measurement

and X-ray is used to identify the phases.

3.3. Heat capacity

2 Heat capacity was measured using a quasi adiabatic step heating technique. The device

used is typical for the quasi adiabatic Nernst technique and described in [35]. The used

samples had a weight of 0.8− 1.2 g and were measured from 2.6 to 300 K.

3.4. Thermal expansion

A miniature capacitance dilatometer was used to measure the thermal expansion. This

equipment is very well described in [36]. It is important to perform the measurement

with a dense, plane sample.

3.5. Magnetic properties

Magnetic measurements were carried out by a SQUID-magnetometer (Cryogenics Ma-

gnetometer S603) in a temperature range from 2-300 K. The sample masses were about

20 mg; shape does not matter, thats why it was a good technique to gain at least some

information of the brittle samples. The measurements were performed in a dc field. Field

cooling and zero field cooling method were used. Field cooling means that the field is

applied above the transition temperature and while cooling down magnetization measu-

rement is done. Zero field measurement is done by cooling down the sample without a

field, then apply a field and measure while warming up.

2From references [34] and [35]
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3.6. Resistivity

The samples analyzed were bar- shaped, with a length of 7-9 mm, and a squared cross

section with a width of 1.3 mm. Low temperature measurements (4-300 K) were perfor-

med with a home-made standard four-terminal AC and DC measuring technique, using

four gold needles to perform the contact with the sample. The whole assembly is inser-

ted in a He4 bath. For further details see [23]. Measurements from room temperature

upwards were done by an ULVAC RIKO ZEM-3 equipment, which simultaneously also

measures the Seebeck coefficient. More detailed description on this instrument can be

found in [30].

3.7. Seebeck coefficient

Below room temperature the thermopower was measured with a home- made device

which heats samples in AC mode. The tools main parts are two strain gauge, that

produces, because of the resistivity a very defined amount of heat, and two thermocouples

to measure the temperatures, as well as the voltage between the two sides. The same

bar shaped samples from the resistivity measurements were used. In order to have better

contacts with the thermocouple the sites where the contacts were going to be fixed with

silver conductive paste, has been sputtered with a layer of gold/palladium.

3.8. Thermal conductivity

Thermal conductivity was measured for the one hot pressed sample by steady state heat

flow method in a flow cryostat. The sample used had a size of 1.6 x 1 x 8 mm. It

is thermally contacted on two sites (4.44 mm distance) with fine copper wires, which

are connected with thermocouples. A defined heat flow is provided by a strain gauge

and a copper heat sink, that is connected to the helium flow heat exchanger. The

most challenging part of this measurement is to get a stable heat flow in thermoelectric

materials, which have a small thermal conductivity. The sample and its connections

are surrounded by three radiation shields. Still above 150K radiation losses have to be

considered as an additional term T3.
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3.9. Hall measurement

3.9. Hall measurement

Hall measurement was performed with a Physical Property Measurement System

(PPMS).

3.10. Errors

Generally the errors made are relativly small. A cursory error estimation for temperatures

below 20 K: 3% for the low temperature Seebeck measurement, 5% for the thermal

conductivity measurement, 1% for the low temperature resistivity measurement and less

than 1% for the heat capacity measurement.
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4.1. Sample preparation and analyses

4.1.1. LaPt4Ge12−xSbx-system

Different samples of the LaPt4Ge12−xSbx-system were produced, starting from a refe-

rence sample without Sb until the end of the solubility. All samples were measured

with X-ray powder diffraction and analyzed in the electron microscope, making energy-

dispersive X-ray micro probe analysis of all different recognized phases. Table A.1 shows

a summary of this measurements. The X-ray powder diffraction patterns proved the

structure type LaFe4P12, space group Im3̄. The lattice parameter of the skutterudite

increases with the amount of solved Sb (figure 4.6(b)). A linear fit of this dependence

gives the equation y = 0.0558x+8.6278. Fig. 4.1 shows a X-ray powder diffractogramm

of the reference sample and the sample with x = 5.1Sb content. As the lattice parameter

is getting larger the peaks in Fig. 4.1 shift to the left. Furthermore the relative height

of the peaks changes due to different electron densities of the substituted atoms. The

end of the solubility was reached at about x = 5.1 at 800◦C, see Fig. 4.6(a), where

the filled circles are the lattice parameters and the unfilled circles are the EDX measured

Sb contents of the different samples. The samples were partially very brittle, see Fig.

A, so not all physical properties could be measured. Due to the annealing process quite

pure samples could be produced containing the LaPt4Ge12−xSbx skutterudite and small

impurities of Ge or LaPt2Ge2. In order to increase the solubility, annealing at a higher

Temperature (910◦C) was tried, however without success. The Sb content solved was

about x = 4.9 . Fig. 4.5 shows a differential scanning calorimetry measurement, finding

the melting point of the skutterudites around 942◦C. Fig. 4.4 shows the unit cell of the

sample with the nominal composition LaPt4Ge7Sb5, gained from the Rietveld refinement

of the powder pattern, Fig. 4.2.
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10 30 50 70 90

LaPt Ge4 12

LaPt Ge Sb4 6.9 5.1

2 theta

Figure 4.1.: comparison of the powder diffractogramm of the Reference sample
LaPt4Ge12 and LaPt4Ge6.9Sb5.1
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LaPt Ge Sb
4 6.9 5.1

Figure 4.2.: Rietveld refinement for the sample with nominal composition LaPt4Ge7Sb5

Ge

LaPt Ge
4 12

Figure 4.3.: Rietveld refinement for the sample with nominal composition LaPt4Ge12

30



4.1. Sample preparation and analyses

Figure 4.4.: Unit cell the sample with nominal composition LaPt4Ge7Sb5
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Figure 4.5.: DSC measurement for the sample with nominal composition LaPt4Ge7Sb5
to determine the melting point

31



4. Results and analyses

nominal Sb cont. x

0 1 2 3 4 5 6 7

m
e
a
s
u
re

d
 S

b
 c

o
n
t.

 x

0

1

2

3

4

5

la
tt

ic
e
 p

a
ra

m
e
te

r 
[A

]

8.6

8.7

8.8

8.9

9.0

(a) end of solubility

measured Sb cont. x

0 1 2 3 4 5

la
tt

ic
e
 p

a
ra

m
e
te

r 
[A

]

8.60

8.65

8.70

8.75

8.80

8.85

8.90

(b) lattice parameter vs. Sb content

Figure 4.6.: Solubility of Sb in the skutterudite LaPt4Ge12−xSbx. The lattice parameter
increases with the amount of solved Sb.

4.1.2. Ball milled and hot pressed sample

One of the brittle samples (nom. comp. LaPt4Ge8Sb4) was prepared as ball milled and

hot pressed sample. Fig. A.7(a) shows the sample in as cast condition, A.7(b) after

ball milling and hot pressing. It is nanostructured and Fig. A.1(g) shows that it is dense

and shiny. The density is: 8.4156g/cm3 (gained from measure the volume of the cylinder

and the weight), 8.6203g/cm3 (gained by Archimedes principle in water - pores partly

filled with water) and 9.4963g/cm3 (calculated from the lattice parameter and molecular

weight).

4.1.3. BaPt(4−x)IrxGe12-system

In chapter 2.2 several reasons are discussed why it there could be advantages in ther-

moelectric properties when substituting Pt with Ir in the skutterudite BaPt4Ge12 (for-

mally BaPt(4−x)IrxGe12). A series of 4 samples was prepared with nominal compositions

BaPt3,5Ir0,5Ge12, BaPt3Ir1Ge12, BaPt2,5Ir1,5Ge12 and BaPt2Ir2Ge12. The samples were

annealed for 10 days at 800◦C and, as there was no solubility measured, later 10 days

with 700◦C. All samples were analyzed with powder x-ray diffraction and with EDX ana-

lysis in the electron microscope after arc melting and after every heat treatment. Fig.

B.1 to B show pictures of these samples. In as cast condition as well as after both heat

treatments there are more than one phase in the material. Table B.1 to B.4 include a
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Figure 4.7.: Rietveld Refinement for the sample nom. comp. BaPt3,5Ir0,5Ge12. Sugges-
tion is that the other phase (marked peaks) are BaIrxPt2−xGe7 with a still
unknown structure type

list of all identified phases and the calculated lattice parameters from X-ray data. The

as cast samples comprise an eutectic system, containing Ge/PtGe2, that vanishes after

annealing. The big, white, long crystals have the chemical composition BaIryPt(2−y)Ge7

with an up to date undetermined crystal structure. Fig. 4.7 shows a Rietveld refinement

for the sample with nominal composition BaPt3,5Ir0,5Ge12. The main phase (matrix phase

in Fig. B.1 to B) is the skutterudite BaPt4Ge12 with no significant Ir dissolved. The

circled peaks in Fig. 4.7 do not fit to any of the phases with known crystal structure

listed B.1 to B.4. So this peaks should be the result of the BaIryPt(2−y)Ge7 crystals.

Within the series of samples the Ir amount was increased. This further Ir is found in

the increasing amount of IrGe4 and in the BaIryPt2−yGe7 crystals, where the solved

content of Ir increases with the added amount of Ir, see Fig. 4.8(a). The solved Ir in
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Figure 4.8.: Solubility of Ir in the two main phases.

the skutterudite is small, within measurement accuracy zero, for all different heat treat-

ments see Fig. 4.8(b). Concluding, it can be noted that no measurable amount of Ir

can be solved in this skutterudite, neither at 800◦ nor at 700◦C. A new compound was

found: BaIryPt2−yGe7, which does solve Ir. This compound will be subject to further

investigations, in order to determine its crystal structure.

4.2. Heat capacity

The temperature dependent specific heat was measured for 6 samples with different

amount of Sb. Fig. 4.9(a) shows the results of these measurements in a temperature

range from 0-15 K. The samples with nominal composition LaPt4Ge12, LaPt4Ge11.75Sb0.25

and LaPt4Ge11.5Sb0.5 exhibit a jump in CP(T), indicating bulk superconductivity. Using

Eqn. 2.55 and 2.63 the heat capacity can be accounted by CP

T
= γN + βNT

2 using just

the normal state part. Table 4.3 shows the results of these fits, also in comparison to the

reference taken from [17]. γ and β can be determined more accurately by suppressing

superconductivity applying a magnetic field and using data only very close to zero for

fitting. Furthermore, for the superconducting samples the area above and below the fit

(S=
∫

CP

T
dT ) should be equal, to get S = 0 at T = 0, fulfilling the 3rd law of thermodyna-

mics. So with this method one gets too low Sommerfeld values. Fig. 4.9(b) shows only

the superconducting samples with an entropy balanced fit. For both kinds of fits, table

4.3 evidences the very clear tendency of the Sommerfeld parameter (that is proportional
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4.2. Heat capacity

Table 4.1.: LaPt4Ge12−xSbx series with x= 0, 0.25, 0.5, 4, 5 , Sommerfeld parameter

γ = 1
3
π2D(ǫF)k

2
B, from the Debye approximation β =

12π4

5
nkB

(

T
ΘD

)3

and the

Debye temperature ΘLT
D = 3

√

1944n
β

Sb cont. x γ [J/molK2] 3 β [J/molK4] 3 ΘLT
D [K]3 γ [J/molK2]4 β [J/molK4]4 ΘLT

D [K]4

01 0.05312 0.00378 206.1 0.0758 0.00346 212.2
0.25 0.0357 0.00347 212.2 0.0584 0.00327 216.1
0.5 0.0231 0.00315 219.0 0.0458 0.00275 229.1
4 0.0127 0.00146 282.9 - - -
5 0.0128 0.00146 282.9 - - -

1 data copied from [17]
2 compared to [17] smaller value (0.0758[J/molK2]) because γ could be determined more accurate with a
magnetic field suppressing superconductivity

3 using normal state data for the fit
4 entropy balanced fit

to the density of states at the Fermi level) decreasing with the amount of substituted

Sb. As ΘD ∝
√

D
m
the increase of the Debye temperature with the increased amount of

added Sb has to be explained by a stronger spring constant. Knowing the melting point

(which we assume to be the same as for (LaPt4Ge7Sb5 944◦C = 1217 K) one can use

the Lindemann rule ΘD =
√

Tm

m
1

3
√
V
(from reference [34]) to estimate how the Debye

temperature changes with the Sb content. Considering the volume (derived from X-Ray

data, the mass and the melting point) the evolution of the Debye temperature is not

explained.

4.2.1. Phonon density of states

The phonon part of the specific heat is given by Eqn. 2.57. The phonon density of states

can now be considered with different models and parameters can be extracted for these

models from the specific heat. Table 4.2 shows the parameters calculated with different

models for the two different samples LaPt4Ge12−xSbx with x= 0.5 and 5. Fig. 4.2.1 shows

the two measurements, fitted with the Debye Einstein Model, using different numbers

of Einstein functions. For the fitting process the „user defined functions“ in section C.1

were employed. In Fig. 4.10(a), it can be seen that the simple Debye model is by far not

sufficient to describe the curve. Fig. 4.4 shows the unit cell of the skutterudites used.

It consists of 34 atoms, so there are three acoustic branches and 99 optical branches.

Using the Debye model only the acoustic branches are considered. Using Einstein modes
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36



4.2. Heat capacity

Table 4.2.: LaPt4Ge12−xSbx series with x= 0.5, 5 values of ΘD fitting the data from 3
to 100 K with a simple Debye model considering also different amounts of
different Einstein modes. Fitting models used, see appendix C.1

model Sb cont. x ΘD p ΘE1 ΘE2 ΘE3 p1 p2 p3

Debye
0.5

266.1 1
Einst1. Debye 74.2 25 220.2
Einst2. Debye 112.6 19 289.9 143.1 10 6
Einst3. Debye 104.4 29 281.1 159.3 115.7 16 3 6

Debye

5

280.7 1
Einst1. Debye 77.3 28 222.1
Einst2. Debye 129.5 16 275.7 140.9 9 4
Einst3. Debye 134.8 27 274.2 174.0 111.6 17 2 6

to describe the optical modes, the Debye temperature decreases roughly by a factor 3
√
p,

with 3∗p the number of branches; compare to reference [6]. In table 4.2 it is notable that
the Debye Einstein model results in 3 Einstein modes with a weight of 17:3:6 which is

somehow comparable to the weight of the amount of the different atoms in the reference

skutterudite LaPt4Ge12 Ge:La:Pt = 12:1:4. Assuming that the first Einstein mode comes

from the Ge atoms, the second from the lanthanum atoms and the third one from the

platinum atoms, the Einstein frequencies should be higher for the light atoms and lower

for the heavy atoms. The molar masses of Ge, La and Pt are 73, 139 and 195 where the

Einstein frequencies are: 281, 159 and 116 for the first sample (with lower Sb content

(x=0.5)) and 274, 174 and 112 for the second sample (x=5). So the success of this

considerations is by, making an assumption that all the branches coming from atoms

with the same weight have similar frequencies one can determine which Einstein mode is

connected to which atom. For these assumptions the reference composition was used,

including the true composition of the samples is LaPt4Ge12−xSbx with x= 0.5, 5. The

Einstein frequency of the Ge atoms is for the first sample 281 and for the second 274

which might be due to the further substituted heavier Sb atoms. Looking at table 4.2

one can observe the averaged Einstein modes splitting up more and more, which can be

done theoretical until 99 different modes. The second Einstein mode, that is assumed

to come from the lanthanum atoms is assumed to rattle in the cage. The cage size is

increasing with the amount of antimony atoms, see Fig. 4.6(b). This is considered to

cause a lower binding and higher frequency, and therefore higher energy absorption, of

the rattling lanthanum atoms. The Einstein frequency of the lanthanum atoms (ΘE2) is

bigger for a higher amount of antimony, see table 4.2.
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Figure 4.10.: Debye Einstein model fit of the two samples LaPt4Ge12−xSbx with x= 0.5,
5, using 0, 1, 2 and 3 different Einstein frequencies. Fitting models used,
see appendix C.1
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Figure 4.11.: determination of TC and
∆CP

TC
out of the heat capacity measurements

4.2.2. Superconductivity

In Fig. 4.9(a) it can be seen, that three of the measured samples are superconducting at

low temperatures, Fig. 4.9(b) also illustrates an entropy balanced fit for these supercon-

ducting samples, gaining γ (electronic contribution at low temperatures) and β (phonon

contribution at low temperatures), listed in 4.3. The superconducting jump gets less

sharp with increasing antimony amount because of the increased structural disorder from

the substituted atoms. TC decreases rapidly, according to BCS theory, due to a lower

density of states at the Fermi level. BCS theory predicts a relative jump of the specific

heat at TC of 1.43, see Eqn. 2.7. Table 4.3 contains the values of TC and
∆CP

γTC
with

γTC ≈ CN which were gained from Fig. 4.2.2; these are close to the BCS theory value

of 1.43 and get smaller with increasing antimony amount, which would indicate a weaker

coupling of the Cooper pairs. Now again using BCS theory to gain the energy gap ∆0
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Figure 4.12.: ∆0/kBTC determined by fitting Eqn. 2.6 for the samples with nominal com-
position LaPt4Ge12 (CP/T data taken from [17]) and LaPt4Ge11.75Sb0.25.
CeS gained by subtracting the phonon part

and ∆0/kBTC, see Eqn. 2.6. ∆0/kBTC BCS theory is 1.76. Fig. 4.12 shows a fit of

Eqn. 2.6 and results in values slightly higher than BCS theory predicts, see table 4.3.

The electronic specific heat is gained by subtracting the phonon specific heat (defined by

β in table 4.3). This higher values would indicate a higher coupling which is in contrast

to the values of ∆CP

γTC
. The energy gap, established by the Cooper pairs, is decreasing

from the reference sample LaPt4Ge12 with 1.33 meV (15.5 K) to 1.08 meV (12.6 K) for

the sample LaPt4Ge11.75Sb0.25. Eqn. 2.3 shows the exponential connection between this

energy gap and the electronic density of states at the Fermi level (N(EF )). Using this

equation a smaller gap means a smaller N(EF), so N(EF) decreases with increasing Sb

content.

4.3. Magnetic properties

Figure 4.13 illustrates the temperature dependent magnetic low field (100 G) suscep-

tibility of the three superconducting samples. Tc is, as already measured in section

4.2.2, strongly decreasing with increasing amount of antimony. The onsets for the three

samples are, as shown in Fig. 4.3, are 7.9 K, 6.8 K and 4.8 K determined with the
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4.3. Magnetic properties

Table 4.3.: LaPt4Ge12−xSbx series with x= 0, 0.25, 0.5 are superconducting; values of Tc,
Sommerfeld parameter γ = 1

3
π2D(ǫF)k

2
B,

∆CP

TC
and ∆CP

γTC
determined from Fig.

4.2.2, ∆0/kBTC and ∆0 determined using BCS theory
CeS

γTC
= 8.5exp(−0.82∆0

kBT
)

Sb cont. x Tc [K]
∆CP

TC
γ ∆CP

γTC
∆0/kBTC ∆0 [meV]

01 8.27 0.115 0.0758 1.52 1.87 1.33
0.25 6.46 0.083 0.0584 1.42 1.95 1.08
0.5 5.20 0.051 0.0458 1.11 - -

1 data copied from [17]

lowest field of the zero field cooling measurements. With increasing fields the Meissner

state is reached at lower temperatures; for the sample LaPt4Ge11.5Sb0.5 its outside the

measured temperature range. In theory the susceptibility of the in the Meissner state

is -1. Looking at figure 4.13 the reference sample LaPt4Ge12 is reaching the Meissner

state within the measured temperature range (χ is not increasing any more). As it is

measured as a mass susceptibility in CGS units it has to be multiplied by 4π and by the

density. For this sample only the density calculated out of the lattice parameter and the

composition of the compound is available and gives a value of 9.3 g/cm3. Furthermore

a demagnetization factor has to be considered; considering the demagnetization factor

of a sphere (Hi =
3
2
Ha) the susceptibility at 2.7 K of the reference sample LaPt4Ge12

in zero field cooling, low field measurement is -1.0. So the rough assumptions, made

especially for sample shape and density, seem not too bad. The susceptibilities, gained

from field cooling measurements, also called Meissner flux expulsion measurement, are

(below TC) a factor 10 lower, than the ZFC measurement. This big difference is known

to be caused by strong pinning effects. This result, as well as the time dependent sus-

ceptibilities are very similar to the results of Gumeniuk et. al. [17]. Figure 4.15 presents

the dependence of the magnetization on the applied field at 3 K. Inside the Meissner

state this dependence is linear. At higher magnetic fields the linear behavior changes into

a nonlinear one. The value of the magnetic field where this nonlinear behavior starts,

which means that there is not any longer full flux expulsion, but magnetic field starts to

enter the sample, is called Hc1 and is at about 160, 100 and 50 G (Oe) for LaPt4Ge12,

LaPt4Ge11.75Sb0.25 and LaPt4Ge11.5Sb0.5.
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Figure 4.13.: Temperature dependent magnetic susceptibility for the three superconduc-
ting samples LaPt4Ge12, LaPt4Ge11.75Sb0.25 and LaPt4Ge11.5Sb0.5 in CGS
units for zero field cooling and field cooling, measured with a field of 100
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Figure 4.14.: temperature dependent magnetic susceptibility for the three superconduc-
ting samples LaPt4Ge12, LaPt4Ge11.75Sb0.25 and LaPt4Ge11.5Sb0.5 for zero
field cooling and field cooling measured with different fields.
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Figure 4.15.: Magnetization in dependence of the applied field at 3K

4.4. Thermal expansion

The temperature dependent thermal expansion was measured using the hot pressed

sample (which was the only sample being dense and compact enough) with the nominal

composition LaPt4Ge8Sb4. Fig. 4.4 shows the thermal expansion coefficient (4.16(b))

and the change in length per unit of the original length. The data above 250 K are assu-

med to have some error in the measurement because the thermal expansion coefficient

is supposed to increase. Using the data until 200 K three fits are made, using a Debye

and a Debye Einstein model for the internal energy in Eqn. 2.69 (Fig. 4.16(a)). The

Debye Temperature observed is in fair agreement to the values gained above from heat

capacity measurements (280 K). As there is a quadratic and a cubic term in Eqn. 2.69

the dependence of the Debye/Einstein temperatures is quite hidden; thus it is possible

to observe even quite different results.

4.4.1. Grüneisen- parameter

Fig. 4.17 shows the temperature dependent Grüneisen parameter, gained by dividing the

thermal expansion coefficient α by CP and multiplying by the bulk modulus B, see Eqn.
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Figure 4.16.: thermal expansion coefficient α and thermal expansion ∆l
l0
with a fit after

Mukherjee [31] using different models for the internal energy

2.77. The bulk modulus is supposed to be a constant value of the order of 100GPa, which

is a common assumption for metallic samples. Γ is around 2 and strongly increasing near

zero. This happens because (see 4.17 inset) α increases close to zero, while CP keeps

on decreasing. The increasing values of α close to zero are assumed being measurement

errors because α is supposed to end up with zero at zero K.

4.5. Thermoelectric properties

4.5.1. Resistivity

With most of the samples a resistivity measurement could be done, although some of the

samples were quite brittle and contained holes, see appendix A. In order to measure the

specific electrical resistance the cross section to length ratio has to be determined and

multiplied with the measured resistance. This ratio can of course strongly be influenced

by the bubbles, holes and cracks. Considering that these do not change during the mea-

surement this influence is some constant value. An indicator for the quality of a sample

is the residual resistance ratio (the ratio between the resistivity at room temperature and

the resistivity just above the transition temperature ρ300K/ρ0, see table 4.4). Compared

to Schnelle [17] where ρ0 is 6 µΩcm and RRR is 33 for LaPt4Ge12 the present sample

quality has to be assumed to be worse. Fig. 4.18 shows the temperature dependent re-

sistance of all samples measured from 4 to 800 K. Fig. 4.19 presents in more detail the

superconducting jump in resistivity. Table 4.4 contains the TC values, measured at half
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Figure 4.17.: Grüneisen-Parameter of the sample with nominal composition
LaPt4Ge8Sb4, ball milled and hot pressed
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Figure 4.18.: temperature dependent resistivity measurement from 4 to 800 K; samples
series LaPt4Ge12−xSbx with x= 0, 0.25, 0.5, 4, 5, 5.1
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Figure 4.19.: temperature dependent resistivity measurement of the superconducting
samples LaPt4Ge12−xSbx with x= 0, 0.25, 0.5

height of the jump. The resistivity for the reference sample in the superconducting state

is very high. As already observed from heat capacity measurement (see Fig. 4.9(b)) the

transition to superconductivity is getting less sharp with increasing amount of antimony

due to structural disorder. The measurement of the reference sample LaPt4Ge12 in Fig.

4.9(b) is shifted because of an error of the measuring bridge.

Bad metals/semiconductors - two band model

Fig. 2.5 shows the density of states of LaPt4Ge12 and LaPt4Ge7Sb5, the starting and

endpoint of the sample series. It can be seen that with further substitution of Sb the Fermi

energy moves towards the band gap, because of the extra electron provided by antimony.

So LaPt4Ge12 is expected to be metallic and LaPt4Ge7Sb5 to be a semiconductor. As

obvious in Fig. 4.18 LaPt4Ge7Sb5 shows still a metallic behavior, but the resistivity

increases significantly and at high temperature the slope of the temperature dependent

resistivity is not linear any more (as expected for a metal with the Bloch-Grüneisen law,

see Eqn. 2.36). Fig. 4.20 shows the deviation from a simple metallic behavior. It

can be observed, that the higher the Sb content, the stronger the curvature of the
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4.5. Thermoelectric properties

Table 4.4.: LaPt4Ge12−xSbx series with x= 0, 0.25, 0.5, 4, 5, 5.1; resistance values just
above TC, at room temperature and the ratio ρ300/ρ0; critical temperature
TC

Sb cont. x ρ0 [µΩcm] ρ300 [µΩcm] ρ300/ρ0 TC

0 37.7 238.5 6 7.7
0.25 29.4 124.4 4 5.6
0.5 39.8 137.4 4 4.3
4 202.3 287.3 1 -
5 267.8 470.0 2 -
5.1 377.5 598.0 2 -

temperature dependent resistivity. The two band model tries to employ the influence of

the semi- conducting behavior by scaling the temperature dependent resistivity with the

temperature dependent number of free charge carriers (compare to reference [34]). The

number of electrons / holes is defined by

nn(T ) =

∫ ∞

EF

N(E)f(E, T )dE (4.1)

np(T ) =

∫ EF

−∞
N(E)(1− f(E, T ))dE (4.2)

Fig. 4.21, taken from [21], shows a simplified density of states (using a two band model)

of a poor metallic p-type conductor. According to Fig. 4.21 N(E) is defined as (compare

to reference [23]):

N(E) =































N E < 0

N 0 < E < E1

0 E1 < E < E2

N E > E2

(4.3)

f(E, T ) is the Fermi-Dirac distribution:

f(E, T ) =
1

1 + exp E−EF

kBT

(4.4)
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Figure 4.20.: temperature dependent resistivity measurement of the samples
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4.5. Thermoelectric properties

Table 4.5.: LaPt4Ge12−xSbx series with x= 4, 5, 5.1; results of the two-band-fit

Sb cont. x ρ0 [µΩcm] R[µΩcm/K] ΘD [K] E1 [K] Eg [K] kBN [K
−1] n0

5.1 378.9 117.2 151 6 ∗ 10−6 4528 0.003 0.7
5 267.9 84.2 118 0.02 1272 0.0005 1.0
4 202.7 66.0 197 102 806 0.001 3.0

The equations for the number of holes/electrons can be solved for this simple case

(E2 = E1 + Eg); all energies in K:

nn(T ) = NkB

[

Eg − T ln

(

1

2

e
E1
T + 1

e
E1+Eg

T + 1

)]

(4.5)

np(T ) = NkBln(2)T (4.6)

n(T ) =
√

nn(T )np(T ) + n0 (4.7)

With this charge carrier density the resistivity can now be scaled. ρph is the resistivity

caused from electron-phonon interactions and described by the Bloch-Grüneisen equation,

Eqn. 2.36.

ρ =
n0(ρ0 + ρph)

n(T )
(4.8)

Table 4.5 shows the results of the two band fit. The energy gap Eg can be compared

with the energy gap from the DOS calculations, see Fig. 2.5, which is about 0.5 eV

or 6000K. This is in the same of order magnitude than the energy gaps fitted with the

2-band model. It has to be considered that, the farer away the energy gap from the

Fermi level, the smaller is the influence of the energy gap size to the fit (because of the

distribution function, that gets small above EF very fast). The Fermi level is shifted with

increasing Sb content more and more towards the energy gap edge, see E1 in table 4.5.

The Debye temperatures are of the same order of magnitude, but not in a very good

consensus with the data gained from heat capacity measurements 4.3.

Metallic/superconducting samples - Woodard and Cody model

For the superconducting samples LaPt4Ge12−xSbx with x= 0, 0.25, 0.5 neither the Bloch-

Grüneisen nor the 2-Band model describes the temperature dependent resistivity in a

satisfying way. The Woodard and Cody model is an empirical model that is used for
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Figure 4.22.: temperature dependent electrical resistivity of the samples LaPt4Ge12−xSbx
with x= 0, 0.25, 0.5; Woodard and Cody fit

Table 4.6.: LaPt4Ge12−xSbx series with x= 0, 0.25, 0.5; results of Woodard and Cody fit

Sb cont. x ρ0 [µΩcm] ρ1 [µΩcm/K] ρ2 [µΩcm] T0 [K]

0 37.1 0.22 204.3 114.1
0.25 28.7 0.12 90.7 120.4
0.5 39.4 0.13 91.0 125.5

many superconducting materials.

ρ = ρ0 + ρ1T + ρ2exp(−T0/T ) (4.9)

Woodard and Cody expects the anomalous resistivity to be caused by scattering, not

by a changing number of charge carriers (from reference [37]). So there might be some

connection between the electron phonon interaction that causes the formation of Cooper

pairs at very low temperatures, and the electron phonon interaction that causes the strong

curvature of the temperature dependent resistivity (from reference [6]). Fig. 4.22 shows

the fits and table 4.6 a summary of the fitting parameters.
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Figure 4.23.: Seebeck measurement

4.5.2. Seebeck coefficient

Fig. 4.23 shows results of the Seebeck measurements performed. The coefficients are

positive, which assumes mainly hole conduction. As expected, S increases with the

decreasing of free electrons at the Fermi level, see Eqn. 2.11. Eqn. 2.11 only considers

free electrons. Electron phonon interactions can cause a so called phonon drag. This

means that electrons a more likely scattered by phonons in the direction the electrons

are already moving because of the temperature gradient. This might be the reason for

the negative Seebeck coefficient at low temperatures of the reference sample with the

nominal composition LaPt4Ge12. Phonon drag occurs below 16 K.

4.5.3. Thermal conductivity and figure of merit

Thermal conductivity was measured for the LaPt4Ge8Sb4 ball milled and hot pressed

sample. Fig. 4.24 shows the result of this measurement as well as for the fit, that

consists of three parts: λel, calculated from the resistivity measurement by Wiedemann

Franz law (see Eqn. 2.10), λph modeled by the Callaway model 2.42 and the radiation

losses T3. The parameters of the Callaway fit (considering also radiation losses) are
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Table 4.7.: Fit Parameters of the thermal conductivity with a Callaway fit, considering
radiation losses, of the ball milled and hot pressed sample LaPt4Ge8Sb4

#A0 scattering process parameter [ 1
K4s

] 5991
#A1 Umklapp process parameter [ 1

K3s
] 8.5

#A2 boundaries scattering parameter [1
s
] 4.1 ∗ 1010

#A3 phonon- electron scattering parameter [ 1
Ks
] 1.4 ∗ 109

#A4 Debye Temperature ΘD [K] 263
#A5 parameter for correction of radiation losses 1.7 ∗ 10−7
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Figure 4.24.: thermal conductivity of the hot pressed sample with a nominal composi-
tion of LaPt4Ge8Sb4. λel electronic part, calculated from the resistivity
measurement, λph fitted with the Callaway model, radiation losses.
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Figure 4.25.: ZT of the hot pressed sample with a nominal composition of LaPt4Ge8Sb4

summarized in table 4.7. The thermal conductivity is with around 10 W/mK at RT

lower than for typical metals, like Silver with 430 W/mK at RT but still higher than with

most good thermoelectric materials ( 1 W/mK).

The figure of merit (ZT) is calculated using electrical conductivity, thermal conductivity

and Seebeck coefficient for the ball milled and hot pressed sample LaPt4Ge8Sb4 according

to Eqn. 2.8. Fig. 4.25 shows the temperature dependent result. The ZT is 2 ∗ 10−3
at 300K, which is quite small. ZT values of 1 are considered good. Still it has to

be considered that this sample was not the one with the best expected thermoelectric

properties, this would be the sample with the nominal composition LaPt4Ge6.9Sb5.1 at

the end of the solubility of Sb.

4.6. Hall measurement

Figure 4.26 shows the charge carrier density calculated from a Hall measurement. The

measurements have quite different qualities. LaPt4Ge8Sb4 has a higher charge carrier

density than LaPt4Ge7Sb5 (at 300 K 9 ∗ 1021 and 9 ∗ 1020), for both holes are the main
charge carriers. This is in accordance to the Seebeck measurements, see Fig. 4.23
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Figure 4.26.: charge carrier concentration calculated from Hall measurement for the
samples hot pressed LaPt4Ge8Sb4 and LaPt4Ge7Sb5

assuming similar effective masses. Using Eqn. 2.11 the temperature dependent effective

mass can be calculated using the data from Seebeck measurement Fig. 4.23 and charge

carrier density Fig. 4.26. Fig 4.27 presents the result.
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Figure 4.27.: effective mass, calculated from charge carrier concentration and Seebeck
measurement for the samples: hot pressed LaPt4Ge8Sb4 and LaPt4Ge7Sb5

57



5. Conclusion

It was possible to produce a sample series of germanium based skutterudites with a

composition of LaPt4Ge12−xSbx. The solubility of antimony in the LaPt4Ge12 compound

terminates at x = 5±0.1. The solubility could not be increased by using another annealing
temperature. The melting point for LaPt4Ge7Sb5 is 942

◦C.

Previous assumptions concerning Zintl phase chemistry and density of states calcula-

tions announced p-type conducting samples. The Fermi level of LaPt4Ge12 is below a

energy gap of about 0.5 eV, see Fig. 2.5. Using antimony atoms instead of germanium

atoms the additional electrons shift the Fermi level towards the energy gap. Temperature

dependent resistivity measurements were fitted with the so called 2 band model which is

a model for temperature dependent resistivity of materials with a Fermi level near a band

gap. Fig. 4.20 and table 4.5 show the results of these fits which confirm the previous

assumptions of the Fermi level moving towards the band gap with substituting antimony

for germanium. The gap is not entirely reached because of the end of the solubility.

Seebeck effect increases from 3 µV/K for x = 0 to 43 µV/K for x = 5 at room

temperature because of the decreasing charge carrier density (see Fig. 4.23). For charge

carrier density gained from Hall measurement, see Fig. 4.26.

The reference sample LaPt4Ge12 as well as the two samples with antimony content

x = 0.25 and x = 0.5 are superconducting. All three superconducting samples match

the BCS theory according to heat capacity measurements, see Fig. 4.12. The transition

temperatures decrease strongly for increasing antimony content: x = 0,Tc = 8.27;

x = 0.25,Tc = 6.46 and x = 0.5,Tc = 5.20. The superconducting samples are type II

superconductors with a strong pinning effect, see susceptibility measurement Fig. 4.3.

For the hot pressed and ball milled sample with the nominal composition LaPt4Ge8Sb4

thermal conductivity could be measured and therefore a ZT value determined. The ZT

value is less than 2 ∗ 10−3 at room temperature which is quite low. Still one has to

consider that this sample is not the optimal sample, considering charge carrier density

and Seebeck effect.

Lattice properties were studied employing temperature dependent heat capacity and
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thermal expansion measurement. Temperature dependent heat capacity as well as ther-

mal expansion are described with models using the internal energy, which includes the

phonon density of states. Combinations of Debye and Einstein models for the phonon

density of states were used to describe the temperature dependent measurements, see

Fig. 4.2.1.
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LaPtGeSb
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Table A.1.: EDX and X-ray phase analysis data of the sample series LaPt4Ge12−xSbx

nom. composition phase lattice parameter
EDX (at%)

La Pt Ge Sb

as cast

LaPt4Ge12 LaPt4Ge12 8.6320 5.7 23.6 70.8 0.0
LaPt4Ge11Sb LaPt4Ge11Sb 8.6996 6.2 22.1 63.3 8.45
LaPt4Ge10Sb2 LaPt4Ge10Sb2 8.7588 6.1 23.4 56.7 13.9
LaPt4Ge9Sb3 LaPt4Ge9Sb3 8.7988 6.0 23.7 52.7 17.7
LaPt4Ge8Sb4 LaPt4Ge8Sb4 8.8430 5.8 23.3 48.3 22.5
LaPt4Ge7Sb5 LaPt4Ge7Sb5 8.8943 5.6 23.3 42.9 28.2
LaPt4Ge6Sb6 LaPt4Ge7Sb5 8.8936 5.7 23.4 42.7 28.2
LaPt4Ge5Sb7 LaPt4Ge7Sb5 8.8982 5.9 23.2 42.7 28.2
LaPt4Ge7Sb5 LaPt4Ge7Sb5 8.9041 5.7 23.4 41.7 29.2
LaPt4Ge7Sb5 LaPt4Ge7Sb5 8.9007 5.6 23.4 42.5 28.6

LaPt4Ge11.75Sb0.25 LaPt4Ge11.75Sb0.25 8.6529 6.2 23.5 68.3 2.0
LaPt4Ge11.5Sb0.5 LaPt4Ge11.5Sb0.5 8.6729 6.1 23.7 66.9 3.4

800◦C 10d

LaPt4Ge12 LaPt4Ge12 8.6254 6.4 23.4 70.2 0.0
LaPt4Ge11Sb LaPt4Ge11Sb 8.6888 - - - -
LaPt4Ge10Sb2 LaPt4Ge10Sb2 8.7586 - - - -
LaPt4Ge9Sb3 LaPt4Ge9Sb3 8.7998 6.2 23.4 52.6 17.9
LaPt4Ge8Sb4 LaPt4Ge8Sb4 8.8529 - - - -
LaPt4Ge7Sb5 LaPt4Ge7Sb5 8.9075 5.7 23.3 41.8 29.1
LaPt4Ge6Sb6 LaPt4Ge7Sb5 8.9092 6.4 23.6 41.0 29.0
LaPt4Ge5Sb7 LaPt4Ge7Sb5 8.9092 5.7 23.4 42.3 28.6
LaPt4Ge7Sb5 LaPt4Ge7Sb5 8.9084 5.8 23.3 41.1 29.9
LaPt4Ge7Sb5 LaPt4Ge7Sb5 8.9089 5.6 23.5 40.9 29.9

LaPt4Ge11.75Sb0.25 LaPt4Ge11.75Sb0.25 8.6412 6.1 23.4 69.1 1.5
LaPt4Ge11.5Sb0.5 LaPt4Ge11.5Sb0.5 8.6589 6.0 23.7 67.2 3.0
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(a) LaPt4Ge12 (b) LaPt4Ge11.75Sb0.25 (c) LaPt4Ge11.5Sb0.5 (d) LaPt4Ge11Sb1

(e) LaPt4Ge10Sb2 (f) LaPt4Ge9Sb3 (g) LaPt4Ge8Sb4
(hot pressed)

(h) LaPt4Ge7Sb5

Figure A.1.: images of the sample series LaPt4Ge12−xSbx after annealing for 10 days
at 800◦C. Some of the samples are very brittle, even to brittle to cut and
measure properties like resistivity, ...

(a) as cast condition (b) annealed 800◦C

Figure A.2.: SE/BSE images of the reference sample with the nominal composition
LaPt4Ge12 with different heat treatment
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(a) as cast condition (b) annealed 800◦C

Figure A.3.: BSE images of the sample with the nominal composition LaPt4Ge11.75Sb0.25
with different heat treatment

(a) as cast condition (b) annealed 800◦C

Figure A.4.: BSE images of the sample with the nominal composition LaPt4Ge11.5Sb0.5
with different heat treatment
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(a) LaPt4Ge11Sb1 (b) LaPt4Ge10Sb2

Figure A.5.: BSE images of the samples with the nominal composition LaPt4Ge11Sb1
and LaPt4Ge10Sb2 in as cast condition. They could not be analyzed after
annealing, because they became to brittle

(a) as cast condition (b) annealed 800◦C

Figure A.6.: BSE images of the sample with the nominal composition LaPt4Ge9Sb3 with
different heat treatment
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(a) as cast condition (b) hot pressed

Figure A.7.: BSE images of the sample with the nominal composition LaPt4Ge8Sb4 with
in as cast condition and after hot pressing

(a) as cast condition (b) annealed 800◦C

Figure A.8.: BSE images of the sample with the nominal composition LaPt4Ge7Sb5 with
different heat treatment
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(a) as cast condition (b) annealed 800◦C

(c) annealed 800◦C

Figure A.9.: SE/BSE images of the sample with the nominal composition
LaPt4Ge6.9Sb5.1 with different heat treatment
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BaPt4Ge12

Ge/PtGe2

BaIrxPt2−xGe7

(a) as cast condition (b) annealed 800◦C 10d

(c) annealed 700◦C 10d

Figure B.1.: BSE images of the sample with the nominal composition BaPt3,5Ir0,5Ge12
with different heat treatment

(a) as cast condition (b) Wärmebehandlung 700◦C

Figure B.2.: BSE images of the sample with the nominal composition BaPt3Ir1Ge12 with
different heat treatment
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Table B.1.: EDX and X-ray phase analysis data of the sample BaPt3,5Ir0,5Ge12; The
nominal at% composition of BaPt3,5Ir0,5Ge12 is: Ba 5.9, Pt 20.6, Ir 2.9, Ge
70.6

phase
lattice parameter EDX (at%)
a b c Ba Pt Ir Ge

as cast

BaPt4Ge12 8.6935 8.6935 8.6935 5.7 19.9 0.9 74.2
Ge/PtGe2 5.78771,26.1931 2.9089 0.1 16.2 0.8 82.9

BaIrxPt2−xGe7 - - - 12.3 15.4 5.4 67.0
IrGe4 6.21581 6.2158 7.7939 0.0 5.5 13.9 80.6

700◦C 10d

BaPt4Ge12 8.691 8.691 8.691 6.2 21.2 0.1 72.6
BaIrxPt2−xGe7 - - - 11.2 16.3 4.5 68.0

IrGe4 6.21271 6.2127 7.7876 0.9 2.5 16.9 80.2

800◦C 10d

BaPt4Ge12 8.6915 8.6915 8.6915 6.1 20.4 0.1 73.4
BaIrxPt2−xGe7 - - - 10,4 14,9 5.8 69.0

IrGe4 - - - 0.1 1.4 17.2 81.4

1 gained from rietveld refinement
2 PtGe2
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Table B.2.: EDX and X-ray phase analysis data of the sample BaPt3Ir1Ge12; The nominal
at% composition of BaPt3Ir1Ge12 is: Ba 5.9, Pt 17.6, Ir 5.9, Ge 70.6

phase
lattice parameter EDX (at%)
a b c Ba Pt Ir Ge

as cast

BaPt4Ge12 8.6943 8.6943 8.6943 6.1 20.9 0.0 73.1
PtGe2 - - - - 29.0 - 71.0

BaIrxPt2−xGe7 - - - 10.6 15.1 6.1 68.2

700◦C 10d

BaPt4Ge12 8.6837 8.6837 8.6837 6.0 20.8 - 73.2
IrGe4 6.47521 6.4752 8.1166 - - - -

BaIrxPt2−xGe7 - - - 11.8 14.0 6.7 67.5

800◦C 10d

BaPt4Ge12 8.6985 8.6985 8.6985 6.0 20.1 0.3 73.7
BaIrxPt2−xGe7 - - - 10.6 15.1 6.1 68.2

IrGe4 6.46971 6.4697 8.1085 0.1 1.3 17.3 81.4
Ir3Ge7 - - - 0.1 0.2 27.6 72.1

Pt0.5Ir0.5Ge - - - 0.1 22.6 25.6 51.7

1 gained from rietveld refinement
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(a) as cast condition (b) annealed 700◦C

Figure B.3.: BSE images of the sample with the nominal composition BaPt2,5Ir1,5Ge12
with different heat treatment

Table B.3.: EDX and X-ray phase analysis data of the sample BaPt2,5Ir1,5Ge12; The
nominal at% composition of BaPt2,5Ir1,5Ge12 is: Ba 5.9, Pt 14.7, Ir 8.8, Ge
70.6

phase
lattice parameter EDX (at%)
a b c Ba Pt Ir Ge

as cast

BaPt4Ge12 8.6962 8.6962 8.6962 5.3 18.9 1.5 74.4
Ge/PtGe2 - - - 0.2 15.1 1.8 83.0

BaIrxPt2−xGe7 - - - 12.0 14.8 6.1 67.1
Ge - - - 0.1 0.0 0.1 99.8

Ge7Pt3 - - - 0.2 27.7 2.7 69.4
IrGe4 6.48251 6.4825 8.1013 - - - -

700◦C 10d

BaPt4Ge12 8.691 8.691 8.691 6.1 20.9 - 73.0
BaIrxPt2−xGe7 - - - 12.3 12.8 8.1 66.7

Ge - - - 0.1 0.0 0.1 99.8
Ge7Ir3 - - - - - 27.0 73.1
IrGe4 6.47321 6.4732 8.1136 0.4 2.2 17.1 80.4

800◦C 10d

BaPt4Ge12 8.6963 8.6963 8.6963 5.5 17.3 - 77.3
BaIrxPt2−xGe7 - - - 10.2 13.4 7.0 69.4

IrGe4 6.47761 6.4776 8.1219 - - - -

1 gained from rietveld refinement
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B. Appendix - pictures -tables BaPtIrGe

(a) as cast condition (b) annealed 800◦C

Figure B.4.: BSE images of the sample with the nominal composition BaPt2Ir2Ge12 with
different heat treatment

Table B.4.: EDX and X-ray phase analysis data of the sample BaPt2Ir2Ge12; The nominal
at% composition of BaPt2Ir2Ge12 is: Ba 5.9, Pt 11.8, Ir 11.8, Ge 70.6

phase
lattice parameter EDX (at%)
a b c Ba Pt Ir Ge

as cast

BaPt4Ge12 8.7016 8.7016 8.7016 10.5 9.9 11.0 68.6
Ge/PtGe2 - - - - 17.1 - 83.0

BaIrxPt2−xGe7 - - - 10.5 9.9 11.0 68.6

800◦C 10d

BaPt4Ge12 8.6926 8.6926 8.6926 6.0 20.2 0.6 73.6
BaIrxPt2−xGe7 - - - 10.1 11.1 10.1 68.7

IrGe4 6.4761 6.476 8.116 0.2 1.0 17.7 81.3

1 gained from rietveld refinement
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C. User defined functions for

tablecurve

C.1. Heat capacity

C.1.1. Debye model

#F1 = $^4*EXP($)/(EXP($)-1)^2

#F2 = #B/X

Y=#A*X+(9*8.314*17/#F2^3)*QIN(1,0.001,#F2,12)

Y ... CP

#A ... gamma value of the specific heat

#B ... Debye Temperature

C.1.2. Debye Einstein model

R=8.314

#F1 = #A/X

#F2 = 3*R*17* EXP(#F1)*#F1^2 /(EXP(#F1)-1)^2

#F3 =$^4*EXP($)/(EXP($)-1)^2

#F4 =#B/X

#F5 =(9*17*R/#F4^3)*QIN(3,0.001,#F4,12)

Y=#C*X+#F2*((#D-3)/#D) + #F5*(3/#D)

Y ... CP

#A ... Einstein temperature

#B ... Debye temperature

#C ... gamma value of the specific heat

#D ... number of modes
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C. User defined functions for tablecurve

C.1.3. Debye Einstein2 model

R = 8.314

#F1 = #A/X

#F2 = 3*R*17* EXP(#F1)*#F1^2 /(EXP(#F1)-1)^2

#F3 = #E/X

#F4 = 3*R*17* EXP(#F3)*#F3^2 /(EXP(#F3)-1)^2

#F5 = $^4*EXP($)/(EXP($)-1)^2

#F6 = #B/X

#F7 = (9*17*R/#F6^3)*QIN(5,0.001,#F6,12)

Y = #C*X + #F2*((#D)/(#F+#D+3)) + #F4*((#F)/(#F+#D+3)) +

#F7*(3/(#F+#D+3))

Y ... CP

#A ... Einstein temperature 1

#B ... Debye temperature

#C ... gamma value of the specific heat

#D ... number of modes at Einstein temperature 1

#E ... Einstein temperature 2

#F ... number of modes at Einstein temperature 2

C.1.4. Debye Einstein3 model

R = 8.314

#F1 = #A/X

#F2 = 3*R*17* EXP(#F1)*#F1^2 /(EXP(#F1)-1)^2

#F3 = #E/X

#F4 = 3*R*17* EXP(#F3)*#F3^2 /(EXP(#F3)-1)^2

#F5 = $^4*EXP($)/(EXP($)-1)^2

#F6 = #G/X

#F7 = 3*R*17* EXP(#F6)*#F6^2 /(EXP(#F6)-1)^2

#F8 = #B/X

#F9 = (9*17*R/#F8^3)*QIN(5,0.001,#F8,12)

Y = #C*X + #F2*((#D)/(#F+#D+#H+3)) + #F4*((#F)/(#F+#D+#H+3)) +

#F7*((#H)/(#F+#D+#H+3)) +#F9*(3/(#F+#D+#H+3))

Y ... CP
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C.2. Thermal expansion after Mukherjee

#A ... Einstein temperature 1

#B ... Debye temperature

#C ... gamma value of the specific heat

#D ... number of modes at Einstein temperature 1

#E ... Einstein temperature 2

#F ... number of modes at Einstein temperature 2

#G ... Einstein temperature 3

#H ... number of modes at Einstein temperature 3

C.2. Thermal expansion after Mukherjee

C.2.1. Debye model for the internal energy

#F1=$^3/(EXP($)-1)

#F2=#A1/X

#F3=9*8.314*X/#F2^3*QIN(1,0.01,#F2,12)

#F5=#F3

Y=#A0*X^2+#A2*(#F5-#A3*#F5^2-#A4*#F5^3)

Y ... dl/l0 #A0 ...
γ
2
electronic contribution

#A1 ... Debye temperature

#A2 ... 3g
4c2
constants. g proportional to the cubic anharmonicity, c prop to the harmonic

#A3 ... G some constant including the strength of the anharmonicity of the cubic and

the quarternic and the harmonic part

#A4 ... F some constant including the strength of the anharmonicity of the cubic and

the quarternic and the harmonic part

C.2.2. Debye Einstein model for the internal energy

#F1=$^3/(EXP($)-1)

#F2=#A1/X

#F3=9*8.314*X/#F2^3*QIN(1,0.01,#F2,12)

#F4=3*8.314*#A6/(EXP(#A6/X)-1)

#F5=3/(#A5+3)*#F3+#A5/(#A5+3)*#F4
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C. User defined functions for tablecurve

Y=#A0*X^2+#A2*(#F5-#A3*#F5^2-#A4*#F5^3)

Y ... dl/l0

#A0 ... γ
2
electronic contribution

#A1 ... Debye temperature

#A2 ... p average number of phonon branches that are excited over this temperature

range

#A3 ... Einstein temperature

#A4 ... 3g
4c2
constants. g proportional to the cubic anharmonicity, c prop to the harmonic

#A5 ... G some constant including the strength of the anharmonicity of the cubic and

the quarternic and the harmonic part

#A6 ... F some constant including the strength of the anharmonicity of the cubic and

the quarternic and the harmonic part

C.3. Resistivity

C.3.1. Bloch- Grüneisen model

#F1=$^5/(EXP(-$)+EXP($)-2)

#F2=#A2/X Y=#A0+4*#A1*QIN(1,0.01,#F2,12)/#F2^5 Y ... ρ(T)

#A0 ... ρ0 residual resistivity

#A1 ... electron phonon interaction constant R

#A2 ... Debye temperature ΘD

C.3.2. 2-Band model

#F1=$^5/(EXP(-$)+EXP($)-2)

#F2=#A2/X

#F3=#A0+4*#A1*QIN(1,0.01,#F2,12)/#F2^5

#F4=-#A4+X*(LN(2)+LN(EXP((#A3+#A4)/X)+1)-LN(EXP(#A3/X)+1))

#F5=LN(2)*X

#F6=#A5*SQRT(#F4*F5)+#A6

Y=#A6/#F6*#F3

Y ... ρ(T)
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C.4. Thermal conductivity

#A0 ... ρ0 residual resistivity

#A1 ... electron phonon interaction constant R

#A2 ... Debye temperature ΘD

#A3 ... E1 energy difference between Fermi level and energy gap

#A4 ... Eg energy gap

#A5 ... kBN number of states in units of kB

#A6 ... n0

C.4. Thermal conductivity

F = 2.8526*10^8;

F1=#A0*$^4*X^4;

F2=#A1*$^2*X^3*EXP(-#A4/(3*X));

F3=#A2;

F4=#A3*X*$;

F5=1/(F1+F2+F3+F4)

F9= ($^4*EXP($)/(EXP($) - 1)^2)*F5

Y=(F*X^3/#A4)*AI(9, 0, (#A4/X))+#A5*X^3

Y ... λph + radiation loss

#A0 ... defect scattering process parameter [ 1
K4s

]

#A1 ... Umklapp process parameter [ 1
K3s

]

#A2 ... boundaries scattering parameter [1
s
]

#A3 ... phonon- electron scattering parameter [ 1
Ks
]

#A4 ... Debye Temperature ΘD [K]

#A5 ... parameter for correction of radiation losses
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