
Master-Thesis

Outdoor Localization and Navigation for

Mobile Robots

Johannes Maurer

Graz, January 2012

Advisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Wotawa, Franz

Co-Advisor: Ass.-Prof. Dipl.-Ing. Dr.techn. Steinbauer, Gerald

Institute for Software Technology (IST)
Graz University of Technology

A-8010 Graz, Austria

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Graz,

Place, Date Signature

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Graz,

Ort, Datum Unterschrift

Abstract

To give a robot the capability to handle tasks, such as shopping, cleaning or moving
goods, means that the robot can navigate in the world autonomously. Autonomous
navigation is still a challenging problem in mobile robotics. A wide range of robotics is
dealing with the problem of moving a robot without hitting surrounding obstacles. To
cope with this challenge, abilities like sensing, planning, acting and problem solving are
needed. Also special hardware and architecture has to be considered.

The Institute for Software Technology already has experience in working on robot
navigation for indoor applications. Moving the robot in a controlled environment like
the laboratory is a well-known issue. In the contrary, our laboratory has little practical
knowledge in the area of autonomous outdoor navigation this work will consider this
problem. Therefore, the goal of this thesis is to design an autonomous outdoor navigation
system using present technologies. One important aspect of this thesis is the evaluation
of the ground truth of the developed system.

To achieve the goal of the thesis it is necessary to provide the robot with appropriate
functionality. A positioning system � based on a Kalman Filter � is designed to estimate
the robot position. The knowledge about its environment is provided to the robot by a
graph-based map. A navigation system is implemented to control the movement of the
mobile robot.

It can be seen that for developing a truly autonomous navigation system a number of
challenges have to be met, for instance unexpected large sensor errors. This thesis shows
possible solutions for some of these di�culties.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goal . 2
1.3 Overview . 2
1.4 De�nitions and Terms . 3

2 Sensors and Techniques 4
2.1 Odometry . 4

2.1.1 Odometry Error . 4
2.1.2 UMBmark (University of Michigan Benchmark) 6

2.2 Inertial Navigation . 7
2.2.1 Inertial Measurement Unit . 8

2.3 Landmark Navigation . 10
2.3.1 Natural Landmarks . 10
2.3.2 Arti�cial Landmarks . 11
2.3.3 Positioning Accuracy . 11

2.4 Satellite-based Navigation . 12
2.4.1 Global Positioning System . 12
2.4.2 GLONASS . 12
2.4.3 Di�erential GNSS . 13

3 Basics of Sensor Fusion 15
3.1 Introduction . 15
3.2 Bayes Filter . 15
3.3 Kalman Filter . 16

3.3.1 Extended Kalman Filter . 17
3.4 Particle Filter . 18

4 Related Research 20
4.1 DGPS and Odometry Data Fusioning System 20

4.1.1 The Test Platform . 20
4.1.2 DGPS . 20
4.1.3 Correction Method . 21
4.1.4 Evaluation . 21

4.2 GPS and Inertial Data Fusioning System 21
4.2.1 Performance of a Simple GPS System 22

I

Contents

4.2.2 Experimental Results . 22

5 Sensor Fusion Concept 24
5.1 Filter Design . 24
5.2 Odometry Preprocessor . 24
5.3 IMU Preprocessor . 25
5.4 GPS Preprocessor . 26
5.5 Linear System Model . 29
5.6 Linear Measurement Models . 30

5.6.1 Odometry Measurements . 30
5.6.2 IMU Measurements . 30
5.6.3 GPS Measurements . 30

6 System Design and Implementation 32
6.1 System Design . 32
6.2 ROS . 33

6.2.1 Levels of Concepts . 34
6.2.2 Names . 35
6.2.3 Higher-Level Concepts . 36

6.3 Robot Base . 37
6.4 Inertial Measurement Unit . 38
6.5 GPS . 39
6.6 Laser Measurement Unit . 39
6.7 Outdoor Positioning . 40

6.7.1 Coordinate Transformation . 41
6.7.2 Bayesian Filtering Library . 41
6.7.3 Dynamic Recon�gure Interface . 42

6.8 Map Server . 43
6.8.1 OpenStreetMap . 43

6.9 Navigation . 45
6.9.1 Costmap . 46
6.9.2 Local Planner . 46
6.9.3 Global Planner . 46
6.9.4 Recovery Behaviour . 47

6.10 User Interface . 48
6.11 Mission Control . 49

7 Experimental Evaluation 50
7.1 Ground Truth . 50

7.1.1 Reference Trajectory . 50
7.2 Evaluation of the Positioning . 52

7.2.1 First Run . 52
7.2.2 Second Run . 56

7.3 Trial Run . 59

II

Contents

8 Conclusion 60
8.1 Future Research . 61

Bibliography 62

III

List of Figures

2.1 Schematic diagram of an open loop spring accelerometer [1]. 8
2.2 Precession of a spinning body by an external force [1]. 9
2.3 Schematic diagram of an interferometric �bre optic gyro [1]. 9
2.4 Example for an arti�cial landmark. QR tag with encoded text "kitchen". . 11
2.5 Pseudo-range position determination [1]. 13
2.6 Principle of di�erential GNSS [1]. 13

5.1 Design of the Outdoor Positioning Node. 25
5.2 Cartesian and ellipsoidal coordinates [1]. 27

6.1 Image of the equipped Pioneer robot. 32
6.2 Diagram of the software system components. 33
6.3 The Pioneer 3-AT from MobileRobots Inc. [2]. 37
6.4 The XSens MTi IMU [3]. 38
6.5 Roll, yaw and pitch axis orientation for an airplane (Source: NASA [4]). . 38
6.6 Garmin GPS 35 receiver [5]. 39
6.7 The Sick LMS100 laser measurement unit [6] 40
6.8 Screen shot of the recon�gure interface. 42
6.9 Diagram of the principle move_base node structure [7, move_base]. . . . 45
6.10 Map generated by the osm_server geographic data and a planned trajec-

tory computed by the osm_planner. 47
6.11 Expected robot recovery behaviour of the principle move_base node. . . . 48
6.12 Screen shot of the User Interface RViz. 48

7.1 Reference trajectory to verify the position estimation. The trajectory is
shown in purple. Orthophoto: www.geoimage.at (c) 51

7.2 Position error: estimated position (green), GPS (blue) and odometry (red). 53
7.3 Position error: estimated position (blue) and GPS (green); Average posi-

tion error: estimated position (red) and GPS (cyan). 53
7.4 Heading error: heading estimation (blue) and odometry heading (green);

Average heading error: estimated heading (red) and odometry heading
(cyan). 54

7.5 Tracks of the di�erent position sources in run one: reference path (pur-
ple), GPS (cyan), estimated position (red) and odometry position (green).
Orthophoto: www.geoimage.at (c) . 55

7.6 Position error: estimated position (green), GPS (blue) and odometry (red). 56

IV

List of Figures

7.7 Position error: estimated position (blue) and GPS (green); Average posi-
tion error: estimated position (red) and GPS (cyan). 57

7.8 Heading error: heading estimation (blue) and odometry heading (green);
Average heading error: estimated heading (red) and odometry heading
(cyan). 57

7.9 Tracks of the di�erent position sources in run two: reference path (purple),
GPS (orange), estimated position (blue) and odometry position (green).
Orthophoto: www.geoimage.at (c) . 58

7.10 Aerial photograph of the "Augarten", a park facility with several paths
near the laboratory. Orthophoto: www.geoimage.at (c) 59

V

Listings

3.1 Pseudo-algorithm for the basic Bayes �lter. [8] 16
3.2 Pseudo-algorithm for the Kalman �lter. [8] 17
3.3 Pseudo-algorithm for the particle �lter. [8] 18

6.1 De�nition of the GlobalToLocal service. It converts the WGS-84 coordi-
nates latitude, longitude and altitude in local Cartesian coordinates x, y
and z. 41

6.2 De�nition of the LocalToGlobal service. It converts local Cartesian coor-
dinates x, y and z in WGS-84 coordinates latitude, longitude and altitude. 41

6.3 De�nition of the Open Street Map Node (OSMNode) message. 43
6.4 De�nition of the getOSMGraph service. 43
6.5 A shortened example of a complete OSM XML �le [9] 44
6.6 Example position list for the mission control YAML �le 49

VI

1 Introduction

The National Imagery and Mapping Agency (NIMA) de�ne navigation as �the process
of planning, recording, and controlling the movement of a craft or vehicle from one place
to another� [10, p.799].

Four questions have to be answered to ful�l the functionality of navigation [11]:

Where am I going? The answer to this question is typically determined by a human
operator or speci�ed by a mission planner on a higher software level.

What is the best way there? This is the problem of path planning. Based on the in-
formation of the world the robot should �nd the best way to a given goal.

Where have I been? This question covers the aspect of map making (mapping). Map-
ping is helpful to improve the knowledge of the robot about the world when explor-
ing a new environment. Also it is bene�cial when operating in a known domain.

Where am I? The determination of the current position is an important step in the
navigation process. Addressing this issue the robot has to deal with absolute and
topological positions.

1.1 Motivation

"Why can't a robot go to the supermarket and buy my lunch?"

This question was the beginning for this thesis. Who ask this question should know
about the number of questions that must be previously answered. To enable a robot to
move autonomously in the world is one issue to be solved in order to complete such tasks.

Autonomous navigation is still a challenging problem in mobile robotics. There are
a number of systems, sensors and di�erent techniques developed for mobile robot navi-
gation. However, there is no simple solution that covers the whole issue to this day. A
wide range of robotics is dealing with the problem, how to move a robot without hitting
surrounding obstacles. To cope with this challenge, abilities like sensing, planning, act-
ing and problem solving are needed. Also special hardware and architecture has to be
considered.

1

1 Introduction

The Institute for Software Technology already has experience in working on robot
navigation for indoor applications. Moving the robot in a controlled environment like
the laboratory is a well-known problem. Since the Institute for Software Technology
(IST) has little practical knowledge in the area of autonomous outdoor navigation, this
work will consider this problem.

1.2 Goal

The goal of this thesis is to design an autonomous outdoor navigation system using
present technologies. This thesis presupposes existing map information and will not give
attention the aspect of map making.

To achieve the goal of the thesis it is necessary to provide the robot with appropriate
functionality. Another important aspect of this thesis is the evaluation of the ground
truth of the developed system. The key issue of this thesis will be the development of a
positioning system.

In contrast to indoor navigation the problems in outdoor environments are various.
Di�erent sensors and another prior knowledge has to be used. Typical indoors environ-
ment features are quite scarce in outdoor. Furthermore, the surrounding can change
because of large moving objects.

1.3 Overview

The next Chapter (Chapter 2) introduces commonly used sensors and technologies for
navigation systems. The particular characteristics, as well as advantages and disadvan-
tages of these various systems are described.

Chapter 3 deals with the theoretical background in the �eld of sensor fusion. Sensor
fusion is a common technique used to handle uncertainties in the physical world and to
compensate disadvantages of di�erent sensors in current robot applications.

A look at related research topics is given in Chapter 4. It presents related works on
navigation systems with problems similar to those tackled in this thesis.

Chapter 5 deals with one of the key di�culties of this thesis, the positioning. The
approach developed in this work to estimate the position of the robot is matching mea-
surements coming from the IMU, GPS and robot odometry using a Kalman �lter. This
Chapter intends to describe the concepts and mathematical models of the designed �lter
to the reader.

The design of the system for the outdoor navigation is characterized in Chapter 6.

2

1 Introduction

The implementation software components are described in detail. A description of the
base framework, the Robot Operating System (ROS), is given and the di�erent software
and hardware components of the system are de�ned. Special attention is given to the
communication between the di�erent working processes and the structure of the messages.

The results of the experiments are summarized in Chapter 7. This chapter presents
at �rst the measuring process and the determination of the reference trajectory. The
quality of the positioning system and the applicability of the navigation system are
tested experimentally, the temporal progression of the positioning error is shown and an
analysis of the results of the experiments is given.

The last Chapter (Chapter 8) gives an overview about the problems that occurred
during this thesis. Furthermore, the contribution of this work to the knowledge of the
institute (IST) is shown. Also points of contact for future research projects are shown.

1.4 De�nitions and Terms

Within this thesis a number of important terms and de�nitions are used. In order to
allow the reader a better understanding of the subject these terms are listed below [1]:

Position A position is a set of coordinates and an orientation related to a well-de�ned
coordinate reference frame.

Positioning The process of determination a position is called positioning.

Location A position in terms of topological relation is called location.

Localization Localization terms the process of obtaining a location.

Map A map is a representation of parts or all of a space and describes relationships
between elements of that space.

Mapping Mapping is the process of creating a map.

Trajectory A polygon connecting subsequent positions is called trajectory.

Route/Path A route/path is a list of manoeuvres to be performed to reach a destination.

Waypoint A waypoint is a point on a route.

Routing/Path Planning The process of planning a route from one position to another
is called routing (or path planning).

Guidance Guidance terms the process of guiding an object along a prede�ned route.

3

2 Sensors and Techniques

This Chapter introduces common sensors and techniques for robot navigation systems.
In particular sensor speci�c errors, dependencies and accuracies are described. The
Chapter is based on the book [1] "Navigation: Principles of Positioning and Guidance"
by Hofmann-Wellenhof, Legat and Wieser and the paper [12] "Mobile Robot Positioning
- Sensors and Techniques" by Borenstein, Everett, Feng and Wehe.

2.1 Odometry

Odometry is an important method in robot navigation. Odometry is simple, inexpensive,
easy to implement in real-time, has a good short-term accuracy and allows high sampling
rates. The disadvantage is its unbounded accumulation of error. The orientation and
position errors increase proportionally with the travelled distance.

The main concept of odometry is to translate the wheel revolution into a linear displace-
ment relative to the �oor. The o�set from a known starting position can be computed
by monitoring the wheel revolutions and simple geometric equations.

Odometry provides good relative motion information. For this fact it is often used
together with absolute position measurement like satellite-based (GPS) or landmark
localization.

2.1.1 Odometry Error

A well-known downside of odometric navigation is the unbounded accumulation of error.
Unexpected interactions between wheel and �oor and kinematic imperfections of the
robot wheel implies that wheel rotations may not translate proportionally into linear
motion and cause errors. Mainly the orientation errors have great in�uence on the in-
accurateness of odometric measurement. A small error in the orientation cause a grow
of the lateral position error without bound [13].

The resulting error can be categorised into three groups: errors through equation,
systematic errors and non-systematic errors.

4

2 Sensors and Techniques

Errors Through Equation

The odometry equations approximate arbitrary motion as a series of short straight-line
segments. This approximation can cause odometry errors depending on the sampling
frequency with respect to the speed. For typical sampling rates TS < 10ms and robot
speeds V < 1m/s this error is insigni�cant [12].

Non-Systematic Errors

Non-systematic errors are caused by unexpected interactions between wheel and �oor.
This unpredictability is a great problem for actual applications because it is impossible
to predict an upper bound for the odometry error.

Error sources for non-systematic errors are [13]:

• travel over uneven �oors

• travel over unexpected objects on the �oor

• wheel slippage due to

� slippery �oor

� over-acceleration

� fast turning

� external forces

� internal forces

� non-point wheel contact with the �oor

Systematic Errors

Systematic errors are vehicle speci�c and constant over prolonged periods. This group
of errors are particulaly serious because they accumulate constantly. The accuracy of
odometry measurement can be improved by counteracting to the individual contributions
of systematic error sources.

Error sources for systematic errors are [13]:

• unequal wheel diameters

• average of both wheel diameters di�ers from nominal diameter

5

2 Sensors and Techniques

• misalignment of wheels

• uncertainty about e�ective wheelbase

• limited encoder resolution

• limited encoder-sampling rate

The systematic error usually does not chance during runs unless big change in the
distribution of load or physical deformation happen.

The three main sources for systematic errors are: scaling error, uncertainty e�ective
wheelbase and unequal wheel diameters.

Scaling Error The Scaling Error appears if the average of both wheel diameters di�ers
from nominal diameter. It a�ects straight-line motion and turning motion. This
signi�cant error can be corrected with just an ordinary tape measure.

Unequal Wheel Diameters Error Unequal wheel diameters are produced by asymmetric
load distribution, inexact manufacture or unequally pumped wheels. This error
a�ects only during straight-line motion.

Uncertainty E�ective Wheelbase Error The wheelbase is the distance between the con-
tact points of the wheels of a di�erential-drive. Uncertainty is caused by the fact
that rubber contacts the �oor not in one point, but rather in an area. This error
a�ects only during turning.

A method to measure and correct unequal wheel diameters and uncertainty e�ective
wheelbase is the University of Michigan Benchmark, developed by Borenstein and Feng.

2.1.2 UMBmark (University of Michigan Benchmark)

The University of Michigan Benchmark (UMBmark) described in [13] is a method to test
and improve odometry performance. In this approach the mobile robot has to follow a
prede�ned square path in clockwise and counter-clockwise direction, as described later.
The quantitative measurement of odometry error can be quanti�ed by comparing the ab-
solute position to the calculated position. From a set of equations a numerical value that
expresses the odometry accuracy and two calibration constants can be de�ned. Including
the determined constants to the odometry computation will reduce the systematic errors
of the mobile platform.

Description of the UMBmark Procedure

The Bidirectional Square Path Method is de�ned in [13] as the following procedure.

6

2 Sensors and Techniques

1. The starting position of the odometry of the on-board odometer has to be initialised
to the absolute position and orientation of the vehicle.

2. The robot has to run through a pre-programmed 4x4 meter square path in clockwise
direction.

3. Measure the absolute position and orientation of the vehicle after the run.

4. Compare the absolute position to the robot's calculated odometry position.

5. Repeat steps 1-4 for four more times.

6. Repeat steps 1-5 in counter-clockwise direction.

7. Determine the measure of odometric accuracy for systematic error.

2.2 Inertial Navigation

Inertial Navigation is widely used to determine position, velocity and alignment of vehi-
cles. Inertial navigation systems do not need external references for this reason they are
useful for autonomous navigation technique. Another advantage of the system is the high
reliability and the instantaneously and continuously measurements at high data rates.

The measurement sources for the system are gyroscopes and accelerometers mounted
together on a platform called Inertial Measurement Unit (IMU). The accelerometers
measure the acceleration along the axes of a well-de�ned reference frame. The gyroscopes
are used to stabilize the coordinate axes mechanically or analytically. The positioning is
done integrating rate of rotation measured by the gyroscopes once and the acceleration
values from the accelerometers twice in respect to the initial values.

Some di�culties a�ect the computation of the position in an inertial system. One of
them is the superimposition by gravitational forces on or close to large masses like the
earth. In addition, rotations of the reference frame with respect to inertial space a�ect
acceleration measurement. Furthermore, inferences of the gravitational �eld and possible
appeared forces must be accounted when integrating the measured forces.

This self-contained navigation method is unsuitable for positioning over long periods,
because the data drifts over time. One source for degradation of the position measurement
is constant sensor bias. Another drawback is the fact, that high-quality systems are quite
expensive.

Inertial navigation systems are usually used to balance the drawback of the other
systems. In robot navigation inertial navigation is integrated to minimize the orientation
error of the robot, because it is not a�ected by jamming or spoo�ng.

7

2 Sensors and Techniques

2.2.1 Inertial Measurement Unit

Inertial Measurement Unit is the main measurement source for inertial navigation sys-
tems. An IMU is characterized by multiple accelerometer and gyroscopes mounted to-
gether on one platform, three orthogonal sensors of both types. The accelerometers
measure the speci�c force along the platform axes and the gyroscopes detect the angular
rates.

Two di�erent types of platforms exits:

Gimballed or Stabilized Platform: In this construction the platform is isolated from the
rotational dynamic of the vehicle. Using the determined alignment of the platform
the platform is kept stable with respect to the chosen navigation frame.

Strapped Down Platform: In this design the sensors are mounted directly on the plat-
form and follow the motion of the vehicle. The measurements are performed in the
body frame of the moving object and are transformed to the navigation frame by
an analytic system. Strapped down systems are the most frequently used imple-
mentations in practice.

Accelerometer

The basic concept of accelerometers is to measure the force acting upon a proof mass.
The two common implementations of acceleration sensors are open loop and close loop.
In an open loop setup the displacement of the proof mass is measured. A closed loop
accelerometer generates generating an electric or magnetic force that keeps the mass in
a state of equilibration. The generated force counteracts the speci�c force on the mass.

Figure 2.1: Schematic diagram of an open loop spring accelerometer [1].

The accuracy of an acceleration measurement is in�uences by a number of factors. The

8

2 Sensors and Techniques

signi�cant considerations are thermal sensitivity and cross- axis sensitivity.

Positioning by using the acceleration date is not possible for robot navigation because
of the pore signal-to-noise ratio at low accelerations.

Gyroscopes

Gyroscopes sense the angular rate of the platform with respect to inertial frame.

Mechanical gyroscopes use rotating components to determine the angular rate. The
main error source for mechanical gyroscopes are mass imbalance e�ects, temperature
sensitivity and sensitivity to external magnetic �elds.

Figure 2.2: Precession of a spinning body by an external force [1].

The main concept of optical gyroscopes is based on the relativistic Sagnac e�ect,
the increase of the path length for the laser beam in counter-rotating direction. The
accuracy of optical gyroscopes is in�uenced by glass �ow, polarization and electric e�ects.
Furthermore, insensitivity to low angular rates.

Figure 2.3: Schematic diagram of an interferometric �bre optic gyro [1].

High accurate gyros are still expensive. The main operational areas are commercial
airlines.

Gyroscopes are often used to minimize the orientation error, because any small orien-
tation error causes a growing lateral position error.

9

2 Sensors and Techniques

Magnetic Compass

The magnetic compass is an absolute sensor. The absolute heading is determined by
measuring the earth magnetic �eld.

The most signi�cant down side of magnetic sensors is the distortion of the measurement
near power-lines and steel structures. Because of these facts it is di�cult to use compass
measurements for indoor applications.

Magnetic compasses are important for determine the heading of a robot to reduce the
in�uence of accumulated error.

2.3 Landmark Navigation

The principle concept of landmark-based navigation is to detect features recognizable by
the sensing system and derive the position of the robot from landmark position. The
characteristics of the features must be known and stored in the knowledge base of the
robot. Moreover, landmarks have to be in the environment around the robot.

Landmarks have to be easy to identify. Geometric shapes and bar codes are well suited
for this purpose.

The common used sensor system is computer vision. Therefore, more processing is
necessary. But current algorithms are able to compute that task in real-time. If the
robot position is known, the processing can be simpli�ed by looking for landmarks in a
limited area around the robot. In addition, knowledge over the starting point reduces
erroneous interpretation during the initialization.

An active area of research using landmarks is Visual SLAM (V-SLAM). In localization
V-SLAM is used to realize drift free motion estimation [14].

A distinction is made between natural and arti�cial landmarks [12].

2.3.1 Natural Landmarks

Natural landmarks are objects that are already in the environment and have a function
other than robot navigation. Natural landmark navigation works best in man made high
structured environments like corridors, manufacturing �oors or hospitals.

For example, the visually guided mobile robot ARK (Autonomous Robot for a Known
environment) uses a natural landmark navigation system [15].

The advantage of this type of landmarks is their �exibility and the fact that no morti-

10

2 Sensors and Techniques

�cation of the environment is necessary. A common problem is to detect and match the
features from sensor input.

Computer vision is frequently used to catch natural landmarks. Particularly doors,
wall junctions and ceiling lights are perfect features.

If a range sensors like a laser scanner is used corners, edges or long straight walls can
be detected as landmarks.

2.3.2 Arti�cial Landmarks

Arti�cial landmarks are specially designed markers that are mounted in the environment.
The detection is much easier in contrast to natural features because they have an optimal
contrast, an exact size and a well-de�ned shape. Another advantage is that they are
inexpensive and can encode additional information.

Figure 2.4 shows an example for an arti�cial landmark. This Quick Response (QR)
code, a type of matrix barcode, can be mounted.

Figure 2.4: Example for an arti�cial landmark. QR tag with encoded text "kitchen".

Also for detecting arti�cial landmarks, computer vision is the common choice. Often
used features are diamond-shaped landmark, re�ecting material patterns or light sources.

However, also bare-coded re�ectors can be used together with laser scanner in an
arti�cial landmark positioning system.

2.3.3 Positioning Accuracy

The accuracy of a landmark navigation system depends on the quality of the feature
point extraction. In fact, a precise localization of present landmarks leads to more
precise results for the robot position.

Especially the exactness of vision systems depends on the relative position and angle
between the robot and the landmark and ambient lighting conditions. For this reason

11

2 Sensors and Techniques

features with shorter distance to the robot should be favoured.

2.4 Satellite-based Navigation

Global Navigation Satellite System (GNSS) is a simple technology for determination of
time, position and velocity. The basic concept is to use signals from satellites of which
the position is known to determine an unknown position.

The use of satellite-based navigation systems is accurately and inexpensive. It can be
used continuously and globally everywhere outdoors where a su�cient number of signals
can be received.

The U.S. Global Positioning System (GPS) and the Russian Global Positioning Satel-
lite System (GLONASS) are at present best-known examples for satellite-based position-
ing systems. The European project Galileo is still under construction.

2.4.1 Global Positioning System

U.S. Department of Defence (DOD) operates the Global Positioning System. It consists
of twenty-four satellites in six orbits. The satellites have a period to make one complete
orbit of around 12 hours and transmit encoded RF signals.

Code division multiple access (CDMA) is used to decide the signals from the di�erent
satellites. All satellites use the same two carrier frequencies. Each satellite has assigned
a PRN (Pseudo Random Noise) code for modulation of the signals. The signal from the
satellites contains information of the current locations of the satellites.

The satellite-based navigation system uses an advanced trilateration methods. Based
on code or carrier phase measurement the travel time of the signals is identi�ed. By
multiplying the travel time of the signals with its velocity, pseudo-ranges are computed.

The determination of the position is done by using these pseudo-ranges. See Figure 2.5
to get an idea of the concept. Because of not perfectly synchronised clocks of satellites and
receiver the equation for the position determination is consisting of four unknowns, three
point coordinates and the clock error. Therefore, a minimum number of four satellites is
necessary to compute position of the receiver.

2.4.2 GLONASS

The GLONASS satellite based system is operated by the Russian military space force
(MSF). The principles are very similar to the GPS system.

12

2 Sensors and Techniques

Figure 2.5: Pseudo-range position determination [1].

The most signi�cant di�erence between GLONASS and the U.S. system is the trans-
mission of the satellites signals. The Russian system uses frequency division multiple
access (FDMA) to divide the signals from the di�erent satellite. In other words, two
individual carrier frequencies are assigned to any of the satellite.

2.4.3 Di�erential GNSS

Di�erential GNSS is a basic approach to improve the accuracy of satellite based position-
ing systems. The principle concept is to use a second receiver that experiences the same
error e�ects. The second receiver has a �xed and known position. A typical accuracy
around 2.5 meters can be achieved.

Figure 2.6: Principle of di�erential GNSS [1].

The �xed reference station determines the error in�uence in the satellite signals and

13

2 Sensors and Techniques

sends them to the mobile receiver. The mobile and the reference GPS must be close
enough to each other. DGPS is often used in commercial systems. Local services provide
the correction data. Figure 2.6 illustrates the concept. Two concepts to improve the
positioning quality are in use:

The �rst method determines the correction data with regard to the position. The
known position of the �xed receiver is compared with the determined position from the
system. A disadvantage of this approach is the problem of coordinated satellite selection.
The receivers have to use the same satellites.

The second concept is to determine the correction factors for the measurement. The
reference station compares the pseudo-range measurements from the satellite signals with
the expected values. The drawback of this approach is the higher computational e�ort
to compute the measurement correction for each satellite signal.

14

3 Basics of Sensor Fusion

This Chapter introduces to the principles of probabilistic in robot applications and com-
mon algorithms are presented. It is based on the book "Probabilistic Robotics" [8] by
Thrun, Burgard and Fox.

3.1 Introduction

Uncertainties are a challenge in building a robot application that precepts the physical
world and acts in it. Uncertainties in measurements and controls of the robot need to be
taken in tribute. Probabilistic algorithms can be used to pay respect to the uncertainty
in robot perception and action. A robot system using these algorithms is robust relative
the uncertainty.

The calculus of probability theory and speci�c probabilistic laws are used to represent
uncertainty in the robot's knowledge. The state transition and the measurement are
expressed by probability distributions. A dynamic System is used to model the robot
and the environment. Controls, Sensor measurements, and the state of the robot and its
environment are expressed as random variables. The belief of the robot is represented
by the posterior distribution over the state.

The general algorithm for computing beliefs is the Bayes �lter. The following Sections
will introduce this recursive algorithm for state estimation and present two common
implementations of the concept.

3.2 Bayes Filter

The Bayes �lter is the most general algorithm for calculation belief distribution bel from
measurements and control. The main concept is to make a Markov assumption that
implies that the belief is su�cient to express the past.

The basic recursive algorithm is shown in Listing 3.1. The state is represented by xt.
The belief over the state bel(xt) at time t is estimated from the previous belief bel(xt−1)
at time t − 1. Each recursion step gets the recent belief bel(xt−1), the current control
variable ut and the last measurement values zt as input. An initial belief bel(x0) is

15

3 Basics of Sensor Fusion

required to start the recursion.

a lgor i thm bayes− f i l t e r (bel(xt−1) ,ut ,zt) :
f o r a l l xt do

bel(xt) =
∫
p(xt|ut, xt−1)bel(xt−1)dxt−1

bel(xt) = ηp(zt|xt)overlinebel(xt)
endfor
re turn bel(xt)

Listing 3.1: Pseudo-algorithm for the basic Bayes �lter. [8]

The two essential steps for al state variables are the prediction step and the correction
step. In the �rst step, update or prediction step, the belief bel(xt) over the state xt
is calculated. The next step multiplies the probability that the measurement zt may
have been observed by the computed belief bel(xt). Finally the belief is normalized to
represent a probability by the normalization constant η.

The Bayes �lter is not a practical algorithm. A few algorithms implement the concept
of the Bayes �lter in di�erent ways. The next Sections introduce two of them, the Kalman
�lter from the Gaussian �lters family and the particle �lter as example for non-parametric
�lters. Both are common used in robot applications.

3.3 Kalman Filter

Gaussian �lters are an important family of recursive state estimators. One of the estima-
tion methods most used is the Kalman �lter [16] described in this Section. The principle
algorithm �lters and predicts the state in linear de�ned Gaussian systems. The beliefs
in Gaussian �lters are represented by multivariate normal distributions. At time t the
belief is represented by the mean µt and the covariance Σt.

The state transition probability p(xt|ut, xt−1) is represented by the linear equation 3.1.

xt = Atxt−1 +Btut + εt (3.1)

As shown in equation 3.2 the measurement probability p(zt|xt) is described as a linear
function.

zt = Ctxt + δt (3.2)

The pseudo-algorithm for the Kalman �lter is shown in Listing 3.2, a computationally
quite e�cient algorithm. As the Kalman �lter is a realization of a Bayes �lter the
algorithm includes the steps prediction and correction.

16

3 Basics of Sensor Fusion

a lgor i thm kalman− f i l t e r (µt−1 ,Σt−1 ,ut ,zt) :
µt = Atµt−1 +Btut

Σt = AtΣt−1A
T
t +Rt

Kt = ΣtC
T
t (CtΣtC

T
t +Qt)

−1

µt = µt +Kt(zt − Ctµt)

Σt = (I −KtCt)Σt

re turn µt,Σt

Listing 3.2: Pseudo-algorithm for the Kalman �lter. [8]

In the �st step the predicted belief bel(xt) is computed. The belief is represented by
the mean µt and the covariance Σt. Next the Kalman gain Kt is computed. It indicates
the degree how the new state estimation is incorporated by the measurement. Finally
the new mean µt and the new covariance Σt of the posterior belief is computed.

The wide range of applications for the Kalman �lters comprises elegant dead reckoning
navigation systems [17] and speech enhancement [18].

3.3.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) is an extension of the Kalman algorithm. The
standard Kalman �lter assumes that the state transition and measurement are linear
functions. State transition and measurement are rarely linear in practice in common
applications.

For this reason the state transition and measurement are characterized by non-linear
functions in the extended Kalman �lter. The matrices At and Bt from the equation 3.1
are replaced by the function g as shown in equation 3.3. Equation 3.4 shows that for
measurements the matrix Ct from the equation 3.2 is replaced by function h.

xt = g(ut, xt−1) + εt (3.3)

zt = h(xt) + δt (3.4)

The key idea of the extended Kalman �lter is the linearization of the non-linear func-
tions g and h. The advantage of that approach is that once g is linearized the propagation
step is equal of those of the Kalman �lter. A Taylor series expansion is used to approx-
imates the non-linear function g by a linear function and a Gaussian approximation to
the true belief is calculated.

The advantage of the EKF is its e�ciency even the linearization causes an error.

17

3 Basics of Sensor Fusion

Another Kalman �lter extension to relax the linearity assumption is the Unscented
Kalman Filter (UKF). This algorithm performs a stochastic linearization called un-
scented transform. The key idea is to use weighted statistical linear regression.

3.4 Particle Filter

The particle �lter is a non-parametric implementation of the Bayes �lter and very popular
in robotics. In contrast to the Kalman �lter the posterior belief is not represented as a
function, it is approximated by a �nite number of values.

The basic idea of the particle �lter is to represent posteriors bel(xt) by �nitely many
random state samples, called particles. A set of random state samples of the posterior
distribution, as shown in equation 3.5, can represent a much broader space than Gaussian
distribution. In additional can the number of particles be adapted dynamically to the
complexity of the posterior.

χt := x
[1]
t , x

[2]
t , ...x

[M]
t (3.5)

The particle �lter approximates the belief bel(xt) by the set of particles χt Such as
the basic recursive principle of the Bayes �lter, the particle �lter constructs the belief
recursively. Listing 3.3 demonstrate the pseudo-algorithm for basic variant of a particle
�lter.

a lgor i thm pa r t i c l e− f i l t e r (χt−1 ,ut ,zt) :
χt = χt = ∅
f o r m = 1 to M do

sample x
[m]
t p(xt|ut, x

[m]
t−1)

w
[m]
t = p(zt|x[m]

t)

χt = χt + 〈x[m]
t , w

[m]
t 〉

endfor
f o r i = 1 to M do

draw i with p r obab i l i t y αw
[i]
t

add x
[i]
t to χt

endfor
re turn χt

Listing 3.3: Pseudo-algorithm for the particle �lter. [8]

As a realization of a Bayes �lter the particle �lter algorithm includes a prediction step
and a correction step. The algorithm constructs a temporary particle set χt representing
the belief over the state bel(xt). Next the particles are incorporated to the measurement
and weights for each particle are determined. Finally the particles are transformed into
χt, the posterior distribution bel(xt) of the Bayes �lter.

18

3 Basics of Sensor Fusion

A example application for particle �lter is the simultaneous localization and mapping
(SLAM) problem in mobile robot [19].

19

4 Related Research

4.1 DGPS and Odometry Data Fusioning System

In [20] 'Outdoor navigation of a mobile robot between buildings based on DGPS and
odometry data fusion' the authors Ohno, Tsubouchi, Shigematsu, Maeyama and Yuta
present an approach for a map based outdoor navigation. This Section provides a review
of their aim.

The authors use an Extended Kalman Filter for modi�cation and fusion of odometric
and DGPS measurement data. The robot has to follow a path on a provided map.
During the run position and orientation of the robot are continuously measured. The
authors categorize the walkway environment in walkway in open space, walkway between
buildings and walkway among roadside trees. The paper put special attention on the
in�uences of buildings on the accuracy of the positioning of the robot.

4.1.1 The Test Platform

For the experiments the YM2000 a di�erential motion type mobile robot is used. It pro-
vides odometry (xO, yO, θO) information by integrating the driving wheel rotations. As
DGPS the Trimble DSM12/212 receiver that provides position data (xGPS , yGPS , θGPS).

The fusion of the odometry data with the DGPS data is performed by an Extended
Kalman Filter. In locations near buildings the error of measured position by DGPS tends
to be large. The authors aim to identify measurements with such large errors and not
use them for the incorporation.

4.1.2 DGPS

As described in Section 2.4 DGPS (Di�erential GPS) is a satellite based positioning
system. It uses radio waves from arti�cial satellites to determine a position. Position
data is computed from time of �y of GPS radio waves. In addition DGPS can determine
velocity and heading measuring the Doppler shift of GPS radio waves. A known problem
is that the measurement accuracy could be wrong when buildings or threes interfere with
the radio waves from the satellites.

20

4 Related Research

The authors prefer to use DGPS for there approach. Even though RTK-GPS has a
high measurement accuracy of several centimetres order position error it is not always
e�ective among buildings and trees, whereas DGPS measure a position as far as there
are enough satellites signals.

The authors work on the characteristics of DGPS in the di�erent walkway envi-
ronments. They show that especially on walkways between buildings multi-path phe-
nomenon adversely a�ect the position measurement. The experiments show that the
error of the heading direction data near buildings is small even when the position error
is large.

4.1.3 Correction Method

The authors developed two correction methods. The �rst method is to use the position
information from the GPS to correct the robot position. The second approach uses the
heading direction provided by the DGPS sensor.

For the correction it is important to identify large errors in GPS data and to remove
such inaccurate data. One approach would be to use the DOP (Dilution of Precision)
data out of the GPS receiver to identify and eliminate GPS measurements with large
error. The paper shows that using the DOP information to eliminate inaccurate data
is not suitable in walkway environments near buildings. The authors propose a method
using the likelihood of the GPS measurement based on the odometry position.

4.1.4 Evaluation

The authors describe the evaluation as following. The robot is driven by human ac-
curately along a known path. The examination of the estimated error of the position
using only the odometry measurements and the error ellipse after the correction method
has shown that the robot position can be modi�ed by DGPS measurements. The two
correction methods are evaluated separately. Furthermore, it was observed that using
only the GPS heading direction would improve the positioning.

To check the correction method of the robot position the authors also made a trial run
of autonomous mobile robot.

4.2 GPS and Inertial Data Fusioning System

This section presents the paper 'An Outdoor Navigation System Using GPS and Inertial
Platform' [21]. The authors Panzieri, Pascucci and Ulivi present a Kalman Filter based
localization algorithm that fuses information coming from a GPS with inertial data and

21

4 Related Research

map-based localization. In addition, they show di�culties and possible solutions of this
sensor fusion problem.

In contrast to indoor navigation the problems in outdoor environments are various.
Di�erent sensors and another prior knowledge has to be used. Typical indoors envi-
ronment features are quite scare in outdoor. Furthermore, the surrounding can change
because of large moving objects. In this context, the global positioning system (GPS)
is described as an interesting possibility for positioning in outdoor environment. The
error is independent of the travelled distance. Until May 2000 the available precision
was downgraded for military reasons. Today a simple cheap GPS unit can be used to
achieve the full satellite precision. Characterize the accuracy of the GPS measurement
in di�erent situations is the real problem.

4.2.1 Performance of a Simple GPS System

A GPS receiver is able to provide values to characterize the precision of the measurement.
The DOP (dilution of precision) value describes the accuracy in relation to the number
and geometry of the available satellites. The EPE (estimated position error) is a sta-
tistical value that appreciates the correctness of the measurement based on information
from the �lter integrated in the receiver.

To evaluate the accuracy of the simple GPS receiver the authors perform some experi-
ments. Position measurements were performed in two di�erent points. The �rst position
was far from obstacles a�ecting the radio waves from the satellites. The other one was
between two buildings. The number of available satellites was di�erent in the two points.
Observing the standard deviations it can be seen that the number of satellites is just a
rough indication of the precision.

The authors �nd that the DOP and EPE value are not suitable for the purpose in this
paper. Furthermore, the authors come to the conclusion that the absolute error is slow
variating. They use the GPS system as relative positioning sensor and reset the absolute
position each time a known environment feature is approached.

4.2.2 Experimental Results

The experiments run on an ATRV-Jr. robot with di�erential kinematics moving on a
parking lot. As GPS receiver the Garmin GPS35-HVS is used, the DMU-6X is used as 6-
DOF inertial sensor and a LMS220 laser scanner is mounted on the robot. An EKF is used
to fuse the sensor data. As a consequence that the position error is corrected near known
reference points, the authors design the path planning algorithm to pass near known
environment features. In addition, if DOP information is available the recon�guration of
the real time trajectory is a�ected.

22

4 Related Research

In the experiment the robot is moving from the starting point to a goal passing three
de�ned points. The examination of the progress of the error shows that using GPS
measurement to improve the positioning of the robot when matching with the map is not
possible even using inexpensive receivers. The authors note that the positioning can be
improved if the strategy for path planning considers the position error and passes near
easy recognizable environment.

23

5 Sensor Fusion Concept

Positioning is one of the key issues of a mobile autonomous outdoor robot and of this
thesis. The positioning is done by matching measurements coming from the IMU, GPS
and Robot odometry. This Chapter intend to describe the concepts and mathematical
models of the designed �lter to the reader.

5.1 Filter Design

The principle concept of the �lter is shown in Figure 5.1. The incoming measurement
data from the sensors is pre-processed and handed to the �lter object. The sensor
measurements are unsynchronised. For this reason the estimation of the position, the
�lter update step is data driven. This means that for each incoming measurement message
a new estimation and correction step is performed.

5.2 Odometry Preprocessor

The Odometry preprocessor is designed to prepare the odometric measurement data.

When a new odometry sensor value arrives this function is executed. A sensor measure-
ment consists of the estimated position (x, y, θ), the actual linear and angular velocity
of the robot (∆x,∆θ) and the corresponding covariance. More details can be found in
Section 6.3.

The Odometry equations:

ẋodo = v ∗ cos(φimu) ∗ cos(θ) (5.1a)

ẏodo = v ∗ cos(φimu) ∗ sin(θ) (5.1b)

ωz,odo = ωz,odo (5.1c)

The covariance matrix of the Gaussian distribution of the odometric data is Rodok .
The error propagation for the functions 5.1a, 5.1b and 5.1c can be computed using
the equation 5.2a. The related covariance matrix and the Jacobian matrix is shown in
equation 5.2c and 5.2b.

24

5 Sensor Fusion Concept

Kalman Filter

OdometryGPS IMU

GPS IMUOdometry

t, lat, lon, alt t, roll, pitch, θ̇t, v, θ̇

t, ẋ, ẏ, θ̇

v

t, x, y, ẋ, ẏ, θ

t, θ̇

roll, pitch

roll, pitch

t, x, y, yaw

Figure 5.1: Design of the Outdoor Positioning Node.

Rodok = Nk ∗Rk,odo ∗NT
k (5.2a)

Nk,odo =

 cos(φimu) ∗ cos(θ) cos(φimu) ∗ sin(θ) 0
−v ∗ cos(φimu) ∗ sin(θ) v ∗ cos(φimu) ∗ cos(θ) 0

0 0 1

T (5.2b)

Rk,odo =

σ2
vodo

0 0
0 σ2

θ 0
0 0 σ2

ωz,odo

 (5.2c)

5.3 IMU Preprocessor

The IMU Preprocessor prepares the measurement data from the IMU for the sensor
fusioning.

The function is called when new measurement data arrives. A sensor measurement
consists of the acceleration in m/s, the rotational velocity in rad/sec and the orientation
as in Section 6.4 described. For the positioning system the measurement of the rotational
velocity around the Z-axis ωz,imu and the orientation around the X-axis roll and Y-axis

25

5 Sensor Fusion Concept

pitch is used.

The compass information, orientation around the Z-axis yaw, is not used for this
project. In urban environment the distortions of the earth magnetic �eld near power-
lines and steel structures lead to inaccurate measurements.

The IMU is the only sensor that provides global orientation information. The measure-
ment of the gyroscopes and the accelerometer are already respected for the estimation
within the IMU. As a consequence, values of the orientation around the X-axis roll and
Y-axis pitch bypass the �lter.

The rotational velocity ωz,imu is used to improve the date from the odometry and to
minimize the orientation error of the robot. The sampling rate of the IMU measurements
is 100Hz. To reduce the measurement noise the preprocessing function samples down the
rate to 10 Hz by averaging. The corresponding equation is 5.3a.

ωz,imu,mean =

∑
ωz,imu
10

(5.3a)

For every tenth message the Kalman Filter object is triggered to compute the next
estimation. The measurement uncertainty matrix Rimuk of the rotational velocity mea-
surement ωz,imu is computed by the equation 5.4a.

Rimuk =
[
σ2
ωz,imu

]
(5.4a)

A ROS parameter de�nes the standard deviation σωz,imu of the rotational velocity
measurement.

5.4 GPS Preprocessor

The GPS Preprocessor prepares the position information from the GPS for the sensor
fusioning in the �lter.

When a new gps message arrives this function is executed. A message contains the lo-
cation latitude, longitude and altitude and the position covariance relative to a tangential
plane through the reported position. For detailed information see Section 6.5.

To work with the data in the �lter the position data latitude, longitude and altitude
speci�ed using the WGS-84 reference ellipsoid have to be converted in local Cartesian
coordinates xgps and ygps. Figure 5.2 illustrates the relationships between the reference
frames. This conversion is performed in the preprocessor.

26

5 Sensor Fusion Concept

Figure 5.2: Cartesian and ellipsoidal coordinates [1].

The �lter is designed to use the position change of consecutive position measurements
to minimize the orientation error and stabilize the velocities relative to the tangential
plane of the robot. The concept works particularly for a moving robot. Therefore, the
preprocessing function respects two cases based on the velocity reported by the odometry.

The �rst case is a stationary or slowly moving robot. The approach of supporting
the velocity and heading estimation using GPS position measurements is not workable
because of relative big noise in the position measurement. For example, the deviation of
the measured position of a still standing robot would cause a rotation around the Z-axis
of the robot. The input vector for the correction step during the �lter update contains
xgps and ygps. The values are received from the conversion from ellipsoid coordinates.
The corresponding equations are 5.5a and 5.5b.

xgps = xgps (5.5a)

ygps = ygps (5.5b)

The associated matrix Rgpsk which represents the measurement uncertainty is shaped in
equation 5.6a. As parameters for the Gaussian distribution of the position σxgps and σygps
are used the covariances included in the GPS message. If no covariances are submitted
with the measurement, standard deviations de�ned as ROS parameter are used.

Rgpsk =

[
σ2
xgps 0

0 σ2
ygps

]
(5.6a)

The second case is that the robot is moving faster than a de�ned velocity. In this
case the GPS measurements are used to back the orientation and the planar velocity
estimation in the Kalman Filter. The input vector for the correction step during the
�lter update contains xgps, ygps, θgps, ẋgps and ẏgps. The local positions xgps and ygps

27

5 Sensor Fusion Concept

are computed using the Geographic Library like described above. The yaw angle and the
velocities in x and y direction are calculated out of the position change of consecutive
position measurements. The corresponding equations are 5.7c, 5.7d and 5.7e.

xgps = xgps (5.7a)

ygps = ygps (5.7b)

θgps = atan2(
∆ygps
∆xgps

) (5.7c)

ẋgps =
∆xgps
∆tgps

(5.7d)

ẏgps =
∆ygps
∆tgps

(5.7e)

For the associated matrix Rgpsk (eqn.:5.8a) the e�ect of error propagation of the relative
uncertainty had to be considered. The relative measurement uncertainty quantities are
σxgps , σygps and σtgps .

Equation 5.8c shows the error propagation for the function to compute the planar
velocities in x and y direction. The corresponding Jacobian matrix is 5.8d

The error propagation for θgps can be calculated using the equation 5.8e and the related
Jacobian matrix 5.8f.

Rgpsk =


σ2
xgps 0 0 0 0

0 σ2
ygps 0 0 0

0 0 σ2
θgps

0 0

0 0 0 σ2
ẋgps

σẋgpsẏgps
0 0 0 σẋgpsẏgps σ2

ẏgps

 (5.8a)

Rx,y,t =

[
σ2
xgps 0

0 σ2
ygps

]
(5.8b)

Rẋ,ẏ =

[
σ2
ẋgps

σẋgpsẏgps
σẋgpsẏgps σ2

ẏgps

]
= Nk ∗ 2 ∗Rgpsx,y,t ∗NT

k (5.8c)

Nk,ẋ,ẏ =

[
1

∆tgps
0

0 1
∆tgps

]
(5.8d)

Rθgps =
[
σ2
θgps

]
= Nk ∗ 2 ∗Rxgps,ygps ∗NT

k (5.8e)

Nk,θgps =

[
−∆ygps

∆x2
gps

1+(
∆ygps
∆xgps

)2

1
∆xgps

1+(
∆ygps
∆xgps

)2

]
(5.8f)

28

5 Sensor Fusion Concept

5.5 Linear System Model

xk+1 = A ∗ xk (5.9a)

xk =
[
x y θ ẋ ẏ ωz

]T
(5.9b)

A =



1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.9c)

The design of the positioning permits a simple linear equation (5.9a) to calculate the
position of the robot.

Equation 5.9b demonstrates the state vector of the �lter. It contains the two di-
mensional position and heading (x, y, θ) as well as the linear velocities relative to the
tangential plane (ẋ, ẏ) and the rotational velocity around the Z-axis (ωz).

The translation from one estimated state to another is de�ned by the translation
matrix A as described in equation 5.9c. The variable ∆t in the system model represents
the amount of time which has passed since the last estimation.

To respect the uncertainties in the estimation process the system noise has to be
modelled. Equation 5.10a de�nes the system noise matrix. The basic standard deviations
of the system noise are the linear acceleration in the X and Y direction σẍ and σẍ, and the
rotational acceleration around the Z-Axis σθ̈. The error propagation of the accelerations
into the deviation of the estimation is de�ned by the matrix 5.10b. Like in the state
estimation also for determination of the system deviation the amount of time which has
passed since the last estimation ∆t is important.

The system model's extra uncertainty:

Qk = Nk ∗Rk ∗NT
k (5.10a)

Nk =



1
2∆t2 0 0

0 1
2∆t2 0

0 0 1
2∆t2

∆t 0 0
0 ∆t 0
0 0 ∆t

 (5.10b)

Rk =

σ2
ẍ 0 0

0 σ2
ẍ 0

0 0 σ2
θ̈

 (5.10c)

29

5 Sensor Fusion Concept

5.6 Linear Measurement Models

Using pre-processor functions to prepare the sensor data for the correction step and to
compute the belonging Gaussian distributions lead to simple linear measurement models.

5.6.1 Odometry Measurements

The Odometry linear measurement model for the correction step is shown in equation
5.11a. The velocity information from the odometers is used to correct the prediction of
the tangential plane (ẋ, ẏ) and the rotational velocity around the Z-axis (ωz).

zk+1 = H ∗ xk+1 (5.11a)

zk =
[
ẋodo ẏodo ωz,odo

]T
(5.11b)

H =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.11c)

5.6.2 IMU Measurements

Equation 5.12a demonstrates the linear measurement model for IMU sensor values. The
measurement of rotational velocity around the Z-axis ωz,imu is used to correct the pre-
diction of the rotational velocity ωz.

zk+1 = H ∗ xk+1 (5.12a)

zk =
[
ωz,imu

]T
(5.12b)

H =
[
0 0 0 0 0 1

]
(5.12c)

5.6.3 GPS Measurements

For the correction step, using GPS measurements, two cases are distinguished, based on
the velocity reported by the odometry.

For a stationary or slowly moving robot, measurements from the GPS are used to
correct the estimated two dimensional robot position (x,y). In this case the equation for
the linear measurement model looks like 5.13a.

30

5 Sensor Fusion Concept

zk+1 = H ∗ xk+1 (5.13a)

zk =
[
xgps ygps

]T
(5.13b)

H =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
(5.13c)

If the robot is moving faster than a de�ned velocity, the GPS measurements are also
used to correct the prediction of the orientation and the planar velocity �lter. The
corresponding linear measurement equation is 5.14a.

zk+1 = H ∗ xk+1 (5.14a)

zk =
[
xgps ygps θgps ẋgps ẏgps

]T
(5.14b)

H =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 (5.14c)

31

6 System Design and Implementation

6.1 System Design

The starting point for the system design is the hardware present in the laboratory. As
mobile robot platform the Pioneer 3-AT from MobileRobots Inc.1 is selected. Next a
customised body is created to mount the sensors on the robot. The robot is equipped
with a laser range �nder, inertial measurement unit and GPS sensor. A image of the
equipped Pioneer robot can be seen in Figure 6.1.

Figure 6.1: Image of the equipped Pioneer robot.

The robot software is designed to operate in the Robot Operating System (ROS)
environment. The software concept is projected bottom-up. The �rst step is handling
the hardware and provides the measurement data to the system. Next, the sensor data is

1http://www.mobilerobots.com/

32

6 System Design and Implementation

processed to estimate the position and executing a navigation task. Finally the software
to control the robot and the experiments are drawn up.

Figure 6.2 on page 33 shows the components of the software concept and the commu-
nication between them.

NavigationOutdoor Positioning

IMUGPS Robot Base Laser Scanner

Map Server Mission Control

User Interface

/�x

/imu_data

/pose
/pose

/scan

/tf /goal

/cmd_vel

/getOSMGraph

/GlobalToLocal

/goal

Figure 6.2: Diagram of the software system components.

6.2 ROS

The following Section describes the basic concepts of the Robot Operating System (ROS)
framework.

The introduction page of the project [7, ROS/Introduction] describes ROS as an open-
source, meta-operating system that runs under Unix-based platforms. Primarily it is
tested on Ubuntu and Mac OS X.

ROS and is not a real-time framework. The main idea is a distributed system of
processes that are individually designed and loosely coupled at runtime.

ROS provides functionalities for hardware abstraction, low-level device control and
message passing between processes. It implements common used operations for high-
level applications and delivers tools and libraries for obtaining, building, writing, and
running code across multiple computers.

Via client libraries developers can employ the framework to write nodes, publish top-
ics, subscribe to topics, write services, call services and use the parameter server. The

33

6 System Design and Implementation

framework provides libraries for C++, Python, LISP, Java and Lua [7, Client Libraries].

The goal of the ROS project is to simplify the reuse of code in robotics research and
development, to enable developers easily sharing and distributing of functionality and to
support the community to collaborate.

6.2.1 Levels of Concepts

ROS has three levels of concepts to realize the project goals as aforementioned [7, ROS/-
Concepts]: the File System Level, the Computation Graph Level and the Community
Level.

The File System Level is a concept to allow easy sharing and distributing of function-
ality. Resources are grouped into Packages and Stacks. The following terms describe the
main parts of this level:

Packages organize together software in ROS like runtime processes (nodes), library,
datasets and con�guration �les.

Manifest provides information about a package like license, dependencies and compile
�ags.

Stacks are collections of packages that provide aggregate functionality.

Stack Manifest provides stack speci�c information like license and dependencies.

Messages Types de�ne the data structures for messages sent in ROS.

Services Types de�ne the request and response data structures for services in ROS.

The Computation Graph Level provides the functionality to realize a peer-to-peer
network of processes. The main components of this level are:

Nodes are processing units that work on di�erent tasks. Nodes are written with the
use of a ROS client library. A robot control system will usually be made of many
collaborating nodes.

The Master provides the name-service functionality of the ROS framework. It stores
topics and service information and enables nodes to �nd each other, exchange
messages, or invoke services.

Parameter Server stores data by key in a central location.

Messages are simple data structures that are passed between nodes to communicate.

Topics are names that identify the content of messages. The transport system routes

34

6 System Design and Implementation

messages from publisher of a topic to subscriber to the appropriate topic. Multiple
concurrent publishers and subscribers for a single topic may exist.

Services are functionality for request/reply interactions. The function is similar to re-
mote procedure call. Services are de�ned by a pair of message structures: one for
the request and one for the reply.

Bags are �les for saving and playing back ROS message data. Bags are helpful for storing
data for developing and testing algorithms.

On the Community Level the ROS project provides resources that enable separated
communities to exchange software and knowledge. The following capacities are provided:

Distribution are collections of versioned stacks. Like Linux distributions they provide a
collection of software with consistent versions.

Repositories is a federated repository model. Di�erent institutions can develop and
release their robot software components.

The ROS Wiki is a central documenting platform about ROS that provides corrections
or updates, tutorials and more.

Bug Ticket System is for recording issues or request features.

Mailing Lists are communication channels about new updates to ROS, as well as a forum
to ask questions.

ROS Answers is a questions and answers website for ROS-related questions.

The Willow Garage Blog provides regular updates on ROS.

6.2.2 Names

Another basic idea in the Robot Operating System is to simplify the development of large
systems. Therefore, two types of names are de�ned [7, ROS/Concepts]: Graph Resource
Names and Package Resource Names.

Graph Resource Names are used to structure all resources in a ROS Graph. Nodes,
Parameters, Services and Topics are de�ned within name-spaces. Like in a �le
system names can be resolved globally or relatively. Resources can create resources
within their name-space and access resources within and above their name-space.
Graph Resource Names allow encapsulation of di�erent parts of the system to avoid
use of wrong resources or globally hijacking names. For example, nodes that work
together can be pushed down into a name-space that de�ned their collection of
code. The resolution is done relative to the namespace of the node.

35

6 System Design and Implementation

For instance, "relative/name" will reference a relative resources, "/global/name"
will reference a global resource and " private/name" a private resource.

Package Resource Names simplify referring �les and data-types on Filesystem Level.
Resources can be referred to by the name of the Package plus the name of the
Resource. Message Types, Node Types and Service Types may be referred using
Package Resource Names.

For example, the name "nav_msgs/Odometry" refers to the "Odometry" message
type in the "nav_msgs" Package.

6.2.3 Higher-Level Concepts

The three concepts implemented in the ROS framework provide several di�erent modes of
communication. For this reason ROS can be used for a variety of system con�gurations.
But for operating a robot system a multitude of mechanisms are required. For building
up such systems ROS maintains several stacks that provide higher-level concepts [7,
ROS/Higher-Level Concepts] as described below.

Coordinate Frames/Transforms: The transformation framework provides the function-
ality for representing multiple coordinate frames and calculating the transforma-
tions between them.

Actions/Tasks: This stack de�nes a common topic-based interface to execute long-
running tasks. The library provides an interface to cancel the request and get
periodic feedback during progressing.

Message Ontology: The common message stack de�nes base massage ontology for robot
systems including messages for representing actions, diagnostic data, geometric
primitives, sensor date and navigation commands.

Plugins: The pluginlib provides tools for writing and dynamically loading plugins in
C++ code using the ROS build infrastructure.

Filters: ROS contains C++ libraries for processing data using a sequence of �lters.

Robot Model: To represent robot models ROS de�nes a XML format called URDF.
Additionally the functionality for parsing the XML structure is provided by the
framework.

36

6 System Design and Implementation

6.3 Robot Base

The mobile robot platform for the project is the Pioneer 3-AT from MobileRobots Inc.2.
Information on the robot is taken from [2]. The vehicle has a di�erential drive and stands
on four wheels. It can perform translational and rotational movements.

Figure 6.3: The Pioneer 3-AT from MobileRobots Inc. [2].

The Pioneer has build in high-resolution optical quadrature shaft encoders to provide
odometry information. The position (x, y, θ) and the velocity of the robot (∆x,∆θ) is
calculated by integrating the encoder values.

The robot is connected to the control computer over the serial port (RS-223) and a
USB to serial converter.

The connection to the Pioneer robot is established by the p2os_driver node [7, p2os].
It is a driver for robots that uses either P2OS or ARCOS �rmware protocol. To move
the robot the velocity commands have to be send to the hardware. Furthermore, the
node reads out the odometry information.

The robot motion node subscribes to the topic /cmd_vel to receive velocity commands.
The message type is geometry_msgs/Twist and expresses the linear and angular velocity
in free space. In the case of the pioneer robot translational velocity in the x-direction
and rotational velocity around the z-axis of the robot.

The odometry information of the robot is published on the topic /pose as message
type nav_msgs/Odometry. The default publishing rate is 10Hz. An odometry message
contains the estimated position (x, y, θ) and the corresponding covariance with reference
to the odometry frame /odom. Additionally the actual linear and angular velocity of
the robot (∆x,∆θ) and the corresponding covariance in the robot frame /base_link is
included.

2http://www.mobilerobots.com/

37

6 System Design and Implementation

6.4 Inertial Measurement Unit

To estimate the alignment and the rate of turn of the robot the XSens MTi IMU from
Xsens Technologies B.V.3 is used [3]. This miniature inertial measurement unit includes
magnetometers, accelerometer and gyroscopes to measure the acceleration, the rate of
turn and the earth-magnetic �eld. An integrated processing unit computes calibrated
output and orientation.

Figure 6.4: The XSens MTi IMU [3].

Over USB the IMU is connected to the computer. The communication to the IMU
is executed by the xsens_mti node. This node is a driver for the Xsens MTi Inertial
Measurement Unit. It reads out the measurements of orientation, angular velocity and
linear acceleration from the device and streams them on the topic /imu_data.

The Message type of /imu_data is sensor_msgs/Imu. The Message holds the accel-
eration in m/s2, the rotational velocity in rad/sec and the estimated orientation. The
message additionally contains the corresponding covariances for each measured value.
All measurements are made in reference to the /imu coordinate frame.

Figure 6.5: Roll, yaw and pitch axis orientation for an airplane (Source: NASA [4]).

3http://www.xsens.com/

38

6 System Design and Implementation

6.5 GPS

For global positioning the Garmin4 GPS 35 receiver is used [5]. This small complete GPS
receiver is easy to integrate and use. The connection is done over USB. The GPS tracks
up to 12 satellites to achieve superior performance.

Figure 6.6: Garmin GPS 35 receiver [5].

The GPS data is streamed to the system by the gpsd_client node [7, gpsd_client]. It
connects to the GPSd service daemon and publishes location to the topic /�x.

The GPSd service daemon5 can monitor one or more GPS devices and makes data on
the location, course and velocity of the sensors available to applications. GPSd supports
various GPS devices.

The Message type for GPS data is NavSatFix. It contains the location latitude, longi-
tude and altitude speci�ed using the WGS-84 reference ellipsoid and the position covari-
ance relative to a tangential plane through the reported position. Besides, the message
includes information on the satellite status, the measurement time and the reference
frame.

6.6 Laser Measurement Unit

To avoid obstacles a laser measurement unit is mounted on the robot. The Sick6 LMS100
[6] performs planar distance measurements in a scanning range up to 20 meters. The
scanner has a �eld of view of maximum 270◦ with a resolution of angular step of 0.25◦.

4http://www.garmin.com/
5http://www.catb.org/gpsd/index.html
6http://www.sick.com

39

6 System Design and Implementation

The connection is established over an Ethernet interface. That allows �exible system
con�gurations.

Figure 6.7: The Sick LMS100 laser measurement unit [6] .

The Sick LMS100 laser range �nder is connected to the system with the LMS1xx
node [7, LMS1xx]. This package connects to the unit over the network interface and
publishes measurements on the topic /scan. The Message type for laser range data is
sensor_msgs/LaserScan. The message holds speci�cations of the scanner and an array
of range data in meters.

6.7 Outdoor Positioning

The outdoor_positioning node is designed to estimate the 3D pose of a robot by matching
measurements coming from di�erent sources.

The node includes a Kalman Filter to fuse measurements of odometry from the robot
base, global positioning from the gps and rotational velocity and alignment from the
IMU. To receive the data the Outdoor Positioning node subscribes to the odometry
topic /pose, the global positioning topic /�x and the IMU message topic /imu_data.
For speci�cations of the message types see the sensor nodes descriptions above.

As described in the �lter design (Chapter 5) the sensor data is pre-processed in special
functions. When a new sensor message arrives, the appropriate preprocessor callback
function is executed.

The positioning node publishes the estimated 3D robot location on the topic /esti-

40

6 System Design and Implementation

mated_pose as message type geometry_msgs/PoseStamped. Furthermore, the transfor-
mation from the map frame /map to the robot frame /base_link is published.

6.7.1 Coordinate Transformation

The position data latitude, longitude and altitude speci�ed using the WGS-84 refer-
ence ellipsoid had to be converted in local Cartesian coordinates xgps and ygps. This
conversions are performed using the Geographic Library7 developed by Charles Karney.
GeographicLib is a small set of C++ classes for solving common geodesic problems [22].

The Outdoor Positioning Node provides this functionality to other nodes. They can use
two services to transform local planar map coordinates to WGS-84 ellipsoid coordinates
and vice versa. The de�nitions of the services are shown in Listing 6.1 and 6.2.

f l o a t 6 4 l a t
f l o a t 6 4 lon
f l o a t 6 4 a l t
−−−
f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z

Listing 6.1: De�nition of the GlobalToLocal service. It converts the WGS-84 coordinates
latitude, longitude and altitude in local Cartesian coordinates x, y and z.

f l o a t 6 4 x
f l o a t 6 4 y
f l o a t 6 4 z
−−−
f l o a t 6 4 l a t
f l o a t 6 4 lon
f l o a t 6 4 a l t

Listing 6.2: De�nition of the LocalToGlobal service. It converts local Cartesian coordi-
nates x, y and z in WGS-84 coordinates latitude, longitude and altitude.

6.7.2 Bayesian Filtering Library

The core of the position estimation is a Kalman Filter. To implement the �lter the
Bayesian Filtering Library is used. The library process the computations and takes care
of calculation accuracy.

In [23] the library is described as:

7http://www.sourceforge.net/projects/geographiclib/

41

6 System Design and Implementation

The Bayesian Filtering Library (BFL) provides an application independent
framework for inference in Dynamic Bayesian Networks, i.e., recursive infor-
mation processing and estimation algorithms based on Bayes' rule, such as
(Extended) Kalman Filters, Particle Filters (or Sequential Monte Carlo meth-
ods), etc. These algorithms can, for example, be run on top of the Realtime
Services, or be used for estimation in Kinematics and Dynamics applications.

As a result of this design the system model and the measurement models are simple
linear equations. The library is initialized with the equations de�ned in Chapter 5.

The initial estimate of the �lter is de�ned in ROS Parameters and set at the start of
the node. Moreover, the estimated robot pose can be reset to a speci�c position with
a message on the topic /initilpose. The message type of the position reset is geome-
try_msgs::PoseWithCovarianceStamped. A message contains a 3D position and a 3D
orientation.

6.7.3 Dynamic Recon�gure Interface

To simplify the con�guration of the �lter parameters the node implements a Dynamic
Recon�gure Interface. The interface allows setting of parameters during runtime of the
node. Figure 6.8 shows the user interface for the recon�guration.

Figure 6.8: Screen shot of the recon�gure interface.

42

6 System Design and Implementation

6.8 Map Server

Without information on the environment the robot cannot navigate. Within this project
a graph based map is used. A node-edge graph of accessible ways is generated using
geographic data provided by OpenStreetMap8.

The map server node is called osm_server. It reads the OpenStreetMap from an
OSM-�le and builds up the internal data structure. The osm_server makes the graph
based map available for other nodes. The graph based map can be requested by calling
the service /getOSMGraph provided by the osm_server node. Listing 6.4 shows the
de�nition of the service and the corresponding message type is shown in Listing 6.3.

The map server node publishes the generated map on the topic /map as Message
Type nav_msgs/OccupancyGrid for visualization in the user interface. Furthermore,
the service nav_msgs/getMap is provided to the global planner.

Open St r e e t Map Node
in t32 node_id
geometry_msgs/Point coords
in t32 [] ne ighbors

Listing 6.3: De�nition of the Open Street Map Node (OSMNode) message.

reques t msg
−−−
response msg
OSMNode [] nodes

Listing 6.4: De�nition of the getOSMGraph service.

For the navigation a node-edge graph of accessible ways is generated. Therefore, a
node class is de�ned which contains the geographic data. The map information is stored
as a list of that node classes. The provided map information is generated out of this
dataset.

6.8.1 OpenStreetMap

OpenStreetMap (OSM) is an online database, which contains geographic data. The map
of the whole world is written and constructed collaboratively by volunteers around the
world. All maps are without legal or technical restrictions on their use. All information
on the OpenStreetMap project is taken from [9].

The Data Primitives of the OSM database are:

8http://wiki.openstreetmap.org

43

6 System Design and Implementation

Node: Is a point de�ned as latitude and longitude coordinates. Nodes can be used to
de�ne the path of a way or can be standalone point features.

Way: A way is an ordered list of nodes. Ways can have one or more tags for detailed
information.

Relation: To group one or more data primitives relations are used.

Listing 6.5 shows an example of an OpenStreetMap XML �le. The ROS Service
/GlobalToLocal provided by the positioning node is used to convert the WGS-84 ellipsoid
coordinates in local Cartesian coordinates. Within this project the robot should drive
only on OSM Ways of the type footway and cycleway.

<?xml ve r s i on ="1.0" encoding="UTF−8"?>
<osm ve r s i on ="0.6" genera to r="CGImap 0.0.2" >

<bounds minlat ="54.0889580" minlon="12.2487570"
maxlat="54.0913900" maxlon="12.2524800"/>

<node id ="298884269" l a t ="54.0901746" lon ="12.2482632" user="SvenHRO"
uid="46882" v i s i b l e="true " ve r s i on="1" changeset ="676636"
timestamp="2008−09−21T21 : 3 7 : 4 5Z"/>

<node id ="261728686" l a t ="54.0906309" lon ="12.2441924"
user="PikoWinter" uid="36744" v i s i b l e="true " ve r s i on="1"
changeset ="323878" timestamp="2008−05−03T13 : 3 9 : 2 3Z"/>

. . .
<node id ="298884272" l a t ="54.0901447" lon ="12.2516513" user="SvenHRO"

uid="46882" v i s i b l e="true " ve r s i on="1" changeset ="676636"
timestamp="2008−09−21T21 : 3 7 : 4 5Z"/>

<way id ="26659127" user="Masch" uid="55988" v i s i b l e="true " ve r s i on="5"
changeset ="4142606" timestamp="2010−03−16T11 : 4 7 : 0 8Z">

<nd r e f ="292403538"/>
<nd r e f ="298884289"/>
. . .
<nd r e f ="261728686"/>
<tag k="highway" v="u n c l a s s i f i e d "/>
<tag k="name" v="Pastower S t r a s s e "/>

</way>
<r e l a t i o n id="56688" user="kmvar" uid="56190" v i s i b l e="true "

ve r s i on="28" changeset ="6947637"
timestamp="2011−01−12T14 : 2 3 : 4 9Z">

<member type="node" r e f ="294942404" r o l e=""/>
. . .
<member type="node" r e f ="364933006" r o l e=""/>
<member type="way" r e f ="4579143" r o l e=""/>
. . .
<member type="node" r e f ="249673494" r o l e=""/>
<tag k="name" v="Kuestenbus L in i e 123"/>
<tag k="network" v="VVW"/>
<tag k="operator " v="Reg iona lverkehr Kueste"/>
<tag k="r e f " v="123"/>
<tag k="route " v="bus"/>
<tag k="type" v="route"/>

</r e l a t i o n >
. . .

44

6 System Design and Implementation

</osm>

Listing 6.5: A shortened example of a complete OSM XML �le [9]

6.9 Navigation

Figure 6.9: Diagram of the principle move_base node structure [7, move_base].

The navigation task is performed by the move_base node [7, move_base]. Figure 6.9
on page 45 shows a diagram of the principle move_base node structure. The package
provides an action interface to give the robot a goal in the world and to monitor the
task.

To navigate the robot to the global goal, move_base links together a global and local
planner. Planners are implemented as plugins that adhere to the interfaces de�ned
in the navigation core [7, nav_core]. The class nav_core::BaseLocalPlanner de�nes
the interface for the local planners in. The interface for global planners is de�ned in
nav_core::BaseGlobalPlanner. The global planner provides the functionality to compass
a global path for the robot using the map information. The local planner performs
the task to generate the movement commands to navigate the robot locally avoiding
obstacles. For both planners a costmap is provided.

If the robot perceives itself as stuck the move_base node performs recovery behaviours.
Recovery behaviours are also implemented as plugins de�ned in the navigation core [7,
nav_core]. The standard interface is nav_core::RecoveryBehaviour.

Now let us have a closer look to the di�erent components of the navigation.

45

6 System Design and Implementation

6.9.1 Costmap

The costmap_2d [7, costmap_2d] builds a 2D or 3D occupancy grid for the robot nav-
igation. It takes in sensor data from the world to store and update information about
obstacles in the world. A costmap can be initialized with a static map from a map_server
or as a rolling window based costmap.

In the static map con�guration the costmap makes a service call to the map_server to
obtain a 2-D grid map, which represents the probability of occupancy of each cell. Map
data is stored as data-type nav_msgs/OccupancyGrid.

Sensor data can be taken from laser_scan_topics or point_cloud_topics. The sen-
sor data is used by Costmap_2d to update map cells as free, occupied or unknown.
The Message type for laser scans is sensor_msgs/LaserScan and for point cloud data
sensor_msgs/PointCloud.

A detailed description of all options can be found at [7, costmap_2d].

6.9.2 Local Planner

The dwa_local_planner [7, dwa_local_planner] plugin for the move_base node provides
local robot navigation using the Dynamic Window Approach algorithm [24]. This package
has a large number of ROS Parameters to customize the behaviour of the planner. The
parameters are dynamically recon�gurable.

The planner takes a global plan to follow and a local costmap and produces veloc-
ity commands for the mobile base. The velocity commands are published to the topic
/cmd_vel. The message type is geometry_msgs/Twist and expresses the linear and
angular velocity in free space.

The dwa_local_planner subscribes to the odometry information of the robot on the
topic /pose to get the current speed of the robot. The Message type of the odometry
information is nav_msgs/Odometry. The velocity information in this message is assumed
to be in the robot frame.

For a detailed description of the parameters see [7, dwa_local_planner].

6.9.3 Global Planner

For global path planning the OpenStreetMap planner is implemented. The package is
inherited from the nav_core::BaseGlobalPlanner interface speci�cation. The plugin is
called osm_planner and plans the global path based on the road network exported from
the OpenStreetMap database.

46

6 System Design and Implementation

The planner internally uses the same data-structure as the Map Server (6.8). The
osm_planner requests the graph based map from the osm_server node at start-up
by calling the service /getOSMGraph. The base class for the Global Planner is the
nav_core::BaseGlobalPlanner interface. The OpenStreetMap Planner is implemented as
ROS Plugin.

The path planning algorithm implemented in the node is an A* heuristic. A detailed
description of the algorithm and a pseudo code can be found in [25, p.527]. Figure 6.10
shows a visualization of a planned path. The computed path is provided internally as
nav_msgs/Path to the local planner.

Figure 6.10: Map generated by the osm_server geographic data and a planned trajectory
computed by the osm_planner.

6.9.4 Recovery Behaviour

Figure 6.11 on page 45 illustrates the standard recovery behaviour. The description is
taken from [7, move_base].

As �rst step the robot will clear obstacles outside of a speci�ed region from the map
and try to perform an in-place rotation to clear out space. If this fails, the robot will clear
its map, removing all obstacles outside of the rectangular region in which it can rotate
in place and makes another in-place rotation. If all this fails, the robot will consider its
goal infeasible and the task will be aborted.

47

6 System Design and Implementation

Figure 6.11: Expected robot recovery behaviour of the principle move_base node.

6.10 User Interface

Figure 6.12: Screen shot of the User Interface RViz.

Within this project RViz is used as a high-level control user interface [7, rviz].

RViz is a visualization tool in ROS that can be used to collect and display information
from di�erent sources. Sensor data, coordinate frames, robot models and maps can be
visualized in one 3D view of the world. The tool also provides functionality to interact
with the system, like setting the initial robot position or a navigation goal.

Rviz has a plugin-based architecture so the tool can be adapted easily to di�erent
needs. By adding speci�c modules the interface can be customized to display relevant

48

6 System Design and Implementation

sensor data or provide useful commands [7, rviz/UserGuide]. Figure 6.12 on page 48
shows a screen-shot of RViz in the used con�guration.

6.11 Mission Control

The mission_control node is designed to run the trial experiment. The robot should
navigate between de�ned positions on a known road network. This node connects to the
action interface of the move_base node and triggers the robot to go to the goals. The
status of the navigation node is tracked during the walk.

The experiment positions are de�ned in a YAML �le. The website [26] describes the
make-up language as:

YAML is a human friendly data serialization standard for all programming
languages.

To read the list of positions the library yaml-cpp9 is used. This library is delivered as
part of the ROS framework. Listing 6.6 shows an example of a simple position list.

− po s i t i o n : { x : 159 .464279175 , y : −442.224456787 , z : 0 .0}
o r i e n t a t i o n : { x : 0 . 0 , y : 0 . 0 , z : −0.476974266337 , w: 0.878917259617}

− po s i t i o n : { x : 114 .952140808 , y : −476.165008545 , z : 0 .0}
o r i e n t a t i o n : { x : 0 . 0 , y : 0 . 0 , z : 0 .915350526474 , w: −0.402657936322}

− po s i t i o n : { x : 81 .7606048584 , y : −404.174194336 , z : 0 .0}
o r i e n t a t i o n : { x : 0 . 0 , y : 0 . 0 , z : 0 .7414528362 , w: 0.671004986338}

− po s i t i o n : { x : 119 .024230957 , y : −393.008972168 , z : 0 .0}
o r i e n t a t i o n : { x : 0 . 0 , y : 0 . 0 , z : −0.43713753446 , w: 0.899394671969}

− po s i t i o n : { x : 103 .11390686 , y : −468.373626709 , z : 0 .0}
o r i e n t a t i o n : { x : 0 . 0 , y : 0 . 0 , z : −0.55469777397 , w: 0.832051909169}

Listing 6.6: Example position list for the mission control YAML �le

9http://code.google.com/p/yaml-cpp/

49

7 Experimental Evaluation

This Chapter will have a closer look on the quality of the designed system. The accuracy
of the position estimation is essential for the navigation system. For the evaluation of
the positioning algorithm a reference to make an e�ective comparison is necessary.

7.1 Ground Truth

The evaluation of the ground truth is an important element in the analysis of the devel-
oped system. For the determination of the true robot position a second high precision
positioning system would be great, which unfortunately is not available.

The position estimation is evaluated using a reference trajectory and typical sensor
measurements. To determine the error of the positioning the normal distance of the
estimated position and the reference path are processed. Clearly this approach for error
determination is not very precise but that approach is the best choice that can be put
into practice.

The robot is driven by joystick control along the reference path. Because of the human
control of the robot it is not possible to move on the white ground line with precision.
During the run it was tried to keep the ground marking in-between the wheels of the
mobile platform.

7.1.1 Reference Trajectory

To evaluate the position estimation a reference trajectory is required. As path for the
robot the ground markings on the cycleway close to the laboratory are used. The mea-
suring of the ground marking is performed using an orthophoto from the spatial data
service Geoimage-Austria c©1. These pictures have a high positional accuracy although
the inaccuracy of the position is up to thirty centimetres.

Figure 7.1 shows the sector of the orthophoto with the reference ground marking.
The high-resolution aerial pictures from the spatial data service have a high positional

1http://www.geoimage.at/

50

7 Experimental Evaluation

accuracy. The white ground markings are well visible. To process the reference trajectory
in the software an OpenStreetMap data �le is generated that contains the trajectory.

Figure 7.1: Reference trajectory to verify the position estimation. The trajectory is
shown in purple. Orthophoto: www.geoimage.at (c)

51

7 Experimental Evaluation

7.2 Evaluation of the Positioning

A recorded experimental run is used to parameterize the Kalman Filter for the position
estimation. Table 7.1 shows the standard deviations used for the evaluation runs.

Standard Deviation Symbol Value

Linear acceleration (System noise) σẍ 50

Rotational acceleration (System noise) σθ̈ 100

Linear velocity (Odometry) σvodo 0.005

Rotational velocity (Odometry) σωz,odo
0.5

Rotational velocity (IMU) σωz,imu 1.0

Table 7.1: Parameter-Set for the Kalman �lter.

The position estimation is examined in di�erent runs using the same �lter settings. In
the experiment the robot is driven by joystick control along the reference path.

Two typical example runs are described below. They di�er from each other in the
maximum robot motion speed, the travel direction and the initialisation time of the gps
receiver.

7.2.1 First Run

In the �rst run the robot was driven from the south-east end of the trajectory to the
north-west point of the path. In this travel direction the path has a slight incline, the
maximum motion speed was set to 0.8m/s and the GPS receiver was operating for more
than 30 minutes.

Figure 7.5 on page 55 demonstrates the tracks of the �lter-estimated way of the robot,
the recorded GPS track, as well as the position estimated from the odometry mea-
surements. It can be seen that, the deviation between reference path and odometry is
increasing rapidly.

Figure 7.2 compares the progression of the normal distance from the reference trajec-
tory of the estimated position, the GPS position and the position estimated by odometry.
Compared with the �ltered position and the GPS measurement, the accumulation of er-
ror in the odometry position estimation is clearly visible. Taking into account the fact
that the computed error indicator represents the normal distance to the nearest path
segment the absolute error is even higher.

For a better observation of the temporal progression of the normal distance from the
reference trajectory Figure 7.2 only shows the �lter position error and the GPS position
error. The mean error of the positioning is drawn as cyan line exceeds the average error
of the gps position measurement.

52

7 Experimental Evaluation

Figure 7.2: Position error: estimated position (green), GPS (blue) and odometry (red).

Figure 7.3: Position error: estimated position (blue) and GPS (green); Average position
error: estimated position (red) and GPS (cyan).

53

7 Experimental Evaluation

The temporal progression of the heading error of the Kalman �lter and the odometry
estimation is shown in Figure 7.4. The average heading error of the �lter estimation is
a factor of �ve smaller. Those data show that the approach of using consecutive GPS
position measurements to back the orientation helps to correct the estimated orientation
of the robot.

It can be seen that the temporal progression of the odometry heading error is constantly
increasing with a rapid change in the value. It could perhaps be argued that this jump
is caused by the inadequate method to measure the heading error.

Figure 7.4: Heading error: heading estimation (blue) and odometry heading (green); Av-
erage heading error: estimated heading (red) and odometry heading (cyan).

54

7 Experimental Evaluation

Figure 7.5: Tracks of the di�erent position sources in run one: reference path (purple),
GPS (cyan), estimated position (red) and odometry position (green). Or-
thophoto: www.geoimage.at (c)

55

7 Experimental Evaluation

7.2.2 Second Run

In the second run the robot was driven from the north-west point of the trajectory to the
south-east end of the path. In this travel direction the path has a slight downward slope.
The maximum motion speed was set to 0.5m/s and the GPS receiver was switched on
shortly before the run.

The tracks of the �lter-estimated way of the robot, the recorded GPS track, as well
as the position estimated from the odometry measurements are shown in Figure 7.9 on
page 58.

Figure 7.6 compares the progression of the normal distance from the reference trajec-
tory of the estimated position, the GPS position and the position estimated by odometry.
Compared with the �ltered position and the GPS measurement, the accumulation of er-
ror in the odometry position estimation is clearly visible. Compared with the odometry
position error in the �rst run the progression is not that grave. This might be taken as
indication for di�erent odometry error behaviour for inclines and gradients.

Figure 7.6: Position error: estimated position (green), GPS (blue) and odometry (red).

For a better observation of the temporal progression of the normal distance from the
reference trajectory Figure 7.6 only shows the �lter position error and the GPS position
error. In this run the mean error of the positioning is drawn as cyan line is smaller than
the average error of the gps position measurement.

For the second run the temporal progression of the heading error of the Kalman �lter
and the odometry estimation is shown in Figure 7.8. It can be observed that the estimated

56

7 Experimental Evaluation

Figure 7.7: Position error: estimated position (blue) and GPS (green); Average position
error: estimated position (red) and GPS (cyan).

Figure 7.8: Heading error: heading estimation (blue) and odometry heading (green); Av-
erage heading error: estimated heading (red) and odometry heading (cyan).

57

7 Experimental Evaluation

heading is very inaccurate during the �rst 300 seconds of the experimental run. This
could be taken as result of the incomplete initialisation of the GPS receiver and the larger
error involved that have a negative e�ect in the sensor fusion.

Figure 7.9: Tracks of the di�erent position sources in run two: reference path (purple),
GPS (orange), estimated position (blue) and odometry position (green). Or-
thophoto: www.geoimage.at (c)

58

7 Experimental Evaluation

7.3 Trial Run

In order to test whether the position estimation is useful for an autonomous outdoor nav-
igation a trial run is performed. In the setup for the experiment the robot have to move
autonomous in the "Augarten" a park facility with several paths near the laboratory.
Figure 7.10 shows aerial photograph of the park.

The experiments show that the robot can move along a way for a short period of time.
In certain cases the system loses its way. In other words the robot movement becomes
unpredictable and human intervention is needed. The author thinks that di�erent dis-
orders in the sensor input cause an erroneous orientation. The local navigation control
algorithm tries to compensate the orientation error but this behaviour lead to an ever-
growing error. Also can be seen, that even though the robot can move along a way for a
short period of time the positioning system can not guarantee that the robot is on the
way.

Figure 7.10: Aerial photograph of the "Augarten", a park facility with several paths near
the laboratory. Orthophoto: www.geoimage.at (c)

59

8 Conclusion

In this thesis a basic robot setup for mobile outdoor navigation is presented. The system
consists of the following components: a mobile robot platform, a GPS receiver, an IMU
sensor, a laser range �nder and a computer to control the system. The developed software
runs on Ubuntu, a Linux operating system and uses the Robot Operation System (ROS)
as framework. Geographic data that is received from an online database is used to
provide knowledge on the environment to the robot. A graph-based map is used to store
the knowledge of the environment and guide the robot through the road network.

The position determination is evaluated using a reference trajectory and typical sensor
measurements. Clearly this approach for error determination is not very precise but gives
adequate indications of the temporal progression of the positioning error. The evaluation
method is limited by the fact that the determination of the used reference path and the
measurement of the di�erence between the real and the estimated robot position have
some limitations. The determination of the used reference trajectory has been done using
high-resolution aerial pictures from a spatial data service. These pictures have a high
positional accuracy although the inaccuracy of the position is up to thirty centimetres. In
additional, only normal distance of the estimated position and the reference path could
be determined.

The designed positioning system uses a Kalman Filter to fuse the sensor information
from the GPS, the IMU and odometric sensor. The �lter equations are modelled to im-
prove the accuracy of the positioning by compensating the disadvantages of the di�erent
sensors. For instance the position change of consecutive GPS position measurements are
used to back the orientation and the planar velocity estimation. Typical sensor mea-
surement data, which was observed, shows that the heading direction error is improved
through this correction method.

During the work it was discovered that the use of magnetic compass measurements
to back the absolute heading of the robot could not be implemented. Tests in urban
outdoors environment has shown that the distortions of the earth magnetic �eld near steel
structures like buildings lead to inaccurate measurements. In addition to the unexpected
large errors in compass measurement the in�uence of multi-path phenomenon to the
accuracy of the GPS position measurement was not expected.

Because of a number of technical problems no running DGPS (Di�erential GPS) po-
sitioning could be operated. In open environment the accuracy of the positioning could
have been further improved by taking advantage of di�erential correction data. In urban

60

8 Conclusion

environment the bene�t is reduced because of incorrect positioning results near buildings
and trees as a result of multi-path phenomenon.

This thesis has realized a system to move the robot in outdoor environment. Through
practical observations could be seen that the chosen approach is not su�cient to operate
the robot full autonomously. To develop a reliable autonomous robot navigation system
many factors have to be taken into account and di�erent sources of error have to be
determined. Within the project the �lter parameters are set to higher standard deviation
as assumed. The results show, that the position estimation works in the majority of cases
with su�cient accuracy to locate the robot, but it cannot be guaranteed that the robot
is on the way or navigate autonomously.

The navigation task consists of a global-path planning based on a graph based map
and a local path planning based on a Dynamic Window Approach algorithm. In a local
area laser range information is used to avoid collisions. This implemented functionality
allows the robot to react on local occurring obstacles but not any types of obstacles have
been taken into account. For instance stairs and kerbstones.

8.1 Future Research

Many problems still have to be sorted out for developing a full autonomous mobile robot
that moves in urban environment without presenting a danger in the surrounding area.

Future research could improve the developed positioning system by integrating a sys-
tem to identify large errors in compass and GPS measurements and eliminate them. A
possible approach is described in "Using qualitative and model-based reasoning for sensor
validation of autonomous robots" [27].

In addition, it is possible to combine technologies like SLAM (Simultaneous Localiza-
tion And Mapping) or landmark navigation with the system to balance out the drawback
of the designed system. Furthermore, a more realistic and precise modelling of sensor
characteristics could improve accuracy.

In future research the accuracy of the map data (OpenStreetMap) could be improved
and additional relevant knowledge about the environment around the robot, like tra�c
lights or crosswalks, could be inserted. Furthermore, an improved perception of the
environment might increase the robustness of the outdoor navigation system, an advanced
vision system to detect the way and obstacle could be used to balances the drawback of
the inaccuracies in the positioning.

61

Bibliography

[1] B. Hofmann-Wellenhof, K. Legat, and M. Wieser. Navigation: Principles of Posi-
tioning and Guidance. Springer, Wien, 2003.

[2] MobileRobots Inc. Pioneer 3 Operations Manual, version 5 edition, July 2007.

[3] Xsens Technologies B.V. MTi and MTx User Manual and Technical Documentation,
revision g edition, March 2006.

[4] National Aeronautics and Space Administration NASA. Aircraft rotations. Online,
Jul 2008.
http://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html.

[5] GARMIN Corporation. GPS SMART ANTENNA TECHNICAL SPECIFICA-
TION, rev. e edition, March 2000.

[6] SICK AG. Laser Measurement Systems of the LMS100 Product Family.

[7] ROS.org. Ros wiki. Online.
http://www.ros.org/wiki/.

[8] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. The
MIT, 2001.

[9] OpenStreetMap. Openstreetmap wiki. Online, November 2011.
http://wiki.openstreetmap.org/wiki/.

[10] NIMA National Imagery and Mapping Agency. The American Practical Navigator:
Bowditch. Paradise Cay Publications, 2002.

[11] Robin R. Murphy. Introduction to AI Robotics. The MIT Press, Massachusetts, 1st
edition, 2000.

[12] J. Borenstein, H. R. Everett, L. Feng, and D. Wehe. Mobile robot positioning -
sensors and techniques. Journal of Robotic Systems, Vol. 14 No. 4:231�249, 1997.

[13] J. Borenstein and L. Feng. Measurement and correction of systematic odometry
errors in mobile robots. IEEE Transactions on Robotics and Automation, Vol. 12
No. 6:869�880, 1996.

62

Bibliography

[14] H. Lategahn, A. Geiger, and B. Kitt. Visual slam for autonomous ground vehicles.
In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages
1732 �1737, may 2011.

[15] M. Jenkin, E. Milios, P. Jasiobedzki, N. Bains, and K. Tran. Global navigation
for ark. In Intelligent Robots and Systems '93, IROS '93. Proceedings of the 1993
IEEE/RSJ International Conference on, volume 3, pages 2165 �2171 vol.3, jul 1993.

[16] Rudolph Emil Kalman. A new approach to linear �ltering and prediction problems.
Transactions of the ASME�Journal of Basic Engineering, 82(Series D):35�45, 1960.

[17] KyuCheol Park, Dohyoung Chung, Hakyoung Chung, and Jang Gyu Lee. Dead
reckoning navigation of a mobile robot using an indirect kalman �lter. InMultisensor
Fusion and Integration for Intelligent Systems, 1996. IEEE/SICE/RSJ International
Conference on, pages 132 �138, dec 1996.

[18] Ning Ma, M. Bouchard, and R.A. Goubran. Speech enhancement using a masking
threshold constrained kalman �lter and its heuristic implementations. Audio, Speech,
and Language Processing, IEEE Transactions on, 14(1):19 � 32, jan. 2006.

[19] A. Rusdinar, Jungmin Kim, and Sungshin Kim. Error pose correction of mobile
robot for slam problem using laser range �nder based on particle �lter. In Control
Automation and Systems (ICCAS), 2010 International Conference on, pages 52 �55,
oct. 2010.

[20] K. Ohno, T. Tsubouchi, B. Shigematsu, S. Maeyama, and S. Yuta. Outdoor naviga-
tion of a mobile robot between buildings based on dgps and odometry data fusion. In
Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Con-
ference on, volume 2, pages 1978 � 1984 vol.2, sept. 2003.

[21] S. Panzieri, F. Pascucci, and G. Ulivi. An outdoor navigation system using gps and
inertial platform. Mechatronics, IEEE/ASME Transactions on, 7(2):134 �142, jun
2002.

[22] Charles Karney. Geographic library. Online.
http://geographiclib.sourceforge.net/html/index.html.

[23] Klaas Gadeyne. BFL: Bayesian Filtering Library, 2001.
http://www.orocos.org/b�.

[24] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. Robotics Automation Magazine, IEEE, 4(1):23 �33, mar 1997.

[25] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A Kantor, Wolfram Bur-
gard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, June 2005.

63

Bibliography

[26] Clark C. Evans. The o�cial yaml web site. Online.
http://www.yaml.org/.

[27] Kleiner A., Steinbauer G., and Wotawa F. Using qualitative and model-based rea-
soning for sensor validation of autonomous mobile robots. In Twentieth International
Workshop on Principles of Diagnosis (DX 2009), (Stockholm, Sweden), 2009.

64

