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Abstract

Nowadays, cryptographic algorithms are widespread and used in di�erent applications.
Since the announcement that Keccak is the Secure Hash Algorithm (SHA-3) compe-
tition winner, sponge-based algorithms get more and more important. Besides hashing,
they can be used for encryption as well. Using encryption systems on wireless devices
leads to two requirements on the implementation. First, wireless devices are often bat-
tery or externally powered. In order to increase the life time of the devices, low-area
designs are necessary. Second, a public domain can access the device during computa-
tion. Attacks which focus on exploiting implementation properties of the device can use
this opportunity to reduce the security of these devices. The most common attacks are
based on power analyses which try to derive sensitive information from the power con-
sumption during cryptographic computations. In order to prevent attacks on this level,
countermeasures must be implemented. This leads to additional hardware components
and therefore, increases the area of the whole implementation. The challenging task is
to combine low-area designs with countermeasures against power analyses. Moreover,
the increase of sensitive digital data imposes higher requirements on cryptographic im-
plementations with regard to their throughput. In order to compensate this increase,
speed-maximized implementations are necessary.
In this thesis, we present the implementation of an Authenticated Encryption (AE)

system based on Keccak. The goal was to design two di�erent architectures. First,
a low-area implementation of the system was aspired. This implementation is secured
with countermeasures against power-analysis attacks. The techniques used are called
masking and hiding. Three di�erent masking schemes are implemented, resulting in three
diverse instances all combined into an Application-Speci�c Integrated Circuit (ASIC),
called Zorro. Furthermore, a power-analysis attack against one instance is presented.
Second, the goal was to maximize the throughput of the AE system. The architecture
was implemented on a Field Programmable Gate Array (FPGA).

Keywords: Power analysis, Keccak, secret sharing, masking, hiding, low-area, high-
throughput, authenticated encryption
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Kurzfassung

Verschlüsselungsalgorithmen sind weit verbreitet und werden in verschiedenen Anwen-
dungen verwendet. Seit der Ankündigung, dass Keccak den Sicheren-Hash-Algorithmus
(SHA-3) Wettbewerb gewonnen hat, gewinnen Schwamm-basierte Algorithmen mehr und
mehr an Bedeutung. Neben dem Einsatz als Hash-Funktion können jene Algorithmen
auch für die Verschlüsselung verwendet werden. Verschlüsselungssysteme in drahtlosen
Geräten führen zu zwei Anforderungen an deren Implementierungen. Erstens sind draht-
lose Geräte oft batteriebetrieben oder extern versorgt. Um die Lebensdauer der Geräte zu
erhöhen, sind klein�ächige Designs erforderlich. Zweitens sind sie einer Ö�entlichkeit aus-
gesetzt welche auf die Geräte während der Berechnung zugreifen kann. Angri�e, die sich
auf Implementierungseigenschaften konzentrieren, können diese Möglichkeit nutzen, um
die Sicherheit dieser Geräte zu reduzieren. Die häu�gsten Angri�e sind Leistungsanaly-
sen. Jene Analysen versuchen Informationen aus dem Leistungsverbrauch, der während
kryptographischer Berechnungen gemessen wurde, abzuleiten. Um Angri�e auf dieser
Ebene zu verhindern, müssen Gegenmaÿnahmen implementiert werden. Dies führt zu
zusätzlichen Hardware-Komponenten und erhöht somit die Fläche der gesamten Imple-
mentierung. Eine anspruchsvolle Aufgabe ist es, klein�ächige Designs mit Gegenmaÿnah-
men gegen Leistungsanalysen zu kombinieren. Darüber hinaus, bringt der Anstieg von
sensiblen digitalen Daten neue Herausforderungen an kryptographische Implementierun-
gen mit sich. Um jenen Anstieg zu kompensieren ist eine Maximierung des Durchsatzes
der Implementierungen erforderlich.
In dieser Arbeit präsentieren wir die Implementierung eines authenti�zierten Verschlüs-

selungssystems basierend auf Keccak. Das Ziel war es, zwei verschiedene Architekturen
zu entwerfen. Zuerst wurde eine klein�ächige Implementierung des Systems angestrebt.
Diese Implementierung ist zusätzlich mit Gegenmaÿnahmen gegen Leistungsanalysen ge-
sichert. Die verwendeten Techniken werden Maskieren und Verstecken genannt. Drei
verschiedene Maskierungsschemen wurden implementiert. Alle wurden auf der resultie-
renden anwendungsspezi�schen integrierten Schaltung, genannt Zorro, kombiniert und
fabriziert. Des Weiteren wird eine Leistungsanalyse einer Einheit präsentiert. Das zweite
Ziel war es den Durchsatz des authenti�zierten Verschlüsselungssystems zu maximieren.
Die Architektur wurde auf einer Feld programmierbaren Gatter-Anordnung (FPGA) im-
plementiert.

Stichwörter: Leistungsanalyse,Keccak, Maskieren, Verstecken, klein�ächig, hoher Durch-
satz, authenti�zierte Verschlüsselung

v



Contents

List of Acronyms vii

1. Introduction 1

2. Selected Cryptography- and Hardware-Relevant Topics 4
2.1. Why Cryptography? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Symmetric-Key vs. Asymmetric-Key Cryptography . . . . . . . . . 5
2.2. Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3. Message Authentication Codes . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4. Authenticated Encryption Schemes . . . . . . . . . . . . . . . . . . . . . . 9
2.5. Linear Feedback Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1. The Structure of a Linear Feedback Shift Register . . . . . . . . . 9
2.6. Synchronous Digital Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7. Data Exchange in a Multi-Clocked Environment . . . . . . . . . . . . . . . 13
2.8. Basics of Xilinx Field Programmable Gate Arrays . . . . . . . . . . . . . . 13

2.8.1. Con�gurable Logic Blocks . . . . . . . . . . . . . . . . . . . . . . . 14
2.8.2. Digital Signal Processors . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8.3. Di�erent Memory Types of the Xilinx-7 Family . . . . . . . . . . . 16

3. The SHA-3 Competition Winner - Keccak 18
3.1. Naming Convention and Notation . . . . . . . . . . . . . . . . . . . . . . . 18
3.2. The Keccak Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1. θ - The Parity Function . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2. π - The Slice-Move Function . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3. χ - The Non-Linear Function . . . . . . . . . . . . . . . . . . . . . 22
3.2.4. ρ - The Lane-Shift Function . . . . . . . . . . . . . . . . . . . . . . 22
3.2.5. ι - Just a XOR Operation . . . . . . . . . . . . . . . . . . . . . . . 23

3.3. The Sponge and the Duplex Construction . . . . . . . . . . . . . . . . . . 23
3.3.1. The Sponge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2. The Duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



Contents

3.3.3. How to build an Authenticated Encryption Scheme on the Base of
the Duplex Construction . . . . . . . . . . . . . . . . . . . . . . . . 25

4. Power-Analysis Attacks 28
4.1. Naming Convention and Notation . . . . . . . . . . . . . . . . . . . . . . . 28
4.2. Basics of Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3. Simple Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4. Correlation Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.1. Power Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5. Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5.1. Equalizing the Power Consumption . . . . . . . . . . . . . . . . . . 33
4.5.2. Randomizing the Power Consumption . . . . . . . . . . . . . . . . 33

4.6. Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6.1. The Theory Behind Secret Sharing . . . . . . . . . . . . . . . . . . 34
4.6.2. Di�erent Levels of Secret Sharing . . . . . . . . . . . . . . . . . . . 35
4.6.3. Theory vs. Reality of Secret Sharing . . . . . . . . . . . . . . . . . 36
4.6.4. How to Make Secret Sharing Secure . . . . . . . . . . . . . . . . . 38
4.6.5. Secret Sharing on the Example of Keccak . . . . . . . . . . . . . 39

5. Hardware Architecture of Zorro 41
5.1. Global Requirements and Design Decisions . . . . . . . . . . . . . . . . . . 42

5.1.1. A Low-Area Hardware Design . . . . . . . . . . . . . . . . . . . . . 42
5.1.2. Countermeasure against Power Analysis . . . . . . . . . . . . . . . 43

5.2. The Hardware Architecture: A Top-Down Approach . . . . . . . . . . . . 43
5.2.1. Top Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2. The Entities of an Instance . . . . . . . . . . . . . . . . . . . . . . 44
5.2.3. The Datapath and FSM . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3. Comparison between the Three Instances . . . . . . . . . . . . . . . . . . 51
5.4. Synthesis Results of Zorro . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4.1. Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5. Back-end Results of Zorro . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6. Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . 55

6. Power Analysis of Zorro 61
6.1. Power Consumption of an Encryption in Normal Mode . . . . . . . . . . . 61
6.2. Power Consumption of an Encryption in Masked Mode . . . . . . . . . . . 64
6.3. Power Analysis against Zorro . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.1. Detailed Structure of the Attack . . . . . . . . . . . . . . . . . . . 66
6.3.2. CPA Results of Zorro with Normal Mode Enabled . . . . . . . . 68
6.3.3. CPA Results of Zorro with Hiding Mode Enabled . . . . . . . . . 71
6.3.4. CPA Results of Zorro with Masked Mode Enabled . . . . . . . . 73
6.3.5. Final Notes on the Attacks . . . . . . . . . . . . . . . . . . . . . . 74

vii



Contents

7. Hardware Architecture of FastKeccak 76
7.1. The Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.2. FPGA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3. Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . 81
7.4. A Sponge against a Block . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8. Conclusion and Future Work 86

A. Zorro- ASIC Datasheet 88
A.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.2. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3. Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.4. Bonding Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.5. Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.6. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.7. Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.8. Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.8.1. Functional Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.8.2. Test Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.9. Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.10.Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B. Task Description 98

viii



List of Acronyms

AE . . . . . . . .Authenticated Encryption

AES . . . . . . .Advanced Encryption Standard

ASIC . . . . . .Application-Speci�c Integrated Circuit

ASMBL . . . . .Advanced Silicon Modular Block

CLB . . . . . . .Con�gurable Logic Block

CMOS . . . . . .Complementary Metal Oxide Semiconductor

CPA . . . . . . .Correlation Power Analysis

DES . . . . . . .Data Encryption Standard

DRC . . . . . . .Design Rule Check

DSP . . . . . . .Digital Signal Processor

ECC . . . . . . .Elliptic Curve Cryptography

ETH . . . . . . .Swiss Federal Institute of Technology

FF . . . . . . . .Flip-Flop

FPGA . . . . . .Field Programmable Gate Array

FSM . . . . . . .Finite State Machine

GCM . . . . . .Galois/Counter Mode

GE . . . . . . . .Gate Equivalent

ix



List of Acronyms

HM . . . . . . .Hiding Mode

I/O . . . . . . . Input/Output

IAIK . . . . . . . Institute for Applied Information Processing and Communications

IC . . . . . . . . Integrated Circuit

IIS . . . . . . . . Integrated Systems Laboratory

LFSR . . . . . .Linear Feedback Shift Register

LUT . . . . . . .Lookup Table

LVS . . . . . . .Layout Versus Schematic

MAC . . . . . .Message Authentication Code

MD . . . . . . .Message-Digest Algorithm

MM . . . . . . .Masked Mode

NIST . . . . . .National Institute of Standards and Technology

NM . . . . . . .Normal Mode

OCB . . . . . . .O�set Codebook Mode

RAM . . . . . .Random-Access Memory

ROM . . . . . .Read-Only Memory

RSA . . . . . . .Rivest, Shamir, and Adleman

SCA . . . . . . .Side-Channel Attack

SHA . . . . . . .Secure Hash Algorithm

SMM . . . . . .Secure Masked Mode

SPA . . . . . . .Simple Power Analysis

SS . . . . . . . .Secret Sharing

TUG . . . . . . .Graz University of Technology

UMC . . . . . .United Microelectronics Corporation

VCD . . . . . . .Value Change Dump

VHDL . . . . . .Very High Speed Integrated Circuit Hardware Description Language

x



Chapter 1
Introduction

Nowadays, wireless devices get more and more important in our world. These devices
often operate on sensitive data. Cryptographic algorithms can be used to keep sensitive
data secure. Recently, the National Institute of Standards and Technology (NIST) has
announced competitions to �nd cryptographic algorithms which provide a high compu-
tational security. This security is very important, but wireless devices are also vulnerable
in another point of view. They can be accessed by a public domain. Thus, the public
domain has open access to the device during computation. This makes wireless devices
vulnerable against attacks which focus on implementation facts. A common approach is
to analyze the power consumption during computation. Since the power consumption
of a device is correlated to the intermediate values of the executed algorithm, they can
reveal sensitive information about the processed data. In order to guarantee the system's
cryptographic security, countermeasures against power analyses must be implemented.
This can increase the area occupation in a high dimension. In addition, wireless de-
vices are often battery powered. In order to increase the lifetime, an area reduction of
the implementation often helps. Another requirement of implementations is the increas-
ing demand on large data sets in nowadays networks. The latter requirement can be
compensated by improving the throughput of implementations.
In October 2012, NIST announced [27] that Keccak [4, 6, 8] is the Secure Hash

Algorithm (SHA-3) competition winner. Keccak is based on the so-called sponge con-

struction [7]. Sponge-based algorithms are very �exible and can be used for di�erent
applications, e.g., hashing and Authenticated Encryption (AE). But straight forward
hardware implementations of Keccak-based AE systems are vulnerable against power-
analysis attacks. Thus, using unprotected implementations on wireless devices is not a
suitable approach. In order to protect implementations against power analyses, a com-
mon approach is masking. Securing a hardware implementation with masking results in
a power-analysis secure system, if the new functions, used by the implementation, follow
three simple rules mentioned by Nikova et al. [29]. Di�erent approaches following these
rules have been published focusing on Keccak [5, 11]. In addition, there exist other,
mostly smaller, approaches to make power-analysis attacks more complicated [21]. They

1



1. Introduction

are called hiding and can be combined with masking as well. Their common drawback is
that they increase the area occupation of an implementation. Therefore, if hiding and/or
masking is used the question arises if such implementations can ful�ll the requirements of
a wireless device. Moreover, the amount of sensitive data processed by wireless increased
steadily. Hence, throughput-trimmed implementations of cryptographic algorithms are
often needed. Today, many block-cipher implementations are available which achieve
this requirement. Sponge-based algorithms are relatively new approaches, but get very
important because of the Secure Hash Algorithm (SHA)-3 nomination. Therefore, a
question of interest is, if sponge-based algorithms can perform more e�ciently and keep
up with block-cipher implementations in terms of the achieved throughput.
The goal of this thesis was to design two implementations, each serving as an AE system

based on Keccak. The �rst architecture is a low-area Application-Speci�c Integrated
Circuit (ASIC) implementation which is called Zorro. The ASIC is secured with mask-
ing and hiding schemes against power-analysis attacks. They can be activated in a single
and a combined way. The resulting ASIC combines three di�erent masking schemes.
All instances work independently from each other. Hence, an analysis of their power
consumption can be made independently for each instance. In the second implementa-
tion, the AE system is maximized for throughput. A fully parallelized round function is
used. The used permutation of Keccak works with 24 iterative rounds. Therefore, 8
implementations are possible only by unrolling the rounds. All high-throughput imple-
mentations were done on a Field Programmable Gate Array (FPGA).
Related work which implements Keccak-f [1600] in a power analysis secure way only

focuses on hashing or on the single permutation. Our system is a fully working AE
system. Additionally, it o�ers the opportunity to activate and deactivate the di�erent
countermeasures and is therefore a perfect tool to evaluate the di�erent countermea-
sures. As a result, we can present that each implemented instance of our system is
more than two times smaller than other published implementations available so far.
Hence, it represents the smallest AE system based on Keccak-f [1600] mentioned so
far which is protected against power analyses. In numbers, our smallest implementa-
tion needs 14000Gate Equivalents (GEs), the second implementation needs 14500GEs,
and the biggest implementation needs 17000GEs. For the ASIC realization a United
Microelectronics Corporation (UMC) 180 nm technology was used. All instances work
with a largest size of 1088 bits and provide a security level of 256 bits. The maximum
frequency is given by 200MHz. Each instance can encrypt 1 to 2Mbit/s even though
masking is applied. Besides, a power-analysis attack against one instance is presented.
The power traces for the attack are based on simulation results. With this attack, we
were able to reduce the security of a non-protected encryption from 256 down to 96
bits. The throughput-trimmed implementations do not provide countermeasures against
power analyses. The targeted platforms for the high-throughput implementations are
Xilinx Kintex-7 and Xilinx Virtex-7 FPGAs. The fastest implementation has a through-
put of more than 34Gbit/s. All implementations work with a block size of 1344 bits and
have a security of 128 bits.
The remainder of the work is structured as follows. In Chapter 2, the theory behind

2



1. Introduction

the implementations is given. At �rst, basics of cryptography are presented followed
by hardware relevant topics. In Chapter 3, the Keccak permutation, the sponge con-

struction, and the duplex construction are explained. Subsequently, Chapter 4 provides
power-analysis attacks. We start with an explanation of Simple Power Analysis (SPA)
and Correlation Power Analysis (CPA) followed by countermeasures against power anal-
yses. Afterwards, masking and Secret Sharing (SS) are described in detail. In Chapter 5,
the architecture behind Zorro is explained. In Chapter 6, a power analysis of one of
the three instances on Zorro is given. Chapter 7 presents the high-throughput imple-
mentations. Finally, in Chapter 8, we conclude the work and outline future work.

3



Chapter 2
Selected Cryptography- and

Hardware-Relevant Topics

Nowadays, everybody is in contact with cryptography even though most of the time
without noticing it. The spectrum where cryptography is used is widespread and ranges
from mobile phones to banking cards. In order to speed up cryptographic computations,
dedicated hardware components are produced.
This chapter provides a brief introduction into cryptography- and hardware-related

topics, relevant for this work. In Section 2.1, asymmetric-key and symmetric-key cryp-
tography are outlined. Section 2.2 covers hash functions, followed by Section 2.3 about
Message Authentication Codes (MACs). Subsequently, Section 2.4 explains Authenti-
cated Encryption (AE) systems. Section 2.5 describes Linear Feedback Shift Registers
(LFSRs). Basics of synchronous digital circuits are given in Section 2.6. In Section 2.7,
a possibility of data exchange in multi-clocked environments is outlined. Finally, Sec-
tion 2.8 explains the basics of Field Programmable Gate Arrays (FPGAs) using the
example of the Xilinx-7 Family.

m

Alice

Eve

Bob

m

m
insecure channel

Figure 2.1.: A transmission of a message m from Alice to Bob over an insecure channel.
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2. Selected Cryptography- and Hardware-Relevant Topics

2.1. Why Cryptography?

Let Alice and Bob be two parties who want to exchange sensitive data, denoted by m
(see Figure 2.1). They send their data over an insecure channel, such as the Internet.
An evil person, called Eve, can easily read, alter, or even delete these data as long as she
has access to the insecure channel. One of the applications of cryptography is to protect
content from unauthorized reading. But there are more objectives that can be achieved
with cryptographic algorithms. In literature, there exist four main objectives [22]:

• Data Integrity: A message which Alice sends to Bob cannot be manipulated by
Eve without getting detected. Therefore, when Eve adds or changes data, Bob will
notice it.

• Con�dentiality: Only Alice and Bob can understand the content of the message
the two parties exchange. Thus, a third party, for example Eve, cannot read the
content.

• Authentication: Most of the time this aspect is separated in two parts. First,
entity authentication which identi�es the two communicating entities. Second,
data-origin authentication which ensures that the message was sent actually by the
expected party.

• Non-repudiation: When Alice sends a message, it can be proven that this mes-
sage was sent actually by her. It allows Bob to prove that Alice has actually sent
the messagem even though Alice may claim something di�erent at some later point
in time.

There exist di�erent reasons and ways of using cryptography. Sometimes not all objec-
tives are needed. Therefore, many di�erent primitives are available to achieve the wanted
results.

2.1.1. Symmetric-Key vs. Asymmetric-Key Cryptography

Essentially, we can distinguish between symmetric-key and asymmetric-key cryptography.
The main di�erence between symmetric-key and asymmetric-key cryptography is that in
symmetric-key cryptography Alice and Bob have to exchange a common secret before
they can start a cryptographic operation such as an en- or decryption (see Figure 2.2).
Such a secret is usually called secret key, denoted by k. One big drawback of symmetric-
key cryptography is the fact that k has to be distributed among the participating parties
prior to the communication. If a third party gets access to the key, it can read the content
of the messages, too. Therefore, keeping k secret is very important, but because of the
required key exchange not always a simple task. The Advanced Encryption Standard
(AES) and the Data Encryption Standard (DES) are very famous primitives based on
symmetric-key cryptography.
In asymmetric-key cryptography (see Figure 2.3), every party gets a pair of keys, called

private and public key. The public key can be accessed by everybody. An encryption can
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Figure 2.2.: Encrypted transmission of a message m from Alice to Bob over an insecure
channel using symmetric-key cryptography.
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Figure 2.3.: Encrypted transmission of a message m from Alice to Bob over an insecure
channel using asymmetric-key cryptography.
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be made with this key and the resulting ciphertext can be sent to the owner of the key
pair. Afterwards, the owner can decrypt the message with the private key. The private
key belongs to the owner and therefore, must be kept secret. It is a big advantage that
there is no need for a potentially vulnerable key exchange. Famous examples include the
Rivest, Shamir, and Adleman (RSA) algorithm, which was called after their inventors,
and Elliptic Curve Cryptography (ECC).

2.2. Hash Functions

When a message m is transmitted over an insecure channel, it is very often important
to check the integrity of the message. Hash functions can be used to calculate a �xed-
length digest from a message of arbitrary length. The digest then can be attached to the
transmitted message in order to assure the message's integrity. After the transmission,
the receiver can again hash the content. If the two hash values match, the message was
not altered. Such a function does not need a key. But it must ful�ll some general criteria
to be secure. There exist three objectives in literature to describe the security of a hash
function [31]:

• Preimage resistance: For a hash value y (y = h(m), where h corresponds to a
hash function) it should be infeasible to compute the input m of the function h. Or
more precisely, a hash function should be a one way function. Therefore, it should
not be possible to get the input with the help of the output.

• Second preimage resistance: It should be computationally infeasible to �nd
for a given input m1 another input m2 with m1 6= m2 that ful�lls y1 = h(m1) =
h(m2) = y2, where h corresponds to a hash function. In others words, it should be
very di�cult to �nd an input, di�erent from a �xed one which leads to the same
function output.

• Collision resistance: It should be computationally infeasible to �nd m1 and m2

with m1 6= m2 that ful�lls y1 = h(m1) = h(m2) = y2, where h corresponds to a
hash function. The di�erence between this property and the second property is
that more possibilities are available because m1 is also freely selectable.

In order to �nd such functions, which ensure a high security, the National Institute of
Standards and Technology (NIST) frequently announce competitions. In this way, the
Secure Hash Algorithm (SHA) family occurred with the members SHA-1, SHA-2, and
SHA-3 (not fully speci�ed until now). Another famous function family is called Message-
Digest Algorithm (MD). Up to now, this family has three famous members (MD-2, MD-4,
and MD-5).

2.3. Message Authentication Codes

The basic idea of a Message Authentication Code (MAC) is to ensure that a message m
is not altered during the transmission from Bob to Alice. In addition, such a scheme can
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Figure 2.4.: MAC-based communication between Alice and Bob assuring integrity and
authenticity.

guarantee authenticity. Therefore, Bob computes the MAC of the message with a shared
secret key k. He transmits the MAC t attached to the original message to Alice. She also
computes the MAC over m, again with k. If the computed and the received MAC match,
the message is valid and m was not altered. Figure 2.4 shows the MAC computation
and the exchange schematically. In practice, the MAC is shorter than m and has a
�xed length like a hash function output. Because of the involvement of the symmetric
key k, data integrity and authentication can be achieved. The following enumeration
summarizes the achievements and properties of a MAC[31]:

• Cryptographic checksum: With a MAC you can create a cryptographic secure
authentication tag for a given message.

• Symmetric: Because MACs are based on symmetric keys the two parties have to
share a secret together.

• Arbitrary message size: A MAC must be able to handle messages of arbitrary
length.

• Fixed output length: A MAC must have the same output length for each input.

• Message integrity: If the message changes, the MAC has to change, too. There-
fore, it guarantees integrity.

• Message authentication: With a MAC the receiving party is assured of the
origin of the message.

• No non-repudiation: Because MACs are based on symmetric principles, they do
not provide non-repudiation.

8
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2.4. Authenticated Encryption Schemes

As the name of the scheme already reveals, the system should be able to encrypt and
provide authentication. In other words, it should provide objective one, two, and three
mentioned in Section 2.1. To ensure these three objectives it needs [34]:

• Encryption:
� Input: A plaintext, a key, and optionally a header

� Output: A ciphertext and an authentication tag

• Decryption:
� Input: A ciphertext, a key, and optionally a header

� Output: A plaintext and an authentication tag

The key is used to ensure con�dentiality. Therefore, only people who know the key can
decrypt the data. The header does not get encrypted, but in�uences the authenticity
protection. With the authentication tag, data integrity and authentication are ensured.
An independent encryption system combined with a MAC computation can provide an
Authenticated Encryption (AE) system. In addition, there exist modes which combine
the encryption and the MAC computation. Most of the time the key is also used to
ensure authentication in these modes. Examples for block-cipher based modes serving as
AE system are the O�set Codebook Mode (OCB) and Galois/Counter Mode (GCM).

2.5. Linear Feedback Shift Registers

In cryptography, random numbers are often needed. The generation of real random values
can be a hard task especially on hardware circuits. Another approach is to use so-called
pseudo random values. To provide these pseudo random values, Linear Feedback Shift
Registers (LFSRs) can be used.

2.5.1. The Structure of a Linear Feedback Shift Register

The main parts of an LFSR are clocked storage elements, for example Flip-Flops (FFs),
and a feedback path. The number of storage elements de�nes the degree of the connection
polynomial. In every clock cycle, the content of the storage elements is shifted to their
lower partner (the FF next to it). Thus, one element does not get a new value from
this mechanism. Therefore, a feedback path is needed. It sums up a prede�ned number
of storage-element values and stores the result in the, not yet, updated element. The
output is the content of the �rst element. In this way, one bit per cycle can be generated.
Consider m FFs and a switch si between their output and the feedback path. If the

switch is activated, the value of the storage element is considered in the feedback path,
otherwise it is not. All values of the considered elements get summed up. The sum

9
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Figure 2.5.: General structure of an LFSR.

updates the highest (m − 1) element. With this more general description FFm−1 gets
updated according to Equation (2.1). Figure 2.5 shows the basic structure of an LFSR.

FFm−1 = sm−1FFm−1 + ...+ s1FF1 + s0FF0 mod 2 (2.1)

Due to the fact that there are only �nite di�erent values for the storage elements, the
output of an LFSR repeats periodically. The maximum period is 2m − 1. But there are
also LFSRs with a lower period. This can be attributed to the structure of the feedback
path. The maximum period can be explained as follows. There exist only 2m di�erent
conditions for the state. The state condition change is a deterministic process. For a
given state condition, there is only one option for next state condition. Therefore, if a
state condition is one time the same as a previous state condition, the LFSR starts to
repeat. Additionally, if the state is zero, it stays zero. Therefore, this possibility must
be excluded and the maximal period is given by 2m − 1. LFSRs with such a period are
called maximum length LFSRs [31].

2.6. Synchronous Digital Circuits

When it comes to digital circuits, two main groups of elements are present. The �rst are
combinatorial elements. They instantly change their output for new inputs. Examples
for this group are XOR or AND operations. The other group consists of sequential
elements. They are able to store information. Examples for this group are FFs and
latches. A very famous approach to tell these elements to change their stored information
is called synchronous clocking. In this approach, all elements change their information at
a prede�ned periodical time. The point of time is de�ned by a so-called clock. The task
of this signal is to generate a periodical wave that is connected to all sequential elements.
Most of the time the waveform of a clock has the shape of a rectangle. Hence, there exist
two activities that appear periodically. A positive and a negative edge. Therefore, these
activities can be taken as a point of time to change the stored information. Consider
a circuit that only uses FFs. Two di�erent clocking approaches are possible. The �rst
one is to make the FFs sensible only to the positive or negative edge of the clock. This

10



2. Selected Cryptography- and Hardware-Relevant Topics

category is called single-edge-triggered one phase clocking. The second one gives the FFs
the chance to change their content twice in a cycle. They are able to change it at the
positive and the negative edge. This category is called dual-edge-triggered one phase

clocking. More details about di�erent clocking schemes can be found in [17].
The distribution of the clock is a very complicated and important part in Integrated

Circuit (IC) designs. In an optimal environment, the signal arrives at each storage
element at the same time. In practice, this is not always possible because of di�erent
locations of the elements, di�erent temperatures, or production variations. Hence, in real
life we have to deal with di�erent phenomenons [17]:

• Clock skew: De�nes the various times of arrival of the clock for di�erent elements
for the same edge.

• Clock jitter: De�nes the various times of arrival of the clock for the same element
for di�erent edges.

Most of the time the clock network is the biggest network on an IC. In order to guarantee
that all sequential elements get updated in the correct way, the clock distribution is
considered in a special.
The longest transmission time between sequential elements in a certain (sub)circuit

de�nes the maximum frequency and is called critical path. Main processes in circuits are
transmissions of data between several storage elements. All transmissions have to ful�ll
some timing behaviors to run o� correctly. To describe them, four di�erent delays are
given in literature [17]:

• Propagation delay (tpd): De�nes the time a unit needs to react to a new input.
After this delay all signals have settled in the unit and therefore the right output
is provided.

• Contamination delay (tcd): De�nes the time a unit needs to react to a new
input for the �rst time. Till now not all signals in the unit have settled. Hence,
the output is not the desired one.

• Setup time (tsu): De�nes the time the input of a unit is not allowed to change
before a clock edge. This type of time is only needed for sequential elements.

• Hold time (tho): De�nes the time the input of a unit is not allowed to change
after a clock edge. This type of time is again only needed for sequential elements.

Consider two units, a producer who sends data to another unit, called the receiver, and
the receiver himself. There exist two windows to explain the transmission between these
two units. The �rst one is the data-valid window. In this window, the real data are
valid on the receiver's input. This is the case after the propagation delay of the producer
(tpdpro). The next window is called data-call window. It de�nes the time, the producer
needs settled data on its input. So it has to �t in the data-valid window, otherwise the
receiver updates its storage in a wrong way. An illustration of how the di�erent delays
and times play together can be found in Figure 2.6.
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Figure 2.7.: Example of a fully combinatorial circuit consisting of AND and NAND gates.
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Figure 2.8.: Sequence diagram for sending data from Alice to Bob using a four way hand-
shake protocol.

Nevertheless, there exist other events in digital circuits, too. Consider only a combina-
torial circuit like in Figure 2.7. In an optimal environment, we consider that the output
of this circuit only changes once in a cycle. But in real life, di�erent logic elements have
di�erent propagation delays. The result is that the output can change more than once
in the same activity cycle. These activities are called glitches and can play a big role if
it comes to Side-Channel Attacks (SCAs).

2.7. Data Exchange in a Multi-Clocked Environment

Nowadays, systems often combine di�erent independent hardware circuits. They are
called system-on-chip designs. The various elements often have di�erent timing behav-
iors and can therefore be clocked at varying maximum frequencies. A correct communi-
cation between them must be guaranteed and one way to do so is by utilizing handshake
protocols. A subgroup is the so-called four way handshake protocol. Consider a pro-
ducer, called Alice, and a consumer, called Bob. Alice wants to send data to Bob. Both
work at several frequencies. Each party has a request and an acknowledge signal. When
Alice wants to send new data, she applies the data on a shared data signal and raises
the request signal. Now Bob can process the new data. Subsequently, he raises the ac-
knowledge signal to show Alice that he does not need the data any longer. Afterwards,
both signals must be zero again, �rst the request followed by the acknowledge signal.
During this time, no new data can be exchanged. The protocol wastes this time of signal
settlement. A sequence diagram of the two parties using a four way handshake protocol
can be seen in Figure 2.8. The wasted time is called downtime in this diagram.

2.8. Basics of Xilinx Field Programmable Gate Arrays

Producing an Application-Speci�c Integrated Circuit (ASIC) is a task which needs a
long time in comparison to software implementations. Hence, faster hardware would be
desirable in order to reduce the time to market. A better solution can be achieved by using
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Figure 2.9.: Con�gurable Logic Block (CLB) organization in an FPGA of the Xilinx-7

Family.

FPGAs. As the name already reveals, these devices give the possibility of programmable
hardware units. In comparison to ASICs, the maximum frequency decreases, but for
small production quantities an FPGA approach can save costs. Hence, they can play
an important role for hardware designs. This section gives an overview of how FPGAs
work.
The structure is explained based on the Xilinx-7 Family which is based on the Ad-

vanced Silicon Modular Block (ASMBL) architecture. In order to get a �exible device,
this architecture is column based. Each column represents a di�erent type of block (for
example memory, logic, Digital Signal Processor (DSP), or Input/Output (I/O) connec-
tions). All elements can be connected to a programmable switching matrix and can be
combined in an arbitrary way.

2.8.1. Con�gurable Logic Blocks

One of the main blocks available on Xilinx-7 Family FPGAs are so-called Con�gurable
Logic Block (CLB)s [42]. Each unit consists of two slices, called Slice(1) and Slice(0).
They are not directly connected. Additionally, the slices are organized as columns and
each column shares a carry bit. To distinguish the di�erent slices of several CLBs, x
and y coordinates are available. They start with 0 and 0 on the bottom left corner of
the die. Figure 2.9 shows the numeration for four CLBs. The Xilinx-7 Family provides
two types of slices, called SLICEL and SLICEM (logic and memory). All slices provide
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Figure 2.10.: DSP48E1 unit provided in the Xilinx-7 Family.

four Look-up Tables (LUTs), eight storage elements, wide-function multiplexers, and
a carry chain. The maximal size of the LUTs is given by 6 bits. They can be used
to achieve combinatorial elements or can be con�gured as 64-bit Read-Only Memory
(ROM). Hence, a slice can serve as 256-bit ROM. The storage elements can be used as
FFs or latches. Additionally, SLICEM slices can be con�gured as 256-bit distributed
Random-Access Memory (RAM) or as 128-bit shift register. The output of the LUTs
can be directly transmitted to storage elements in the same slice, but not the other way
around. Hence, a connection between a storage element and a LUT must be realized
via the switching matrix which leads to an additional delay. With the combination of
di�erent LUTs arbitrary combinatorial circuits can be built.

2.8.2. Digital Signal Processors

The FPGAs of the Xilinx-7 Family also provide DSP blocks to speed up special opera-
tions. The instance used by Series-7 is called DSP48E1 [43]. Each instance provides:

• 25× 18 two's-complement multiplier

• 48-bit accumulator

• Power saving pre-adder

• Dual 24-bit or quad 12-bit add/subtract/accumulate

• Optional logic unit

• Pattern detector

15



2. Selected Cryptography- and Hardware-Relevant Topics

Because of special pipeline registers and the hard wired elements, such blocks can speed
up di�erent types of computations. Especially, streaming operations can bene�t from
these pipeline structures. A multiply and accumulate computation is a very good example
for a common function which can be executed with these blocks. An abstract overview
of a DSP48E1 unit can be seen in Figure 2.10.

2.8.3. Di�erent Memory Types of the Xilinx-7 Family

There exist several memory types [45] in the Xilinx-7 Family, each focusing on di�erent
aspects.

Distributed RAM

As mentioned before, a SLICEM slice can be con�gured as RAM. The LUTs and storage
elements are combined in a way to work as distributed RAM. Four di�erent types are
available:

• Single Port: One port for synchronous write and asynchronous read

• Dual Port: One port for synchronous write and asynchronous read and one for
asynchronous read

• Simple Dual Port: One port for synchronous write and one for asynchronous
read

• Quad Port: One port for synchronous write and asynchronous read and three for
asynchronous read

The size of the RAMs varies from 256 × 1 to 32 × 1. But not all sizes are available for
all types of con�guration. Table 2.1 gives an overview of which sizes are available.

Shift Register

Shift registers are often required in hardware designs. In order to achieve them with a
reasonable timing behavior SLICEM LUTs of the Xilinx-7 Family can be con�gured as
32-bit shift registers. If all four LUTs in a slice are cascaded, they can serve as a 128-bit
shift register. For this con�guration, the internal storage elements of the slices are not
needed.

Block RAM

ICs often need a huge amount of memory. Therefore, many slices are needed as storage
elements. In order to reduce the area for the memory and save the slices for combinatorial
circuits, Xilinx-7 Family FPGAs also provide block RAMs. These units are separate
independent units. Hence, they are connected via the switching matrices to the di�erent
other blocks. The delay of the additional routing often in�uences the timing behavior of
the design signi�cantly. Hence, a trade-o� between time and area has to be made. In the
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Table 2.1.: Available sizes of distributed RAM of the Xilinx-7 FPGA Family.

Size Con�guration

32× 1 Single Port
32× 1 Dual Port
32× 2 Quad Port
32× 3 Simple Dual Port
64× 1 Single Port
64× 1 Dual Port
64× 1 Quad Port
64× 3 Simple Dual Port

128× 1 Single Port
128× 1 Dual Port
256× 1 Single Port

Table 2.2.: Di�erent sizes of block RAM of the Xilinx-7 FPGA Family.

32 Kbit 18 Kbit

32K × 1 16K × 1
16K × 2 8K × 2
8K × 4 4K × 4
4K × 9 2K × 9

2K × 18 1K × 18
1K × 36 512× 36
512× 72

Xilinx-7 Family, each block RAM can store 36Kbits and can be used as a single 36Kbit
block or as two 18Kbit blocks. The di�erent con�gurations can be seen in Table 2.2.
The write and read operations are only available as synchronous simple dual port. The
width of the read and write data signal can vary and must not be kept identical.
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Chapter 3
The SHA-3 Competition Winner -

Keccak

In 2007, the National Institute of Standards and Technology (NIST) announced a public
competition to develop a new cryptographic hash function. Sixty-four candidates partic-
ipated [26]. In 2014, they announced [27] that Keccak is the Secure Hash Algorithm
(SHA)-3 competition winner.
The chapter focuses on Keccak and is structured as follows. In Section 3.1, the

naming convention and notation are outlined. Subsequently, Section 3.2 explains the
di�erent functions the permutation of Keccak uses. Finally, Section 3.3 is about the
sponge construction, the duplex construction and how an Authenticated Encryption (AE)
system can be derived from them.

3.1. Naming Convention and Notation

The naming convention and notation for this chapter are the same as in the reference
guide [4]. There exist 7 di�erent Keccak permutations. All of them di�er from each
other only because of the state size and the number of rounds. They are named after the
following scheme: Keccak-f [b], where b = 25 × 2` and ` ranges from 0 to 6. Here b is
the size of the state. The round quantity is de�ned as 12 + 2× `. The state is arranged
as a three dimensional array of GF (2) elements with the structure A[5]B[5]C[w], with
w = 2 × `. In order to convert the three dimensional array into a one-dimensional
representation, the following equation can be applied: S[w(5y + x) + z], with y and x
modulo 5, and z modulo w. To distinguish between the di�erent parts of the state, seven
di�erent elements exits:

• Row: A set of 5 bits with constant y and z coordinates.

• Column: A set of 5 bits with constant x and z coordinates.

• Lane: A set of w bits with constant x and y coordinates.
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Figure 3.1.: Naming convention for the di�erent elements of the Keccak state.

• Bit: A set of 1 bit with constant x, y, and z coordinates.

• Sheet: A set of 5× w bits with constant x coordinate.

• Plane: A set of 5× w bits with constant y coordinate.

• Slice: A set of 25 bits with constant z coordinate.

Figure 3.1 shows the di�erent parts of the Keccak state. Notice that the bit A[0][0][0]
is not the bit in a corner of the array, it is the bit in the middle of the �rst slice.

3.2. The Keccak Permutation

The heart of Keccak is the permutation which can be divided into �ve di�erent functions
called θ, ρ, π, χ, and ι. Additionally, it has to be mentioned that Keccak is an iterative
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Figure 3.2.: Graphic view of the θ manipulating one bit of the state.

algorithm and all functions get executed on the whole state per round (except ι). A
round R is de�ned as R = θ × ρ× π × χ× ι.

3.2.1. θ - The Parity Function

This function works with the information of two slices at the same time. The mathemat-
ical description is given in Equation (3.1).

θ : a[x][y][z] = a[x][y][z] +

4∑
y′=0

a[x− 1][y′][z] +

4∑
y′=0

a[x+ 1][y′][z − 1] (3.1)

The result of each execution is the sum of 11 bits. The function is applied to each bit of
the state. Figure 3.2 shows an illustration for θ manipulating one bit.

3.2.2. π - The Slice-Move Function

This function shifts all bits in a slice by a prede�ned constant according to Equation (3.2).

π : a[x][y] = a[x′][y′], with

(
x
y

)
=

(
0 1
2 3

)(
x′

y′

)
(3.2)

Figure 3.3 illustrates the bit-movements within a single slice as de�ned by the π function.
The only bit which is not altered is the �rst one (x = 0 and y = 0). This function is
applied to each slice.
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Figure 3.3.: The bit-movements performed by π on one slice.

Figure 3.4.: Illustration for the χ function applied on one row.
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Figure 3.5.: Overview of the lane shift performed by ρ. w is assumed as 8.

3.2.3. χ - The Non-Linear Function

This operation works with one row at the same time. The computation follows Equa-
tion (3.3).

χ : a[x] = a[x] + (a[x+ 1] + 1)a[x+ 2] (3.3)

Because Keccak works in GF(2), all additions are XOR and the multiplications are
AND operations. This function combines di�erent bits of a row in a non-linear way.
Figure 3.4 shows the non-linear combination χ performs on a row. It is applied to all
rows of the state.

3.2.4. ρ - The Lane-Shift Function

This function works with the elements of the whole state and follows Equation (3.4).

ρ : a[x][y][z] = a[x][y][z − (t+ 1)(t+ 2)/2],

with t satisfying 0 ≤ t ≤ 23 and

(
0 1
2 3

)t(
1
0

)
=

(
x
y

)
in GF(5)2×2,

or t = −1 if x = y = 0. (3.4)

Each lane gets shifted by a prede�ned constant. Table 3.1 shows the di�erent constants
for all lanes. They are valid for all instances of Keccak. To get the right value a
modulo w operation must be applied to the constants. Figure 3.5 shows the graphical
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representation of this function with w = 8.

3.2.5. ι - Just a XOR Operation

This function only gets executed on the lane with x = 0 and y = 0. It is a very simple
function which XORs a 64-bit constant to that lane. The mathematical description can
be found in Equation (3.5).

ι : a[0][0] = a[0][0] +RC[ir] (3.5)

The di�erent round constants RC can be calculated with Equation (3.6) (the index ir
denotes to the round number):

RC[ir][0][0][2j − 1] = rc[j + 7ir] for all 0 ≤ j ≤ `. (3.6)

The other values of RC are zero. The values for rc can be calculated with the help of
the Linear Feedback Shift Register (LFSR) given in Equation (3.7).

rc[t] = (xt mod x8 + x6 + x5 + x4 + 1) mod x in GF(2)[x] (3.7)

This function it the only one which di�ers in each round and is not executed on the
whole state. To get an impression which values are used by ι, Table 3.2 shows the �rst
�ve entries for Keccak-f [1600] (notice that a Keccak permutation with a smaller state
size than 1600 can also take this table, but has to apply a modulo w operation to the
table entries).

3.3. The Sponge and the Duplex Construction

A permutation alone is not that helpful. Hence, there exist sequences built around
them to achieve di�erent results, e.g., hash functions or encryption systems. In the case
of Keccak, this is the so-called sponge construction. Another approach is the duplex

construction. This construction o�ers the possibility to build an AE scheme based on a
permutation like the Keccak-f [x] function.

Table 3.1.: Di�erent shift values for θ.

x=3 x=4 x=0 x=1 x=2

y=2 153 231 3 10 171
y=1 55 276 36 300 6
y=0 28 91 0 1 190
y=3 120 78 210 66 253
y=4 21 136 105 45 15
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Figure 3.6.: Sponge construction used by Keccak to hash messages.

3.3.1. The Sponge

The sponge construction is the most well know sequence. The resulting primitive is a
hash function. It consists of two parameters called r, the bitrate, and c, the capacity and
a permutation f . The input to the permutation f has the size b = r + c. The bitrate
de�nes the input size the sponge can handle per permutation. The capacity is the rest of
the state and is given by c = b− r. The authors of Keccak de�ned the default size for
Keccak-f [1600] with r = 1024 bits and c = 576 bits. In addition, c de�nes the security
level of the sponge construction which is given by c

2 . In the case of Keccak, the whole
security of the primitive can be reduced to this expression.
The sequence consists of two phases. The absorbing phase and the squeezing phase.

At �rst, the state gets initialized with zeros and the input, which should be hashed, is
padded to a multiple of r. The Keccak team uses the so-called pad10 ∗ 1 rule. This
scheme pads a single 1 followed by the minimum number of 0 followed by a 1 so that the
size of the padded message is a multiple of r. Afterwards, the �rst phase starts. In this
phase, the sponge XORs r bits of the message to the �rst r bits of the state, followed by
a permutation which takes r and c as input. This is done until the whole input massage
has been absorbed. Next, the second phase can start. Here the sponge outputs r bits
of the state followed by a permutation. This step can be repeated until the user has

Table 3.2.: First �ve round constants for ι.

RC[ir]

ir = 0 0x0000000000000001
ir = 1 0x0000000000008082
ir = 2 0x800000000000808a
ir = 3 0x8000000080008000
ir = 4 0x000000000000808b
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Figure 3.7.: Duplex construction [9].

the expected output length (notice that the output length can only be a multiple of r).
Figure 3.6 shows the sponge construction graphically.

3.3.2. The Duplex

Another construction around the permutation is the so-called duplex construction [9].
Again there are the values r, c, and b which are related to b = r + c. This part is equal
to the previous construction. The initialization of the state with zeros is also equal. In
contrast to the sponge construction, the duplex construction consists of so-called duplexing
entities. Such an entity needs two additional values, called σ and `. σ is the input size
the entity has to handle, ` is the output size. The next action, after the initialization, is
to pad the input of the �rst duplexing unit to the size of r and XOR the padded input
to the state. Then the permutation is performed. Afterwards, the entity outputs the
�rst ` bits of the state, followed by another duplexing unit. The maximum size for σ and
` is r and the minimum size is 0. Up to n duplexing entities can be combined. Each
entity can have di�erent values for σ and `. Figure 3.7 shows an illustration of the duplex
construction using two duplexing entities.

3.3.3. How to build an Authenticated Encryption Scheme on the Base

of the Duplex Construction

An AE system can be realized based on a duplex construction. First, n times σ ≥ 0
bits can be handled as key and header bits. For those bits, ` can be kept to zero and
therefore, no output is produced. After n permutations, the state of the construction is
related to the key and the header bits. Afterwards, σ = ` ≥ 1 must be applied. Hence,
each input bit leads to an output bit. Therefore, this can be the actual en-/decryption.
It can be repeated up to o times (till all input bits are absorbed). For the authentication
tag, m outputs from additional permutations can be taken. Now σ has to be zero and
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Figure 3.8.: Encryption of the plaintext B based on the duplex construction.

` ≥ 1. Altogether the construction needs n+o+m permutations for the computation. If
the header, the key, or the input data cannot be applied to the construction because the
size is not a multiple of σ, a padding scheme must be used. It is a great bene�t of this
scheme that the key size is not �xed. It can handle all lengths because of the padding.
The security cannot be improved to an in�nite level. Due to the fact that the security of
the construction is c

2 , a bigger key does not in�uence the security level, but it can handle
them. So the construction is very �exible and it can share the key with other primitives
even if the bit size does not match.
Nevertheless, let us have a more detailed view of how to get the ciphertext and the

plaintext. After the key and the header are absorbed, the permutation gives us an output
o for the �rst time. In encryption mode, this output can be combined with the �rst σ
plaintext bits which are the input ie of the user. Let us assume that this combination
delivers the ciphertext c. It is de�ned as c = ie⊕state[0 : (σ−1)] = ie⊕o. Afterwards, the
�rst σ bits of the state are updated with c. This is a slight change compared to the original
duplex construction. Now the structure processes �rst the input and afterwards outputs
the bits. This can be repeated till all plaintext chunks are produced. The authentication
tag is generated directly by the construction and it ful�lls the requirements of a Message
Authentication Code (MAC).
For the decryption, the combination of the bits is a little bit di�erent. The input id

of the user is now the ciphertext and not any longer the plaintext. But the state has to
be updated as it was done for the encryption. Therefore, id has to in�uence the state
directly. As an output of the construction, the XOR combination between the input
of the user and the output of the permutation is taken again. The generation of the
authentication tag remains unchanged.
Figure 3.8 and Figure 3.9 show the encryption and decryption scheme, respectively.

Note that σ = ` = r is assumed for all phases. In addition, it is expected that the key,
the header, and the input data are already padded. The output T (tag) corresponds to
the MAC. If a MAC longer than r bits is needed, the last step can be repeated up to m
times.
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Figure 3.9.: Decryption of the ciphertext C based on the duplex construction.
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Chapter 4
Power-Analysis Attacks

Today's cryptographic algorithms provide a very high level of security from a mathemat-
ical point of view. Most of the time, attacks on this level are computationally infeasible.
But there exist other levels where attacks can be mounted. Power-analysis attacks in-
vestigate the power consumption of the device during computation. The main focus of
this chapter is to introduce into power analysis attacks and possible countermeasures.
The chapter is structured as follows. In Section 4.1, the naming convention and nota-

tion are given. Section 4.2 explains the basics of power analysis. Afterwards, Section 4.3
gives a short introduction to Simple Power Analysis (SPA). In Section 4.4, Correlation
Power Analysis (CPA) is described. Afterwards, countermeasures are presented. Sec-
tion 4.5 starts with an explanation of hiding. Section 4.6 is about Secret Sharing (SS).
First, the theory behind it is given, followed by di�erent levels SS can be applied to.
Subsequently, problems of a gate level masking scheme are given. Next, three di�erent
properties are explained, which must be ful�lled by an operation in order to be CPA
secure. The last two subsections are about examples of SS schemes concerning Keccak
and �nal notes on the countermeasures.

4.1. Naming Convention and Notation

Our reference literature to describe power-analysis attacks and countermeasures are Man-
gard et al. [21] and Nikova et al. [30]. When we discuss these issues, we try to keep the
same conventions. A column vector is represented as a bold small letter like v. A single
element of it is represented as vi. The size of the vector v is given by V . A matrix is
represented as a big bold letter like V. A matrix element is addressed with vi,j , where i
addresses the row and j the column. The size of a matrix is represented as K ×R. K is
the number of rows, R is the number of columns.
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4.2. Basics of Power Analysis

When it comes to a cryptographic algorithm, most of the time a secret key is involved.
Therefore, to break such a system, it is necessary to get some information about the
key or in the best case directly the plaintext. A powerful approach is to extract this
information using power analysis. Nowadays, the mathematical security of cryptographic
systems is very strong. Hence, such an attack is often the best way to break a system.
The attack is based on the fact that the power consumption of a system depends on
the data it processes. Thus, when the device processes instructions which work with
the secret key, the power consumption can leak information about it. There are several
ways to measure the power consumption of a device. The simplest way is to measure the
current during computation. This can be made with a shunt resistor in the power supply
line. For this method the attacker needs physical access to the device. Another way is
the measurement of the electromagnetic �eld. Because the �eld is directly proportional
to the power consumption, such a measurement can also be used for an attack. After the
measurement, the analysis phase starts. In the literature, two basic attacks can be found.
The �rst one focuses only on one trace. The other attack needs more power traces, but
is more powerful. The two attacks are explained in the following sections.

4.3. Simple Power Analysis

For this attack only a single trace is needed. The goal is to have a closer look at the
power trace when the key is involved during computation. When the exact time of this
involvement can be found often the key can be revealed. Sometimes algorithms are round
based. In other words, they use parts of key and compute the same operations itera-
tively. When the points of time of these operations can be found in the trace, they can be
compared between each other. Sometimes this comparison can lead directly to key bits.
An example of this attack can be shown when applied against an unprotected Rivest,
Shamir, and Adleman (RSA) implementation. In order to speed up the computation,
the exponentiation is often done with the help of the so-called left-to-right Square and

Multiply algorithm. In this algorithm, depending on the current key bit, a square or a
square and a multiply operation are performed. If the point of time of the execution of
the left-to-right Square and Multiply algorithm can be found in the power trace, it can
be possible to distinguish between a square and a multiply operation. This is possible
because di�erent operations lead to di�erent power consumption forms. Therefore, infor-
mation about the key can be gained from these di�erent power consumption waveforms.

4.4. Correlation Power Analysis

This type of attack is very powerful because of the fact that the attacker does not need
much information about the implementation of the algorithm. Most of the time knowing
which algorithm gets performed by the device is enough. This knowledge can be gained
through an SPA or even through product descriptions. On the other hand, most of the
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time a large number of traces is needed for a successful attack. Therefore, usually physical
access to the device is necessary. Such an attack analyzes the power consumption at a
�xed moment of time. It can be divided into �ve steps [21]:

• Step one: In this step, the attacker has to choose an intermediate value d of
the algorithm which is computed by the device. This intermediate value has to
depend on part of the secret key and a non-constant value. When it comes to a
cryptographic function, most of the time this non-constant value is the plaintext
or the ciphertext because the attacker can choose this value.

• Step two: In this step, the power traces, which the attacker needs, are measured.
The attacker has to measure, the power trace for D di�erent data blocks. Dur-
ing the measurement, the key part k, which is attacked, must be involved in the
computation of the device. Additionally, the D di�erent values are stored in a
vector d= (di, ..., dD)′. For each chosen data block, the power traces correspond to
t′i = (ti,1, ..., ti,T ). Here, T denotes the sample quantity of the power trace. Thus,
the measurement results can be written as a matrix T of the size D × T . It is
also important that the power traces are perfectly aligned. Therefore, it must be
assured that during the measurement of ty,1 and tx,1, the exact same operation is
performed.

• Step Three: In this step, the hypothetical intermediate values must by calculated.
These are the di�erent values for every possible choice of k and all D data blocks.
Out of it, we get a vector k = k1, ..., kK , where K denotes the total possible choices
of k. Therefore, the attacker has to know which function is performed. With this
knowledge it should be easy the get these values. This results in a matrix V of the
size D × K, where each row belongs to the same data block and each column to
same key choice.

• Step four: In this step, the values from matrix V must be mapped to a power
value. For this mapping there exist di�erent power models. A power model is a
function with an input and an output. The actual computation is a prediction of the
power consumption because of the input. Therefore, it can take the hypothetical
intermediate values as input and outputs hypothetical power consumption values.
The most popular ones are the Hamming distance and the Hamming weight (see
Section 4.4.1). But there are several other options [21]. Since the suitability of
the applied power model depends on the actual design under test, di�erent models
should be considered. From this step, we get a matrix H, again of the size D× V ,
where each row belongs to the same data block and each column to the same key
choice.

• Step Five: In this step, the comparison between the two matrices H and T is
made. Each column hi of matrix H is compared with each column tj of matrix T.
Therefore, the attack compares the hypothetical power consumption values of each
key with the recorded traces at every position. This results in a matrix R of the
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size K×T , where each element ri,j contains the result of the comparison of hi and
tj. There are di�erent methods to compare these two matrices, but in the case of
a CPA a correlation is used. When all elements of R have nearly the same values
the reason may be that not enough power traces have been measured.

The process of a CPA �ow can be seen in Figure 4.1.

4.4.1. Power Models

In the last section, we explained how to perform a CPA. In step four, it comes to map
the hypothetical intermediate values to power values. For a model which �ts the power
consumption in a better way, we can achieve an attack with a lower amount of traces.
Therefore, it is very important to choose a good power model. As mentioned before,
very popular models are the Hamming weight and the Hamming distance. Due to that
fact, we want to spend more attention to these two methods (for other mapping types,
we want to refer to [21]).

• Hamming weight: The Hamming weight of a string is the number of the symbols
that are not 0 (see Figure 4.2). In other words, if a string is provided in binary
representation it is the quantity of 1s in this string. This model can achieve good
results because of the fact that writing a 1 into a storage element needs normally
more power than writing a 0.

• Hamming distance: The Hamming distance is the sum of the symbols that are
di�erent in two strings (see Figure 4.2). Therefore, if it comes to a binary expression
of two strings, we can calculate the distance with a XOR operation of these two
values. It sums up the number of bits which are di�erent.

These two types are very well known when register values are attacked. Additionally,
they are very easy models because the attacker does not need a lot of information about
the implementation to calculate them. Today, such models are often not good enough for
attacks on more particular areas than register values. Therefore, often more sophisticated
models have to be found. But in many cases, these models are very di�cult to �nd
because a lot of detailed knowledge of the attacked device has to be available. This can
make attacks with more sophisticated models very hard.

4.5. Hiding

Because of the power and also simplicity of such attacks, several countermeasures were
developed. One of them is called hiding. CPA attacks work because of the fact that
the power consumption is correlated to the intermediate values processed by the design
under test. Hiding tries to decouple this relation with two di�erent approaches.
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Figure 4.1.: Illustration of the �ve steps of a power analysis.

32



4. Power-Analysis Attacks

Hamming distance Hamming weight

10101010 01010101

8

11001100

4

Figure 4.2.: The Hamming weight and the Hamming distance for 8-bit values.

4.5.1. Equalizing the Power Consumption

This form of hiding tries to decouple the power consumption and the values which get
processed. This is done by an equalization of the power consumption. Therefore, each
operation must consume the same power for each possible input value. There are many
di�erent approaches to achieve this. One operates on the gate level. Each gate must be
built in a way so that the power consumption does not give information about the values
it processes. Another approach is to duplicate all instances. The duplicated instances
perform the operations in an inverted way. This should equalize the power consumption.
In theory, this works very well, but in practice such an attempt is very complex and
cannot be achieved exactly because to many variables have to be considered. Problems
can arise because of production variations which lead to asymmetry. The number of
needed traces increases most of the time in a quadratic way with these approaches.
Hence, they are nice features, but an attack can still be successful.

4.5.2. Randomizing the Power Consumption

Another approach is to randomize the power consumption. Therefore, dummy operations
are inserted. Such operations are performed before, during, or after the real operations.
They do not operate on the real intermediate values and cannot be connected to the
secret. The moment when a dummy operation is performed is randomly chosen for each
execution of the algorithm. An arbitrary number of dummy operation can be inserted. It
is a drawback that the execution time increases because of these additional computations.
A di�erent way of randomization is to shu�e the operations of a device. For example,

if there are operations that do not depend on each other, the execution order is not
important. If these operations get exchanged, the result will be the same, but the point
of time of the computation varies. Although it is not possible to avoid computing with
the real intermediate values, the computation time does not increase. The fact that not
all algorithms are suitable for such an approach is a drawback.
Nevertheless, securing implementations with hiding squares the needed trace for a

successful power-analysis attack. A complete prohibition of CPA attacks is again not
possible and therefore more powerful methods must be applied.
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4.6. Masking

Very famous and more powerful countermeasures are called masking. This countermea-
sure masks the real processed intermediate value. Another, but very similar countermea-
sure technique is called Secret Sharing (SS). SS splits intermediate values in so-called
shares. In this section, we want to introduce SS in detail.

4.6.1. The Theory Behind Secret Sharing

CPA uses the fact that there exists a correlation between the power consumption and
the processed intermediate values of an algorithm. A SS scheme tries to decouple this
relation. A total unlink between the intermediate values cannot be achieved without
changing them. The main idea is to split the processed values into n shares. Let the
number of shares be equal to two. Thus, from now on, we have two values (s1 and s2)
which represent our intermediate value r. There must be a mathematical function which
connects s1 and s2 to r. This is done with r = s1∗s2 or s2 = r∗s1. In others words, r gets
masked with the value s1, which also explains the name. We call s2 and s1 protection
value and protected value, respectively. The ∗ operation depends on the operations that
are used by the cryptographic algorithm. Usually, the Boolean exclusive-or function, the
modular addition, or the modular multiplication are used for ∗.
Most of the time s1 is directly applied on the plaintext or the key. If the algorithm

uses non-linear functions, A(r ∗ s1)∗ s1 6= A(r), where A corresponds to the algorithm, is
given. Therefore, the ciphertext is di�erent for a computation without SS. The solution
is to consider s2 by performing the algorithm on s2 and s1. After the computation, a
combination of s1 and s2 should achieve in the desired result. In a mathematical view,
the algorithm has to be changed such that Aold(r) = Anew(s1) ∗ Anew(s2), where A
corresponds to the algorithm. Moreover, a very important property of s1 is the fact that
it must be random and a new value each time the algorithm gets executed. Generally
spoken, if an implementation works with n shares, n − 1 shares have to be randomly
chosen for each execution. Because the algorithm has to compute the result for all
shares, the execution time and/or the area of the implementation increases.
Now let us assume that the combinational function is a Boolean exclusive-or operation.

Equation (4.1) describes the system.

s2 = r ⊕ s1 (4.1)

The truth table of Equation (4.1) is shown in Table 4.1. The result s2 is uniformly
distributed and if the result is 1, r can be 1 or 0. The same is valid for r = 0. Notice
that s1 di�ers for each computation of the algorithm. Therefore, s2 and s1 do not reveal
any information about r. Therefore, such a system is secure against CPA if the hardware
circumstances are expected in an optimal way.
In the previous example, we worked with the Boolean exclusive-or operation. If the

algorithm works with arithmetic functions, the scheme must use them, too. Sometimes
algorithms use both, Boolean and arithmetic functions. In this case, the scheme must
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switch between them. All statements mentioned before can be used for to schemes with
up to n shares.
Most of the time cryptographic algorithms combine linear and non-linear functions.

A linear function f has the property f(x ∗ y) = f(x) ∗ f(y). This group of functions
is no problem for a sharing scheme because f can be applied to s1 and s2. A problem
appears when it comes to non-linear functions because they have the property f(x∗y) 6=
f(x) ∗ f(y). Therefore, new mathematical descriptions must be found for non-linear
functions.

4.6.2. Di�erent Levels of Secret Sharing

The previous section gives a basic view of how SS works. In this section, we want to
discuss the di�erent levels at which such schemes can be installed. The two main levels
of SS will be discussed.

Algorithm Level

At this level, the whole algorithm is adapted to perform the computation in a way so that
the result is valid. Non-linear functions must be taken care of in a special way. This often
results in functions which vary for each share and so the hardware overhead increases.
Most of the time such an approach is very simple because the problem is faced at a very
high level of abstraction. Other advantages are that such a scheme works for hardware
and software implementations and most of the time it is adequate to split and combine
the shares at the beginning and at the end of the algorithm. On the other hand, it is
very easy to lose performance. Nevertheless, SS on the algorithm level is a widespread
method of secure systems.

Gate Level

At this level, each used cell gets changed. This approach is not suitable for software
implementations, but it is a very common way to protect hardware against CPA. Fig-
ure 4.3 shows a block diagram of a gate with and without protection. Here ar, br, and
qr correspond to protection values and sa, sb and sq correspond to protected values.
Therefore, each input of the cell gets protected. A big advantage of SS on this level is

Table 4.1.: The truth table for a Boolean sharing scheme of the degree two. As combi-
national function a Boolean exclusive-or operation is used.

r s1 s2

0 1 1
0 0 0
1 1 0
1 0 1
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Figure 4.3.: Block diagram of a protected and a non-protected cell.

the fact that the algorithm itself stays the same. Additionally, the di�erent cells can be
used for several implementations.
How many di�erent protection values are used is an important question. In literature,

you can �nd three di�erent approaches. The �rst one is to use a di�erent random value
for every input. This approach leads to an extremely huge amount of random values.
Therefore, this approach is not practically usable.
The second one is to divide the di�erent signals into so-called groups. Each group has

the same random value. Now the amount of random values is smaller. A negative aspect
of this method is the fact that additional logic is needed to manage the transfer of a
signal from one to another group.
The third and last approach is to use the same value for each protection value. If

two values depend on each other, they also depend on each other after applying the
protection value. Most of the time a change of the random value can be detected in the
power consumption because the network of this value has to be connected to each cell.
Thus, a change has a big in�uence on the power consumption. This is another drawback
of this solution.

4.6.3. Theory vs. Reality of Secret Sharing

In the previous sections, we explained SS. We only discussed the mathematical description
of such a system and ignored the physical aspects. In this section, we focus on gate level
SS and have a detailed look at glitches. A glitch occurs if a signal changes its value
more than once during the same activity cycle. This can happen very easily because
of di�erent propagation delays of signals and is a normal thing to happen in Integrated
Circuit (IC)s. Therefore, it is very important to analyze this e�ect and �nd out if it is
a problem when it occurs in protected cells. Figure 4.3 shows a block diagram of such
a cell. Now we want to have a closer look at the inner life of it. Figure 4.4 shows the
structure of an AND gate which is protected [40]. The gate has �ve inputs. The two
random values mx,my, the two shared inputs xm = x ⊕mx, ym = my ⊕ y, and a new
random value mz. The outputs are the random value mz and the shared result zm which
is computed as shown in Equation (4.2).

zm = xmym ⊕ (myxm ⊕ (mxym ⊕ (mxmy ⊕mz))) (4.2)
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Figure 4.4.: Inner life of a protected AND cell [40].

The order of the XOR operations is not arbitrary. If the sum of one product is computed
by the cell it can leak information of an intermediate value. For example, consider the
�rst XOR. If at any time, it computes the sum of xmym and myxm, information about y
is leaked because xmym ⊕myxm = y. To get rid of this problem the new random value
mz was introduced.
Now let us assume that there is a glitch in the signal xm. Because this value is the

input of the �rst two AND gates it will in�uence them. Thus, a glitch on xm has an
in�uence on the values ym and my. Let us have a look at the gates that change their
output because of the glitch and the di�erent values for y, my, and ym. Table 4.2 shows
the di�erent numbers of gates which have been in�uenced. Consider that y has the value
1. Therefore, the mean in�uenced gate number is 2.5, for y = 0 we get 2.0. The number
of gates that are in�uenced depends on the real intermediate value y. Therefore, such a
gate can be attacked although it should be protected against CPA. There remains the
problem that protected values, like ym, and protection values, like my, get processed at
the same time.
In order to show that not only a glitch in xm can be dangerous, let us assume that

mx is now the targeted value. Table 4.3 shows the number of in�uenced gates. Again,
there is a di�erence between the number for y = 0 (mean in�uenced gate number is 3)
and for y = 0 (mean in�uenced gate number is 4.5). Glitches play a very important part
for CPA and can therefore, not be ignored. Thus, we have to keep them in mind when
designing circuits which should be secure against CPA.
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4.6.4. How to Make Secret Sharing Secure

In the previous sections, we explained how SS works and why the �rst approach is not
really secure when it comes to hardware implementations. In this section, we try to give
an overview how to make a system secure against CPA.
SS is a very important and discussed topic and many people have worked on it. Many
publications can be found focusing on di�erent aspects. One of them is [30]. They
de�ned three di�erent properties a SS scheme must ful�ll to become secure. They are
called correctness, non-completeness, and uniformity. The used terminology is adapted
from [30].

• Correctness: A so-called realization is a set of functions fi which together com-
pute the output(s) of f . f is a vector function which is de�ned as (z1, ..., zq) =
f(x1, ..., xq). This gives the following property:

Property 1: Let (z1, ..., zq) = f(x1, ..., xq) be a vector function. Then the set of
functions fi(x̄1, ..., x̄p) is a realization of f if and only if

(Z1, ..., Zq) = f(X1, ..., Xp) =
s∑

i=1

fi(X̄
1, ..., X̄p)

for all vectors of input shares (X̄1, ..., X̄p) satisfying
∑s

i=1X
j
i = Xj with 1 ≤ j ≤ p.

Therefore, the sum of the output of the new function(s) must be equal to the output
of the unaltered function for each possible input.

• Non-completeness: Given the reduced vector (xji , ..., x
j
i−1, x

j
i+1, ..., x

j
s) by x̄

j
i .

Property 2: Every function must be independent of at least one share of each
component.

This property is very important for hardware systems. If functions ful�ll the non-
completeness property, glitches do not in�uence the SS scheme any longer. To ful�ll
this function a hardware system must deal with at least three shares.

Table 4.2.: Number of in�uenced gates
if a glitch occurs in xm.

y my ym XOR AND

0 0 0 0 0
0 1 1 2 2
1 1 0 2 1
1 0 1 1 1

Table 4.3.: Number of in�uenced gates
if a glitch occurs in mx.

y my ym XOR AND

0 0 0 0 0
0 1 1 4 2
1 1 0 4 1
1 0 1 3 1
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• Uniformity: Property 3: A realization of (z1, ..., zq) = f(x1, ..., xp) is uniform, if
the distribution of the output shares satis�es

Pr(z̄1 = Z̄1, ..., z̄q = Z̄p) = Q1−sPr(z1 =

s∑
i=1

Z1
i , ..., z

q =

s∑
i=1

Zq
i ).

This property implies that if the input is uniformly distributed the output has to
be so, too. Otherwise, the result of the function can leak information of the real
intermediate value.

4.6.5. Secret Sharing on the Example of Keccak

This section gives three examples making the non-linear function χ used by Keccak

CPA secure. All examples are taken from presented literature and use 3 or 4 shares.

Three Share Method

The �rst approach to make the Keccak permutation immune against CPA was made
by Bertoni et al. [5]. For hardware implementations they found a suitable solution shown
in Equation (4.3).

ai = bi ⊕ (bi+1 ⊕ 1)bi+1 ⊕ bi+1ci+2 ⊕ ci+1bi+1

bi = ci ⊕ (ci+1 ⊕ 1)ci+1 ⊕ ci+1ai+2 ⊕ ai+1ci+1

ci = ai ⊕ (ai+1 ⊕ 1)ai+1 ⊕ ai+1bi+2 ⊕ bi+1ai+1

(4.3)

a, b, and c are the di�erent shares, i is taken modulo 5 and runs in x direction. A very
nice aspect of these three equations is the fact that the logical operations are the same.
Therefore, an iterative usage is possible and hardware area can be reduced by doing so.
Nevertheless, not all of the previously mentioned properties are ful�lled. The uniformity
is violated [11] and it should be possible to mount a CPA successfully.

Three Share Star Method

Due to the fact that Equation (4.3) violates only the uniformity, an updated version was
presented by Bilgin et al. [11]. In this new function, they add (XOR) a random value
to the result of χ. Because of the fact that random values are uniformly distributed,
the result of the addition is it, too. The high amount of needed random values is a big
drawback of these new functions. If Keccak-f [1600], is used it needs 1600 ∗ 2 = 3200
random values each round, 1600 for share a and b. The update values for share c is the
XOR combination of the values for a and b. Hence, additional storage elements have to
be added. The authors also showed that this number can be reduces to 4 bits per round.
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Four Share Method

To get rid of the random values, a new version of χ was introduced in the same pa-
per [11]. Now four shares have to be used to achieve all three properties (correctness,
non-completeness, and uniformity) and the functions are di�erent for all shares and for
some bits. For i = 0, 1, 2, 4 the functions follow Equation (4.4).

ai = bi ⊕ bi+1 ⊕ ((bi+1 ⊕ ci+1 ⊕ di+1(bi+1 ⊕ ci+1 ⊕ di+2))

bi = ci ⊕ ci+2 ⊕ (ai+1(ci+1 ⊕ di+1)⊕ ai+1(ci+1 ⊕ di+1)⊕ ai+1ai+2)

ci = di ⊕ di+2 ⊕ (ai+1bi+2 ⊕ ai+2bi+1)

di = a1 ⊕ ai+2

(4.4)

If it comes to index 3 they follow Equation (4.5).

a3 = b3 ⊕ b0 ⊕ c0 ⊕ d0 ⊕ ((b4 ⊕ c4 ⊕ d4(b0 ⊕ c0 ⊕ d0))
b3 = c3 ⊕ a0 ⊕ (a4(c0 ⊕ d0)⊕ a0(c4 ⊕ d4)⊕ a0a4)
c3 = d3 ⊕ (a4b0 ⊕ a0b4)
d3 = a3

(4.5)

Again a, b, c, and d are the di�erent shares and i is the identi�er for the row bit. Because
of the di�erent functions, an iterative method is not possible any longer. But this SS
does not need random values. On the other hand, a new share is involved. Hence, again
more hardware resources are needed.
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Chapter 5
Hardware Architecture of Zorro

Recently, the number of used wireless devices increased steadily. In addition, more and
more sensitive data get processed by these devices. In order to secure the processing,
cryptographic algorithms can be used. Dedicated hardware implementations can speed
up the cryptographic computations. But using dedicated hardware implementations of
cryptographic algorithms on wireless devices can lead to problems. First, the additional
power consumption caused by the extra hardware circuits can decrease the lifetime of
wireless devices which are battery powered. In order to decrease this additional power
consumption, low-area designs can be used. A second problem that appears is the avail-
ability of wireless devices. Wireless devices can be accessed by a public domain. If attacks
are used which focus on implementation facts, this opportunity can be used to attack
the cryptographic computation performed on wireless devices. In order to prevent imple-
mentation attacks, implementations of cryptographic algorithms must be secured with
countermeasure. Altogether, low-area implementations secured against implementation
attacks are required for wireless devices.
In this chapter, we want to introduce our low-area Authenticated Encryption (AE)

system based on Keccak which is secured against implementation attacks. The system
is secured with state-of-the-art countermeasures. We decided to implement both hiding
and masking countermeasures in order to increase the resistance against implementation
attacks. In particular, we implemented a randomization mechanism and used Secret Shar-
ing (SS) techniques for masking intermediate values. Due to the fact that recently several
SS approaches were published (see [11] and [5]), the taped-out Application-Speci�c In-
tegrated Circuit (ASIC), called Zorro consists of three di�erent independent instances.
Each instance only di�ers with regard to its SS implementation.
The chapter is structured as follows. In Section 5.1, the global requirements on the

ASIC are given. Section 5.2 gives a detailed view of the architecture of Zorro. Synthesis
results of the implementation are stated in Section 5.4. In Section 5.5, we present back-
end results of Zorro. Section 5.6 compares our results with related work.
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5.1. Global Requirements and Design Decisions

Zorro was designed to ful�ll two main requirements. First, the architecture should
result in a low-area design of an AE system based on Keccak-f [1600]. Keccak is a
sponge-based algorithm. The sponge-based approach is a new approach for cryptographic
primitives to process data. Keccak won the Secure Hash Algorithm (SHA)-3 competi-
tion in 2012. Thus, sponge-based algorithms became more and more important recently.
The second requirement was to evaluate state-of-the-art countermeasures against power
analysis. With this evaluation opportunity we want to answer open research questions
such as: How e�ective are hiding and masking countermeasures on Keccak? What are
the costs for SS on low-resource hardware designs?
In this section, we explain the design decisions we made and how we achieve them.

The �rst part of this section is about global hardware decisions we made to keep the area
of the architecture low. Furthermore, we present the di�erent modes Zorro can run to
evaluate countermeasures against a power analysis.

5.1.1. A Low-Area Hardware Design

In the following, we list several design decision we made to keep the area requirements
as low as possible.
A basic requirement of an Integrated Circuit (IC) is to communicate with its environ-

ment. In the case of Zorro, we decided to implement a four way handshake protocol
(see Section 2.7). In general, the area of the communication interface grows with the size
of the data width. We therefore decided to use a data width of 8 bits, which keeps the
area requirement of the communication interface low.
A common approach to control a datapath is to use instructions. They can be executed

in an arbitrary form. This leads to an extremely �exible system and several sequences
are possible. On the other hand, it costs additional area. A Finite State Machine (FSM)
is a more hard wired controlling unit. It can only be used for prede�ned sequences. This
reduces the area of the controlling unit, but also decreases the �exibility. In our case,
the �exibility is not of relevance. Therefore, we decided to control our datapath with an
FSM.
In the case of Keccak, two di�erent constants are needed for the permutation. The

�rst constant is needed for the ρ function and contains the shift values. The second
constant belongs to the ι function. The values are the di�erent 64-bit constants of
each round. They can be implemented using Linear Feedback Shift Registers (LFSRs).
LFSRs, however, require many storage elements which makes them not well suitable for
low-area designs. To reduce the size of these units, we therefore decided to implement
a Look-up Table (LUT) where logical units with �xed inputs can provide the needed
values.
All SS schemes concerning Keccak mentioned so far, work on the algorithm level

(see Section 4.6.5). In doing so, the state grows with each used share. Very often the
storage elements that are needed for each share have a main in�uence on the whole
area occupation of a cryptographic unit. Random-Access Memory (RAM) macros can
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decrease the area of such elements in comparison to Flip-Flops (FFs). The additional
cycles needed to load the state are a disadvantage of a RAM based approach, but the
execution time is of secondary concern for our targeted application. For this reason,
Zorro stores the state in RAM macros. Moreover, only RAMs with a data width of 8
bits are used.
Each en-/decryption needs new random values if it uses a SS scheme. Keccak ini-

tializes its state with zeros at the beginning. To ensure this for a SS scheme, the sum of
all shares must be zero. In the case of Keccak-f [1600] and 3 shares, 3200 random val-
ues are needed. We decided to load these random values form a trusted external source
(generation of random numbers are out-of-scope of this thesis.)

5.1.2. Countermeasure against Power Analysis

Zorro o�ers two di�erent countermeasures: hiding and masking. To evaluate them
separately, the implementation should be able to activate and deactivate them separately.
Consequently, the IC can run in di�erent modes:

Normal Mode (NM): In this mode, Zorro en-/decrypts without countermeasures
enabled.

Hiding Mode (HM): Zorro uses hiding as protection against power analysis. We
randomized each round of Keccak by inserting up to 15 dummy rounds. The
actual number can be de�ned by the user. In addition, the implementation shu�es
the computation.

Masked Mode (MM): Running in this mode, the en-/decryption is performed with
a Secret Sharing (SS) masking scheme.

Secure Masked Mode (SMM): If this mode is activated, SS and hiding are combined.

In Chapter 4, three di�erent SS schemes were presented. To give a widespread spectrum
of evaluation options, all three schemes are implemented. Each scheme is represented by
an instance, where each instance can operate in all modes. Therefore, they are nearly
equal except for the masking scheme. The names of the di�erent instances are:

3-Share instance: This instance uses Equation (4.3) for the non-linear function.

3-Share-Star instance: Using this instance, the update scheme as described in Sec-
tion 4.6.5 is used for χ.

4-Share instance: Here, χ is executed as outlined in Equation (4.5).

5.2. The Hardware Architecture: A Top-Down Approach

In this section, we explain the hardware architecture of Zorro in detail. The di�erent
masking scheme instances on the IC are nearly the same and only di�er because of the
SS implementation. The explanation is therefore focusing in the 3-Share instances. We
sum up all di�erences between the three instances later in this chapter.
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Figure 5.1.: Top module of the ASIC called Zorro.

5.2.1. Top Level Design

The top level design of Zorro can be seen in Figure 5.1. On the left side of the �gure,
the input connections of the ASIC are shown. They are used to activate the desired
instance and mode, communicate with the user, and provide a clock signal. In addition,
some test and control signals are available. The �rst block, the inputs come to, is
the InputController. This unit is responsible for providing the inputs to the enabled
instance. The same duty has the OutputController, but it is responsible to provide the
output signals to the user. The ClkEnable entity consists of clock gating units. They are
present to activate only the wanted instance. Therefore, only one instance is clocked at
the same time. This gives the possibility to evaluate the di�erent instances independent
from each other with regards to is power consumption. The output signals are given on
the right side and consist of the handshake, the output, and some debug signals.

5.2.2. The Entities of an Instance

The entities of an instance are shown in Figure 5.2. They consist of a RAM macro, the
FSM, the datapath, two LUTs for the constants, and an LFSR.
The main part of the instance is the FSM and the datapath. They are responsible

for the communication and the en-/decryption. The en-/decryption is done using the
Keccak-f [1600] permutation and is based on the duplex construction. The block size is
de�ned with 1088 bits. This leads to a security level of 256 bits.
The RAM is used to store the whole state. The state has a size of 600 bytes in the case
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of a 3 share SS scheme. Zorro provides 8 additional bytes. They are used uninitialized
as inputs for the dummy operations.
The LFSR is used to produce random values for the HM. It follows Equation (5.1).

x32 + x7 + x3 + x2 + 1 mod 2 (5.1)

It is a maximal length LFSR. The initialization of the state is done with random values
of the user. In HM, Zorro can perform 15 dummy operations. Each dummy operation
represents a full Keccak round. A random bit is used to distinguish whether to insert
a dummy operation or not. So up to 15 + 24 = 39 random bits are needed. The o�set
for the shu�ing is also provided by this LFSR. On that account, it needs 3 additional
bits per permutation. Altogether 42 bits are needed per absorbed block. The period of
the LFSR is 232 − 1 cycles. Therefore, random values are available to work o� about
99000000 blocks each 1088 bits. This leads to about 100GB which can be en-/decrypted
without a replication of the random values.

5.2.3. The Datapath and FSM

In this section, we describe the implemented datapath in detail. We also describe the
implemented FSM and propose a modi�ed scheduling of Keccak.

The Intermediate Register SubState to bu�er Lanes and Slices

The di�erent functions used in Keccak can be split in two groups. The �rst group (χ,
π, θ, and ι) works with whole slices or parts of them (χ combines bits of a row in a non-
linear way, π shifts each slice bit by a prede�ned value, θ sums up 11 bits of two slices,
and ι XORs a constant bit to a slice bit, see Section 3.2). In contrast, the second group
(ρ) works with lanes (it shifts each lane by a prede�ned value, see Section 3.2). If the
architecture is able to load these parts of the state in a reasonable time, the computation
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time can be decreased. For the storing of the di�erent parts, a register must be added.
The minimum request to it is that it can store at least 1 lane for ρ and 1 slice for the
other functions. Thus, at least 64 bits are required. But such a small size does not allow
to load slices and lanes at full speed. Consider that the state is linear in the RAM.
Therefore, each word of the RAM consists of information of 1 lane and 8 slices. To load
slices at full speed, we need a register for 8 slices and it has to have a size of 200 bits.
But this is only valid for the NM. In MM, we use Equation (4.3) for χ. This leads to a
register of 3 ∗ 8 ∗ 25 = 600 bits. 600 bits are 33% of a single state. The area advantage
we got because of the used RAM is decreased in a high dimension by the relatively big
register with this approach.
Another approach is to store the state soaring from slice to slice. The result is that

each word of the RAM stores information of 1 slice and 8 lanes. Now loading lanes at
full speed requires a register of 64 ∗ 8 = 512 bits. This is an improvement, but it is still
not satisfying.
The next approach is to interleave bits of lanes and slices. The state is not stored in

a linear manner any longer. Consider that each word of the RAM contains 4 bits of 2
slices which is equal to 2 bits of 4 lanes. Loading slices at full speed requires a register of
2 ∗ 25 = 50 bits, for lanes we need 4 ∗ 64 = 256 bits. We were able to reduce the amount
of storage elements from 512 to 256, but we are still able to load lanes and slices at full
speed. A small problem appears because of the state size. The state consists of 25 lanes.
Therefore, one lane cannot be stored in this interleaved form. We decided to store the
�rst lane in a linear way because this lane is not in�uenced by ρ and can therefore be
skipped for this function. The drawback of this solution is that slices must be loaded in
8 slice chunks, otherwise cycles are wasted. In NM, we have no problem because we can
store 8 slices at the same time in the 256-bit register. In MM, this leads to a problem
because 3 ∗ 8 ∗ 25 = 600. We decided to keep the register size of 256 and store only 2
slices of each share at the same time in the register in MM. The result is that we cannot
load slices at full speed in this mode. But this in�uences only slice bits of the �rst lane.
In NM, we can load 8 slices in 25 cycles. For two slices in MM, we need 7 cycles. This
also concerns the SMM. Altogether, we do not waste many cycles in comparison to the
saved area. The same register is used to bu�er data from the user. The basic principle
of interleaved storage was published in [10]. Pessl and Hutter [32] used this approach
combined with RAM macros in.
With this we are able to load slices and lanes in a reasonable time and can also bu�er

data from the user. Figure 5.3 shows an overview of the datapath used by the 3-Share
instance. Here the register to bu�er data from the user or the RAM is called SubState.
The InputControl entity in this �gure is responsible to load the di�erent state pieces
and the input data into the register. The loading of the state pieces is done via a shift
into the SubState register. The OutputConrol entity provides initialization data into the
RAM or results to the user.
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Slice Based Functions

Due to the interleaved storage structure and the SubState register, we are able to load
slices and lanes in a reasonable time. The permutation of Keccak uses 5 di�erent
functions. Four of them (θ, χ, ι, and π) take whole slices or parts of them as input.
If Zorro is able to compute the result for these functions of a whole slice at once, the
permutation time can be reduced. Therefore, the �rst goal was to alter them to ful�ll
this requirement. In the following, we describe the implementation of the permutation
in a more detailed way.

Theta Permutation θ: Each execution of θ manipulates 1 bit of the state. As input
it takes 11 bits of 2 di�erent slices. With 25 instances in parallel the result of
a whole slice can be calculated. Because θ uses information of two slices at the
same time, we installed a register to store the information of one slice. So the
implementation only needs one slice at the same cycle of the SubState register.
The needed initialization of the register is a drawback of this solution. But in total
it leads to an advantage and the waisted cycles can be accepted.

Chi Permutation χ: χ works with a row. If 5 instances of this function are taken, the
result of one slice can be calculated in one cycle. Therefore, the datpath of Zorro
uses 5 instances of χ in parallel.

Pi Permutation π: π shifts all bits of one slice by a prede�ned value. So this function
can already handle a whole slice and must not be altered.

Iota Permutation ι: ι is a XOR operation of a 64-bit constant with a lane. But the
constant can be split in 1-bit chunks and can then be applied to each slice. To
achieve this, our LUT, called LUT Lane Const (see Figure 5.2), provides 1 bit per
cycle and address.

Altogether, now the 4 functions (θ, π, ι, and χ) work with whole slices. They are
concatenated and can calculate the result of one slice in a single cycle. In Figure 5.3,
the SliceUnitLin entity computes the result of these functions. It takes a whole slice
as input. If the instance runs in MM, χ must follow Equation (4.3). To achieve this,
an additional entity is added. In Figure 5.3, the SliceUnitUnlin is this entity. It takes
two shares as input and outputs the result of one share in a single cycle. Because the
function for χ is symmetric, it can be used iteratively for each share. The multiplexers
in front of these two entities are responsible to choose di�erent slices which are stored in
the SubState register.

Lane Based Function

We already have taken care of 4 out of 5 functions. The remaining one, ρ, shifts each
lane by a prede�ned value. These values di�er from lane to lane. The architecture can
load 4 lanes at the same time into the SubState register. A lane consists of 64 bits and
Zorro uses RAM macros with a data width of 8 bits. If we are able to compute the
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Figure 5.4.: Block diagram of the optimized ρ function of Zorro.

result of ρ byte per byte, the calculation step can be combined with the saving into the
RAM. This can be achieved in the following way:
The architecture can shift in 2-bit steps easily. It stores 2 bits of a lane in 1 byte of the

RAM. Loading from address n and storing the same byte back to address n + 1 results
in a shift of 2 bits. Therefore, shift values of a multiple of 2 can be compensated with
simple address variation.
The next step is to compensate the di�erences between the shift values of the 4 lanes.

We call 2 bits of a lane which are stored in the same byte a bit couple bcz,y, where z is
the index of the bit couple and y the index of the lane. The di�erent values for z and
y run from 0 to 31 and from 1 to 24, respectively. The di�erences between shift values
of several lanes can be compensated by choosing contrasting bit couples. Consider, we
have loaded the �rst byte of the 4 lanes from address x. 4 lanes have 64 ∗ 4 = 256 bits
and therefore the last byte was loaded from address x + (256/8 − 1) = x + 31. The
bytes get stored soaring in our SubState register. So SubState(7:0) corresponds to the
value of address x and SubState(255:248) to the value of address x + 31. Assume that
the ith byte (0 ≤ i ≤ 31) of the register should be shifted. This byte was loaded from
address x + i. We can choose di�erent bit couples for each lane. Which couples of the
lanes are taken can be calculated as follows. For each of the 4 lanes the maximum shift
value minus its own shift value is taken. The resulting value divided by 2 is taken as bit
couple di�erence (notice that the bit couple di�erence is for the 4 lanes diverse). The
index of the chosen bit couples is calculated with i plus the couple di�erence. If we store
the chosen bit couples back to address ((i + max(shift_value)/2) mod 32) + x, where
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max(shift_value) is the maximum of the shift values for the loaded lanes, a shift up to
62 bits is possible and the shift value di�erences are already compensated. In the case of
the �rst byte of lane 1 to 4, the shift values are 1, 62, 28, and 27. The max(shift_value)
is 62 and i is 0. We can choose bc31,1, bc0,2, bc17,3, and bc18,4. A storing back to address
x+ 31 is required. By performing this, we shift the �rst byte of the loaded lanes by the
right constants. In practice, i must run from 0 to 31 to perform the shift for all loaded
bytes.
Up to now, we have compensated the o�set of the lanes and a shift in 2-bit steps of

maximum 62 bits is possible. A problem appears if a shift value is not a multiple of
2. The solution is a 1-bit register for each lane. If shift_value mod 2 6= 0, the high
bit is saved into this register. For the next bit couple of this lane, the stored bit can
be the low bit of it. The original low bit serves now as high bit. This can be made for
the bit couples of all lanes. The registers have to be initialized which is a drawback.
But altogether these alterations of ρ lead to an extremely small entity. It only needs 4
registers and 4 multiplexers to decide if this one bit shift is performed or not.
The values (couple di�erences, maximal shift value divided by 2, and shift values

modulo 2) it needs can be precalculated and stored in a LUT. In our case, we stored
them in a LUT called LUT Lane Shift which can be seen in Figure 5.2. In Figure 5.3,
the entity LaneUnit is responsible for ρ. The multiplexers in front of it are responsible
to choose the di�erent bit couples. A more detailed view of the LaneUnit can be seen in
Figure 5.4. The InterLeave block is responsible to exchange the high with the low bit if
the one bit shift is performed. This is done for each bit couple.

The Round Schedule of Zorro

The original schedule of Keccak is θ, ρ, π, χ, and ι. The �rst operation operates with
slices, the next with lanes, and afterwards, again functions which work with slices are
present. Switching from slices to lanes or the other way round results in storing back the
whole information into the RAM. In the original scheduling, we have to switch 3 times
per round. A reorganisation to π, χ, ι, θ, and ρ reduces, the loading and saving sequences
of the whole state from 3 to 2. Due to the fact that the result has to be the same after
the reschedule, an additional round has to be added. As a result, our implementation
needs 25 rounds. A detailed view of the di�erent operations and rounds can be seen in
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Equation (5.2). This reschedule is the same as made by Pessl and Hutter [32]. Another
reschedule concerning Keccak was presented by Jungk and Apfelbeck [16].

R1 = θ × ρ
R2...24 = π × χ× ι× θ × ρ
R25 = π × χ× ι

(5.2)

Figure 5.5 shows the SliceUnitLin in detail. The di�erent multiplexers are present to
bypass parts of the concatenated functions. It must be able to compute only θ (round
1), only π × χ× ι (round 25), and skip χ (MM).
In MM, the architecture must compute the permutation for each share and another

χ function is used. For this function information of 3 shares are needed. When χ
gets computed, all shares have to have passed π. To achieve this within a single cycle, 2
additional θ, ι, and π units are necessary. Another approach is to add a loading and saving
sequence. Our architecture uses this approach and adds a loading and saving sequence
between the function pairs θ×π and χ×ι. Zorro loads the shares consecutively for θ×π.
After the computation, it stores the information back into the RAM. For χ× ι it loads 2
slices of each share, computes the result, and stores it back. This is done sequentially for
each slice pair. This additional loading and saving step increases the computation time
of the slice operations. Altogether these alterations lead to a computation time increase
greater than linear with the share quantity in MM compared with the NM. But the area
occupation gets reduced with this approach. The ρ function can be executed iteratively
on each share.

5.3. Comparison between the Three Instances

In the last section, we describe the architecture of one instance of Zorro. All facts belong
to the 3-Share implementation. In this section, we compare the di�erent instances.

3-Share vs 3-Share-Star

Between these two implementations only the update step after χ is di�erent. For the
3-Share instance, Equation (4.3) is used for the non-linear function. But this function
does not provide the third property, uniformity, we introduced in Section 4.6.4. Bilgin
et al. [11] an update scheme for the function. 10 random bits per slice are XORed to the
result of the function. Working with 3 shares results in 20 random bits. In MM, two slices
of each share are stored in the SubState register at the same time. The computation of χ
takes one cycle for each slice. Consequently, 40 bits are needed in two cycles which have
to be random. They are gained with the help of the LFSR. This gives the possibility to
get one bit per cycle. Thus, another register has to be added to store these 40 values.
The saving and loading of the slices take more than 40 cycles. Therefore, it only costs
us the register and we do not loose any cycles by creating the random values. For each
block 20 × 64 × 24 = 30720 additional random values are needed. This reduces the
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en-/decryption size to near 140MB without replication of the random values.

3-Share vs 4-Share

These two instances di�er because of the share quantity and the χ function itself (see
Equation (4.5) and Equation (4.4)). Due to the fact that the share quantity is increased
by one, the execution time and the area increase. A small amount of the additional
area can be traced back because the functions for the di�erent shares are not symmetric
any longer. The biggest part of the increase comes from the bigger RAM. Additionally,
because of the di�erent structure of χ, the intermediate register has to be increased to
300 bits. The communication between the user and the ASIC is the same.
Summarized, this implementation needs more cycles and has a bigger area occupation

in comparison to the 3-Share implementation.

5.4. Synthesis Results of Zorro

Zorro was implemented using Very High Speed Integrated Circuit Hardware Description
Language (VHDL). For the functional simulation, Mentor GraphicsModelSim 10.2a was
used. The synthesis was made with Synopsys Design Compiler 2012.06. The standard cell
library the design was mapped to is based on the 180 nm Complementary Metal Oxide
Semiconductor (CMOS) technology processed by United Microelectronics Corporation
(UMC). When it comes to a Gate Equivalent (GE) this library takes a 2-input NAND
gate as reference. This gate has an area of 9.3744µm2.
The results we want to present are synthesis results. Figure 5.6 shows an area-time

plot of Zorro. A decrease of the period from 20 ns to 7 ns does not increase the area
of the chip. Thereafter, the GE count starts to increase. The most e�cient results are
gained from 3.05 ns. Our system was designed to reduce the area of the implementation.
Therefore, e�ciency is not that important and we decided to focus on the results gained
at 4 ns (250MHz).

Critical Path

Zorro concatenates all slice functions and stores 8 bits at the same time in the SubState
register. To choose the right slice, multiplexers are used in front of the SliceUnitLin

entity. The values are stored back by the InputControl unit (see Figure 5.3). Altogether,
this leads to big multiplexer networks around the register. The path from the register
through the SliceUnitLin unit and back to the register de�nes the critical path and
therefore the maximum frequency of the ASIC. Figure 5.3 a shows schematic view of the
datapath used by the 3-Share instance. The bold line highlights the critical path of the
instance. Additionally, a detailed apportionment is shown in Table 5.1.
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Figure 5.6.: The area-time plot of Zorro after synthesis.

Area

The main storage element we used in the design was a RAM macro. Because of the big
memory amount, a big part of the whole area is occupied by it. In numbers, this belongs
to 5000 to 6000GEs for each instance.
The design decisions we made (disarm the complexity of ρ and iterative processing)

gave us a very small area for the original Keccak functions. Altogether they only need
around 650GEs. The LUTs have a GE count of 250 and are equal for each instance.
An abnormality appears concerning the SliceUnitUnlin entity. This unit contains the

χ function for the MM. For the 4-Share instance it is nearly three times bigger than for

Table 5.1.: The critical path of Zorro after synthesis for a maximum frequency of
250MHz.

Activity Time

SubState to SliceUnitLin input 2.21 ns
SliceUnitLin in- to output 1.36 ns
SliceUnitLin output to SubState 0.43 ns
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the other two. This has the following reasons. First, now four shares are involved and up
to three shares are needed at once for the computation. This increases the logical amount
for the functions. Additionally, they are not symmetric any longer. Consequently, each
share needs its own function which again increases the area amount of this unit. It needs
250GEs for the two 3 share implementations and 750GEs for the 4 share implementation.
The LFSR with a state of 32 bits needs 350GEs. The SubState register plus the

surrounding logic need 4500GEs in the case of the 3-Share instance. For the 3-Share-
Star instance, the value increases to 5100. This can be traced back to the additional XOR
gates and registers needed for the new χ function. For the 4-Share instance, the number
is again increased to 6200. The bigger SubState register and the increased multiplexer
networks around it are the explanations for that.
The FSM takes up 3000GEs for each implementation. This is a relatively high GE

count for an FSM. In our design, each instance can run in di�erent modes. This leads to
a huge amount of states which is the explanation for the increased size. If an implemen-
tation only supports SS as countermeasure, the size of the control unit is reducible.
Altogether the 3-Share instance needs around 14000GEs, the 3-Share-Star instance

14600GEs, and the 4-Share instance 17200GEs. A detailed apportionment of the whole
chip can be found in Table 5.3.

5.4.1. Timing

All instances can compute a round in 912 cycles in NM. This value is comparable to
the original Keccak description. Therefore, a full permutation can be achieved in
24 × 912 = 21888 cycles. In MM, the three share implementations need 113184 cycles.
This is can increase of more than 5. The increase of the state size from 1600 bits to 4800

Table 5.2.: Cycle count for the di�erent activities Zorro can perform.

Activity 3-Share 3-Share-Star 4-Share
[Cycles] [Cycles] [Cycles]

Keccak round NM 912 912 912
Keccak round MM 4716 4716 6235
State initialization NM 201 201 201
State initialization MM 2199 2199 3200
LFSR initialization 17 17 17
Input/Output (I/O) communication NM 2040 2040 2040
Output communication NM 952 952 952
Input communication NM 952 952 952
I/O communication MM 2313 2313 2449
Output communication MM 1224 1224 1360
Input communication MM 1225 1225 1363
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bits and the additional loading and saving cycle between π χ and ι θ is the explanation
for this higher cycle count. The 4-Share implementation needs 149640 cycles in MM
for the permutation. This is an increase of one third in comparison to the three share
implementations and can be traced back to the additional share.
For HM only the rounds in one permutation increase. Accordingly, the en-/decryption

time increases linear with the dummy operations.
The I/O communication is relatively slow. This can be attributed to the four way

handshake protocol. In NM, the communication decreases the throughput by approxi-
mately 10%. Because of the increased computation time in MM, the throughput is only
decreased by 4% in this mode.
A detailed cycle count for the di�erent activities can be found in Table 5.2.

5.5. Back-end Results of Zorro

The goal was to tape out the resulting design. In comparison to the results after synthesis,
we had to add additional structures to improve the testability. For the testing of the
datapath and the FSM, we used a full scan chain approach. Thus, all registers were
exchanged with scan chain registers. Because we do not use a lot of registers the size
was not increased in a high dimension. To test the functionality of the di�erent RAMs,
the FSM was adapted to provide new states. These states make it possible to write
on each address of the RAMs. Afterwards, all addresses can be read out again. The
communication is made over the already available handshake protocol.
The main goal was to keep the implementation as small as possible. Therefore, we

reduced the maximum frequency to 200MHz. This compensates the area increase because
of the additional test structures. The area results can be found in Table 5.4. The cycle
count for the di�erent operations stayed the same as after synthesis.
The back-end design was made with Cadence SoC Encounter 9.1. Additional Layout

Versus Schematic (LVS) and Design Rule Check (DRC) tests were made with Calibre

DESGINrev 2010.2. For the test vector generation Synopsys TetraMAX ATPG 2012.06

was used. Figure 5.7 shows the regions the di�erent instances occupy. The layout of the
�nished chip can be seen in Figure 5.8.

5.6. Comparison with Related Work

For the comparison with related work, the area occupation and frequency after back-
end design is taken. Comparison results of di�erent technology are sometimes hardly
meaningful. Therefore, we only focus on 130 nm and 180 nm technologies because they
are more ore less comparable to our technology. SS combined withKeccak is a relatively
new topic. But there exist implementations for all of our instances. A di�erence between
our work and related work is that we can en/-disable our countermeasures. In addition,
we also support hiding and we produce the random values for it on the IC. Therefore, for
a single Keccak-f [1600] implementation protected with SS the area occupation should
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be reducible. However, we want to present our results compared with related work in
detail.

3-Share instance: The 3-Share instance was implemented using the SS scheme pre-
sented in [5]. Their smallest implementation secured with the SS has an area oc-
cupation of 95 kGEs. Our 3-Share implementation needs 14 kGEs. Therefore, our
3-Share instance needs approximately 15% of the size of the architecture presented
in [5].

3-Share-Star instance: The 3-Share-Stare instance was implemented using the 3
share SS scheme presented in [11]. Their 3 share SS implementation needs at least
32.6kGEs. Our implementation has an area occupation of 14.5 kGEs.

4-Share-Star instance: The 4-Share-Stare instance was implemented using the 4
share SS scheme presented in [11]. In addition, they presented synthesis results of
their implementation. The smallest implementation needs 32.5 kGEs. Our imple-
mentation needs 17.0 kGEs.

Non-protected: Compared to the work of [32], it shows that our Correlation Power
Analysis (CPA)-protected version of Keccak is less than 3 times larger in size.
The larger size is mainly duo to the increased state. Our implementation needs a
state which is 3 times lager compared to [32].

In all cases we were able to reduce the area occupation by more than 50%. The through-
put was reduced by a factor over 1000 compared with related work. Our implementations
are extremely trimmed for a small area occupation. Consequently, our throughput com-
pared with other work is secondary. A detailed comparison can be found in Table 5.5.
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Table 5.3.: Area results after synthesis without test structures of Zorro. The maximum
frequency is given by 250MHz.

Component Area Total Percent Sub Percent
[GE] [%] [%]

Zorro 47000 100 100
3-Share 14000 30.0 30.0
FSM & Datapath 8400 18.0 60.0
FSM 3000 6.5 35.7
SliceUnitLin 550 1.2 6.6
SliceUnitUnlin 250 0.5 3.0
LaneUnit 100 0.2 1.2
Inter. Register & Logic 4500 9.6 53.6

RAM 5000 10.6 35.7
LUT Lane Const 150 0.3 1.0
LUT Lane Shift 100 0.2 0.7
LFSR 350 0.7 2.5

3-Share-Star 14600 31.0 31.0
FSM & Datapath 9000 19.2 61.7
FSM 3000 6.5 33.3
SliceUnitLin 550 1.2 6.1
SliceUnitUnlin 250 0.5 2.8
LaneUnit 100 0.2 1.2
Inter. Register & Logic 5100 10.9 56.7

RAM 5000 10.6 34.3
LUT Lane Const 150 0.3 1.0
LUT Lane Shift 100 0.2 0.7
LFSR 350 0.7 2.4

4-Share 17200 36.6 36.6
FSM & Datapath 10600 22.6 61.6
FSM 3000 6.5 28.3
SliceUnitLin 550 1.2 5.2
SliceUnitUnlin 750 1.6 7.1
LaneUnit 100 0.2 1.0
Inter. Register & Logic 6200 13.2 58.5

RAM 6000 12.8 34.9
LUT Lane Const 150 0.3 0.9
LUT Lane Shift 100 0.2 0.6
LFSR 350 0.7 2.0
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Table 5.4.: Results after back-end design with test structures of Zorro. The maximum
frequency is given by 200MHz.

Component Area
[GE]

Zorro 46000
3-Share 14000
3-Share-Star 14500
4-Share 17000

Table 5.5.: Results for di�erent SS (un)protected Keccak-f [1600] implementations.

Source Tech. Area Frequency Time Throughput
[nm] [kGE] [MHz] [Cycles] [Gbit/s]

Bertoni et al. [5]1 130 127.0 200 - 8.5
Bertoni et al. [5]1 130 95.0 200 - 2.8

This work
Zorro 3-Share 180 14.0 200 113184 1.88 10−3

Bilgin et al. [11]1 180 145.3 516 25 -
Bilgin et al. [11]1 130 135.2 746 25 -
Bilgin et al. [11]1 180 33.1 553 1625 -
Bilgin et al. [11]1 130 32.6 820 1625 -

This work
Zorro 3-Share-Star 180 14.5 200 113184 1.88 10−3

Bilgin et al. [11]1 180 174.2 513 24 -
Bilgin et al. [11]1 130 157.6 735 24 -
Bilgin et al. [11]1 180 43.1 572 1600 -
Bilgin et al. [11]1 130 42.4 633 1600 -

This work
Zorro 4-Share 180 17.0 200 149640 1.43 10−3

Pessl and Hutter [32] 130 5.5 - 22570 -
Pessl and Hutter [32] 130 5.8 - 15427 -

This work
Zorro NM 180 14.0 200 21888 9.09 10−3

1 Block size of 1024 bits;
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Figure 5.7.: A picture that shows in which regions the di�erent instances of Zorro are.
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Figure 5.8.: A picture of the �nal chip layout of Zorro.
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Chapter 6
Power Analysis of Zorro

Nowadays, simulation tools give the possibility to simulate the power consumption of
circuits. In this chapter, we discuss the �rst power simulation of Zorro. All simulations
are made with Cadence SoC Encounter 9.1 using a Value Change Dump (VCD) �le
generated with Mentor GraphicsModelSim 10.2a. The frequency is de�ned by 10MHz,
the sampling step size by 10 ns. The analyses are made with MATLAB 7.9.0.
The chapter is structured as follows. In Section 6.1, a power analysis of an encryption

operation of Zorro in Normal Mode (NM) is given. Section 6.2 explains the power con-
sumption of an encryption in Masked Mode (MM). In Section 6.3, di�erent Correlation
Power Analyses (CPA) against Zorro are outlined. We start with an attack against the
3-Share instance running in NM. Afterwards, results of attacks against the Hiding Mode
(HM) and the MM are presented.

6.1. Power Consumption of an Encryption in Normal Mode

The �rst target of the analysis is an encryption operation in Normal Mode (i.e., no
countermeasures are enabled) of the 3-Share instance. Figure 6.1 shows the simulated
power consumption during the encryption. Two input blocks are processed. Five di�erent
regions are very eye-catching (separated with doted lines). The �rst separation belongs
to the �rst communication with the user. The power consumption is comparatively low
because not many hardware components are active. Afterwards, the �rst permutation
starts which takes almost 50% of the whole encryption. In the middle of the plot, a
high power consumption across a few milliseconds can be identi�ed. This is again the
communication with the user. In contrast to the Input/Output (I/O) communication at
the beginning of the plot, the power consumption is much higher. The reason for this is
that Zorro provides also output data. These output data are available on the output
pads, which were deactivated at the beginning of encryption. After that, the second
permutation is performed. Finally, the output is read out via I/O pads which again
increases the power consumption at the end of encryption. Note that the communication
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Figure 6.1.: Simulated power consumption during an encryption operation of the 3-Share
instance of Zorro running in NM.

is shorter because the user does not send new data (Message Authentication Code (MAC)
output) to the Integrated Circuit (IC).
Figure 6.2 shows a zoomed view of the �rst permutation. The di�erent rounds are

separated via vertical doted lines. The only abnormality can be found in round 25,
which is the last round. Here the computation time is shorter in comparison to the other
rounds. This can be explained by the fact that in this round ρ is skipped and therefore
the computation time is shorter.
In Figure 6.3, the estimated power consumption of a single round can be found. The

dashed line separates the slice from the lane operations. The doted lines separate the
iterations of the functions. The small separation at the beginning shows the initialization
from the θ function. For the �rst iteration, the power consumption looks like a ramp
function. This can be explained as follows. When the computation starts, the SubState
register contains almost only zeros (some bits can di�er from zero because of the previ-
ous input communication). The loading of the intermediate values is performed as shift
operation into the register. Therefore, the more bits are loaded, the more switching oper-
ations can happen and the power consumption raises continually. For the following slice
operations, the register contains old intermediate values during loading. Consequently ,
the loading sequence needs approximately the same power consumption for each loading
step. By having a closer look at the power consumption trace, it also shows that the
�rst iteration of the lane processing looks di�erent than the other iterations. The rea-
son is contrary to the e�ect we have identi�ed before. For the �rst lane operation, the
register contains old intermediate values of the last slice operation. The loading of the
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3−Share Unit − Encryption Norm Mode @ 10MHz − 10ns resolution
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Figure 6.2.: Simulated power consumption during a permutation of the 3-Share instance
of Zorro running in NM.
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Figure 6.3.: Simulated power consumption during a single round of the 3-Share instance
of Zorro running in NM.
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3−Share Unit − Encryption Masked Mode @ 10MHz − 10ns resolution
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Figure 6.4.: Simulated power consumption during an encryption operation of the 3-Share
instance of Zorro running in MM.

lanes is again performed as a shift operation. Sequentially, the power consumption for
the �rst lane operation looks like a rectangle. After each lane operation the register is
reset. This is done to compute the result of ρ for each share independently from each
other in MM. Because we use the same architecture in all modes, this reset happens
also in NM. Therefore, the register contains only zeros at the beginning of the loading
sequences. This explains the ramp function shape of the power consumption of the other
lane operations. In addition, the high peak at the end of a lane operation can explained
by the reset of the register.

6.2. Power Consumption of an Encryption in Masked Mode

The same simulation was done for the Masked Mode (MM). Figure 6.4 shows the result
where we can identify �ve district power-consumption parts. Additionally, we can identify
the random state initialization right at the beginning of the plot. The remaining power
consumption looks similar to the power consumption during NM.
Figure 6.5 shows the separated rounds of one permutation. Now the �rst and the second
rounds are shorter. This belongs to the fact that the slice operations are split in blocks.
The �rst block computes θ and ι, the second one χ and π. The �rst round consists
only of θ and ρ. So we can skip the second block which leads to a shorter computation
time of round one. The last round is again shorter because ρ is skipped. The peak that
sometimes appears after a round can be again attributed to the reset of the SubState

register.
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3−Share Unit − Encryption Masked Mode @ 10MHz − 10ns resolution
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Figure 6.5.: Simulated power consumption during a permutation of the 3-Share instance
of Zorro running in MM.

3−Share Unit − Encryption Masked Mode @ 10MHz − 10ns resolution
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Figure 6.6.: Simulated power consumption during the �rst two rounds of the 3-Share
instance of Zorro running in NM.
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Figure 6.6 shows the �rst two rounds in detail. They are separated with a dashed
line. A big di�erence exists between the iterative execution of θ ι and ρ and the iterative
execution of π χ. This again has Secret Sharing (SS) issues. θ, ι, and ρ are only dependent
of one share. They can be processed for each share sequentially. The loading is done
like in NM. The whole register is shifted. If a function works with n− 1 shares, it must
be guaranteed that the implementation works only with n − 1 shares at the same time
in all concerns. In our case, we only work with one share during the loading of the
information for χ and ι. We only shift the bits of the register which belong to one share
during the loading process. These are only 48 bits while the whole register contains 256
bits. Therefore, the power consumption of the loading steps of χ and ι are reduced in
comparison to the other operations. The di�erent power consumption shapes because of
the loading, like in the NM, are not present. It seems that the generally higher power
consumption absorbs this e�ect.

6.3. Power Analysis against Zorro

The �rst analysis revealed that the register operations in�uence the power consumption
in a high dimension. To exploit this fact, our �rst attack targets a storage operation of
the SubState register. To keep the attack as simple as possible the numbers of targeted
key bits are kept low. As a starting point an encryption of the 3-Share instance is taken.
The key size is de�ned by 256 bits. The Authenticated Encryption (AE) system provided
by Zorro gives the possibility to send header data concatenated with the key to the
Application-Speci�c Integrated Circuit (ASIC). For this attack, the key is kept constant
and the header data is changed per encryption. The header is used as non-constant value
for the power analysis.

6.3.1. Detailed Structure of the Attack

To keep the key guess number as small as possible, the �rst round is attacked. In this
round, Zorro computes only θ and ρ. The result of θ is a perfect target because each
execution only works with the information of two slices. A slice consists of 25 bits. If the
algorithm works with a key of 256 bits and they are stored in a linear lane based way,
each slice contains 4 key bits. Attacking one θ execution, which works with two slices,
results in an attack against 8 key bits. Thus, 28 = 256 key guesses must be considered
for the attack. This is a small amount and should not lead to a long computation time.
For each attacked slice, 21 bits are left. Before the �rst round starts, they consist of 13
header bits and 8 state bits. The header bits can be chosen and hence they are known.
The state bits are initialized with zeros for the NM. In MM, they are randomly initialized
by the user. For the computation of the hypothetical values they are assumed as zero in
all cases. As a distinguisher, we have chosen the Person correlation coe�cient.
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CPA Against Zorro 3−Star Instance in NM − 1000 Traces − @10MHz − 10ns Resolution 
Key Guess 255 − Power Model: HW − Attacked 4 Key Bits in Slice 1 and Slice 64

Time

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−1

−0.5

0

0.5

1

Figure 6.7.: CPA result for the correct key guess of Zorro 3-Share running in NM.

CPA Against Zorro 3−Star Instance in NM − 1000 Traces − @10MHz − 10ns Resolution 
Key Guess 36 − Power Model: HW − Attacked 4 Key Bits in Slice 1 and Slice 64
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Figure 6.8.: CPA result for an incorrect key guess of Zorro 3-Share running in NM.
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CPA Against Zorro 3−Star Instance in NM − 1000 Traces − @10MHz − 10ns Resolution 
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Figure 6.9.: CPA result for the correct key guess of Zorro 3-Share running in NM

6.3.2. CPA Results of Zorro with Normal Mode Enabled

At �rst, 1000 traces were simulated. To keep the simulation time short, only the attacked
round was simulated. The �rst comparison was made with the Hamming weight as a
power model. Figure 6.7 shows the result for the correct key guess of the attack against
the �rst θ execution. The highest peak is at the beginning of the trace. Because we
attacked the �rst execution of θ, this is the expected location in time. Unfortunately,
incorrect key guesses lead to higher peaks (see Figure 6.8).
As a second attempt, we changed the power model to the Hamming distance. The

updated values of θ get stored at the same place in the register where the old ones were
stored. Consequently, the distance should lead to better results. The results can be seen
in Figure 6.9 and 6.10, again for the correct and an incorrect key guess. It shows that
the correlation coe�cient for the correct key guess was signi�cantly higher, providing a
value of more than 0.9. Note that the con�dence interval, where 99.99% of all single
points are located in the normal distribution model, is about 0.12 for 1000 traces. The
attack can be therefore considered as successful since only the correct key guess leads to
a signi�cant peak lying outside this interval.
However, it also shows that other key guesses provide also signi�cant peaks. In par-

ticular, 8 key guesses lead to the same output. The reason for this is the fact that θ is a
linear function such that several key guesses lead to the same linear output. Therefore,
this attack can reduce the key guesses from 256 down to only 8. A �gure for the high-
est correlation coe�cient for each key can be seen in Figure 6.11. This attack can be
mounted against all θ executions. The result is the same for each slice. Consequently,
the security of the system can be reduced from 256 bits down to 96 bits which is a huge
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Figure 6.10.: CPA result for an incorrect key guess of Zorro 3-Share running in NM.

CPA Against Zorro 3−Star Instance in NM − 1000 Traces − @10MHz − 10ns Resolution 
All Key Guesses − Power Model: HD − Attacked 4 Key Bits in Slice 1 and Slice 64
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Figure 6.11.: Maximum correlation coe�cients of the CPA result for all possible key
guesses of Zorro 3-Share. It runs in NM.
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Figure 6.12.: CPA results for all possible key guesses of Zorro 3-Share running in NM.
As point of time the point with the highest peak from Figure 6.10 was
taken.

reduction. With this attack it was possible to attack the non-protected encryption of
Zorro successfully.
We further analyzed how many traces are necessary to achieve a successful attack.

For that reason, the point of time was kept constant at the point which leads to the
highest correlation coe�cient. Additionally, the number of traces was increased step by
step while an attack was performed. The result is shown in Figure 6.12. It shows that a
very small number of traces (under 100) leads already to a successful attack. This nicely
corresponds to the theoretical estimation given in [21].
We now analyze θ in more detail. The function works with 2 slices. For the �rst

execution of θ, they are s0 and s63. The result is stored at the same location where the
old values were stored. The Hamming distance for the �rst bit is given in Equation (6.1).

HD0 = s00 ⊕ s00 ⊕ s40 ⊕ s90 ⊕ s140 ⊕ s190 ⊕ s241 ⊕ s664 ⊕ s1164 ⊕ s1664 ⊕ s2164 (6.1)

θ computes the sum of two rows of the slices. Because the Hamming distance adds the
content of the old register value to the result, one value gets canceled (see bold values
in Equation (6.1)). This is exactly the value that di�ers from row to row. Thus, each
result computed for the same row is equal and only distances of the value 0, 5, 10, 15,
20, and 25 are possible. Figure 6.13 shows a graphic for the two slices used by θ. Only 8
bits are in�uenced by the key (highlighted in gray) and each bit that θ computes is only
in�uenced by two key bits. Consequently, an equal sum of these bits results in an equal
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Figure 6.13.: Naming convention for the two slices used by θ. The gray bits are key bits.

Hamming distance. This is the reason why di�erent keys lead to the same coe�cient
in our attack. If only one key bit is di�erent the distance only di�ers by the value of 5
which is a di�erence of 20%. This is the reason why the coe�cient between correct and
incorrect key guesses sometimes only di�ers by 0.2. In Figure 6.12, the coe�cients can
be arranged in 6 di�erent groups. This can be explained by to the 6 di�erent Hamming
distances θ provides.

6.3.3. CPA Results of Zorro with Hiding Mode Enabled

The next attack was mounted against Zorro 3-Share instance which runs in HM. The
attack point is still the same, but we directly applied the Hamming distance power
model. We reduced the dummy operations to a minimum to need a smaller quantity of
traces for the attack. Only one dummy operation per permutation is performed. We
simulated two rounds of the permutation. This guarantees that the round which works
with the right values is simulated. In HM, 8 di�erent starting positions are possible
because of the shu�ing. This leads to a randomization degree of (#DummyOps+ 1) ∗
(#ShufflePos) = (1 + 1) ∗ 8 = 16. Thus, altogether the correlation coe�cient should
by reduced to approximately 1

16 . This leads to a theoretical correlation coe�cient under
0.1.
The �rst experiment was made with 1000 traces. The result for the correct key guess

can be seen in Figure 6.14. It shows that 1000 traces are too few for a successful attack.
Remember, with hiding the amount of traces gets squared. The �rst attack needed around
50 traces to be successful. Therefore, this attack would need around 162 × 50 = 12800
traces to be successful. Due to a lack in time, we only simulated 5000 traces. The result
for the correct key guess can be seen in Figure 6.15. There is no signi�cant peak at the
beginning of the rounds and we cannot distinguish between correct and incorrect key
guesses. Altogether, the attack was not successful and a reduction of the key space was
not possible.
Note that in the second half of each permutation, negative or positive peaks are observ-
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Figure 6.14.: CPA result using 1000 trace for the correct key guess of Zorro 3-Share
running in HM.

CPA Against Zorro 3−Star Instance in HM − 5000 Traces − @10MHz − 10ns Resolution 
Key Guess 255 − Power Model: HD − Attacked 4 Key Bits in Slice 1 and Slice 64
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Figure 6.15.: CPA result using 5000 traces for the correct key guess of Zorro 3-Share
running in HM.
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Figure 6.16.: CPA results for all possible key guesses of Zorro 3-Share running in HM.

able. These peaks can be found in the results for the NM as well, but they are not that
signi�cant because they are hidden in noise. They are due to the reset of the SubState
register after ρ. After ρ, the register contains parts of the result of θ. This is because
the result of ρ is not stored back into the register. Thus, a small correlation can happen
because of the reset. In HM, we shu�e the loading, the saving, and the execution steps.
The reset of the intermediate register stays the same. The noise around these peaks is
reduced because of the shu�ing, the peak itself is not. That is the reason why they
remained nearly the same as in NM.
In addition, a plot for the increasing amount of traces was made. The result can be

found in Figure 6.16. As point of time the precalculated point with the highest peak was
taken. It can be seen that the correct guess has nearly the highest peak after about 1500
traces. But the di�erence between a correct and an incorrect key guess is too small for
a distinction. From the last attack, we learned that the smallest di�erence is only 0.2.
Therefore, it should be decreased in this case to 0.2 ∗ 1

16 = 0.0125.

6.3.4. CPA Results of Zorro with Masked Mode Enabled

We performed a CPA attack Zorro 3-Share instance in MM. For this example, we used
5000 traces. As power model, the Hamming distance was taken. For this attack, we
simulated only one round. The CPA result for the correct key guess can be found in
Figure 6.17. As expected, there is no signi�cant peak observable. In comparison to
the attack results for the HM, the coe�cient looks more random and the peaks in the
last half of the round disappeared. In MM, Zorro computes the results based on a
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CPA Against Zorro 3−Star Instance in MM − 5000 Traces − @10MHz − 10ns Resolution 
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Figure 6.17.: CPA result for the correct key guess of Zorro 3-Share running in MM.

random initialization. At no time correct intermediate values are present. Therefore,
even the reset of the SubState is not dependent on parts of the real results. This leads
to a decreasing correlation coe�cient with an increasing amount of traces.
To complete the analysis, Figure 6.18 shows CPA results for on increasing number of

traces for all key guesses. It shows that the attack was not successful with the given
amount of power traces.

6.3.5. Final Notes on the Attacks

We tried to attack the implementations with a very generic approach. The only knowl-
edge needed for the attack concerns the θ execution. We expected that the old register
values get overwritten with the new results. This is a typical approach to update registers
and thus can by guessed by the attacker easily. In addition, an iterative execution was
assumed. In low-area implementations, this is a basic way to calculate functions.
In order to evaluate the attacks against HM and MM in a more meaningful way, more

traces must be considered for the attacks. A simulation of a higher number of traces
takes too much time. An advantage of power analysis mounted against a real device is
that the measurement of up to a million traces is possible in a feasible time. Therefore,
to evaluate the countermeasures more meaningfully, attacks against the fabricated ASIC
must be mounted.
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Figure 6.18.: CPA results for all possible key guesses of Zorro 3-Share running in MM.

75



Chapter 7
Hardware Architecture of FastKeccak

Recently, the amount of sensitive digital data increased steadily. In order to process
this amount of con�dential data securely and in a reasonable time, throughput-trimmed
implementations of cryptographic algorithms are required.
In this chapter, we want to introduce our high-throughput implementations, called

FastKeccak, of an Authenticated Encryption (AE) system based on Keccak. All
implementations were synthesized for the Xilinx Kintex-7 and the Xilinx Virtex-7 Field
Programmable Gate Array (FPGA).
The chapter is structured as follows. In Section 7.1, we introduce our hardware archi-

tectures. Section 7.2 outlines the results for di�erent FPGA boards. In Section 7.3, the
results are compared with related work concerning Keccak. Finally, in Section 7.4, we
compare the sponge-based results with block-cipher implementations.

7.1. The Hardware Architecture

A common approach to speed up block-cipher based algorithms is to pipeline them or to
use multiple instances of the whole implementation. Figure 7.1 shows a structure using
both the pipeline- and the multiple-instance approach. Most of the time the �rst chosen
approach is to pipeline the implementation. Additional registers are used to speed up the
algorithm. Very often a positive area-time relation can be gained from such approaches.
If a higher throughput is needed, instances are often parallelized. Now the area-time
relation stays the same, but the throughput increases.
Nevertheless, when it comes to sponge-based primitives, they have one in common:

the result of input block n − 1 in�uences block n. Consequently, a block must be fully
processed before a new one can be absorbed. This leads to a drawback in speeding up an
implementation. Pipeline approaches are not realizable. In addition, multiple instances
cannot encrypt parts of the same massage. However, a speedup can be gained from a
faster permutation. Additionally, a higher block size and thus a lower security level can
increase the throughput.

76



7. Hardware Architecture of FastKeccak

A1

State

State

State

A2

State

State

State

A3

State

State

State

A4

State

State

State

Figure 7.1.: Standard approach to maximize the throughput of block-cipher based algo-
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We work with Keccak-f [1600]. Our approach is to fully parallelize the permutation.
This leads to 1600 instances of θ and 320 instances of χ. π and ρ are only rewiring
processes when it comes to a fully parallelized architecture. ι still keeps the same and
can be applied with a 64-bit XOR operation. The constants for it are stored in a Look-
up Table (LUT). The controlling is made by a simple Finite State Machine (FSM). The
block size is de�ned by 1344 bits and thus the security level is given by 128 bits. These
alterations lead to a Keccak round which can be computed in a single cycle.
In order to ensure a correct computation, additional multiplexers around the permu-

tation are necessary. If several Keccak round instances are concatenated, the critical
path increases. But the path is only increased because of these additional Keccak round
instances. The structure around the permutation and the FSM stays the same. Consider
that only one Keccak round is used. In our case, around 50% of the critical path is
needed because of the Keccak round, the rest belongs to the FSM and the surrounding
multiplexers. Keccak-f [1600] works with 24 rounds. Datapaths with 1, 2, 3, 4, 6, 8,
12, and 24 Keccak round instances can exploit this fact and increase the throughput.
Therefore, 8 di�erent architectures are possible by unrolling the permutation. The

used Keccak round instance stays the same and is only used multiple times. Now the
LUT which is responsible for the ι constants must provide 64 bits per used Keccak

round and cycle.
Figure 7.2 shows an overview of the datapath of our system. As storage element we

used a register of 1600 bits. The multiplexer in front of it is responsible to initialize the
state. The keccak_rnds entity can be adjusted to provide di�erent numbers of Keccak
round instances. A detailed view of the entity can be seen in Figure 7.3. The di�erent
function of Keccak are concatenated. Each function can compute the result of the
whole state in a single cycle.
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7.2. FPGA Results

The implementations were made with Very High Speed Integrated Circuit Hardware
Description Language (VHDL). For synthesis Xilinx Vivado Design Suite 2013.1 was
used. The block size is the same for all architectures and is given by 1344 bits. Our �rst
targeted platform was the Xilinx Kintex-7 FPGA KC705 evaluation board. Table 7.1
shows post synthesis results for the di�erent architectures. The �rst column contains the
number of used Keccak round instances. In order to distinguish between the di�erent
implementations, the notation #x, where x denotes the number of concatenatedKeccak
round instances, is used. The second column represents the needed Flip-Flops (FFs).
1600 are used for the state of Keccak. The rest belongs to the FSM. They are used
as counter for the round iterations and as an FSM counter. The more Keccak round
instances are used the fewer iterations are performed. Therefore, the number of counter
FFs for the round iterations decrease. The third column shows the needed LUT count. It
increases nearly linear with the used Keccak round instances. The throughput is given
in column �ve. Between #6 and #8 and #12 and #24 a decrease of the throughput
can be seen. The reason for that is additional routing. Because of the higher amount
of combinatorial units, the routing complexity increases. In the case of #6 and #8
and #12 and #24, the increase of the critical path because of the additional routing is
higher than the decrease due to the additional Keccak round instances and therefore
the throughput decreases. Figure 7.4 shows the throughput results for all architectures
graphically. An area-throughput plot for all 8 architectures can be found in Figure 7.5.
A continuous decrease can be seen. This has the following reason. The relative in�uence
on the critical path because of the round instances increases from additional instance
to instance. Therefore, the relative in�uence on the critical path because of the FSM
and the multiplexers decreases. But the size of the implementation increases in a linear
way with the round instance count. Altogether this leads to a higher, but not linearly
increasing throughput and the area-throughput relation decreases.
The same architectures were synthesized for the Xilinx Virtex-7 FPGA. The post

Table 7.1.: Kintex-7 XC7K325T-2FFG900C FPGA results of FastKeccak.

Inst. FFs LUTs Frequency Throughput
[#] [#] [#] [MHz] [Gbit/s]

1 1607 5014 301.5 16.88
2 1607 7321 197.0 22.06
3 1606 9440 145.9 24.51
4 1605 11943 113.9 25.52
6 1605 16154 82.2 27.62
8 1604 21119 61.8 27.69
12 1604 29582 44.6 29.94
24 1602 57826 21.9 29.36
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Figure 7.4.: Throughput results of FastKeccak for the Kintex-7 XC7K325T-2FFG900C
FPGA.

synthesis for all 8 architectures can be seen in table Table 7.2. The same results are
displayed in Figure 7.6 graphically. A general speedup in comparison to the previous
results can be seen. This can be explained by a higher speed grade of this FPGA. In
addition, the throughput increase between #6 and #8 and #12 and #24 is better.
This apparently can be refereed to the size of the FPGA. Because of the higher amount
of combinatorial units the routing is performed in a better way. This assumption is
con�rmed by looking at the critical path caused by the routing. In these cases, the
critical path caused by the routing is about 0.5% shorter than for the Xilinx Kintex-7.
An area-throughput plot can be found in Figure 7.7. The decrease of the area-throughput
relation can be traced back to the same reason as for the Xilinx Kintex-7 FPGA.

7.3. Comparison with Related Work

Because of the bad area-throughput results Keccak-f [1600]-based primitives are often
not unrolled to a factor of 24. In addition, most of the time a block size of 1088 bits or
1024 bits is used and comparisons between throughputs of di�erent FPGAs are not that
easy to interpret. But to the best of our knowledge, the fastest Keccak implementation
was reported by Homsirikamol et al. [15] and has a throughput of 13.0Gbit/s. They used
an Altera StarixIV FPGA. As block size 1088 bits were taken.
Furthermore, Bertoni et al. [6] reported an implementation for a FPGA with a through-
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Figure 7.5.: LUT count in relation to the throughput of FastKeccak for the Kintex-7
XC7K325T-2FFG900C FPGA.

put of 8.7Gbit/s. An Altera Stratix III was used. The block size was given by 1024 bits.
Another Keccak-f [1600] FPGA implementation was reported by AIST RCIS [1]. A

Xilinx Virtex-5 FPGA was used. The throughput is given by 8.40 Gbit/s. One input
block has the size of 1024 bits.
Strömbergson [36] reported an implementation for the Altera Stratix III FPGA. A

throughput of 10Gbit/s was presented. The block size is given by 1024 bits.
Baldwin et al. [3] implemented an architecture of Keccak-f [1600] with a block size

of 1088. They used a Xilinx Virtex-5 FPGA and reported a throughput of 6.27Gbit/s.
Our fastest implementation provides a throughput of over 34Gbit/s. This is a through-

put increase of more than 200% compared with the implementation presented in [15].
Therefore, it is even mentionable although di�erent block sizes and FPGAs were used.
A total other approach was reported by Homsirikamol et al. [15]. Their implementation

was pipelined to hash di�erent messages at the same time. As throughput they reported
19.2Gbit/s. Such an approach is not that important for encryption systems because in
many applications the speed for one message in signi�cant. But our implementation is
even faster than this multi-hash implementation. Therefore, this is also mentionable.
Summarized, we are able to report the fastest FPGA implementation of an AE system

based on Keccak-f [1600]. Detailed results of related work compared with ours can be
found in Table 7.4.
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Figure 7.6.: Throughput results of FastKeccak for the Virtex-7 XC7VX485T-
2FFG1761C FPGA.
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7.4. A Sponge against a Block

Up to now, most of the time block-cipher based algorithms are used for AE systems.
Very famous modes of operations are called O�set Codebook Mode (OCB) and Ga-
lois/Counter Mode (GCM). Muehlberghuber et al. [25] presented Advanced Encryption
Standard (AES) and Serpent implementations for these modes. They used an Altera

Stratix IV GT FPGA and presented for all architectures a throughput higher than
100Gbit/s. Our sponge-based system is around 3 times slower. This is due to the fact
that pipeline and multi-instance approaches are not suitable for our primitive. Detailed
results of the di�erent implementations of block-cipher and sponge-based AE systems
can be seen in Table 7.3.

Table 7.2.: Virtex-7 XC7VX485T-2FFG1761C FPGA results of FastKeccak.

Inst. FFs LUTs Frequency Throughput
[#] [#] [#] [MHz] [Gbit/s]

1 1607 5013 328.6 18.40
2 1607 7322 216.9 24.28
3 1606 9440 166.2 27.91
4 1605 11943 129.1 28.92
6 1605 16154 93.7 31.49
8 1604 21119 71.3 31.95
12 1604 29582 50.9 34.18
24 1602 57826 25.6 34.36

Table 7.3.: AE system results for block-cipher and sponge-based primitives.

Source Device Algorithm Mode TP
[Gbit/s]

Muehlberghuber et al. [25] Altera Stratix IV GT AES OCB 128.00
Muehlberghuber et al. [25] Altera Stratix IV GT AES GCM 105.00
Muehlberghuber et al. [25] Altera Stratix IV GT Serpent OCB 141.00
Muehlberghuber et al. [25] Altera Stratix IV GT Serpent GCM 104.00

This work
FastKeccak-12 Xilinx Kintex-7

XC7K325T2FFG900C

Keccak-f [1600] - 29.94

FastKeccak-24 Xilinx Virtex-7

XC7VX485T2FFG1761C

Keccak-f [1600] - 34.36
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Chapter 8
Conclusion and Future Work

This work dealt with implementations of an Authenticated Encryption (AE) system
based on the permutation of Keccak-f [1600]. First, a low-area design was the target.
This design is secured with countermeasures against power-analysis attacks. The imple-
mented countermeasures are called hiding and masking. Until now, 3 di�erent masking
schemes are available concerning Keccak. We decided to combine all schemes on the
resulting taped-out Application-Speci�c Integrated Circuit (ASIC), called Zorro. Each
scheme is implemented as an independent instance. The di�erent instances are fully
discrete AE systems and di�er only with regard to the applied masking scheme. Due
to the fact that all instances are combined on the same ASIC, their physical proper-
ties are rarely di�erent. Therefore, Zorro serves as an ideal evaluation platform for
the di�erent implemented countermeasures. In addition, the quantity of the performed
dummy operations is selectable by the user. Up to 15 dummy operations are possible.
This increases the evaluation opportunities of the ASIC furthermore. As a result, we can
present masking scheme implementations more than 50% smaller compared to related
work. Hence, we can introduce the smallest AE systems based on Keccak-f [1600] that
is secured with masking and hiding countermeasures. Besides, we presented a detailed
power analysis of an encryption followed by a Correlation Power Analysis (CPA) against
one instance. The attack was mounted on di�erent encryptions (non-protected encryp-
tion, encryption protected with hiding, and encryption protected with masking). With
the attack against the non-protected encryption, we were able to reduce the security of
the system from 256 bits down to 96 bits. All power analyses were performed based on
the simulated power consumption of the ASIC. Since, our design was also taped out,
the next task is to attack the fabricated ASIC. Afterwards, a comparison between the
simulation-based results and the real power analysis can be made. This comparison can
be used to interpret simulation-based results of further power analysis better.
The second target was a high-throughput implementation of the AE system. High-

throughput trimmed implementations are mostly needed in environments which are not
accessible by a public domain. In addition, countermeasures against power analyses
reduce the computation speed. Therefore, this implementation does not provide addi-
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8. Conclusion and Future Work

tional security against power analysis. The design was synthesized for both, a Xilinx

Virtex-7 Field Programmable Gate Array (FPGA) and a Xilinx Kintex-7 FPGA. The
highest throughput is given by 34.36Gbit/s and 29.94Gbit/s, respectively. To the best
of our knowledge this is the fastest FPGA AE system implementation based on Kec-

cak-f [1600].
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Appendix A
Zorro- ASIC Datasheet

A.1. Features

• Technology

� United Microelectronics Corporation (UMC) 180 nm

• Cryptographic performance1

� 3-Share instance (norm/masked):

� 3-Share-Star instance (norm/masked):

� 4-Share instance (norm/masked):

21888/113184Cycles

21888/113184Cycles

21888/149640Cycles

• Area

� 3-Share instance:

� 3-Share-Star instance:

� 4-Share instance:

� Altogether:

14000Gate Equivalent (GE)

14500GE

17000GE

46000GE

• Estimated power consumption

� 3-Share instance:

� 3-Share-Star instance:

17.29mW

19.69mW

124 Keccak-f [1600] rounds
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A. Zorro- ASIC Datasheet

� 4-Share instance: 20.80mW

• Package

� QFN 56 (8x8)

• Maximum operating speed

� 200MHz

• Pads

� 8-pad padframe power supply pins

� 8-pad core power supply pins

� 40 Input/Output (I/O) pins

• Supply Voltages

� 3.3V pad supply

� 1.8V core supply

A.2. Applications

Zorro is and AE system based on the Keccak permutation and can run in several
modes:

• Normal Mode (NM): The en-/decryption is performed without countermeasures.

• Masked Mode (MM): The operation is secured with secret sharing.

• Hiding Mode (HM): The calculation is performed in a normal way but there are
additional hiding operations performed.

• Secure Masked Mode (SMM): Secret sharing and hiding operations are com-
bined.

A.3. Packaging

As package a QFN65 package is used. This package provides 8x8 = 56 pins.

A.4. Bonding Diagram

The ponding of Zorro can be seen in Figure A.1.

A.5. Pinout

The pinout of Zorro can be seen in Figure A.2.
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A. Zorro- ASIC Datasheet

Figure A.1.: The bonding used by Zorro.
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Figure A.2.: Pinout of Zorro.
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A.6. Pin Description

A detailed pin description can be found in Table A.1

A.7. Interface Description

downtime downtimedata transfer data transfer

ClkUser

ClkZorro

InReqxSI

InAckxSO

Figure A.3.: Sequence diagram for sending data from the user to Zorro.

downtime downtimedata transfer data transfer

ClkZorro

ClkUser

OutReqxSO

OutAckxSI

Figure A.4.: Sequence diagram for sending data from Zorro to the user.

As communication interface Zorro uses a four way handshake protocol. Zorro expects
the input in byte chunks. The sequence of the communication interface protocol can be
seen in Figure A.3 and Figure A.4.

92



A. Zorro- ASIC Datasheet

Table A.1.: Pin description of Zorro.

Pad name Description

pad_vcc_p1, pad_vcc_p2
pad_vcc_p3, pad_vcc_p4
pad_gnd_p1, pad_gnd_p2
pad_gnd_p3, pad_gnd_p4

Power supply for the padframe (3.3V)

pad_vcc_c1, pad_vcc_c2
pad_vcc_c3, pad_vcc_c4
pad_gnd_c1, pad_gnd_c2
pad_gnd_c3, pad_gnd_c4

Power supply for the core (1.8V)

pad_OutAckxSI, pad_InAckxSO Acknowledge signal of the user and the chip
pad_OutReqxSO, pad_InReqxSI Request signal of the chip and the user
pad_KeccakPermuxSO High if chip performs the Keccak permutation
pad_KeccakCNTxSO[4:0] Outputs the actual round of the permutation

pad_SelModexSI[1:0]

x0 ⇒ Encryption
x1 ⇒ Decryption
0x ⇒ Normal Mode
1x ⇒ Masked Mode

pad_SelUnitxSI[1:0]

00 ⇒ 3-Share instance
01 ⇒ 3-Share-Star instance
10 ⇒ 4-Share instance
11 ⇒ RAM Testmode

pad_SelNumberxSI[3:0]
Quantity of dummy operations
0 <⇒ Hiding mode

pad_ClkxCI Clock Input
pad_RstxRBI Asynchronous Reset Input (Active low)
pad_ScanEnxTI Signal to run the chip in ScanChain-Testmode
pad_StartxSI Must be high to start a computation

pad_NoOutxSI
Output communication is skipped
(For key/header data transmission)

pad_LastxSI
Input communication is skipped
(For the Message Authentication Code (MAC) computation)

pad_InxDI[7:0] Parallel data input (reused as ScanChain input)
pad_OutxDO[7:0] Parallel data output (reused as ScanChain output)
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A. Zorro- ASIC Datasheet

A.8. Operation Modes

A.8.1. Functional Modes

• pad_SelcUnit[1:0] = 0b00: The 3-Share instance is active.

• pad_SelcUnit[1:0] = 0b01: The 3-Share-Star instance is active.

• pad_SelcUnit[1:0] = 0b11: The 4-Share instance is active.

• pad_SelModexSI[0] = 0b0: The chip is in encryption mode. During pad_NoOut
is high, no output is transmitted to the user. Therefore, key and/or header data
can be sent to the chip. Afterwards, for each 1088-bit block the chip sends back
a 1088-bit block (cipher text). If the user raises pad_Last the chip ignores the
input for the next transmission and outputs the MAC. After this transmission the
encryption is done and the chip can be started for a new computation.

• pad_SelModexSI[0] = 0b1: The chip is in decryption mode. During pad_NoOut
is high, no output is transmitted to the user. Therefore, key and/or header data
can be sent to the chip. Afterwards, for each 1088-bit block the chip sends back
a 1088-bit block (plain text). If the user raises pad_Last to high the chip ignores
the input for the next transmission and outputs the MAC. After the transmission
the encryption is done and the chip can be started for a new computation.

• pad_SelModexSI[1] = 0b0: The activated instance runs in NM.

• pad_SelModexSI[1] = 0b1: The activated instance runs in MM.

• pad_SelNumberxSI[3:0]: If this number is higher than zero the chip runs in
HM. In Addition, this number de�nes the dummy operation quantity.

A.8.2. Test Modes

• pad_ScanEnxTI: If this signal is high, the chip runs in ScanChain-Test mode. A
full scan chain approach is used to test the ASIC (not the Random-Access Memory
(RAM) units). As in- and output pad_InxDI and pad_OutxDO can be used in
parallel. In addition, pad_SelUnitxSI[1:0] = 0b11 and pad_SelModexSI[1:0] =
0b00 must be given!

• pad_SelUnitxSI[1:0] = 0b11: The chip runs in RAM-Testmode. To select
between the di�erent RAM macros on the chip SelMode is reused:

� pad_SelModexSI[1:0] = 0b01: The RAM macro of the 3-Share instance
can be tested. Therefore, the chip expects 608 bytes transmitted with the
four way handshake protocol. The content of each byte is stored soaring
from address 0x000 to 0x25F. Afterwards, Zorro sends the bytes back to the
user, again with the help of the for way handshake protocol and soaring from
address 0x000 to 0x25F.
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� pad_SelModexSI[1:0] = 0b10: The RAM macro of the 3-Share-Star in-
stance can be tested. Therefore, the chip expects 608 bytes transmitted with
the four way handshake protocol. The content of each byte is stored soaring
from address 0x000 to 0x25F. Afterwards, Zorro sends the bytes back to the
user, again with the help of the for way handshake protocol and soaring from
address 0x000 to 0x25F.

� pad_SelModexSI[1:0] = 11: The RAM macro of the 4-Share instance can
be tested. Therefore, the chip expects 808 bytes transmitted with the four way
handshake protocol. The content of each byte is stored soaring from address
0x000 to 0x327. Afterwards, Zorro sends the bytes back to the user, again
with the help of the for way handshake protocol and soaring from address
0x000 to 0x327.

A.9. Initialization

Zorro can handle di�erent modes of operations. The user is responsible to transmit the
random values used by the ASIC. This section gives an overview of how many random
values are needed for the initialization. All required numbers must be sent with the help
of the four way handshake protocol before the computation starts.

• 3-Share instance
� NM: No random values are needed.

� HM: 4 bytes are needed to initialize the Linear Feedback Shift Register
(LFSR).

� MM: 400 bytes are needed to initialize the three shares.

� SMM: 404 bytes are needed. The �rst 4 bytes belong to the LFSR, the rest
to the three shares.

• 3-Share-Star instance
� NM: No random values are needed.

� HM: 4 bytes are needed to initialize the LFSR.

� MM: 404 bytes are needed. The �rst 4 bytes belong to the LFSR, the rest to
the states.

� SMM: 404 bytes are needed. The �rst 4 bytes belong to the LFSR, the rest
to the three shares.

• 4-Share instance
� NM: No random values are needed.

� HM: 4 bytes are needed to initialize the LFSR.

� MM: 600 bytes are needed to initialize the four shares.
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� SMM: 604 bytes are needed. The �rst 4 bytes belong to the LFSR, the rest
to the four shares.

A.10. Data transfer

Due to the fact that Zorro was designed to minimize the area of each instance, it
processes the data of a block in a non-linear way. This section should give an explanation
of how the ASIC expects the input data.
All instances can only handle blocks of 1088 bits. The �rst lane, 64 bits, can be

transmitted in a linear way. Afterwards, this is not any longer the case for the remaining
bits. The following byte has to contain the next four bit of the �rst and second slice.
The four most signi�cant bits of the byte represent the bits of the �rst slice. The four
least signi�cant bits of the byte represent the bits of the second slice. This is done until
all bits of the �rst and the second slice are transfered. The slice transfer is continued
with slice number 3 and 4, 5 and 6, and so on. This is done until all slices are transfered
to Zorro. The transmission from Zorro to the user is done in the same way. A pseudo
code for the transmissions can be found in Algorithm 1.
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Algorithm 1: A description of the data transfer to and from Zorro.
input : A block I of the size 1088
output: A block O of the size 1088

1 for i← 0 to 135 do
2 if i < 8 then
3 InxDI = I[(i · 8)− 1 : (i− 1) · 8];
4 else
5 O�s = ((64 + 128 · ((i− 8)/16));
6 InxDI[7:4] = I[O�s + (((i− 7) mod 16) · 4)− 1 : O�s + ((i− 8) mod 16) · 4];
7 O�s = O�s + 64;
8 InxDI[3:0] = I[O�s + (((i− 7) mod 16) · 4)− 1 : O�s + ((i− 8) mod 16) · 4];
9 end
10 end

11 Computation of Result;

12 for i← 0 to 135 do
13 if i < 8 then
14 O[(i · 8)− 1 : (i− 1) · 8] = OutxDO;
15 else
16 O�s = 64 + 128 · ((i− 8)/16));
17 O[O�s + (((i− 7) mod 16) · 4)− 1 : O�s + ((i− 8) mod 16) · 4] =

OutxDO[7:4];

18 O�s = O�s + 64;
19 O[O�s + (((i− 7) mod 16) · 4)− 1 : O�s + ((i− 8) mod 16) · 4] =

OutxDO[3:0];
20 end
21 end
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Appendix B
Task Description

On the following pages, the original task description is given. It starts with a short
introduction into the topic. Afterwards, the actual thesis description is given followed
by the goals of the thesis. A short project plan is given next. Finally, the deliverables
are noticed.
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1 Introduction

In October 2012, the National Institute of Standards and Technology (NIST) announced [4] that
Keccak [7, 8, 9, 10] has been selected as the winner of the SHA-3 hash competition [3]. The
underlying building principle of Keccak is a so-called sponge construction [5] as illustrated in
Figure 1.

Figure 1: Sponge construction.1

Keccak is based on a new cryptographic hash family, the so-called sponge function family [5].
As opposed to existing hash algorithms, which are classically based on the Merkle-Damgård
construction, a fixed length permutation f is used to allow the handling of arbitrary length
inputs and to produce fixed length outputs, e.g., 224, 256, 384, or 512 bits. The permutations
are performed on a state with a fixed size of b bits. The state is cut into two parts of size r
(bitrate) and c (capacity), respectively. The bitrate defines the number of input bits, which
are processed in one block permutation. The capacity of the sponge function represents the
remaining bits of the state, i.e., c = b − r. The authors of Keccak proposed values for r and
c in their submitted Keccak specification [10], e.g., b = 1600, r = 1088, and c = 2n = 512,
where n is the length of the output.

Hashing works as follows. First, the state is initialized with zeros (0b) and the input is padded
to a length that is a multiple of r using the multi-rate padding scheme [8]. After that, it is
cut into blocks of size r. During the initial absorbing phase, the message blocks are XORed
with the first r bits of the state, followed by a single state permutation f . After the sponge
has absorbed the whole message, it switches to the squeezing mode in which r bits are output
iteratively (again followed by single state permutations if longer outputs are expected).

While Keccak represents the most famous example of cryptographic primitives based on such
a two-phase sponge approach, sponge constructions and its derivative, the duplex construc-
tions [6], are not limited to the use of hash functions. Authenticated encryption (AE) is one
of the primitives, which can be realized based on such a duplex construction and assures both
confidential and authentic transmissions between two communicating parties. As illustrated in

1The figure has been taken from http://keccak.noekeon.org/ and is available under the Creative Commons
Attribution license.
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Figure 2, the core-component of a duplex-construction is also the underlying permutation f and
its structure is rather similar to the one of a sponge-construction.

Figure 2: Duplex construction.2

Choice of the Permutation Function f

Since Keccak has emerged as the winner of the SHA-3 hash competition back in 2012, several
ideas on how to standardize Keccak as the new SHA-3 have been proposed by NIST. Currently
NIST prepares a FIPS draft standard including Keccak with two capacities (c = 256 and
c = 512), which will be available at the end of October 2013 according to John Kelsey from
NIST [11]. SHA-3 will provide the same security level for pre-image resistance and collision
resistance. Furthermore, the padding scheme will be different to the proposal of the authors.
During this work we are going to focus on the permutation suggested by the Keccak authors
and adopted by NIST in order to realize the desired AE system.

2 Project Description

Throughout this project, we are focusing on the duplex-construction-based authenticated en-
cryption (AE) service. The main goal of the work will be the development of a hardware archi-
tecture performing the overall AE process. Low area and low power will be of utmost importance
for this design. Moreover, countermeasures against DPA attacks should be implemented.

2.1 Low-Area DPA-Secure ASIC Architecture

One of today’s most powerful, side-channel-based attacking techniques are based on so-called
differential power analysis (DPA) [12]. In order to protect our implementation from these
attacks, Shamir’s secret sharing technique [13] should be incorporated, i.e., DPA resistance

2The figure has been taken from http://keccak.noekeon.org/ and is available under the Creative Commons
Attribution license.
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should be guaranteed through a masking technique as proposed by Bertoni et al. [15] and a
hiding approach.

Masking. In this project, we achieve DPA resistance by applying a secret sharing technique.
A variable is therefore represented by two or more shares where the sum (usually a bit-wise
operation) equals to the native variable. The idea is to split all intermediate variables of the
cryptographic implementation into several parts/shares. Thus, the native intermediate variable
will not be processed by the device directly and can not be targeted by side-channel attacks.
Only the shares of the variable will be processed which are generated randomly. Note that if
m+1 shares are used, the countermeasure basically provides resistance tom-th order DPA/CPA
(correlation power analysis) only (without considering glitch problems in dedicated hardware
implementations, see Bertoni et al. [15]).

While secret sharing for linear operations is easy because the operation can be applied on each
share independently, non-linear operations require special handling (non-trivial problem). In
case of the permutation used within Keccak, there is the only operation χ, which includes
non-linear state permutations. All other four permutation functions are linear and can be easily
combined. Thus the following requirements with regard to the masking countermeasure have to
be fulfilled:

• For the linear operations only two shares should be used.

• For the non-linear operation three shares should be used.

• It should be possible to enable/disable the masking.

Hiding. In addition to secret sharing, a randomization technique (hiding [12]) should be in-
cluded. The randomization should randomize/shuffle the permutations to hide the intermediate
shares in addition to the masking countermeasure. This can be achieved by inserting dummy
operations for different permutations. The higher the number of dummy operations, the higher
the resistance against (first order) DPA attacks. Regarding the hiding technique, the following
expectations should be met:

• The number of dummy operations should be configurable.

• It should be possible to enable/disable the hiding countermeasure.

2.1.1 Low-Area Design Techniques

The design of the AE scheme should target low-resource devices, so low power and area are
the most important requirements. To achieve this goal, several optimizations might help (for
more information on how to design a low-resource design of the Keccak permutation see
Pessl et al. [16]):

• Use of a RAM macro to store the (shared) state(s).

• Implement a Finite State Machine (FSM) for controlling.

• Round constants for ρ and ι should be stored in a look-up table (not in an LFSR).
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• All shares should be processed sequentially (not in parallel).

• The round function has to be modified to separate all permutation functions.

2.1.2 Hardware Trojan

A hardware Trojan should be included in the design. The Trojan should disable the countermea-
sures individually (i.e., masking and hiding should be enabled/disabled separately). It consists
of a comparator unit which compares the input for a certain message and should deactivate the
countermeasure (set the masks to zero if enabled or apply no dummy permutations).

3 Goals

Throughout this work, the main goal is the development of a DPA-secure low-area ASIC ar-
chitecture for authenticated encryption based on the duplex-construction. The results of the
project should answer the following questions:

1. What is the area footprint of the authenticated encryption system based on the duplex-
construction using the Keccak permutation?

2. How large is the area overhead for the implemented DPA countermeasures?

3. Is the DPA-protected version of the architecture still suitable for low-resource devices?

4. How large is the overhead of the masking compared to the hiding?

5. What is the overhead of the hardware Trojan?

4 Milestones

The following is a list of expected milestones of the project.

1. Project plan delivery

2. High-level model

3. Intermediate report delivery

5. VHDL implementation

6. Back-annotated ASIC netlist

7. Final report delivery
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5 Project Realization

5.1 Project Plan

Within the first month of the project you will be asked to prepare a project plan. This plan
should identify the tasks to be performed during the project and set deadlines for those tasks.
The prepared plan will be a topic of discussion of the first week’s meeting between you and your
advisors. Note that the project plan should be updated constantly depending on the project’s
status. Figure 3 illustrates a preliminary project plan which may serve as a starting point for
you. Furthermore, it already highlights some important events of your project.

September October November December January February March

Literature Study

High-Level Model

Architecture Design

VHDL Implementation

Backend Design

Documentation 1 32 4 5

3 Design Review1 Project Plan 2 Intermediate Report 4 Presentation 5 Final Report

Figure 3: Preliminary project plan.

5.2 Meetings

Weekly meetings will be held between the student and the assistants. The exact time and
location of these meetings will be determined within the first week of the project in order to fit
the students and the assistants schedule. These meetings will be used to evaluate the status and
progress of the project. Beside these regular meetings, additional meetings can be organized to
address urgent issues as well.

5.3 VHDL Guidelines

In the following some guidelines for coding VHDL are given:

• Naming Conventions: Adapting a consistent naming scheme is one of the most impor-
tant steps in order to make your code easy to understand. If signals, processes, and entities
are always named the same way, any inconsistency can be detected easier. Moreover, if a
design group shares the same naming convention, all members would immediately feel at
home with each others code. At the IIS we make use of the naming convention proposed by
the Microelectronics Design Zentrum [1]. Thus, try to maintain their naming convention
in order to create readable and maintainable VHDL code.
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• Emacs Editor: The preferred editor for writing VHDL code is the Emacs editor, as it
has a really advanced VHDL mode. Because of this, you should get comfortable with the
idea of using Emacs, even if you like a different editor.

5.4 Reports

Documentation is an important and often overlooked aspect of engineering. One short inter-
mediate report and one final report (the Master Thesis) are to be completed within this study.
Note that the intermediate report should be designed to be part of the final report.

The common language of engineering is de facto English. Therefore, the intermediate and final
report of the work are preferred to be written in English. Any form of word processing software
is allowed for writing the reports, nevertheless the use of LATEX with Tgif3 or any other vector
drawing software (for block diagrams) is strongly encouraged by the IIS staff.

First Intermediate Report This report should be written in such a way to become the first
part of your final report. It should contain general information about the topic, a description
of the problem, explanations of related terminology, and descriptions of similar approaches in
literature (with corresponding references to books, papers, etc.). It should roughly contain the
“theoretical part” of your Master Thesis and has to be handed in before Christmas.

Final Report The final report has to be presented at the end of the Master Thesis and a digital
copy as well as a printed one needs to be handed in and remains property of the IIS. This report
is only accepted if the keys for the ETZ building as well as those for the student working room
have been properly returned. Note that this task description is part of your thesis and has to
be attached to your final report.

5.5 Design Review

Since the design developed throughout this project is supposed to be manufactured using an
appropriate semi-conductor technology, a review of the chip design will be held during late
November. The exact date of the review will be determined a few weeks in advance.

5.6 Presentation

There will be a presentation (20 min presentation and 5 min Q&A) at the end of this project in
order to present your results to a wider audience. The exact date will be determined towards
the end of the work.

3Tgif is a simple vector drawing software, quite useful for drawing block diagrams. For further information about
Tgif we refer to http://bourbon.usc.edu:8001/tgif/index.html and http://eda.ee.ethz.ch/index.php/
Tgif.
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6 Deliverables

Throughout the project, the following deliverables have to be submitted in order to finish the
work successfully:

• Project plan

• Intermediate report

• Final report

• Project CD/DVD incl. source codes,
documentation, and presentation

• High-level model source files

• VHDL implementation

• Back-annotated netlist of final ASIC
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