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Abstract

In this thesis we address the problem of recognizing hand-drawn sketches of
versatile types of object categories. This has diverse application fields in com-
puter vision as well as computer graphics. Sketch recognition can e.g. be inte-
grated in search engines, where the query is an image instead of text. Further,
the 3D modeling of a complex scene can e.g. be supported with this technique.
However, the task is difficult, as the appearance of the sketch depends on the
drawer and his/her drawing skills. Further, the imagination of what a typical
sketch of a certain object looks like, varies a lot. Another challenge is the
visual likeness of specific categories. Therefore, most previous works in this
field constrained themselves to a specific sketch domain such as e.g. recognizing
primitives or symbols. In this thesis we introduce a general sketch recognition
algorithm without this constraint. We investigate the relation between conven-
tional image and sketch recognition. Further, we discuss our assumption that
well studied techniques of the image recognition domain can be successfully
transferred into the sketch domain. In order to do so, we perform exten-
sive evaluations for every step involved in a Bag-of-Visual-Words based image
recognition pipeline. We show that it is indeed possible to apply techniques
designed for the image domain to sketch recognition, however the individual
steps have to be carefully tuned in order to obtain a high performance. Our
sketch recognition algorithm is designed to be both accurate as well as effi-
cient to be able to provide immediate recognition feedback. In experiments we
show that our approach achieves state-of-the-art performance on a large-scale
sketch dataset with 250 categories, predicting the correct category for 63% of
the sketches. Further, we show an augmented reality application, where a 3D
model of the category of an online drawn sketch is augmented in a live video
stream.

Keywords: sketch recognition, image representation, bag-of-visual-words,
visual dictionary learning, sparse coding, spatial pyramid





Kurzfassung

In dieser Abschlussarbeit beschäftigen wir uns mit dem Problem der Erken-
nung von handgezeichneten Skizzen von vielseitigen Arten von Objektkate-
gorien. Dies hat vielfältige Anwendungsfelder im Bereich des Maschinellen
Sehens sowie der Computergraphik. Skizzenerkennung kann z.B. in Such-
maschinen eingebaut werden, sodass als Suchanfrage ein Bild anstatt eines
Textes verwendet wird. Weiters kann z.B. auch das Modellieren einer kom-
plexen 3D Szene mit diesem Verfahren unterstützt werden. Allerdings ist diese
Aufgabe schwierig, da das Aussehen einer Skizze von dem/der ZeichnerIn
abhängt und seiner/ihrer Zeichenfähigkeit. Zusätzlich variiert die Vorstel-
lung wie eine typische Skizze eines bestimmten Objektes aussieht, stark. Eine
zusätzliche Herausforderung ist die visuelle Ähnlichkeit konkreter Kategorien.
Aufgrund dessen hat sich der Großteil der früheren Arbeiten auf diesem Ge-
biet auf ein spezielles Gebiet von Skizzen eingeschränkt wie z.B. die Erken-
nung von Standardformen oder Symbolen. In dieser Abschlussarbeit stellen
wir einen allgemeinen Algorithmus zur Erkennung von Skizzen ohne diese
Einschränkung vor. Wir untersuchen die Beziehung zwischen konventioneller
Bild- und Skizzenerkennung. Weiters diskutieren wir unsere Annahme, dass
ausführlich untersuchte Verfahren aus dem Bereich der Bilderkennung erfol-
greich in die Skizzendomäne überführt werden können. Um dies umzusetzen
führen wir umfangreiche Auswertungen für jeden benötigten Schritt einer Bag-
of-Visual-Words basierten Bilderkennungspipeline durch. Wir zeigen, dass das
Anwenden, der für den Bildbereich konzipierten Methoden, auf Skizzenerken-
nung tatsächlich möglich ist, allerdings müssen die einzelnen Schritte sorgfältig
abgestimmt werden um eine hohe Leistung zu erreichen. Unser Skizzenerken-
nungsalgorithmus ist so konstruiert, dass er sowohl präzise als auch effizient
ist um eine unmittelbare Rückmeldung zur Erkennung bereitzustellen. In Ex-
perimenten zeigen wir, dass unser Ansatz State of the Art Ergebnisse auf
einen umfangreichen Skizzen-Datensatz, bestehend aus 250 Kategorien, erre-
icht, welcher die richtige Kategorie von 63% der Skizzen voraussagt. Weiters
führen wir eine Augmented Reality Applikation vor, in der ein 3D Modell
von der Kategorie einer online gezeichneten Skizze in einen live Video-Stream
dargestellt wird.

Stichwörter: Skizzenerkennung, Bilddarstellung, bag-of-visual-words, visual
dictionary learning, sparse coding, spatial pyramid
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1 Introduction

Sketches give humans the ability to describe their world or certain objects of
it without using verbal communication. Drawing sketches can therefore be
seen as an alternative way of communication. Interpreting and understand-
ing sketches is not constrained by country borders or language regions. If
someone e.g. draws a sketch of a simple stickman, it would be recognizable by
most of the people around the world. As a result of that, in some scenarios
it can be easier to exchange information by sketches rather than by verbal
communication or written text.

We frequently encounter sketches in our everyday life, as one typical ex-
ample let us consider the safety instruction card available in every airliner.
This card is essential because not all travelers have the ability of understand-
ing the language spoken on board or to hear the instructions of the crew
e.g. due to certain confounding factors. An example of such a safety card
can be seen in Figure 1. Although not a single word is used, we recognize and
understand the provided information. We learn e.g. which preparations are
needed for the take-off and landing procedures: to bring our seat in a vertical
position and to store all of our handluggage in the overhead locker. Further
the safety card depicts the steps necessary in case of an emergency landing.
Therefore we see that understanding sketches is not only essential but can
even be life-saving. Pictograms can also be seen as a form of sketches and
are used for information brokerage. They are e.g. often placed on airports,
rail stations or on motorways to provide information about the location of
certain facilities, such as a call box, a lavatory or a filling station. Again this
happens without using any text. Examples of pictograms frequently seen in
road traffic or on motorway service areas are shown in Figure 2.

Sketches are also a popular tool for certain professional fields, such as
engineering, textile design or architecture. Often the first step in the de-
velopment of a new project is to bring down initial ideas on paper through
sketches. One popular example is car development where initial design ideas
are often depicted and stranded with sketches. Sometimes this step is sup-
ported by 3D-rendering software.

The history of sketches even starts in prehistoric times. Cave paintings
can be seen here as an early type of sketches. These paintings were usually
found on cave walls or ceilings all over the world (e.g. Europe, Africa, North
and South America, India, Australia and Southeast Asia) [3]. The oldest
ones were found in northern Spain (Cave of El Castillo) and were created
approximately 40 000 years ago [3]. In Figure 3 we can clearly see the relation
between cave art and what we would nowadays define as sketches. Although
this painting was drawn 40 000 years ago, we can easily name the object
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Figure 1: A safety card taken from a Boeing 737-600 of the SAS Scandinavian
Airline [1].

Figure 2: Generic pictograms often found in road traffic [2].
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category shown – ”rhinoceros”. This is also a desirable property for sketches.

Figure 3: A cave painting showing a rhinoceros in the Chauvet Cave in France
[4].

We already see that the task of sketch recognition accompanies us in our
everyday lives. In the following subsections we provide an overview, define
the task of sketch recognition in a more formal way and the contributions of
this master thesis.

1.1 Overview and Definition

In this master thesis we want to investigate the ability of computer vision
approaches to perform sketch recognition. Such an algorithm can be applied
to many fields of both computer vision and computer graphics. A search
engine can benefit due to the fact that a user has the possibility of drawing
a sketch rather than providing a keyword. Further, a carefully designed
sketch representation can be used to obtain similar sketches or real-world
images given a user drawing. Also the 3D modeling of complex scenes can
be supported. Instead of a textual search a more suitable search query, a
drawing of the desired model, is provided. An example for that would be a
sketch of e.g. a specific chair model from a certain viewpoint. In that way the
desired 3D model can be found more easily and faster. In further consequence
such an accelerated search can also be interesting for the computer game and
film industry. In general, many fields can benefit from a successful sketch
recognition approach.

However, most prior research in this area is limited to one specific domain
such as primitives or mathematical formulas. Although this is sufficient for
individual problems, we introduce an approach which is capable of recog-
nizing versatile types of object categories without this constraint. Only few
researchers have addressed this problem so far and in general the proposed
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algorithms are computationally expensive or only achieve a limited recog-
nition accuracy. Instead, we propose an algorithm with a high recognition
rate which at the same time is efficient enough to provide immediate feed-
back. In order to do so, we first reviewed the state-of-the-art in the related
field of image recognition. The reason for this is that we compared the two
recognition domains and identified shared properties. The comparison is dis-
cussed in detail in Section 1.2. As a result of that observation we decided
to integrate well studied image recognition techniques in our sketch domain
approach. In order to select methods which are also suitable in the sketch
domain we perform extensive evaluations whose results are incorporated in
our final sketch recognition algorithm.

We define a sketch as a human drawing which depicts exactly one object
of a certain category. Further, we declare the goal of sketch recognition as
the interpretation of the sketch content as one category out of a predefined
set (see Figure 4 for example sketches of different objects). Sketch recogni-
tion does not include a localization or detection step but aims at classifying
the sketch image. In contrast, in image understanding or object detection the
goal is to localize and classify all objects available in an image. See Figure 5
for two results of an object detection approach. However, the task of image
recognition is obviously related to sketch recognition.

(a) airplane (b) fish (c) pizza (d) monkey (e) bicycle (f) revolver

Figure 4: Example sketches of six (out of 250) categories from the TU Berlin
sketch dataset [5].

1.2 Image and Sketch Recognition Analysis

Image recognition is performed on natural images (e.g. a real-life image of an
object, a landmark or an animal). Therefore multiple objects of one or even
more categories can be present in one single image (problem 1). See e.g. Fig-
ure 6(a) which contains a cropped elephant, two sitting people and a bench.
Still, the ground truth category of this image is ”elephant”. Further, back-
ground clutter can be included in natural images (problem 2). This means
that background objects or things are available. In Figure 6(a) background
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(a) dog, person, car (b) cat

Figure 5: Results of an object detection approach taken from the Pascal VOC
2007 dataset [6]. The captions of the two figures state the object categories
found in the two images.

clutter in the form of grass, boles and leaves is present. However, additional
background can contain useful information for the recognition task. Ice floes
e.g. can help to recognize images of the category ”ice bear” or trees/grass can
provide evidence for the ”brown bear” label. The next challenging problem
is the intra-class variability (problem 3). Objects of one and the same cate-
gory can have a large amount of visual representations. The general category
”dog” e.g. consists of all dog breeds or the class ”car” includes all car types
and models. The pose of certain objects inside one category can vary (e.g. a
cat can sit on a scratcher or lies on the floor). A related problem is the inter-
class variability (problem 4). Although objects belong to different categories,
their visual appearance can look similar (e.g. for images containing bicycles
or motorbikes). The problem of various scales and translations also exists
for image recognition (problem 5). In other words, the size and position of
the object inside the image are not constant. Additionally, objects can be
photographed from different viewpoints (problem 6). The resulting images
can e.g. show a cat in a frontal view, side view or even back view. When
using natural images the problem of illumination can arise (problem 7). Two
images showing an identical scene can differ from each other due to different
weather conditions (e.g. sunny and rainy) or recording time (e.g. noon and
midnight). As a final problem in the image recognition domain we identify
the possibility of occlusions (problem 8). For an image taken e.g. inside a
forest, a tree bole can mask parts of a brown bear.

In the sketch domain usually binary images, which show the presence or
absence of sketch lines for each pixel, are used. See Figure 6(b) for an ex-
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ample sketch of an elephant. As only one object is depicted per sketch the
problem of multiple objects (problem 1 in the image domain) does not oc-
cur. Further, no background clutter (2) is present in sketch images as only
the object itself is drawn. However, the issue of intra-class variability (3)
is ubiquitous for sketches. We claim that this problem is exacerbated com-
pared to the image domain due to the fact that the visual representation
of an object solely depends on the drawer. Sketches containing the same
object can have very different characteristics and appearances depending on
the drawer. This factor is influenced by the drawing skills as well as how the
person thinks a typical instance of the given category looks like. A drawer
with the task to draw a sketch of e.g. a ”cat”, could think of a cat sitting on
a windowsill or lying on the floor. See Figure 7 for four sketches containing a
cat in various poses. Further, this can also be related to the viewpoint prob-
lem (6) in the image domain. However, we argue that this is not true for all
categories. A sketch of a cigarette e.g. is likely to be drawn in a meaningful
side view. We claim that for sketches there is a set of ”typical” views for
each category. Therefore, at a smaller scale the viewpoint problem is present
in the sketch domain but is indeed less difficult than for natural images.
The inter-class variability (4) is also effected due to the already mentioned
drawer-dependent sketch characteristics. For natural images showing e.g. a
seagull, a pigeon or a duck, the classification process is not a big problem
for most humans. However, in the sketch domain this can be a challenging
task as we see in Figure 8. Due to poor drawing skills and the lack of ad-
ditional (background/context) information (e.g. color or water) it is hard to
distinguish between these three bird categories. We argue that the problems
with varying scale and translation (5) do not exist in the sketch domain. As
only the sketch object is present, the extent can be determined. With this
information one can manipulate the object to achieve a constant sketch scale
and position. In contrast to natural images the problems of illumination (7)
and occlusions (8) do not occur. Unlike the image domain there exists a lack
of datasets and learning data for sketch recognition (problem 9). To the best
of our knowledge there only exists the large-scale TU Berlin sketch dataset
[5] suitable for our work in computer vision literature.

The ”big picture” of the investigated problems both for image and sketch
recognition can be found in Figure 9. From the previous analysis and the
summary of it given in Table 1, we see that there is indeed a close relation
between both fields. Although the images to be processed greatly differ from
each other (see Figure 6), similar problems occur. With the intra and inter-
class variability and the viewpoint issue, all of the shared problems can be
consolidated under the term visual appearance. However, we argue that the
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(a) natural image (b) sketch image

Figure 6: Comparison of a natural (from the Pascal VOC 2007 dataset [6])
and a sketch image (from the TU Berlin sketch dataset [5]) of the category
”elephant”.

Figure 7: Four example sketches of the category ”cat” with different repre-
sentations taken from the TU Berlin sketch dataset [5].

(a) seagull (b) pigeon (c) duck

Figure 8: Example for similar looking sketches from different but related bird
categories (taken from the TU Berlin sketch dataset [5]).
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intra-class as well as the inter-class variability are more distinctive in the
sketch domain. This comes from the dependence on the sketch drawer. On
the other hand, more ”typical” viewpoints need to be considered for natural
images.

Figure 9: ”Big picture” of the analyzed problems regarding image and sketch
recognition. The images used are taken from the Caltech-256 dataset [7].

In general we can say that humans are superb in handling these difficult
problems. Still, as mentioned and shown in Figure 8, the problem of related
and similar-looking categories can be hard even for humans. From a computer
vision point of view all problems are challenging. However, for the image
recognition domain, methods were developed which tackle these problems
and achieve high recognition rates. Due to the relation discussed we are
encouraged that such methods can also overcome the difficulties in the sketch
domain.

1.3 Conclusion and Contributions

In this master thesis we propose a novel algorithm for domain-independent
sketch recognition. We start with a detailed analysis of both image and sketch
recognition as well as their relations. Based on our insights we decided to

8



Image Recognition Sketch Recognition
Task Recognize image category Recognize image category
Images Natural color images Binary sketch images
Multiple Objects Yes No
Background Yes No
Intra-class Variability High Very High
Inter-class Variability High Very High
Fixed Scale/Position No Yes
Amount of Viewpoints Medium Low
Varying Illumination Yes No
Occlusions Yes No
Dataset Amount High Low

Table 1: A tabular conclusion of the relation between the sketch and image
recognition.

transfer well studied image recognition methods to the sketch domain. A
comprehensive list of techniques from relevant related work in the image do-
main is provided. In order to select suitable and compatible methods for
sketch recognition, an extensive evaluation is performed. To the best of our
knowledge we are the first to examine this topic in such extent. The result
of that evaluation phase is a sketch recognition algorithm which achieves
state-of-the-art performance on a large-scale sketch dataset. Beside recog-
nition performance we designed our pipeline to be efficient in the aspect of
runtime. This makes our algorithm suitable for interactive applications. Fur-
ther, our introduced sketch representation can be used in various retrieval
domains. We also show that we can achieve a reasonable performance for
the image recognition task without modifications of the algorithm.

The rest of this thesis is organized as follows. In Section 2 we investigate rele-
vant related work in general. This includes the original Bag-of-Visual-Words
method as well as other approaches for image and sketch recognition. Addi-
tionally, we discuss sketch-based retrieval methods. In Section 3 we discuss
how we use the Bag-of-Visual-Words method for sketch recognition. Fur-
ther, this section provides information for the investigated image recognition
methods. In Section 4 the extensive evaluation phase is covered and our final
sketch recognition algorithm is explained. We deal with final experiments,
statistics, recognition results and a developed augmented reality application
using our novel sketch recognition algorithm in Section 5. In Section 6 we
conclude and discuss directions for future work.
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2 Related Work

We first discuss the fundamental Bag-of-Visual-Words (BoVW) approach in
Section 2.1 as we focus on related work based on this method. Further,
our introduced sketch recognition algorithm uses this BoVW pipeline. An
overview of the state-of-the-art in the field of image recognition is given in
Section 2.2. This comes from the fact that we want to incorporate techniques
of this field in our sketch recognition algorithm as explained in Section 1.1
and 1.2. We finally investigate related sketch recognition and sketch-based
retrieval approaches in Section 2.3.

2.1 Bag-of-Visual-Words Overview

The BoVW method was introduced in the ”Video Google” approach of Sivic
and Zisserman [8] in the context of object retrieval in video sequences. An
image region containing the desired object is selected in a reference frame.
In the following we call this region the query region. Whenever this region
reoccurs in any frame of the video sequence it should be identified and lo-
calized. The approach is inspired by the related Bag-of-Words (BoW) model
used for text retrieval [9].

In the initial step of the approach, interest regions are detected for all
frames of the video sequence1. This is done by using Maximally Stable Ex-
tremal Regions (MSER) [10] which describe blob like structures by ellipses.
The Scale-Invariant Feature Transform (SIFT) descriptor [11] is used to de-
scribe these regions in a robust way. In this context robust means that
viewpoint changes up to 60 degrees as well as illumination changes can be
handled [11]. The obtained regions are tracked in the video sequence. Re-
gions which do not occur in more than four consecutive frames are rejected
to reduce noise. For the remaining regions, the average descriptors regarding
the tracking results, are used as a region representation.

In the next step a certain amount of the obtained descriptors is used
to create the so called ”visual vocabulary” or ”visual dictionary” using the
k-means clustering algorithm [12]. The individual elements of the visual
vocabulary are called ”visual words” or ”cluster centers” in the context of
the k-means algorithm.

This visual vocabulary is applied for vector quantization or ”descriptor
encoding”. This basically means that a descriptor (represented by a vector)
is expressed by its ”most similar” visual word. Thus, each descriptor is
assigned to its ”closest” cluster center in the descriptor space. We denote

1actually Sivic and Zisserman restrict themselves to one keyframe per second
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this method as ”hard encoding”. This is done for all descriptors of all frames
in the video sequence.

As also the descriptors inside the query region are encoded, baseline
matches are already obtained. This comes from the fact that multiple de-
scriptors are assigned to the same visual words. Still, the matches are noisy
and contain outliers. Therefore, a so called ”stop list” procedure is used,
which rejects the most common and the most uncommon visual words and
the corresponding matches. Another integrated mechanism uses the idea
of spatial consistency. This means that descriptors inside the query region
should be matched to descriptors that are situated in a certain neighborhood
in the investigated frame. If this requirement is not fulfilled, the matches
are rejected. The area containing the remaining matches forms the retrieved
region of interest. The number of obtained matches is taken as the query
ranking measure. Sivic and Zisserman achieved promising retrieval results
on two full length feature films with this method.

Another task investigated in [8] is (full) image retrieval. To characterize
a full scene, additional steps to the already discussed method have to be
performed. With all descriptors of an image assigned to one visual word, a
histogram of visual word occurrences is constructed. This histogram or fre-
quency vector is used as an image representation which is further weighted by
the term frequency-inverse document frequency (tf-idf) to encode the signif-
icance of certain visual words. A similarity measure like the cosine distance
between the resulting frequency vector of the query image and the histograms
of the images of a database is used to obtain the retrieval results.

To sum up describing an image using the ”traditional” BoVW approach
consists of the following steps: First, interest regions are extracted and a de-
scriptor per region is obtained. After that, the visual vocabulary, previously
learned by applying a clustering algorithm on a set of descriptors from a
training data set, is used to encode the descriptors. The resulting histogram
of visual word occurrences is weighted to form the final image representation.

In the following we take a look at related work in the field of image recogni-
tion which is based on this BoVW approach.

2.2 Image Recognition

The BoVW method was introduced to the image recognition domain by
Csurka et al. in [13]. To obtain interest regions, the Harris affine detector
[14] is used. As in the original Video Google approach [8], SIFT descriptors
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[11] are calculated to represent the detected regions. Further, k-means is
used to learn the visual vocabulary and the descriptors are assigned using
the hard encoding method. The resulting histogram of visual word occur-
rences forms the image representation. One-versus-all kernel Support Vector
Machines (SVMs) are trained using annotated training images. The one-
versus-all strategy means that for each category a binary SVM is learned to
distinguish this category from the remaining classes. Given a novel image
and the corresponding image representation, the responses of all SVMs are
obtained. The category of the SVM with the highest classification response
is used as the predicted image category. The approach showed promising
results on two standard image recognition datasets.

As a drawback of the conventional BoVW based methods, Lazebnik et al. [15]
identified the lack of usage of spatial information, since the information
about the spatial position of the individual descriptors is completely lost
(keyword ”Bag” in Bag-of-Visual-Words). The idea of introducing sub-
regions or blocks to describe local regions (e.g. [16]) as well as the full image
(e.g. [17, 18]) is a common method in the field of image and object recog-
nition. Therefore, Lazebnik et al. [15] proposed the usage of a pyramid
structure to include spatial information. The image is sequentially split in
a pyramid-like way2. For each arising sub-region a histogram of visual word
occurences is obtained, considering only descriptors that are located inside
the sub-region. The image is therefore represented by a set of histograms
which are further weighted according to their level in the spatial pyramid.
The final image representation is the concatenation of the individual his-
tograms. This mechanism is called the spatial pyramid framework. Further,
Lazebnik et al. [15] did not use a region detector but sampled image patches
on a regular grid. The approach was evaluated on three scene categorization
datasets and it was shown that the introduction of spatial information led
to an increased performance compared to the baseline BoVW approach. Be-
side the increased descriptor dimensionality and, as a consequence, increased
runtime, the spatial pyramid framework is still considered as state-of-the-art
in this field [19].

However, Yang et al. [20] argued that the spatial pyramid framework has
to be used with nonlinear kernels to obtain such performances. Although
in [21] it was shown that histogram intersection kernel SVMs can be trained
and evaluated efficiently, in [20] the even more efficient linear SVMs are used.
Further, instead of hard encoding, the sparse coding method was introduced.

2a 3-level pyramid (1× 1, 2× 2, 4× 4)

13



The basic idea of sparse coding is that one descriptor can be assigned to
multiple visual words. By using a linear combination of visual words the
descriptor can be modeled in a more accurate way. At the same time, the
amount of selected visual words should be small, hence the resulting assign-
ment vector should be sparse. This encoding method was already introduced
to diverse fields of computer vision. For example in [22, 23] for image de-
noising, in [24] for the task of image super-resolution and in [25] for texture
segmentation. Further, histograms of sparse codes obtained from raw image
patches were recently successfully incorporated for object detection in [26].
In the image recognition domain it was used on raw image patches in [27, 28].
Additionally, as many related approaches (e.g. [29, 30, 31]) dealt with the
topic of using more sophisticated discriminative dictionary learning methods
rather than k-means, Yang et al. introduced a novel algorithm to learn a
visual vocabulary optimized for sparse coding. In contrast, the optimization
criterion of k-means is independent of the used encoding method. For the
obtained sparse codes, the spatial pyramid framework is applied. In contrast
to [15] a strategy called max-pooling is applied. This means, that for all
codes of a sub-region, the maximum value per visual word entry is obtained.
Yang et al. claimed that this strategy is more robust to local transformations
[20]. Despite the usage of a more efficient classifier – linear SVMs – it was
shown that the performance is at least competitive or even outperforms the
approach of Lazebnik et al. [15] on certain datasets.

In [32], Wang et al. argued that the codes of [20] are sparse, but on the
other hand the selected visual words may not be visually similar to the
given descriptor. Therefore, the novel Locality-constrained Linear Coding
(LLC) method was introduced to solve this issue. Another advantage of
LLC compared to sparse coding is that the resulting optimization problem
has an analytical solution which makes computation more efficient. The LLC
computation can further be accelerated by only considering the k nearest-
neighbor visual words. This comes from the fact that this strategy already
covers the locality constraint. The nearest-neighbor search is performed effi-
ciently by an approximate method. Additionally, a novel dictionary learning
algorithm which is optimized for LLC was introduced in [32]. Three image
recognition datasets were used for performance evaluation. It was shown that
this algorithm outperforms the approach of Yang et al. [20] and experiments
pointed out that this approach achieves state-of-the-art performance.

An extension to the BoVW method was introduced in [33] by Perronnin
et al. Instead of only considering the visual word assignments for the encod-
ing step, additional information about the distribution of the descriptors is
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incorporated. Therefore, Fisher Vector (FV) encoding was suggested. The
basic idea is to fit a parametric generative model to the descriptors and fi-
nally encode the derivatives of the log-likelihood of the model with respect
to its parameters [34]. In [33], a Gaussian Mixture Model (GMM) was used
as such a model which further represents the visual vocabulary. In contrast
to related BoVW approach, it was shown in [33] that a smaller number of
visual words is sufficient for this more sophisticated FV encoding method.
Perronnin et al. further improved the FV encoding scheme in [35]. Among
others, the usage of FV encoding with the spatial pyramid framework [15] was
suggested. The resulting improved version of FV encoding (IFV) achieved
state-of-the-art performance on two challenging image recognition datasets
and can still be seen as the state-of-the-art in the field of image recognition.

2.3 Sketch Recognition

In the beginning of this section we discuss sketch recognition approaches
which focus on a specific domain (e.g. low-level primitives, chemical draw-
ings, electric circuit diagrams etc.). After that, we cover works done in the
general sketch classification domain. Finally, we deal with approaches in the
related field of sketch-based retrieval.

The task of sketch recognition is simplified by the restriction to one spe-
cific domain. We denote this as ”constrained sketch recognition”. In that
case usually only a small amount of categories has to be recognized. Due to
the shared domain the problems of intra- and inter-class variability can but
not necessarily must be less difficult. A line e.g. can be easily distinguished
from a circle in the low-level primitive domain. Related and similar symbols
(e.g. for the military diagrams) however are still hard to recognize. Never-
theless, a more specialized sketch representation can be developed. There
exists a lot of related work in the field of constrained sketch recognition. We
now briefly discuss some selected approaches of that domain.

Constrained Sketch Recognition
Paulson and Hammond [36] proposed a method to recognize eight low-level
primitives: lines, polylines, circles, ellipses, arcs, curves, spirals and helices.
A sketch is classified as a single primitive or as a combination of multiple
primitives, and a beautified version of the sketch is returned. This means
that e.g. after a line is recognized, it is replaced by a straight line which
connects the two obtained endpoints to create a perfect straight version. Re-
lated algorithms are used for the rest of the primitives. An example for this
sketch recognition and beautification approach can be seen in Figure 10. The
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actual recognition of the individual primitives is performed using geometric
constraints. A hierarchy of low-level primitives with an additional ranking
algorithm in order to obtain the most likely combination of primitives is in-
troduced. In an experiment almost perfect recognition results were achieved.

Figure 10: Three example sketches (combinations of primitives) and their
corresponding beautified version according to the recognized primitives (cap-
tions of the arrows) [36]. Each primitive type is illustrated by a different
color.

An application called MathPad was developed by LaViola Jr. and Zeleznik [37]
to solve and visualize mathematic problems. It is e.g. possible to recognize
a sketch of an equation system which is further solved and the result dis-
played. An additional feature is the automatic creation of plots for the given
mathematical expressions. An example sketch used to visualize the damped
harmonic oscillation can be seen in Figure 11. To interact with the sys-
tem, markers can be drawn inside the sketch (e.g. a dot, line or box) or the
corresponding icon in the graphical user interface (gui) can be selected. A
three stage algorithm was introduced to perform the actual recognition. In
the first step, the sketch is normalized and denoising techniques are applied.
Additionally, dominant points inside the sketch are obtained and certain
statistics for them are computed. After that, the first recognition step elim-
inates the most unlikely mathematical symbols. This step produces fast but
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coarse recognition results. In the last step, the leftover symbols are con-
sidered. The dominant points are used to get the fine recognition result.
After the symbols are classified, a post-processing parsing step is used to
detect e.g. exponents and fractions. The approach worked fine in most of
the cases, if proper drawer-specific training data was used. However, in [37]
it was claimed that the recognition stage needs some extensions to work as
expected.

Figure 11: Mathpad example to visualize the damped harmonic oscillation
[37].

In [38] Ouyang and Davis introduced an approach to recognize and inter-
pret chemical drawings or formulas. The output of this system is a complete
molecular structure [38]. Visual features for different levels of detail are used
in the recognition framework. A conditional random field model is applied
as a joint graphical model classifier [38]. The approach works in real-time
and achieved an almost perfect recognition rate in experiments.

A system for recognizing electric circuit diagrams was developed by Sez-
gin and Davis in [39]. This approach makes use of the stroke drawing order
and handles interspersing drawings [39]. An algorithm based on dynamic
Bayesian networks is incorporated for the recognition. Remarkable recog-
nition rates were achieved, however the system was not able to obtain a
recognition result in real-time.
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Hammond et al. [40] suggested an approach for the recognition of battle sce-
narios in terms of military course-of-action (coa) diagrams. A large amount
of symbols can be classified. In this domain, symbols can be complex and
e.g. contain primitives ordered in a hierarchical order as well as handwrit-
ten text. In the first step of the algorithm boundary lines are detected and
handwriting as well as sub-unit detection procedures are performed. As a
next step, corners are obtained before primitive classification using [36] takes
place. After that, so called mid-level shapes are determined. Finally, the
high-level shape recognition procedure is applied using all of the previously
obtained results. As a post-processing step, sub-units which were not recog-
nized, are used as an input for the arrow recognizer. Further, all recognized
symbols are tagged with a unique symbol identification code to label their
semantic meaning. The approach achieved a high accuracy in experiments
when considering the top recognition results per symbol.

Generic Sketch Recognition
Sun et al. [41] introduced a general sketch recognition approach. This means
that no domain restriction was given. A dataset consisting of one million
clipart images was collected from the internet and used as a knowledge base.
Sun et al. claimed that clipart images have similar characteristics as sketches
[41]. However, clipart images can additionally contain textural information
such as e.g. titles or surrounding text. A sketch-to-clipart image search en-
gine, based on [42], was used to retrieve visually similar cliparts given a
sketch. For the obtained results (the retrieved clipart collection), matching
scores are available which are used in the subsequent recognition method. For
this proposed algorithm, a hierarchical model, consisting of an object topic
layer (the category) and a shape topic layer (the shape), is learned. Sketches
of different object categories and therefore object topics as e.g. ”sun” and
”bulk”, can be assigned to the same shape topic in the corresponding layer.
The model is built with the Expectation-Maximization (EM) algorithm and
uses both visual and textural information of the retrieved clipart collection.
The recognition result is obtained as the category with the highest model
response. In experiments it was shown that this Query-adapted Shape Topic
(QST) model works well on a shape dataset as well as on the introduced
sketch dataset [41]. Although the dataset consists of a large number of cat-
egories, only one sketch per class is available. Further we argue that the
additional clipart search engine is not necessary for sketch recognition and
that with this approach it is not possible to get immediate recognition results.

A more relevant algorithm was developed by Eitz et al. [5], where for the first
time the general sketch recognition task was examined in a large scale setting
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[5]. For that reason a sketch dataset consisting of 250 categories and overall
20 000 sketches was introduced. More details about this dataset, which we
also use throughout this thesis, are given in Section 4.1. The developed al-
gorithm is based on the BoVW model. For large image patches extracted on
a regular and overlapping grid, the introduced Local Histograms of Oriented
Gradients (SHOG) [43] descriptors are obtained. SHOG is closely related to
SIFT [11]. However no magnitude information is taken into account. In the
encoding step, soft or kernel-codebook encoding [44, 45] is used. The basic
idea of soft encoding is to assign one descriptor to a set of similar visual
words. As in [13], one-versus-all kernel SVMs are incorporated as a classifier.
A remarkable recognition accuracy was achieved on the introduced dataset
when the majority of the sketches were used for classifier learning. Further, a
human sketch recognition experiment on this dataset was performed and the
results were discussed in [5]. We argue that although high recognition scores
are achieved for this BoVW approach, more sophisticated pipeline elements
can lead to an improved performance.

Li et al. [46] proposed a recognition algorithm based on the ensemble match-
ing strategy. In contrast to [5], the descriptors are obtained for patches
located on sketch lines. A star graph is created with the patch positions
used as nodes. The edges are links between these positions and the graph
center. The descriptors are introduced as edge weights. The ensemble match-
ing problem can be seen as a graph matching problem: given a query graph,
find the most similar graph in the database. Further, to limit the amount
of graphs to be compared, category filtering is applied. This means, that
the most promising categories are obtained by a default BoVW based pro-
cedure similar to [5]. Afterwards, the graph matching problem is applied
to the graphs of the remaining categories. The final recognition result is
obtained as the category which occurs most often in the k nearest-neighbor
graphs of the database. When using the sketch dataset introduced in [5],
this ensemble matching based approach outperformed the algorithm of Eitz
et al. [5] with a remarkable gap. Without the usage of category filtering still
a remarkable recognition rate was achieved. However, we argue that due to
the additional category filtering procedure and the computational expensive
ensemble matching problem, immediate recognition results are not possible.

Sketch-based Retrieval
In [47] a sketch-based approach for image retrieval was proposed by Riemen-
schneider et al. Given a sketch of an object, corresponding natural images
of a database depicting that object should be found. Both sketches and nat-
ural images in the dataset are described by their shape. In more detail the
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shape is represented by contours which are defined as a connected sequence
of points [47]. This contours come from sketch strokes or from edges obtained
from natural images. The contours are described analyzing fragments which
are connected subsets of a contour represented by an ordered list of L points
[47]. A novel descriptor is introduced, which consists of angles between lines
that connect points on the fragment. Each point is used as a reference point
and compared to the remaining points. This results in a L × L descriptor
matrix for each contour fragment. A vocabulary tree [48] is used to build
the visual vocabulary from the obtained descriptor matrices of the database
images. A vocabulary tree uses k-means in a hierarchical way and is efficient
both in learning and for the nearest-neighbor search which is in further con-
sequence used for descriptor assignment. The retrieval scores are obtained
by using assignment statistics from the vocabulary tree. The database im-
ages with highest scores are provided as the retrieval result. Experiments
revealed that the introduced shape descriptor performs on average 25% bet-
ter than related shape descriptors. In experiments a remarkable performance
was shown which was further increased when hand-drawn prototype models
were used for the database.

A sketch-based 3D model retrieval approach was developed in [49]. The
goal is to return 3D models which look similar to a given sketch of an object.
The algorithm is based on the BoVW sketch recognition pipeline used in
[5]. However, adaptions as well as additional steps are necessary to match
2D sketch images to 3D models. First, the amount of uniformly distributed
views per 3D model is fixed. Further, for the selected viewpoints, line ren-
dering techniques are applied in order to get 2D sketch-like drawings. The
Gabor Local Line-Based Feature (GALIF) representation based on a Gabor
filter bank is used to obtain filter response images. These filter response im-
ages are used to obtain the final descriptor in a similar way as done in [5].
The visual dictionary is created from GALIF descriptors of all models and
views. In contrast to [5], hard encoding is applied to obtain the histogram of
visual word occurrences which forms the final sketch/model representation.
Given the query sketch, the 3D models and the corresponding views with the
highest matching scores for the representations are obtained as the retrieval
result. A remarkable retrieval score was achieved when a 3D model dataset
and one sketch per model (as a query) were used. Experiments pointed out
that the developed retrieval algorithm outperformed leading sketch-based re-
trieval approaches [49].

Chao et al. [50] introduced an algorithm for sketch retrieval. Given a query
sketch, similar looking sketches of a database should be obtained. For each
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sketch image, sampling positions that are situated on sketch lines are used.
For these positions image patches are extracted and descriptors are calculated
using Poisson-based Histogram of Oriented Gradients (PHOG) [50]. As in
[47] a vocabulary tree [48] is used to learn the visual vocabulary. When as-
signing the descriptors of a sketch to the vocabulary tree, the histogram of
all investigated paths is used as a sketch signature [50]. A spatial pyramid is
incorporated and the concatenation of the individual histograms forms the
final sketch representation. The retrieval results are obtained by compar-
ing the representations of the query sketch and the dataset sketches. The
database sketches with the highest similarity scores are defined as the re-
trieval result. For experiments the sketch dataset introduced in [5], an office
icon library and a shape dataset were used. On all three datasets the al-
gorithm outperformed alternative retrieval methods in the sketch retrieval
domain. However, these alternative methods were developed for different
computer vision tasks, such as sketch-based image retrieval, shape matching
and image recognition.
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3 Bag-of-Visual-Words for Sketch Recogni-

tion

For classifying sketches, we first have to train a classifier using a sketch im-
age representation suited to deal with the versatile properties of sketches
(see Section 1.2). The same representation is then analyzed for a previously
unseen test sample to uniquely assign a class label. We adapt the Bag-
of-Visual-Words (BoVW) method discussed in Section 2.1 to obtain such a
sketch representation. The general recognition pipeline, is discussed in detail
in Section 3.1. We explain each pipeline element and outline possible vari-
ants in Sections 3.2.1-3.2.6. Section 3.2.1 introduces necessary pre-processing
steps. Sampling strategies as well as the evaluated descriptor types are ex-
plained in Section 3.2.2. Further, methods to learn the visual vocabulary are
discussed in Section 3.2.3. The encoding step is handled in Section 3.2.4.
In Section 3.2.5 we outline the subsequent pipeline element of code pool-
ing. Finally, the investigated classifier types are discussed in Section 3.2.6.
We therefore have multiple variants for each pipeline step which we use in
our extensive evaluation phase in order to obtain an algorithm which is (1)
powerful regarding recognition performance and (2) is efficient.

3.1 Sketch Recognition Pipeline

Our sketch recognition pipeline follows the BoVW method [8]. As for every
machine learning approach the process consists of a learning and a classi-
fication phase. First, a classifier has to be trained using a suitable sketch
representation. This sketch representation is also used in the classification
phase to recognize the category of novel sketches. A visual depiction of the
general pipeline (including both phases) is illustrated in Figure 12.

For the learning procedure a set of annotated sketch images has to be pro-
vided as training data. To obtain a reasonable sketch representation, it is
important to pre-process the sketch images first, in order to achieve a recog-
nition approach of high quality. This step can include e.g. image scaling, type
conversion or smoothing. In general, normalization issues are tackled with
this processing. Further, for each pre-processed sketch image, descriptors are
extracted based on the defined sampling strategy (i.e. the locations for local
patches). These descriptors are used to describe local areas of the sketch
images or the whole sketch images themselves (depending on the descriptor
type) in a compact but still robust way. Optionally, a certain (e.g. random)
subset of descriptors can be chosen for further processing. In the next step
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Figure 12: Our general sketch recognition pipeline. The elements are rep-
resented by rectangles/boxes whereas arrows depict the in- and output for
these steps. Elements with a green color are the parts of the algorithm
which are only involved in the learning process. The outputs of these ele-
ments (marked with a green solid line with arrows) are further used in the
classification process as an input.
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the visual dictionary is learned. The resulting visual words can be seen as
prototypical examples obtained by descriptor clustering. In the encoding
step the visual dictionary is used to describe each extracted descriptor in a
highly compact way. In order to do so, descriptors are assigned to one or
more visual words. Further, this assignment can be weighted to express the
importance of certain visual words. The resulting codes are then grouped in
the pooling step. The pooling procedure aggregates the information available
over a defined spatial area. Therefore, localization information (i.e. the posi-
tions where the descriptors are extracted) is thrown away. This yields a final
descriptor for each sketch which forms our sketch representation. Finally,
these individual sketch representations are used with their known ground
truth categories to learn the sketch classifier.

To recognize a novel image, the same sketch representation is built using the
previously learned visual dictionary. Further, this representation is passed
to the trained classifier, which predicts the sketch category.

We now discuss each step in more detail and explain possible techniques
from both the sketch and image recognition domain.

3.2 Pipeline Elements

In this subsection we take a closer look at all pipeline elements and inves-
tigate variants evaluated during our extensive evaluations (Section 4). For
techniques which are developed for image recognition approaches we point
out their origin.

3.2.1 Sketch Image Pre-Processing

Image pre-processing is an essential mechanism to obtain a high performance
recognition approach as it sets the basis for the rest of the algorithm. In our
approach this step consists of the following steps. First, the sketch image is
scaled to a fixed size of 256 × 256 pixels. Further, the bounding box of the
sketch itself is calculated and scaled such that the longer side has a fixed size
of 202 pixels. Additionally, the sketch is centered inside the 256× 256 pixel
image.

Next, we convert the sketch image into one of the following three sketch
formats. The grayscale format is created by applying anti-aliasing methods
on the drawn binary sketch. As illustrated in Figure 13(a) the sketch lines
look smooth and natural. Note that the TU Berlin sketch dataset [5], which
is used throughout this thesis, is available in this format. As an alternative
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sketch format we introduce a binary representation of the sketch by applying
a thresholding operation. Only image pixels with a grayscale value below
255 are set to one. This format results in a sketch which looks angular as
shown in Figure 13(b). Further, the sketch lines look thicker than in the
grayscale format. As a result of that observation we denote this format as
binary−thick. In order to obtain a more natural binary representation of the
sketch we introduce the binary− thin format, where we apply morphological
operations to thin out the binary sketch. An example sketch of this format
is given in Figure 13(c). From a visual point of view this format looks
more similar to the grayscale format than to the binary − thick. However,
from a technical view the grayscale and the binary − thick format only
differ in the way the sketch borders are represented. In the binary − thick
format only binary information is available, whereas in the grayscale format
an integer value (0. . . 255) is used. When using gradient-based descriptor
approaches such as Scale-Invariant Feature Transform (SIFT) [11], the two
binary formats lead to constant gradient magnitudes. For the grayscale
format these values are variable. The two binary formats only differ in the
amount of pixels set. An evaluation regarding the three sketch formats is
performed in Section 4.4.

(a) Grayscale (b) Binary-Thick (c) Binary-Thin

Figure 13: The three defined sketch formats.

As a final image pre-processing step we apply image smoothing. This can
e.g. improve the accuracy when calculating the gradient orientation as well
as the gradient magnitude of an image. As a result of that, we argue that the
sketch can also be described in a more robust way, which leads to a better
overall recognition performance.

3.2.2 Descriptor Extraction

In the context of the descriptor extraction step, we discuss two aspects. First,
the strategy of how descriptors are extracted is defined. This strategy in-
cludes the amount of features as well as the positions where the extraction
process takes place. However, this strategy is only relevant for local descrip-
tor types. As a second aspect we investigate variants of the actual descriptors.
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Sampling Strategy
In this thesis we investigate two sampling strategies, grid and point sampling.
When grid sampling is used, local descriptors are extracted on a regular grid,
i.e. every n pixels. Point sampling means that the locations at which local
features are extracted, lie on sketch line pixels. For the grayscale sketch for-
mat we define these pixels as pixels which are set to one in the corresponding
binary − thick format. Point sampling is related to how the locations are
obtained when using the Shape Context descriptor [51]. Both methods were
already successfully integrated in the sketch recognition domain. In [5], grid
sampling is used whereas point sampling is integrated in [46]. However, to
the best of our knowledge no direct comparison has been performed for both
strategies in the sketch domain. Therefore, we discuss our evaluation regard-
ing this topic in Section 4.5.1.

In the image recognition domain grid sampling is often the sampling
method of choice as already discussed in Section 2.2. However, for sketch
recognition it is possible that certain locations do not include any sketch
content. In this case we reject these empty descriptors. On the other hand,
more kinds of representations of the sketch are available with grid sampling.
In contrast, with point sampling the restriction that the center pixel has to
lie on a sketch line is present. As a consequence, no empty descriptors are
extracted with point sampling. A visual illustration of the two sampling
strategies can be found in Figure 14.

(a) Sketch Image (b) Grid Sampling (c) Point Sampling

Figure 14: Illustration of the two sampling strategies investigated in this
thesis. An equal amount of 225 locations is used for both strategies.

Additionally, we introduce the possibility to choose a maximum amount of
descriptors used per sketch for further processing, e.g. for reducing the mem-
ory profile. However, in general this also leads to a less accurate sketch
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description. If applied, we choose the defined amount of descriptors at ran-
dom for each sketch. The impact of this optional strategy is discussed in our
evaluations in Section 4.5.1.

Descriptor Type
The second important aspect regarding descriptor extraction is the actual
choice of a suitable descriptor type. As briefly mentioned before we dis-
tinguish between local and global descriptors. Local descriptors are used to
describe small parts/areas of images. Therefore, the full image is described by
a set of local descriptors. In contrast, with a global descriptor the full image
is represented by one single descriptor. To cover a large range of descriptor
types we choose methods which are based on different ideas, e.g. gradient-
based, similarity-based etc. We selected methods which are widely used in
the field of image and sketch recognition. In the following we briefly discuss
the selected descriptor types:

1. Dense Scale-Invariant Feature Transform (SIFT) [52, 53]
Note that Dense SIFT actually combines a sampling strategy and a de-
scriptor type, where the latter part is the famous SIFT descriptor [11].
However, in contrast to the ”traditional” SIFT approach, the native prepa-
ration steps are bypassed. This means that neither a keypoint detection
at different scales, nor an orientation assignment for the found keypoints
are performed. Instead, the keypoint locations are previously defined at a
fixed scale and rotation. These locations are distributed in a dense man-
ner over the image as for grid sampling (Figure 14(b)). In other words,
the descriptors are computed at locations on a regular grid every n pixels
[53]. Then, the actual SIFT descriptor calculation is performed for all
obtained locations as follows: the patch around each location is sampled.
For that patch, the gradient magnitudes and orientations for each pixel
are obtained, where the corresponding gradient magnitude is ranged in
one of the eight bins according to the pixel’s gradient orientation. Ad-
ditionally, the magnitude values are weighted by a Gaussian weighting
function according to their distance to the patch center. Further, the
patch is split into 4 × 4 sub-regions. By only considering the gradient
magnitudes and orientations within each sub-region, one histogram per
sub-region is obtained. The gradient magnitudes from neighboring sub-
regions are incorporated by trilinear interpolation. Finally by combining
these 16 histograms with each of them having eight bins, a 128 dimen-
sional descriptor is formed. As a final step, the descriptor is normalized
to unit length.

The Dense SIFT method is widely used in image recognition approaches
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such as e.g. [53, 19, 15, 20, 32]. Additionally, in [46] it was introduced to
the sketch recognition domain.

2. Histogram of Oriented Gradients (HOG) [52]
In contrast to SIFT, HOG is a global descriptor. However, HOG is built on
the same basic ideas and therefore calculates gradient-based histograms.
The image is organized into so called cells which are situated densely in
the image (grid sampling). For each of these cells a gradient-based his-
togram is calculated. The histogram creation follows the SIFT descriptor
procedure as already discussed. However, nine instead of eight orienta-
tion bins are used. Multiple cells are grouped into larger and overlapping
spatial blocks [52]. The cell histograms of all blocks are normalized and
concatenated to build the final global descriptor.

To the best of our knowledge this global descriptor has not been used for
sketch recognition up to this point. However, it is interesting how HOG
with its single global descriptor performs compared to the local Dense
SIFT method in this task.

3. Local Histograms of Oriented Gradients (SHOG) [5]
This descriptor type again is closely related to the SIFT descriptor. How-
ever, this descriptor as introduced in [54], is designed specifically for the
task of sketch recognition. The calculation follows [11] but the informa-
tion about the gradient magnitude is ignored. This comes from the fact
that when using binary sketches, the gradient magnitude does not lead to
additional useful information. Therefore, one sub-region histogram does
only represent orientation rather than magnitude responses. In [5] four
orientation bins are used and bilinear interpolation is performed with a
grid sampling strategy. This results in a final descriptor vector with a
length of 64.

The SHOG descriptor is incorporated in the successful sketch recognition
approach by Eitz et al. [5].

4. Shape Context[51]
This descriptor type was introduced by Belongie and Malik [51] to perform
shape matching or to determine shape correspondences. As we can see in
Figure 4 one could argue that a sketch is a shape or contour of an object.
Therefore, the task of shape matching can be seen as related to matching
sketches. To calculate the descriptor n sample points are obtained from
contours of the shape. Alternatively, edges can be used for real-life images.
This corresponds to our point sampling strategy as already defined in this
section. For a selected reference point from this point set, a log-polar
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coordinate system is set up. In further consequence this system is used
to create a histogram which represents the relative coordinates of the
remaining n − 1 points. Therefore, the relative distribution of points is
captured [51]. In [51], this histogram consists of 12 orientation bins and
five distance bins, yielding a 60-dimensional descriptor. To describe the
complete shape, all n points of the set are used as a reference once. This
strategy results in n descriptors to represent the whole shape.

As already discussed, shape and sketch representations are obviously re-
lated. Hence, the performance of this descriptor was already evaluated
for sketch-based image retrieval in [54]. Although this descriptor was out-
performed by the SHOG representation, we include the Shape Context
into our evaluations to further investigate the relation between shapes
and sketches.

5. Self Similarity [55]
In [55] the Self Similarity descriptor is introduced to describe an object in
an image. In further consequence, matches within other images depicting
this object should be found. The method is based on the geometric lay-
out of local self similarities rather than image properties [55]. To obtain
the descriptor, a reference pixel q is selected. A small reference patch
(e.g. 5×5 pixels) centered at q is compared to a larger surrounding image
region (e.g. with a radius of 40) which is also centered at q. The sum of
square differences (SSD) is used as a similarity measure. As for the Shape
Context descriptor, a log-polar coordinate system is set up for the re-
sulting correlation surface. The consequential histogram is called the Self
Similarity descriptor and in [55] 20 orientation and four distance bins are
used. This leads to an 80-dimensional descriptor vector. To describe the
full image, the descriptor is calculated every five pixels in a grid sampling
manner.

An interesting relation to sketch recognition is also investigated in [55]. It
is shown that this descriptor works well for sketch-based image retrieval,
although pictogram-like hand-sketched templates are used as sketches.
However, these templates are closely related to what we defined as a
sketch. Further, a descriptor comparison in the context of sketch recogni-
tion was performed in [46]. Again a gradient-based method (Dense SIFT)
outperformed this descriptor type. However, we use the Self Similarity
descriptor in our evaluations due to the observations in [55].

As an optional procedure we apply the RootSIFT strategy, as introduced in
[56] by Arandjelovic and Zisserman, for the SIFT-based descriptor types. In
contrast to the initial descriptor, the square root of it is taken. By using the
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Hellinger kernel instead of the Euclidean distance metric, a more accurate
similarity measurement can be achieved as shown in [56]. Although intro-
duced for object retrieval, Arandjelovic and Zisserman concluded that this
strategy can further improve the performance in various computer vision do-
mains such as object detection or image recognition. Therefore, we include
this procedure in our evaluation, as the additional computation can be per-
formed at low cost due to highly optimized operations.

The evaluations regarding the descriptor type can be found in Section 4.5.2.

3.2.3 Visual Dictionary Learning

The visual dictionary can be seen as the core part of the BoVW method as it
is used in the encoding step to represent the individual descriptors. In further
consequence, these codes form the basis of the final sketch representation. To
obtain a visual dictionary of high quality it is essential to select a suitable
learning procedure. Given a set of n descriptors X = [x1, . . . , xn]T ∈ Rn×d

with a dimensionality of d, the goal is to learn a visual dictionary B =
[b1, . . . , bk]

T ∈ Rk×d consisting of k visual words. To the best of our knowl-
edge, so far sketch recognition approaches based on the BoVW method only
used k-means to learn the visual dictionary regardless of the incorporated en-
coding method. However, in the image recognition domain and as discussed
in Section 2.2 these two pipeline steps can be coordinated to achieve an in-
creased performance. Therefore, we introduce successful visual dictionary
learning approaches in our evaluation. A list of investigated visual dictio-
nary learning algorithms is given in the following enumeration. Further, we
briefly discuss each learning procedure and, if applicable, also explain the
relation to the coupled encoding method.

1. Random
This method defines k randomly selected descriptors of X as the visual
dictionary B. This strategy is e.g. suggested in [57]. It is further shown in
[57] that the obtained dictionaries can be competitive to dictionaries cre-
ated by more sophisticated learning algorithms when a suitable encoding
procedure (e.g. sparse coding) is used.

Due to this fact and as it is a primitive and efficient way to obtain the
visual dictionary, we add this approach to our evaluation.

2. K-Means [12]
The famous k-means algorithm is widely used in many successful BoVW-
based approaches such as e.g. [8, 15, 5]. Given X, the goal is to find
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the k cluster centers/visual words B as well as the descriptor-to-cluster
assignments u1, . . . , un ∈ {1, . . . , k} such that the distances between the
descriptors and the assigned cluster centers are minimal. More formal,
the cost function

E =
n∑
i=1

‖xi − bui‖
2 (1)

should be minimized, where bui is the assigned cluster center of descriptor
xi (indexed by ui).

The first step of the algorithm is the initialization of the cluster centers
b1, . . . , bk ∈ Rd. This can be done in two ways. The first version randomly
selects the cluster centers as it is done when using the random dictionary
strategy discussed above. The second initialization method is called k-
means++ [58] and greedily selects k descriptors such that their distance
is maximized. Next, the descriptors are assigned to their closest initial
cluster centers by a nearest-neighbor search. In a mathematical way the
assignment is performed such that

ui = argmin
j
‖xi − bj‖2 (2)

is satisfied. The resulting assignment vector is used in the subsequent step
to update the initial cluster centers as

bj = avg{xi : ui = j}. (3)

This means that the cluster center bj is set to the average of all descriptors
previously assigned this cluster. The assignment and update steps are
repeated until convergence of the cluster centers.

Due to its wide application and the integration in the successful sketch
recognition approach of Eitz et al. [5], we use this algorithm as well as
both initialization strategies for our evaluation.

3. Approximated K-Means [59, 60]
As the assignment step of k-means can be time-consuming, the idea is to
replace the exact nearest-neighbor search by an approximated one. We
apply the idea of [61] to include a randomized kd-tree forest for this task.
A kd-tree is a data structure based on binary trees which is able to handle
k-dimensional data. It can further be used to perform an approximated
nearest-neighbor search highly efficient. In a traditional kd-tree, at each
non-leaf node the data is split into two parts. This is done by choosing the
descriptor dimension with the highest variance and by using the median
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value of that dimension as a split threshold. This splitting procedure
is iteratively performed for both resulting paths until no further split is
possible. For a randomized kd-tree the splitting dimension as well as the
splitting value are obtained in an approximated way. By creating not one
but multiple kd-trees a forest is built. For the actual nearest-neighbor
search all kd-trees are used simultaneously. After a certain number of
examined nodes, the most promising candidates are returned.

In [61] it is shown that this approximated version achieves similar perfor-
mance as exact k-means in an object retrieval setup. As these two aspects
are in accord with the two constraints for our algorithm, we include this
k-means version in our evaluation.

4. K-SVD [62]
The K-SVD dictionary learning algorithm can be seen as a generalization
of k-means. Instead of assigning one descriptor to exactly one visual word,
with K-SVD it is possible to represent a descriptor by a linear combination
of multiple visual words. The algorithm aims at solving the optimization
problem

min
U,B
‖X −BU‖2F s.t. ∀i, ‖ui‖0 ≤ T, (4)

where U ∈ Rn×k is the encoding matrix for all descriptors in X. Further
‖·‖0 means the zero-norm which counts the non-zero elements of one code
vector ui ∈ U and T is a sparsity parameter which limits the amount of
visual words used per descriptor. Therefore, this problem statement is
related to sparse coding which we explain in full detail in Section 3.2.4.
In following we denote this encoding formulation as l0 sparse coding. Due
to the joint problem formulation, a visual dictionary optimized for the
l0 sparse encoding scheme is learned. The algorithm solves this problem
in an iterative way. At the first step, the dictionary B is fixed and the
sparse code matrix U is obtained using the Orthogonal Matching Pursuit
(OMP) [63] algorithm which is explained in Section 3.2.4. Next, the sparse
code matrix U is fixed in order to update the dictionary B using Singular
Value Decomposition (SVD). Instead of exact SVD, numerical methods,
as proposed in [64], can be used to make the algorithm highly efficient.

Therefore, it can be seen as an alternative to the time-consuming methods
introduced in [20, 32]. It is further shown (e.g. in [20, 32]) that encod-
ing specialized dictionaries leads to remarkable performance boosts in the
domain of image recognition. Hence, we incorporate it as a possible dic-
tionary learning algorithm.
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5. Online Dictionary Learning for Sparse Coding (ODL) [65]
Similar to K-SVD, the ODL algorithm is developed for the usage with
sparse coding. Therefore, again the dictionary is explicitly optimized for
the specific encoding method. However, the l1-norm sparse encoding for-
mulation is considered. The joint optimization problem

min
U,B

1

n

n∑
i=1

(
1

2
‖xi −Bui‖22 + λ ‖ui‖1

)
(5)

is solved by alternately fixing the dictionary B and the sparse code matrix
U . As before λ is a sparsity parameter. For each iteration of the algo-
rithm, one descriptor is drawn at random. For iteration t we denote this
descriptor as xt. With the fixed dictionary obtained in the last iteration
Bt−1, the sparse code ut for xt can be calculated as

ut = min
u

1

2
‖xt −Bt−1u‖22 + λ ‖u‖1 . (6)

Note that in this sparse coding formulation the l1-norm is included. How-
ever, as discussed in [65] this also leads to sparse solution in terms of the
zero-norm. To solve this problem the Least Angle Regression (LARS)
algorithm [66] is applied, which is discussed in Section 3.2.4. The en-
coding ut for the sample xt is used to update the dictionary Bt−1 by the
optimization problem

Bt = min
B

1

t

t∑
i=1

1

2
‖xi −Bui‖22 + λ ‖ui‖1 . (7)

It is solved by processing one dictionary column/visual word at a time
using algebraic operations. After a number of T iterations, the final visual
dictionary B = BT is obtained.

Whereas K-SVD uses OMP, which can be seen as an approximation for
the encoding step with a fixed maximum number of non-zero coefficients,
ODL integrates the LARS algorithm which produces more accurate re-
constructions [65]. Both LARS as well as the algebraic dictionary update
step can be performed in a fast way. However, the K-SVD algorithm
with OMP is more efficient. Nevertheless, we want to compare these two
learning procedures in our evaluation phase.

6. Gaussian Mixture Model (GMM)
A more complex type of a visual dictionary can be obtained by the usage

34



of a GMM learned from the descriptors X. A GMM consists of a set of
K Gaussian distributions and is defined mathematically by

p(x|φ) =
K∑
k=1

p(x|µk,Σk)πk (8)

and

p(x|µk,Σk) =
1√

(2π)ddetΣk

exp(−1

2
(x− µk)TΣ−1k (x− µk)) (9)

where x is one descriptor and φ is the collection of all parameters needed
to specify the GMM. This includes {π1, µ1,Σ1, . . . , πK , µK ,ΣK}, with the
prior probabilities πi ∈ R. The means as well as the covariances of the
Gaussian distribution with index i are represented by µi ∈ Rd and Σi ∈
Rd×d respectively. The resulting visual dictionary can therefore be seen
to be probabilistic.

With the descriptors X, the GMM parameters φ are learned by the Ex-
pectation Maximization (EM) algorithm [67]. The goal of this algorithm
is to find the parameter set φ such that the likelihood of the GMM given
X is maximized. φ is initialized by using the k-means algorithm as dis-
cussed before. The obtained cluster centers are used as the initial means
µi. Further, the covariance matrices Σi can be obtained by using the
data assignments, and the initial prior probabilities πi are set to the mass
of the k-means clusters. The EM algorithm consists of two steps which
iteratively update the Gaussian distributions: the data assignment step
(expectation) and the update step (maximization) which uses the assign-
ments. As in sparse coding one descriptor can be assigned to multiple
Gaussian distributions. The GMM defines the assignment of descriptor
xi by

qi(k) =
p(xi|µk,Σk)πk∑K
j=1 p(xi|µj,Σj)πj

(10)

for k = 1, . . . , K. This dictionary type was suggested as an improvement
to the BoVW method in [68] as it covers more information (covariance and
prior probability) than traditional dictionaries. Further, this dictionary
type forms the basis for more complex encoding schemes such as e.g. Fisher
Vector (FV) encoding [33, 35] which we discuss later on in Section 3.2.4.
In recent image recognition approaches this combination often achieved
state-of-the-art performance. To the best of our knowledge, this dictionary
type has not been introduced in the sketch domain so far. Therefore, we
include GMM learning as one option in our evaluation.
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The results of our evaluation regarding the dictionary learning algorithm are
discussed in Section 4.6.

3.2.4 Descriptor Encoding

The set of descriptors X = [x1, . . . , xn]T ∈ Rn×d can now be represented by
the elements of the learned visual dictionary B = [b1, . . . , bk]

T ∈ Rk×d. This
step is called descriptor encoding as one descriptor xi is represented by its
resulting code ci produced by the applied encoding method. The represen-
tations of all descriptors form the code matrix C = [c1, . . . , cn]T ∈ Rn×k.
Therefore, the encoding step produces an efficient reconstruction for the de-
scriptors using a compact set of representatives – the visual words. However,
the dimensions of the code matrix C depend on the encoding method used.
When the encoding scheme includes an additional pooling strategy, as e.g. for
the FV encoding, the code matrix becomes a vector which forms the final
sketch or image representation rather than the individual descriptor codes.
However, we define the default code matrix dimensions as n × k. We now
briefly discuss each evaluated encoding method and, if available, point out
included procedures, e.g. a pooling strategy. Further, we discuss relations to
encoding-specific dictionary learning methods already explained in Section
3.2.3.

1. Hard Encoding (vector quantization) [8]
The simplest method is to choose the visual word bj which is most similar
to the given descriptor xi. In the descriptor space one can also say that
bj is the nearest-neighbor of xi with

j = argmin
j∈{1,...,k}

‖xi − bj‖2 . (11)

This is equivalent to the assignment step of the k-means algorithm already
discussed in Section 3.2.3. The resulting code ci is a zero vector of size k
with only one non-zero element at position j – the index of the selected
visual word.

Despite its simplicity, this encoding method is part of successful BoVW-
based approaches in the image recognition domain as e.g. in [8, 15]. There-
fore, we include this encoding method as a baseline approach.

2. Approximated Hard Encoding [69]
As all descriptors in X have to be compared to all visual words of the
dictionary B, hard encoding can be a time-consuming method. There-
fore, a kd-tree is introduced to perform the nearest-neighbor search is an
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approximated and efficient way. This strategy was already discussed for
the approximated version of k-means in Section 3.2.3.

A drawback of this method is that by limiting the number of compar-
isons, it is not guaranteed anymore that the exact nearest-neighbor is
found. Therefore, the descriptor representation can become less accurate.
However, in [61] it is shown that the overall performance of a BoVW-based
object retrieval approach using this approximated version is similar. As
we also aim at designing an efficient recognition algorithm we introduce
this fast encoding scheme into our evaluation.

3. Soft Encoding [44, 45]
In contrast to the previous two encoding methods, soft encoding represents
one single descriptor xi as a linear combination of multiple visual words
BL = [b1, . . . , bl]

T ∈ B with l << k. Therefore, the corresponding code ci
now also consists of l non-zero elements. The l visual words are selected
as the l nearest-neighbors of xi. Additionally, the l individual code entries
are weighted as

wj = exp(−
dist2j
2σ2

), (12)

where distj is the distance/similarity between the visual word bj ∈ BL and
xi. The σ-parameter is used to adapt the spatial scale for high responses.
Therefore, closer visual words within the l nearest-neighbors achieve a
higher code response.

In contrast to hard encoding, the descriptor xi can be represented in a
more accurate way as multiple visual words are involved. If e.g. a descrip-
tor is almost equally close to two visual words, hard encoding only chooses
the nearest-neighbor visual word. With soft encoding both visual words
are considered and weighted according to their similarity. Further, a kd-
tree is used to make this encoding method as efficient as approximated
hard encoding. As this encoding method is both efficient and successfully
used in object retrieval [44], image recognition [45] and sketch recognition
[5], we introduce this method to our evaluation.

4. Sparse Coding [20]
As already discussed in Section 2.2, the two goals of sparse coding are (1)
an accurate representation by using multiple but (2) few visual words to
make the code vector ci sparse. The two criteria lead to two variances of
problem formulations with the first defined as

argmin
ci

1

2
‖xi − ciB‖2 + λ ‖ci‖1 . (13)
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We denote this as the ”original” sparse coding problem. In literature it
is also often called the Least Absolute Shrinkage and Selection Operator
(LASSO) problem. λ is again a sparsity regularization parameter. Further
‖·‖1 denotes the l1-norm. Note that, as already mentioned, this norm does
not count the amount of non-zero elements in ci. However, as discussed
in [65], this l1 penalty term also produces sparse results regarding the
zero-norm. The problem can be solved by using the LARS algorithm [66].

The basic idea of this regression algorithm is that given a target vector y,
the sample z0 ∈ Z with the highest correlation to y should be selected. To
reconstruct y, the vector z0 is followed until the sample does not have the
highest correlation with y anymore. A new sample z1 ∈ Z now has the
highest similarity. At this point the new direction of the approximation
is calculated as the angle bisection of the two samples z0 and z1. The two
steps of direction and length computation are repeated until l vectors are
used. Further, the subsequent vector directions are calculated by using
the angles of all utilized samples. For this algorithm it is guaranteed that
a global optimum is found [70, 71]. A graphical illustration of the LARS
algorithm for a toy example can be seen in Figure 15. In the context of
our sparse coding problem, the target vector is the descriptor xi and the
samples correspond to visual words in B.

We already discussed how to obtain an optimized dictionary for this en-
coding scheme with the ODL algorithm in Section 3.2.3.

Figure 15: Illustration of the LARS algorithm for a toy example.
The green vector y is the target vector. z0 and z1 are the
sample vectors. The obtained reconstruction is depicted
in blue.

An alternative formulation for this encoding is the l0 sparse coding defined
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as
argmin

ci

‖xi − ciB‖2 s.t. ‖ci‖0 ≤ T, (14)

which represents a least-squares problem [72]. With T , an upper bound
for the amount of non-zero elements of the code ci is defined. Further
‖·‖0 means the zero-norm which counts this amount. This stays in direct
contrast to the previously defined sparse coding problem formulation. As
mentioned in Section 3.2.3, the OMP algorithm [63] is used to obtain a
solution for this problem.

First, the current target vector y0 is set to the actual target vector y. The
sample z0 with the highest correlation with y0 is selected. Further, y is
projected orthogonally to z0 to obtain p. A new current target vector y1 is
obtained by y1 = y − z0p. Next, the new sample with highest correlation
is selected and these steps are repeated. Therefore OMP again is a greedy
algorithm.

The K-SVD dictionary learning algorithm specialized for this problem
formulation was already explained in Section 3.2.3.

In contrast to LARS, only an approximate solution rather than a global
optimum is found [70]. However, OMP obtains this approximation highly
efficiently in contrast to LARS where the computation can be runtime
consuming. According to [65], the l1 formulation (sparse coding) leads to
more stable and smooth reconstructions. With the zero-norm formulation
(l0 sparse coding), a sparser representation, which however is not robust to
noise, is obtained [65]. This means that small variations of the descriptors
lead to completely different codes with different visual words selected.

An advantage of sparse coding compared to both hard and soft encoding
is, that the exact restriction of the amount of visual words to be con-
sidered is abolished. Therefore, different descriptors can be represented
by various amounts of visual words. However, the downside of sparse
coding compared to the previous methods is that it is not guaranteed
that the chosen visual words are close in the descriptor space [32]. This
can happen to favor the sparsity constraint. In further consequence this
can weaken the descriptor reconstruction accuracy. Nevertheless, sparse
coding was already integrated in state-of-the-art image recognition ap-
proaches (e.g. in [20]). In [57], the power of this encoding method was
shown even for poorly designed visual dictionaries. However, to the best
of our knowledge, sparse coding has not been introduced in the sketch
recognition domain so far. Therefore, we investigate the impact of both
formulations in the sketch domain.

39



5. Locality-constrained Linear Coding (LLC) [32]
This encoding scheme is based on the observation in [73] that sparsity
follows locality but not vice versa. This means that sparse codes can
represent a descriptor by visual words which are not similar. Therefore,
the sparsity term in the sparse coding formation is replaced by a locality
term. With that adaption, the optimization problem can be formulated
as

min
ci
‖xi − ciB‖2 + λ ‖disti ⊗ ci‖2 . (15)

In this formation ⊗ means an element-wise multiplication and disti ∈ Rk

is a vector containing the distances between the descriptor xi and all
visual words in B. With the additional term the selected visual words are
similar to xi. Therefore, a better reconstruction of xi can be achieved [32].
However, the obtained LLC codes are not sparse in terms of the zero-norm.
By using a thresholding operation this issue can be fixed. Further, an
efficient approximation to LLC is also introduced in [32]. First, given the
descriptor xi, the l nearest-neighbor visual words BL = [b1, . . . , bl]

T ∈ B
with l << k are obtained. Then the optimization problem becomes

min
ci
‖xi − ciBL‖2 . (16)

Therefore, the optimization problem is solved in a smaller linear subspace
BL. By using a kd-tree, the nearest-neighbors can be obtained efficiently.
In consequence, the code computation is also fast.

This encoding method achieved state-of-the-art image recognition perfor-
mance at the time of publication and outperformed the sparse coding
method. Again to the best of our knowledge this method has not been
applied to the sketch domain. Therefore, we include it into our evaluation
phase.

6. Vector of Locally Aggregated Descriptors (VLAD) Encoding [74, 75]
The main idea behind VLAD encoding is to represent the distribution of
the descriptors X with respect to the visual dictionary B [74]. Therefore,
for each descriptor xi ∈ X, the corresponding nearest-neighbor visual
word is obtained. Next, VLAD captures the differences between each
descriptor and its obtained closest visual word for each descriptor dimen-
sion. A kd vector C is used for all descriptors and visual words. The
information is aggregated for the set of descriptors X as

Ci,j =
n∑
i=1

xi,j − bi,j, (17)
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where bi represents the nearest-neighbor visual word of xi and j is the
index of the descriptor dimension. Therefore, this encoding scheme further
includes a pooling strategy, as a varying set of descriptors X is represented
by a fixed size vector C. Additionally the VLAD representation uses an
additional normalization step for vector C.

Similar to hard encoding, VLAD only considers the nearest-neighbor vi-
sual word. However, hard encoding only uses the assignment informa-
tion whereas for VLAD the differences between the descriptors and visual
words for each descriptor dimension are used. Compared to all previously
discussed encoding schemes, VLAD includes an additional pooling strat-
egy. Therefore no individual codes but the final sketch representation is
obtained. In [74] it was shown that fewer visual words are needed when
using VLAD compared to other encoding schemes to achieve a similar
performance.

This representation method was successfully integrated in large-scale im-
age search [74] as well as object retrieval [75] approaches. However, its
suitability for sketch recognition has not been investigated to the best of
our knowledge. Therefore, we include this combined encoding and pooling
mechanism in our evaluation.

7. Fisher Vector (FV) Encoding [33, 35]
The basic idea of this encoding scheme as suggested in [33] is to fit a
parametric generative model (e.g. a GMM) to the descriptors X and fi-
nally encode the derivatives of the log-likelihood of the model with re-
spect to its parameters [34]. We use a GMM as a visual dictionary with
φ = {π1, µ1,Σ1, . . . , πK , µK ,ΣK}, which represent the prior probabilities,
means and covariances of the individual Gaussian distributions respec-
tively. Therefore, the visual words are Gaussian distributions. The GMM
is learned by the EM algorithm as previously discussed in Section 3.2.3.
The covariance matrices are assumed to be diagonal as in [35]. The cor-
responding covariance vectors are denoted by σ2

i . The d-dimensional (de-
scriptor size) gradients with respect to the mean (µk) and the standard
deviation (σk) of the Gaussian distribution k are given by

Cµ
k =

1

N
√
πk

N∑
i=1

qi(k)

(
xi − µk
σk

)
(18)

and

Cσ
k =

1

N
√

2πk

N∑
i=1

qi(k)

[
(xi − µk)2

σ2
k

− 1

]
, (19)
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[35]. Further, qi(k) is the soft assignment of the descriptor xi to this dis-
tribution. Therefore, again it is possible to assign a descriptor to multiple
visual words. The assignment of descriptor xi to the visual word k is
defined as

qi(k) =
p(xi|µk,Σk)πk∑K
j=1 p(xi|µj,Σj)πj

. (20)

The final FV is created by the concatenation of the gradient vectors for
all K Gaussian distributions. In that way a pooling strategy is already in-
cluded. Therefore, the final sketch representation with a vector dimension
of 2Kd is defined as

C = [Cµ
1 , C

σ
1 , . . . , C

µ
K , C

σ
K ] . (21)

The Improved Fisher Vector (IFV) [35] further processes this FV repre-
sentation in two ways. First, the Hellinger kernel is applied by performing
a signed square root operation on every element of the FV representation.
This comes from the observation that the higher the number Gaussian
distributions in the GMM, the lower the assignment values qi(k) are. In
further consequence, the FV becomes sparse which leads to poor measure-
ments for the euclidean distance metric [35]. By applying the square root
the values increase, which provide better measurements. This observa-
tion is similar to the one already discussed in context of RootSIFT [56] in
Section 3.2.2. Further, the resulting vector is l2-normalized to obtain the
final representation. As this vector already forms the final sketch repre-
sentation no further pooling strategy has to be applied. Due to the fact
that high order statistics are encoded, less visual words are needed (as for
VLAD) compared to previous encoding approaches.

This representation often achieved state-of-the-art results in image recog-
nition approaches and is still an active research field. Again, to the best
of our knowledge, this representation has not been applied to the task of
sketch recognition. Therefore, we include this combined encoding/pooling
strategy in its improved version in our evaluation.

The evaluation for the previously discussed encoding schemes is discussed in
Section 4.7.

3.2.5 Code Pooling

Up to this point, a sketch is represented by an unordered list of codes C =
[c1, . . . , cn]T ∈ Rn×k, where n is the amount of extracted descriptors and k
is the length of one code ci. Note that this is not true if the VLAD or FV
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combined encoding/pooling method is used. In that case the information
available in the set of codes is already merged to form a sketch representation.
However, for encoding methods without this strategy, a pooling mechanism
f(C) is used to aggregate the information available in the individual codes in
a defined spatial area to obtain the final sketch representation S ∈ Rm. In the
following we present and explain our three pooling mechanisms investigated.

1. Sum
A simple choice for the pooling mechanism is the addition operator. For
all individual codes in the matrix C, the column- or visual word-wise sum
is used to obtain the final sketch representation S as

Sj = f(C) =
n∑
i=1

ci,j (22)

for j = 1, . . . , k. This pooling strategy is e.g. used in [15] for image
recognition in combination with a spatial pyramid, which we discuss later
on in this section.

2. Average
This pooling mechanism is e.g. used in the traditional BoVW approach
[8] and extends the sum pooling method by an additional normalization
by the amount of codes used. More formally it is defined as

Sj = f(C) =
1

n

n∑
i=1

ci,j (23)

for j = 1, . . . , k. In [5] this pooling mechanism is applied to get the final
sketch representation.

3. Max
In contrast to the previous methods, max pooling does not process all
individual code values. In [20] this strategy is defined as

S = f(C) = [max(c1,1, . . . , cn,1), . . . ,max(c1,k, . . . , cn,k)]. (24)

Therefore only the maximal code response of all codes and for each visual
word is used for the final sketch representation. Yang et al. argued that
max pooling is also applied in the human visual cortex and that the re-
sulting representation is more robust to local transformations than sum or
average pooling [20]. This observation was also made in [76]. However, we
want to investigate if we can simply transfer this knowledge to the sketch
recognition domain. Further, no previous work introduced this pooling
mechanism to sketch images, although it has been successfully integrated
in image recognition approaches such as e.g. [20, 32].
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For traditional BoVW-based approaches the spatial area considered by the
pooling mechanism is often the whole image. However, in that case the avail-
able localization information (i.e. the positions where the local descriptors
have been extracted) is discarded. As already discussed in Section 2.2, a
more sophisticated method is to use a pyramid-like structure – the spatial
pyramid [15]. For each of the J sub-regions Ri of the pyramid, a part of the
sketch representation Si is obtained by applying the pooling method for the
codes which are located in that sub-region. The final sketch representation
is the concatenation of the J individual parts as S = [S1, . . . , SJ ]T ∈ RmJ .
Therefore, the size of the obtained sketch representation grows by a multipli-
cation factor of involved pyramid sub-regions. All of the previously explained
pooling mechanisms can easily be integrated in the spatial pyramid frame-
work by covering each sub-region individually. Note that although VLAD
and FV encoding already produce a final sketch representation, one can cre-
ate multiple of these representations for certain image parts and use them in
the spatial pyramid framework with a certain pooling scheme (e.g. avg as it
is used in [35]).

In the image recognition domain it was shown that the recognition per-
formance can be improved by using a spatial pyramid [15] and it is frequently
used in state-of-the-art approaches. In [5], initial experiments showed that
using this framework does not increase the sketch recognition performance.
However, we introduce the variant of using a spatial pyramid in our evalua-
tion as we want to check this observation. Therefore, we compare the pooling
strategies at a single level and with the spatial pyramid framework used in
Section 4.8.

3.2.6 Classifier Learning

With the final sketch representations available, the final step of our al-
gorithm is the actual sketch classification. Therefore, a suitable classifier
has to be learned, as the best sketch representation is worthless without a
proper classifier. Our goal is to learn a classifier F from the training data
{(S1, y1), . . . , (SM , yM)} in a supervised manner. This means that the ground
truth sketch categories yi ∈ {1, . . . , Cat N} are known for each sketch and
its corresponding representation Si. There are Cat N sketch categories to
distinguish and M denotes the amount of training sketches available. We
now discuss our two choices of investigated classifiers types.

1. One-Versus-All Support Vector Machines (SVMs)
The SVM is a powerful and well studied method for binary classification.
In the following we briefly discuss this binary task and explain how it can
be used for our multi-class classification problem.
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The main idea of a SVM is to select a separator (e.g. a hyperplane) that
divides the training data [x1, . . . , xM ] according to their class membership
[y1, . . . , yM ] ∈ {+1,−1}. Further, as a constraint, the distance of the
hyperplane to the nearest data points of both classes should be maximized.
This distance is called the margin. In Figure 16 we present a toy example
for the 2D case with a maximum margin line A and another line B with
a smaller and therefore not optimal margin. The separating hyperplane
is defined as w · x − b = 0, where x is a set of points that are located
on the hyperplane and w is the normal vector to this hyperplane. The
offset of the vector to the coordinate origin is defined as b

‖w‖ . The two
support vectors are given by w ·x− b = 1 and w ·x− b = −1 respectively.
As we want to maximize the margin and do not allow data points to fall
into this area we can define the SVM learning problem by the following
optimization formulation

argmin
w,b

1

2
‖w‖2 s.t. ∀ i ∈ {1, . . . ,M} : yi(w · xi + b) ≥ 1. (25)

Additionally, if the data points are not linearly separable, slack variables
ζi can be introduced for each data point i to allow misclassifications. In
that way a so called soft margin is learned. However, the margin between
the correctly classified data samples is still maximized. The optimization
problem for the soft margin case is defined as

argmin
w,b

1

2
‖w‖2 + C

n∑
i=1

ζi

s.t. ∀ i ∈ {1, . . . ,M} : yi(w · xi + b) ≥ 1− ζi ∧ ζi ≥ 0, (26)

with C being a tradeoff parameter between the training error and the
margin size.

By using the dual form of this problem, the SVM decision function can
be obtained as

F (x̂) =
M∑
i=1

αiκ(x̂, xi) + b, (27)

where αi are the Lagrange multipliers with αi > 0 only for data points
which are located on one of the two support vectors. Further, x̂ is the
novel data point (or as in our case the sketch representation) which should
be classified and κ(·, ·) means the used kernel. For linear SVMs κ(x̂, xi) =
x̂Txi.

To use this binary classifier for a multi-class problem we integrate the one-
versus-all strategy. We learn one binary SVM per category to distinguish
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Figure 16: Illustration of the basic idea of a SVM.

it from the remaining categories. For example for the sketch category
”cat”, we use all of the training sketch representations with that ground
truth label as the category ”+1”. The rest of the sketch representations is
labeled with ”−1”. For predicting a novel sketch, we obtain the classifier
responses for all SVMs learned in that way. The category with the highest
”+1” response SVM is selected as the predicted label. Using linear SVMs
leads to a training complexity of O(Cat NM) and is therefore linear with
the amount of training data. Further, linear SVMs have a constant classi-
fication complexity of O(1). A drawback of this classifier method is that
not all data is linearly separable, therefore the non-linear SVM was intro-
duced.

The intention behind non-linear or kernel-based SVMs is that although
the data is not linearly separable, one can use the hyperplane as dis-
cussed above to divide the data with the so called kernel trick. The
idea is to transfer the data to a different feature space where the sepa-
ration using a hyperplane is possible. Any kernel function can be used
but we restrict ourselves to the Gaussian radial basic function defined
as κ(xi, xj) = exp(−γ ‖xi − xj‖2). To use kernel-based SVMs for multi-
class problems, we again apply the one-versus-all strategy discussed above.
Therefore, the drawback of linear SVMs is eliminated because of the ker-
nel trick. In general, a smaller classification error can be achieved with
kernel based SVMs. However, the training complexity is increased to
O(M2 ∼ M3). Further, also the testing complexity raises to O(M).
Therefore, the computations of a non-linear SVM are more expensive than
for a linear SVM.

As both variants were already successfully used in both the image and
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sketch recognition domain, we include these two SVM types in our evalu-
ation phase.

2. Random Forest (RF) [77]
A classifier which is capable of handling multi-class problems directly is
the RF [77]. The RF is an ensemble of decision trees, where a tree consists
of split- and leaf-nodes. The split-nodes are used to split the data in two
parts according to a certain criteria – the split function fsplit. Leaf-nodes
contain class-specific information which is discussed later in this para-
graph. In further consequence, each tree forms a hierarchical structure.
ntrees trees are built for the RF using a random subset of the training
data for each tree. This strategy is denoted as bagging. At each split a
certain set of split functions fsplit,i is used to divide the data. The split
result which leads to the highest information gain is kept for further tree
creation. When a specified tree depth is reached or no further split is
possible, the tree creation process is finished. Each obtained leaf node
stores a histogram with the amount of training samples that reached this
node for every category available. In such a way the histogram represents
probabilities that a sample reaching this leaf node is of a specific category.
A novel data sample is passed down each tree of the forest. This means
that depending on the previously obtained split functions, a leaf-node is
reached for each tree. To predict the category of the data sample, the
probabilities of the reached leaf nodes are summed up and averaged to
obtain the final probabilities. The class with the highest probability is
defined as the predicted category.

An advantage over the SVM-based classifiers previously discussed is that
only one classifier has to be learned and evaluated – although it consists
of multiple trees. As for linear SVMs, the training procedure can be per-
formed efficiently with an upper bound complexity ofO(ntrees(mM logM))
where m is the sketch representation dimensionality. Further, in general
the classification accuracy is comparable to SVMs-based classifiers and
RFs are known to have good generalization properties [77]. RFs were al-
ready integrated in successful image detection (e.g. [78]) and image recog-
nition approaches (e.g. [19]). Therefore, we include this classifier type in
our evaluation.

The adaptability of the discussed classifier types in the domain of sketch
recognition is discussed in Section 4.9.

In the following section we perform our extensive pipeline evaluation for the
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obtained list of element variants and additionally finalize our sketch recogni-
tion algorithm.
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4 Pipeline Evaluation and Final Algorithm

This section covers our extensive evaluations performed in order to obtain
our optimized sketch recognition algorithm. As already mentioned in Sec-
tion 3 we want to design an algorithm according to two aspects. First, the
pipeline should achieve a high recognition accuracy. However, at the same
time the algorithm should be efficient. The second constraint is important
for real-time applications which e.g. are used in Augmented Reality (AR)
systems (see Section 5.7 for such a demo application). In such applications
it is necessary to provide immediate feedback to the user request, e.g. for
the drawn sketch. Additionally, we also want our learning procedure to be
fast. As this is the offline part of the approach, fast means that the visual
dictionary as well as the classifier should be learned within a couple of hours.
In further consequence, we relax the first constraint in order to favor more
efficient methods. However, we still select variants of a high recognition qual-
ity. Since we figure out that both factors interfere with each other, we finally
propose two algorithm variants. The first one is designed to achieve the best
recognition performance at a reasonable runtime. Further, a more efficient
but less accurate approach is introduced.

First of all we discuss the sketch dataset used in all of our pipeline ele-
ment evaluations as well as final experiments in Section 4.1. Next, we dis-
cuss implementation issues in Section 4.2. Further, we explain the strategy
used for the evaluation phase and define our evaluation baseline pipeline in
Section 4.3. The actual evaluations of the individual pipeline elements are
covered in detail in Sections 4.4-4.9. The evaluation regarding sketch image
pre-processing is discussed in Section 4.4. All evaluations in the context of
descriptor extraction (sampling strategy/descriptor type) are explained in
Section 4.5. The dictionary learning method is investigated in Section 4.6.
The evaluation of the encoding step can be found in Section 4.7. The pool-
ing mechanism and its corresponding evaluation phase is covered in Section
4.8. The final pipeline element, the classifier, with its learning algorithm is
investigated in Section 4.9. A conclusion of the evaluation process is pro-
vided in Section 4.10. Our two final algorithms with their element choices
are declared and explained in Section 4.11.

4.1 Dataset

In this thesis we use the TU Berlin sketch dataset introduced in [5]. To
the best of our knowledge, this is the only large-scale sketch dataset pub-
licly available. In this context, large-scale means that both a large amount
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of sketch categories as well as a large number of sketches per category are
present. The dataset contains 20 000 human sketches of 250 object categories.
For each category an equal amount of 80 sketches exists. A large range of
everyday life objects is covered by the dataset according to [5]. Note however
that humans are able to distinguish among 30 000 visual categories and that
an adult English speaker uses 20 000 words [79]. According to [5], the 250
categories were defined in the following way: first the 1 000 most common
labels from LabelMe [80] were obtained and duplicates were removed. Addi-
tionally, categories were sorted out that do not follow one of the two following
criteria: first, the categories should be recognizable alone by their shape with-
out additional context. As a second criteria each category should be specific
enough that relatively few visual representations are available. The category
”building” e.g. would not be specific enough. Note however that also cate-
gories were included in the dataset which, in our opinion, do not follow these
two criteria as e.g. the categories ”seagull”, ”pigeon” or ”standing bird” as
seen in Figure 8. This inter-class variability problem was already discussed
in Section 1.2. However, the category set which satisfied these criteria was
extended with categories of the Princeton Shape Benchmark [81] as well as
the Caltech-256 dataset [7]. Finally, additional categories were introduced
based on suggestions obtained from the members of the scientific group of
the authors of [5].

The sketch images were obtained by using Amazon Mechanical Turk
(AMT) by 1 350 ordinary people. This means that no artists were involved
in the sketch creation process. For the created sketches both the problems of
intra- and inter-class variability as well as the viewpoint issue exist (see Sec-
tion 1.2 for the discussion of these problems). However, the following rules
were set up for drawing the sketches: only outlines of the object without
additional context should be drawn. It was also not allowed to add text or
large black areas to the sketches. As a final rule the authors of [5] defined
that the category of the sketch should be easily recognizable. The rules were
also graphically depicted to the drawers as shown in Figure 17. The obtained
sketches were manually examined according to those rules. Finally, the re-
maining sketches were truncated to get exactly 80 sketches for each category.
Eitz et al. claimed that this amount is enough to capture most of the variance
within a sketch category [5]. This is also shown in experiments in [5] as the
performance gain gets smaller as more data are used in the training phase.

The provided dataset is organized in 10 folds. So one can e.g. train with
increasingly training set sizes of 8, 16, etc. sketches per category. Each sketch
image in this dataset is available as a grayscale image probably due to anti-
aliasing methods used during the creation process. Further, each sketch has
a constant size of 1 111 × 1 111 pixels and is normalized in such a way that
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the longer side of the bounding box of the sketch has a uniform size and is
centered in the image. This mechanism solves the problem of non-uniform
scale and position of the sketches as already discussed in Section 1.2.

Figure 17: The graphical representation of rules for creating the sketches of
the TU Berlin sketch dataset (taken from [5]). This hint was shown to the
drawers who participated in the AMT creation task.

4.2 Implementation

The implementations of the evaluation framework as well as the final ex-
periment framework, discussed later on in Section 5, were done in Matlab
R2012b. As it would have been infeasible to implement all evaluated methods
on our own, we integrated external libraries and source codes. We used the
open source VLFeat toolbox [82] which contained most of the functionality
needed for the frameworks. However, we also integrated the publicly avail-
able code of [83] for the Self Similarity descriptor. For computing the Shape
Context descriptor we used provided code of [51]. The implementation of
sparse coding as well as of the Online Dictionary Learning for Sparse Cod-
ing (ODL) algorithm were integrated using the SPArse Modeling Software
(SPAMS) toolbox [65]. For the K-SVD algorithm, source code of [64] was
used. The available Locality-constrained Linear Coding (LLC) source code
provided by [32] was further included in the implementations. Soft encod-
ing was computed with source code taken from [84]. For the classifier type
evaluation we utilized the LIBLINEAR [85] and the LIBSVM toolbox [86]
for both Support Vector Machine (SVM) types (linear and kernel based).
Further, a Matlab Random Forest (RF) implementation of [87] was used.
For the evaluation of the Local Histograms of Oriented Gradients (SHOG)
descriptor we used our own implementation. All evaluations were performed
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on a desktop computer with a 3.2Ghz Quad Core CPU and a memory of
8GB.

4.3 Evaluation Strategy and Baseline Pipeline

In this section we first of all discuss strategic considerations for obtaining
an optimized recognition algorithm according to the two constraints already
defined. As a reminder we refer to our general recognition pipeline in Figure
12 and to Section 3.1 for an explanation of the pipeline. Then, we define our
evaluation baseline pipeline which is used for our evaluations.

Our strategy is to investigate each pipeline element successively in an in-
dependent manner. For example, we consider adapting the sketch image
pre-processing and try to optimize it according to our two criteria. In other
words, we evaluate the variants (sketch formats) introduced in Section 3.2.1
(for the pre-processing step) and choose the most suitable one. Once the
evaluation is finished, we declare this variant to be used in the image pre-
processing element of the final recognition algorithm. Further, we update the
current evaluation pipeline with this element and begin our evaluation for
the next pipeline step (descriptor extraction). Therefore, we systematically
exchange the pipeline element variants according to the obtained evaluation
results. Further note that all of the pipeline elements are based on each
other. Therefore, the evaluation results of one step are directly integrated in
all remaining pipeline elements. This strategy is performed until the evalu-
ation of the last pipeline element, the sketch classifier, is finished. We apply
this evaluation strategy, as a complete one (i.e. investigate all variants of all
steps with all variants of the remaining steps) is infeasible.

As mentioned before we use the TU Berlin sketch dataset outlined in Section
4.1. Further, we decide to use the first three (of 10) folds of the dataset. Two
folds are utilized for the training procedure and the recognition performance
is analyzed using the sketches of the remaining fold. Therefore we have 4 000
sketches for training and 2 000 sketches for testing from all 250 categories.
We perform 3-fold cross-validation and repeat each iteration per fold five
times to suppress the impact of randomness which can occur for individual
pipeline elements (e.g. in the original k-means algorithm or the RF learning
algorithm). In contrast to [5], we do not fix our visual dictionary learned
from descriptors of the whole dataset. Instead, we only use descriptors from
the current training set and therefore learn a dictionary for each iteration.
As a result of that, we also have to calculate the codes and in further conse-
quence the sketch representations for each of the 15 iterations (three folds ×
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five repetitions). If not specified otherwise, we use this data setup in all of
our evaluations in this section.

We evaluate the actual performance of an individual setup, in a classification
scenario. Thus, given previously unseen test sketches, we infer the corre-
sponding category using our pipeline and simply count the number of cor-
rectly recognized test samples. Therefore, the recognition score/performance
is the percentage of correctly classified test sketches. More formally we define
it as

score =
|{sketchi : classpred(sketchi) = class(sketchi), i ∈ testset i}|

|testset i|
,

(28)
where classpred is the predicted category and class is the ground truth sketch
label. Further, testset i contains the indices of the test sketches. All pro-
vided scores in the subsequent evaluation sections are average values over all
three folds and respective iterations (overall 3× 5 = 15 scores).

Evaluation Baseline Pipeline
As a pre-processing step the sketch images are scaled to a fixed size of
256 × 256 pixels. As we use the TU Berlin sketch dataset, we do not have
to scale and translate the sketch content as discussed in Section 4.1. After
that, the sketches are converted into the binary − thin format. We further
smooth the images using a default Gaussian kernel. In the next step we ex-
tract Scale-Invariant Feature Transform (SIFT) descriptors on a dense grid
every four pixels using a patch size of 52. Descriptors which contain no infor-
mation are rejected. From the remaining descriptors we select a maximum of
1 000 for further processing per sketch and apply l2 normalization. Further,
we randomly sample 100 000 descriptors from sketches of the training set
to learn our k-means dictionary consisting of 500 visual words. We use the
k-means++ initialization method and an accelerated algorithm introduced
in [88]. In further consequence, the visual words are also l2-normalized. To
encode our 1 000 descriptors per sketch we use the (exact) hard/histogram
encoding method. Sum pooling with successive l2-normalization is used to
obtain the final sketch representations. As a classifier we define a Random
Forest consisting of 500 trees, which uses 10 randomly sampled variables for
each split.

We defined our evaluation baseline pipeline after initial experiments.
Therefore, pipeline element variants were chosen which showed a good per-
formance in our sketch recognition framework. A summarized illustration of
the evaluation baseline pipeline is shown in Figure 18.
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Figure 18: Graphical representation of our evaluation baseline pipeline. El-
ements with a green color are only involved in the training procedure. The
outputs of these elements (marked with a green solid line with arrows) are
further used in the classification phase. Information about each pipeline
element is given in the corresponding rectangle.
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4.4 Image Pre-Processing

As we already fixed all but the sketch format for this pipeline step, as dis-
cussed in Section 3.2.1, the goal of this evaluation is to obtain the most
suitable sketch format. We compare the three sketch formats grayscale,
binary − thick and binary − thin. In Section 3.2.1 we already defined how
these formats are obtained, and provided a visual example of the three sketch
formats in Figure 13. For this experiment we use the evaluation baseline
pipeline as defined in Section 4.3 and only modify the sketch format used in
the image pre-processing step.

The impact of the different sketch formats is shown in the boxplot visu-
alizations in Figure 19. First of all, we notice that for each format, the
recognition performance varies by approximately ±3.5% over all 15 runs due
to the involved randomness. Remember that the descriptors used per sketch
as well as for the dictionary learning step are chosen at random. Further, the
Random Forest is learned in a non-deterministic way. Therefore, we argue
that such variations are reasonable. We also observe that the average scores
of all three formats differ by about 1% (binary−thin: 31.56%, binary−thick:
32.16% and grayscale: 32.53%). We argue that one would also expect this
small range, because the grayscale format basically only provides additional
magnitude information when the gradient is calculated (e.g. for SIFT) in con-
trast to the binary− thick format. Although this additional information can
be useful in the domain of natural images, for sketch images this information
does not lead to much benefit due to the lack of noise and background. For
example Eitz et al. [5] and Chao et al. [50] completely ignored the gradient
magnitude when computing their SIFT-based descriptors for the correspond-
ing sketch recognition/retrieval approaches. We further argue that by using
the morphological operation to thin out the sketch images, information is
lost for the binary − thin format. As the diversity issue is a major problem
of sketch recognition this additional information can be useful.

Hence, in the remaining evaluations we stick to use the grayscale format,
as the additional gradient information includes useful information for the
descriptor calculation (when a gradient-based method is used), although the
impact is only minor.

4.5 Descriptor Extraction

In this section we investigate two important aspects regarding the descriptor
extraction step. First, the sampling strategy is discussed in Section 4.5.1.
Further, the different descriptor types are evaluated in Section 4.5.2.
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Figure 19: Evaluation of the three sketch formats: (a) grayscale, (b) binary-
thick and (c) binary-thin. The boxplot visualization of the 15 scores for
each format is shown together with the corresponding means scores (green
markers).

4.5.1 Sampling Strategy

Two topics are covered in this part of our evaluations. First, we investigate
the question of which sampling method is more suitable for sketch recog-
nition. Therefore, we compare the grid and the point sampling method as
defined in Section 3.2.2. The second aspect of this topic is to identify an
optimal number of points to sample per sketch. Obviously, this is an im-
portant factor regarding the overall runtime. The fewer points are sampled,
the lower is the computational effort. On the other hand, a smaller number
might result in a less accurate sketch representation.

Sampling Method
We first test the two sampling methods (grid and point). When using grid
sampling with our default parameters (a patch size of 52 and a step size of
4), 3 025 SIFT descriptors are extracted for each sketch image with a size
of 256 × 256 pixels. Further, as empty descriptors are rejected, an average
descriptor amount of roughly 2 600 per sketch is obtained in this evaluation.
For point sampling, a patch is extracted for every pixel of the sketch lines.
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This average pixel amount in this evaluation is approximately 2 800, which
further represents the amount of extracted descriptors. Note however that
for this evaluation, as discussed in the evaluation baseline pipeline (Section
4.3), a descriptor amount of 1 000 is selected at random for each sketch.

The results of this evaluation can be seen in Figure 20. We clearly see
that the grid sampling strategy outperforms point sampling. The perfor-
mance with point sampling is on average 5.5% worse (26.99%) than with
grid sampling (32.53%).

Figure 20: Evaluation of the two sampling methods: (a) grid and (b) point.
The boxplot visualization of the 15 iterations for each method is shown to-
gether with the corresponding means scores.

We perform a second evaluation regarding point sampling and adapt the
amount of descriptors used. This comes from the fact that both sampling
strategies lead to a different amount of extracted descriptors. Further, we
want to debilitate the argument that the bad performance of the point sam-
pling iterations is a result of the fixed descriptor amount. Indeed, the perfor-
mance of the point sampling method increases with additional descriptors.
However, the results are not competitive to the performance for grid sam-
pling. We argue that grid sampling outperforms point sampling because
with grid sampling the extracted patches are not constrained. This means,
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that with point sampling the patch center pixel always contains a sketch line,
whereas this is not the case when grid sampling is used. So in general we get
more diverse, but fewer dense patches with grid sampling than with point
sampling. However, we further argue that variability is more important than
density as variability helps us when facing the challenges of sketch recogni-
tion as discussed in Section 1.2. We therefore conclude that grid sampling is
more suitable for our task than point sampling. Note however, that in [50],
point sampling is used for sketch-based sketch retrieval. As a consequence
we stick to the grid sampling method in the remaining evaluations.

Sampling Amount
In this evaluation we consider the amount of descriptors used per sketch
for grid sampling. The boxplot visualization of the results can be found in
Figure 21. We observe that a higher descriptor amount leads on average to
better scores as already investigated for point sampling. The highest score of
35.67% is achieved when all available descriptors are used. Compared to our
baseline with 1 000 descriptors, the average performance increases by roughly
3%. This is an interesting outcome because the amount of descriptors per
sketch is highly diverse (the range lies between 1 400 and 3 000). This comes
from the fact that although all sketches are centered and scaled to a fixed
longest bounding box length, the amount of empty patches and therefore de-
scriptors varies. Two example sketches with such varying descriptor amounts
can be found in Figure 22. As a result of that observation, we expected that
by using all descriptors and therefore a varying amount for each sketch im-
age, normalization issues would occur (e.g. categories with a higher amount
would be favored). However, our evaluation contradicts this theory. We ar-
gue that the more descriptors are used, the more sketch diversity is covered
which results in better overall recognition results. Hence, we use all available
descriptors for each sketch in the remaining evaluations. This comes with a
higher but still reasonable computational effort.

Conclusion and Findings
In the previous evaluations we investigated issues regarding the sampling
strategy. We compared two sampling methods and observed that grid sam-
pling outperforms point sampling. This is even true if more descriptors are
used for point sampling. Therefore, we defined grid sampling as our method
of choice. Further, we investigated the impact of the amount of descrip-
tors used per sketch image. Finally, the observation was made that despite
normalization issues (a different amount of descriptors per sketch), using
all available descriptors with grid sampling is the most suitable sampling
strategy for sketch recognition.
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Figure 21: Evaluation of the descriptor amount used per sketch when grid
sampling is applied. The boxplot visualization of the 15 iterations for each
amount is shown together with the corresponding means scores.

(a) high (”castle”) (b) low (”baseball bat”)

Figure 22: Two example sketches which result in a high and a low amount
of extracted descriptors when grid sampling is used.
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4.5.2 Descriptor Type

In this section we want to determine the descriptor type which leads to the
most accurate recognition results. Different descriptor types (local, global,
gradient-based, shape-based etc.) are investigated in that context. Further,
the insights are used to optimize parameters for the selected feature repre-
sentation, Dense SIFT, in an extensive evaluation. Finally, we investigate if
the RootSIFT strategy suggested in [56] does increase the recognition per-
formance.

We evaluate the performance of five descriptor types: Dense SIFT [53], His-
togram of Oriented Gradients (HOG) [52], Local Histograms of Oriented
Gradients (SHOG) [5], Shape Context [51] and Self Similarity [55]. We al-
ready explained each descriptor type in detail in Section 3.2.2.

For the Shape Context as well as the Self Similarity descriptor we do
not perform image smoothing as a pre-processing step as we argue that no
gradient calculation is performed for these methods. Further, we choose this
setting because in our opinion this is a more natural way of using these two
descriptors. For Dense SIFT, we fix the patch size to be 52 and set the
step size to four as defined in our evaluation baseline pipeline in Section
4.3. For SHOG, we use our own implementation and use the parameter
values as discussed in [5]. Therefore a patch size of 90 and a step size of
six are applied to compute the SHOG descriptors. In the context of the Self
Similarity descriptor, a patch size of 52 means that the reference 5× 5 patch
is compared to patches inside a circular region with a radius of 26. We use
default values for the remaining parameters as defined in the implementation
of [83]. For the Shape Context descriptor we again only adapt the parameters
in such a way that a circular region with a radius of 26 is considered. Further,
we use this descriptor type with point sampling as discussed in [51].

The results of this evaluation can be found in Figure 23. First of all, we
see that the Dense SIFT patch representation outperforms the remaining de-
scriptor types with an average score of 35.67%. Although SHOG is designed
to be used with sketches the performance is roughly 4% worse with a score
of 31.95%. All remaining descriptor types are not competitive at all with
an average score which is at least 16% worse than for Dense SIFT descrip-
tors. This observation is also supported by the findings in [54, 46] which also
perform a similar evaluation.

However, we like to point out the noticeable performance of the global
HOG descriptor with a mean score of 17.23%. This is interesting as only one
descriptor is used per sketch image. It is obvious that such a global repre-
sentation does not lead to superior results for sketch recognition due to the
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diversity problems. Nevertheless, its average performance is almost similar to
the evaluation which uses the Shape Context descriptor (19.03%). Further,
it is more successful than the Self Similarity descriptor (15.15%). We argue
that this already points out the strength of gradient-based descriptors for
sketch recognition. Even a global gradient-based representation is competi-
tive to a local shape-based method. The Shape Context descriptor which is
specialized for describing shapes, such as sketches usually are, performs worse
than we expected. We argue that a reason for this may be the large diversity
of sketches. However, gradient-based methods can handle this problem in a
convenient way. Note that this statement is also true for the image domain
as gradient-based methods are usually the local or global descriptor method
of choice. Additionally, we perform an evaluation for the SHOG descriptor
using parameter values as for Dense SIFT (patch size = 52, step size = 4).
A better recognition performance is achieved for SHOG with this parameter
setting which is however significantly lower than with Dense SIFT. There-
fore, we argue that the SHOG descriptor is a suitable but not optimal way
to describe local sketch image patches. Further, we argue that the additional
gradient-magnitude information comprised in the SIFT descriptor does help
to increase the recognition accuracy. This is also supported by Li et al. [46]
which also used SIFT descriptors.
Therefore, we select the local gradient-based Dense SIFT representation for
our final algorithm as also the runtime needed is the lowest compared to
the remaining methods in this evaluation. Hence, we use the Dense SIFT
descriptor for all subsequent evaluations.

We further investigate the image smoothing parameter σ in combination
with Dense SIFT descriptors. After the evaluation we fix this value to be 2.0
for all remaining evaluations.

Dense SIFT Parameter Optimization
Next, we want to optimize the recognition performance by adapting the pa-
rameters patch and step size of Dense SIFT. The amount of overlap depends
on the step size. For step size values smaller than the patch size an overlap
occurs. We perform evaluations regarding non-overlapping and overlapping
patches.

Due to performance reasons we change our evaluation setup for these two
evaluations. We use two (instead of three) folds from the sketch dataset and
do not perform cross-validation. Note that we come back to the performance
topic once we explain the set of investigated parameter pairs for the overlap-
ping case. We use one fold for the training procedure and the second fold
to obtain the recognition performance. Another modification to the current
evaluation pipeline is, that instead of (exact) hard encoding, the approxi-
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Figure 23: Evaluation regarding the descriptor type. The boxplot visualiza-
tions show the recognition performances of five different descriptors (Dense
SIFT, HOG, SHOG, Shape Context and Self Similarity). Additionally, mean
scores are provided.

mated version, using a kd-tree, is used for faster descriptor assignment. Note
however, that we repeat this experiment with our proper evaluation setup
and pipeline for a small set of best performing parameter pairs to get repre-
sentative scores later on in this section.

In the first evaluation we only consider non-overlapping patches (step size =
patch size). This means that the patches are directly concatenated to each
other. However, we obtain poor recognition scores with this setting for all
investigated patch size values with a best performance of 9.30%. Therefore,
we already recognize that overlapping patches are necessary.

The improvements, if we allowed patches to overlap each other, are further
analyzed. As mentioned before an overlap occurs if the step size is smaller
than the patch size. As patch sizes we use the values 4, 8, 12, 16, 20, 24,
28, 32, 36, 40, 52, 64, 72, 80, 88, 96, 104, 112, 120 and 128. We investigate
step sizes of 2, 4, 8, 16, 32 and 64. Overall, this would lead to 120 parameter
pairs. However, this number is reduced because of the overlap constraint for
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the step size. Therefore, 93 combinations are considered. Due to this large
number, we adapt the evaluation setup as discussed before such that this
evaluation becomes feasible.

The results of this evaluation can be found in Figure 24. We realize that
parameter pairs with mid-level sized patches and a high overlap produce
good scores. Note that the smaller the step size, the higher the overlap and
resulting amount of extracted descriptors is. The parameter pair (40/2 (patch
size/step size)) achieves a score of 27.65%. All of the top five pairs, which
achieve a similar performance, have a patch size of 40, 52 or 64 and a step
size of two or four. We further recognize that the pairs with slightly lower
or higher patch sizes and a step size of two also achieve satisfying scores.
The worst results are obtained with a low overlap or with small patches in
general.

These observations substantiate our initial assumption that mid-level
patch sizes with a big overlap and therefore a high amount of descriptors
are essential for good recognition scores. We further observe that the over-
lapping parameter pairs clearly outperform the non-overlapping scores by
approximately 18%. Therefore, we decide to use overlapping patches.
The scores from the two previous evaluations were obtained by using a mod-
ified version of our evaluation setup. Therefore, we use the four best per-
forming parameter pairs from the overlapping evaluation and repeat the ex-
periment with our proper evaluation setup as discussed in Section 4.3. In
Figure 25 the obtained scores are shown. We notice that all parameter pairs
investigated have a high quality and achieve valuable average scores. This
shows that our previous overlap-evaluation leads to useful results although
the evaluation setup was limited due to performance reasons. The best mean
score is achieved by a patch size of 52 and a step size of two with 36.55%.
The subsequent configurations obtain comparable results. However, the com-
putational effort for the combination 52/2 is high. Therefore, we decide to
use the efficient 64/4 parameter pair as a similar performance is achieved at
1
4

of the runtime needed. We introduce this Dense SIFT parameter pair in
our final recognition algorithm and in the current evaluation pipeline.

RootSIFT
We further investigate the impact of using the so called RootSIFT strategy
[56] as already discussed in Section 3.2.2. The calculation of the RootSIFT
strategy given the SIFT descriptor comes with low cost as the additional
operations can be performed highly optimized. Therefore, in a last evalua-
tion regarding the descriptors we evaluate the usage of this strategy in our
pipeline. The statement in [56] is confirmed as the average score of 36.46%
is improved by approximately 1% to 37.31% by using the RootSIFT variant.
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Figure 24: Dense SIFT parameter evaluation for overlapping patches. An
overlap only occurs if the step size is smaller than the patch size. Therefore
parameter pairs in the lower left corner are not considered. An adapted
evaluation setup is used due to performance reasons and the single scores are
illustrated as a heatmap.

Therefore and due to the fact that the additional steps can be performed
highly efficiently we incorporate this descriptor post-processing step in our
final recognition algorithm.

Discussion and Findings
In the previous evaluations regarding the descriptor type we first of all learned
that the local gradient-based SIFT descriptor clearly outperforms the other
investigated local as well as global methods. Next, we performed two ex-
tensive evaluations in order to get optimal parameter pairs for Dense SIFT.
We investigated non-overlapping and overlapping patches in this context and
learned that a high overlap and a mid-level patch size are essential to achieve
a high recognition accuracy. We obtained a patch size of 52 and a step size of
2 as the optimal parameter pair. Nevertheless, due to runtime issues we took
the similar performing pair 64/4. The last evaluation result showed that by
using the RootSIFT strategy, a performance gain could also be achieved in
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Figure 25: Evaluation result for the four best performing overlapping pa-
rameter pairs from the previous evaluation with the proper evaluation setup
used. The boxplot visualizations and mean scores are illustrated. A Dense
SIFT parameter pair is definded by the patch size (ps) and the step size (ss).

the sketch recognition domain.

4.6 Visual Dictionary Learning

In this section we investigate two main issues regarding dictionary learning
for our sketch recognition algorithm. First, a suitable dictionary learning
procedure is required to build a solid basis for the rest of Bag-of-Visual-
Words (BoVW) pipeline. Then, the impact of using various amounts of
visual words is discussed.

From our previous evaluation step we know that most elements in the
current evaluation pipeline are efficient. However, we observed that the en-
coding method used (hard encoding), is computationally expensive as an
exact nearest-neighbor search is required. As used in the Dense SIFT pa-
rameter experiment (Section 4.5.2), approximated hard encoding makes this
step efficient.

65



Dictionary Learning
As discussed in Section 3.2.3, we compare six dictionary learning methods.
Note that we use the associated sparse coding formulation for the evalua-
tion of the K-SVD and the ODL algorithm. Hence, the encoding method,
for which the dictionary is learned and optimized for, is incorporated. De-
fault parameter values for both learning algorithms as suggested in [65] are
applied. For the probabilistic dictionary consisting of a Gaussian Mixture
Model (GMM), we included the improved version of Fisher Vector (FV) en-
coding (IFV) as discussed in Section 3.2.4. For the rest of the dictionary
learning methods we use approximated hard encoding. As already discussed
in Section 4.3, for k-means an accelerated algorithm, as introduced in [88],
is used. Due to high sketch representation dimension obtained for IFV en-
coding and the resulting high computational runtime, we only perform one
iteration per fold (instead of five). Therefore, in that case the average score
of only three iterations is provided.

The evaluation results are illustrated in Figure 26. First of all, we take a
look at the three k-means variants. Exact k-means with the k-means++ ini-
tialization (in the following k-means++) leads to the highest score of 36.80%
within these three methods. However, when using the original initialization
method or the more efficient approximated version, similar performances are
achieved. When using a random dictionary the performance drops by about
1%. This stays in contrast to [57] in which it is claimed that a random dictio-
nary can be used with similar performance. However, in [57] sparse coding is
used in the subsequent encoding step. Next, we see that a GMM dictionary
with IFV encoding does not seem to work as well as for image recognition
as discussed in Section 3.2.4. To investigate if the amount of Gaussian dis-
tributions is sufficient, we doubled the amount and repeated the evaluation.
However, the recognition performance remained significantly lower than for
k-means++ and is even worse than for the random dictionary. Finally, we
compare the two sparse coding-optimized dictionary learning techniques (K-
SVD and ODL). Surprisingly, a large performance gap can be seen. We argue
that this comes from the different algorithms used to obtain the sparse codes,
Orthogonal Matching Pursuit (OMP) for K-SVD and Least Angle Regression
(LARS) for ODL. As explained in Section 3.2.4 with LARS it is guaranteed
that a global optimal solution is found in contrast to OMP. However, among
the investigated learning methods ODL (in combination with sparse encod-
ing) yields to the best results in this evaluation with a score of 39.10%. In
contrast to k-means++ a performance gain of almost 2% is achieved. There-
fore we see that an encoding-optimized dictionary learning procedure can
increase the performance.
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Although the dictionary learning step is an offline step, we further discuss
the resulting runtime. As ODL processes one descriptor at a time for a fixed
number of iterations, this algorithm is efficient and the dictionary can be
obtained in a short period of time. We therefore include this learning algo-
rithm in our final recognition algorithm. Further, we also update our current
evaluation pipeline and temporarily include sparse encoding. Note that the
final choice about the used encoding method is discussed in Section 4.7.

Figure 26: Evaluation for different dictionary learning methods. In the lower
caption line the learning approach is displayed. Additionally, if another en-
coding method rather than approximated hard encoding is applied, the used
procedure is denoted in the subsequent brackets, where ”FV” means fisher
vector encoding and ”SC” sparse coding. Above this caption line in some
cases additional information about the learning algorithm is declared. The
boxplot visualizations as well as the cross-validation mean scores are pro-
vided.

Number of Visual Words
As we already found our dictionary learning method, the question about the
required number of visual words arises. Therefore, we compare the following
dictionary sizes: 100, 250, 500, 1 000 and 1 500. The results of this evaluation
can be seen in Figure 27. We clearly see that our initial visual word amount
of 500 is already sufficient to achieve a competitive recognition performance.
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If more visual words are used, slightly higher performances can be obtained.
On the other hand the performance drops for dictionary sizes below 500.

As the amount of visual words is increased, we observe that also the
overall evaluation runtime increases linearly. This means that if e.g. 1 000
visual words are used instead of 500, the runtime is also twice as high. As
a visual word amount of 500 leads to a competitive performance and at the
same time results in an efficient pipeline, we use this amount for our final
recognition algorithm.

Figure 27: Evaluation concerning various dictionary sizes when the ODL
learning algorithm and sparse coding are used. The boxplot visualizations
and the cross-validation mean-scores are shown.

In general the more descriptors are provided for the dictionary learning pro-
cedure, the higher the quality of the resulting visual vocabulary is. However,
runtime issues occur for large descriptor amounts. After a brief evaluation
we define this amount to be 1 000 000 as this results in a reasonable runtime
of the learning procedure. Therefore, this number of descriptors is obtained
at random from the training set.

Discussion and Findings
In this evaluation we investigated the topic of dictionary learning. First,
we applied several dictionary learning algorithms (and optionally the appro-
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priate encoding method) to our pipeline. We recognized that this can have
a major impact on the overall performance. However, we learned that the
ODL learning algorithm with sparse coding was both efficient in runtime
and achieved the best performing recognition score. Therefore, we decided
to use ODL as our dictionary learning algorithm. This demonstrated that
using a dictionary learning procedure that is explicitly optimized for the
encoding used did have an impact on the recognition performance. In the
next evaluation the question of the required number of visual words was an-
swered. Although, the performance slightly increased when more than 500
visual words were used, due to efficiency reasons we chose this dictionary
size. Finally, we defined that 1 000 000 randomly chosen descriptors from the
training set were used to learn the visual dictionary.

4.7 Descriptor Encoding

An important step towards a powerful and compact sketch representation
is the usage of a suitable encoding method. As argued in [57] the encoding
method even has a stronger impact on the overall recognition performance
than the used dictionary learning method. Therefore, we particularly pay
much attention to this pipeline element and perform the following evalua-
tions. First, we want to gain overall insight in which type of encoding works
best in sketch recognition. As we only focus on the encoding methods, we
use previously learned and fixed dictionaries. We further select the two most
promising encoding methods – sparse coding and LLC – and investigate the
impact of using the dictionaries optimized for sparse coding by the ODL algo-
rithm. After that, we optimize the parameters of the selected sparse coding
method.

Encoding Method for K-Means Dictionaries
We investigate the applicability of the seven encoding methods already de-
fined and explained in Section 3.2.4. Again we use default parameter settings
as suggested in the corresponding implementations (see Section 4.2) for all
encoding methods. However, for the soft encoding method the uncertainty
mode as defined in [45] is used. We pre-calculate the visual dictionaries
consisting of 500 visual words by using k-means. For all but the Vector of
Locally Aggregated Descriptors (VLAD) and FV encoding methods, these
dictionaries are applied. For VLAD encoding we use k-means dictionaries
which consist of 64 visual words. We further learned a GMM consisting of
64 Gaussian distributions for IFV encoding. In [74] it was shown that this
number is sufficient for these two encoding methods. Due to the fact that
for VLAD and IFV a high dimensional sketch representation is obtained, we
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again restrict ourselves to one iteration per fold due to runtime issues.

The results of this evaluation can be found in Figure 28. We again see
the same phenomenon as during evaluating the dictionary learning (Figure
26). Although closely related, the two algorithms used to solve the corre-
sponding sparse coding optimization problems (OMP and LARS (Sparse in
the figure)), produce highly varying results. The OMP algorithm is clearly
outperformed by the iterations using LARS by 5%. This indicates that not
the K-SVD dictionary learning method but the OMP encoding algorithm
is the reason for the low scores. We already argued in that way for the
dictionary learning evaluation in Section 4.6. However, the solution of the
LARS/sparse coding problem formulation leads to high quality results with
an average score of 39.07%. The scores are competitive to the LLC re-
sults (39.11%). The soft encoding iterations also lead to similar scores (1%
lower than for LLC). The performance gap increases to roughly 2% when
the hard encoding variants are considered. Surprisingly, the related VLAD
encoding/pooling mechanism performs approximately 3% worse than hard
encoding. As in Section 4.6, IFV encoding is not competitive to the best
performing encoding methods.

After this evaluation we decide to use LLC and sparse coding for our next
evaluation.

Encoding Method for ODL Dictionaries
Although the ODL algorithm learns a dictionary optimized for sparse cod-
ing, we also include LLC in this evaluation as the method is based on sparse
coding. Further, we want to investigate the possible negative impact when
we use a dictionary learned for encoding method A, but use method B. For
both encoding methods the same previously learned dictionaries are used.
The impact of the adapted dictionaries can be seen in Figure 29. In contrast
to the iterations using k-means dictionaries, the performance of sparse coding
is increased by almost 1% to 39.8% and therefore outperforms the previously
best scoring LLC/k-means combination (39.11%). As expected, the perfor-
mance of the LLC iterations slightly decreases when ODL dictionaries are
used. This clearly indicates that dictionaries designed and built for specific
encoding methods improve the performance of the overall approach. How-
ever, exactly the same encoding formulation has to be used in the dictionary
learning algorithm to obtain this performance gain.

After this evaluation we decide to use sparse coding (the Least Abso-
lute Shrinkage and Selection Operator (LASSO) formulation) as it shows the
best performance in our evaluation with the corresponding dictionary learn-
ing method. Note however that this encoding mechanism in not as efficient
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Figure 28: Evaluation regarding different descriptor encoding methods. We
use fixed k-means dictionaries with 500 elements for this evaluation (except
for VLAD (64 visual words) and FV (GMM with 64 distributions)). The
encoding method and its used vocabulary size is provided below the boxplot
visualizations. Additionally, the cross-validation mean scores are shown.

as LLC (half the runtime for the complete evaluation) or soft encoding (even
1
8
). Therefore, we suggest these two as alternative encoding methods (with

k-means dictionaries used) in applications, where a low runtime is important.

Sparse Coding Parameter Optimization
Finally, we optimize the performance of sparse coding by adapting the avail-
able sparsity regularization parameter λ. We obtain the highest score with
a parameter value of 0.2. This leads on average to a code per descriptor
with six non-zero elements. However, this number varies between 1 − 19.
We also observe that the recognition accuracy can be increased when both
for dictionary learning (ODL) and sparse coding a positive code constraint
is introduced.

Therefore, we also include the latter two observations in our final recog-
nition algorithm and in the current evaluation pipeline.
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Figure 29: Evaluation regarding the usage of two dictionary learning methods
(k-means and ODL) in combination with LLC and sparse coding. The left
half illustrates the boxplot visualizations with ODL dictionaries and for the
right side k-means dictionaries are used. Additionally the cross-validation
mean scores are provided.

Discussion and Findings
By using fixed k-means dictionaries we observed that sparse coding and LLC
perform best. Additionally, soft encoding showed a competitive performance.
On the other hand we argued that successful encoding/pooling variants for
image recognition as VLAD or FV are not suitable and applicable without
modifications in the sketch domain, as they were even outperformed by the
baseline hard encoding method. We also observed that with a dictionary
particularly designed for sparse coding, the performance of the sparse coding
approach can further be improved. Finally we investigated parameters for
sparse coding to obtain an optimal performance.

4.8 Code Pooling

After we obtained the individual codes for the descriptors of the sketch im-
age, the available information has to be aggregated to form the final sketch
representation. As this representation is further used within the classifier,
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it should be powerful enough to capture important aspects of the complete
sketch. We both investigate pooling methods (as defined and explained in
Section 3.2.5) on the single layer and when the spatial pyramid framework is
introduced. Further, we discuss runtime issues, since by introducing a spatial
pyramid, the sketch representation dimension gets larger by a multiplication
factor proportional to the amount of pyramid sub-regions. Therefore, the
upcoming classifier has to be able to handle this enlarged vector dimension
efficiently.

The results of the pooling step evaluation can be found in Figure 30. First
of all we clearly see a significant performance gap whether a spatial pyramid
is used or not. With sum pooling, the single-level variant is outperformed
by the corresponding spatial pyramid evaluation by almost 3.5%. This is a
remarkable performance gain and stays in direct contrast to the observation
discussed in [5]. Eitz et al. argued that the spatial pyramid framework does
not lead to higher recognition scores in the sketch domain. However, our
observed performance gain is in accord with the boost discussed in [15]. For
both the single layer and spatial pyramid evaluation, it is surprising that the
max pooling strategy is outperformed by sum pooling (and avg pooling in
the single layer). Again, the opposite was observed in [20, 32, 76] for the
image recognition domain.

Although an increased runtime for the subsequent classifier (RF) learning
step by a factor of three is observed, we decide to use the spatial extension
with sum pooling due the achieved performance gain. However, we consider
sum pooling at a single layer as an efficient alternative for the pooling step.

4.9 Classifier Learning

In this last evaluation section, the goal is to find the most suitable classi-
fier for our already defined sketch representation (as obtained in the previous
Sections 4.4-4.8). We therefore first of all compare the three defined classifier
types: Kernel SVMs (one-versus-all strategy), Linear SVMs (one-versus-all
strategy) and a Random Forest as defined and explained in Section 3.2.6.
Further, for the best performing classifier, the linear SVMs, we optimize its
tradeoff parameter.

Classifier Type
For this classifier evaluation step, we change our evaluation setting and in-
corporate the setup which we further use for our final experiments in Section
5. The reason for this is, that we already want to gain knowledge about
the final overall performance of our sketch recognition approach. For this
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Figure 30: Evaluation for the pooling element of the pipeline. We investigate
three pooling methods in a single-layer setting and apply two methods (sum
and max) with the spatial pyramid (sp) framework. The boxplot visualiza-
tions and the corresponding mean scores are provided.

final setup we split the TU Berlin sketch dataset into four parts at random
and keep this split fixed. Then, in the first iteration we choose part one as
our evaluation dataset. For this dataset we perform 4-fold cross-validation
again by a random split into four parts. As a next step, the dataset size is
increased by using two parts and the evaluation procedure is repeated. This
is done until all four parts are used for the evaluation procedure. The average
recognition scores for each dataset size are discussed. In Section 5.1 this final
experiment setup is explained in more detail.

For the SVM variants we use default parameters values for the tradeoff
parameter C and the kernel parameter γ (only for kernel SVMs). After an
initial RF parameter tuning experiment, we adapt the parameter values of
the RF.

The result of the evaluations with the three classifiers types is shown in
Figure 31. Surprisingly, the linear SVM based classifier outperforms both re-
maining types used in this evaluation. On average (over all dataset sizes) the
iterations with linear SVMs achieve a mean performance which is roughly 1%
better than when the kernel SVM based classifier is used. This gap increases

74



to about 5% if we consider the RF iterations. Therefore, we can argue that
in this setting/domain the RF, even with optimized parameters, is not a
suitable classifier type. In general, linear SVMs are known to lead to a lower
recognition performance for baseline BoVW approaches with hard/histogram
encoding [20]. However, when sparse coding is used, linear SVM based classi-
fiers achieve a similar performance [20]. In this evaluation we even show that
this classifier type can outperform kernel based SVMs when our obtained
sketch representation is used.

Figure 31: Average 4-fold cross-validation recognition scores for varying
dataset sizes and for three different classifier types.

As another surprise, we observe that the classifier training time needed for
the RF is much longer than for the linear SVMs. In general, RFs are known
to be both efficient in training and classification. Although this is also true
for linear SVMs, we argue that the magnitude is spectacular as can be seen in
Figure 32. Whereas for the whole evaluation 176 hours are spent to train the
RFs, with linear SVMs this time is reduced to 18 minutes. We argue that the
enormous RF training runtime comes from the high dimensionality (10 500)
of our obtained sketch representation due to the usage of a spatial pyramid.
Therefore, the runtime advantages of the RF training procedure are reduced.
However, both classifier types are equally efficient for classification. We also
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argue that the training as well as the classification runtimes for the kernel
based SVMs are reasonable with 220 and 24 hours respectively.

To conclude, the highest recognition accuracy is achieved with the linear
SVM based classifier. Further, the runtimes for classifier training and evalu-
ation are outstanding. Therefore, we include this classifier type in our final
algorithm.

Figure 32: Classifier learning and evaluation runtimes (in hours) for the
classifier type evaluation (Figure 31).

Linear SVM Parameter Optimization
As a final step of our evaluation phase, we optimize the linear SVM tradeoff
parameter C. We therefore repeat the previous evaluation with various C
parameter values in order to tune the classifier. Due to the high efficiency of
the classifier learning procedure this evaluation is performed fast. Further,
we can use previously obtained and fixed sketch representations. The results
for parameter tuning step can be found in Figure 33. Therefore, we identify
the ideal tradeoff parameter value to be 1.0. We include this setting in our
classifier of our final sketch recognition algorithm.

Discussion and Findings
In this evaluation section we gained knowledge about the most suitable clas-
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Figure 33: Parameter tuning for the tradeoff parameter C used for the one-
versus-all linear SVM classifier.

sifier type for our sketch recognition algorithm. Linear SVMs used with a
one-versus-all strategy achieved the best recognition performance. At the
same time it was shown that this classifier type was highly efficient both
in learning and classification. Whereas, the two other investigated classifier
types (kernel SVMs and RFs) needed > 176 hours for classifier learning, this
time was reduced to 18 minutes with a linear SVM. We therefore decided to
use this highly efficient classifier type with an optimized tradeoff parameter.

4.10 Evaluation Phase Conclusion

In general we learned a lot of important and interesting lessons from the eval-
uation phase discussed in this section. Further, we gained a deeper knowledge
for each element involved in this often used recognition pipeline structure.
Our findings are not only restricted to the recognition performance, but also
include runtime issues. Therefore, we know which element variants should
be chosen for efficient algorithms. We argue that the gained knowledge is not
necessarily restricted to the sketch domain but can also help to understand
similar image recognition algorithms in more detail. In further consequence,
this can be useful to improve such existing image recognition pipelines.
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However, after the extensive evaluations performed in this section, we figured
out that both investigated factors (recognition performance and runtime ef-
ficiency) interfered each other. Therefore we decide to propose two pipeline
variants for our final sketch recognition approach. The first one is designed to
achieve the best recognition performance at a reasonable runtime. Further,
a more efficient but less accurate approach is introduced. We declare both
algorithms with their element choices in the following section.

4.11 Final Sketch Recognition Approach

To sum up, we identified two variants of our algorithm, one tuned to opti-
mal recognition performance (full) and one tuned to fast predictions (fast).
These are used in the final experiments in Section 5. In the following we
define and describe both algorithms in full detail.

Full Algorithm
For the image pre-processing step we first scale the grayscale format sketch
image to a fixed size of 256×256 pixels. The sketch content is scaled such that
the longer side of its bounding box has a fixed size of 202 pixels. The resulting
bounding box is shifted to the image center and the image is smoothed using
a Gaussian kernel with a σ of 2.0.

To extract local SIFT descriptors in a dense manner we use the grid-
sampling strategy. We set the local patch size for SIFT calculation to 64
and use a step size of four. We reject descriptors which do not contain any
information, i.e. descriptors for areas without a sketch line. The remaining
SIFT descriptors are l1 normalized. Afterwards, we follow the RootSIFT
extension [56] and apply the square root on these normalized descriptors.
Finally, we l2 normalize the resulting descriptors. We retain the patch center
locations for each descriptor as additional information.

The visual vocabulary is learned using 1 000 000 randomly sampled de-
scriptors from all sketches of the specified training set without additional
restrictions. This means that we do not use e.g. a fixed amount of descrip-
tors per sketch category. We apply this strategy, as sketches of different
categories have a varying amount of sketch lines and in further consequence
descriptors. By using randomly sampled descriptors we do not obtain a
biased dictionary. We incorporate the ODL algorithm to learn our unsuper-
vised dictionary consisting of 500 visual words. For this dictionary learning
algorithm we set the amount of iterations to 1 000, use a λ parameter of 0.2
and restrict the dictionary to only include positive visual words. We also
restrict the sparse codes obtained in the ODL algorithm to be positive. The
final dictionary is created by a l2 normalization for each visual word.
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Sparse coding (LASSO) is included for the descriptor encoding step of the
algorithm. We use the same settings/parameter values as for the ODL algo-
rithm, to make use of the optimized dictionary. Therefore, we obtain positive
codes with a sparsity regularization parameter λ of 0.2.

To obtain the final sketch representation we use a spatial pyramid with
three levels (1×1, 2×2, 4×4) and apply the sum pooling strategy for each of
the occurring sub-regions. A concatenation of the 21 region representations
yields to our final sketch representation vector with a dimensionality of 10 500
(500 visual words × 21 pyramid regions).

As a classifier we learn one-versus-all linear SVMs from the sketch repre-
sentations of the training set. The value of the tradeoff parameter C is set
to 1.0 by cross validation.

A visual depiction of the our final sketch recognition algorithm can be found
in Figure 34. We discuss the resulting recognition performance as well as
runtime issues in detail in Section 5.2.

Fast Algorithm
For our intended real-time applications, we further derived a second algo-
rithm by replacing each pipeline element by a more efficient variant which
however achieved reasonable performance in our evaluation phase.

We keep the image pre-processing step as defined before. In the descrip-
tor extraction stage we again use the Dense SIFT setting but increase the
step size from four to eight. This further reduces the amount of descriptors
extracted by a factor of four. Instead of the ODL algorithm, we use ap-
proximated k-means with 100 000 randomly drawn descriptors to learn the
visual vocabulary consisting of 500 visual words. For the encoding step we
introduce LLC instead of sparse coding. The approximated LLC version,
considering five nearest-neighbors with a λ equal to 0.1, is used. For code
pooling we reject the usage of a spatial pyramid and only use the sum pool-
ing strategy in a single layer to obtain the final sketch representation. This
results in a more compact representation with a dimensionality of 500. The
same classifier configuration is used as for the full pipeline.

The recognition performance and the runtimes of this fast algorithm is dis-
cussed in detail in Section 5.2. An additional tabular comparison of both
introduced sketch recognition algorithms is given in Table 2.

79



Figure 34: Graphical illustration of our final sketch recognition algorithm
(full). Green steps are only performed in the learning procedure. The results
of these elements (also green) are used during the classification process.

Full Fast
Sampling Strategy Grid Grid
Step Size 4 8
Descriptor Type SIFT SIFT
Patch Size 64 64
Dictionary Learning ODL Approximated K-Means
Vocabulary Size 500 500
Learning Amount 1 000 000 100 000
Encoding Method Sparse Coding LLC
Pooling Strategy Sum with Spatial Pyramid Sum
Sketch Representation Dim. 10 500 500
Classifier Linear SVMs Linear SVMs

Table 2: Comparison of our two obtained sketch recognition algorithms.
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5 Experimental Results

In this section we perform final experiments for our two sketch recognition
algorithms (as defined in Section 4.11), which were designed based on the
findings of our evaluation phase (Section 4). First of all we explain our
experimental setup in Section 5.1. As a first experiment we compare the
recognition performance and runtimes of our two obtained algorithms in Sec-
tion 5.2. Further, we include the evaluation baseline pipeline as defined in
Section 4.3 in this discussion to show the impact of the evaluation phase. Fur-
ther, we introduce and discuss two slightly adapted versions of our obtained
full pipeline and include them in this comparison. After that, we directly
compare our two algorithms to related approaches of the sketch recognition
domain in Section 5.3. We apply our novel sketch algorithm (full) without
modifications in the domain of image classification in Section 5.4 and also
run an experiment for a competitive image-domain approach on the sketches.
Example recognition results for our full algorithm are shown and discussed
in Section 5.5. We also explain some interesting recognition statistics and
perform a final experiment regarding the classifier responses. We conclude
our performed experiments in Section 5.6. Finally, we briefly present our
developed augmented reality application based on our novel algorithm in
Section 5.7.

5.1 Experimental Setup

For all experiments performed in the sketch domain and in this section we
use the TU Berlin sketch dataset [5]. We already explained this dataset in
detail in Section 4.1.

In contrast to the setup used in the evaluation phase, we do not restrict
ourselves to three (of 10) folds of the dataset anymore. As it is done in
[46], we randomly split the TU Berlin sketch dataset with its 20 000 sketches
and 250 categories into four equally-sized parts. We keep this split fixed
for all experiments on this dataset. Therefore, each part consists of exactly
20 sketches per category. With this split we are able to investigate the
performance for different dataset sizes and therefore a different amount of
training data.

In the first iteration we only use part one of the split as the current
dataset. To get the recognition results for this dataset we perform 4-fold
cross-validation. This means that three folds (or 15 sketches for this dataset
size) are used for the training procedure and the remaining fold (five sketches)
is used to obtain the recognition performance. These four folds are created
for each dataset at random. Once the recognition results for the four folds
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are available, we increase the amount of sketches used for the current dataset
by choosing part one and two. Further, we repeat the 4-fold cross-validation
experiment procedure. This is done until all four parts are used for the 4-fold
cross-validation experiment.

In that way for each of the four dataset sizes, four recognition results
are obtained (overall 16 scores). Note that individual visual dictionaries and
sketch classifiers are learned for each iteration. In contrast, in [5], one visual
dictionary is created by using descriptors of the complete TU Berlin sketch
dataset and applied for experiments. For our four different datasets 15, 30,
45 and 60 sketches are used for the corresponding learning procedures. We
report the average recognition scores per dataset size, where the score, as al-
ready defined in Section 4.3, measures the percentage of correctly recognized
test sketches.

We use the sketch representations of [5] which are publicly available for the
Bag-of-Visual-Word (BoVW) based approach of Eitz et al. Further, we learn
corresponding sketch classifiers and calculate the recognition scores using our
experimental framework in order to get comparable results. When using the
kernel based Support Vector Machines (SVMs) as a classifier, we apply the
parameters as defined in [5]. For the experiments with linear SVMs we use
default parameter values. The results for the ensemble matching approach
of Li et al. [46] were kindly provided by Yi Li (only for kernel based SVMs).

For the experiment in the image domain in Section 5.4 we use the Caltech-101
dataset [89]. This dataset consists of 9 144 images of 101 object categories
and a background class. The amount of images per class varies between 40
and 800. Further, the images do not have a fixed size and the objects in-
cluded vary in scale, shape, pose, rotation etc. To get the results for the
Locality-constrained Linear Coding (LLC) image recognition approach, we
use the publicly available source code of Wang et al. [32]. This approach
was already discussed in detail in Section 2.2. A visual dictionary obtained
from randomly sampled descriptors from all categories and the whole dataset,
which is learned using k-means, is also provided. In contrast to our exper-
imental setup in the sketch domain, we incorporate this strategy for this
image recognition experiment using our unmodified full algorithm. As fur-
ther consequence, the image representations for the whole dataset can be
pre-calculated. We define the amounts of images used for each class for the
training procedure to be 10, 20 and 30. These training images are chosen
at random. For each image amount the experiment is repeated four times.
The image representations for the remaining images are used to obtain the
recognition results. This strategy was also suggested by the creators of the
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Caltech-101 dataset [89]. The final score is obtained by using the average
accuracies for all categories.

To obtain the LLC result in the sketch domain, we use the available source
code of [32] and adapt it in such a way that the TU Berlin sketch dataset is
used.

All experiments were performed on a desktop computer with a 3.2Ghz Quad
Core CPU and a memory of 8GB using Matlab R2012b.

5.2 Results of Proposed Sketch Recognition Algorithm

In this section we compare our two sketch recognition pipelines (full and
fast) defined in Section 4.11 regarding recognition performance and run-
time. To further show the impact of our extensive evaluation phase (Section
4) we also consider the evaluation baseline pipeline as defined in Section 4.3.
In the following we denote this pipeline as baseline. Additionally, we ana-
lyze the impact of two slightly adapted versions of the full pipeline, full llc
and full soft. We discuss these two algorithms as well as their motivations
when we concentrate our discussion on runtime issues. However, we start
this section with the recognition performance comparison.

The sketch recognition results can be found in Figure 35. First of all we no-
tice that our evaluation phase yielded a remarkable performance gain. When
the whole dataset with 80 sketches per category is used, the performance
increases by 22% when our full pipeline is used compared to the baseline
algorithm. With the full algorithm and the full dataset, 63% of the sketches
are recognized correctly. These rates drop to 41% for the baseline. This gap
decreases for smaller dataset sizes but does not undercut 17%. When we con-
sider the fast algorithm the recognition performance gain is between 10 and
12%. Although we use pipeline elements which are more efficient than the
corresponding parts of the baseline pipeline, we achieve a recognition rate
which is constantly higher by a double-digit value. This is another remark-
able result and further points out the quality of our evaluation phase. As we
do not restrict ourselves solely to performance but also focus on efficiency
we were able to learn about pipeline elements which combine these two as-
pects. In that way we were able to design an additional runtime-optimized
but still accurate recognition pipeline. However, for the comparison of our
two obtained algorithms full and fast we notice a performance gap. The
range lies between 7 and 9%. This is interesting as we expected this gap to
be narrower. We argue that although the individual elements achieve a sim-
ilar performance, the combination of such elements result in a significantly
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lower overall recognition performance. In a more mathematical formulation
we can say that the reconstruction error is introduced by one element, trans-
ferred to the subsequent elements and reinforced by these elements. When
the final classification step is reached it is obvious that a higher overall er-
ror and therefore a lower recognition score is achieved. Further, this comes
from the fact that fewer descriptors are used due to a larger grid step size.
Before we discuss the performance of the remaining two pipelines in the plot
in Figure 35 we turn our attention to runtime related issues to understand
the motivation behind the algorithm adaptions.

Figure 35: Direct recognition performance comparison of our two obtained
recognition pipelines (full and fast) as well as our initial evaluation pipeline
(baseline) for different dataset sizes using 4-fold cross-validation. Further,
the scores of two slightly adapted versions of the full pipeline, full llc and full
soft, are included. For these two pipelines the encoding and (for full soft)
the dictionary learning method is/are replaced. Note that for the baseline
algorithm a Random Forest is used as a classifier whereas the remaining
pipelines use linear one-vs-all SVMs.

For classifying one single sketch image, the timing information was obtained
by per-step runtime measurements for 100 randomly selected sketches and
the average timings are reported. The diagram regarding the exact classi-
fication timings can be found in Figure 36(a). When considering the full
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pipeline, the classification of a novel sketch is highly efficient for all but two
steps with an average runtime below 40ms (including the sketch image load-
ing). However, the descriptor extraction and the encoding step can be seen
as runtime bottlenecks with an average runtime of 0.52 and 0.42 seconds. As
these steps are performed using external libraries we are not able to optimize
the code. Nevertheless, on average a classification response is obtained for
this pipeline within a second. With the fast algorithm a recognition result is
obtained within 0.6 seconds on average. This already points out that our ef-
ficiency optimized approach has the desired impact. However, the descriptor
extraction bottleneck is not solved although fewer descriptors are obtained.
Nevertheless, all of the remaining steps are highly efficient, even the encoding
mechanism with an average runtime of 60ms. The first reason for this is that
a more efficient encoding method (approximated LLC) is used. Secondly, as
less descriptors are used per sketch, fewer encoding operations have to be
performed. Further, no spatial pyramid is involved in the pooling step which
results in a more compact sketch representation. If we discuss the classifica-
tion runtime of the baseline algorithm we see that a recognition result can
be obtained in similar time as for the fast pipeline. This is interesting as the
baseline algorithm only uses a random subset of 1 000 descriptors for each
sketch instead of the full set as it is done both in the full and fast algo-
rithm. Due to the fact that a smaller patch size is used, the SIFT descriptor
extraction is performed more efficiently and needs on average 0.43 seconds.
However, in contrast to the fast algorithm version the encoding step (exact
hard encoding) is less efficient although fewer descriptors are used. This is
most likely due to the fact that an exact nearest-neighbor search is performed.

The timings for the training procedures using 15 000 sketches can be found
in Figure 36(b). For the full algorithm the whole learning procedure obtains
a visual vocabulary as well as the classifier in 4.4 hours. We again see that
most of the time is spent for descriptor extraction and encoding. When using
the fast algorithm the learning procedure is finished after 2.5 hours. Again
the overall time is reduced due to the factors described before. With a learn-
ing procedure duration of 2.9 hours, the baseline approach is less effective
even with fewer descriptors per sketch used. We already discussed the reason
for that above. However, we observe that the RF learning procedure is time
consuming with 19 minutes. A similar observation was made in the classifier
evaluation in Section 4.9.

We argue that both the learning and classification runtime for the full
pipeline are sufficient for most scenarios regarding user applications such
as e.g. a search engine/retrieval system. This further means that we satisfy
our efficiency goal for this algorithm both for the learning and recognition
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(a) classification procedure timings (for one sketch)

(b) learning procedure timings (for 15 000 sketches)

Figure 36: Timing information (classification and learning) for all investi-
gated pipelines. The individual steps are depicted by different colors and the
height of each block represents the average duration spent for this pipeline
element.
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procedure. However, we further investigate the question if we can design a
similar algorithm which is as efficient as the fast pipeline and at the same
time achieves competitive performance to the full approach. As we already
discussed, the runtime bottleneck of the encoding step can be solved by using
a more efficient method. Therefore, for our first investigated approach we
replace sparse encoding of the full algorithm by LLC and keep the remaining
pipeline fixed. We decide to use LLC as it showed competitive performance to
sparse coding even for dictionaries learned by the Online Dictionary Learning
for Sparse Coding (ODL) algorithm as discussed in Section 4.7. We denote
this pipeline as full llc. The recognition performance of this approach can
be seen in Figure 35. We observe that a similar average recognition rate of
62% is achieved when the full dataset is used. This also represents the per-
formance difference observed in our evaluations according the encoding step
in Section 4.7 when ODL dictionaries are used. In Figure 36(a) we see that a
novel sketch is recognized within 0.8 seconds for this novel algorithm and the
learning procedure takes 3.6 hours (Figure 36(b)). For both the classification
and the learning procedure we observe a runtime reduction for the encoding
step. However, compared to the fast algorithm version, still a runtime gap
is present. Again this is mainly because of the encoding step. Although the
same method (LLC) is used, more codes have to be obtained due to the fact
that more descriptors are used.

Soft encoding was identified as another competitive and even more efficient
encoding method in Section 4.7. However in that evaluation, k-means dictio-
naries were used. As using ODL in combination with soft encoding does not
make sense, we further change the dictionary learning method to approx-
imated k-means. Therefore, in contrast to the full algorithm, the dictio-
nary learning method and the encoding method are different. The resulting
pipeline is denoted as full soft. We observe that for the full dataset 59% of
the sketches are recognized correctly (see Figure 35). Therefore, the perfor-
mance is 4% worse than with the full algorithm. On the other hand, the fast
pipeline is outperformed by 6% for this dataset size. In Figure 36(a) we see
that the sketch classification process needs 0.6 seconds. This is as efficient as
for the proposed fast algorithm. By using soft encoding, the runtime needed
for this step is even lower than for LLC with fewer descriptors processed. The
runtime needed for one learning procedure of this algorithm is 2.78 hours as
can be seen in Figure 36(b). Although this is slightly higher than for the fast
pipeline (2.5 hours), the visual dictionary and the classifier are learned faster
than for the baseline algorithm (2.9 hours). An interesting observation can
be made if we take a closer look at the dictionary learning times of the full
and the full soft pipelines. Although approximated k-means is used, the
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time spent for the dictionary learning step is slightly higher than for the ODL
algorithm with an equal amount of descriptors used. This is a result of the
fact, that although kd-trees are used, the higher the data dimensionality and
the data amount, the less efficient this data structure becomes. In contrast,
ODL selects and processes one descriptor per iteration with a fixed number
of iterations.

We therefore see that the recognition performance highly depends on the
encoding method used and on the specialized dictionaries. More power-
ful encoding methods need more computational runtime but lead to higher
recognition performance. On the other hand more efficient encoding schemes
result in lower overall recognition scores.

Conclusion and Findings
To conclude this experiment section, we first of all showed that a remarkable
performance gain for our two obtained algorithms full (63% with the full
dataset) and fast (53%) compared to the evaluation baseline pipeline (41%)
was achieved. Further, we observed that although both obtained pipelines
(full, fast) were designed to be both efficient and accurate, these two goals
interfere each other. The first pipeline (full) showed an excellent perfor-
mance but needed a lot of computational time for the encoding step. For
the fast pipeline it was shown that it was more efficient – even more than
the baseline approach with fewer descriptors used per sketch – but at the
cost of a lower recognition performance. We argued, that the gap was the
result of the combination of ”not best performing” pipeline elements used,
although individually these showed a competitive performance in the evalua-
tion phase. We further investigated classification and learning runtimes and
noticed that the runtime bottlenecks were the descriptor extraction and the
encoding step. For the full pipeline a recognition result could be obtained
in less than one second. The learning procedure took 4.4 hours when 15 000
sketch were involved. The prediction of a novel sketch using the fast pipeline
was calculated in 0.6 seconds and the learning procedure was finished after
2.5 hours. We argued that the runtimes for both pipelines were suitable
for the sketch recognition task. However, we introduced two novel slightly
adapted versions of the full pipeline: full llc (LLC instead of sparse coding)
and full soft (approximated k-means and soft encoding instead of ODL and
sparse coding). For the full llc pipeline it was shown that a competitive
recognition performance can be obtained (62%). Further, the runtimes could
be decreased to be 0.8 seconds and 3.6 hours. With the full soft algorithm
the performance dropped to 59%. However, the same efficiency as with the
fast pipeline with runtimes of 0.6 seconds and 2.8 hours was achieved.
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5.3 Comparison to Related Approaches

In this section we compare our two pipelines full and fast to two related
approaches for the domain-independent sketch recognition task. These two
approaches are the BoVW-based algorithm of Eitz et al. [5] and the ensemble
matching algorithm of Li et al. [46]. We already discussed both approaches in
detail in Section 2.3. In contrast to our algorithms, these two algorithms use
kernel based SVMs. Therefore, we compare the approaches for both SVM
types individually to achieve a fair comparison. As mentioned in the exper-
imental setup (Section 5.1), the sketch representations of the Eitz approach
for the TU Berlin sketch dataset are publicly available. Therefore we are able
to obtain results for both classifier types using our experimental framework.
Results for the ensemble matching approach using kernel based SVMs were
kindly provided by Yi Li. Therefore, we are not able to use this approach
with linear SVMs.

The recognition performances of the four algorithms using kernel based SVMs
are shown in Figure 37. First of all we realize that for all dataset sizes our
fast pipeline outperforms the ”Eitz sketch representations”, which achieves a
score of 52.5% when the full dataset is used. This is a surprising result which
again points out the quality of our evaluation phase (Section 4). Although,
we choose highly efficient and less accurate pipeline elements, the recognition
performance gap is between 1.5 and 2.2%. Further, we like to add that in
[5], the visual dictionary was obtained from randomly sampled descriptors
of the whole dataset. In further consequence, this vocabulary was used to
obtain the ”Eitz sketch representations”. In contrast, we restrict ourselves
to descriptors of the training set. With our full pipeline we are able to out-
perform the ”Eitz approach” by 7-8%. This is remarkable, as we do not even
use the most suitable classifier as learned the evaluation in Section 4.9.

If only 20 sketches per category are used for this experiment, we are
able to surpass the recognition score of the ensemble matching approach
[46]. However, as we increase the dataset size, the performance passes our
full results. With the full dataset used, a recognition accuracy of 61.5% is
achieved with this approach. In contrast, we recognize 60.4% of the sketches
correctly with our full algorithm. We argue that this performance gain
makes sense for ensemble matching. As more sketches are used, the better
matches can be found. For our BoVW-based algorithm this results in a
more accurate representation. However, the impact is weakened, as we do
not use a star graph of the full sketch, but only descriptors of parts of the
sketch, which contain less information. Nevertheless, as mentioned before,
these results are obtained by using kernel based SVMs, which are not the
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most suitable classifier type as learned in our evaluation phase. However,
we achieve a competitive recognition performance. This further means, that
we carefully selected our sketch representation such that it is also suitable
for different classifier types. The performance gain between the ensemble
matching and our fast pipeline lies between 4.7 and 7.7%.

Figure 37: Recognition performance comparison of our two algorithms (full
and fast) with two related approaches for domain-independent sketch recog-
nition using our experimental setup. The results for all methods are obtained
using kernel based SVMs. Note that in our original algorithms linear SVMs
are used. A different amount of sketches per category is used and 4-fold
cross-validation is performed for each dataset size. The average recognition
scores are illustrated.

Next, we repeat this experiment (without considering the result of the ensem-
ble matching approach) and use linear SVMs as a classifier. The experiment
results can be found in Figure 38. We see that the gap between the ”Eitz ap-
proach” to both of our algorithm grows compared to the experiment before.
For the full pipeline the performance difference is doubled and amounts to
16-17%. With the fast pipeline this gap is between 7 and 9%. We therefore
see that the ”Eitz representation” leads to a bad recognition performance
when linear SVMs are used. Compared to the previous experiment in Figure
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37, the performance drops by 6-7%. In contrast, we see that both of our
sketch representations work similar with both SVM types. However, if we
analyze the performance curves of the fast pipeline, we notice that, by using
kernel based SVMs, the scores are slightly higher by 1%. We argue that by
spanning our sketch representation to a higher dimensionality with the usage
of a spatial pyramid (full), a linear separation leads to better classification
results than for the compact space (as used in the fast pipeline). In contrast,
the performance of the full pipeline is increased by 2% when linear SVMs
are used compared to the experimental run with kernel SVMs.

Figure 38: Recognition performance comparison of our two algorithms (full
and fast) with one (”Eitz representation”) related approach for domain-
independent sketch recognition using our experimental setup. The results
for all methods are obtained using linear SVMs. Note that the related ap-
proach is designed to be used with kernel based SVMs. Further, the scores
of the ensemble matching approach [46] are missing due to the fact that no
results are available for linear SVMs. A different amount of sketches per cat-
egory is used and 4-fold cross-validation is performed for each dataset size.
The average recognition scores are provided.

In the following we choose the classifier type which lead to the highest recog-
nition scores in the previous two experiments (Figures 37 and 38) for all
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four investigated algorithms. Therefore for all but our full pipeline, kernel
based SVMs are used. The results of that comparison are shown in Figure
39. We see that with the most suitable classifier our full pipeline is able
to outperform the ensemble matching approach [46]. With an amount of
20 sketches used per category, we surpass this approach by 3.5%. This fur-
ther points out the advantage of BoVW-based approaches compared to star
graph matching for small dataset sizes. The performance gap decreases to
0.5% for a dataset size of 60. However, when all 80 sketches per category
are used, our full algorithm outperforms the ensemble matching approach
again by 1%. This means that with our full pipeline, we achieve, to the
best of our knowledge, state-of-the-art performance on the TU Berlin sketch
database. Although the ensemble matching approach is competitive concern-
ing recognition performance, it is not efficient. This comes from the fact that
a simplified version of our BoVW-based pipeline is used as a pre-processing
step (for category filtering). Additionally, the main step of the recognition
approach, the actual graph matching, is computational expensive as a query
graph has to be compared to a subset of graphs from the database. Although
we do not have information about exact runtimes, we argue that this already
shows that this approach is not efficient enough to be used in interactive
applications. In contrast, for our full recognition algorithm this is indeed
possible. For the results obtained with the ”Eitz representation” and kernel
based SVMs, the gap to our full pipeline varies between 9 and 10%.

Conclusion and Findings
In this section we compared the recognition performances of our two novel
algorithms to two related approaches of that domain. Even with our efficient
(fast) pipeline consisting of low-cost elements we were able to outperform
the approach of Eitz et al.[5] which is also based on the BoVW method. Our
full pipeline was competitive with the computationally expensive ensemble
matching approach of Li et al. [46] for kernel SVMs. With linear SVMs we
were able to surpass the recognition scores of this approach. Therefore we
achieved, to the best of our knowledge, state-of-the-art performance on the
TU Berlin dataset. We further showed that there is a mentionable perfor-
mance difference for the available ”Eitz sketch representations” for the two
SVM types. In contrast our two introduced and carefully designed sketch
representations achieved a similar performance for both classifier variants.

5.4 Cross-Domain Experiment

As next experiment we evaluate our full sketch recognition algorithm in
the image domain on the Caltech-101 dataset [89] without adaptions. The
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Figure 39: Recognition performance comparison of our two algorithms (full
and fast) with two related approaches for domain-independent sketch recog-
nition using our experimental setup. For each algorithm the best performing
classifier type from the previous experiments is used as stated in the leg-
end. A different amount of sketches per category is used and 4-fold cross-
validation is performed for each dataset size. The average recognition scores
are provided. Our full algorithm using linear SVMs achieves state-of-the-art
performance on the TU Berlin sketch dataset for any dataset size.

dataset as well as the setup for this experiment were already discussed in
Section 5.1. The basic principle for this experiment is the fact that our
sketch recognition partly consists of successful image recognition elements.
Although our algorithm is specialized to the task of sketch recognition, we
argue that reasonable performance is possible for the image domain without
pipeline modifications. Further, we reverse the domains and therefore evalu-
ate the original LLC approach [32], which has proven to yield state-of-the-art
performance in the image recognition domain, on sketch images.

The image recognition performance of our full pipeline is shown in Fig-
ure 40. If we compare this performance curve to the original LLC image
recognition approach, we clearly see the advantage of the LLC approach in
the image domain. We argue, that LLC is designed in a proper way to be

93



suitable for the image recognition task. In contrast, our pipeline is optimized
for the related but still diverse sketch domain. From this aspect we argue that
the performance gap of 8% is reasonable. Nevertheless, our sketch pipeline
is able to achieve a recognition score of 63% for 30 training images per cate-
gory in the foreign domain and for a challenging dataset. The original LLC
approach however achieves a score of 71% for the same training amount.
Finally, we argue that our full pipeline is far too specialized for the sketch
domain to achieve higher and competitive recognition results compared to
such a state-of-the-art method as LLC is.

Figure 40: Results of our unmodified sketch-specialized recognition algorithm
(full) for the task of image recognition on the Caltech-101 dataset. The
original LLC approach [32] is used as a direct competitor. The experiment is
performed for three different image amounts per category used for training.
For each amount four iterations are calculated and the average scores are
presented.

Next, we evaluate the performance of the LLC image recognition approach
in the sketch domain. With this experiment we investigate, if the LLC ap-
proach is as specialized for the image domain as our approach is for sketches.
Therefore, we compare our two pipelines full and fast to this image domain
approach. For this experiment, again our sketch recognition experimental
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setup as defined in Section 5.1 was used. The results for this experiment can
be found in Figure 41. The LLC approach is outperformed by 10-11% by
our full approach in the sketch domain. Further, also our fast algorithm
achieves a higher recognition rate with a performance difference of 2-3%.
However, the original LLC approach recognizes 51% of the sketches correctly
when the complete dataset is used. This is competitive to the results obtained
with the ”Eitz sketch representations” and kernel based SVMs in Section 5.3
with 52.5%.

Nevertheless, we argue that the algorithm optimization or design pro-
cess leads to problems for portable cross-domain approaches. The obtained
pipelines are far too much specialized such that a simple application in a
different domain is possible without further pipeline modifications.

Figure 41: In the domain of sketch recognition we compare the performance
of our two obtained pipelines (full and fast), specialized for this task against
the foreign domain approach LLC from the image domain. Four different
dataset sizes (sketch amount per category) are used, 4-fold cross validation
is performed and the average scores are reported.

Conclusion and Findings
In this section we demonstrated the difficulty of transferring an approach
specialized for a specific task to another domain, e.g. from sketches to nat-
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ural images. We argued that additional modifications are needed to achieve
similar performance compared to highly optimized approaches and learned
that this is even true if methods from this related domain are integrated.
However, we showed that a transfer without further modifications can lead
to reasonable but not competitive performance.

5.5 In-Deep Analysis

In this section we discuss the recognition results achieved with our novel
full algorithm in more detail. We investigate sketch categories which are
recognized well with our algorithm as well as categories which lead to low
recognition scores. Reasons for the achieved scores are discussed and visual
exemplary results are presented. Additionally, a brief comparison between
human and computational sketch recognition is given for interesting cate-
gories with the results taken from human recognition experiment performed
in [5]. Further, statistics of the recognition results are discussed. As a final
experiment we investigate the predictions of the applied classifier. We do
not only consider the most likely classification result but take a closer look
at the k most likely categories. The impact on the recognition performance,
if we declare that a correct prediction is made if the ground truth category
can be found within these k most likely classifier results, is discussed.

All of the following computational sketch recognition results are obtained
by using the best performing iteration from the experiment discussed in Sec-
tion 5.2 for our full pipeline. In this iteration the full sketch dataset with 80
sketches per category are used to obtain the visual dictionary and the sketch
classifier. However, as 4-fold cross-validation is performed, only 60 sketches
per category are involved in the learning procedure. In further consequence
we also take the training/testing dataset split from this iteration. Therefore,
for each category, 20 sketch images are used to obtain the recognition result.
With this configuration an overall recognition accuracy of 62.92% is achieved.
This means that from the 5 000 test sketches of the 250 categories, exactly
3 146 are recognized correctly. In contrast, for the human recognition exper-
iment performed on this dataset, a recognition score of 73% was achieved for
all 20 000 sketches [5].

In Figure 42 and 43, 10 of the best performing categories are depicted with
exemplary sketches and the corresponding recognition accuracies. Overall 14
categories achieve an accuracy of at least 95%. This score means that one
of the 20 sketches is misclassified. Examples for such misclassifications are
provided in Figure 43. The complete list of the 14 best performing categories
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can be found in Table 3. One might argue that the recognition of categories
such as ”envelope” or ”sun” is trivial, as in general only one meaningful way
to draw such sketches exists, that is in a frontal view. However, drawing
skills or the thinking of a typical depiction varies as we can see in Figure 42
and 43. Nevertheless, our recognition algorithm is capable of handling such
variations. We further want to point out that also challenging categories
such as ”pear”, ”sponge bob” or ”camel” are present in the list of best per-
forming sketch classes. We argue that the ”pear” category is difficult as it
could be easily confused with a sketch of an ”apple” or a ”lightbulb”. Note
that these types of misclassifications occurred in the human recognition ex-
periment on this dataset performed in [5]. We further argue that the two
categories ”sponge bob” and ”camel” are difficult for various reasons. First,
there are multiple meaningful poses to draw the sketches. In addition, a
variance in drawing skills and level of details are available as can be seen
in Figure 42 and Figure 43. Still these two categories are among the best
performing categories. Although the presented best categories also achieved
good scores in the human recognition experiment, some categories seem to
be more difficult for humans. Examples are the categories ”skull” (68.75%)
(often classified as ”head”) and ”hour glass” (73.75%) (most misclassifica-
tions with ”wineglass”).

Category Score
pear 100%
t-shirt 100%
hourglass 100%
envelope 100%
sponge bob 100%
sun 100%
pineapple 95%
skull 95%
hamburger 95%
camel 95%
hand 95%
ladder 95%
pumpkin 95%
wine-bottle 95%

Table 3: Categories with a recognition accuracy of at least 95%.

We now turn our attention to categories with a lower recognition perfor-
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Figure 42: Example sketches for five of the best performing sketch categories
for our best performing experiment configuration using our novel recognition
algorithm (full). Per sketch class five exemplar sketches are depicted. For
each category the recognition accuracy is shown on the left side of the figure.

mance. For 7 sketch categories a recognition accuracy smaller than or equal
to 20% is achieved. For our 20 test sketches per category, an accuracy of
20% means that 4 times the correct class is predicted. Example sketches
with both positive and negative recognition results for the 7 categories are
shown in Figure 44. From the first category, ”loudspeaker” and its misclassi-
fied sketches, we already recognize that the predicted categories (e.g. ”mega-
phone”) are often closely related in terms of their semantic meaning. In this
example both objects render/amplify music or voices. Similar ”semantic”
misclassifications can be found e.g. for the ”flying bird”, ”seagull” and the
”race car” sketch categories. In the human recognition experiment [5] sim-
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Figure 43: Example sketches for further five of the best performing sketch
categories for our best performing experiment configuration using our novel
recognition algorithm (full). Per sketch class five exemplar sketches are de-
picted. For recognition accuracies below 100%, the misclassified sketch is
marked with a red frame and additionally, the falsely predicted category is
displayed. For each category, the recognition accuracy is shown on the left
side of the figure.

ilar problems occurred. Therefore, we argue that certain categories in the
dataset are too related to each other from a semantic point of view. Also
other misclassifications seem reasonable due to similar visual representations
(e.g. a ”megaphone” sketch classified as ”power outlet” or a ”door handle”
sketch predicted as ”door”). In the human experiment results [5], this can
also be observed as a reason for poor recognition scores. On the other hand
also bad recognitions such as e.g. ”loudspeaker” as ”spider” or ”flying bird”
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as ”speed-boat” are available in our obtained recognition results. We argue
that such misclassifications are among other factors caused by variances in
drawing skills, levels of detail and poses.

Figure 44: The seven worst performing sketch categories for our best perform-
ing experiment configuration using our novel recognition algorithm. For each
sketch category seven exemplar sketches are shown. The first two sketches
are predicted correctly (marked with a green border). For the remaining
five sketches the classifier returns false categories (red border). We select
one sketch per wrong category and order them according to their misclassi-
fication occurrence. For all sketches the predicted class is given and for all
categories the recognition rates are given on the left side of the figure.

Some additional statistics are shown in Table 4. At this point we want to
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mention that the probability for a correct random classification is 0.4%, as
the dataset consists of 250 categories. As we saw before there are only four
categories with a score below 20%. For an amount of 194 categories we
achieve a recognition score of at least 50%. The largest branch takes place if
we increase the threshold from 60 to 70%. This is reasonable as our overall
recognition accuracy is 62.92%. That means, that most categories achieve a
score in this area. For six categories all sketches are recognized correctly as
already discussed.

Accuracy ≥ Amount of Categories Percentage
20% 246 98.4%
30% 228 91.2%
40% 219 87.6%
50% 194 77.6%
60% 153 61.2%
70% 91 36.4%
80% 68 27.2%
90% 31 12.4%
100% 6 2.4%

Table 4: The amount as well as the percentage of categories which achieve
an accuracy equal or above a certain threshold for our best performing ex-
periment configuration using our novel recognition algorithm (full).

At the end of this section we make an in-deep analysis of the obtained classi-
fiers predictions. As we use the one-versus-all strategy for our linear SVMs,
for each of the 250 categories, a likelihood is obtained. These responses
state how likely it is that a given sketch representation belongs to certain
categories. Obviously, the category of the largest response it taken as the
predicted class. However, in this experiment we observe the impact if we not
only consider the highest but the k highest SVM responses. This means that
we declare a classification to be correct if the ground truth category is found
within the k most likely classes. The impact of this strategy for different k
values can be seen in Figure 45. We already see that a large improvement is
achieved even for small k values, whereas for k = 1, 62.92% or 3 146 of the
5 000 test sketches are recognized correctly, this score increases to 73.28%
(3 364 sketches) for a k = 2 (see Figure 45(b)). Note that the human recog-
nition result for this dataset is 73% [5]. With a k equal to 12, the accuracy
rate is 90.14% (4 507). After that the performance increase becomes slower.
With a k = 112, the accuracy score is above 99% and finally achieves 100%
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for k = 242. We therefore see that although wrong predictions are made, the
correct categories are often within the best classifier responses.

In initial observations of the classifier responses for wrong predictions, we
recognized that these scores are by far lower than for correct recognitions.
We therefore argue that from these response values, in many cases, we can
realize if the resulting prediction is correct or not. This could be a fruitful
observation for future research in order to apply adapted classifiers in such
cases. We discuss the idea of additional specialized classifier in more detail
in Section 6.

Conclusion and Findings
In this section we showed exemplar recognition results for the best as well
as the worst sketch categories using our novel recognition algorithm (full).
Further, we discussed these categories and pointed out possible reasons for
misclassifications. A brief comparison between our obtained computational
recognition results and human results from the experiment of Eitz et al. [5]
was done for selected categories. We further showed additional statistics for
the recognition results. Finally, we investigated the impact of considering
the k most promising categories. We defined a correct recognition result if
the true category was within these k predictions. For example with k = 2
the classification accuracy increased by 10% from 63% (3 146 test sketches)
to 73% (3 364), which was the same score achieved for the human recognition
experiment. With a k of 12, this rate even became 90% (or 4 507 sketches).
We therefore argued that even for misclassifications, the correct category
could often be found within a small number of most likely predictions.

5.6 Experiment Conclusion

As a first experiment we compared our two obtained pipelines full and fast
as well as our evaluation baseline against each other. We observed that our
extensive evaluation phase (discussed in Section 4) led to a remarkable per-
formance improvement of 22% for our full and 10% for the fast algorithm,
when compared to the evaluation baseline. Therefore, recognition scores of
63% (full) and 53% (fast) could be achieved when the full dataset was
used. Further, runtime issues were discussed for the three pipelines. When
using the fast pipeline, a novel sketch was classified after 0.6 seconds and
the whole learning procedure with 15 000 sketches involved, took 2.5 hours.
This highlighted the efficiency of the fast pipeline. For the full algorithm,
the classification result was obtained within a second. Further, the learn-
ing procedure needed 4.4 hours. Although we argued that this is sufficient
for most scenarios, we investigated the timings in more detail. Two run-
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(a) k = {1, . . . , 250}

(b) zoom for k = {1, . . . , 12}

Figure 45: Experiment regarding the k highest classifier responses. We define
a correct recognition if the true category is found within these k predictions.
The impact of increasingly higher k-values is shown. Additionally, the human
recognition experiment result of [5] is depicted.
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time bottlenecks were detected: the descriptor extraction and the encoding
step. Additionally, we investigated the question if we could develop slightly
adapted pipeline versions with a similar recognition performance as the full
algorithm which is as efficient as the fast approach.

Next we compared our two pipelines full and fast against two related
approaches ([5, 46]). As both related approaches were designed for kernel
based SVMs we also investigated the impact of our sketch representations
used with this classifier type. We observed that both of our pipelines worked
similar for the two classifier types. Further, we were able to achieve state-of-
the-art performance on the TU Berlin sketch dataset (+1% compared to [46])
with linear SVMs. We then showed that both of our pipelines outperformed
the experimental runs which used the ”Eitz sketch representations”.

Further, the performance of our sketch pipeline in the related domain
of image recognition was investigated. Although most elements of the algo-
rithm were taken from the image domain, our pipeline is far too specialized
for sketches. As a result of this, our unmodified sketch pipeline was clearly
outperformed by a state-of-the-art image recognition approach (LLC [32]).
The converse experiment was performed for this approach in the sketch do-
main which confirmed this argument. Both of our pipelines full and fast
were able to outperform this image-domain approach. Therefore, we argued
that it is difficult to create a direct cross-domain approach. However, for our
full approach we achieved a reasonable performance in the image domain.

Finally, we presented example recognition results. This was done both
for best as well as for worst performing categories (according to their recog-
nition scores). For both types, the results were discussed and investigated.
Reasons for certain misclassifications were given. Further, we briefly dis-
cussed the performance of the human recognition experiment on the same
dataset [5] for selected categories. Next, we presented overall statistics for the
250 categories and finally investigated the impact of considering the k most
promising predictions for the recognition result. We showed that even for
small k values (e.g. two) a remarkable performance gain could be achieved.
This pointed out the suitability of our sketch representations for the chosen
classifier and that even for misclassifications the correct category could often
be found within the best predictions.

To demonstrate that our introduced state-of-the-art sketch recognition al-
gorithm is suitable for real-life scenarios, we include it into an Augmented
Reality application which is briefly discussed in the following subsection.
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5.7 Augmented Reality Application

Augmented Reality (AR) means that the real world is superimposed by vir-
tual (computer-generated) objects that appear to coexist in the same space
as the real word [90]. In this application we track an online drawn sketch, rec-
ognize the category, load category from 3D model repository and augment a
corresponding 3D model in a live video stream. The sketch to-be-recognized
is drawn on a piece of paper in a defined area surrounded by marker symbols
to simplify the tracking procedure. To be able to augment a 3D model in a
live video stream we need the six Degrees of Freedom (DoF) pose which is
extracted by re-identifying the markers. By pressing a button, the obtained
image is rectified, pre-processed and provided to our full recognition algo-
rithm. With the recognition result (the sketch category), the corresponding
3D model is loaded from a dataset and augmented in the live video stream.
This is done by using the estimated pose from the tracking framework to
adapt the viewpoint of the 3D model. In Figure 46 screenshots of our devel-
oped application as well as the sketch used can be seen.

For testing, we selected a few categories, that have shown to work well.
The application demonstrates that the classification runtime is sufficient to
provide the user immediate visual feedback in terms of the corresponding 3D
model.
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(a) application screenshots

(b) drawn sketch

Figure 46: Screenshots of our AR demo application and the drawn sketch
used.
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6 Conclusion

In this master thesis we designed two novel sketch recognition algorithms
based on the Bag-of-Visual-Words (BoVW) method. In contrast to many
related approaches in the field of sketch recognition, our approach is domain-
independent. Hence, we did not restrict ourselves to one specific field (e.g. prim-
itives or mathematical formulas). Existing approaches without this con-
straint are either computationally expensive or only achieve a limited recog-
nition accuracy. In contrast, our algorithm was designed to provide a high
recognition rate and to be efficient enough to be used in applications that
require immediate recognition feedback. Our first algorithm (full) achieves
state-of-the-art performance on a large-scale sketch dataset with a reasonable
amount of training (4.4 hours) and classification time (less than a second).
The second algorithm was designed to be more efficient in both involved
phases (2.5 hours/0.6 seconds). However this comes at the cost of a reduced
recognition performance which is still competitive to or even outperforms
related approaches.

We discussed the relation between sketch and image recognition. Based
on this discussion, we reasoned that well studied image recognition methods
can be successfully integrated in our BoVW-based sketch domain approach.
Therefore, such methods were investigated for each pipeline element com-
monly used by BoVW approaches. In order to select suitable variants per
step, an extensive evaluation was performed. The corresponding results were
directly incorporated in our two final sketch recognition algorithms. To the
best of knowledge, we are the first to apply this kind of strategy in such
large scale, investigating all steps involved in a BoVW-based pipeline. We
made important and interesting observations for each pipeline element con-
cerning recognition performance and efficiency. To sum up, for all pipeline
elements but image pre-processing we were able to improve the recognition
performance compared to our baseline significantly. For descriptor extrac-
tion, dense grid sampling and the usage of all available descriptors is im-
portant. Further, a local gradient-based descriptor for mid-sized patches is
necessary. A powerful encoding with a coupled dictionary learning method
is the most suitable choice for these two pipeline elements. Another essential
component is the usage of the spatial pyramid framework for code pooling.
We observed that also the choice of a primitive, still suitable, classifier can
boost the recognition performance. As runtime bottlenecks the descriptor
extraction and encoding step were identified. However, we presented alter-
native encoding methods to solve this bottleneck at similar performance.
The remaining steps of the pipeline could be performed highly efficiently.
Note that an efficient classifier is needed to be able to process the high di-
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mensional sketch representations at this speed. This gained knowledge can
further be used to optimize existing recognition approaches. We further ar-
gue that this information can also be useful for BoVW-based approaches in
additional computer vision domains as e.g. retrieval or detection.

Future Work
Although we performed an extensive evaluation for all pipeline elements,
obviously we were not able to test all possible algorithms. Additional ap-
proaches and methods could be included in the evaluation. Further, we
utilized a step-by-step strategy. This means that the pipeline elements
were investigated one after another. Therefore, the overall impact of cer-
tain pipelines configurations involving multiple elements was ignored to keep
the evaluation in a feasible scope. However, with the learned insights from
our evaluation phase, additional strategies can be developed to investigate
cross-element relations. In our opinion, the most promising elements for such
an analysis are: descriptor extraction, the coupled dictionary learning and
encoding step, the pooling method using a spatial pyramid and the choice of
the classifier type, as the highest performance gains were achieved for these
elements in evaluations. Further, the lessons learned build a solid knowledge
base for the future developments in the field of sketch and image recogni-
tion. Additionally, it could be used to improve existing image recognition
approaches.

The applicability of two recently proposed and promising image recogni-
tion methods, in the sketch domain could be an interesting future research
direction.

Boureau et al. [76] proposed a supervised dictionary learning algorithm.
The basic idea is, that the dictionary should be optimized for the classification
task which is not achieved by an unsupervised learning method. As the
algorithm is coupled with sparse encoding it could be easily integrated in our
sketch recognition algorithm. Further, macro-features are introduced. This
is a set of descriptors in a specific neighborhood which is encoded together.
Boureau et al. showed that the integration of these ideas improves the image
recognition performance. Therefore we argue that this can also be true for
our sketch recognition algorithm.

The approach of Jia et al. [91] introduced a novel method in the context
of code pooling. Instead of using manually designed spatial regions, this
approach learns more adaptive receptive fields. Starting from a large set
of possible rectangular spatial areas, the introduced algorithm selects most
promising field candidates. Also for the discrimination of certain sketch cat-
egories, different spatial areas are more important (e.g. for a sketch of the
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class ”standing bird”, the leg area is important in order to distinguish from
a ”flying bird” where in general no legs are drawn). Although it could be
difficult to apply this approach to such a large scale problem, this could be
an interesting and promising research area.

To tackle the poor classification results for visually similar categories, an
extended recognition strategy could be introduced. One way could be to
search for semantic relations within the k most likely predictions (keyword:
”bird” categories). If such a relation is found, additionally learned classi-
fiers for such closely-related categories could be applied (e.g. a special ”bird”
classifier). This task is known as fine-grained categorization in the computer
vision literature. A promising approach is e.g. [92], which classifies different
cat and dog breeds.

As a final interesting field for sketch recognition, we identify what we call
incremental recognition. This means to integrate the temporal information
about how the sketches are drawn, in the recognition algorithm. This knowl-
edge is e.g. available for the TU Berlin sketch dataset [5] and could in our
opinion lead to a recognition performance boost. One possible method could
be to investigate how the sketch representation changes as new strokes are
drawn. In [5] it is observed, that a typical way of how sketches are drawn,
exists, using a coarse-to-fine strategy. Due to that fact, this could further
lead to a recognition approach which is also able to even predict the correct
category of unfinished sketches in an online manner (keyword: augmented
reality). We believe that this could be a fruitful research area in future
development of sketch recognition approaches.
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