
Graz University of Technology

Master’s Thesis

Structure Learning for Robotic Motor Control

Graz University of Technology
Faculty of Computer Science

Degree Programme: Telematics

Tim Genewein

Graz, November 2011

Supervisor: O.Univ.-Prof. Dipl.-Ing. Dr.rer.nat Maass Wolfgang
Institute: Institute for Theoretical Computer Science

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources, and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

(date) (signature)

iii

Foreword

This work is the result of a Master’s thesis, conducted from April to November 2011 at the
Institute for Theoretical Computer Science (IGI), Graz University of Technology. Besides a
general interest in artificial intelligence and robotics, the lectures of Wolfgang Maass on machine
learning have sparked my interest in Bayesian networks and led to the decision to devote my
Master’s thesis to a related research question. Maass, Neumann and Rückert provided a quite
detailed and elaborate proposal that formed the basis of this work. I want to thank Wolfgang
Maass for his pragmatic supervision and the possibility to use the institute’s infrastructure
and work environment. A special thanks goes to Gerhard Neumann and Elmar Rückert for
constantly providing impulses and their support on difficult tasks of the thesis.

To me personally, the work on this thesis was a very valuable experience - not only was I able
to familiarize myself with an interesting topic of research, but I could also get to know the
scientific methodology while working on a challenging project.

My final thanks goes to my family and all those who have been supportive to enable my studies.

Tim Genewein

v

Abstract

One crucial aspect of human and animal learning is the ability to gain abstract knowledge about
a certain class of (similar) problems. The process of generalization can then be interpreted as
applying the abstract knowledge to novel problems. Experimental studies have shown that in
many natural tasks humans and animals are able to learn the structure of a task and furthermore
exploit this knowledge when facing a new but similar task. The structure can be seen as a
“general set of rules” or structural invariants of the parameters of a problem-class. In this
thesis, a hierarchical Bayesian network is used to perform structural learning on a robotic
problem-task, where a robotic agent tries to move towards a goal-position. It does so by
issuing movement-commands, i.e. setting its velocity. The actual movement is perturbed with
a rotation-distortion of an unknown angle. The idea is to learn the rotation-distortion as the
structure of the problem and when being confronted with a novel rotation-angle exploit the
already gained structural knowledge to be able to rapidly adapt to the novel rotation-distortion
and finally compensate it.

This thesis evaluates the qualities of the proposed model in terms of structural learning and
the ability to rapidly adapt to novel but similar problems. The thesis shows that the proposed
model is actually able to extract the structure of the task and provide general knowledge that
can be exploited when adapting to novel instances of the task, with a new rotation angle. The
results also show that the number of (time-) steps required for learning can be significantly
reduced by using the abstract prior-knowledge.

The thesis also highlights some shortcomings of the proposed model and used methods. The
most severe drawback is that the number of prior mixture-components is unknown and can not
be inferred from the given data. Furthermore, the model has the flavor of being tailored for the
given class of problem tasks, which contradicts the idea of a system that is able to truly adapt
and generalize. Potential future research could be aimed towards a similar model that is able
to cope with continuous environments.

The approach shown in this thesis is novel and has not been presented before. The results
highlight the capabilities of rapidly adapting to novel but similar tasks by exploiting abstract
knowledge, which has been gained through structural learning.

vii

Kurzfassung

Ein zentraler Aspekt von Lernprozessen in Mensch und Tier ist die Fähigkeit sich abstrak-
tes Wissen über eine Reihe von ähnlichen Problemen anzueignen. Generalisierung kann dann
als die Anwendung dieses abstrakten Wissens auf neue Probleme angesehen werden. Experi-
mentelle Studien am Menschen, sowie zahlreiche Tierversuche haben gezeigt, dass die Proban-
den in der Lage waren die Struktur einer Problemstellung zu lernen und dieses Wissen dann
für das Erlernen eines neuen, aber ähnlichen, Problems nutzen konnten. Struktur ist in diesem
Kontext als strukturelle Invarianten der Parameter oder eine Art “generelles Regelwerk” der
Problemstellung anzusehen. In dieser Arbeit wird ein hierarchisches Bayes’sches Netz dazu ver-
wendet, die Struktur eines Steuerungsproblems aus der Robotik zu lernen. Es handelt sich dabei
um einen Agenten, der versucht eine geweisse Zielposition anzufahren. Zu diesem Zweck kann
der Agent Steuerkommandos vorgeben, mit denen er seine Geschwindigkeit (in beiden Achsen)
setzen kann. Die tatsächliche Bewegung des Roboters ist jedoch mit einer Rotation unbekan-
nten Winkels überlagert. Die Kernidee ist es, diese Störung als die Struktur des Problems zu
lernen und dieses Wissen einzusetzen, wenn der Agent mit einem neuen, bislang unbekannten,
Rotations-Winkel konfrontiert wird. Mit Hilfe des strukturellen Wissens soll der Agent in der
Lage sein sich in kürzester Zeit an die neue Störung anzupassen und diese zu kompensieren.

Diese Arbeit evaluiert die Eigenschaften des vorgeschlagenen Modells im Hinblick auf struk-
turelles Lernen und die Fähigkeit zur raschen Anpassung an neue, aber ähnliche, Problemstel-
lungen. Die Arbeit zeigt, dass das Modell tatsächlich in der Lage ist, die Struktur der Aufgabe
zu extrahieren. Darüber hinaus kann damit abstraktes Wissen erzeugt werden, das beim Lösen
eines ähnlichen Problems (Rotation mit bisher unbekanntem Winkel) eingesetzt werden kann.
Außerdem zeigen die Ergebnisse dieser Arbeit dass die Anzahl an (Zeit-) Schritten, die für die
Anpassung an die neue Aufgabe benötigt werden, durch strukturelles (Vor-) Wissen signifikant
reduziert werden kann.

Die Arbeit zeigt auch gewisse Mängel des vorgeschlagenen Modells sowie der verwendeten Meth-
oden auf. Am schwersten wiegt der Umstand, dass die Anzahl an Mixture-Komponenten un-
bekannt ist und auch nicht aus den Daten abgeleitet werden kann. Außerdem entsteht der
Eindruck, dass das Modell auf die gegebene Aufgabenstellung “maßgeschneidert” ist - was dem
Konzept eines generalisierenden Systems widerspricht. Weiterführende Arbeit könnte auf ein
Modell gerichtet werden, das in kontinuierlichen Problemstellungen eingesetzt werden kann.

Der Ansatz, der in dieser Arbeit verfolgt wird, wurde in dieser Form noch nicht gezeigt. Die
Ergebnisse unterstreichen die Fähigkeit zur raschen Adaption an neue, aber ähnliche Prob-
lemstellungen unter der Ausnützung von abstraktem Wissen, das durch Methoden des Struk-
turellen Lernenes gewonnen wurde.

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem-task setup . 3
1.3 Research objectives . 3
1.4 Thesis structure . 5

2 Fundamentals 7
2.1 A closer look on structural learning . 7

2.1.1 Related fields . 9
2.1.2 Experimental study by Braun et. al. 11

2.2 Bayesian models . 14
2.2.1 Bayesian networks . 15
2.2.2 Inference and learning . 18

3 Methods and models 23
3.1 Problem-task: distorted movement in discrete world 23
3.2 Basic discrete model . 25

3.2.1 Multinomial representation of the data . 25
3.2.2 Dirichlet-mixture as prior distribution . 26
3.2.3 Fitting the model to data with EM . 29

3.3 Full Bayesian model with hyper-priors . 32
3.3.1 Hyper-priors . 33
3.3.2 EM for the extended model . 35
3.3.3 Optimization of hyper-prior parameters 36

3.4 Advanced problem-task . 36
3.4.1 Modifications . 37
3.4.2 Planning with value-iteration . 38

4 Results 41
4.1 Basic task . 41

4.1.1 KL-divergence analysis . 42
4.1.2 Learned priors . 45
4.1.3 Posterior distribution . 47

4.2 Advanced task . 51
4.2.1 Experimental setup . 52
4.2.2 Trajectories under different rotation-distortions 54
4.2.3 Trajectories for various feedback delays 56
4.2.4 Trajectories with suboptimal action-selection 58
4.2.5 Illustrations of the value function . 61

xi

Contents

4.3 Learning stage - parameter fitting . 62

5 Discussion and conclusions 67
5.1 Research objectives . 67
5.2 Shortcomings and possible improvements . 68

5.2.1 Expectation maximization . 68
5.2.2 Value iteration . 69
5.2.3 Number of mixture components . 69
5.2.4 General aspects . 70

5.3 Potential future research . 72
5.4 Concluding summary . 73

A Appendix 75
A.1 Details on M-step of basic model . 75
A.2 Value iteration . 76

A.2.1 Basics . 76
A.2.2 Non-deterministic Action selection . 78

A.3 Details on M-step of extended model . 79

Bibliography 81

xii

List of Figures

1.1 Problem-task . 4

2.1 Illustrative sketch of structural learning . 8
2.2 Initial angular error . 12
2.3 Mean speed profiles . 14
2.4 Bayesian network representation of a joint-probability 17

3.1 Discretized problem-task . 24
3.2 Parameters of multinomial distribution . 26
3.3 Basic discrete model . 28
3.4 Extended hierarchical Bayesian model . 34
3.5 Problem-task with accelerations as actions . 38

4.1 KL-divergence analysis for small action-set . 43
4.2 KL-divergence analysis for full action-set . 44
4.3 Learned Dirichlet hyper-parameters - 6 mixture components 45
4.4 Learned Dirichlet hyper-parameters - 2 mixture components 46
4.5 Evolution of responsibilities . 47
4.6 Evolution of the posterior distribution . 48
4.7 Evolution of the posterior (12 mixture components) 49
4.8 Dirichlet parameters (12 mixture components) 50
4.9 Multinomial parameters (12 mixture components) 51
4.10 Trajectories for 90° rotation-distortion . 54
4.11 Trajectories for 240° rotation-distortion . 56
4.12 Trajectories for a feedback delay of two steps . 57
4.13 Trajectories with no feedback delay . 58
4.14 Trajectories with softmax action-selection (low temperature) 59
4.15 Trajectories with softmax action-selection (high temperature) 60
4.16 Value function for velocity (0,0) . 61
4.17 Value function for velocity (-3,-3) . 62
4.18 Evolution of parameters of Beta-mixture . 63
4.19 PDFs of Beta-mixture components . 64
4.20 Evolution of Beta-mixture weights . 64
4.21 Evolution of parameters of the Gaussian-prior . 65
4.22 Convergence of log-likelihood during learning-stage 66

5.1 Possible structures for conditioning experiment 72

xiii

1 Introduction

“One reason that animals and humans can rapidly learn new
problems is perhaps because they take advantage of the high degree
of structure of natural tasks.”

S.J. Gershman, Y. Niv [1]

1.1 Motivation

Consider a robot that has learned to play tennis. It is able to return an incoming ball by hitting
it the right way with a tennis racket. This requires some kind of sensory system to determine
the trajectory of the incoming ball and an actuator to hit the ball with the racket. The learning
problem then consists of finding a certainly nonlinear mapping between the sensory input and
the motor output. A lot of research in the area of robotics has been targeted at finding efficient
ways to build such mappings. While several elegant and powerful approaches are known, this
problem is still a topic of ongoing research.

Now consider the adaption of the robotic system to play squash or table tennis. Due to the
different physical properties of the new ball and racket, the sensorimotor mapping has to be
different. Intuitively, one could argue that the new mapping will probably be quite similar to
the tennis-mapping. Or more generally speaking, that the mappings for different racket sports
will be “more similar” than those for example for soccer and basketball. It is reasonable to
postulate, that all possible racket sports mappings share some common structural features,
e.g. certain parameter covariances. If that postulate holds, the learning problem could be
reformulated. Instead of learning a sensorimotor input-output mapping only, it is desirable to
simultaneously extract knowledge about the structure of all mappings for a range of similar
tasks - or in other words: to learn the structure of a task.

Under the assumption that natural tasks that are related, show a certain, non-trivial structure,
the problem of learning such tasks decomposes into two learning aspects:

Structural learning: The extraction of abstract knowledge (=structure) out of different in-
stances of the same task with small variations. This can usually also be done simul-
taneously to parametric learning.

Parametric learning: The discovery of optimal parameters for a single instance of the task,
assuming a known/fixed task structure, also known as policy learning.

This terminology is used in [2, 3], which give additional illustrative examples on structural
learning and also emphasize the importance of task variation. The terms originally arise from
the field of Adaptive Control [4].

1

1 Introduction

The question, whether the initial assumption holds or not, can not be easily answered, since the
assumption statement does not give a sharp definition. However from a more practical point
of view there are results that suggest the existence of significant structures in a lot of natural
tasks. Kemp and Tenenbaum have been quite active in this area (see e.g. [5, 6]). Braun et. al.
also provide a nice discussion with a lot of further references in [3].

Braun et. al. have been able to find and quantify structural learning processes in a series of
experiments with human test subjects [2, 3, 7] - where they have mainly considered sensorimotor
learning. Furthermore they highlight three key features of structural learning in sensorimotor
tasks - this work is related to the first aspect:

• “Facilitation of learning tasks with the same structure”

• “Reduced interference when switching between tasks that require opposite control strate-
gies”

• “Preferential exploration along the learned structure”

quoted from [2]

Additionally structural learning can also lead to a dimensionality reduction of the parameter
search-space. Gershman, Niv provide a very good introduction and overview of current research
in [1] where they also provide more insight on the dimensionality reduction with respect to
reinforcement learning. A more in-depth discussion of structural learning can be found in
2.1.

One problem in today’s robotics is the lacking ability to rapidly adapt to novel but related
situations. What seems natural to humans, turned out to be a severe challenge for artificial
systems. The concept of structural learning provides new insight to the ability of acquiring
abstract knowledge out of concrete instances of a task and it has already lead to new models in
machine learning that are capable of doing so. These models have caught the attention of the
machine learning community but since the theoretical foundations are not too extensive yet,
applications can only be found on minimalistic problems [7, 26, 5].

The motivation for this thesis originates from the promising benefits of structural learning and
the idea to use hierarchical Bayesian models to exploit them; resulting in powerful models
that are able to rapidly adapt to new but similar situations, as well as to produce transfer-
able knowledge that allows to exploit gained experience when learning a new task. A brief
introduction to Bayesian models can be found in 2.2.

A remark for readers that are already familiar with Bayesian networks: methods for learning
the topological (graph-) structure of a Bayesian network are also known by the term “structure
learning” - in order to avoid any misconceptions: this thesis is not concerned with topological
structure learning and will use the terms structural learning and structure learning synony-
mously to refer to the process of extracting structural invariants from a set of related tasks.

2

1.2 Problem-task setup

1.2 Problem-task setup

In order to investigate the qualities of the proposed models, they will be evaluated on a simple
problem, inspired by the experiments of Braun et. al. [2]. The simulation setup consists of
a (robotic) agent, trying to navigate towards a certain position in a two-dimensional plane.
In order to reach that goal, the agent can set its velocity on the x- and y-axis. However, the
movement of the agent is superimposed with a rotation that is unknown to the agent - e.g. if
the agent tries to increase its x-velocity only, but the rotation has an angle of 90°, the command
will actually affect the agent’s y-velocity. To make the learning problem more challenging, the
agent’s commands and its movement in the 2D-plane are noisy. Figure 1.1 shows a schematic
depiction of the problem-task.

The angle of the rotation is kept constant throughout the duration of a single task rollout
but varies among different instances of the task. Since the angle is unknown to the agent,
this makes the rotation-angle a latent variable of the problem-task. The goal of the parametric
learning problem is then to find a mapping between the current position and velocity of the
agent (= sensory input) and a corresponding velocity-command (= motor output) in order to
reach the goal-position. Simultaneously the agent should gain abstract, structural knowledge
that can be transferred to a novel task instance where it should simplify the parametric learning
process. E.g. if the agent has already learned a mapping for a rotation of 35°, the mapping for a
rotation of 42° will be very similar. Here the “structural” knowledge is related to the similarity
of mappings for close-by rotation angles. This similarity is only affected by the superimposed
movement distortion - in this case the rotation, but one could also imagine other distortions,
like a shearing or a scaling.

The structure of the problem-task is governed by latent variables of the task - in this case the
structure is a rotation-distortion that depends on the rotation angle.

Note that there are no strong assumptions on the structure - if it was known that there is
always a rotation-distortion, the agent could simply perform a single movement step and then
compute the rotation angle - the whole problem would become trivial. Instead, the model
should implicitly capture the structure of the problem setup and it must be able to cope with
various kinds of movement distortions. The model should produce generalized, transferable
knowledge!

Considering a discrete-time environment, the agent has to plan several subsequent steps to
reach the goal-position. If the agent is able to directly set its velocity, the planning problem
is trivial, because at any concrete time-step it is sufficient to consider the immediate next step
only. In order to make the planning non-trivial, the problem task can be extended to use
accelerations as actions, instead of setting velocities directly, which requires “planning a few
steps ahead”.

1.3 Research objectives

Recently, there have been quite a few approaches starting from different backgrounds but work-
ing towards a common problem. Depending on the initial background, the terminology might

3

1 Introduction

Figure 1.1: Problem-task - the agent (blue circle) tries to move towards the goal position (green
flag). The corresponding velocity-commands are depicted in green (cursive captions). Due to the
rotation distortion with angle φ, the actual velocity (purple, sans-serif captions) will point to-
wards a completely different direction.

be different (structural learning, learning to learn, learning on several layers of abstraction, ...)
and the research question might have a bit of a different flavor. However, it seems as if this work
is starting to emerge into a new branch of research which might help in understanding learning
in general as well as learning processes in humans and animals but also provide inspiration for
novel models and approaches, not only in robotics.

The Institute for Theoretical Computer Science (IGI) at Graz University of Technology has a
general interest in the topic but also a specific interest in applications of structural learning in
the field of robotics. The topic for this thesis, including the problem-task as well as the model,
capable of extracting structural invariants of the task, have been proposed by the head of the
institute (Maass W.) and two members of the robotics group (Neumann G., Rückert E.).

This thesis contributes towards the ongoing research (at the institute) with:

• An implementation of a simulation environment to investigate the qualities of the pro-
posed model using the proposed task, inspired by the work of Braun et. al.

• The planning and execution of experiments within the simulation environment to gain
both, qualitative insights as well as quantitative results

• A critical reflection on the proposed approach in consideration of the simulation ex-
periments. Of special interest are the capabilities for extracting abstract knowledge and
using it to rapidly adapt to a novel but similar task.

4

1.4 Thesis structure

Large parts of the mathematical derivations as well as improvements to the originally proposed
model have been developed with Neumann, Rückert and also many ideas for experiments have
either been proposed by or worked out in cooperation with the group and thus are not solely
the work of the author. All implementations, simulations and the corresponding results are,
however.

The goal of this thesis is to demonstrate the application of the proposed model on the given
problem task and show its potential strengths and shortcomings. It can be seen as some kind
of “proof-of-concept” or perhaps even groundwork for more complex problems. Furthermore
it provided a very suitable problem for the author to familiarize with the concepts of struc-
tural learning and gain hands-on experience in the field. It is not within the scope of this
thesis to gain vast theoretical insights on generalization and abstraction or to evaluate the
biological/neuroscientific relevance of the model.

1.4 Thesis structure

The thesis is organized as follows:

Chapter 2 presents fundamental background information on the topics of structural learning
and Bayesian models. It highlights the key-concepts and provides references for further reading,
rather than an extensive coverage of the topics.

Chapter 3 describes the problem-task in detail as well as the hierarchical Bayesian model used
for structural learning. It provides insight on the methods used to obtain the results presented in
this thesis. Furthermore it describes an advanced problem task setup as well as some extensions
to the basic Bayesian model. The chapter also provides (mathematical) details on the process
of fitting the model parameters to observation data (using expectation maximization).

Chapter 4 shows the results of various experiments performed in the implemented simulation
environment. Most results are highlighted with illustrative plots and corresponding interpreta-
tions.

Chapter 5 provides a critical reflection on the results as well as a discussion on some of the
shortcomings of the model as well as the current implementation.

The Appendix gives additional details on parts of chapter 3 which are not crucial in under-
standing the concepts but required for following the details of the mathematical results. It also
provides some background on the planning algorithm (value iteration) which is not within the
main-scope of this thesis, yet it is too important to simply be omitted.

A lot of the plots in this thesis use a colormap for depicting values - some figures also show
the plots of several graphs, distinguishable via different colors. These plots might be ambiguous
in a monochrome print and the reader is politely referred to the digital version of this thesis, if
a coloured print is not available.

5

2 Fundamentals

The previous chapter has introduced a problem task where a robotic agent should learn to
compensate rotation-distortions of various angles. The rotation-distortion was mentioned as
the structure of the task. This chapter starts with a closer look on structural learning to
shed some light on the term structure in the context of task-invariants, abstract knowledge
or a “general set of rules” that govern the task. Perhaps the attributes of structural learning
become more clear in contrast to parametric learning. The section then continues with a brief
overview of some of the related fields and references interesting experimental results. At the
end of the section one particular experimental study by Braun et. al. is presented in detail.
The experimental setup of this study was the main-inspiration for the problem task of this
thesis.

The second section gives a very brief introduction to Bayesian networks and methods for infer-
ence and learning (i.e. parameter-fitting and topological structure learning) of such models. As
the topic is vast and extensive, only some of the key-concepts can be mentioned. However, the
section references several sources that provide in-depth information on the topics covered. Since
the models used in this thesis are hierarchical Bayesian models as well, this section provides
some background information and starting-points for further literature research for readers that
are unfamiliar with Bayesian networks.

This chapter provides basic information on the most important aspects of this thesis. It does
not contain specific information on the methods and models used (as the next chapter does).
Readers, who are already familiar with the concepts presented in this chapter are welcome to
simply skip it.

2.1 A closer look on structural learning

The initial, motivating example in Sec. 1.1 introduced a (fictional) robotic task, where the goal
was to teach a robot to play tennis. By a slight variation of the task-setup (table-tennis), an
intuitive motivation for structural learning processes was given: the naturally arising intuition
that the control parameters for both of these racket sports must be somewhat similar or share
a certain structure. The intuition that similar tasks actually share certain structural features
and that these structural invariants play a substantial role when learning such tasks was proven
to be correct in quite a number of experimental studies (see 2.1.1).

To get more insight on the structure of a task, reconsider the motivating example. Assume
that the robotic system has learned to play tennis (regardless of how it did so). The dozens or
perhaps hundreds of control-parameters have been set to values that lead to the desired results.
In order to be able to play table tennis, the system has to find the corresponding parameter
settings. Take a look at Figure 2.1 and assume that the red-dot indicates the parameter values

7

2 Fundamentals

for tennis (which are known) and the blue dot indicates the (unknown) values for playing table
tennis. To be able to show simple plots, only two (out of possibly hundreds) of the parameters
are considered - each one corresponding to one axis.

Without any additional knowledge, it would be necessary to search the whole parameter-space,
more or less randomly, in order to obtain the blue-dot solution. However, it seems natural to
assume that most of these parameter settings will not yield reasonable solutions. And further,
one could assume that the parameter values have to satisfy certain covariances. In the figure
this is indicated by the thick, black line - all solutions for different, but similar, task-setups lie
on this line. Now, if this line was known - the search for a new-parameter set could significantly
be simplified, because one would only have to search along that line. This effectively means
a dimensionality-reduction since it is no longer necessary to search the whole two-dimensional
parameter space but simply along a one-dimensional meta-parameter µ. The meta-parameter
governs the transition from one parameter-set to another. This is also depicted in Figure
2.1(B).

If the problem shows structural invariants, they correspond to the “black line” or the meta-
parameter µ and the task of structural learning is to find these structural invariants; which
probably requires that the system has observed many different task-instances. Once the meta-
parameters have been found, adapting to novel task-instances that share the same underlying
structure, becomes easier (parametric learning), because exploration can be guided by the
(lower-dimensional) structure. Especially for high-dimensional (optimization-) problems, the
computational demand could significantly be simplified if the problem has a structure that
lies on a lower-dimensional manifold. Even, if the desired solution does not exactly lie on the
learned structure (green dot) - the initial exploration could still follow the learned structure.

The meta-parameter µ that captures the structure of a problem, could also be seen as a latent-

Figure 2.1: Schematic sketch of structural learning - the transition between the sets of opti-
mal parameter values (red and blue) for two similar tasks is governed by a meta-parameter µ.
This meta-parameter can be modeled as a latent variable and corresponds to the structure of the
problem. Once the structure has been learned, finding optimal parameters for novel instances
of the same problem-class can be simplified, because it is no longer required to search the en-
tire parameter-space. Instead, the search can be restricted to follow the learned meta-parameter,
which in this case results in a dimensionality reduction from two to one dimension. Figure origi-
nally from [2] and included with permission.

8

2.1 A closer look on structural learning

variable of the problem-task; which already provides inspiration for modelling the structure
with probabilistic models.

2.1.1 Related fields

Structural learning effects have been observed in many studies, mostly in the field of animal or
human cognition, but also in other areas such as sensorimotor-learning. However, not always
has the main focus been on structural learning - a lot of experimental studies were dealing with
discrimination tasks (where the test-subject learns to discriminate objects based on a certain
feature such as its color or shape). Many other studies investigated the subject’s ability to
learn causal relationships but not the speedup when learning novel, but similar tasks. In both
kinds of studies the focus was usually not explicitly set on structural learning but of course the
results are particularly interesting under this point of view.

H.F. Harlow conducted experiments, where monkeys had to choose between one of two stimulus-
objects and only one object would lead to a reward. During a single block the same pair of
objects was presented at different locations and for different blocks, different pairs of stimulus-
objects were used. Harlow could show that the monkeys were able to learn faster in the later
trial-blocks, compared to the initial blocks where they would learn quite slowly. This suggests
that the monkeys were able to learn the structure of the problem (i.e. one of two objects leads
to a certain reward). Harlow was also one of the first to notice that task-variation is crucial
for learning the structure and actually most studies focus on a single problem-task without
any variations (which does not allow the extraction of much structural knowledge). Harlow
presented his theory of “learning to learn” or meta-learning and the formation of so called
“learning-sets”, which formed the basis for a new point of view on cognitive studies as well
as learning processes in [8]. In a more recent work Reznikova provides lots of examples and
insights to animal behavior and cognition from various points of view - he also presents results
where monkeys were trained to learn quite complex rules, such as discriminating based on
shape, if the object is presented on a white background and discriminating based on colour, if
the background is black (see [9]).

There is a vast number of cognitive experiments with humans where the learning-to-learn hy-
pothesis could be applied. However, most of these results do not consider the (potential)
speedup for learning novel tasks of the same structure. Braun et. al. conducted visuomotor
experiments, focussing exactly on the aspect of increased learning performance when presented
with similar tasks. The experiments are presented in detail in the next Section 2.1.2. Kemp,
Tenenbaum present in [10] quite a few examples of how structured background knowledge in-
fluences human reasoning and they also show (Bayesian) models that are capable of expressing
background knowledge over a number of structures. In [11], Turnham et. al. observe struc-
ture in covariances of visuomotor priors in humans. The authors of [12] present the idea that
seemingly suboptimal human choices in certain experiments, might be optimal under differ-
ent conditions. They propose that humans will simultaneously learn the structure of reward
generation as well as the environment (and e.g. assume changes in the environment that are
not reflected by the experimental setup) and thus their choices can not be compared against
mathematical models that do not incorporate these learning processes.

9

2 Fundamentals

Among these experimental results that suggest the presence of certain structural learning
processes in animals and humans, there are also some theoretical advantages or benefits of
structural learning. One very promising potential benefit is a (strong) dimensionality reduction.
As far as implementations are concerned (even biological implementations) this reduction in
the size of the search space will always lead to reduced computational demands. For some
methods, such as reinforcement learning, such dimensionality reductions are highly desired.

On the other hand, structural learning can also enable fast-learning (not only through dimen-
sionality reduction and the reduced computational cost). Once the structure of a task has been
learned, it is represented as abstract transferable knowledge that can be used for novel tasks.
The key-element here is the extraction of generalized knowledge from concrete task-instances.
It is no longer required to learn a similar task from scratch, but the structural knowledge can
be used to initialize parameter-values and guide the exploration of these parameters during
optimization. From a conceptual point of view, this ability to generalize is very appealing as
it addresses one of the key-problems in today’s research. Especially in robotics, it could help
in creating systems that are actually able to “leave the lab” because they can rapidly adapt to
their environment. In today’s machine learning, even mild task-variations usually require huge
adaptation processes, mostly because current models do not incorporate such task-variations
(because it would quickly lead to computationally infeasible models) and if they do, they mostly
do not use representations where these variations lead to generalized knowledge.

Optimal control theory provides a theoretical background for solving (the most) complex prob-
lems. But for these approaches and methods based on it, computational demand explodes with
the dimensionality and size of parameter-search-spaces. Bellman and his work on optimality
is closely related and suffers from the same problems (see also A.2). Methods based on these
approaches have an inherent need for dimensionality reduction and could potentially benefit
significantly from structural learning.

In the field of (computational) neuroscience, structural learning could also provide new in-
sights on neural learning processes. Consider the vast amount of sensory input that reaches the
cortex - for many tasks, such as reacting to a stimulus on your finger-tip or a visual stimulus in
a small part of the visual field, only a very small subset of the current sensory-input is relevant.
While it is known that the Thalamus as well as the mechanism of attention play an important
role in controlling the sensory input, it is reasonable to argue that there must also some kind of
structural mechanism be involved. For many tasks, the relevant sensory input has to be learned
and this learning process could correspond to some kind of topological structural learning. The
Hebbian rule (“what fires together wires together”) would not necessarily require such structural
processes - but when thinking about complex cognitive tasks that rely on, say a visual input,
it seems plausible to assume such processes that would also lead to a significant dimensionality
reduction. But also when adjusting synaptic parameters (probably hundreds of thousands or
millions), a dimensionality reduction through abstract, structural knowledge seems reasonable.
And while it is hard to find concrete mechanisms, the idea of structural learning has certainly
led to new points of view and has also inspired researchers to work towards certain directions.

A short discussion on structure in perception as well as in action and an excellent overview of
relevant literature for the emerging field of structure learning can be found in Gershman, Niv

10

2.1 A closer look on structural learning

([1]). Their main focus is set on structural learning with respect to reinforcement learning and
thus the main-interest lies on the dimensionality-reduction properties.

Currently there exists little theoretical work on how structural learning mechanisms could be
formalized, or incorporated into other methods. However, there is a lot of evidence that a many
natural tasks show certain structural invariants and that animals as well as humans exploit these
structures when learning - especially for generalization and abstraction.

2.1.2 Experimental study by Braun et. al.

Braun et. al. have conducted several experimental studies with humans to investigate structural
learning processes and the speedup when learning similar task-instances in [2, 3, 7]. This section
presents one of their experiments in detail, since it provides an intuitive example for structural
learning but it has also served as one of the main sources of inspiration for the problem-task
handled in this thesis.

Consider the following experimental setup: The test-subject is in a virtual reality environment
that precisely tracks the position of the subject’s hand - but the subject is not able to directly
see its hand but only a projection of it in the virtual reality. Furthermore, the subject is
presented a virtual target that it should reach with its hand - feedback is only provided via the
virtual hand. The core-problem of the task is that the movement of the virtual hand is overlaid
with a certain distortion, i.e. the virtual hand does not move exactly the same way as the hand
of the subject does. The distortion is some kind of linear transformation.

As usual for an experimental study, the subjects have been divided into several groups - where
every group experienced 800 trials:

Rotation group: These test-subjects only experienced rotation-distortions, but the rotation-
angle was changed every eighth iteration. The mean-rotation angle over all trials was
zero.

Random group: This group experienced a random linear transformation (rotation, shearing,
scaling) but it received the same amount of ±60° rotations (without any other transfor-
mations) as the rotation-group.

Control group: This group did not experience any distortions at all.

After this initial phase, all three groups were confronted with a block of 50 rotation-trials with
a +60° rotation-angle. The immediately following block (50 trials) then had a rotation-angle
of -60°, which requires the exact opposite control strategy. The final block had again an angle
of +60°.

Braun et. al. intended to show that the subjects (in the rotation group) were able to learn
abstract knowledge on the structure of the task to disprove the common opinion that task-
variations would prevent learning but instead lead to averaging effects (the average angle for
the rot-group was 0°, if the assumption was correct then the rot-group should show an equal
performance as the control-group).

11

2 Fundamentals

The striking results of Braun et. al. were that the rotation-group would perform a lot better
than the random- and the control-group (see [2] for the full paper). To show this, several error-
measures were used, such as the initial error to the target (200ms after onset of the movement),
the cumulative error to the target but also the trajectories itself as well as the average speed
during movement.

Figure 2.2 shows the results for the initial angular error. The first plot (A) illustrates the
increased learning performance of the rotation-group - the group is able to faster adapt to the
novel task, compared to both other groups. It shows a strong facilitation when learning tasks
with the same structure. When switching to a task that requires an opposite control strategy,
test subjects usually have problems with adapting to such a task - the learning performance
is significantly decreased. Plot (B) shows the result of such a setup - all three groups have a
decreased learning performance, but the rotation-group (which has learned the structure of the
task) shows a strongly decreased interference. Even in another subsequent +60° block (C), the
rotation group still shows an increased performance over the first 10 trials.

Summarizing the results, the rotation-group has been able to gain structural knowledge in the
initial 800-trial learning phase, whereas the random-group has either not been able to extract a
lot of structure or simply different structural knowledge that matches their observations (ran-
dom linear transformations instead of rotations as the structure of their task). Eventhough the
random group has seen the same number of ±60° rotation trials (without any other distortions)
during the course of the 800-trial learning phase. In subsequent evaluation-blocks the rotation
group has shown:

• Strong facilitation when learning tasks with the same structure.

• Reduced interference when switching to a task that requires the opposite control strategy
but shares the same structure.

Figure 2.2: Initial angular error - 200ms after the onset of the movement. Rotation-group in
red, control-group in blue and random-group in green. (A) Block of 50 trials with +60° - the
rotation-group shows a strong facilitation for learning a novel but similar task. (B) Subsequent
block with -60° - the rotation-group shows a reduced interference when switching to a task that
requires the opposite control strategy. (C) Subsequent block with +60° rotations - the rotation
group still shows a performance advantage for the first 10 trials. Figure originally from [2] and
included with permission.

12

2.1 A closer look on structural learning

Braun et. al. were also able to show that the learned structure will lead to a preferential
exploration along that structure - these results can be found in [2].

The results allow the conclusion that task-variation does not prevent learning and it will not
necessarily lead to averaging; otherwise the rotation-group must have shown the same perfor-
mance as the control-group, since the mean-angle of the rotation-distortions was zero degrees.
In fact, Braun et. al. conclude that task variation is essential for structural learning. However,
many cognitive experiments do not consider sets of similar tasks, but only a single instance of
a task and thus might miss the impact of structural learning effects.

In series of similar experiments, with more or less the same setup, Braun et. al. ([3]) also
show the performance-increase over time. Especially interesting are the results on feedforward-
versus feedback-control. The feedforward stage refers to the initial phase of movement (the
first 300ms) where the human test-subject does not receive any sensory (visual) feedback -
because the visual information requires a certain amount of time to be processed. After this
feedback comes in, the subject starts to adapt its movement according to the given feedback.
This essentially results in two peaks in the mean speed-profiles shown in Figure 2.3. The figure
shows the mean speed profiles during subsequent batches of trials - each batch consited of 200
trials. Blueish colors indicate early batches, greenish lines correspond to intermediate batches
and the late batches are colored reddish. The subjects had to reach targets in a virtual reality
environment, while their perceived movement was overlaid with a rotation distortion.

Taking a closer look, one can see, that the initial (feed-forwad) movement-speed does not in-
crease too much, but the “second peak”, i.e. the movement-speed in feedback-phase increases
significantly during learning. Intuitively, this can be explained by the test-subjects being inse-
cure, once they realize that the initial movement went towards the wrong direction. In later
stages of the experiment, the subjects have already learned the structure of the task and were
able to compensate the rotation-distortion while maintaining quite a high movement speed.

13

2 Fundamentals

Figure 2.3: Mean speed profiles - each line corresponds to the mean-speed profile of a single
batch, consisting of 200 individual trials. Blue indicates early batches, green denotes interme-
diate batches and late batches are colored red. With an increased number of trials experienced,
the test-subjects managed to maintain a high speed in the feedback-control phase (the second
peak), because they had learned the structure of the problem and thus were able to compensate
rotation-distortions of any angle. Figure originally from [3] and included with permission. The
enumerator (C) was kept to be consistent with the original publication.

2.2 Bayesian models

When dealing with real-world information, the problem of inherent uncertainty is inevitable. In
some cases, the uncertainty might be almost neglectable, e.g. when claiming that the sun will
“still be out there” tomorrow. In other cases, uncertainty is a substantial part of the informa-
tion, e.g. when tossing a coin and predicting the outcome. Thus, the inherent requirement for
any technical system that deals with such information is the ability to cope with uncertainty.
Furthermore, such systems often suffer from incomplete data. And finally it is often desired to
incorporate some kind of prior beliefs. The Bayesian point of view addresses these issues very
elegantly. At its very core, it is an elegant interpretation of Bayes’ theorem:

Posterior probability ∝ Likelihood (of data) · Prior-belief

This “point of view” allows the incorporation of prior beliefs into given data (observations).
The big advantage is that both components can be expressed in probabilistic terms (proba-
bility distributions) which are inherently capable of handling and even modelling uncertainty.
Probabilistic data-models are also very useful when dealing with incomplete data.

Models based on this principle (which can be applied to almost any probabilistic model) are
called Bayesian models. However, this is more a term describing certain qualities, rather than
a sharp definition. The models can also represented graphically (see Sec. 2.2.1), which then
either leads to Bayesian networks or Markov random fields.

Koller, Friedman discuss in [13] another significant advantage - the so called declarative repre-
sentation, which refers to the separation of knowledge (in a model) and reasoning (in form of
algorithms that can answer questions based on the model).

14

2.2 Bayesian models

“The key property of a declarative representation is the separation of knowledge and reasoning.
The representation has its own clear semantics, separate from the algorithms that one can apply
to it. Thus, we can develop a general suite of algorithms that apply any model within a broad
class, whether in the domain of medical diagnosis or speech recognition. Conversely, we can
improve our model for a specific application domain without having to modify our reasoning
algorithms constantly.”

quoted from [13].

2.2.1 Bayesian networks

The term Bayesian network (BN) refers to a graphical representation of a Bayesian model
and basically describes conditional independence statements of a joint-distribution. Any joint-
distribution can always be factorized by applying the product rule (see also [14]) into a product
of conditional probabilities. This decomposition becomes especially useful, when some of the
involved random variables are conditionally independent of others. In such a case (that is
very common for problems of practical interest), many terms of the decomposition vanish or
can at least be simplified (e.g. by a smaller number of variables that another variable is
dependend on). In fact, this simplification actually enables the application of probabilistic
models and techniques for many problems - because otherwise the computational demands
would be infeasible.

In [15], a tutorial on learning with Bayesian networks is presented and the introductory section
names four significant advantages of Bayesian networks:

• Bayesian methods can readily handle incomplete datasets.

• Bayesian networks allow to learn about causal relationships. This can help in understand-
ing a problem domain, but it also allows predictions based on these causal relationships,
even if there is no specific experiment available.

• Bayesian networks facilitate the combination of domain knowledge and (observation) data.
In a Bayesian sense, the data (to be precise, the likelihood) and prior-knowledge can
be elegantly expressed with probability-distributions and further they can be naturally
combined to form a posterior-distribution.

• Bayesian methods provide efficient approaches for avoiding over-fitting to data.

Bayesian networks can be used to capture knowledge. On one hand this can be experimental
knowledge or simply a number of observations, but the topological structure of a BN also pro-
vides information about causal relationships and conditional independencies of variables which
can be seen as domain- or expert-knowledge. Due to this, Bayesian networks in conjunction
with the right methods can be used to answer certain questions, based on the model while
observed evidence (in the context of these questions) can easily be integrated. This process is
referred to as inference. On the other hand, Bayesian networks can also be used to gain fur-
ther insights in the problem domain because they model causal relationships and independence
properties as well.

Bayesian networks are also known under the names: (probabilistic) belief network (PBN),
probabilistic causal network or directed acyclic graphical model (DAG).

15

2 Fundamentals

Graphical representations

In essence, even the most complex probabilistic models can be decomposed into the repeated
application of sum- and product-rule (see Bishop chap. 1 [14]). However, this treatment can
easily become tedious and confusing. To overcome these shortcomings, probabilistic graphical
models have become very popular. Koller, Friedman have dedicated an extensive (landmark-)
book on these models - [13]. Bishop lists three major advantages of graphical models:

1. “They provide a simple way to visualize the structure of a probabilistic model and can be
used to design and motivate new models.”

2. “Insights into the model, including conditional independence properties, can be obtained
by inspection of the graph.”

3. “Complex computations, required to perform inference and learning in sophisticates mod-
els, can be expressed in terms of graphical manipulations, in which underlying mathemat-
ical expressions are carried along implicitly.”

quoted from [14].

When speaking of Bayesian networks, one usually refers to their graphical representation. As
the name already suggests, the terminology arises from a network-like graphical representation.
But of course, any joint-probability corresponds to a Bayesian network (not uniquely and it
must result in an acyclic graph). A graph in general consits of nodes/vertices and links/edges.
In case of probabilistic graphical models, the nodes correspond to random variables whereas
the links represent probabilistic relationships between the variables. A Bayesian network must
have directed edges and the graph must be acyclic, resulting in a directed acyclic graph
(DAG). Another representation, called Markov random fields uses undirected edges and both
representations can be converted into a so-called factor graph, which has advantages when it
comes to inference via message passing (see [16]). To simplify the illustration of complex models,
containing repetitions of some parts, the plate notation is commonly used.

To illustrate the graphical representation of a Bayesian network, consider the following ex-
ample: Assume some manufacturing plant with a production process that requires a certain
chemical reaction. The reaction takes place in a confined containment and will lead to an in-
creased pressure within the containment - To prevent it from being damaged due to too high
pressure, a sensor is constantly monitoring the current pressure. If the pressure rises above
a certain threshold, an emergency shutdown will be initiated. However, the sensor could be
damaged an return a false reading or the trigger could be faulty and initiate the shutdown at
the wrong threshold. Therefore, all quantities shall be modeled as random variables: let the
RV for the pressure within the containment be denoted by p, the RV for the sensor-reading by
s and the RV for the (binary) output of the emergency shutdown trigger be t.

Based on these definitions, the joint-probability of the three involved variables is given by:

P (p,s,t) = P (t|s,p)P (s|p)P (p) (2.1a)
= P (p|s,t)P (s|t)P (t) (2.1b)

16

2.2 Bayesian models

Notice that the factorization of the joint-probability is not unique and eventhough Eq. (2.1a)
is not the same as (2.1b) they both equal the same joint distribution. Since both factorizations
are different, the resulting Bayesian networks will be different as well (same edges but different
edge-directions). See Figure 2.4a for the graph corresponding to (2.1a) and Figure 2.4b for the
BN constructed from (2.1b).

See Figure 2.4c for the Bayesian network that a human domain expert would have probably
designed. One of the connections can be omitted, thus the graph has only two edges and
corresponds to the following factorization of the joint-probability:

P (p,s,t) = P (t|s)P (s|p)P (p) (2.2)

The first term on the right-hand side of the equation has been simplified since it is only con-
ditioned on one variable. The factorization of Equation (2.1) is valid in general, whereas the
factorization of Eq. (2.2) is only allowed if the (implicit) independence statement holds. In this
case such an assumption is valid because the shutdown-trigger is based (entirely) on threshold-
ing the sensor-reading - the trigger is not (directly) influenced by the actual pressure within the
containment. A domain expert would probably know that there is no direct causal dependency
between the pressure and the trigger and could use this knowledge to incorporate additional
independence assumptions into the BN. In this case it would only lead to a small improve-
ment, but one can easily see that in the context of large and complex models this could lead to
significant simplifications compared to the naive factorization of a joint-distribution.

The model designed by the expert is causal, which makes it easier to understand but also
simplifies the design-process. Notice though that all three models correspond to the same joint-
probability - yet the model in Figure 2.4a does not show any causal relationships (the trigger-
state does neither affect the sensor-reading nor the containment-pressure but). Furthermore, a
model similar to 2.4c with inverted directions of the arrows would also be valid but it would

(a) (b) (c)

Figure 2.4: Bayesian network representation of a joint-probability - the pressure p in a contain-
ment is read via the sensor s and that reading is thresholded at the emergency-shutdown trigger
t. (a): Graphical representation of Eq. (2.1a) - real-world causality is not reflected by the graph.
(b): Representation of the same joint-probability but with a different ordering of the variables
(see Eq. (2.1b)). (c): Byesian network designed by a human domain expert (Eq. (2.2)). Since the
pressure will affect the trigger only via the sensor reading, the RVs p and t are (conditionally)
independent (given s), thus there is no edge between these two nodes.

17

2 Fundamentals

not reflect real-world causal relationships. This ambiguity is inherent to Bayesian networks as
it is a direct result of the ambiguity of factorizations of a joint-distribution.

2.2.2 Inference and learning

The previous section has (briefly) introduced probabilistic (graphical) models, called Bayesian
networks, which are capable of representing knowledge. But so far, the methods for “storing
and inferring” knowledge, i.e. learning and reasoning have not been mentioned. As initially
announced, one major advantage of probabilistic models is the separation of knowledge and
reasoning - therefore many methods for both aspects have been found. The following introduc-
tion will only briefly mention the key-concepts behind most methods. Interested readers are
referred to the standard-textbooks [14, 13].

Inference

Inference is the process of drawing conclusions from certain, known facts. However, in realistic
scenarios these facts are usually governed by uncertainty. To capture this aspect, one usually
resorts to probabilistic techniques, because the concept of pure logical reasoning collapses in
the presence of uncertainty. The corresponding term is probabilistic inference, which refers to
performing inference in probabilistic (graphical) models. In this context, the term evidence de-
scribes truly known facts or in probabilistic terms: observed values of certain random variables.
Evidence plays an important role in the process of inference, since it forms the basis to draw
conclusions from - however these conclusions are drawn in a probabilistic sense, according to a
probabilistic model.

For Bayesian networks (or probabilistic graphical models in general) there are many approaches
to perform inference. Some of them are exact (e.g. message passing), whereas many are
approximative such as variational methods or sampling.

Message passing has been inspired by the topological structure of Bayesian networks - prob-
abilities are sent as “messages” from one node to another and so on. Evidence can easily be
incorporated in such messages. The “routing and processing” of messages is governed by a
quite simple set of rules that, of course, has been mathematically motivated (marginalizations,
sum- and product-rule, ...). Message passing in its essential form does not scale too well for
“large” BNs. Improved versions of the approach exist and can be found under the names belief
propagation or expectation propagation - see e.g. [14] or [17].

Another (very) popular approach is sampling - it is based on the assumption that any probability
distribution can be characterized by drawing samples from it. In many practical problems it is
very hard or even infeasible to provide an “analytic” expression for the underlying probability
distributions. But with infinitely many examples drawn from the true distribution, the whole
distribution could be described. In many cases, it is sufficient to draw a large number of samples
and there are many methods if sampling directly from the true distributions is not possible.
Sampling has been the topic of a lot of research not only in the context of probabilistic graphical
models. However, most methods used in probabilistic inference are based on so called Monte
Carlo methods. As this topic is vast and extensive, the reader is again referred to [18] or the

18

2.2 Bayesian models

standard-textbooks [14, 13] to gain a basic overview and as a starting-point for further literature
research.

Learning the model (parameters)

Learning, in this case, refers to finding model-parameters such that the distribution resembled
by the model is very similar to the true distribution that generated some (observation) data.
In some cases, the model should be fitted as “tight” as possible to the given data, but in most
cases this would be considered as some kind of overfitting-phenomenon. The interesting point
is, that learning can be seen very similarly to inference, or at least as some kind of special-case
of inference. By absorbing the model-parameters into a set of unobservable, latent random
variables and treating the (observation- or training-) data as evidence - the problem of finding
“good” values for the parameters can be solved by the process of inferring these values.

In principle, sampling or even message passing could be used to learn the model-parameters and
actually there is a variety of algorithms based on these approaches. However, especially in terms
of mixture models, expectation maximization (EM) has become very popular and it has widely
been used (see [19] for an introduction on graphical models and learning with EM as well as
Gibbs-sampling). EM is based on estimating the (log-) likelihood of the data given the current
model-parameters (E-step) and in the subsequent M-step optimizing the model-parameters to
maximize the (log-) likelihood. Both steps are repeated iteratively until some convergence
criterion is met. The advantages of EM are its simplicity, solid theoretical foundations and
a widespread use in many application domains - also, it might allow to derive closed-form
(analytical) update equations which will lead to very fast implementations (compared to e.g. a
sampling approach); however, this depends on the model and its complexity. EM was also used
in the work of this thesis. An excellent introduction can be found in [14], which also provides
nice examples for deriving the update equations with a (Gaussian) mixture model.

EM, or actually the maximum-likelihood approach, also has some shortcomings - regarding
mixture models, the most severe drawback is its missing ability to infer the number of required
mixture components (or “clusters”) from data. Variational methods are similar to EM and
they overcome some of EM’s weaknesses - an introduction can also be found in [14] - a more
extensive coverage is provided in [20]. The original proposal is in [21].

Learning the network-structure

Learning the model-parameters of a Bayesian network is only one aspect - it basically trans-
forms (or compresses) the given data into a model that can be used to generate similar data,
i.e. data with more or less the same distribution. But there is also another learning-aspect:
learning the topological structure of the BN, i.e. the topology of the graph. This problem
is significantly harder, since it can not be reduced to a parameter-fitting problem. In many
cases, structural learning is avoided by simply using a fixed structure, designed or modelled by
a human expert (engineer, domain-expert, etc.). This procedure has led to remarkable results,
especially when consulting domain-experts, because they can usually provide knowledge on the
causal relationships of the involved variables. However in many cases this is impossible.

19

2 Fundamentals

To overcome this problem, methods for topological structure learning have been developed.
Rather than having a “hand-crafted” model, the goal is to infer the model-structure as well as
the parameters from the given data. This basically boils down to determining the connectivity
structure (connection as well as direction) between the random variables. Since a connec-
tion indicates a conditional dependency, many approaches aim on determining whether such a
dependency-hypothesis can be supported by the given data or not. However, the problem of
determining such a dependency is ill-posed and in practice often hard to solve - especially when
dealing with noisy data, it is hard to tell whether a (small) correlation between two random
variables exists (resulting in a connection) or not.

As an alternative approach (sometimes also additional), there are methods that are based on a
scoring function of some kind to evaluate the current model’s quality. Starting with a model that
has full connectivity, one can then (randomly) remove a connection and evaluate the quality
of the new model. The problem is that this is computationally infeasible for large models
(because if they were fully connected, the number of connections would simply be to large and
the model-parameters have to be re-fitted on every trial). So, the approaches used in practice
are often based on a combination of both approaches with (sometimes strong) heuristics.

There are also methods that involve the network-nodes as well. In some cases a model can signif-
icantly be simplified while maintaining or even improving its quality by introducing additional
(latent) nodes. However, since these methods require learning of the connectivity structure as
well as the number of nodes itself, they are computationally demanding and often too brittle
to be used in a very general setting. In special cases, where the set of candidate models can
be significantly limited, the methods can lead to nice results. See [22] for a quite sophisticated
approach that also assumes structural regularities in the prior-distributions.

Topological structure learning can also be seen from a Bayesian point of view - in such a case
one seeks to obtain a posterior for a set of prior-structures (candidate structures) and the
given data. This problem can again be solved in many ways - a lot of solutions are based on
a maximum likelihood approach, some of them using variations of expectation maximizations
(structural EM like in [23, 24] or EM-MCMC for structure learning in [25]). For a more general
treatment of the issue, see [13].

Topological structure learning is not necessarily equivalent to structural learning (extraction
of structural invariants). This thesis, for instance, shows structural learning capabilities with a
model that has a fixed topological structure. In this thesis, the topological learning aspects are
not considered. However, there is a close relation and topological structure learning can also
be of use when learning the structure of a task - e.g. if the structure involve some causality-
relationships, these should be represented in the topological structure as well; or if the problem
task is governed by a latent RV, this RV should appear in the network-structure as well.

Hierarchical Bayesian networks

Consider the following example: An experiment under certain conditions has led to a num-
ber of noisy measurements. Without any additionally knowledge, one would probably model
these measurements with a Gaussian distribution (as a prior), having a mean- and variance-
parameter. Now assume that the experiment is repeated under slightly different conditions -

20

2.2 Bayesian models

leading to different mean- and variance-values. With several such trials, one could then again
model these mean- and variance-values with a normal distribution (i.e. a prior on the prior-
parameters). From a conceptual point of view, the latter Gaussian (prior) distribution lies on
a more abstract level since it governs the parameters for all trials, whereas the initial Gaussian
is responsible for “explaining” the values of the current trial. This results in a hierarchical
model with two layers of abstraction.

A hierarchical Bayesian network simply consits of several layers of “priors”, i.e. the parameters
of the bottom-layer are governed by prior-distributions and the parameters of these again have
their own priors, and so on. On a closer look, this is not different from a “regular” Bayesian
network, since it corresponds to a joint distribution (including all the priors) and the corre-
sponding graphical model. The term hierarchical rather refers to the structure of the model,
having several layers of priors. Furthermore this allows (in many cases) a deeper interpretation
of the individual layers, since they capture knowledge on several layers of abstraction. This is
very interesting, since the upper levels of such a network correspond to more and more abstract
or general knowledge. In machine learning, models that are capable of separating concrete and
generalized knowledge are very desireable, because the general knowledge could potentially be
“transferred” to similar tasks. Many traditional models do not allow such a separation or at
least not that easily and thus provide a less useful basis when it comes to adapting to similar
tasks (i.e. truly generalizing). For the example given above, it might actually be more reason-
able to use a mixture-model as the more abstract prior since such a model is capable of clustering
which could potentially lead to valuable (abstract) information on the problem-domain.

Notice that the hierarchical interpretation is not more than another point of view on Bayesian
networks with certain topological features (not introducing many restrictions on the topology
though). Yet it allows to gain deeper insights or design models that are more capable of resem-
bling the “real-world” situation. Sometimes, the process of treating all model-parameters as
random variables and introducing prior-distributions when required is referred to the extension
towards a full Bayesian model - where a full model does no longer contain any deterministic
parameter-values. Such models often show hierarchical features, but in many cases the focus
is not on creating hierarchical Bayesian networks. Variational methods usually require a full
Bayesian model and the extension towards such a model is often the first step in applying
variational methods.

Another (big) advantage is that all the methods and techniques for Bayesian networks can still
be applied to hierarchical models. Hierarchical Bayesian networks play a central role in this
thesis, since the proposed model is hierarchical and the main interest lies on evaluating the ca-
pabilities of this model in terms of abstraction and generalization and further the exploitation
of the abstract knowledge to rapidly adapt to novel but similar tasks. To gain a more intu-
itive insight on the aspects discussed in this section, consider the work of Kemp, Perfors and
Tenenbaum [26] where they show a very nice and comprehensible example on what they call
“learning overhypotheses” - which is just another, perhaps more suitable, term for extracting
abstract knowledge.

21

3 Methods and models

This chapter will present the methods and (mathematical) models used in this thesis. It starts
with a more precise definition of the problem task presented in the introductory chapter. In the
following section, the basic hierarchical Bayesian model to extract the structure of the task will
be introduced. In order to fit the model to observation-data (i.e. “learning”), the expectation
maximization algorithm is used. The mathematical details of the EM-update equations can
also be found in this section.

The basic model still has a few shortcomings (especially from a mathematical point of view).
One of the main-issues is that the model-parameters do not have prior-distributions. In Section
3.3, the basic model will be extended (towards a full Bayesian model) by specifying priors
for the model parameters. The reasons for this extension will be discussed in detail and the
corresponding (mathematical) changes will be illustrated.

At the end of this chapter, the original problem task is refined into an advanced problem task.
This advanced task is more complex from the perspective of planning (i.e. action-selection) It
basically restricts actions to applying certain accelerations, which means that the agent can no
longer set its velocity directly and has to plan a few steps ahead (e.g. if it needs to stay at a
certain, close-by position but currently has a very high velocity).

To avoid any misconceptions: all implementations were done in Matlab - the agent as well as
its environment are simulation only. The thesis does not use any real hardware to perform
experiments.

3.1 Problem-task: distorted movement in discrete world

The problem-task described in 1.2 still needs some refinements in order to be suitable for the
proposed models. For the discrete models, given in the following two sections, the task must
be discretized. As a direct consequence, the 2D-plane where the agent moves is sectioned into
a regular grid, where the agent can only move from grid-cell to grid-cell. Furthermore, the
agent’s velocities as well as the velocity-commands must only have discrete values. See Figure
3.1 for an illustration of the discretized problem-task.

The agent’s position p = 〈x,y〉 and velocity v = 〈vx,vy〉 form the state of the agent s = 〈p,v〉.
While this is perfectly valid, it will probably lead to computational problems with a discrete
model. The computational demand usually grows exponentially with the number of different
states. It is therefore desireable to reduce the state space as far as possible. The model proposed
in the following section should learn the state transition probability P (s′|s,a) (where a = 〈vx,vy〉
denotes an action and s′ the subsequent state). In the end, this state transition probability will
form the basis for the planning algorithm. But the state transition is independent of the global

23

3 Methods and models

Figure 3.1: Discretized problem-task - the agent (in the blue shaded cell) tries to move to-
wards the goal position (green shaded cell) in a “gridworld”. The corresponding discrete velocity-
commands are shown in green (cursive captions). Due to the rotation distortion with angle φ, the
actual velocity (purple, sans-serif captions) will point towards a completely different direction.
Notice that velocities are discretized, i.e. they will always start and end at the center of a cell.
Thus the actual velocity might have a different length (magnitude) than the corresponding com-
mand. The gray shaded cells show all possible subsequent positions - assuming velocity limits of
± 5.

position within the grid-world - thus only transitions relative to the current position need to
be considered. See Figure 3.1 where the shaded area around the agent denotes all possible
positions in the next step (considering all possible actions). Since the agent cannot reach a
position outside the shaded area, all that needs to be considered are the shaded grid cells.

This results in a relative transition model with ∆x = x′ − x = vx and ∆y = y′ − y = vy -
i.e. the cells that the agent can reach in its next step (relative to the current position) are
identical to all possible velocities. The goal is then to learn: P (∆x,∆y|vx,vy). This reduces our
state-representation to: s = ∆p = 〈∆x,∆y〉, i.e. the state of the agent in a relative transition
model is independent of the global position of the agent!

Notice that the relative transition model can not be used to determine whether the agent is in
the goal state or not. However it is trivial to expand the model such that it includes the global
position; there is no need to incorporate this when learning the transition model.

The action space is formed by all possible actions, i.e. velocities. The state space for the
relative transition model is formed by all possible (discrete) position-changes. Due to compu-

24

3.2 Basic discrete model

tational limitations it is inevitable to reduce the state and action spaces to “feasible” sizes by
simply putting limits on the minimum/maximum velocity.

As stated in the original description of the problem task, the state transition model should
not be deterministic. In order to incorporate some randomness, the actions are superimposed
with a Gaussian noise, i.e. the actually selected action is a noisy version of the desired action.
This results in the following transition model - where the noise as well as the overlaid rotation-
distortion have been included:

P (∆p|a) ∝ N ([∆x,∆y︸ ︷︷ ︸
∆p

]T |R(φ)[vx,vy︸ ︷︷ ︸
a

]T ,σ2I), (3.1)

where R(φ) is the rotation matrix for angle φ.

This model can be used for simulation and the generation of data-sets. However, it is not related
to the model used for learning the (relative) state transition distribution, described in the next
section! Since the planning problem is trivial for the given setup, an advanced version of the
problem will be presented in 3.4. In the advanced task, actions will be acceleration-commands,
which makes it impossible to set the agent’s velocities directly.

3.2 Basic discrete model

The model presented in this section is a hierarchical Bayesian model that has been proposed
by Maass, Neumann, Rückert (IGI) and has mainly been inspired by the work of Kemp, Perfors,
Tenenbaum [26]. It is able to extract structural knowledge from the given data in the form of
prior-distributions.

3.2.1 Multinomial representation of the data

For each discrete action an = 〈vx,vy〉 and each possible position change ∆pl the transition
function can be represented by a multinomial distribution: P (∆pl|an,θ) = θln. By definition∑

l θln = 1, i.e. for each action an, there is a normalized parameter vector θn.

Assume N datasets Dj = {〈∆pjl,ajn〉} with 1 ≤ j ≤ N have been acquired, where the angle
of the rotation-distortion is kept constant for an entire set but may vary among different sets.
Each dataset corresponds to a single episode of the agent, i.e. the recorded data of a number of
subsequent steps performed in the grid-world environment. The likelihood of Dj is then given
by

P (Dj |θ) =
|A|∏
n=1

|∆P |∏
l=1

θmln
ln , (3.2)

where mln is the number of examples within the dataset where action an was taken and resulted
in a position change ∆pl. |A| is the number of discrete actions and |∆P | is the number of (valid,
discrete) position changes - in this case (with a relative transition model) it is identical to the
number of possible velocities.

25

3 Methods and models

Figure 3.2 shows exemplary plots for ml. The values have been acquired from two datasets -
each one has been generated using a different rotation-angle. In the plots, the elements of ml

(the vector has |∆P | entries), have been mapped onto a two-dimensional grid, that represents
the x- and y-components of ∆p. The figure also illustrates the non-deterministic nature of
the commands - repeatedly using the same command with the same rotation-distortion, will
produce a regime of actually taken velocities. The variance within this regime is governed by
the σ-parameter of (3.1).

3.2.2 Dirichlet-mixture as prior distribution

In order to be able to incorporate structural knowledge into the model, it desirable to introduce
general or prior knowledge about the parameters of the multinomial distributions. In a Bayesian
manner, this is done by using prior distributions. The normalized product with the likelihood
of the data will then form a posterior distribution, which incorporates a prior belief as well as
the actual observations. In a hierarchical Bayesian model the abstract, generalized knowledge
is modeled with prior distributions.

Similar to the model proposed in [26], the model proposed by Maass, Neumann, Rückert will
use the Dirichlet distribution as a prior. The Dirichlet distribution is a conjugate prior for the
multinomial distributions, which means that the posterior distribution will have the form of a
Dirichlet distribution as well. Furthermore, the hyperparameters of the Dirichlet have a nice
interpretation as an “effective number of observations” (see [14] Chapter 2.2.1).

(a) (b)

Figure 3.2: Parameters of multinomial distribution - values of ml for the action a = [−4,4] from
two datasets, generated with different rotation angles - (a): 6° and (b): 99°. The plots show how
many times the action has led to a particular change in position ∆pi = [∆x,∆y]. Notice that the
same action will result in similarly shaped distributions and how the rotation angle can be seen
with the naked eye. The data was generated using quite a high variance for drawing the actual
position change (see (3.1)).

26

3.2 Basic discrete model

A single Dirichlet distribution will most probably not be expressive enough to capture the
structure within the data that should be learned. Instead it would simply average over the
different rotation-distortions. The key idea, proposed by Mass, Neumann, Rückert is to use a
mixture of Dirichlet distributions for the prior distribution. Then, the prior for θ has the
following notation:

P (θ|α1:K ,c) =
K∑

k=1

Dir(θ|αk)P (k|c), (3.3)

with

Dir(µ|α) =
1

W (α)

K∏
k=1

µαk−1
k , (3.4)

and the normalization/weighting function:

W (α) :=
Γ (α1) · · ·Γ (αK)

Γ (α0)
, (3.5)

and

α0 =
K∑

k=1

αk, (3.6)

where K is the number of mixture components, Γ (x) denotes the gamma-function and P (k|c)
acts as a weight of mixture component k:

P (k|c) = ck (3.7)

All elements of c must sum up to one (
∑K

k=1 ck = 1).

A more schematic view of the model can be seen in Figure 3.3. At the bottom you can see
the N datasets, where the rotation distortion within a dataset is constant. The observations of
each dataset are modeled with a multinomial distribution to have a probabilistic representation
of the data. On the next, more abstract level, a mixture of Dirichlet distributions acts as a
prior for the multinomials. Notice the general assumption that the mixture has (a lot) less
components than the number of datasets, i.e. K < N . This is not crucial for the model itself,
but besides leading to overfitting effects, too many mixture components might also lead to
problems like degenerated or singular cases when fitting the model to data using expectation
maximization (EM - see 3.2.3). At the top-most level there is an additional variable c which
is simply a weight for the Dirichlet mixture components and indicates the importance of the
individual component for the given datasets.

It is very common to introduce a latent or hidden variable to mixture distributions - see Bishop
chap. 9.2 [14] for a detailed example with a mixture of Gaussians. The latent variable z is a
binary vector with only one element being equal to 1 - also known as a “1-of-K representation”.
It ensures that a datapoint is assigned to a single cluster-component. In combination with
the EM algorithm the use of hidden variables will lead to significant simplifications (the latent
variable is explicit and each mixture component can be optimized independently - see Bishop
for a discussion). For the model used in this thesis, the only difference from this general concept

27

3 Methods and models

Figure 3.3: Basic discrete model - the observations in the datasets are modeled using multi-
nomial distributions. Abstract knowledge is incorporated via the prior distribution - a mixture
of Dirichlet distributions. At the “top level” there is an additional (prior) weight. To implicitly
define that all observations within a dataset have been generated from the same mixture compo-
nent, the hidden variable z is introduced.

is, that the latent variable is used per dataset and not per datapoint. This is valid because
of the assumption that all observations within a dataset have the same rotation-distortion, i.e.
they can (and actually should) be explained by the same mixture component. Or from another
point of view: the latent variable determines from which mixture component of the prior the
current task was generated, thus directly corresponding to the structure of the task.

Using the latent variable and the previous definitions, the joint distribution of the data D, the
hidden variable z and the parameters of the mixture distribution α, c is given by:

P (D1:N ,z1:N |α1:K ,c) =
N∏

j=1

K∏
k=1

(
P (k|c)

∫
θ
P (Dj |θ)P (θ|αk)dθ

)zjk

︸ ︷︷ ︸
P (zjk,Dj |αk,c)

(3.8)

Because the latent variable is a binary vector, which has only a single element that is not equal
to zero, the sum in (3.3) can be written as a product.

28

3.2 Basic discrete model

3.2.3 Fitting the model to data with EM

In order to extract the structure of the N datasets, the model-parameters α, c need to be fitted
to the given data. There is a number of different approaches - each having its own strengths
and weaknesses. In this case, the expectation maximization algorithm (EM) was chosen; on one
hand it is not too complex, yet powerful and the mathematical demands seem feasible. On the
other hand the algorithm is well known, commonly used and has solid theoretical foundations
(see [27] for a brief tutorial, [14] for a more detailed discussion and [21] for the original proposal
of the algorithm). Especially in conjunction with mixture models, EM has become very popular
to estimate the (hidden/latent) model parameters from observation-data (see also [28]). It is
not within the scope of this thesis to evaluate the qualities of EM for the given problem, nor
to compare it with different algorithms.

The EM-algorithm consists of two subsequent steps that are iteratively executed until some
convergence criterion is met. In the so called E-step the expectation of the likelihood (of
the data, given the model-parameters) is computed, with the current estimates of the model-
parameters. In the following M-step, the model-parameters are optimized to maximize the
expected (log-) likelihood.

The following section shows the analytical derivation of equations to compute the required
quantities. Unfortunately, no closed-form solution for the maximization in the M-step could be
found - however it was possible to derive the corresponding gradient, thus being able to increase
the expected log-likelihood by using gradient-ascent (this is also known as generalized EM).

E-step

The goal of the E-step is to compute the expected value of the likelihood of the latent variable
z given the data and assuming fixed model-parameters. In conjunction with a mixture-model,
this quantity is referred to as the so-called responsibility. The responsibility basically gives a
measure of how likely it is that a dataset Dj belongs to mixture component k (or has been
generated from it). During the computation of these quantities, the latent variable z can be
exploited - i.e. the responsibility of each mixture component can be computed separately (up
to a normalization along all mixture components).

The responsibility qj(k) of dataset j belonging to mixture component k is given by:

qj(k) = P (zjk = 1|Dj ,αk,c) =
P (zjk,Dj |αk,c)
P (Dj |αk,c)

=
P (k|c)

∫
θ P (Dj |θ)P (θ|αk)dθ∑

k P (zjk,Dj |αk,c)
(3.9)

The following only considers the multinomial parameters for a single dataset j therefore the
index j will be omitted - i.e. θ = θj as well as mj,n = mn. Also, only a single mixture
component k is considered - with the hyperparameters αn = αk,n for each action an (and
αnl = αk,nl); again the index k has been omitted.

29

3 Methods and models

The denominator of Eq. (3.9) is just a normalization factor - a closer look on the computation
of the numerator (using the previous definitions) yields:

P (k|c)
∫

θ
P (D|θ)P (θ|α)dθ = P (k|c)

∫
θ

|A|∏
n=1

|∆P |∏
l=1

θmln
ln

1
W (αn)

|∆P |∏
l=1

θαln−1
ln dθ

= P (k|c)
|A|∏
n=1

 1
W (αn)

∫
θ

|∆P |∏
l=1

θmln+αln−1
ln︸ ︷︷ ︸

unnormalizedDirichlet

dθ

= ck

|A|∏
n=1

W (mn + αn)
W (αn)

∫
θ

Dir(θ|mn + αn)dθ︸ ︷︷ ︸
=1

(3.10)

The multinomial distribution with the Dirichlet as its conjugate prior, results in a Dirichlet
distribution. However it is unnormalized and after introducing the correct weighting-term,
integrating over the (now normalized) Dirichlet simply yields 1.

The final result for the responsibility qj(k) and thus for the E-step is:

qj(k) =
P (zjk,Dj |αk,c)∑
k P (zjk,Dj |α1:K ,c)︸ ︷︷ ︸

normalization

=

ck

|A|∏
n=1

W (mj,n + αk,n)
W (αk,n)∑

k P (zjk,Dj |αk,c)
(3.11)

M-step

In the M-step, the expected value of the (complete-data) log-likelihood (of the latent variable) is
to be maximized. The following approach (as well as a more detailed derivation and discussion)
can be found in [14], chap. 9.

Ez [lnP (z,D|α, c)] = ln

 N∏
j=1

K∏
k=1

P (zjk,Dj |αk,c)P (zjk=1|Dj ,αk,c)

=

N∑
j=1

K∑
k=1

qj(k) lnP (zjk,Dj |αk)

=
K∑

k=1

N∑
j=1

qj(k)

lnP (k|c) +
|A|∑
n=1

ln
(
W (αk,n + mj,n)

W (αk,n)

)
(3.12)

Notice that each mixture component can be optimized separately (again due to the latent
variable z). Also notice that c and α can be optimized independently.

30

3.2 Basic discrete model

To find an update equation for c, optimize the following (for all K mixture components):

K∑
k=1

N∑
j=1

qj(k) lnP (k|c) (3.13)

with respect to ck

Remember that P (k|c) = ck. As a side-constraint c must sum up to one (
∑

k ck = 1) -
therefore a La-Grange multiplier is used. This derivation is quite common and can also be
found in Bishop’s example (see [14] for an analytical derivation). The result is simple and
intuitive and has the following form:

ck,new =

∑
j qj(k)∑

κ

∑
j qj(κ)

(3.14)

The weight of a mixture component depends on “how responsible” the component is with respect
to all datasets (“How many datasets are explained by this particular mixture component?”);
the denominator is just a normalization-term.

To find the parameters of the Dirichlet prior, optimize the following with respect to αk for
all K mixture components (note that it is valid to consider only a single mixture component,
since they can be optimized separately):

N∑
j=1

qj(k)
|A|∑
n=1

lnW (αk,n + mj,n)− lnW (αk,n) (3.15)

Unfortunately there is no closed-form solution for this maximization. However, it is possible to
compute the gradient (with respect to αk) and use gradient-ascent to increase the log-likelihood.
This is also known as generalized expectation maximization (GEM - see also: [27]), where the
M-step is not guaranteed to maximize the log-likelihood but simply increase it. The derivation
of the following result can be found in the appendix A.1:

∇αk,nl =
N∑

j=1

qj(k) (ψ(αk,nl +mj,nl)− ψ(αk,nl) + ψ(α0k,n)− ψ(α0k,n +Rj,n)) , (3.16)

with

Rj,n :=
|∆P |∑
l=1

mj,nl, (3.17)

i.e. the number of times that action n was taken in dataset j and ψ(x) being the digamma
function (the derivative of the log-gamma function Γln). α0k,n is the sum over all α-entries for
a single action and mixture component:

α0k,n :=
|∆P |∑
l=1

αk,nl (3.18)

31

3 Methods and models

The update equation for αk then has the following form:

αk,new = αk + λLR ·∇αk (3.19)

where λLR denotes a certain learningrate.

Additional details on the implementation

In practice, the EM-algorithm has a few common pitfalls - especially in conjunction with
mixture-models. One of the main issues is that the number of mixture components is not
clear - too few components will probably lead to a model that is not expressive enough to
capture fine-grained structural aspects. On the other hand, too many mixture components
will cause unnecessary computational demands as well as overfitting effects. One task of this
thesis is therefore to investigate the effects of different numbers of mixture components - as it
turns out (see the results in Chapter 4 for more detail) the model is quite robust for a range
of mixture component counts and the exact number of components is not too problematic as
long as it lies within the range of about 7 up to 20 components.

Another problem, inherent to EM and mixture models, is that EM will only be able to find
parameter settings for local maxima (of the likelihood) and thus, the results will strongly depend
on the initial values. Furthermore, bad choices of initial values might lead to degenerate cases,
where a single mixture-component collapses onto a single dataset (i.e. the component is only
responsible for a single dataset). In most cases, this is undesired and EM in its basic form is
usually not able to recover from such cases. As a simple heuristic rule, the following convention
was used during EM-iteration: When a single mixture component becomes responsible for a
number of datasets that is less than a third of the datasets of the the mixture component with
the most datasets associated, delete the degenerate mixture component and copy the one with
the most datasets with some minor noise on the parameters.

The EM-update equations will lead to normalized values for the mixture-component weight
vector c. The hyper-parameters of the Dirichlet distributions, α, are driven towards the values
of the corresponding multinomial parameters (of all dataset where the mixture component has a
significant responsibility). Most of these values are zero whereas the others might have double-
or triple-digit values (see also figure 3.2). Both, too small values (close to zero) and too large
values (above 80) are problematic, since they lead to numerical issues. In the basic model, the
values must therefore be limited to a certain range (e.g. (0.001, 25)).

3.3 Full Bayesian model with hyper-priors

From a conceptual as well as a mathematical point of view, it is desired to have prior distribu-
tions for the parameters of the basic model (α). In a Bayesian sense, this corresponds to having
a “full” Bayesian model - however one could also view these priors on the hyper-parameters
(hyper-priors) as another level of abstraction, eventhough it is hard to give them an intuitive
interpretation in terms of capturing abstract knowledge.

32

3.3 Full Bayesian model with hyper-priors

The introduction of such hyper-priors also promises to overcome some of the problems of the
basic model, as mentioned at the end of the previous section. First of all, limiting of α-values
should no longer be necessary - at least at the upper bound (the lower bound is close to
zero and at least in some cases, a hard limit might still be needed). Another problem of the
basic model is that it might produce prior-distributions (α) that show a degenerated structure
(instead of a nice bells-shape, like the multinomials in figure 3.2, the learned α’s might have
outliers, very large values or almost all non-zero values at their limits). The following section
describes an extension to the basic model that reduces these problems while maintaining a
conceptual/mathematical elegance (in a Bayesian sense).

3.3.1 Hyper-priors

To overcome the problem of having to limit the individual α-values, a mixture of Beta
distributions is used. The mixture consists of two components - one for the values at the lower
limit, close to zero, and another one for the values that have significant nonzero values. As these
nonzero values might have quite a different range among the different Dirichlet distributions,
it is reasonable to use normalized α-values, i.e. normalize the values with the sum over all
values for a single action of a mixture component (see Eq. (3.21)). Since the lower-bound of
α-values is close to zero, the Beta-prior might not have a strong enough limiting effect on these
values and it is possible that a single Beta distribution for the significant nonzero values is
sufficient. The following model will therefore use a general notation for the Beta-mixture and
the simulations will show, whether a single distribution or a mixture is needed.

To further enforce that the learned α’s for each action are similarly shaped, another prior
distribution is introduced. It acts on the α0’s, i.e. the sum over all values of a particular
action. The prior for this sum is a Gaussian distribution with a certain mean and variance.
If a Dirichlet component has a degenerate “shape”, where either the sum or the variance over
all values is quite different from all other Dirichlet components, its likelihood will be quite low
and its parameters will be driven to be more similar to the parameters of the other distributions
(in the M-step).

Figure 3.4 shows a schematic sketch of the extended Bayesian model - the parameters of the
(new) Beta-mixture prior are denoted by λ and the corresponding mixture weight is x; the
parameters of the Gaussian prior (mean and variance) are subsumed in the variable γ.

As mentioned before, the hyper-prior distributions are hard to intuitively interpret - furthermore
it is hard to find reasonable values for the parameters of these hyper-priors (parameters of the
Beta distributions as well as mean and variance of the Gaussian). These parameters will
therefore also be fitted to the given data (using EM) during the learning-stage.

With the Beta-mixture prior on the normalized αk and the Gaussian prior on α0k we get:

αk −→ P (αk|κ) =
|A|∏
n=1

|∆P |∏
l=1

(
B∑

b=1

Beta(µk,nl|λb)P (b|x)

)
︸ ︷︷ ︸

Beta−mixture

N (α0k,n|γ)︸ ︷︷ ︸
Gaussian

, (3.20)

with the hyper-prior parameter vector κ = 〈λ,x,γ〉.

33

3 Methods and models

Figure 3.4: Extended hierarchical Bayesian model - the parameters of the Dirichlet-mixture
prior now have additional (hyper-)prior-distributions: A mixture of Beta distributions as well as a
Gaussian prior for the α0-values.

B is the number of Beta-mixture components - since it is not clear whether a single Beta
distribution is sufficient or a mixture of two Betas is needed. x is the weight-vector for the Beta-
mixture (compare this to c which is the weight-vector for the Dirichlet-mixture). λ represents
the parameters of the Beta-distributions and γ denotes the parameters of the Gaussian prior
(mean and variance).

The argument of the Beta-distribution is given as:

µk,nl =
αk,nl

α0k,n
(3.21)

where α0k,n is defined in Eq. (3.18). Thus, µ represents normalized α-values (normalized per
action and mixture component).

34

3.3 Full Bayesian model with hyper-priors

3.3.2 EM for the extended model

This section shows the changes in the EM-equations compared to the basic model with respect
to α. The updates for the hyper-prior parameter vector κ can be found in Sec. 3.3.3. Since
the hyper-priors extend the basic model, large parts of the EM-equations remain the same and
in most cases additional (additive) terms have to be introduced.

E-step

The E-step basically consists of computing the responsibility of the mixture components for a
dataset Dj . The prior-probability P (αk|κ) introduces slight changes to the compared to the
E-Step of the basic model (see Sec. 3.2.3 or Eq. (3.11)).

The responsibility qj(k) of dataset j belonging to mixture component k of the extended model
is given by:

qj(k) = P (zjk = 1|Dj ,αk,c,κ) =
P (zjk,Dj |αk,c,κ)
P (Dj |αk,c,κ)

=
P (k|c)P (αk|κ)

∫
θ P (Dj |θ)P (θ|αk)dθ∑

k P (zjk,Dj |αk,c,κ)
(3.22)

M-step

In the M-step, the parameters of the model are optimized to maximize the expected log-
likelihood (in the case of generalized EM the log-likelihood is increased but not maximized).
The following, considers the optimization of the α-values, the optimization of the hyper-prior
parameters (κ) is shown in the next section.

The (complete-data) log-likelihood now has the following form:

Ez [lnP (z,D|α, c,κ)] =
K∑

k=1

N∑
j=1

qj(k) lnP (zjk,Dj |α1:K)︸ ︷︷ ︸
same term as in basic model

+ lnP (αk|κ) (3.23)

Compare this equation to the log-likelihood of the basic model ((3.12)). In the extended model,
every mixture component has an additional hyper-prior term P (αk|κ), given by Equation (3.20).
Notice that the hyper-prior term is independent of the dataset Dj and thus can be pulled out
of the inner sum.

The mixture components can still be optimized independently and due to the ln the products of
Eq. (3.20) factorize nicely, rendering the α-parameters for each action independent of the ones
for all other actions. The detailed derivations for the optimization of P (αk|κ) with respect to
αk are somewhat tedious and can be found in the appendix (A.3).

Notice that there is again no closed-form solution for the α-update but a closed-form solution
for the corresponding gradient, which allows the application of gradient ascent for optimizations
(see Eq. (3.19)).

35

3 Methods and models

3.3.3 Optimization of hyper-prior parameters

As mentioned previously, it is hard to intuitively find good parameter-settings for the hyper-
priors. Therefore, these parameters shall be optimized, using the given datasets, as well. The
basis for this optimization is again the (complete-data) log-likelihood function (Eq. (3.23)).
Unfortunately, it is not possible to find a closed-form solution for the update equations of the
Beta-parameters. It is not even possible to provide a closed-form solution for the corresponding
gradient, which is required for optimization. However, there is still a possibility to apply
gradient ascent - by using numerical methods to estimate the gradient.

Given a function f(x), depending on the variable x, the gradient with respect to x can be
numerically estimated by using a small deviation ∆ around an operating point x0:

f ′(x0) ≈
f(x0 +∆)− f(x0 −∆)

2∆
(3.24)

which corresponds to a linearization of the function in a small neighborhood around the op-
erating point and then computing the “slope” of the function. This is a fairly crude method
and also the exact value for the deviation ∆ is not clear. Additionally there is an issue with
gradient ascent (in general) - the optimization will converge toward a local maximum and the
final solution is therefore (strongly) dependent on the initial values.

The optimization of the parameter-settings for the Gaussian prior can be done by using
the closed form solution. The result is well known but it can also be intuitively motivated:
since the goal of the hyper-prior is to enforce a certain similarity among the different Dirichlet-
parameters, it is reasonable to set the mean-value of the Gaussian to the mean over all Dirichlet
distributions (taking each action individually), i.e. the mean over all α0k,n. The variance of the
Gaussian is set in the same way. Without further proof, it is easy to see that the likelihood of
the α0’s will increase the closer the Gaussian parameters are to the mean and variance of the
α0’s (assuming that most αk,n will have a similar shape). Furthermore, degenerated Dirichlet
priors, will lead to worse values of the log likelihood function.

In both cases, the parameters to be optimized need to be bounded by upper and lower
limiting-values. Otherwise, gradient-ascent might drive the parameter-values towards very small
or very large values which become numerically problematic for the simulations, but might also
lead to unfortunate results for the α-values.

3.4 Advanced problem-task

The basic problem task, described in 3.1 uses velocity-commands as actions. This makes the
corresponding planning-problem trivial, since the agent must only plan the immediate next
step. Therefore, the planning algorithm only has to search for a locally optimal policy for each
state. In order to make the planning-problem non-trivial, an advanced task setup where the
actions are acceleration-commands, is now introduced. This requires “planning a few steps
ahead”, since the agent has to decelerate when it gets into the vicinity of the goal-position.

36

3.4 Advanced problem-task

Now, it is no longer valid to always choose a locally optimal action (the one that gets the agent
closest to the goal position, given its current position) but the planning-algorithm has to search
for a globally optimal policy.

3.4.1 Modifications

Figure 3.5 shows an overview of the modified task setup. Instead of directly setting its velocity,
the agent must now apply an acceleration to the current velocity. The rotation-distortion
acts between the desired acceleration (-command) and the actually taken acceleration. The
hierarchical Bayesian model should again extract the rotation-distortion as the structure of the
task. Velocities and accelerations as well as the positions of the agent on the gridworld are
discrete.

Actions are now defined as a = 〈ax,ay〉 and they will result in a velocity-change v′ − v = ∆v.
In every time-step dt, the agent at position p = 〈x,y〉 will perform a transition to the position
p′ according to the following probabilistic transition-model:

P (p′,v′|p,v,a) = P (p′|v′,v,p)P (v′|v,a)

∝ N
(
p′|p + vdt+

v′ − v
2

dt,σ2
p

)
N
(
[v′ − v]T |R(φ)aT ,σ2

) (3.25)

The latter part of the equation is very similar to Equation (3.1) (the transition model of the
basic task). It is very important to notice, that the rotation-distortion only affects that part
of the model; the first Gaussian-term that models the position-transition for a given position,
velocity and velocity-difference has no rotation-distortion. This allows to ignore this part of
the model when learning the structure of the problem-task - all that needs to be considered
with the hierarchical Bayesian model is the latter part of Equation (3.25). Notice that the
planning-algorithm has to take the full model into account. Essentially, this means that for
the learning problem he exact same model as in the basic task can be used. In case of the
new problem setup the model is simply given a different interpretation. When planning, the
posterior, composed of the data and the learned priors can be used for P (v′|v,a) (see (3.25)).

In general the timestep dt should be fairly small, in order to have a realistic model. However,
this would lead to problems due to discretization and limited sizes of state- and action-space.
For instance, if the agent was currently at velocity (0,0) and an acceleration of (1,0) would be
applied for a timestep of 0.1s, then the corresponding change in position would probably not
suffice to end up in a different grid-cell. Due to discretization, the recently applied acceleration
would simply vanish and the agent could never reach a non-zero velocity. One way to solve
this issue was the use of quite large accelerations, probably up to values of 20 or 30, but even
with a coarse discretization, this would significantly increase the size of our action-space. This
is problematic from a computational point of view - especially when using value-iteration for
planning (see 3.4.2). The other solution is to simply use large timesteps - in the simulations of
this thesis a timestep of 1s will be used, which leads to more unrealistic models. However, for
the purpose of evaluating the qualities of an HBM for structural learning this has no significant
impact.

Since the grid-world has a (quite) limited size, the boundary conditions have to be well defined.
This problem task uses the following convention: all movements that would put the agent

37

3 Methods and models

Figure 3.5: Problem-task with accelerations as actions - The agent invokes a certain
acceleration-command (green, cursive captions) to change its current velocity. Due to the
rotation-distortion with angle φ, the actually applied acceleration (red, sans-serif captions) points
towards a different direction and because of the discretization may also have a different magni-
tude than the original command. The gray shaded cells show all possible accelerations, assuming
an acceleration-limit of ± 3.

outside the boundaries of the grid-world, will be limited to the last position within the grid-
world; i.e. our grid-world has “walls” along the boundaries. However, the agent will simply
keep its velocity when bumping into a wall. In a similar way, the velocity of the agent is limited
- accelerations that would result in velocities that exceed the limits, will set the velocity to that
limit-value.

3.4.2 Planning with value-iteration

In order to solve the problem of finding a (globally) optimal policy that will allow the agent to
choose actions such that is reaches the goal-state, some kind of planning-algorithm is necessary.
Since the transition model is probabilistic (and noisy), the algorithm must be able to cope with
such models. One basic, yet powerful such algorithm is value-iteration. In its original form it
is quite simple; however it does require a full model of the environment (in this case the full
state-transition model). In case of discrete models, this can quickly turn into computationally
infeasible problems - simply due to the computational explosion that comes with large state- and
action-spaces. The problem is well known and there are several improved versions or different
algorithms that do not require a (full) model of the environment. However, value-iteration is

38

3.4 Advanced problem-task

sufficient for the demands that are within the scope of this thesis and has the advantage of
simplicity, thus easy implementation. You can find a very brief overview of value-iteration in
A.2.

The only restrictions introduced by using value-iteration regard the size of the state- and action-
spaces. For the advanced problem-task this leads to the restriction to fairly small gridworlds
with only a handful of (discrete) velocities and acceleration-commands.

Besides the full state-transition model, a reward function is necessary for planning - especially
when using value-iteration. It is defined as R(s,a), which requires the design of a function that
returns a reward-value for every state-action pair. In the given problem-task the state s is a
composed of the agent’s position and velocity (s = 〈p,v〉) and the actions a are acceleration
commands.

For this problem-task, the agent’s position should be as close as possible to the goal position,
while at the same time the agent should only accelerate/decelerate when necessary, which could
be interpreted as a constraint to operate economically. Let the goal position be pG, then the
reward function for this task shall be defined as:

Q(s,a) = Q(〈p,v〉,a) := −|p− pG|2 − 0.1|a|2 (3.26)

where |· | in this case denotes the L1-norm ||· ||1. Note that this choice is arbitrary - one could
also choose the L2-norm on any other applicable norm and the reward does not necessarily need
to increase quadratic with the distance. In this case the L1-norm seemed to better reflect the
circumstance that the agent can only move cell-wise.

Notice that this is rather a design than a unique definition because there are many different
ways to define the reward-function such that the agent will navigate towards the goal position
and try to stay there. The optimal policy, in order to reach that goal, will strongly depend on
the design of the reward function. Furthermore, the reward function will also have an impact
on the convergence-properties of value-iteration.

There is one special-case, where this reward function will not lead to the desired behavior of the
agent: if the goal-position is at the edge of the gridworld (i.e. next to a “wall”) and the agent
reaches that cell with a velocity that points towards the wall, there is no need to decelerate, since
the agent can not leave the grid-world and will stay at the goal-position. Furthermore, there is
a penalty on every action, depending on the magnitude of the acceleration. The agent would
therefore receive the highest (expected) reward by applying the “smallest” possible acceleration
([0,0]). To avoid this special-case, the reward for being at the goal position with zero-velocity
has been increased by plus one.

39

4 Results

The models described in the previous chapter are put to test using the problem-tasks defined
there as well, to obtain some insight on the qualities of the models in terms of structural
learning. The ability for fast learning by exploiting the learned structure of the task, captured
by the priors of the model, is of special interest. The first section of this chapter provides more
abstract results on this issue, whereas the second section presents more intuitive insights on the
gridworld-navigation task. If not mentioned otherwise, the full Bayesian model (the extended
model) was used to produce the results.

In both cases, the findings were obtained in a two-stage process. In the initial learning stage,
a number of generated datasets was used to provide a basis for extracting the structure of the
task. Each dataset was created in a separate episode with a different angle for the rotation-
distortion and consits of state-action pairs, that denote into which state a certain action has
lead. The action-selection during data-generation is purely random. In order to extract the
task structure and learn abstract, transferable knowledge, the hierarchical model is fitted to the
generated data, using the expectation maximization algorithm.

In the subsequent evaluation-stage, one or more new episodes with novel angles (that have
not been presented before) are generated. These new episodes are then used to perform the
analysis of certain qualities of the model. In this stage, the model is no longer fitted to the novel
data, but the learned priors are used in conjunction with the new data to obtain a posterior
distribution that should rapidly (i.e. after a few steps) be very close to the true transition-
distribution of the new episode, because it has the same underlying structure. In terms of the
agent’s movement this means, that it should only take a few steps until the agent is able to
compensate the rotation-distortion and navigate towards the goal position.

The final section of this chapter provides some insight on the process of optimizing the hyper-
prior parameters during the learning stage.

4.1 Basic task

For the basic task setup (as described in 3.1), the goal is to evaluate the capabilities of the model
in terms of extracting the task structure. Since the planning-problem for this task is trivial, the
analysis will be restricted to more abstract issues. Section 4.2 provides more intuitive results
showing the agent’s movement behavior under various settings.

41

4 Results

4.1.1 KL-divergence analysis

To evaluate the ability for fast learning, a measure for the difference between the true distri-
bution of an episode and the posterior distribution, composed of the learned priors and the
episode’s data, is needed. As a standard tool, the Kullback-Leibler divergence is used - for
discrete distributions it is defined as:

KL(q‖p) = −
∑

i

q(i) ln
(
q(i)
p(i)

)
(4.1)

Since the KL-divergence is not symmetric, i.e. KL(q‖p) 6= KL(p‖q) the arithmetic average of
both versions has been used.

The posterior distribution is the product of the prior-distribution with the likelihood of the
current dataset (modeled as a multinomial distribution). Since the observation-data is mod-
eled with a multinomial distribution and the prior is the conjugate Dirichlet distribtuion, the
postrerior is a Dirichlet distribution as well. Let the parameters of the new data be mj and the
parameters of the Dirichlet prior be αk. The resulting posterior for a specific action an would
then be a Dirichlet distribution with the sum of the multinomial- and the prior-parameters:
Dir(mj,n + αk,n).

In the case of a Dirichlet-mixture prior, all mixture components need to be incorporated into
the prior. This is done by using the corresponding responsibilities qj(k). In order to use the
posterior for planning, the expected value of the posterior with respect to a particular position-
change ∆pl needs to be computed. The expectation of a Dirichlet distribution Dir(α) with
respect to the i-th parameter is given by αi

α0
, where α0 is the sum over all elements of α.

The posterior-probability of ending up with a position-change ∆pl when taking action an, given
the priors α and the hyper-priors κ as well as the observations of a single dataset Dj is given
by:

P (∆pl|an,Dj ,α1:K ,κ) =
K∑

k=1

qj(k)E∆pl
{Dir(αk,n + mj,n)} =

K∑
k=1

qj(k)
αk,nl +mj,nl

α0k,n +Rj,n
, (4.2)

where α0k,n is defined in (3.18) and Rj,n is defined in (3.17). To show the evolution of the
KL-divergence, a new value is computed after each step of an episode.

You can see the results Figure 4.1 and Figure 4.2, which show the evolution of the KL-divergence
over the first steps of a novel episode using different numbers of mixture components. The true
transition distribution of the new episode has been estimated by simply using a large number
of steps/data-points. To have more reliable estimates of the KL-evolution, the plots have been
obtained by averaging over 10 episodes. Each episode was created with a random angle for
the rotation distortion and all models (with different mixture component counts) were tested
against the same set of episodes.

Figure 4.1 shows the evolution of the Kullback-Leibler divergence over the first 1500 steps of a
new episode as well as the first 50 steps, as they are of special interest for fast learning. For
the initial learning stage, 60 datasets with random angles were used. In this first experiment
the action set was chosen to be particularly small - there are only two possible actions: (−4, 4)

42

4.1 Basic task

and (4,−4). This should simplify the overall learning problem and it significantly reduces
computational efforts. The novel episodes, used for KL-comparison, were created with the same
action-set and 10000 steps for estimating the true transition-distributions for each episode were
used. The results were finally averaged over 10 trials.

The results in Figure 4.1 show that the KL-divergence decreases rapidly, when using a model
with a high number of mixture components. This suggests that a model with a low number of
mixture components will start to average over a broad range of angles for the rotation-distortion,
thus is not capable of correctly capturing the structure of the task. However, compared to the
plots for data-only (without using the priors of the model) even a single Dirichlet prior will
lead to a better KL-divergence. On a closer look, this is not very surprising since the data-only
model simply lacks observations. Especially in the early phase of an episode, the data-only
distribution still contains zero-probability values for many transitions that will actually occur
(i.e. have a nonzero value in the true distribution). The models using a prior have compressed
all transitions that they experienced in the learning stage into the prior. Thus a model even with
a single mixture component has already nonzero transition probabilities for many transitions
that occur in the true distribution. On the other hand, it would also have nonzero probabilities
for transitions that will have zero-values in the true distributions, because the single mixture
component model has averaged over many different rotation angles. But the latter does not have
such a significant impact on the KL-divergence as the absence of transitions for the data-only
model.

(a) (b)

Figure 4.1: KL-divergence analysis for small action-set - Evolution of the KL-divergence for dif-
ferent mixture-component counts. (a) shows the evolution for the first 1500 steps - (b) shows the
first 50 steps in detail. If the number of mixture components is large enough, the KL-divergence
decreases very rapidly. Both plots also show the KL-divergence for a model without any priors
(data-only) which requires many steps to to reach small values.

43

4 Results

Figure 4.2 shows the results of the same analysis, but this time with a large action-set (any
action within the limits of (−4, 4)). Compared to Figure 4.1 the overall convergence towards the
true distribution takes more steps (notice that the plot now shows the first 10000 steps). Also
the behavior within the first 50 episodes looks less smooth. Both effects are results of the larger
action-set - it now takes a lot more steps to actually execute the same action multiple times
(compared to having only two actions) and there are some actions with a certain ambiguity - e.g.
the action (0, 0) will have the same transition-distribution under all rotation-angles. But the
qualitative results remain the same: the hierarchical model significantly decreases the number
of steps required for a “good” posterior distribution. The effect becomes more prominent for a
larger the number of mixture components - however, a certain baseline of deviation from the
true distribution seems to remain. This is also a result of the large action-set: the learned
priors do not have the exact same distribution as the true distribution of the novel data; which
leads to a nonzero KL-divergence. With a very large number of steps, the posterior should be
mainly influenced by the data and the effects of the prior should more or less vanish - using the
described action-set, this takes (a lot) more than 10000 steps.

For the learning stage, 50 datasets with random angles and for estimating the true distribution
episodes with 250000 steps were used. As in the previous figure, the results were averaged
over 10 trials. The large number of steps for the learning-sets is required to ensure that the
transition distributions of the learning-episodes are close to the corresponding true distributions.
Otherwise the model would simply learn from the wrong distributions.

The key result of this section is the demonstration of fast learning when using the learned
priors of the hierarchical model. If the model has enough mixture components and a sufficient
ammount of training-data and thus is able to capture the structure of the task, only very few

(a) (b)

Figure 4.2: KL-divergence analysis for full action-set - Evolution of the KL-divergence for differ-
ent mixture-component counts using an action set with all possible values between -4 and 4 (on
each axis). (a) shows the evolution for the first 10000 steps - (b) shows the first 50 steps in detail.

44

4.1 Basic task

steps are necessary to obtain a posterior distribution that is very close to the true distribution
of the data. Compared with using the observation-data only (without the learned priors) the
number of steps for having a “useful” posterior, e.g. for planning, is significantly reduced.

4.1.2 Learned priors

To gain some more insight on how the structure is extracted by the hierarchical model, a closer
look on the learned prior-distributions might help. Actually, the plots in Figure 4.3, Figure
4.4 and Figure 4.6 show the hyper-parameters α of the Dirichlet mixture components. These
parameters can also be interpreted as virtual observations (i.e. observations that represent the
prior belief). For a single dataset, these parameters should have the same (distribution-) shape
as the corresponding multinomial-parameters of the dataset. For several datasets, the shape
should resemble the “average” over all multinomials which are explained by that particular
mixture component.

Figure 4.3 shows the learned hyper-parameters of two different Dirichlet mixture components.
The shown parameters correspond to a single action (−4, 4). In this case 60 episodes with
random angles were used for the learning stage. The total number of mixture components
was chosen to be six - which leads to a clustering of the angles of rotation-distortions into
six clusters. The components have been mapped onto a 2D-grid that matches the x- and y-
components of the corresponding velocity. Compare these results with the parameters of the
multinomial distributions (of the data) - see 3.2.1.

(a) (b)

Figure 4.3: Learned Dirichlet hyper-parameters - 6 mixture components - (a) shows the results
for a mixture component that has its cluster-center at about 60°. (b) shows a mixture component
with a center at 287°. The clusters are quite well shaped and do not seem to show large averaging
effects - the results of the KL-divergence analysis (4.1.1) show that 6 mixture components are
probably not enough and that there are still some slight averaging effects.

45

4 Results

In Figure 4.4 you can see the results for a model that uses only two mixture components -
in this case, significant averaging effects over a subregime of the structure are visible - also
notice the magnitudes of the values on the z-axis, which are now much smaller (this could be
interpreted as a higher degree of uncertainty). Of course this is an extreme example to show
the effects, because two mixture components are obviously not enough to capture the structure
of rotation-distortions over the whole range of angles between zero and 360 degrees.

Figre 4.5 illustrates the evolution of the responsibilities of the mixture components. The re-
sponsibility is a measure of how likely the current dataset has been generated from a particular
mixture component. 4.5a shows the evoultion for the model with six mixture components (see
4.3 for illustrations of the learned Dirichlet hyper-parameters α). After the first step, the re-
sponsibilities are not very distinct and the wrong mixture component actually gets the highest
responsibility. But after only four steps, the correct mixture component gets (almost) full re-
sponsibility. In 4.5b the responsibilities are correct after the first step already - however there
are only two mixture components and as long as the angle of the new dataset does not lie
directly between the two clusters, assigning the correct responsibility is not too brittle.

This section, as well as the previous section, emphasizes the dependency on the number of
mixture components - if there are too few components, the model is not able to correctly capture
the structure of the task or in other words: the extracted structure is not representative for the
given data. Too many components, on the other hand, will lead to larger computational efforts
as well as (slight) overfitting effects. The choice of the number of mixture components is not
obvious, however the results suggest that eight to 20 components are a reasonable choice.

(a) (b)

Figure 4.4: Learned Dirichlet hyper-parameters - 2 mixture components. Strong averaging ef-
fects are visible - the learned priors show a quite different distribution-shape, compared to the
multinomial parameters of the observations.

46

4.1 Basic task

(a) (b)

Figure 4.5: Evolution of responsibilities - (a): Evolution for the model with six mixture com-
ponents. After the fourth step mixture component 1 (cluster 1) gets more or less the full respon-
sibility, which is correct in this case. (b): Responsibilities for the model with two mixture com-
ponents. Cluster 1 gets (more or less) full responsibility after the first step already. Despite the
averaging effects caused by too few mixture components, the responsibilities are correct.

4.1.3 Posterior distribution

Figure 4.6 illustrates the evolution of the posterior (transition) distribution over the first
steps of a new episode. More precisely the figure shows the hyper-parameters of the posterior
distribution for a single action, projected onto a 2D grid that represents the corresponding
velocity-changes. The initial posterior, before performing a single step, is almost uniform
(the central velocities have a very small probability since the action is (−4, 4)). Initially, the
responsibilities of the mixture components for the novel dataset are unclear (i.e. the rotation-
cluster is unknown) and therefore all mixture components are more or less equally probable
which results in an almost uniform posterior. After a few steps the responsibilities get more
and more distinct, also leading to a more distinct posterior-distribution.

Figure 4.7 shows another example where 12 mixture components were used for the model.
Again, the initial posterior (without any observations) reflects the uncertainty of the rotation
angle of the new episode (Figure 4.7a). After the first step the clusters 6 and 8 seem to be
most likely to have created the data for the new episode (see evolution of responsibilities in
Figure 4.7d and the corresponding posterior in 4.7b). After three steps, cluster 11 has the
highest responsibility, which is in this case correct since the angle of cluster 11 is closest to
the angle of the new episode. But cluster 8 still has a responsibility of about 0.3 which can
also be seen in the relatively “broad” posterior in Figure 4.7c. The initial responsibilities as
well as the posteriors are based on very few observaitons. If these observations happen to be
“quite off” the mean-rotation angle (remember that the actually taken velocity is drawn from a
normal distribution around the mean rotation-angle), the wrong cluster might get the highest
responsibility.

47

4 Results

(a) (b)

(c) (d)

Figure 4.6: Evolution of the posterior distribution - (a) shows the initial posterior before taking
a single step, (b) and (c) show the posterior after 6 and 9 steps respectively and (d) depicts the
corresponding prior-component (with the highest responsibility).

48

4.1 Basic task

(a) (b)

(c) (d)

Figure 4.7: Evolution of the posterior (12 mixture components) - (a) shows the initial poste-
rior before taking a single step, (b) illustrates the posterior after 1 step, with the wrong mixture
components having a high responsibility. (c): Posterior after 3 steps, where the responsibility of
cluster 11 is about 0.7 but cluster 8 also has a responsibility of about 0.3, resulting in a “broad”
posterior. (d) depicts the corresponding evolution of the responsibilities.

49

4 Results

Figure 4.8 shows the learned Dirichlet parameters for cluster 11 and 8 (compare them to the
posteriors in Figure 4.7). Figure 4.9 illustrates the significant difference between the true
distribution of the new dataset (Figure 4.9a) and the early distributions that are based on very
few samples of the true distribution (Figure 4.9b). Notice how the ovservation data even after
50 steps is still quite sparse and does not have a similar shape to the true distribution - e.g. the
“outliers” light blue at ∆y = −2. Under this considerations it is even more remarkable how
fast the responsibilities converge to the correct values (usually within the first five samples).
The posterior in that early stage is then almost entirely based on the learned priors. After 50
steps the impact of the observation data on the posterior is already significant - see Figure 4.9c.
However, in the experiments shown in the next section (Sec. 4.2), the agent usually performs
between 15 to 25 steps to reach the goal position, i.e. its navigation strongly depends on the
learned priors and the responsibilities, which in turn are computed from the observation data.

(a) (b)

Figure 4.8: Dirichlet parameters (12 mixture components) - (a): Learned parameters for mix-
ture component 11 (of 12). This mixture component will get the main-responsibility for the new
dataset after four steps - see also Figure 4.7d. (b): Parameters for mixture component 8, which
has a high responsibility after the first step.

50

4.2 Advanced task

(a) (b)

(c)

Figure 4.9: Multinomial parameters (12 mixture components) - (a): True multinomial pa-
rameters of the novel dataset. (b): Multinomial parameters after 50 steps - the responsibility-
computation as well as the posterior are based on this distribution! (c): Corresponding poste-
rior after 50 steps - the impact of the prior (Fig. 4.8a) is decreasing whereas the observation data
(Fig. 4.9b) is starting to reflect in the posterior.

4.2 Advanced task

A description of the advanced task setup can be found in 3.4. Due to accelerations as actions,
the corresponding planning problem becomes non-trivial and the simulation environment now
actually consits of a gridworld where an agent tries to reach a certain goal position.

As in the previous task, a number of generated episodes is the basis for extracting the task
structure (by fitting the model to the data, using EM). Afterwards a new episode is generated,
with a novel angle for the rotation-distortion. The learned priors and the new data are then

51

4 Results

used to compute a posterior for the actually taken velocity difference, given the acceleration-
command. The posterior-probability of ending up at a particular velocity change v′ − v = ∆vl

when taking action an, given the priors α and the hyper-priors κ as well as the observations of
a single dataset Dj is given by:

P (v′ − v|a) = P (∆vl|an,Dj ,α,κ) =
K∑

k=1

qj(k)E {Dir(αk,n + mj,n)} =
K∑

k=1

qj(k)
αk,nl +mj,nl

α0k,n +Rj,n
,

(4.3)
where α0k,n is defined in (3.18) and Rj,n is defined in (3.17).

The posterior and the transition-model finally form the state-transition-distribution (see Equa-
tion (3.25)), which is required for the planning-algorithm (value-iteration). Note that the
posterior and thus the transition-distribution needs to be recomputed after every step.

A variation to the original task is the introduction of delayed feedback. In this setting,
the likelihood of the data is updated with a certain delay, e.g. 3 steps. That means that
the posterior, the responsibilities as well as the state-transition-distribution will be updated
with the same delay as well. This behavior crudely resembles the concept of feedforward-
vs. feedback-control which can be observed in biological motor control. In the first moments
of sensorimotor control, the sensory system cannot provide any feedback (because it is still
processing/propagating information); after a certain delay the feedback is used to adapt the
movement accordingly - however the feedback will always have a certain delay. See the results
in [2] of Braun et. al. for an illustration of this effect on a similar task with human test-
subjects. Notice however, that the simulated robotic agent will get an immediate feedback of
its new position on the grid-world (which is required by value iteration). Only the transition-
distribution and all quantities based on it are updated with a delay. Thus the problem-setting
concerned in this thesis can not be regarded as pure feedforward.

4.2.1 Experimental setup

The following results show illustrations for the movement of the agent in a simulated gridworld
under varying task settings. If not stated otherwise the 70 datasets used for the initial learning
stage were generated with random angles for the rotation-distortion, in the range of zero to 360
degrees. To introduce a certain bias towards the 0°-angle, more datasets were generated, using
this (mean-) value with a variance of about 5.5°. This bias is naturally motivated and reflects
a prior belief towards undistorted movements. Furthermore, it is no longer necessary to have a
non-deterministic action selection (see A.2.2), since the bias will ensure that one certain action
is expected to lead to a higher cumulative reward.

The gridworld has a size of 30x30 cells; possible velocities are [−3,−2,−1, 0, 1, 2, 3] for each
axis and possible accelerations are [−2,−1, 0, 1, 2] for each axis, resulting in 302 · 72 = 44100
different states and 52 = 25 different actions. In the planning stage value iteration needs to
consider every possible action for every possible state, leading to 44100 · 25 = 1102500 different
state-action pairs. . In the worst case this requires at least two steps to decelerate to zero or
change direction.

52

4.2 Advanced task

Heuristic value iteration

In order to be able to gain meaningful results, it is not sufficient to simply investigate single
trajectories of the agent - eventhough the agent’s commands are deterministic, the correspond-
ing actions as well as the movement on the gridworld are not. It is therefore required to derive
results that arise from many trajectories. On one hand this will be mean-speed profiles as well
as the mean-distance to the target, where the mean is taken over all trajectories of a single
trial. On the other hand, the plots in the following sections will show the individual trajecto-
ries, plotted into an occupation-probability map for each cell of the gridworld. The map gives
a measure on how often the agent has visited a certain grid-cell during the whole trial (i.e. the
rollout of several trajectories).

The computational demands for the given setup are quite high. The rollout of several trajec-
tories is problematic and will lead to simulation-runtimes on the order of days - mainly due to
value iteration (needs to be performed after every single step of every trajectory). To overcome
this problem, a heuristic version of planning with value iteration is used: instead of performing
a value iteration step after every step of the agent (which is required because the posterior
changes due to the new observation), value iteration is performed only once for every mixture
component. This corresponds to “computing a plan for every learned rotation-cluster”. Ac-
cording to the current observations, the plan from the mixture component with the highest
responsibility is selected and used to plan the subsequent step. In other words: Initially, a set
of plans is computed and based on the current observations one of these plans is used to select
the action for the next step. In this case, value iteration is based purely on the prior-knowledge
and the posterior is not used for planning. Instead the observations are used to compute the
responsibilities of the mixture-components for the current rollout.

On a first glance, this might seem like a severe simplification. But during the first, say 20 to 30,
steps the observation data has very little impact on the posterior - in fact, it is almost similar
to the corresponding prior. The reason why the KL-divergence between the posterior and the
true distribution decreases rapidly during the first steps is, that the responsibilities of the
mixture-components converge towards “good” values - i.e. one mixture component gets a very
high (close to one) responsibility (whereas the initial responsibilities are equally distributed
along all components; with a bias for the zero-degree component). Depending on the number of
velocities and actions, it probably takes more than 100 steps for the observation-data to have a
significant impact on the posterior - during the first steps, the priors dominate the posterior.

Therefore it is valid to use the heuristic value iteration - in fact, experiments with single
trajectories show that there is almost no difference between the two versions as far as the
qualities of the resulting trajectories are concerned. As far as the computational demand is
regarded, the heuristic version leads to major improvements: if the value iteration plans have
been computed for every mixture component (once), they can be used to perform trials with
dozens of trajectories in a few minutes. The (small) error introduced by not using the true
posterior is significantly outweighted by the ability to perform experiments with dozens of
rollouts and to draw statistically “stable” results from them (by using averaging measures).

53

4 Results

4.2.2 Trajectories under different rotation-distortions

Figure 4.10 shows the results of a trial with 50 rollouts. The angle of the rotation-distortion has
been set to 90° and the feedback delay has been chosen to be three steps. In the occupancy map,
you can see the 90° distortion with the naked eye - this is due to the initial bias of the mixture
component for zero degrees. Without any feedback, the agent assumes a rotation distortion of
0° and executes the corresponding actions - therefore the true angle of the rotation-distortion
becomes visible.

Figure 4.10: Trajectories for 90° rotation-distortion - trajectories (light gray) and occupancy
map in the top-left plot. Initial agent state in red and goal state in green - final position of agent
given by blue diamond. Mean speed of the agent in the bottom-left and mean target distance in
the top-right plot. Mean accelerations in the center-right plot (y-axis) and bottom-right plot (x-
axis) - notice that there is a rotation of 90° between the acceleration axes and the gridworld/ve-
locity axes. The rotation distortion of 90° can be seen with the naked eye, as well as the feedback
delay of three steps (see speed profile plot).

Also notice the mean speed profile in 4.10 - after the feedback delay of three steps, the agent

54

4.2 Advanced task

“realizes” the rotation distortion and starts decelerating, which takes two subsequent actions,
and then starts going towards the correct direction. To be more precise: the observation data is
updated with a delay of three steps, which means that the responsibility for the correct cluster
will become significant only after these three steps. Compare this speed profile with the results
of Braun et. al. (see Sec. 2.1.2) - who also show two significant peaks in the recorded speed
profiles, denoting the feedforward- and feedback-phase of human visuomotor control.

With the defined transition-model it is actually “quite hard” for the agent to reach the goal
state and stay there, because there is a quite high chance of dropping out of the goal state when
decelerating in it. This can lead to an oscillatory movement around the goal state - at least for
a few steps. However, when using a different transition model, a different time step or simply
a larger action-set this problem vanishes.

Figure 4.11 illustrates this “oscillatory” effect - it has been generated, using a rotation-distortion
angle of 240° and a feedback delay of two steps. The model, in this case, uses seven mixture
components and it seems as if the component responsible for 240° is still a bit too coarse. Due
to the small number of mixture components, some averaging effects are still observable and
planning becomes brittle when using these priors - especially when trying to decelerate into
the goal-state and stay there. The agent often breaks too early or “overshoots” the goal-state,
which can also be seen by the range of the occupancy map - eventhough only 50 trajectories
were used, there are cells that have been visited a lot more often, especially the ones directly
adjacent to the goal as well as the goal-position itself. Also, the number of steps (on the x-axis
of the two bottom plots) is a lot higher than in the previous case. A sufficient number of
mixture components avoids such problems to a large extent.

55

4 Results

Figure 4.11: Trajectories for 240° rotation-distortion - trajectories (light gray) and occupancy
map in the top-left plot. Initial agent state in red and goal state in green - final position of agent
given by blue diamond. Mean speed profile: bottom-left and mean target distance: top-right plot.
Acceleration profiles in the center-right (y-axis) and bottom-right plot (x-axis). Rotation distor-
tion of 240° between the acceleration axes and the gridworld/velocity axes. The model was fitted
to data, using seven mixture components - which is not sufficient and averaging-effects are still
visible. The mixture-component responsible for the 240° is still too coarse and which leads to a
“suboptimal plan”. The effect is particularly severe around the goal-state.

4.2.3 Trajectories for various feedback delays

Figure 4.12 illustrates the agent’s trajectories for a feedback delays of two steps, whereas Figure
4.13 shows the trajectories with no delay (zero steps). The rotation-angle for both trials was
chosen to be 90°, which allows for comparison with Figure 4.10.

The main-result of this section is that the variation of the feedback delay leads to the expected
behavior in the agent’s trajectory, i.e. the agent starts off into the wrong direction and then
“realizes” its mistake with a certain delay and then compensates the rotation distortion. The

56

4.2 Advanced task

Figure 4.12: Trajectories for a feedback delay of two steps. Initial agent state in red and goal
state in green - final position of agent given by blue diamond. 90° rotation distortion between
acceleration and velocity.

larger the feedback deleay, the longer the it takes for the agent to start compensating the rotaion.
While this might not provide large novel insights, it certainly confirms expected qualities of the
model or rather the methodology. It is worth noticing that the number of feedback delay steps
directly corresponds to the first local minimum in the mean speed profiles (with an additional
two steps for decelerating). The experiment with no feedback delay (Fig. 4.13) shows that the
mean target distance is (almost) immediately decreased and the corresponding speed profile
does not disply the significant twin-peaks of feedforward- vs. feedback-control. The speed
profile in Figure 4.12 (with two steps of feedback delay) shows a plateau rather than a second
peak, this is due to the maximum velocity of 3 units (the reason why the initial peak is higher is
that the velocity during that timestep was saturated on both axes, while at the plateau-phase
it is zero on the y-axis).

57

4 Results

Figure 4.13: Trajectories with no feedback delay. Initial agent state in red and goal state in
green - final position of agent given by blue diamond. 90° rotation distortion between acceleration
and velocity.

4.2.4 Trajectories with suboptimal action-selection

Under certain circumstances, it might occur that the learned priors all have exactly the same
weight, i.e. they all are responsible for the same number of mixture components. E.g. when
using only four angles (0°, 90°, 180°, 270°) for generating the learning sets. If the agent further
has an unfavorable initial position, it might be the “best” action to simply remain in this
position (by applying an acceleration of (0,0)). Because initially there is no observation data,
the responsibilities of all mixture components would have the exact same value. A bad choice
of action could therefore move the agent further away from the goal-state, resulting in a penalty
(increased negative reward). However, taking action (0,0) does not allow the agent to infer the
rotation-distortion, since this action is ambiguous for all rotation-angles (“By not moving at
all, how could the agent infer the rotation-angle?”). It might therefore be desirable to have
a non-deterministic selection rule for taking suboptimal actions ”once in a while“. The two

58

4.2 Advanced task

options implemented, to achieve such an action selection mechanism are ε-greedy and softmax
action selection See the appendix A.2.2 for more details.

The following results show the effects of different temperatures for the softmax action-selection
mechanism exemplarily on two trials - in Figure 4.14 the softmax-temperature was set to 0.0002
(low temperature), whereas Figure 4.15 presents the results using a temperature of 0.001 (high
temperature).

Figure 4.14: Trajectories with softmax action-selection - 90° rotation distortion, three steps
feedback delay. Initial agent state in red and goal state in green - final position of agent given
by blue diamond. Softmax temperature was set to 0.0002

Notice that these results are illustrative demonstrations - the implementation with the heuristic
value iteration as well as the (naturally inspired) bias in the priors towards zero-degree distor-
tions do not require such an ”explorative“ action-selection strategy. Nonetheless, the results
also underline the robustness of the implemented system - eventhough the action-selection is far
from optimal, the mean-speed profile as well as the mean-target distance is not severely worse

59

4 Results

Figure 4.15: Trajectories with softmax action-selection - 90° rotation distortion, three steps
feedback delay. Initial agent state in red and goal state in green - final position of agent given
by blue diamond. Softmax temperature was set to 0.001

than in the deterministic-action-selection case (Figure 4.10). Also the plots help in understand-
ing the difference between the movement-noise (the application of acceleration-commands as
well as the movement within the gridworld are noisy) and differences in the trajectories caused
by suboptimal actions.

ε-greedy action selection can be used to produce similar results - however it is hard to compare
both methods against each other or to gain any quantitative results from the simulations. Since
the plots look quite similar from a qualitative point of view - they have been ommitted. From an
implementational point of view, the theory can be confirmed: Specifying the ε-parameter was
simple and intuitive (percentage of random actions), while the selection of a ”good“ softmax-
temperature was more or less an empiric process which led to satisfying results for the given
problem-setup but fails for other problem-tasks (with smaller/larger action- or state-sets).

60

4.2 Advanced task

4.2.5 Illustrations of the value function

The value function provides a measure on the expected return (expected cumulative reward)
for every state within the statespace. Its shape strongly depends on the reward-function (see
3.4.2). In case of a discrete setting, the value function is usually represented in a tabular form.
The result of value iteration is the action-value function on one hand (which indicates the
expected return of a state when taking a certain action), as well as the state-value function, or
simply value function, on the other hand. The value function consits of the expected reward
when always taking the ”best“ action (i.e. with the highest action-value) - thus the state-value
function is the maximum of the action-value function for every state in statespace.

To get a more intuitive insight, consider Figure 4.16: it shows a subset of the learned value
function. The statespace is formed by all possible gridworld-positions and all possible velocities.
Figure 4.16 shows the state values for all positions but at a single velocity (in this case (0,0)).
The values have been mapped onto the corresponding gridworld-positions. It is easy to see that
the function has a global maximum at the goal state (to generate these plots the goal been set
to (15,20)) and the penalty increases with the distance from the goal state, as expected (see
Eq. (3.26) for the definition of the reward function).

Figure 4.17 illustrates the subset of the value function for all states with velocity (−3, − 3).
Compared to Figure 4.16, bottom-left area of the gridworld now has a significantly decreased
expected return (notice the magnitude on the z-axis, which has almost doubled). On the other
hand, the very upper-right area has an increased expected return. This is correct, since velocity
(−3, − 3) will lead towards the goal-position, if the agent is in the upper-right corner of the

Figure 4.16: Value function for velocity (0,0)

61

4 Results

gridworld, whereas in the bottom-left area, it will drive the agent further away from the goal.
The goal-position does not have a very distinctive maximum, but rather sits on a plateau - this
is also correct, as the velocity is too high to be able to ”halt“ within one timestep. Thus, other
states (at the same position with lower velocities) have a higher expected reward at the goal
position. Further, the value function has some sort of fold on the left and lower border - this is
the result of the convention, that the agent cannot leave the gridworld, but will simply bump
into walls without changing its velocity.

Other than that, it is hard to make further qualitative comments on the value function, since
the ”shape“ of the function does not significantly change - it is rather the numerical values
that are important. The same also applies to the action-value function, which would show the
”best“ action for the states of the problem task.

Figure 4.17: Value function for velocity (-3,-3)

4.3 Learning stage - parameter fitting

This section presents the results for the optimization of the hyper-prior parameters during
learning stage. The results have been acquired by performing (generalized) EM over the course
of 300 iterations, using a database of 50 datasets with random angles for the rotation-distortion.
The action-set contained discrete actions in the range of (−4,4) on each axis, the corresponding
state-set (velocity-changes or velocities, depending on the problem-task) allows discrete values
in the range of (−6,6).

The results in Figure 4.18 show the evolution of the hyper-parameters of both Beta-mixture
components (λ). All values have been initialized to 1, which corresponds to a uniform distri-

62

4.3 Learning stage - parameter fitting

bution. As the plots show, the parameters converge to certain values during the course of the
learning stage. Figure 4.19 illustrates the corresponding PDFs - for both mixture components
with the finally learned parameters. First of all, the PDFs are clearly different eventhough
both Beta-distributions were initialized with the same parameters. Furthermore, one of the
distributions seems to be responsible for values between 0.02 and 0.5. These values correspond
to the range of values for (significantly) non-zero, normalized α-values (see Sec. 3.3.1). The
other Beta-distribution has been fitted to very small values, close to being zero. Of course
these second distribution captures the α-values at the lower limit - which was 0.001 in this
case (since values very close to zero cause numerical problems). The striking result of these
plots is that the optimization has led to parameter-settings for two clearly different PDFs that
are intuitively reasonable - one mixture component has been fitted to ”explain“ the significant
non-zero values whereas the other component is responsible for the values at the lower-bound
(most of the α-values usually are at the lower bound - see Figure 4.3 for comparison).

Notice that one of the parameters (b2) is driven toward saturation. This is due to the optimiza-
tion trying to make the corresponding Beta-distribution even ”sharper“, in order to fit it even
more on the lower-bound α-values. However, too large values would cause numerical problems,
thus the hard limit at 2000.

Figure 4.18: Evolution of parameters of Beta-mixture - all values converge - the b2 parameter is
driven towards saturation.

63

4 Results

Figure 4.19: PDFs of Beta-mixture components - two clearly different distributions - explaining
the significant non-zero values of α as well as the values at the lower bound (0.001).

The weights of the Beta-mixture (x) are optimized as well and the results are shown in Figure
4.20. The weight-values converge nicely to about 0.64 and 0.36 which corresponds to the ratio
of significant non-zero values versus values at the lower bound of α.

Summing up, the optimization has started from initial values with the same parameters (uniform
distributions) and almost equal weights (0.5 with some slight noise). For all parameter-values
the optimization has converged and the resulting distributions explain both ”kinds“ of α-
values whereas the weight of the distributions corresponds to the ratio of these value-kinds.

Figure 4.20: Evolution of Beta-mixture weights - the weights correspond to the distribution of
significant non-zero values of α as versus values at the lower bound (0.001).

64

4.3 Learning stage - parameter fitting

Furthermore, the distributions and the weights are consistent with intuitive beliefs on the
shape and responsibility of the two distributions. While this might not be a pure justification
for introducing the hyper-prior distributions, they seem to be a reasonable extension to the basic
model that can be nicely fit to the observation data. They further introduce some advantages
(limitation of the α-values only needed at the lower bound) and are also defensible from a
mathematical point of view (extending the model towards a full Bayesian model). By using
these hyper-priors, the likelihood of test-datasets could be slightly increased, compared to the
basic model, however these results have to be interpreted with care since there are several other
factors (such as the limitation of certain values) involved as well.

Figure 4.21 shows the evolution of the Gaussian parameters during the course of EM-
iterations. Initially, the randomly initialized α-values are driven towards zero which also reflects
in the Gaussian parameters (maybe even the early parameter of the Beta-priors have an influ-
ence on that). But then they converge towards values that match learned α-priors. Degenerate
cases and outliers could be significantly reduced - the Gaussian prior drives the Dirichlet-priors
to be ”more similar“, which was the intended goal.

Figure 4.21: Evolution of parameters of the Gaussian-prior

As a final result, Figure 4.22 shows the evolution of the log-likelihood during the learning stage,
which is to be optimized by adapting the model parameters using expectation maximization.
As the plot illustrates, the log-likelihood converges nicely - for this particular case 300 iterations
are sufficient (this has also been validated with another measure, since the plot shows values
that range over a large magnitude and a simple ”optical inspection“ would not be sufficient).

The results in this section show an illustrative case - there are other cases where the fitting
of the hyper-prior parameters did not lead to such significant results. Especially with ”small“

65

4 Results

Figure 4.22: Convergence of log-likelihood during learning-stage.

problem-setups, consisting of rather small action- and state-sets the difference between the Beta-
mixtures is less distinctive. Most of these issues are related to the overall learning-parameters
such as learning-rates, step-sizes and limiting-values. With enough fine-tuning, the model could
probably perform a lot better in these suboptimal cases. However, this fine-tuning can turn
into an elaborate process and in many cases it is hard to quantitatively evaluate the impact of
certain measures - more on this in the next chapter.

66

5 Discussion and conclusions

This chapter reviews the initial problem statement and reflects on the results gained through the
experiments in the implemented simulation environment. The first section discusses the findings
in terms of the thesis’ objectives with a focus on the fast-learning aspects. The subsequent
section discusses known issues of the implementation as well as the approach in general.

The third section provides some inspiration on potential future research and the final section
of the chapter concludes the thesis in a brief summary.

5.1 Research objectives

The main-goal of this thesis, was to demonstrate the application of the proposed model for
the given problem task and show that the model is capable of extracting structural invariants
and exploit them to rapidly adapt to novel but similar task-instances. This goal has certainly
been reached and the results for the fast-learning capabilities are positive. Consider the KL-
divergence analysis (Sec. 4.1.1): compared to a model that does not use any priors, all models
with prior-knowledge are able to faster provide a posterior-distribution of “better quality”,
requiring less steps (or data-points/observations). This is still valid for models with very few
mixture components, eventhough they perform quite poor, compared to models with a sufficient
number of mixture components.

A more intuitive illustration of fast learning is shown with the results of the advanced task (see
Sec. 4.2.1). The (mean) trajectories of the agent under different rotation-distortions show that
the agent is capable of rapidly adapting to the new task (of course, depending on the number
of feedback-delay steps) and compensating for the rotation-distortion. If the model has gained
sufficient experience (in the learning-stage), it only takes a handfull of observations to adapt to
a novel task-instance.

The plots in Section 4.1.2 provide insight on the structure of the task and the way this struc-
ture is extracted and captured by the model. They show the learned parameters for some of
the Dirichlet-mixture components which can be interpreted as a measure for the probability
of ending up at a certain velocity/acceleration when executing the corresponding command.
The evolution of the posterior illustrates the evolution of the agent’s belief of this transition-
distribution measure over the first steps of a novel episode and nicely shows the initial uncer-
tainty that rapidly vanishes as the number of observations grows.

These results underline the model’s capability of extracting structural invariants of the problem
task and using them to rapidly adapt to new, but similar tasks, which was the main research-
interest of this thesis. From a conceptual point of view, the model is capable of “learning to
learn”, or to be more accurate learning to plan, and this capability is highlighted in contrast to
planning only, without using any prior-knowledge.

67

5 Discussion and conclusions

The research-scope of this thesis was to provide a “proof-of-concept” implementation of
the proposed model and and use it to reflect on the fast-learning capabilities. As such, the
implementation is not intended to be used for further developments (unlike a prototype-
implementation). However, some parts of the implemented simulations might be of interest
in future projects. Also, the implementation can be used for comparing it against different
methods.

5.2 Shortcomings and possible improvements

Besides the positive results in terms of applying the proposed approach to the problem task
and illustrating its fast-learning capabilities, there are a few issues that might be of concern -
most of them deal with implementation-details but some also regard conceptual aspects.

5.2.1 Expectation maximization

The expectation maximization algorithm is commonly used in various applications (pattern
recognition, data mining, machine learning) to determine the parameters of statistical models
in a maximum likelihood approach. It has been used for decades now (originally proposed in
[21]) and there are various kinds of implementations as well as extensions and methods based
on EM (see [29]). Another advantage is that it has solid theoretical foundations and at least
for analytically tractable models it will usually allow fast implementations (with comparatively
low computational demands).

However, there are a few shortcomings known to EM (or the maximum likelihood approach in
general). For a detailed discussion on this issue as well as illustrative examples see Bishop [14]
chap. 9 and 10. Especially in conjunction with mixture models, EM can become problematic.
On one hand it can easily lead to degenerate solutions, where a single mixture component
collapses onto a single data-point/observation (perhaps even an outlier). Once a mixture com-
ponent has lost the responsibility for a larger number of data-points and its parameters have
been fitted to a few data-points, it is almost impossible for EM to recover from such a sce-
nario (in some special cases this might actually be the desired behavior, though). Furthermore,
EM requires certain analytical calculations, which can quickly become infeasible or don’t yield
closed-form solutions for models of practical interest. Of course, there are workarounds but
they will increase the computational demands.

The framework of variational inference could overcome some of these inherent problems. For
mixture models, it is capable of inferring the number of required mixture components from
the given data (which is a great problem for EM, see 5.2.3). To be able to apply variational
inference, the parameters of the model (α-values) need to be absorbed into the set of latent
variables and prior-distributions for these parameters are needed. The extended model used
in this thesis would more or less fulfill such a requirement. The computational demands, for
applying variational inference should not be much higher, compared to EM. The reason why EM
was also used for the extended model is that it worked quite well (using the heuristic methods
such as copying degenerate mixture components, etc.) and the existing implementation for the
basic model could simply be extended. The implementation of a variational approach would

68

5.2 Shortcomings and possible improvements

have been more time-consuming and furthermore the method for fitting the model to the given
datasets is out of scope for this thesis.

5.2.2 Value iteration

Value iteration is a simple, yet powerful algorithm for solving the Bellman (optimality) equation.
As such, it seems perfectly suited for the planning problem in the given problem task. One
major drawback of value iteration is that it needs a full model of the environment - in this case
the full state-transition distribution (i.e. the probability of ending up at a certain position with a
certain velocity when being at another position with another velocity and taking a specific action
- unfortunately this quantity is needed for every possible combination of positions, velocities and
actions). As expected, the computational demand for the full transition distribution “explodes”
with the number of possible positions, velocities and actions. This is a well known issue of value
iteration and therefore it is only applicable for very small problem-sets. For practically more
relevant problems, there are a lot of other methods (quite a few of them are based on value
iteration). More details and further references on value iteration can be found in the appendix
A.2.

For the problems considered in this thesis, value iteration is still feasible within tolerable com-
putation times. Furthermore, value iteration is simple to implement and provides insights on
the transition distribution (which can be beneficial for debugging purposes). However, (by
far) the largest part of the computational demand of the current implementation arises from
using value iteration. As the selection of a planning algorithm is out of scope for this thesis
and the use of value iteration leads to tolerable simulation run-times, no alternative has been
implemented.

5.2.3 Number of mixture components

The number of Dirichlet mixture components directly determines the model’s expressiveness. In
the end, EM will use the model to cluster the given data-sets into sets with a similar transition-
distribution (which of course is governed by the angle of the rotation-distortion). The number
of these clusters is equal to the number of mixture components and it is not easy to intuitively
specify a reasonable number. As the results show, and as one would naturally expect, if the
number of mixture components is too small, strong averaging effects can be observed and the
learned priors only reflect the structure of the task in a very coarse way (see the results in
Sec. 4.1.2). But it is unclear if there will be strong overfitting effects for a too large number of
clusters and “how many is too many”?

If the number of angles for the generated datasets is known, the problem becomes trivial.
Especially at early stages of the experiments, it was desireable to have a small number of
possible angles (say four) and all datasets are generated with one of these angles plus some
small noise. In that case four mixture components will lead to very good solutions, whereas
five or more components will lead to degenerate cases and less than four components will cause
problems for some angles. At later stages of the experiments (where reasonable parameter
settings had been found) it was much more desireable to have datasets with angles out of the
whole range of zero to 360 degrees. Only that way, the structure extracting capabilities of the

69

5 Discussion and conclusions

model could truly be investigated. However, in such a case it is no longer obvious how many
mixture components would be required to extract the tasks’ structure while at the same time
avoiding strong overfitting effects.

Unfortunately, the EM algorithm makes the problem worse as too many mixture components
will lead to degenerate cases and overlapping clusters. The simulation results have shown that
(for the given problem parameters) a minimum number of about seven mixture components is
required for a “good” performance, whereas the performance will no longer significantly increase
when using more than 20 mixture components (but the computational demand does!). Therefore
selecting the number of mixture components in this particular case is not too problematic.
However this is a heuristic approach, instead of a general approach where the model would be
able to automatically determine the required number of mixture components.

To avoid this problem, Maass, Neumann, Rückert have proposed to possibly use a Chinese
Restaurant Process in order to determine the number of mixture components. Another solution
would be the use of variational inference which is inherently capable of inferring the number
of required mixture components from the data. But as already mentioned, the given problem
setup is not too sensitive as far as the number of mixture components is concerned and the
urgent necessity for automatically determining the number of mixture components was not
given.

Another, less severe problem is that the model is not capable of interpolating between mixture
components. By definition (through the introduction of the hidden binary z-variables) a data-
set has been created by a single mixture component. For the practical implementation this
results in a slightly higher number of required mixture components and suboptimal results if
the angle of a novel data-set lies exactly in-between the mean-angle of two cluster components.
The use a continuous hidden variable would be nice from a conceptual point of view - however
it is not straightforward and in this case the expected performance-increase is quite limited.

5.2.4 General aspects

On a first glance, the question whether the model is able to extract abstract knowledge, must be
answered with a clear “yes”. As the results show, the model is capable of extracting structural
invariants and use this prior knowledge to rapidly adapt to novel but similar tasks. The model
does not assume a rotation-distortion, yet it can nicely be used to compensate such a distortion.
The question that remains is, whether the model in conjunction with the used methodology
(EM) is able to truly “learn” to generalize?

Without question, the model is able to store knowledge on different layers of abstraction and
with the use of EM it does extract abstract, structural knowledge from the given datasets.
However, it only does so, due to a sophisticated design - it has been engineered to do exactly
what it does. One could argue that the model simply reflects the engineer’s assumptions on a
certain class of problem tasks. Of course these assumptions are quite general; on an abstract
level - yet the impression remains that the model has been “tailored” to be able to extract the
tasks’ structure. The implementation has also shown that there is quite some parameter-tuning
as well as some heuristics necessary in order to be able to produce “good” results - which is
undesirable for a system that should be able to easily generalize.

70

5.2 Shortcomings and possible improvements

Generalization is inherently hard in a discrete setting. As already mentioned in 4.1.1 the
(transition-) distributions used for learning simply require a large number of steps, otherwise
they would be different from the true, underlying distributions. When using such flawed distri-
butions for learning (i.e. fitting the model parameters) the results will be flawed as well because
the model learns from the wrong distributions. Generalization is “easier” in a continuous set-
ting since small changes in the arguments/parameters will usually result in small changes in
the corresponding functions/distributions. Furthermore a discrete setting inherently includes
discontinuities which are a severe problem for generalization.

A system that is truly capable of generalization would also need to be able to automatically
set up a corresponding model as well as the topology of such a model (e.g. the number of latent
variables, number of layers of abstraction, which layers get which (sensory) input, where does
the output come from, ...). These processes are more related to topological structure learning
(in terms of Bayesian models) and some research groups do not see a sharp distinction between
topological structure learning and structural learning (in the sense of extracting structural
invariants) - see [1] for examples and references to further work.

Consider the following example, taken from Gershman, Niv [1]: In a classical conditioning
experiment, a rat receives an electric shock whenever a tone is presented. Soon, the rat will
learn the causal relationship of tone and shock and will show reactions of fear when the tone is
presented - see 5.1a. This stage of the experiment is called acquisition phase and it is already
remarkable that the rat is able to quickly learn a causal relationship. In the second stage of
the experiment, the extinction phase, the tone is presented without the shock and after quite
a few observations, the rat will no longer show signs of fear when the tone is presented. In
a naive interpretation, one could argue that the causal relationship has been unlearned. But
with this explanation it is not possible to explain the third stage of the experiment, the renewal
phase. If tone and shock are again presented simultaneously, the rat will only need very few
observations to show the conditioned reactions again. It is therefore reasonable to suggest
that the rat has actually learned that there is a latent variable that governs the stage of the
task and that the simultaneity between tone and shock depends on this latent variable - see
5.1b. This interpretation is particularly interesting, because it claims that the rat was able to
learn an internal model of the conditioning experiment including a latent (thus unobservable)
variable. Learning such a model involved the “invention” of a latent variable, learning the
(causal) connectivity structure as well as learning which sensory input is relevant and which is
not. The approach used in this thesis is not capable of performing such learning tasks.

For a more complex conditioning-experiment with rats, see [30]. The paper presents results of
a study where rats where conditioned under different contexts. Furthermore, the study shows
that context-specificity of conditioning does only emerge in rats of a certain age, which suggests
that the ability for structural learning might evolve with age.

Concluding the model used in this thesis, as well as similar models, might be just a way to
express our current understanding of structural invariants in terms of a probabilistic model. In
that case the capacity of expressing generalization would still be done by the engineer (with
the model being one of his tools). But nonetheless, hierarchical Bayesian models could be one
essential building block of a generalizing system or at least help in further understanding the

71

5 Discussion and conclusions

(a) (b) (c)

Figure 5.1: Possible structures for conditioning experiment - (a): (simple) causal relationship
between the tone and shock. (b): tone and shock are governed by a latent variable y that corre-
sponds to the stage of the experiment (acquisition, extinction or renewal). (c): tone and shock are
each governed by independent random variables; in the given experiment these variables would be
highly correlated, thus not independent. Concept for figures has been taken from [1] - where the
full example is shown.

requirements and mechanisms of such a system. As far as technical applications are concerned,
hierarchical Bayesian models used for structural learning seem to have a lot of very promising
aspects to tackle cutting-edge problems in various domains.

5.3 Potential future research

The existing implementation has lead to promising results, that highlight the structural learning
capabilities of the proposed model. However, the model is discrete and thus only allows for
applications on discrete (or discretized) problems. This is a severe limitation - especially since
the current implementation will not scale very well to large state- and action-spaces. On the
other hand, the proposed approach is well-suited for applications on similar grid-world problems.
Various kinds of movement-distortions, like shearings, scalings or translations, in such a grid-
world can be compensated using the same approach as in this thesis - as long as the distortion
shows some kind of structural invariant. Maass, Neumann, Rückert have also proposed a
problem-task, where the grid-world contains obstacles with certain structural features (vertical
versus horizontal obstacles for instance). Considering these problems, large parts of this thesis
could potentially be used for such a problem-setting.

Generally speaking: any kind of problem-task where the state-transition distribution (of an
agent in a grid-world) shows certain structural invariants, could be suitable for applying the
methods presented in this thesis in order to learn the tasks’ structure. When pursuing such goals
it is reasonable and recommended by the author to work on the mentioned shortcomings (see
previous Section 5.2). Especially the use of value iteration introduces quite large computational
demands that could possibly be reduced significantly with alternative methods. But also the
selection of the number of mixture components could have more impact on other problems and
a system that is able to automatically infer the number of components from the observation
data might be (very) desirable. It could therefore be interesting to implement a variational
approach instead of using EM.

72

5.4 Concluding summary

The approach taken in this thesis could provide inspiration on solving more complex problems.
Imagine a wheeled robot, where one of the tires has a very low pressure, is damaged or perhaps
the wheel got stuck. Depending on the wheel configuration (number and position of driven
wheels versus passive wheels) this could easily lead to to a rotation-like movement distortion.
Even more striking are applications with aerial agents: side-winds could be modelled as a kind
of (translative) movement-distortion or a rudder that is not working properly will introduce
a rotation-distortion on the corresponding axis. Anyway, for the application in a real-world
(or close to real-world) scenario, a continuous model is required. Maass, Neumann, Rückert
have already proposed such a model and one of the first steps could be the evaluation of this
proposal on a more realistic problem-task.

As a long-term goal, potential research could be driven towards building truly generalizing
systems and how hierarchical Bayesian models could play a role in such systems. From a
neuroscientific perspective, biologically realistic models that are capable of structural learning
are very interesting and might help in further understanding learning processes. Of course,
both problems are topics of ongoing research and quite a number of groups are already working
on these issues. So this should rather be seen as related research, rather than potential future
research.

5.4 Concluding summary

Reviewing the initial problem of compensating a rotation-distortion on the movement of an
agent that tries to reach a certain goal-position, the results are absolutely positive. The pro-
posed model has proven to be able to extract the structure of the problem-task but also to
provide transferable knowledge that can be used for adapting to a novel but similar instance of
the task.

The main goal of this thesis was to demonstrate the model’s capabilities of structure learning
in terms of the given problem-task and provide a “proof-of-concept” implementation as well as
a simulation environment for evaluating the qualities of the model. This goal has been reached
with the implementation on one hand and with the results of the performed experiments in the
simulation environment on the other hand. The results show that the agent is able to rapidly
adapt to a new task by using the prior-knowledge provided by the hierarchical Bayesian model.
Further results compare this capability against a system that has no prior-knowledge and, as
expected, such a system performs worse for the given problem-setting. It was also possible to
gain some intuitive insight on how the model captures the structure of the task as well as the
evolution of the anticipated structure of a new task over the first time-steps. Finally the results
also highlight a few details of the process of fitting the model to given observations (using EM)
and the choice of the model parameters, such as the number of mixture components.

In the course of this thesis, some shortcomings of the approach have emerged (number of
required mixture components can not be inferred from the data, EM leads to local maxima and
potentially to degenerate cases). The implementation has a few known flaws that are either
tolerable or out of scope for this thesis (computational demand of value iteration, heuristics
in EM and value iteration). These issues could be the main-part of immediate future work.
However, the expected improvements have to be compared against the limits of the model and

73

5 Discussion and conclusions

it might be more beneficial for more realistic problems to use a different model that is capable of
handling continuous scenarios. In the long run, such a continuous model seems more promising
than a model that is inherently restricted to discrete problem-tasks.

Structural learning promises to solve some of the cutting-edge problems in machine learning or
at least provide some inspiration for novel methods. Furthermore, it might help in understand-
ing neurological learning processes. This thesis illustrates the potential benefits on a simple,
abstract task - especially the aspect of fast learning, i.e. the capability to rapidly adapt to a
novel but similar task using abstract prior-knowledge that has been gained from a number of
previous observations.

74

A Appendix

A.1 Details on M-step of basic model

Continuing from Equation (3.15), the gradient with respect to αk,nl needs to be computed:

∂

∂αk,nl

 N∑
j=1

qj(k)
|A|∑
n=1

lnW (αk,n + mj,n)− lnW (αk,n)

 , (A.1)

with the Dirichlet weighting function defined as (see also Sec. 3.2.2):

W (α) :=
Γ (α1) · · ·Γ (αK)

Γ (α0)
, (A.2)

and

α0 =
K∑

k=1

αk (A.3)

Using the logarithmic-gamma function Γln(x) := ln(Γ (x)), Eq. (A.1) can be rewritten as:

N∑
j=1

qj(k)
∂

∂αk,nl

|A|∑
n=1

[Γln(αk,n1 +mj,n1)+ · · ·+ Γln(αk,nL +mj,nL)− Γln(α0k,n +Rj,n)]−

−[Γln(αk,n1)− · · · − Γln(αk,nL) + Γln(α0k,n)],

(A.4)

with L := |∆P | and Rj,n defined as in Eq. (3.17). Since the optimization only considers a
single mixture component at a time (because it can be optimized separately), the derivative
can be “pulled into” the first sum.

Notice the difference between the indices of the (partial) derivative in non-italics and the indices
in italics. Further notice that the derivative simply vanishes if the indices (in italics and non-
italics) are different - only if they are exactly equal, the following derivative remains:

∇αk,nl =
N∑

j=1

qj(k) (ψ(αk,nl +mj,nl)− ψ(αk,nl) + ψ(α0k,n)− ψ(α0k,n +Rj,n)) , (A.5)

with psi being the digamma function which is the first-order derivative of the logarithmic gamma
function: ψ(x) := d

dxΓln(x).

75

A Appendix

A.2 Value iteration

The method of value iteration is, as the name suggests, based on the evaluation of value
functions, such as most reinforcement learning algorithms and even a wide range of other opti-
mization algorithms. Richard E. Bellman has contributed substantial groundwork for the field
of reinforcement learning - especially with the introduction of the Bellman optimality equation
and the method(s) of dynamic programming to solve such equations [31]. Value iteration also
arises from this work. A more recent discussion can be found in the standard textbook on
reinforcement learning by Sutton, Barto [32] (which also contains introductory chapters and
some background on dynamic programming and value iteration). The following introduction is
based on the textbook by Sutton, Barto as well as the survey by Kaelbling, Littman, Moore
[33].

A.2.1 Basics

There are basically two kinds of value functions:

State-value function: In very simple terms, this function provides a measure on “how good” it
is for the agent to be in a certain state. It does so by giving the expected return of a
state - which is the expected (cumulative/discounted) future reward. Approximations to
the state-value function are commonly used instead of a complete model of the agent’s
environment (prediction problems).

Action-value function: The action-value function also gives a measure on the expected return
of a certain state but with respect to a particular action for the immediate next step.
It is therefore commonly used for planning (control problems), because the action which
has the highest action-value for a certain state is the “best” action to take. In fact, the
state-value function can be derived from the action-value function by simply taking the
maximum action-value (of all actions) over every state.

The state-value function is defined as:

V π(s) = Eπ [Rt|st = s] = Eπ

[∞∑
k=0

γkrt+k+1|st = s

]
, (A.6)

where π denotes a policy π(s,a) which is used for action-selection. γ is a discount factor which
has the effect (if it is smaller than one) that the significance of rewards decays over time. t
denotes the current time-step, R stands for the return (cumulative discounted reward, rt is the
reward at time t and st represents the state at time t.

The action-value function has a similar definition:

Qπ(s,a) = Eπ [Rt|st = s, at = a] , (A.7)

with a or at denoting a specific action. The action-value function differs from the state-value
function only by the specification of a particular action for the immediate next step and then

76

A.2 Value iteration

following the policy π. By considering all possible actions and choosing the one with the highest
expected return, the state-value for the current state can be found:

V (s) := max
a

Q(s,a) (A.8)

With V ∗(s), denoting the optimal value-function (under an optimal policy π∗) the Bellman
equation leads to the following:

V ∗(s) = max
a

Qπ∗
(s,a) = max

a
E [rt+1 + γV ∗(st+1|st = s, at = a)] (A.9)

This means that the expected Return for the current state is computed by taking the maxi-
mum over all actions and for each action adding the corresponding (immediate) reward to the
expected future return (cumulative discounted reward). Value iteration is one way to solve
this recursive equation in a dynamic-programming fashion. It was derived by transforming
the equation from above into an iterative update rule. The value-iteration algorithm has the
following form:

Initialize V (s) arbitrarily
repeat

for all s ∈ S do
for all a ∈ A do
Q(s,a) := R(s,a) + γ

∑
s′∈S T (s,a,s′)V (s′)

end for
V (s) := maxaQ(s,a)

end for
until policy good enough

algorithm from [33].

T (s,a,s′) is the state-transition probability and it specifies the probability of ending up in state
s′ when currently being in state s and executing action a. This is usually understood as the full
model of the agent’s environment, since value iteration needs the full state-transition probability
for all possible combinations of s,a and s′. In a lot of realistic applications, the computation
of all these transition-probabilities is not possible or at least computationally demanding - it
is usually more desirable to have a planning algorithm that is able to deal with an incomplete
model of the environment or one that does not need such a model at all (see also [32]). For the
problems regarded in this thesis it is possible to compute the desired quantities, however they
introduce a non-neglectable computational-cost.

From the pseudo-code given above, it is easy to see that the computational demands of value-
iteration explode with an increasing size of the state-set S or the action-set A. Besides the full
model of the environment, this is the most severe problem with value iteration - for problem
tasks of practical interest it is almost never possible to run value iteration within tolerable
runtimes - in most real-world problems it is utterly impossible; especially when real-time plan-
ning is required. The problem tasks, handled in this thesis are already close to the border of

77

A Appendix

tolerable simulation runtimes and the largest part of the computational effort is necessary for
the value-iteration.

The great advantage of value iteration is that it has solid theoretical foundations as well as
convergence proofs (it is guaranteed to converge towards an optimal value-function which can be
used to derive an optimal policy - however this convergence is only guaranteed when approaching
infinity). The pseudo-code above states that the algorithm is iterated until the policy is “good
enough”. In a practical implementation this is usually interpreted the following way: if the
state-value function does no longer significantly change between two iterations (i.e. some error-
measure is below a certain ε), stop iterating. This is a somewhat crude approach, but it turned
out to be effective and sufficient for a lot of applications.

Many algorithms (in reinforcement learning) are based on the idea of value iteration but they
perform the same computations or approximations with less computational efforts - see Sutton,
Barto [32] for more on this.

A.2.2 Non-deterministic Action selection

Assuming that the action-value function has been computed - it can easily be used for planning
by simply taking the action that has the highest value for the current state. If the value function
does not change, this process is deterministic. In some scenarios it might be beneficial to have a
non-deterministic action selection mechanism. There are a quite a few methods in reinforcement
learning that do not have a full model of the environment and thus rely on a certain degree of
exploration - i.e. the agent has to “try” suboptimal actions because their current action-value
is just an estimate and if this estimate is based on very few samples, it might turn out that
the supposedly suboptimal action is better than expected (the problem is that the reward will
usually occur many steps after taking the action and somehow has to be assigned to all actions
that led towards it, which makes it hard to easily decide on the quality of a certain action).

Even for the case of value iteration (such as in this thesis) there are special cases that could lead
to certain problems. Imagine that the model has seen datasets with four different rotations (0°,
90°, 180°, 270°) and that the agent’s initial position is already close to the goal-position. Unless
the agent performs a step, it can not infer the rotation-angle of the new episode - the planning
algorithm (value-iteration) will then probably propose an acceleration of (0,0) because the risk
to move away from the goal position, thus receive a negative reward, is quite high. However,
the action (0,0) will not help determining the rotation-angle of the current episode, since it
does not (and cannot) contain any rotation-information. In fact, this particular action will
look very similar at all prior-mixture-components. All it would contain, is information on the
variance σ2 (see (3.25)). The agent would then simply remain at the initial position and always
choose action (0,0), because it has the highest action-value. In such a case it makes sense to
select a suboptimal action! There are two common ways to implement such an action-selection
behavior:

Softmax action-selection: Selects an action according to the expected reward based on a tem-
perature parameter. For high temperatures, all actions have nearly the same probability.
For lower temperatures, the action selection is based more and more on the expected
reward (i.e. two actions with an almost equal expected reward will still be selected with

78

A.3 Details on M-step of extended model

almost equal probability). Unfortunately, finding good values for the temperature param-
eter is not trivial. The advantage of softmax is that selecting the second-best action is
much more likely than, for example, the worst action.

ε-greedy action-selection: Actions are usually selected according to their expected reward but
with a small probability ε a random action is selected. It is generally easier and more
intuitive to choose a good ε-value. In difference to softmax, the random action selection is
not affected by the expected reward, which can be problematic if there is a large number
of quite “bad” actions.

A.3 Details on M-step of extended model

The goal of the M-step is the maximization of the expected value of the log-likelihood (of the
latent variable) - in this case with respect to the parameters of the Dirichlet-mixture (α). In
this case, each of the K mixture-components can be optimized separately. See Eq. (3.23) or
the corresponding Section 3.3.2 for more information.

The log-likelihood for the basic model has a very similar form - the results for the corresponding
M-step are still valid. For the extended model, there is an additional hyper-prior term for every
mixture component. This term needs to be taken into account as well when optimizing with
respect to α. The following derivation shows the steps to compute the gradient of P (αk|κ)
with respect to αk. For the full M-step, these results need to be added to the results of the
basic M-step (see Eq. (3.23)).

Taking the ln of the prior distribution P (αk|κ), given by equation (3.20), we get:

lnP (αk|κ) =
|A|∑
n=1

|∆P |∑
l=1

ln

(
B∑

b=1

Beta(µk,nl|λb)P (b|x)

)
+ ln (N (α0k,n|γ)) (A.10)

The gradient with respect to αk is:

∂

∂αk
lnP (αk|κ) =

|A|∑
n=1

|∆P |∑
l=1

1∑B
b=1 Beta(µk,nl|λb)P (b|x)

·

·
∂

∂αk,nl

(
B∑

b=1

Beta(µk,nl|λb)P (b|x)

)
︸ ︷︷ ︸

A)

+
∂

∂αk,nl
ln (N (α0k,n|γ))︸ ︷︷ ︸

B)

(A.11)

Notice that the indices of the derivative k,n,l (normal text) are not the same as the indices of
the sums k,n,l (in italics). They share the same range of values and, of course, the derivative
needs to be evaluated for every possible triple.

Still missing are the “inner derivations” A) and B). The second term - B) - is simply the
derivative of the ln of a Gaussian. Notice that α0k,n is the sum over all αk,nl (see Eq. (3.18)),

79

A Appendix

thus the derivative will vanish for all, except one term (given by the non-italics indices).

∂

∂αk,nl
ln (N (α0k,n|γ)) = − 1

σ2
0

(αk,nl − µ0) , (A.12)

with the parameter-vector γ = 〈µ0, σ0〉.

The derivative for A) has the following form:

∂

∂αk,nl

(
B∑

b=1

Beta(µk,nl|λb)P (b|x)

)
=

B∑
b=1

(
∂

∂αk,nl
Beta(µk,nl|λb)

∂µk,nl

∂αk,nl

)
P (b|x), (A.13)

where the derivative of the Beta-distribution is again a Beta-distribution with a new normal-
ization factor

∂

∂αk,nl
Beta(µk,nl| cb, db︸ ︷︷ ︸

λb

) =
(
cb − 1
µk,nl

− db − 1
1− µk,nl

)
Beta(µk,nl|cb, db)

∂µk,nl

∂αk,nl
(A.14)

using the parameter-vector λi = 〈ci, di〉 where ci,di are the parameters of a single Beta-
distribution.

The last missing part is the “inner, inner derivation”

∂µk,nl

∂αk,nl
=

∂

∂αk,nl

αk,nl

α0k,n
=

{
1

α0k,n
− αk,nl

α0k,n
if k=k, n=n, l=l

− αk,nl
α0k,n

otherwise
(A.15)

If the italics indices do not equal the normal indices, the element in the numerator can be
regarded as a constant and the derivative results from the term in the denominator α0k,n (the
sum over all αk,nl will also contain αk,nl). However if all indices are equal, the derivation-variable
appears both in the numerator as well as in the denominator.

80

Bibliography

[1] S. J. Gershman and Y. Niv, “Learning latent structure: carving nature at its joints.,”
Current Opinion in Neurobiology, vol. 20, no. 2, pp. 251–256, 2010.

[2] D. A. Braun, A. Aertsen, D. M. Wolpert, and C. Mehring, “Motor task variation induces
structural learning,” Current Biology, vol. 19, no. 4, pp. 352–357, 2009.

[3] D. A. Braun, C. Mehring, and D. M. Wolpert, “Structure learning in action.,” Behavioural
Brain Research, vol. 206, no. 2, pp. 157–165, 2010.

[4] K. J. Astrom and B. Wittenmark, Adaptive Control. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2nd ed., 1994.

[5] C. Kemp, A. Perfors, and J. B. Tenenbaum, “Learning domain structures,” Proceedings of
the 26th annual conference of the cognitive science society, p. 720–725, 2004.

[6] C. Kemp and J. B. Tenenbaum, “The discovery of structural form,” Proceedings of the
National Academy of Sciences, 2008.

[7] D. A. Braun, S. Waldert, A. Aertsen, D. M. Wolpert, and C. Mehring, “Structure learning
in a sensorimotor association task,” PLoS ONE, vol. 5, no. 1, p. 8, 2010.

[8] H. F. Harlow, “The formation of learning sets.,” Psychological Review, vol. 56, no. 1,
pp. 51–65, 1949.

[9] Z. Reznikova, Animal intelligence. From individual to social cognition, vol. 37. Cambridge
University Press, 2007.

[10] C. Kemp and J. Tenenbaum, “Structured statistical models of inductive reasoning,” Psy-
chological Review, vol. 116, no. 1, pp. 20 –58, 2009.

[11] E. J. A. Turnham, D. A. Braun, and D. M. Wolpert, “Inferring visuomotor priors for
sensorimotor learning,” PLoS Computational Biology, vol. 7, no. 3, p. 13, 2011.

[12] D. E. Acuna and P. Schrater, “Structure learning in human sequential decision-making,”
PLoS Computational Biology, vol. 6, no. 12, p. 12, 2010.

[13] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

[14] C. M. Bishop, Pattern Recognition and Machine Learning, vol. 4. Springer, 2006.

[15] D. Heckerman, “A tutorial on learning with bayesian networks,” Innovations in Bayesian
Networks, vol. 1995, no. November, p. 33–82, 1996.

[16] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519, 2001.

81

Bibliography

[17] C. Huang and A. Darwiche, “Inference in belief networks: A procedural guide,” Interna-
tional Journal of Approximate Reasoning, vol. 15, pp. 225–263, 1996.

[18] D. J. C. MacKay, “Introduction to Monte Carlo methods,” in Learning in Graphical Models
(M. I. Jordan, ed.), NATO Science Series, pp. 175–204, Kluwer, 1998.

[19] W. L. Buntine, “Operations for learning with graphical models,” Journal of Artificial
Intelligence Research, vol. 2, pp. 159–225, Dec. 1994.

[20] M. I. Jordan, “An introduction to variational methods for graphical models,” in Machine
Learning, pp. 183–233, MIT Press, 1999.

[21] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data
via the em algorithm,” Journal of the Royal Statistical Society Series B Methodological,
vol. 39, no. 1, pp. 1–38, 1977.

[22] V. K. Mansinghka, C. Kemp, J. B. Tenenbaum, and T. L. Griffiths, “Structured priors for
structure learning,” Methods, vol. 136, no. 11, pp. 3802–3821, 2006.

[23] N. Friedman, The Bayesian Structural EM Algorithm, vol. 98, pp. 129–138. Citeseer, 1998.

[24] J. Pena, “An improved bayesian structural em algorithm for learning bayesian networks
for clustering,” Pattern Recognition Letters, vol. 21, no. 8, pp. 779–786, 2000.

[25] G. Peng and L. Naixiang, An EM-MCMC algorithm for Bayesian structure learning. IEEE,
2009.

[26] C. Kemp, A. Perfors, and J. B. Tenenbaum, “Learning overhypotheses with hierarchical
bayesian models,” Developmental Science, vol. 10, no. 3, pp. 307–321, 2007.

[27] S. Borman, “The expectation maximization algorithm a short tutorial,” Tech. Rep. x,
2009.

[28] G. McLachlan and D. Peel, Finite Mixture Models, vol. 44. Wiley-Interscience, 2000.

[29] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, vol. 274. Wiley,
1997.

[30] C. S. L. Yap and R. Richardson, “Extinction in the developing rat: an examination of
renewal effects.,” Developmental Psychobiology, vol. 49, no. 6, pp. 565–575, 2007.

[31] R. Bellman, Dynamic Programming, vol. 11. Princeton University Press, 1957.

[32] R. S. Sutton and A. G. Barto, “Reinforcement learning,” Learning, vol. 9, no. 1, pp. 1–23,
1998.

[33] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”
Journal of Artificial Intelligence Research, vol. 4, no. 1, pp. 237–285, 1996.

82

	1 Introduction
	1.1 Motivation
	1.2 Problem-task setup
	1.3 Research objectives
	1.4 Thesis structure

	2 Fundamentals
	2.1 A closer look on structural learning
	2.1.1 Related fields
	2.1.2 Experimental study by Braun et. al.

	2.2 Bayesian models
	2.2.1 Bayesian networks
	2.2.2 Inference and learning

	3 Methods and models
	3.1 Problem-task: distorted movement in discrete world
	3.2 Basic discrete model
	3.2.1 Multinomial representation of the data
	3.2.2 Dirichlet-mixture as prior distribution
	3.2.3 Fitting the model to data with EM

	3.3 Full Bayesian model with hyper-priors
	3.3.1 Hyper-priors
	3.3.2 EM for the extended model
	3.3.3 Optimization of hyper-prior parameters

	3.4 Advanced problem-task
	3.4.1 Modifications
	3.4.2 Planning with value-iteration

	4 Results
	4.1 Basic task
	4.1.1 KL-divergence analysis
	4.1.2 Learned priors
	4.1.3 Posterior distribution

	4.2 Advanced task
	4.2.1 Experimental setup
	4.2.2 Trajectories under different rotation-distortions
	4.2.3 Trajectories for various feedback delays
	4.2.4 Trajectories with suboptimal action-selection
	4.2.5 Illustrations of the value function

	4.3 Learning stage - parameter fitting

	5 Discussion and conclusions
	5.1 Research objectives
	5.2 Shortcomings and possible improvements
	5.2.1 Expectation maximization
	5.2.2 Value iteration
	5.2.3 Number of mixture components
	5.2.4 General aspects

	5.3 Potential future research
	5.4 Concluding summary

	A Appendix
	A.1 Details on M-step of basic model
	A.2 Value iteration
	A.2.1 Basics
	A.2.2 Non-deterministic Action selection

	A.3 Details on M-step of extended model

	Bibliography

