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Zusammenfassung

Die Entwicklung neuronaler Netzwerkmodelle wird aus verschiedenen Gründen vorangetrieben,
zum einen um dem Ziel etwas näherzukommen, das echte biologische Gehirn und die darin ablau-
fenden Prozesse zu verstehen, und andererseits auch, um Probleme und Aufgaben der künstlichen
Intelligenz zu lösen. Während der letzten Jahre und Jahrzehnte wurden nennenswerte Erfolge in
beiden Bereichen erzielt, sowohl im Verstehen der Vorgänge im Gehirn, als auch in der Anwen-
dung auf verschiedene Aufgaben. Spikende neuronale Netze, wie sie in dieser Arbeit verwendet
werden, gehören der sogenannten dritten Generation von künstlichen neuronalen Netzen an,
die durch den zusätzlichen Aspekt der Zeit in Form von Spikes charakterisiert sind. Kürzlich
wurde eine neue Lernmethode - SEM - für spikende Netzwerke entwickelt. Weiters wurde ein im-
plizites generatives Wahrscheinlichkeitsmodell entdeckt, das es erlaubt, probabilistische Inferenz,
basierend auf wohldefinierten statistischen Mechanismen, in spikenden Netzen durzuführen, und
dadurch Samples von Netzwerken spikender Neuronen zu ziehen.

Das erste Ziel dieser Arbeit ist es, die neu entdeckten Mechanismen in einer möglichst flexiblen
und modularen Art zu implementieren. Ein effizientes objektorientiertes C++ Framework wird
erstellt, das diverse Schnittstellen und Zugangspunkte auf verschiedenen Ebenen der Abstraktion
auch zu anderen Programmiersprachen bietet.

In einem zweiten Schritt wird das mathematisch exakte Modell durch die Verwendung biologisch
realistischerer neuronaler Dynamiken, etwa synaptische Verzögerungen, leicht abgeändert. Der-
artige Modifikationen werden systematisch auf (annähernde) Exaktheit analysiert, d.h. es wird
untersucht, bis zu welchem Realitätsniveau das Modell noch verhältnismäßig verlässliche Resul-
tate liefert. Dazu werden der systematische Fehler, der durch die Abänderung der Parameter
entsteht, und die begrenzte Samplingzeit, die einen unvermeidbaren stochastischen Fehler zur
Folge hat, verglichen. Daher kann es vorkommen, dass in zeitlich begrenzten Situationen, die
zusätzlichen Kosten des nicht exakten Samplens vergleichsweise gering, und daher nicht relevant
für das Verhalten sind.

Zusätzlich wird das Modell des Netzwerks auf ein stark vereinfachtes Modell des menschlichen
visuellen Systems angewandt, um Mustererkennung auf einer symbolischen Ebene nachbilden zu
können. In diesem Zusammenhang wird der Sampler in ein mehrschichtiges Netzwerk spikender
Neuronen, die ein generatives Modell bilden, integriert. Dieses Modell wird mittels maximum
Likelihood Methoden auf speziellen Mustern trainiert, und anschließend auf ähnlichen aber
teilweise unvollständigen Bildern getestet, die es durch Informationsaustausch vervollständigen
kann, nachdem die synaptischen Verbindungen während des autonomen Lernvorganges angepasst
und gelernt wurden. Die Ergebnisse dieser Simulation werden mit den Resultaten biologischer
Untersuchungen und Experimente des visuellen Systems verglichen, sodass gezeigt wird, dass
die Methode des neuronalen Sampelns erfolgreich zur Simulation einiger biologisch begründeter
Aspekte angewandt werden kann.

Stichwörter: Sampling; Spikende neuronale Netzwerke; Probabilistische Inferenz; Eigenständiges
Lernen; Visuelles System





Abstract

The investigation of neural network models has two different major goals: to help people to
infer the processes going on in real biological brains and to solve artificial intelligence problems.
Over the last decades and years the evolution of these network structures lead to improvements
in both - understanding the causes and effects of brain processes, and performing well in various
problems of different fields. The networks studied in this thesis, i.e., spiking neural networks,
belong to the so-called third generation of neural network models: spiking neural networks,
being characterized by the addition of the aspect of time as spikes. Recently a novel method
for training spiking neural networks has been developed, called SEM. Furthermore, an implicit
generative model (i.e., a probability model) has been found, allowing to perform probabilistic
inference on the basis of well-defined statistical mechanisms, and in this way to draw samples
from networks of spiking neurons.

The first goal of this work is to implement this newly discovered mechanism in a highly flexi-
ble and modular fashion. An efficient object oriented C++ framework is developed providing
different interfaces on various levels of abstraction to more high-level programming languages.

In a second step the mathematically exact neural network model is slightly modified using
biologically more realistic neuronal dynamics like synaptic delay. Such modifications are sys-
tematically analyzed for their (approximate) correctness: It is explored up to which level of
“realism” the model still provides reliable results. This is done by comparing the systematic
error of modifying the parameters with the finite sampling time (and the so caused stochastic
error) present anyways. Thus, in limited-time situations the cost of non-exact sampling might
remain relatively low and might thus be not relevant for a behaving organism.

Additionally the neural network model is applied to a simplified model of vision, more precisely
to pattern or image recognition and completion. In this context, the neural dynamics sampler
is applied to a multilayered network of spiking neurons, representing a generative model. This
network is trained on certain image patterns using maximum likelihood learning and then tested
on similar but incomplete images which it is able to complete, using feedback information, after
having learned and adapted the appropriate synapses during the autonomous learning period.
The outcomes of this simulation are compared to findings of biological experiments in the visual
cortical system, showing that neural sampling can successfully be applied to simulate some of
the aspects found in biological experiments.

Keywords: Sampling; Spiking neural network; Probabilistic inference; Autonomous learning;
Visual system
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Analysis of Probabilistic Inference in Recurrent Networks of Spiking Neurons

1 Introduction

“Science has shown you that ‘you’, your joys and your sorrows,
your memories and your ambitions, your sense of identity and free
will, are in fact no more than the behavior of a vast assembly of
nerve cells and their associated molecules; as Lewis Carroll’s Alice
might have phrased it: ‘You’re nothing but a pack of neurons.”’

Francis Crick, 1994

1.1 Motivation and aim of this work

Since decades people try to “understand” the processes going on in their brains during ordinary
actions. Even though it is commonly agreed nowadays that brains are built up as networks
of billions of interconnected neurons, and even though the single sub-processes are quiet well
explored today, it still remains a mystery how exactly a human being comes to some decision or
even intuition. The unsolved problem thus is to understand how our brains really work.

One attempt to this understanding are artificial neural networks, making very strong simplifica-
tions, with the goal to understand - and possibly reproduce - tiny parts of these huge processes.
So-called first generation artificial neural networks concentrate on the aspect of having (possibly
connected) neurons, but they only allow for digital, i.e., binary, output signals, which seems
quiet unrealistic. So the second generation networks implement some additional feature known
from biology - namely weighted synapses - and thus enable analog output signals which seems
already more plausible. But only the third generation of artificial neural networks is now capable
of including the aspect of time, by using spikes instead of averaged firing rates.

It has recently been managed to apply well-defined and commonly known machine learning
strategies to the field of more biologically realistic - spiking - neural networks, to apply proba-
bilistic inference on recurrent networks of spiking neurons and to sample from them. This is a
big step towards the comprehension of “thinking” - even though the final goal is still far away.

At this point it gets now really interesting to see what happens when further parameters are
modified and a neural network model is driven to get more realistic in some sense. The work
of this thesis is based on this background idea, namely to systematically analyze some possible
settings - even though some of them do not exactly match the requirements of the theoretical
proofs.

Additionally, this idea of a neural network that samples from probability distributions should
now be analyzed in more detail by applying it to some practical example, in this case some
very strongly simplified symbolic realization of the human cortical visual system as a multilayer
network of sampling neurons, where the synaptic weights are learned using well-known machine
learning techniques, and the effects of the resulting model are tested on a simplified model for
visual processing.

These two fields are also the main expected outcomes of the work presented in the following,
namely the analysis of different model settings and the application of the model to some practical
problem, where the outcomes of biological experiments in the visual cortex should be simulated.

1 Introduction 1
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1.2 Overview

This thesis is subdivided into two major parts, the first one covering concepts and background
information which can be seen as the basis of the work for this thesis, explaining and summarizing
the fundamental ideas of the areas and topics underlying this thesis. In this first part, the
following aspects are covered:

2 The visual system of the human brain: This section explains the biological and neu-
roscientific fundaments, starting with some brief explanation of the cortical structures in
the human brain, with focus on the human cortical visual system, and finally summarizing
some ideas on hierarchical structures in the brain, especially the visual areas.

3 Artificial neural networks: In this section the concepts of artificial or computational
neuroscience are covered, from the general idea of an artificial neural network to the
historical evolution of such networks, starting with some very early feed-forward models,
going on with recurrent networks, and finally illustrating the idea of stochastic systems.

4 Statistical Background: As the title already indicates, in this section the mathematical
and statistical theories and concepts, required to understand the neural network model
used afterwards, are explained. First of all the general idea of sampling is mentioned,
followed by the definition of MCMC methods, and finally also going into the field of
bayesian inference and related models.

5 Spiking neural network models for probabilistic computation: This section con-
tains the definition of some concepts developed at the institute for theoretical computer sci-
ence of the Graz University of Technology, namely first of all the idea of SEM - spike-based
expectation maximization - and after that also the novel theory about neural dynamics
sampling, i.e., performing probabilistic inference in spiking neural networks by drawing
samples.

After this first part of summaries and explanations of already well-known concepts, the second
part is dedicated to new contributions, developed during the workout of this thesis. Again, a
brief overview over the illustrated topics is given in the following:

6 A highly configurable software framework for neural sampling: In this section,
the C++ implementation of the neural dynamics sampler, developed in order to have a
fast, but still very flexible system required for the further analysis of different models, is
presented on a high level, including some rough class structure, the different interfaces and
also some examples how the implementation can be used.

7 Neural sampling with more realistic neuron models: This section contains the
analysis of different model settings and the effects on the neural dynamics sampler, inves-
tigating the trade-off between theoretical exactness and biological reality. Additionally,
experimental results are given, showing some dos and don’ts for selected model settings
(e.g., in terms of shapes of postsynaptic potentials or synaptic delays).

8 Application of neural sampling to a simplified model of vision: This section
is based on biological findings which suggest to view the human cortical visual system
as a hierarchical structure having both, bottom-up but also top-down connections. The
implementation of the neural dynamics sampler is applied to a hierarchical multilayer
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neural network model, representing on a symbolic level some strongly simplified model of
the visual hierarchy. This multilayer model is then trained, and tested on (incomplete)
visual input, in order to verify whether such an artificial model is able to do some simplified
version of image completion - like it is done in a much more complex version in real human
brains. In the end the behavior of the symbolic model is compared with the outcomes of
some of the above mentioned biological experiments.
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Part I

Recapitulation of underlying concepts

2 The visual system of the human brain

This section briefly introduces the main terms that can be seen as basic background knowledge
for the scenarios described later on. In order to get deeper information about these topics one
should refer to existing literature on neuroscience or on introductions to the human cortical
systems, like [7], [59], [72] or many others.

The following sections will then deal in more detail with the visual system of human brains and
it will be explained briefly how images and visual information are processed inside the brain.

2.1 Generic cortical structures

In nearly all living beings or animals, the brain is the center of the nervous system, which makes
it a highly organized and complex system [74]. Even though the processes going on in single
cells of the brain are investigated for decades, and are thus by now understood quiet well, the
synergy of these cells and how an individual cell influences the entire system remains a mystery
[32].

When looking at the overall structure of a brain, one talks about six main regions (cerebral
cortex, cerebellum, temporal lobe, occipital lobe, parietal lobe and frontal lobe), each with
complex internal structures, that make up the brain [5]. Some of these areas, like the cortex,
which will be discussed in more detail later on, consist of convoluted layers of cells, due to the
limited space, while other areas are clustered.

Human brains are composed of networks of about 100 billions connected units called neurons
of various types [32], where the exact number depends, among others, on age and sex of an
individual [63]. In order to get an idea about how such a neurons is structured, one can take a
look at figure 2.1.

A neuron is a cell, having a cell body - also called soma - containing the nucleus. The soma
is covered by the membrane. The membrane potential, representing the difference between the
potential inside and outside the membrane of a neuron, will later on play a quiet important role
in the simulations of artificial networks of neurons [19], [1].

This cell body of a neuron is continued in tree-structured dendritic arbors, and it has one long
outgoing protoplasmic fibre, the axon, which carries trains of action potentials, and branches at
the end. These transmitting ends of the branches are the synapses. Through them the electrical
impulses are sent to the other neurons, either axoaxonic (from axon to axon), axosomatic (from
axon to soma) or axodendritic (from axon to dendrite).

Usually each neuron is connected to other cells via thousands of synapses. In this context one
refers to long range connectivity in case if a neuron’s axon is longer than usual (sometimes a
number of centimeters).
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Figure 2.1: Structure of a typical neuron. The cell body or soma, which contains the nucleus,
is covered by the membrane. The tree-like extensions are called dendrites. The axon - the long
outgoing fibre - connects the neuron to other ones through synapses.

Each neuron can release chemical neurotransmitters [24]. In order to get a better idea of how
the transmission of the electrical pulses through the synapses goes on, one can look at figure
2.2. It shows a strongly simplified overview of a synapse. The neurotransmitter molecules from
the axon terminal are moved by diffusion to the receptors of the dendrite (or the other axon,
or soma), which can shortly be described as the transmission of electrical impulses or signals
between neurons.

The process of spiking is a complex biophysical process, where the electric pulse is only elicited
through the axon if the potential inside the cell soma is sufficiently high, ofter modeled as a
voltage threshold. After a spike, the neuron can only spike again after some refractory period
has passed, which is the time the neuron requires to “recover” from firing [32].

Not all neurons are connected to all other ones, and there are usually more connections between
neurons that are located nearby each other. Thus the neurons inside one brain areas are supposed
to be responsible for “same” tasks, like vision or motor control, even though these areas interfere
each other and are not separated strictly.

Even though one neuron is connected directly “only” to a few thousands of other neurons, a rise
in its action potential above the threshold may cause effects in brain areas that are not directly
connected to this neuron, by influencing the action potentials of directly connected units, which
again affect their neighboring units.
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Figure 2.2: Synapse: Transmission of electrical impulses: Neurotransmitters are diffused from
the axon terminal of one neuron to the receptors of another neuron (in this case an axodendritic
synapse is shown).

2.2 The visual pathway

A large system in the human brain, known as the visual cortex, is responsible for the processing
of visual information [40]. A very rough overview over the visual cortex is shown in figure 2.3,
where some areas of the visual system are highlighted. These marked areas are among the
ones which are explored and understood in much detail, and they will briefly be covered in the
following explanations of the human visual pathway.

The visual pathway [62] starts at the retina of the eye, where some sensors get signals containing
the visual information, i.e., the image one sees. The cells of the retina immediately respond to
visual input, and transmit information about this input through optic nerve fibres to the LGN,
the lateral geniculate nucleus, which is located in the thalamus - the mid area - of the human
brain. A LGN is located in both, the left and the right thalamus of the brain, where both LGNs
only get half of the visual information.

Among the areas in the human brain which are best studied there is the primary visual cortex
V1 [69], which it is strongly connected to the LGN. Each brain hemisphere’s V1 gets information
directly from the corresponding LGN. The exact connectivity of the visual areas V1, V2, V3, V4
and V5/MT depends on the species of the living being, where the following refers to humans.

The primary visual area is connected to two main pathways to which information flows: the
dorsal, and the ventral stream [51]. In figure 2.3 it can be seen that both streams connect V1 to
V2, but in both cases different information is processed: The dorsal stream is associated with
information about the “where” and “how”, like motion, and it is further connected to the visual
area MT. On the other side the ventral stream is associated with information about the “what”,
like object recognition and memory. It further sends information to V4 and finally the IT.

Another quiet well investigated brain area is the secondary visual cortex V2. V2, together
with V1, is primarily supposed to be responsible for edge and corner detection, as well as for
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basic color and motion information [40], and the neurons inside this cortex are usually tuned to
respond to particular orientations of bars.

Figure 2.3: Overview over the human cortical visual system: Rough structure of the visual
pathway, where information is passed from the eye through the LGN to the primary visual area,
from which it is then passed to higher visual areas.

2.3 Hierarchical architecture

According to [37], the organization of the mammalian visual system can be explained in a
simplified way by feedforward information passing: Visual signals and information, coming
directly from the retina is sent through the optic nerve to the lacerate geniculate body. From
here, the signals are sent in a feedforward fashion to the different visual cortical layers.

Other scientists are convinced that information is exchanged in between the visual areas not
only in a feedforward, but also in a feedback fashion. These theories are evidenced in biological
experiments by Lamme et al [39],[41],[42],[79], by Niell et al [57], and on an experiment of Tai
Sing Lee et al [43],[44],[45]. This last one will be shortly summarized now to briefly explain
how the bottom-up - top-down information passing process in the visual system is thought to
be organized.

Lee et al wanted to observe the hierarchy of the visual cortical areas in a monkey’s brain in this
experiment. The basic idea was to observe the neural reaction when showing various images,
where the monkeys should react on different kinds of square contours.

Figure 2.4 shows the major images used for this experiment: The monkey was shown the image
of the four black disks (on the left) and the four partial black disks (on the right) alternately.
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This process should create the illusion of a bright square in front of the four black disks when
moving to the partial disks.

Figure 2.4: Biological experiment to observe the hierarchy of a monkey’s visual cortex: Changing
images of four black disks (left) and four partial black disks (right) shown, in order to create the
illusion of a square (center image) in front of the four black disks. The response when showing
the illusory contour image was compared to the response to the square with the line contour.
Figure adapted from Lee [43].

Therefore, the neurons in the monkey’s brain tuned to the corresponding orientation of bars were
expected to react in a similar way to the real line contour of the square (the image in the middle
of figure 2.4), and to the illusory square, assuming that some kind of contour “completion” is
done in the case of the illusory contour. In order to be able to explore this assumption that
neurons in the visual areas react on both of these squares - the real and the illusory square -
the scientists measured the activity of neurons in the cortical visual areas V1 and V2 of the
monkeys using electrodes.

Neural response was measured in terms of the spiking rate. In this experiment a group of neurons
in both visual areas was chosen, which responded to the real line contour and had its receptive
field on the part of the line contour where in the illusory contour image nothing is visible, i.e.,
on the top center line of the “square”. The average firing rate of these neurons was computed
and tracked over time, beginning with the stimulus onset, which is the moment when the image
is shown to the monkey.

Again according to [44], neurons in the first visual area V1 are tuned to edge detection, but there
was no evidence for edge completion in this cortical area. On the other hand edge completion
does take place in the second - higher - visual area V2.

Having this background knowledge one will expect both cortical areas to respond with a relatively
high firing rate on the contrast contour, which shows a real black square on a light background.
As a second consequence of this known functions of the different cortical visual areas it could
be expected that the illusory contour is only recognized in V2.

The tracked average firing rates of the neurons in both layers are visible in figure 2.5. Here it
becomes visible that this second assumption is not true: There is a response also to the illusory
contour in the first cortical visual area, but it is delayed when comparing it to the response to
the real contrast contour in the same visual area V1.
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Figure 2.5: Population averaged responses of V1 (left) and V2 (right) neurons to the various
square contours shown to the monkey: Delayed response to the illusory contour in V1, but
simultaneous responses to both contours in V2. Figure adapted from Lee [43].

When comparing this response to the firing rates in the second visual area V2, one observes that
the time between the stimulus onset and the response onset is about the same for both, the real
square and the illusory one, as expected. According to Lee et al. this means that the contrast
and the illusory contour are both recognized in cortical visual area V2, with roughly the same
delay.

According to Lee et al this delayed response in V1 can be explained by the fact that illusory
contour completion is done in V2, but there is some top-down (not only bottom-up) informa-
tion passing between the two cortical layers. In this way, delayed feedback is returned to the
first visual layer, where the delay can partly be explained by the synaptic delay when passing
information between different areas in the brain.

Note that the reason why the response time to the real square (i.e., the contrast contour) is
lower in V2 than in V1 is not covered in the mentioned paper by Lee et al and will thus not be
investigated further. The following work will concentrate on the difference between the response
time to real and illusory contours in the two visual areas.

As mentioned before, such biological experimental findings suggest that there are feedforward-
feedback loops in the visual cortical areas and that information is not only passed in a bottom-up
fashion through the layers, but there are also top-down connections that enable the transmission
of information in both directions, and not only from the lower layer to the top.

The idea and outcome of the paper by Lee and Mumford represents the basis of this work, where
- similar as done by Shi et al [71] using importance sampling and by others - such a multilayer
behavior of neurons will be modeled, and then applied to a strongly simplified model of the
visual system.
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3 Artificial Neural Networks

3.1 Idea and principle

Since decades people try to understand and reconstruct the processes that are going on in our
brains - while we are learning new things, reconstructing them, and even while we are sleeping.
Already in the 19th century the idea came up, that human thoughts and behavior was a result
of interacting neurons in the brain [4],[38].

Some years later, a computational model called threshold logic was invented by McCullouch
and Pitts (see section 3.2). This first model for neural networks was based on mathematics and
algorithms. It was the basis for future development in this field. So, a very simple unsupervised
learning strategy, known as Hebbian learning, variants of which are still used, was invented [31].

The aim to construct an artificial agent that acts like a human was already formulated very
early, and still represent the major goal in artificial intelligence. In 1950 Alan Turing proposed
the legendary Turing test to determine whether a machine is able to behave (and think) like a
human being does [76].

But when we talk about artificial neural networks [67],[3] we do not intend to simulate entire
humans, but rather to simulate or artificially reconstruct small subsets of the processes going
on in a human brain: The goals when dealing with artificial neural networks are to better
understand biological networks, or to solve problems from the field of artificial intelligence.
Neuroscientists work on algorithms which describe learning and recognition processes that can
be observed in experiments with animals like monkeys or rats [11], [12], [22].

These simulations are realized through the implementation of networks of (partially) connected
neuron-like units [32],[67], deciding stochastically or deterministically (depending on the type
of artificial neural network) which state to get into. Depending on the type of units used, such
a state might either be a binary value - indicating whether a unit is active or inactive - or
some value in a certain range (e.g., sigmoidal activation function). In this way, the units reflect
the current network situation, e.g., they react on the input given to the network. An artificial
neuron can therefore be described as a programming construct, miming some of the properties
of biological neurons [35].

Artificial neural networks consist of neuron-like units, each of which at any point in time can
take on a state, belonging to a specific predefined set of states, depending on the type of unit. As
we know from human beings and animals, the processes in a brain are usually not deterministic,
and therefore these units or neurons in many kinds of artificial neural networks, have some
stochasticity in their activity.

As shown in figure 3.1, in between these neuron-like units, there might be some connections,
which represent the synapses in real brains, through which the single neurons are able to “com-
municate” their current states to the other units in the network. These connections can be (pos-
itive or negative) weighted (indicating excitatory and inhibitory neurons). In certain networks
the connections are only existing in feedforward fashion, while other networks have additional
feedback connections.

The different areas in a brain, like for example the visual areas described in section 2.2, are
represented in artificial neural networks by layers. A network - depending on its type and purpose
- might consist of an input layer, an output layer and one or more hidden layers in between.
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Figure 3.1: Left: Simple perceptron, with only one layer, the output layer (the input layer is
generally not counted); Right: two-layer-perceptron, having in addition to input and output
layer a hidden layer in between. In both sketched cases there are connections between, but not
within the layers.

Each layer consists of a number of units or neurons, and the various layers are connected through
synapses. Usually there are also some connections between the units within each layer.

An early pattern recognition algorithm from 1958, called perceptron, was already based on a
network consisting of two layers, which should learn [66]. From this time on, the evolution of new
algorithms and functionalities went on much faster. In the 70s a first multilayer-network was
designed, including some training algorithm [26], and some years after that the backpropagation
algorithm was rediscovered and applied to the field of artificial neural networks.

Today there exist very different approaches to artificially simulate these processes going on inside
and in between the neurons of a brain, as it is described, e.g., in the following sections 3.2, 3.3
and 3.4, all based on the same general idea of how an artificial neural network looks like [32].
Some very simple models of perceptrons are the ones shown in figure 3.1.

3.2 Forward Perceptron models: McCulloch-Pitts neurons

In 1943 McCulloch and Pitts defined the first and simplest model of neural structures, called
McCulloch-Pitts neurons [47]. Using this model they wanted to investigate whether all functions
which are defined as Turing-computable can really be computed by a brain.

McCulloch-Pitts neurons are binary units [32], getting a certain number of excitatory input
signals x1, . . . , xn, but allowing also for some inhibitory input signals y1, . . . , ym. The binary
output of the neuron is then computed deterministically, depending on the (possibly weighted)
input signals and some threshold value which is defined for each unit, as it can be seen in figure
3.2.

If the neuron gets some inhibitory input signals, and at least one of these signals has value 1,
then the output of the neuron is 0, independent on the threshold value. This means that one
single inhibitory input signal is able to disable the unit.
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Otherwise, i.e., if all inhibitory inputs are zero, the excitatory input signals are summed up and
compared to the threshold value: If the sum is greater or equal to the threshold, then the unit
switches to 1, otherwise it gets value 0.

The inventors proved that when assembling such computational units in a synchronous way, the
so created network is able to perform any ordinary digital computer computation, even though
it might be slow or inconvenient [32]. Such a directed graph of McCulloch-Pitts gates is also
called McCulloch-Pitts network. The gates themselves are still used today in electrotechnics as
so-called threshold gates.

Figure 3.2: A McCulloch-Pitt neuron: Inputs are processed deterministically to compute a
binary output. A single inhibitory input forces the output to be 0. Otherwise the sum of
the excitatory inputs x1, . . . , xn is compared to a threshold value, and only if this threshold is
exceeded, the output is 1.

3.3 Adding recurrence: Hopfield network

A Hopfield network is a special kind of artificial neural network, published in 1982 by John
Hopfield [32],[36]. The binary neuron-like units in Hopfield networks can be either active (+1)
or inactive (0). They are arranged in one single layer - being the input and the output layer at
once - and each of them is connected with every other unit (except itself) through a synapse, as
it is shown in figure 3.3.

The states of the neurons in such a network are updated one at a time, in any order. The
update step is deterministic: If the sum of inputs from other neurons zl, l 6= k, weighted by the
connection weights Wkl, and the external input bk is positive, then this current neuron zk gets
active, otherwise its value becomes 0:

z
(t+1)
k =

{
1 if z(t)>W k + bk > 0,

0 otherwise.
(1)

where z(t) denotes the state vector at time t, and W k is a vector containing the connection
weights from all units to the currently updated zk.

The energy E of the network can be computed as the sum of the products of all connected
neurons’ values zk · zl, weighted by the connection strengths Wkl and the sum of all neurons’
values zk weighted by their external inputs bk:

E =− 0.5 · z>Wz − z>b (2)
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Figure 3.3: Structure of a Hopfield network

A Hopfield network has a special synaptic connection pattern: The neurons have no self-
interaction, meaning that Wkk = 0. Belonging to the class of feedback networks, the synaptic
connections are recurrent, i.e., feedforward and feedback. Additionally in Hopfield networks the
connections weights are symmetric, i.e., Wkl = Wlk for all neurons k, l.

3.4 Towards stochastic computing: Boltzmann machines

A Boltzmann machine is a stochastic system, describing a special kind of neural network.
[33],[34], invented by Geoffrey Hinton and Terry Sejnowski. According to Hinton, the Boltz-
mann machine can be described as a Hopfield network (Sections 3.3 and 4.2.3) using additional
stochastic update rules (Monte Carlo methods, as described in section 4.2.2) for the simulation
of non-zero temperatures [36].

The name of Boltzmann machines comes from the structure of its underlying distribution func-
tion, a Boltzmann distribution:

p(z) =
e

1
2
·z>Wz+z>b∑

z′ e
1
2
·z′>Wz′+z′>b

(3)

=
e−E(z)∑
z′ e
−E(z′)

(4)

=
e−E(z)

Z
(5)

where z represents a state, described by the variables z1, . . . , zK taking a certain value each,
and p(z) denotes the probability of state z to occur.. The symmetric weight matrix W , that
contains the weight values for the connections between any two neurons in the network, in this
case has a zero-diagonal, as the bias values bk of all neurons are specified separately, for a better
understanding. E denotes the energy of a state vector z, and Z is a normalizing factor, ensuring
that the distribution values sum up to 1.
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In a Boltzmann machine, the membrane potential of a neuron can be computed easily as the
sum of this neuron’s bias value bk and the weighted sum of the activity of all other neurons in
this layer

∑
zl∈z\zkWkl · zl:

uk = bk + z>W k (6)

In this context, each neuron has a probability of being active which is equal to the logistic
function:

p(zk = 1|zl, l 6= k) =
1

1 + e−uk
(7)

Hinton himself applied the Boltzmann machine to a variety of problems, especially in the field of
experiments with images, image recognition and reconstruction, like optical character recognition
and many others [68].

Its popularity is highly related to the simple learning algorithm by the inventors [2]. Even though
it is very slow in complex networks consisting of a large number of layers of feature detectors,
learning is fast and efficient in so called restricted Boltzmann machines, which have only one
single layer of feature detectors: They consist of a single layer of visible units, and a single layer
of hidden units, having no connections within the layers, but only from hidden units to visible
ones and vice-versa. Therefore, complex networks are often decomposed into small Boltzmann
machines - each one with one single layer of feature detectors. These smaller networks are then
stacked, such that the feature activations of lower Boltzmann machines are the training data for
the next higher network.

The probability distributions from which Boltzmann machines sample are defined through the
quadratic weight matrix of the network, W , which defines the synaptic weights from each neuron
to each other neuron inside the network, and through the bias vector b, which contains one entry
for each neuron, describing its intrinsic excitability.

Through so-called clamping, i.e., setting some neurons to specific values and not updating them
any more, it is possible to compute conditional probabilities using Boltzmann machines, and
thus to use Boltzmann machines to apply Bayesian inference: The conditions are clamped, and
the remaining units are updated as usually.

Even though the application of Bayesian inference would theoretically be possible, in practice
it is unfeasible, as the partition function, more exactly the normalization constant, rises with
the state space. Therefore in general for applying inference, some mechanisms to approximate
inference are used. To obtain the posterior, samples can be drawn from this kind of network, for
example by using Markov Chain Monte Carlo methods like Gibbs sampling (see section 4.2.3),
which are able to take advantage from the stochastic dynamics of a Boltzmann machine. This is
the basis for Boltzmann machine learning algorithms like the wake-sleep algorithm or contrastive
divergence.

Nevertheless, Boltzmann machines are still far away from a network of stochastically spiking
neurons: The use symmetric connection weights, have point neurons, rectangular PSPs and a
very restricted dynamic due to Gibbs sampling. This last point will tried to be overcome with
the Neural Sampling technique described later on in section 5.2.
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4 Statistical Background

4.1 Sampling

Sampling is commonly known as the process to make spot checks (i.e., to draw samples), in
order to obtain representative facts describing the composition of some set, which is checked
[67], [12]. Correspondingly, in statistics it describes the process of drawing samples out of some
probability distribution.

For most problems and cases in practice, to make exact inference about a model would require
a huge effort or it would even be infeasible to do so [12]. Therefore in these cases sampling
techniques can be applied in order to approximate the real distribution [3]. Different methods
which are based on such numerical sampling, i.e., approximate inference methods, are called
Monte Carlo methods, described in section 4.2.

An application of sampling is the following problem [12]: Suppose someone needs to find the
expected value of a specified function f(z), with respect to some given distribution p(z). De-
pending on the shapes of the two functions, computing the correct solution analytically (in case
of continuous values by integrating over the product, in case of discrete values by summing them
up) will be infeasible. Therefore, some approximation to the real solution has to be found. This
is where sampling comes in.

The first step in this case is to draw a certain number of independent samples z = {z(1), . . . , z(K)}
from the distribution p(z), such that this distribution can be approximated by its samples.
Therefore, the expectation of the real function can be computed as the average over the values
f(z(k)) for k = 1, . . . ,K, i.e., as the average sampled function values [22], [12].

Usually, when sampling, one may however face various problems. A common problem in sam-
pling is that successive samples are not independent from each other, and thus not all consecutive
samples can be used, increasing the number of required sample steps to approximate the dis-
tribution. Another problem relates to the probability distribution itself: If there are regions
with very low probabilities, these regions are hardly covered by the sampling process, if too few
samples are drawn. Additionally direct sampling is difficult, as the absolute value of the prior
is not known, whereas no samples can be drawn from it.

To overcome these problems, various sampling techniques have been developed, like importance
sampling to be able to better account for properties of the distribution, or rejection sampling,
where samples are drawn from another distribution q(z), which, multiplied with some constant
M , satisfies Mq(z) ≥ p(z) for all possible values of z, and the samples that do not match the
original distribution are rejected [3], [12].

The next section introduces the role of sampling in the field of neural networks, and describes the
way how sampling and samples can be understood in this context, while the following sections
describe different sampling techniques and introduce some statistical basics required later on.
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4.1.1 Sampling from neural networks

In an artificial neural network (see section 3.1), units which are physical entities are associated
with random variables. The states of such entities are represented by realizations or states of
these random variables, and thus it is possible to speak about a probability distribution in this
context [25].

The current state of some units, i.e., a snapshot (or sample) of the network state and activity,
can be obtained through sampling [22], [11]. In each sampling step, the network is advanced by
some time, e.g., by 1 millisecond, and the new states of the units are observed. Of course, this
process requires some mixing time (or “burn-in”) for the network to adjust to a new situation,
e.g., changing input.

There exist hypotheses that it is possible to draw samples from neural networks [15]: It is
assumed that such a network samples from its underlying probability distribution, after having
passed the mixing time, i.e., when the network has established after some initial time. If the
sampling states of the neuron-like units are tracked over time, then the samples approximate the
distribution from which the network samples. Thus it is a usual approach to sample for some
time to approximate the distribution of the network in reaction to some input signal [61].

The always limited sampling time in experiments is the reason why the sampled distribu-
tion in practice does “only” approximate, and not match perfectly the correct distribution.
Nevertheless, the difference between the sampled distribution q(z) and the real distribution
p(z) will decrease over time, which can be seen when looking at some pseudo metric com-
puting the distance, e.g., the Kullback-Leibler divergence [12], which can be computed as

D(p(z)||q(z)) = KL(p(z), q(z)) =
∑K

k=1

(
q(z(k)) · log q(z(k))

p(z(k))

)
and goes to zero as the sampling

time increases.

In this context one has to pay attention: Due to the limited sampling time it might be possible -
or in larger networks even most probable - that some samples will never be drawn, which would
lead p(z(k)) = 0 for some values of k. These cases have to be treated in a special way not leading
to divisions by zero or to the logarithm of zero [9]. This is also the reason why in this case it
is more appropriate to compute the divergence from the true to the sampled distribution, and
not vice-versa, as the Kullback-Leibler divergence is not a symmetric measure, and its value has
to be non-negative, which cannot be guaranteed very easily if the distance from the sampled
distribution is computed - due to the possible zero-values.
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4.2 Random walks: Markov Chain Monte Carlo methods

4.2.1 Markov chains

A Markov chain or Markov process [13],[8],[12], [3] describes a structured set of numbered random
variables S0, . . . , SN . They are characterized by the property that it is possible to forecast the
future development of the chain having only some restricted knowledge of the past, in the same
way as the whole past development would be known. For a first order Markov chain this means
that the future of the whole system St+1, . . . , SN only depends on the current state St, but not
on past states or developments S0, . . . , St−1.

p(St+1 = s|St = st) = p(St+1 = s|St = st, St−1 = st−1, . . . , S0 = s0) (8)

Such chains can be continuous or discrete in time: While Markov chains might be both, continu-
ous or discrete, the term Markov process describes only continuous-time Markov chains, having
a continuous index. The following explanations only refer to discrete time Markov chains with0
a finite state space.

Another property that Markov chains can have, is to be time-homogeneous: These kinds of
chains have transition probabilities which are independent of the time step. This means, that
the probability p of going from state y to state x is the same at any time step t.

p(St+1 = x|St = y) = p(St = x|St−1 = y), ∀t (9)

Additionally, a Markov chain can have a stationary distribution (or invariant measure). Under
some conditions there exists a unique stationary distribution, to which the distribution of the
Markov chain converges. A time-homogeneous Markov chain has a stationary distribution π, if
and only if π is a probability distribution and πs′ =

∑
s πs ·p(St+1 = s′|St = s), i.e., the value of

the distribution for any state s′ can be computed as the sum of all incoming path probabilities
p, weighted by the distribution value πs of the state s this path path comes from.

A state is said to be recurrent or persistent, if the probability that this state occurs infinitely
often is exactly one, i.e., if it is sure that the initial state returns again in finitely many steps.
In any other case, the state is called transient or irreducible, as shown in figure 4.1. A Markov
chain is recurrent (or transient) if and only if each state of it is recurrent (or transient).

Figure 4.1: Examples of a recurrent (left) and transient Markov chain (right).

A Markov chain is called irreducible if each state in the chain is accessible from each other state
in finitely many steps, as shown in figure 4.2. As Markov chains can be represented by graphs,
irreducibility means that from any state there exists a path to any other state, not necessarily
in one step.
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Figure 4.2: Examples of an irreducible (left) Markov chain and a not irreducible one (right).

For Markov chains, if it is possible to return to some state s only in some multiple of k steps
(with k > 1 and k being the greatest common denominator) then the Markov chain is periodic,
shown in figure 4.3. Therefore, one can look at all time steps t at which some state is reachable
(with a probability greater than zero), and if these numbers have a greatest common divisor
greater than one, then there is some periodicity in the system. Otherwise it is aperiodic, meaning
that there are some irregularities in the patterns of returning to the different states.

k = gcd {t : p(St = s|S0 = s) > 0} (10)

Figure 4.3: Examples of aperiodic (left) and periodic (right) Markov chains.

A Markov chain is called ergodic, if it has a finite set of states, it is irreducible and aperiodic.
An example is shown in figure 4.4.

Figure 4.4: Examples of Markov chains which are ergodic (left) or not (center and right).

In order to apply Markov Chain Monte Carlo sampling (see the following sections), a Markov
chain has to fulfill some requirements: It has to be irreducible and aperiodic, i.e., ergodic. In
this case of an ergodic Markov chain, its underlying distribution will converge to the unique
stationary distribution of this chain (the target distribution) [3].
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4.2.2 Monte Carlo method

The idea behind Monte Carlo methods is to draw an independent, identically distributed (iid) set
of samples out of a large and high-dimensional state space, in order to approximate the density
of the target distribution [3], i.e., to explore the major features and properties of a distribution
on a high-dimensional state space by performing some random walk on this space [11].

In other words, Monte Carlo methods are based on the idea that the properties of a distribution
can be approximated the realizations (samples) of this distribution. In the context of probabilis-
tic inference this means, that any posterior distribution p(z|y) can be approximated by taking
random samples of realizations of z from p(z|y). In this way mean, variance, mode and quantiles
of the realizations estimate mean, variance, mode and quantiles of the posterior [73].

The advantage is that it is possible to generate samples from a posterior in several ways, even
without exact knowledge of the real posterior. Rejection sampling, for example, generates in-
dependent proposals for z, which are then accepted according to a certain rate, such that the
retained samples are proportional to the desired posterior. When using importance sampling
on the other hand, independent samples (from a user-chosen distribution on z) are weighted in
such a way that the properties of the posterior can be estimated. In this way, relevant integrals
are evaluated numerically.

Monte Carlo methods are randomized algorithms which with a restricted probability might
lead to a wrong solution. In return they are usually much more efficient than deterministic
algorithms. When repeating the algorithm using independent random initial states or bits, the
error probability can be reduced [73].

4.2.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods [73],[3],[12] describe a class of algorithms to draw
samples out of probability distributions on the basis of an irreducible, aperiodic Markov chain,
which is constructed such that its stationary distribution is the desired one. A sample for the
desired distribution is drawn by evolving the chain for some time and by then using its current
state as sample.

In general, MCMC algorithms are applied to obtain a sequence of random samples from proba-
bility distributions for which direct sampling is difficult (or even impossible), and these methods
are used to approximate these distributions.

In many cases where direct sampling is not possible it is feasiblee to construct a Markov chain
featuring the desired properties. Usually the most tricky problem is to determine the number
of necessary steps until converging to the stationary distribution (with acceptable precision). In
other words, the algorithm should be built such that independent system states can be generated
effectively. It has to be considered that not only the chain structure itself, but also the initial
state, influences the convergence time, and should therefore be chosen appropriately.

The most common examples for MCMC algorithms are the Metropolis (Hastings) algorithm,
and Gibbs sampling, explained in the following.
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Metropolis algorithm

The original Metropolis algorithm [49] is a local method which generates system states according
to a Boltzmann distribution, by generating random moves and accepting or rejecting them with
certain probabilities. It is easy to implement, but it has the problem that the generated states
of the system are relatively highly auto-correlated. The following explanations always refer to a
one-dimensional case (but they can also be generalized to more dimensions).

A new state st+1 is selected by randomly searching some state within a certain distance δ of the
previous (i.e., the current) state st. With the introduction of the distance, there is a trade-off
between acceptance rates and auto-correlation: Small distances lead to high acceptance rate,
but on the other hand the auto-correlation in these cases gets higher. On the other hand, when
using high distances, the rejection rate increases.

After this new state is chosen, the energy difference ∆E is computed as the difference between
the energy of the new state E(st+1) and the previous energy E(st):

∆E = E(st+1)− E(st) (11)

The new configuration st+1 is accepted with probability p, which depends on this energy differ-
ence ∆E:

p(st+1 is accepted) = min
(
1; e−∆E

)
(12)

This means, if the energy difference is negative, the new state is accepted with probability 1,
otherwise with the previously mentioned probability e−∆E .

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [17],[12],[3] is a generalization of the Metropolis algorithm.
It allows to draw samples from arbitrary probability distributions. After generating a Markov
chain, a proposal density depending on the current state is used to generate a new proposed
sample. As in the less general Metropolis algorithm, the new proposal state is accepted as next
value with some probability depending on the probability of the proposed and the previous state,
and on the proposal density, which can, e.g., be represented by some Gaussian, centered at the
state whose density is required.

Gibbs sampling

Gibbs sampling [27],[12],[3] is a special case of the Metropolis-Hastings algorithm, which is
usually applied if the conditional distributions are possible to be calculated, even though the
joint distributions are complicated.

Gibbs sampling is used to approximate the joint distribution of a random vector for which the
conditional distribution of each random variable is known [50]. For Gibbs sampling, a Markov
chain has to be ergodic (i.e., irreducible and aperiodic) [12].

In each iteration step, only one of the K variables zk is chosen and according to its distribution,
conditioned on current values of all other variables zl, a new value for this random variable is
generated. The values of all other variables remain unchanged in this step.

One problem to be considered when using Gibbs sampling is that, as in each step only one of
the variables is updated, successive samples have huge dependencies (at most one value may
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change). Thus, if independent samples are required, many of the successive samples have to be
rejected, which was the main reason for the development of further variations, which update
entire sets of variables at a time.

A typical application for Gibbs sampling is sampling from Boltzmann machines (see section 3.4).
In this case, the probability of the selected variable is updated according to the current membrane
potential uk (described in formula 6 in section 3.4) of the neuron zk.

In a Boltzmann machine, the updated probability value p is calculated from the logistic function,
which is a sigmoidal function of the membrane potential value σ(uk) which has been updated,
as previously shown in formula 7 of section 3.4.

The resulting sequence of sampled vectors is a Markov chain. It can also be proven, that the
stationary distribution of this Markov chain is exactly the target distribution of the random
vector of formula 22 of section 3.4 which was looked for [12].

4.3 Bayesian inference

4.3.1 Terms and definitions

Bayesian inference is an important statistical concept to deal with uncertainty problems, allow-
ing to estimate statistical parameters, to draw logical conclusions, and to predict probabilities
[12],[18],[22],[11],[67].

The so-called prior probability p(z) summarizes the statistical information about the a-priori
known evidence of the problem, while the posterior distribution p(z|y) is used to express the
predictions about the uncertainty, given some additional information y [10].

Mathematically, Bayes’ theorem provides the foundation for computing the probability of an
event z to occur given some evidence on y, and it can be expressed as:

p(z|y) =
p(z) · p(y|z)

p(y)
(13)

where the posterior probability to be estimated is the first term p(z|y), while p(z) is the prior
probability - the probability that event z would occur at all, without taking into account the
evidence, which can be interpreted as some initial belief. The factor p(y|z), called likelihood,
measures the impact of the evidenced event y on event z. The probability of the evidence, p(y),
represents some normalizing factor which ensures that all posterior probability values again sum
up to 1.

The term joint probability describes the probability of a set of sub-events to happen “together”.
An event z can be defined as the combination of one or more observations. In a mathemat-
ical formulation this means that having a set of observations z = {z(0), . . . , z(K)}, which are
assumed to be i.i.d., and where each single observation occurs according to some probability
value p(z(k)|y), and the single observations are conditionally independent, given some evidence
on another event y, the joint probability of the set z given the evidence can be expressed as:

p(z|y) =p(z(0), . . . , z(K)|y) (14)

=
K∏
k=0

p(z(k)|y) (15)
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4.3.2 Mixture models

A mixture model [22],[11],[12],[21],[48],[28] is a generative probability model, which is able to
represent sub-populations inside a pool of data, including also the distribution of the sub-
populations [58].

A generative model [12],[70] defines, how data is generated by means of auxiliary data. As the
joint probability p(y, z) can then be formulated, a generative model provides a mechanism to
generate data: By applying Bayes’ theorem (as described previously) one can infer the latent
variables from this information. Mixture models, presented now, are one type of generative
model, which means that inference in mixture models is performed in the same way.

A mixture model divides the entire population in N subpopulations, each of which has an
associated weight value 0 ≤ wn ≤ 1, summing up to 1. It further consists of M random
variables, representing the observations, i.e., X1, . . . , XM , having certain values xi.

Each of these N sub-populations or categories is described by a probability density function
fn(xi), which describes the likelihood that observation xi occurs in subpopulation n. In other
words, a sample xi is drawn out of such a category n, and it occurs with the p.d.f. fn(xi).

The mixture model itself is defined by another mixture density function, being the weighted
sum over all sub-populations’ pdfs:

f(xi) =
N∑
n=1

wn · fn(xi) (16)

4.3.3 Winner-Take-All

When performing inference in a network, the result is such that the current state has been
“produced” by one of the output categories, leading to some kind of competition in the output
layer. Winner-Take-All is a computational principle about units that compete among each other
[29],[78],[60],[14]. Thus, according to the common idea of WTA, only one of these output units
- the winning one - is allowed to be active, while all other competing units are suppressed at the
same time.

Mathematically, the joint distribution of some observations in the input y and some activity
in the WTA units z, namely p(z, y), is defined as a mixture of multinomials, and selecting one
winning unit z, given some input y is equal to drawing a sample from some posterior distribution
p(z|y) [14].

The major field of application of the WTA strategy as discussed here are recurrent neural
networks, where WTA is a computationally efficient and powerful mechanism for competitive
learning [46], even though the same strategy is also applied to very different fields, like the
plurality voting system where the candidate with the most votes is selected, i.e., wins the
competition.

In a neural network sense, the competing units are neurons located in the same layer. Among
these neurons there is very strong mutual inhibition, such that at most one of them gets active at
a time. Usually such neurons are located in the output layer, causing only the output neuron with
the strongest input to be active. An additional requirement to the full inhibitory connectivity
in the WTA layer is complete connectivity between all input units and all WTA units.

WTA strategies are often applied to computationally model various processes like making deci-
sions, focussing the attention or drawing conclusions [64],[16].
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4.3.4 Expectation Maximization

Expectation maximization is a particular, very popular way to apply maximum likelihood esti-
mation to the problem of parameter estimation for a mixture model (not being limited to this
kind of model) with a predefined number of components [20],[67],[21],[12],[22],[3].

The aim of EM is to maximize some likelihood function p(y|θ) of observed variables y with
respect to θ, given the joint distribution p(y, z|θ), where y are the observed and z are the latent
variables.

From the algorithmic point of view, EM is an iterative technique that can be divided into two
major distinct steps - expectation and maximization - that are executed repetitively. After
having chosen some initial settings for the parameters θ, the loop over the so called E- and
M-steps can begin:

In the E-step the expectation is computed, i.e., the current probability p(z|y, θ) is computed.

The M-step tries to maximize the likelihood with respect to the parameters θ. For this purpose
one defines a quality function for the parameters has to be defined, as the weighted sum over
all the log-probabilities of possible “new” joint distributions. Very small values of the joint
distribution would in this case lead to stronger negative terms in the sum, and would therefore
decrease the quality function value:

Q(θnew|θ) =
∑
z

p(z|y, θ) · ln p(y, z|θnew) (17)

The real M-step is then to maximize this quality value by choosing the best parameter setting:

θnew = arg max
θ′

Q(θnew|θ′) (18)

As long as the algorithm has not converged, this goes on, by updating the parameter setting
θ = θnew and going back to the E-step.

For various applications, the original form of expectation maximization is not applicable, like in
the case of spiking neural networks. For such cases, variations of the EM algorithm for stochastic
online learning have been developed, which link the M-step to spike-timing dependent plasticity
(measured biologically) [56]. For more information, refer also to section 5.1 on spike-based EM
[55],[30].
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5 Spiking neural network models for probabilistic computation

5.1 SEM

5.1.1 The basic SEM model

By applying spike-time dependent plasticity rules in a spiking artificial network of WTA units, it
is possible to approximate stochastically an online version of expectation maximization [56],[55],[30].
The way this works is summarized in the following.

Consider an artificial neural network model, that is advanced in discrete time steps [56], as
sketched in figure 5.1. The input units y1, . . . , yN , as well as the units in the output layer
z1, . . . , zK are binary. The weights of the synaptic connections between the two layers are con-
tained inW , where Wki weights the connection from input yi to the lateral unit zk. Additionally,
the lateral layer units have an associated parameter vector W0, containing one bias value Wk0

for each unit zk.

Figure 5.1: Structure of the SEM model: The input units y encode multinomial random variables
ω, and project to (hidden) cause units z in a higher layer, which represent the outputs.

The input units again get external input from a set of discrete random variables ω1, . . . , ωM ,
where each variable at each point in time gets a value in the range [0;R]. This means, as all
possible inputs have to be covered, that the number of units in the input layer Y has to be equal
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to N = M ·R. The population coding of ω in y is achieved with:

if ωm = r ∈ [0, . . . , R] (19)

then yR·(m−1)+r = 1 (20)

Hence, there are exactly M active input values in the input layer Y :

N∑
i=1

yi = M (21)

According to this, a group Gm is defined as the set of variables yR·(m−1)+1, . . . , yR·(m−1)+R in
the input layer Y , that encode one concrete input ωm. Therefore, group Gm is said to define
the population coding for the discrete variable ωm.

As the output layer Z is defined as a WTA layer, exactly one unit zk is active at each point in
time, meaning

∑K
k=1 zk = 1. This active unit is also called the hidden “cause” for the current

input ω. The active unit can be interpreted as a sample, drawn from some distribution, which
is proportional to the exponential of the membrane potential uk of unit zk:

p(zk = 1|y,W ) =
1∑K

l=1 e
ul
· euk (22)

where the membrane potential is computed as

uk =
N∑
n=1

Wki · yi +Wk0 (23)

=y>Wk +Wk0 (24)

Learning in such a network can be formulated as the problem of finding a weight vector W ,
which causes p(y|W ) to approximate the distribution of the y units. Maximizing this is done
via EM, but it can be shown (still, see [56]) that applying (not exact) STDP to the same problem
implements stochastic online EM learning, where the maximization step is now the application
of STDP itself, and the expectation is the firing response of the z neurons.
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5.2 Neural Sampling

5.2.1 Theory and idea of neural sampling

In recent publications (see [15],[14],[53]) Büsing et al. are describing a novel idea of a biologically
plausible network model consisting of synaptically connected spiking neurons which are able to
sample from a large class of different probability distributions. The properties of a distribution
of which a neural network should sample has to be reflected by the network dynamics: A network
in which such probabilistic inference is possible has to fulfill the so-called neural computability
condition, meaning that the membrane potential uk of each neuron zk, at each point in time t,
equals the log-odds of the probability that the neuron is active:

uk(t) = log
p(zk = 1|z\k)
p(zk = 0|z\k)

(25)

where zk = 1 indicates that neuron zk is active, while zk = 0 means it is inactive, and z\k is the
set of all neurons in the Z layer, except from zk.

The Boltzmann machine (section 3.4) is a rather popular set of such probability distributions,
implemented by recurrent neural networks, which fulfills the neural computability condition.
Commonly, Gibbs sampling (section 4.2.3) is used as soon as the underlying probability model
of such a network structure, namely a Boltzmann machine, is searched.

But the usage of Gibbs sampling in combination with a spiking neuron model is not easy to think
of. Instead, the idea for probabilistic inference in this case is also based on MCMC sampling
(section 4.2.3): In the previously mentioned paper, a spiking neuron model is presented, which
is proven to fulfill the properties of a Boltzmann machine and to have the desired underlying
stationary distribution, from which it is then also possible to draw samples. The definition of
this neuron model is briefly summarized in the following.

Obviously, when using spiking neurons, one has to introduce the definition of a spike probability.
Each neuron can emit a spike at any point of time stochastically, depending on its own refractory
state ζk and the refractory function g(ζk), and on the firing rate function fk(uk). The spiking
probability can be interpreted as the transition probability T (k) for going from the current
refractory state ζk to the state where a spike is emitted, namely ζk = τref :

T
(k)
τref ,ζk

= fk(uk) · g(ζk) (26)

This means, that each neuron spikes stochastically, according to the known probability T
(k)
τref ,ζk

,

intending that the refractory state of the current neuron is updated stochastically, either to the
spiking state τref or it is reduced by 1 (until it becomes zero):

ζ
(new)
k =

{
τref if random ≥ T kτref ,ζk ,
max {0; ζk − 1} otherwise.

(27)

The membrane potential uk of a neuron can be computed as the sum of some internal value
(i.e., the bias value bk of this neuron zk), the synaptic input from inside this Boltzmann ma-
chine, computed as sum of the other neurons’ values z\k, weighted according to their synaptic
connections to zk (which is summarized in the vector W k contained in the weight matrix W ),
and a third factor, representing the external input to this neuron. This external input could for
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example be a sum of synaptically weighted values of neurons not belonging to this Boltzmann
machine. As mentioned above, this kind of membrane potential fulfills the neural computability
condition:

uk = bk + z>W k + external inputk (28)

The firing rate function fk(uk) can be computed as the solution of an implicit function, depending
again on the refractory mechanism gk(ζk) and on the membrane potential uk:

fk(uk) ·
∑τref

i=1

∏τref
j=i+1 (1− fk(uk) · gk(ζk = j))∏τref

j=1 (1− fk(uk) · gk(ζk = j))
= euk (29)

5.2.2 More realistic settings

The application of some very specific network settings is clearly described in [14], and it is
also proved analytically to be a sampler which draws its samples from the correct analytical
distribution. But when further dealing with these proofs and mathematical concepts of this
neuron model, a new question might arise.

In this context one might think of a biologically more realistic situation: In biological networks
there is always some delay which might be significant especially when transferring signals be-
tween neurons in different brain areas. Additionally, the postsynaptic potentials might have
some rising and falling time, which is not considered in the previously described theoretically
proven setting, and some neurons might also be able to fire before their refractory period is over,
i.e., based on some relative refractory mechanism, and not on the absolute one considered in the
theoretical model.

What would happen with the sampler and the sampled distributions in combination with settings
which are not theoretically proven? How does the distributions of samples change when using
more realistic settings in a biological sense? How can such changes be explained? Is worth
thinking of such biologically realistic - but analytically not correct - settings, and where are the
borders that should not be exceeded in order to keep the sampled distributions still acceptably
similar to the correct ones?

In order to be able to better analyze these possibilities and network models, and in order to
answer these questions, a new implementation of the neural sampling application was required,
which is described briefly in the following section. The analysis of the various settings is then
shown in section 7.
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5.3 Extension of the SEM model used in this work

In order to apply neural sampling to a practical problem, a specific general model is build, based
on the idea of SEMs. Nevertheless, when dealing with sampling, due to the stochasticity it can
never be guaranteed that always exactly one unit is active, and that at the same time never
more than one unit is active. Additionally the notion of time has to be taken into account when
dealing with neural sampling.

Therefore, for the applications of the neural sampler described later on in this work, some
extensions to the basic SEM model are introduced, in order to be able to apply neural sampling
to SEM-like units of a very specific structure.

5.3.1 Introduction of an additional unit to encode the background hypothesis

Consider a very simple model, consisting of N input units y and K binary output units z as
shown in figure 5.2. It is relatively simple to guarantee that not more than one of the output
units is active at a time, by introducing (infinitely high) inhibitory weights among them: If one
unit zk is active, it will inhibit all the other ones.

Figure 5.2: Adding a background hypothesis to the SEM unit: The output units z all have the
same receptive field on the entire set of input units y. The model on the right hand side has
been extended by a hypothetical unit z0, which adds a background hypothesis if none of the
other cause neurons is active, in order to fulfill the requirements of SEM. The random variable
z0 is not represented by a neuron.

For plastically modeled, stochastically spiking units it cannot be excluded however that at some
points in time none of the outputs is active. Therefore, an additional (non plastic) unit z0 is
introduced. In the following it will be shown that the resulting model represents a Boltzmann
machine, which can be used for neural sampling, according to the definition.
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First of all, the posterior of this simple model has to be found:

p(z|y) =
p(z) · p(y|z)

p(y)
(30)

=
p(z) · p(y|z)∑
z′ p(z

′) · p(y|z′)
(31)

Thus, the likelihood of the input units given the outputs should be computed. In this context it
should be noted that the input units y are conditionally independent, given the output neurons
z, which is the reason why the likelihood of the entire input vector can be split up into the
likelihoods of the single units:

p(y|z) =
N∏
i=1

p(yi|z) (32)

As mentioned, in SEMs the binary output units z are defined such that exactly one of them
is active at a time. The same holds for the extended model (including the non-plastic unit z0

encoding the background hypothesis). When taking this into consideration, one gets:

p(yi = 1|z) =

K∏
k=0

p(yi = 1|zk = 1)zk (33)

= elog
∏K
k=0 p(yi=1|zk=1)zk (34)

= e
∑K
k=0(zk·log p(yi=1|zk=1)) (35)

Generally, in SEMs: Wki = log p(yi = 1|zk = 1). But for the new extended model, this has to
be further explored, introducing new weights Vki for the connections between input and output
units:

p(yi = 1|z) = . . . (36)

= e
∑K
k=1 zk·log p(yi=1|zk=1)+(1−

∑K
k=1 zk)·log p(yi=1|z0=1) (37)

= elog p(yi=1|z0=1) · e
∑K
k=1

(
zk·log

(yi=1|zk=1)

(yi=1|z0=1)

)
(38)

= elog p(yi=1|z0=1) · e
∑K
k=1(zk·Vki) (39)

Knowing that in this case the entire set of inputs y encodes a single multinomial variable x (of
the SEM model), the likelihood can now be written as:

p(y|z) =

N∏
i=1

eyi·(log p(yi=1|z0=1)+
∑K
k=1(zk·Vki)) (40)

= e
∑N
i=1(yi·log p(yi=1|z0=1)) · e

∑N
i=1(yi·

∑K
k=1(zk·Vki)) (41)

= e
∑N
i=1(yi·log p(yi=1|z0=1)) · ez>·V ·y (42)

Having now found a way to express the likelihood, the same has to be done for the prior of the
output units z. Here it has to be ensured that the requirement of a SEM holds, i.e., that exactly
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one of the outputs is active. This is done by setting the probability of all other combinations
of output unit values to 0. Then it is again possible to take advantage from this property when
factorizing the prior. Additionally a bias vector b is introduced.

p(z) = δ

(
K∑
k=0

zk, 1

)
·
K∏
k=0

p(zk = 1)zk (43)

= δ

(
K∑
k=0

zk, 1

)
· e
∑K
k=0(zk·log p(zk=1)) (44)

= δ

(
K∑
k=0

zk, 1

)
· e
∑K
k=1(zk·log p(zk=1))+(1−

∑K
k=1 zk)·log p(z0=1) (45)

= δ

(
K∑
k=0

zk, 1

)
· elog p(z0=1) · e

∑K
k=1

(
zk·log

p(zk=1)

p(z0=1)

)
(46)

= δ

(
K∑
k=0

zk, 1

)
· elog p(z0=1) · e

∑K
k=1(zk·bk) (47)

Now the so obtained prior is rewritten in terms of a Boltzmann machine:

The first term in the prior ensures that exactly one of the z units is active. The same effect can
also be obtained by multiplying a matrix W on both sides with the output units, i.e., z>Wz,
if the matrix has a special form, namely a 0 diagonal, and (infinitely) inhibitory entries else. It
does not influence the result when an additional constant factor 1

2 is multiplied with this term.
One should note that if the δ is substituted with this new term, this term does not guarantee
any more that exactly one state is active, as the z0 unit is not included into this product. But
it has to be mentioned that due to the last term in line 45, this is ensured nevertheless.

The second term of the prior does not depend on the output vector, and can thus be seen as
some constant normalizing factor 1

Z = elog p(z0=1).

In this way one gets a Boltzmann machine prior:

p(z) =
1

Z
· e

1
2
·z>Wz+z>b (48)

Now the prior and the likelihood can be taken to rewrite the posterior:

p(z|y) =
p(z) · p(y|z)∑
z′ p(z

′) · p(y|z′)
(49)

=
1
Z · e

1
2
·z>Wz+z>b · e

∑N
i=1(yi·log p(yi=1|z0=1)) · ez>V y∑

z′ p(z
′) · p(y|z′)

(50)

All the terms that do not depend on z can be written in terms of a constant, which results in
the posterior of a Boltzmann machine:

p(z|y) =
1

Z ′
· e

1
2
·z>Wz+z>(b+V y) (51)
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5.3.2 A model consisting of multiple extended SEMs

As now the idea of how to overcome the situation where no output unit inside a SEM would
spike has been explained, in the following it will be explained how multiples of such extended
SEMs can be used in parallel, as it is shown in the simple sketch of figure 5.3.

In this further extension, multiple such models, which have been shown to form a Boltzmann
machine, are put next to each other, by adding lateral connections between the output units of
different extended SEMs. Some additional hidden units x are introduced, and connected to the
output units z.

Figure 5.3: Multiple of the previously explained models are used in parallel, introducing lateral
layer connections between the output units z and additional hidden units x connected to the
outputs.

The internal structure of the single models is not influenced by this further extension, and the
new introduced connections are guaranteed to be symmetric. Thus, this step is allowed due to
the definition of a Boltzmann machine, and results in a new, even bigger Boltzmann machine.

5.3.3 Introducing the concept of time in this model

The last concept which is missing in this model such that neural sampling can be applied to
it is related to time. Therefore, a spiking input model is defined, which introduces a temporal
aspect. In the following again the simple model of figure 5.2 in order to keep a better overview.
In the previous section it has been explained how this simple model can be extended to a larger
Boltzmann machine, which can also be done afterwards with this model in the same way.

Assume that any output neuron zk might have “caused” one or more spikes during the previous
τy milliseconds, which is the PSP time constant of the input units y, as it is shown in figure 5.4.
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Figure 5.4: Extension of the generative model to spiking input: A cause or output unit zk aims
to explain the recent spikes in the input which occurred in the time interval τy. The duration
of the time interval matches the PSP time constant of the input units y.

The time period τy is subdivided into T bins each of length ∆t:

τy = T ·∆t (52)

This means that if the number of bins R goes to infinity, the bin size ∆t will contemporaneously
go towards zero, such that it results in a constant PSP time constant τy.

As mentioned, an output might have caused several spikes in the input units, as it is shown in
figure 5.5. y′(t−S) denotes the input units y at exactly S time steps (or bins) before zk = 1, and
the state of the input vector y(t) describes the amount of spikes occurred during the previous
τy milliseconds:

y(t) :=
T∑
S=1

y′(t−S) (53)

When now coming back to the model and its probability distributions, an additional missing
value has to be taken into account, as it is sketched in figure 5.6.

An active output unit zk might either have “caused” exactly one spike at a past moment in time
t−S with a probability of α = p(1 spike in y|zk = 1), or with probability 1−α it has “caused”
some missing value, which stands for the event that no spike has occurred.

Thus the likelihood has now combined with this new probability α, resulting in:

p(yi = 1|zk = 1) 7→ p(y
(t)
i = 1|zk = 1) · α (54)
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Figure 5.5: Inference in the model with spiking input: Each spike of y′ defines the onset of a
PSP of time τy, which means that the PSP then lasts for the time period τy. The number of

spikes is counted and expressed as y
(t)
i .

Figure 5.6: Sketch of the likelihood of input unit spikes, given the activity of an output unit
zk. In each time bin the input is only encoded with probability α, otherwise it is missing. This
approach results in a sparse input coding and limits the firing rate of the input.

However, this change in the likelihood does not influence the weight matrix:

Vki = log
p(y

(t)
i = 1|zk = 1) · α

p(y
(t)
i = 1|z0 = 1) · α

(55)

= log
p(y

(t)
i = 1|zk = 1)

p(y
(t)
i = 1|z0 = 1)

(56)

Nevertheless, the definition of the likelihood itself has to be modified in order to adapt to the
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new time-dependent situation of the model:

p(y(t)|z(t)) =
T∏
S=1

N∏
i=1

p(y
′(t−S)
i |z(t)) (57)

= e
∑N
i=1

(
y
′(t)
i ·

∑T
S=1

(
log p(y

′(t−S)
i =1|z0=1)

))
· e
∑N
i=1

((∑T
S=1 y

′(t−S)
i

)
·(
∑K
k=1(zk·Vki))

)
(58)

= e
∑N
i=1

(
y
′(t)
i ·

∑T
S=1

(
log p(y

′(t−S)
i =1|z0=1)

))
· e
∑N
i=1

(
y
′(t)
i ·(

∑K
k=1(zk·Vki))

)
(59)

= e
∑N
i=1

(
y
′(t)
i ·

∑T
S=1

(
log p(y

′(t−S)
i =1|z0=1)

))
· ez>·V y (60)

Similar as before, the first term of this product cancels out in the computation of the posterior,
as it does not depend on the outputs, and can therefore be interpreted as some normalization
value.

Therefore this modification of the model, introducing the concept of time and spikes, does not
affect the definition of the posterior, such that the model still is a Boltzmann machine.

Therefore, also this extended model can be used in parallel and with additional hidden units, as
described in section 5.3.2, which will be done for the application of the sampler in section 8.

At this point the concept of a firing rate can be introduced. The firing rate measures the number
of spikes per time period. Thus, the so-called group firing rate denotes the number of spikes in
a group Gj of units, which is encoded in the probability α, occurred per time ∆t:

νj =
Number of spikes in group Gj

∆t
(61)

=
α

∆t
(62)

Based on this, the number of bins can also be defined as:

T =
τy
∆t

(63)

=
τy · νj
α

(64)

Additionally to the group firing rate, during learning, also the firing rate of the background
hypothesis will be of importance, which is defined as the number of spikes “caused” by the
background hypothesis unit z0 per time:

ν0i =
p(yi = 1|z0 = 1) · α

∆t
(65)

= p(yi = 1|z0 = 1) · νj (66)

In general one should note that the weight matrix V describes the relation between the likelihood
of the inputs given the output neurons zk for k ∈ [1, . . . ,K] and given the background hypothesis
encoded in z0. This is the same as looking at the firing rates, meaning that

Vki = log
p(y

(t)
i = 1|zk = 1)

p(y
(t)
i = 1|z0 = 1)

(67)

= log
νki
ν0i

(68)
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5.3.4 Learning in this expanded model

In the following, the traditional learning rule of SEMs [56][54][55] will be adapted to the new
extended SEM structure, such that it can then be used to learn the model when applying neural
sampling to it in section 8.

The traditional learning rule for SEMs is defined in [56][54][55] as:

∆Wki = η · zk ·
(
yi · e−Wki − 1

)
(69)

In a first extension of SEMs, an additional non-plastic neuron z0 encoding the background
hypothesis and ensuring that always an output unit is active, has been added to the model. The
only effect this has on the learning rule of the weights between inputs and outputs is that now
also the log-likelihood of the inputs given the new added neuron has to be considered. This
gives:

∆Vki = η · zk ·
(
yi · e−Vki−log p(yi=1|z0=1) − 1

)
(70)

In order to apply neural sampling to a generative model, this has to be defined in terms of time
which has been done in the previous extension of the SEM model. When now also taking into
account this aspect of time in the learning rule, one obtains:

∆Vki = η · zk ·

(
T∑
S=1

(
y
′(t−s)
i · e−Vki−log(p(yi=1|z0=1)·α) − 1

))
(71)

= η · zk ·
(
y

(t)
i · e

−Vki−log(p(yi=1|z0=1)·α) − T
)

(72)

= η · zk ·
(
y

(t)
i · e

−Vki−log p(yi=1|z0=1) · 1

α
− τy · νj

α

)
(73)

=
η

α
· zk ·

(
y

(t)
i · e

−Vki−log
ν0i
νj − τy · νj

)
(74)

= η′ · zk ·
(
y

(t)
i · e

−Vki−log
ν0i
νj − τy · νj

)
(75)

This is the learning rule which is then used in section 8, when neural sampling is applied to a
simplified model of vision. More details of how exactly the learning rule is then used are given
in section 8.2.
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Part II

New contributions

6 A highly configurable software framework for neural sampling

6.1 Structure of the implementation

In the following the implementation of the neural dynamics sampler, realized in C++ with
additional interfaces for accessing it through Matlab and Python, is described briefly, including
the specification of the available functionalities.

A simplified class diagram of the neural dynamics sampler implementation and its interfaces is
shown in figure 6.1. The following sections will briefly cover the structure, which is described in
more detail in the technical manual of the sampler.

For performance issues, the core of the sampling network simulator is written in C++, using
the GSL (Gnu Scientific Library, at http://www.gnu.org/software/gsl) and the Eigen library
(http://eigen.tuxfamily.org). It is written in an object- and component oriented fashion,
such that it becomes modular and thus it is easy to exchange, add or modify single functions or
objects.

Summarizing, the structure of such a sampling network can be described in the following way:
Each sampling network consists of a number of neurons, of whom each is a separate object.
Each neuron can thus have a proper firing rate function, characteristic function and refractory
mechanism. The absolute refractory mechanism and some relative one are already implemented,
but additional ones can simply be added, following the extension guidelines in the technical
manual. Each neuron can also have its proper PSP shape specified. Several different types are
already pre-implemented, and also here additional ones can be written and used in an easy way.

The whole network is used by the sampler. Each network consists of one or more neurons, and
each network has some type of membrane potential associated. Currently only the membrane
potential of a Boltzmann machine is implemented. The membrane potential specifies the types
of synapses and synaptic weights, and the learning rules.

Note that if someone is interested in the details of how this implementation of neural sampling
can be used, modified or extended, one might refer to the technical manual in the appendix.
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Figure 6.1: Rough class structure and interfaces to access the neural dynamics sampler
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6.2 Interfaces

As it is also shown in the class diagram in figure 6.1, there are various possibilities to use the
neural dynamics sampler implementation.

When using C++, a developer might use the classes of the neural dynamics sampler, such as
Sampler, Neuron, or PspShape directly, having probably the best overview over the processes
going on inside the implementation.

If someone wants to avoid dealing with the memory management by his own, i.e., creating and
destroying each object that is needed, then one might consider using the SamplingNetwork class
- or even the SamplingNetworkSimulator, which handles additional objects for the user. These
classes works as some kind of black box portal to the neural network simulator, such that users
can simply call the available methods, which take care of objects and (more or less) complex
structures.

For Matlab users, the access to the neural dynamics sampler is provided through the use of MEX
functions. When using them, one will not have to care about memory management in detail,
but only about the main object, i.e., the neural dynamics sampler itself. Due to the fact that
complex C++ objects cannot be ported to Matlab directly, they are kept in C++ internally, and
only the address where this main object is located in memory is passed to Matlab. Therefore,
this address has to be stored, until the sampling network object is deleted - by calling the
destructor explicitly.

Also Python users are able to use the neural dynamics sampler. This interface is realized through
the use of SWIG (Simple Wrapper and Interface Generator, at http://www.swig.org). The
C++ black box class SamplingNetworkSimulatorFloat (using no internal other objects as
parameters) is wrapped to a Python object, which can be created, used and destroyed through
Python. The parameters which in C++ require the library Eigen, are wrapped to Scipy Python
data types, such that vector and matrix parameters can be efficiently handled also in Python.
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6.3 Evaluation

In order to be able to evaluate the implementation, it was directly compared to the previously
existing Python implementation.

For all of the following comparisons and experiments, the same settings were used (if not indi-
cated differently, namely randomly connected Boltzmann machines of 100 neurons, whose prob-
abilities were estimated from 105 samples with W ∼ N (0; 0.15), b ∼ N (−2; 0.25), no synaptic
delay, a precision of δu = 10−4 and 105 milliseconds of mixing time.

In a first experiment, the implemented sampler was compared to standard Gibbs sampling (in
the same network), such that it could be shown that the neural sampler samples from the same
distribution (which is the correct one).

The firing pattern of 40 neurons in the same network over 104 milliseconds is shown in figure
6.2. The firing rate in this case is at about 7.2Hz. The plot shows the spikes in black, and the
refractory period of the neurons in gray. As the absolute refractory mechanism is used, neurons
are not able to fire during the refractory period.

Figure 6.2: Firing rates of 40 neurons with a firing rate of 7.2 Hertz

The execution time was then additionally compared to the previously existing Python imple-
mentation: With the same settings the C++ implementation (using the Matlab interface) was
about 3 times faster than the Python implementation of the arbitrary refractory mechanism: For
initializing and resampling the previously described neuron model for 105 milliseconds the exist-
ing Python implementation required 480 seconds, while the new C++ implementation through
Matlab finished in 150 seconds.

Note that when using the C++ implementation directly (i.e., without interfaces), the execution
gets a bit faster, as no conversion is required.
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6.4 Functionalities of the neural sampling implementation

In this new implementation, different kinds of settings can be used: The underlying network
model can be exchanged by modifying the membrane potential. The refractory mechanism can
be selected, as well as the type of PSP shape. And some global synaptic delay can additionally
be set for the entire sampling network.

6.4.1 Membrane potential

The underlying neuron model of the sampling network can be modified by setting or changing
the membrane potential. The only kind of membrane potential implemented currently is the
one of a Boltzmann machine. As described already in section 5.2, a Boltzmann machine fulfills
the neural computability condition, and is therefore a valid setting. Due to the object-oriented
way of implementation it is quiet easy to add other types which - of course - should also fulfill
this necessary condition.

6.4.2 Refractory mechanism

A neurons’ state is interpreted as “active” for a certain period - the refractory period - after a
spike has been emitted. This means, that after the emission of a spike the neuron’s refractory
value does not return to its original “inactive” state immediately and the activity of a neuron
is measured as zk = (ζk > 0). In this interpretation, the ζk value of a neuron rises to ζk = τref
(i.e., the highest possible refractory value) at the moment of a spike of neuron k and it decreases
linearly after that until it reaches ζk = 0.

The refractory value is therefore some way to measure the time since the last spike. There are
two major different classes of refractory mechanisms, whose state is depending on the current
refractory value of a neuron: absolute, and relative mechanisms.

Figure 6.3: Refractory states ζk of a neuron zk, being in the interval [τref ; 0], and the corre-
sponding transition probabilities T (k) with an absolute refractory mechanism (left) and shape
of an absolute refractory mechanism of decreasing refractory values (right): A neuron is only
able to re-emit a new spike if has returned to its “inactive” state ζk = 0, or if it would return to
the state in the next step at ζk = 1.

From these different kinds, only for the absolute refractory mechanism the above properties have
been proven to be fulfilled. An absolute refractory mechanism allows a neuron only to emit a new
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spike if the refractory period (of the previous spike) is over, i.e., the only possible transactions
to go to a new spike are at ζk = 0 and ζk = 1. The sequence of refractory states of one neuron
having an absolute refractory mechanism is shown in figure 6.3: The nodes correspond to the
different refractory states ζk, while the transitions (and their probabilities) are represented by
arcs. The right plot in this figure shows the shape of such a refractory mechanism, where a spike
is only allowed if the neuron is inactive.

On the other hand, there exists also the concept of relative refractory mechanisms, which might
have various shapes, always going from g(ζk = 0) = 1 to g(ζk = τref ) = 0, e.g., a sigmoidal
function (see figure 6.4). Such relative refractory mechanisms allow a neuron also to emit a new
spike - with a certain probability - if the refractory period of the previous spike is not yet over,
i.e., if the neuron is still in its “active” state. A sampler using this relative refractory mechanism
has not been proven to sample from the “correct” probability distribution, but it has further
been shown in experiments that it is then sampling from very different distributions.

Figure 6.4: Some relative refractory mechanism, where transitions from any state to the spiking
state τref are possible at any time with some probability T (k), but still the probability of imme-
diately subsequent spikes is low, even though it starts to recover immediately (and not stepwise
at the end of the refractory period).

6.4.3 PSP shapes

For a neuron, the concept of a PSP shape can be introduced: Postsynaptic potentials are changes
in the membrane potential of a neuron. As soon as a neuron emits a spike, this postsynaptic
potential of this neuron rises to a certain rate, and it then can stay active for a certain period,
depending also on the refractory period. In this period the potential can stay constant, or it
might decay slowly, until it returns to 0 or a very low value after the refractory period is over.

There two major different concepts of PSP shapes: They can either be renewal or additive. The
difference between these two is very clear in combination with a relative refractory mechanism,
namely in the situation of the emission of a new spike when the neuron is still active, i.e., when
the refractory period is not yet over.

As the term already indicates, when using additive PSP shapes, the potential (i.e., the PSP
value) of a new spike is added to the current one. On the other hand side, when renewal PSPs
are used, the previous spike becomes irrelevant, and the neuron’s potential is set to the one of
the new spike.
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Additionally, there exist different shapes a postsynaptic potential could have. The current
implementation of the neural sampler includes three different ones: rectangular, exponential
and alpha-shaped ones.

Rectangular PSPs shown in figures 6.5 and 6.6 are the only ones proved to be correct - at least
in combination with the absolute refractory mechanism. As it can be seen in these plots, the
potential of a neuron rises to some value (in this case to 1) if a spike is emitted, and it stays at
this value until it returns to 0, which is the “inactive” state, after the refractory period is over.
Therefore, this kind of PSP shape is biologically not very realistic, due to these high (infinite)
rising and falling rates.

Figure 6.5: Rectangular renewing PSP shapes: In case of a relative refractory mechanism, if the
neuron re-emits a spike during its refractory period, this new spike revokes the previous rise in
the postsynaptic potential, and the new spike is “counted” instead.

Figure 6.6: Rectangular additive PSP shapes: All subsequent rises in the potential are summed
up, i.e., the previous spike is not revoked, but the new increase in the potential is added to it.

When talking about rectangular PSPs with an absolute refractory mechanism there is no dif-
ference between renewal and additive PSPs, as in any case a new spike can occur only after the
refractory period is over, and in this situation the potential caused by the previous spike has
returned to 0 anyways.

Another possibility of such PSP shape types are exponential PSP shapes, shown in figures 6.7
and 6.8. These shapes have again an infinitely high rising rate - which renders them biologically
unrealistic - but they then have an exponential falling rate. There are thus two major settings
for such shapes - namely the height and the falling rate. Depending on these parameters, such
exponential PSP shapes can approximate the true distribution at different precisions.

In various experiments it has been found that the settings of these parameters have a rather
strong influence on the difference between the sampled and the correct distributions. Therefore
it has also been observed which parameters would be the “best” ones for various network settings
in terms of a minimal Kullback-Leibler divergence to the correct distribution.
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Figure 6.7: Exponential renewing PSP shapes

Figure 6.8: Exponential additive PSP shapes

It has been discovered that the optimal parameters for such PSP shapes, leading to the best
approximation of the true distribution, lead to an integral under this PSP be only slightly lower
than the integral under a rectangular PSP, while the optimal height should be between 2 and
3. This can also be seen in figure 6.7, where the shape (and integral) of a rectangular PSP is
sketched in gray. The same is also true for additive exponential PSPs, with the only difference
that in this case the integral should be again slightly lower. Note that these experimentally
gained theories are based on tests in various network models of two to eight neurons with
different synaptic weights and connections, all leading to the same (or very similar) results.

A third class of PSP shapes are alpha-shaped PSPs. The are supposed to be a rather biologically
realistic kind of postsynaptic potentials, shown in figures 6.9 and 6.10. Their precision is based
on three different parameters, namely the height, the rising rate and the falling rate of a PSP
shape.

Figure 6.9: Alpha-shaped, renewing PSPs: Difference between two different exponential func-
tions

Again, the settings of these PSP shapes influence the difference between the sampled and the
correct probability distributions. And also in this case, various parameters were observed,
searching for the “optimal” settings, in terms of the minimal Kullback-Leibler divergence.

In the same way as for exponential PSP shapes, also here the various settings were tested for
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Figure 6.10: Additive alpha-shaped PSPs

different sizes of neuron models, and different strengths of synaptic weights and connections. In
this case it was observed, that the integral under such an optimal PSP shape is nearly equal to
the integral under a rectangular PSP shape, which can be seen in figure 6.9, where the shape of
a rectangular PSP is sketched again in gray. Also here, when using additive PSPs the integral
under the optimal PSP shape is slightly lower than the one under rectangular PSPs (and under
the optimal renewal PSP shape).

All of these now described kinds of PSP shapes are already included in the current version of
the neural sampling implementation, and additional ones could easily be added to it.

6.4.4 Global synaptic delays

It is also possible to set some arbitrary global delay to all synapses in the network model. In
this way, the realistic situation can better be simulated, as in biology information cannot be
passed through synapses without any (very low) delay.

The concept of such a synaptic delay is shown in figure 6.11. In some situations this delay does
not influence the correctness of the information. Such a situation is shown in green in the figure.
But in other situations - shown in red - the delayed state of the neuron can be interpreted as
“wrong” information that is passed to the other neurons.

Figure 6.11: Idea of synaptic delay: Other neurons get informed only about delayed (previous)
states of a neuron: At the green point in time there is no difference, at the red points these
information is not correct any more.

Therefore, such a global synaptic delay can have influences on the probability distribution from
which the samples are drawn, but they render a network model much more realistic in biological
terms.
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6.5 Example of use

In order to get a better idea about how this implementation of the neural sampler works and
can be used, the process of sampling the network and tracking the firing rates of all neurons in
this time period is shown in a very short and simple example, written in python.

Before the sampling process can start, some minimalistic model of the network itself has to be
set up. This is shown in the following, where some parameters have already been specified, like
the precision and the global delay of the whole network:

net = sampler.SamplingNetworkSimulatorFloat()

dt = 1.0

du = 0.001 # precision: milliseconds

u_min = -15

u_max = +15

delay = 0 # global synaptic delay

net.createSampler(dt,du,u_min,u_max,delay)

Note that there are some default parameters for almost every setting, in case if someone is not
sure about a possible choice of parameters, but in any way most of them should be chosen
specifically to be able to really control the model and keep the overview.

After having set up the network itself, the neurons have to be added to it, specifying the number
of neurons to be added at once, the length of the refractory period, as well as the refractory
mechanism itself, some possible external input to the different neurons, and the shape (and
parameters) of the PSPs:

num_neurons = 8

tau_ref = 20.0 # refractory steps (period: relative to dt)

ref_mechanism = 1 # absolute refractory mechanism

ext_input = 0 # external input to the neurons (vector or 0)

psp_type = 0 # rectangular psp shapes

# no additional psp parameters required

net.createNeurons(num_neurons,tau_ref,ref_mechanism,ext_input,psp_type,0,0)

Of course there could also be added more neurons in a sequence, having different parameters,
but for equal neurons it might be convenient to use the predefined method which adds a certain
number of same neurons to the model automatically.

The last important setting is the specification of the weight matrix, and the membrane potential.
The following code snipped shows how a Boltzmann machine is set up, for which the weight
matrix and the vector of bias values are known explicitely:

#Creating Boltzmann machine membrane potential

W = scipy.zeros((num_neurons,num_neurons), dtype=float) #weight matrix

b = scipy.ones((num_neurons,1), dtype=float) * -1.0 #bias values

self.net.createBoltzmannMembranePotential(W,b)

The last step before the sampling network can really be used is to set up the sampler. This
command finalizes some internal variables, and checks whether the model settings are compatible

48 6 A highly configurable software framework for neural sampling



Analysis of Probabilistic Inference in Recurrent Networks of Spiking Neurons

among themselves, e.g., whether the weight matrix contains exactly one weight vector of the
correct length for each of the neurons in the network. This is done, by calling the following
command:

self.net.prepareSampler(0)

After this, the model is ready to be used for sampling. It is possible to track various internal
variables that might be of interest. In the following snippet, the network is advanced for 1000
milliseconds, and the firing patterns of all neurons in the network are tracked, and returned
afterwards:

net.storeFiringRates(True)

net.advance(1000)

firing_rates = net.getFiringRates()

For more detailed information on all of these methods and on the available parameter settings,
as well as on the other functions and methods that are provided by the neural sampling imple-
mentation, please refer to the technical manual.
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7 Neural sampling with more realistic neuron models

7.1 Limits of theory

When thinking of a more realistic neuron model with varying, non-rectangular, hill- or alpha-
shaped PSPs, and relative refractory mechanisms, in combination with synaptic delays and
limited sampling time, one reaches the limits of theory and proofs [15]. In biology, PSP shapes
are assumed to be affected by some rising and falling time which is not possible at infinite speed
as is it would be required for rectangular PSPs.

It could thus be stated that the rectangular PSP shapes, which have been proven to sample from
the correct distribution in [15], are not very plausible in a biological sense. It has rather been
found these shapes of postsynaptic potentials are alpha- or even hill-shaped, depending among
others on the exact position where the potential is measured [77].

It is also known that the transmission of signals or potentials through synapses might take some
time. These delays vary from a few (one to two) milliseconds up to higher values when signals
have to be transferred between different areas of the brain [65].

Some of these aspects are covered in the following sections, dealing with such biologically more
realistic but not analytically exact sampling neuron models. The parameters and factors consid-
ered are various PSP shapes and refractory mechanisms, as well as global synaptic delays and
realistic situations where only limited samples can be acquired.

In section 7.2 the influences of both, PSP shapes and also refractory mechanisms, are observed
in an network model of eight neurons, also including combinations of these settings. These
parameters and the various combinations are observed and analyzed there.

Section 7.3 includes the analysis of the influence of global synaptic delays on the sampled distri-
butions in a network. These influences have been observed in various networks of different sizes
and with different connections (inhibitory and excitatory), while this section shows the effects
on a tiny two-neuron network in order to make the consequences of delays better visible.

Finally, section 7.5 contains the observation of an even more realistic network model, combining
the different biologically realistic factors in addition to a realistic - limited - time for sampling.
This experiment should analyze whether in some situations it might be reasonable to use non-
realistic sampler settings, when the sampling time is in any case limited.

Note that the following diagrams and results all cover quiet small network models with low
numbers of neurons, in order to keep a clearer overview over the evolution of the situation.
An additional problem faced with very large networks is the correspondingly huge amount of
different samples: With a finite sampling time so-called zero-states cannot be avoided, i.e.,
samples that are theoretically possible with a very low probability, but in practice do never
occur. This leads to additional problems in computing metrics and measurement values, like
the KL-divergence (see section 4.1 for more information about the problematic consequence
of zero-states). Additionally, with limited computational resources like memory and time the
number of neurons gets problematic for the analytical computations quiet soon, as for them the
exponentially increasing amount of samples have all to be considered.

In order to overcome these problems, smaller networks have been chosen, which are models
consisting of two neurons where the underlying probability distribution is quiet obvious and
thus completely visible and available for comparisons, as well as larger models consisting of
eight neurons, still comprehensible, but already more complex and more general.
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7.2 PSP shapes and refractory mechanisms

In this section the influence of PSP shapes and refractory mechanisms on the resulting dis-
tribution of samples is observed. In order to analyze these influences, a small network model
- representing a Boltzmann machine - was set up, consisting of eight symmetrically connected
neuron-like units, with a Gaussian-distributed randomly generated weight matrixW ∼ N (0; 0.2)
having a zero-diagonal (thus no self-interaction) and a random bias vector b ∼ N (−1; 0.5). The
sampling time in all these cases was at 107 milliseconds, i.e., 104 seconds.

All used PSP shapes are optimized in terms of minimal KL divergence to the analytically
correct distribution as described in section 6.4.3. When observing renewal PSP shapes, it was
discovered that in any of these experiments they caused the distributions to be more exact than
with additive PSPs, but nevertheless in the following only samplers with additive PSPs are
shown, as the renewal ones are supposed to be not very biologically realistic.

In these first observations, no synaptic delay is used. Instead this is then done in section 7.3.
The refractory period of these neurons is at τref = 20 milliseconds. For all of these experiments
the firing rates were about 20 to 30 Hz, depending of course on the refractory mechanisms,
the PSP shapes and their parameters, and therefore varying slightly throughout the different
experiments.

For a first analysis, the refractory mechanism was chosen to be the absolute one, and the different
PSP shapes were compared to the analytically computed distribution of samples. In order to be
able to better visualize the 28 = 256 samples in figure 7.1, the samples were re-ordered according
to the height of their relative frequency q(z) using the analytical distribution.

Figure 7.1: Sampled distributions of 8 neurons using various (additive) PSP shapes and the ab-
solute refractory mechanism: Samples sorted according to the height in the correct distribution:
Rectangular PSPs lead to correct sampling, exponential PSPs cause quiet incorrect sampling.
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In this plot, the X-axis represents these samples - reordered - while on the Y-axis the relative
frequencies of the various samples are plotted, in a log-scale. The plot compares the correct and
analytical computation to various samplers.

The sampled distributions of the rectangular PSP shapes (using the absolute refractory mech-
anism) are equal to the analytically computed distribution. The small differences that can still
be observed between these two distributions are due to the still limited sampling time.

Figure 7.2: Relative frequencies in relation to the analytical distribution, brought to the baseline:
Big difference between analytical distribution and sampler with exponential PSPs.

In order to be able to better observe the differences in these sampled distributions, they were
analyzed in relation to the analytical distribution: In the second plot in figure 7.1 the analytical
distribution is brought down to the X-axis, and all other distributions are shown in this relation.
In this plot one can see very well that the exponential PSPs perform worst, while the rectangular
ones are perfect, with limited precision.

In order to make the setting a bit more realistic, the absolute refractory mechanism was replaced
by a relative one, bringing the neuron model a step further away from the proved theory, and
nearer to biologically plausible settings.

Again, various PSP shapes - namely rectangular, exponential and alpha-shapes - were observed
by sampling over some time period, and the resulting distributions or relative frequencies of
samples were plotted in figure 7.3.

Again the samples on the X-axis were sorted according to the relative frequencies in the analytical
distribution, and the height of the relative frequencies was plotted on a log-scale to better
visualize the differences.
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Figure 7.3: Sampled distributions: The samples sorted according to their height in the correct
distribution, relative frequencies on a log-scale: No correct sampling with rectangular PSPs,
alpha-shaped PSPs working quiet good.

When looking at the digram, one can observe that the exponential PSPs again are the worst
in approximating the correct distribution, even though now the similarity to the analytical
distribution is higher.

The details can again be better observed when looking at figure 7.4, where the various distri-
butions are plotted relatively to the analytically computed and correct distribution, which has
been moved to the X-axis, representing now the baseline.

The rectangular PSPs are not leading to correct sampling any more, while for the other two
PSP shapes - exponential and alpha-shaped ones - the relative refractory mechanism leads to
an improvement in approximating the correct, analytically computed distribution.

The differences between the various distributions are already visible in these figure, but they
can be better analyzed when looking at the Kullback-Leibler divergences to the analytical dis-
tribution. The KL divergences are plotted in the diagram in figure 7.5 on the Y-axis.

All used PSP shapes are additive ones. The KL divergences of the first two bars (yellow and
orange) are computed using rectangular PSPs, the second two bars (blue and violet) had expo-
nential PSP shapes, and the last two bars (green) were with alpha-shaped PSPs. The first bar
of each pair used the absolute refractory mechanism, and the second bar a relative one.

As mentioned before, the distance between the exact sampler (yellow) and the analytical distri-
bution can be explained by the sampling time which is always limited in practice.

As another quiet obvious finding one can see that rectangular PSPs do not work correctly any
more, when using a relative refractory mechanism.

54 7 Neural sampling with more realistic neuron models



Analysis of Probabilistic Inference in Recurrent Networks of Spiking Neurons

Figure 7.4: Relative frequencies in relation to analytical distribution, drawn on X-axis: Alpha-
shaped PSPs working quiet good. In general: smaller difference of non-rectangular PSPs when
using relative refractory mechanisms

On the other hand, one can observe also immediately that both non-rectangular, i.e., exponential
and alpha-shaped, PSPs are approximating the correct distribution better when using a relative,
and not the absolute refractory mechanism.

In general, renewal PSPs lead to even lower KL divergences, but again they are not included in
this figure due to their limited relevance in a biological sense.

A rather more interesting observation is the performance of alpha-shaped PSPs using the rel-
ative refractory mechanism: Already with this experiment one could imagine that in certain
situations it might be worth thinking of having more realistic network models and thus taking
this (relatively small) loss.

When observing different kinds of networks with alpha shaped PSPs and the relative refractory
mechanism, one notices an interesting evolution: While in networks with quiet strong synaptic
connections (like the one mentioned previously) renewal PSPs perform much better, this changes
completely when switching to sparsely and/or weakly connected networks, where the additive
PSPs result in lower Kullback-Leibler divergences.

One should note, that all these findings can be observed in a similar matter when using other
network settings, with the only difference that the errors vary with the network settings (and with
the exception mentioned in the previous paragraph): When having, for example, a extremely
small network of only two - strongly connected - neurons, this effects and differences observed
also in this network model are strengthened even more.
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Figure 7.5: Kullback-Leibler divergences of various sampled distributions to correct analytical
distribution: Rectangular PSPs sample correctly only in combination with the absolute re-
fractory mechanism. Relative refractory mechanisms are better for not-rectangular PSP shapes.
Especially good performance of alpha-shaped PSPs in combination with relative refractory mech-
anisms (Renewal PSPs would lead to even better sampling than these additive ones do).
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7.3 Delays

In this section the influence of (increasing) global synaptic delays on the distribution or relative
frequencies of various samples is analyzed. For this experiment, two different networks were
chosen, one being the same as in the experiments about PSP shapes and refractory mechanisms,
consisting of eight sparsely connected neurons, and a second one which is really simple, such
that it has obvious symmetries (in the correct, analytical distribution), and it is therefore under-
standable how the distributions should be, which is the reason why one can simply understand
the problems caused by delays.

In order to observe the influence of delays in general, the larger network was used, and linearly
increasing global synaptic delay was set, starting from the exact sampler (absolute refractory
mechanism and rectangular PSP shapes) with no delay, until a delay of 30 milliseconds. For
each of these settings for a sampling time of 106 milliseconds, the Kullback-Leibler divergence
to the correct analytical distribution was computed, as it is shown in figure 7.6.

Figure 7.6: Kullback-Leibler divergence of a two-neuron (exact) sampler with increasing global
synaptic delay in a strongly connected two-neuron network to the analytical distribution: The
KL values increase in comparison to the exact sampler (with no delay) until a certain threshold,
reached when the refractory time is over.

This figure shows the values of the Kullback-Leibler divergence on the Y-axis and the increasing
synaptic delay on the X-axis, where the end of the refractory period is marked by a vertical red
line.

It is visible in this plot, that the distance between the exact sampler (with limited sampling time)
and the correct distribution is quiet small, and that the divergence values rise with increasing
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synaptic delays, as it would be expected. Additionally it is visible that after the refractory
period of τref = 20 milliseconds is over, the Kullback-Leibler values remain nearly constant.

These findings can also be observed using different networks. As in the above case it is not
possible to show the evolution of the relative frequencies of all samples, as the number of samples
grows exponentially with the number of neurons in the network, and thus the analysis of the
evolution of all samples becomes infeasible very soon, another setting was used to observe the
detailed effects of delays. Additionally, the correlation between the neurons in a network is much
easier visible in a tiny network, where all influencing factors inside the network can be observed
at any point in time.

Therefore, for additional observations, another network, consisting of only two strongly con-
nected neurons was used, which makes all interactions and internal effects visible. Therefore,
analyzing the influences of increasing delays is much easier in this case.

The observed network is again a Boltzmann machine, this time consisting of only two connected
neuron-like units, having Wkl = w for k 6= l, and bk = −w

2 , where w is a free parameter, for which
various values were tested. It was found that a high coupling leads to more visible and observable
errors in the distributions, and therefore a value of w = +2 was chosen for the following plots
that are shown. In this case additionally the marginal probabilities in the network are at 50%
for both neurons, such that the correlations are visible easily.

In order to observe the influence of delays in an isolated network model, the used sampler is
the exact one, i.e., it uses rectangular PSP shapes in combination with the absolute refractory
mechanism, where it does not matter whether renewal or additive PSPs are used. Therefore, in
the following experiments only the delay (and - of course - the limited sampling time) influences
the correctness of the samplers.

In order to analyze how the sampled distributions change when the global synaptic delay in a
network model increases, the relative frequencies of all samples created by samplers with linearly
increasing delay are plotted in figure 7.7, in comparison to the analytical distribution.

This diagram shows the different samples on the X-axis, where the first digit stands for the first
neuron in the network, and the second digit stands for the second neuron. A 0 means, that this
neuron is inactive, while 1 indicates that this neuron is currently active. The Y-axis shows the
amount of the relative frequency of each of these samples.

The analytical distribution (in red) reflects the symmetries in the network: The marginal prob-
abilities of both neurons are equal (as explained previously both have a marginal probability of
50%), and it is also clearly visible that in this network there is a high correlation between the
two neurons: The probabilities of both neurons having the same state (either both being active,
i.e., 11, or both being inactive 00) are much higher than the probability of one neuron being
active, and the other one being inactive.

The same properties of the analytically computed distributions are also mirrored by the exact
sampler (in yellow), having no delay: Again it is visible that this sampler samples correctly (with
some small variances that can be explained by the limited sampling time), and the sampled
distributions are therefore the same.

As it was expected, with increasing global synaptic delay (in yellow, green an cyan) - linearly
increasing from one to 30 milliseconds - these sampled distributions (and even the marginal
distributions of the two neurons) change drastically.
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Figure 7.7: Sampled distributions of an (exact) sampler with increasing global synaptic delay in
a strongly connected two-neuron network, in comparison to the analytical distribution: Sampled
distributions and marginals change with increasing delay, until a delay of the refractory period.

On the other hand, when observing the samplers with 20 milliseconds or more of delay, one can
observe that the distributions do not change much any more, and they seem to have converged
- to a new distribution. It might be important to mention, that also in this case the refractory
period was set to be τref = 20 milliseconds.

This was the reason why a new assumption came up: This convergence to a new - different -
distribution could be caused by some kind of de-correlation of the (two) neurons in the network.
If the delay is too high - and even higher than the refractory period - then the information
that is passed to the other units in the network is transmitted only at a moment where this
information is already out-dated, as any spike-caused rise in the PSP shape vanishes after the
end of the refractory period.

So as to explore this assumption, the linear correlation between the two neurons in the exact
sampler with increasing synaptic delay was looked at. A plot showing this linear correlation can
be seen in figure 7.8.

The X-axis shows the increasing delay in milliseconds, on a log2 scale, where the end of the
refractory period is indicated by a thicker light gray vertical line at R. The Y-axis indicates the
linear (Pearson) correlation between the two neurons, computed as:

ρz0,z1 =
cov(z0, z1)

σz0 · σz1
(76)

7 Neural sampling with more realistic neuron models 59



Analysis of Probabilistic Inference in Recurrent Networks of Spiking Neurons

Figure 7.8: Linear correlation between the neurons in a strongly connected two-neuron network
of samplers with increasing global synaptic delays (log-scale): Linear de-correlation with a delay
larger or equal to the refractory time τref , shown in red in the plot.

When observing this diagram, one can see immediately, that the linear correlation between the
two neurons, starting at some positive value (as the weights W are strongly positive), decreases
until it comes to a inverse correlation (with a minimum at about 13 to 16 milliseconds).

But the relevant information for the above stated assumption comes after this minimum: When
observing the linear correlation after the refractory period is over, it is visible that the correlation
converges approximately to 0. Thus, it indicates a linear de-correlation, approving the previous
assumption.

Again, note that the same findings are also true for different network models, with the difference
that when using negative weights the correlation line is mirrored on the X-axis of the above plot.
But the linear de-correlation of neurons in such a network model with increasing delays growing
to the size of the refractory time is true for all observed neural networks.

An additional interesting but also mysterious effect can be observed in all executed test runs:
While in the beginning - until about two thirds of the refractory time has passed - the Kullback-
Leibler divergence, and thus the difference to the correct distribution increases monotonically,
it seems that afterwards there is a slight short-temporal decrease in the performance.

In all three of the previously described plots one can see that in the last third of the refractory
time the performance of the sampler is even lower than when the refractory period is over. The
reason for this phenomenon could not be found until now but it might be that the knowledge
about a neuron’s state, which is nearly as old as the refractory period, contains even less in-
formation about the real current state than some “random” information, that can be obtained
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after the refractory period is already over. Especially when looking at the correlation between
the units this feature becomes remarkable: The correlation becomes negative in this phase, and
de-correlation turns into a positive correlation, before the correlation approaches zero.

On the other hand, note also that a low delay of one or two milliseconds, which seems quiet
plausible in a biological sense, does not influence the resulting probability distributions that much
and might therefore be acceptable in some situations where biological realism is important.

7.4 Synaptic connections which are not symmetric

Already when the concept of a Boltzmann machine was invented, it was clear that in real
biological networks the synaptic connections are usually not symmetric [34]. As in this work,
Boltzmann machines are used for neural sampling, the same restrictions of having only symmetric
synapses apply also here. The consequences that result from not using symmetric connections
are shortly covered in the following.

The idea is to use still the same network model as in the previous analyses, consisting of eight
neurons with renewal rectangular PSPs with a refractory period of τref = 20 milliseconds, using
an absolute refractory mechanism and no synaptic delay. The bias vector is still the same, i.e.,
Gaussian distributed according to b ∼ N (−1; 0.5). As a basis, the same (still symmetric) matrix
of Gaussian distributed values W ∼ N (0; 0.2) is used.

The principle according to which the weight matrix W is then modified, is sketched in figure 7.9.
The upper triangular matrix is multiplied with a factor (1 + ε), while (1− ε) is multiplied with
the lower triangular. Thus, ε = 0 indicates the symmetric matrix, while higher values of ε make
the matrix non symmetric. Note that - as the weight values can be both, positive and negative
- this does not force one of the triangles to increase and the other one to decrease.

Figure 7.9: Analyzing non-symmetric synapses: The figure shows the structure of the weight
matrix W , which is modified, resulting in synaptic connections which are not symmetric any
more.

In order to obtain some comparable values, one can look at the Kullback-Leibler divergence
from the sampled to the correct and analytically computed distribution also in this case, which
is shown in figure 7.10. The X-axis denotes increasing values of ε, i.e., increasing changes in the
symmetry, while the Y-axis shows the hight of the KL divergence.

As it was expected, this diagram shows that increasing values of ε cause the Kullback-Leibler
divergence to rise. This means that the farther away one gets from the theoretical requirement of
having symmetric synaptic connections, the higher the systematic error of the sampling network
gets.
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Figure 7.10: The Kullback-Leibler divergence to the correct (and theoretically computed) dis-
tribution: The X-axis shows the increasing values of ε, for Wki 7→ Wki · (1 ± ε), while the
Y-axis indicates the KL-divergence to the correct distribution. The further the network model
gets away from the theoretical requirement of having symmetric connections, the more the KL
divergence between the sampled and the true distributions increases.

7.5 More realistic situations

When talking about a realistic situation like how it could be in a biological experiment, then
one always has only a very limited number of samples - due to the limited sampling time. For
this following observations a new assumption was defined:

Assuming that the sampling time in a network is limited, meaning that in any case there is
only a limited precision possible (in approximating the true distribution) - is there a “large”
additional systematic error of the sampler when using biologically realistic settings instead of
an exact, correct-proven sampler in this case?

This is exactly what is observed in this section: Therefore, a limited sampling time of only
ten seconds was assumed. The settings taken into account were a relative, sine-wave refractory
mechanism, in combination with alpha-shaped additive postsynaptic potentials and an addi-
tional global synaptic delay of two milliseconds, which is quiet biologically realistic according to
[6] or [52] (about 1.5 milliseconds).

Again, the refractory period was set to τref = 20 milliseconds. The settings for the postsynaptic
potentials were the optimal ones in terms of minimal Kullback-Leibler divergence (as these
parameters are not known from biology).

The settings of the network models used are the same as in section 7.2: A Boltzmann ma-
chine consisting of eight neurons, having symmetric synaptic connections characterized by
W ∼ N (0; 0.2) and b ∼ N (−1; 0.5), i.e., initialized randomly according to some Gaussian
distributions.
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For the observation of the influences of realistic but not exact network models over such a limited
sampling time of only 10 seconds, 500 executions of this limited-time sampling with each network
model were executed.

In figure 7.11 the biologically realistic and the exact samplers are directly compared, using
the Kullback-Leibler divergences to the correct and analytically computed distribution of the
samples.

Figure 7.11: Kullback-Leibler divergence distribution of different samplers in combination with
realistic settings, i.e., only 10 seconds of sampling time, leading to situations with only limited
precision. Amount of KL heights in 500 trials using the same network. Comparison of exact
sampler to biologically more realistic samplers with alpha-shaped additive PSPs and a relative
refractory mechanism: Mean KL divergence of exact sampler only slightly lower than of realistic
samplers, having the quotient of the difference between the means and sigma in the magnitude
of 1: Systematic and stochastic errors are similar.

In this figure, on the X-axis the heights of the Kullback-Leibler divergences are plotted, while the
Y-axis indicates the absolute frequencies of these KL values (of the 500 executions per network
model setting). The Kullback-Leibler values are binned in 25 equally distributed bins in the
range of [0.03; 0.08].

There are three different network settings plotted in this figure, sampling always with the same
limited precision:

• Setting 1: The first setting (shown in red) represents the exact sampler, were all neurons
have rectangular PSP shapes, and an absolute refractory mechanism is used.
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• Setting 2: This setting (plotted in green) is much more realistic in a biological sense: It
uses alpha-shaped additive PSPs for all neurons, and a relative refractory mechanism (a
sigmoidal function).

• Setting3: The last setting (in green-cyan) is the same, realistic one as in setting 2, with
the only difference, that this time an additional delay of 2 milliseconds was added to the
network model.

Additional to the binned frequencies of the different Kullback-Leibler divergence values, in the
same figure the distributions of all KL values are indicated with dashed lines (in the same colors
respectively), using the mean values of the Kullback-Leibler divergences and their standard
deviations.

Now, as sampling time is even more limited, the Kullback-Leibler divergence of the exact sampler
to the correct distribution is not equal to 0 any more, and already when comparing the KL
distributions (or the dashed lines of them) of the different samplers one can observe that these
differences are not very large.

This can further be observed when looking at the mean and standard deviation values. The
biologically realistic samplers have higher mean KL divergences, but nevertheless the variance
is higher than the one of the exact sampler.

Mathematically, the quotient of the absolute difference between the means µ1, µ2 of two distri-
butions and a standard deviation σ of any of them can be computed, being

|µ1 − µ2|
σ

≈ |0.053− 0.047|
0.005

=
0.006

0.005
≈ 1 (77)

As this metric is in the magnitude of 1, this means that in this case the systematic error
(defined as the absolute difference between the means of the KL divergence distributions) and
the stochastic errors (which can be measured by any of the standard deviations) are quiet similar,
and nearly the same.

As the stochastic error decreases with increasing sampling time, but the systematic error does
not (or at least not so much), one can infer the following conclusions:

• When more samples are available, i.e., when sampling time increases, the stochastic error
will decrease. Thus the systematic error of using biologically realistic network settings
will be very crucial, whereas this decision will probably influence sampling too much.
With large sampling times, the error of using realistic settings instead of exact ones is
comparatively very high:
Many samples - high influence of systematic error: Realistic settings should not be used.

• If even fewer samples are available, which means that sampling time would be even shorter,
then the stochastic error increases, forcing the systematic error of biologically realistic
networks to become comparatively small. Therefore, in such situations the use of realistic
settings does not influence the resulting distributions very much, and it could therefore be
a good decision to use them:
Few samples - low influence of systematic error: Realistic settings could be used.
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This means that in some situations - especially when being confronted to experiments with
limited samples - it might be worth thinking of using realistic and not exact network settings,
as they might cause only a small additional systematic error relative to the stochastic one which
cannot be avoided in these cases.

Note again that these findings have been reproduced using different network models (with other
sizes and synaptic connections), leading to the same conclusions. Also note that when using
renewal PSPs - instead of the additive ones used above - the Kullback-Leibler divergence distri-
butions get nearly congruent to the ones of the exact sampler.

7.6 Conclusion

From the above experiments, one can deduce the following major implications:

• Rectangular PSPs sample correctly only with the absolute refractory mechanism.

• With non-rectangular PSPs relative refractory mechanisms are better than the absolute.

• Delays cause de-correlation of the neurons, when they are equal to the refractory time.

• With limited sampling time, realistic settings cause only small additional errors.
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8 Application of neural sampling to a simplified model of vision

This section describes how the previously described implementation of the neural dynamics
sampler can be applied to a concrete problem: It is used to model a strongly simplified model of
the human visual system on a symbolic layer. The modeled system is learned through maximum
likelihood techniques and should then be able to recognize and complete very simple input
patterns.

In the end the model should represent on a strongly simplified, symbolic layer the processes
going on in the human brain during edge, contour or image completion, as described in the
experiments of Lee et al in section 2.3.

8.1 Probabilistic model

There are obviously many fields of application for this neural sampler. In the setup described
now, the neural sampler is used to simulate some realization on a symbolic layer of a strongly
simplified model of the human visual system.

The outcomes of the biological experiments by Tai Sing Lee et al (see section 2.3) are the basis
for the following neural network model on which the neural sampling implementation is applied.
The generative model consists of multiple layers of partially, bottom-up - top-down connected
neuron-like units, which - after learning - should be able to recognize and complete certain
images and image segments.

The underlying idea of this sampler application is based on the architecture of the cortical areas
in the visual system, described as a feedforward - feedback connected system in the biologically
evidenced papers. The symbolic realization consists of three distinct layers of neurons, as it
is shown in the sketched architecture in figure 8.1, and as it was already described shortly in
section 5.3.

The layers represent - on a symbolic level - different visual cortical areas, namely some repre-
sentation of the input (Y ), an early sensory stage (Z) and higher areas (X).

In a real brain, the LGN gets directly some input signals from the eyes’ retina through the optic
nerve fibers. In the symbolic representation, the input is modeled by direct picture input that
comes from outside the model to the input layer Y . There is exactly one neuron in the input
layer for each pixel in the external input image. The input image is split up in disjoint receptive
fields, and the neurons representing the pixels of one such subpart of the image are called one
group Gj . The neurons y in this layer are not connected, but their firing rates directly reflect
the intensities of the input image, summing up to the group firing rate νj of each group Gj (see
section 5 for the explanation), such that the preferred null-causes are respected.

The external input image is divided into subparts, which represent the receptive fields of the
units in the lateral layer Z. Each such quadratic subpart shows either a pre-defined pattern, or
some noise, as described in section 8.3, and as shown in the sketched architecture. Internally,
each quadrate is represented by its pixels, or more exactly, by a vector of values, defining the
intensities of the image pixels.

From this input layer Y there is a direct feedforward connection to the lateral layer Z. This
lateral layer should symbolically stand for the first (and perhaps partially also the second) visual
area. It gets the input signals from the lower layer through synaptic connections: The lateral
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Figure 8.1: Application of the neural sampling implementation to a multilayer neuron model.

layer is subdivided in different parallel SEM-units [56],[55],[30] (see section 5.1), each consisting
of a number of neurons.

The neurons inside such a SEM-unit are strongly (theoretically infinitely) inhibitory among each
other, meaning that only at most one of them can be active at a time, causing all others to stay
inactive for its refractory period. If none of the neurons inside a unit is active, this is interpreted
as being the background hypothesis. In this model this can be thought of as if another unit
(which is not plastically modeled) inside this SEM is active. In the following this situation will
be referred to as null cause (i.e., there is no modeled cause for this situation), or background
hypothesis. Learning in such SEM-units is done according to a modification of [56], describing
how such spiking neurons are able to detect the “hidden causes” of some input.

Each unit has its distinct receptive field on the lower layer, meaning that each SEM-unit only gets
input from one non-overlapping subpart of the represented image in the input layer. Therefore,
each SEM-unit should recognize the image of such a subpart of the input.
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The connections between the two lower layers Y and Z are all feedforward connections, encoded
in the matrix V . These synaptic connections ensure that each neuron in the lateral layer only
gets input from neurons that are located in its receptive fields. In this way, each SEM-unit is
able to recognize the image or pattern in its receptive field.

The two higher layers Z and X are modeled as being a single structured Boltzmann machine,
having symmetric synaptic connections, included in the weight matrix W and the vector b,
where some weights - where no synaptic connections exist - are never learned.

SEM-units with neighboring receptive fields are connected among each other, while units whose
receptive fields have a higher distance are not connected. This enables the lateral layer to do
already some kind of line or pattern completion, by excitatory connections between these SEM-
units: The information has to be passed from one neighbor to the next one. After learning, this
is encoded in the Boltzmann weights W Z and b.

As in this lateral layer Z all single input parts can already be recognized, and simple completion
of patterns is already possible through the synaptic connections between neighboring SEM units,
the top layer X has the duty to recognize the image as a whole, by getting information through
weighted synaptic connections of all neurons in the lateral layer.

The top layer X itself consists of a single WTA-like unit, meaning that again inside this unit
the synaptic connections are strong (in theory infinitely) inhibitory. In this case, one neuron
has to be active in any case. In order to guarantee this, again the case if no (modeled) neuron
is active is interpreted as having another neuron which is active at this time. All neurons of
this top layer are connected to all neurons in the lateral layer, independently of the receptive
fields, meaning that this unit is able to recognize the complete image as a whole. Again, the
connections inside the WTA-like unit, but also between the top and the lateral layer are managed
inside the Boltzmann weight matrix W .

It should be noted - as these synaptic connections between the top two layers are symmetric
weights - that the information is not only passed from the lateral layer Z upwards to the top layer
X, but there occurs also top-down information transmission. Therefore, the lateral layer gets
information about the understanding of the whole image by the top layer, and reacts according
to that again by completing patterns or whole images.

A further expansion of this model is shown in figure 8.2. While the input layer and the lateral
layer remain the same in this new version of the neural sampler application, the top layer has
been modified. Instead of the WTA-like unit with inhibitory connections between the single
neurons, it contains now a WTA structure (when including the non-modeled neuron which is
active in case of the background hypothesis - if no other neuron is active), where each WTA-
“unit” is represented by a population of L neurons.

In this case, the neurons inside such a population stimulate each other, which is encoded as
excitatory (positive) weights inside the weight matrix W+. Neurons of different populations can
still be seen as being different WTA-units, and thus they inhibit each other strongly. Therefore
the single WTA-units of the first version have now been replaced by populations of neurons.

The connections between the second and the top layer are still the same: As the receptive field
of the whole WTA-like system of the top layer is on the entire lateral layer, each of the top layer
units is connected to each neuron of the lateral layer.
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Figure 8.2: Another version of the application of the neural sampling implementation to a
multilayer neuron model. This time, the third (top) layer is further expanded to consist of a
WTA-like unit of populations of neurons. The expansion of this top layer is shown in here.

8.2 Learning in the multilayer network model

In the following, the learning process of the model is introduced and briefly described. In this
case of the three-layered generative model representing on a symbolic level the cortical visual
system in real brains, learning is basically done in two distinct steps [75],[23]:

In a first step the feedforward weights between the input layer Y and the lateral layer Z have
to be learned, which is done by some sort of Hebbian learning.

In the next step the symmetric feedforward - feedback weights of the synaptic connections
between the middle layer Z and the top layer X, as well as within both of the higher layers (Z
and X), are learned. As these two layers are realized and implemented as a Boltzmann machine,
learning is done by standard Boltzmann machine learning.

Both of these two methods to learn synaptic weights are described in the following.

8.2.1 Step 1: Feedforward Hebbian learning

As described previously, the weight matrix V contains all synaptic weights between the input
layer Y and the lateral layer Z, i.e., between the neurons y of the input layer Y and the regarding
neurons z in the SEM-units.

The idea for this learning step is to apply machine learning rules, more exactly expectation
maximization. In this model as already described briefly in section 5.3.4 this is done by mini-
mizing the difference between the actually observed numbers of spikes in the input layer Y and
the expected one, given the activity of certain neurons z in the lateral layer Z. As the input
to the model is not modified internally, this approximation has to be realized by adapting (or
learning) the expectation. Therefore, the idea behind EM in this case is to base the learning
step on this difference to be minimized:

∆Vki ∝ (observed # spikes of yi|zk = 1)− (expected # spikes of yi|zk = 1) (78)

where ∆Vki is the update of the weight matrix entry Vki, indicating the synaptic weight from
neuron yi to the lateral layer neuron zk in the weight matrix V .
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Mathematically, this is formulated as:

∆Vki = η̃ki · ηV · zk ·
(
yi · e

−Vki−log
ν0i
νj − τy · νj

)
(79)

where again ∆Vki indicates the change in the weight of the connection between yi and zk in the
matrix V , and ν0i denotes the background hypothesis firing rate. η̃ ∈ {0, 1} is used to ensure
that no weights are learned for non-existing synaptic connections.

In practice, this means that the V matrix contains the weights of the synaptic connections
between these two layers Y and Z, where of course there are only non-zero entries in the matrix
V if a lower-layer neuron yi is lying in the receptive field of the regarding neuron zk in the
lateral layer.

The expected numbers of spikes is computed as the group firing rate νj of group Gj , times
the PSP time constant τy of the neurons, while the observed amount of spikes is calculated by
weighting the effective PSP shape values of yi in the lower layer (i.e., additive rectangular PSPs,
each of hight 1) with the current weight matrix V , divided by the number of neurons inside a
receptive field. Note that this last factor is only due to the specific structure of the model used
here, having a fixed relation between the background hypothesis and the group firing rate:

e
−log ν0i

νj =
νj
ν0i

= |Rk| (80)

Therefore, after learning has finished, this weights should enable the lateral layer Z to “under-
stand” the input of Y .

One could also check the idea behind this learning rule: After the learning process, the weights
should not change any more, meaning that the expected change is E(∆Vki) = 0. When then
applying this expectation to the learning rule, one gets:

0 = zk ·
(
yi · e

−Vki−log
ν0i
νj − τy · νj

)
(81)

If zk = 0, then this equation is true in any case, therefore one can go to the other case, where
zk = 1, and proceed for this situation:

0 = yi · e
−Vki−log

ν0i
νj − τy · νj (82)

e
−Vki−log

ν0i
νj =

τy · νj
yi

(83)

Vki = − log
τy · νj
yi
− log

ν0i

νj
(84)

= log

yi
τy

ν0i
(85)

= log
νki
ν0i

(86)

which should be the case after learning.
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8.2.2 Step 2: Boltzmann machine learning

Boltzmann machine learning is based on updating both - the weight matrix, in this case W , and
the vector b, which directly influences the single neurons’ membrane potentials [2],[33],[34],[68].

In the case of the neural sampler application to the multilayer neuron model the Boltzmann
machine includes the lateral layer Z and the top layer X, meaning that all weights within these
layers, as well as the ones between the layers are all integrated in the Boltzmann weights.

The idea of learning in a Boltzmann machine is a well-known process in machine learning. In
contrast to other learning rules like the previously described one, here the update process is not
based on EM, but on maximizing the log-likelihood of the observations.

In practice, this is equivalent to minimizing the difference, in this case between the expected
value of the data, and the expected value of the model itself, i.e., to modify the weight matrix
in such a way that the model approximates the data it should be able to represent [2].

The update or learning step is based on trying to approximate the current posterior with the
prior (to be learned), by trying to minimize the difference between prior zprior and posterior
samples zposterior. This is in the same way done for the weight matrix W and the bias vector
b, by using a learning rate ηW , ηb for both of them for the update:

∆Wkl = η̃kl · ηW · (zposteriork · zposteriorl − zpriork · zpriorl) (87)

∆bk = ηb · (zposteriork − zpriork) (88)

where ∆Wkl stands for the update of weight matrix entry Wkl, being the connection between
the neurons zk and zl, while ∆bk indicates the change in the bias value b of neuron zk.

The weights W inside this Boltzmann machine should also be learned only for existing connec-
tions between neurons zk, zl, which is realized through the mask η̃. Such non-existing connections
are for example located between neurons of different SEM units which do not have neighboring
receptive fields, but also synapses which would enable self-interaction of neurons (which here is
encoded in the bias values).

Other synaptic connections that should not be learned are the connections within the parallel
SEM units, and also within the WTA-like unit in the top layer: These connections have to be
very strong - in theory infinitely - inhibitory, such that at most one of the neurons in such a
unit at a time is active.

For the previously introduced formulas for learning, two different samples of neurons of the Z
layer are required, namely posterior zposterior and prior samples zprior. Even though in biology
it is not completely clear how such prior samples are generated (perhaps during some kind of
sleep phase), in this simplified model they are generated by the same model, not getting any
external input, such that the membrane potential uk of neuron zpriork can be computed from
its bias value bk, and the values of the other neurons zprior in this model, weighted by the
corresponding synapses to neuron zk encoded in Wk:

uk = bk + zprior
>Wk (89)
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8.3 Experimental setup

In this section the setup used in the experiments with the sampler are explained in more detail,
always referring to the same architecture as already shown in figure 8.1. The following more
detailed descriptions start with the external input, and thus with the lowest level, going up to
the top layer.

The external input is based on some picture. This picture is defined as a rectangular, gray-scaled
image. It is divided horizontally in five individual, quadratic subparts. Each such subpart is a
6 × 6 pixel gray-scaled pattern. Four different patterns have been defined, shown in figure 8.3,
dividing the picture horizontally and vertically in two halfs, where always one half is nearly
black with 90% intensity, while the other half is nearly white with an intensity of 10%.

Figure 8.3: Four distinct patterns for the input image, to be learned by the sampler

These patterns are combined, five in a row, to build up the complete input image, as it is shown
in figure 8.4, which shows the structure of the input picture, and various possible combinations
of subparts, to build up the entire input image.

Figure 8.4: Various possible combinations as input picture. The uppermost picture shows the
structure of an input picture, being subdivided in different receptive fields
(a) image consisting of five same patterns, which should be learned
(b) image with a “hole”, which corresponds to the “average” of all the learned patterns
(c) image with one “wrong” pattern inside

The model will have to learn, that a usual input image consists of five same patterns in a row,
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as the second row in figure 8.4 shows. It would of course in the same way be possible to learn a
certain sequence of images, but in order to keep a clearer overview over the learned images it is
more convenient to use a “simple” and clearly visible input combination to be learned.

In addition to the different patterns, some subparts of the input image might also be completely
gray, as in the third row of the figure. Such “holes” are the average between all possible learned
input patterns. After learning, the model should be able to (internally) complete such an image,
i.e., the system should recognize the learned image as a whole.

Another possibility is to have - with a certain probability - input images that are not consisting
of same patterns, but that some patterns are exchanged, like shown in the last one of the sample
pictures. It is not completely clear how the model should react on such an input: It should -
in any case - recognize all the matching patterns. As the inputs are always learned as complete
images consisting of five same patterns, this last input example could represent some ambiguity
or some overlap. Therefore, as this input might represent some partially covered image, the
system could recognize this ambiguous situation, knowing that this input has been learned
“differently”.

For learning, the model is presented images consisting of five equal patterns, covering each
pattern. The sequences and types of the input images have been defined manually, in order to
keep the set of images for learning relatively small, nevertheless covering all types of images.

For testing the learned model afterwards, various combinations have been tried, starting from
the complete image with five times the same pattern in it to check mostly the connections V
between the input layer Y and the lateral layer Z. For testing the W matrix, various other
combinations have been tried, like single holes on different positions to check whether and how
the completion of such images works, and also single “wrong” patterns, in order to check whether
the model would exchange such patterns.

As mentioned earlier, this external input is directly mapped to the corresponding neurons in
the input layer Y , where for each pixel of the external input there is one neuron yi. The firing
rate of the neurons yi is determined by considering the intensity of the corresponding pixel of
the image, and the group firing rate of the group Gj it belongs to, i.e., the receptive field.

In each of the 5 groups Gj there are 36 neurons yi in this model, as there is the same number
of neurons in one subpart or receptive field of the image, and one group corresponds to one
receptive field. Thus, in total layer Y consists of 180 unconnected neurons. Each neuron yi has
a PSP time constant of τy = 20.0 milliseconds, and rectangular, additive shapes of postsynaptic
potentials, each of height Wki.

The null-cause of each of the neurons has been set to about ν0 ≈ 20 Hz and as there are 36
neurons in each group Gj , the group firing rate is set to around νj ≈ 750 Hz.

The input layer Y is connected via the weight matrix V to the lateral layer Z. The Z layer
consists of 5 SEM-like units, each having its own disjoint receptive field on the lower layer
Y . This constraint is encoded in the synaptic weights V , where all entries from neurons yi to
neurons zk that do not lie in the same receptive field are set to 0.

The weight matrix V is learned through Hebbian learning, as described in section 8.2, using a
learning rate of ηV = 0.00005 for 500 learning cycles of 400 milliseconds each.

Each single SEM unit in Z consists of 4 neurons, which should be able to recognize the different
patterns after learning. The neuron for the null-cause is not explicitly included in the model,
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but it is defined, that if none of the 4 effectively existing neurons in one SEM is active, this is
interpreted as being the null-cause, i.e., some “invisible” background hypothesis is active at this
time.

In total there are 5 units of 4 neurons, thus 20 neurons zk in the lateral layer, and each one has
a refractory period of 20.0 milliseconds, and the global synaptic delay is set to 0. The single
neurons have rectangular, renewing PSPs, and the absolute refractory mechanism is used.

The units inside the Z layer are connected among each other, having the weights contained in
the weight matrix W . Additionally their membrane potentials are influenced by the bias values
b. These bias values are set to bk = −2 for all neurons zk and are not learned.

The top layer X, which is connect both, in bottom-up and in top-down fashion to the lateral
layer Z, consists of a single winner-take-all-like unit. Again, also this, as the SEM units in the
lateral layer, consists of 4 neurons, which make up the whole top layer X. As the structure is
very similar to the lateral layer, this top layer has in the internal architecture been embedded
into the lateral layer, i.e., into the same sampling network.

Also the neurons xk in the top layer X, as the ones in the lateral layer, have a refractory period
of 20.0 milliseconds, and are characterized by rectangular, non-additive PSPs, with the absolute
refractory mechanism, and a constant bias value of bk = −2 for all neurons xk.

As both higher layers Z and X are embedded in the same neural dynamics sampler, they also
share one weight matrix W , and the associated learning rates and mask matrix (see figure B.2).
Inside the lateral Z layer, the neurons within each SEM unit are connected, and their connections
have strong inhibitory weights, which should in theory be infinite. Additionally, self-interaction
of neurons is avoided by setting the diagonal of the weight matrix to 0. The same is also true
for the top layer X: The neurons cannot have any self-interaction, and the connections between
the neurons are strong inhibitory, i.e., negative weight with high absolute values.

For the neurons in the Z layer some neighborhood has been defined: Neurons of SEM-units
whose receptive fields are direct neighbors (by this definition, only the ones with common edges,
but not with diagonal connections) may influence each other. The weights of these neurons are
initially set to 0.

The other Z neurons, i.e., the ones whose receptive fields are further away from each other, do
not influence each other directly, but only step-by-step, passing their values from one “neighbor”
to the next one. These entries of W are set to 0.

For learning the weights inside the lateral layer without having a top layer defined (i.e., step 2
of figure 8.1), a learning rate of ηW = 0.00001 for 5000 learning cycles has been used, each of
400 milliseconds.

Finally, there are the weight matrix entries for the synaptic connections between lateral layer
Z neurons and higher layer X neurons. Here there is an all-to-all connection possible, i.e., each
neuron in the lateral layer is (possibly) connected to each neuron in the top layer. The initial
values for these weights are again set to 0.

To learn the connections between the two higher layers and the lateral layer connections (i.e.,
step 3 of figure 8.1) again the same learning rate and time as for step 2 has been used.

Note that for learning the weight matrix W+ of the top layer containing populations of neurons
in each WTA-unit, the same kind of learning can be used as in step 3. The reason is that still,
all top layer neurons are connected to the lateral layer neurons - which are the synapses to be
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learned - while still all connections among top layer neurons are fixed, either to strong negative
values (for neurons of different populations or WTA units), to zero (for self-interaction) or to
some positive values (for neurons within one population, i.e., one WTA unit). Therefore the
weight mask matrix is the same, except that there are some more neurons in the third layer,
and thus the matrix gets bigger (in both dimensions).

8.4 Simulation results

In this section, the performance of the multilayered neural network model after learning the
different synapses are presented, showing the learned weights, and their effects on the network’s
behavior. From this it should be possible to gain an overview over which of the previously
mentioned input patterns can be learned or recognized using which kind of architecture and
network complexity.

For each of the following network models, various tests have been made. As it might be difficult
to understand each model at a a first sight, and to get an idea about the effects of each setting,
some heuristics for each tested model are shown: The input (shown as the firing rate of the
input layer neurons y) is shown in comparison to what the network “thinks” about the input,
i.e., a reconstruction of the firing rate, computed as the average of the firing rate (either νki or
ν0) over the sampling time:

y′i =
1

T
·
T∑
t=1

eln ν0+
∑
k zk·Vki (90)

=
1

T
·
T∑
t=1

(
eln ν0 · e

∑
k zk·Vki

)
(91)

=
1

T
· ν0 ·

T∑
t=1

ez
>V i (92)

8.4.1 Step 1: Feed-forward connections from input to lateral layer

The first kind of connections to be covered are the synapses connecting the input layer Y with
the lateral layer Z, where the connections have always been restricted by the receptive fields,
which has been shown as step 1 in figure 8.1.

The result of learning only such connections can be seen in figure B.3, which shows the weight
matrix V , containing all connections between neurons y of the input layer Y , and neurons z of
the lateral layer Z.

Since the network is such that it can represent the input exactly, the exact values which should
be reached after learning can also be computed analytically, knowing that the weights expected
from theory would be

Vki = log
νki
ν0

(93)

Additionally, there is some information available about the input images, i.e., about the patterns
the network should learn, namely the size, and the distribution of “black” and “white” pixels,
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as well as their intensities:

Px = 36 (94)

Pxblack = 18 (95)

Pxwhite = 18 (96)

black = 0.9 (97)

white = 0.1 (98)

From the network settings, the null-cause is known, which makes it possible to compute the
group firing rate of a group of neurons representing one SEM-unit in the lateral layer:

ν0 = 20.8 Hz (99)

νj = Px · ν0 = 747.2 Hz (100)

Knowing group firing rates, and having some additional information about the input patterns,
one can compute the firing rates of the neurons y corresponding to (nearly) black, and white
pixels in the input image:

νk,black =
black · νj
Pxblack

= 37.4 Hz (101)

νk,white =
white · νj
Pxwhite

= 4.2 Hz (102)

When now applying the formula describing the weights of the synaptic connections to these
values, it is possible to compute the “optimal” weight values, which are approximated during
the learning phase:

Vki,black = log
νk,black

ν0
≈ 0.6 (103)

Vki,white = log
νk,white

ν0
≈ −1.6 (104)

After the learning process, the values of the synaptic connections approximate these values. For
this first test, the initial weight matrix W for the connections among higher layer neurons z is
used in its unlearned form.

It is then possible to make some tests, using these connections, and to observe what a network
model with such settings would be able to recognize. This is done by using again the same input
pictures as shown in figure 8.4, in this case especially (a).

As there are no connections between different input image subparts, or between the receptive
fields, the results of these tests are quiet obvious. Having only adapted the feedforward weights
V it is possible to reconstruct entire images as shown in figure 8.5, i.e., to recognize each single
subpart or pattern of the input, and therefore to recognize input (a) of figure 8.4. It is also
possible to “correct” some small errors in the input image, like missing or swapped pixels.

On the other hand, it is not possible to do any kind of completion of the entire input image if
some subparts are missing (as shown in figure 8.6), swapped (as in figure 8.7) or ambiguous,
as there is no connection at all between different subparts, and thus no information can be
exchanged among them.
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Figure 8.5: Internal reconstruction of the learned input image. The upper picture shows the
firing rates of the input neurons y. The picture below is a representation of what the system
internally thinks it sees. In this case, the input is recognized.

Figure 8.6: Incomplete input image and the internal representation of what the system intends
to see (below)

Figure 8.7: Firing rates of the input neurons when representing an image with one non-matching
subpart, and the internal reconstruction of the input inside the model.
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8.4.2 Step 2: Lateral layer connections

In a second step, learning was extended to the lateral layer. In this next step, also the weight
matrix W defining the synapses between neurons of the same, lateral layer Z, should be learned.
In this case, as described in the previous section, learning was restricted to this lateral layer.
Thus, still only the input layer and the lateral layer are used, but no connections to the top
layer are defined or learned, as it is shown in step 2 of figure 8.1.

For testing the learned weights, again different input patterns were used as input to a network
model, defined by the feedforward weights V learned before, and additionally by the lateral
layer connections contained in the currently learned weight matrix W .

This time, it is already clear that the completion of the single patterns is done, as this problem
is already solved using only the feedforward weights V , which is also used in this test.

In addition to the previously tested model, this network has now also some additional communi-
cation among neurons that are not responsible for the same receptive field. Thus, there is some
information exchange about the pattern content of the “neighboring” input image parts.

Therefore, if some receptive field does not give much information about the contained pattern,
like it is shown in figure 8.8, the information about the patterns next to it is taken into account.
This means, that if there are some ambiguities or “holes” in the image, i.e., some parts of the
image cannot be recognized as any of the learned patterns, these parts are internally “completed”
or filled, by looking at the nearby image parts, and inside the model the input is recognized
as one of the learned patterns, i.e., the model “thinks” of a complete input. But still this
“completion” is only very lightly visible.

Figure 8.8: Firing rates of the input neurons when seeing an incomplete input image (with one
ambiguous subpart), and the internal interpretation of the system of this input, knowing only
the feedforward weights (middle), and then also the lateral connections (bottom).

Figure 8.9 shows the average firing rates over 1000 trials, each of one second of length, of the
four lateral layer units (the background hypothesis unit which is not modeled is not shown here).
When looking at the means of the firing rates one can see that the firing rate of the unit which
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would recognize the pattern given as input to the rest of the image (but not to this subpart)
is slightly higher than the firing rates of the other lateral layer units. But still the errors is
relatively high, leading to the conclusion that this observation is still not very reliable.

Figure 8.9: Average firing rates over 1000 trials, each of 1 second, of the lateral layer units having
their receptive fields on the “gray” input image part which is not set, i.e., which represents the
average over all learned input patterns.

In other words, this means that image or pattern completion is “nearly” possible, using only
these two layers, and some restricted connections between neighboring receptive fields. To
be sure about some pattern (i.e., to get a clearer reconstructed image with higher contrast),
more information of neighbors would be required. In order to achieve this, the neighborhood
could be expanded, by increasing the input image size, or by expanding the definition of the
“neighborhood” to include more than the direct neighbors.

Another situation can be defined as having an image where one sub-part does not match the
other ones. In this case the system does not recognize this input as one of the learned images
(as a whole), but it recognizes the different subparts of the image, as in the previous step 1.

The reason why the “wrong” pattern is not detected can be found when looking more precisely
at the learned values in the connection weight matrices V and W : The weights among units
inside the lateral layer are relatively low. Therefore the connections between input layer and
lateral layer neurons (i.e., respectively the direct input from the receptive field to some neurons)
overweights the information about neighboring units.

This phenomenon could possibly be overcome again by extending the definition of neighborhood
and using much larger pictures (having more patterns, and a larger neighborhood) than in this
experiment.
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8.4.3 Step 3: Adding a third layer

The previously explained step already allows for some communication among lateral layer neu-
rons z, whose receptive fields are next to each other. In this third step, this communication
and (indirect) information passing about the content and the structure of the entire image as a
whole is further strengthened.

This additional information is encoded as some “global” knowledge or interpretation of the
input image (as a whole), i.e., the third layer which is added in this step tries to decide to which
(learned) category the input image belongs. Based on the (learned) knowledge about how an
input image should look like, it tells the system, which of these known and learned structures
the input image belongs to.

In this context, the receptive field of these top layer neurons x lies on the entire lateral layer,
meaning that each of the top layer neurons x is synaptically connected to each neuron z of
the lateral layer. Note that at each step learning starts from scratch, i.e., in this case also the
feedforward and the lateral weights are learned again, but this time including also the top-layer
weights.

After learning, each single input pattern activates the corresponding neurons in the input layer.
The neurons of one input pattern together stimulate some lateral layer neuron of this receptive
field, causing it to become active, while the other lateral layer neurons of this unit get inhibited
and thus repressed. The active lateral layer neuron additionally stimulates the neurons respon-
sible for the same input pattern of the lateral layer units having a neighboring receptive field,
and it additionally stimulates the top layer neuron which recognizes this pattern.

Figure 8.10: Firing rates of an incomplete or ambiguous input image (top), and internal recon-
struction of the systems intention with increasing number of learned synapses below. In the
third step the incomplete part is “filled” with the pattern which matches the rest of the image.
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Therefore, as the synapses between the two higher layers are both - bottom-up and top-down
- information of the top layer flows back to the lateral layer, and therefore some additional
information about the content of the entire image is given to all of the lateral layer neurons
directly by the top layer, and additionally in an indirect manner by passing the information
from “neighbor” to “neighbor”.

The learned images are again recognized by the model, as well as images having some small
errors. When looking at the images to be completed, one can see that the missing subpart
is recognized much better now, when using also top-level information, as shown in figure 8.10:
The top-down information of the third layer further strengthens the interpretation of the missing
image pattern as the one which “matches” the hole. This is what the model should do, as in this
simple case the system has been trained to “know” that an input consists of five same patterns,
not having an incomplete part among them.

The influence of the top layer gets even better visible when looking at figure 8.11. It shows again
the average over 1000 trials of tracking the firing rates of the lateral layer units which get “gray”
input. In the plot, the previous setup of step 2, having only lateral layer connections, is plotted
in violet, and it is compared to the current model, where also top-down information is available
to these units, shown in blue. It is shown that the firing rate of the unit which “recognizes” the
missing image part (denoted as z0) increases with the introduction of the top layer.

Figure 8.11: The average firing rate of the lateral layer units don’t getting any direct information
about the “input” pattern by their receptive fields. The left bars show the firing rates of step
2, when using only lateral layer connections, and the right bars indicate the current rates, i.e.,
having the additional top layer information. The increase in the firing rate of the unit which
recognizes the “missing” pattern is visible very well.
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The effect of applying this model to the image with one non-matching or “wrong” subpart are
presented in figure 8.12. Still the model is not able to detect the “wrong” pattern.

Again note that it is not really clear what the system should do and whether it shout internally
exchange the not-matching pattern. But as the model has learned that a “correct” input image
consists of five equal parts it might be possible that it could detect the ambiguity or “problem”
in such an image.

Due to the still low firing rates of the units when not getting direct input (but only lateral and
top-down information), and also because the system still is not able to detect the “problem” in
the image with the non-matching pattern, the model is further expanded, such that it should
then be able to do even better or stronger image completion and recognition.

Figure 8.12: Input firing rates and the systems internal behavior (thought) when getting this
input. In step 3 the ambiguous situation is slightly visible (a slight shadow of the “matching”
pattern in the picture on the bottom).
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8.4.4 Step 4: Expanding the third layer

In this last step, the model’s top layer is further expanded. The single WTA-like units are
now replaced by small populations, each one consisting of L = 5 units. As explained before,
the single units inside one such population stimulate each other, while the different populations
inhibit all other populations, resulting again in some WTA-like structure.

This means that in the weight matrix the right upper and the left bottom parts are now learned,
while the right bottom part remains unchanged: This is the part which has been initially set to
guarantee that the model behaves in the desired WTA-like way:

After learning this model, again all lateral layer neurons z which are responsible for some specific
input pattern stimulate the same top layer neurons x (and get feedback from them). Among the
neighboring SEM-units, the neurons responsible for recognizing the same input pattern stimulate
each other, while all others are inhibited, as the model learns that all input parts should contain
the same pattern. In the top layer X, neurons inside one population are set to stimulate each
other while the other top layer neurons are inhibited. The single weights have about the same
strength as the connections in the previous test, when using the single WTA-like neurons in the
top layer.

This implies, that the influence from the top layer - and thus the opinion about the entire image
as a whole is now much stronger, and the input that the lateral layer neurons z get from the top
layer Z has a higher influence on their behavior and firing patterns than before, meaning that
now the top layer’s prior of the top-down information has been changed by the model itself.

The effects of this phenomenon can be seen when looking at figure 8.13: The images with the
missing subparts are now internally completed entirely, i.e., the influence of the other patterns
has grown again, and the system internally thinks that it is presented the complete (learned)
picture.

Even though the difference to the previous model is already visible in when comparing what
the model “thinks” about the input picture, again the firing rates of the units which do not
get direct external input are compared in figure 8.14. Now the model of step 3 (shown in blue)
is compared to the current one with the expanded top layer, plotted in green. The increase is
clearly visible, as now the firing rate is about as high as the one of the units with direct external
input.

But the influence of such a powerful top layer is visible even better when now looking again at
the test images of category (c), where one part of the image has a different pattern than the
rest, as shown in figure 8.15. Now the network clearly detects that one of the patterns does
not match the remaining image, and in the reconstruction it is visible that the model partially
completes the “correct” image. This means that in this setting the model is able to recognize
internally the ambiguity of this input image, which is shown by the internal firing pattern.
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Figure 8.13: The firing rates of the input neurons (top), and what the system internally thinks
it is shown, in the order of the increasing number of synapses in the model: With lateral
connections of step 2 a “shadow” of the completed part is visible, which is strengthened when
adding the third layer in step 3. In this fourth step the system internally recognizes now the
image as the learned one, and therefore it is able to internally complete such an image.
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Figure 8.14: Average firing rates of the units without direct external input, comparing the model
of step 3 (in blue) to the current model with the expanded top layer containing now populations
of five units each (in green): The increase in the firing rate of the unit which responds to the
“missing” pattern is clearly visible.
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Figure 8.15: The firing rates of the input neurons when being confronted with an image where
one of the parts does not match the other ones. Even when using the top layer of step 3 only a
very slight shadow of the matching pattern is visible in the “ambiguous” part, while in step 4,
when now having an expanded top layer, the system internally is able to detect the ambiguity,
and it realizes that the given part of the image is not consistent with what it has learned to be
a “correct” input image.
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8.5 A symbolic version of the experiment by Lee

Lee et al [45], [43], [44] developed a hierarchical model of vision based on biological findings
from experiments testing input and illusory contour completion in the visual system of animals
(see section 2.3).

In this section, the new sampling architecture presented in the previous sections is applied to a
symbolic and strongly simplified version of this model by Lee et al, and some of the results from
the biological experiment are shown to be well covered by this simple model.

8.5.1 Experimental setup

In the biological experiment by Lee and Mumford, summarized in section 2.3, the processes
going on in the brain when “completing” an illusory contour image were observed, as shown in
figure 8.16 (the original image of the biological experiment was shown in figure 2.4).

Figure 8.16: Symbolic version of the input images: Illusory contours experiment on the left
(figure adapted from Lee et al [45]), where a neuron has its receptive field on that part of an
illusory contour image where there is no visible contour, and the input images for the symbolic
version examined here on the right hand side. The upper part of the figure shows the “complete”
images. Below some image parts are ambiguous, which in the symbolic version is realized by
averaging over all pattern inputs. In both cases neurons are observed, which have their receptive
fields on an “incomplete” or “missing” image part.

The idea of “hierarchical” contour completion derived from biological experiments is simulated
in a symbolic and strongly simplified version by means of the network model presented in the
previous section. Here this model will further be expanded, leading to a biologically slightly
more realistic setup, having alpha-shaped additive PSPs, synaptic delay and relative refractory
mechanisms (see section 8.5.2). The results of the experiment are presented and compared with
the outcomes of the biological experiments by Lee et al.

88 8 Application of neural sampling to a simplified model of vision



Analysis of Probabilistic Inference in Recurrent Networks of Spiking Neurons

The focus of the experiment is to observe the spike response of neurons during different stages
of the experimental protocol: Before the onset of the stimulus, they get completely ambiguous
input, consisting of the average over all learned input images. After stimulus onset, i.e. after
500 milliseconds, an “incomplete” image, where some subparts still are ambiguous, is given as
input to the network, as it is shown in figure 8.17.

Figure 8.17: Experimental setup: Before stimulus onset, Poisson spike trains with a uniform
firing rate are resented to the network (i.e., images representing the average over all learned im-
ages). And after the stimulus onset the network gets Poisson input which encodes an incomplete
image: Only two of five subparts of the image show a distinct and learned pattern while the
others still show the average (gray) picture. These gray images display the mean of all learned
patterns and, hence, do not prefer any interpretation. The subparts of the image highlighted
with the red box will be looked at in more detail when presenting the results.

This is realized, using generally a network structure which is very similar to the one of the
previous experiments, and which is sketched in figure 8.18: The input units are connected to
some of the lateral layer neurons, building up extended SEMs (i.e., SEMs [56] with an additional
background hypothesis, as it was described previously in section 5.3), where the connections
depend on the receptive fields. All lateral layer neurons are additionally connected to the entire
top layer, which consists of “populations” of units.

For the experiment itself, the model which was before trained on the different complete input
images, was first given ambiguous (gray) input for 500 milliseconds. After the onset of the
stimulus (which consisted in giving an incomplete image as shown in figure 8.17 as input), the
network response was observed for another 500 milliseconds.
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Figure 8.18: Experimental setup along with the input after stimulus onset (while before the
onset the model gets entire “gray” input images). The connections between the units are en-
coded in the feedforward weights V and the feedforward-feedback connections W . Five distinct
receptive fields, and extended SEMs (being SEMs [56] with additional background hypotheses;
see section 5.3) in the lateral layer are used. Each extended SEM has one unit “specialized”
for each pattern. In the top layer, populations of five units each are used, where again one
population is specialized to one distinct pattern (this time a global view of the image). The
synaptic weight matrices are taken from the learning experiments in section 8.2.
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The idea behind this experiment is the following: Inputs representing unambiguous patterns
in image subparts are the most “realiable” information to the network, which also reflects in
the lateral layer neurons. For image subparts which get ambiguous external input, still some
information can be inferred from the remaining (distinct) image parts: Neighboring extended
SEMs, and to top layer units provide top-down information. The influence of the neighboring
extended SEMs is quiet low, but still there might be some visible effect. The information passed
to the top layer is not entirely unambiguous (as only two of five structures have distinct external
input in their receptive fields). After some time, the top layer units should “adapt” their firing
rates to this situation, then causing also the lateral layer units with ambiguous (gray) input to
change their firing patterns. In this way, the image is internally interpreted as being one of the
learned ones, meaning that some kind of pattern completion is performed inside the network
through top-down information and prior knowledge of how a distinct, unambiguous (learned)
image looks like.

8.5.2 Details to the network model

As shown in figure 8.18, for this experiment the input picture was subdivided again in five
subparts, each being a quadratic image of 6 × 6 pixels, which results in a total number of
N = 5 · (6 · 6) = 180 pixels in the input picture. The same number N of input layer neurons y
are required, to represent one pixel each.

The connections V between the input layer units y and the lateral layer units z are such that
each group of lateral layer units z (i.e., each extended SEM) has its receptive field on one
distinct subgroup of input pixels y. The values of the synaptic weights are the ones learned in
the previous section.

The lateral layer Z consists of five extended SEMs, each containing four units, which represent
the four distinct patterns which are learned The lateral layer neurons within one group inhibit
each other. Directly neighboring extended SEMs (i.e., the ones having their receptive fields
next to each other) are connected with plastic synapses. These weights within the lateral layer,
as well as all weights between the lateral and the top layer have been learned in the previous
section.

The top layer X is connected to the entire lateral layer Z. It is subdivided into four disjunct
populations, each consisting of five units. The units inside such a population excite each other,
while among the different populations there is strong inhibition.

The difference to the previous experiment lies in the types of neurons used. Instead of using the
exact sampler, now the PSPs are alpha-shaped and additive, having a rise time of 3 milliseconds,
and a falling time of about 18 milliseconds using psp(t) = 5 · (0.7t − 0.5t). The refractory
mechanism used for this experiment was relative, as shown in figure 6.4. An additional synaptic
delay of 3 milliseconds was set globally, to all the synapses encoded in the matrix W .

8.5.3 Results

The input to the network is shown in figure 8.19, showing the spike trains of the input units
of the first two image parts (the remaining three ones are quiet similar to the respective ones
of these). The firing behavior is Poisson-distributed with equal firing rates in all input neurons
before the stimulus onset. After stimulus onset it remains like this in the second (also in the
third and fourth) input part, which still get ambiguous input, while in the first (and fifth) picture
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part the firing behavior changes strongly, resulting in a much more structured pattern after this
first 500 milliseconds: It is shown that the firing rates of the units getting a “dark” pixel input
rises, while the units getting their input from a “bright” pixel fire much less often.

Figure 8.20 shows the spike trains of the units of the lateral layer Z, and of the top layer X+ in
response to this time. The upper part of the plot shows the states of the lateral layer neurons,
where the different extended SEMs are subdivided with lines. In each such structure, the top one
of the four plotted neurons has “learned” the pattern which is given as input, and is highlighted
in green. The uppermost unit is the one with the receptive field on the first image part, the one
on the bottom gets the last image part as input. On the left the input patterns after stimulus
onset are shown (the pattern in the first and fifth image part, and an average gray pattern in
all other parts).

In the lower part of the plot the top layer neurons are shown, consisting of four populations (one
specialized for each “complete” input picture) of five units each. The input patterns shown on
the left are the ones for which the specific population has specialized, again with the one which
is expected to react to the given stimulus highlighted in green.

Before stimulus onset the network randomly jumps between different interpretations of the
ambiguous input. This behavior is caused by the MCMC dynamics, dominated in this situation
by the prior knowledge about complete and unambiguous images.

After stimulus onset, the lateral layer neurons of the first and last input part “react” almost
instantaneously to the new stimulus. The short delay in the reaction in some trials is caused by
the influence of the top-down information which can currently interpret the (previous) ambiguous
input as some other prior known image.

After a delay of about 50 to 70 milliseconds, the top layer units change their firing pattern to
respond to the input mediated by the z neurons. And even later also the lateral layer units of
the image parts which get ambiguous external input are provided the top-down information and
show their “reactions”.

It is also well visible that the firing rates of the lateral layer neurons of the first and last image
parts are much higher than the ones of the other parts which only get feedback information from
their neighboring units and from the top-down information.

For a decent analysis this experimental protocol was repeated 100 times. Figures 8.21 and 8.22
show the average firing rates of the neurons associated with the given input, i.e., the neurons
marked in green in figure 8.20.

In figure 8.21 the average firing rates are color-coded, showing the average firing rates of the
neurons z1, z5, . . . and x1, . . . , x5 (population average in case of the top-layer neurons), which
are associated with the presented input pattern, i.e., the ones which were highlighted in green
before in figure 8.20.

Before the stimulus onset (indicated with the dashed line), the firing rates of all shown units
are quiet low. After that, the firing rates of the associated units of the first and last input part
rise very fast. Then the average firing rate of the corresponding top layer units increases - but
slower and with an additional delay of about 50 to 70 milliseconds. They provide additional
top-down information to all lateral layer units. After that, the firing rates of the associated
lateral layer units of the second, third and fourth input picture parts (i.e., the ones which only
get ambiguous input from their receptive fields) rise.
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Figure 8.19: Input units of the first two image parts: Spike trains of the neurons for one second.
Initially, Poisson spike trains with a uniform rate are presented, while after stimulus onset (at
500 ms, indicated with the dashed line) the first (upper) image subpart encodes the pattern
shown on the left, while the second (lower) part still encodes the uniform and ambiguous (gray)
input.

Figure 8.20: Spike response of the lateral and top layer neurons. The upper part of the plot
shows the lateral layer. The four extended SEMs are divided by lines. In each SEM, the unit
associated with the given input pattern (z1, z5, . . . ) is indicated in green. Below, the five units of
each population of top layer neurons are shown. Again, the units which are expected to “react”
on the given input x1, . . . , x5 are highlighted in green. Before stimulus onset the network jumps
between the different possible interpretations of the ambiguous input. After the onset, z1 and z17

respond almost instantaneously to the new given input. After a delay of about 70 milliseconds
also the top layer units x1, . . . , x5 adapt to the mediated input. Then, also the remaining lateral
layer units (z5, . . . ) show their response to the top-down information they get, but with a lower
firing rate than the units z1, z17 which get directly the unambiguous external input.
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The influence of the lateral layer connections is visible when comparing the second and fourth
units of the lateral layer to the one in the middle: The firing rates of the outer two units is
slightly higher, as they get additional excitation by their direct neighbors (which are the ones
getting direct unambiguous input).

Figure 8.21: The average firing rates over 100 trials of the five lateral layer neurons z1, z5, . . . ,
which are associated with the presented input pattern. The bottom line shows the average
firing rate in the population of top layer units which is expected to recognize the presented
input pattern, i.e., the average firing rate of the units x1, . . . , x5. The lateral layer neurons
with unambiguous input (i.e., a distinct pattern) in their receptive fields respond first and have
the highest average firing rates. The top layer neurons follow with a delay of about 50 to 70
milliseconds. Only after the top layer units have modified their firing patterns and provide
top-down information to the lateral layer units with ambiguous direct external input, also these
units adapt to this situation.

To better visualize the firing response after stimulus onset, data from figure 8.21 is replotted in
figure 8.22 for three neurons which are representative for the network dynamics. The red line
shows the average firing rate of the lateral layer neuron z1 associated with the stimulus pattern of
the first extended SEM, i.e., having a receptive field with unambiguous pattern input. The green
line is the associated neuron z5 of the second extended SEM, which gets ambiguous gray input,
while the yellow line (shown for completeness) is the average firing rate of the five top-layer
neurons x1, . . . , x5 (population average).

One can see that before stimulus onset, i.e. when the entire input to the model is ambiguous
(gray), the firing rate is relatively low, as expected. In this period, the fluctuations of the
average firing rate in the top layer reflect also on the lateral layer neurons, which is caused by
the underlying MCMC dynamics, in this case again dominated by the prior knowledge of how
complete input images should look like. The dashed line indicates the stimulus onset at 500
milliseconds.

Immediately after the onset, the firing rate of the unit z1 (which gets unambiguous distinct
external information) rises rapidly. Soon after this, with a delay of about 60 milliseconds,
also the average firing rate of the corresponding top layer population (i.e., neurons x1, . . . , x5)
increases.
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The average firing rate of the lateral layer unit z5 starts to rise only when the average firing
rate of the “neighboring” unit z1, i.e., the one with direct external input, has reached about
half its height (indicated with the red dotted line). After that, z5 gets unambiguous feedback
information from its neighbor and its firing rate rises slightly, but then further increases as also
the top layer units’ average firing rate reaches a higher point.

This indicates that the units without direct information about the input (like z5) get some - but
only few - information by other units in the same lateral layer (e.g., by z1), and then they get
delayed top-down information (e.g., x1, . . . , x5) which strongly influences their firing behavior.

The red and the green dotted lines indicated the point in time when the different lateral layer
units reach half of their maximum firing rates. When now comparing this shift or delay in
the onset time with the outcomes of the experiments of Lee et al in figure 2.5, one can see
some similarities: In both cases, the lower layer units react soon after the stimulus onset to
unambiguous (line) input, but top-down information is required in order to perform pattern or
contour completion. The need for this feedback information causes - again in both experiments -
a delay in the response to the “incomplete” or ambiguous input, compared with input consisting
of “complete” and unambiguous lines or patterns. Additionally, in both plots it is clearly visible
that the response is higher with unambiguous and complete input.
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Figure 8.22: Average firing rates of representative lateral and top layer units: Lateral layer
unit z1 gets directly unambiguous external input, and is associated with this input pattern (Its
average firing rate is indicated by the red line). Another lateral layer unit z5, associate with
the same pattern, gets ambiguous external input, but is associated with the same pattern (The
green line shows its average firing rate). For completeness, the average firing rate of the top
layer neurons x1, . . . , x5 are shown (indicated by the yellow line).
After stimulus onset it is visible that first the average firing rate of the lateral layer unit z1

(with the unambiguous external input) rises, and after this the average firing rate of the top
layer units x1, . . . , x5 follow. Only after an additional delay, the lateral layer unit z5 (with
ambiguous external input) gets the indirect top-down and lateral information and its average
firing rates increases.
The solid dotted lines indicate the delay, which is measured at half of the maximum height where
the firing rate of the corresponding neuron saturates. When comparing the dotted vertical red
and green lines a delay of about 60 milliseconds is visible in the reaction time.
When comparing this figure with figure 2.5, it can be observed that some properties are similar
to the findings by Lee et al, where a similar situation (namely a neuron’s reaction to a square
contour and to an illusory square) is measured biologically: In both cases the unambiguous
direct information about a line or a pattern causes a immediate (or soon) response, while there
is some delay in the response when top-down information is required. Additionally, in both
cases the response to an unambiguous image is higher than to ambiguous input.
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8.6 Conclusion

Now it has been shown on which probabilistic model the multilayer neural network model is
based, how it is set up and learned, and also the results of learning and testing it (i.e., performing
probabilistic inference in this model) have been demonstrated. Additionally the neural network
model has been applied to a simplified model of vision, simulating on a symbolic and simplified
level some findings of a biological experiment by Lee et al.

If the network model only defines the feedforward weights between the input layer and the lateral
layer, then the network can recognize single subparts of the input image. In such a model, no
image completion is possible since this requires an information exchange between the different
subparts of the image.

When adding lateral layer connections, some information can flow among the units responsible
for different receptive fields, and so some communication is possible. Still, the influence of these
other lateral layer neurons turned out to be quiet weak in the studied network model and input
statistics (using only direct neighborhood, small images consisting of few subparts, and choosing
relatively low firing rates).

A significant change (or improvement) in the posterior distribution, i.e., the response of lateral
neurons, was observed when adding a third layer on the top, which introduces additional prior
knowledge: This top layer encodes a prior knowledge on how a complete picture should look like.
This top layer is connected to all lateral layer neurons, using top-down bottom-up connections,
and it results in better image completion and partially and very weak detection of errors in an
image. The influence of this prior knowledge turned out to depend on the size of the populations
which represent the complete images.

This multilayer network model was applied to a simplified version of the visual system, as
proposed by Lee et al [45]:

According to Lee the early visual areas are only responsible for edge detection, but not for
completion of missing input fields. In the symbolic setup this feedforward processing corresponds
to the weights V between the input layer (a symbolic representation of the visual input), and
the lateral layer.

According to Lee, edge completion is done in higher visual areas - symbolically represented by
the W connections in the described recurrently connected network model - which supply prior
knowledge and exchange information on their current state for, e.g., image completion..

In an extension of the experiment, the theoretically ideal neuron model was modified in order to
account for biologically more realistic dynamics, such as additive alpha-shaped PSPs, a relative
refractory mechanism and synaptic delays. This more realistic model was applied to a symbolic
version of the experiment by Lee et al.

In this experiment it has been shown that neural sampling can successfully be applied to a
strongly simplified model of the experiment by Lee et al, simulating some aspects of the behav-
ior of real neurons in a symbolic and artificial way: It is possible to create a model based on
neural sampling, where the influence of top-down information causes delayed response of par-
ticular neurons getting ambiguous information. In this way, a model is able to reproduce and
“understand” (partially) ambiguous inputs through feedforward-feedback information passing,
having learned some prior knowledge.
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9 Discussion

It has recently been discovered how Bayesian inference can be performed in a network of spik-
ing neurons, by interpreting the neural network as a probabilistic model, where a sample is
represented by the neurons’ spike response at a certain point in time. In this work, various
aspects and properties of such a neural sampling network have been analyzed and tested on an
implementation.

In this work an implementation of the neural dynamics sampler has been presented and its
usage has been explained. Additionally various parameters and settings have been tested and
systematically analyzed. In the last part it was demonstrated how the sampler can be applied
to a model of vision, by constructing a multilayer neuron model representing (on a symbolic
level) the visual pathway of the mammalian cortex.

The efficient and user-friendly C++ implementation displays a modular and highly flexible
framework of the theoretically grounded Network model. Furthermore, it provides various inter-
faces to more modern and high-level programming languages at different levels of abstraction.

This modular framework was used to investigate modifications of neuron models, such as PSP
shapes, refractory mechanisms and synaptic delays, which render neuronal dynamics biologically
more realistic. It was found that, for a reasonable strength of synaptic coupling, the distortions
introduced by these modifications are likely to not be behaviorally relevant: The systematic
error of such modifications might be not so relevant when being compared to the stochastic
error caused by the limited sampling time, which cannot be avoided in practice.

The next aim was to implement the abstract vision framework proposed by Lee et al in a
symbolic version on the neuron model. Therefore, the sampler is combined with a generative
model, which allows to give spiking input to the network, such that it is able to sample from the
resulting posterior distribution. This model was trained for maximum likelihood on the input
statistics of complete images.

To do so, the influence of the lateral synaptic connections and of top-down information was
systematically analyzed. When looking at the findings of these simulations, the delayed response
of those neurons which have their receptive fields on ambiguous input parts can be understood
inside the dynamics of such a recurrent network.

Future work in this field could consist in the analysis of even more realistic properties (e.g., the
influence of missing symmetries in the weight matrix could be observed in more detail), and also
in applying the concept to more complex models (deeper hierarchies and different restrictions in
the connectivity) which should then be able to perform also more “difficult” tasks, like pattern
completion in less obvious pictures.

The results of this work indicate that the dynamics in recent spiking neural network models for
probabilistic inference and sampling are in accordance with data from biological recordings. I
hope that such findings help to bring neuroscience one additional tiny step forward towards the
goal of exploring and finally understanding the brain, which still represents a big mystery for
scientists.

“What is a scientist after all?
It’s a curious man looking through a keyhole, the keyhole of nature,
trying to know what’s going on.”

Jacques Cousteau
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Part III

Appendix

A Appendix: Technical manual: Neural Dynamics Sampler

This technical manual contains a complete description of the implemented features of the neural
dynamics sampler, including also detailed guidelines about how to build and use the sampler.
Additionally, some instructions regarding possible extensions are given, as well as some instruc-
tions how to build, use or extend it.

A.1 Compiling and Linking

A.1.1 Building the sampler (C++ files)

For the neural network to run, a C++ compiler has to be installed (e.g., g++).

Additionally, the library “Eigen” is needed, possibly in version 3, which can be found at http:
//eigen.tuxfamily.org and has to be installed on the machine. For the compilation, it has to
be included: -I/PATH/lib/eigen.
This library is needed in the neural network model for performant matrix and vector operations
and computations.

Another library is required (for the solution of the implicit equation system for fk(uk)), namely
the “GSL - GNU Scientific Library”, available at http://www.gnu.org/software/gsl/. It
should however be already available on most machines. The library should be installed in the
local standard include directory, and can thus be used as: -Igsl -lgslcblas.

During compilation the compiler optimization should be switched on to a higher level (e.g., using
-O3), such that the execution of the sampler is more performant.

Compilation and linking of the C++ files can therefore be done by using

g++ -I"lib/eigen/" -lgsl -lgslcblas -O3 -g3 *cpp -o network

The compiled program is then called: ./network

A.1.2 Building the sampler and the Matlab interface

If also the additional mex files for the Matlab communication should be installed, it might be
useful to do compiling and linking separately: For the compilation, the standard C++ compiler
can be used, including also the location of the Matlab libraries. These paths have to be adjusted.

MATLAB_EXTERN=/usr/local/matlab74/extern/include

MATLAB_SIMULINK=/usr/local/matlab74/simulink/include

g++ -I"../lib/eigen/" -I$MATLAB_EXTERN -I$MATLAB_SIMULINK -DMATLAB_MEX_FILE

-fPIC -c *cpp

Each mex function has to be linked separately. Therefore, for each of the pre compiled mex files
mexFile.o, the linker has to be called, using Matlab’s mex executable and specifying that the
object files are pre compiled C++ files. All the C++ classes of the sampling network have to
be listed as well. Again, the path to the Matlab directory has to be adjusted before:
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MATLAB_MEX=/usr/local/matlab74/bin/mex

$MATLAB_MEX -cxx mexFile.o BoltzmannMembranepotential.o ExponentialPsp.o

ExponentialPspLimitedHeight.o Function.o Logger.o MathFunction.o

Membranepotential.o Neuron.o PspShape.o RealisticPsp.o

RealisticPspAdditive.o RectangularAdditivePsp.o RectangularPsp.o Sampler.o

SamplingNetwork.o StaticInitialization.o -I"../lib/eigen"

-I/usr/local/include/ -lgsl -lgslcblas -lm -lstdc++ -largeArrayDims

Note that a shell script is available, which does the compiling and linking for you, if you specify
the paths of your system.

A.1.3 Building the sampler and the python interface

Similar as for Matlab usage, also for building the python interface it might be better to separate
the compile and the build process: Compiling of the C++ source code is done in the same way
as for the standard C++ compilation:

g++ -I"../lib/eigen/" -fPIC -c *cpp

In a next step, the SWIG input files have to be wrapped. In order to do so, the files contained
in the swig folder are needed. Additionally, the installation of SWIG (www.swig.org) and its
python addon is required.
First of all, the input file has to be wrapped into a C++ file:

swig -c++ -python -I"../lib/eigen/" -o sampler_wrap.cpp simulator.i

The wrapped file has now to be compiled, together with the C++ source code file. During this
process, the path to the python installation is required, and has therefore to be specified:

PYTHON_INCLUDE=/usr/include/python2.4/

PYTHON_LIB=/usr/lib/python2.4/

PYTHON_INCLUDE_NUMPY=/usr/lib64/python2.4/site-packages/numpy/core/include/

g++ -I"../lib/eigen/" -I$PYTHON_INCLUDE -I/usr/local/include

-I$PYTHON_INCLUDE_NUMPY -fPIC -c NetworkSimulator.cpp sampler_wrap.cpp

Now everything should be compiled, and therefore linking can be done:

g++ -shared sampler_wrap.o SamplingNetworkSimulatorFloat.o

BoltzmannMembranepotential.o ExponentialPsp.o ExponentialPspLimitedHeight.o

Function.o Logger.o MathFunction.o Membranepotential.o Neuron.o PspShape.o

RealisticPsp.o RealisticPspAdditive.o RectangularAdditivePsp.o

RectangularPsp.o Sampler.o SamplingNetwork.o SamplingNetworkSimulator.o

StaticInitialization.o -I"../lib/eigen"

-I/usr/local/include/ -lgsl -lgslcblas -lm -lstdc++

-L$PYTHON_LIB -I$PYTHON_INCLUDE -o _sampler.so

Note that a shell script is available (for python 2.4 as well as python 2.5), which does the
compilation and linking for you, if you specify the paths of your system. Be sure to use the
same version of python for compilation and for running the script.
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Figure A.1: Neural dynamics sampler class structure

A.2 Class structure

A brief overview over the class structure of the neural network model is shown in figure A.1.

The black arrows in this rough class diagram denote an association between the classes, while
the arrows which are not filled indicate inheritance or “is-a”. The dotted lines indicate some
access which is not directly part of the implementation, e.g., the possibility to use the sampler
from different programming languages.

The Sampler class is the most general class. It has an associated MembranePotential - e.g.,
BoltzmannMembranePotential, which is a specific implementation of such a membrane poten-
tial. It is responsible for calculating the current uk value of each neuron. Additionally, the sam-
pler contains also one or more Neuron objects, each of which can be resampled. A neuron knows
its own RefractoryMechanism g(ζk), CharacteristicFunction γ(uk) and FiringRateFunction

fk(uk), as well as its PspShape - which is responsible for computing the current PSP value of
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the neuron, given its refractory state ζk. This shape might be of a concrete specific type,
like RectangularPsp, RectangularAdditivePsp, ExponentialPsp, ExponentialAdditivePsp,
RealisticPsp, or RealisticAdditivePsp. The other two classes - Logger and MathFunction

contain static methods (for logging and mathematical calculations) which are available to all
the other classes, but cannot be associated directly to the other classes.
A Matlab interface for the sampler is already available and running, as well as access through
python, while an additional access interface is available, and could for example be accessed eas-
ily through external classes (from PCSIM or others) as the used syntax is standard “primitive”
C++ without any extensions or libraries.

A.2.1 Class “Sampler”

The Sampler is the most general class of the neural network.
The sampler contains a set of neurons (Neuron), with its specifications. It has also a specific kind
of membrane potential (MembranePotential) with weight matrices valid for the whole sampler.
Also the time difference value dt is stored once for the sampler, together with the specifications
of the range of u (namely the minimum umin, the maximum umax, and the precision uprecision).
In addition to these values, also the global delay is stored in the sampler: it specifies whether all
refractory values (or current states) of the neurons should be passed to the other neurons with
a certain delay, which is biologically plausible.
A sampler is initialized using the following functions:

• void addNeuron(Neuron *neuron, PspShape *pspShape=new RectangularPsp())

This function adds a neuron to the sampler, whose specifications are already set (using
the neuron’s constructor). The shape of the postsynaptic potential is passed separately, if
some specific shape except from a simple rectangular PSP is desired.

• void setMembranepotential(Membranepotential *mem)

This function sets the membrane potential of the sampler to the given Membranepotential

object. The weight matrix (or matrices) are already specified in this object, which is then
responsible for the computation of the current uk values.

During the sampling in the network, the following functions might be of interest:

• bool check()

This function has to be called after the initialization of the sampler, before advancing the
network. It internally checks whether all values have been set at all, whether matrices and
vectors have the correct size, and whether the values are allowed and valid. Only after a
positive check (which means that the call to the function returns TRUE), the network can
be advanced.

• bool reset()

This function can be called before advancing the network. Internally it calls the check

method. If the parameter double dt is passed, and this value is the same as the one
specified in the constructor, then this method returns the value of check, otherwise FALSE

in any case.

• VectorXd advance(unsigned steps=1, bool randomOrder=FALSE)

This function is a call to advance the network, which means that all neurons are resampled.
In the parameters it might be specified for how many steps the network should be advanced
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(if not only one step), and whether the resampling of the neurons should be done in random
order.

• Various “getter” methods are also available, to get the time difference dt, a pointer to the
membrane potential, and to the current PSP values, as well as methods to get information
about the existence of a global delay.

• VectorXd getStates()

This function returns a vector of the (relative) states ζk/τref of all neurons k. The returned
values are not delayed.

• VectorXd getSpikes()

This function returns a vector of values, indicating whether the neuron k spiked right now,
i.e., ζk = τref , for all neurons k. Also these values are not delayed.

• VectorXd getActivity()

This function returns a vector which contains the zk := (ζk > 0) values of all neurons k.
Again, the returned values are not delayed.

• void setExternalInputOfNeuron(unsigned int k, double value)

This function sets the external input of the neuron with index k to the given (pre computed)
value.

• void setExternalInput(VectorXd inputs)

This function sets the external inputs of all neurons to the pre computed input values in
the given vector. Note therefore, that the number of elements in this input vector has to
be equal to the number of neurons in the network.

A.2.2 Class “Neuron”

This class represents an abstract definition of a unit of computation in a neural network.
Each neuron corresponds to one (and only one) specific sampler, and can be uniquely identified
inside this sampler by its index. A neuron might have some external input, that is pre calculated
(e.g., < y,Wk >), and has a specified τref and refractory period τref = b τrefdt e.
For each neuron, a kind of refractory mechanism g(ζk) (RefractoryMechanism) can be specified,
or the user might also directly define a vector containing the τref + 1 precomputed values for
g(ζk = 0) . . . g(ζk = τref ). A characteristic function (CharacteristicFunction) can be set,
which - if not stated differently - is set automatically to euk . The values for the refractory function
g(ζk) (for each rk ∈ [0 : τref ]), for the characteristic function for uk ∈ [umin : uprecision : umax],
and for the firing rate function f(uk) (FiringRateFunction, again for all possible uk) are
precomputed at the initialization (init) of the neuron for performance issues. If any of these
functions has already been precomputed before with exactly the same combination of settings,
it is not computed again, but the stored values are reused.
Additionally, a neuron has a corresponding PspShape, which represents a very abstract definition
of a postsynaptic potential shape. This characterizes the behavior of the neuron’s potential after
a spike has occurred.
At each point in time, a neuron has specific values for ζk (the refractory value), and zk which
measures whether the refractory value is positive. The transmission of these values to the other
neurons in the sampler might be delayed, depending on the globalDelay set for the whole
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Sampler.
A neuron provides different functions. The most important ones for a user of the network might
be:

• unsigned getIndex()

This function returns the index of this neuron, which is unique inside the sampler.

• void setClamped(bool one)

This function should be called to clamp the current neuron. If it should be clamped to
be active, one should be TRUE, otherwise FALSE. A clamped neuron does not change its zk
value at the resample step.

• void setNotClamped()

This function sets a clamped neuron to “normal” again, which means that it might spike
(or not spike) stochastically again, and not stay unchanged.

• int resample()

This function advances (or resamples) the current neuron by one step. This means, the
probability of a spike at the current moment is calculated, and according to this probability,
it is decided stochastically whether the neuron should spike right now, or whether the
refractory value is lowered (or stays the same if the neurons is already inactive).
The function is called internally by the sampler (at the advance step), but might in some
specific cases also be of interest for an external user of the neural network.

A.2.3 Class “MembranePotential”

Biologically, the membrane potential describes the voltage difference between the interior and
exterior of some neuron. The implemented neuron model typically uses a very abstract repre-
sentation of it.
This class MembranePotential can be seen as some kind of interface or general structure of how
a concrete implementation of a membrane potential class should look like.
The following functions have to be overwritten in specific implementations:

• virtual double getValues(Neuron* neuron)

This function should calculate and return the current value of the given neuron’s uk value.

• virtual bool checkWeights(unsigned neuronNumber)

This function is called at the reset: It should check whether the dimensions of the weight
matrices or vectors are correct and valid.

A.2.4 Class “MembranePotential - BoltzmannMembranePotential”

This class represents a special kind of membrane potentials, namely using Boltzmann machines.
In this case, the constructor requires to specify a weight matrix W of size neuronNumber ×
neuronNumber and a bias vector b, also being of the same length as the neurons in the network.
Usually the diagonal of the W matrix should only contain zeros, as the intrinsic excitability is
already contained in the bias vector, and it could therefore be confusing to have an additional
value for it. It is however also possible to have some additional self-interaction, and thus to have
a non-zero diagonal.
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The class BoltzmannMembranePotential implements the virtual functions defined in the super-
class MembranePotential, and some additional methods which are required (especially for the
learning process) for Boltzmann machines:

• The getValues function returns uk = bk + externalInput+ internalInput.
The external input of a neuron is specified at the declaration of a neuron and stored then
separately for each neuron (e.g., externalInput = y>W ′

k with y being some external
values, and W ′

k indicating the weights from the external values to this neuron).
The internal input represents the influence coming from other neurons inside this network
to this neuron. It is given as internalInput = psp>W k where psp are the current
postsynaptic potential values (computed using the PspShape), and W k represents the kth
row of the weight matrix W .

• The checkWeights function checks whether the dimensions of the weight matrix W and
of the bias vector b both match the number of neurons inside the network.

• The functions setWeights and getWeights both are related to the weight matrix W .

• Using the function addToWeights it is possible to add some ∆W value to each entry
of the weight matrix. The given matrix has therefore to be of the same dimensions as
the original W matrix and it contains the elements that should be added to this original
weight matrix. This function might be helpful during the learning phase.

• Also the function updateWeights might be of interest during the learning phase of the
network. Given the zposterior vector of some posterior sample, the zprior vector of a prior
sample and a learning rate η (being a scalar), theW matrix is updated, using an additional
mask matrix η̃W ∈ [0, 1], whose elements define which entries of the weight matrix should
be learned, and which should not. Note that this mask matrix should again be symmetric.
The update is then done:

∆W = η ·
((
zposteriorz

>
posterior

)
−
(
zpriorz

>
prior

))
Wkl = Wkl + η̃W kl

·∆Wkl

• The function setWeightMask(Eigen::ArrayXXd) can be used to change or set the mask
for learning and updating the weight matrix, i.e., the array η̃W . Again, this array has to
be of the same size as the original weight matrix. The standard value is an array of ones
with a zero-diagonal.

• The functions setPi and getPi can be used to handle the bias vector b.

• Using addToPi it is possible to add some ∆b values to each entry of the current b vector.
Therefore the dimensions of both vectors must match. This function could be useful during
learning.

• The function updatePi might also be interesting during the learning phase of the network.
Given again the zposterior vector of some posterior sample, the zprior vector of a prior
sample and a learning rate ηb (being a scalar), the vector b is updated, again using an
additional mask vector η̃b ∈ [0, 1], with entries defining for each vector element whether
is should be updated (and learned) or not. The update step is then the following:

∆b = ηb · (zposterior − zprior)
bk = bk + η̃bk ·∆bk
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• The function setPiMask(Eigen::ArrayXd) can be used to set the mask for learning the
b vector, being η̃b. The given array has to be of the same size as the original vector. The
standard value is an array of ones.

A.2.5 Class “PspShape”

This class represents an interface or skeletron, the abstract idea of a neurons’ PSP shape. It
contains the definitions of two virtual functions that should be overwritten in any subclass:

• virtual double getPspValue(int refractoryValue)

This method returns the PSP value of a neuron, given the current refractory value ζk. The
standard implementation returns 0, regardless of the refractory state.

• virtual double updatePspValue(int refractoryValue)

This method updates the PSP value of a neuron, given the current refractory value ζk,
and returns it. The standard implementation returns 0, regardless of the refractory state.

• virtual bool isRectangular()

This method is only used to check whether all of the PSP shapes are rectangular. For all
implementations except RectangularPsp this method should return false.

Additionally, this interface contains the type definitions for all the different available PSP shapes

A.2.6 Class “PspShape - RectangularPsp”

The class RectangularPsp represents one specific kind of PSP shape, namely rectangular PSPs
(see figure A.2). The implementations of the methods getPspValue as well as updatePspValue
both return 1 in case if ζk > 0, and 0 otherwise. The implementation of isRectangular returns
true.

Figure A.2: PSP shape: Rectangular renewing

A.2.7 Class “PspShape - RectangularAdditivePsp”

The class RectangularAdditivePsp is a more specific type of the rectangular PSP shapes:
While the normal rectangular PSP shape has a height of 0 or 1, this one can take also other
values, as shown in figure A.3. It gets as parameters in the constructor the values for

• the height, which represents the value that the PSP rises in case of a spike,

• and the refractory period τref , which is also needed for the computation.
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As the name of the class already says, the shape is additive, i.e., if the neuron spikes, the PSP
value raises to height. After the refractory period τref is over, it would return to 0, unless a
new spike occurs already before the refractory period is over. In this case the PSP value rises
to 2 · height, until the first refractory period is over, then decreases again to height until the
second refractory period is over, and returns to 0 afterwards.

Figure A.3: PSP shape: Rectangular additive

A.2.8 Class “PspShape - ExponentialPspLimitedHeight”

The class ExponentialPspLimitedHeight is another subclass of PspShape. It describes renewal
exponential PSP shapes, like shown in figure A.4.
In the constructor, different values have to be defined:

Figure A.4: PSP shape: Exponential renewing

• the height, which represents the value that the PSP rises in case of a spike,

• a λ value which defines the steepness of the shape,

• and the refractory period τref , which is also needed for the computation.

The current value is given by

pspt+1 =

{
height if ζk = τref ,

pspt · λ otherwise.

A.2.9 Class “PspShape - ExponentialPsp”

This class ExponentialPsp is very similar to the previously described sort of PSP shapes,
ExponentialPspLimitedHeight, with the difference that - as the name already tells - these
PSPs have not limited heights, i.e., they are additive (see figure A.5).
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Figure A.5: PSP shape: Exponential additive

The parameters required for the constructor are the same as for the unlimited exponential PSPs.
The current value corresponding to a given refractory value is then calculated as

pspt+1 =

{
pspt · λ+ height if ζk = τref ,

pspt · λ otherwise.

A.2.10 Class “PspShape - RealisticPsp”

The class RealisticPsp represents some PSPs with alpha-shapes. Such shapes are computed
as the difference between two exponential PSP shapes (see figure A.6).

Figure A.6: PSP shape: Alpha-shaped, renewing, computed as difference between exponentials

The parameters needed in the constructor and for the computation are the following

• the height, which is not the entire height of a PSP spike, but the maximum height of the
individual exponential shapes, whose difference is then computed,

• a λ(1) value which defines the steepness of the shape of the first exponential shape,

• a λ(2) value which defines the steepness of the shape of the second exponential shape,

• and the refractory period τref .
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Therefore, the current value corresponding to a given refractory value is calculated as:

val
(1)
t+1 =

{
height if ζk = τref ,

val
(1)
t · λ(1) otherwise.

val
(2)
t+1 =

{
height if ζk = τref ,

val
(2)
t · λ(2) otherwise.

pspt+1 =val
(1)
t+1 − val

(2)
t+1

A.2.11 Class “PspShape - RealisticPspAdditive”

The class RealisticPspAdditive corresponds to the same kind of PSP shapes as the previously
described one, but it is now additive, not renewal, as shown in figure ??.

Figure A.7: PSP shape: Alpha-shaped additive

It takes the same parameters as the renewal alpha-shaped PSPs, and the current value is again
computed as the difference between two exponentials:

val
(1)
t+1 =

{
val

(1)
t · λ(1) + height if ζk = τref ,

val
(1)
t · λ(1) otherwise.

val
(2)
t+1 =

{
val

(2)
t · λ(2) + height if ζk = τref ,

val
(2)
t · λ(2) otherwise.

pspt+1 =val
(1)
t+1 − val

(2)
t+1

A.2.12 Class “RefractoryMechanism”

The neuron’s current refractory mechanism value g(ζk) is needed for the computation of the
spiking probability (together with the characteristic function).
The refractory mechanism is precomputed for each neuron already at initialization time, such
that the values can simply be used later on, and further computations can be avoided. It is also
possible, to set a neuron’s refractory mechanism directly, by giving to the constructor of the
neuron the set of precomputed g(ζk) values for all ζk = [0; τref ].
The class RefractoryMechanism contains different definitions of refractory functions g(ζk) for
a neuron.
static VectorXd *computeRefractorymechanism(Type mechanism, int R) is the function
that can be called to obtain the all values g(ζk) according to the refractory states ζk of neuron
k. It takes as parameter the type of the refractory mechanism mechanism of this neuron, as
well as the refractory period τref .
The enum Type should be used to identify the desired definition of a refractory mechanism:
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• One example for a refractory mechanism, that is already implemented, is an absolute
refractory mechanism (absoluteRefractoryMechanism). Here, the neuron cannot spike
during the refractory period, until the refractory value reaches ζk = 1, meaning

g(ζk) =

{
1 if ζk ≤ 1,

0 otherwise.

• Another already implemented definition of refractory mechanism is some relative refractory
mechanism representing some sigmoidal (sineWaveMechanism). In this case, the refractory
function is computed as g(1− ζk) = g(t− tspike), which means

g(ζk) =
τref − k
τref

−
sin
(

2π · τref−kτref

)
2π

A.2.13 Class “CharacteristicFunction”

The class CharacteristicFunction γ(uk) is responsible for calculating the characteristic func-
tion of a neuron, given its current membrane potential value uk. The characteristic function is
equal to

p(ζk > 0 | r\k)
p(ζk = 0 | r\k)

= e
log

p(ζk>0|ζ\k)
p(ζk=0|ζ\k) = γ(uk)

Usually this is obtained as
γ(uk) = euk

This is also the standard characteristic function used for the sampler.

A.2.14 Class “FiringRateFunction”

This class is needed to get the values of the firing rate function fk(uk), as the solution to the
implicit equation system

fk(uk) ·
∑τref

i=1

∏τref
j=i+1 (1− fk(uk) · gk(ζk = j))∏τref

j=1 (1− fk(uk) · gk(ζk = j))
= γ(uk)

The function computeFiringRate can be called to obtain the set of precomputed values of the
firing rate function, given the set of precomputed values of the characteristic function euk for
the desired (and predefined) range and precision of uk values, and the precomputed vector of
values for g(ζk) for all ζk ∈ [0; τref ]. The function then returns a pointer to a vector filled with
the values of fk(uk) for the same range and precision of uk values.

A.2.15 Class “MathFunction”

This class contains static method for various mathematical calculations and random number
generators.
All of these methods can be used statically from any of the other classes, and the MathFunction

class might be extended arbitrarily by adding additional methods for mathematical functions.
For a simple use of the neural network model, all of these methods might be helpful during the
initialization and the evaluation of the results, bot none of them is necessary for the network
model itself.
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• static VectorXd getRandomGaussNumbers(double mu, double sigma, unsigned amount)

This method returns a vector of double values, containing the specified amount of ran-
dom Gaussian distributed numbers. The Gauss values have mean µ and covariance σ2:
N (µ;σ2)

• static Matrix<double, Dynamic, Dynamic, RowMajor> getRandomGaussNumberMatrix

(double mu, double sigma, unsigned rows, unsigned cols)

This method returns a matrix of double values of size < rows, cols >, which contains
normal distributed values around mean µ with covariance σ2: N (µ;σ2). As these values
are might be used for the initialization of the W matrix, this function is optimized for
this: The resulting matrix is diagonally symmetric, meaning that W = W>, such that
Wkl = Wlk. This should be considered, if this function might be used for any other matrix
of Gaussian numbers.

• static double kullbackLeiblerDivergence(VectorXd p, VectorXd q)

This method computes the Kullback Leibler divergence or relative entropy between the
probability distributions p and q as being

KL(p‖q) =
∑
i

p(i) · log10

p(i)

q(i)

• static int getDecimalValue(VectorXd binary)

This method takes a vector of double values, containing only zeros and ones. This vector
is interpreted as a binary number by concatenating the vector values, starting from the
first and going on to the last one. The resulting decimal representation of the number is
returned as an integer value.

• static int getDecimalValue(VectorXd binary, VectorXd powerTwoValues)

This method does the same as the previously explained one, but by relying on another user
input: In this case, the user specifies the vector of “power-2” values, which are then used
to compute the decimal value. In this way it is possible, to “consider” only some of the
values in the binary array, which might be helpful when analyzing the states of neurons
in large networks, if only few neurons - with known indices - are of interest.

• VectorXd getBinaryValue(double decimal)

This function is the inverse of the previously explained ones: It computes a vector of binary
values for the given decimal number. Note that if you do not specify an integer number,
the decimal part of the number is ignored.

• VectorXd getBinaryValue(double decimal, VectorXd powerTwoValues)

This function again converts a decimal number into a vector of binary values, but this time
using the given pre defined vector of values. It works in a similar fashion as the previous
functions.

• static VectorXd computePdAnalytically

(MatrixXd J, VectorXd pi, unsigned numCombinations, unsigned numNeurons)

This method is used to compute the probability distribution of a Boltzmann machine
neural network analytically. It takes a weight matrix W with zero main diagonal (if there
is no self-interaction of the neurons), and a bias vector b.
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All numCombinations possible combinations of numNeurons neurons (or the neurons’
zk = (ζk > 0) values) are used for the computation:

p(z) =
1

Z
· e

1
2
z>Wz+z>b with Z =

∑
z

e
1
2
z>Wz+z>b

A.2.16 Class “Logger”

This class contains some general methods for logging all details. It may be extended arbitrarily
by adding any static methods.

A.3 Setup: Using the sampler

This section gives a brief introduction and a short example of how the neural network model
can be set up and used in practice. There are two different possibilities how the system can be
set up and used, namely either by using the provided class SamplingNetwork which acts as kind
of a black-box, holding all objects and caring about memory aspects internally, or by using the
provided classes and objects described in the previous section directly. Both of these options
are briefly discussed in the following, letting the user decide for which possibility to go.

A.3.1 Setup “manually”

Sampler initialization

For the initialization of the sampler, the following parameters should already be given:

• dt . . . a double value, indicated in milliseconds, which in combination with the τref value
(that can be specified for each neuron separately), defines the refractory period of that
neuron: R = b τrefdt e. This should be considered when choosing the dt value: This value is
usually rather small (not above 1.0, but always positive, i.e., > 0), while the τref value is
much higher (e.g., 20), in order to obtain a R value that is positive (R > 0).

• du . . . a double value, which indicates the precision of the membrane potential values
uk. It defines to which precision or detail level the uk values have to be rounded to
obtain one specific value out of the set of precomputed function values. It is therefore
some precision indication for the pre-computation and for the functions depending on the
current membrane potential values. As an indication, this setting should be very near to
0 (but always positive), e.g., at 10−4, to obtain good approximation values. Note, that
if du becomes much smaller (e.g., from 10−6 onwards), the initialization of the sampler
might take quiet some time, as all function values have to be pre-computed with the given
precision.

• umin . . . a double value, which indicates the minimal uk value that has to be considered.
This means that if the membrane potential value uk goes below this value, it is clamped to
this specific umin. Usually umin = −15.0 is low enough to consider all possible uk values
without clamping.

• umax . . . a double value, representing the maximum uk value to be pre-calculated and
considered. In most cases, umax = +15.0 is a good indication of this value, such that the
arising uk values do not have to be changed or clamped.
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• delay . . . an unsigned value, which defines the global delay (measured in seconds) in the
network, which is the number of steps of delay for all the rk and zk values for the other
neurons in the network. This means, each neuron does not get the simultaneous informa-
tion about the current state of all the other neurons, but only some delayed information.
Usually this value should be rather small, as it also slows down computation. In our
example we use 0 delay.

Knowing these values, the sampler can be initialized using its constructor:

double dt = 1.0;

double du = 0.0001,

umin = -15.0,

umax = 15.0;

unsigned delay = 0;

Sampler *sampler = new Sampler(dt, du, umin, umax, delay);

Creating and adding neurons

In a next step, the neurons can be initialized and added to the sampler.
For this the τref values (again in milliseconds) described previously are now needed, and ad-
ditionally the value for the inputexternal, which represents the input which comes from outside
the network to a certain neuron. This external input has to be precomputed, and only a double
value has to be passed to the neuron’s constructor. In the example, 0 is used as external input,
which indicates that no external input from outside the network comes to the neurons.
Also the refractory mechanism has to be defined for each neuron. In the example, the standard
g(ζk) mechanism is used.
The characteristic function can be specified as well for each neuron, but not indicating any kind,
leads to use euk automatically.
Having these values (which can also be set differently for each neuron), the neurons can be
created.
In order to add them to the sampler, also the shape of the postsynaptic potentials can be defined
for each neuron. In the example, no specific shape is specified, which means that rectangular
PSPs are used:

unsigned numNeurons = 8;

double tauRef = 20.0;

double extInput = 0;

vector<Neuron*> neurons;

unsigned i;

for (i=0; i<numNeurons; i++) {

Neuron *neuronNew = new Neuron ...

(tauRef, Refractorymechanism::subtractSpikeMechanism, extInput);

neurons.push_back(neuronNew);

sampler->addNeuron(neuronNew);

}
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Initializing the membrane potential

Now the membrane potential has to be defined and initialized.
For its initialization, the weight matrix W and the vector b have to be defined:

• W . . . has to be a quadratic row-major matrix of the same size as there are neurons in the
network. This indicates, that from each neuron to each other neuron, a weight (possibly
also 0) has to be defined. Usually the matrix has a zero diagonal, which means that there is
no self-interaction of the neurons. In the example below, quiet high, Gaussian distributed
values are used: W = N (0; 1.0). The W matrix has to be symmetric, i.e., Wkl = Wlk.

• b is a vector with the same length as there are neurons in the neural network. Therefore,
there is one bk value for each neuron k. In the following example, the values in the vector
are Gaussian distributed: b = N (−2.0; 0.5).

Having a matrix W and a vector b, the Boltzmann membrane potential can be initialized, and
then set for the sampler:

double muB = -2,

sigmaB = 0.5;

double muW = 0,

sigmaW = 1;

// Initializing membrane potential

VectorXd b = MathFunction::getRandomGaussNumbers(muB, sigmaB, numNeurons);

Matrix<double, Dynamic, Dynamic, RowMajor> W = ...

MathFunction::getRandomGaussNumberMatrix ...

(muW, sigmaW, numNeurons, numNeurons);

W.diagonal() = VectorXd::Zero(numNeurons);

// Setting membrane potential

BoltzmannMembranepotential *mem = new BoltzmannMembranepotential(W, b);

sampler->setMembranepotential(mem);

Final setup before sampling

Before starting the sampling, some additional steps have to be considered.
After having initialized the sampler itself, and added neurons and a membrane potential, the
sampler has to be checked. Only if this process could be finished successfully, the sampler can
be used. During the reset process, all the settings and parameters of the sampler are checked,
and sampling is only possible with existing and valid settings:

sampler->check();

After this, still the mixing time should be skipped. To do so, about 5000 milliseconds should
be enough. Only after this mixing or burn-in time, the sampler gives reasonable results, as the
probability distribution should be adjusted:

unsigned mxingTime = 5000;

sampler->advance(mixingTime);
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Sampling

After having set all parameters and initialized the sampler, the real sampling process can begin.
During this, it is also possible to write some statistics to a file, or to adjust some parameters
during the sampling steps, e.g., the weight matrix could be adjusted, or some neurons could be
clamped for a specific time.
The sampling itself is done by advancing the network:

unsigned milliseconds = 10000;

for (i=0; i<milliseconds; i++) {

VectorXd z_i = sampler->advance(1);

}

Closing sampler

After everything has been done, the sampler can be closed. For this, one should consider to also
free the allocated memory. In the above example, some objects have been created, that should
now be deleted from memory, i.e., the sampler itself, the neurons, and the membrane potential
object:

delete sampler;

unsigned k;

for (k=0; k<neurons.size(); k++) {

delete neurons[k];

}

neurons.clear();

delete mem;

A.3.2 Setup using the provided “Blackbox”

In this case, using the class SamplingNetwork, the neural network can be set up easily, without
creating any objects (except from the sampling network itself), and therefore without caring
about what is done with the used memory storage after the sampling process has finished. The
way this “blackbox” class might be used, is described by showing a brief example.

For the initialization of the sampling network itself, no parameters are needed, yet:

SamplingNetwork *network = new SamplingNetwork();

Immediately afterwards, the sampler can be created and initialized, using the provided function:

network->createSampler(dt, du, umin, umax, delay);

All of these parameters are optional:

• dt . . . a double value, indicating the internal time difference in seconds of the sampler,
from which - in combination with τref required later - the refractory period is obtained as
R = b τrefdt e. The standard value is dt = 1.0.

• du . . . a double value, which represents the precision for the computation of the uk values
(and therefore also for the fk(uk) values). If not stated differently, it is set to du = 10−4.
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• umin . . . a double value, indicating the lowest uk value that should occur (or that is con-
sidered). The standard value - if not set differently - is umin = −15.0

• umax . . . a double value, indicating the highest uk value that is considered, usually being
umax = +15.0.

• delay . . . a unsigned int value, representing the global delay (in seconds) of the network.
This means, that internal states are visible to the other neurons inside the network only
with a temporal delay. The standard value in this case is delay = 0.

In a next step, the neurons can be added to the network. To do so, either single neurons can
be added separately, or it is also possible to add a set of neurons with equal specifications at a
time. To do so, there are four options:

network->createNeuron(tauRef, gPrecomputed, input, pspType, param, fType);

network->createNeuron(tauRef, gType, input, pspType, param, fType);

network->createNeurons(amount, tauRef, gPrecomputed, input, pspType, param, fType);

network->createNeurons(amount, tauRef, gType, input, pspType, param, fType);

All of these methods do basically the same, namely creating neurons and adding them to the
sampler. Again, most parameters are optional, meaning:

• τref . . . a double value (indicated in seconds), which in combination with the dt value
mentioned before defines the refractory period τref . This value is mandatory, and no
standard value is defined.

• gprecomputed . . . a vector of double values, representing the precomputed values of g(ζk = i)
for i = [0; τref ], i.e., τref + 1 different values, representing the precomputed refractory
mechanism values. If this kind of refractory mechanism should be used, it is mandatory
to specify these values.

• gType . . . a type of refractory mechanism, indicating which kind of pre-implemented refrac-
tory mechanism should be used for the computation of the g(ζk) values. This parameter
is optional, and its standard value is the absolute refractory mechanism.

• fType . . . a type of characteristic function, specifying which kind of characteristic function
γ(uk) should be used. The specification of this type is optional, and the standard function
to be used is γ(uk) = euk .

• input . . . a double value, specifying the external input (from outside the network) to this
neuron. Again, also this value is optional, meaning that it is set to input = 0.0 if not
defined differently.

• pspType . . . a type of PSP shape, indicating which sort of PSP shape this neuron has. If
no PSP type is indicated by the user, rectangular renewing PSPs are used.

• param . . . an array of double values, containing all the parameters that are required to
initialize the given kind of PSP shape. This means, if rectangular PSPs should be used,
no parameters are needed (this can be set to 0), or if, e.g., exponential PSPs (with or
without limited height) should be used, then the required parameters are {λ, height}, and
these parameters should be put in the array in the order they are required for constructing
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the PSP shape. For realistic PSPs additionally the parameter λ2 should be given. Note
that the refractory period τref is not required, as it can be derived from the other given
parameters. If no paramters are specified by the user, it is assumed to be an empty array.

• amount . . . an unsigned int value, which represents a mandatory value, indicating how
many neurons with the given parameter setting should be created and added to the sam-
pler.

After having set all the neurons, the matrices for the membrane potential computation have to
be set. Currently, only Boltzmann membrane potentials are available. This setting can be done
in two different ways, either by specifying a certain weight matrix and vector directly, or by
choosing mean and covariance for Gaussian distributed random values for the weights:

network->createBoltzmannMembranePotential(numNeurons, muW, sigmaW, muB, sigmaB);

network->createBoltzmannMembranePotential(W, b);

Basically, these two options are self-explanatory. Nevertheless, a short description of the pa-
rameters is given in the following:

• numNeurons . . . a unsigned int value, describing how many neurons there are in the
network. Note that this setting is checked later on.

• µW , σ2
W . . . double values, which indicate the mean and covariance for the weight matrix

W . The matrix gets a zero-diagonal and it is symmetric, meaning W = W>. The values
are Gaussian distributed: W = N (µW , σ2

W )

• µb, σ2
b . . . double values, representing the mean and the covariance for the Gaussian distri-

bution of the random values, which are used to fill the b vector: b = N (µb, σ
2
b)

• W . . . a row-major matrix, containing double values, representing the weights of the
synapse connections, i.e., some already created W matrix.

• b . . . a Vector of double values, being some previously set bias vector b.

Before starting the sampling process, the sampler has to be reset and some burn-in time should
advance. All this is done, using

network->prepareSampler(burnInSteps);

Where the only parameter, namely burnInSteps is an unsigned int value, which describes, for
how many steps (or seconds) the sampler should advance, until the burn-in time is over. If
no value is set, the burn-in time is assumed to be 0, even though it is recommended to have
some burn-in time such that the initial state does not influence the probability distribution from
which to sample.
Alternatively, one could also use the check method and advance the burn-in time explicitly, as
it is done when using the Sampler class directly.

Now the sampling process may start. Sampling itself is done by calling:

network->advanceSampler(timePeriod);
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The parameter timePeriod should be an unsigned int value, that indicates how many steps the
sampler should advance. If no value is given, all neurons in the sampler are only resampled once.

There are several kinds of information that can be stored during sampling:

• If the sampled probability distribution should be known afterwards, the sampled states
are stored during the sampling process, which is switched on using:

network->storeProbabilities(true);

• It might also be necessary to store only some specific probabilities. For example, in very
large networks, storing the complete probability distribution, i.e., 2K different states, might
be as well infeasible as useless. In this case, one can decide to switch on the distribution
storage process only for some neurons, passing a vector, containing the indices of these
relevant neurons:

network->storeProbabilities(relevantNeuronIndices);

• If someone is interested in the evolution of the neurons’ states, it is also possible to store the
(relative) refractory states of the neurons ζk

τref
during the sampling process, for a predefined

number of time steps (in milliseconds). This is switched on by a call to:

network->storeEvolution(true, 1000);

• If the spike trains of all neurons should be stored, this is done using

network->storeSpikeEvolution(true);

• If a user is only interested in the evolution of the activity, i.e., the z values of all neurons,
then tracking of the zk values can be switched on (again indicating the number of steps to
track), using

network->storeActivityEvolution(true, 1000);

• The firing rate (in Hertz) - averaged over all neurons - can also be stored and tracked
during sampling. This can be done, by enabling the tracking before the sampling process:

network->storeFiringRate(true);

• The firing rates (again in Hertz) of all single neurons can be tracked by enabling tracking
before sampling:

network->storeFiringRates(true);

After the sampling process (if tracking was switched on during sampling), it might be interesting
to obtain some measure about how well the sampling process could simulate the real (analytically
computed) probability distribution. An appropriate measure to do so, might be the Kullback-
Leibler divergence:
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network->getKLtoAnalyticalDistribution();

which returns a double value, indicating the Kullback-Leibler distance KL(p‖q) between the
sampled probability distribution p(z) and the analytically calculated distribution q(z).
Also for the other tracked information there are functions to get the data, namely

• VectorXd getSamplingProbabilities() returns the sampled probability distribution p(z)
for all combinations of z values.

• VectorXd getAnalyticalProbabilities() returns the analytically computed probabil-
ity distribution. It might be interesting to compare this distribution to the sampled one.

• MatrixXd getStateEvolution() returns a matrix, in which each column represents the
state vector ζ/τref at one sampling time step.

• MatrixXd getSpikeEvolution() returns a matrix, in which each column stands for the
spiking situation at one time step. This means, a 1 means that this neuron spiked right
now, i.e., ζk = τref .

• MatrixXd getActivityEvolution() returns again a matrix, whose columns represent the
z := ζ > 0 values of all neurons at one sampling time step.

• double getFiringRate() returns the firing rate in Hertz, which was iteratively computed
during the sampling time.

• VectorXd getFiringRates() returns a vector containing the firing rates in Hertz of all
neurons in the network, which were iteratively computed throughout the sampling time.

During sampling, some additional functions might be useful, among them

• clamping single neurons to be either active or inactive all the time, using setClamped, or
unclamping them by setNotClamped.

• setting the external input of one single neuron (given its index), or of all neurons, for which
the values should be specified in a vector, calling setExternalInput

• changing the weight matrix W or the bias vector b, using the methods setWeightMatrix,
addToWeightMatrix, updateWeightMatrix, or respectively setPiVector, addToPiVector,
updatePiVector. In the update functions, a posterior sample for learning has to be pro-
vided, as well as a learning rate η. If no prior sample is given, the current z states of
the network are used. The weights can be obtained by a call to getWeightMatrix, or
getPiVector. To set or change the mask arrays for both, the W matrix and the b vector,
the functions setWeightMask and setPiMask can be used, respectively.

• getting the current network state, using getActivity, getStates or getSpikes.

The sampling network can be deleted from memory very easily, calling its destructor:

delete(network);
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A.4 Extension guidelines

A.4.1 Membrane potentials

The only implemented sort of membrane potential, is the one of a Boltzmann machine.
If any other kind of membrane potential should be added to the neural network model, this can
be done by creating a class that extends Membranepotential and by overwriting all its methods.

Some additional methods might be added, that should then also be made available through the
“blackbox” class SamplingNetwork (by adding regarding methods to it).

A.4.2 PSP shapes

Any new sort of PSP shape should be a subclass of PspShape, and it should overwrite its virtual
methods isRectangular (returning false, as this new PSP shape is not a standard rectangular
one), and getPspValue(refractoryValue), on which the main focus in the implementation of
such a new PSP shape should lie.

If any new specific type of PSP shape should be added, and if the “blackbox” sampling class
should be used for creating the network, these additional steps have to be considered:

• In the header file of the class PspShape, the name of the type of this new PSP shape has
to be added to the enumeration of the types.

• Then, in the SamplingNetwork class, in the method addPspShape, a new case for this PSP
shape should be added, in which this new type of PSP shape is generated by calling the
constructor, using the given parameters. Don’t forget to add the new class you created in
the include part of the SamplingNetwork.h file.

• For python usage: Also in the class SamplingNetworkSimulator, in the method getPspType,
a case for the new type has to be added. Here some unique index number has to be asso-
ciated with any PSP type accessible through other languages.

• For Matlab usage: In order to provide the usage of this new type also to Matlab users, a
new case statement has also to be added to the MEX function initNeurons.cpp (which
is located in the mex folder). The new unique index which is associated with this type
has to be added as possible value of the variable pspTypeIdx, and the regarding new PSP
shape type has to be set as pspType (while the additionally needed parameters have to be
set as pspParameters, e.g., λ and height).

A.4.3 Refractory mechanisms

In case if another refractory mechanism function g(ζk), additional to the absolute and the relative
mechanisms, should be added, the following hints should be considered:

• An enum Type entry for the new function definition should be added to the existing one in
the .h file. This is done by adding the new mechanism’s name to the inline definition of the
Type, e.g., next to absoluteRefractoryMechanism, inside the curly brackets, separating
the definitions by a column (,).

• As a next step one should switch to the .cpp file, more exactly to the implementation of
the function computeRefractoryMechanism: There is a switch statement where the new
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version of the refractory mechanism should be added as possible case. This should be
done by adding the statement

case newRefractoryMechanism:

return newRefractoryFunction(R);

break;

to the marked position in the statement, replacing newRefractoryMechanism with the
name declared before in the enum Type, and newRefractoryFunction by a desired func-
tion name.

• Again back in the .h file, the declaration of the new function has to be added:
In the private section, a new function of the type
static VectorXd *newRefractoryFunction(int R) should be added, using the same
function name as before in the .cpp file.

• The concrete implementation is then written to the .cpp file, using the header
VectorXd *Refractorymechanism::newRefractoryFunction(int R).
Inside this function, the computation of the τref values for g(ζk) are precomputed. Due
to performance issues, the best solution is to precompute the set (or vector) of values only
once for each setting, and to store these values statically for the execution of the network
model.
In order to do so, before the implementation of the computation a statement has to be
added to check, whether the values for exactly the same settings are already stored.

• Therefore, in the .h file one should add some vectors (in the private section) to store
the settings and the precomputed values. The way how to do so might be the same as in
the case of the already implemented version of refractory mechanism, namely by adding
static vector<VectorXd> newMechanismList (to store the precomputed values) and
static vector<int> newMechanismListR (to store the settings - in this case only the
number of refractory states τref ).

• The definitions should be repeated again in the .cpp file, before the implementation of
the function, e.g., vector<VectorXd> Refractorymechanism::newMechanismList and
vector<int> Refractorymechanism::newMechanismListR.

• Inside the implementation of the function, after the check (whether the values have al-
ready been computed and stored), the set of τref refractory mechanism values should be
computed in the desired way, and then stored to the vectors defined in the .h file. The
way how to do so can be looked up in the implementation of the function sineWave or
absoluteRefractory.

• For python usage: In order to enable the accessibility of this new refractory mechanism
also through the other languages, the new type has also to be defined in the method
getRefractoryMechanismType in NetworkSimulator: A new case has to be added, which
assigns a new unique positive integer number with this new type.

• For Matlab usage: In the MEX function initNeurons.cpp in the folder mex, a new case
has to be added when switching through the values of gTypeIdx, specifying the new type
as gType.

A Appendix: Technical manual: Neural Dynamics Sampler A 123



Analysis of Probabilistic Inference in Recurrent Networks of Spiking Neurons

A.4.4 Characteristic functions

Currently, the only implemented type of characteristic function (and therefore also the standard
value), is γ(uk) = euk . If any other characteristic function should be added, this can be done in
a similar way as for the refractory mechanisms.
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A.5 Sampling process

An overview over the messages and information flow that occurs during the sampling process in
the implementation is shown in Figure A.8. In this flow diagram, solid arrows represent function
calls, and dashed lines indicates the returned answers to these calls. Note that this is only a very
rough overview, showing briefly the interaction among the different classes during sampling.

Figure A.8: Rough flow diagram of sampling process

The sampling process is started as soon as someone calls to advance the sampler. In this case,
the sampler is told how many steps it should advance, and it loops this number of times over
all neurons k (the gray box indicates this loop), resampling one after the other.

When a neuron is asked to resample itself, it first tells the sampler to shift its delayed states,
which refreshes the delayed state list, where the new state to be resampled is then put.

Immediately afterwards, the neuron checks for the current membrane potential value uk, re-
questing the sampler, which then forwards this request to the Boltzmann membrane potential.
In order to obtain the current membrane potential value, the PSP values of all other neurons are

A Appendix: Technical manual: Neural Dynamics Sampler A 125



Analysis of Probabilistic Inference in Recurrent Networks of Spiking Neurons

required. The sampler obtains these values by looping over all neurons again, and checking each
time for the current PSP value (if not all neurons have rectangularly shaped PSPs, in which
case the z = (ζ > 0) vector can be used immediately).
Then, the neuron’s membrane potential value can be computed as

uk = bk + externalInputk + psp>W k

This value is returned back to the neuron which requested it.

Now the neuron contacts the firing rate function, to obtain the precomputed value for the firing
rate corresponding to the current membrane potential value fk(uk), which corresponds to the
solution of the implicit equation system

fk(uk) ·
∑τref

i=1

∏τref
j=i+1 (1− fk(uk) · gk(ζk = j))∏τref

j=1 (1− fk(uk) · gk(ζk = j))
= euk

To get the new value of the refractory mechanism, the current refractory state of the neuron
ζk = j is required (which is again known by the sampler). Having this value, also the pre
calculated value g(ζk = j) for the current refractory state and the initially selected kind of
refractory mechanism can be obtained.

Having all these values, the spiking probability can be computed, which is equal to the transition
probability for going from the current refractory state ζk = j to a spike ζk = τref :

T
(k)
τref ,j

= fk(uk) · g(ζk = j)

The neuron now spikes stochastically - with this known probability T
(k)
τref ,j

. This means, that
the refractory state of the current neuron k is updated stochastically, either to ζk = τref , or to
ζk = max {0, ζk − 1}.

After this computation, the neuron’s state is updated, and the new zk = (ζk > 0) value is
returned to the sampler.

After the loops have terminated, the sampler returns the newest updated version of z and the
sampling process is finished.
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A.6 Matlab interface

A Matlab interface for the neural dynamics sampler is available through the use of mex functions.
For each of these functions that are accessible through Matlab, and that internally call C++
functions, a separate .cpp file is stored in the mex folder. The communication with these
functions is done using structures (struct), and a pointer to the object of type SamplingNetwork
that is created when initializing the sampler, has to be passed to the other functions which then
should manipulate this object.

The currently implemented functions are shortly described in the following:

• [samplerPointer] = initSampler(struct)

This method initializes the sampler, i.e., it creates an object of type SamplingNetwork in
C++, and returns a pointer to this object as a unsigned integer of 64 bit. It takes as a
parameter a structure, which should contain the following fields:

.dt . . . a double value indicating the time instances for the sampler in milliseconds. If
this field is missing, dt = 1.0 is used as a default value

.du . . . a double value which indicates the precision for the computation of uk. If this
property is missing, du = 10−4 is used automatically

.umin . . . a double value indicating the minimum uk value that is computed. If no value
is given, it is set automatically to umin = −15.0

.umax . . . a double value indicating the maximum uk value that is computed. In case if
this field is not specified, umax = +15.0 is used

.delay . . . an integer value ≥ 0, setting the global synaptic delay (in milliseconds). This
value is not mandatory: If no delay value is specified, delay = 0 is used

Note that the object in memory is persistent, which means that it is not deleted automat-
ically from memory, but it remains there until the method to clear memory is called. It
is therefore important to store the address of this object, as soon as it is returned by this
method, and to keep it (unmodified) in memory until the method to clear it is called.

• initNeurons(struct)

This method is responsible for creating the neurons, and adding them to the sampling
network. The input is again a structure having these fields:

.samplingNetwork . . . an unsigned (i.e., positive) integer of 64 bit, containing the address
in memory where the sampling network object is located. Note that this is the output
of the method which initialized the sampler

.amount . . . a positive integer value, which indicates how many neurons with the given
parameter settings should be initialized and added to the network. The standard
value, if not value has been specified, is amount = 1

.tauref . . . a double value, representing the τref value, which together with the dt value
declared when initializing the sampler, defines the refractory period R = b τrefdt e of
this neuron(s). If this field should be missing, τref = 20.0 is used

.externalinput . . . a double value, containing the pre-computed external input for this
neuron(s). If no value is given, externalinput = 0.0 is used automatically
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.g . . . a structure, describing the refractory mechanism. If the whole structure is missing,
an absolute refractory mechanism is used. Otherwise, also the following field should
be specified:

.g.type . . . an integer value, denoting the type of the refractory mechanism:

0 indicates that the refractory mechanism’s values g(ζk) have been precomputed
for all ζk = [0, τref ], and that a vector containing these values is passed as an
additional parameter

1 indicates that the absolute refractory mechanism should be used

2 stands for the relative, sine-wave shaped refractory mechanism

.g.values . . . a row-vector of length τref + 1, containing the pre-computed g(ζk) values.
This field might be empty, if the type of the refractory mechanism is different from 0

.psp . . . a structure, containing the details about the neuron’s PSP shape. If this struc-
ture is not specified, the standard value is used, namely rectangular PSP shapes.
Otherwise, the following fields are required:

.psp.type . . . an integer value, denoting the type of PSP shape to be used:

0 stands for rectangular PSP shapes

1 indicates that the PSP shapes should be exponentially shaped (additive)

2 denotes renewing exponential PSP shapes

.psp.lambda . . . a double value, which only has to be set, if the PSP shape is exponential,
either additive or renewing. It represents the λ value which indicates the slope of the
exponential shape

.psp.height . . . a double value, which is necessary for exponential PSP shapes (additive
and renewing), indicating the height the exponential function rises in case of a spike

• initBoltzmannMembranepotential(struct)

This method creates a Boltzmann membrane potential and sets it for the sampler. The
input structure is required to contain these fields:

.samplingNetwork . . . again the same uint64 value, indicating the location in memory
of the sampling network

.type . . . an integer value, indicating the type of initialization parameters that are passed:

0 indicates that the W matrix and the b vector are explicitly stated and contained
as additional fields in the structure:

.J . . . a matrix of size numberOfNeurons × numberOfNeurons, containing
the synaptic weights as double values, i.e., W .

.pi . . . a row vector of double values of the same length as the W matrix,
describing the bias vector b

1 denotes that the weights have not been set yet, and therefore the W matrix and
the b vector should be some Gaussian distributed values according to the given
µ, σ2. Therefore these fields have to be included in the structure:

.muJ . . . a double value, indicating the mean of the Gaussian distributed values
for the W matrix

.sigmaJ . . . a double value, indicating the covariance of the Gaussian dis-
tributed values for the W matrix. Therefore, W ∼ N (µW , σW ). Note
that the resulting W matrix will automatically be symmetric, and have a 0
diagonal
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.muPi . . . a double value, representing the mean of the Gaussian distributed
values for the b vector

.sigmaPi . . . a double value, being the covariance of the Gaussian distributed
values for the b vector. Therefore the vector is defined as b ∼ N (µb, σb)

.numNeurons . . . a (positive) integer value, denoting the number of neurons in
the network

• prepareSampler(struct)

This method resets the sampler and prepares it for the sampling process by advancing the
burn-in time. The input struct should contain:

.samplingNetwork . . . the pointer to the sampler

.burnInSteps . . . an integer value ≥ 0, indicating the burn-in time in milliseconds

• [z] = advanceSampler(struct)

This method advances the sampler, i.e., it resamples all neurons for a given time period.
It returns then a row vector of length numberOfNeurons, containing the current z :=
(ζ > 0) values of the neurons, after sampling, i.e., a vector of zeros and ones. Its input is
a struct, containing:

.samplingNetwork . . . the pointer to the sampler

.steps . . . an integer value ≥ 0, indicating the sampling time in milliseconds

• freeMemory(struct)

This methods deletes the sampling network object, and all other object that have been
created using the previously mentioned mex functions from memory. This should be the
last call, before one can delete the address of the sampling network. But it has to be kept
in Matlab until this method has been called in order to avoid a memory leak. Its input is
therefore a struct, containing only:

.samplingNetwork . . . the pointer to the sampler

• setWeights(struct)

This method sets the W matrix to the given one. Thus, the required input is:

.samplingNetwork . . . the pointer to the sampler

.J . . . a matrix of the same size as the previous W matrix was, containing the new
weights, that should be set

• updateWeights(struct)

This method updates the weight matrix, by adding η times the difference between the
posterior and the prior samples to the current W matrix. The input is a structure,
containing:

.samplingNetwork . . . the pointer to the sampler

.samplePosterior . . . a row vector of zeros and ones, of length numberOfNeurons,
being some posterior sample
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.samplePrior . . . a row vector of zeros and ones, of the same length as the posterior
sample, containing the prior sample. Note that in case if this prior sample is missing,
the current z values of the neurons in the network are used instead. Therefore, this
value is not necessarily needed

.eta . . . a double value, indicating the learning rate η

• addToWeights(struct)

This method updates the weight matrix W by adding to each of its entries Wkl a given
value δWkl. The input structure should be composed of:

.samplingNetwork . . . the pointer to the sampler

.deltaJ . . . a matrix of the same size as the current weight matrix W is, containing the
double values that should be added to the weight matrix

• [W] = getWeights(struct)

This method returns the current weight matrix W . Its input is:

.samplingNetwork . . . the pointer to the sampler

• [b] = getPi(struct)

This method returns the b vector, taking as input a structure, containing:

.samplingNetwork . . . the pointer to the sampler

• setClamped(struct)

This method is used to clamp (or unclamp) a specified neuron to be either active or inactive
all the time. Its input structure should consist of:

.samplingNetwork . . . the pointer to the sampler

.neuronIndex . . . an integer value, being the index of the neuron to be clamped (or
unclamped). Note that the index is set in Matlab format, i.e., the indices are starting
from 1

.clamped . . . a double value, being > 0 if the neuron should be clamped, or 0 if the
neuron should not be clamped

.value . . . if the neuron should be clamped, a double value > 0 for clamping the neuron
to be active, or 0 to clamp it to be inactive. If the neuron should not be clamped,
this value is not necessary

• setExternalInput(struct)

This method is responsible for setting the pre-computed external input to a specified
neuron. It takes as input:

.samplingNetwork . . . the pointer to the sampler

.neuronIndex . . . an integer value, indicating the index of the neuron, whose external
input should be set. Note that the index is set in Matlab format, i.e., the indices are
starting from 1

.input . . . a double value, representing the pre computed value of the external input to
the given neuron
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• setAllExternalInputs(struct)

This method can be used to set the external inputs of all neurons in the network instan-
taneously, by passing all the values at a time, specifying:

.samplingNetwork . . . the pointer to the sampler

.inputs . . . a row vector, containing numberOfNeurons double values, being the pre
computed values for the external inputs for all the neurons that should be set

• [z] = getActivity(struct)

This method gets the current states of all the neurons in the networks, and returns values,
indicating whether the neurons are currently active or inactive. Therefore, it returns a
row vector of length numberOfNeurons, containing the current z := ζ > 0 values of
all neurons in the network, i.e., a row vector of zeros and ones. It requires, as input, a
structure, containing:

.samplingNetwork . . . the pointer to the sampler

• [r] = getStates(struct)

This method gets the current refractory states of the neurons, and returns their relative
values. The values are relative to the neurons refractory periods, because these might
vary from neuron to neuron. Therefore, the method returns a row vector, consisting of
numberOfNeurons rows, containing the current ζ

τref
values of the neurons in the network,

each one being in the interval [0, 1]. The required input is:

.samplingNetwork . . . the pointer to the sampler

• [spikes] = getSpikes(struct)

This method checks which neurons in the network are currently spiking. It returns a row
vector of length numberOfNeurons, containing the current ζ = τref values, i.e., a vector
of zeros and ones. The method requires the input to be a structure with the field:

.samplingNetwork . . . the pointer to the sampler

• storeFiringRate(struct)

This method should be called before the sampling process starts. It causes the network to
track the firing rate during sampling, such that this firing rate can be obtained after the
process. It requires, as input, the following fields in the structure:

.samplingNetwork . . . the pointer to the sampler

.store . . . a double value, where > 0 indicates that the firing rate should be tracked,
and 0 means that no tracking of the firing rate is desired

• [firingRate] = getFiringRate(struct)

This method can only be used in combination with the previously explained one: If the
tracking of the firing rate was turned on before, this method returns the observed firing
rate in Hertz as an output. Otherwise it returns 0. It again requires the address of the
sampling network object as input:

.samplingNetwork . . . the pointer to the sampler
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• storeEvolutionOfSpikes(struct)

This method switches the tracking of the spike train evolution on: It causes the network
to store the spikes ζ = τref for all neurons over a given period of time. It requires as input:

.samplingNetwork . . . the pointer to the sampler

.store . . . a double value, being > 0 for switching on tracking, or 0 to not store the
spike train evolution

.steps . . . a positive integer number, that indicates - if the evolution should be stored -
for how long (in milliseconds) this should be done

• [spikeEvolution] = getEvolutionOfSpikes(struct)

This method is again only available in combination with the previous one: If the evo-
lution of spikes in the network was stored over some time period, then a matrix of
numberOfNeurons rows and trackedT imeSteps columns containing the regarding ζ =
τref values is returned by this function. The required input is:

.samplingNetwork . . . the pointer to the sampler

• storeEvolutionOfDistribution(struct)

This method is responsible for switching on (or off) the tracking of the evolution of ζ
τref

values of all neurons in the network over a specified period of time. Its input structure has
to contain the following fields:

.samplingNetwork . . . the pointer to the sampler

.store . . . a double values, where a value > 0 means that the evolution of relative
refractory states should be tracked, and 0 switches tracking off

.steps . . . a positive integer number, indicating the time period in milliseconds, for
which the evolution of relative refractory states should be stored

• [rEvolution] = getEvolutionOfDistribution(struct)

This method returns the tracked evolution of relative refractory states, if tracking has been
switched on before, or 0 otherwise. The returned matrix is of size numberOfNeurons×
timeSteps, and it contains double values in the interval [0, 1], indicating the ζ

τref
values of

all neurons for the previously specified time period. Its input is:

.samplingNetwork . . . the pointer to the sampler

• storeEvolutionOfActivity(struct)

This method turns the tracking of the evolution of neuron activities z := (ζ > 0) on or
off. It requires as input:

.samplingNetwork . . . the pointer to the sampler

.store . . . a double value, being 0 if the evolution of z should not be tracked, or > 0 if
it should be tracked

.steps . . . a positive integer number, indicating the time period for tracking the neurons’
activities in milliseconds. This value is not required, if the evolution should not be
stored
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• [zEvolution] = getEvolutionOfActivity(struct)

This method returns a matrix, containing the evolution of the neurons activities over
time. It has numberOfNeurons rows, and numberOfMilliseconds columns, containing
the regarding z values of all neurons. If tracking has not be switched on before, it returns
0. Its input structure must contain:

.samplingNetwork . . . the pointer to the sampler

• storeDistribution(struct)

This method can be called to enable tracking of the sampled distirbution of the neuron’s
activity p(z). Not that storing these probability distributions is only available for a limited
amount of neurons in the network, as 2numberOfNeurons different distributions are possible,
and a value for each of them has to be computed (and stored). Therefore, it is also possible
to specify the indices of the neurons that should be tracked. The required parameters are:

.samplingNetwork . . . the pointer to the sampler

.store . . . a double value, where 0 indicates that the sampled distribution should not
be stored, and > 0 means that it should be stored

.neuronIdx . . . a row vector of positive integer values, that, if the sampled distribution
should be stored, can indicate the indices of the neurons that should be tracked. In
this case, only these neurons are considered for the distribution. If this vector is not
given, automatically all neurons are tracked. Note that the indices should be in the
form of Matlab indices, i.e., starting from 1 (for the first item).

• [pZ] = getDistribution(struct)

This method is only available in combination with the previous one: If the distribution
was stored during sampling, it can be obtained using this method. It returns a row vector,
containing the relative frequencies of the sampled state vectors z, either of all neurons, or
of the previously indicated ones. Its input is a structure, containing:

.samplingNetwork . . . the pointer to the sampler

• [qZ] = getAnalyticalDistribution(struct)

This method computes the analytical probability distribution of all possible network states,
in terms of the activity of the neurons z. It might be helpful to compare this analyt-
ically computed distribution to the sampled relative frequencies obtained by the previ-
ously described method. Note that also here the number of values to be computed is
2numberOfNeurons. Therefore the use of this method is only recommended if the number of
neurons is relatively low. The method requires as input (in order to obtain the number of
neurons in the network):

.samplingNetwork . . . the pointer to the sampler

• [kl] = getKLtoAnalyticalDistribution(struct)

This method is responsible for computing the Kullback-Leibler divergence between the
relative frequencies of the sampled network states, and the analytically computed prob-
ability distribution. It returns a double value, being the KL distance between the two
distributions. As input it takes:

.samplingNetwork . . . the pointer to the sampler
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A.7 Python interface

A python interface through the use of SWIG (Simplified Wrapper and Interface Generator,
www.swig.org) is available. The methods that can be called from python are written in C++
and are converted into a python object at compile time. The instructions how the wrapping
is done are specified in the swig folder, i.e., the input files for swig (.i files) as well as the
specifications how the Eigen types in C++ are mapped to python’s scipy types.

In order to be able to use the python interface, it has to be imported and initialized, such that an
object is available in python on which the sampler methods can be called. For various methods
scipy is needed as well.

import sampler

import scipy

net = sampler.SamplingNetworkSimulatorFloat()

After this initialization, all the available methods can be called on the net object. A short
description of these methods is given in the following:

void createSampler(double dT=1.0,

double uDiff=0.0001, double uMin=-15, double uMax=15,

unsigned globalDelay=0)

This method calls the constructor of the sampler and initializes it with the basic settings,
i.e., the dt value, the values specifying the precision of the membrane potential values uk,
being udiff , umin and umax, as well as the possible global delay for the whole network.

void createNeuron(double tau_ref=20.0, unsigned gType=1, double input=0,

unsigned pspType=0, double height=1, double lambda=0.95, double lambda2=0.5)

void createNeuron(const MatrixXf& gPrecomputed, double tau_ref=20.0,

double input=0, unsigned pspType=0, double height=1, double lambda=0.95,

double lambda2=0.5)

void createNeurons(unsigned amount=1, double tau_ref=20.0, unsigned gType=1,

double input=0, unsigned pspType=0, double height=1, double lambda=0.95,

double lambda2=0.5)

void createNeurons(unsigned amount, const MatrixXf& gPrecomputed,

double tau_ref=20.0, double input=0,

unsigned pspType=0, double height=1, double lambda=0.95, double lambda2=0.5)

All of these methods can be used to initialize one or more neurons, and to add them to
the sampling network. For this initialization the following parameters can be set: τref
specifying the refractory period, the pre computed external input to this neuron(s), and
either the type of the refractory mechanism g(ζk) identified by its unique id or a column
vector containing the values for all possible ζk values. Also the PSP shape type can
be specified by its unique id, and depending on the type of PSP shape the additional
parameters (height, λ, λ2) have to be specified or not. If more than one neuron of this
kind should be created (i.e., one of the second two variants is used), also the amount of
neurons has to be given.
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void createBoltzmannMembranePotential(unsigned numNeurons,

double muJ, double sigmaJ, double muPi, double sigmaPi)

void createBoltzmannMembranePotential(const MatrixXf& J, const MatrixXf& pi)

One of these two methods has to be used to create and initialize the Boltzmann membrane
potential. One option is to specify the number of neurons in the network, and the values
µW , σW according to which the values of the weight matrix W should be Gaussian dis-
tributed, being W ≈ N (µW , σW ), as well as µb, σb specifying the normal distribution of
the b vector, namely b ≈ N (µb, σb). The other variant is to specify the W matrix and the
column bias vector b explicitly, i.e., passing scipy arrays as parameters.

void prepareSampler(unsigned burnInSteps=0)

virtual int check()

virtual int reset(double dt)

One of these methods has to be used after the initialization. They check whether all values
are set and whether they are valid. Only after one of them has successfully been executed,
the sampling network can be advanced. The prepareSampler method additionally ad-
vances the sampler for the given number of milliseconds after checking the values, i.e., it
advances the burn-in time, such that the sampler can be used immediately.

void advance(MatrixXf *res, unsigned steps=1)

This method advances the sampler for the given number of steps, i.e., it resamples all
neurons in the network for the given number of milliseconds. It returns the z values of all
neurons in a column vector.

void storeProbabilities(bool store)

void storeProbabilities(const MatrixXf& neuronIdx)

void getSamplingProbabilities(MatrixXf *res)

void getAnalyticalProbabilities(MatrixXf *res)

double getKLtoAnalyticalDistribution()

These methods are responsible for storing the relative frequencies of the neurons’ activities
z during sampling. If there is a very large number of neurons in the network, it is recom-
mended to only give some neurons’ indices in a column vector when specifying to store the
distributions, as this requires a considerably high amount of memory. The methods that
specify to store the probability distributions have to be called before the sampling process
(such that the distributions are tracked). After the sampling process, the sampled dis-
tribution can be obtained using the get method. The analytically computed distribution
might be requested using the second get method. Additionally, also the Kullback-Leibler
divergence between the sampled distribution and the analytically computed distribution
can be obtained using the method above.

void storeEvolution(bool store, unsigned numSteps=0)

A Appendix: Technical manual: Neural Dynamics Sampler A 135



Analysis of Probabilistic Inference in Recurrent Networks of Spiking Neurons

void getStateEvolution(MatrixXf *res)

If someone wants to track the evolution of the relative refractory values ζ/τref over time,
then the above two methods might be useful. Before the sampling process, tracking of
the refractory states’ evolution can be switched on. Already at this point, the number of
steps (or milliseconds) over which the states should be tracked, has to be specified. After
sampling, the evolution of all neurons over time is returned in a matrix.

void storeSpikeEvolution(bool store, unsigned numSteps=0)

void getSpikeEvolution(MatrixXf *res)

These methods are helpful, if the evolution of spikes ζ = τref over time should be tracked.
Before the sampling process, tracking can be switched on for a given number of millisec-
onds. After sampling, the resulting spike evolution is returned in a matrix for all neurons.

void storeActivityEvolution(bool store, unsigned numSteps=0)

void getActivityEvolution(MatrixXf *res)

To track the activities of all neurons over time z := ζ > 0, these methods can be used.
Again, tracking can be switched on for a specific number of milliseconds, and after the
sampling process has finished the evolution can be obtained using the second of these
methods.

void storeFiringRate(bool store)

double getFiringRate()

These methods can be used to store and get the firing rate - averaged over all neurons -
in Hertz. As it cannot be computed analytically, also this is tracked during the sampling
process, and can be obtained afterwards.

void storeFiringRates(bool store)

double getFiringRates()

These methods can be used to store and get the firing rate of each single neuron in Hertz.
Again, the firing rates have to be tracked, and can be returned after some sampling time.

void setClamped(unsigned neuronIdx, bool one)

void setNotClamped(unsigned neuronIdx)

Each neuron can be clamped to be either active or inactive, or unclamped, specifying the
index of the neuron.

void setExternalInput(unsigned neuronIdx, double input)

void setExternalInput(const MatrixXf& input)

The external input of each neuron can be set by specifying its index and the precomputed
value for the external input. It is also possible to set the external inputs of all neurons at
a time, by giving the values for all neurons in a column vector.

void setWeightMatrix(const MatrixXf& W)

A 136 A Appendix: Technical manual: Neural Dynamics Sampler



Analysis of Probabilistic Inference in Recurrent Networks of Spiking Neurons

void addToWeightMatrix(const MatrixXf& deltaW)

void updateWeightMatrix(const MatrixXf& samplePosterior,

const MatrixXf& samplePrior, double eta)

void updateWeightMatrix(const MatrixXf& samplePosterior, double eta);

void setWeightMask(const MatrixXf& WMask);

void getWeightMatrix(MatrixXf *res)

The weight matrix W can be set explicitly, or the matrix can be updated in other ways. It
is possible to pass a matrix ∆W , which is then added to the original W matrix. Another
possibility is to update the weight matrix by passing a column vector containing a posterior
sample, a prior sample, and the η value, such that the new matrix can be learned. If no
prior sample is given, the current network state is assumed:

∆W = η ·
((
zposteriorz

>
posterior

)
−
(
zpriorz

>
prior

))
The current weight mask (that defines which elements in the weight matrix should be
updated, and which shouldn’t) can also be set. By default it is a matrix of ones, with
a zero diagonal. The current weight matrix W can be obtained using the last of these
methods.

void setPiVector(const MatrixXf& b)

void addToPiVector(const MatrixXf& deltaB)

void updatePiVector(const MatrixXf& samplePosterior,

const MatrixXf& samplePrior, double eta)

void updatePiVector(const MatrixXf& samplePosterior, double eta);

void getPiVector(MatrixXf *res)

The b vector might also be set explicitly, but additionally it is possible to update it in
other ways, i.e., either by specifying some equally shaped vector ∆b, which should then be
added to the original vector, or by passing a column vector containing a posterior sample,
another one being the prior sample (not needed if the current values should be taken), and
the learning rate η, which is a scalar. In this case, the update is done as:

∆b = η · (zposterior − zprior)

The weight mask, defining the single vector elements to be updated or not, can be set and
changed. By default it is a vector of ones. The current vector b can also be requested.

void getActivity(MatrixXf *res)

This method returns a column vector containing the activity of all neurons z := ζ > 0.

void getStates(MatrixXf *res)

This method returns the relative refractory values of all neurons in a column vector: ζ
τref
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void getSpikes(MatrixXf *res)

This method returns a column vector specifying for each neuron whether it spiked right
now, or not, i.e., ζ = τref .

unsigned getNumberOfNeurons()

This method returns the number of neurons in the network.

As soon as the sampling process is finished, the sampling network and all containing objects are
deleted from memory by calling del net.
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B Appendix: Learning the model

B.1 Weight masks

Figure B.1: Mask for weight matrix V , where clamped values, i.e., zeros in the mask matrix, are
indicated by white, and values to be modified and learned are painted in dark. The only entries
to be learned are the ones defining the receptive fields between layer Y and Z. Of course, the
input layer neurons yi are not connected to the neurons xk in the top layer X.
Note that the visualized grid only separates the different groups, not the single neurons, from
which there are 36 in each group Gj of neurons yi, and 4 in each SEM-unit or group of neurons
zk (and xk).
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Figure B.2: Symmetric mask for learning the weight matrix W in steps 2 and 3, where white
fields indicate zero-values, and ones are indicated in dark: The first picture shows the mask for
learning only the synapses inside the lateral layer Z, i.e., the connections between “neighboring”
SEM-units, while the connections inside the single units, and the connections between units with
receptive fields that do not touch each other directly are clamped, and their entries in the mask
matrix are 0.
The second picture shows all the feedforward-feedback synaptic connections that are learned,
also the ones between the lateral layer Z and the top layer X, where the receptive files of the
higher layer neurons x is the entire lower layer, i.e., all neurons z, and thus all these connections
are allowed to be adapted (or learned).
Note again that the grid does only divide the different SEM-units, or groups, while the single
neurons - in this case exactly four in each row and column per group - are not visible.
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B.2 Learned weights

B.2.1 Step 1: Feedforward Hebbian weights

Figure B.3: Learned weight matrix V , sorted: Connections between input layer neurons y and
lateral layer neurons z. In each SEM unit the same neuron is responsible for recognizing a
certain pattern.
Each row in the matrix represents the connections of different input neurons y to one of the
lateral layer neurons z. Thus a row indicates some “flattened” representation of an input pattern.
A column indicates the connections from a single input neuron, i.e., from one input pixel, to
the different lateral layer neurons z. Due to the structure of the used patterns, exactly two
lateral layer neurons are inhibited by each of the input pixels, and exactly the two other ones
are excited.
Therefore, for a better overview over the system the weight matrix can be sorted, row-by-row,
such that in each receptive field the same SEM-neuron (i.e., the one with the same internal
index) is responsible for recognizing the same input pattern.
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Figure B.4: Weight matrix W in its still unlearned form, as it has been initialized, namely
having only (inhibitory) connections among neurons having the same receptive field.
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B.2.2 Step 2: Lateral layer weights

Figure B.5: Weight matrixW : The resulting weights after having learned the synapses inside the
lateral layer Z (again sorted). It can be seen that the units which “recognize” the same patterns
stimulate each other (if they have receptive fields which are next to each other - otherwise the
connection is not established), while the units responsible for different patterns inhibit each
other slightly.
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B.2.3 Step 3: Adding a third layer

Figure B.6: The final, learned weight matrixW , after having learned the connections among the
lateral layer neurons z, and additionally between lateral layer neurons z and top layer neurons
x.
It is shown that each neuron in the lateral layer, which is responsible for some specific shape
of input pattern, stimulates the same top layer neurons. This means that the model correctly
learned that the input should usually consist of five same patterns.
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B.2.4 Step 4: Expanding the third layer

Figure B.7: The weight matrix V +, encoding the synaptic weights from the input layer Y to the
lateral layer Z (and the top layer X). Now the feed-forward weight matrix gets larger according
to the growing top layer X.
Also in this version, the weights have been sorted, such that the lateral layer neuron with the
same “index” is responsible for the same shape of input pattern in each of the SEM-like lateral
layer units. Also the height of the feedforward weights remains the same as in the previously
used model. The only change in this weight matrix is the expansion of the X-layer part. As the
weights going from the input layer to the top layer are nevertheless set (and clamped) to zero,
this only expands the matrix with additional zero-rows on the bottom, as it can be seen in the
figure.
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Figure B.8: The expanded weight matrix W+, encoding the connections among lateral layer
neurons z (in the upper left square), the (initialized and fixed) connections among top-layer
neurons x (in the square on the right bottom of the matrix), as well as the connections between
lateral layer neurons z and top layer neurons x.
Most of the initial weight matrix is similar or equal to the kind of weights used in the previous
steps. However, the left bottom square, i.e., the connections among the top layer neurons have
changed now: Instead of the inhibition among all neurons, now there is some positive excitation
for neurons that belong to the same population, while all neurons of different populations still
inhibit each other strongly. This should cause only one population to be active at a time,
allowing for a clear “decision” about the image at any point in time.
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Figure B.9: The weight matrix W+, after having learned the lateral layer connections, i.e., the
synapses between neurons z with receptive fields next to each other. As in the previous steps
(without the top-layer populations), each lateral layer neurons specialized for one specific input
pattern (encoded in V + stimulates the neurons responsible for the same pattern of the other
SEM-like units.
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Figure B.10: Weight matrix W+, after having learned not only the lateral layer connections,
but also the top-down, bottom-up connections between the neurons of the two higher layers.
It is shown that the weight of the single synapses between lateral and top layer neurons is similar
to the weights when not using populations, even though now each lateral layer neuron stimulates
more (in this case L = 5) top layer neurons, and gets feedback from them.
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B.3 Simulating the experiment by Lee: PSP values

Figure B.11: Evolution of the input neurons’ PSP values of the first and the second image
subpart: For 500 ms the input represents the average pattern; after the stimulus onset, the first
part reflects the pattern shown on the left, while the second image part still shows the average
pattern.
The color indicates the “height” of this unit’s state, counting the number of spikes occurred
during the past τy = 20.0 milliseconds: Dark blue indicates that no spike occurred, while yellow
or red colors indicate a high activity in the previous period.
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Figure B.12: PSP values of lateral and top layer units: After 500 ms the first and the last image
subpart get direct external input, and their firing pattern changes accordingly after that. With
some delay, the top layer units corresponding to the given input pattern get this information
and switch to the same state. After an additional delay, the units without direct external input
in the lateral layer reflect the same pattern with lower firing rates.
The colors indicate the current hight of the PSP values of the single neurons, where alpha-shaped
PSPs with a rising time of about 3 milliseconds were used.
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C Appendix: Input Patterns and Pattern Completion

C.1 Learned input images

Figure C.1: Learned input image: Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V : already recognized
- Average firing rate when also using the lateral layer connections W Z

- Average firing rate after adding the top layer X
- Average firing rate using populations in the top layer
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Figure C.2: Learned input image 2:
- Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z

- Average firing rate after adding the top layer X
- Average firing rate using populations in the top layer
Already with the feedforward weights V the image can be recognized and “reconstructed”.
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Figure C.3: Learned input image 3:
- Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z

- Average firing rate after adding the top layer X
- Average firing rate using populations in the top layer
Already with the feedforward weights V the image can be recognized and “reconstructed”.
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Figure C.4: Learned input image 4:
- Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z

- Average firing rate after adding the top layer X
- Average firing rate using populations in the top layer
Already with the feedforward weights V the image can be recognized and “reconstructed”.
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C.2 Missing part in image

Figure C.5: Incomplete input image: Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z : recognized partially
- Average firing rate after adding the top layer X: better completion
- Average firing rate using populations in the top layer: missing part is filled
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Figure C.6: Incomplete input image 2:
- Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z

- Average firing rate after adding the top layer X
- Average firing rate using populations in the top layer
Using only the feedforward weights V it is not possible to recognize the missing part as there
is no information exchange between different image parts. When using the lateral layer connec-
tions, the missing pattern is already recognized and completed in a light fashion. When adding
the top layer, this opinion about the missing part is enforced, and the missing pattern gets a
higher contrast. When also adding the top-layer populations to the model, the image is entirely
completed.
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Figure C.7: Incomplete input image 3:
- Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z

- Average firing rate after adding the top layer X
- Average firing rate using populations in the top layer
Using only the feedforward weights V it is not possible to recognize the missing part as there
is no information exchange between different image parts. When using the lateral layer connec-
tions, the missing pattern is already recognized and completed in a light fashion. When adding
the top layer, this opinion about the missing part is enforced, and the missing pattern gets a
higher contrast. When also adding the top-layer populations to the model, the image is entirely
completed.
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Figure C.8: Incomplete input image 4:
- Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z

- Average firing rate after adding the top layer X
- Average firing rate using populations in the top layer
Using only the feedforward weights V it is not possible to recognize the missing part as there
is no information exchange between different image parts. When using the lateral layer connec-
tions, the missing pattern is already recognized and completed in a light fashion. When adding
the top layer, this opinion about the missing part is enforced, and the missing pattern gets a
higher contrast. When also adding the top-layer populations to the model, the image is entirely
completed.
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C.3 Non-matching subpart of the image

Figure C.9: Image with non-matching part: Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z : weights not large enough
- Average firing rate after adding the top layer X: still only low influence of “neighbors”
- Average firing rate using populations in the top layer: non-matching part is detected
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Figure C.10: Image with non-matching part 2:
- Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z

- Average firing rate after adding the top layer X
- Average firing rate using populations in the top layer
When only having the information from direct neighbors, the influence of this idea is too low
to affect the firing rates of the model. With the additional information of the top layer, the
system’s firing rates are slightly affected, but still the influence of this image as a whole is not
large enough. With the expansion of the top layer to populations, the wrong or non-matching
part of the image is detected, and the firing rates change towards recognizing the “correct”
prior-known image.
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Figure C.11: Image with non-matching part 3:
- Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z

- Average firing rate after adding the top layer X
- Average firing rate using populations in the top layer
When only having the information from direct neighbors, the influence of this idea is too low
to affect the firing rates of the model. With the additional information of the top layer, the
system’s firing rates are slightly affected, but still the influence of this image as a whole is not
large enough. With the expansion of the top layer to populations, the wrong or non-matching
part of the image is detected, and the firing rates change towards recognizing the “correct”
prior-known image.
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Figure C.12: Image with non-matching part 4:
- Firing rate of the input layer neurons y
- Average firing rate of the model using only feedforward weights V
- Average firing rate when also using the lateral layer connections W Z

- Average firing rate after adding the top layer X
- Average firing rate using populations in the top layer
When only having the information from direct neighbors, the influence of this idea is too low
to affect the firing rates of the model. With the additional information of the top layer, the
system’s firing rates are slightly affected, but still the influence of this image as a whole is not
large enough. With the expansion of the top layer to populations, the wrong or non-matching
part of the image is detected, and the firing rates change towards recognizing the “correct”
prior-known image.
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[5] Guillaume Balavoine and André Adoutte. The segmented urbilateria: A testable scenario.
Integrative and Comparative Biology, 43(1):137–47, 2003.

[6] Michel Baudry and Joell Davis, editors. Long-Term Potentiation. Massachusetts Institue
of Technology, 1991.

[7] Mark F. Bear, Barry W. Connors, and Michael A. Paradiso. Neuroscience: Exploring the
Brain. Lippincott Williams and Wilkins, third edition edition, 2006.

[8] Ehrhard Behrends. Introduction to Markov Chains. ISBN 3-528-06986-4. Vieweg, 2000.
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