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A B S T R A C T

To describe a soundfield in planar nearfield holography it is mathemat-
ically sufficient to know the boundary values. Inverse equations can be
set up to trace back the sound waves to their source, based on measure-
ments of the sound pressure. Available techniques are based on solutions
of the Helmholtz equation or the Helmholtz integral equation and are fre-
quently applied in noncontact measurement scenarios. These are, for in-
stance, the wave superposition method (WSM), Helmholtz equation least
squares (HELS), inverse boundary element method (IBEM), nearfield acous-
tic holography (NAH) or the statistically optimized NAH (SONAH).

All these approaches have a tendency to be numerically ill-posed and are
usually treated using the classical `2-norm based system inversion tech-
niques. How to deal with spatial aliasing, boundary wrap-around and loss
or numerical instability is well discussed, however, available literature does
not excessively address the poor point localization of these techniques. In
this thesis, the mapping properties of `1-optimized planar holography is
discussed and compared with `2-optimized calculation. To reveal different
types of algorithmic behavior, a simulation of the soundfield is calculated
for different types of sources.
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Z U S A M M E N FA S S U N G

Um das Schallfeld mit Hilfe der planaren Nahfeldholografie (PNAH) zu
beschreiben genügt es, das Feldes an definierten Grenzen zu kennen.
Basierend auf Schalldruckmessungen können inverse Gleichungssysteme
angesetzt werden, um die Schallausbreitung zur Quelle zurück zu berech-
nen. Viele der Techniken, die bereits heute bei kontaktlose Messungen
angewendet werden, basieren auf der bekannten Formulierung des Kirch-
hoff Helmholtz Integrals. Dazu gehören beispielsweise die ”Wave superpo-
sition method” (WSM), die ”Helmholtz least squares method” (HELS), die
”Inverse boundary method” (IBEM) oder die fourierbasierte planare Nah-
feldholografie.

All diese Ansätze tendieren zu schlechter numerischer Konditionierung
und werden üblicherweise mit Hilfe der `2-Norm invertiert. Der Umgang
mit räumlichen Aliasing, numerischer Instabilität und Fehlern, die auf-
grund der begrenzten Messapertur entstehen, sind in der Literatur aus-
giebig beschrieben. Die schlechte Lokalisierung dünn besetzter Lösungen
bei Anwendung der oben genannten Methoden wurde bisher jedoch noch
nicht ausreichend diskutiert. In dieser Arbeit sollen die Eigenschaften einer
`1-optimierten Nahfeldholografie untersucht und die deutlich verbesserte
Lokalisation von Punktquellen im Gegensatz zu den bekannten `2- opti-
mierten Lösungen aufgezeigt werden. Dafür wurden Messimulationen und
reale Messungen an unterschiedlichen Quelltypen durchgeführt, um das
Verhalten dieser neuen Optimierung aufzuzeigen.
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1
I N T R O D U C T I O N

1.1 introduction

Acoustic measurements provide useful tools to analyze the properties of
a vibrating structure by measuring its emission. In this scope, holography
promises contact-free measurements in the sound field to observe the vibra-
tion on the structural source plane. Therefore, it has become a major factor
in the optimization and design process for acoustic emissions of structures.

In the past 30 years, several holographic techniques were introduced which
aim at the calculation of acoustic quantities in space and on the vibrat-
ing structure [1]. On the one hand, Maynard and Williams introduced the
Fourier-based nearfield acoustical holography (NAH) [2], which utilizes the ben-
efits of spatial Fourier transform to calculate the structural velocity . Several
variations and hybrid techniques such as the Statistically optimized near-field
acoustical holography (SONAH) [3], the Wave superposition method (WSM) [4]
or the Least-squares method (LSM) [5] enrich the toolkits of acoustic hologra-
phy today.

On the other hand, the sound field can be evaluated numerically by Bound-
ary element methods, for which the basic derivation for acoustical purposes
is given by Veronesi and Maynard [6].

1.2 motivation

Improvements in signal processing and regularization techniques led to to-
day’s holography systems that yield results robust to measurement noise
and enable sound field analysis in real-time.

Nevertheless, there is still a lot of potential for improvements. One is the
application of holography to a sparsely distributed structural vibration. Ex-
isting systems usually underestimate point-like velocity distributions in
amplitude and show uncertainties for their localization as illustrated in
figure 1.1. In the recent advancements, ideas emerged in the field of com-
pressive sensing of how to optimize linear equation systems in terms of
sparse solutions.
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Figure 1.1: Poor reconstruction of a sparsely distributed structural vibration, mea-
sured by an 8× 8 microphone array at a distance a = 0.05m

1.3 objective

The objective of this work is to apply the sparse optimization techniques
of compressive sensing on several simulation studies and some practical
examples to show their benefits.

In particular, sparse optimization is suitable to overcome the location prob-
lems of the known holography approaches in terms of well-localized struc-
tural vibration.
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2
P L A N A R A C O U S T I C H O L O G R A P H Y

In the upcoming section, a general formulation of acoustic holography
based on Rayleigh integrals is derived. Some important relations are ex-
plained which are crucial to understand the assumptions made. For a com-
prehensive explanation of the general basics in acoustics, the reader is re-
ferred to the manifold standard literature such as [7] and [8].

2.1 basics

2.1.1 Euler equation

We know from Newton’s law that the force F in a direction x is caused by
the mass m and the acceleration ax of a body:

Fx = m · ax = m ·
∂vx

∂t
= ρ0∂x∂y∂z ·

∂vx

∂t
.

The force F at the location x is equivalent to a pressure change:

Fx = [p(x) − p(x+∆x)] ·∆y∆z

=
[p(x) − p(x+∆x)]

∆x
·∆x∆y∆z

= −
∂p

∂x
· ∂x∂y∂z .

Both expressions combined yield the Euler equation:

∇p = −ρ0
∂v
∂t

. (2.1)

This equation relates the sound particle velocity v to the sound pressure p.
In the frequency domain, the expression becomes:

∇p = −jωρ0v (2.2)

2.1.2 The homogeneous wave equation

Using Euler’s equation (eq. 2.1), the continuity equation ∂ρ
∂t = −∇(ρ0v) and

the formulation for the adiabatic compression equation ∇(p) = c2∇(ρ), we
can derive the homogeneous wave equation for the sound pressure p:

∆p−
1

c2
· ∂

2p

∂t2
= 0 . (2.3)
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A detailed derivation, is found in the textbooks on acoustics. The equivalent
equation in the frequency domain is known as the Helmholtz equation:

∆p+ k2p = 0 . (2.4)

2.1.3 The inhomogeneous wave equation

By adding a differential mass ∂m
∂t to the law of mass conservation

∂ρ

∂t
−∇ (ρ0v) = 0 ,

we obtain:

∂ρ

∂t
−∇ (ρv) =

∂msrc

∂t
δ(r − r0) . (2.5)

This equation addresses the continuous addition and subtraction of mass
from a source in the volume at r0. By differentiation of Euler’s equation
with regard to time and of eq. 2.5 with regard to space and involving the
compression equation, the wave equation becomes:

∇2p− 1

c2
∂2p

∂t2
= −

∂2m

∂t2
· δ(r − r0) = −ρ0

∂qsrc

∂t
· δ(r − r0) . (2.6)

This is called inhomogenious Helmholtz equation in the frequency domain:

∇2p(r) + k2p(r) = −jωρ0qsrc(r) (2.7)

The right-hand side of the equation is equivalent to a point monopole
source. The inhomogeneous Helmholtz equation is solved by the Green’s
function.

2.1.4 The Free Space Green’s Function

The free space Green’s function is the response of the wave equation to a
pulse excitation. It is the spatial transfer function of a point monopole source.
The question is, how this function can be derived from eq. 2.7?

We can regard a point monopole source as a breathing sphere of radius a
that oscillates at a frequency ω. The relation of the radial displacement ζ(t)
to its derivative, the velocity v(t), is:

ζ(t) = ζ̂ejωt =

∫
v(t)dt , with ζ̂� a .

In the frequency domain this is

v

jω
= ζ .

4



a
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Figure 2.1: Pulsating monopole

Using Euler’s equation vr = j
ωρ

∂p
∂r , we obtain:

ζ̂ =
1

ω2ρ

(
∂p̂(r)

∂r

)∣∣∣∣
r=a

.

Furthermore, the radial sound pressure of a monopole is known from Fahy
[7]:

p̂(r) =

(
Â

r

)
e−jkr , (2.8)

where k is known as wavenumber (k = ω
c ) and Â corresponds to the maxi-

mum pressure amplitude.

This leads to a description of the displacement that solely depends on pa-
rameters of the source and the medium:

⇒ ζ̂ =
1

ω2ρ

(
−
Â

r2
e−jkr −

Â

r
jke−jkr

)∣∣∣∣∣
r=a

= −
Â

ω2a2ρ
(1+ jka) e−jka .

Resolving the equation for the maximum pressure amplitude Â and insert-
ing it into eq. 2.8 yields an expression for the sound pressure at r:

p̂(r) = −ζ̂

(
ρckωa2

(1+ jka)r

)
ejkae−jkr

= −ζ̂

(
ρωc(ka)ar
1+ jka

)
e−jk(r−a) .

Insertion of the source volume velocity

Q(t) = Q̂ejwt =
[(
jwζ̂

) (
4πa2

)]
ejwt , (2.9)

yields:

p̂(r) = −

(
ωρQ̂

j4πr

)
·
(

1

1+ jka

)
e−jk(r−a) .
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To obtain an ideal monopole source, the radius of the pulsating sphere is
made vanishingly small:

with a→ 0 : ka� 1

⇒ p̂(r) ≈

(
jωρQ̂

4πr

)
e−jkr . (2.10)

The numerator can be interpreted as the strength of a monopole which we
set to 1. The expression now describes the sound pressure per unit source
strength of a harmonic point monopole [7]. This formulation is also known
as the harmonic free space Green’s function, which solves eq. 2.7:

G =
e−jkr

4πr
. (2.11)

2.1.5 The Kirchhoff Helmholtz Integral

Huygen’s principle assumes that the sound field consists of superimposed
elementary waves. This principle is mathematically described by the Kirch-
hoff Helmholtz Integral (KHI) either for radiation or interior problems. In
order to derive an expression for the planar acoustic holography based on
Rayleigh integrals, we take a closer look at the Kirchhoff Helmholtz Integral
for radiation problems. After considering a very general view on vector fields,
we apply this knowledge to our concrete problem [13].

First, we consider figure 2.2, where a volumeΩ encloses a monopole source
at r ′ and the observation point lies outside this volume at r.

x

y

z

r

r'
Q

Ω

Γ∂

Figure 2.2: Point source surrounded by a sphere

The divergence theorem states that the integral over a vector field F bounded
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by the surface Γ equals to the strength of the sources inherent in its volume
Ω1. ∮

Γ
FdΓ =

∫
Ω
∇FdΩ . (2.12)

The vector field F can be replaced by a combination of two scalar fields p
and G which fulfill the homogeneous and the inhomogeneous Helmholtz
equation, respectively,

F = G(r|r ′)∇p(r) − p(r)∇G(r|r ′) , (2.13)

which is true for2

∇2p(r ′) + k2p(r ′) = 0

∇2p(r ′) = −k2p(r ′) (2.14)

∇2G(r|r ′) + k2G(r|r ′) = −δ(r ′ − r)
∇2G(r|r ′) = −k2G(r|r ′) − δ(r ′ − r) . (2.15)

The divergence theorem applied on F simplifies upon insertion of eq. 2.14

and 2.15:∮
Γ
G∇p− p∇GdΓ =

∫
Ω
∇T(G∇p− p∇G)dΩ

=

∫
Ω

(
∇TG∇p+G∇T∇p−∇Tp∇G− p∇T∇G

)
dΩ

=

∫
Ω

(
G∇2p− p∇2G

)
dΩ

=

∫
Ω

(
−k2Gp+ k2pG+ pδ(r − r ′)

)
dΩ . (2.16)

This KHI for radiation problems remains:

Ce · p(r) =
∮
Γ

(
G(r|r ′)

∂

∂n
p(r ′) − p(r ′)

∂

∂n
G(r|r ′)

)
dr ′ . (2.17)

The position of the observation point r defines the constant Ce according
to

Ce =


1, r outside Ω,
1
2 , r on Γ ,
0, r inside Ω.

1 The use of the nabla operator ∇ on a scalar yields its gradient:

∇g =
[
∂
∂xex, ∂∂yey, ∂∂zez

]T
· g = ∂g

∂xex +
∂g
∂yey +

∂g
∂z ez

The use of the nabla operator ∇ on a vector yields its divergence:

∇g =
[
∂
∂xex, ∂∂yey, ∂∂zez

]
·
[
gx, gy, gz

]T
=
∂gx
∂x +

∂gy
∂y +

∂gz
∂z

2 ∇2 is calculated as follows:
∇2 = ∇ ·∇ =

[
∂
∂xex, ∂∂yey, ∂∂zez

]T
·
[
∂
∂xex, ∂∂yey, ∂∂zez

]
= ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

7



The KHI as written above is only helpful for observation points on the sur-
face of the volume or outside, as it vanishes otherwise. If the point resides
on the surface plane Γ , only the half-sphere outside the volume is consid-
ered [11].

The first term is composed of the Green’s function and the gradient of
the sound pressure. In chapter 2.1.4 we already derived the meaning of
G(r|r ′) as the transfer function of a monopole point source situated at r ′

and evaluated at r. The gradient of the sound pressure ∂
∂np(r

′) is a propor-
tional to the sound particle velocity of the source as known from Euler’s
equation (eq. 2.1). The second term of the KHI consists of the gradient
of the Green’s function ∂

∂nG(r|r
′) which corresponds to a dipole source

aligned with the surface normal n. This source is simply comprised of two
monopole sources, one of which oscillates with inverted phase. This dipole
is weighted by the sound pressure p(r ′). Here, the KHI is able to repre-
sent any sources inside the volume Ω by monopole and dipole sources on
the surrounding boundary Γ , weighted either by the sound velocity or the
sound pressure on this surface, respectively.

x

y

z

r

Ω

Γ∂

⊕ ⊖

⊕
⊕ ⊕ ⊕ ⊕

⊖ ⊖
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⊖

⊖

⊖

⊖

⊕

⊖

Figure 2.3: Representation of a vibrating body by the KHI

Accordingly, any inhomogeneous radiating sound field, also one of a vi-
brating body, can be fully represented in terms of the KHI. In any case,
the vibrating structure or source field inside the volume Ω is replaced by
a single and double source density layer at its boundary Γ equivalently to
represent the radiating field (see figure 2.3).

The KHI is very general which means that it considers any 3-dimensional
contours. For planar nearfield acoustic holography, simplifications of the
KHI are possible yielding the so called Rayleigh integrals.
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2.1.6 Rayleigh integrals

Instead of a finite body with a volume bounded by a surface, we are now
extending this volume Ω to infinity and only consider the infinite surface
plane generated in the a two-dimensional domain (cf. figure 2.4). The cir-
cular surface integral of the KHI thereby changes to a surface integral from
−∞ to +∞ [13]:

p(r) = −

∫ ∫+∞
−∞

(
G(r|r ′)

∂

∂z
p(r ′) − p(r ′)

∂

∂z
G(r|r ′)

)
dxdy . (2.18)

Γ
0

Γ
∞

∞+
∞-

z > 0

z < 0

Γ∂
0

r 
∞

Figure 2.4: Extension of the KHI to infinity to evaluate a plane. The coordinate
system is changed so that the surface normal is parallel to the z-axis at
z = 0

With this formulation, we can still calculate the contributions of the sound
field in front (for z > 0) as well as the field behind (z < 0) the plane surface.
If we are just interested in the sound field of the positive z-plane, we can
simplify the KHI.

If the velocity on the plane Γ0 is forced to become zero, the condition corre-
sponding to a rigid wall is called Neumann condition:

∂GN
∂n

∣∣∣
z=0

= 0 (2.19)

To exploit this condition, we place a monopole source in front of this rigid
boundary and evaluate its effect on an arbitrary point r above the source
plane at z = a. Utilizing the image source principle [15], the incident field
at the evaluation point is composed of the original source field E(r|rm) at
z = a and a mirrored source component F(r|r ′m) at z = −a (cf. figure 2.5)
and becomes:

GN(r|rm) = E(r|rm) + F(r|r ′m) . (2.20)

9



Γ
0 ∞+∞- z > 0

z < 0

r
m

r'
m

r

E(r |r  )m

F(r' |r  )
m

Figure 2.5: Image source principle

Before insertion into eq. 2.18, we need to derive both fields with respect to
z. The derivatives of the field components are:

E(r|rm) =
e−jk(r−rm)

(r − rm)
⇒ ∂E

∂z
=
∂

∂z

(
e−jk(r−rm)

(r − rm)

)
,

F(r|r ′m) =
e−jk(r−r ′m)

(r − r ′m)
⇒ ∂F

∂z
= −

∂

∂z

(
e−jk(r−r ′m)

(r − r ′m)

)

and yield a description of the pressure p(r) in terms of both, original and
image field:

p(r) = −

∫ ∫+∞
−∞

([
E(r|rm) + F(r|r ′m)

] ∂
∂z
p(rm) − p(rm)

∂

∂z

[
E(r|rm) + F(r|r ′m)

])
dxdy

= −

∫ ∫+∞
−∞

(
e−jk(r−rm)

(r − rm)
+
e−jk(r−rm)

(r − rm)

)
∂

∂z
p(rm) . (2.21)

Obviously, the dipole components vanish and a simple formulation of the
sound pressure at r remains. One can still consider an infinitely thin layer
lying in between the pair of sources with a pressure of zero. The potential
∂
∂zp of the integral lets us specify an additional component of the gradient
specifying the vibration pattern of the rigid boundary (cf. figure 2.5 and
2.5). To describe the wavefield of a rigid vibrating plane, the pair of sources
is positioned very close together so that they are practically coincide. Ap-
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plying Euler’s equation and evaluating this equation at any point r in the
positive half space yields the Rayleigh I Integral

p(r) = 2jωρ
∫ ∫+∞

−∞ G(x− x ′,y− y ′, z)vn(x ′,y ′, 0)dxdy . (2.22)

Γ
0

∞+∞-

z > 0

z < 0

r

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕

⊕ ⊕ ⊕

⊕ ⊕ ⊕

∂G

∂z

N = 0
Neumann

condition

z = 0

Figure 2.6: Mirrored monopole source layer over Neumann boundary

Alternatively assuming a pressure release boundary instead of a rigid wall,
the so called Dirichlet condition holds:

GD = 0 . (2.23)

Again, the image source principle offers an elegant solution, this time with
a mirrored dipole source layer such that their fields fulfill the condition:

GD(r|rm) = E(r|rm) + F(r|r ′m) = 0 . (2.24)

After derivation and insertion this combined field into eq. 2.18 the relation
becomes:

p(r) = −

∫ ∫+∞
−∞

([
E(r|rm) + F(r|r ′m)

] ∂
∂z
p(rm) − p(rm)

∂

∂z

[
E(r|rm) + F(r|r ′m)

])
dxdy

= −

∫ ∫+∞
−∞ p(rm)

∂

∂z

(
e−jk(r−rm)

(r − rm)
+
e−jk(r−rm)

(r − rm)

)
. (2.25)

Utilizing Euler’s equation gives us the Rayleigh II Integral which describes
a source layer of dipoles and its mirrored counterpart that are situated
infinitely close to the Dirichlet boundary. These are weighted by the sound
pressure distribution:

p(r) = 2
∫ ∫+∞

−∞ p(x ′,y ′, 0)
∂

∂z
G(x− x ′,y− y ′, z)dxdy . (2.26)
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z > 0

z < 0

r

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕

G
D = 0

Dirichlet
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⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕
⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖ ⊖

Figure 2.7: Mirrored dipole source layer below Dirichlet boundary

2.2 a description of planar acoustic holography based on

rayleigh integrals

The main goal of planar acoustic holography (PAH) is the determination of
the sound velocity on the source plane from sound pressure measurements
performed above the source plane.

From the Rayleigh integrals, which are simple and general, we easily obtain
a compact description of planar acoustic holography. A common setup is
shown in figure 2.8, where the sound pressure is measured on a planar grid
parallel to the source plane at z = a. With the help of the free space Green’s
function and its derivative, either the sound velocity or sound pressure can
be calculated on the source plane at z = 0. It is possible to determine the
sound pressure in the field at any distance from the structure if the field is
freefield.

v (r')
n

p(r)

z = 0

z = a

z

y

x source plane

measurement plane

Figure 2.8: Measurement setup for planar acoustic holography

2.2.1 Formulation

We use the original formulation of the Rayleigh integral and calculate the
sound pressure at a specific point r above the measurement surface (z > 0).
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For this, the integral of eq. 2.22 needs to be discretized at a sufficiently high
sampling rate that the following approximation is valid:

p(r) ≈ 2jωρ
+∞∑
i=−∞

+∞∑
j=−∞G(x− x

′
i,y− y

′
j , z)vn(x

′
i,y
′
j , 0)∆xi∆yi . (2.27)

In real-world applications, the size of the measuring aperture is usually
finite. Therefore, the patch of the source plane we are interested in is dis-
cretized in K steps in the x-direction and L steps in the y-direction. This
leads to a truncation of the measurement plane:

p(r) ≈ 2jωρ
K∑
i=0

L∑
j=0

G(x− x ′i,y− y
′
j , z)vn(x

′
i,y
′
j , 0)∆xi∆yi . (2.28)

It is important to keep in mind that the Rayleigh I integral still considers
the velocity outside this patch to be zero despite of the truncation. The ef-
fect of this truncation is further addressed in chapter 2.2.4 .

All N = K× L values of the Green’s function can be written into one vec-
tor Gr

T = [G(r|r ′1),G(r|r
′
2), . . . ,G(r|r

′
N)]

T and the associated velocity com-
ponents into another vector v = [v(r ′1), v(r

′
2), · · · , v(r ′N)]. With this, the dis-

cretized Rayleigh I integral becomes:

p(r) = 2jωρ ·Gr
Tv . (2.29)

v n

p(r)

z = 0

z = a

z

y

x

source  plane

evaluation plane
r

G(r|r' )1

r'1

Figure 2.9: Calculation of the sound propagation

Up to now, we only calculated one single point above the plane. How-
ever, using linear algebra it is also possible to calculate the sound pres-
sure at more than one point. For this, we consider an additional vector
p = [p(r1),p(r2), · · · ,p(rM)], containing M sound pressure components
on a measurement plane at z = a. This alters the vector of the Green’s
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functions into a circulant matrix of size M×N, comprised of the Green’s
function from each source velocity to the M evaluation points:

G =



Gr1
T

Gr2
T

.

.

.
GrM

T


=



G(r1|r
′
1) G(r1|r

′
2) · · · G(r1|r

′
N)

G(r2|r
′
1) G(r2|r

′
2) · · · G(r2|r

′
N)

. . · · · .

. . · · · .

. . · · · .
G(rM|r ′1) G(rM|r ′2) · · · G(rM|r ′N)


.

This setup is illustrated in figure 2.10 for a simple setup with N = M = 4.
With the derivations above, eq. 2.29 becomes

p = 2jωρ ·Gv . (2.30)

v 

p

z = 0

z = a

z

y

x

source  plane

evaluation plane

r'1

r1

G(r |r' )11

Figure 2.10: Calculation of sound propagation for N =M

Considering M microphone positions and N = M velocity positions, eq.
2.30 is a fully determined system of equations and allows for a unique
solution of the inverse problem:

v =
1

2jωρ
G−1p (2.31)

v 

p

z = 0

z = a

z

y

x

source  plane

measuring plane

r'1

r1

G(r |r' )11

1" "

Figure 2.11: Planar acoustic holography for N =M

Figure 2.11 illustrates such a configuration and also reveals its drawbacks.
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If we want to simulate the velocity on the source plane at a satisfactory res-
olution, an impractically number of microphones has to be used. Because
of this, we need to reformulate the problem into an underdetermined equa-
tion system, where the number of of measuring points M is significantly
lower than the number of calculated sources N:

v N =
1

2jωρ
(G M×N)

† p M (2.32)

The system is also depicted in figure 2.12 and ways to increase the resolu-
tion under different assumptions are given in the following chapters.

v 

p

z = 0

z = a

z

y

x

source  plane

measuring plane

r'1

r1

G(r |r' )11

1" "

Figure 2.12: Planar acoustic holography for N 6=M

2.2.2 Analysis of the inverse problem

To solve the problem of eq. 2.32, we need to invert the matrix G, describing
the the transfer functions from source to sensor position.

For the exactly determined problem (M = N), it is known from linear algebra
that we can calculate the inverse of a square matrix of G by finding matrix
H that yields:

G ·H = I = H ·G ,

where I denotes the identity matrix. If this equation is fulfilled, we call
matrix H the inverse of G. This can also be written as G−1. If the matrix
is regular, the inverse exist and can be numerically computed. If, on the
other hand, the matrix is close to singular, we need to utilize regularization
techniques. The following equation illustrates an exactly determined prob-
lem, where the number of measurement points M equals the number of
parameters to calculate N:∗ ∗ ∗∗ ∗ ∗

∗ ∗ ∗


︸ ︷︷ ︸

GM×N

·

∗∗
∗


︸ ︷︷ ︸

vN

=

∗∗
∗


︸ ︷︷ ︸

pM
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If plenty of measurements are available but only few points shall be calcu-
lated on the source plane, a system can be described as overdetermined. For
equation 2.32, this would mean M > N :

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


︸ ︷︷ ︸

GM×N

·

∗∗
∗


︸ ︷︷ ︸

vN

=


∗
∗
∗
∗
∗


︸ ︷︷ ︸

pM

A problem of overdetermined systems is that there are more equations than
unknowns. To solve these systems, the squared error between a guess of
the unknown variables v multiplied by the appropriate Green’s functions
G and the measurement data p is minimized3:

‖e‖22 = ‖Gv − p‖22 → min .

We will not regard this solution in detail because the systems that are found
in PAH are usually underdetermined. This means that only a few measure-
ments are available, but a lot of points on the source plane are desired
(N > M):

∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


︸ ︷︷ ︸

GM×N

·


∗
∗
∗
∗
∗


︸ ︷︷ ︸

vN

=

∗∗
∗


︸ ︷︷ ︸

pM

Underdetermined systems do not have a unique solution. They either yield
an infinite number of solutions or not any. To solve this problem and to
calculate the unknown velocity vector v, we introduce a penalty function
J(v) that fulfills the following constraint:

min
v

J(v)

subject to Gv = p (2.33)

Due to simplicity, the scalar term 2jωρ is included into the matrix of the
Green’s functions G. For the penalty we choose

J(v) = ‖v‖22 ,

3 The solution to this problem is known as the least-squares solution and was already pro-
posed by Gauss in the 18th century
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which is the squared `2 - norm. It minimizes the energy on the source
plane by a least-squares optimization. Eq. 2.33 minimizes this norm under
the constraint that the equation system is fulfilled. At this point it is also
possible to use other approaches, e.g. the `1-norm, as a penalty function.
For now, we are solving the least-squares problem by constructing the La-
grangian function L(v) using the Lagrangian multiplier γ:

L(v) = vTv + γT (Gv − p)

= vTv +
(

pT − vTGT
)
γ .

To solve the minimizing problem, we have to derive the costfunction with
regard to v and γ

∂L(v)
∂v

= 2v + GTγ = 0

vopt = −GT γ

2
, (2.34)

∂L(v)
∂γ

= Gvopt − p = 0

Gvopt = p . (2.35)

Replacing vopt in eq. 2.35 with the expression calculated in eq. 2.34 yields
γopt:

γopt = 2
(

GGT
)−1

p .

Inserted into eq. 2.34 it becomes:

vopt = GT
(

GGT
)−1︸ ︷︷ ︸

right-inverse

p . (2.36)

With this, the so called pseudoinverse of the matrix G is obtained which
gives an optimal solution of the inverse problem in the least-squares sense.
We should keep in mind that even this matrix inverse cannot be calculated
if the matrix G is of deficient row-rank and therefore singular. In this case,
a working solution is obtained by regularization that modifies the matrix
so that a slightly different but regular problem is solved instead.

The Singular Value Decomposition (SVD) is used to calculate the pseudoin-
verse due to its potential to deal with possible singularities of the inversion
problem. It is known from linear algebra that a rectangular matrix can be
represented by two orthogonal and one diagonal matrices [18]:

G = USVH ,

where
G matrix of dimension M×N
U orthogonal matrix of dimension M×M
S diagonal matrix of dimension M×N
V orthogonal matrix of dimension N×N
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Furthermore the matrices U and V are unitary:

UUH = UHU = I

VVH = VHV = I

The columns of U are the orthogonal eigenvectors of GGH whereas the
columns of V are orthogonal eigenvectors of GHG. The elements of the
diagonal in S are the square roots of the eigenvalues of V or U (which are
the same), which are often arranged in increasing order. We can now use
the formulation of the SVD to invert the matrix G:

G−1 =
(

USVH
)−1

= VS−1UH (2.37)

The above inverse takes the hermitian response of V and U and inverts the
diagonal of S, which is padded with zeros:

S−1 = diag
N×M

(
1

σ1
, · · · ,

1

σM

)
=



1
σ1

0 0 · · · 0 0

0 1
σ2

0 · · · 0 0

0 0 1
σ3
· · · 0 0

. . . · · · . .

. . . · · · . .
0 0 0 · · · 1

σM−1
0

0 0 0 · · · 0 1
σM

0 0 0 · · · 0 0

. . . · · · . .
0 0 0 · · · 0 0



(2.38)

With eq. 2.37, the calculation of a high resolution normal surface velocity v
by means of only few measurements is in principle feasible, as long as the
singular are not too small or even zero. G is ill-conditioned in this case. To
address this problem, we now want to try to find a physical explanation of
the origin of this ill-posedness.

2.2.3 Evanescent waves and the ill-posed problem

The matrix G that inherits the Green’s functions is ill-conditioned due to
exponentially decaying surface waves that are called evanescent waves [20].
Before proposing solutions to this problem, we want to take a look at the
physical causes of these short ranging waves.

The speed of sound c of a medium usually differs from that in the air. As
a consequence, the wavelengths for air and solid media λb, λL are different
at the same frequency. This is illustrated in figure 4.3a, where the surface
wavelength of a steel plate of different thickness h and that of air are com-
pared. There are regions where the wavelength of the structure λb is greater
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than λL and vice versa. The frequency at which both are equal is called coin-
cidence frequency fc. Because of the smaller wavelength of the plate below fc
and a resulting bad impedance matching, an acoustical short circuit occurs
as fig. 4.3b illustrates. This means that the acoustic energy flows from the
crest of the waves to its bottom and is merely emitted into the air.

(a) Description of the wavelength in dif-
ferent media

(b) Acoustic short circuit due to bad
impedance matching

Figure 2.13: Coincide frequency and the resulting evanescent waves (from [23])

Nevertheless the flowing energy still interacts with the air but rapidly van-
ishes with increasing distance to the structure. This results in exponentially
decaying surface waves that are called evanescent waves (cf. figure 2.14).

Figure 2.14: Propagation of plane waves (a) and evanescent waves (b) (from [24])

To calculate the true normal velocity of a structure by means of sound pres-
sure measurements, the microphone array needs to capture these evanes-
cent waves. Due to noise and a resulting limited signal to noise ratio of the
measurement system, these waves can only be captured close to the source
4. However, a measurement without these components will lead to serious
problems in the reconstruction process. If the evanescent waves are impor-
tant degrees of freedom, e.g. because the microphones are positioned close

4 Valdivia and Williams analyzed this problem and recommend to position the array at
a distance between d and 2d from the source plane, when d equals to the microphone
distance [25]

19



together for a regarded wavelength, the inversion of G is only possible, if
the matrix is of full row-rank, i.e.:

rank (G) >M (2.39)

Measurements in the farfield do not contain the evanescent waves because
only the plane waves can propagate far. This leads to a linear dependency
of the rows of G and therefore to a reduction of its rank. Thus, the problem
gets ill-posed as some singular values tend to zero. Inversion would boost
the singular vectors associated with the small singular values of eq. 2.38 to
infinity.

A good overview of regularization techniques to avoid this is given by
Williams [21], Scholte [22], Sarkissian [20] and others. Most of these reports
focus on NAH, but Sarkissian also describes a regularization technique that
can explicitly be used for the theory presented above.

2.2.4 Effects of discretized and truncated measurement aperture

If the measurement aperture is discretized by a limited number of micro-
phones, it causes different effects.

First of all, the sampling theorem must be fulfilled which means that the emit-
ted wavelength needs to be sampled at a sufficiently narrow grid to avoid
spatial aliasing. The theorem states that at least two microphones have to
sample the wavelength λmin. As for time and frequency, there also exists a
relation between space and frequency. The propagating wavefield in space
is described by the wavenumbers in the so called k-space. The relationship
between frequency and wavenumber domain is illustrated in figure 2.15

wavenumber kfrequency ω

space xtime t

f(t) f(x)

F(k)F(ω)

ω = 
2π 

T
k = 

2π 

λ

ω k

Figure 2.15: Transformations in time and space
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The upper limit to avoid aliasing is defined by:

λmin = 2d ,

kmax =
2π

λmin
=
2π

2d
=
π

d
. (2.40)

All components above this limit lead to misinterpretations of wavenumbers
and therefore to alias components that occur in the spatial domain. Evanes-
cent waves do not fulfill the upper wavenumber limit derived from plane
waves.

The imposed wavenumber limit due to aliasing results in a rectangular
truncation in k-space. From signal processing we know that the truncation
of a signal in one domain may lead to artifacts in the corresponding do-
main. The application of a rectangular window in k-space therefore leads
to a convolution of the signal with a sinc-function in the spatial domain.

Talking about truncation, we also have to consider the spatial rectangular
window we apply by measuring with a finite number of microphones. This
window in turn, will lead to sinc-function like artifacts in k-space (cf. figure
2.16)

wavenumber k

space x

f(x) f(x)

F(k)F(k)

k
wavenumber k

k

space x

Hann windowrectangular window

Figure 2.16: The effect of windowing

One way to deal with those artifacts, also known as spectral leakage, is the
use of window-functions like the Hann-window. These functions ease the
abrupt breakaway of the signal by implying a weight on the outmost signal
components. This leads to improvements in the reconstruction, whereas
the truncation in space seems to be of much less importance. However, we
need to keep in mind that this windowing does not circumvent aliasing
at all. To achieve this, we need to apply an anti-aliasing filter in k-space.
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An elegant way to implement this is to use the lowpass properties of the
Green’s function described in the following chapter.

2.2.5 Influence of the measurement distance a

The preceding chapter discussed the corrupting effects of aliasing originat-
ing from a misinterpretation of the emitted soundfield due to a insufficient
number of sensors per wavelength. In the nearfield of the source, evanes-
cent waves of high wavenumbers exist (cf. chapter 2.2.3). To capture these
components, the number of sensors must be increased. These evanescent
waves are the reason for the supremacy of the nearfield acoustic hologra-
phy to measure the velocity of a structure.

To avoid the potentially resulting artifacts of aliasing due to this wavenum-
bers, a lowpass filter has to be applied in k-space. It comes in handy that
the Green’s function, expressing the sound field propagation, has the char-
acteristic of a resonant lowpass filter. Its cut-off wavenumber kco is defined
by the analyzed frequency f, whereas the slope is dependent on the dis-
tance of the aperture to the source. Figure 2.17 illustrate this for different
measurement distances a. We can clearly see the steeper slope for a larger
distance. With this in mind we can ensure the upper wavenumber limit
given in eq. 2.40 by adjusting the distance of the measurement aperture to
the source plane. Nevertheless, this only excludes the presence of poten-
tially aliased sound field components for structures that are not excessively
exciting evanescent normal velocity patterns.
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Lowpass characteristic of the Greens function

 

 

a = 0.01m
a = 0.02m
a = 0.05m
a = 0.1m

Figure 2.17: Lowpass characteristic of the Green’s function
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2.2.6 A note on point sources

In chapter 2.2.4, the sampling theorem was discussed thoroughly. This re-
quirement is straightforward for modal vibrations whose material wave-
length can easily be restricted by controlling the frequency range. However,
it gets more complicated considering point sources on the source plane.
Independent of the emitted frequency, the distance of the measurement
aperture to the source layer has a crucial influence. High frequency com-
ponents potentially violate the sampling theorem. The closer the array is
positioned, the larger the spatial variation of the observed sound pressure
will be. This effect is illustrated in figure 2.18

location

a
m
p
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e

measurement 
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pressure field of a 

point source

(a) Resulting spatial variation at a large measurement distance

a
m
p
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e

location

measurement 

aperture

pressure field of a 

point source

(b) Resulting spatial variation at a small measurement distance

Figure 2.18: Dependency of the spatial variation of the observed sound pressure
on the distance: it becomes large for close distances
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Figure 2.19: State graph of the planar acoustic holography
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2.3 examples of the pah solution

This section provides an overview of simulated results using PAH. We want
to focus on two types of sources. The first one is a resonating plate with
all edges clamped. The second setup consists of three point sources with
different strength emitting from a plane surface. For both configurations,
the propagation of the sound field is simulated and the measurement can
be virtually performed at a desired distance with an arbitrary number of
sensors. This thesis focus on rectangular measurement apertures with mi-
crophones placed at an equidistant grid. However, it is important to men-
tion that the theory of PAH is neither limited to a rectangular measurement
aperture, nor to equidistant grids.

2.3.1 PAH solution for a vibrating plate example

The propagation of a sound field excited by a resonating metal plate is
simulated. The first analysis focus on the quality of the inversion of eq.
2.31 performed by means of the SVD. Therefore we consider an exactly
determined system with equally many measurement points in the emitted
field as discrete points on the source plane.

The frequency of the resonating plate is given by Möser [23]:

fres =
π

2

[(
nx

lx

)2
+

(
ny

ly

)2]√
B ′

m ′′
,

and

B ′ =
E

1− µ
· h

3

12
,

m ′′ = ρsteel · h ,

where
h thickness of vibrating plate (0,001m)

ρsteel density of steel (7850 kg
m3 )

E Young’s modulus of steel (2,1 · 1011 N
m2 )

µ Poisson’s ratio (0,3)

lx length of plate in x-direction

ly length of plate in y-direction

nx order of the resonance in x-direction

ny order of the resonance in y-direction .

The vibrating plate of the dimension 0.4m× 0.4m is discretized by 40× 40
equidistant points. The resulting source velocity is shown in figure 2.20.

The propagating sound pressure field is simulated at four different record-
ing distances (0.01m, 0.02m, 0.05m and 0.1m). Figure 2.21 gives an idea
about the evolution of this field for an increasing distance to the source.
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Figure 2.20: Normal velocity of a vibrating plate in a 2-3 mode
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(b) a = 0.02m
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(c) a = 0.05m
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(d) a = 0.1m

Figure 2.21: Evolution of the sound pressure field of a vibrating plate in a 2-3 mode

In the first example, the simulated measurement aperture is positioned at
a distance of a = 0.01m and the source velocity is calculated. As already
mentioned, an exactly determined system is assumed for which the calcu-
lated normal velocity v and the error shown in figure 2.22. The solution at
this distance yields an almost perfect result with a negligible misfit.

The distance of the measurement aperture is now increased to 0.02m. The
result of the PAH and the errors in figure 2.23 is also close to perfect.

Another simulation is performed at z = 0.05m and displayed in figure 2.24.
Although the resonances of the plate are still recognizable, errors, which
we would not expect in a perfectly determined system, occur. Recapitu-
lating chapter 2.2.3 leads to the conclusion that these are caused by the
ill-posedness due to evanescent waves that already vanish at this distance.
The loss leads to linear dependencies in the equation system of eq. 2.31 and
thus to a reduction of the rank of G. The ill-posed problem has singular val-
ues that tend to zero, as observed. This leads to a boost in inverted results
that cause numerical errors. To ease the ill-posedness, a simple regulariza-
tion is used to alter the singular values to reasonably large numbers. We
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Figure 2.22: PAH result at a distance of a = 0.01m
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Figure 2.23: PAH result at a distance of a = 0.02m

can do so by adding a small number r to the main diagonal of the matrix
S of eq. 2.37 before inverting it:

S−1 = diag
N×M

(
1

σ1 + r
, · · · ,

1

σM + r

)
. (2.41)

It is convenient to define r in terms of a regularization parameter R in
decibel and the maximum singular value σmax:

r = σmax · 10
R
20 . (2.42)

The result of this regularization is displayed in figure 2.25. Table 2.1 reveals
that the quality of the solution significantly increases.

With this simple regularization technique at our hand, we now try to dou-
ble the distance of the measurement aperture and evaluate the results at
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Figure 2.24: PAH result at a distance of a = 0.05m without regularization
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Figure 2.25: PAH result at a distance of a = 0.05m with R = −50dB

a = 0.1m. For the regularization parameter R set to −50dB, the surface
waves of the structure are still observable although the error increases.
If the regularization parameter R is raised to −45dB, the result degenerates
further which is illustrated in figure 2.27) and table 2.1. This table displays
a single value error e which is explained in chapter 4. Using other regular-
ization techniques proposed by Williams [21], Scholte [22], Sarkissian [20]
and others it might offer a possibility to enhance the result even further.
However, these approaches are not covered in this thesis.
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Figure 2.26: PAH result at a distance of a = 0.1m with R = −50dB
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Figure 2.27: PAH result at a distance of a = 0.1m with R = −45dB

distance a in m a = 0.01 a = 0.02 a = 0.05 a = 0.1
no reg. no reg. no reg. R = −50dB R = −50dB R = −45dB

error e 0.11 0.27 55.71 7.9 20.6 28.4

Table 2.1: Single value error e

2.3.2 PAH solution for a point source example

This section describes the evaluation of point sources in terms of the Rayleigh-
based PAH. A source layer consisting of three monopoles with different
strength is created and the propagation of the resulting pressure field is
simulated. Figure 2.28 displays the resulting field at 0.02m, evaluated at
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three selected frequencies (300Hz, 1kHz, 3kHz). The plots show a signifi-
cant decrease of sound pressure with increasing distance (around 10dB for
0.01m - 0.05m). At higher frequencies, interference occur in the propaga-
tion.
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(a) f = 300Hz , a = 0.02m
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(b) f = 1kHz, a = 0.02m
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Figure 2.28: Propagation of the sound pressure field of point sources for f = 300Hz,
f = 1kHz and f = 3kHz at 0.02m

In contrast to the other examples in chapter 2.3.1, the measurement grid
is now fixed at a distance of 0.02m. Again, we will start with a simulation
of the exactly determined system to examine the best possible result. As
we can see in figure 2.29, the equation system is solved perfectly, with no
appreciable error to mention. For all further simulation examples, we con-
sider a more realistic setup, where the number of microphones is small,
to reduce cost and hardware complexity. Such an equation system will be
underdetermined but still solvable as described before.

Three arrays are simulated with 15 × 15 (225), 8 × 8 (64) and 6 × 6 (36)
microphones. All arrays cover the same size of 0.4m× 0.4m, resulting in
microphone distances of 2.7cm, 5cm and 6.7cm respectively. As already
described in section 2.2.4, the sampling theorem and the distance of the
measurement plane to the source has to be considered to avoid aliasing.
Assuming the wavelength of a plane wave, the maximum frequencies for
the given measurement grids are:

fmax,15×15 =
343ms
2 · 0.027

= 6431Hz ,

fmax,8×8 = 3430Hz ,

fmax,6×6 = 2573Hz (2.43)

The results for a first analysis at 300Hz is displayed in figure. 2.30. Al-
though the reduction of sensors to a 15× 15 grid still leads to an acceptable
localization of the sources (see fig. 2.30), the calculated velocity is signifi-
cantly lower than of the original source (mind the axis of the velocity). Fur-
thermore, we can encounter an excitation spread around the peak with a
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Figure 2.29: Calculated normal velocity (upper row) and equivalent error (lower
row) at a measurement distance a = 0.02m for the exactly determined
case
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Figure 2.30: Calculated normal velocity (upper row) and equivalent error (lower
row) for a measurement distance a = 0.02m at f = 300Hz with re-
duced sensor positions
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characteristic shape. As described in chapter 2.2.4, this pattern is caused by
the upper frequency limit, determined by the sampling theorem. It is inter-
esting to see that aliasing already occurs, although in eq. 2.43 a sufficiently
high frequency limit was derived. Obviously, the close source causes rapid
vibrations (cf. section 2.2.6). A further reduction of microphones leads to
an increase of these artifacts and to a further reduction of the calculated ve-
locity. The source emitting the lowest energy can hardly be distinguished
without prior knowledge. The simulation using the 6× 6measurement grid
finally gives only a glimpse about the original position of the sources. The
analysis for 1000Hz yields a similar result (figure 2.31).
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Figure 2.31: Calculated normal velocity (upper row) and equivalent error (lower
row) for a measurement distance a = 0.02m at f = 1000Hz with re-
duced sensor positions

The analysis at 3000Hz degenerates even faster because more aliasing arti-
facts are introduced due to the higher analysis frequency (cf. figure 2.32).
The least-squares optimization inherits the property to ”smear” the energy
and to align equal components. Therefore, the simulation grid for 6× 6 mi-
crophones almost yields no recognizable solution. The results, which are
also similar elsewhere in literature, motivate the investigation of potentially
improved resolution which is carried out in this thesis.
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Figure 2.32: Calculated normal velocity (upper row) and equivalent error (lower
row) for a measurement distance a = 0.02m at f = 3000Hz with re-
duced sensor positions

40× 40 15× 15 8× 8 6× 6

300Hz 0.2 93.7 97.2 99.4
1000Hz 0.5 93.7 97.3 99.5
3000Hz 1.8 93.7 98.2 99.0

Table 2.2: Single value error e for the reduced system at distance a = 0.02m

2.4 summary

In this chapter, a solution to planar acoustic holography based on Rayleigh
integrals was introduced. From the KHI, a description of a vibrating plate
in terms of the Rayleigh I integral was derived. After the formulation as
a linear equation system, the underdetermined system was reviewed, to
head to a more realistic scenario. The underdetermined inverse problem
was thoroughly analyzed and led to the assumption that the resulting equa-
tion system can be solved using a least-squares ansatz.

This theory was successfully examined using simulations for two distinct
problems, a resonating plate and a point source problem. While the results
of the resonating plate were very convincing, the performance for problems
sparse in space were poor. The reason for this is the least-squares optimiza-
tion of the inverse problem that smears the energy of point sources. In the
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following chapter, a new formulation of the optimization problem is given
to support this sparsity and to successfully apply the PAH also to this kind
of problems.
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3
S PA R S E H O L O G R A P H I C I M A G I N G

The Rayleigh-based PAH in the previous chapter did not yield convincing
results in terms of localization for problems with small and localized veloc-
ity patterns. This is mainly due to the property of the applied least-squares
approach, which tend to spread the energy all over the solution vector.

However, in the past years, new ideas in optimization theory became ap-
parent that could now be helpful, to solve this sparse problem1. In this
chapter, the techniques to enforce good results to sparse problems are ex-
amined and the formulation for PAH is extended.

3.1 sparse solutions of underdetermined systems

In chapter 2, an underdetermined linear equation system was derived to
solve the planar acoustic holography .

G M×N v N = p M (3.1)

Usually, the number of available microphones is much lower than the num-
ber of desired points on the source plane (M� N). Such a system leads to
an infinite number of solutions. In 2.33, we calculated the valid solution by
minimizing the `2-norm as a penalty function. The reason for this choice
was simplicity, as the solution is unique and easily determined by the right-
inverse. The question arises, if there exist an alternative. We first analyze
the properties of the `2-norm to see its benefits, but also what its drawbacks
are.

3.1.1 Convexity

The reason for the unique `2-solution lies in the fact that it corresponds to
a strictly convex function, meaning that its solution converges to a global
minimum. To understand this property, a convex vector-set is defined and
expanded to a description of convex functions. A mathematical problem
can only called convex if the set of variables and all applied functions are
convex [27].

Therefore, the vector set of W is convex, if all possible vectors x1, x2 ∈ W

combined with the arbitrary factor t ∈ [0.1] to the form of

x = tx1 + (1− t)x2 , (3.2)

1 A very comprehensive article about the reasons of sparse optimization besides acoustical
optimization is given in [26]
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result in a vector x that also lies in the set of W. Figuratively spoken, each
point on the vector between x1 and x2 has to be in the set W as figure 3.2
illustrates.

x
1

x
2

(a) Convex vector set W1

x
1

x
2

(b) Non-convex vector set W2

Figure 3.1: Description of convexity

A function J(x) is strictly convex if it satisfies the inequality2:

J(tx1 + (1− t)x2) < tJ(x1) + (1− t)J(x2) (3.3)

Furthermore, it has to fullfill the property:

J(x2) > J(x1) +∇J(x1)T (x2 − x1) (3.4)

The `2-norm J(v) = ‖v‖2, used as penalty function in chapter 2, fulfills all
of this demands. However, there are other functions that are convex too.
In fact, all so called `p-norms share this property for p > 1 [27]. These
functions are defined as follows:

‖x‖p =

(∑
i

|xi|
p

) 1
p

(3.5)

The characteristic of these norms can be used to solve a diversity of prob-
lems. Applying them as a penalty function, the optimization process can
be properly controlled to answer to the special needs of each individual
problem. In figure 3.2, the so called `p-balls, a kind of unity circle for the
norms, are depicted for the `1, the `2 and the `∞-norm.

The extension of possible penalty functions to a set of eligible options is
now utilized to give a solution to the misfits we were facing in chapter 2.
For this, the `1-norm is further analyzed and the advantages and drawbacks
are demonstrated.

2 If we add equality to this equation, we can still speak of convex functions. The result of
this will be apparent in chapter 3.1.2
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Figure 3.2: 2-dimensional `p-balls

3.1.2 Application of the `1-norm - sparse optimization

In general, a signal vector x is called sparse if only a small number of
elements is large and all other entries tend to zero [30]. The `1-norm as
a penalty function is suitable for enforcing sparsity of the solution. It is
obtained by setting p = 1 in eq.3.5. Employing this norm as a penalty func-
tion, we can only achieve a convex, but not a strictly convex optimization
problem. This means that the optimization problem may have more than
one solution. Nevertheless we know that among these solutions the most
sparse option exists. To demonstrate the characteristic properties of sparse
optimization, a random underdetermined problem is generated with the
sparse vector x and the system matrix A

Ax = b (3.6)

where A ∈ CM×N, x ∈ CN and b ∈ CM and M� N. Assuming A and b are
given and the linear constraint Ax = b can be fulfilled by infinitely many
solutions, a sparse solution is obtained by minimizing

min
x
‖x‖1 ,

subject to Ax = b . (3.7)

This formulation was introduced by Chen, Donoho and Saunders [28] as
Basis Pursuit (BP).

Before we solve this problem numerically, a geometrical explanation is
given. With the description of the `p-balls in figure 3.2 and the formula-
tion in eq. 3.7 we can construct a 2-dimensional example:

min
x
‖x‖1 ,

subject to

(
1
3
1
2

)T
· x = 1 .
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All possible solutions to the problem lie to a straight line that intersects the
abscissa at x1 = 3 and the ordinate at x2 = 2 given by the constraint. To find
the sparse solution in the `1-optimal sense, the `1-ball is minimized until
the line intersects the ball at one point. The solution is unique only at this
point as illustrated in figure 3.3. If the `1-ball and the constraint mistakenly
intersect at two points due to a bad minimization, the solution is not unique
anymore. If on the other hand no intersection exists, no solution can be
found. To solve this sophisticated task, convex optimization techniques are
applied.

x1

x2

xopt

a  x = b
T

||x||  = 2.5 1

||x||  = 2.0 1

||x||  = 1.5 1

1 2 3

1

Figure 3.3: Sparse `1-solution to the given example

As we can see, a sparse solution is found. For comparison, the `2-optimized
problem is illustrated in figure 3.4. We can see that the non-sparse solution
vector consists of both linear components.

x1

x2

xopt

a  x = b
T

||x||  = 2.5 2

||x||  = 1.6 2

||x||  = 1.0 2

1 2 3

1

Figure 3.4: Non-sparse `2-solution to the given example
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Using a convex optimization toolbox for MATLAB called cvx, the problem
is now solved numerically by the following routine:

n = size(A,2);

cvx_begin

variable x(n) complex;

minimize(norm(x,1));

subject to

A*x == b

cvx_end �
The numerical solutions to this simple example are x`1 =

(
0
2

)
for the sparse

optimization and x`2 =
(
0.92
1.38

)
for the least-squares solution.

For the upcoming examples, it is important to declare the variable x to be
complex if the problem is complex valued3. The toolbox thereby selects the
appropriate solver. Complex-valued problems usually require a formula-
tion into a so called second-order-cone problem, instead of linear programming.
Both methods are not further addressed in this thesis, but good and com-
prehensive descriptions can be found in [29] and [30].
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(a) Constrained `1-minimization
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Figure 3.5: Solutions to an example problem known to be sparse

Figure 3.5a displays the `1-minimum solution of another example, which
is perfectly solved. By contrast, the least-squares solution (`2-minimum) in
fig. 3.5b does not retrieve the sparse vector. The example demonstrates the
energy smearing introduced by the `2-minimum when solving sparse prob-
lems. A closer look at the linear combination of the solution can confirm
this guess. In figure 3.6, another simple underdetermined system is given.
It consists of a 2-dimensional vector set, the sum of which shall represent
a given vector. Each linear component is shown for both, the `1 and the
`2-minimum. Again, the `2-solution yield broadly distributed shares in con-
trast to the sparse `1-optimized result.

3 For simplification, the variable was already declared complex for the first example.
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Figure 3.6: Sparse `1 and spread `2-solution to an underdetermined linearly con-
strained 2-dimensional problem

3.1.3 Sparse optimization in the presence of noise

Up to now, all simulations were performed considering ideal systems with-
out noise, usually present in physical measurements. However, if noise ex-
ist, the sparse solution might degrade and become invalid. In figure 3.7,
this degradation is displayed for a signal-to-noise ratio (SNR) of 60dB (fig.
3.7a) and 40dB (fig. 3.7b).
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(a) `1-optimization with SNR = 60dB
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(b) `1-optimization with SNR = 40dB

Figure 3.7: Solutions to a sparse problem with noisy data

To improve the optimization task on noisy data, a regularization parame-
ter β is useful to control the level of noise permitted in the data. As the
noise can be complex-valued, this regularization parameter can be seen as
radius within which the linear constraint is allowed to mismatch. The op-
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timization task in this case is known as the basis pursuit denoising (BPDN)
[28]:

min
x
‖x‖1 ,

subject to ‖Ax − b‖22 6 β (3.8)

In cvx, we may write this as:

n = size(A,2);

cvx_begin

variable x(n) complex;

minimize(norm(x,1));

subject to

sum(square_abs(A*x - b)) <= beta;

cvx_end �
Figure 3.8 displays solutions for a realistic scenario with a SNR of 60dB
and the parameter β set to β = 0.9 or β = 4, respectively. With this regular-
ization, a better result is achieved (see fig. 3.11a). However it is important
not to over-regularize the optimization because the solution tends to zero
if the linear constraint is weakened too heavily (cf. fig. 3.11b).
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(a) `1-optimization with β = 0, 9
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Figure 3.8: Solutions to a regularized sparse problem with SNR = 60dB and a weak-
ened linear constraint
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3.2 formulation of the pah in terms of `1-optimization

In chapter 2.2.1, we already formulated the solution to the planar acoustic
holography (PAH) based on Rayleigh integrals:

p M = 2jωρ · G M×N v N . (3.9)

Usually, we desire more points to be calculated on the source plane than
measurement points exist. This leads to an underdetermined system of
equation (M � N). To obtain a reasonable solution, we may formulate
a minimization problem with the linear equality constraint and a penalty
function J(v):

min
v

J(v)

subject to 2jωρ · Gv = p (3.10)

In contrast to chapter 2, we now want to focus on sparse solutions to this
problem which means that we search for a proper J(v).

3.2.1 Formulation to enforce sparsity in space

A sparse Rayleigh integral of PAH contains only a few non-zero surface
components, i.e. the velocity becomes zero on most of the source plane.
Therefore the basis pursuit of eq. 3.7 is a viable solution strategy. To han-
dle noisy data and to provide an option to control its influence, the basis
pursuit of denoising (BPDN) provides a reasonable strategy. The sparsity
promoting formulation to the Rayleigh-based PAH for sparse holographic
imaging therefore becomes:

min
v
‖v‖1

subject to ‖2jωρ · Gv − p‖22 6 β . (3.11)

In cvx, this is solved by the code:

n = size(G,2);

cvx_begin

variable v(n) complex;

minimize(norm(v,1));

subject to

sum(square_abs((2*1i*omega*rho)*G*v - p)) <= beta;

cvx_end �
For problems that are proven not to be sparse in space, an `1-optimization
of the source velocity is not suitable. Thus, it is necessary to make careful
assumptions on the nature of the given problem. The following sections
provide further ideas to enhance the solution and to expand the application
range.
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3.2.2 Blending between sparse and non-sparse problems

Up to this point, we only considered integer numbers for the value p in eq.
3.5. However it is also possible to set p to values between 1 < p < 2 which
we expect to work as a crossfade between sparse and energy distributing
optimization. The behavior of the penalty function for 1 < p < 2 is dis-
played in figure 3.9a for one quadrant of the `p-balls.

(a) ‖x‖p between 1 < p < 2
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Sparsity S
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Coherence between Sparsity S and p

(b) The sparsity parameter

Figure 3.9: Blending between sparse and non-sparse representation

Solutions for an optimization using values for p between 1 and 2 are dis-
played in figure 3.10 for the multidimensional system already introduced
in chapter 3.1.2. Clearly we can trace the degradation of the sparse linear
combination to a solution components of all existing basis vectors. How-
ever, the main mutation certainly happens between p = 1 and p = 1, 5. For
larger values, the solutions almost corresponds to the least-squares opti-
mization. To meet this behavior and to give a parameter that is easier to
control, the empirical sparsity control parameter S is introduced.

S = (2− p)
5
2 (3.12)

The application of this parameter is helpful to solve problems that are not
perfectly sparse in space and it makes it easy, to blend between possible
solutions when analyzing the given measurement problem.

The range is given from S = 0 for the least-squares solution to the max-
imum sparse optimization using the `1-penalty at S = 1. The mapping
between p and this new parameter S is illustrated in fig. 3.9b. Furthermore,
realizations of the linearly constrained 2-dimensional vector problem are
plotted in appendix A.1 for different levels of the sparsity parameter S.
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(d) `1,5-optimization
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Figure 3.10: Optimization of multidimensional example using different penalty
functions

3.2.3 Formulation to enforce sparsity of modes

Problems, exhibiting surface modes are certainly not sparse in space. How-
ever, the concept of compressive sensing can still be applied, as modes also
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have a sparse representation in the wavenumber-domain. Therefore, the
problem can be solved in this domain by sparse optimization [26].

For a vibration pattern, the 2-dimensional transformation into this k-space
is defined as:

V(kx,ky) =
∫+∞
−∞

∫+∞
−∞ v(x,y)e−i(kxx+kyy)dxdy (3.13)

A plate that vibrates in its 2,2 - mode is therefore described by only four
components in the k-space [11]:

cos(kx0x) =
1

2

(
eikx0x + e−ikx0x

)
cos(ky0y) =

1

2

(
eiky0y + e−iky0y

)
From this description we can directly read the sparse equivalence to the
broadly distributed velocity (cf. figure 3.11).
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Figure 3.11: Modal vibration of a plate and its sparse k-space representation

On discrete measurements along x and y, the transformation into k-space
is achieved by multiplying the velocity with

f (lx,ly)
(wx,wy)

= e
−i 2π
N2

(wxlx+wyly) ,

where
wx frequency bin in x-direction

wy frequency bin in y-direction

lx step size in x-direction

ly step size in y-direction ,

so that

V[wx,wy] =
∑
lx,ly

v[lx, ly] f (lx,ly)
(wx,wy)

.
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It is important to mention that this transformation only works for a rectan-
gular, equidistant measurement grid. For other grids, an inversion of the
Fourier-synthesis matrix would be required.

The sparse optimization in k-space is again performed with the help of the
cvx-toolbox. This time, the penalty function contains the transformation
mentioned above in terms of a matrix:

F =
[
f (lx,ly)
(wx,wy)

](lx,ly)

(wx,wy)
.

n = size(G,2);

cvx_begin

variable v(n) complex

minimize(norm(F*v,1));

subject to

norm((2*1i*omega*rho)*G*v - p) <= beta ;

cvx_end �
A simple crossfade-parameter w might combine both, mode and spatial
formulations. With this, the solution can either support sparsity in space
or in modes, however at a strongly increased computation cost and maybe
not the best controlability:

n = size(G,2);

cvx_begin

variable v(n) complex

minimize((1-w)*norm(v,1)+(w)*norm(F*v,1));

subject to

norm((2*1i*omega*rho)*G*v - p) <= beta ;

cvx_end �
With w = 0 sparsity in space is promoted whereas w = 1 leads to a sparse
optimization of modes.
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Figure 3.12: State graph of the sparse holographic imaging
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3.3 examples of sparse holographic imaging

In this chapter, the simulation results of sparse optimized PAH problems
are presented. For this, similar setups like in chapter 2 are chosen, where
the least-squares optimization was examined.

3.3.1 Sparse optimized PAH solution for point sources

To analyze the sparse PAH solution, we evaluate the simulation setup of the
solid plate already presented in chapter 2.3.2. The sound pressure propa-
gation of the three point sources is given in figure 2.28 of the previous
chapter 2. To compare the results with the least-squares solution of chapter
2, the measurement aperture is initially simulated at a distance of 0.02m
and analyzed at a frequency of 1000Hz. Further measurement distances
are simulated to get a feeling how well the `1-optimization behaves for the
vanishing evanescent wave components. Figure 3.13 illustrates the results
for the sparse optimized PAH of the exactly determined equation system.
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Figure 3.13: `1-optimized normal velocity on source plane (upper row) and equiv-
alent error (lower row) for the exactly determined equation system

The sparse optimization reveals a good solution to the exactly determined
system for a = 0.02m and surprisingly an even better result for a place-
ment at a = 0.1m. The reason for the enhanced error at a closer positioning
results from higher wavenumber components near the point source as de-
scribed in chapter 2.2.6. It is also important to mention that noise due to the
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vanishing evanescent waves at higher distances might lead to a degenera-
tion of the solution. To circumvent the resulting artifacts, the regularization
parameter of β has to be set to β = 0.9 to come to this solution.

To judge the performance of the sparse optimization concerning underde-
termined systems, the analysis is performed for microphone arrays of 8× 8,
6× 6 and 4× 4 sensors. The results displayed in figure 3.14 illustrate a sig-
nificant increase of accuracy compared to the former simulations where the
least-squares solution was applied (cf. figure 2.31). For the optimization of
fig. 3.14, we also choose the regularization parameter β = 0, 9.
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Figure 3.14: Calculated normal velocity (upper row) and equivalent error (lower
row) for a measurement distance a = 0.02m at f = 1000Hz and re-
duced sensor positions

Evaluating the results in table 3.1 reveals that the error e does obviously
not increase linearly with the number of measurement points. There are
two cases, where a reduction of microphones even leads to a smaller er-
ror. However, slight variation of the sensor grid, ie. for the 8× 8 setup at
3000Hz, leads to a bisection of the error to e = 4, 6. This observation leads
to the assumption that the quality of the result depends on the number
and position of the microphones, the array distance, and the regularization
parameter β.

A direct comparison between the least-squares and the sparse optimized
PAH solution reveals that a suitable reconstruction for underdetermined
sparse problems is only achieved by the `1-penalty. To illustrate the differ-
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40× 40
a = 0.02

40× 40
a = 0.1

40× 40
a = 0.2

8× 8
a = 0.05

6× 6
a = 0.05

4× 4
a = 0.05

300Hz 0.7 0.75 4.14 14.3 9.3 119.9

1000Hz 1.4 0.36 0.1 12.4 14.5 35.9

3000Hz 0 0.002 0.005 9.3 5.2 1.51

Table 3.1: Single value error e for sparse optimized solutions

ence between the `1-optimized and the `2-solution, figure 3.15 shows the
PAH result of an array with 4× 4 microphones. The single value error of ta-
ble 3.2 confirms this significant difference between sparse and least-squares
optimized PAH.
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Figure 3.15: Comparison of `1 and `2-optimized normal velocity on source plane
for 4× 4 microphone positions at a = 0.05m

4× 4 `1-optimized `2-optimized

1000Hz, a = 0.05m 35.9 99.6

Table 3.2: Single value error e for 4× 4 aperture at 0.05m

3.3.2 Sparse optimized PAH solution to modal vibration

This chapter investigates the new tool of sparse optimization to resolve
structural modes. As described in chapter 3.2.3, a transformation into the

50



k-space results in a sparse representation of structural modes. We simu-
late the optimization of the resonating plate already described in chapter
2.3.1 with a measurement aperture of 8× 8 and 6× 6 sensors at a distance
of 0.05m. Figure 3.16 compares the result of the this approach with the
`2-optimization. It shows that the `2-solution yields slightly better results,
which also holds for a reduced number of microphones and a larger dis-
tance. The regularization parameters for both simulations were set to val-
ues that yield satisfactory results.
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Figure 3.16: Comparison of `1 and `2-optimized normal velocity on the source
plane for 8× 8 microphone positions at a = 0.05m

6× 6 8× 8

`1-optimized 16.1 7.4

`2-optimized 13.6 4.4

Table 3.3: Single value error e for `1-optimized mode solutions at a = 0.05m

However, it is important to mention that no further regularization was per-
formed in k-space itself. It is most likely, to decrease the error and to reach
the error values of the `2-optimized problem when using such techniques.
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Figure 3.17: Comparison of `1 and `2-optimized normal velocity on source plane
for 6× 6 microphone positions at a = 0.05m

3.3.3 Sparse optimized PAH in the presence of noise

Up to now, we only considered the noise-free case in sparse holographic
imaging. To evaluate the performance for systems with additional noise,
the measured pressure values are corrupted by white Gaussian noise. The
amount is denoted in terms of the signal to noise ratio (SNR) which is defined
as

SNR = 10 log10

(
Psignal

Pnoise

)
= 20 log10

(
psignal

pnoise

)
,

where
Psignal power of the desired signal,

Pnoise power of the noise signal,

psignal sound pressure of the desired signal,

pnoise sound pressure of the noise signal.

To begin with, the point source example is simulated for an 8× 8 sensor
setup at 0.05m distance with SNR = 50dB, SNR = 40dB and SNR = 30dB.
We now need to adjust the parameter β to handle the noise. Figure 3.18 dis-
plays the `1-optimized solutions to these corrupted examples. The values
for the resulting error and the selected values for β are displayed in table
3.4.
A further reduction of the SNR leads to a degeneration of the reconstructed
velocity. The noise is bundled by the optimizer into small peaks that corrupt
the result. These ”bundles” already occur at the solution for SNR = 30dB.
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Figure 3.18: Calculated normal velocity (upper row) and equivalent error (lower
row) for a measurement distance a = 0.05m at f = 1000Hz with 8× 8
sensor positions and different SNR

8× 8
a = 0.05

SNR = 50dB

β = 1, 1

SNR = 40dB

β = 3

SNR = 30dB

β = 30

1000Hz 10.2 15.4 40.1

Table 3.4: Single value error e for noise corrupted solutions of the point source
problem

By the use of a large noise suppression parameter β = 30 it is possible to
suppress them and to reconstruct a reasonable result. However, this comes
at the cost of the smallest source component which can hardly be recog-
nized in the result.
Another interesting observation is that the error for the noise free example
(cf. figure 3.14a) is a little larger than for the slightly noisy case (SNR =

50dB). The optimizer seems to handle the equally distributed white Gaus-
sian noise better than shaped noise caused by evanescent waves.

The same analysis is performed for the sparse mode problem. Again, a
setup of 8× 8 microphones at a distance of 0.05m is chosen. The results are
displayed in table 3.5 and figure 3.19.
For this example, only small enhancements due to the application of β can
be observed. Further regularization techniques in k-space might be more
efficient but are not the main focus of this thesis.

53



x axis in m

y
 a

x
is

 i
n
 m

S = 1 − Calc. velocity on source plane (f = 200 Hz)

 

 

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

[m
/s

]

0

20

40

60

80

100

x axis in m

y
 a

x
is

 i
n
 m

S = 1 − Calc. velocity on source plane (f = 200 Hz)

 

 

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

[m
/s

]

0

20

40

60

80

100

x axis in m

y
 a

x
is

 i
n
 m

S = 1 − Calc. velocity on source plane (f = 200 Hz)

 

 

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

[m
/s

]

0

20

40

60

80

100

x axis in m

y
 a

x
is

 i
n
 m

Error for S = 1 (f = 200 Hz)

 

 

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

[d
B

]

−50

−40

−30

−20

−10

0

10

SNR = 50dB

x axis in m

y
 a

x
is

 i
n
 m

Error for S = 1 (f = 200 Hz)

 

 

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

[d
B

]

−50

−40

−30

−20

−10

0

10

SNR = 40dB

x axis in m

y
 a

x
is

 i
n
 m

Error for S = 1 (f = 200 Hz)

 

 

−0.2 −0.1 0 0.1 0.2
−0.2

−0.1

0

0.1

0.2

[d
B

]

−50

−40

−30

−20

−10

0

10

SNR = 30dB

Figure 3.19: Calculated normal velocity (upper row) and equivalent error (lower
row) for a measurement distance a = 0.05m at f = 200Hz with 8× 8
sensor positions and different SNR

8× 8
a = 0.05

SNR = 50dB

β = 0.1

SNR = 40dB

β = 3

SNR = 30dB

β = 3

1000Hz 9.1 11.3 30.3

Table 3.5: Single value error e for noise corrupted solutions of the spase mode
problem

3.3.4 Application of the Sparsity S

To analyze the newly introduced parameter of sparsity S, a source excitation
combined of several single components is assumed. This source layer con-
sists of a sparse and a broadly distributed excitation at once and is shown
in figure 3.20

The propagation of the sound pressure is again simulated for the frequen-
cies 300Hz, 1000Hz and 3000Hz. To investigate the capability of the blend-
ing parameter S, a measurement of an 8× 8 sensor array at a distance of
a = 0.05m is simulated for `1 (S = 1), `2 (S = 0) and an optimal sparsity
parameter 4. The simulations reveal that the capability of the `2-norm mini-
mization to resolve sparse components is, as expected, limited. By contrast
to this, the `1-solution tries to sparsify all of the exciting source velocity,

4 Detailed examples of stepwise blending between S = 0 and S = 1 are illustrated in ap-
pendix A.1 - A.4
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Figure 3.20: Normal velocity of a combined problem

which leads to a complete degeneration of the solution. For the optimal
sparsity-value of this setup, we found S = 0.65 which corresponds to an
optimization with an `p-norm with p = 1.06. The results are illustrated in
figure 3.21.

However, the single value error e used to adapt to this solution might not
be the best choice for an optimal result in terms of source identification. In
figure 3.22 we can see that it is even possible to enforce the sparsity further,
although this leads to a increase of the single value error. As this quality
parameter only holds one value it is questionable if it is able to judge the
distribution of sparse sources at all. In this case, it seems to be adequate, to
select the solution empirically by looking at the calculated velocity.

Another important issue is that the quality of the optimization clearly de-
pends on the combination of sparse and broadly distributed sources. If a
sparse component is located on top of a modal maximum, either the spread
or the sparse component gets optimized.

Figure 3.23 and 3.24 display this evaluation also for the frequencies 1000Hz
and 3000Hz. The results are similar to the former evaluation at 300Hz.

8× 8
a = 0.05

e(S = 1) e(S = opt.) e(S = 0)

300Hz 529 31.7 36.8

1000Hz 466 31.9 36.8

3000Hz 366 36.6 37.4

Table 3.6: Single value error e for the combined problem at different values of S
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Figure 3.21: Calculated normal velocity (upper row) and equivalent error (lower
row) for a measurement distance a = 0.05m at f = 300Hz with 8× 8
sensor positions and different values for sparsity S
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Figure 3.22: Comparison of the optimized normal velocity on source plane for dif-
ferent values of S. Although the right solution yield an increased error,
it leads to a better resolution.
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Figure 3.23: Calculated normal velocity (upper row) and equivalent error (lower
row) for a measurement distance a = 0.05m at f = 1000Hz with 8× 8
sensor positions and different values for sparsity S
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Figure 3.24: Calculated normal velocity (upper row) and equivalent error (lower
row) for a measurement distance a = 0.05m at f = 3000Hz with 8× 8
sensor positions and different values for sparsity S
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3.4 summary

In this chapter, the theory of sparse optimization was introduced and eval-
uated for the Rayleigh-based PAH. Thereby it has become obvious that suit-
able optimization criteria can enhance the resolution of the planar acoustic
holography. This depends on the kind of the given problem and the choice
of adequate `p-penalties. The presented solutions are stable even in the
presence of noise. Because real-world problems are never perfectly sparse,
a blending parameter ”sparsity” S was introduced to permit seamless ad-
justment in cases that are somewhat between sparse and spread modal.

The computational cost of this sparse holographic imaging is much bigger
than for the ”classical” `2-penalized PAH solution. Nevertheless, the advent
of sparse optimization algorithm will probably lead to faster implementa-
tions in the future.
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4
M E A S U R E M E N T S

To evaluate the power of the Rayleigh-based PAH formulations with real-
world data, a set of exemplary array measurements were taken in the lab. In
particular, a sparse point source-like case and a damped plate with modal
vibrations were measured.

4.1 measurement setup

For the measurement, a microphone array developed by the institute of
electronic music and acoustic in Graz (IEM) is used. This array was origi-
nally built in the scope of the thesis of Hofer [31] to apply Fourier-based
NAH to planar acoustic emission. It consists of 64 measurement micro-
phones that are attached to the array in a way that the microphone dis-
tance can be easily changed. The 64 microphone signals are transmitted to
the PC via MADI and recorded in pure data1. Gain alignment is achieved by
a reference signal of a pistophone with a level of 104dB at 1000Hz. Further
evaluation of the measurement data was performed with MATLAB. The
array and the signal conversion front end is depicted in figure 4.1.

(a) Microphone array (b) Front end

Figure 4.1: 64-channel microphone array hardware

For our purpose, an aperture of the size 0.56m× 0.56m was set up. This
leads to a microphone distance of d = 7cm and therefore to a upper fre-
quency limit of 2450Hz for planar waves, before spatial aliasing might occur.

1 Pure data is an open source real-time computer music programming language with multi-
channel audio processing characteristics.
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(a) Volume acceleration source from
LMS

(b) prepared point source plane

Figure 4.2: Localized structural vibration measurement setup

As a localized structural vibration example, a mid-high frequency volume ac-
celeration source from LMS is used which consists of a tube, mounted onto a
horn driver. At the end of this tube, a nozzle is positioned at which a mea-
surable velocity signal is emitted. The aperture of the nozzle is 0.9cm×
0.9cm. Figure 4.2 illustrates the source and its components. To ensure the
claimed boundary conditions at the source plane, the tip of the nozzle was
fixed on a sound-reflecting plate of the dimensions 0.6m× 0.6m. Three po-
sitions are measured (mid, right-mid, lower left corner).

(a) Exciter from ELAC (b) panel clammed in
frame

Figure 4.3: Clamped DML-panel with exciter on its backside

As a spread mode example, a plate of rigid foamed plastic (so called DML-
panel), which is clamped at the rim and driven by a standard audio exciter
is used. The exciter is attached to the backside of the panel at its upper right
corner to ensure an excitation of many mode shapes (cf. figure 4.3). The size
of the panel is 0.33× 0.52m. The 8× 8 measurement grid is positioned at
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a distance of d = 0.065m with a microphone spacing of dx = 4.95cm in
x-direction and dy = 6.0cm in y-direction. Therefore, the maximum resolv-
able frequency without farfield aliasing is 2858Hz.

The measurement took place in a room with a 4m× 4m× 3.3m measure-
ment cabin installed. The acoustic treatment of the environment is consid-
ered sufficiently, but not anechoic.

4.2 measurement

The measurement over a broad frequency range was realized using expo-
nential sweeps. This technique, which is extensively covered in the work of
Torras and Jacobsen [32], exploits the property of its excitation to separate
harmonic distortions from the rest of the electroacoustic transfer function.
The impulse response of the given source-microphone path is calculated as
follows:

h(t) = iDFT

(
DFT(p(t))

DFT(s(t))

)
, (4.1)

where
p(t) microphone signal (measured sweep)

s(t) exponential sweep .

The inverse Fourier transform separates the harmonic distortion compo-
nents of the measurement to a point ahead in time of the actual impulse
response. Therefore, these can be simply removed. The final impulse re-
sponses are used to calculate the solutions of the PAH at several frequen-
cies.

4.3 error

An important aspect for the evaluation of a system is its error. For the
simulations and the measurements, we specify two errors: The single value
error, which sums the distance of the reconstruction to the original and
an error matrix that illustrates the derivation of the optimized solutions at
each individual point. Both values may be useful, depending on the given
situation. The single value error is a relative magnitude error as given in [20]:

e =

√√√√(∑N
j=1

(
|vcalc|− |vorig|

)2∑N
j=1 |vorig|

2

)
, (4.2)

where
vorig Original velocity components

vcalc Calculated velocity components .

It delivers a simple scalar measure to compare two different holographic
results.
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The drawback is the missing indication about the location of the errors. An
error measure providing this detailed information is the relative magnitude
error without a summation across the spatial samples:

E =

√√√√((|Vcalc|− |Vorig|
)2

max |Vorig|2

)
, (4.3)

where
Vorig Vector/Matrix of the original velocity components,

Vcalc Vector/Matrix of the calculated velocity components .

4.4 results

Because the measurements take place in a real-world setup, noise due to
the equipment, the room and the inaccuracies at the microphone positions
might occur. Therefore, we need to apply the regularization parameter β, to
exclude the influence of noise on the results. In the holographic processing,
this parameter is always chosen suitably as denoted in the title of each
plot. All localized point-shape examples are calculated on a 60× 60 grid
of the holographic image to arrive at the size of the source aperture for a
single holographic component. This is chosen due to the real aperture of
the applied point source. The grid for the modal vibration example was
chosen to be 40× 40 points.

4.4.1 Measurement of point source

For the analysis of localized point-shape vibrations, three frequencies at
300Hz, 1000Hz and 3000Hz are selected in accordance with the former chap-
ters. As already described, the point source is positioned at three different
locations (mid, mid-right, lower left corner). The emitted velocity is deter-
mined using the internal volume probe of the LMS acceleration source and
shown in table 4.1. For the sparse holographic calculation, the MATLAB
toolbox cvx is used again.

300Hz 1000Hz 3000Hz

emitted velocity 245 m
s 627 m

s 823 m
s

Table 4.1: Velocity of the LMS point source

Before the benefits of the sparse holographic imaging are presented, the
sparse problem is analyzed using the least-squares solution. Figure 4.4 dis-
plays the results and illustrates its serious flaws concerning localization.

Comparing these results with the exciting velocity, we observe that the
sparse holographic imaging technique is well motivated as sharp edges
and discontinuities are smeared. We encounter the same artifacts as for the
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Figure 4.4: Calculated normal velocity for a measurement distance a = 0.07mwith
8× 8 sensor positions at different frequencies for a sparsity S = 0 of a
sparse real-world problem

simulation study in chapter 2.2.4. Sidelobes emerging around the peak at
1000Hz, for example, originate from the measurement distance and the
thereby introduced spatial filtering. Increasing the frequency to 3000Hz

leads to additional aliasing artifacts due to the microphone spacing. The
localization of the source might be possible in this simple setup, however
for more complex excitation patterns, the task will most likely become fu-
tile.

To enhance the result concerning the value of the velocity and its exact
localization, the calculation is repeated using sparse holographic imaging
introduced in chapter 3. At the analysis frequency of 300Hz, a good and
sparse localization of the source at all positions is obtained as figure 4.5 dis-
plays. Specific attention is drawn to the adjustment of β. On the one hand,
this regularization parameter suppresses noise in the sparse image. On the
other hand, it is easy to over-regularize the optimization, which leads to a
decrease of the resulting velocity magnitude. Therefore, the value has to be
adapted very carefully. The resulting velocity values are also described in
table 4.2.

Despite the artifacts caused by the distance of the aperture, the results of
the evaluation at 1000Hz are satisfying, too. The slight deviation compared
to the source velocity most likely originates from measurement imprecision.
However, we encounter a significant degeneration of the result for the point
positioned in the corner of the source plane2. The reason for this decrease
might be sound pressure components, which are simply not measured due
to the limited array aperture. It is known from Fourier-based NAH that the
measurement aperture should exceed the source plane in size, to come to
a reasonable result. A similar demand for Rayleigh-based PAH could be a
solution to this problem. However, further investigation would be required
to prove this statement.

2 This can already be observed for the analysis at 300Hz

63



x axis in m

y
 a

x
is

 i
n
 m

Calc. velocity on source plane 

 ( f = 300 Hz, S = 1, β = 0.0105 )

 

 

−0.2 0 0.2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

[m
/s

]

50

100

150

200

250

x axis in m

y
 a

x
is

 i
n
 m

Calc. velocity on source plane 

 ( f = 300 Hz, S = 1, β = 0.0095 )

 

 

−0.2 0 0.2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

[m
/s

]

50

100

150

200

250

x axis in m

y
 a

x
is

 i
n
 m

Calc. velocity on source plane 

 ( f = 300 Hz, S = 1, β = 0.0021 )

 

 

−0.2 0 0.2
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

[m
/s

]

50

100

150

Figure 4.5: Calculated normal velocity for a measurement distance a = 0.07mwith
8× 8 sensor positions at 300Hz and a sparsity S = 1 of a sparse real-
world problem
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Figure 4.6: Calculated normal velocity for a measurement distance a = 0.07mwith
8× 8 sensor positions at 1000Hz and a sparsity S = 1 of a sparse real-
world problem
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Figure 4.7: Calculated normal velocity for a measurement distance a = 0.07mwith
8× 8 sensor positions and at 3000Hz a sparsity S = 1 of a sparse real-
world problem

The least-squares solution displayed in figure 4.4 already revealed the dis-
turbing influence of aliasing. The question arises of how this affects the
sparse holographic image. Examining the sparse optimization at 3000Hz in
figure 4.7 reveals that the localization is still acceptable. However the regu-
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larization parameter β was increased to suppress aliasing components that
emerge as speckles around the source position. In return, this leads to a
decrease of the optimized velocity as illustrated in table 4.2.

mid side edge

300Hz 253 m
s 251 m

s 196 m
s

1000Hz 592 m
s 632 m

s 354 m
s

3000Hz 285 m
s 201 m

s 55 m
s

Table 4.2: Measured velocity results for the sparse optimization

4.4.2 Measurement of a vibrating DML-panel

To analyze the vibrating panel, the resonance frequencies are determined
first. For this, the averaged Fourier transform of all impulse responses is
depicted in figure 4.8.
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Figure 4.8: Impulse response of the resonating plate

Six modes are chosen for a thorough analysis. The holographic reconstruc-
tion of the source velocity is again calculated using the optimization tool-
box cvx in MATLAB. To give an overview of the mode structure, the least-
squares optimized solution of the source velocity is illustrated in figure 4.9.
Because these real-world measurements might contain noise artifacts, the
solution is regularized.

We observe the mode structure of the panel clearly. This experiment con-
firms that the least-squares optimization of the Rayleigh-based PAH works
very well for problems where the exciting velocity is broadly distributed
with no discontinuities at the source.
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Figure 4.9: Calculated normal velocity for a measurement distance a = 0.065m
with 8× 8 sensor positions and a sparsity S = 0 (= least-squares opti-
mization) of a real-world measurement.
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Figure 4.10: Calculated normal velocity for a measurement distance a = 0.065m
with 8× 8 sensor positions and a sparse mode optimization of a real-
world measurement.
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Knowing that the underlying excitation complies with a mode structure,
we can apply sparsity in the modal domain as described in chapter 3.2.3.
Although the regularization for the mode-sparse optimization is tricky and
no further optimization in k-space was performed, it turns out that the
results are promising (cf. figure 4.10). Compared to the least-squares solu-
tion, a cleaner mode structure is observed, especially for the evaluation at
458Hz and 635Hz. The three modal lines of the 635Hz mode were not even
resolved in the holographic analysis of figure 4.9. Nevertheless, noise can
easily corrupt the solution, especially at higher frequencies where a blur-
ring occurs. Another problem appears at the frequency of 291Hz, where
the source velocity seems to inherits some cyclic elements from the Fourier
transform that was applied.

Although we know that sparsity in space is nonsense for identifying the
modes of a plate, it can be used to accurately detect the point of the maxi-
mal displacement. For this, the sparsity parameter S is adjusted to come to
a good trade-of between mode recognition and peak detection. The result
is illustrated in figure 4.11 for the mode at f = 291Hz.
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Figure 4.11: Calculated normal velocity for a measurement distance a = 0.065m
with 8× 8 sensor positions and different values for Sparsity S
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4.5 summary

The results of the real-world measurements illustrates the capabilities of
the Rayleigh-based PAH. Structures that are broadly excited in space are
resolved and reasonable solutions are calculated using the standard least-
squares based holography. For problems that are known to be sparse in
space or modes, we can expand the formulation to sparse holographic
imaging. With this optimization, point sources and modes can be identi-
fied in a very accurate way.

By the application of the newly introduced parameter of the sparsity S, it
is also possible to blend between the solutions. Trade-offs between least-
squares and sparse optimization can help to either give a broad overview
of mode structures or enforce an exact localization of the maximum dis-
placement on the source plane.

The regularization parameter β helps to exclude noise components from
the holographic image and leads to a good applicability to real-world mea-
surements.
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5
C O N C L U S I O N A N D F U T U R E W O R K

5.1 conclusion

This thesis presents a formulation for acoustic holography based on Rayleigh
integrals in particular aiming at methods for improved resolution. The ob-
jective is to recalculate the exciting structure velocity from a limited num-
ber of measured sound pressure signals. The benefit of the proposed ex-
pression is its simplicity and the formulation as an underdetermined linear
equation system. Using the tools of linear algebra, an optimal solution of
the system in the least-squares sense is easily achieved. Simulations and
measurements confirmed that this solution works well for broadly excited,
modal structure vibrations. However it works poorly for sparse and local-
ized vibration as the holographic image is strongly smeared and the veloc-
ity magnitude is underestimated.

To solve this deficiency, convex optimization using the `1-norm was in-
troduced to solve underdetermined holography equations. This enforces
sparse solutions on the source plane and leads to a good localization and
an improved velocity magnitude. The performance was tested using sim-
ulations and real-world measurements and yield convincing results. This
optimization was also applied to modal problems. Exploiting the ideas of
compressive sampling theory, a sparse representation of modal structure
vibration was found. The optimization was then performed in the k-space-
domain and yields promising results that outperformed the classical least-
squares holographical image.

Real-world problems are usually neither perfectly sparse, nor exclusively
resonating phenomena. Therefore, a simple criterion to blend between least-
squares and sparse optimization is of great benefit. A new parameter was
introduced to do so. It was called sparsity and was used to enforce sparse
solutions where it is necessary or to give a clue about modal structure vi-
bration. Simulations of a mixed source setup revealed that the application
of this parameter is necessary to arrive at reasonable holographic images.

5.2 future work

A drawback of the sparse optimization is the increased computational
cost compared to conventional Fourier-based NAH or the proposed least-
squares solution. However, as research of sparse optimization is recent,
more efficient algorithms can be expected in the nearer future. Even to-
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day, iterative algorithms are known to accelerate this task. The application
of those techniques should be investigated to come to faster implementa-
tions of sparse holographic imaging.

Further research might also focus on the errors and the limits of the Rayleigh-
based PAH in real-world setups. Topics such as measurement aperture
size or maximum aperture distance are not sufficiently discussed yet. Tech-
niques to reduce resulting errors, such as regularization in the spatial do-
main or k-space, also provide a large field of future investigations.
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A P P E N D I X A

a.1 sparse evolution for a multi-dimensional problem
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Figure A.1: Optimization for different values of sparsity S
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a.2 evolution of sparsity S for a problem sparse in space
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Figure A.2: Optimization of a problem sparse in space for different values of spar-
sity S, simulated for an 8× 8 sensor array at a distance of a = 0.05m
and a frequency of 1000Hz
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a.3 evolution of sparsity S for resonating plate
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Figure A.3: Optimization of a resonating plate for different values of sparsity S,
simulated for an 8× 8 sensor array at a distance of a = 0.05m and a
frequency of 200Hz
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a.4 evolution of sparsity for a combined problem with res-
onances and sparse peaks
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Figure A.4: Optimization of the combined problem for different values of sparsity
S, simulated for an 8× 8 sensor array at a distance of a = 0.05m and a
frequency of 300Hz
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