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Abstract

The primary purpose of this Master’s thesis was to investigate methodologies for traffic state
estimation on Austrian motorways based on various data sources. This work was motivated to
provide insight into traffic state estimation methods performing data-fusion of multiple sources.

This thesis is organised in two major parts: (1) The theoretical part, including an introduction
to the terminology of traffic engineering, a comprehensive literature review of the latest traffic
flow models, and data-fusion concepts. (2) The practical part, dealing with the implementation
and validation of algorithms based on the idea of interpolation with respect to the characteristic
shock waves present in traffic flow, i.e. the Generalised Adaptive Smoothing Method (GASM)
and the Extended Generalised Treiber-Helbing Filter (EGTF). Within the thesis, important
preprocessing steps for the data, which are crucial for the subsequent reconstruction methods,
were identified and discussed in detail. Furthermore, suitable methods (e.g. based on extracted
measures like travel times and evaluation using Microsimulation data as ground truth) for the
evaluation of the experiments were discussed.

The conducted experiments revealed that the GASM and the related EGTF were well suited
for velocity field reconstruction on Austrian motorways. Findings based on the experiments led
to the conclusion that the EGTF showed superior performance in most cases. One of the most
important outcomes was that a preceding bias correction of velocities obtained from stationary
sensors is essential for satisfactory results of traffic state estimation. In addition the conducted
experiments highlighted certain points for potential improvement.





Kurzfassung

Die vorliegende Masterarbeit liefert die Untersuchung von auf unterschiedlichen Datenquellen
basierenden Verfahren, die der Rekonstruktion der Verkehrslage auf österreichischen Autobah-
nen dienen. Darüber hinaus wird darauf abgezielt, sich einer Datenfusion der verschiedenen
Quellenlagen zu bedienen.

Der Aufbau der folgenden Arbeit gliedert sich in zwei Hauptbereiche: (1) Einem Theorieteil,
der Definitionen relevanter Begriffe aus dem Verkehrswesen, eine umfassende Literaturrecherche
geeigneter Verkehrsflussmodelle sowie eine Übersicht zu modernen Datenfusionskonzepten bie-
tet. (2) Einem praktischen Teil zum Zwecke der Umsetzung und Validierung der beiden Al-
gorithmen – der Generalised Adaptive Smoothing Method (GASM) und dem Extended Gener-
alised Treiber-Helbing Filter (EGTF) – basierend auf der Idee der Interpolation unter spezieller
Berücksichtigung auf die im Verkehrsfluss vorhandenen Schockwellen. In diesem Rahmen wurden
die wichtigsten, für die daraus folgenden Rekonstruktionsmethoden grundlegenden Schritte der
Datenvorverarbeitung im Detail betrachtet. Weiters wurden Möglichkeiten der Bewertung der
gewonnenen experimentellen Ergebnisse diskutiert wie beispielsweise durch abgeleitete Größen
von Reisezeiten oder direkt durch Durchführung einer Mikrosimulation.

Die durchgeführten Experimente belegen, dass sowohl GASM als auch der EGTF zur Verkehrs-
lagerekonstruktion auf österreichischen Autobahnen geeignet sind, wobei aus den durch die
Experimente gewonnenen Resultaten die Schlussfolgerung gezogen wird, dass der EGTF in den
meisten Fällen konkretere Ergebnisse liefert. Die Tatsache, dass eine Korrektur der systemati-
schen Abweichungen von gemittelten Geschwindigkeiten als wesentlich für den Erhalt zufrieden-
stellender Ergebnisse der Verkehrslagenrekonstruktion gilt, kann als eine der bedeutendsten
Erkenntnisse dieser Arbeit angesehen werden. Darüber hinaus können durch die in dieser Mas-
terarbeit durchgeführten Experimente mögliche zukünftige Ansatzpunkte zur Verbesserung der
genannten Methoden geliefert werden.





Problem- und Aufgabenstellung

Problemstellung

Auf österreichischen Autobahnen und Schnellstraßen ist aus Gründen der Verkehrssteuerung,
Statistik und Mautverrechnung Sensorik zur automatisierten Erhebung von Verkehrsdaten in-
stalliert. Generell eignen sich diese Daten ebenso zur Schätzung der aktuellen Verkehrslage. Aus
der rekonstruierten Verkehrslage können unterschiedliche Ereignisse wie Unfälle, Staus oder an-
dere Vorfälle detektiert werden. Besonders in der Nähe von Ballungsräumen ist eine Vielzahl
ortsfester Sensoren entlang des Straßenverlaufs installiert (Euler’sche Datenquellen). Zwischen
den ortsfesten Sensoren liegen in der Regel keine Messdaten vor, wodurch die Verkehrslage
anhand der zur Verfügung stehenden Daten rekonstruiert werden muss.

Neben den klassischen Detektorquerschnittsdaten stehen vermehrt hochaufgelöste Trajekto-
rien einzelner Verkehrsteilnehmer, sogenannte Floating-Car-Daten, zur Verfügung. Diese Daten
aus der Sicht einzelner Fahrzeuge werden unter anderem auch Lagrange’sche Daten genannt.

In dieser Arbeit sollen verschiedene Rekonstruktionsverfahren auf Basis gegebener Detektor-
querschnittsdaten verglichen werden. Weiters soll mittels geeigneter Algorithmen eine Schätzung
des Verkehrszustandes basierend auf Euler’schen und Lagrange’schen Datenquellen evaluiert und
implementiert werden. Schließlich sollen die entwickelten Verfahren auf ihre Robustheit hin-
sichtlich des Fehlens einzelner Datengruppen sowie der Messfehler der Datenquellen evaluiert
werden.

Aufgabenstellung

Die folgende Liste enthält wesentliche Bearbeitungspunkte der Masterarbeit; Änderungen mit
fortschreitendem Erkenntnisstand während der Bearbeitung sind möglich:

1. Recherche, Bewertung und Anwendung bestehender Verfahren zur Verkehrszustandsschät-
zung aus Euler’schen Datenquellen.

2. Recherche möglicher Verfahren zur Verkehrsschätzung aus Datenquellen verschiedener
Kategorien.

3. Entwicklung einer Algorithmik zugeschnitten auf das hochrangige österreichische Straßen-
netz und Implementierung in MATLAB.

4. Validierung der entwickelten Algorithmen anhand von Simulationsdaten sowie an realen
Daten aus dem österreichischen Verkehrsnetz.

5. Untersuchung der Robustheit der entwickelten Algorithmen, insbesondere die Auswirkung
des Fehlens einer Datengruppe bzw. einer schlechten lokalen Detektionsdichte auf die
Schätzung.

Ein PC mit Berechungssoftware sowie allgemeiner Bürosoftware stehen dem Diplomanden an
beiden Instituten zur Verfügung. Der Diplomand verpflichtet sich, die Software sowie die bere-
itgestellten Daten ausschließlich zur Anfertigung der Masterarbeit zu nutzen. Die simulierten
sowie realen Verkehrsdaten werden dem Diplomanden vom Institut für Straßen und Verkehrs-
wesen zur Verfügung gestellt.
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1
Introduction

The Austrian motorway system is equipped with point sensors performing automatic data-
collection for various reasons, such as traffic management, statistics, and toll charging. In
addition, that data can be applied to various problems, such as the detection of congestion,
accidents etc. In general, detailed knowledge about the evolution of the traffic state over time
forms the basis for planning any expensive enhancement of the traffic infrastructure. Especially
the motorway system close to urban areas is equipped with a dense network of non-moving,
i.e. stationary, traffic sensors. In accordance to the theory of fluid dynamics, data from such
stationary sensors is referenced to as Eulerian data. Normally, no information about the traffic
stream is available between those stationary traffic sensors. Thus, the traffic status between the
individual sensors has to be reconstructed.

In addition to classic stationary sensors more and more data from inside the traffic stream has
become available recently. In accordance to the theory of fluid dynamics, data from such moving
sensors is referenced to as Lagrangian data. This so-called floating-car data may be collected by
classical odometers, GPS enabled devices or indirectly from evaluation of mobile-phone roaming
data. The high resolution trajectories obtained from single vehicles can be used to increase the
performance of the aforementioned traffic status estimation methods.

Problem Description and Requirements

It is the objective of this thesis to evaluate different methodologies for traffic state reconstruction
on the basis of data originating from both sensor categories, i.e. Eulerian and Lagrangian data-
sources. Based on this two data-sources, it is a goal to improve quality and reliability of traffic-
status estimation. Finally, the robustness of the methods with respect to noisy or missing data
is evaluated.

The following list includes the key points of this thesis:

1. Research and evaluation of existing methodologies for traffic state estimation based on
data from stationary detectors.

2. Research of possible methodologies for traffic state estimation based on heterogeneous data
sources, such as stationary detectors or GPS equipped vehicles.

3. Development of traffic state estimation algorithms suitable for the Austrian motorway
system and the respective implementation in MATLAB.

December 10, 2013 – 15 –



1 Introduction

4. Validation of those developed algorithmic methods based on both, data from microsimu-
lation and on real-world data from the Austrian traffic network.

5. Evaluation of the robustness of developed algorithms, especially the impact of measure-
ment errors, the impact of the spatial and temporal data density, or the absence of indi-
vidual data points on the algorithm performance.

The real-world data and the microsimulation model are provided by the Institute for Highway
Engineering and Transport Planning (ISV). Both, data and microsimulation model originate
from research projects conducted by the ISV.

According to the aforementioned key points this thesis is structured among seven further
chapters. First, we give an introduction to the fundamentals of traffic engineering, and the
modelling of traffic dynamics in Chapters 2 and 3. Second, we introduce different concepts of
data-fusion and state-estimation in Chapter 4. Third, we describe the test-site and its respective
data-sources in Chapter 5, followed by a discussion of implementation issues in Chapter 6. The
conducted experiments and its results are listed in Chapter 7. Finally, the main findings and an
outlook on future work are stated in Chapter 8.

– 16 – December 10, 2013



Traffic Data Fusion

2
Traffic Flow Theory

This chapter gives a short introduction to traffic flow theory. Beginning with the definition of
categories of traffic data sources, we continue with an enumeration of traffic data belonging to
a single vehicle (Sec. 2.1.1). Next, we introduce aggregated or macroscopic data (Sec. 2.1.2), as
well as the fundamental relation of traffic flow and its related states (Sec. 2.2).

2.1 Traffic Data

There are several ways to classify data from traffic sensors. One way is to characterise the data
of traffic sensors along two dimensions. The first dimension is related to the spatio-temporal
characteristics, i.e. if the data represents local traffic quantities (e.g. time headway, flow) or if
it represents quantities over space (e.g. journey speed, travel time). The second dimension is
related to the degree of aggregation, where the data represents aggregated or averaged quantities
(e.g. aggregated flows, averaged speeds). Tab. 2.1 provides an overview those two dimensions of
traffic data as well as examples, respectively.

Single vehicle Aggregated

Local
Vehicle passage, -speed
and -length

Traffic flow, time and
harmonic mean speed

Spatial
Vehicle travel time,
journey speed, trajec-
tory samples

Space mean speed,
mean travel time, mean
journey speed

Table 2.1: Classification of data from traffic sensors with respect to their spatio-temporal characteristics and
degree of aggregation including some examples.

Another way of classification comes from the field of fluid dynamics: A distinction is made
between measurements taken from inside of the vehicle stream (i.e. GPS trajectories of single
vehicles) and measurements taken from outside of the vehicle stream (i.e. cross section sensors).
These measurements are referred to as Lagrangian and Eulerian measurements, respectively.

December 10, 2013 – 17 –



2 Traffic Flow Theory

2.1.1 Microscopic Data

Microscopic data or single vehicle data are quantities attributed to either one single vehicle or to
a single vehicle and its preceding vehicle. The following quantities can be measured by observing
of one single vehicle [1]:

vα velocity of vehicle α,
xα vehicle position,
dα front to front distance,
tα time headway, and
Tα rear to front time headway.

Those quantities can be used to describe the state of a vehicle at a fixed point in time. A set of
ordered microscopic data including at least the position and time {ti, xα(ti)}Ni=1, with ti < ti+1,
is referred to as vehicle trajectory.

2.1.2 Aggregated or Macroscopic Data

Especially with traditional cross section sensors, microscopic data is aggregated respectively over
fixed time intervals ∆t or a road section S. Aggregation time intervals may vary, common values
are between 20 s and 15 min. A common value for ∆t in Austria is 60 s1. We give a summary of
the most common used aggregated quantities in traffic engineering [1, 2] below:

Flow q. The flow q, sometimes also called flux, is the count of vehicles ∆N which pass a
road-cross-section at location x during a time interval ∆t:

q =
∆N

∆t
and [q] = Veh s−1. (2.1)

Time mean speed Vt. The time mean speed Vt is the average speed of vehicles α = 0 . . . N−1
passing one location x during a given time interval ∆t:

Vt = 〈vα〉 =
1

N

α0+N−1∑
α=α0

vα and [Vt] = m s−1. (2.2)

Space mean speed Vs. The space mean speed Vs is the average speed of all vehicles α =
0 . . . N − 1 on a road section S and a specific time t

Vs =
1

〈 1
vα
〉 = N

(α0+∆N−1∑
α=α0

1

vα

)−1

and [Vs] = m s−1. (2.3)

The time mean speed is never less than space mean speed, the relation is given by [3, 4]

E{Vt} = E{Vs}+
σ2
s

E{Vs}
, (2.4)

where E{·} is the expectation operator and σ2
s denotes the variance of Vs. Methods to estimate

the space mean speed Vs from a given time mean speed Vt are summarised in Sec. 5.2.

1 All stationary sensors in Austria are operated by a single organisation: the semi-governmental highway operator
ASFINAG.
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2.2 The Fundamental Relation of Traffic Flow

Station speed. The station speed is the aggregation of per-lane speeds to a speed per cross
section. It is generally defined as the weighted average of lane speeds [5]

v(t) =

∑L
l=1 (ql(t) · vl(t))∑L

j=1 qj(t)
, (2.5)

where L is the number of lanes, ql(t) and vl(t) are the flow and speed at lane l of a detector
station, respectively.

Density k. The density k (or concentration), sometimes also denoted as ρ, within a road
section S at a given time t is the inverse of the average spacing of the α = 0 . . . N − 1 vehicles:

k =
N∑
α
dα

=
q

Vs
and [k] = Veh m−1. (2.6)

These primary quantities of traffic flow are sufficient to model the complex behaviour of the
traffic stream. Before giving an overview of that complex behaviour in Chapter 3, an introduction
into the fundamental relation of traffic flow will be provided.

2.2 The Fundamental Relation of Traffic Flow

The relationship between the three fundamental variables of traffic flow, namely the mean speed
v, flow q, and density k is called the fundamental relation of traffic flow

q = k · v. (2.7)

Please note that v is the space mean speed Vs. This relation can be observed when the traffic
stream is stationary, i.e. the flow rates are constant along space and time. When the traffic is not
stationary, a different behaviour may be observed. Fig. 2.1 shows exemplary data of one-minute
aggregated speed-flow and speed-density combinations obtained by a stationary traffic sensor.
An evident relationship between k and v and as a consequence between v and q is visible to the
naked eye.

(a) Density-speed relation (b) Flow-speed relation

Figure 2.1: Scatter plots of one-minute aggregated data from June 04, 2012 until June 27, 2012 at kilometre
x = 230 m of the Austrian motorway A4, driving direction east. A higher aggregation-interval
may yield a different distribution of the data.

A natural way to model the density-speed or the flow-speed relation is to fit a parametric
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2 Traffic Flow Theory

function to the scattered data. These fitted parametric functions are the so called equilibrium
equations:

v(x, t) = Ve(k(x, t)) (2.8)

q(x, t) = Qe(k(x, t)), (2.9)

and describe a statistical relationship between the three fundamental traffic quantities in addition
to eq. (2.7). The equilibrium equations can be transformed by using the fundamental relation in
eq. (2.7). A number of different parametric functions, alias models, were suggested in the past.
In [6], Regler provides an overview of different equilibrium equations that have been proposed.
The simplest model is to fit a straight line to the density-speed relation.

All three relations can be combined to the so called fundamental diagram as illustrated in
Fig. 2.2. The fundamental diagram or the equilibrium equations, respectively, are a basic build-
ing block for almost all state of the art traffic modelling and estimation methods as described in
Chapters 3 and 4. The three extrema in the fundamental diagram are related to special states of

Figure 2.2: The fundamental diagrams of traffic flow, including free flow speed vf ; density kc, flow qc and
speed vc at capacity, and the jam density kj (Fig. adapted from [7]).

traffic flow. These special states are referred to as free flow, synchronised flow and wide moving
jam [8]:

Free flow. At free flow, every driver can choose his velocity freely. Traffic is characterised by
highest reachable speeds vf , densities are comparably low.

Capacity. At capacity, flow rates reach their maximum qc. Traffic at capacity is normally in
synchronised flow with the density kc. Beyond densities of kc, both flow and speed decrease.
When crossing the capacity limit a step-like decrease of capacity can be observed. This phe-
nomenon, not shown in Fig. 2.2, is called capacity drop [9].
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2.3 Elementary Patterns of Congested Traffic

Jam. Near the jam point, both flow and speed approach zero. This point is characterised by
the greatest possible density, the so called jam density kj .

While free flow conditions might provide the highest comfort for the individual driver, a
utilisation of a motorway near capacity offers economic and environmental advantages. Since
the demand of capacity can vary over a wide range over time it is rather difficult to design a
road with sufficient capacity for every situation, and consequently traffic jams can occur. Below
we describe different elementary patters of congested traffic that can be observed.

2.3 Elementary Patterns of Congested Traffic

Congested traffic can be seen as the traffic that has a highest impact on individuals, society,
and the economy. Congestion can occur in various patterns with different levels of complexity.
Even complex traffic breakdowns are composed of elementary patterns [10, 11]. Those patterns
differ in spatial and temporal extent, and the homogeneity of the congested field. All of those
six patterns are listed below:

• Pinned Localized Cluster (PLC): a region with congested speeds at a fixed location over a
longer period of time.

• Moving Localized Cluster (MLC) propagate upstream with the characteristic speed vc.
• Oscillating Congested Traffic (OCT) is just characterized by oscillating speeds in the con-

gested range, i.e. unstable traffic flows.
• Triggered Stop and Go Pattern (TSG) may be viewed as special case of OCT but with

high velocity traffic flows between the upstream propagating jams.
• Homogeneous Synchronized Traffic (HST) synchronised traffic between the states of free

flow and congestion over a spatially extended area.
• Homogeneous Congested Traffic (HCT) congested speeds without oscillations over a spa-

tially extended area.

An illustration of the described congestion patterns is shown in Fig. 2.3. It is obvious, that these
congestion patterns differ in homogeneity and in spatial-temporal extend. Accordingly, these
patterns have a different impact on individual vehicles, e.g. the total travel time. Stationary
sensors and probe vehicles are distributed over a road stretch sparsely, and therefore can gather
data from these patterns only partly. As a consequence spatio-temporal traffic estimation meth-
ods, as described later in this work, may perform differently on traffic data originating from
these six different elementary patterns.

December 10, 2013 – 21 –



2 Traffic Flow Theory

Figure 2.3: Illustration of the elementary patterns of congested traffic. Even complex traffic breakdowns are
composed of these six elementary congestion patterns (Fig. from [11]).

2.4 Summary

In this chapter we introduced the basic traffic data, including base-data belonging to single
vehicle as well as data belonging to the overall traffic stream. We mentioned fundamental
relation of traffic flow, the relation between the fundamental quantities of traffic flow prevailing
under stationary traffic conditions. Furthermore, we stated the equilibrium equations, and their
combination with the fundamental relation to the so called fundamental diagram. Finally, the
elementary patterns of congested traffic have been described. In the next chapter we give an
overview about the modelling of the complex dynamics of traffic flow.
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3
Dynamic Traffic Flow Models

One major question in traffic engineering is the dynamic change of traffic state over space
and time. Unfortunately, the fundamental relation in Sec. 2.2 does not provide a mechanism
to analyse how such traffic states evolve. In this chapter, we introduce dynamic models for
describing the dynamics of traffic flow.

Research on the modelling of traffic flow started in the 1950s. Lighthill and Whitham presented
a model for vehicular flow [12] based on the analogy of the traffic flow with the flow of a fluid.
Since the publication of their traffic model a lot of different traffic models have been proposed.
Depending on the research objective, different types of mathematical models are used. In [13],
Hoogendoorn and Bovy give an overview of the multitude of proposed models and state variables
in the period between the years 1955 and 2001.

In the next chapter, we will first introduce different categories of traffic flow models (Sec. 3.1),
followed the first-order conservation principle (Sec. 3.2.1) and the resulting macroscopic model
(Sec. 3.2.2) as well as an alternative formulation based on cumulative flows (Sec. 3.2.3) and its
respective solution methods in continuous domain. Finally, mention a popular scheme for the
solution in the discrete domain (Sec. 3.3).

3.1 Categorisation of Traffic Flow Models

Traffic flow models may be categorised on the basis of different criteria. Those criteria are
roughly counted among one of the following points:

• Detail or scale of the process model,
• mathematical, and
• conceptional criteria.

The aforementioned criteria are elaborated in more detail in the following.

Scale of the process model. The modelling of traffic flow can be performed on different
scales. The subsequent enumeration ranges from coarse to a fine modelling scale:

Picoscopic: The same facts as for microscopic models apply here. Further, those models con-
tain a description of vehicle sub-units, i.e. the shape of the vehicle, the engine, or the
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brakes. Such models may be useful for cooperative vehicle systems and automotive safety
technologies.

Microscopic: Every individual vehicle is modelled including its detailed behaviour. This in-
cludes driver behaviour, vehicle class, acceleration, slowdown and lane-change of single
vehicles. Such models should be used if one wants to investigate the interaction between
individual vehicles or heterogeneous vehicle classes, or the influence of single vehicles on
the traffic stream.

Mesoscopic: Almost the same aspects as for the macroscopic models can be applied here. Only
the concentration of vehicles is described with statistical distributions. In addition, such
models include parameters for the behaviour individual vehicles, e.g. drivers expect density
changes when adjusting their speed.

Macroscopic: The traffic stream is modelled like a liquid flowing through a pipe. The models
incorporate local aggregated traffic quantities, such as speed, flow, and density. Conse-
quently, no information of individual vehicles can be obtained from the model, i.e. lane-
change behaviour. Macroscopic models are computationally efficient, even with large road
networks. It is easy to incorporate various heterogeneous data sources.

Fig. 3.1 gives an overview of the mentioned modelling scales, underlying physical principles and
associated state variables.

Figure 3.1: Modelling scales of traffic-flow models (Figure from [14]).

Usually the scale of application correlates with the scale of the process model. Models may
be used to describe the dynamics of a single roadway stretch, a mixed vehicle class roadway
junction, a suburban arterial road network, a single highway or even a high-level transport
network.

Recently, several compositional modelling approaches have been proposed [14–16]. They com-
bine the advantages of the different scales of the process model. The dynamics of a whole road
network is described with a macroscopic model for example. Additionally some points of special
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interest, e.g. highway intersections, are described with a microscopic model. Both models share
their process state using data-fusion methods.

Mathematical criteria. The modelling of traffic can be classified according to mathematical
criteria. Most models of dynamic systems have a differential equation as key element. Models
can be classified according to the form of their differential equation.

In fluid dynamics, two conceptionally different approaches of process modelling exist. One is
to model the stream with a view from outside the stream. The other is to model the stream
from the view from inside the stream. These two different representations of the flow field
coordinate system are referred to as Eulerian and Lagrangian modelling, respectively. On the
basis of computational benefits, the modelling in Lagrangian coordinates have recently become
more popular (see Sec. 3.4).

Models typically describe the evolution of single-vehicle-quantities or aggregated quantities
over space and time. That evolution can be modelled continuous or discrete. Mixed models have
been proposed as well, i.e. one state variable is continuous, the other is discrete. This setting is
so called semi-discrete.

Models can be built with exclusively exact relationships or with the influence of some random
processes. These different approaches are named as deterministic and stochastic representation
of the process, respectively.

Conceptional criteria. For problem solution two conceptionally different approaches exist.

Heuristics: Heuristics are based on empirical knowledge. Relationships between different quan-
tities are modelled by fitting parametric functions to empirical data. In general, these
models do not rely on a physical law.

First principles modelling: In a first principle model traffic stream quantities are calculated
directly from established laws of physics. In contrast to Heuristics these models are based
on no assumptions such as empirical or fitted parameters.

Even though there is a wide variety of criteria for classifying traffic models, the above men-
tioned criteria are the most important ones for our work. Our research objective is to examine
different methods for the fusion of heterogeneous data from motorways, acquired by static cross-
section sensors and floating cars. The behaviour of single vehicles is not of interest; We solely
want to reconstruct the macroscopic state of the motorway. In recognition of our requirements
and the the different categories of models described above, the use of a macroscopic traffic
model seems to be obvious. In the following section we provide more information about these
macroscopic models.

3.2 Continous Macroscopic Models

As mentioned above, macroscopic models are used to describe the dynamics of traffic flow on the
level of aggregated quantities such as flow, speed, and density. The traffic stream is modelled
as a one dimensional, compressible fluid. The dynamics of the stream can be characterised
with a partial difference equation. This section focuses on the derivation of first-order dynamic
equations for traffic flow, followed by an introduction of the strongly related family of LWR
(Lighthill Whitham Richards) models, and its simplifications with a triangular fundamental
diagram. Finally we discuss possible solution methods in the continuous domain.
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3.2.1 The First-Order Conservation Equation

The physical modelling of a compressible fluid is based on conservation laws. Some basic quan-
tities of traffic flow are locally conserved: They can neither be created or destroyed, nor are they
able to “jump” from one position to an other. The number of conserved quantities is related
to the order of the resulting model, i.e. mass conservation results in first-order models, mass &
momentum conservation results in second-order models. A multitude of first-order and second
order models has been proposed [13], but in the following we focus on first-order models only.
The use of second order models has been criticised in the past [17, 18], as they may produce
unrealistic results, i.e. reversed traffic flow. For further information on second-order models we
refer to [1, 2, 13].

Mass conservation implies that the mass of vehicles is conserved, i.e. all vehicles that enter
a road section will leave the road section again and no vehicles will be stored or created. This
criterion is fulfilled in general for high rank roads. The conservation equation, also called con-
tinuity equation, can be easily derived by investigating a small volume of roadway (Fig. 3.2)
as a traffic continuum. Because of its fundamental nature, we summarise the derivation of the

Figure 3.2: Small volume of roadway traffic to illustrate the mass-conservation equation.

conservation equation from [19]: The flow rates at the section boundary are

q1 =
N1

∆t
and q2 =

N2

∆t
, (3.1)

the change of the vehicles in the section is

∆N = N2 −N1 = (q2 − q1)∆t = ∆q∆t. (3.2)

Assume, that the traffic densities in the section at t1 and t2 are k1 and k2, respectively. There are
M = k∆x vehicles in the section. Thus, the change of vehicles in the section can be expressed
as

∆M = k1∆x− k2∆x = (k1 − k2)∆x = −∆k∆x. (3.3)

The number of vehicles in a section is conserved during the same time interval, therefore ∆N =
∆M , i.e.

∆q∆t = −∆k∆x (3.4)

∆q∆t+ ∆k∆x = 0 (3.5)

∆q

∆x
+

∆k

∆t
= 0. (3.6)

Let ∆x → 0 and ∆t → 0, then the above difference equation becomes a partial differential
equation (PDE) :

∂k

∂t
+
∂q

∂x
= 0 or

∂k

∂t
+
∂(kV )

∂x
= 0. (3.7)

– 26 – December 10, 2013



3.2 Continous Macroscopic Models

This equation models the flow field from the point of view of stationary detectors. This is
referred to as model in Eulerian formulation. Note that eq. (3.7) holds only for a homogeneous
road section, if there are changes in the profile, sinks or sources, additional terms have to be
added [1].

A model from the point of a moving observer is called Lagrangian formulation. Equation (3.7)
in Lagrangian formulation can be written as

dk

dt
=
∂k

∂t
+ V

∂k

∂x
= −k∂V

∂x
, (3.8)

which leads to a very intuitive interpretation of the solution: If the vehicles further ahead
reduce their speed, the density will rise, and vice versa. Equation (3.8) can be used to solve any
differentiable flow field.

This essential difference between the Eulerian and Lagrangian formulation has a large impact
on the solution of the continuity equation. In the Eulerian formulation, information can propa-
gate in both spatial directions of the flow field. When using numerical solution methods one has
to consider information from both directions: (1) the maximum admissible flow in driving di-
rection, and (2) the provided vehicle flow from upstream direction. On the other hand, with the
Lagrangian formulation, the solution only depends on the traffic state in front of the observer,
the traffic state in the rear has no influence on the solution. Although the Lagrangian formu-
lation is less intuitive than the Eulerian formulation, a solution in the Lagrangian formulation
can done with less computational effort.

3.2.2 First Order Model or Lighthill, Whitham and Richards Model

Up to this point eq. (3.7) is under-determined. Lighthill, Whitham and Richards formulated the
problem completely using the fundamental relation of traffic flow. The combination of eqs. (2.7),
(2.9) and (3.7) gives the well known LWR (Lighthill Whitham Richards) model , which can be
written as [12]

∂k

∂t
+ c(k)

∂k

∂x
= 0, (3.9)

with the characteristic speed given by the gradient of the equilibrium equation

c(k) =
dQe(k)

dk
. (3.10)

The characteristic speed represents the velocity at which continuous density fluctuations prop-
agate through the traffic stream depending on the instantaneous local density2. Equation (3.9)
belongs to the class of non linear wave equations, which implies another characteristic of the
traffic stream: In situations when ∂k

∂x becomes infinite, the local density follows a discontinuous
change resulting in so-called shock waves. These discontinuities travel with the shock wave speed
through the flow field (Fig. 3.3). For sufficiently large changes in density, the speed of a shock
front x12(t) can be expressed by3

c12 =
dx12(t)

dt
=
q2 − q1

k2 − k1
. (3.11)

The LWR model is sufficient to describe traffic flow behaviour for a range of different traffic
situations. Various different fundamental diagrams have been proposed for the application of

2 Also known as dispersion.
3 Also known as the Rankine–Hugoniot jump relation in physics.
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Figure 3.3: Illustration of a shock wave: discontinuities in density k and flow q are travelling along the road
with the speed c12 = dx12(t)

dt
(Fig. from [1]).

the LWR model. In general, the solution of the hyperbolic non linear wave equation is difficult.
As a consequence, multiple simplifications have been proposed with the one described in the
following being of great importance.

Triangular Fundamental Diagram. In [20–22], Newell discusses different drawbacks of the
LWR model. One point concerns the selection of the particular equilibrium equation: (1) in
general the LWR model is not able to describe the traffic flow in detail, and (2) especially for
queueing applications the exact shape of the equilibrium equation is not important as long as
it reflects the three characteristic states of traffic flow, i.e. free flow, capacity, and wide-moving
jam. As a consequence Newell proposes the simplest possible flow-density relation, defined by

Qe(k) =

cfree · k k ≤ qmax

cfree
(free flow)

(kj−k)·qmax·cfree

kjcfree−qmax
otherwise (congested flow),

(3.12)

where overall equation is defined by the free-flow velocity cfree, the capacity qmax, and the jam-
density kj . This simple flow-density relationship results in the two characteristic velocities

c(k) =
∂

∂k
Qe(k) =

{
cfree k ≤ qmax

v0
(free flow)

ccong otherwise (congested flow).
(3.13)

Traffic flow is simplified to two dominant regimes, free flow and congested flow, respectively
as illustrated in Fig. 3.4. Thus, shock waves can only traverse with two constant speeds cfree

Figure 3.4: Triangular and trapezoidal flow-density diagram. Both diagrams share the constant shock wave
speeds cfree and ccong, but differ in the maximum flow q

(1)
max and q

(2)
max, for the triangular and the

trapezoidal fundamental diagram, respectively.

and ccong. Furthermore the constant propagation speeds prevent dispersion. Even if the model
seems to be simple, it has enough descriptive power to sufficiently describe the traffic of high-rank
roadways.
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Solution methods. The analytic solution of an LWR model requires well-funded knowledge in
the field of analysis and differential equations and can be summarised as an initial value problem
of the non linear hyperbolic equation, known as Riemann problem. This problem can be solved
by the application of weak conditions, which results in an infinite number of possible solutions.
Weak solutions cover those with discontinuities, as well as continuous solutions. Although there
is an infinite number of possible solutions, there is only one with physical plausibility, the so-
called entropy solution. That plausibility can be ensured by restricting the possible shock wave
speeds (see eq. (3.11)) to a maximum rate. For further information about the entropy solution
we refer to [23,24].

Unfortunately, the first proposed entropy solution does not hold for bounded domains; The
stated method is only possible for infinite long highways with no on-ramps or off-ramps. As a
consequence, when solving the LWR PDE in continuous formulation and numerical schemes, they
might provide meaningless solutions. In [25], Strub and Bayen introduce the weak formulation
of boundary conditions, for which the initial-boundary value problem of the LWR PDE is well
posed.

The presence of shock waves, and therefore discontinuities in the traffic flow (see Fig. 3.3),
makes the direct solution of eq. (3.9) difficult. In order to obtain the right solution it is necessary
to follow the path wave front x12(t) (i.e. wave-front tracking), which may be computationally
elaborative. A possible remedy is to formulate eq. (3.9) on the basis of cumulative flows as
described in the following section.

3.2.3 First Order Model based on Cumulative Flows / Hamilton-Jacobi Equation

In [20–22], Newell presents an alternative formulation of the LWR model based on the cumulative
flow N(x, t), which represents the cumulative number of vehicles passing a location x by time t
starting from the passage of a reference vehicle. Accordingly, the fundamental variable can be
written as

k(x, t) =
−∂N(x, t)

∂x
and q(x, t) =

∂N(x, t)

∂t
, (3.14)

and the identity

∂2N(x, t)

∂x∂t
=
∂2N(x, t)

∂t∂x
(3.15)

is equivalent to eq. (3.9). The dynamic equation formulated with cumulative flows is referenced
to as Hamilton-Jacobi (HJ) PDE.

One main advantage of formulating the dynamic equation on the basis of N(x, t) is that it
guarantees the conservation of vehicles. A shock is represented by a discontinuity in the first
derivative of N(x, t), but in opposition to eq. (3.9) the conservation equation is valid across the
shock wave front x12(t). Thus, for a constant flow-density relation and known boundary values
N(x0, t0) and q(x0, t0) it is possible to calculate N(x, t) at all points along the characteristic
curve through (x0, t0). For multi-valued solutions, Newell proposes to take the minimum-surface
of N(x, t) as the plausible solution. This obtained solution agrees with the weak entropy solution
mentioned earlier.

Solution based on Variational Formulation

In [26,27], Daganzo completes Newell’s method, where the minimum-surface solution is ensured
by a variational formulation. The solution of the kinematic wave problem is represented by a
set of continuum least cost paths in space and time. Daganzo’s method minimises the cost to
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reach a point, based on the vehicle count as a cost metric. Based on the dual formulation of
his approach he is able to prove a relation between microscopic and macroscopic traffic flow
models [28]. Their method is able to incorporate time-dependent restrictions: For example
signalling or moving restrictions such as slow buses or in general time varying fundamental
diagrams can be incorporated straightforwardly by introduction of a space or time dependent
cost. In this case, the solution of the variational formulation can be obtained by dynamic
programming and is not exact in general but for many cases.

In general, the variational theory allows elegant solutions for global optimisation problems [29].
It finds a widespread application in mathematics and engineering, where the optimal solution
to a mathematical problem is the minimum of its value, which may be written as

xopt = arg min
x

J (x), (3.16)

where J (x) is the problem formulation, i.e. the cost-function, which has to be minimised. The
minimisation can be realised numerically using gradient descent, or if certain conditions are
fulfilled, in explicit formulation. Besides the solution of the dynamic equations, variational
methods have been applied to optimal control problems in the field of traffic engineering. We
mention further examples in Sec. 4.3.

Lax-Hopf Algorithm

In [30, 31], Claudel and Bayen propose a method for solving the HJ PDE semi-analytically
for arbitrary concave fundamental diagrams. Their method, based on viability theory, is able
to incorporate piecewise-constant initial and boundary conditions, as well as floating car data
formulated as internal conditions (see Fig. 3.5). The computational principle of the algorithm

Figure 3.5: Illustration of possible conditions, i.e. sensor data, for the the solution of the Lax-Hopf algorithm
(Fig. from [30]).

is based on the minimisation of closed form partial solutions. The solutions can be obtained at
a computational cost proportional to the count of initial and boundary conditions.

In [32], Mazaré et al. discuss the method in more detail. Further, they point out the differ-
ences to the variational method by Daganzo [27] and propose a faster algorithm for triangular
fundamental diagrams. An implementation for MATLAB is available for download on the Mo-
bile Millennium project-website [33]. However, it does not support the incorporation of internal
boundary conditions.

The main advantage over other solution methods is the available closed-form solution which
provides exact results for general concave fundamental diagrams. In general, closed form so-
lutions can be assumed to be many times faster compared to iterative or numerical solution
schemes. It is possible to incorporate measurements from heterogeneous data sources, but the
method ignores the different measurement errors. Further disadvantages are the inability to use
time-dependent fundamental diagrams, and no exact results for road-networks.
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The solution methods of both formulations of the dynamic equation require a strong atten-
tion on the valid formulation of the dynamic equations and its respective boundary conditions.
A simpler approach is to discretise the differential equation followed by a numerical solution
technique. All methods based on this principle are usually summarised under the term discrete
modelling. In Sec. 3.3 we give an overview about the basic principles of discrete models.

3.3 Discrete Macroscopic Models

As already previously mentioned, the solution of the dynamic equation in continuous form is
a demanding problem. In this section we describe principles of discretisation of the dynamic
equation and the related solution methods. All of these methods discretise the derivatives in
eq. (3.7) followed by a numerical integration. On basis of the Taylor expansion it is possible
to analyse the error residual introduced by the finite differences. Below we summarise the well
known cell transmission model based on first order discretisation scheme followed by a summary
of higher order discretisation schemes.

First Order Discretisation Schemes

In [34, 35], Daganzo describes the Cell Transmission Model (CTM), namely the first approach
to solve the LWR model with a triangular fundamental diagram based on Godunov’s method.
Godunov’s method or Godunov’s scheme is a numerical scheme for solving partial difference
equations [36], based on the idea that the solution domain is divided into finite volumes, i.e.
cells, where the Riemann problem is solved at each inter-cell boundary. Daganzo’s approach is
divided into two steps:

1. Discretisation and solution with the first-order up-winded finite volume scheme, and
2. incorporation of weak boundary conditions with the minimum supply-demand scheme.

First-order up-winded finite volume scheme. The main idea of the upwind scheme is to
divide a road stretch into cells with constant length ∆x and a piece-wise constant distribution
of speed vi and density ki as illustrated in Fig. 3.6. The dynamic equation is approximated by a

(a) Links (b) Cells

Figure 3.6: A discrete traffic flow model composed of motorway links with stationary sensors on the bound-
aries as illustrated in Fig. (a). A link is composed of a sequence of cells with equal length and
associated quantities of traffic flow as illustrated in Fig. (b).

first-order forward difference and evolved over time with uniform steps t→ t+ ∆t, which yields
following state-space equation

∂k
∂t + ∂q

∂x = 0

q = kv

q(k) = Qe(k)

=⇒ kt+∆t
i = kti + r

(
qti+1 − qti

)
i = 1 . . . Nm (3.17)
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with the step-size

r = a
∆t

∆x
. (3.18)

The step-size r must satisfy the Courant–Friedrichs–Lewy (CFL) condition

|r| =
∣∣∣∣a∆t

∆x

∣∣∣∣ ≤ 1 with a = cmax, (3.19)

where cmax represents the largest velocity at which information can propagate through the
system. In other words, the physical domain must be contained in the numerical domain and
information has to pass every cell without skipping an intermediate cell. By implication this
yields the practical restriction: both, spatial and temporal resolution have to be selected with
respect to the each other.

Minimum supply-demand scheme. Moreover, information can travel in both directions,
which involves that the flow between two cells is limited to the minimum of the supply and the
demand beside upstream and downstream the cell boundary, respectively. Loosely speaking, the
supply is given by the number of vehicles leaving cell i− 1 and the demand is given by the the
amount of empty space in cell i.

The Godunov scheme is just first-order accurate, which implies that the error, given by the
remainder of the Tailor expansion, is bounded linearly by O(r). This may introduce high
numerical diffusion, especially at positions with strong variations of the state variable.

Higher Order Discretisation Schemes

For second-order models, Godunov’s method results in considerable errors. In opposition, the
MacCormack method is a discretisation scheme based on second order differences [1]. The
algorithm comprises of two steps: A predictor step which is the same as with Godunov’s method
followed by a corrector step. Unlike Godunov’s method, the MacCormack method does not
introduce diffusion errors.

Summary

In short, the Godunov scheme is suitable for the discretisation of first-order dynamic equations.
Since Daganzo proposed the CTM, solution methods in discrete domain gained increasing pop-
ularity. For higher order equations, it is necessary to approximate the derivative by higher order
discrete differences. Other numeric Riemann-solvers can be found in mathematical literature,
but up to now they don not have a broad usage in traffic engineering.

3.4 Modelling in Lagrangian Coordinates

In the theory of fluid dynamics there are two fundamental different ways of formulating the
dynamic equation, either with Eulerian or with Lagrangian coordinates. Traditionally, the
kinematic wave model in traffic engineering is formulated in Eulerian coordinates, i.e. from
the view of a stationary observer. Recently, formulations of the kinematic wave model in La-
grangian coordinates are receiving increasing attention as they simplify the respective solution
methods [37–40].
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Information in the traffic stream, i.e. waves, never travels faster than the traffic itself. In the
Lagrangian formulation, the coordinate system travels with the same velocity as the traffic. As a
consequence, information can only propagate in the opposite direction of the traffic stream. Or
formulated from the view of the driver, it is only necessary to respond to the traffic conditions in
front of the vehicle. This fact leads to various simplified solution methods. E.g. for the Godunov
scheme, the minimum supply-demand step can be omitted and the method reduces to an upwind
scheme. Further examples of models based on Lagrangian formulation can be found in Sec. 4.6.

3.5 Summary

This chapter covered a short overview of possible modelling principles for the description of
traffic dynamics. Further, we have put the focus on macroscopic traffic flow models, as they
are suitable for the incorporation of data from heterogeneous sources. We explained the law
of vehicle conservation (mass conservation), which can be seen as the theoretical foundation
for all first-order macroscopic traffic-flow models. Subsequently, we introduced the continuous,
first-order LWR flow model, as well as the Hamilton-Jacobi equation, an alternative first-order
formulation based on cumulative flows. For both formulations we outlined possible solution
methods in the continuous domain. Finally, we mentioned a discretisation strategy using the
example of the CTM and the underlying discretisation scheme after Godunov.

Although we discussed various forms and respective solution methods for the dynamic equa-
tion, there still remains an open issue: The mentioned modelling principles do not reflect the real
world exactly, and all measurements are comprised with certain errors. The following chapter
deals with feasible approaches on how to incorporate imperfect observations to imperfect process
models as good as possible.
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4
Traffic State Estimation

The term state estimation refers to the estimation of a state of a physical process based on given
observations and assumptions about the process. There are different views on the estimation
problem, considering control theory, estimation theory, variational analysis, and probability
theory. Fig. 4.1 illustrates an exemplary state estimation problem of traffic engineering: For
given floating car observations {v(xj(ti), ti)} a spatio-temporal velocity field v(x, t) should be
estimated. An alternative view of state estimation is as a data assimilation problem [42]: how

Figure 4.1: Illustration of the distributed velocity field v(x, t) to be reconstructed from Lagrangian samples
(Fig. from [41]).

to optimally incorporate observations of a process into a given physical model. All process
observations are estimates up to a certain point. Measured data from sensors is comprised of
additional noise. Some equations in the model are approximated, e.g. the equilibrium equations,
and so introduce additional noise. Moreover, the process model does not cover all factors, which
introduces additional process noise.

Data assimilation can be achieved with different approaches. The most widely used techniques
in engineering and science are based on

• heuristics,
• Newtonian relaxation,
• Kalman filter variants, and
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• variational methods / optimal interpolation.

All these concepts require a transformation of the measured quantity yk to the quantity rep-
resenting the process state xk by inversion of the measurement equation with the general form

yk = h(xk,vk) + ϑk, (4.1)

where ϑk denotes the measurement noise. The equation h(·) states the relation between the state
variable and the observation, which may include additional time-varying behaviour denoted by
vk. In some cases, the reformulation of the process equation with an alternative state variable
can lead to considerable simplifications of the observation equation, e.g. the reformulation of the
CTM based on velocities as proposed in [43].

Although our experiments are conducted solely with heuristic methods, we give an outline of
all aforementioned data assimilation concepts below. Most of those concepts are well-known in
the field of electrical engineering and computer science, nonetheless we also mention methods
from the field of meteorology.

4.1 Newtonian Relaxation or Nudging Method

The Newtonian relaxation or nudging method basically consists of adding a source- or feedback-
term to the dynamic state equation. The nudging method for a spatio-temporal field may be
written as{

f(z, x, t) = λ(x, t) · (z − zobs) dynamic equation

z(x0, t0) = z0 initial condition
(4.2)

where x and t are the spatial and the temporal variables, and z and zobs denote the state and
the observed variable, respectively. The term λ(x, t) is called nudging factor or nudging gain.
The feedback-term is proportional to the difference between the observed state variable zobs and
the equivalent quantity z computed by the integral of the dynamic differential equation. As a
consequence, the feedback term forces the dynamic equation f(z, x, t) to fit zobs.

In [44], Herrera and Bayen use the nudging method for assimilation of data from floating
cars and stationary loop detectors. To be specific, floating car data is incorporated by nudg-
ing, whereas data from stationary detectors is incorporated by weak boundary conditions (see
Sec. 3.2.2). They propose to add a nudging term to the dynamic equation (3.9) denoted by

∂k

∂t
+
∂q(k)

∂x
= −

J∑
j=1

λ (x− xj(t), t) · [k(xj(t), t)− kobs(xj(t), t)] , (4.3)

where j = 1 . . . J is the vehicle index of the floating cars. Local densities from mobile sensors
kobs are estimated from speed observations and transformed to the state variable by inversion
of eq. (2.8). A possible nudging factor is mentioned with

λ(x, t) =


1
Ta

exp

(
− x2

X2
nudge

)
exp

(
− t−tobs

Td

)
if x ≤ αXnudge and t > tobs

0 otherwise,

(4.4)

where Ta determines the strength of the nudging factor, Td and Xnudge reflect how the effect of
a observation decreases over space and time, respectively. The factor α, with α > 0, reflects the
area of influence of the measurements.
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For implementation purposes, Herrera and Bayen propose a discretisation of eq. (4.3) based
on the first-order Godunov scheme (as described in Sec. 3.3). They validate their method
on reference-data under simplified conditions. The simplified conditions comprise of (1) the
fact that the observed roadway section includes no on- and off-ramps, and (2) only traffic
from the two outer left lanes was considered. In summary, Herrera and Bayen are able to
reconstruct the spatio-temporal density distribution with satisfactory results, although they
note, their conclusions are preliminary and more analysis needs to be done, with respect to their
simplifications.

We were not able to find more publications about the application of the nudging method in
highway data assimilation problems.

4.2 Kalman Filter based Estimation

The Kalman filter (KF) and its variants are one of the most important and widely-used state
estimation methods in engineering. The Kalman filter requires a system-description as discrete
model in state-space formulation, where the system state at time k+ 1 is evolved from the prior
state at time k which may be written as{

xk+1 = f(xk,wk,uk) + ηk state-space equation

yk = h(xk,vk) + ξk observation equation,
(4.5)

where xk is the internal state variable, uk is usually denoted as the control vector and can be
used to model external requirements, e.g. traffic demand on the network boundaries, ηk and
ξk denote the process- and the observation-noise, respectively. Moreover, wk and vk denote
possible time-variation of the process and the observation, e.g. varying capacity or kinematic
wave speed, respectively.

On the basis of eq. (4.5), Kalman filtering consists of an iterative two-step prediction-correction
scheme (Fig. 4.2) [45]. In the prediction step, the time-update based on the state-space equation

Figure 4.2: Illustration Kalman filter two-step predictor-corrector scheme.

is taken; in the correction step, the measurement update is taken in order to correct the estimate
of the current state. The classic Kalman filter is limited to linear state-space models and
observation equations. Furthermore, it is important that the noise is white Gaussian noise as
well as all variances are known. If the model perfectly matches the real world, the state estimate
is optimal in terms of the least squares error. In the case of non-linear process and/or observation
equations, different extensions of the Kalman filter are available: the Extended Kalman filter
(EKF), the Particle filter (PF), the Unscented Kalman filter (UnKF), the Ensemble Kalman
filter (EnKF), and many more. Depending on the specific form of eq. (4.5) one has to select
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the appropriate variant. In [46], Chen gives an overview of the wide field of Bayesian filtering,
including most of the mentioned Kalman filter variants.

Recently, Kalman filtering techniques have become rather popular in the field of traffic engi-
neering. Based on the well known discrete macroscopic and mesoscopic traffic models, i.e. CTM,
METANET, and its modifications, Kalman filtering techniques are widely used for estimation
of traffic state xk, as well as for estimation the alteration of road conditions wk. We refer
to Sec. 4.6 for an overview of proposed combinations of discrete traffic models combined with
Kalman filtering methods.

4.3 Variational Data Assimilation

In this section we want to introduce data assimilation based on variational calculus. As already
stated in eq. (3.16), the calculus of variation allows to find a global optimal solution w.r.t. a cost-
function J (x). In contrast to Kalman filtering, variational methods integrate the observations
in a non-sequential way. The minimisation based on variational theory was already introduced
in Sec. 3.2 in conjunction with the solution of continuous models and optimal control problems.
First, we introduce variational data-assimilation techniques in general, followed by an example
state estimation example from traffic engineering.

Variational data assimilation techniques, i.e. 3D-Var and 4D-Var, are widely used in the field
of meteorology. Similar to the Kalman filtering method, it combines predicted states from a
forecast model with given observations. Below we describe the 4D-Var technique for combining
data from different sources in a statistically optimal way [47]. The cost-function for 4D-Var can
be written as

J (x) = Jb(x) + Jobs(x) (4.6)

J (x) = (x− xb)
T B−1 (x− xb) +

N∑
i=1

(yi − hi(xi))T R−1
i (yi − hi(xi)) , (4.7)

where Jb and Jobs are the forecast (background) and the observation cost functions, respectively.
The matrices B and R denote the background and the observation error covariance matrices,
respectively. If the sequence of model states xi is a solution of the model equation, the minimum
for J (x) represents the optimal fit of the model to the data. In general this yields a non-linear
constrained optimisation problem, but under the assumptions of

1. a causal process model, and
2. the process model can be linearised around the optimal state xopt, i.e. the process model

can be transformed to a tangent linear model (TLM) without considerable errors,

the minimisation problem simplifies to a quadratic cost function. The respective minimum can
be found with derivation followed by gradient descent. The solution of the 4D-Var method is
strongly related to the ones obtained by Kalman filtering methods [47,48].

Variational data assimilation is not very popular in the field of traffic engineering. By now we
neither found scientific articles nor conference papers regarding this topic, but nonetheless, Volpi
applies in her master’s thesis [49] the 4D-Var to a data-fusion problem based on the second-
order model by Payne and Whitham. She is able to achieve results with artificial input-data.
However, Volpi mentions some drawbacks and the need for further research. We are not aware
of any further publication using a variational data-assimilation approach.

Although not directly related to variational data-assimilation, we want to mention a method
based on the theory of optimal control, as it also relies on variational minimisation techniques.
In [50, 51], Jacquet et al. introduce the Extended LWR model (ELWR), an extension of the
standard LWR model which includes ramp-flows using so-called saturation functions and cor-

– 38 – December 10, 2013



4.4 Heuristic Methods

responding ramp-flow-rates. Based on the ELWR they are able to formulate a linearised first
variation which can be solved by gradient minimisation of the cost-function

min
y
J (k, u) = Jobs(k) + Jbar(u), (4.8)

based on the observation k and the ramp rates, i.e. barrier conditions, given by the variable u.
The authors give an example for optimal ramp-metering, and for initial traffic density estimation.
One of the main advantages of their method in contrast to the Godunov scheme is that the
discretisation is done at the optimisation step.

4.4 Heuristic Methods

The principles behind heuristics have been already introduced in Sec. 3.1. A first, impracticable
approach to reconstruct a spatio-temporal field of speed, density, or flow would be smoothed
interpolation or higher-order regression of the scattered sensor data.

A similar procedure is conceivable for the data assimilation of time-variant fields: Local
interpolation methods can be applied for successive correction of data obtained from a forecast
model and observed values. For example, the Cressman correction [52] adapts a forecast at
a specific grid-point by linear combination of the residuals between predicted and observed
quantities within an influence radius around the grid-point. The residuals inside the radius are
weighted by their distance.

All these classical interpolation methods ignore the existence of characteristic shock waves
in traffic flow, and weight the observations isotropic in each direction of the spatio-temporal
plane. In [53], Treiber and Helbing present a spatio-temporal interpolation method, the Adap-
tive Smoothing Method (ASM), based on anisotropic interpolation. Their method exploits the
fact, that perturbations propagate with nearly constant speed upstream and downstream under
congestion and free flow conditions as already mentioned in Sec. 3.2.2. The transition between
free-flow and congested traffic is evaluated by a non-linear velocity filter. Reconstructed flow
fields obtained by isotropic smoothing and the ASM are compared in Fig. 4.3.

(a) Isotropic interpolation (b) Anisotropic interpolation

Figure 4.3: Comparison of flow field reconstruction with isotropic and anisotropic smoothed interpolation.
In contrast to isotropic interpolation illustrated in (a), the adaptive smoothing method considers
the characteristic speeds of traffic flow as illustrated in (b). The horizontal lines represent the
stationary detectors (Figs. from [11]).

Even though the ASM is based on simplifying assumptions when compared to continuous

December 10, 2013 – 39 –



4 Traffic State Estimation

flow models, it is possible to achieve good results for traffic state reconstruction from empirical
data [11, 54]. Since we have conducted several experiments with different ASM variants, a
detailed description of the algorithm-family follows in the section below.

4.5 Adaptive Smoothing Method Variants

The Adaptive Smoothing Method and its variants are of great importance for our work. Our
implemented data-fusion algorithms are mostly based on this family of algorithms. In [53],
Treiber and Helbing propose the ASM for reconstruction of spatio-temporal traffic variables
z(x, t), such as flow q, speed V , and density k, based on stationary detector data. While the
ASM was first suggested for homogeneous data only, some extensions for heterogeneous data-
sources have been proposed later [1, 42,54].

All ASM-variants assume the following partly heuristic properties of traffic flow [53]: Based on
the assumption of a bilinear fundamental diagram (see Fig. 3.4) and depending on the particular
traffic state, perturbations propagate with constant speeds, namely cfree and ccong under free-
flow and under congested traffic state, respectively. Even in traffic states with “synchronised”
congested traffic flow, and the consequential high traffic densities or low velocities, perturba-
tions propagate with velocities near ccong. Further, the method should smooth high-frequency
fluctuations of the input-data in both spatial and temporal dimension.

In the sections below we describe all ASM variants found in literature with emphasis on the
particular differences, as well as the different usable data-sources.

4.5.1 Adaptive Smoothing Method (ASM)

Initially, the ASM was proposed for homogeneous input-data from stationary cross-section sen-
sors only. Typical input-data zi is obtained by stationary cross-section sensors which can include
the average velocity, the vehicle flow, the occupancy, or derived quantities such as the traffic
density k. For given ordered input-data

di = {xi, ti, zi |xi ≤ xi+1, ti ≤ ti+1} i = 1 . . . N, (4.9)

a spatio-temporal field z(x, t) in the range x ∈ [x1, xN ] and t ∈ [t1, tN ] can be calculated. Overall
the algorithm consists of two main parts:

1. The input-data is filtered by a spatio-temporal low-pass w.r.t. the two characteristic prop-
agation velocities; Missing values are reconstructed in this step.

2. A non-linear filter superimposes both velocity fields by linear combination with an adaptive
weighting factor.

The characteristic fields are calculated by two-dimensional smoothed interpolation which can
be written as

zfree(x, t) =
1

Nfree(x, t)

∑
i∈Afree(x,t)

φ0

(
x− xi, t− ti −

x− xi
cfree

)
· zi, and (4.10)

zcong(x, t) =
1

Ncong(x, t)

∑
i∈Acong(x,t)

φ0

(
x− xi, t− ti −

x− xi
ccong

)
· zi, (4.11)

where φ0 is a low-pass interpolation kernel, Nfree and Ncong are variable normalisation factors,
and Afree(x, t) and Acong(x, t) define the area where φ0 6≈ 0. As φ0 should have a low-pass
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characteristic, Treiber and Helbing propose an exponential kernel denoted by

φ0(x, t) = exp

{
−
( |x|
σ

+
|t|
τ

)}
, (4.12)

with the smoothing-width parameters σ and τ . Instead of an exponential function, the use of
other low-pass kernels, such as a bivariate Gaussian kernel, would be possible. This kernel is
skewed towards the characteristic velocities respectively in eqs. (4.10) and (4.11) which can be
written as

φfree(x, t) ≡ φ0

(
x, t− x

cfree

)
and (4.13)

φcong(x, t) ≡ φ0

(
x, t− x

ccong

)
. (4.14)

Those interpolation kernels define the weight of a single data-point (xi, ti, zi) in the estimation
of z(x, t) with

βfree,i(x, t) = φfree(xi − x, ti − t), and (4.15)

βcong,i(x, t) = φcong(xi − x, ti − t) (4.16)

which is determined by the distance between the point (x, t) and the data-points (xi, ti) as
illustrated in Fig. 4.4. The factors N normalise the sum in eqs. (4.10) and (4.11) with respect
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Figure 4.4: Illustration of the spatio-temporal low-pass interpolation kernels. The isotropic kernel in (a) gets
skewed by the characteristic velocities cfree or ccong as illustrated in (b) and (c).

to the current number of data-points in A(x, t) denoted by

Nfree(x, t) =
∑

i∈Afree(x,t)

βfree,i(x, t) and (4.17)

Ncong(x, t) =
∑

i∈Acong(x,t)

βcong,i(x, t). (4.18)

Finally, the quantity z can be reconstructed at a spatio-temporal point (x, t) as follows

z(x, t) = w(x, t) zcong(x, t) + [1− w(x, t)] zfree(x, t). (4.19)

The weight factor w(x, t) controls the superposition of the fields under free flow and congested
conditions. The factor should be w ≈ 0 at high speeds and w ≈ 1 at low speeds. Thus, one can
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use different weighting functions bounded between [0, 1]. Any function of quantities of traffic
flow, i.e. density/occupancy, speed or flow, which is able to discriminate between free-flowing and
congested traffic may be possible. For a reconstruction of a velocity field V (x, t), Treiber et al.
recommend in [53] the sigmoid function

w(x, t) = W (Vfree(x, t), Vcong(x, t)) =
1

2

[
1 + tanh

(
Vthr −min(Vfree(x, t), Vcong(x, t))

∆V

)]
, (4.20)

where Vfree(x, t) and Vcong(x, t) correspond to the aforementioned zfree(x, t) and zcong(x, t), re-
spectively. Further, Vthr denotes the threshold velocity and ∆V denotes the transition width be-
tween free-flow and congested traffic, respectively. The function w(x, t) is illustrated in Fig. 4.5.
One can interpret the min-function in eq. (4.20) intuitively: the field with higher density and

0 Vthr −∆V Vthr Vthr + ∆V 2 · Vthr

0

0.12

0.5

0.88

1

min(Vfree, Vcong)

w
(x
,t

)

Figure 4.5: The non-linear weighting-factor w(x, t) for combination of the characteristic velocity fields.

lower speed dominates the decision about a particular traffic state.

Input-data from stationary cross-section detectors (indicated by the horizontal lines), and a
reconstructed velocity field based on the ASM are shown in Fig. 4.6

(a) Sensor data (b) Reconstruction

Figure 4.6: Reconstruction of a velocity field V (x, t) from stationary detector-data (indicated by horizontal
lines) based on the adaptive smoothing method (Figs. from [1]).

Frequency Characteristics of the Interpolation Kernel. Every cross-section through the
zero point of the interpolation-kernel results in an one-dimensional exponential kernel

f(x̃) = e−
|x̃|
a , (4.21)
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with kernel-width parameter a, depending on the respective angle of the cross-section in the x/t
plane. The Fourier transform of f(x̃) yields the Lorentzian function [55]

Fx̃[f(x̃)] = F (ω) =
2/a

1/a2 + ω2
. (4.22)

Both representations of f(x̃), i.e. in spatial/time-domain, and in frequency domain, are illus-
trated in Fig. 4.7.
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Figure 4.7: Illustration of the two-sided exponential kernel in spatial/time-domain (a) and the respective
Fourier transform in (b).

The 6 dB cut-off frequency ωc is defined by the relation

1

2
|F (0)| !

= |F (ωc)| (4.23)

which yields

ωc(a) = ±1

a
and fc(a) = ± 1

2πa
, (4.24)

or a respective minimum (cut-off) wave-length of

Lc(a) = ±2πa. (4.25)

This cut-off wavelength is important, when considering the spatio-temporal interpolation as
sampling problem. Especially for data from stationary detectors it is easy to specify the average
sampling intervals. This fact is reflected in the recommended algorithm parameters σ and τ as
described in the next paragraph.

Calibration. The selection of the algorithm parameters cfree, ccong, Vthr, and ∆V including
a sensitivity analysis is discussed in [53]. Treiber and Helbing provide no specific calibration
procedure justified by the heuristic nature of the algorithm. Instead, they give recommendations
for the selection of the parameters based on empirical studies. Tab. 4.1 provides a summary of
recommended parameters to use for German motorways. A predefined set of parameters seems
to be inappropriate for every motorway, because the capacity and the characteristic velocities
will change. However, the algorithm is not very sensitive against the variation of the parameters
in Tab. 4.1 [53,54].

One possible method of calibration can be the optimisation of the parameters based on re-
peated random sub-sampling validation. In his doctoral thesis, Schreiter proposes the calibration
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Parameter Description Value SI

σ Spatial smoothing width avg. ∆xi/2

τ Temporal smoothing width avg. ∆ti/2

cfree Characteristic velocity under free-flow conditions 70 km h−1 19.4 m s−1

ccong Characteristic velocity under congested conditions −15 km h−1 −4.2 m s−1

Vthr Threshold between congested and free-flow traffic 60 km h−1 16.7 m s−1

∆V Transition width between congested and free-flow traffic 20 km h−1 5.6 m s−1

Table 4.1: Proposed parameters of the adaptive smoothing method (ASM) to use for German motorways
by [53].

of characteristic speeds by detecting lines in the spatio-temporal plane using the Hough trans-
form [56]. In general, any method for calibration of the flow-density fundamental diagram may
be used to calibrate the traffic dependent parameters.

The initial proposal of the ASM is restricted to stationary input-data only. Usually, this input-
data is aligned on a spatio-temporal grid regularly (see Fig. 4.6). As a consequence, the sums in
eqs. (4.10), (4.11), (4.17) and (4.18) can be implemented efficiently as described in Chapter 6.

4.5.2 Generalised Adaptive Smoothing Method (GASM)

In [1,54], Treiber et al. propose the Generalised ASM (GASM), an extension of the ASM, which
is also able to estimate a spatio-temporal field z(x, t) based on heterogeneous input-data. A first
approach for heterogeneous input-data would be the reconstruction with the ASM. This ignores
the different measurement uncertainties of each data-source and would lead to a sub-optimal
solution. The GASM, on the other hand, introduces a data-source specific weight-factor which
is based on following requirements: (1) the input-data is free of systematic errors, (2) the error
variances θ2

j of each data-source are known, and (3) the errors of the different data-sources are
uncorrelated.

Basically, flow fields for the different classes of input-data, i.e. z
(j)
cong(x, t) and z

(j)
free(x, t), are

calculated first, followed by linear combination weighted with respect to their expected error
variance, which can be written as

z(x, t) =
∑
j

α(j) ·
{
w(j)(x, t)z(j)

cong(x, t) +
[
1− w(j)(x, t)

]
z

(j)
free(x, t)

}
, (4.26)

where α(j) denotes the weighting factor for a given data-source with index j. The combination
of the different data-sources should minimise the overall error-variance of the the reconstruction
θ({α(j)}). This yields to an optimisation problem given by

{α(j)} = arg min
{α(j)}

θ({α(j)}) = min
∑
j

(
α(j)

)2
θj subject to

∑
j

α(j) = 1. (4.27)

Treiber et al. recommend the same parameters for the GASM as for the ASM in the previous
section. The weights α(j) are decoupled of the spatio-temporal weights βi(x, t) in eqs. (4.10)
and (4.11) and as a consequence ignore the sampling density of the different data-sources. The
EGTF, another extension of the ASM, solves this issue. The full algorithm is described in the
section below.
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4.5.3 Extended generalised Treiber-Helbing Filter (EGTF)

In [42], van Lint and Hoogendoorn propose the Extended Generalised Treiber-Helbing Filter
(EGTF). Based on the GASM, referenced as Generalised Treiber-Helbing Filter (GTF) in their
work, the EGTF is also able to reconstruct a spatio-temporal field z(x, t) from heterogeneous
data-sources. In contrast to the GASM, their method considers the spatio-temporal density of
the different data-sources.

The EGTF consists of several different steps. First, for each data-source j, the input-data
{zi}(j) is smoothed at the points {xi, ti}(j) with the ASM as described in Sec. 4.5.1. Hereinafter,

z
(j)
i (x, t) denotes the smoothed data-point for a particular data-source j. Additionally, the

weighting factor w(j)(x, t) from eq. (4.20) is reused later. For the fusion of multiple data-sources
into a common field z(x, t) they propose the linear combination

z(x, t) =

∑
j
α(j)(x, t)

∑
i∈A(j)(x,t)

φ
(j)
i (x, t)z(j)(x, t)

∑
j
α(j)(x, t)

∑
i∈A(j)(x,t)

φ
(j)
i (x, t)

. (4.28)

This equation contains two data-source specific weight factors α(j)(x, t) and φ
(j)
i (x, t).

The factor α(j)(x, t) represents the reliability of the input data at (x, t) and is based on a priori
estimates of the measurement uncertainty of data-source j. The value of α(j)(x, t) is based on
the following assumptions:

1. α(j) is inverse proportional to the standard deviation Θ(j) of a particular data-source j.
2. Θ(j) is constant in free-flow as well as under congested traffic conditions, with a smaller

value under congested conditions. Accordingly, Θ
(j)
0 denotes the standard deviation of

the measurement error under congestion (v(x, t) � Vthr) and
[
1 + µ(j)

]
Θ

(j)
0 under free-

flow conditions (v(x, t) � Vthr), where the parameter µ(j) represents the increased error
standard deviation and has to be selected before.

The particular traffic state is represented by w(j)(x, t), so the first weighting factor can be written
as

α(j)(x, t) =
1

Θ
(j)
0

[
1 + µ(j)(1− w(j)(t, x))

] . (4.29)

The second factor in eq. (4.28), namely φ
(j)
i (x, t), considers the fact that data from different

sources will result in different traffic flow conditions. Further, it covers the fact that one data-
source will include more data around a particular estimation point (x, t). Using eqs. (4.15),
(4.16) and (4.20) the authors propose the factor

φ
(j)
i (x, t) = w(j)(x, t) · β(j)

cong,i(x, t) +
[
1− w(j)(x, t)

]
· β(j)

free,i(x, t). (4.30)

For optimal results, Θ
(j)
0 and µ(j) must be estimated for each data-source. This requires refined

knowledge of the particular sensors, or the acquisition of reference measurements. If both
methods are not possible for a particular data-source, an educated guess may deliver sufficient
reconstruction results.

The authors use the EGTF to fuse velocity data obtained from stationary detectors and
floating cars with travel time data obtained by an automatic numberplate recognition (ANPR)
system. In order to obtain densely sampled velocities from the ANPR system, the travel times
were first converted to virtual trajectories. Furthermore, they evaluate not only different spac-
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ings of stationary detectors and the ANPR system, but also different percentages of floating
cars.

4.6 Classification of Models and State Estimation Methods

This section offers a compact overview of traffic flow models, solution methods or respective
data-fusion methods found in literature. The overview is structured along three categories:
(a) solution methods based on a discrete dynamic equation, (b) solution methods based on a
continuous dynamic equation, although it may be solved numerically later, and (c) heuristic
methods. Especially the presented methods for continuous dynamic equations may be able to
incorporate heterogeneous input-data (HI) as boundary conditions, but ignore the measurement
errors. A comprehensive overview is provided by Tab. 4.2.

(a) Discrete dynamic equation

Model proposed by State estimation method HI

Cell Transmission
Model (CTM)

Daganzo [34] PF by Sau et al. [57]

Switching Mode
Model (SMM)

Muñoz et al. [58]
Mixture KF by Sun et al. [59, 60]

Nudging Method by Herrera and Bayen [44] X

KF by Herrera and Bayen [44] X

METANET
Papageorgiou et al.
[61]

EKF by Wang and Papageorgiou [62]

Comparison of EKF and UKF by Heygi et al. [63]

Parallelised PF (PPF) by Heygi et al. [64]

EKF by Abdi [65]

EKF trained ANN by Abdi et al. [66]

Road-networks with PPF by Mihaylova et al. [67]

Road-networks with PGSPF by Mihaylova et al. [67]

Hybrid Stochastic
Model (HSM)

Boel and
Mihaylova [68]

direct by Boel and Mihaylova [68,69]

UKF by Mihaylova et al. [70, 71]

PF by Mihaylova et al. [71]

Discrete Payne-
Whitham Model

Payne and
Whitham [72]

4D-Var data-fusion by Volpi [49]

CTM for velocity
(CTM-v)

Work et al. [43, 73] EnKF by Work et al. [41, 43,73] X

Lagrangian CTM Wageningen-
Kessels et al.
[38, 74]

EKF by Yuan et al. [39, 75] X
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(b) Continuous dynamic equation

Model proposed by Solution method HI

Extended LWR
(ELWR)

Jacquet et al. [50] With linearised first variation and
solution with gradient descent by
Jacquet et al. [50, 51]

PDE in
Hamilton-Jacobi
(HJ) form

Daganzo [26,27]

Variational formulation and solution via dy-
namic programming by Daganzo [27]

Lax-Hopf based closed form solution by
Claudel and Bayen [31]

X

Accelerated algorithm for triangular funda-
mental diagrams by Mazaré et al. [32]

X

Lagrangian HJ
PDE

Han et al. [40] Closed form solution by Han et al. [40] X

(c) Heuristic methods

Method proposed by HI

Adaptive Smoothing Method (ASM) Treiber et al. [53]

Generalized Adaptive Smoothing Method (GASM) Treiber et al. [54] X
Extended Generalized Treiber-Helbing Filter (EGTF) van Lint et al. [42] X

Table 4.2: Overview of recently proposed mesoscopic and macroscopic traffic models, related solution meth-
ods and data-fusion methods respectively. The column HI indicates the capability of processing
heterogeneous input data.

4.7 Summary

This chapter provided a conceptual overview of modern data-fusion methodologies used in the
area of traffic engineering. This overview was structured among four fundamentally different
approaches for solving the problem of data-fusion. In combination with the overview of traffic
flow modelling in Chapter 3, this chapter may serve as a starting point for future studies in this
particular research area.

Since we implemented algorithms based on the idea of anisotropic interpolation, an extensive
description of those methods was included. This description should serve as a basis for the
comprehension of our further work, including requirements regarding the used data sources, the
description of particular implementation issues, and the evaluation of conducted experiments.

December 10, 2013 – 47 –





Traffic Data Fusion

5
Data Sources

Let us remember our research objective, namely the traffic state estimation by fusion of input-
data originating from various sources. Although methods for fusion of heterogeneous data have
been presented in the previous chapter, the different data is in fact recorded in different domains
and must be transformed to an appropriate physical domain before fusion. In particular, the
methodologies based on anisotropic interpolation (see Sec. 4.5) require input data in form of
eq. (4.9) independent from the specific sensor type. Therefore, the following data preprocessing
steps have become necessary: Stationary sensors must be associated with a particular road
kilometre. GPS-based floating car data is recorded in a two-dimensional spatial domain and
has to be (1) associated with a particular road and (2) transformed to the one-dimensional
spatial domain. If not measured directly, velocities must also be estimated from trajectories.
Furthermore, the specification of the error for all data-sources is an important prerequisite for
all mentioned data-fusion algorithms.

First, we describe our test-site, the Austrian motorway A4 (Sec. 5.1) and its respective data
sources (Sec. 5.2 to 5.4). Second, give information about the used microsimulation software and
its respective model (Sec. 5.7).

5.1 Test-Site Austrian A4 Motorway

We were able to perform experiments on real-world data from the Austrian A4 Ostautobahn
motorway between junction Prater and Vienna International Airport as well as a detailed mi-
crosimulation model representing the same area. The real-world data originates from different
partners in the framework of projects carried out by the ISV. The geometry of our test-site is
illustrated in Fig. 5.1, including the positions of ramps and stationary detectors, plus the section
for travel-time measurements.

Road Geometry

Information about the road geometry acts as a key element in processing data obtained from
floating cars, such as matching to a given driving direction, estimating the road kilometre or if
required the floating car velocity.
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Figure 5.1: Illustration of the test-site A4 Ostautobahn between Wien-Mitte (road kilometre 0) and Vienna
International Airport (approx. road kilometre 10). The figure includes ramps, stationary detec-
tors, and the section for travel-time measurement with respective road kilometres.

The geometry of the road is modelled as a geospatial poly-line without junctions. The poly-line
is basically a list of data-points composed of four entities

ri = {lati, loni, xi, hi} , i = 1 . . .M (5.1)

where {lati, loni} is the geospatial datum in the WGS84 reference coordinate system4, xi is
the road kilometre, and hi is the heading direction5. No lane information is included in the
model. The coordinates of the model are going along the centreline of the real road surface. The
model data for the Austrian A4 motorway is available at ISV, having a road kilometre sampling
distance of ∆x = xi+1 − xi = 5 m. The model is illustrated in Fig. 5.2. To achieve a lower
sampling distance of e.g. ∆x = 1 m, the model is interpolated with a one-dimensional spline
interpolation for both geospatial coordinates. Data for new motorway stretches can be obtained
from different data-sources, e.g. Graphenintegrations-Plattfom Austria (GIP)6, OpenStreetMap7,
or other geographic information providers.

An overview of all available data sources is provided in Tab. 5.1, including the type of the
measurement, the data provider, and a brief description of the data characteristics. Due to the
fact that the data comes from third-party providers, only limited information besides the short
description in Tab. 5.1 is available. For example, we have no detailed information about the
used sensors, the measuring arrangement, or the dimension of expected measurement errors. In
order to specify characteristics of the data, e.g. expected measurement errors, we discuss the
aforementioned data sources on the basis of general information, e.g. data-sheets and scientific
literature. The following sections provide a review about stationary-detectors (Sec. 5.2), followed
by floating cars (Sec. 5.3) and the travel time measurements based on automatic number plate

4 http://spatialreference.org/ref/epsg/4326/
5 1: In the same direction as the road kilometres; 2: In opposite direction of the road kilometres.
6 http://www.gip.gv.at
7 http://www.openstreetmap.org/
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5.1 Test-Site Austrian A4 Motorway

(a) Model
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Figure 5.2: The model of the motorway is shown in (a). The model combines a geospatial datum lon/lat
with a road kilometre x and a heading direction h in a single data-point ri = (lati, loni, xi, hi).
The geographic extent of the model data for the motorway A4 is shown in (b).

recognition (ANPR) for validation purposes (Sec. 5.4). The final section (Sec. 5.5) describes the
available microsimulation tool by which every aforementioned data source can be simulated.

Type Project / Provider Description

Cross sectional
data

REFEREE8,
ASFINAG

One-minute aggregated measurements of flow and veloc-
ity, divided per lane and for two vehicle classes.

Floating car
data

REFEREE / AIT WGS84 coordinates with timestamps from GPS
equipped taxis, having an average sampling interval
of ∆T ≈ 20− 36 s.

IMPAKT9 WGS84 coordinates with timestamps and velocity infor-
mation from GPS equipped probe vehicles, having an
average sampling interval of ∆T = 1 s.

Travel times REFEREE Five-minute aggregated travel time measurements ob-
tained by an ANPR system solely on the first lane ob-
tained between the road kilometres XBC = 7 − 0.2 km,
driving direction west.

Microsimulation
model

IMPAKT / TU Graz Microsimulation model for PTV-VISSIM, calibrated on
traffic conditions similar to workdays between 17:00 and
18:00 on the basis of stationary detector data.

Table 5.1: Overview of available data for this thesis originally obtained by research partners in the framework
of conducted research projects of the ISV.

8 Referenzierung und Evaluierung von verkehrstechnischen Effekten is a project partially financed by BmVIT
under contract FFG-Nr. 831730 by the project partners AIT, ITS Vienna Region, SLR Engineering OG,
EBE Solutions and TU Graz.

9 Indikatoren zur multikriteriellen Analyse kooperativer Transportsysteme is a project partially financed by
BmVIT under contract FFG-Nr. 831747 by the project partners rk communication mobility e.U., TU Graz,
TraffiCon GmbH and Technische Universität München.
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5.2 Stationary Detectors

Stationary detectors perform measurements on the traffic stream at one single point of a road, or
on a small section of a road. In terms of data as defined in eq. (4.9), the component xi = const.
for every individual sensor.

Classic stationary sensors are inductive single- or double loop detectors [11]. In addition, a
wider range of sensors became available recently, including microwave radar, ultrasonic- and
laser-ranging, passive infra-red sensors for single point measurements and automatic number
plate recognition for section based measurements. In combination with an information process-
ing system a velocity sensor may be used to perform vehicle tracking, counting and classifi-
cation [76]. Furthermore, a fusion of different sensors may be used to perform simultaneous
velocity measurements, vehicle counting, and classification [77].

Measurement Accuracy

Weather and road conditions can vary in a wide range over time. Those factors may have an im-
pact on the accuracy of a stationary traffic sensor. Manufacturers of traffic sensors are obligated
to specify a guaranteed range of measurement uncertainty for their sensors, although the true
distributions of errors are not published10. Tab. 5.2 provides a summary of the uncertainties
for single-vehicle measurements of different commercial traffic sensors. One can see that the
uncertainties lie between ±1 km h−1 and ±5 km h−1 for velocities below 100 km h−1 and between
±1 % and ±5 % for velocities above 100 km h−1, respectively. However, the manufacturers do
not specify the relative frequency of cases where the error specifications may be expected to be
valid. Under the assumption that (1) the specified uncertainty ranges are valid in 99.7 % of all
cases, and (2) the measurement errors are Gaussian distributed with zero mean, the ranges of
uncertainty can be interpreted as the ±3σ region around the true value.

Name Manufacturer Speed Counting

≤ 100 km h−1 > 100 km h−1

TDC1 Swarco ±5 km h−1 ±5 % ±3 %

TDC3, TDC4 Swarco ±3 km h−1 ±3 % ±3 %

UMRR 29 Smart Microwave Sensors ±1 km h−1 ±1 % n.a.

MultaStat CRM NG Multanova AG ±2 km h−1 ±2 % n.a.

Table 5.2: Uncertainties of different available commercial stationary traffic sensors [77–81].

Since no further information about the sensors on the motorway A4 is available, there is no
information on the real uncertainties. Moreover, real world data-sets, as provided by ASFINAG,
are aggregated over fixed time intervals of 1 min and contain missing values of approximately
3-5 %11. Those missing values are interpolated based on daily traffic track records.

The measured velocity ṽα of an individual vehicle α can be written as

ṽα = vα + ηv,α, (5.2)

where vα denotes the true velocity and ηv,α the zero-mean Gaussian measurement noise. An
aggregated data-point vi has to be interpreted as the sum of the average vehicle velocity vα,i
and the average measurement noise ηi determined from all vehicles {α}i passed in the respective

10 For instance, a request to Jenoptik GmbH in Germany regarding information about the real uncertainty of
their traffic sensors was rejected at March 26, 2013 with reference to company secrets.

11 Source: Prof. Fellendorf at March 11, 2013
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aggregation interval i:

vi = vα,i + ηi =
1

qi

∑
α∈{α}i

vα + ηv,α, (5.3)

where both quantities are assumed to be Gaussian and independently distributed for simpli-
fication12. The averaging of multiple velocities yields a lower variance when compared to the
variance of single samples. For aggregated quantities by the arithmetic mean, the reduced
variance is given by

Var(vi) = σ2
vi =

σ2
vα + σ2

ηv

qi
(5.4)

where qi denotes the momentary vehicle flow in the given aggregation interval i. That should
be considered when adding measurement noise to aggregated, synthetically generated detector
data.

Increasing Time-Aggregation Intervals

The individual vehicle velocities are aggregated to one-minute intervals by our data provider.
For certain analyses, it may be necessary to increase the time-aggregation interval, e.g. from one
minute to five or 15 minutes. The increase of the aggregation interval can be seen as illustrated
in Fig. 5.3. This process is composed of two steps, a moving average (MA) step, followed

HMA(ω) ↓ N
x[n] y[n] z[ñ]

N N

Figure 5.3: Illustration of a system for increasing the aggregation time-interval of a quantity x. The system
is composed of two steps: x is filtered by a moving-average filter with order N , followed a down-
sampling step with the same rate N .

by a down sampling step. Both operations must be performed with the same parameter N ,
determined by the respective aggregation intervals Taggr of the signals x[n] and z[ñ] as following

N =
Taggr,z

Taggr,x
. (5.5)

The moving average can be realised as finite-impulse-response (FIR) filter, denoted by

hMA[n] =

{
1
N 0 ≤ n < N

0 otherwise,
(5.6)

or by its respective discrete-time Fourier transform

HMA(ω) =
1

N

e−jωN/2

e−jω/2
sin
(
ωN
2

)
sin
(
ω
2

) . (5.7)

12 While this fact is not true for velocities > 100 km h−1 as stated in Tab. 5.2.
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The magnitude of eq. (5.7) is illustrated in Fig. 5.4(a). The consecutive down-sampling step
removes N samples, and as a consequence, (1) reduces the signal energy and (2) stretches the
spectrum by the factor N [82]. The resulting, stretched main-lobes for the overall system are
illustrated in Fig. 5.4(b). In order to prevent aliasing in z[ñ] it is necessary to formulate a
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Figure 5.4: Spectral characteristics of the system system illustrated in Fig. 5.3. In avoidance of aliasing in
z[ñ] it is necessary to limit the maximum frequency in x[n] to the highlighted frequency range.
Only the two most important contributions to Z(Ω) are shown. In principle, all side-lobes from
the replicated spectra are present in (b) as well.

criterion for the maximum admissible frequency in x[n] as follows

fmax,x ≤
1

2 · Taggr,z
. (5.8)

If this criterion is not fulfilled it is mandatory to limit the maximum frequency fmax,x by pre-
ceding low-pass filtering. Fig. 5.5 shows the power spectral density (PSD) [83] of exemplary
one-minute aggregated velocity data obtained by a stationary detector13. The dashed vertical
lines indicate fmax,x for common aggregation time-intervals Taggr,z. Depending on the distance
between the maximum of the PSD to the components greater than fmax,x, certain errors may
be introduced. The example shows that especially for large changes of the aggregation time-
interval, e.g. from one minute to one hour, the criterion of eq. (5.8) might become of importance.
In this case, the distance of the aliased components to the maximum is less than 40 dB and thus
the introduced errors can be expected to be > 1 %.

Correction of Time-mean Velocity Bias

As mentioned earlier, stationary sensors aggregate velocities with the time-mean average. The
fundamental relation of traffic flow on the other hand, is based on the space-mean velocity (see
Sec. 2.2) as well as all mentioned traffic reconstruction methods. Further, the time-mean speed
Vt is never less than the space-mean speed Vs, as stated in eq. (2.4). There are several methods
to estimate the space-mean speed from a given time-mean speed [3, 84,85].

Subsequent assumptions can be used to specify ranges of the bias. Under the assumption
that Vt and Vs are similarly distributed, they share the same standard deviation (σt ≈ σs).
Equation (2.4) can be rearranged to a quadratic equation in the normalised form. The solution

13 The PSD was obtained by Welch’s method using the following parameters: signal length: 5890 samples, window
type: Hamming, window length: 1024 samples, overlap: 50 %.
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Figure 5.5: Power spectral density of one-minute aggregated velocity data from May 17, 2013 15:00 until
May 23, 2013 20:00 at road kilometre x = 4800 m of the motorway A4, driving direction west
(cf. Fig. 7.9). The dashed vertical lines indicate the maximum admissible frequency in x[n] for
common aggregation time-intervals Taggr,z.

is given by

Vs = E{Vt} ·

1

2
+

√
1

4
−
(

σt
E{Vt}

)2
 (5.9)

Vs ≈ Vt ·
(

1

2
+

√
1

4
− CV 2

V

)
= Vt · const (5.10)

where Vt is the aggregated time mean speed and CVV is the coefficient of variation

CVV =
σt

E{Vt}
. (5.11)

A lower CVV means less fluctuations in the traffic flow: CVV < 10 % for synchronised traffic,
20 % < CVV < 70 % under free-flow conditions, and CVV ≈ 100 % for urban arterial roads in
the US [86]. The coefficient of variation can be estimated from existing data; additionally some
ranges have been mentioned in literature:

• 15-25 % for US freeways and expressways [87, p. 2-10],
• around 16 % for German motorways [3, p. 57],
• 5-20 % of an example motorway in the Netherlands [1, p. 127].

On this basis, a CVV of 5-20 % yields without any correction an over estimation of the space-
mean speed Vs of 0.3-4.4 %. Under the assumption of a constant, well known CVV , e.g. 16 %, it
is possible to realise a simple correction scheme based on one multiplication. Please note that
the simplifying assumption σt ≈ σs is not valid in general; on the contrary, the relationship
between the variances is approximately a bilinear function which leads to correction schemes
that show a consideration of the momentary traffic density [85].
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5.3 Floating Cars

Data from floating cars (FC) has to be obtained in the form of eq. (4.9), but in contrast to data
from stationary detectors

1. data-points are not as regularly distributed over the spatio-temporal plane, and
2. in general, the positions xi and velocities vi are not available directly.

In this section we discuss the estimation of the FC position in Sec. 5.3.1 in the one-dimensional
road coordinate system, followed by the estimation of the velocity in Sec. 5.3.2.

5.3.1 GPS based Position Estimation

The positions of floating cars can be determined by a mechanical odometer or the satellite-based
Global Positioning System (GPS)/Standard Position Service (SPS). An odometer accumulates
the travelled distance over time, and therefore comes with the drawback of error accumulation.
With GPS/SPS, on the other hand, the position estimation is carried out anew every time step.
SPS has the capability to measure time, coordinates in the WGS84 reference coordinate system,
in some cases speed, and several performance indicator values, i.e. the DOP-values [88].

Position Accuracy

Basically, GPS/SPS works with a pseudo-range measurement between the GPS-receiver and all
visible GPS-satellites. At least four satellites are necessary to estimate the position and time
without ambiguity, as indicated in Fig. 5.6. Multiple error sources are known that affect the

Figure 5.6: Principle of GPS pseudo-range position estimation process. At least three visible satellites are
necessary to estimate the position without ambiguity. Uncertainties in the pseudo-range mea-
surements result in an error plane around the true position [88].

pseudo-range measurement [88, 89]. These include errors in the satellite position, clock errors,
atmospheric effects, interference effects, relativistic effects, and noise. Accordingly, a model for
pseudo-range measurement P can be written as [90]

P = ρ+ c(dT + dt) + dion + dtrop + e, (5.12)

where ρ is the correct signal delay, c is the speed of light in vacuum, dT and dt are the time
delays on the receiver and the satellite respectively, dion and dtrop are the time delays in the
ionosphere and the troposphere respectively, and e represents the measurement noise and un-
modelled multipath signal propagation. In addition, numerical errors occur in the computation
of the receiver position.
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Due to this wide variety of possible error sources the quality of the GPS-SPS may vary
greatly. Commonly used accuracy measures for GPS positioning [88, 91] are summarised in
Tab. 5.3. Experiments show that the distribution of horizontal GPS position error can be

Measure Definition

CEP Circular error probable The radius of a circle, centred at the antenna posi-
tion, containing 50 % the points in a scatter plot.

(67 %, 95 %) Horizontal (67 %, 95 %) ac-
curacy distribution

The radii of two circles, centred at the antenna po-
sition, containing 67 % and 95 % of the points in a
scatter plot.

rms1 Root mean square error in
one dimension

The square root of the average of the squared error
in one dimension, e.g. the north error.

dRMS ,
rms2

Root mean square error in
two dimensions

The square root of the average of the squared hor-
izontal error.

Table 5.3: Commonly used GPS accuracy measures [88, 91].

assumed as bivariate Gaussian distribution. Furthermore, when assuming uncorrelated errors
of the horizontal coordinate estimates, rms1 represents the standard deviation σ. The χ2-
distribution describes the distribution of the sum of squares of normally distributed random
variables. This property might be exploited to convert one accuracy measure to an other [91].
Modern GPS data-loggers specify a CEP of around 3 m [92,93].

As already mentioned above, spatial coordinates are obtained in the WGS84-based polar
coordinate system as longitude and latitude. The spatial resolution on the spherical surface is
not directly related to the numerical resolution of the coordinates. This relationship varies with
subject to the particular coordinates. Please find a detailed description in Appendix A.

Trajectory Matching

All presented traffic state estimation methods incorporate spatial data based on a one-dimensional
road coordinate system. But floating-car trajectories are obtained in the non-Cartesian two-
dimensional WGS84 reference coordinate system. Some literature is available to match GPS-
trajectories to a given road-network, for example the method [94] by Lou et al., whereby an
open source implementation is available14.

On the basis of the geometric properties of our test-site and the applied approach for flow field
reconstruction, it is possible to formulate simplifying requirements for the trajectory matching
method: (1) the test-site is a continuous motorway stretch without branches and a characteristic
geometry (from north-west to south-east); (2) traffic flow reconstruction is performed on a
macroscopic level, and thus, no lane information is required. Accordingly, we propose a simplified
method for matching floating-car trajectories based on nearest neighbour search on WGS84
coordinates. Note that the numerical distances in longitude and latitude do not reflect the
spatial distances directly. We provide additional information about this fact in Appendix A. For
comparing short spatial distances, e.g. in the scale of 100 m, on the basis of WGS84 coordinates
it is adequate to normalise every point Xi = [loni, lati]

T with

Xi,norm =

[
cos
(
lat
)

0
0 1

]
·Xi, (5.13)

14 https://code.google.com/p/traveltimeanalysis/
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where lat is the average latitude over all points. Accordingly, we propose the following scheme
for the A4 motorway:

1. For each driving direction, remove trajectory points with a maximum numerical distance
in longitude and latitude, e.g. εlon,lat = 2× 10−4.

2. Select the road segment with the smallest numerical distance.
3. Check the driving direction of the floating-car. Especially the coordinates of the A4 are

monotonous decreasing as illustrated in Fig. 5.2(b). This property can be tested with the
Pearson product-momentum correlation coefficient [95] denoted by

rx,y =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

, (5.14)

with {xi} = {loni}Ni=1 or {xi} = {lati}Ni=1 and {yi} = 1 . . . N . This yields rules to discrim-
inate between both driving directions as summarised in Tab. 5.4.

4. Finally, the floating car coordinates (loni, lati) are converted to the one-dimensional road
coordinates xi by nearest-neighbour search in the road model from eq. (5.1).

Driving direction
south-east north-west

rlon > 0 < 0
rlat < 0 > 0

Table 5.4: Proposed rules for discriminating the driving directions for the Austrian A4 motorway.

As already mentioned, the GPS position error can be assumed as bivariate Gaussian. Thus, the
distances between the GPS points and the matched road points should follow a one-dimensional
Gaussian distribution as well. The distances between the assigned road segment and the cor-
responding high-resolution GPS trajectories15 obtained for the project IMPAKT are illustrated
in Fig. 5.7. The spatial distribution of errors in Fig. 5.7(a) reflects the orientation of the A4
motorway. The distribution of absolute distances is shown in Fig. 5.7(b), where the distances
from data-points below the road, i.e. in the south-west quadrant of Fig. 5.7(a), are counted as
negative. The positive bias is caused by the unequal distribution of driving directions: only 11
trajectories are heading direction south-east, while 23 trajectories are heading direction north-
west.

As stated, the estimated FC position xi is comprised of a position error, but the algorithms
presented in Sec. 4.5 ignore the incorporation of such errors. Nonetheless, position errors con-
tribute indirectly to error of the measured velocities. Because of this, the error variances of
estimated velocities may be higher as discussed in the subsequent section.

15 With a sampling time-interval of ∆T = 1 s.
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Figure 5.7: Matching distances between real-world GPS points and road model. The bow-tie-shape in (a)
reflects the spatial orientation of the road, i.e. from north-west to south-east. The distribution
of distances incorporates a slight bias of δ = 1.9 m caused by the unequal distribution of driving
directions in the dataset.

5.3.2 GPS based Velocity Estimation

The vehicle speed is an important physical quantity for the presented data-fusion algorithms
in this work. Depending on the used GPS receiver, speed may be measured directly by the
receiver or has to be estimated from recorded track-points later. Direct speed estimation in
GPS receivers is usually done by using the Doppler effect. In the following we describe different
concepts of GPS based speed estimation methods.

Velocity Estimation based on the Doppler Effect

GPS receivers continuously track the the carrier frequencies of all GPS satellites in range. The
difference between those tracked frequencies and the well known carrier frequencies is the so
called Doppler-shift. The knowledge of the Doppler-shift might be used to calculate the relative
speeds between the satellites and the GPS receiver, and consequently the three-dimensional
velocity of the GPS-receiver. For a summary of the computation we refer to [88]. Modern GPS
receivers can estimate the velocity with an accuracy of about ±0.1 m s−1 [92,93]. In contrast to
position estimation, the speed estimation is more robust against atmospheric effects.

Velocity Estimation based on Coordinates

In some GPS receivers, the velocity estimation is not implemented. Thus, the vehicle velocity
between two consecutive points passed at times t1 and t2 (t1 < t2) can be estimated from their
coordinates

v1,2 =
du

dt
=

u(t2)− u(t1)

t2 − t1
, (5.15)

where u(t) = [x(t), y(t)]T denotes the position vector in Cartesian coordinates at given time.
Compared to a recorded trajectory from a moving GPS receiver, the geometry of a high rank road
stretch follows a smooth course. As a consequence of position errors orthogonal to the driving
direction, the measured GPS trajectory would meander around the real vehicle trajectory as
illustrated in Fig. 5.8. Because of the greater length of the measured trajectory in comparison
to the real trajectory, the velocity would be over-estimated systematically.
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Figure 5.8: Over-estimation of the way travelled caused by coordinate errors orthogonal to the current moving
trajectory.

Several methods can be used to improve the speed estimation from GPS trajectories. All of
these methodologies use models that correct errors in the estimation process: E.g. a vehicle can
only drive on the road surface, therefore the trajectory is limited to a spatial area; or a vehicle
follows the laws of mechanics and can only change its speed in certain ranges, therefore one
can apply a kinematic vehicle model. These two possibilities are described in the subsequent
paragraphs.

Speed Estimation based on Coordinates combined with a Kinematic Vehicle Model

The motion of bodies can be described using the theory of Kinematics. If the forces on a body
are completely known, its motion can be described by a differential equation. For the solution
of such a differential equation the initial conditions of the kinematic system must be known.
Generally, it is difficult to determine the initial state of a kinematic system completely. With
Kalman Filtering techniques, on the other hand, one can determine the state of a kinematic
system in an iterative manner [96]. These filtering techniques have been introduced in Sec. 4.2.

In order to get a process model, the kinematic position vector

Xk = [xk, yk, zk]
T , (5.16)

including the three-dimensional coordinates, the kinematic velocity vector Ẋk = ∂Xk
∂t , and the

kinematic acceleration vector Ẍk = ∂2Xk
∂t2

can be used. With these three vectors one can build
models with rising complexity. One of the most common models applied to land vehicles is the
four-state constant velocity model [96, 97] given by

Xk = Xk−1 + ∆t · Ẋk−1 +
1

2
∆t2 ·wk−1, (5.17)

where ∆t = tk−tk−1 and the acceleration is included in the noise-term wk−1. The model assumes
a vehicle moving at almost constant velocity and almost constant direction. Acceleration, jerks,
and uncertainties in the model are represented by a represented with a Brownian motion along
each canonical axis. For the Kalman prediction step, the linear kinematic model has to be
written in state-space formulation

xk = Tk−1 · xk−1 + Bk−1 ·wk−1, (5.18)

where T is the state-transition matrix, B is the noise-input matrix. The state vector contains
both, position- and velocity-state variables:

xk = [xk, yk, zk, ẋk, ẏk, żk]
T . (5.19)

A detailed description of the algorithm including the derivation of the covariance matrices, and
a stability analysis for the four-state constant velocity model is given in [96].

The previously described four-state constant velocity model is simple and provides a good
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introduction to the underlying methodology but may lack descriptive power for various situa-
tions. Examples of more complex motion models and mode switching models can be found in
literature in the respective literature [97–99].

Increased Robustness by Incorporation of a Road Model

A different approach on robust GPS based speed estimation is to project the obtained GPS tra-
jectory on a given road model and compute the velocity from the corresponding road kilometres.
This procedure can be summarised as follows:

1. Obtain the consecutive GPS coordinates (lon1, lat1) and (lon2, lat2).
2. For each GPS coordinate look for the nearest neighbour in the road model to get the

corresponding road kilometres xR,j and xR,k for the coordinates (lon1, lat1) and (lon2, lat2),
respectively.

3. Calculate the vehicle velocity with the matched coordinates xR,k and xR,j .

The overall procedure is illustrated in Fig. 5.9. The FC velocity is defined by the trajectory

Figure 5.9: Speed estimation based on GPS coordinates (loni, lati) and a road model (lonR,j , latR,j , xR,j).
The GPS coordinates are projected on the road model by nearest neighbour search, followed by a
velocity calculation using the road kilometre xR,j.

gradient. We propose the use of following two discrete gradients:

Piece-wise Linear Interpolation. Calculation of the velocity with a simple forward- and
backward-difference, respectively denoted by

vk = ∆xk(tk) and vk = ∇xk(tk). (5.20)

The velocity is given by the gradient of the preceding linear interpolant. This method is suitable
for high-resolution trajectories, comprised of low noise.

Piecewise Cubic Hermite Interpolating Polynomial (PCHIP). For higher sampling
time-intervals we propose the weighted harmonic average between the preceding and succeeding
slopes as defined for the the shape-preserving PCHIP by Moler [100] for the calculation of the
velocities with

vk =

[
1

w1 + w2

(
w1

ϕk−1
+
w2

ϕk

)]−1

, (5.21)

where the slopes are denoted by the forward difference

ϕk = ∆xk(tk), (5.22)

the weights are denoted by

w1 = 2hk + hk−1, w2 = hk + 2hk−1, and hk = tk+1 − tk. (5.23)
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In general, a PCHIP is any piecewise cubic polynomial that interpolates the given data, and has
specified derivatives at the interpolation points.

Both interpolation methods, as illustrated in Fig. 5.10, assume the data-points as exact and do
not consider position errors. Overall, the uncertainty of the methods is influenced by the quality
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Figure 5.10: Comparison of interpolated FC trajectories with piece-wise linear and PCHIP interpolants.

of the road model, the sampling intervals ∆x and ∆T of the road model and the GPS trajectory,
respectively and the variance of the GPS coordinates σlon,lat. Each of these uncertainties and the
nearest neighbour search affect the uncertainty of the estimated speed. For continuous equations,
the propagation of uncertainties can be calculated straightforwardly. The nearest neighbour
step is a non-differentiable function and breaks this property. Consequently, the propagation of
uncertainties is studied with a Monte-Carlo based sensitivity analysis as described in Chapter 7.

5.4 Travel Time Data

As already mentioned, performance evaluation based on global error measures is only possible
in areas where reference measurements are available. In general, such reference measurements
are expensive to obtain. An alternative for performance-evaluation is to extract some features
from the estimated spatio-temporal field that are easier to measure.

The travel time (TT) over a given road section can be a meaningful measure for traffic flow.
For instance, the ratio between peak travel-time and free travel-time can be seen as an indicator
for congestion, as the travel-time is influenced by the overall traffic conditions on that particular
section. Travel-times can be measured relatively inexpensive with ANPR systems, i.e. stationary
sensors are only required at the beginning and the end of a given road section.

As already mentioned above, the test-site A4 motorway includes a section for travel time
measurements. Two ANPR cameras were installed on the outer right lane for travel time
measurements on the section XBC = 7000 − 200 m. Thus, the ANPR system covers only a
fraction of the passing vehicles. In particular, velocities on the outer right lane are generally
lower when compared to the average velocity over all lanes, and as a consequence, the obtained
travel times may contain a positive bias. The TT data is provided by the AIT aggregated in
five minute intervals, but it is possible to request individual vehicle TT if required for future
research projects.

In the following we discuss a method for extracting TT from spatio-temporal fields as obtained
by traffic state reconstruction algorithms described in Chapter 4.
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5.4.1 Total Travel Times from Virtual Trajectories

The reconstruction of travel-times from a spatio-temporal velocity field is similar to the es-
timation from (very dense) stationary detectors. In [101], Ni and Wang give an overview of
travel-time estimation based on spatio-temporal ITS data. In contrast to other algorithms,
where the aggregated traffic quantities are assumed to be constant along the cell boundaries,
data reconstructed by the ASM-family is only defined point-wise on a spatio-temporal grid (see
Fig. 5.11). Therefore, some of their mentioned algorithms are not applicable, e.g. [102]. Under

(a) Section wise (b) Point wise

Figure 5.11: Difference between section-wise and point-wise defined spatio-temporal data. Section-wise data
is defined over a spatio-temporal region as shown in (a), whereas point-wise data is solely
defined on points as shown in (b)

the assumption of a point-wise defined spatio-temporal velocity field with sufficiently small sam-
pling distances we propose the following algorithm for travel-time estimation which is similar to
the method by Ni and Wang [101].

The trajectory of a virtual vehicle {t, x(t)} can be expressed by the differential equation

dx(t)

dt
= V (t, x(t)), (5.24)

where V (t, x) represents a spatio-temporal velocity field. In order to obtain the travel-time
between two spatial points A and B, one can rearrange eq. (5.24) to

dt(x)

dx
=

1

V (t(x), x)
. (5.25)

By the integration of eq. (5.25) it is possible to calculate the total travel time for the road section
[xA, xB] and the starting time tA as following

TT (tA, xA, xB) = tB − tA =

tB∫
t=tA

dt =

xB∫
x=xA

1

V (t(x), x)
dx, (5.26)

where it is only possible to solve the integral over the spatial coordinate. In order to calculate
the travel times from a discrete spatio-temporal velocity field {vi,j} we propose to estimate
discrete vehicle trajectories with piece-wise constant speeds {tk, xk, vk} as illustrated in Fig. 5.12.
Accordingly, the integral in eq. (5.26) becomes

T̂ T (tA, xA, xB) = t̂B − tA =
K∑
k=1

δtk =
K∑
k=1

δxk
vk

, (5.27)

where δtk and δxk are the instantaneous step-widths bounded by the constant sampling intervals
of {vi,j} with δtk ≤ ∆t and δxk ≤ ∆x. The instantaneous sampling-widths are determined by
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Figure 5.12: Scheme for reconstruction of trajectories of virtual vehicles {tk, xk, vk} based on a regular grid
of velocities (blue), piece-wise constant velocities (red) and variable step-widths δtk and δxk.
The residual cell for the time-step k is highlighted in yellow.

the size of the residual cell (see Fig. 5.12) and the instantaneous velocity vk which is interpolated
from {vi,j}. Width wt,k and height wx,k of a residual cell for a time-step k are denoted by

wt,k =

⌈
tk
∆t

⌉
∆t− tk and (5.28)

wx,k =
⌈ xk

∆x

⌉
∆x− xk. (5.29)

Finally, the instantaneous step-widths are given by

δxk =

{
vk · wt,k vk <

wx,k
wt,k

wx,k otherwise
(5.30)

and

δtk =

{
wt,k vk <

wx,k
wt,k

wx,k
vk

otherwise.
(5.31)

With eqs. (5.27) to (5.31) it is possible to calculate virtual vehicle trajectories and corresponding
travel times simultaneously.

A simulated spatio-temporal velocity field with its corresponding virtual trajectories is shown
in Fig. 5.13 and the extracted travel times are shown in Fig. 5.14. In areas with congestion, some
trajectories are attracted to their neighbouring trajectories (see Fig. 5.13(b)). As a consequence
the extracted total travel times fluctuate over time. In order to suppress those fluctuations we
propose the smoothing with a moving average filter. Further, travel times from ANPR systems
are typically aggregated to 5 min intervals. In order to be comparable, the raw TT has to be
smoothed and aggregated with the same time interval. Raw travel times and the respective
smoothed versions are illustrated in Fig. 5.14. The aggregated block-average can be seen as
a down-sampled version of the moving average. Both averaged versions vary slightly due to
implementation details16.

16 The span of the moving average is rounded to the nearest odd number.
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(a) Ground truth velocity field (b) Virtual trajectories

Figure 5.13: A simulated spatio-temporal velocity field in (a) and generated virtual trajectories for travel
time estimation in (b).

2000 2500 3000 3500 4000 4500

600

800

Time in s

T̂
T

in
s

raw

moving average

block average

Figure 5.14: Estimated total travel times based on the discrete spatio-temporal velocity field {vi,j} from
Fig. 5.13.

5.5 Microsimulation

Validation of measurements on a traffic flow presents an enormous challenge for researchers. One
possibility to get around this issue is the use of synthetic data generated by microsimulation.
Nowadays, microsimulation tools serve as a basic tool in the field of traffic engineering and
science. Thus, many different microsimulation tools have evolved up to now.

Although there are many microsimulation tools, we decided to use VISSIM17 for our work,
since a license for version 5.40 is available at the ISV. VISSIM [103] is a microscopic multi-modal
traffic simulation software by the PTV Planung Transport Verkehr AG18. Traffic is modelled
by the psychophysical car-following model by Wiedemann. Initially developed for urban traffic,
VISSIM later has been calibrated for traffic on motorways. Today, PTV is numbered among the
global market leaders on traffic simulation.

As part of the project IMPAKT, the ISV developed a fully calibrated VISSIM model of the
Austrian A4 motorway. The model consists of the main road section between road kilometre
0 km (Knoten Prater) and road kilometre close to 10 km (Vienna International Airport) and the
respective on- and off-ramps as illustrated in Fig. 5.15. Coordinates in VISSIM are represented
in a Cartesian coordinate system with metric coordinates; no geographic coordinate reference
systems are supported. The geometry of our VISSIM model is based on the deprecated MGI

17 Verkehr In Städten SImulationsModell
18 http://www.ptvgroup.com
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Figure 5.15: Screenshot of the VISSIM model used representing our test-site, the Austrian A4 motorway.
The model consists besides the main road also of the respective on- and off-ramps (cf. Fig. 5.1)

(Ferro) / Austria East Zone (EPSG:31283) [104] geodetic datum.
The model can produce realistic traffic conditions when compared to a working day between

17:00 and 18:00. The overall traffic stream is formed by superposition of 82 different traffic
streams following static routes. The flow rates of the particular streams were determined in
advance with the macroscopic simulation tool PTV-VISUM on the basis of a complete road
model of the region and stationary detector data.

A complete simulation run is performed over 10 000 s with a resolution of five steps per second
and can be divided into two phases: the preparation phase (e.g. until t = 1800 s) where the
empty road gets filled with individual vehicles, and the main phase (i.e. the remaining time
until t = 7200 s) where the traffic conditions may be assumed as valid. In each case, after
simulation time t = 7200 s the flows into the model come to a halt and the road empties out
again. In order to guarantee reproducibility, VISSIM performs simulations on the basis of a
pseudo-random number generator (PRNG), where the behaviour can be influenced by setting
an integer random seed variable19.

It is possible to export different categories of measurements from a VISSIM simulation. There-
fore, we are able to generate stationary sensor data, floating car data, as well as ground-truth
data for evaluation. Stationary detectors can be added using Data Collection Points; floating
car data can be exported using the Vehicle Record ; and as a ground-truth, space- and time-
aggregated traffic variables, such as link flow, density and speed, can be exported using Link
Evaluation. These three types of data all provide the required information to perform a traffic
flow reconstruction followed by an evaluation.

19 Always 12 in the experiments conducted within this thesis.
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In order to simulate real-world data it is necessary to (1) transform the data to the appropriate
coordinate system and (2) consider the measurement noise introduced by the imperfect sensors
as described earlier in this chapter. This is not possible in VISSIM directly and has to be done
afterwards. For further implementation details we refer to Sec. 6.2.

5.6 Detailed Record of Available Data

This section offers a compact overview of the whole range of data available, including the detailed
attributes, its spatio-temporal extent, and the average data density. Even though only a fraction
of the mentioned data was used in our conducted experiments, all data had to be examined with
respect to the usability for our thesis. The complete record is provided in Tab. 5.5.

Category Attributes Time period Further information

Stationary
detectors

Flow, velocity and headway
time; one-minute
aggregated and two vehicle
classes (codes 34 and 36 in
accordance with [105])

01.01.2012 – 27.06.2012 Eastbound: 11 detectors in the section
0.23− 13.79 km; westbound: 16 detectors
in the section 0.85− 13.50 km

01.05.2013 – 31.05.2013 Solely westbound: 10 detectors in the
section 0.85− 7.49 km

GPS
trajectories

WGS84 coordinates
(numerical resolution of
four fractional digits) and
timestamps obtained from
GPS equipped taxis
(REFEREE)

01.06.2012 – 28.06.2012 Average trajectory sampling interval
∆T = 32 s; 40 trips per hour; limited to
driving direction west

01.03.2013 – 31.05.2013 Average trajectory sampling interval
∆T = 22 s; 40 trips per hour; limited to
driving direction west

WGS84 coordinates (nu-
merical resolution of seven
fractional digits), times-
tamps, and respective ve-
locities obtained from probe
vehicles (IMPAKT)

15.06.2012 – 21.06.2012 Trajectory sampling interval ∆T = 1 s;
92 trips in the respective time-period in
the greater Vienna area, but too few tra-
jectories captured on the A4 motorway

Travel times Five-minute aggregated
travel times for five differ-
ent vehicle classes (codes
6, 7, 8, 10, and 11 in ac-
cordance with [105]) on the
section XBC = 7− 0.2 km in
driving direction east

05.11.2012 – 05.06.2013 Only those vehicles entering and leaving
the section on the outer right lanes were
considered

Simulation Any desired data within the
motorway section 0-10 km

7200 s less the prepara-
tion time (e.g. 1800 s)

Simulation resolution: five steps per
second; random seed: 12

Table 5.5: Detailed record of all datasources available for our thesis.

5.7 Summary

In this chapter we presented our test-site including all associated data-sources. The data was
provided with only little additional information by the project partners. Therefore, sources of
measurement uncertainties were identified based on a set of common assumptions. We also
described transformations of data from one domain to another which are required for particular
data sources. Furthermore, we came to the conclusion that some of these transformations are
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only allowed under certain conditions, i.a. the change of aggregation time-intervals requires
some spectral properties as an important precondition. Finally, we described methods for the
estimation of certain data that is not directly available, such as the driving direction, floating
car velocities in some cases, or the extraction of travel times from spatio-temporal velocity
fields. The subsequent chapter provides further information on implementation issues of the
abovementioned preprocessing and estimation algorithms.
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6
Implementation

Within our project we implemented software in MATLAB with respect to compatibility with
version 2011a or later, including batch-like scripts, simple functions and object-oriented compo-
nents. The object-oriented parts build the core of the implemented software and are comprised of
data-containers for the different data sources as well as implementations of the aforementioned
reconstruction algorithms based on the idea of Treiber and Helbing as described in Sec. 4.5.
The data-containers hold the data and can carry out important conversions and preprocessing
functions. Furthermore, we implemented software for calibration and validation of the specific
algorithms. Class-diagrams of all implemented classes are provided in Appendix D.

Subsequently, we describe special aspects of our implementation. These include implementa-
tion issues of the traffic-data containers in Sec. 6.1, followed by the microsimulation framework
in Sec. 6.2, and the Treiber-Helbing filter variants in Sec. 6.3.

6.1 Traffic-Data Container

With regard to the implementation of data containers, each data category is represented by a
separate container-class which provides the appropriate data-fields and data-processing methods.
The data from ANPR systems, floating cars, and stationary detectors is made available by the
respective providers via CSV-files. Thus, a container-class for a particular data-category is
implemented as an abstract class, where the method for parsing a CSV-file with a provider
specific format has to be implemented in a derived class.

At the moment, data fields are implemented as separate vectors, where elements with the same
index are counted among a common data-point di. This fact allows elegant data-filtering on the
basis of logical indexing20. However, the implementation with individual vectors also implies
a limitation of the maximum number of data-points given by the available working memory.
In order to cope with larger datasets we suggest the use of a file-based database. An example
would be SQLite and its corresponding MATLAB-binding which is freely available under [106]
and [107], respectively.

20 https://www.mathworks.com/help/matlab/math/matrix-indexing.html
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6.2 Microsimulation Framework

As already mentioned in Sec. 5.5, both a license of VISSIM and a fully calibrated model of
the Austrian A4 motorway from the project IMPAKT are available at the ISV. Subsequently,
we describe the realised system for performance evaluation of the implemented data-fusion and
traffic flow reconstruction algorithms. The overall evaluation system is illustrated in Fig. 6.1.
It is composed of two parts: VISSIM, its respective traffic model, and the output configuration

PTV-
VISSIM

VISSIM
Model

Output
Config-
uration

Stat. Sensors

*.mes-File

FC Data

*.fzp-File

Ground-Truth

*.str-File

CSV-Files

Data-Fusion
and Flow Re-
construction

Vissim Link
Evaluation

Validation

MATLAB

Figure 6.1: Evaluation system based on a microsimulation with PTV-VISSIM. The data is passed to Matlab
using CSV-files: the extensions *.mes for stationary detectors, *.fzp for floating car data, and
*.str for the complete link-states.

on the left; our implemented MATLAB software on the right. Both parts share the traffic-data
with CSV-files. Spatio-temporal resolution of the ground-truth data, vehicle composition, the
ratio of floating cars, the position of the stationary detectors, and the road conditions have to be
configured in the VISSIM model. It is possible to create congested traffic patterns by addition
of either

1. reduced speed areas,
2. a lower desired speed decision, or
3. the reduction of the number of lanes for a short road segment.

The first two possibilities can be configured in the VISSIM graphical interface over a limited
period of time, while the third is only possible for the overall simulation run. An alternative is to
control VISSIM via the COM programming interface where the model parameters can be modi-
fied during the simulation run. Unfortunately, the creation of congestion patterns as mentioned
in Fig. 2.3 is not straight-forward and requires a comprehensive trial and error procedure.

In order to be consistent with data from real measurements, coordinates for floating car data
and ground-truth data have to be converted initially.

Conversion of Floating-Car Coordinates. The geometry of our VISSIM model is based
on the deprecated MGI (Ferro) / Austria East Zone (EPSG:31283) [104] geodetic datum. On
the other hand, GPS devices store geospatial data as WGS84–based datum in longitude and
latitude. Therefore, the simulated vehicle trajectories are transformed to the WGS84 with the
widely used Helmert transformation [96]. The Helmert transformation is a three-dimensional
similarity transformation of an initial pointX = [x, y, z]T to a transformed pointX ′ = [x′, y′, z′]T

which can be written as

X ′ = C + µ ·R(ω, ϕ, κ) ·X, (6.1)
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where C is the translation vector, µ is a unit-less scale factor, and R is the rotation matrix. R
is composed of three orthogonal rotation matrices

R = Rx(ω) ·Ry(ϕ) ·Rz(κ), (6.2)

which represent a rotation around each canonical axis, x, y, and z, respectively. Finally, the
transformation may be written with seven parametersx′y′

z′

 =

cxcy
cz

+ µ ·

 1 rz −ry
−rz 1 rx
ry −rx 1

 ·
xy
z

 (6.3)

and the scale factor µ = 1 + m · 10−6. Normally, the transformation parameters from local
geographic reference systems to WGS84 are provided by the national geographic agencies, i.e.
the Bundesamt für Eich- und Vermessungswesen (BEV)21 in Austria. The parameters for con-
version from EPSG:31283 to WGS84 are summarised in Tab. 6.1. There are already some

cx cy cz m rx ry rz

577.326 90.129 463.919 2.4232 5.137 1.474 5.297

Table 6.1: Helmert parameter for a transformation from the deprecated MGI (Ferro) / Austria East Zone
(EPSG:31283) to the WGS84 reference coordinate system [104].

libraries that support the transformation between known cartographic projections. In our work
we implemented the Helmert transformation using the command-line tool Cs2cs from the Proj.4
Cartographic Projections Library [108]. In order to call Cs2cs from MATLAB we implemented
a wrapper-function22 working under both, Windows and Unix-based operating systems.

Correction of Systematic Geometric Errors. The geometry of the VISSIM model does
not correspond to the real road model in detail. Certain sections of the road, especially in
driving direction north-west, have a systematic geometric error as illustrated in Fig. 6.2. We

Figure 6.2: Illustration of the systematic mismatch between simulated vehicle trajectories and the road model.
Especially the trajectory points in driving direction west do not agree with the real road geometry.

define the systematic error between the vehicle coordinate Xveh and the nearest point on the

21 https://portal.bev.gv.at/
22 https://www.mathworks.com/matlabcentral/fileexchange/41203-cs2cs-wrapper-for-matlab
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road Xroad with

∆X = Xveh −Xroad. (6.4)

Both components of the systematic error, driving direction north-west are illustrated in Fig. 6.3.
These geometric errors may cause problems with certain experiments. In order to correct the

Figure 6.3: Systematic geometric error between simulated trajectories and real road.

systematic errors we propose the correction of the geometric error by the following scheme:

1. Simulate an adequate number of floating car points.
2. Calculate an average error ∆X for each point in the road model.
3. For a new FC trajectory determine the nearest point on the road and subtract ∆X subject

to the respective spatial location x.

Conversion of One-Dimensional Road Coordinates. In VISSIM, roads are composed
of links and connectors as illustrated in Fig. 6.4. Every link or connector comes with a local

(a) VISSIM screenshot (b) Scheme of consecutive links

Figure 6.4: A model of a road network in VISSIM is composed of links and connectors, with blue and ma-
genta colour in (a), respectively. Each link comes with its own local one-dimensional coordinate
system as illustrated in (b).

one-dimensional coordinate system. Ground-truth data from Link Evaluation exists initially as
space-aggregated traffic variables for each link separately in the local link coordinate system.
An analysed motorway section {li}Li=1 may include several consecutive links and connectors
as illustrated in Fig. 6.4(b). But ground-truth data is required in an evenly sampled spatio-
temporal grid over the whole road section. In order to generate the evenly sampled data we
propose the following procedure:
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1. For the first link l1, associate the corresponding road kilometre.
2. For all following links, accumulate the distance information of all intermediate links.
3. Re-sample the spatio-temporal data on an evenly spaced grid. The re-sampling of the over-

all velocity field realised using MATLAB’s TriScatteredInterp class23 which performs a
linear interpolation.

It is a fact, that traffic flow fields should not be interpolated in an isotropic manner since it
ignores the characteristic propagation velocities (see Sec. 4.4). However, for sufficient small
spatio-temporal sampling distances the propagation velocities are negligible.

6.3 Treiber-Helbing Filter

This section provides information about the implementation of ASM-based algorithms (described
in Sec. 4.5) and is structured among two parts: First, we state the requirements of our imple-
mentation with regard to the container classes providing the input data; Second, we discuss some
aspects of the computational complexity as well as feasible ways of an efficient implementation.

Processable Data Sources

The ASM was initially proposed for stationary detector data only, but was extended to arbitrary
spatio-temporal data later. A main difference between data from stationary detectors and data
from floating cars is the alignment of the respective time series data: Time series from stationary
detectors are aligned horizontally on a spatio temporal grid, whereas time series from floating
cars follow the momentary flow velocity in the spatio temporal plane as illustrated in Fig. 6.5.

(a) Stationary detector data (b) Floating car data

Figure 6.5: Comparison of spatio-temporal alignment from different data categories: stationary detector data
is lattice-like distributed as shown in (a), whereas floating car trajectories follow the momentary
flow velocity as shown in (b).

However, all ASM-based algorithm variants ignore the connection of data via time series and
consider every data-point as separate information. Therefore, it is possible to use any data-
source as long as: (1) it consists of sufficiently enough data scattered over the spatio-temporal
area of reconstruction, and (2) the data-points di consist at least of information about road
kilometre, time, and velocity (c.f. eq. (4.9)). Accordingly, our implementation is able to perform
a reconstruction with data from any container class with the only requirement that the data-
fields velocity v, time-stamp time, and road kilometre x are declared as public attributes.

23 https://www.mathworks.com/help/matlab/ref/triscatteredinterp.html
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Computational Complexity and Efficient Implementation Variants

Although the ASM variants are formulated in continuous domain, reconstruction is performed
for implementation purposes point-wise on a predefined spatio-temporal grid

(x, t) ∈ ([xrec
0 , . . . , xrec

N ], [trec
0 , . . . , trec

M ]). (6.5)

Especially the evaluation of the double-sum in eqs. (4.10), (4.11), (4.17) and (4.18) at every point
in (x, t) is computational costly. But the aforementioned equations share a similar structure,
which makes implementations with increased efficiency possible. The basic idea behind more
efficient implementations is that for the reconstruction of a point z(x, t), the characteristic kernel
βchar (see eq. (4.16) and eq. (4.13)) decays with increasing distance w.r.t its centre. Thus, it is
sufficient to consider only input data zi in an influence area A(x, t). For A(x, t), we propose the
minimum bounding rectangle (MBR) of an indicator function 1A defined by

A(x, t) = MBR {1A (βchar(x, t) 6≈ 0)} = MBR {1A (βchar(x, t) ≥ εA)} , (6.6)

where εA defines the minimum weight. The size of A(x, t) depends on the kernel parameter σ
and τ , and on the characteristic propagation velocity cchar and can be written as

area {A(x, t)} = 4a2 ·
[
max

{
τ,

1

cchar
σ

}
× σ

]
= const. (6.7)

The parameter a is related to the minimum weight εA, i.e. for an exponential kernel one can
write a = log(εA). The anisotropic interpolation kernel βchar and the size of the corresponding
MBR are illustrated in Fig. 6.6. Two possible approaches for an efficient implementation are
described below.
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Figure 6.6: Illustration of a two-dimensional anisotropic interpolation kernel βchar for a characteristic ve-
locity cchar < 0. The respective minimum bounding rectangle (MBR) given by βchar 6≈ 0.

Direct Implementation

In this section, we describe the direct implementation of the aforementioned double sums. Al-
though slow for-loops can be easily avoided via vectorisation, it is necessary to lookup all
data-points in range {zi}i∈A(x,t) for a reconstruction of a single point z(x, t). Even though
Schreiter et al. discussed the computational complexity of a direct implementation in [109], they
ignored the complexity of the lookup step.
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At the moment we implemented the lookup with logical indexing in MATLAB, which can be
seen as a sequential or linear search. The complexity depends linearly on the number nin of
input points zi denoted in big O notation by

lookup({zi}i∈A(x,t)) ∈ O
(
nin
)

= O
(

X in · T in

∆xin ·∆tin
)
, (6.8)

where X in and T in define the spatio-temporal extend of the input data, and ∆xin and ∆tin

denote the average spacing of the data-points. Thus, the complexity of the overall algorithm
can be denoted by

ASMdirect ∈ O

 Xrec · T rec

∆xrec ·∆trec

 X in · T in

∆xin ·∆tin︸ ︷︷ ︸
lookup

+
a2

∆xin ·∆tin︸ ︷︷ ︸
sum


 . (6.9)

However, the larger of both, which can be either lookup or sum, will determine the final computa-
tional complexity. Especially for large input-datasets the lookup part will dominate. Therefore,
we propose the use of special data structures for the input data.

In general, search problems can be accelerated by the use of tree based data structures.
While the insertion into tree structures requires more effort, search can be done on average in
O
(
log
(
nin
))

time. In [110], Guttman proposed the R-tree data structure for indexing multi-
dimensional information, such as geographic coordinates, polygons, or even arbitrary higher
dimensional data-sets. No native implementations of R-trees are available in MATLAB, but
there are freely available third-party libraries. The GML LidarK Library [111] for example,
provides an open-source framework for processing multidimensional point data such as LIDAR
scans. The library also includes a data-structure called Seg-tree, a variety of the R-tree. For the
SQLite database mentioned in Sec. 6.1 an R-tree module is available as well [112].

Interpolation with Convolution

The second possibility of an efficient implementation is to align the input data zi on the spatio-
temporal grid as defined in eq. (6.5) first. The double-sums in eqs. (4.10), (4.11), (4.17) and (4.18)
can be efficiently realised through convolution of the input data with a discretised interpolation
kernel βchar.

Two properties of the convolution [95] might be interesting for an efficient implementation of
the weighted sums. Let A ∈ RN×M and B ∈ RN×M be two matrices; and let b1 ∈ RN×1 and
b2 ∈ R1×M be two vectors. Firstly, as stated by the convolution theorem, the convolution in the
spatio-temporal domain may be written as a multiplication in the frequency domain

F{A ∗B} = F−1
{
F{A} · F{B}

}
, (6.10)

where ∗ denotes the convolution operator and F the Fourier transform. In this case, the com-
putational costly convolution can be avoided by applying the Fast Fourier Transform (FFT)
combined with a point-wise multiplication in frequency domain.

Secondly, the convolution is an associative operation

(A ∗ b1) ∗ b2 = A ∗ (b1 ∗ b2). (6.11)

As a consequence of this associativity property a filtering kernel B may be decomposed into
two simpler kernels with lower dimension in order for B = b1 ∗ b2, then the convolution may be

December 10, 2013 – 75 –



6 Implementation

computed with two simpler convolutions

A ∗B = (A ∗ b1) ∗ b2. (6.12)

A decomposition of B = b1 ∗ b2 requires that the rows of B are linearly dependent, in other
words the rank of B has to be one. This is not the case for an anisotropic filter kernel and
therefore not applicable for the ASM.

The two dimensional fast Fourier transform (FFT) [82] has a computational complexity of

F(A) ∈ O(NM · log(NM)). (6.13)

As both, the preceding alignment of the input data on a spatio-temporal grid, and the mul-
tiplication have a lower computational complexity, the overall complexity is bounded by the
complexity of the FFT which can be written as

ASMFFT ∈ O
(

Xrec · T rec

∆xrec ·∆trec
log

(
Xrec · T rec

∆xrec ·∆trec

))
. (6.14)

In addition, it should be noted that the advantage of the method in computational complexity
also implies also a higher memory consumption.

In [109], Schreiter et al. proposed an efficient implementation of the ASM based on MATLAB’s
fast cross-correlation and convolution implementations. The authors propose to map the scat-
tered input data zi(xi, ti) to the closest coordinate on the spatio-temporal grid from eq. (6.5).
The additional error can be neglected, because the sampling distances ∆xrec and ∆trec are com-
paratively low. Their experiments in MATLAB show, that for large datasets, and a fine-grained
reconstruction resolution, an FFT based implementation outperforms a naive implementation by
a speedup larger than 250, but the speedup declines significantly with increasing reconstruction
resolution.

6.4 Summary

This chapter not only provided information about our actual implementation of data containers
and traffic state estimation algorithms, but also mentioned considerations of feasible ways for
an efficient implementation of the respective software components. The information on our im-
plemented software was condensed, as it was realised with standard MATLAB data structures
and programming techniques. An exception here were the implementation details about the val-
idation system, where individual software components, the respective interfaces, and necessary
data transformations have been described in detail.

The second main part of this chapter dealt with the computational complexity and different
ways feasible for an efficient implementation of ASM-related traffic state estimation algorithms.
These efficient implementations may be of special interest when they are used in large-scale
applications, where both storage capacity and computing time turn into relevant algorithm
properties.

On the basis of the implemented software, we were able to conduct a comprehensive series
of experiments. Further information about those experiments and findings is provided in the
subsequent chapter.
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7
Experimental Evaluation and Findings

This chapter covers a description and the corresponding results regarding the experiments con-
ducted within this work. All experiments are based on data from a microsimulation as well
as from real world measurements – and attempt to clarify open issues previously raised in this
work. This chapter is structured among three main sections: First, we examine the performance
of finite-difference based velocity estimation in Sec. 7.1. Second, we describe the results of two
different calibration approaches in Sec. 7.2. Finally, we give a comprehensive summary about
our experiments regarding the ASM algorithm family in Sec. 7.3. The experiments in Sec. 7.1
and 7.3 are generally based on Monte-Carlo-simulations, whereas the experiment in Sec. 7.2 is
based on a data-fitting procedure.

7.1 Sensitivity Analysis of GPS-based Velocity Estimation

This section covers a sensitivity analysis of velocity estimation methods based on finite differences
as presented in Sec. 5.3.2. Simulated FC trajectories24 within a range of 9 km constitute the
basis for this experiment. In order to simulate trajectories as obtained in real world a bivariate
Gaussian position error ∼ N (0, I2 · σx,y) was added25. Furthermore, the FC sampling time-
interval ∆T and the spatial sampling interval ∆x of the road model were varied as illustrated
in Fig. 7.1. The simulated FC trajectory points also include the respective vehicle velocity, and

Figure 7.1: Parameter space of the sensitivity analysis of the velocity estimation.

24 Around 4000 individual trips.
25 I2 is a 2× 2 identity matrix.
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thus it is possible to evaluate the absolute velocity error with

∆vk = v̂k − vsim,k, (7.1)

where v̂k represents the respective estimated velocity (i.e. v∆, v∇, or vPCHIP), and vsim,k the
respective true velocity obtained from microsimulation. For the data-fusion algorithms, as pre-
sented in Sec. 4.5, the error variance is of great importance, and thus the error variances along
the aforementioned parameter space were examined as illustrated in Fig. 7.2 to 7.4.
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Figure 7.2: Comparison of velocity-error variances for a trajectory sampling-interval of ∆T = 5 s. The
variance depends linearly on the GPS position noise for all methods, although the error-variance
of the PCHIP method in (a) is the half of the variances of the simple differences in (b)–(c).
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Figure 7.3: Comparison of velocity-error variances for different trajectory sampling intervals ∆T achieved
with the PCHIP method, the behaviour of the two other methods is similar: With increasing
time-intervals, the influence of both σ2

x,y and ∆x becomes more and more negligible.

It is possible to draw the following conclusions from this experiment:

1. The temporal trajectory sampling interval ∆T has the highest impact on Var(∆v) when
compared with all other parameters.

2. For a low ∆T , i.e. ∆T ≤ 10 s, the value of the parameters σ2
x,y and ∆x should also receive

attention.
3. With the PCHIP method it is possible to achieve a lower error variance when compared to

the forward- and backward-difference based methods. This fact can be explained by the
harmonic averaging performed by the PCHIP method in difference to the other methods.
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Figure 7.4: Comparison of velocity error variances with respect to different GPS sampling time intervals for
∆x = 1 m spatial resolution of the road model. When compared to the other two dimensions,
∆T has the highest impact on the error variance.

It has to be noted that all three methods underestimate the momentary vehicle velocity by a
systematic error of −0.5 m s−1 and −0.7 m s−1 on average for the finite-difference methods and
the PCHIP method, respectively. At the moment, the reasons for this bias have not yet been
investigated. Consequently, not only these particular methods but also other methods for FC
velocity estimation in general should be assessed further. However, this was not possible due to
time reasons.

7.2 Calibration

Treiber et al. mention that a calibration of parameter regarding the ASM is not possible di-
rectly [53]. However, we try to make some suggestions considering that issue. The parameters
can be divided into two groups: (1) cfree, ccong, Vthr, and ∆V depend on the particular road and
traffic conditions; (2) the parameters σ and τ depend on the sampling density and noise-level
of the input data. In the following, we describe the calibration of the traffic specific parameters
on the basis of stationary detector data in Sec. 7.2.1, whereas an approach for full calibration
based on the concept of reconstruction followed by validation is given in Sec. 7.2.2.

7.2.1 Model-Based Calibration on Stationary Data Only

The traffic-specific parameters can be directly associated with specific properties of the funda-
mental diagram (introduced in Sec. 2.2): The transition between free-flow and congested flow is
defined by the point of capacity; the characteristic velocities are represented by the slopes of the
density-flow diagram. Accordingly, we propose a calibration of the mentioned parameters based
on a steady-state car-following model. Several steady-state models for the fundamental-diagram
have been proposed in the past, for an overview we refer to [6]. The model by Van Aerde and
Rakha [113] is mentioned as one of the relatively simple models with the best representation of
the traffic characteristics. Their model defines the density according to the velocity-depended
gap between two successive cars, denoted by

k(v) =
1

h
=

1

c1 + c2
v0−v + c3 · v

, (7.2)
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where h denotes the average vehicle-gap, v0 is the average free-flow velocity, and [c1, c2, c3] denote
the three gap-coefficients. In order to determine the four unknown parameters we propose a least-
squares fitting of eq. (7.2) on data from stationary traffic sensors. Due to the nature of the data
it is not recommended to fit eq. (7.2) directly. In [114], Ponzelt gives practical recommendations:
(1) Large vehicles, i.e. trucks and buses, require more space on the road. When the flow rates of
those large vehicles are known (denoted by qtruck) they should be grossed up to car-equivalent
rates by multiplication with a constant factor, i.e.

q = aequiv · qtruck. (7.3)

For our calculations we use a grossing-up factor of aequiv = 2. (2) The data is not equally
distributed over all traffic regimes. Therefore, velocities should be first binned by their density
values; Ponzelt recommends a bin-width of 0.001 Veh m−1. A complete fundamental diagram,
including raw data, binned data, the fitted van Aerde model and the point at capacity are
illustrated in Fig. 7.5.

(a) (b)

(c)

Figure 7.5: Fundamental diagrams created with stationary detector data from June 04, 2012 until June 27,
2012 motorway A4 at x = 10 km in driving direction east including raw data, binned data, and
the calibrated steady-state traffic model after van Aerde. In addition, the characteristic velocities
cfree and ccong are illustrated in (c).

The transition between free-flow and congested traffic regimes happens at the inflection point
in Fig. 7.5(a), which is defined by the maximum flow qmax and the optimal velocity vopt. The
maximum flow can be calculated by a first derivative test of eq. (7.2), which yields

qmax =
−2 · √c2

√
c2 + c1 · v0 + c1 · v0 + 2 · c2 + c3 · v2

0

c2
1 + 4 · c2 · c3 + 2 · c1 · c3 · v0 + c2

3 · v2
0

. (7.4)
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As threshold between free-flow and congested traffic we propose the optimal velocity vopt denoted
by

Vthr ≈ vopt =
1

2

(
v0 +

c1 · qmax

1− c3 · qmax

)
. (7.5)

At the moment, the transition-width ∆V in eq. (4.20) is assumed to be constant. A full transition
between free-flow and congested traffic is completed within a velocity difference of approximately
4 ·∆V symmetrically around Vthr.

For the characteristic velocities under free-flow and congested conditions we propose the use of
eq. (3.11) in combination with the van Aerde model. The slopes of the density-flow diagram show
qualitatively linear behaviour over a wide range, and thus an approximation for the characteristic
velocities can be written as

cfree =
aq,max · qmax − aq,min · qmax

kq,1(aq,max · qmax)− kq,1(aq,min · qmax)
(7.6)

and

ccong =
aq,min · qmax − aq,max · qmax

kq,2(aq,min · qmax)− kq,2(aq,max · qmax)
, (7.7)

where kq1,2 denotes the traffic density depending on the flow based on eqs. (2.7) and (7.2). The
numerical indices refer to either one of the two possible solutions. Further, the qualitatively
linear sections of the flow-density relation can be specified by the parameters aq,min and aq,max.
Good results were observed in the cases with values aq,min = 0.2 and aq,max = 0.8.

For the full calibration results of all stationary detectors based on data from June 04, 2012 until
June 27, 2012 we refer to Appendix B. Although we used data from 24 days the amount of data
obtained in congested traffic regimes is too small for most detectors and therefore, a plausible
estimation of ccong is impossible. However, it is possible to perform a plausible estimation of
cfree and vopt as illustrated in Fig. 7.6. From those calibration results it is possible to draw the
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Figure 7.6: Calibration results for vopt and cfree. Both quantities go in line with the road kilometre, but are
assumed to be constant over the whole road stretch by the ASM algorithm.

following conclusions considering the calibration procedure and the underlying traffic stream:
vopt and cfree are not constant over the entire road stretch. This fact corresponds to the obligated
speed limits: they go in line with the road kilometre, i.e. 80 km h−1 until x ≈ 4 km, 100 km h−1

until x ≈ 8.3 km, and 130 km h−1 afterwards.

Both quantities vopt and cfree correspond to the traffic dependent algorithm parameters Vthr
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and cfree, respectively. On the one hand it is not easy to incorporate a spatially varying cfree

to the ASM method, but on the other hand it is easy to incorporate a spatially varying Vthr.
As eq. (4.20) operates only point-wise on the spatio-temporal field it is possible to introduce a
spatial varying Vthr(x) as following:

w(x, t) =
1

2

[
1 + tanh

(
Vthr(x)−min(Vfree(x, t), Vcong(x, t))

∆V

)]
. (7.8)

First experiments with the congestion pattern illustrated in Fig. 7.10(a) show that the use
of Vthr(x) yields lower and less sensitive RMS- and MAP-errors. (These error-measures are
described in Appendix C.) However, the traffic pattern does not contain large areas with veloc-
ities near vopt and therefore is ill-conditioned to investigate this particular topic (illustrated in
Fig. 7.7).
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Figure 7.7: Comparison of distribution of velocities estimated from simulated data in (a) and from real-world
data in (b) (data from Fig. 7.10(a) and Fig. 7.9, respectively): for simulated data, the density of
velocities around Vthr is less than 0.01, whereas in (b) the velocities are evenly distributed over
a wide range. The respective densities were obtained with a kernel smoothing function estimate
based on a normal kernel function.

7.2.2 Calibration by Reconstruction and Subsequent Validation

This section covers an approach for calibration of the parameters σ and τ , which depend on
the density of the input data. Stationary detectors deliver data that is arranged lattice-like
horizontally in the spatio-temporal plane; Thus, it is straight forward to specify an average
sampling interval ∆x and ∆T . On the other hand, floating car data is aligned like vertically
askew pearl chains, where the alignment between the interpolation kernel and the input-data
becomes suboptimal, and thus demand larger smoothing parameters.

According to the mentioned requirements, we performed a calibration on the basis of real-world
data: Basically, a state-estimation based on floating car data (project REFEREE), followed by
a validation against stationary detector data (ASFINAG). Exemplary input data is illustrated
in Fig. 7.8. As no velocity information is included in the floating car data, the velocities are
estimated with the aforementioned PCHIP method (see Sec. 5.3). Our final calibration approach
can be summarised as follows:

1. Prune the available floating car data dFC = [{xi, ti, tri}Ii=1] and stationary detector data
dST = [{xj , tj , vj}Jj=1] to a common spatio-temporal frame.
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2. For all floating car trips, i.e. tri = const., estimate the respective velocities vi.

3. For every 4-tuple in the list of predefined filter parameters p = [{σi, τi, cf,i, cc,i}Pi=1]:

a) Filter the velocities [{vi}Li=1] from the stationary detector with the ASM as ground-
truth data, i.e. “reconstruct” the velocities solely at spatio-temporal locations where
stationary data is available.

b) Reconstruct velocities from dFC at the spatio-temporal locations where stationary
data is available.

c) Calculate global error measures based on the data from the steps (3.a) and (3.b).

4. Select the 4-tuple with the lowest error combined over all global error measures.

Unfortunately, we were not able to achieve a plausible calibration result with this method.
Possible reasons for the failed calibration may be too little available data covering all traffic
states, i.e. free flow and congested flow. Another possibility may be a low agreement between
floating car and stationary detector data, caused by the relatively high sampling intervals of the
floating car data or the biased space-mean velocities obtained by the stationary sensors.

A different approach would be the calibration of the parameters based on the travel-time
measurements. The travel times obtained by an ANPR system and the travel times obtained
from a spatio-temporal reconstruction share a high degree of agreement. However, calibration
based on travel times is not practical either, as the comparable quantities imply a high degree
of aggregation. A velocity field reconstructed through the ASM by using floating car data
from May 21, 2013 as well as the extracted travel times are illustrated in Fig. 7.9, whereby
the parameters26 have been selected with an “educated guess”. The congestion pattern may
be caused by capacity overload at Knoten Prater, i.e. at road kilometre x ≈ 0 km, and agrees
structurally with congestion patterns caused by permanent bottlenecks that were observed on
German motorways [1, p. 100].

Figure 7.8: Illustration of available data from the project REFEREE, from May 21, 2013 in driving direction
north-west: The blue dots represent the real data, the estimated velocities are represented by the
coloured lines. Further, the dashed, horizontal lines indicate the positions of the stationary
detectors.

26 Parameters: σ = 750 m, τ = 150 s, cfree = 70 km h−1, ccong = −16 km h−1, Vthr = 60 km h−1, and ∆V =
20 km h−1.
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(a) Reconstruction (b) Travel times

Figure 7.9: A reconstructed velocity field by the ASM is illustrated in (a) obtained on the basis of trajectory
data illustrated in Fig. 7.8. The locations of the ANPR cameras are indicated by the dashed
lines. The measured travel times in (b) agree with the travel times obtained from (a).

7.3 Behaviour of ASM-based Methods

In this section we describe several experiments focussing on the behaviour of ASM-based methods
with respect to the “quality” of the input data. As the methods are applicable for both Eulerian
and Lagrangian data, we evaluate the impact of (1) spatio-temporal input data density, (2)
randomly missing input data, (3) biased measurements, and (4) the presence of measurement
noise. The quality of reconstruction was evaluated with the well known error measures RMSE,
MAPE, MPE, and SPE as summarised in Appendix C.

In order to investigate the impact of data-density without presence of measurement noise
the experiments were performed on the basis of synthetically generated data obtained from the
aforementioned microsimulation framework. The simulation model is calibrated to represent the
traffic conditions on a normal weekday between 17:00 and 18:00. The simulated traffic congestion
(illustrated in Fig. 7.10(a)) is triggered by a short speed restriction of 15 km h−1, taking effect
over 1050 s. The main wave-front propagates with with less than −8 km h−1 upstream, while the
characteristic shock-wave velocity of −16 km h−1 can be observed in the oscillations at the tail
of the congestion pattern. Please note that typical congestion patterns on Austrian motorways
may remain over several hours as illustrated in Fig. 7.9. Consequently, the used test-patterns
have different shapes than observed patterns in real-world. In this context, the same traffic
specific algorithm parameters27 were used for each experiment described below.

Below, we describe experiments conducted without presence of measurement noise: on the
basis of stationary detector data only in Sec. 7.3.1, on the basis of floating car data only in
Sec. 7.3.2, and the combination of both data-sources in Sec. 7.3.3; followed by experiments with
the presence of noise in Sec. 7.3.4.

7.3.1 Stationary Input-Data Only

The subsequent section provides the description of experiments limited to stationary input-data
only. In this context, the same data-dependent interpolation kernel parameters were used for
each experiment with stationary detector data, namely σSt = ∆x/2 and τSt = 60 s. The first
two experiments can be seen as “case studies”, whereas all other experiments rely on multiple
runs of individual, random cases.

27 Algorithm parameters: cfree = 70 km h−1, ccong = −15 km h−1, Vthr = 60 km h−1, and ∆V = 20 km h−1;
Reconstruction resolution: ∆xrec = 50 m and ∆trec = 30 s.
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Availability of Stationary Detectors

This experiment evaluates the impact of the presence of particular stationary sensors. Starting
with a detector density greater than at the real test-site, i.e. ∆x ≈ 600 m, stationary sensors are
removed consecutively. The ground-truth and different reconstructed spatio-temporal velocity
fields are illustrated in Fig. 7.10.

(a) Ground-truth (b) All sensors

(c) Two less sensors (d) Five less sensors

Figure 7.10: Spatio-temporal velocity fields, including the ground-truth in (a) and the respective reconstruc-
tions based on different number of stationary sensors in (b)–(d). The distinct area of low
velocities in the ground-truth data is marked with the black dashed line.

Through this method we are able to reconstruct the congestion pattern, although the velocities
in the congestion area are over-estimated. This phenomenon can also be observed for the
extracted travel times as illustrated in Fig. 7.11, whereby the quality of extracted travel times is
not satisfying regardless the number of present sensors. One reason for this may be the difference
between time-mean and space-mean velocity as mentioned in Sec. 2.1.2. Furthermore, rising
detector-distances imply increasing interpolation kernel parameters σ and τ and consequently
softer transitions between the different traffic states.

In sum, the quality of reconstruction depends mainly on the density of the input data, as well
as on the congestion pattern, and the relative alignment between sensors and the congestion
pattern. As a consequence the error does not depend directly on the number of stationary
sensors as illustrated in Fig. 7.12. For example, every error measure is higher with one removed
sensor than with two removed sensors. These findings are also confirmed by the experiment
described below.

Randomly Missing Data-Points

The main finding of the previous experiment is, that in some cases a higher amount of input data
may produce inferior reconstruction results. Thus, the following experiment evaluates the impact
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Figure 7.11: Extracted travel times from ground-truth data compared to travel times obtained from recon-
structed velocity fields. In areas of congestion, the velocities are over-estimated and as a con-
sequence the travel times are under-estimated.
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Figure 7.12: Global error measures in relation to the number of removed sensors. The overall error does not
directly depend on the number of removed sensors, but rather on the relative alignment between
the traffic sensors and the respective congestion pattern.

of randomly missing data. Starting with input-data from all stationary detectors as illustrated
in Fig. 7.10(b), data-points are removed randomly at each stationary sensor where the location
in time is equally probable on the overall time-range. Because the quality of reconstruction
depends on the individual locations of the missing data points, each experiment was performed
200 times28. Box plots of global error measures subject to the relative amount of missing data
are shown in Fig. 7.13.

It is possible to draw the following conclusions from this experiment: On average, the ASM
is not sensitive against randomly missing data. Even with an increasing amount of randomly
missing data, the performances of individual reconstructions are subject to great variation.
Furthermore, the MPE and the extracted travel times from the previous two experiments indicate
a positive bias in the estimated velocity field. This goes in line with the respective theory
regarding time-aggregation of velocities. In the subsequent experiment, we examine a simple
method for for bias correction.

Velocity Bias Correction.

In this experiment we investigate a simple method for correction of the velocity-bias as already in-
troduced in Sec. 5.2. All mentioned estimation algorithms require as input data space-aggregated

28 A higher number of runs would be better. However, this is not practicable due to computing time reasons.
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(a) (b)

(c) (d)

Figure 7.13: Box plots of estimator performance based on data from stationary detectors are subject to the
relative amount of repeated randomly missing data (200 runs). The respective performance
highly varies depending on the individual case. However, the average performance is not influ-
enced by randomly missing data.

velocities Vs. Anyhow, stationary sensors aggregate individual vehicle velocities to time averages
Vt. Let us recapitulate the relation stated in eq. (5.10)

Vs = Vt ·
(

1

2
+

√
1

4
− CV 2

V

)
,

when assuming a constant CVV , it is possible to write

Vs ≈ Vt · κcorr, (7.9)

where κcorr is a constant bias-correction factor.

In this experiment, we performed a bias correction as stated in eq. (7.9) with input-data from
stationary detectors as illustrated in Fig. 7.10(b). The correction-factor κcorr is varied in the
range [0.9, 1] which corresponds to a CVV in the range of [0.3, 0]. The resulting global error
measures and extracted travel times are shown in Fig. 7.14 and 7.15, respectively. As the global
error measures do not share a common minimum, we propose the minimum RMSE for selection
of a optimal correction factor, which yields κcorr = 0.97. However, with this method it is only
possible to reduce the MAPE from approximately 19 % to 15 % which is a strong indicator for
a remaining systematic error. This phenomenon can also be observed at the extracted travel
times in Fig. 7.15: especially for low velocities (and high travel times) there still remains a
large bias; only for free flow traffic conditions, the presented method can perform a sufficient
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Figure 7.14: Global error measures in linear relation to a bias correction factor κcorr, where the plot-mark
indicates the respective minimum. The error measures do not have a common minimum and
therefore we propose the use of κcorr = 0.97 or the respective CVV of 17 %.
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Figure 7.15: Illustration of the influence of different bias correction factors κcorr on travel times obtained
from a spatio-temporal velocity field: It is obvious, that the method can not compensate the bias
for low velocities.

error correction. Hereinafter, we performed all remaining experiments with a bias correction
factor of κcorr = 0.97, although the use of a more sophisticated bias correction method would
be advisable.

7.3.2 Floating Car Data

A description of experiments with the ASM, just limited to input-data from floating cars, is
provided in the following. Those experiments try to evaluate the impact of the density of FC data
on the reconstruction performance. The FC data was obtained from the same microsimulation
as used in the previous experiments (illustrated in Fig. 7.10(a)). In general, the density of FC
data is affected by two parameters, namely the GPS sampling time interval ∆T and the relative
frequency of the FC. The FC frequency indicates the relative amount of GPS equipped vehicles
present in the total flow. Moreover, all FC trajectories follow the momentary flow velocity in the
spatio-temporal plane (cf. Fig. 6.5), and therefore it is difficult to formulate a rule for selection of
the data-dependent interpolation kernel parameters σ and τ applicable for this category of data.
In order to find appropriate parameters we performed a search based on ASM reconstruction
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followed by the evaluation of

{σFC, τFC} = arg min
{σFC,τFC}

RMSE (7.10)

with respect to different FC frequencies in the range of 0.1-6 %. The resulting parameters are
illustrated in Fig. 7.16. However, in some cases especially with relatively low FC frequencies, tra-
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Figure 7.16: Illustration of the data-dependent parameters σFC and τFC with respect to the relative FC rate
used in the subsequent experiments.

jectories may be distributed irregularly over the spatio-temporal plane and thus, the respective
filter parameters may be too small.

The experiments below analyse not only the impact of the relative frequency of floating cars,
but also the effect of different trajectory time sampling intervals ∆T . In order to draw meaningful
inferences, every experiment is repeated 50 times29 with a different sample of floating cars30.

Relative Frequency of Floating Cars

This experiment evaluates the influence of the relative FC frequency. Thus, we performed
an ASM reconstruction with trajectories having a time sampling rate of ∆T = 1 s where the
frequency of the FC was varied in the range of 0.1-6 %. Both, individual outcomes, and the
respective mean values of the global error measures are illustrated in Fig. 7.17.

The evolution of the algorithm performance is comparable for all error measures which can
be summarised as follows: every error measure is nearly constant above FC frequencies larger
than 1 %; below a frequency of 1 % the performance is deteriorating rapidly. At present, an
FC frequency of 1 % is an unrealistic scenario on Austrian motorways. In reality however, a
coarser scale of reconstruction over a larger spatio-temporal area may be of interest (see also:
real-world congestion pattern in Fig. 7.9). The relative FC frequency has no direct impact on
the ASM performance, rather the number of FC trajectories available in the reconstruction time
period. The actual relation between the FC frequency and the average number of FC in the
reconstruction time frame is shown in Fig. 7.18. In general, the gradient of the straight line
depends linearly on the particular reconstruction time period, i.e. 3500 s in this case.

In contrast to ASM reconstructions obtained from stationary detector data, reconstructions
solely based on FC data are not biased. This fact is indicated by the low MPE (illustrated in
Fig. 7.17(c)) and the better agreement of the extracted travel times obtained from reconstruc-
tions and from ground truth data as illustrated in Fig. 7.19.

29 A higher number of runs would be better. However, this is not practicable due to computing time reasons.
30 Evenly sampled from a pool of FC trajectories reflecting a relative FC rate of 20 %.
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(a) (b)

(c) (d)

Figure 7.17: Illustration of estimator performance subject to the relative amount of floating car trajectories
for repeated experiments, i.e. 50 times. The performance highly depends on the number of
trajectories located within the reconstruction area.
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Figure 7.18: Relation between the relative rate of floating cars and the respective number of floating cars in
the reconstruction region, i.e. in the valid simulation time-period from t = 1900 s to t = 5400 s.

Time-domain GPS Sampling Rate.

This section describes an experiment regarding the influence of the FC trajectory sampling time-
interval ∆T . The previous experiment was repeated with different ∆T , namely 5 s, 10 s and 20 s.
We were not able to recognise a qualitative difference in mean and variance of the global error
measures, and therefore no additional plots are included. A similar behaviour can be observed
for extracted travel times, except that they show a slightly higher variation for higher ∆T . In
sum, it is possible to state that ∆T has a low influence on the quality of a reconstruction by the
ASM, except when FC velocities have to be estimated from coordinates as described in Sec. 7.1.
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Figure 7.19: Calculated travel times obtained from a spatio-temporal reconstruction for different rates of
floating cars (50 runs). On average the travel times correspond well with the travel times
obtained from the ground-truth field.

7.3.3 Reconstruction with Combined Data-Sources – Data Fusion

This section describes our conducted experiments with focus on ASM variants suitable for het-
erogeneous input data, namely the GASM and the EGTF. As these experiments were performed
without presence of measurement noise, all noise dependent algorithm parameters can be ignored
for both algorithms.

Again, the input data was obtained from the same microsimulation as used in the previous
experiments (illustrated in Fig. 7.10(a)) and can be characterised as follows: 14 stationary
detectors provide one-minute aggregated velocity and flow data; floating car trajectories also
have velocity information and a minimal sampling time interval of ∆T = 1 s.

Fusion by Linear Combination – GASM

This section describes experiments regarding the GASM (described in Sec. 4.5.2). In short, the
GASM principally performs data fusion by linear combination of spatio-temporal velocity fields,
which can be written for two data sources as follows

V = α · VSt + [1− α] · VFC, (7.11)

where VSt and VFC are obtained by preceding reconstructions by the ASM from stationary and
FC data, respectively. Treiber et al. propose a rule for selection of the weighting factor α in
(eq. (4.27)) which mainly depends on the error-variance (i.e. Var(∆v)) of the respective input
data. In the current experimental setting no measurement noise is present, which yields equal
weights of α = 0.5.

However, that rule ignores the density of the input data. Therefore, the objective of this
experiment is to evaluate the algorithm performance with respect to the actual value of α and
different rates of floating cars; data from stationary sensors is constant. Once again, the experi-
ments were performed repeatedly (50 runs) with a new sample of floating cars for every run. The
resulting average error measures are illustrated in Fig. 7.20 and can be summarised as follows:
Only for sufficiently high FC rates of approximately ≥ 5 %, the minimum RMSE is reached with
equal weighting of each data source, i.e. α = 0.5. But with declining rates of available FC data,
the minimum RMSE is moving continuously towards α = 1 as illustrated in Fig. 7.20(a). All
other error measures indicate an optimal performance with α = 0 which is caused by the high
residual bias in the stationary flow field VSt (see Sec. 7.3.1). This bias-phenomenon can also be
observed at the mean travel times belonging to the experiment illustrated in Fig. 7.21: With
an ascending weighting factor α, the bias in travel time increases steadily. One more time, the
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Figure 7.20: Average performance of the GASM for different weighting factors α without the presence of
measurement noise (50 runs). The RMSE indicates a optimal performance with equal weights
only for high FC rates (a), whereas the other error measures still indicate a large bias in the
flow field obtained from stationary detector data (b)–(d).
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Figure 7.21: Illustration of extracted travel times from a GASM based reconstruction (FC frequency of 0.7 %,
50 runs): (a) mean travel times w.r.t. the weighting factor α (in the range of [0, 1]), and (b)
mean travel times and standard deviation for α = 0.5.

outcomes of the experiment are strongly affected by the bias of the velocity data obtained from
stationary detectors.
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Fusion with the EGTF

In this section we describe an experiment regarding the EGTF method (described in Sec. 4.5.3).
The method is i.a. comprised of two noise dependent parameters for each data source j, namely
Θ(j) and µ(j), which allow an adequate weighting with respect to the corresponding noise levels.
As the data originating from microsimulation is not comprised of measurement errors one can set
Θ(j) = 1 and µ(j) = 0. In contrast to the GASM, the EGTF is weighting each data source with
respect to its actual data density. Thus, not only the relative FC rate but also the trajectory
time sampling interval ∆T are of interest. A reconstruction based on the EGTF was performed
using the same input data as in the previous section for a relative FC rate in the range of
0.1−2 % and time sampling intervals of ∆T of 1 s, 5 s, 10 s and 20 s. The respective mean global
errors are illustrated in Fig. 7.22.
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Figure 7.22: Average error measures of the EGTF method for different floating cars and trajectory sampling
time intervals ∆T (50 runs). The RMSE surprisingly indicates the best performance with the
largest ∆T (a), whereas all other measures indicate the best performance with the lowest ∆T .

As might be expected, almost every error measure reaches a minimum at the maximum relative
flow of floating cars and the minimum ∆T . However, this is not true for the RMSE, where the
minimum is achieved with ∆T = 20 s, which may be explained by the fact that on the basis of
data from stationary detectors it is possible to achieve a lower RMSE when compared to FC
data (compare Sec. 7.3.1 and Sec. 7.3.2). Furthermore, the trajectory sampling interval ∆T has
an influence on the number of data points in the MBR A(x, t), and thus the respective weighting
gets influenced implicitly. Extracted travel times for a constant ∆T = 1 s and different flow rates
are illustrated in Fig. 7.23. Even for very low FC rates of 0.3 % travel times extracted from a
reconstruction show a relatively low structural bias indicated by an MPE of approximately 3 %.
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Figure 7.23: Illustration of mean travel times obtained from an EGTF based reconstruction for different
rates of floating cars and a trajectory sampling time interval of ∆T = 1 s (50 runs). Even with
a low FC rate the method is able to estimate the travel time adequately.

.

In summary, with both data-fusion methods it is possible to achieve notable enhancements
in the reconstruction quality when compared to similar methods performed with data from
stationary detectors only. For the GASM on the other hand, such improvements are only
possible under the provision that the floating car data is available with an adequately high spatio-
temporal resolution. In general, the EGTF outperforms the GASM, especially with respect to
the density of the required FC data and its ability to correct the velocity bias.

7.3.4 ASM Performance under the Presence of Noise

In this section we provide information about the performance of the ASM method with respect
to the presence of noise. As already mentioned in Chapter 5, it is difficult to gather information
about the real measurement errors from sensor manufacturers. In order to be able to perform
a simulation of measurement noise nonetheless, it is necessary to make certain assumptions:
(1) The probability density (pdf) of the noise sources is assumed to be known, i.e. Gaussian
distributed in the most cases; (2) The indicated uncertainty-ranges are interpreted as the ±3σ
region of the Gaussian curve.

Due to time reasons, we solely examined the performance of the ASM, i.e. the reconstruction
based on a single data source only. A description of the experiments with stationary- and floating
car data is provided in the following two sections.

Erroneous Stationary Detector Data

This section describes our experiments regarding the ASM with respect to erroneous measure-
ments31 performed by stationary velocity sensors. At a stationary detector, individual vehicle
velocities vα are aggregated to one-minute time averages vi. When assuming a Gaussian mea-
surement noise model, denoted by

vi ≈ vα,i + ηv,i with ηv,i ∼ N (0, ση,i), (7.12)

vα,i represents the time-aggregated velocity absence of noise. Further, ση,i depends on the single-
vehicle error variance ση and the momentary flow rate in the respective aggregation interval as

31 Only random errors, to be precise.
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follows:

ση,i =
ση√
qi
. (7.13)

The experiments were performed repeatedly (i.e. 200 runs) on the basis of 14 stationary detectors
as illustrated in Fig. 7.10(a) whereby the error variance ση was varied in the range of 0−0.46 m s−1

which corresponds to specified uncertainties in the range of 0−±10 km h−1 (cf. Tab. 5.2). The
respective mean and standard deviation of the global error measures are shown in Fig. 7.24. The

0 0.2 0.4

2.618

2.619

2.620

2.621

ση in m/s

R
M

S
E

in
m

/
s

0

5 · 10−4

1 · 10−3

1.5 · 10−3

σ̂
(R

M
S

E
)

in
m

s−
1

RMSE

σ̂(RMSE)

(a)

0 0.2 0.4
0.2338

0.2340

0.2342

0.2344

ση in m/s
M

A
P

E
in

10
0

%

0

1 · 10−4

2 · 10−4

3 · 10−4

σ̂
(M

A
P

E
)

in
1
0
0

%

MAPE

σ̂(MAPE)

(b)

0 0.2 0.4
0.1534

0.1536

0.1538

0.1540

ση in m/s

M
P

E
in

10
0

%

0

1 · 10−4

2 · 10−4

3 · 10−4

σ̂
(M

P
E

)
in

10
0

%

MPE

σ̂(MPE)

(c)

0 0.2 0.4
0.5900

0.5905

0.5910

0.5915

ση in m/s

S
P

E
in

10
0

%

0

2 · 10−4

4 · 10−4

6 · 10−4

8 · 10−4

σ̂
(S

P
E

)
in

1
0
0

%

SPE

σ̂(SPE)

(d)

Figure 7.24: Mean and standard deviation s of the global error measures obtained by ASM based reconstruc-
tion from noisy input data with respect to the levels of measurement noise.

.

outcomes are comparable for each error measure and can be summarised as follows: The average
performance may be assumed as independent, while the standard deviation σ̂ almost linearly
depends on ση. Nevertheless, the influence of the noise is comparably low in contrast to the
influence of the relative alignment between the respective congestion pattern and the available
data (cf. Fig. 7.13).

Erroneous Floating Car Data

This section describes our experiments regarding the ASM with respect to erroneous measure-
ments performed by GPS receivers under the assumption that both, position and velocity infor-
mation are available. The CEP is a common measure for the position error, which is specified
at around 3 m for modern GPS receivers. Furthermore, when GPS position errors are assumed
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to be bivariate Gaussian, the standard deviation σx,y is directly related to the CEP by

σx,y = 0.85 · CEP. (7.14)

For velocity measurements based on the Doppler effect, one may expect a measurement uncer-
tainty of ±0.1 m s−1, which corresponds to a σ∆v of 1/30 m s−1 under the assumption of Gaussian
distributed measurement errors. On the other hand, with finite difference based velocity esti-
mation methods one has to expect much larger standard deviations, e.g. σ∆v ≈ 4 m s−1 for high
∆T .

On the basis of floating car data with a constant flow rate of 2 % and a time sampling interval
∆T = 1 s, we performed a repeated reconstruction by the ASM, where the parameters CEP
and σ∆v were varied in the ranges of 0− 10 m and 1/30 – 4 m s−1, respectively (50 runs for every
tuple of CEP and σ∆v). Mean and standard deviation of the obtained global error measures
are illustrated in Fig. 7.25.

The findings of the experiment can be summarised as follows: Both, the average RMSE and
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Figure 7.25: Comparison of mean and variance of global error measures obtained from repeated ASM recon-
structions (50 runs) with respect to the CEP and σv plotted against the horizontal axis and as
particular curves, respectively.

MAPE increase with the CEP and σ∆v, whereas the MPE as an indicator of the structural bias
remains relatively constant. Overall, these experimental findings are comparable with those of
the preceding experiment based on stationary detector data. It is possible to notice an impact
of measurement noise on the reconstruction quality. However, this impact is comparably low
in contrast to the density of available input data which has the largest impact on the final
reconstruction quality.

7.4 Summary

This chapter gave an overview of most of the relevant experiments conducted within this thesis.
First, we evaluated the performance of relatively simple floating car velocity estimation methods
based on finite differences. In general, such methodologies can be used where floating car velocity
information is not available directly, as it was the case for floating car trajectories collected
within the project REFEREE. The experiments show that the expected error variances may be
remarkably higher when compared to velocities obtained by a GPS device immediately. Hence,
we absolutely recommend the instantaneous acquisition of floating car velocities, either by GPS
or by an odometer.

Second, we described the results of two different approaches for calibration: (1) The steady
state traffic flow model after Van Aerde and Rakha (velocity-density relation) was calibrated
separately for each cross-sectional sensor. (2) An attempt has been made to find optimal pa-
rameters for an ASM-based velocity field reconstruction with floating car data from the project
REFEREE as input-data and cross-sectional data as validation-data. Unfortunately, the used
real-world data was not very suitable for the proposed calibration approaches. On the one hand,
the amount of data from stationary detectors representing congested traffic conditions was too
low. On the other hand, the floating car trajectories were available without velocity information
and only with a relatively low trajectory density. Furthermore, the used floating car data and
cross-sectional data were insufficiently consistent with each other. Nevertheless, with the first
calibration approach, we were able to indicate a point of improvement of the ASM, namely the
use of a spatially varying Vthr(x).

Finally, we provided comprehensive information about experiments with the ASM algorithm
family with special focus on their sensitivity concerning the quality of the input data. We were
able to identify (1) the bias of time aggregated velocities, (2) the density of the available data,
and (3) the relative alignment between the data and the particular congestion patterns as those
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properties of the input data with the highest impact on the estimation quality. With this in
mind, it is obvious, that with a reconstruction obtained by the EGTF it is possible to achieve
better results when compared to estimation from single data sources.
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8
Conclusion

This thesis not only covered a comprehensive literature review, but also provided information
about the efficient implementation, as well as an evaluation of traffic state estimation methods
suitable for the Austrian motorway system. As required, we discussed state estimation methods
suitable for homogeneous as well as heterogeneous data sources, such as data from stationary
detectors and GPS equipped floating cars.

Our literature review focussed on the following aspects: an introduction to the basic terms of
traffic engineering, followed by an overview of state-of-the-art methodologies for dynamic traffic
flow modelling, as well as an overview of applicable data-fusion concepts. Under consideration of
our research objective we introduced the categories of dynamic traffic flow models and covered
the whole spectrum of first-order macroscopic traffic flow models, as they are most likely appli-
cable for fusion of heterogeneous traffic data. Building on those models, we not only provided
different concepts of data-fusion well-known in traffic engineering (e.g. Kalman filtering meth-
ods), but also outlined concepts popular in other fields of science (e.g. Newtonian relaxation
methods and 4D-Var methods). As the thesis was developed in cooperation with two univer-
sity institutes of different specialised backgrounds32, it was taken into account that people with
either one of the backgrounds are able to comprehend this work.

Furthermore, we provided an overview of our test-site, the Austrian A4 motorway includ-
ing a detailed discussion of all available data sources. As those sources were important for a
final data-fusion, we put special focus on required data preprocessing steps and the common
measurement uncertainties. Beyond this, we implemented the heuristic traffic state estimation
algorithms ASM, GASM, and EGTF, with some of them being suitable for incorporating spatio-
temporal velocity information from heterogeneous sources. In order to evaluate those methods
we implemented a complete evaluation system on the basis of PTV-VISSIM and MATLAB,
which allows the generation of synthetic traffic data for both traffic state estimation and subse-
quent validation purposes. Building on this evaluation system, we conducted a comprehensive
experimental evaluation of (1) required preprocessing methods and (2) the implemented state
estimation methods. Lastly, we outlined two approaches for calibration of the ASM on the basis
of real world data.

Although open questions regarding the methods under investigation still remain, further re-
search within this thesis is not possible due to time issues. The same also applies to the proposed
implementation of a second traffic state estimation method.

32 Namely civil engineering and electrical engineering.
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Before finishing this thesis with a final outlook we provide a number of practical considerations
about working with heterogeneous data and a summary of our main findings and results.

Lessons Learned – Practical Considerations

1. The general idea of data-fusion is to combine information from different data sources in
order to improve the quality of knowledge about a dynamic system. By its nature, het-
erogenous data is likely to be obtained by different external organisations, e.g. stationary
data by the ASFINAG, and thus it is not possible to gather data on demand. Furthermore,
a data inquiry may go along with long delivery times or might not even cannot be fulfilled
at all.

2. Even if sufficient quantities of data from different sources are available in the same spatio-
temporal frame, it is not guaranteed that the data is well posed for conducting exper-
iments. For example, when the data is obtained solely under free-flow conditions the
spatio-temporal field may contain too little information in order to carry out certain anal-
yses.

3. In the beginning, the required effort for data-preprocessing (e.g. trajectory matching, tra-
jectory velocity estimation, and velocity bias correction) had been underestimated. Even
if these tasks are not connected directly to our main research objective, they have a sig-
nificant effect on the performance of the discussed data-fusion methods.

4. Because of the aforementioned reasons we propose microsimulation software as the tool
of choice for a comprehensive evaluation of traffic state estimation methods, with the
only drawback that data from microsimulation may not agree in detail with real-world
measurements.

Main Contributions and Results

1. The detailed record of contemporary first-order macroscopic traffic modelling techniques
and respective estimation algorithms was created on the basis of a variety of individual
scientific publications. At the moment no similar survey about this topic is known. There-
fore, this thesis should enable the readers to become a more holistic view of that topic.

2. It was possible to show, that a velocity field reconstruction on Austrian motorways based
on the ASM can produce satisfactory results when using a single data-source. Even better
results can be achieved by combining more data-sources by using the EGTF (stationary
detectors and floating cars). However, both categories of data-sources imply advantages
and disadvantages. Considering data from stationary detectors it is easy to specify ap-
propriate interpolation kernel parameters σ and τ on the basis of average data spacings.
However, a velocity bias correction is mandatory. In the case of floating car data, which
is irregularly distributed the mentioned parameters cannot be tuned by a rule of thumb.
But the positive aspect here is that floating car data is not comprised of any bias.

3. For the ASM, Treiber and Helbing propose a spatio-temporally constant threshold velocity
Vthr for the differentiation between free-flow and congested traffic conditions (cf. 4.20).
But our experiments show that for our test-site the optimal velocity vopt is increasing
continuously with rising distance to the city centre. (This behaviour may be generally
expected for urban motorways.) By introducing a spatially varying Vthr(x) we were able to
slightly improve the results under the presence of homogeneous congested traffic patterns.
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Even greater improvements may be expected under the presence of triggered stop or go
patterns or oscillating congested traffic.

4. The evaluation of reconstructed velocity fields obtained with data from the real traffic
system may be difficult, as the acquisition of reference measurements along the road section
is an expensive task. The comparison of extracted travel times from a spatio-temporal
velocity field with travel time data obtained with an ANPR system may be a feasible and
more economic way to evaluate the quality of a velocity field reconstruction with regard
to traffic dynamics and bias (cf. Fig. 7.9 and 7.19).

Outlook

As mentioned throughout the thesis, several open issues regarding our research still remain: (1)
The velocity bias correction scheme by multiplication is not able to reduce the bias adequately.
Thus, we propose the implementation of a more sophisticated correction method, e.g. the method
proposed by Yuan [85]. (2) The congestion pattern extensively used for evaluation has a different
structure than the congestion patterns observed in the real world. In this regard, the conducted
experiments may not be representative of real-world traffic conditions. Therefore, the range of
validity of the VISSIM model used has to be extended by several hours. In order to generate
realistic congestion patterns, it may be necessary to control VISSIM via the COM programming
interface. (3) Floating car velocity informations can be measured by the Doppler effect with
relatively low measurement errors, but such velocity information is not available sometimes.
On the other hand, simple finite difference based methods, i.e. forward/backward difference or
PCHIP, come with comparatively high error variances. A systematic investigation of different
state-of-the-art vehicle velocity estimation methods would provide further assistance to that
research objective. (4) Finally, we were able to identify several promising data-fusion methods
within our literature review. However, it is not possible to evaluate all of them within a single
master’s thesis. Consequently, we propose the scheduling of follow-up themes with focus on
evaluation of modern data fusion concepts, e.g. based on model the formulation in Lagrangian
coordinates or on variational formulation.
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Traffic Data Fusion

A
WGS84 Datum Resolution

The WGS84 datum is denoted in polar coordinates, namely longitude and latitude, and thus
represents angles in the range of 0-180° and 0-90°, respectively. This implies that the numerical
resolution of the geospatial datum does not reflect the spatial resolution on the spherical surface
directly, i.e. the spacing of lines of longitude varies with the latitude as illustrated in Fig. A.1.

Figure A.1: The WGS84 coordinate system with polar coordinates (Source: [115])

In the following, we want specify the spatial resolution of a geodetic datum depending on the
number of decimal places. Hereafter, the shape of the earth is simplified with an exact sphere.
By the definition of the sea-mile [95], the spatial distance between two meridians differing in one
arc-minute at a great circle, e.g. the equator, is dminute,lon ≈ 1 seamile = 1852 m. Consequently,
the distance between two lines of latitude differing in one degree is

ddeg,lat = 60 · dminute,lat = 111 120 m = const. (A.1)

The circumference of small circles for a given latitude is given by the great-circle circumference
multiplied with the cosine of the latitude. Thus, the distance between two meridians also depends
on the cosine of the particular latitude lat as

ddeg,lon = ddeg,lat · cos(lat). (A.2)

The spatial resolutions for equatorial regions and the Vienna region, i.e. with a latitude of
approximately 48°, are summarised in Tab. A.1.
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A WGS84 Datum Resolution

Resolution in m

Longitude

Decimal places Step-width Latitude 0° 48°

0 1° 111120 111120 74353
1 0.1° 11112 11112 7435
2 0.01° 1111 1111 743
3 0.001° 111 111 74.3
4 0.0001° 11.1 11.1 7.43
5 0.000 01° 1.11 1.11 0.743
6 0.000 001° 0.11 0.11 0.074

Table A.1: Spatial resolution of WGS84 dates in decimal format depending on the number of decimal places
for equatorial and Vienna region (latitude of approx. 48°).
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Traffic Data Fusion

B
Calibration

In this section we provide the complete results of the calibration methodology described in
Sec. 7.2. The diagrams in Fig. B.1 and B.2 illustrate the calibration results, while Tab. B.1
provides the information in tabular form. Additionally, the fitted curves for every particular
stationary sensor are illustrated in Fig. B.3 and B.4.
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Figure B.1: Graphs representing the relevant results v0, vopt, and qmax of the mentioned calibration proce-
dure, where invalid results are colored in grey.
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Figure B.2: Illustration of the characteristic velocities cfree and ccong derived from the calibrated van Aerde
model: The methodology is able to provide realistic calibration results for cfree (a). However,
there was not enough data to achieve plausible calibration results for ccong (b).

(a) Direction east

x c1 c2 c3 v0 vopt qmax cf cc

in m in m in m2 s−1 in s−1 in m s−1 in m s−1 in veh/s in m s−1 in m s−1

230 3.42 40.45 0.31 22.34 14.07 1.11 18.19 -11.80

875 1.00 19.69 0.50 23.87 14.28 1.40 20.48 -3.33

2065 3.93 11.57 0.52 25.36 19.18 1.22 23.56 -8.02

2975 7.34 14.21 0.21 25.28 19.96 1.40 23.21 -30.36

4296 5.90 24.98 0.39 27.79 20.38 1.18 24.94 -15.12

6465 5.54 46.36 0.63 29.93 20.40 0.88 26.25 -9.97

8530 2.47 24.14 0.51 30.55 20.47 1.34 27.29 -5.95

10000 2.39 33.87 0.47 34.08 22.10 1.43 29.91 -6.65

11597 1.95 45.60 0.52 34.18 20.87 1.28 29.30 -5.68

11693 1.37 12.77 1.15 28.92 19.37 0.77 27.48 -1.55

13790 3.29 65.22 0.50 32.97 20.44 1.09 27.60 -8.93

(b) Direction west

x c1 c2 c3 v0 vopt qmax cf cc

in m in m in m2 s−1 in s−1 in m s−1 in m s−1 in veh/s in m s−1 in m s−1

85 3.56 51.55 0.98 24.88 15.49 0.64 21.26 -5.11

425 4.16 24.44 0.32 23.94 16.58 1.30 20.74 -13.22

1000 2.44 11.17 0.49 23.79 16.97 1.36 21.74 -5.53

1455 4.84 74.94 0.06 27.48 17.17 1.31 21.53 -32.25

2205 1.43 15.55 0.59 25.62 16.57 1.27 23.04 -3.24

3200 3.89 52.09 0.27 28.19 17.98 1.30 23.13 -15.21

4800 5.66 39.91 0.26 28.66 19.84 1.29 24.60 -20.12

6120 6.17 40.59 0.21 28.54 19.92 1.33 24.44 -25.23

6900 6.95 34.99 0.23 28.05 20.18 1.26 24.47 -25.98

7490 6.09 23.91 0.46 29.34 21.84 1.12 26.71 -13.40

7930 4.54 10.46 1.06 29.45 23.20 0.75 28.37 -4.55

8700 6.84 37.63 0.16 30.45 21.88 1.49 26.42 -33.47

10400 7.38 71.51 0.00 32.72 22.14 1.57 26.79 -72.78

11693 12.60 36.53 0.00 28.88 22.18 1.23 25.63 -132.52

11900 2.93 287.47 0.00 39.60 21.48 1.14 28.03 -35.20

13500 7.69 115.80 0.00 33.96 21.85 1.27 26.91 -59.67

Table B.1: Numerical results of the performed calibration methodology based on the model after van Aerde
and Rakha.
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(c) 2065

(d) 2975
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(f) 6465

(g) 8530

(h) 10000

(i) 11597

(j) 11693: incorrect fitting
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(k) 13790

Figure B.3: Detailed overview of fitted models for every single stationary detector in driving direction east.
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(d) 1455

(e) 2205

(f) 3200

(g) 4800

(h) 6120
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(i) 6900

(j) 7490

(k) 7930: strong capacity-drop

(l) 8700

(m) 10400
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(n) 11693

(o) 11900: incorrect fit of v0

(p) 13500

Figure B.4: Detailed overview of fitted models for every single stationary detector in direction west.
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Traffic Data Fusion

C
Global Performance Measures

Global performance measures evaluate the error of an estimated quantity ẑi compared to a
(estimated) true quantity zi. We propose the following error measures widely used in traffic
engineering [42–44, 54] for comparison of estimated spatio-temporal fields with ground-truth
data:

Mean Square Error (MSE) and Root Mean Square Error (RMSE) Both errors are strongly
related to the standard deviation and the variance of the error between ẑi and zi, re-
spectively and can be written as

RMSE =
√

MSE with MSE =
1

N

N∑
i=1

(ẑi − zi)2 . (C.1)

The MSE is the second moment of the error, and thus involves both bias and variance of
the error. Because of the square, the (R)MSE puts heavy weight on high errors, and is not
robust against outliers. As the observed quantities and the RMSE share the same units,
it is often interpreted as the “expected” error.

Mean Absolute Percentage (MAPE) The mean of the absolute percentage error (MAPE) can
be written as

MAPE =
1

N

N∑
i=1

∣∣∣∣ ẑi − zizi

∣∣∣∣× 100%. (C.2)

Similar to the (R)MSE above, the MAPE indicates both, variance and bias between esti-
mate and true value.

Due to the division by zi, the MAPE is only defined for quantities zi 6= 0. Further, for zi
close to zero the MAPE gets unreasonably high. This fact also applies for the MPE and
the SPE below.

Mean Percentage Error (MPE) In contrast to the MAPE, the MPE is calculated without tak-
ing the absolute value with

MPE =
1

N

N∑
i=1

ẑi − zi
zi

× 100%, (C.3)
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where positive and negative errors compensate each other. Consequently, the MPE can
be used as a measure for structural bias.

Standard Deviation of the Percentage Error (SPE) The SPE is the standard deviation of the
MPE, and therefore a measure for the variability around the MPE.

SPE =

√
1

N

(
ẑi − zi
zi

−MPE

)2

× 100% (C.4)

All relative error measures are normalised against the true zi. Especially a small zi (e.g.
low velocities caused by a traffic jam) gives a higher weight on the error compared to higher
velocities under free-flow conditions. Every particular error measure comes with drawbacks but
is able to indicate special aspects of the performance. Thus, we recommend a combined use of
the presented error measures.
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D
Software Documentation

In this chapter information about the implemented MATLAB classes is provided. As men-
tioned before, those classes provide the core functionality of the implemented algorithms. Our
implemented functions are well documented and provide basic help wich is accessible via the
commands help or doc.

A graphical representation of the implemented classes in the Unified Modelling Language
(UML) [116] is provided in Fig. D.1 to D.4.

Validation

VissimLinkEvaluation

+ link ids : const uint[]

+ link lens : const float[]

+ direction : uint[0 . . . ∗]
+ time : uint[0 . . . ∗]
+ k : uint[0 . . . ∗]
+ q : uint[0 . . . ∗]
+ v : float[0 . . . ∗]
+ x : uint[0 . . . ∗]

+ load str(src file : string) : obj

+ make grid(dx : uint, dt : uint,

x lim : uint[2], t lim : uint[2] ) :

t : uint[], x : uint[], v : float[]

+ plot( )

Validation

+ rmse(data : float[], estimate : float[]) : float

+ mape(data : float[], estimate : float[]) : float

+ mpe(data : float[], estimate : float[]) : float

+ spe(data : float[], estimate : float[]) : float

+ travel time(t : uint[], x : uint[], v : float[]) :

tt : {float[]},
x tr : {float[]}, t tr : {float[]}, v tr : {float[]}

Figure D.1: UML class diagrams of implemented MATLAB classes required to perform evaluation and val-
idation tasks.
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Figure D.2: UML class diagrams of implemented MATLAB classes for the purpose of storing an preprocess-
ing data records.
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MatlabMixinCopyable
Internal MATLAB
class
Internal MATLAB
class

KestingTreiber

+ data : TrafficData* or FcData*

– time : uint[*]

– v : float[*]

– x : uint[*]

+ sigma : uint

+ tau : uint

+ c f : float

+ c c : float

+ V thr : float

+ delta V : float

+ dx : uint

+ dt : uint

+ direction : uint

+ V c : float[*][*]

+ V f : float[*][*]

+ t range : uint[*]

+ x range : uint[*]

+ KestingTreiber(sigma : float, tau : float, c f : float, c c :

float, V thr : float, delta V : float) : obj

+ load fc( tr : FcData*, direction : uint )

+ load traffic( tr : TrafficData*, direction : uint )

+ calculate fields( dx : uint, dt : uint,

x lim : uint[2], t lim : uint[2] )

+ adaptive velocity filter( )

+ plot( )

– prepare( )

eGTF

+ data : { TrafficData* or FcData* }
– t : {uint[*]}
– v : {float[*]}
– x : {uint[*]}
+ sigma : uint[*]

+ tau : uint[*]

+ c f : float

+ c c : float

+ V thr : float

+ delta V : float

+ dx : uint

+ dt : uint

+ direction : uint

+ V c : {float[*][*]}
+ V f : {float[*][*]}
+ V : {float[*][*]}
+ V : float[*][*]

+ t range : uint[*]

+ x range : uint[*]

+ eGTF(sigma : float[], tau : float[], c f : float, c c :

float, V thr : float, delta V : float) : obj

+ load fc( fc : FcData*, direction : uint )

+ load traffic( tr : TrafficData*, direction : uint )

+ spatioTemporalFilter( )

+ adaptiveVelocityFilter( )

+ fusion( dx : uint, dt : uint,

x lim : uint[2], t lim : uint[2] )

+ plot( )

– prepare( )

Figure D.3: UML class diagrams of implemented MATLAB classes for performing traffic state estimation
and data fusion.
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Calibration

Calibration

+ traffic : TrafficData*

+ q max : float

+ v opt : float

+ c : float[3]

+ v 0 : float

+ c c : float

+ c f : float

+ link ids : const uint[]

+ link lens : const float[]

+ Calibration( traffic : TrafficData* )

+ vanAerde(plt : logical, tex file : string ) : obj

+ vanAerde q v(q : float, c : float[3], v0 : float) : float

+ vanAerde k v(v : float, c : float[3], v0 : float) : float

At the moment we
implemented only
the calibration of the
steady-state model
after van Aerde and
Rakha.

At the moment we
implemented only
the calibration of the
steady-state model
after van Aerde and
Rakha.

Figure D.4: UML class diagram of a implemented MATLAB class in order to perform a calibration of steady
state traffic flow model on the basis of stationary detector data.
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