
Masterarbeit

Connecting Model-Based System

Engineering and AVLab SW Test

Environment

Müslüm Atas

�������������

Institut für Technische Informatik

Technische Universität Graz

Vorstand: Univ.-Prof. Dipl.-Inform.Dr. sc. ETH Kay Uwe Römer

Begutachter: Dipl.-Ing.Dr. techn. Kreiner, Christian Josef

Betreuer: Dipl.-Ing. BSc Macher, Georg Franz Heinrich

Graz, im Oktober 2015

Kurzfassung

Das Hauptziel des Projekts ist, die fehlenden, automatisierten Datenaustauschprozesse
zwischen den System- und Software Engineering-Tools in eingebetteten Automotive-Systeme
zu vernetzen. Solch eingebettete, vernetzte Systeme in der Automobilindustrie sind auf
Grund ihrer Komplexität sehr schwer handzuhaben. Die Steuerung, Entwicklung und
ihre komplizierte technische Kommunikation, dieser miteinander vernetzten �Computer�
erfordert erhöhten Arbeitsaufwand.

Die Luxusautos heutzutage arbeiten mit hunderten elektronischen Steuereinheiten (ECUs)
und mehreren Millionen Code-Zeilen. Diese Steuereinheiten und Code-Zeilen werden oft-
mals in verschiedenen groÿen Institutionen und Teams entwickelt und getestet. Paral-
lel zu diesen Herausforderungen müssen noch zahlreiche funktionelle Sicherheitsstandards
(sowie ISO26262[HHA+10]) und -techniken bei allen Entwicklungsprozessen in der Auto-
mobilindustrie eingehalten werden. Aus diesen Gründen ist es nahezu unmöglich, dass diese
anspruchsvollen Entwicklungsprozesse von Menschen manuell überwacht werden. Um jene
Herausforderung zu meistern, werden in der Regel modellbasierende Entwicklungs- und
automatisierte Datenaustausch-Methoden angewendet.

Ein auf Modellen basierender Entwicklungsansatz verbessert die Konsistenz, Korrek-
theit und Vollständigkeit der Entwicklung und ermöglicht verschiedene Sichtweisen für
eine bessere Produktentwicklung. Ein weiterer Vorteil ist, dass Markteinführung und En-
twicklungsprozesse deutlich e�zienter erfolgen können, wie im laufe dieser Arbeit gezeigt
wird. Der Benutzer dieses Tools muss auch nicht über besondere Kenntnisse verfügen und
kann daher die Daten zwischen den verschiedenen Domänen mit sehr geringem Aufwand
austauschen. Zusätzlich besteht die Möglichkeit die Daten in eine andere Domäne zu trans-
ferieren, falls diese für den User nicht verständlich war.

Das Resultat dieses Projektes ist ein Tool, das einen automatischen Datenaustausch
zwischen den verschiedenen Abstraktionsebenen gewährleistet und die auf Model basieren-
den Entwicklungsansätze in eingebetteten Automobile-Systeme unterstützt. Dieser Date-
naustausch erfolgt bidirektional über eine Programmierschnittstelle zwischen den folgenden
Tools: Enterprise Architect, AVLab, ADD und Microsoft O�ce Excel.

Schlüsselwörter: Model-basierende Entwicklung, System Engineering Tool, Software
Engineering Tool, ISO 26262, Rückverfolgbarkeit, Datenaustausch über Programmierschnittstelle
(API), AVLab, ADD, Enterprise Architect

1

Abstract

The main goal of this project was to bridge the gap between the system- and software
engineering tools by an automated exchange of model data. Automotive systems have
become more and more challenging due to their evolution to on-road computers. These
networked on-road computers and their highly complex technical communication concepts
take a huge amount of e�ort to manage and develop.

Nowadays luxury vehicles contain several hundred ECUs and millions of lines of code,
which have been developed and tested by di�erent large institutions and teams. In parallel
to these challenges, all the development processes have to be handled in compliance to
automotive safety standards (such as ISO26262[HHA+10]) and techniques. Due to these
facts, such complex systems are almost impossible to manage manually. To solve or fa-
cilitate such challenges, the approaches of model-based development and automated data
transformation should be applied in the automotive domain.

A model-based-development approach improves consistency, correctness and complete-
ness and enables di�erent views regarding a product-development among di�erent work
products. This automated information exchange between di�erent tools accelerates the
time-to-market and development processes. Due to this fact, the transformation of infor-
mation between di�erent tools can be ensured without needing to understand the whole of
the system. Additionally, failure detection and traceability of information between several
tools is realizable and easily manageable.

The contribution is to provide an automated data exchange between di�erent abstrac-
tion levels via di�erent SW tools and to support the model-based development approach
in embedded automotive systems. The developed tool of this project manages the whole
data transfer and its processing automatically and bidirectionally via their �Application
Programming Interface� between the following tools: Enterprise Architect, AVLab, ADD
and Microsoft O�ce Excel.

Keywords: Model-based development, system engineering tool, software engineering
tool, Model driven API tool, ISO 26262, traceability, data exchange via API, AVLab, ADD,
Enterprise Architect

2

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als
die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich
und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz,am
(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

.............................. ...
date (signature)

3

Danksagung

Das Projekt wurde in Zusammenarbeit mit ITI - Institute für Technische Informatik
Graz und der AVL List GmbH Graz durchgeführt. Mein besonderer Dank gilt Dr. Christian
Kreiner, Dr. Eric Armengaud und Dipl. Ing. Georg Macher, die mich beraten haben und
mir bei der Entwicklung des Projekts zur Seite gestanden sind. Des Weiteren möchte ich
mich bei Alexander Cucek, Alvarez De Eulate Maider, Manuela Richter, Christine Zilker,
Juergen Konnerth, Dipl. Ing. Dirk Denger und Glashuettner Jakob bedanken, die mich
unterstützt haben.
Darüber hinaus möchte ich mich ganz herzlich bei meinen Kollegen Rene Obendrauf, Seidl

Matthias und bei meinen Eltern und meiner Freundin, für die hervorragende Ermutigung,
bedanken.

Graz, im Oktober 2015 Müslüm Atas

4

Contents

1 Introduction 9
1.1 Motivation . 13

2 Related Works 15

3 Approach 28
3.1 Data Transfer between di�erent tools . 30

3.1.1 Export of EA SW model representations 30
3.1.2 Import into EA model . 34
3.1.3 Write into Log File . 35

3.2 EA SW Modeling Elements . 37
3.2.1 AUTOSAR Component . 37
3.2.2 AUTOSAR Port . 39
3.2.3 AUTOSAR Connector . 40

3.3 AVLab/ADD and its Components . 41
3.3.1 AVLab . 41
3.3.2 ADD . 43

4 Implementation 46
4.1 Export EA Model . 48

4.1.1 Export To ADD . 48
4.1.2 Export To Excel . 49

4.2 Import to EA Model . 50
4.2.1 Import From ADD . 50
4.2.2 Import From Excel . 51

4.3 Available Application scenarios . 52

5 Application 54
5.1 Application . 54
5.2 Case Study . 55

6 Conclusion 58

7 Future Works 59

A Tool Programmer-Guideline 60

5

A Abbreviation 70
A.1 De�nitions . 71

References 72

Literaturverzeichnis 72

6

List of Figures

1.1 V-Model and its phases . 10
1.2 Work-�ow overview between di�erent tools 13

2.1 System Engineering views [Cla09] . 15
2.2 System or SoS V-Model [Cla09] . 16
2.3 Model Driven EAI Architecture [15706] . 17
2.4 AMD and ASCG global view [KLPK13] . 18
2.5 TPT test process [BK08] . 22
2.6 process of automated development steps [FNH09] 24
2.7 Model-based systems engineering quality [DF07] 25
2.8 For a special case study modi�cated V-Model [MLD+12] 26

3.1 Export EA Model Tab . 31
3.2 level1 worksheet with some hidden columns 32
3.3 All Excel columns for SW Level Components 33
3.4 All Excel columns for SW Ports . 33
3.5 Import from ADD Tab with all ADD components 35
3.6 Import from Excel Tab with all Excel components 36
3.7 AUTOSAR Component with its properties 38
3.8 AUTOSAR Ports with its properties . 39
3.9 Whole EA Model . 40
3.10 AVLab as Mindmap with links to related materials 42
3.11 ADD user interface . 44
3.12 ADD Components . 45

4.1 Program execution path . 47

5.1 Time consumption in seconds as a chart . 55

7

List of Tables

3.1 Available ASILs . 37
3.2 Available characteristic properties . 38
3.3 Association rules between EA elements . 41
3.4 Meaning if the association multiplicities . 41

5.1 Consumed time comparison . 56

8

Chapter 1

Introduction

The development of embedded automotive systems has become more and more challenging
due to the transformation from mechanical systems to complex mechatronic systems in re-
cent years. The embedded automotive systems have nowadays been evolved into on-road
computer systems which are considerable complex and somewhat confusing. And all these
systems include several electronic control units (ECU) with a large volume of software code
that has been developed, analyzed and tested by di�erent large institutions and teams. The
process of integration between di�erent parts will raise new challenges and will be nearly
impossible for humans to manage in near future. This serious challenge has to be handled
in compliance with standards and techniques. One of the main standards for road vehicles
is the functional safety standard ISO 26262 [HHA+10].

The validity of the di�erent parallel running applications in time- and value domain has
to be ensured according to the safety standard ISO 26262 [HHA+10]. Safety standards,
such as ISO 26262 [HHA+10] for road vehicles, help with the identi�cation and mitigation
of risks and provide guidance for the development of safety critical systems throughout
the whole product life cycle. During this process the relevant information passes through
di�erent tools in order to analyze, test and develop a system. Some critical information
might get lost while data is passed through several tools. Due to this incomplete informa-
tion collection, it is very di�cult to keep those standards. Another cause of insu�cient
data transformation can be a lack of knowledge and experience.
To avoid the human errors, all the process steps should be automated and strictly exam-
ined. Thus the error factor is reduced and the whole development process is accelerated.
According to this approach modi�cation and improvement can be easily accomplished and
an error can be quick detected in several di�erent processes. Thus, a speedup of the de-
velopment process can be achieved.

Process models such as the V-Model [Cla09] and the waterfall model [Ben83] are widely
applied for di�erent systems engineering processes. By means of these models, the various
product processes are facilitated by developing, testing and verifying a system. The V-
Model is one of the most widely used system engineering process model in the automotive
domain and depicted in Figure 1.1.

9

CHAPTER 1. INTRODUCTION 10

Figure 1.1: V-Model and its phases

The name of the model comes from its V-Shaped �gure and provides veri�cation and
validation processes for a system. The model accompanies a product from its creation up
to time-to-market phase. Whereby each phase of this model has to be completed before
the next phase begins. In parallel to each developing process a test phase is executed,
which validates the correctness and completeness of the product phases.

The developing process in V-Model begins top left and is divided in following four main
parts:

• Product Concept and Requirements: All the product speci�c requirements for a
successful product development will be de�ned in this part and their reliability, avail-
ability and serviceability will be checked in parallel. Then all the possible solution
paths will be listed, which leads to the required goals. If all the possible solutions are
de�ned and analyzed, then the best developing path/solution will be chosen. To �nd
the best solution for a good product quality and e�cient development is usually a
hard decision. That's why this process is the most critical phase for a product success.

Whereby this approach is the hardest decision, due to achieve the best quality, least
cost and most e�cient time-to-market features. This process is that's why the most
critical phase for a product success.

• High Level Design: The second process step de�nes the system architecture and
design of a project. This enables a complete overview of the system and detects

CHAPTER 1. INTRODUCTION 11

failures and problems with the main idea. Parallel to this phase, an integration test
helps to develop a properly designed architecture. A clear and simple architecture in-
creases the implementation and coding processes but shortens the development cycle.

• Low Level Design: This process step re�nes the design for a software or hard-
ware implementation. An initial class diagram with all the software components and
software logic has to be de�ned here. This class diagram describes the relationship
between each component with their attributes and operations and the interoperability
of those components. Additionally all the components and their intercommunication
will be simultaneously tested and veri�ed.

• Implementation and Coding: The last process step de�nes the product at a low
level and delivers a software product at the end. In this phase the product will be
tested, developed and re�ned. The challenge here is the developed SW-Tool with
all the possible test cases to generate di�erent outputs, which de�ne passed or failed
test cases. That means all the input variants must be well-conceived and those pos-
sibilities have to be tested carefully to achieve a perfect product. On this occasion,
the candidate software must be tested with single- or/and multi-core architectures
to verify the tool on di�erent platforms. The mentioned test cases have to be imple-
mented precisely, so that as a result , each individual line of code is veri�ed.

During the above mentioned process phases all the development artifacts will be tested
parallel until the last part. The system- and software developing phases of the V-Model
with their test cases are the main focus of this project. The tool developed during this
thesis works with model-driven system- and software engineering tools.

The contribution of this thesis is to bridge the existing gap between model-driven
system engineering tools like 'Enterprise Architect'1, 'Artisan Studio'2 and software en-
gineering tools like 'AVLab'3 for embedded automotive systems (see Figure 1.1). This
model-based-development approach improves consistency, correctness and completeness
and enables di�erent views regarding a product-development among di�erent work prod-
ucts. Additionally time-to-market and development processes will be accelerated and the
whole system will always be ready to make the required modi�cations.
This thesis focuses on an automated data exchange between model-driven system- and
software engineering tools via their API interfaces. The idea and detailed development
concepts of this thesis will be explained in the following sections.

The document is organized as follows: Section 2 gives an overview of the available
related tools and approaches. In Section 3, instructions regarding the application and

1http://www.sparxsystems.at/start/startseite/
2http://www.atego.com/products/technology-overview/
3https://desktop.avl.com/projects/12/0061/Data_Exchange/docs/AVLab/index.html

CHAPTER 1. INTRODUCTION 12

functions of the tools and techniques used is documented. Furthermore, all working steps
are explained and discussed in detail, along with their pros and cons. Section 4 explains
the implementation techniques and methods used for this tool. In addition, a detailed
description of the development steps will be explained for speci�c application scenarios.
Section 5.1 lists the available application scenarios of the tool and compares a speci�cap-
plication scenario with a manual work procedure. In Section 6, this work is concluded with
an overview of the presented approach and methodology. Finally, all the planned future
works for the tool are described in Section 7.

CHAPTER 1. INTRODUCTION 13

1.1 Motivation

In the initial stages of this project, there were several tools which were unable to commu-
nicate automatically with each other. Further more, all the tools used have to be designed
or �lled in manually, which increases the error factor due to human faults. To reduce this,
several automated programming interfaces between these tools were built, which enable
the exchange of data from one tool to another. This automated information exchange
between di�erent tools accelerates the time-to-market and development processes. Due to
this advantage, the transformation of information between di�erent tools can be ensured
without needing to understand the whole of the system. Additionally, failure detection
and traceability of information across tool boundaries is easier realizable and manageable.

Figure 1.2: Work-�ow overview between di�erent tools

This project was developed in programming language C# within a Microsoft Visual
Studio environment. The developed tool enables an automated correct, complete and con-
sistent data transfer between the following tools without losing any information:

• Sparx Systems Enterprise Architect (EA)

• Atego Artisan Studio

1001http://goo.gl/JLFFFs
1002http://icons.iconarchive.com/icons/everaldo/crystal-clear/128/App-edit-icon.png

CHAPTER 1. INTRODUCTION 14

• Microsoft O�ce Excel4

• AVLab

• AVLab/PoET25-Database (ADD)

An overview of this work-�ow between di�erent tools can be seen in Figure 1.2. This
�gure shows the interaction between the tools in use. As the Figure 1.2 indicates, the
tools ADD, Microsoft Excel and EA work bidirectionally over the C#6 program. The
information will be collected in C# and transferred over the Application programming In-
terface (API). This principle enables the usage of data read once with several tools, which
increases e�ciency and productivity.
As can be seen, the data �ow to the text �le only happens one way. This �le contains the
log information and some commands about the work procedures and processes of ADD
tool. After a data exchange with ADD, the text �le will be �lled with some information,
which will be explained in Section 3.1.3.

4https://products.o�ce.com/en-us/excel
5https://desktop.avl.com/projects/12/0061/Data_Exchange/docs/AVLab/index.html
6https://www.visualstudio.com/de-de/visual-studio-homepage-vs.aspx

Chapter 2

Related Works

This chapter surveys and analyzes works related to this thesis. All the problems, solutions
and distinctions of related works will be analyzed in cooperation to the approach of my
project. Thereby the user will see that the related works have in some cases advantages
and as well disadvantages versus my approach.

The work of clark [Cla09] describes the perspective of some models, such as V-Model
and Dual-V Model for a System of Systems Engineering (SoSE) and Family of Systems
Enginnering (FoSE). This paper de�nes the terms: SoS, SoSE and FoSE from a V-Model
and Dual-V Model perspective and their integration in a process. The terms V-Model and
Dual-V Model are also mentioned and explained.

Figure 2.1: System Engineering views [Cla09]

The Figure 2.1 [Cla09] as a classical SE process for integration, reading and testing.
The author also explains some other processes of the system. The usual SE views are

15

CHAPTER 2. RELATED WORKS 16

somewhat di�erent to the view in Figure 2.1 [Cla09]. The V-Model is interesting section
that relates to my thesis. As we know the V-Model is the most used software development
process model in the automotive domain. The original V-Model is depicted in Figure 1.1,
which begins at the top-left and ends at the top-right position. The integration and usage
of the V-Model with a system or SoS is depicted in Figure 2.2 [Cla09].

Figure 2.2: System or SoS V-Model [Cla09]

In this case a block of the classical V-Model is represented as another instance of the
V-Model. This is done repetitive for each re�nement of the system. The author makes
process suggestions for a perfect, complete and seamless SoSE procedure. Furthermore he
also recommends the application of V-Model, as well Dual-V-Model in SE, so that SoSE
procedure is seamlessly applied.
This thesis covers the yellow arrows between the V-Models. This means the automated
connection and data-exchange between V-Models is ensured by my tool which will be pre-
sented in this thesis. For example we can take the V-Model of EA and V-Model of AVLab
and the automated data exchange between those tools has been made with my tool.

CHAPTER 2. RELATED WORKS 17

The next paper named A Model Driven Architecture for Enterprise Application Integra-
tion (EAI) [15706] describes several di�erent approaches to solve the integration problem
between di�erent systems. This challenge is very complex and di�cult to solve without
losing any standards and skills. All of the analyzed approaches are compared and catego-
rized according to their weakness and strengths. Additionally a new approach based on
the OMG's Model Driven Architecture (MDA) is described. Object Management Group
(OMG) standard is an uni�ed object modeling standard, which focuses on visual modeling
and model execution and service. This approach is �rst separated into the following �ve
types of model:

• technology speci�c model,

• transaction service model,

• generic application service model,

• intra-application model,

• and inter-application model.

These �ve general types of model are depicted in Figure 2.3 [15706] along with some of
their appropriated �elds.

Figure 2.3: Model Driven EAI Architecture [15706]

CHAPTER 2. RELATED WORKS 18

In this paper [15706] all the available and new (yet to be evolved) infrastructures and
mechanisms for di�erent enterprise architect integration approaches will be studied in order
to determine the best solution. After detecting, analyzing and discussing all the approaches
to EAI, a separation into two main purpose-groups has been made: Category one focuses
only on data and their processes and category two focuses on the structures.
The same OMG MDA idea will also used in this project, enable the integration of di�erent
models in a project. Not the structure of the data, but rather its correctness, completeness
and consistency while exchanging the data is the main focus in this work. Due to this, the
whole data transfer happens automatically in my thesis to prevent the human-fault factor.

The publication of Krunic, Letvencuk and Povazan et al. [KLPK13] describes an
approach to model driven development and automatic source code generation of GUI con-
trols. Source code generated from a model accelerates time-to-market, reduces development
costs and provides a reliable development environment. Di�erences to our approach are,
the CSV �le based hardware con�guration �le and the development in eclipse IDE. This
tool saves Special Function Registers(SFR) of a hardware con�guration in several CSV
�les and represents those as GUI controls for the user.
Based on this SFR list and GUI controls, some code will be automatically generated. The
approaches overview is depicted in Figure 2.4 [KLPK13], which shows the operational
sequence of the whole procedure.

Figure 2.4: AMD and ASCG global view [KLPK13]

CHAPTER 2. RELATED WORKS 19

Their tool in [KLPK13] �rst reads a csv �le which contains SFRs for a hardware
con�guration and ultimately represent those �nally as GUI controls. In the middle the
process in separated in two main parts:

• AMD (Automatic Model Development)

• ASCG (Automatic Source Code Generation)

The aim of this work is to generate source code in a fast, reliable and �exible way. The
tool represented in this paper also generates source code from a model, but prepares the
source code for another tools, so that these tools can read this generated information. The
source code will be read from another tool and therefore ensures an information exchange
between di�erent tools.

The next paper [MKR06] describes a model-driven approach to Real-Time Operating
System-based (RTOS) embedded software development. Additionally a tool called Tran-
sPI has been presented, which automatically generates a RTOS-speci�c C-Code from a
model. This approach enables working at a high level without any occupation with hard-
ware or software speci�cation. In this work the Model-Driven architecture (MDA) depends
on the following model-types: Platform Speci�c Model (PSM) and Platform independent
Model(PIM). The �rst type contains the detailed implementation speci�cations, so that
the model can be built again from this code. PIM is a model, which enables modeling with
Uni�ed Modeling Language (UML). The software development process happens in this pa-
per automatically over an Application Programming Interface (API). This approach di�ers
in the following points from my project: The tool TransPI generates RTOS speci�c code
from a model. This also happens in my paper, however the data was prepared for another
tool. Additionally this work only focuses on a model-driven approach to RTOS-based em-
bedded software development and does not transfer SW architectures or application SW
modules. But the information exchange or code generation happens in both variants over
API and automatically.

Gerard H. Fisher et al. [Fis98] highlights on the importance of model-based systems
engineering in automotive industries and describes the design of the automotive personal
assistance system (APAS). This related work shows all the model-based processes required
from the project creation to the project end. Those processes contain requirement- and
behavior analysis, the physical architecture of the system, the veri�cation and validation
of the model. The aim is to achieve an approach for automotive system development so the
product cost decreases and product quality increases. This idea is particularly applied to
the design of the Automotive Personal Assistance System (APAS) to describe the features
of the Global Positioning System (GPS). Finally the di�erences between this approach and
the traditional paper-driven approach has been compared. The model-driven approach has
the advantage of always being up to date; the traditional documentation can get lost or be

CHAPTER 2. RELATED WORKS 20

an old version of the document. This thesis has used the same concept because of those ad-
vantages. This approach helps the developer to understand the system more easier. With
such an up-to-date model, modi�cation and analysis is also very simple and easy to handle.

Monohar Rao et al. [Rao05] explains the importance and necessity of Uni�ed Model-
ing Language (UML) within Artisan Studio. The author explains in their paper that the
UML has fed through the software engineers to become a standardized visual modeling
language. The biggest challenge was, as mentioned above, the integration of di�erent sys-
tems in Artisan Studio, which makes traceability and usability more di�cult. But with the
release of UML 2.0 the system and software engineering integration becomes available with
artisan studio. The integration of system and software engineering tools is currently not
realizable, because of non published libraries by Atego. Research via internet about this
topic leads mostly to impasses and gives insu�cient results. For a su�cient API access,
several libraries from from Atego are necessary. But this project is still not �nished and a
data exchange via API is planned in the future.

Farkas and Grund et al. [FG07] describe in their paper the rules, which need to be
checked with a model-based development of embedded automotive software and safety-
critical systems. They mention that a safety- and reliability-check that is performed after
the system development is unprofessional and not possible in general. A safety and reli-
ability check of custom rules and industry standards should begin in the early phases of
V-Model [Cla09] and must be validated during the whole development process of a system.
The paper describes a model based development approach of an automotive vehicle func-
tion with a state-�ow diagram and MATLAB Simulink tool. It shows how to check the
rules and meet the requirement standards during such a development. The technologies
Meta Object Facility (MOF) for compiling the meta-models requirements and Object Con-
straint Language (OCL) are used to describe rules and to transform textual guidelines into
formal notations. Finally, the work represents a solution which can check the rules for the
formal and tool independent notations, as well as a solution for guideline checking. Tool
dependent artifacts were modeled in a MOF meta-model and the transformation of tex-
tual guidelines were described in a formal notation with OCL. With such a technique, the
prevention and avoidance of modeling errors is also ensured. Regrettably these techniques
will not be used in this thesis and a veri�cation and validation must be performed at the
end of the process. Such techniques are of course a must for model-based development in
automotive industry, but my thesis must also be kept within a limit. Therefore such rule
checks would not be made to keep the required and limited time-period.

CHAPTER 2. RELATED WORKS 21

Trase and Fink et al. [TF14] describe a Model-Driven visualization tool used for
Model-Based systems engineering (MBSE) projects. The reason for beginning the project
of Trase and Fink is the complex and limited usability, as well as the complicated in-
troduction and design process of available MBSE tools. Therefore the Systems Modeling
Language (SysML) Document Traceability Framework (SDTF) for integrating design doc-
umentation with a system model has been developed. MBSE enables a clear design, which
is easy to understand and additionally provides up-to-date design documentation. The
mentioned SDTF helps to integrate existing design documentation within SysML model
and another tool �Interactive Visualization Engine for SysML Tools� called InVEST, gen-
erates an automated summary of the model content. Those tools have been principally
developed for highly complex systems. Such systems usually have hundreds of design doc-
uments and veri�cation reports, which are very sophisticated and extremely di�cult to
trace. This challenge can be solved by SDTF and InVEST tools. My thesis does not pro-
vide for this approach due to the low level of documentation and reporting. The generated
documentation and reports for such tools are usually simple and compact.

Bringmann and Kraemer [BK08] mentioned a new model-based development trend in
the automotive industry, which models software components in Matlab Simulink, State-
mate, MatrixX, LabView and similar tools. Traditional software component development
in C or assembler code is easy to verify and validate. With this trend of model-based
testing new challenges which are often poorly supported appears. This paper particu-
larly explains the characteristics of model-based development and its testing in automo-
tive systems. Furthermore, the paper presents a test tool �TPT� which determines the
development complexity of model-based testing in the automotive industry. TPT has been
developed by Daimler Software Technology Research and focuses on graphical test models.
These graphical test models and simulations allow automotive engineers to detect failures
and to determine a common functional understanding in early development and design
phases. This model-based development approach improves communication within devel-
opment teams and institutions and ensures that a system is complete and correct.
To test such a model is mostly very tedious because of their content and structure. Auto-
motive systems are very complex, so that the system consist of several software, hardware,
electrical, mechanical and/or hydraulic parts. Such a system, where di�erent teams and
institutions are involved, can only be tested automatically. Manually testing is unfeasible,
di�cult to replicate and associated with very high costs. For a seamless system develop-
ment following integration and test methods should be performed:

• Model-in-the-Loop (MiL): Is the �rst integration and test level. These tests
evaulate section tests the whole model and its environment. The reason for this
test is to detect system failures in early phases. This step also helps to improve the
robustness, performance and re-usability of the system in the future.

• Software-in-the-Loop (SiL): Tests a software or software group within a simulated
environment, but without any hardware components. This helps to detect weak
points of an embedded system before its hardware is developed.

CHAPTER 2. RELATED WORKS 22

• Processor-in-the-Loop (PiL): The PiL phase is the most important test phase,
because of the highest level of integration, which allows debugging during tests in a
favorable way. During this phase the software is tested on a target platform. Faults,
which are caused by the target compiler or by the processor architecture can therefore
be detected.

• Hardware-in-the-Loop (HiL): In this phase, the software is tested on the �nal
ECU. However the testing requires a real-time behavior to ensure that the system
runs correctly in a real environment, which will be ensured with the test rig phase.

• Test rig: In this case, the software also runs on the �nal HW and the environment
consists of physical components. This means the system is tested with real electrical,
mechanical or/and hydraulic components.

• Car: The latest integration and testing level is performed in the car. If the testing in
previous development phases has performed perfectly, the integration of the system
in the car should be �awless.

The work in [BK08] presents a new test approach TPT called �Time Partition Testing�
(TPT), which supports a technique that allows systematic selection of test cases. It pro-
vides automated test execution and assessment for real-time environments. Furthermore,
it generates a executable language for modeling test cases with a systematic test case
selection. This test process of TPT can be seen in Figure 2.5 [BK08].

Figure 2.5: TPT test process [BK08]

Figure 2.5 shows, that the TPT test process is initiated by the tester and starts the
�Test Case Design� step. The functional system requirements with their design and test
cases is the basis of this process. Next the test step �compilation� will be presented, which
represents test cases by byte code. Those byte codes will be interpreted and executed by a
virtual machines (VM). This step ensures that the VM and test cases use as little memory
as possible. In the next step �Test execution�, the VM executes the test case. The VM is
also available to run other tests in parallel on di�erent platforms. The second to last step
assesses whether a test case was successfully or not. The �nal step is the report generation
of test cases.

CHAPTER 2. RELATED WORKS 23

As mentioned, TPT is a test approach which supports design, execution, assessment and
report generation of test cases in the automotive domain. Additionally TPT is reusable,
portable and can be used in real-time for model based systems. The usage on test plat-
forms: MiL, SiL or HiL is also supported. TPT additionally owns a precise and clear
graphical language for a clean test case operation.
This paper gives the user a lot of information about model based design and testing in
automotive industry. Furthermore, the detailed test case generation and execution with
real samples has been explained, in a way that the same approach can be used for this
project. TPT test process without �Tester� step in Figure 2.5 is nearly the same as the
AVLab-Tool. AVLab also performs processes like design, compilation and report genera-
tion. Furthermore, AVLab additionally features ADD, automated code generation, model
test, among others. More details to AVLab will be presented in Section 3.3.

Farkas, Neumann and Hinnerichs [FNH09] desribe in their paper an integrative ap-
proach for Embedded Software Design with UML and Simulink. Their paper �rst outlines
the integration di�culties between C code and model based design. Due to the partici-
pation of di�erent large institutions and teams, a seamless migration is nearly impossible.
This problem can only be solved with well-de�ned integration concepts and methods. Such
a migration concept for the modeling languages UML and Simulink is presented in this
paper. Furthermore, the mentioned concept has been demonstrated in a traditional auto-
motive software engineering process.
As mentioned, the embedded software development process is very complex and usually
contains several thousand lines of embedded C code. On the other hand to analyze all the
design aspects of an embedded software system within one modeling language is nearly
impossible. To cover all the design aspects, more than one modeling language is usually
applied. This paper analyzes the cooperation and usage of MATLAB/Simulink & UML for
functional speci�cation and code generation in embedded automotive subsystems brie�y.
Additionally the following points are discussed:

• Pro/Cons of embedded C code development using UML

• Problems of cooperation of MATLAB/Simulink and UML tools

• Consistency improvements of the UML, Simulink control design and CAN simulation
environment

• Demonstration and testing of the approach on a BMW car door control device.

The mentioned integration process of a car control device is depicted in Figure 2.6
[FNH09]. As can be seen, the system developer develops a vehicle function based on
existing artifacts and models. The integration of these artifacts is handled by an UML
model.

Based on the UML model, automated code is generated in a way that the micro-
controller in a car control device can work. Finally, the generated micro-controller code is
executed on this device to test the code in real-life application.

CHAPTER 2. RELATED WORKS 24

Figure 2.6: process of automated development steps [FNH09]

The paper frequently refers to the importance of automated model based code generation,
which is becoming a popular technology. It is also very important to adapt and improve
the architecture-oriented and object-based methods and functions in embedded software
development. Thus the paper represents a well-de�ned model-based migration approach
for the embedded software development. Furthermore, this development approach using
UML and MATLAB/Simulink is explained step by step for code generation, simulation
and �ashing procedures in a real-life automotive control device.
My thesis also uses an integration approach for embedded automotive software develop-
ment with UML and MATLAB/Simulink. But this SW integration approach has been
made for the tools EA and AVLab.

Davey and Friedman et al. [DF07] describe software system engineering approaches
with model-based design. As mentioned before, the model-based design and development
becomes popular and complex. Parallel to these di�culties, the reduction of the system
complexity and development time is a constant market need. The control and integration
process of information from di�erent large institutions and teams will raise new challenges
and becomes nearly impossible to be managed by humans. Nowadays some luxury vehicles
contain approximately 90 ECUs and consist of over six million lines of source code [DF07].
To solve this problem, model-based approaches will be used. The reason for the model-
based development is the hardware-independent production and its favorable development
costs. This advantage unfortunately brings some di�culties such as integration, testing and
automated code generation of a model. This paper presents software systems engineering
approaches to achieve all the desired features based on models. The following three main
topics will be discussed in this paper:

CHAPTER 2. RELATED WORKS 25

• Risk-based software management strategy
This is a delivery strategy for large-scale embedded software solutions. The delivery
process becomes critical when the developing time exceeds 12 months. The critical
key processes in such huge projects are usually the supplier management process,
the modeling process and the testing process. For a seamless development of these
processes regular analysis and testing is necessary to identify and mitigate failures
and incompleteness in early development phases.

• Supplier software technical design reviews (TDR)
This key area develops software development processes which are based on an auto-
motive reference model. This reference model lists all the technical standards for an
automated development process and will often be called CMMI/SPiCE(ISO15504)
or ISO/ICE 15504. The developed and implemented software design processes will
be reviewed by these standards. Additionally the following areas will be reviewed:
planning, designing, documentation and testing. These constant reviews allow to
detection and mitigation of open issues as early as possible.

• Software systems engineering using risk-driven Model-Based Design for
requirements validation
This key area contains behavioral and implementation models with their complete
testing environment. Model-based testing is often more e�ective than traditional test
methods and concepts. It increases time-to-market factor and decreases development
costs. The Figure 2.7 [DF07] shows the quality data of Model Based Systems Engi-
neering(MBSE) versus other concepts.

Figure 2.7: Model-based systems engineering quality [DF07]

To sum up, it can be said that this paper supports a risk-based and structured concept
for assigning software system engineering tools and resources in re�ned steps. Furthermore

CHAPTER 2. RELATED WORKS 26

it shows how the risk assessments arise and how to mitigate them with standardized au-
tomotive reference models.

The next paper named �A comprehensive Description of a Model-based, continuous De-
velopment Process for AUTOSAR Systems with integrated Quality Assurance� [MLD+12]
outlines the complexity of the automotive embedded systems. Keeping an overview of the
whole system and properly handling each development step is extremely di�cult. In addi-
tion to these requirements, planned standards and criteria must also be ful�lled. To tackle
all these challenges in automotive industry, a mature technology and concept is required,
which is already included in a V-Model.

Figure 2.8: For a special case study modi�cated V-Model [MLD+12]

Figure 2.8 [MLD+12] displays a modi�ed V-Model for a special case study, which
simultaneously keeps the AUTOSAR standards. As you can see the V-Model begins at
requirement speci�cation and goes down to the implementation of a product. However
non-functional requirements must pass an architecture evaluation process. As usual the
V-Model begins with analysis and de�nition of requirements. In parallel to this step a test
case will be executed, which checks if the desired requirements are achieved or not. As you
can see this V-Model di�ers from the usual V-Model in the second step, in �Speci�cation
SW- and system architecture�. In this case the mentioned SW- and system-architecture
has been created and speci�ed with a custom tool named �SystemDesk� by dSpace. Sub-
sequently this generated architecture has been evaluated and tested. After these steps
design and implementation phases with their test cases. This example shows that own
functions or concepts can be integrated into V-Model, but it must be kept in mind that
those extensions should not violate the interfaces of other V-Model steps.
Each used tool in my thesis works with the general known V-Model. That means the
validation and testing of each process/product happens in its own environment. E.g. tools
like EA, ADD, Atego test and validate their product in their own environment. And the
connection between those V-Model/tools happens with my tool.

CHAPTER 2. RELATED WORKS 27

The next paper named �Automated Transformation of System Models into Ontologies�
[Sei14] describes the transformation of system models into ontologies. There are some
technologies used like SysML, XMI and OWL for a standardized and e�cient model de-
sign. This paper describes how to analyze and to consider a sysML model, so that this can
be converted into an ontology. Nevertheless, the reason for including this work to related
works is the automated model based development and working procedures within Artisan
Studio from Atego. The analysis process of information and transformation into ontologies
is not relevant for my thesis, but its automated read and write process with Artisan studio
is of high importantance.
This thesis [Sei14] takes an Artisan studio model and exports this as a XMI �le. However,
this �le will be analyzed and converted into an ontology. The paper unfortunately uses
the standard Atego resources and is not able to modify or create its own Artisan studio
elements. Due to this, the developed tool of this work does not make any extensions in
Artisan studio. It imports only an XMI model into Artisan studio, which is created by
hand or reads a model and saves this as XMI �le. As mentioned previously, the challenge
in my thesis is to create customized elements and connections also in atego, which is not
performed in this paper.

Chapter 3

Approach

This part of the document represents the data transformation between the involved tools
and their attributes and properties. Additionally each tool in use will be presented below
with a short description.

• Sparx Systems Enterprise Architect and Atego Artisan Studio:
Enterprise Architect (EA) is a visual modeling and design software tool based on uni-
�ed Modeling Language (UML) which was developed by Sparx Systems. It supports
the design, construction and modeling in di�erent software systems and processes
and allows visual depiction of artifacts, which are easy to understand and handle.
Artisan Studio is another visual modeling and design software tool, like EA, based
on UML and developed by Atego.

• Microsoft Excel:
Microsoft Excel also enables calculation, visualization and macro programming, which
makes it well-known and wide-spread in many domains. Excel �les consist of sev-
eral work sheets, where each of them represents a huge table like databases of MBD
tools. All the required information can therefore be imported/exported in/from those
sheets, which include the same information as a model-driven system- or software en-
gineering tool in another formats.

• AVLab:
The basis of AVLab is MATLAB/Simulink tool which was developed by AVL List
GmbH company and it is a part of the AVL Powertrain Controls toolbox. It enables
design in MATLAB/Simulink from model development to code generation. The rea-
son of the development was the supporting Power Train Engineering (PTE) processes
in AVL List GmbH. It also enables testing of models, using MATLAB utilities and
communicating over an interface or integration of additional extensions and other
features. The MATLAB/Simulink toolbox includes a large number of functions and
tools, which are not relevant for this project. That's why the most relevant functions
for this thesis will be presented in this paper.

28

CHAPTER 3. APPROACH 29

Detailed information about AVLab can be seen in Section 3.3.1.

• ADD:
ADD stands for 'Automotive Data Dictionary' and is the interface to AVLab database,
which was developed by Visu-IT company in cooperation with AVL List GmbH. From
this database all the information will be transferred to other tools. This tool is sep-
arated into three software-levels:
- Projects
- Compositions
- Containers

All the SW-Level components are connected unidirectional and unique in the database.
That means a project can consist of several compositions and a compositions can con-
sist of several containers. A container is the lowest level in ADD and additionally
includes all ports. The projects and compositions use the same ports like containers,
however only containers contain their original instances of ports.
For more detailed information about ADD see Section 3.3.2.

All the above mentioned tools will be explained in detail and analyzed in the following
sections.

CHAPTER 3. APPROACH 30

3.1 Data Transfer between di�erent tools

This project is divided into two parts:

• Export of the SW artifacts of the EA model

• Import the SW artifacts into the EA model

The planned import and export implementations with Atego Artisan Studio were not
done in this thesis. Due to the limited access, non-existing library and minor references of
Artisan Studio, this planned task could not be �nished.
Research on the internet did not give su�cient information for an �Application Program-
ming Interface� (API) of this tool. For successful API implementation, several libraries to
access the operations, inputs, outputs and their objects would be required.

Artisan Studio unfortunately does not o�er such a library, more speci�cally they does
not want to disclose their codes to the programmer. A possible access is to import/export
an �Extensible Markup Language� (XML) �le in/from Artisan studio. Here the model
will be interpreted as a xml �le, which contains all the model components with their
connections to each other. The problem here is, that the software modeling artifacts
are customized pro�les, which should work with customized components and connections.
There are several project and company speci�ed components with user-de�ned attributes
and values (see Section 3.2 and Section 3.3). This means, that such a solution is also not
suitable for our project aim and has been excluded.

3.1.1 Export of EA SW model representations

This section describes how to export the SW artifacts of the EA model to di�erent tools,
so that after a reimporting process, the same diagram can be reconstructed.

Two export methods are implemented:

• Exporting to the AVLab/ADD tool

• Or to a Excel �le.

The principally work procedure of those mentioned functions will be explained in the
following paragraph. By starting the C# project, the visual modeling and design software
tool EA starts subsequently. Thereupon the user of this tool has to open an existing EA
model or create one in EA. If an existing model is used, the export process can be started
immediately. To export EA model to AVLab/ADD, the menu Extensions|AVLab Exten-
sion|Export EA Model must be selected in EA. In the next step, a new EA Tab/Window
with the name Export EA Model Tab will be opened, which displays all the AUTOSAR
Components contained. The EA Tab created is shown in Figure 3.1. In EA, there are
several custom components de�ned for this thesis. All those components along with their

CHAPTER 3. APPROACH 31

properties will be explained in Section 3.2. One of these components is the �AUTOSAR
Component�. For exporting data, an �AUTOSAR Component� must be selected by the
tool-user. After selecting a component, this element and its their children can be exported
to ADD or to an excel �le.

Figure 3.1: Export EA Model Tab

Export SW artifacts of the EA model to AVLab/ADD

This section describes the export procedure of an EA model to ADD tool. As mentioned
the procedure can be started in the EA menu: Extensions|AVLab Extension|Export EA
Model. This command opens a new EA tab named Export EA Model Tab, which lists all
the elements used of type �AUTOSAR Component�. By choosing �AUTOSAR Compo-
nent�, the selected component it self and all its sub components with their properties and
attributes will imported into ADD. This procedure is started by clicking on �Export To
ADD� button as you can see in �gure 3.1. For more details read the tool user guide(see
Appendix).

After successfully exporting an EA model to ADD, those exported elements can be im-
mediately used and modi�ed by AVLab or ADD. As mentioned the ADD is the database
of the AVLab tool and means �Automotive Data Dictionary�. ADD works with three SW-
Level and contains only unique entries. This means the exported elements must be unique
and instanced.

CHAPTER 3. APPROACH 32

Export EA Model to Excel File

This section describes how to export an EA model to an excel �le. The exporting procedure
begins as described in Section 3.1.1. The opened EA Tab Export EA Model Tab contains
all the AUTOSAR Components. After selecting an AUTOSAR Component and pressing
the button Export to Excel, the export process begins. The selected component itself and
all its sub components with their properties and attributes will be exported to an excel
File. Thereby the components will be saved separately in four following excel sheets:

• Level1: This excel sheet contains only the selected AUTOSAR component and its
properties. At the beginning, some columns are hidden for a simple overview. This
hidden structure of the excel sheets contains additionally all the necessary informa-
tion for an exact regenerating of the EA Model (depicted in Figure 3.2). This level
contains only the parent component and is named �projects� in ADD.

Figure 3.2: level1 worksheet with some hidden columns

• Level2: Level2 contains all the children of selected AUTOSAR component and their
properties. The excel structure of the �rst three levels are the same, but contain
di�erent information. This SW level is the middle level and also contains hidden
columns for an easy overview. This level is refered as �composition level� in ADD.

• Level3: This Level is the last SW level and this worksheet contains the atomic
components, beside ports, of the project. The components have no children and
the excel worksheet structure is the same as in level1 and level2 worksheet. This
worksheet component is equal to a �container� in ADD.

• Ports: This worksheet contains all the ports and their properties, which were used for
SW level1-3 components. The structure and contained data is depicted in Figure 3.4.
Each entry of this sheet is the same as a �data objects� in ADD. All ports are unique
and only referenced if used by another component.

The excel approach has been used for more versatility of the approach and can also be
used for reporting and documenting. In the following paragraph, each data structure used
in excel and their attributes will be presented.

Figure 3.2 shows the initial state of the automatically �lled excel �le. This �gure
shows only the name, ASIL of the element and their children. However the Figure 3.3
gives distinctly more information than the Figure 3.2. With all this information a redesign
of the EA model is possible. The columns like ASIL, characteristic, stereotyp.. etc. will be
explained in Section 3.2. The �rst columns show the element name and id, which will be
used in EA. The next column shows the type of the element. The columns �Package ID�,
�Package Name� and �Model Name� are self explanatory and not necessary to explain. As

CHAPTER 3. APPROACH 33

you can see all the excel worksheets information is very easy to understand and also easily
traceable.

Figure 3.3: All Excel columns for SW Level Components

The next �gure shows the worksheet at the ports, which also contains all the necessary
properties of the ports. All the SW level worksheets additionally contain the two following
columns: �Port Name� and �Port Direction�. The reason to have these entries in the SW-
Level worksheet is, that each port of the SW level components can have di�erent directions.
The rest information about the ports is always the same. Because of this, the SW level
worksheets only contain both of those columns and the rest of the information about the
ports is contained in worksheet �Ports�. Please take a look at Section 3.2 for more details
about the column names.

Figure 3.4: All Excel columns for SW Ports

As seen, the information in worksheets are easy modi�able, adaptable and traceable.
Additionally the user-friendly presentation of information allows a good overview of the
whole system.

CHAPTER 3. APPROACH 34

3.1.2 Import into EA model

This section describes how to import of model artifacts from di�erent tools to EA can be
done. The import process is divided into two methods:

• Import from AVLab/ADD into EA Model

• Import from Excel File into EA Model

Before importing data from a source tool to the target model, some preparations have
to be made. The target model must be created or an available model has to be opened
in EA. The user has to consider following rules, if an available model is to be opened. If
EA model package contains the same elements like imported elements, these elements will
be updated after a successful import procedure. If an update of those elements are not
desired, then a new model has to be created in a new EA package.
After those necessary steps, the import procedure can begin by clicking on the EA menu
Extensions|AVLab Extension|Import into EA Model. This command opens an EA Tab
named �Import into EA Model Tab�, which contains all the elements of the source tool.
After selecting an element, not only the project itself, but also their children will be
imported.

Import from AVLab/ADD into EA Model

An AVLab project can also be imported in an EA model. By importing a project not only
the project itself, but also its sub-components with their references and properties will be
imported. The communication over the programming interface can be ensured with an
AVLab library. The communication over the API reads all the elements of Automotive
Data Dictionary (ADD) and lists this in an EA tab/window. As mentioned, by starting
the C# application, also the tool EA starts automatically. The user then has to open or
create a new EA model. All the ADD components can just be imported in this model.
The menu Extensions|AVLab Extension|Import into EA Model is necessary. This step �lls
the new opened EA tab with ADD elements and represents each element type by a radio
button. Next, the button �Import From ADD� must be pressed, a component type and
a component must be selected. There are basically three components levels/types, which
are available in ADD:

• Project (SW Level 0)

• Composition(SW Level 1)

• Container(SW Level 2)

More details about those levels can be read in Section 3.3.2. Finally, after importing a click
on the button �Draw Model� draws the whole model in EA. A representation depicting this
can be seen in Figure 3.5.

If the whole process is �nished, a message box will appear which gives information
about the �nalization of the process. The ADD elements will just be drawn in EA with
their connections and properties and is ready to be used or modi�ed.

CHAPTER 3. APPROACH 35

Figure 3.5: Import from ADD Tab with all ADD components

Import from Excel File into EA Model

This process imports an excel �le, which contains a model description and structure into
an EA model with all their connections and components. The data exchange between
EA and Excel �le happens again over the Application Programming Interface (API). This
reads all the elements of the excel �le and lists this in an EA Tab/Window. After the
EA is automatically started and a model is chosen, the import process can begin. The
menu Extensions|AVLab Extension|Import into EA Model opens a new tab in EA which is
depicted in �gure 3.6.

The user has to click on button �Import From Excel�. This step displays all the elements
of the excel �le in a list-box and all the element types represented by radio buttons. After
choosing a SW level component and pressing the button �Draw Model�, the selected element
and the sub-components of this component will be imported into the model with their
references and properties . At the end, the model will be drawn in EA and a message box
will appear, which gives information about the �nalization of the process.

3.1.3 Write into Log File

The Log �le is a text �le, which logs all the data exchange processes. This �le informs
the user about the important process steps, gives a summary and some metrics about the
imported/exported elements. Additionally warnings and errors will be listed below for
clari�cation for the user. If an error occurs, the user can trace where and why the tool
caught an error.

This log �le contains at the beginning a minimal process description, like Export EA
Model to Excel File. Next the selected component and project location will be logged:
Selected reference element: EGasSystem

CHAPTER 3. APPROACH 36

Figure 3.6: Import from Excel Tab with all Excel components

Project saved in folder: MasterThesis\bin\Testfolder

At the end of this �le, some metrics and a summary will be logged. The metrics part
contains, which component class has been exported or imported. An entry looks like this:
L2 Elements:

EGasCtrl

EGasMonr

The summary part mentions if the required process was successful or not. If the process
was successfully, then a list of each imported or exported components will be presented.
Additionally the number of components in use will be listed.

If the data exchange needs an ADD Tool, the log �le contains also all the used ADD
commands. Those lines �rst contain the de�nition of the ADD command beginning with
two slash symbols. In the next paragraph, the executed command will be presented. A
small section from this part looks like this:
[CREATE ADD PROJECT]

Set <IADDChangeRequest> changeRequests = ADDAdapterFactory.GetAdapterInstance().GetAllChangeRequests();

//public static IADDProjectID GetProjectIDInstance(string name,int variant,int release,int revision)

IADDProjectID projectID = ADDAdapterFactory.GetProjectIDInstance(EGasSystem, 1, 1, 0);

As mentioned, this �le clari�es for the user detailed processes and gives metrics for the
elements used.

CHAPTER 3. APPROACH 37

Value Description

QM No special safety requirement

ASIL_A Hazardous requirement with few harm

ASIL_B More Hazardous then ASIL_A

ASIL_C More Hazardous then ASIL_B

ASIL_D Extreme hazardous requirement

Table 3.1: Available ASILs

3.2 EA SW Modeling Elements

This section lists all the used EA components with their relationships and properties.
There are the main EA components:

• AUTOSAR Component

• AUTOSAR Port

• AUTOSAR Connector

These are the only relevant element for this project. Other components can also be
integrated to this project, which helps to use this tool for other areas and purposes.
The AUTOSAR components in this section describes the EA Elements of stereo-type
AUTOSARComponent.

3.2.1 AUTOSAR Component

This self de�ned EA component has the following properties:

• ASIL

• Characteristic

For an automotive safety system the safety engineer has to detect and identify poten-
tial hazards of the system. This is also called hazard analysis and risk assessment. After
identifying potential hazards, all of them have to be classi�ed with a safety requirement
level. This level is de�ned by ISO standard ISO26262 for road vehicles from A to D and
means Automotive Safety Integrity Level (ASIL). All the non-safety relevant requirements
will be classi�ed as QM, which means quality management. The rest of the classi�cation of
requirements will be calculated by the severity (S), exposure(E) and control-ability(C) of
the requirement. ASIL D means typically, that the requirement is very e�ective, hard to
expose and hard to control. Requirements of this level will often be marked in red, which
signalizes a potential harmful hazard. The mentioned ASIL possibilities are listed in the
Table 3.1.

CHAPTER 3. APPROACH 38

Value Description

AUTOSAR Composition
Is software hierarchy component

and determines the SW architecture structure
of the used components

AUTOSAR Application Represents a single SW Module

AUTOSAR Sensor Actuator
Describes SW modules related to sensors and actuators,

which are available at the ECU

AUTOSAR Parameter De�nes AUTOSAR parameter properties

AUTOSAR Complex Driver
Represents a complex device driver which has

direct access to peripherals for a better performance

AUTOSAR Service
This manages the standard services like

memory and �ash management

AUTOSAR ECU Abstraction
Represents the abstraction type of
the microcontroller abstraction layer

Trigger Determines the trigger behavior of the ECU

BSW Interface Determines Basic software interface properties

Table 3.2: Available characteristic properties

The �rst AUTOSAR component has already been handled. Next, the AUTOSAR
Characteristic will be discussed. It de�nes behavior and properties of the used component.
These can e.g. be trigger-, performance- and interface-behavior of the used ECU. Table 3.2
shows the possible entries for an AUTOSAR characteristic.

The below mentioned properties are selectable with a drop-down list, so that the user
cannot give an incorrect value. An overview of these components can be seen in Figure 3.7.
The background-color of this component is dependent from its ASIL value. It begins
with white for the value QM and ends with red for the value ASIL_D, which helps to
focus or visualize the most important properties for the user. Additionally an arrow in
both directions signalizes an interface for the property Characteristic (in that case BSW
Interface).

Figure 3.7: AUTOSAR Component with its properties

CHAPTER 3. APPROACH 39

3.2.2 AUTOSAR Port

This EA component is a Port, which is an interface to outside or/and inside with the
following properties:

• Data Type: Signal data type (int, �oat, char)

• Default Value: Initial or replacing value in case of signal loss

• Direction: Port direction (IN, OUT, INOUT)

• Lower Limit: Lowest allowed signal limit

• Port Type: Interface type of port

• Scaling LSB: Least Signi�cant Bit of signal

• Scaling O�set: O�set value of signal

• Signal Unit: Unit of port signal (V, A)

• Upper Limit: Highest allowed signal limit

All of the mentioned items are saved in Properties|SafetySoftwareArchitecture. Some
of the above mentioned properties are selectable with a drop-down list and some of them
free selectable. All of these elements have a great number of properties, but only necessary
properties will be explained in order to not distract from the main subject. An overview
of AUTOSAR Port component with their properties can be seen in Figure 3.8.

Figure 3.8: AUTOSAR Ports with its properties

CHAPTER 3. APPROACH 40

3.2.3 AUTOSAR Connector

AUTOSAR connector is an EA element which connects AUTOSAR Port elements with
each other. The properties of this element must not be �lled by hand. The necessary
properties are only source and target properties. Those will be �lled up automatically, if
connector from a source port to a target port is established.
An overview of a whole SW architecture can be seen in Figure 3.9 [EGa].

Figure 3.9: Whole EA Model

The whole Model is separated into three levels as you can see in Figure 3.9. Those
levels will be called in EA, SW Level1 to SW Level3 and called in ADD Projects, Com-
position and Ports. The ports are saved in ADD as data objects and can be used in all
levels. However in EA all the components can directly use/display required ports.
Next the relationships between all EA components will be shown in Table 3.3.

CHAPTER 3. APPROACH 41

Source Element Destination Element Multiplicity Description

�AUTOSAR
Component�

�AUTOSAR
Component�

1 - *
Association between SW-L1,

-L2 and -L3 Elements

�AUTOSAR
Port�

1 - *
Association between SW-L1, -L2,
-L3 Elements and their ports

Table 3.3: Association rules between EA elements

* Zero or more instances

1 - * One or more instances

Table 3.4: Meaning if the association multiplicities

3.3 AVLab/ADD and its Components

AVLab is a customized tool, which supporting Model-based design in MATLAB/Simulink1

in an AVL process aligned way. The main goal of this tool is to support di�erent PTE
development processes for increasing productivity and e�ciency. Section 3.3.1 gives more
detailed information about the AVLab tool.
The ADD tool serves as the database of AVLab, which contains all the used SW compo-
nents of AVLab. For more details please read Section 3.3.2.

3.3.1 AVLab

AVLab is the AVL Powertrain Controls toolbox in MATLAB/Simulink. It provides model-
based design and development in PTE processes and enables to design in MATLAB-
Simulink from model development to MATLAB code generation. It also enables to test
a model, to use MATLAB utilities and communication over an interface or integration of
additionally extensions.

As mentioned AVLab is a function development and test environment tool in MAT-
LAB/Simulink and includes following main features:

Model Development: The model development features covers following four parts:
Model Template, synchronize tool, Simulink Toolbar and MiL test. The �rst part �Model
Template� takes AVL customized components and creates predetermined models with
these components. Additionally a simulation of these models can be realized in MAT-
LAB/Simulink simulation tool, which comes very close to the real behavior of the corre-
sponding model. The second part �synchronize tool� ensures the synchronization between
AVLab/ADD elements with Matlab simulink model. This tool helps to be up-to-date in
both development environments. The tool �Simulink Toolbar� enables to work with MAT-
LAB/Simulink tool. This enables the user an easy management and a clearly overview of

1http://de.mathworks.com/products/matlab/

CHAPTER 3. APPROACH 42

the whole system. Processes such as component linking, UI modi�cation or redesigning
are technically feasible. The last sub-tool �MiL Test� is a MATLAB/Simulink test tool.
This helps to test the model in the early development phases and so detect failures be-
fore they become a major problem. This step is key for a robust, quick and mature product.

An overview of AVLab with its links is depicted in Figure 3.10 on form of a Mindmap:

Figure 3.10: AVLab as Mindmap with links to related materials

Integrity Matlab Interface: This feature enables a data exchange between MAT-
LAB and Integrity tool. At start of each project a requirement analysis and de�nition
must be made. This complex process will usually be made with help of a requirement
management tool. One of these tools is the �Integrity�, which enables the management the
system and software requirements of a project. This requirement tool supports the entire
development process of the product. Therefore, data exchange and synchronization is even
more important.
Matlab Library: This feature takes advantage by the usage of MATLAB utilities and
libraries. Some of those advantages are function plotting and visualization, interface to
di�erent tools, Simulink utilities, simple usage of vectors, functions, structures and matri-
ces.
Code Generation: Is a software from the dSPACE2 company named �Targetlink�, which
is able to generate automated code based on a MATLAB/Simulink models. This feature
helps to design and test a model in a simple way. After generating a code, the source code
can be simulated and tested with the following concepts: MiL (Model in the Loop), SiL
(Software in the Loop) and PiL (Processsor in the Loop).
Model Test: The last main feature is the �Model Testing� within AVLab. The �rst
tool named �Stimuli Generator� supports open, load or modify procedures for a simulink
model behavior impulses. This helps to detect the reason a failure occurred in simulation
or can be used for a detailed review of the model. Additionally such a stimuli can be
saved for comparison with other measurements. The tool �MXAM�, which also known as
�MES MXAM integration tool� enables the MATLAB/Simulink model checking against
standards and constraints.

The depicted mindmap contains an AVLab session object as focus/main object. AVLab

2https://www.dspace.com/de/gmb/home.cfm

CHAPTER 3. APPROACH 43

session includes all the required data for AVLab and PoET2. PoET2 is the basis of AVLab.
In the following the necessary parts and functions of ADD will be brie�y described here,
otherwise the information about AVLab will be confusing and distract the reader from the
main subject of this project.

Main Functions of ADD:

• Visu-IT3 ADD ⇐⇒ Simulink
Data synchronization between Matlab Simulink and ADD database.

• PTC Integrity4 ⇐⇒ MATLAB
Integrates PTC Integrity in MATLAB and MATLAB/Simulink. PTC Integrity is a
tool, which manages system and software requirements. Validation and veri�cation
of those requirements are also possible.

• Matlab/Simulink ⇐⇒ AVL Concerto5

Helps to visualize AVL Concerto plots in MATLAB/Simulink. AVL Concerto is an
AVL tool, which evaluates and graphically visualizes data graphically.

• MIL/SIL/Back2Back
Supports testing with Model In the Loop (MIL), Software In the Loop (SIL) and
Back2Back methods. Back2Back test method compares di�erent model versions and
their results, which are typically separated in three di�erent types: Float vs Fixed,
Float vs SiL and Fixed vs SiL.

• Code Generation
The main code generation tools are TargetLink and EmbeddedCoder. These sub
tools of AVLab helps to generate C-Code from a single or several MATLAB/Simulink
models. Additionally an automatically prede�ned string replacement of generated
code is possible.

3.3.2 ADD

ADD stands for Automotive Data Dictionary, is the interface to the AVLab database(oracle)
and manages all model and code variables, which were used during the whole development
process. This enables a clear separation between variables and implementation and ensures
the use of unique variables. This independent storage accelerates the development process
of a system due to parallel working on the implementation and declaration part. The
ADD data will be used for documentation, simulation, calibration and SW development
processes, which are managed by AVLab.
ADD is structured in three SW-Levels and which will be listed below.

1003https://desktop.avl.com/projects/12/0061/Data_Exchange/docs/AVLab/_downloads/AVLab_Platform.xmind
3http://www.visu-it.com/index_de.php
4http://de.ptc.com/product/integrity
5https://www.avl.com/-/avl-concerto-data-post-processing

CHAPTER 3. APPROACH 44

ADD Components

Figure 3.11 shows the Graphical User Interface (GUI) of ADD tool. As mentioned SW-
Levels in ADD are separated in three layers, however the smallest SW module additionally
includes all the used ports.

Figure 3.11: ADD user interface

The hierarchy structure of ADD can be seen in Figure 3.12. The SW-Levels represent
projects, compositions and containers and SW ports, the data objects in ADD. Only one
project with their sub components are represented here. As depicted, a component can
contain di�erent sub-components, whereby di�erent sub-components can also belong to
several parent components. Each entity in ADD is unique, but can be used several times
in di�erent models. This means only instances of each component will be used in a model.
A modi�cation of a component itself, leads to a modi�cation of all the used instances.
This modi�cation risk can leads to an unintended component and model modi�cation in
undesired models. For this reason, modi�cations of components that are used multiple
times should be prevented. Instead, the user should create a new component, if changes
are required.

• Project
This project representation is the highest level of software split, which is also called
SW Level1 and is a collection of several compositions, whereby a composition is also
a collection of containers.

CHAPTER 3. APPROACH 45

Figure 3.12: ADD Components

• Composition
Composition is the middle SW Level of ADD elements and can contain several con-
tainers and is also called SW Level2. This abstraction level is a collection of contain-
ers, which are again a collection of data objects.

• Container
This level will known as SW Level3 and is the lowest level of abstraction in ADD.
It consists of available ports (data objects) and is the smallest powertrain software
architecture entity. The ports of all three levels will only be declared here.

• Data Object
A data object declares a variable with all the necessary attributes. It consists of
variable attributes and properties like:
- Type: Axis, cDe�ne, Online, Map, parameter
- Status: Draft, �xed, unde�ned,..
- Name
- Description
- Classi�cation: Input, output, Local
- Base type: �oat, uint, boolean,...
- Conversion: Conversion of variables like string,

Chapter 4

Implementation

This chapter describes the implementation part of the thesis. The tool is implemented in
object-oriented programming language C# with an integrated development environment
(Microsoft Visual Studio from Microsoft). For versatility regarding computing platforms,
such as windows API, Windows Store and Windows Forms have been used. Additionally
the development tool �Microsoft Visual Studio� contains an integrated source level and a
machine level debugger for a simple implementation and testing.
The tool has been developed using a Graphical User Interface(GUI) application. This Win-
dows Forms designer includes GUI controls, like buttons, list-boxes, text-boxes...etc. Thus
the approach represents commands, programs and some other options as visual elements,
so that programmers can easily develops new programs or tools. This design makes the
tool more attractive, user-friendly and helps to make a professional impression.

The �ow chart 4.1 shows the execution sequence of the implemented code. After start-
ing the tool, the program Enterprise Architect(EA) from Sparx Systems starts automati-
cally. For the control and management of EA, an EA library is needed in Microsoft Visual
Studio project. The Library �MDSD.EnterpriseArchitect.Library� should be imported and
used in the C# project. This library enables the creation of new windows, tabs, menus and
some other extensions in EA. If the EA starts correctly, the whole control of the system
will be kept by EA tool. All the export and import procedures are available through the
customized menus of EA. After selecting one of these menus, the whole data exchange and
control will be done via the Application Programming Interface (API).

If EA is started, an available or new diagram has to be created and opened. After
opening a diagram, the customized sub-menu called AVLab Extension can be used via the
Extensions-menu in EA. In addition this, the menu contains two other sub-menus:

• Export EA Model

• Import into EA Model

46

CHAPTER 4. IMPLEMENTATION 47

Sta rt EA

Export EA Model

Cre ate()

Ini tial

EA Men u
clicked?

Choose EA Extension/Menu

 MasterThesisClass.cs

 MasterThesisClass.cs

- Display AUTOSAR components in EA tab

EA_AvailableAUTOSARComponentsTab.cs

Click "Export To ADD" button

EA_AvailableAUTOSARComponentsTab.cs

Bu tton clicke d?

ExportEAComponents()

- Fulfill L1-L3 component list

 MasterThesisClass.cs

WriteElementsInADD()

- Insert projects in ADD
- Insert compositions in ADD
- Insert containers in ADD
- Insert ports in ADD
- Insert references of ADD Components
- WritesMetricsIntoLogger()

EA_AvailableAUTOSARComponentsTab.cs

Fin al

Import into EA Model

Cre ate()

- Display ADD/Excel components tab

EA_AvailableADDComponents.cs

Click "Import From ADD"

EA_Available
ADDComponents.cs

Bu tton clicke d?

ImportEAComponents()

- Fulfill L1-L3 component list
- insert and connect Elements in EA

EA_AvailableADDComponents.cs

Click "Export To Excel" button

EA_AvailableAUTOSARComponentsTab.cs

Bu tton clicke d?

ExportEAComponents()

- Fulfill L1-L3 component list

 MasterThesisClass.cs

WriteEle mentsinExcel ()

- WriteDataInSWLevelWorkSheet(Level1)
- WriteDataInSWLevelWorkSheet(Level2)
- WriteDataInSWLevelWorkSheet(Level3)
- WriteDataInPortsWorkSheet(Ports)
- WritesMetricsIntoLogger()

EA_AvailableAUTOSARComponentsTab.cs

Import ADD Elements

-ReadElementsFromADD()
- InsertElementsInTab()

EA_Available
ADDComponents.cs

Click "Import From Excel"

EA_Available
ADDComponents.cs

Bu tton clicke d?

Import Excel Elements

-ReadElementsFromExcel()
- InsertElementsInTab()

EA_Available
ADDComponents.cs

Bu tton " Draw
mo del" clicke d?

N

N

Y

Y Y

N
N

Y Y

NN

Figure 4.1: Program execution path

CHAPTER 4. IMPLEMENTATION 48

By clicking one of these menus, the process will begin and one of the execution path
in Figure 4.1 will be executed. A click on the Extensions| AVLab Extension|Export EA
Model -menu causes an execution of the left path in Figure 4.1. The occurring events and
further steps will be explained in Section 4.1.
The other extension Extensions| AVLab Extension|Import into EA Model executes the right
path of the Figure 4.1. All detailed steps will be explained in Section 4.2.

4.1 Export EA Model

A click on the Extensions| AVLab Extension|Export EA Model -menu creates at �rst an
EA Tab named �Export EA Model Tab� which lists all the EA elements of the type �AU-
TOSARComponent�. After selecting one of the �AUTOSARComponent� from the opened
model, the target tool for the data transfer can be chosen. There are two buttons dis-
played in the opened EA-Tab �Export To ADD� and �Export To Excel�. Additionally each
displayed �AUTOSARComponent� will be represented by a radio button. After choosing
an �AUTOSARComponent� which is represented by a radio-button and clicking one of the
buttons, the whole data transfer begins.

4.1.1 Export To ADD

By pressing the button �Export To ADD�, the selected element, its sub components and
ports will be transferred to ADD. This procedure works in two main parts. First all el-
ements will be saved in temporary lists. These contain all the SW Level1-3 elements,
their ports and their attributes and properties. This step is implemented in ExportEA-
Components() function, which is located in MasterthesisClass.cs �le. The reason for the
temporary lists is the prevention of permanent read processes of the EA elements. This has
the advantage that the read procedure happens once and the write procedure can be re-
peated several times. This further means the tool can write the non-recurring reading data
in di�erent tools. This accelerates the execution time of the tool and prevents repetitive cy-
cles. For a successful connection to ADD, some tools and properties are pre-requisites. One
of those is the establishment of a connection to the Automotive Data Dictionary (ADD)
tool. The preparation for a successfully ADD connection can be done by the company
Visu-IT and AVL, which are the developer of this product. For the establishment of ADD,
the program oracle client must be available and installed on the computer. In addition
some admin rights changes are necessary, to prepare the environment for the ADD tool.
After a successful preparation and establishment of ADD, the �rst connection to ADD
elements via API can be established. As mentioned the whole data exchange base on the
application programming interface (API) happens automatically.
In the next phase all the elements will be imported into the ADD tool. Parallel to this
step, a logger �le is written with the single instructions performed. The second phase is

CHAPTER 4. IMPLEMENTATION 49

implemented in WriteElementsInADD() function, which is located in
EA_AvailableAUTOSARComponentsTab.cs �le. At �rst all the SW-Level1 elements will
be generated as ADD Projects in ADD tool. If the element is already available, only a data
update is necessary, otherwise a new project will be created. The same rule shall apply for
compositions, containers and ports. The SW Level2 elements will be generated in the same
way as compositions in ADD. After inserting SW Level3 elements as containers, the ports
can be included into ADD. Ports of SW Level1-3 are inserted at once as Data Objects in
this database. After inserting all the projects, compositions and containers, the connection
between these element must be established. This step connects all the ADD elements with
each other, so that the links between the elements are not lost and a reconstruction is
possible.
In parallel to these steps, a log �le is generated. This �le contains all the steps, as well
as process warnings and errors, so that the user can track the steps and �nd solution if a
problem occurs. Detailed information about this �le can be read in Section 3.1.3. Finally
the connection to the ADD tool will be closed and data in ADD is ready to be synchro-
nized with AVLab. After �nishing the whole process, a summary and some metrics of the
exported elements are listed in the log �le.

4.1.2 Export To Excel

By pressing the button �Export To Excel�, the selected element, its sub components and
ports will be exported into an excel �le. First a �le dialog window is opened, where the user
has to select a Microsoft O�ce Excel �le as destination. Afterwards all the information
will be transferred to excel �le, as in Section 4.1.1. This working method enables us an
e�cient and accelerated operation of a system.
If the selected excel �le is new, the �le will be �lled with new data, else all the data in the
excel �le will be overwritten with the new information.
After this process, the new excel worksheets will be prepared and �lled with new data.
Each SW Level is represented as a seperated excel worksheet. Moreover the used ports are
listed in their own excel worksheet. There are also four worksheets: three for SW levels
and one for the ports. Please read Section 3.1.1 for more detailed information about the
excel �le data and its structure. After �nalizing this step, a message box will appear, which
signals that the whole process is �nished. In addition, a summary of metrics, warnings
and errors that occured will be listed in a log �le.

CHAPTER 4. IMPLEMENTATION 50

4.2 Import to EA Model

The working method of �Export EA Model� and its implementation has already been
explained in Section 4.1. Next the reverse method �Import elements to EA Model� will be
explained. This process starts with a click on Extensions| AVLab Extension|Import into
EA Model -menu in EA. It causes an execution of the right path of the Figure 4.1. It �rst
creates a new EA Tab named �Import into EA Model Tab�, which can be seen in Figure 3.6.
This tab contains two buttons in the header, an empty list box at the initial state in the
middle and a single button in the footer. The buttons in the header determine the source
tool, also where the source data comes from. The �rst button called �Import from ADD�
imports ADD elements and prints all the element types represented by radio buttons in
the left-middle position of the tab. More details and its detailed work procedure will be
explained in Section 4.2.1.
A click on another button (�Import From Excel�) imports the data from an Excel �le,
which will be explained in Section 4.2.2.

4.2.1 Import From ADD

The �Import from ADD� button imports all the ADD elements and lists these on the
opened EA-Tab. These elements will be di�erentiated by their types. There are following
element types available in ADD:

• Project

• Composition

• Container

• Data Object

These types have been already explained in section3.3.2. �Data Objects� in ADD rep-
resents EA ports and will be used by SW Level components. This means selecting a port
and drawing this in an EA Model makes no sense without the SW Level elements. For this
reason, only the �rst three types are interesting for us. Those three types will be displayed
on EA-Tab and are usually represented by radio-buttons. A click on a radio-button (el-
ement types) lists all the ADD components of this type. Furthermore, a click on Project
radio-button lists all the available projects of ADD. This list is located in the right-middle
position of the opened tab. After selecting an element type and an element, the import
procedure can begin. The last button in the footer named �Draw Model� inserts all the
elements in the opened model and displays them, so that all elements are completely con-
nected to each other. Only the selected element, its sub components and ports will be
imported and drawn in the opened EA model. The rest of the data will no longer be used
and is uninteresting for the user. As usual, the availability of the imported elements will be
again checked. Available elements will be updated and not available elements will be newly
created in the EA model. This means if an EA element is used several times, an update
of this element causes a modi�cation all of the referenced elements. Therefore attention

CHAPTER 4. IMPLEMENTATION 51

should be paid. After graphically representing the model, a message box will appeared,
which signals the �nishing of the whole process. Please read Section 3.2 for more detailed
information about the EA model and its components.
As mentioned in previous sections, a log �le will be updated with useful information. This
contains a summary, some metrics, warnings and errors that occurred during the process.

4.2.2 Import From Excel

A click on the �Import from ADD� button imports all the Excel elements and lists these
elements in the opened EA-Tab. At �rst, the data from all four excel worksheets will
be saved in temporary lists to prevent a permanent access to the �le. A permanent �le
access would make the imports process slow, because of the continuous �le open and close
operations. Therefore each worksheet will opened and read once at the beginning. These
elements will be di�erentiated again by the following types:

• Project

• Composition

• Container

• Data Object

As in the previously discussed sub-section, only the �rst three types will be represented
by radio-buttons and a click on such a radio-button lists all the elements of this type. To
import and draw elements in a model, the following steps are necessary: selection of an
element type, selection of an element and pressing the button in the footer. If the user
clicks one of the element types which are represented as radio buttons, the left-middle
positioning list box will be �lled with the corresponding elements. After a click on the
�Draw Model� button, the whole importing process will be started. The selected element,
their sub components, ports and connections will be imported in the opened EA model. As
mentioned, the updating process of the available elements must be made with attention.
Otherwise an update of multi-used element causes a modi�cation of all the referenced ele-
ments.
After a successful process, a message box appears, which signals that the whole process is
�nished. Please read Section 3.1.1 for more detailed information about the Excel �le and
its worksheets.
Again a log �le will be constantly updated with useful information containing a summary,
some metrics, warnings and errors during the whole process.

CHAPTER 4. IMPLEMENTATION 52

4.3 Available Application scenarios

This section presents all the available application scenarios for the developed tool. There
are principally three tools used for data management/exchange: Excel, EA and AVLab/ADD.
The log �le will not be mentioned here as it only logs the steps that are performed and
it is not used for data-exchange or -management. The main goal and reason for starting
this project was to ensure the automated data exchange between EA and ADD. Therefore
these application scenarios will be handled �rst.

• Data transfer from EA to ADD:
This application scenario takes an EA model with its elements and imports them
into the database of AVLab (ADD). The automated concept in this case is complex
and consumes a lot of time. The higher the number of the transferred EA model,
the better the automated approach is compared to the normal version. Therefore, it
only makes sense, if the same operation is repeated several times.
After importing of all the elements with their properties and attributes in ADD, they
can be used in AVLab after a database synchronization. The application scenario
automatically creates the low level design in MATLAB/Simulink from a high level
model with less expense or e�ort. The imported elements in ADD are also already
connected with each other. This means, after a database synchronization in AVLab,
the low level model can be drawn with a single click.

• Data transfer from EA to Excel:
The elements are in this case imported into a Microsoft O�ce Excel �le. The elements
in the Excel �le will not be used by another tool, but they will be used for clari�cation
regarding the imported elements and their properties. The Excel �le will also be used
like a report �le in this case.

• Data transfer from ADD to EA:
This application scenario takes an ADD component with its connections and children
and transfers it into an EA model. First, the desired EA elements with their prop-
erties will be inserted into the EA package. Then, the elements will be connected to
each other. This means the child elements will be inserted into their parent element
and their ports will be connected to each other. After this step, the model can be
used or modi�ed by another engineers/domains/tools.

• Data transfer from ADD to Excel:
All required ADD elements will be transferred to an Excel �le. Depending on their
software levels the elements will be saved in di�erent Excel worksheets to ensure a
clear separation. Additionally all available properties and connection information for
these elements will be saved in the target �le. As mentioned above, the Excel �le
will be used as a report �le to provide clari�cation regarding the imported elements
and their properties. In other words, this �le is a hard copy of the imported ADD
elements in another �le format.

• Data transfer from Excel to EA:
This application scenario takes all the available Excel elements and imports them
into an EA Model. The user can add, remove or modify all the excel �le information,

CHAPTER 4. IMPLEMENTATION 53

but must ensure consistent naming of worksheets and worksheet structing. Further-
more, element properties such as Element ID must not be modi�ed or deleted. The
entered element ID should be available in EA, otherwise an error will occur and the
information cannot be imported. After importing of information to EA, the model
can again be used immediately or modi�ed for another purpose.

• Data transfer from Excel to ADD:
This step is not directly possible. The only possibility is to import the Excel data to
an EA model and then transfer it to ADD. The data transformation from Excel to
an EA model and from an EA model to ADD has already been explained in previous
sections.

One of these application scenarios will be studied in detail and explained in Section 5.2.
Additionally a direct comparison between manual and automated development will be dis-
cussed based on the consumed energy, time and e�ort.

Chapter 5

Application

5.1 Application

This section of the thesis describes the intent and purpose of the developed tool and ad-
ditionally lists its application areas. The tool has been developed for the companies AVL
List GmbH and the Technical University of Graz. It will used in automotive industries
to accelerate the work processes and shorten development time. It enables engineers to
view di�erent descriptions and perspectives of a process, which leads to a substantial im-
provement in the development process. Thus enabling the detection and avoidance of basic
errors in early development steps.
The implementation concept and skills used have already been discussed in Section 4. All
the achieved goals and limitations will be discussed in the following sections. In addition
the usefulness and reliability of the extensions and features will be discussed and analyzed
in the last sections.

54

CHAPTER 5. APPLICATION 55

5.2 Case Study

This section focuses on one of the six available application scenarios of this tool. The
chosen scenario is the �Data transfer from an EA model into ADD�. This application
scenario exports an SW Architecture from EA to the database of AVLab (ADD). There
is one SW-Level1, two SW-Level2, four SW-Level3 elements and fourteen ports to export.
This scenario automatically creates the low level design in MATLAB/Simulink from a high
level model with less expense or e�ort. Furthermore, the imported elements in ADD are
already connected with each other, so that a database synchronization with AVLab leads
to a complete low level model.
The comparison between my approach and a manual approach will be analyzed in detail
and discussed based on the following areas:

• Consumed time:
This part of the document shows the time consumed to import an EA model into
ADD procedure. It should kept in mind, that the manual working steps are of course
user-dependent and can vary. Due to this fact variations of the measured times can
occurs.

There is one SW-Level1, two SW-Level2, four SW-Level3 elements and fourteen ports
to import. All of those have several and di�erent properties (see 3.2). As you can
see in Table 5.1, there is a huge di�erence in the time consumption between the
automated and manual working steps.

The time consumption can also be seen in Figure 5.1 as a chart, which illustrates the
time di�erences more representative than the table.

Figure 5.1: Time consumption in seconds as a chart

CHAPTER 5. APPLICATION 56

Manually Automated

Availability of the elements checking ∼10 seconds ∼2 seconds
SW Level1 elements(Projects) insertion ∼25 seconds ∼3 seconds
SW Level2 elements(Compositions) insertion ∼45 seconds ∼5 seconds
SW Level3 elements(Containers) insertion ∼75 seconds ∼8 seconds
SW Ports elements(Data Objects) insertion ∼290 seconds ∼12 seconds
References insertion ∼25 seconds ∼2 seconds
Total consumed time ∼7.8 min. ∼0.5 min.

Table 5.1: Consumed time comparison

• Total Cost:
This part focuses on the cost factor of both the approaches. The automated case
needs additional computer energy, which will be consumed from the developed tool.
However the consumed time of the automated approach is extremely low in compar-
ison with manual operating.
I assume that the hourly work rate for an engineer is about 20 Euro. I assume again,
that my tool needs about 200W per hour and that 1 kWh energy costs about 20 cent.
That means my tool costs about 0.2kWh*0.2Euro = 4 Euro cent per hour. The total
cost of each case is as follow:
Manual: 7.8 min = 0.13h, 0.13h*20 Euro/h = 2.6 Euro
Automated: 0.5 min = 0.0083h, 0.0083h*20Euro/h = 0.16 Euro.
The manual approach costs ∼17 times more than the automated one, which is a huge
di�erence. Whereby the tool has been developed in four months, which makes about:
4 months = ∼100 days of work = 800 hours of work
800*20Euro/h = 16000 Euro.
As mentioned previously, it only makes sense to develop a tool, if the same operation
will be used or/and repeated several times.

• Testability:
The testability of an automated tool is in any case better than the manual solution.
We know that a computer is always deterministic and the same input always delivers
the same output by the same algorithm. Whereas a human will usual obtain a
di�erent output using a complex algorithm. That means, the computer does not
have a human-fault factor and thus leads to a secure test environment. In addition
the automated approach is e�ective, e�cient and the test cases will be executed
faster than the traditional method. We can conclude, that the automated process is
de�nitely better than the manual one.

CHAPTER 5. APPLICATION 57

• Expandability and Flexibility:
An extension in the automated �eld is a little easier. If you extend the tool once,
this will be saved forever. Whereby, the manual one needs this extension at each
execution time. That means, the user does the same extension/work at each work
procedure. The �exibility characteristic is also better in the automated version. The
automated methods are usually easy to convert and to modify.

• Reliability:
The reliability characteristic is better in the automated version. It is mostly the
same and doing the same procedures. However a manual operating procedure can
be unintentionally manipulated by a human, which can be called the �human-fault
factor�. The automated version is more reliable because of the same work procedure.

Chapter 6

Conclusion

The aim of this paper is to bridge the existing gap between model-driven system engineer-
ing tools and software engineering tools for embedded automotive systems. The following
tools are used to achieve the main goals of this paper: Enterprise Architect, AVLab/ADD
and Microsoft O�ce Excel. The model based approach has become popular and complex.
This is due to embedded automotive systems evolving to in-car computers. These complex
systems are in most cases developed, analyzed and tested by di�erent large institutions and
teams. Parallel to these di�culties, the system complexity and development time must be
reduced and safety standards such as ISO 26262 [HHA+10] must be met. This challenge
cannot handled manually by humans. Therefore an automated, tested, veri�ed and stan-
dardized application is essentially important. The tool in this paper has been developed
to close the gap between model-driven system engineering and SW engineering tools. It
manages the whole data transfer automatically via the tools �Application Programming
Interface�.

The tool ensures a bidirectional data transfer between ADD, EA and Excel via pro-
viding data conversion between those model based systems and software engineering tools.
This automated approach usually has positive and negative aspects. The comparison
between automated- and manual development over the entire product life-cycle will be
discussed in the Section 5.2.

The automated data transfer will be controlled in a tool which has been developed
in object-oriented programming language C#. The tool of this work has been developed
using a Graphical User Interface(GUI) application, which makes it user-friendly and more
attractive. As mentioned, the data will be transferred automatically and enables di�erent
views and improves consistency, correctness and completeness of a product. Additionally
this approach accelerates time-to-market and reduces the development costs.

After each transfer procedure, a log �le will be generated. This �le contains all the
steps, as well as process warnings and errors, so that the user can track the steps and �nd
solution if a problem occurs.

58

Chapter 7

Future Works

This section of this paper describes the planned features and extensions for the project.
One of the main future works is the extension of the project, in a way that the tool supports
the engineers in di�erent work steps. Also usage in di�erent companies and institutions is
conceivable.
The functional safety standards for road vehicles, ISO26262 supports the automobile indus-
try through di�erent work processes, which will be increasingly re�ned and simultaneously
automated. Since the tool keeps up with functional safety standards, it is conceivable
that this project can be applied to other automobile industry �elds. As mentioned at the
beginning, the tool uses and is able to create customized components. This means that
the tool can be adapted for the needs and processes of other companies.

The next proposal is to exchange information with with other SysML authoring tools,
which is not implemented in the current version.
Another future work is the automated generation of the test cases and reports. This will
help the user to design, implement, test and validate a system with a single click.

59

Appendix A

Tool Programmer-Guideline

60

Copyright © 2015 AVL LIST GMBH, all rights reserved.

internal

MasterThesis_ProgrammerGuideline.docx Page 1 of 9

Connecting Model-Based System
Engineering and AVLab SW Test

Environment

Programmer Guideline

Document Version: 1.0
Status: draft

Revision History

Rev.

Index

Date Author Status Changes

0.1 12/04/2015 Muesluem Atas,

AVL

draft Initial state described

1.0 06/10/2015 Muesluem Atas,

AVL

draft Document updated for a new release

Connecting Model-Based System Engineering and AVLab SW Test Environment Programmer Guideline

ADD_ImporterExporter_ProgrammerGuideline Status: draft
Page 2 of 9

Internal © 2015 AVL List GmbH 6-Oct-2015

Table of Contents

1. Introduction 3

2. Prerequisites 3

3. Step-by-Step instructions of Microsoft Visual Studio 3

3.1 First Steps 3
3.1.1 Manage Start programs of Microsoft Visual Studio 3
3.1.2 Create the add-In library 4
3.1.3 Add the registry key 7

3.1.4 Arm Automotive Data Dictionary (ADD) 8

Connecting Model-Based System Engineering and AVLab SW Test Environment Programmer Guideline

ADD_ImporterExporter_ProgrammerGuideline Status: draft
Page 3 of 9

Internal © 2015 AVL List GmbH 6-Oct-2015

1. Introduction

This document is a Programmer-Guideline for the “Connecting Model-Based System Engineering

and AVLab Environment“ tool. Use at your own risk.

The developed tool bridges the existing data exchange gap between model-driven system- and
software engineering tools for embedded automotive systems. The information will be
automatically exchanged between the following tools via an application programming interface
(API): Enterprise Architect, ADD and Microsoft Office Excel. This approach enables model-based
design and development, which is becoming increasingly popular in embedded automotive
systems.

2. Prerequisites
The following software candidates have to be installed on your computer to enable successful

use of this tool:

 Enterprise Architect

 Microsoft Visual Studio

 Microsoft Office Excel

 Local version of AVLab Database interface (ADD) + ADD access rights

3. Step-by-Step instructions

3.1 First Steps

3.1.1 Manage Start programs of Microsoft Visual Studio

To automatically start “Enterprise Architect (EA)” after running a “Microsoft Visual Studio” project, perform

following points:

1. Open the C# project file (.csproj) as text file.

2. Add the following lines into the opened file.

<PropertyGroup Condition=" '$(Configuration)' == 'Release' ">

 <StartAction>Program</StartAction>

 <StartProgram>C:\Program Files (x86)\Sparx Systems\EA\EA.exe</StartProgram>

 </PropertyGroup>

 <PropertyGroup Condition=" '$(Configuration)' == 'Debug' ">

 <StartAction>Program</StartAction>

 <StartProgram>C:\Program Files (x86)\Sparx Systems\EA\EA.exe</StartProgram>

 </PropertyGroup>

3. Save and close the file.

Connecting Model-Based System Engineering and AVLab SW Test Environment Programmer Guideline

ADD_ImporterExporter_ProgrammerGuideline Status: draft
Page 4 of 9

Internal © 2015 AVL List GmbH 6-Oct-2015

3.1.2 Create the add-In library

 To create such a project in Visual Studio, an add-In library is required. First start

Microsoft visual Studio and choose “class Library” for the project type as in Figure 1.

Figure 1: Select type of the new Visual Studio project

 For successful access to EA, add EA library into the visual studio project references. This

reference allows an access to the EA classes/interfaces and its properties via API. This

can be done under right mouse click + Add Reference… menu on the solution

explorer of the C# project (see Figure 2).

Figure 2: Add references to a project

 After this step, Figure 3 will appear which shows all the available references.

Connecting Model-Based System Engineering and AVLab SW Test Environment Programmer Guideline

ADD_ImporterExporter_ProgrammerGuideline Status: draft
Page 5 of 9

Internal © 2015 AVL List GmbH 6-Oct-2015

Figure 3: Reference manager window

 If EA.dll has never been used before, import the Interop.EA.dll into the references list.

This step can be made as follow:

- Click Browse tab on the Reference Manager window (see Figure 3).

- Click Browse… button in Figure 3 and select the EA installation folder

(C:\Program Files\Sparx Systems\EA).

- Choose the file Interop.EA.dll and click OK button.

Figure 4: Open project properties

Connecting Model-Based System Engineering and AVLab SW Test Environment Programmer Guideline

ADD_ImporterExporter_ProgrammerGuideline Status: draft
Page 6 of 9

Internal © 2015 AVL List GmbH 6-Oct-2015

 The imported library has to be defined as COM object in Microsoft Visual studio. To

perform this, apply the following settings:

- Click right mouse on the project in the solution explorer + click properties menu

(see Figure 4).

- Open Application tab in the project properties window

- Click Assembly Information… button (see Figure 5).

- Set Make assembly COM-Visible checkbox in Assembly Information window

(see Figure 6).

Figure 5: Application tab of the project properties window

Figure 6: Assembly Information window

Connecting Model-Based System Engineering and AVLab SW Test Environment Programmer Guideline

ADD_ImporterExporter_ProgrammerGuideline Status: draft
Page 7 of 9

Internal © 2015 AVL List GmbH 6-Oct-2015

 Microsoft Visual Studio should register the imported library in the COM codebase.

Otherwise the performed setting must be made at each execution/compile procedure.

To prevent this, apply the following settings:

- Change from Application- to Compile tab in project properties window (see

Figure 7).

- Set Register for COM interop checkbox (see Figure 7).

Figure 7: Compile tab in project properties window

3.1.3 Add the registry key

Another required setting in order to start the EA is the registration of the add-Ins in the registry

editor. To do this: open the registry editor with a click on Start - Run menu and type regedit (see

Figure 8).

Figure 8: Open the registry key

Next, click the OK button, to open the required window. After opening this window, browse to the

key HKEY_CURRENT_USER\Software\Sparx Systems\EAAddins in registry key and add a

new key via a right click (see Figure 9).

Connecting Model-Based System Engineering and AVLab SW Test Environment Programmer Guideline

ADD_ImporterExporter_ProgrammerGuideline Status: draft
Page 8 of 9

Internal © 2015 AVL List GmbH 6-Oct-2015

Figure 9: Add a new key in the registry editor

The registry editor will automatically create a default value for the new key. The data of the

created key must be changed via a double click in the following form:

[ProjectName].[ClassName], whereby the projectName is your project name and ClassName

is the visual studio class name, which will be used in your project. Figure 10 shows such an

example.

Figure 10: Edit the data of the new value

3.1.4 Arm Automotive Data Dictionary (ADD)

ADD is the interface to the AVLab database and manages all the elements of AVLab that are used. This

tool supports different powertrain control processes of the automotive industry to provide an easy and

efficient working method.

To arm the Automotive Data dictionary of the AVLab, the following steps are necessary:

 Provide access to the ADD Database.

- The database behind this tool will be provided by oracle. To have access to this,

the user must be registered in this database. This can only be made through the

developer company (Visu-IT GmbH)

 Install the Oracle Client 11.2 software on your personal computer.

 For complete access to ADD, the user requires admin rights on the installed Oracle client

software. This can be performed with the following points:

Connecting Model-Based System Engineering and AVLab SW Test Environment Programmer Guideline

ADD_ImporterExporter_ProgrammerGuideline Status: draft
Page 9 of 9

Internal © 2015 AVL List GmbH 6-Oct-2015

- Open the file “tnsnames.ora” in folder “C:\Oracle\ora11g\client\network\admin”

with a text editor.

- Add the following text into the file “tnsnames.ora” (see Figure 11).

Figure 11: A part of the tnsnames.ora file

 Provide an access to the newest ADD offline version.

- Get the newest offline version of the ADD from the developer company and copy

it on to your personal computer.

 Open this ADD folder and double click on the file “Register.cmd” to prepare the ADD for the

first usage.

 After these steps, the ADD tool can be opened with a double click on the file “ADD.exe” (see

Figure 12).

Figure 12: ADD User Interface

70

APPENDIX A. ABBREVIATION 71

Appendix A

Abbreviation

A.1 De�nitions

EA Enterprise Architect
EAI Enterprise Application Integration
ADD Automotive Data Dictionary
API Application Programming Interface
OMG Object Management Group
UML Uni�ed Modeling Language
SysML Systems Modeling Language
XML Extensible Markup Language
XMI XML Metadata Interchange
OWL Web Ontology Language
OCL Object Constraint Language
MDA Model Driven Architecture
MBSE Model-Based Systems Engineering
AMD Automatic Model Development
ASCG Automatic Source Code Generation
ECU Electronic Control Unit
GUI Graphical User Interface
ASIL Automotive Safety Integrity Level
SDTF SysML Document Traceability Framework
InVEST Interactive Visualization Engine for SysML Tools
TPT Time Partition Testing
SFR Special Function Register
RTOS Real-Time Operating System
PSM Platform Speci�c Model
PIM Platform independent Model
APAS Automotive Personal Assistance System
GPS Global Positioning System
MOF Meta Object Facility
MiL Model-in-the-Loop
SiL Software-in-the-Loop
PiL Processor-in-the-Loop
HiL Hardware-in-the-Loop

Bibliography

[15706] A model driven architecture for enterprise application integration, Jan 2006.

[Ben83] Herbert D. Benington. Production of large computer programs. Annals of the
History of Computing, 5(4):350�361, Oct 1983.

[BK08] E. Bringmann and A. Kramer. Model-Based Testing of Automotive Systems.
In Software Testing, Veri�cation, and Validation, 2008 1st International Con-
ference on, pages 485�493, April 2008.

[Cla09] J.O. Clark. System of systems engineering and family of systems engineering
from a standards, v-model, and dual-v model perspective, March 2009.

[DF07] C. Davey and J. Friedman. Software systems engineering with model-based de-
sign. In Software Engineering for Automotive Systems, 2007. ICSE Workshops
SEAS '07. Fourth International Workshop on, pages 7�7, May 2007.

[EGa] Standardized E-Gas Monitoring Concept for Gasoline and Diesel Engine Con-
trol Units. 5.5. Audi and BMW and Daimler and Porsche and VW.

[FG07] T. Farkas and D. Grund. Rule checking within the model-based development
of safety-critical systems and embedded automotive software. In Autonomous
Decentralized Systems, 2007. ISADS '07. Eighth International Symposium on,
pages 287�294, March 2007.

[Fis98] G.H. Fisher. Model-based systems engineering of automotive systems. In
Digital Avionics Systems Conference, 1998. Proceedings., 17th DASC. The
AIAA/IEEE/SAE, volume 1, pages B15/1�B15/7 vol.1, Oct 1998.

[FNH09] T. Farkas, C. Neumann, and A. Hinnerichs. An integrative approach for em-
bedded software design with uml and simulink. In Computer Software and
Applications Conference, 2009. COMPSAC '09. 33rd Annual IEEE Interna-
tional, volume 2, pages 516�521, July 2009.

[HHA+10] M. Hillenbrand, M. Heinz, N. Adler, J. Matheis, and K.D. Muller-Glaser. Fail-
ure mode and e�ect analysis based on electric and electronic architectures of
vehicles to support the safety lifecycle iso/dis 26262. In Rapid System Proto-
typing (RSP), 2010 21st IEEE International Symposium on, pages 1�7, June
2010.

72

BIBLIOGRAPHY 73

[KLPK13] M. Krunic, I. Letvencuk, I. Povazan, and V. Krunic. An approach to model
driven development and automatic source code generation of GUI controls.
In Intelligent Systems and Informatics (SISY), 2013 IEEE 11th International
Symposium on, pages 63�68, Sept 2013.

[MKR06] Ji Chan Maeng, Jong-Hyuk Kim, and Minsoo Ryu. An rtos api translator for
model-driven embedded software development. In Embedded and Real-Time
Computing Systems and Applications, 2006. Proceedings. 12th IEEE Interna-
tional Conference on, pages 363�367, 2006.

[MLD+12] Tobias Carsten Müller, Malte Lochau, Stefan Detering, Falko Saust, Henning
Garbers, Lukas Märtin, Thomas Form, and Ursula Goltz. A comprehensive
Description of a Model-based, continuous Development Process for AUTOSAR
Systems with integrated Quality Assurance. In A comprehensive Description of
a Model-based, continuous Development Process for AUTOSAR Systems with
integrated Quality Assurance. Institut für Regelungstechnik, TU Braunschweig,
Institut für Programmierung und Reaktive Systeme, TU Braunschweig, In-
stitut für Verkehrssicherheit und Automatisierungstechnik, TU Braunschweig,
December 2009-12.

[Rao05] M. Rao. Sysml with artisan studio. In Visual Languages and Human-Centric
Computing, 2005 IEEE Symposium on, pages 15�, Sept 2005.

[Sei14] Matthias Seidl. Automated Transformation of System Models into Ontologies.
In Automated Transformation of System Models into Ontologies. Know Center
- Graz University of Technology, September 2014.

[TF14] K. Trase and E. Fink. A model-driven visualization tool for use with model-
based systems engineering projects. In Aerospace Conference, 2014 IEEE, pages
1�10, March 2014.

