
Sebastian Ramacher, MSc BSc BSc

Bilinear Pairings on Elliptic
Curves

Master Thesis

to achieve the university degree of

Diplom-Ingenieur

Master degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor: Dipl.-Ing. Christian Hanser
Assessor: Univ.-Prof. Dipl.-Ing. Dr.techn. Stefan Mangard

Institute for Applied Information
Processing and Communications (IAIK)

Graz University of Technology
Inffeldgasse 16a

8010 Graz, Austria

October, 2015

Affidavit

I declare that I have authored this thesis independently, that I
have not used other than the dclard sources/resources, and that
I have explicitely indicated all material which has been quoted
either literally or by content from the sources used. The text
document uploaded to TUGRAZonline is identical to the present
master thesis.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit
selbständig verfasst, anders als die angegebenen Quellen/Hilfsmittel
nicht benutzt, und die den benutzten Quellen wörtlich und in-
haltlich entnommenen Stellen als solche kenntlich gemacht habe.
Das in TUGRAZonline hochgeladene Textdokument ist mit der
vorliegenden Masterarbeit identisch.

Sebastian Ramacher

i

Acknowledgements

I would like to express my sincere gratitude to my advisor Christian Hanser for
the continuous support while writing this thesis and implementing bilinear pairings.
Christian provided my with the possibility to work on IAIK ECCelerate™. I am
also very thankful for effort he spent on discussions about bilinear pairings and the
corrections and pointers he offered on this thesis.

I would like to thank my parents, Johanna and Jürgen Ramacher, for the all
their support and encouragement throughout my studies. I am also very grateful to
Theresa Bernardi for being there for me whenever needed.

I would also like to thank Andreas Stührk and Lukas Prokop for the countless
discussions about Java while working on the implementation.

ii

Abstract

Elliptic curves emerged from the theory of elliptic integrals and elliptic functions,
which were studied in the 18th and 19th century, and were introduced into cryptogra-
phy in the 1980s. First constructions of bilinear pairings were known since the 1940s.
In a cryptographic context bilinear pairings on elliptic curves were first used to attack
the Elliptic Curve Discrete Logarithm Problem in the 1990s. However, it turned out
that the properties of bilinear pairings are also immensely useful for developing new
cryptographic protocols and for providing solutions to challenging open problems,
such as the construction of an efficient identity-based encryption scheme. Other
protocols that have been built using bilinear pairings include a signature scheme
which produces shorter signatures than the Elliptic Curve Digital Signature Algo-
rithm, group signature schemes, blind signature schemes and structure-preserving
signatures. All in all, the successful application of bilinear pairings in the design
of new protocols led to a tremendous growth of cryptography and an explosion of
protocols exploring the new possibilities.

This master thesis gives an overview of necessary results to construct bilinear
pairings over elliptic curves and demonstrates different kinds of constructions rang-
ing from the Weil pairing to the Optimale Ate pairing. We also discuss Miller’s
algorithm, which makes the computation of bilinear pairings feasible, and other
state-of-the-art techniques to further improve the performance of bilinear pairing
evaluations. We present algorithms to find suitable finite fields and elliptic curve
parameters to obtain pairing-friendly elliptic curves from the family of Barreto-
Naehrig curves. Finally, we present the implementation of bilinear pairings using
state-of-the-art techniques in the IAIK ECCelerate™ library and give performance
comparisons to other Java™-based pairing implementations.

Keywords: elliptic curves, Barreto-Naehrig curves, bilinear pairings, Weil pairing,
Tate pairing, Ate pairing, Optimal Ate pairing, Miller’s algorithm, denominator
elimination, final exponentiation, cyclotomic subgroups, IAIK ECCelerate™

iii

Kurzfassung

Elliptische Kurven entstanden aus der Theorie elliptischer Integrale und elliptischer
Funktionen, die im 18. und 19. Jahrhundert untersucht wurden. In den 1980er Jahren
wurden elliptische Kurven erstmals in der Kryptographie verwendet. Konstruktionen
von bilinearen Pairings sind seit den 1940er Jahren bekannt. In einem kryptographi-
schen Kontext wurden bilineare Pairings in den 1990er Jahren zuerst verwendet um
das Diskrete Logarithmus Problem auf elliptischen Kurven anzugreifen. Es stellte
sich allerdings heraus, dass sich die Eigenschaften von bilinearen Pairings zur Ent-
wicklung neuer kryptographischer Protokolle eignen und ermöglichten es Lösungen
für schwierige Probleme, wie etwa die Konstruktion eines auf Identitäten basieren-
des Verschlüsselungsschema, zu finden. Weitere Protokolle, die basierend auf bili-
nearen Pairings konstruiert wurden, umfassen etwa ein Signaturschema, das kürze
Signaturen als der Elliptic Curve Digital Signature Algorithm produziert, Gruppen-
signaturen, blinde Signaturen und strukturerhaltende Signaturen. Der erfolgreichen
Einsatz von bilinearen Pairings im Design neuer Protokolle führte zu einem immen-
sen Wachstum der Kryptographie.

Wir geben einen Überblick über die nötigen Resultate, die es ermöglichen bilineare
Pairings über elliptischen Kurven zu konstruieren, und demonstrieren verschiedene
Möglichkeiten Pairings zu konstruieren. Wir diskutieren auch den Algorithmus von
Miller und andere moderne Techniken, die es ermöglichen, Pairings effizient zu be-
rechnen. Außerdem präsentieren wir Algorithmen, die das Auffinden von passenden
endlichen Körpern und Parametern für Pairing-freundlichen Barreto-Naehrig Kur-
ven ermöglichen. Schlussendlich wird die Implementierung von bilinearen Pairings
in der IAIK ECCelerate™ Bibliothek präsentiert und mit anderen Java™-basierten
Pairing-Implementation verglichen.

Stichwörter: Elliptische Kurven, Barreto-Naehrig Kurven, bilineare Pairings, Weil
Pairing, Tate Pairing, Ate Pairing, Optimales Ate Pairing, Algorithmus von Miller,
Nennereliminerung, finale Potenzierung, zyklotomische Untergruppe, IAIK ECCele-
rate™

iv

Contents

1. Introduction 1
1.1. Outline . 2

I. Introduction to Elliptic Curves 4

2. Preliminaries 5
2.1. Group Theory . 5
2.2. Ring Theory . 7
2.3. Field Theory . 10
2.4. Affine and Projective Space . 14
2.5. Algebraic Geometry . 15

3. Elliptic Curves 17
3.1. Group Law . 17
3.2. Curve Invariants and Isomorphisms 19
3.3. Elliptic Curves in Short Weierstrass Form 21
3.4. Torsion Subgroups . 22
3.5. Frobenius Endomorphism . 23
3.6. Twists . 26
3.7. Elliptic Curve Cryptography . 27

II. Bilinear Pairings 29

4. Divisors 30
4.1. The Divisor Class Group . 35
4.2. A Corollary to the Riemann-Roch Theorem 37
4.3. Weil Reciprocity . 38

5. Bilinear Pairings 40
5.1. Bilinear Maps and Pairings . 40
5.2. Pairing-based Cryptography . 42
5.3. Weil, Tate and Ate Pairing . 42

5.3.1. Weil Pairing . 43
5.3.2. Tate Pairing . 46
5.3.3. Ate Pairing . 48

5.4. Miller’s Algorithm . 50

v

5.5. Optimal Pairings . 52
5.6. Building Type 2 from Type 3 Pairings 53
5.7. Application of Bilinear Pairings . 54

5.7.1. MOV Algorithm . 54
5.7.2. BLS Signature Scheme . 56

6. Pairing-friendly Elliptic Curves 58
6.1. Constructing Ordinary Pairing-Friendly Curves 58
6.2. Barreto-Naehrig Curves . 60
6.3. Twists of Barreto-Naehrig Curves . 62
6.4. A Subfamily of Barreto-Naehrig Curves with an Explicit Description

of Twist parameters . 63
6.5. Optimal Ate Pairing on Barreto-Naehrig Curves 66
6.6. Hashing to Barreto-Naehrig Curves 67

III.Implementation of Pairings 70

7. Techniques to Speed up Pairing Computations 71
7.1. Towered Extension Fields and Finite Field Arithmetic 71
7.2. Frobenius isomorphism in Fp12 . 73
7.3. Cyclotomic subgroups . 75
7.4. Denominator Elimination . 77
7.5. Curve Arithmetic in Miller’s algorithm 81
7.6. Final Exponentiation . 82

8. Implementation in ECCelerate 88

IV.Conclusion 91

9. Conclusion 92

Appendices

Bibliography 97

vi

List of Figures

3.1. Examples of elliptic curves over R . 18
3.2. Visualization of the chord-and-tangent rule on Y 2 = X3 − 2X + 1

over R. 19

List of Tables

3.1. Nature of degree 2, 3, 4 and 6 twists [CLN10, Table 1]. 27

8.1. Pairing evaluations per second for two randomly chosen points using
IAIK ECCelerate™ and BNPairings 90

8.2. Pairing evaluations per second for a random point in G1 and a fixed
point in G2 using IAIK ECCelerate™ and BNPairings 90

vii

List of Algorithms

1. Addition of two points on an elliptic curve E defined over K in Weier-
strass form . 20

2. Addition of two points on an elliptic curve E defined over K in short
Weierstrass form . 22

3. Miller’s algorithm to evaluate fr,P . 51
4. The MOV algorithm . 55

5. Constructing a curve of prime order with k = 12 [BN06, Algorithm 1] 61
6. Constructing a curve of prime order with k = 12 65
7. “Try-and-increment” algorithm for an elliptic curve E : Y 2 = f(X)

over Fp with security parameter k and a hash function h to Fp 68
8. Shallue-van de Woestijne encoding to a Barreto-Naehrig curve E :

Y 2 = X3 + b over Fp . 69

9. Computation of the Frobenius automorphism in Fp12 74
10. Exponentiation using compressed squaring 77
11. BKLS-GHS version Miller’s algorithm for the Tate pairing 80
12. Simultaneous point addition and line function evaluation in projective

coordinates . 83
13. Simultaneous point doubling and line function evaluation in projec-

tive coordinates . 83
14. Scott et al.’s method to compute the final exponentiation 87

viii

1. Introduction

Elliptic curves emerged from the theory of elliptic integrals and elliptic functions,
which were studied in the 18th and 19th century. Initially, elliptic curves were pri-
marily used as theoretical tool in function theory and number theory. They were
introduced into cryptography in the 1980s when Koblitz and Miller [Mil86b, Kob87]
proposed protocols which were based on the hardness of the Elliptic Curve Discrete
Logarithm Problem.

The first construction of a bilinear pairing dates back to 1940 when Weil in-
troduced a pairing on Abelian varieties [Wei40]. Almost two decades later, Tate
[Tat58, Tat63] presented another pairing which was later refined by Lichtenbaum
[Lic69]. At this time, these pairings were mostly used as a theoretical tool and have
found applications in number theory and algebraic geometry. Until the 1980s no
efficient algorithm was known to actually compute pairings. A first step towards
efficiently computable pairings was a polynomial time algorithm to compute func-
tions on algebraic curves with given roots and poles by Miller [Mil86a]. This new
algorithm made it possible to compute the pairings by Weil and Tate.

With the invention of Miller’s algorithm, pairings found their first application in
cryptography in the 1990s. The Weil pairing was first used to attack the Elliptic
Curve Discrete Logarithm problem for elliptic curves with small embedding degree in
subexponential time. Using the pairing, Menezes, Okamoto and Vanstone [MVO91]
transported the discrete logarithm problem from the elliptic curve to the multiplica-
tive group of a finite field. Provided that the embedding degree is sufficiently small,
the index calculus method can then be applied in the latter group. Frey and Rück
introduced the Tate pairing into cryptography with a similar attack [FR94].

Starting with a one-round Diffie-Hellman key exchange protocol proposed by Joux
in 2000 [Jou00] and identity-based non-interactive authenticated key agreement pro-
tocol by Sakai, Ohgishi and Kasahara [SOK00], bilinear pairings were used more and
more to build new cryptographic protocols and to provide solutions for challenging
open problems. For example, Boneh and Franklin [BF01] provided a solution to
an old question of Shamir [Sha84], who asked whether an efficient identity-based
encryption could be devised. Other early applications of pairings include a signa-
ture scheme by Boneh, Lynn and Shacham [BLS01] producing shorter signatures
than the Elliptic Curve Digital Signature Algorithm. Pairings have also been used
to build protocols like blind signature schemes [Bol03, FHS15], group signature
schemes [BBS04] and structure-preserving signatures [AFG+10]. All in all, the in-
troduction of pairings into cryptography led to an explosion of protocols exploring
new possibilities.

However, the use of pairings comes at a price. The evaluation of a bilinear pairing
is by far more expensive than the comparatively simple arithmetic in a finite field

1

1. Introduction

or on elliptic curves. To make pairings practical, elliptic curves and algorithms to
compute the pairings have to be chosen carefully. Suitable curves can be found using
the complex multiplication method which was first used by Miyaji, Nakabayashi and
Takano [MNT01] to find a family of pairing-friendly curves. Over the years many
other families were constructed using this method by Barreto, Naehrig, Freeman,
Scott and others [SB04, BN06, Fre06].

To improve the performance of pairing-based protocols, new pairings have been
proposed that reduce the number of iterations required in Miller’s algorithm. These
pairings came with a shortened loop and include pairings like the Ate pairing in-
troduced by Hess, Smart and Vercauteren [HSV06] and the η pairing by Barreto,
Galbraith, Ó hÉigeartaigh and Scott [BGÓS04]. Loop shortening culminated in
the construction of optimal pairings [Ver08], which require the minimal number of
iterations in Miller’s algorithm.

Besides optimizing Miller’s algorithm, the performance of pairing evaluation ben-
efits from fast finite field arithmetic. In particular, the final exponentiation that is
required for the Tate and any related pairing turned out to be major bottleneck.
Improvements to the final exponentiation can be achieved by using the special struc-
ture of the involved exponent as shown by Scott, Benger, Charlemagne, Dominguez
Perez and Kachisa [SBC+08]. But also the cyclotomic subgroup provides further
improvements as it allows faster exponentiation and inversions [Kar10].

In this thesis we will give a comprehensive overview of the construction and im-
plementation of bilinear pairings on elliptic curves. We will provide the necessary
background in algebra and algebraic geometry to introduce elliptic curves and their
divisor groups. Using these divisors, we present the Weil and Tate pairing as well
as the pairings derived from the Tate pairing. We will also discuss optimal pair-
ings and the associated optimality conjecture. We will continue by investigating
pairing-friendly Barreto-Naehrig curves, a family of elliptic curves. After that we
will turn to state-of-the-art implementation techniques to improve the performance
of pairing evaluations. Finally, the implementation of the Optimal Ate pairing on
Barreto-Naehrig curves using these techniques in the IAIK ECCelerate™ will be
presented.

1.1. Outline

The first part of this thesis gives an introduction to the necessary theory on elliptic
curves. Chapter 2 recalls definitions and facts from algebra and algebraic geometry
that are required for the later parts of the thesis. An overview of elliptic curves and
their properties are outlined in Chapter 3.

The second part is dedicated to the description of bilinear pairings. Chapter 4
discusses divisors on elliptic curves and some results that are necessary to construct
bilinear pairings. In Chapter 5 bilinear pairings are defined and various constructions
of pairings are presented. The last chapter of this part, Chapter 6, discusses pairing-
friendly elliptic curves and covers the family of Barreto-Naehrig curves.

The third part of the thesis focuses on the implementation of bilinear pairings.

2

1. Introduction

Chapter 7 describes several state-of-the-art techniques that are useful for the imple-
mentation of bilinear pairings in general and make the use of pairings practical. The
implementation of bilinear pairings in the Java™ based IAIK ECCelerate™ library
is presented in Chapter 8.

3

Part I.

Introduction to Elliptic Curves

4

2. Preliminaries

We will need some definitions and facts from algebra and algebraic geometry. This
chapter serves as short overview of groups, rings, fields and smooth algebraic curves.
For a detailed and in-depth coverage of these topics we refer to [Hun03, Lan02, Sti09,
Was08].

2.1. Group Theory

Groups are one of the basic structures of modern algebra. A group consists of a set
together with an operation that combines two elements to a third element where
the operation satisfies certain natural properties like associativity.

Law of composition Let S be a set. A map · : S × S → S is called a law of
composition. For x, y ∈ S the image of the pair (x, y) under this law of composition
will be denoted by x · y. If a multiplicative notation is used, we also write xy.

Let S be a set and · a law of composition. The law of composition is called
associative if (g · h) · k = g · (h · k) holds for all g, h, k ∈ S. It is called commutative
if g · h = h · g holds for all g, h ∈ S.

Groups

Definition 2.1. Let G be a set and · : G × G → G be a law of composition, then
(G, ·) is called a group if all of the following conditions are satisfied:

1. The law of composition · is associative.

2. There exists an element e ∈ G such that e · g = g · e = g for all g ∈ G. This
element is called identity element.

3. For each element g ∈ G there exists an inverse element g−1 ∈ G such that
g−1 · g = g · g−1 = e.

If · is also commutative, then (G, ·) is called Abelian.

A group (H, ∗) is called a subgroup of (G, ·) if H is a subset of G and · restricted
to H coincides with ∗.

Whenever we have a set H together with an associative law of composition ·, we
refer to the set of invertible elements of H with respect to · as (H, ·)× or simply H×.
Note that H× is always a group.

Example 2.2. 1. (Z,+) is a group with identity element 0.

2. (Z \ {0}, ·) is not a group. Only 1 and −1 are invertible.

5

2. Preliminaries

Homomorphisms Homomorphisms are structure-preserving maps between two
algebraic structures. They allow to study the relationship between certain struc-
tures. For groups, a homomorphism is defined in the following way:

Definition 2.3. Let (G, ·) and (G′, ∗) be groups. A map f : G → G′ is called a
(group) homomorphism if f(g · h) = f(g) ∗ f(h) holds for all g, h ∈ G.

Group homomorphisms preserve the neutral element, that is f(1G) = 1G′ . An
injective group homomorphism is called monomorphism. If a group homomorphism
is surjective it is called epimorphism. An isomorphism is a bijective group homo-
morphism. An endomorphism is a group homomorphism mapping a group to itself.
An isomorphism that is also an endomorphism is called automorphism.

If an isomorphism exists between two groups, they are called isomorphic and we
write G ' G′.

Cyclic groups and generators Cyclic groups have a very simple description in
terms of one group element.

Let (G, ·) be a group. For an element g ∈ G, the set of elements generated by g
is denoted by 〈g〉 and consists of all elements of the form gk for all k ∈ Z. This set
is a subgroup of G.

If for a group (G, ·) there exists an element g ∈ G such that G = 〈g〉, then the G
is called cyclic and g is called a generator of the group.

Example 2.4. 1. The group (Z,+) is cyclic and generated by 1.

2. The group (Q,+) is not cyclic and is generated by the infinitely large set
{ 1
n!
| n ∈ N}.

Order The order of an element h ∈ G, denoted by ordG(h), is defined as the
smallest positive integer k such that hk = 1. If no such k exists, then ordG(h) is set
to ∞. Group elements with finite order are called torsion elements. The order of
the group, ord(G), is defined to be its cardinality. If a group has prime order, the
group is cyclic.

Example 2.5. • In (Z,+) the order of 0 is 1 and the order of every non-zero
element is ∞.

• For G = (Z/6Z,+) and H = (Z/6Z, ·)× the orders are as follows:

g ordG(g) ordH(g)
0 1 -
1 6 1
2 3 -
3 2 -
4 3 -
5 6 2

6

2. Preliminaries

Free Abelian Groups A free Abelian group is an Abelian group G that admits
a basis B ⊂ G.

Definition 2.6. An Abelian group (G,+) is called free if there exists a subset
B ⊂ G such that any element g ∈ G can be written uniquely as

g =
∑
b∈B

abb

with ab ∈ Z and only finitely many ab are non-zero.

If the basis B is finite, G is called finitely generated.

Example 2.7. The group (Z,+) is a free Abelian group with basis {1}. In fact, any
free Abelian group is isomorphic to a direct sum of copies of (Z,+).

Lattices A lattice is a special subgroup of real vector space.

Definition 2.8. Let n ∈ N and v1, . . . , vn ∈ Rn be a vector space basis for Rn.
Then the set

Λ =

{
n∑
i=1

aivi | ai ∈ Z

}
is called a lattice in Rn.

In other words, a lattice is a finitely generated free Abelian group generated by
a basis {v1, . . . , vn}. While the same lattice may be generated by a different basis,
the absolute values of the determinant of the vectors vi is uniquely determined by
the lattice.

2.2. Ring Theory

A ring is an algebraic structure with two distinct but compatible laws of composition
that generalize the arithmetic operations of addition and multiplication. One can
think of Z as the prime example of a ring and many of concepts found here a direct
generalization of properties of Z.

Definition 2.9. A set R together with two laws of composition + and · is called a
ring (with unity) if all of the following conditions are satisfied

1. (R,+) is an Abelian group with identity element 0.

2. · is associative with neutral element 1.

3. · is distributive with respect to +, that is

a · (b+ c) = (a · b) + (a · c) and (a+ b) · c = (a · c) + (b · c)

for all a, b, c ∈ R.

7

2. Preliminaries

If (R, ·) is also commutative, (R,+, ·) is called a commutative ring. If for a com-
mutative ring the product of every two non-zero elements is again non-zero, the ring
is called an integral domain.

Since it is often useful to refer to the all non-zero elements of a ring, the set of all
non-zero elements is denoted by R•.

Ideals and quotient rings Ideals are special subsets of rings. They generalize
the properties of certain subsets of the integers like the even numbers.

Definition 2.10. Let (R,+, ·) be a commutative ring. A subset I ⊂ R is called an
ideal of R if

• (I,+) is a subgroup of (R,+), and

• For all x ∈ I and r ∈ R both x · r ∈ I and r · x ∈ I.

The first condition can be replaced by requiring I to be non-empty and that for
all x, y ∈ I also x− y ∈ I.

Example 2.11. 1. Let R be any ring r ∈ R. The set rR = {rx |x ∈ R} consisting
of all multiples of r forms an ideal. An element x ∈ R is contained in rR if
and only if x is divisible by r.

If an ideal I can be written as rR for some r ∈ R, then the ideal is called
principal.

2. In Z the situation is very simple, since all ideals of Z are principal.

Ideals can now be used to construct new rings from existing rings. Let I be an
ideal of a ring R. Then we can define an equivalence relation ∼I in the following
way: a ∼I b for a, b ∈ R if and only if a − b ∈ I. We then set R/I = R/ ∼q, the
quotient ring of R modulo I.

Example 2.12. Consider Z and a prime p. We can then form the quotient ring
modulo pZ. However, instead of working with the equivalence classes in Z/pZ, we
can simply represent it by the set {0, . . . , p− 1} where all operations are performed
modulo p.

Euler’s totient function We consider n ∈ N and the order of the multiplicative
group of Z/nZ.

Definition 2.13. The map

φ :

{
N → N
n 7→

∣∣Z/nZ×∣∣
is called Euler’s totient function.

In other words, Euler’s totient function counts the number of positive integers less
or equal n that are coprime to n. It satisfies

φ(pk) = pk−1(p− 1), and φ(nm) = φ(n)φ(m)

for p ∈ P and k ∈ N and coprime m,n ∈ N.

8

2. Preliminaries

Polynomial rings From any commutative ring it is possible to create a canonical
ring extension, the polynomial ring.

Definition 2.14. Let R be a commutative ring. The ring of polynomials in variables
X1, . . . , Xn over R is given by

R[X1, . . . , Xn] =

{ ∑
ν1,...,νn∈N0

aν1,...,νnX
ν1
1 · · ·Xνn

n | aν1,...,νn ∈ R for all ν1, . . . , νn ∈ N0

}

The addition is defined component-wise and the multiplication is defined by the
typical polynomial multiplication. The coefficient ring R is a subring of the polyno-
mial ring R[X1, . . . , Xn].

The degree of a polynomial f ∈ R[X1, . . . , Xn] is defined as

deg(f) = max

{
n∑
j=1

νj | aν1,...,νn 6= 0

}
.

If f = 0, we set deg(f) = −∞.

Irreducible and monic polynomials A polynomial f ∈ R[X] \ R is called
irreducible if it cannot be factored into non-constant polynomials, that is if f =
gh for g, h ∈ R[X] then either g ∈ R or h ∈ R. The notion of irreducibility
is similar to the notion of prime numbers in Z. If the polynomial has the form
f = Xd +

∑d−1
i=0 aiX

i, then it is called monic.

Cyclotomic polynomial Cyclotomic polynomials are irreducible polynomials
with integer coefficients which divide Xn − 1 ∈ Z[X] for some n ∈ N.

Definition 2.15. Let n ∈ N. An irreducible polynomial f ∈ Z[X] is called n-th
cyclotomic polynomial if

1. f |Xn − 1, and

2. f -Xk − 1 for any k < n.

The n-th cyclotomic polynomial is unique and is denoted by Φn.

Example 2.16. 1. For n = 1 we have Φ1 = X − 1.

2. If n ∈ P, then Φn =
∑n−1

i=0 X
i.

3. For n = 2a3b where a, b ∈ N, we have

Φ2a3b = X2a3b−1 −X2a−13b−1

+ 1.

9

2. Preliminaries

2.3. Field Theory

Fields are an algebraic structure that posses a notion of addition, subtraction, mul-
tiplication and division. They are rings where every non-zero element has a multi-
plicative inverse and thus division by non-zero elements is possible. Especially finite
fields are used extensively in cryptography. Also, fields are required to describe the
notions of algebraic geometry we are interested in.

Definition 2.17. A commutative ring (K,+, ·) is called a field if (K•, ·) is an
Abelian group.

Example 2.18. • Q, R and C with respect to the usual addition and multiplica-
tion are fields.

• For a prime p ∈ P the ring Z/pZ is in fact a field. We denote this field by Fp,
the finite field of p elements.

Quotient field Let R be an integral domain. The smallest field Q such that
R is embedded in Q is called quotient field (or field of fractions). This field can
be constructed the same way as Q can be constructed from Z: for n ∈ R,m ∈ R•
look at the formal quotient n

m
. Two quotients n

m
and n′

m′
are considered equal if

m′n = n′m. The addition is defined as n
m

+ n′

m′
= nm′+n′m

mm′
and the multiplication is

defined as n
m
· n′
m′

= nn′

mm′
.

Example 2.19. • The quotient field of Z is the field of rational numbers Q.

• For a field K, the field of fractions of the polynomial ring K[X] is denoted by
K(X) and called field of rational functions.

Field characteristic For any field K, there is a ring homomorphism ψ : Z→ K
with ψ(1) = 1K . If ψ is injective, K is said to have characteristic 0. If instead ψ is not
injective, there is a prime p ∈ P such that ψ(p) = 0 and it is the smallest positive
integer that satisfies this property. In this case, K is said to have characteristic
p. The characteristic of a field K is denoted by char(K). Furthermore, if K has
characteristic p, then an isomorphic copy of Fp is contained in K.

Algebraic extension fields Take two fields K and L with K ⊂ L. An element
α ∈ L is called algebraic over K if there exists a non-constant polynomial f ∈
K[X] \K such that f(α) = 0. If every element of L is algebraic over K, then L is
called algebraic extension of K. Otherwise L is called transcendental extension of
K.

An extension field L over K can always be viewed as K-vector space. The K-
vector space dimension of L is called extension degree and written as [L : K]. If the
field extension is algebraic, the extension degree is finite.

A field K containing K is called algebraic closure of K if K is algebraic over
K and K is algebraically closed, i.e. for every f ∈ K[X] \ K all roots are in K.
Every field K has an algebraic closure. Furthermore, two algebraic closures of K

10

2. Preliminaries

are isomorphic. So from now on, we assume that one algebraic closure of a field K
has been chosen, and we call it the algebraic closure of K.

Field extensions from polynomial rings For any field K algebraic extension
fields of K can be constructed by taking a monic, irreducible polynomial f ∈ K[X]
and looking at the quotient ring L = K[X]/fK[X]. Since the polynomial f is
irreducible, L is in fact a field and the extension degree of L over K is deg(f).

Similarly, if we take a root α ∈ K of f instead and construct the extension field
L′ by adjoining α, that is

L′ = K(α) =


deg(f)−1∑
i=0

aiα
i | ai ∈ K

 ,

then we obtain a field that is isomorphic to L′. Note that the choice of the root of
f does not matter.

Example 2.20. We consider the construction of C. We start from R and take f =
X2 + 1 ∈ R[X] which is irreducible. Hence R[X]/fR[X] is a field. This field is
isomorphic to C = R(i) with i2 = −1.

Roots of unity Roots of unity are field elements that give 1 when raised to some
power r ∈ N. They form a special subgroup of the multiplicative group of a field.

Definition 2.21. Let K be a field and r ∈ N. Elements of the set

µr(K) = {x ∈ K | xr = 1K}

are called r-th root of unity.

The product of two r-th roots of unity is again an r-th root of unity. So the roots
of unity form a subgroup of the multiplicative group of K. Also, µr(K) is a cyclic
group and generators of the group are called primitive r-th roots of unity. If K is
algebraically closed and the characteristic of K does not divide r, µr(K) has order
r.

Example 2.22. • In C, the r-th roots of unity are given by

e2πi k
r

for 0 ≤ k < r. They can also be obtained by inscribing a regular r-sided
polygon in the unit circle such that one vertex is located at 1.

• The primitive r-th roots of unity in C are exactly the roots of the r-th cyclo-
tomic polynomial.

• In Q and R the only roots of unity are 1 if r is odd and 1 and −1 if r is even.

11

2. Preliminaries

Finite fields Now let p ∈ P. We have already seen that the integers modulo p
form a field Fp. Note that any other field L with p elements has characteristic p
and thus Fp is isomorphic to L. So if we talk about a field with p elements, we can
always assume it to be Fp.

Let q ∈ N\P. It can be shown that there exists a field with q elements if and only
if q is a prime power. So let q = pn for some prime p. A field with q elements can be
constructed in a natural way: let f ∈ Fp[X] \Fp be a monic, irreducible polynomial
of degree n. Then Fp[X]/fFp[X] is a field with q elements. Furthermore, it is
possible to show that there is a unique (up to isomorphism) field with q elements.
So we refer to the field with q elements as Fq and we can always use polynomials
over Fp modulo a suitable polynomial to represent this field.

The algebraic closure of Fp is Fp =
⋃
n∈N Fpn . Furthermore, Fpm ⊂ Fpn if and only

if m |n.

n-th non-residues Let K = Fp, p ∈ P and n ∈ N. An element x ∈ K× is called
a n-th non-residue modulo p if Xn−x ∈ K[X] has no roots in K and a n-th residue
modulo p otherwise. For n = 2, we will also denote non-residues as non-squares and
residues as squares. Similarly, for n = 3 we also call them non-cubes and cubes.

For quadratic residues, we can define the Legendre symbol for a ∈ Z and p ∈ P as

(
a

p

)
=


1, if a is a quadratic residue mod p

0, if p | a
−1, if a is a quadratic non-residue in mod p

or equivalently as (
a

p

)
= a

p−1
2 mod p.

For odd primes p and a = −1 the following statement is from importance to us:(
−1

p

)
=

{
1, if p ≡ 1 mod 4

−1, if p ≡ 3 mod 4
.

When fixing a p ∈ P we will also write χp(a) instead of the Legendre symbol, and
refer to χ as quadratic character modulo p.

Example 2.23. Let p ≡ 3 mod 4. In a similar way to C, Fp2 can be constructed
by adjoining a square root of −1 to Fp: We take i ∈ Fp to be a square root of −1.
Since p ≡ 3 mod 4, −1 is a quadratic non-residue and so i 6∈ Fp. Now define the
quadratic extension field as

Fp2 = Fp(i) = {a+ bi | a, b ∈ Fp}

using component-wise addition and use

(a+ bi)(a′ + b′i) = (aa′ − bb′) + (ab′ + a′b)i

12

2. Preliminaries

as multiplication.
The polynomial f = X2 + 1 ∈ Fp[X] is monic and irreducible over Fp since −1 is

a quadratic non-residue modulo p. So Fp[X]/fFp[X] is an extension field of Fp of
degree 2. Since i is a root of f , both constructions are isomorphic.

Frobenius map Consider the finite field Fq and its algebraic closure Fq. The
map

πq :

{
Fq → Fq
x 7→ xq

is called Frobenius map of Fq. This map is in fact a field automorphism due to the
following lemma:

Lemma 2.24 (Freshman’s dream). Let K be a field of characteristic p ∈ P. Then

(x+ y)p = xp + yp

holds for every x, y ∈ K.

Note that for x ∈ Fq we have xq = x if and only if x ∈ Fq and thus πq fixes Fq.
Example 2.25. Let p ≡ 3 mod 4 and consider K = Fp and L = Fp2 = Fp(i) with
i2 = −1. For an element x + iy ∈ L, the image of the Frobenius map of K is
πp(x+ iy) = x− iy.

For quadratic extensions, we also write x+ iy = πp(x + iy) and call it conjugate
of x+ iy.

Norm of finite fields The Frobenius map can now be used to define the field
norm: let K = Fq and L = Fqn . The map

NL/K :

{
L → K

α 7→
∏n−1

i=0 π
i
q(α)

is called the norm from L to K. Note that NL/K restricted to the multiplicative
group of L is a group homomorphism L× → K×. If additionally M = Fqnm , then
we can view the norm from M to K as composition of the norm from M to L and
the norm from L to K, i.e. NM/K = NL/K ◦ NM/L.

Example 2.26. Let again p ≡ 3 mod 4 and consider K = Fp and L = Fp2 = Fp(i)
with i2 = −1. For an element x + iy ∈ L, its norm over K is NL/K(x + iy) =
(x+ iy)(x− iy) = x2 + y2.

13

2. Preliminaries

2.4. Affine and Projective Space

There are two coordinate systems that are important when studying algebraic func-
tions: affine and projective coordinates.

Definition 2.27. Let K be a field. The affine space of dimension n over K is given
by An(K) = {(a1, . . . , an) |a1, . . . , an ∈ K}, the set of n-tuples consisting of elements
of K.

To define the projective space of dimension n, we first need to introduce an equiv-
alence relation on An+1(K)\{(0, . . . , 0)}: for a = (a1, . . . , an+1), b = (b1, . . . , bn+1) ∈
An+1(K) define a ∼ b if and only if there exists a λ ∈ K× such that a = λb. These
equivalence classes capture all points on a line through (0, . . . , 0).

Definition 2.28. The set

Pn(K) = An+1(K) \ {(0, . . . , 0)}/ ∼ .

is called the n-dimensional projective space over K.

Points in the projective space are usually written as (a1 : . . . : an1). Points of
the projective space where the last component is 0 are called points at infinity. All
points at infinity form the line at infinity.

Canonical maps between affine and projective space There is a canoni-
cal relation between affine and projective coordinates of the same dimension. The
n-dimensional affine space can be injected into the projective space of the same
dimension. The injection is given by the map{

An(K) ↪→ Pn(K)

(a1, . . . , an) 7→ (a1 : . . . : an : 1)
.

Any projective point with a non-zero last component can also be projected back
to affine space. The projection is given by the map{

{(a1 : . . . : an+1) ∈ Pn(K) | an+1 6= 0} → An(K)

(a1 : . . . : an+1) 7→
(

a1

an+1
, . . . , an

an+1

) .

Homogeneous polynomials A polynomial f ∈ K[X1, . . . Xn] is called homoge-
neous if all its non-zero terms have the same degree, that is it has the form

f =
k∑

ν1,...,νn∈N0,
∑n

j=1 νi=d

aν1,...,νnX
ν1
1 · · ·Xνn

n

with aν1,...,νn 6= 0.
One of the nice properties of homogeneous polynomials is that roots can be con-

sidered elements of Pn−1(K). Indeed, let (x1, . . . , xn) be a root of f , then for any
λ ∈ K× the multiple λ(x1, . . . , xn) is also a root of f . Hence every representative of
(x1 : . . . : xn) ∈ Pn−1(K) is a root of f and thus we write f((x1 : . . . : xn)) = 0.

14

2. Preliminaries

Projective closure of polynomials Every polynomial can be split into a sum of
homogeneous polynomials: let f ∈ F [X1, . . . Xn] be of degree d. Then f =

∑d
i=0 fi

such that every fi is a homogeneous polynomial of degree i.
Any polynomial in n variables can be mapped to a homogeneous polynomial in

n+ 1 variables. The map

· :

{
F [X1, . . . Xn] → F [X1, . . . Xn+1]

f 7→ f =
∑deg(f)

i=0 fiX
deg(f)−i
n+1

defines the homogenization of a polynomial. For a polynomial f the image f is
called the projective closure of f . Clearly we have f(X1, . . . , Xn, 1) = f .

Note that if (x1, . . . , xn) is a root of f , then (x1, . . . , xn, 1) is a root of f . Also,
every root of f that is not a point at infinity, can be mapped back to a root of f by
mapping the root back to an affine point.

2.5. Algebraic Geometry

Algebraic geometry studies roots of multivariate polynomial equations using tech-
niques from commutative algebra. It translates geometric problems into the lan-
guage of algebra.

Affine algebraic curves Let K be a field and K its algebraic closure. Consider
a polynomial f ∈ K[X1, . . . , Xn]. For a field L ⊃ K the set Cf (L) consists of all
roots of f over L:

Cf (L) = {(x1, . . . , xn) ∈ An(L) | f(x1, . . . , xn) = 0}

For K we usually write Cf instead of Cf (K). We say that Cf is defined over K.

Definition 2.29. Let K be a field and f ∈ K[X1, . . . , Xn]. If f is irreducible, then
Cf is called affine algebraic curve.

For any field L ⊃ K the set Cf (L) is called the set of all L-rational points of Cf .
For any point P = (x1, . . . , xn) ∈ Cf we can look at the Taylor series expansion

of f at P : ∑
ν1,...,νn∈N0

c̃ν1,...,νn(X1 − x1)ν1 · · · (Xn − xn)νn .

The order of a curve Cf at point P is defined by ordP (Cf) = min{
∑n

i=1 νi | c̃ν1,...,νn 6=
0}. If ordP (Cf) = 1, then P is called regular and if ordP (Cf) > 1, it is called singular.
Equivalently, a point is singular if all partial derivatives of f at P vanish. The curve
Cf is called regular (or smooth) if all points P ∈ Cf are regular.

Definition 2.30. Let Cf be a regular algebraic affine curve defined over K. The
ring K[Cf] = K[X1, . . . , Xn]/fK[X1, . . . , Xn] is called the ring of regular functions
defined over K of the affine curve Cf . The quotient field of K[Cf], denoted by
K(Cf), is called the field of rational functions defined over K of Cf .

The field K(Cf) is also called the function field of Cf .

15

2. Preliminaries

Projective curves and projective closure If the polynomial is homogeneous
we can consider curves in the projective space instead of the affine space. So if f is
homogeneous, Cf (L) can be considered as

Cf (L) = {(x1 : . . . : xn) ∈ Pn(L) | f((x1 : . . . : xn)) = 0}

For non-homogeneous polynomials f we can consider the homogenization f .

Definition 2.31. Let f be a polynomial and f its homogenization. The curve Cf
is called the projective closure of Cf .

As we have seen before, roots of f can mapped to roots of f , so Cf contains all
points of Cf . Additionally, Cf may contain further roots on the line at infinity.

Example 2.32. Let K = F7 and f = Y 2 −X3 −X ∈ K[X, Y]. First we take a look
at Cf : it consists of the points

(1, 3), (1, 4), (3, 3), (3, 4), (5, 2), (5, 5).

The homogenization of f is f = Y 2Z −X3 −XZ2 ∈ K[X, Y, Z]. Now Cf consists
of the points of Cf in their projective representation

(1 : 3 : 1), (1 : 4 : 1), (3 : 3 : 1), (3 : 4 : 1), (5 : 2 : 1), (5 : 5 : 1)

and additionally one point at infinity, namely (0 : 1 : 0).

16

3. Elliptic Curves

In this chapter we will recall the definition of elliptic curves and discuss some the-
orems and notations that are needed to develop bilinear pairings on elliptic curves.
This chapter follows the discussion of elliptic curves in [Sil09, Chapter III, Chapter
IV, Chapter V], [Was08, Chapter 2, Chapter 3, Chapter 4] and [HPS08, Chapter 6].

We fix a field K and let K be the algebraic closure of K. An elliptic curve E is
the set of solutions to an equation of the form

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (3.1)

where a1, a2, a3, a4, a6 ∈ K or its projective counterpart

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (3.2)

Equation (3.1) is called the general Weierstrass equation for elliptic curves.

Definition 3.1 (Elliptic curve). Let K be a field. An elliptic curve E over the field
K is a smooth algebraic curve defined by equation (3.1) respectively its projective
equivalent (3.2).

The projective closure of the elliptic curve contains only one point at infinity:
(0 : 1 : 0). This point is denoted by O. This allows us to consider points on elliptic
curves as the affine points on the curve together with O:

E(K) = Cf ∪ {O}

where f = Y 2 +a1XY +a3Y −X3−a2X
2−a4X−a6. For a field L ⊃ K we denote

the L-rational points by E(L) = Cf (L) ∪ {O}.

3.1. Group Law

We now turn our focus to the group law. First we describe the chord-and-tangent
rule to give the geometric idea of the group law. After that, we give explicit formulas
to compute the group operation.

The chord-and-tangent rule is based on the fact that over any field a line, i.e. a
degree one equation in X and Y , and a cubic curve, i.e. a degree three equation in
X and Y , always intersect at exactly three points. This fact is a special case of the
following more general theorem:

Theorem 3.2 (Bézout’s theorem). Let X and Y be two plane projective curves
defined over a field K whose defining polynomials fX and fY are coprime. Then
X and Y intersect in exactly deg fX deg fY points (including multiplicities) with
coordinates in the algebraic closure K.

17

3. Elliptic Curves

(a) Y 2 = X3 − 2X + 1 over R (b) Y 2 = X3 − 2X − 2 over R

(c) Y 2 = X3 − 1X + 1 over R

Figure 3.1.: Examples of elliptic curves over R

So whenever P and Q are points on an elliptic curve and ` is a line running
through P and Q, ` intersects E in P , Q and one additional point. Furthermore
we require the reflection of a point P = (x, y) ∈ E(K) \ {O} which is given by
(x,−y − a1x− a3). The reflection of O is again O.

The chord-and-tangent rule now distinguishes two cases to compute the sum R =
P ⊕Q:

• P and Q are two distinct points: set ` to be the line running through P and
Q. The third intersection point when intersecting E and ` is denoted by R′.
The result R is the reflection of R′.

• P and Q are the same point: set ` to be the tangent on E at P . The curve
E and ` again intersect in a third point R′. The result R is again obtained by
reflecting R′.

Figure 3.2 illustrates the chord-and-tangent rule on an elliptic curve defined over
R. The chord-and-tangent rule now turns E into a group:

Theorem 3.3. Let E be an elliptic curve defined over a field K. E(K) together
with the law of composition ⊕ given by the chord-and-tangent rule forms an Abelian
group where the inverse of a point is given by its reflection and O is the neutral
element.

Similarly, if one considers only L-rational points, E(L) is also a group with the
same law of composition. We always use additive notation for E(K) and just write
+ instead of ⊕.

18

3. Elliptic Curves

Figure 3.2.: Visualization of the chord-and-tangent rule on Y 2 = X3 − 2X + 1 over
R.

Explicit formulas for the law of composition can be derived by first computing
the line ` : Y = λX + ν running through P and Q and then intersecting the line
with the curve and computing the third intersection point. Let P = (x1, y1) and
Q = (x2, y2) and assume that P 6= −Q. We consider the first case where P 6= Q.
Then λ and ν are given by

λ =
y2 − y2

x2 − x1

and ν =
y1x2 − y2x1

x2 − x1

.

If P = Q, then λ and ν are given by

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

and ν =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

.

The third intersection point R′ = (x′3, y
′
3) is then given by

x′3 = λ2 + a1λ− a2 − x1 − x2 and y′3 = λx3 + ν.

After the reflection we obtain R = −R′ = (x3, y3) as

x3 = λ2 + a1λ− a2 − x1 − x2 and y3 = −(λ+ a1)x3 − ν − a3.

See Algorithm 1 for an algorithmic description of the group law.

3.2. Curve Invariants and Isomorphisms

Now we look at two important invariants of an elliptic curve: the j-invariant and
the discriminant. To define those two values, we first need to introduce some helper

19

3. Elliptic Curves

Algorithm 1 Addition of two points on an elliptic curve E defined over K in
Weierstrass form

Input: P,Q ∈ E(K).
Output: R = P +Q.

if P = −Q then
return O

end if
if P 6= Q then

λ← y2−y1

x2−x1

ν ← y1x2−y2x1

x2−x1

else
λ← 3x2

1+2a2x1+a4−a1y1

2y1+a1x1+a3

ν ← −x3
1+a4x1+2a6−a3y1

2y1+a1x1+a3

end if
x3 ← λ2 + a1λ− a2 − x1 − x2

y3 = −(λ+ a1)x3 − ν − a3.
return R = (x3, y3)

values. For an elliptic curve E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 we set

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

b8 = a2
1a6 − a1a3a4 + a2a

2
3 + 4a2a6 − a2

4,

c4 = b2
2 − 24b4, and

c6 = −b3
2 + 36b2b4 − 216b6.

Definition 3.4 (j-invariant and discriminant). Let E be an elliptic curve defined
over K. The discriminant of E is defined as

∆(E) = −b2
2b8 + 9b2b4b6 − 8b3

4 − 27b2
6

and the j-invariant of E is defined as

j(E) =

{
c3

4∆(E)−1, char(K) ∈ {2, 3}
1728

c34
c34−c26

, otherwise
.

The discriminant indicates whether the curve is non-singular. In fact, the curve
E is non-singular if and only if ∆(E) 6= 0. The j-invariant is closely related to the
notion of elliptic curve isomorphisms.

Definition 3.5 (Isomorphic Curves). Let E : Y 2 + a1XY + a3Y = X3 + a2X
2 +

a4X + a6 and E ′ : Y 2 + a′1XY + a′3Y = X3 + a′2X
2 + a′4X + a′6 be two elliptic curves

defined over the same base field K. The two curves are said to be isomorphic over

20

3. Elliptic Curves

K, E(K) ' E ′(K), if there exists u ∈ K× and r, s, t ∈ K such that the change of
variables

X = u2X ′ + r, Y = u3Y ′ + suX ′ + t

transforms E into E ′.

Over the algebraic closureK, the j-invariant characterizes the isomorphism classes
of elliptic curves, as the following theorem shows.

Theorem 3.6. Let E and E ′ be two elliptic curves defined over the field K. If E
and E ′ are isomorphic over K, then j(E) = j(E ′). Conversely, if j(E) = j(E ′), E
and E ′ are isomorphic over some algebraic extension L over K.

Proof. For a proof see [Sil09, Proposition III.1.4]

So whenerver j(E) = j(E ′), then E and E ′ are at least isomorphic over the
algebraic closure K.

3.3. Elliptic Curves in Short Weierstrass Form

For an elliptic curve E defined over a field K whose characteristic is not 2 nor 3,
we can simplify the Weierstrass equation in the following way: first we substitute
(x, y) 7→ (x, y−a1x−a3

2
) to obtain Y 2 = 4X3 + b2X

2 + 2b4X + b6 and then (x, y) 7→
(x−3b2

36
, y

108
) yields the simplified equation

Y 2 = X3 + aX + b. (3.3)

The projective version (3.2) simplifies to

Y 2Z = X3 + aXZ2 + bZ3 (3.4)

Equation (3.3) is called short Weierstrass equation for elliptic curves. The curve E ′

obtained by this change of variables is isomorphic to E.
The group law as well as the j-invariant and discriminant can also be simplified.

The j-invariant and the discriminant become

j(E ′) = 6912a3(4a3 + 27b2), and ∆(E ′) = −16(4a3 + 27b2).

The algorithm to compute the group law is listed in Algorithm 2.
A similar transformation is also possible if the characteristic is 2. But since we

will always work with fields that do not have characteristic 2 or 3, we use the short
Weierstrass form from now on.

21

3. Elliptic Curves

Algorithm 2 Addition of two points on an elliptic curve E defined over K in short
Weierstrass form

Input: P,Q ∈ E(K).
Output: R = P +Q.

if P = −Q then
return O

end if
if P 6= Q then

λ← y2−y1

x2−x1

else
λ← 3x2

1+a

2y1

end if
x3 ← λ2 − x1 − x2

y3 = λ(x1 − x3)− y1.
return R = (x3, y3)

3.4. Torsion Subgroups

We will now look at the torsion subgroups of elliptic curves. Let E be an elliptic
curve defined over K. For an extension field L of K and an r ∈ N we are interested
in the groups

E(L)[r] = {P ∈ E(L) | rP = O}.

If L = K, we simply write E[r] instead. These groups have a fairly simple struc-
ture if we allow the coordinates to be in a sufficiently large field. The subsequent
proposition describes the structure of the torsion subgroups of an elliptic curve.

Proposition 3.7. Let r ∈ N.

1. If E is an elliptic curve defined over Q, R or C, then

E(C)[r] ' Z/rZ× Z/rZ.

2. If E is an elliptic curve defined over Fp and r and p are coprime, then there
exists a k ∈ N such that

E(Fpjk)[r] ' Z/rZ× Z/rZ

for all j ∈ N as well as

E[r] ' Z/rZ× Z/rZ.

Proof. For a proof we refer to [Sil09, Corollary III.6.4].

So for large enough fields the torsion subgroup of order r is a product of two cyclic
groups of order r. The number k in this theorem has a special meaning:

22

3. Elliptic Curves

Definition 3.8. Let E be an elliptic curve defined over a finite field Fp. The
smallest positive integer k such that E[r] ⊂ E(Fpk) is called embedding degree of E
with respect to r.

Note that the embedding degree depends on both p and r. The next result
captures important equivalent characterizations of the embedding degree.

Proposition 3.9. Let E be an elliptic curve defined over a finite field Fp where r
and the characteristic are coprime. Then the following statements are equivalent:

• The embedding degree with respect to r is k.

• k is the smallest positive integer such that r |(pk − 1).

• k is the smallest positive integer such that Fpk contains all r-th roots of unity

in Fp.

Example 3.10 and Example 3.11 show curves with different embedding degrees
and the consequences on the structure of the torsion subgroups.

Example 3.10. Let p = 11 and consider the elliptic curve E : Y 2 = X3 + 4 defined
over Fp. The curve consists of the following 12 Fp-rational points:

O, (0, 2), (0, 9), (1, 4), (1, 7), (2, 1), (2, 10), (3, 3), (3, 8), (6, 0), (10, 5), (10, 6)

We consider r = 3 |E(Fp). From Proposition 3.7 we know that there are 9 points
in E[3]. By checking all the points in E(Fp) one can observe that only the 3 points
O, (0, 2) and (0, 9) are contained in the 3-torsion. This observation agrees with the
fact that the embedding degree k 6= 1 since (p1 − 1) 6≡ 0 mod r. But, (p2 − 1) ≡ 0
mod r, so the embedding degree k = 2. Since p ≡ 3 mod 4 we can construct
Fp2 = Fp(i) with i2 +1 = 0. Hence the whole 3-torsion is contained in E(Fp2), which
is structured as four cyclic subgroups of order 3:

G1 = {O, (0, 2), (0, 9)},
G2 = {O, (8, i), (8, 10i)},
G3 = {O, (2i+ 7, 10i), (2i+ 7, i)}, and

G4 = {O, (9i+ 7, i), (9i+ 7, 10i)}.

Example 3.11. Now consider p = 31 and the elliptic curve E : Y 2 = X3 + 13 defined
over Fp. In this case the curve has 25 Fp rational points, so take r = 5. Since
p1 − 1 ≡ 0 mod r, the embedding degree with respect to r is k = 1. Hence E[r]
is fully contained in E(Fp). Since E[r] ' Z/rZ × Z/rZ, the r-torsion consists of 6
cyclic subgroups of order 5.

3.5. Frobenius Endomorphism

In this section we switch our focus to elliptic curves defined over finite fields. The
next theorem gives a bound on the number of Fq-rational points an elliptic curve
can contain.

23

3. Elliptic Curves

Theorem 3.12 (Hasse bound). Let E be an elliptic curve defined over Fq. Then

|E(Fq)| = q + 1− t

with some t ∈ Z with |t| ≤ 2
√
q.

Proof. For a proof see [Was08, Theorem 4.2]

The value t = q+ 1− |E(Fq)| is called trace of Frobenius for E over Fq. It allows
to classify elliptic curves into two groups:

Definition 3.13. Let E be an elliptic curve defined over Fq with q = pn for some
prime p ∈ P. Let t be the trace of Frobenius.

1. If p divides t, then E is called supersingular.

2. If p does not divide t, then E is called ordinary.

The trace of Frobenius is closely related to the Frobenius endomorphism on E,
which is defined in the following way:

Definition 3.14 (Frobenius endomorphism). Let E be an elliptic curve defined over
Fq. The map

πq :

{
E(Fq) → E(Fq)
(x, y) 7→ (xq, yq)

is called Frobenius endomorphism on E.

The Frobenius endomorphism on E is the continuation of the Frobenius endomor-
phism of the underlying field to E. The endomorphism is connected to the Hasse
bound via the subsequent theorem:

Theorem 3.15. Let E be an elliptic curve defined over Fp and t = p+ 1− |E(Fp)|.

1. Let α, β ∈ C be the complex roots of the polynomial Z2 − tZ + p. Then
|α| = |β| = √p and ∣∣E(Fpk)

∣∣ = pk + 1− αk − βk.

2. Let πp be the Frobenius map on E. Then for every point P ∈ E(Fq) we have

π2
p(P)− tπp(P) + pP = O.

Proof. For a proof see [Sil09, Theorem V.2.3.1].

Besides counting the number of points on a curve, the Frobenius endomorphism
gives rise to the trace map. This map plays an intricate role within the torsion
subgroups.

24

3. Elliptic Curves

Definition 3.16 (Trace map). Let E be an elliptic curve defined over Fq and k ∈ N.

1. The map

Tr :

{
E(Fqk) → E(Fq)
P 7→

∑k−1
i=0 π

i
q(P)

is called the trace map.

2. The map

aTr :

{
E(Fqk) → E(Fqk)

P 7→ kP − Tr(P)

is called the anti trace map.

The trace map is in fact a group homomorphism. Since the Frobenius endomor-
phism is trivial for Fp-rational points, the trace map acts as multiplication by k,
that is Tr(P) = kP for all P ∈ E(Fp). One interesting property of the trace map is
that for r‖ |E(Fq)| it maps all r-torsion points into one particular subgroup of the
r-torsion.

Example 3.17. Let p = 11 and consider the elliptic curve E : Y 2 = X3 + 7x + 2
defined over Fp. The curve consists of 7 Fp-rational points, so we take r = 7. Since
the smallest k such that r | qk − 1 is k = 3, the embedding degree with respect to r
is 3. Hence E[7] ⊂ E(Fp3). We already know that Tr maps as multiplication with k
on E(Fp). Every other point of the r-torsion will be sent to E(Fp)[r]. We will check
that for one point.

Write Fp3 as Fp(u) with u3 + u + 4 = 0. The point Q = (u481, u1049) ∈ E[r] is
mapped to (8, 8) as it can be verified easily:

Tr(Q) = (u481, u1049) + (u4291, u11539) + (u58201, u126929)

= (u481, u1049) + (u1301, u899) + (u1011, u579)

= (4u2 + 7u+ 4, 10u2 + 2u+ 6) + (6u2 + 7u+ 9, 8u+ 3)+

(u2 + 8u+ 2, u2 + u)

= (8, 8)

Now let E be an elliptic curve defined over Fq and let r‖E(Fq) be prime. We
assume that the embedding degree k with respect to r is greater than 1. There are
two subgroups of E[r] arising from the eigenspaces of the Frobenius endomorphism π.
To describe this two subgroups, we define the following two group homomorphisms
first:

π − 1 :

{
E(Fq) → E(Fq)
P 7→ π(P)− P

and π − q :

{
E(Fq) → E(Fq)
P 7→ π(P)− qP

.

25

3. Elliptic Curves

The subgroups from the eigenspaces of π are now given by

G1 = E[r] ∩ ker(π − 1), and G2 = E[r] ∩ ker(π − q).

Since π acts trivially on E(Fq)[r] but nowhere else in E[r], G1 only consists of Fq
rational points. It is thus also called base-field subgroup and it is the unique subgroup
of order r which is defined over Fq. For all points P ∈ G2 we have that Tr(P) = O
and it is called trace zero subgroup.

The trace map and anti-trace map are closely related to the base-field subgroup
and trace zero subgroup. The following proposition illustrates the relationship.

Proposition 3.18. 1. The image of E[r] under Tr is G1.

2. The image of E[r] under aTr is G2.

3. The image of G2 under Tr is {O}.

Proof. For a proof we refer to [Gal05, Section IX.7.4, Lemma IX.16].

3.6. Twists

We have seen earlier, that two elliptic curves defined over K with the same j-
invariant are isomorphic over the algebraic closure K, but they do not necessarily
need to be isomorphic over K. In this case they are twists of each other.

Definition 3.19 (Twists). Let E and E ′ be elliptic curves defined over K. If
j(E) = j(′E) and E(K) 6' E ′(K), then E and E ′ are called twists of each other.

If E and E ′ are twists of each other, they are isomorphic over the algebraic closure.
Furthermore, there is a smallest extension field K ′ over K such that E and E ′ are
isomorphic over K ′ but are not isomorphic over any of the proper subfields of K ′.

For elliptic curves defined over finite fields, we can further characterize the nature
of the possible twists. First we define a degree of a twist:

Definition 3.20. Let E be an elliptic curve defined over Fq, where E(Fq) has
prime order and let k be its embedding degree. Let d | k. An elliptic curve E ′

defined over Fqk/d is called a twist of degree d of E if there is an isomorphism

ψ : E ′(Fqk/d) → E(Fq) defined over Fqk , and this is the smallest extension of Fqk/d
over which ψ is defined.

Let E : Y 2 = X3 + aX + b be a curve defined over Fq. Then a twist E ′ of E is
given by

E ′ : Y 2 = X3 + aω4X + bω6, where ω ∈ Fqk .

The isomorphism between E ′ and E is given by

ψ :

{
E ′(Fqk/d) → E(Fq)
(x, y) 7→

(
x
ω2 ,

y
ω3

)

26

3. Elliptic Curves

d
j(E)
a, b

fields of definition
for powers of ω

Q′ = (xQ′ , yQ′)

P = (xP , yP)

Q = ψ(Q′)

P ′ = ψ−1(P)

2
6∈ {0, 1728}
a 6= 0, b 6= 0

ω2, ω3, ω4 ∈ Fqk/2

ω3 ∈ Fqk \ Fqk/2

(Fqk/2 ,Fqk/2)

(Fq,Fq)
(Fqk/2 ,Fqk)

(Fqk/2 ,Fqk)

3
0

a = 0, b 6= 0

ω3, ω6 ∈ Fqk/3

ω3 ∈ Fqk \ Fqk/3

(Fqk/3 ,Fqk/3)

(Fq,Fq)
(Fqk ,Fqk/3)

(Fqk ,Fqk/3)

4
1728

a 6= 0, b = 0

ω4 ∈ Fqk/4 , ω2 ∈ Fqk/2

ω3 ∈ Fqk \ Fqk/2

(Fqk/4 ,Fqk/4)

(Fq,Fq)
(Fqk/2 ,Fqk)

(Fqk/2 ,Fqk)

6
0

a = 0, b 6= 0

ω6 ∈ Fqk/6 , ω3 ∈ Fqk/3

ω2 ∈ Fqk/2

(Fqk/6 ,Fqk/6)

(Fq,Fq)
(Fqk/2 ,Fqk/3)

(Fqk/2 ,Fqk/3)

Table 3.1.: Nature of degree 2, 3, 4 and 6 twists [CLN10, Table 1].

and its inverse is

ψ−1 :

{
E(Fq) → E ′(Fqk/d)

(x, y) 7→ (xω2, yω3)
.

In particular, this isomorphism induces a group isomorphism G2 → E ′(Fqk/d)[r].
The j-invariant of E and ω determine the possible twist degrees. Table 3.1 lists

the possibilities for twists of degree 2, 3, 4 and 6. The last two columns of the
table show the subfields of Fqk in which the coordinates of the specific points are
contained when ψ−1 and ψ are applied to P ∈ E(Fq) and Q ∈ E ′(Fqk/d).

3.7. Elliptic Curve Cryptography

Recall that in a cyclic group G every element h ∈ G can be represented as h = gk

for some generator g of K and k ∈ N0. The exponent k is also called the discrete
logarithm of h to the base g, written as logg(h). If only h is known, finding logg(h)
is presumably a hard problem in some groups. This motivates the definition of the
Discrete Logarithm Problem:

Definition 3.21 (Discrete Logarithm Problem (DLP)). Let G be a cyclic group.
Given a generator g of G and an element h, the problem of finding logg(h) is called
Discrete Logarithm Problem.

The hardness of the problem depends on the structure of the group G. Although
the problem is assumed to be hard for large prime order subgroups of (Z/pZ, ·)×,
it is easy to solve for (Z/pZ,+) due to the existence of the extended Euclidean
algorithm.

The use of elliptic curves in cryptographic applications usually relies on the hard-
ness of the DLP for elliptic curves:

Definition 3.22 (Elliptic Curve Discrete Logarithm Problem (ECDLP)). Let E be
an elliptic curve and G be a point on the curve. Given a second point P ∈ 〈G〉, the

27

3. Elliptic Curves

problem of finding a k ∈ N such that P = kG is called the Elliptic Curve Discrete
Logarithm Problem.

Solving the ECDLP is generally assumed to be hard. So far no subexponential
algorithms are known to solve this problem. However, there are certain elliptic curve
groups where the ECDLP is comparatively easy to solve. We will see one type of
such elliptic curves later.

Another interesting problem is the Diffie-Hellman problem. For general groups it
can be defined in the following way:

Definition 3.23 (Diffie-Hellman Problem (DHP)). Let G be a cyclic group. Given
a generator g of G and two elements ga and gb for a, b ∈ Z, the problem of finding
gab is called the Diffie-Hellman problem.

Similarly to the ECDLP, the variant of DHP for elliptic curves is defined as follows:

Definition 3.24 (ECDHP). Let E be an elliptic curve and G be a point on the
curve. Given two points aG and bG for some a, b ∈ Z, finding the point abG is called
the Elliptic Curve Diffie-Hellman problem.

The ECDHP is assumed to be hard problem. However, if one can solve the
ECDLP, one can also solve the ECDHP. But it is not known if the other implication
holds as well.

28

Part II.

Bilinear Pairings

29

4. Divisors

In this section we introduce some basic definitions and facts from the theory of
algebraic function fields that are fundamental to the understanding of cryptographic
pairing computations. We will introduce the group of divisors and discuss some of
the properties. However, we specialize the discussion to the case of elliptic curves.
It should be noted though, that divisors can also be introduced for any algebraic
curve and its function field, but this would require the more general notion of places
of a function field, which we have not introduced.

The discussion of divisors is based on [Was08, HPS08, Sti09, Gal05, Sil09, Cos12].
Unless noted otherwise, we assume that the field K is algebraically closed through-

out this section.

Definition 4.1. Let E be an elliptic curve defined over K. The group of divisors
of E is given by the set of formal sums

Div(E) =

 ∑
P∈E(K)

nP (P) | nP ∈ Z, nP = 0 for all but finitely many

 .

For each point P ∈ E(K) we introduce a formal symbol (P) and form formal
sums using these symbols. So the sum in the definition of the divisors is not to be
confused with a sum of some points on an elliptic curve. In other words, Div(E) is
the free Abelian group generated by E.

Example 4.2. Let E be an elliptic curve defined over K and let O 6= P ∈ E(K).
The divisors 2(3P) and 3(2P) are distinct, whereas the points 2 · 3P and 3 · 2P are
the same.

Divisors form a group in a very natural way and we always write it additively.
The identity element is the zero divisor, the divisor with nP = 0 for all P . The law
of composition is given by the component-wise addition:

+ :

{
Div(E)×Div(E) → Div(E)

(
∑

P∈E(K) nP (P),
∑

P∈E(K) mP (P)) 7→
∑

P∈E(K)(nP +mP)(P)

Each divisor has a degree and support which are defined as follows:

Definition 4.3. The degree of a divisor D is denoted by

Deg(D) =
∑

P∈E(K)

nP ,

and the support of D is defined as

supp(D) = {P ∈ E(K) | nP 6= 0}.

30

4. Divisors

Example 4.4 gives examples of divisors together with their support and degree.

Example 4.4. Let P,Q,R, S ∈ E(K). Set

D1 = 2(P)− 3(Q), and D2 = 3(Q) + (R)− (S).

The degrees of two divisors are

Deg(D1) = 2− 3 = −1, and Deg(D2) = 3 + 1− 1 = 3.

The sum of the two divisors is

D1 +D2 = 2(P) + (R)− (S)

and its degree is

Deg(D1 +D2) = 2 + 1− 1 = 2.

The supports of D1, D2 and D1 +D2 are

supp(D1) = {P,Q}, supp(D2) = {Q,R, S}, and supp(D1 +D2) = {P,R, S}.

Associating divisors with a function f ∈ K(E) is a convenient way to write
down the intersection points and their multiplicities of f and E. We are especially
interested in zeros and poles of f . Let P ∈ E(K). Then there exists a non-zero
function up, called the uniformizer at P , with u(P) = 0 and such that every function
f ∈ K(E) can be written in the form

f = urPg

with r ∈ Z and g ∈ K(E) such that g(P) 6= 0 and g is defined at P . We are now
able to define the order of f at P and the divisor of f :

Definition 4.5. Let f ∈ K(E)×.

1. Let P ∈ E(K) and uP be a uniformizer at P . Let g ∈ K(E) be such that
f = urPg for some r ∈ Z. We define the order of f at P as

ordP (f) = r.

2. The divisor of f is defined as

(f) =
∑
P∈E

ordP (f)(P).

Note that the order of the function at a point is independent of the choice of the
uniformizer.

The arithmetic of functions directly translates to their divisors. Let f, g ∈ K(E)×,
then (fg) = (f) + (g) and (f/g) = (f)− (g) if g is not zero. So the map given by

(·) :

{
K(E)× → Div(E)

f 7→ (f)

31

4. Divisors

is a group homomorphism. The existence of this relation is not surprising since
divisors of functions capture zeros and poles. So the divisor of the product of two
functions needs to include all zeros and poles from each function except for those
zeros and poles which cancel out.

Example 4.6, Example 4.7 and Example 4.8 demonstrate the computation of the
order of a function at a point and the computation of the divisor of a function.

Example 4.6. We look at uniformizers of affine points. Let P = (Px, Py) ∈ E(K) \
{O}. In this case the uniformizer can be taken from the equation of any line that
passes through P , but is not tangent to E. If Py 6= 0, one can take uP (x, y) = x−Px
and if Py = 0, then one can take uP (x, y) = y.

Let E : Y 2 = X3 + 72, P = (−2, 8) and consider the function

f(x, y) = x+ y − 6.

Clearly, f vanishes at P . We take uP (x, y) = x + 2 as uniformizer at P . Note that
the curve equation can be rewritten as

(Y + 8)(Y − 8) = (X + 2)3 − 6(X + 2)2 + 12(X + 2)

and therefore

f(x, y) = (x+ 2) + (y − 8) = (x+ 2)

(
1 +

(x+ 2)2 − 6(x+ 2) + 12

y + 8

)
︸ ︷︷ ︸

g(x,y)

.

The function g is finite at P and does not vanish, so from f = u1
pg we obtain that

ordP (f) = 1.
Now consider the function

t(x, y) =
3(x+ 2)

4
− y + 8

coming from the tangent line to E at P . Using the same approach as for f , t can
be rewritten as

t(x, y) = (x+ 2)2

(
−(x+ 2) + 6

y + 8
+ 3

(x+ 2)2 − 6(x+ 2) + 12

4(y + 8)2

)
︸ ︷︷ ︸

g(x,y)

.

Again, g is finite at P and does not vanish at P , so from t = u2
Pg we obtain

ordP (f) = 2.

Example 4.7. The uniformizer at O is not as straight forward as the case for affine
points. Consider an elliptic curve E : Y 2 = X3 + aX + b. A uniformizer at O is
given by uO(x, y) = x

y
. Clearly, uO(O) = 0, as it can easily seen from the projective

version of uO.
The defining equation of E can be easily rewritten in terms of uO:(

X

Y

)2

=
X2

X3 + aX + b
=

1

X
(
1 + a

X2 + b
X3

) .

32

4. Divisors

From this equation we can observe that the function f(x, y) = x has order ordO(f) =
−2 and the order of g(x, y) = y can now be derived from the equation y = x y

x
, hence

ordO(g) = −3.

Example 4.8. We consider the lines that are used in the chord-and-tangent rule.
Let E : Y 2 = X3 + aX + b be an elliptic curve defined over some field K. Let
` : Y = λX + ν be the line that represents the chord while adding the points P
and Q. We are interested in the points where ` intersects E, as this is exactly the
information the divisor of (`) tells us. Clearly, the line ` intersects E in P,Q and
−(P+Q) all with multiplicity 1 and these are all affine intersection points (assuming
P 6= −Q). To investigate ` on E at O we use a different approach than the previous
example and do not express the function in terms of a uniformizer at O. Instead we
look at the projective version of ` by sending X 7→ X

Z
and Y 7→ Y

Z
which gives:

`′ :
Y

Z
=

(
λX + νZ

Z

)2

and thus (
X

Z

)3

+ a
X

Z
+ b =

(
λX + νZ

Z

)2

.

From this equation we are able to infer that there is pole of order 3 when Z = 0.
So ` has the divisor

(`) = (P) + (Q) + (−(P +Q))− 3(O).

If P = Q, then the divisor simplifies to

(`) = 2(P) + (−2P)− 3(O).

In any case, the degree of (`) is 0.

The balance between zeros and poles that occurred in Example 4.8 is not a coin-
cidence. In fact, this is true for any function on E. The following result captures
some of the properties of divisors of functions and ensures that they are well-defined:

Proposition 4.9. Let E be an elliptic curve and let f ∈ K(E) be non-zero.

1. f has only finitely many zeros and poles.

2. Deg((f)) = 0.

3. If f has no zeros or poles, then f is constant.

Proof. For a proof we refer to [Sil09, Proposition II.3.1] and [Sti09, Corollary 1.1.20].

33

4. Divisors

The last statement of Proposition 4.9 is important. It implies that for any two f
and g on E that have the same divisors, there exists a c ∈ K× such that f = cg. So
the divisor (f) determines f up to a non-zero scalar factor.

As we will see in the coming chapters, the language of divisors is essential in the
description of pairings. We will compute functions with very large degree on E
with prescribed divisors and then evaluate these functions at other divisors. The
evaluation of a function f ∈ K(E) at a divisor D has a natural definition provided
that (f) and D have disjoint supports:

Definition 4.10. Let f ∈ K(E)× and D =
∑

P∈E nP (P) ∈ Div(E) such that
supp((f)) ∩ supp(D) = ∅. Then define the evaluation of f at D, written as f(D),
by

f(D) =
∏

P∈E(K)

f(P)nP .

Example 4.11 demonstrates the evaluation of a function at a divisor. It also gives
an example of the more general fact, that if for two functions f and g there is some
constant c ∈ K such that g = cf , then f(D) = g(D) for any divisor D with disjoint
support.

Example 4.11. Consider E : Y 2 = X3 −X − 2 defined over F163 and let

P = (43, 154), Q = (46, 38), R = (12, 35), and S = (5, 66).

Let `P,Q be the line through P and Q, `P,P the tangent to P on E and `Q,Q the
tangent to Q and E. Explicitly written down, these functions are defined as

`P,Q(x, y) = y + 93x+ 85,

`P,P (x, y) = y + 127x+ 90, and

`Q,Q(x, y) = y + 13x+ 16.

Now let D1 = 2(R) + (S), D2 = 3(R)−3(S), and D3 = (R) + (S)−2(O). Note that
we cannot evaluate any of these functions at D3 since the supports of (`P,Q), (`P,P)
and (`Q,Q) all contain O. We evaluate `P,Q at D1 and `P,P at D2:

`P,Q(D1) = `P,Q(R)2`P,Q(S) = (yR + 93xR + 85)2(yS + 93xS + 85) = 122

`P,P (D2) =
`P,P (R)3

`P,P (S)3
=

(yR + 127xR + 90)3

(yS + 127xS + 90)3
= 53

Now we look at a scalar multiple of `P,P : `′P,P = 17`P,P . We evaluate at D2 again:

`′P,P (D2) =
`P,P (R)3

`P,P (S)3
=

(17yR + 40xR + 63)3

(17yS + 40xS + 63)3
= 53

34

4. Divisors

4.1. The Divisor Class Group

The divisor group contains important subgroups, namely the degree-zero divisors
and the group of principal divisors. These two groups are used to construct the
divisor class group.

Definition 4.12. Let E be an elliptic curve.

1. The set

Div0(E) = {D ∈ Div(E) | Deg(D) = 0}

is the set of degree-zero divisors.

2. A divisor D ∈ Div(E) is called a principal divisor if there exists a function
f ∈ K(E) such that D = (f). The set of all principal divisors is denoted by
Prin(E).

The set of degree-zero divisors Div0(E) forms a proper subgroup of Div(E). Sim-
ilarly, Prin(E) naturally forms a subgroup of Div(E). We have seen earlier that
principal divisors have degree zero, so Prin(E) ⊂ Div0(E). But in general not all
degree zero divisors are principal. There is an extra condition on degree zero divisors
to be principal:

Theorem 4.13. A divisor D =
∑

P∈E nP (P) ∈ Div0(E) is principal if and only if∑
P∈E

nPP = O.

Proof. For a proof see [Was08, Theorem 11.2].

Example 4.14 shows an application of Theorem 4.13.

Example 4.14. Consider the elliptic curve E : Y 2 = X3 + 20X+ 20 defined over F103

and the points

P = (26, 20), Q = (63, 78), R = (59, 95),

S = (24, 25), T = (77, 84), U = (30, 99).

The divisor (S) + (T) − (P) ∈ Div(E) has degree 1, so it is clearly not in the
subgroup Div0(E). The divisor (P) + (Q) − (R) − (S) has degree 0, so it is in
Div0(E). However, it is not principal, since

P +Q−R− S = (18, 49) 6= O.

Hence there does not exist a function f on E with divisor (f) = (P)+(Q)−(R)−(S).
The divisor (P) + (Q)− (R)− (T) has degree 0 and also

P +Q−R− T = O,

35

4. Divisors

so it is principal. A function with divisor (P) + (Q)− (R)− (T) is given by

f(x, y) =
6y + 71x2 + 91x+ 91

x2 + 70x+ 11
.

Note that P +Q = U , so the P +Q−U = O, but the divisor (P) + (Q)− (U) does
not have degree 0, so it is not principal. If we instead take the divisor (P) + (Q)−
(U)− (O), we again have principal divisor. The function

g(x, y) =
y + 4x+ 82

x+ 73

has the divisor (P) + (Q)− (U)− (O).
We now compare f and g in the projective space. The projective representations

of f and g are

f(x, y, z) =
6xz + 71x2 + 91xz + 91z2

x2 + 70xz + 11z2
, and

g(x, y, z) =
y + 4x+ 82z

x+ 73z
.

For f , both the nominator and denominator evaluate to 0 at O, which gives a pole
and a zero at O which cancel out in (f). However, for g only the denominator
evaluates to 0 at O, so we have a pole at O and O ∈ supp((g)), but O 6∈ supp((f)).

Before we define the divisor class group of E, we need to define an equivalence
relation on Div(E). Two divisors D1 and D2 are said to be linearly equivalent,
D1 ∼ D2, if there exists a function f such that D1 = D2 + (f). From the definition
it is clear that D1 ∼ D2 is equivalent to D1 −D2 ∈ Prin(E).

Example 4.15. Let E : Y 2 = X3 + 8X + 1 be an elliptic curve defined over F61. We
look at the points

P = (57, 24), Q = (25, 37), R = (17, 32), and S = (42, 35).

We now consider the divisors D1 = (P) + (Q) + (R) and D2 = −(S) + 4(O). Note
that

D1 −D2 = (P) + (Q) + (R) + (S)− 4(O)

which has degree zero 0 and P +Q+R+S − 4O = O. So there exists a function f
on E such that D1 −D2 = (f) and D1 −D2 ∈ Prin(E) or alternatively, D1 ∼ D2.

Definition 4.16. The divisor class group (Picard group) of E is defined as the
quotient group

Pic0(E) = Div0(E)/ ∼ = Div0(E)/Prin(E).

The divisor class group gives an alternative description of the law of composition,
which is based on divisors. The following example describes the connection between
Pic0(E) and E.

36

4. Divisors

Example 4.17. Let P and Q be two distinct points on an elliptic curve E. Recall from
Example 4.8 that line ` through P and Q has the divisor (`) = (P) + (Q) + (−R)−
3(O). The vertical line ν running through R has the divisor (ν) = (−R)+(R)−2(O).
Hence the quotient `

ν
has the divisor(

`

ν

)
= (P) + (Q)− (R)− (O).

Note that both (R)− (O) and (P) + (Q)− 2(O) are clearly in Div0(E). Since they
are connected via the equation

(R)− (O) = (P) + (Q)− 2(O)−
(
`

ν

)
, (4.1)

they represent the same class in Pic0(E). Hence we have a connection between the
equation R = P + Q in E and Equation 4.1 via the group homomorphism induced
by the map {

E → Div0(E)

P 7→ (P)− (O).

4.2. A Corollary to the Riemann-Roch Theorem

We will now present a corollary to the Riemann-Roch Theorem. We do not state the
Riemann-Roch theorem in full detail, since we are only interested in the corollary.
We refer the interested reader to [Sti09, Chapter 1.5] and [Sil09, Chapter II.5] for
an in-depth discussion.

To state the corollary, we first consider some further properties of divisors.

Definition 4.18. Let D =
∑

P∈E(K) nP (P) ∈ Div(E).

1. If nP ≥ 0 for all P ∈ E, then D is called effective.

2. The effective part of D is given by

ε(D) =
∑

P∈E(K),nP≥0

nP (P)

3. The size of a divisor is the degree of its effective part.

The only effective divisor in Div0(E) is the zero divisor. The following example
shows these notions in use.

Example 4.19. Let E be an elliptic curve and P,Q ∈ E(K) be two distinct points.
The divisor D = (P) + (Q) − 2(O) is not effective. Its effective part is ε(D) =
(P) + (Q) and the size of D is 2, although the degree of D is 0.

The corollary that we are interested in can be stated as follows:

37

4. Divisors

Corollary 4.20. Let E be an elliptic curve. Then there exists a g ∈ Z such that
every divisor D ∈ Pic0(E) is equivalent to a divisor D′ with Deg(ε(D′)) ≤ g.

This integer is called genus of the curve. The corollary is also true for general
algebraic curves where one can also introduce the divisor class group. For elliptic
curves however, the situation is very simple: for any elliptic curve the genus is 1 and
hence every D ∈ Pic0(E) is equivalent to a divisor of the form (P) − (Q) for some
P,Q ∈ E(K). So the group homomorphism induced by P 7→ (P)−(O) that we have
seen in Example 4.17 is actually a group isomorphism. This makes it possible to use
the very simple description of the group law without the introduction of divisors and
the divisor class group and can simply talk about the group elements being points
on the curve. For other algebraic curves of larger genus, this is not possible. We
would have to relay on the divisor class group to obtain some arithmetic on a curve
of higher genus.

Example 4.21 shows how a given divisor of larger size can be reduced to a divisor
of size 1.

Example 4.21. Let E : Y 2 = X3 + aX + b be an elliptic curve defined over K where
K is not necessarily algebraically closed. Assume there is a divisor of the form
D =

∑11
i=1(Pi)− 11(O) with size 11 in Pic0(E) where the Pi are all K-rational. The

Pi do not need to be distinct. We want to find a divisor of size 1 that is equivalent
to D.

We start with constructing a function `10 : Y =
∑10

i=0 aiX
i to interpolate the

distinct points in supp(D). By substituting `10 into E, we obtain a polynomial
of degree 20 in X. The roots of this polynomial reveal the 20 affine intersection
points between `10 and E. P1, . . . P11 are 11 of these intersection points, so denote
by P ′1, . . . , P

′
9 the other 9 intersection points, which might not be K-rational. Define

the divisor D′ as D′ = −
(∑9

i=1(P ′i)− 9(O)
)
. Since (`10) =

∑11
i=1(Pi) +

∑9
i=1(P ′i)−

20(O) ∈ Prin(E), D′ is equivalent to D in Pic0(E).
This process can repeated with a degree 8 polynomial interpolating the points

in supp(D′). This polynomial then has 16 affine intersection points with E. In
each iteration the maximum number of divisors in the support decreases by two, so
repeating the process often enough we will end up at divisor D̂ =

∑3
i=1(P̂i)− 3(O).

The three affine points in the support of D̂ can be interpolated by a quadratic
polynomial ˆ̀, which gives one more affine intersection point with E. Call this
point Q. We have (ˆ̀) =

∑3
i=1(P̂i) + (Q) − 4(O) and since (ˆ̀) ∈ Prin(E), also

(D̂) ∼ (O)− (Q).
Now look at the vertical line ν running through Q. It has the divisor (ν) = (Q) +

(R)− 2(O) for some R ∈ E. From this we can deduce that (O)− (Q) ∼ (R)− (O),
which gives D ∼ D̂ ∼ (R)− (O).

4.3. Weil Reciprocity

The next theorem a useful tool for evaluating functions on an elliptic curve. It allows
to evaluate a function when only the divisor is known but not the function itself.

38

4. Divisors

Theorem 4.22 (Weil reciprocity). Let E be an elliptic curve and let f and g be
non-zero functions on E. If (f) and (g) have disjoint supports, then

f((g)) = g((f)).

Proof. For a proof we refer to [Gal05, Theorem IX.3].

Theorem 4.22 can also be used to evaluate a function at a divisor where the
divisors are not distinct. Example 4.23 demonstrates a construction that uses this
theorem to evaluate a function in this case.

Example 4.23. Let P, S,R ∈ E(K) and set T = −(R + S). We consider the line `
through R, S and T and the tangent `′ : Y = λ′X + ν ′ to E at P . The divisors of
these two lines are

(`) = (R) + (S) + (T)− 3(O), and (`′) = 2(P) + (−2P)− 3(O).

Suppose we want to compute `((`′)) which is not directly possible since the supports
of (`) and (`′) are not disjoint.

This problem can be circumvented by finding a divisor equivalent to (`) whose
support is disjoint to supp((`′)). This can be easily achieved by picking a random
U 6∈ supp((`′)). Then define D = (R + U) + (S + U) + (T + U) − 3(U). Observe
that (R+U)− (U) = (R)− (O), so D ∼ (`). We would now need to find a function
whose divisor is D to compute `((`′)). However, by Theorem 4.22 it is possible to
compute `′(D) instead:

`′(D) =
(yR′ − (λ′xR′ + ν ′))(yS′ − (λ′xS′ + ν ′))(yT ′ − (λ′xT ′ + ν ′))

yU − (λ′xU + ν ′)

where R + U = (xR′ , yR′), S + U = (xS′ , yS′), T + U = (xT ′ , yT ′) and U = (xU , yU).

39

5. Bilinear Pairings

After introducing divisors and discussing their properties, we are now able to define
and construct bilinear pairings. First we will look at the definition of bilinear pairings
and discuss the their construction over elliptic curves. We then present Miller’s
algorithm that enables us to compute pairings efficiently.

This chapter is based on [Was08, HPS08, Ver08, BLS01, Gal05, Cos12, CCS06].

5.1. Bilinear Maps and Pairings

We first define what it means for a map to be bilinear. For that, let (M,+) and
(R, ·) be Abelian groups. A map 〈·, ·〉 : M ×M → R is called bilinear if for all
x, y, z ∈M the following two conditions are satisfied:

• 〈x+ y, z〉 = 〈x, z〉 · 〈y, z〉

• 〈x, y + z〉 = 〈x, y〉 · 〈x, z〉

In other words, a bilinear map is a map that is linear in both its arguments. For
our purposes, we will slightly relax the condition that the two arguments come from
the same group. Instead we will require that the inputs come from cyclic groups of
the same order which are therefore isomorphic. We will often write

e : G1 ×G2 → GT

which is the commonly used notation for bilinear pairings. The groups G1 and G2

will be defined in E(Fqk) and the target group GT will be a subgroup of the multi-
plicative group F×

qk
. So we usually write G1 and G2 additive and GT multiplicative.

Example 5.1. Bilinear maps appear in many different areas of mathematics. Let
V = Rn be the canonical n-dimensional R-vector space. The scalar product on V

〈·, ·〉 :

{
V × V → R
(x, y) 7→

∑n
i=1 xiyi

is clearly a bilinear map.

A bilinear pairing is a bilinear map with two additional conditions. We require
the map to be non-degenerate and efficiently computable:

Definition 5.2 (Bilinear pairing). Let G1, G2 and GT be groups and e : G1×G2 →
GT . The map e is called a pairing if

40

5. Bilinear Pairings

• e is bilinear.

• e is non-degenerate, that is there exist non-trivial G1 ∈ G1 and G2 ∈ G1 such
that e(G1, G2) 6= 1.

• e is efficiently computable, i.e there exists a polynomial time algorithm to
compute e.

We require pairings to be efficiently computable since otherwise they are only of
theoretical interest. Bilinear pairings can be classified into different types which is
based on the choice of G1 and G2:

Definition 5.3. Let e : G1 ×G2 → GT be a bilinear pairing.

1. The pairing e is said to be of Type 1 if G1 = G2.

2. The pairing e is said to be of Type 2 if G1 6= G2 and there exists an efficiently
computable group isomorphism ψ : G2 → G1.

3. The pairing e is said to be of Type 3 if G1 6= G2 and no efficiently computable
group isomorphism ψ : G2 → G1 is known to exist.

Type 1 pairings are also referred to as symmetric pairings and Type 2 and Type
3 pairings are called asymmetric pairings. We now consider the case where both G1

and G2 are subgroups of an elliptic curve: let E be an elliptic curve over Fp and
let r ∈ N be coprime to p. Remember that we denote by G1 = E[r] ∩ ker(π − 1)
the base-field subgroup and by G2 = E[r] ∩ ker(π − p) the trace zero subgroup.
Now let P1 ∈ G1 be a generator of G1 and P2 ∈ G2 be a generator of G2. Let k be
the embedding degree of E with respect to r. The three pairing types can now be
described in the following way:

• Type 1: In this case E is a supersingular curve and G1 = G2 = G1. We take
P1 = P2 = P1 and there is a trivial group isomorphism ψ : G2 → G1 mapping
P2 to P1.

• Type 2: E is an ordinary elliptic curve and G1 is set to G1. Any order r
subgroup of E[r] that is neither G1 nor G2 is taken as G2. We set P1 = P1 and
P2 = 1

k
P1 +P2. The trace map restricted to G2 gives an efficiently computable

group isomorphism ψ : G2 → G1 which maps P2 to P1.

• Type 3: E is again an ordinary elliptic curve and G1 = G1. In this case
G2 = G2 and we set the generators to be P1 = P1 and P2 = P2.

In all three cases GT is set to be the subgroup of order r of the finite field Fpk ,
the r-th roots of unity. There is also another variant of the Type 2 pairing, where
G2 is taken to be the whole r-torsion E[r].

For all three types we have that P1 is a generator of G1 and P2 is a fixed element
of G2 of prime order r. Except for Type 3 pairings, we have a computable group
isomorphism from G2 to G1 that maps P2 to P1. We refer to the three groups G1,G2

and GT , the elements P1 and P2 as well as the pairing e as pairing parameters.

41

5. Bilinear Pairings

5.2. Pairing-based Cryptography

For bilinear pairings to be useful in cryptographic applications, it is necessary to find
hard problems based on pairings. Each problem that is presented here, is defined
for a given set of pairing parameters.

So let e : G1 × G2 → GT be a bilinear pairings and let P1 ∈ G1 and P2 ∈ G2

generators for the respective groups. We denote their order by n. The first problem
is defined for the symmetric setting.

Definition 5.4. Let e be a symmetric pairing. Given P1, P
a
1 , P

b
1 and P c

1 for some
a, b, c ∈ Z/nZ, the problem of finding e(P1, P1)abc is called Bilinear Diffie-Hellman
Problem (BDHP).

Clearly, the BDHP can not be harder than the ECDHP. If one can find P abc
1 it is

easy to compute e(P1, P1)abc. For the asymmetric setting, the previous definition is
not adequate. Instead we define two other problems for groups G1 and G2 both of
order n.

Definition 5.5. Given g2, g
a
2 ∈ G2 for some a ∈ Z/nZ, the problem of finding ga1

for g1 ∈ G1 is called Computational co-Diffie-Hellman Problem (co-CDHP).

Clearly, if the DLP in G2 is easy to solve, the co-CDHP is also easy.

Definition 5.6. Given g1, g
a
1 ∈ G1 and g2, g

b
2 ∈ G2 for a, b ∈ Z/nZ, deciding whether

a = b is called the Decision co-Diffie-Hellman Problem (co-DDHP).

Note that when using a bilinear pairing, the co-DDHP can be efficiently solved.
For any instance of the problem, a = b can be checked via e(P1, P

b
2) = e(P a

1 , P2).
This observations leads to the definition of gap co-Diffie-Hellman group pairs, which
is a pair of groups where the co-DDHP is easy to solve, but the co-CDHP remains
a hard problem. Bilinear pairings on elliptic curves are assumed to give rise to such
gap co-Diffie-Hellman group pairs.

5.3. Weil, Tate and Ate Pairing

In this section we give the definitions for various pairings. We fix an elliptic curve
E which is defined over a finite field K = Fq We also consider a fixed prime r such
that r‖ |E(Fq)| which is coprime to q and denote the embedding degree with respect
to r by k, i.e. r | qk − 1.

Definition 5.7. Let P ∈ E(K), s ∈ Z and let fs,P be a function over E. If the
divisor of fs,P satisfies

(fs,P) = s(P)− (sP)− (s− 1)O,

then fs,P is called a Miller function.

42

5. Bilinear Pairings

Miller functions are an essential tool to compute pairings. For the remainder of
this section we denote by fs,P a Miller function. All pairings discussed in this section
make use of Miller functions.

We will now take a look at some basic properties of Miller functions. The first
important property is that Miller functions exist for every P ∈ E(K) and s ∈ Z.
To see that, define the divisor D = s(P) − (sP) − (s − 1)O. Since degD = 0 and
sP − sP − (s− 1)O = O the divisor D is principal by Theorem 4.13.

For s = 0 Miller functions are very simple. One can take f0,P = 1 with (f0,P) =
0(P) − (0P) − (0 − 1)(O) = 0. If P ∈ E[r], then the divisor of fr,P simplifies to
(fr,P) = r(P)− r(O).

Before discussing a way to find Miller functions and evaluate them, we first look
at bilinear pairings that use them.

5.3.1. Weil Pairing

The Weil pairing is a Type 1 pairing and was introduced by Weil in 1940 [Wei40].
It is based on the Miller function fr,P for a point P ∈ E[r].

Definition 5.8. Let P,Q ∈ E[r] and let DP and DQ be degree zero divisors with
disjoint supports such that DP ∼ (P) − (O) and DQ ∼ (Q) − (O). Let f ∈ K(E)
and g ∈ K(E) be such that (f) = rDP and (g) = rDQ. The map

wr :

{
E[r]× E[r] → µr(Fqk)

(P,Q) 7→ f(DQ)

g(DP)

is called Weil pairing of order r.

Note that the Weil pairing can not simply be defined as

fr,P (DQ)

fr,Q(DP)

because the divisors of fr,P and fr,Q have the divisors

(fr,P) = r(P)− r(O) and (fr,Q) = r(Q)− r(O).

These two divisors correspond to the divisors (P) − (O) and (Q) − (O) which do
not satisfy the requirement that DP and DQ have disjoint supports.

However, the definition of the Weil pairing of P,Q ∈ E[r] can easily be described
in terms of a third point S ∈ E satisfying S 6∈ {O, P,−Q,P − Q}. To see that,
let fP and fQ be the Miller functions fr,P respectively fr,Q. They have divisors
(fP) = r(P) − r(O) and (fQ) = r(Q) − r(O). From these two functions we now
obtain functions f and g on E with divisors equivalent to r(P)− r(O) respectively
r(Q)− r(O) easily. For a point R we set

f(R) = fP (R + S), and g(R) = fQ(R− S).

43

5. Bilinear Pairings

The functions f and g satisfy the properties from the definition and so we can
compute wr(P,Q) as

wr(P,Q) =
f((Q)− (O))

g((P)− (O))
=

f(Q)
f(O)

g(P)
g(O)

=

fP (Q+S)
fP (S)

fQ(P−S)

fQ(−S)

.

Theorem 5.9. The map wr is a bilinear pairing. In addition, wr is alternating,
which means that

wr(P, P) = 1 for all P ∈ E[r].

Proof. For a proof see [Was08, Theorem 11.7].

Example 5.10. We consider the elliptic curve E : Y 2 = (X − α1)(X − α2)(X − α3)
defined over a field K with α1 + α2 + α3 = 0. The thread points

P1 = (α1, 0), P2 = (α2, 0), P3 = (α3, 0)

have all order 2. We now compute w2(P1, P2) directly.
To compute the pairing, we pick an arbitrary point S = (x, y) ∈ E. From the

addition formula we are able to compute the x-coordinate of P1−S and can observe
that is equal to(

−y
x− α1

)2

− x− α1 =
y2 − (x− α1)2(x+ α1)

(x− α1)2

=
(x− α1)(x− α2)(x− α3)− (x− α1)2(x+ α1)

(x− α1)2

=
(x− α2)(x− α3)− (x− α1)(x+ α1)

x− α1

=
(−α2 − α3)x+ α2α3 + α2

1

x− α1

=
α1x+ α2α3 + α2

1

x− α1

by applying the equations α1 + α2 + α3 = 0 and y2 = (x − α1)(x − α2)(x − α3).
Similarly the x-coordinate of P2 − S can be written as

α2x+ α1α3 + α2
2

x− α1

.

Note that the rational functions fPi
= X−α1 have the divisors (fPi

) = 2(Pi)−2(O),
so we can compute the pairing using fP1 and fP2 . Now assuming that P1 and P2 are

44

5. Bilinear Pairings

two distinct points, we can compute w2(P1, P2) directly from the definition:

w2(P1, P2) =

fP1
(P2+S)

fP1
(S)

fP2
(P1−S)

fP2
(−S)

=
fP1(P2 + S)fP2(−S)

fP1(S)fP2(P1 − S)

=

(
α1x+α2α3+α2

1

x−α1
− α1

)
(x− α2)(

α2x+α1α3+α2
2

x−α1
− α2

)
(x− α1)

=
(α2 − α1)x+ α1α3 + α2

2 + α1α2

(α1 − α2)x+ α2α3 + α2
1 + α1α2

=
(α2 − α1)x+ α2

2 − α2
1α2

(α1 − α2)x+ α2
1 − α2

2α2

= −1.

If one wants to evaluate the Weil pairing at two points P1 = aP and P2 = bP2,
the alternating nature of the Weil pairing ensures that wr(P1, P2) = 1. This renders
the Weil pairing unusable for applications where points of this kind occur as inputs.
However, if the elliptic curve is chosen in such a way that distortion map exist, this
problem can be circumvented.

Definition 5.11 (Distortion map). Let E be an elliptic curve defined over K, r ∈ P
and P ∈ E[r] be a point of order r. A map φ : E(K)→ E(K) satisfying

1. φ(nP) = nφ(P) for all n ∈ N, and

2. wr(P, φ(P)) is primitive r-th root of unity

is called r-distortion map for P .

The modified Weil pairing uses a distortion map to ensure that the pairing is not
alternating. It is defined in the following way:

Definition 5.12 (Modified Weil pairing). Let E be an elliptic curve defined over
K, r ∈ P, P ∈ E[r] be a point of order r and φ : E(K) → E(K) be a distortion
map for P . The modified Weil pairing of order r, ŵr, is defined as

ŵr :

{
E[r]× E[r] → µr

(Q,Q′) 7→ wr(Q, φ(Q′))
.

This map is again a pairing. It additionally satisfies the property that ŵr(Q,Q
′) =

1 if and only if Q = O or Q′ = O [HPS08, Proposition 5.50]. The next proposition
shows that distortion maps exist and gives an explicit map for a class of elliptic
curves.

Proposition 5.13. Let K be field with an element α ∈ K such that α2 = −1. Let
E : Y 2 = X3 +X be an elliptic curve defined over K. Then the map

φ :


E(K) → E(K)

(x, y) 7→ (−x, αy)

O 7→ O

is a distortion map.

45

5. Bilinear Pairings

Proof. For a proof we refer to [HPS08, Proposition 5.51, Proposition 5.52].

5.3.2. Tate Pairing

The Tate pairing was first introduced by Tate [Tat58, Tat63] and later extended
by Lichtenbaum [Lic69]. Frey and Rück later gave the first application of the Tate
pairing over finite fields in cryptography [FR94]. We will start with a more general
definition of the Tate pairing and then derive a bilinear pairing in the Type 3 setting.

The first definition of the Tate pairing only requires the first argument to be in
the r-torsion. The second argument can be any point in E(Fqk). However, any part
of the second argument that lies in the r-torsion does not affect value of the pairing,
hence the second argument is taken from the quotient group

E(Fqk)/rE(Fqk).

If h is the cofactor, that is h =
E(F

qk
)

r2 , then the coset rE(Fqk) consists of exactly
h points. So the quotient group E(Fqk)/rE(Fqk) contains exactly r2 elements. The
target group of the pairing is also a quotient group:

F×
qk
/(F×

qk
)r

where (F×
qk

)r is the subgroup of F×
qk

defined as:

(F×
qk

)r = {ur | u ∈ Fqk}.

Definition 5.14 (Tate pairing). Let P ∈ E(Fqk [r]) and Q′ ∈ E(Fqk)/E(Fqk). Let
Q ∈ E(Fqk) be a representative of Q′ and DQ ∈ Div0(E) be a divisor equivalent to
(Q)− (O) with disjoint support to (fr,P). The Tate pairing is defined as

Tr :

{
E(Fqk)[r]× E(Fqk)/rE(Fqk) → F×

qk
/(F×

qk
)r

(P,Q′) 7→ fr,P (DQ)
.

This map is well-defined and a bilinear pairing as Theorem 5.15 shows. Exam-
ple 5.16 demonstrates the computation of the Tate pairing.

Theorem 5.15. The map Tr is well-defined and a bilinear pairing.

Proof. For a proof we refer to [Was08, Theorem 11.8].

Example 5.16. Let q = 5. We consider the elliptic curve E : Y 2 = X3 − 3 defined
over Fq. This curve has 6 Fq-rational points. We take r = 3 and find that the
embedding degree with respect to r is k = 2. We can construct Fq2 as Fq(i) with
i2 + 2 = 0.

We consider P = (3, 2) and Q = (i + 1, 4i + 2) and want to compute the Tate
pairing for P and Q (respectively the coset Q′ = Q + rE(Fq2)). The function
f : Y 2 + 2X + 2 = 0 on E has the divisor 3(P)− 3(O), so is a Miller function of the
correct type. We need a divisor DQ ∼ (Q)− (O). For that we take R = (2i, i + 2)

46

5. Bilinear Pairings

and set DQ = (Q+R)−(R), where Q+R = (3i+1, 2). We are now able to compute
the Tate pairing as

Tr(P,Q
′) = f(DQ) =

f(Q+R)

f(R)
=

2 + 2(3i+ 1) + 2

(i+ 2) + 4i+ 2
= 4i+ 4.

To illustrate the bilinearity and the fact that the value is only unique up to a
coset, we also compute Tr(P, 2Q) and Tr(2P,Q). For the first one we take D2Q =
(2Q+R)− (R) with 2Q+R = (i+ 2, i) and we obtain:

Tr(P, 2Q) = f(D2Q) =
i+ 2(i+ 2) + 2

(i+ 2) + 4i+ 2
= 2i+ 4.

For the second value we need to find a new Miller function. We can take f ′ :
Y + 3X + 3 = 0 which has the divisor (f ′) = r(2P) − r(O). The Tate pairing can
now be computes as

Tr(2P,Q) = f(DQ) =
2 + 3(3i+ 1) + 3

(i+ 2 + 6i+ 3
= 3i+ 2.

Now note that when considering the pairing values in Fqk , we have Tr(P, 2Q) =
2i + 4 = (4i + 4)2 = Tr(P,Q)2, but Tr(2P,Q) 6= Tr(P,Q)2. However, if we look at
them modulo the r-th powers, we have Tr(P, 2) = Tr(2P,Q) = Tr(P,Q)2 since

Tr(P, 2Q)

Tr(2P,Q)
∈ (F×

qk
)r.

That the value of the Tate pairing is only unique up to an r-th root is an undesir-
able property in cryptographic applications. Checking that two values of the Tate
pairing are contained in the same equivalence class requires checking if their quotient
is an r-th root which is much more work than simply comparing two elements of
Fqk . With a small modification, this problem can be easily circumvented. Raising

the values to the power of
|Fqk
−1|
r

kills r-th powers and sends them to an unique r-th
root of unity of Fqk . This observation leads to the definition of the reduced Tate
pairing:

Definition 5.17 (Reduced Tate pairing). Let P ∈ E(Fqk)[r], Q′ ∈ E(Fqk)/rE(Fqk)
and Q ∈ E(Fqk) be a representative of Q′. Let DQ ∈ Div0(E) be a divisor equivalent
to (Q)− (O) with disjoint support to (fr,P). The reduced Tate pairing is defined as

tr :

{
E(Fqk)[r]× E(Fqk)/rE(Fqk) → µr(Fqk)

(P,Q) 7→ fr,P (D)
qk−1

r

.

We will now transform the reduced Tate pairing into a Type 3 pairing. Note that
r‖E(Fqk) implies that E(Fqk)[r] ∩ rE(Fqk) = {O}. This means that every element
of r-torsion represents a unique coset in E(Fqk)/rE(Fqk) and we can thus simply

47

5. Bilinear Pairings

represent E(Fqk)/rE(Fqk) by E(Fqk)[r]. So we can view the reduced Tate pairing as
a map

tr : E(Fqk)[r]× E(Fqk)[r]→ µr(Fqk).

We can go a step further and restrict the map to G1 × G2:

tr : G1 × G2 → µr(Fqk).

This restriction does not reduce the image set and it is still possible to reach any
r-th root of unity. Indeed, take a non-zero P ∈ G1 and Q ∈ G2. Then tr(P,Q

′) will
reach every value in µr(Fqk) when Q′ runs through 〈Q〉, a group of order r.

Example 5.18 demonstrates the difference between the Tate pairing and the re-
duced Tate pairing.

Example 5.18. We take q = 19 and let E : Y 2 = X3 + 14X + 3 be defined over Fq.
We have |E(Fq)| = 20 and we take r = 5. The embedding degree with respect to r
is k = 2 and we use Fq2 = Fq(i) with i2 + 1 = 0.

We consider P = (17, 9) ∈ G1 and Q = (16, 16i) ∈ G2. The Tate pairing of P
and Q is Tr(P,Q) = 7i + 3 and the reduced Tate pairing is tr(P,Q) = 15i + 2. We
will now look at multiple ways to obtain Tr(P,Q)4 respectively tr(P,Q)4 to see the
effect of the final exponentiation:

• Tr(P,Q)4 = 3i+ 7 whereas tr(P,Q)4 = 4i+ 2.

• Tr(4P,Q) = 7i+ 16 whereas tr(4P,Q) = 4i+ 2.

• Tr(P, 4Q) = 12i+ 3 whereas tr(P, 4Q) = 4i+ 2.

• Tr(2P, 2Q) = 2i+ 14 whereas tr(2P, 2Q) = 4i+ 2.

Of course, the values obtained from Tr are all equivalent modulo r-th powers. The
final exponentiation maps them to the same unique value in µr(Fqk).

From now on we will always refer to the reduced Tate pairing in the Type 3 setting
when talking about the Tate pairing.

5.3.3. Ate Pairing

The Ate pairing is a variant Tate pairing that exchanges the role of its arguments
and uses properties from G2 to reduce the involved orders of the Miller functions.
It was first introduced by Hess, Smart and Vercauteren [HSV06]. We will show how
to derive the Ate pairing from the Tate pairing.

We need the following Lemma to derive the Ate pairing:

Lemma 5.19. Let E be an elliptic curve defined over K. Let Q ∈ E(K) and
a, b ∈ Z. Then we can obtain a Miller function fab,Q as

fab,Q = f ba,Qfb,aQ.

48

5. Bilinear Pairings

Now we consider the order r Tate pairing where we swap the role of P ∈ G1 and
Q ∈ G2 and raise it to some power m:(

fr,Q(P)
qk−1

r

)m
= fr,Q(P)

m(qk−1)
r =

fmr,Q(P)
qk−1

r

fm,rQ(P)
qk−1

r

= fmr,Q(P)
qk−1

r (5.1)

where the last two equalities follow from Lemma 5.19 and rQ = O. Since the Tate
pairing is a bilinear pairing,

fmr,Q(P)
qk−1

r

also gives rise to bilinear pairing for any m ∈ Z with r -m.
The idea of the Ate pairing and its variants is to find suitable m such that the eval-

uation of fmr,Q(P) can be written as power of the evaluation of a simpler function
fλ,Q(P). We can achieve this by exploiting the fact that the Frobenius endomor-
phism acts as multiplication by q on G2 and leaves G1 invariant. Also note that
multiplication by q on G2 is the same as multiplication by λ if λ ≡ q mod r.

So let λ ∈ N such that λ ≡ q mod r. From r |(qk−1) we also have that r |(λk−1).
Now we define

m =
λk − 1

r
.

By Equation 5.1 we have

fmr,Q(P)
qk−1

r = fλk−1,Q(P)
qk−1

r = fλk,Q(P)
qk−1

r .

From repeatedly applying Lemma 5.19 and using the equality λiQ = qiQ for all
i ∈ N we obtain

fλk,Q =
k−1∏
i=0

fλ
k−1−i

λ,qiQ .

Next we exploit the action of the Frobenius endomorphism on both G1 and G2 and
obtain

fλk,Q(P) = fλ,Q(P)
∑k−1

i=0 λ
k−1−iqi .

We are now able to define the Ate pairing:

Definition 5.20. Let λ ≡ q mod r and m = λk−1
r

. The (reduced) Ate pairing is
defined as

aλ :

{
G1 × G2 → µr

(P,Q) 7→ fλ,Q(P)
qk−1

r

.

Since aλ corresponds to a fixed power of the Tate pairing, the Ate pairing is again
a bilinear pairing:

Theorem 5.21. If r -m, then aλ is a bilinear pairing.

Proof. This result follows directly from Theorem 5.15.

49

5. Bilinear Pairings

5.4. Miller’s Algorithm

Miller’s algorithm allows us to compute Miller functions efficiently. The algorithm
was first described by Miller in 1986 [Mil86a]. Before looking at Miller’s idea, we
investigate the naive approach to compute Miller functions and see why this ap-
proach is infeasible. Let m,n ∈ Z and P ∈ E[r]. We denote by `mP,nP the equation
of the line through mP and nP respectively the tangent at mP if mP = nP and
by ν(m+n)P the equation of the vertical line through (m+ n)P . Then the divisor of
fm+n,P satisfies the equation

(fm+n,P) = (fm,P) + (fn,P) + (`mP,nP)− (ν(m+n)P).

By setting n = 1 the equation becomes

(fm+1,P) = (fm,P) + (f1,P) + (`mP,P)− (ν(m+1)P)

= (fm,P) + (`mP,P)− (ν(m+1)P).

From this equation we are able to construct a Miller function fr,P from any f2,P

iteratively by setting

fm+1,P = fm,P
`mP,P
ν(m+1)P

for 3 ≤ m < r. Note that for the last step when m = r − 1 we have

(fr,P) = r(P)− r(O) and (fr−1,P) = (r − 1)(P)− ((r − 1)P)− (r − 1)(O).

Hence the required divisor is (P) + ((r − 1)P) − 2(O) which corresponds to the
multiplication by the vertical line ν(r−1)P = ν−P = νP . This is the same vertical

line that appears on the denominator of
`(r−2)P,P

ν(r−1)P
and thus the function fr,P can be

computed as the product

fr,P = `(r−2)P,P

r−3∏
i=1

`iP,P
ν(i+1)P

.

As it can be seen from this product, evaluating fr,P with this method requires to
evaluate `iP,P and ν(i+1)P . However, the amount of functions that need to be eval-
uated is linear in r. So for exponentially large r, the naive method has exponential
time complexity. This makes the naive method unusable for large r that we usually
have.

Miller constructed fr,P differently using a double-and-add like approach to reduce
the complexity. Instead of adding one zero and one pole via multiplying fm,P by
linear functions, it is possible to double the number of zeros at P and the number
of poles at O by squaring fm,P . Note that

(f 2
m,P) = 2(fm,P) = 2m(P)− 2(mP)− 2(m− 1)(O).

50

5. Bilinear Pairings

This divisor is almost the same as the divisor of f2m,P which is

(f2m,P) = 2m(P)− (2mP)− (2m− 1)(O).

The difference between the two divisors (f2m,P) and (f 2
m,P) is

(f2m,P)− (f 2
m,P) = 2(mP)− (2mP)− (O).

So to advance from f 2
m,P to f2m,P we need to find a function with two zeros at mP

and a pole at 2mP as well as O. The divisor of the quotient
`mP,mP

ν2mP
has exactly this

form. Hence it is possible to advance from fm,P to f2m,P by setting

f2m,P = f 2
m,P

`mP,mP
νmP

.

We are now able to advance from any m to f(m+1)P,P or f2m,P quickly which gives rise
to a double-and-add style algorithm. It is thus possible to reach fr,P in O(log(r))
steps.

Note that the degree of fm,P still grows linear in the size of m. So as m ap-
proaches r the function fm,P becomes too large to store explicitly. Thus Miller’s
algorithm does not store fm,P at every stage but evaluates fm,P at the given divisor
D, fm,P (D) ∈ Fpk . Algorithm 3 lists the full algorithm to evaluate fr,P at DQ.

Algorithm 3 Miller’s algorithm to evaluate fr,P

Input: P ∈ E(Fqk)[r], DQ ∼ (Q) − (O) with support disjoint from (fr,P) and r =
(rn−1, . . . , r0)2 with rn−1 = 1.

Output: fr,P (DQ)
R← P .
f ← 1.
for i = n− 2, . . . , 0 do

Compute the line functions `R,R and ν2R.
R← 2R.
f ← f 2 `R,R

ν2R
(DQ).

if ri = 1 then
Compute the line functions `R,P and νR+P .
R← R + P .
f ← f

`R,P

νR+P
(DQ).

end if
end for
return f

Example 5.22. We use Miller’s algorithm to compute the reduced Tate pairing. Let
E : Y 2 = X3 + 21X + 15 be defined over F47. The elliptic curve E consists of 51
F47-rational points. We take r = 17 and the embedding degree with respect to r is
k = 4, so we take F474 = F47 with u4 − 4u2 + 5 = 0.

51

5. Bilinear Pairings

A point of order 17 is P = (45, 23). It is contained in G1. A point in G2 is
given by Q = (31u2 + 29, 35u3 + 11u). We now illustrate Miller’s algorithm to
compute fr,P (DQ). Take DQ = (2Q)− (Q) which has disjoint support to (fr,P) and
is equivalent to (Q)− (O). The following table shows the steps of Miller’s algorithm
and the immediate values.

i ri R update `
ν

update at Q f
(45, 23) 1

3 0 (12, 16) y+33x+43
x+35

41u3 + 32u2 + 2u+ 21 41u3 + 32u2 + 2u+ 21

2 0 (27, 14) y+2x+7
x+20

4u3 + 5u2 + 28u+ 17 22u3 + 27u2 + 30u+ 33

1 0 (18, 31) y+42x+27
x+29

6u3 + 13u2 + 33u+ 28 36u3 + 2u2 + 21u+ 37

0 1 (45, 24) y+9x+42
x+2

46u3 + 45u2 + u+ 20 10u3 + 21u2 + 40u+ 25

O x+ 2 6u2 + 43 17u3 + 6u2 + 10u+ 22

So fr,P (DQ) = 17u3 + 6u2 + 10u+ 22. To compute the reduced Tate pairing of P

and Q this value now needs to be raised to 47k−1
r

:

tr(P,Q) = fr,P (DQ)
47k−1

r = (17u3 + 6u2 + 10u+ 22)287040 = 33u3 + 43u2 + 45u+ 39

5.5. Optimal Pairings

Early optimizations of bilinear pairings focused on reducing the number of iterations
in Miller’s algorithm. We now discuss optimal pairings that reduce the number of
iterations to a minimum.

Definition 5.23. Let e : G1 × G2 → GT be a bilinear pairing with |G1| = |G2| =
|GT | = r where GT is a subgroup of F×

qk
. If e can be computed in

log2 r

φ(k)
+ ε(k) basic Miller iterations

where ε(k) ≤ log2 k, then e is called optimal pairing.

This definition does not specify that the pairing e should be computed as the
evaluation of one Miller function, but also allows combinations of Miller functions
as long as all of them can be computed in log2 r

φ(k)
+ ε(k) Miller iterations. The central

idea for loop reduction in Miller’s algorithm is to exploit efficiently computable en-
domorphisms such as powers of the Frobenius endomorphism. This can be achieved
by decomposing a multiple of r as sum of these endomorphisms. The bound is
the best one that is obtainable by using powers of the Frobenius endomorphism.
Vercauteren also conjectured that if powers of the Frobenius endomorphism are the
only efficiently computable endomorphisms on an elliptic curve, then the best pos-
sible lower bound for the number of basic Miller iterations is (1 − ε) log2 r

φ(k)
for some

0 < ε < 1
4
:

52

5. Bilinear Pairings

Conjecture (Optimality Conjecture). A bilinear pairing on an elliptic curve with-
out efficiently computable endomorphisms different from powers of the Frobenius
endomorphism requires at least

(1− ε) log2 r

φ(k)

basic Miller iterations for some 0 < ε < 1
4
.

Optimal Ate pairings can be constructed by repeatedly applying Equation 5.1
for a λ = mr that has a q-adic expansion λ =

∑n
i=0 ciq

i with small coefficients.
Theorem 5.24 shows the that the maps obtained in that way are pairings.

Theorem 5.24. Let λ = mr with r -m and λ =
∑n

i=0 ciq
i. If

mkqk−1 6≡ qk − 1

r

n∑
i=0

iciq
i−1 mod r,

then the map

a[c0,...,cn] :


G1 × G2 → µr

(P,Q) 7→
(∏n

i=0 f
qi

ci,Q
(P)

∏n−1
i=0

`si+1Q,ciq
iQ(P)

νsiQ(P)

) qk−1
r

with si =
∑n

j=i cjq
j defines a bilinear pairing.

Proof. We refer to [Ver08, Theorem 1] for a proof.

Note that in the computation of the line functions `si+1Q,ciqiQ(P) it is possible to
replace all multiplications of Q by qi with a power of the Frobenius endomorphism,
i.e. qiQ = πiq(Q).

5.6. Building Type 2 from Type 3 Pairings

While we have seen multiple examples of Type 3 pairings and one Type 1 pairing,
we have not discussed any Type 2 pairings so. Fortunately, Type 2 pairings can
easily be constructed from a Type 3 pairings [KP05, CM09].

Let E be an elliptic curve defined over Fq and e3 : G1 × G2 → GT be a Type
3 pairing defined over E with order r. Let k be the embedding degree of E with
respect to r. If we take any point P ′2 ∈ E[r] such that P ′2 6∈ G1 and P ′2 6∈ G2,
then the group G′2 = 〈P ′2〉 is a subgroup of E(Fqk) of order r. Since G′2 6= G2,
we know from Proposition 3.18 that the trace map Tr acts non-trivially on G′2 and
thus induces an efficiently-computable isomorphism from G′2 to G1. So any bilinear
pairing e : G1 ×G′2 → GT is a Type 2 pairing.

The following lemma ensures that we can build a Type 2 pairing from e3:

53

5. Bilinear Pairings

Lemma 5.25. The map

e2 :

{
G1 ×G′2 → GT

(P,Q) 7→ e3(P,Q− πk/2q (Q))

is a bilinear pairing.

Proof. For a proof we refer to [CM09, Lemma 1].

Now define the points P1 = 1
k

Tr(P ′2) and P2 = 1
c
(P ′2 − P1) for some c ∈ Z/rZ×.

Then the maps

ψ :

{
G′2 → G1

Q 7→ 1
k

Tr(Q)
and ρ :

{
G′2 → G2

Q 7→ Q− ψ(Q)

are efficiently computable isomorphism with ψ(P ′2) = P1 and ρ(P ′2) = cP2. Using
these two isomorphisms we can now represent each point Q ∈ G′2 by two unique
points Q1 ∈ G1 and G2 such that Q = Q1+Q2 by setting Q1 = ψ(Q) and Q2 = ρ(Q).
So we obtain a subgroup G′′2 ⊂ G1×G2 that is isomorphic to G′2. The isomorphism
between G′2 and G′′2 is induced by Q 7→ (ψ(Q), ρ(Q)).

Recall from Section 3.6 that if E has a degree-d twist E ′, G2 is isomorphic to
E ′(Fqk/d)[r]. While this isomorphism allows points in G2 to be represented using
coordinates from Fqk/d instead of Fqk , we can also use it to represent points in G′2
using only coordinates from Fq and Fqk/d . This representation is stiller larger than
the one obtained for G2, but is far better than using Fqk coordinates. Similarly, the
cost of the arithmetic in G′2 can be reduced, but is not as efficient as in G2.

5.7. Application of Bilinear Pairings

Since the publication of a one-round Diffie-Hellman protocol involving three parties
by Joux in 2000 [Jou00], the use of pairings in cryptography has developed at an
extraordinary pace. For example, bilinear pairings have been used in in identity-
based encryption schemes [BF01], blind signature schemes [Bol03, FHS15], group
signature schemes [BBS04] and structure-preserving signatures [AFG+10]. We will
present two applications of pairings:

1. the MOV algorithm to reduce the ECDLP to a DLP in a multiplicative sub-
group of a finite field, and

2. the BLS signature scheme.

5.7.1. MOV Algorithm

One of the applications of the Weil pairing is to mount an attack on the ECDLP
on supersingular curves. The attack was first published by Menezes, Okamato and
Vanstone [MVO91] in 1991 and is named MOV after its authors. It was the first

54

5. Bilinear Pairings

cryptographic application of a bilinear pairing. In this attack, the Weil pairing is
used to convert the discrete logarithm problem in E(Fq) to one in F×

qk
. As long as

the field F×
qk

is not much larger than Fq, i.e. the embedding degree k is small, the

DLP in F×
qk

can be solved much faster than the ECDLP in E(Fq). For supersingular
curves defined over fields prime characteristic the embedding degree is usually 1 or
2.

Let E be a supersingular curve defined over Fq. We take a point P ∈ E[r] of
prime order r ≥ 3. We assume that r and q are coprime. Let Q ∈ E[r] be a point
that is contained in the subgroup generated by P . Recall that if k is the embedding
degree with respect to r, then P,Q ∈ E(Fqk).

We assume that Q = aP . The idea of the algorithm is to find an third point
T ∈ E(Fpk) such that α = wr(P, T) is a primitive r-th root of unity. Then one
computes β = wr(Q, T) and computes the discrete logarithm of β to the base α. We
denote this discrete logarithm by b. Hence we have

αb = β = wr(Q, T) = wr(aP, T) = wr(P, T)a = αa.

Thus αb−a = 1. Since α is primitive r-th root, this implies that b ≡ a mod r, hence
Q = bP and b solves the ECDLP.

The existence of such a T is guaranteed by the following proposition:

Proposition 5.26. Let 3 ≤ r ∈ P and E be an elliptic curve. Let P, T ∈ E[r] and
consider E[r] ' Fr × Fr as two dimensional vector space over Fr. The following
statements are equivalent:

1. P and T are a Fr-vector space basis of E[r].

2. wr(P, T) is a primitive r-th root of unity.

3. wr(P, T) 6= 1.

Proof. For a proof see [HPS08, Proposition 5.49].

Algorithm 4 lists the full MOV algorithm to solve the ECDLP.

Algorithm 4 The MOV algorithm

Input: P,Q ∈ E[r], ord(P) = r and 3 ≤ r ∈ P.
Output: Q = bP

repeat
Pick a random point T ∈ E(Fpk).
α← wr(P, T).

until α 6= 1
β ← wr(Q, T).
Compute b ∈ N0 such that β = αb.
return b

55

5. Bilinear Pairings

5.7.2. BLS Signature Scheme

Boneh, Lynn and Shacham [BLS01] presented a signature scheme in 2001 that is
based on the Diffie-Hellman problem and uses a bilinear pairing to verify signatures.
Originally, the signature scheme was using Type 1 and Type 2 pairings, but it was
later adopted to the Type 3 setting [CHKM09]. This signature scheme allows short
signatures since a signature consists of a single field element of the field of definition
of the elliptic curve.

The setup of the signature scheme is the following: we fix a bilinear pairing
e : G1 × G2 → GT on an elliptic curve E defined over Fq and denote by P a
generator of G1 and by Q a generator of G2. Let p ∈ P be the order of P and let
h : {0, 1}∗ → G1 be hash function mapping bit strings to points on the elliptic curve.
Key generation, signing and verification is now performed in the following way:

• Key generation: Pick a random x ∈ [1, . . . , p− 1] and compute V = xQ. The
public key is V and the secret key is x.

• Signing: Given a secret key x and a message M ∈ {0, 1}∗, first compute
H = h(M). Then compute σ = xH. The signature on M is σ.

• Signature verification: Given a public key V , a message M ∈ {0, 1}∗, and a
signature σ ∈ E(Fq), compute H = h(M). Then verify if e(σ,Q) = e(H, V)
and accept the signature if and only if the equation holds.

Expanding the equation e(σ,Q) = e(H,V) demonstrates how the properties of
a bilinear pairing are used in the scheme. For valid message-signature pair the
following holds:

e(σ,Q) = e(xH,Q) = e(H,Q)x = e(H, xQ) = e(H,V)

This signature scheme is proven to be secure in the random oracle model [BR93].
But note that for the proof to hold, we require a hash function where the discrete
logarithm of its image is unknown. Constructing h from another hash function
h′ : {0, 1} → Z/pZ naively as h(M) = h′(M)G for some fixed point G ∈ G1 renders
the signature scheme insecure [Tib12].

Instead of using the full point σ as signature, Boneh et al. only used the x-
coordinate of σ as signature on M . This reduces the size of the signature by half,
but requires additional computation and checks in the signature verification. First
one needs to check if the points with the given x-coordinate exist on the elliptic
curve. Then, if σ′ is a point with the correct x-coordinate, one needs to check if
either e(σ′, Q) = e(H,V) or e(σ,Q)−1 = e(H, V) since the only other point with the
same x-coordinate as σ′ is −σ′. So the signature length can be reduced to dlog2 qe.

The bilinearity of the pairing also enables the aggregation [BGLS03] of signatures.
Suppose we have n distinct messages M1, . . .Mn ∈ {0, 1}∗ and corresponding sig-
natures σ1, . . . , σn ∈ G1. Let Vi ∈ G2 be the public keys of the signer i. The n
signatures can be aggregated into one short signature by computing their sum and
setting s =

∑n
i=1 σi. Given the public keys V1, . . . , Vn and the aggregated signature

56

5. Bilinear Pairings

σ, it is possible to verify that all messages M1, . . .Mn have been signed by the signer
i by checking that messages are all distinct and checking whether

e(σ,Q) =
n∏
i=1

e(h(Mi), Vi)

holds. This approach requires less pairing evaluations than checking each signature
individually. Also note that the aggregation can happen incrementally and can be
performed by anyone knowing the messages and the signatures.

Batch verification of signatures is another possible extension which is made possi-
ble by the bilinear pairing. For batch verification one can use the small exponent test
[BGR98] in the following way [CHP07]: given M1, . . . ,Mn ∈ {0, 1}∗ distinct mes-
sages, signatures σ1, . . . , σn ∈ G1 and public keys V1, . . . , Vn ∈ G2 checking whether
all signatures are valid is achieved by testing whether

e

(
n∑
i=1

δiσi, Q

)
=

n∏
i=1

e(h(Mi), Vi)
δi ,

where the δ1, . . . , δn ∈ Z/pZ are picked randomly hand have bit length `. The error
probability of incorrectly accepting the signatures is controlled via ` and is at most
1
`
. If there is only a single signer with public key V , then the verification equation

can be simplified to

e

(
n∑
i=1

δiσi, Q

)
= e

(
n∏
i=1

δih(Mi), V

)
.

57

6. Pairing-friendly Elliptic Curves

So far we have discussed the definition of pairings and algorithms to compute them.
In this chapter we will discuss the selection of suitable elliptic curves. We will focus
on ordinary elliptic curves and will shortly discuss a general method to find curves
without going into much detail. We will then switch the focus to the family of
Barreto-Naehrig curves and present the Optimal Ate pairing for Barreto-Naehrig
curves.

The discussion of pairing-friendly curves follows [FST10, BN06, PSNB10, Ver08].

6.1. Constructing Ordinary Pairing-Friendly

Curves

One method to construct pairing-friendly curves is called the complex multiplication
method (CM method). This method is based on the following theorem:

Theorem 6.1 (Deuring Lifting Theorem). Let p ∈ P and D, t, f ∈ Z with D being
square-free. If 4p = t − Df 2, then there exists an elliptic curve E defined over Fp
with |E(Fp)| = p+ 1− t.

Proof. For a proof we refer to [Lan87, Theorems 13.12, 13.13 and 13.14].

The value D appearing in the theorem is called complex multiplication discrimi-
nant. Based on this theorem, Atkin and Morain [AM93] developed an algorithm to
find elliptic curves which is now known as complex multiplication method. The algo-
rithm works given p and the number of desired points provided that the discriminant
is not too large. Atkin and Morain used this method to find curves for primality
testing. In 2001, Miyaji, Nakabayashi and Takano gave the first construction using
this technique for pairing-friendly elliptic curves [MNT01]. For some special cases,
they used the fact that if k is the desired embedding degree, then r | pk − 1 implies
r|Φk(p) where Φk is the k-th cyclotomic polynomial. By writing the trace of the
Frobenius, the prime order of the elliptic curve and the size of the underlying prime
field as polynomials t, r, q ∈ Z[X], Miyaji et al. obtained a parameterized families
of pairing-friendly curves for embedding degrees k = 3, 4, 6. They also showed that
for these embedding degrees the only possible choices are

• t = −1± 6X and q = 12X2 − 1 for k = 3,

• t = −X or t = X + 1 and q = X2 +X + 1 for k = 4, and

• t = 1± 2X and q = 4X2 + 1 for k = 6.

58

6. Pairing-friendly Elliptic Curves

This approach has been generalized by many works after the initial paper by
Miyaji et al. An overview of the various construction methods and a classification
can be found in [FST10]. We will give the definition of parameterized families used
there:

Definition 6.2. 1. A polynomial f ∈ Q[X] is called integer-valued if f(Z) ⊂ Z.

2. A polynomial f ∈ Q[X] is said to be representing primes if the following
conditions are satisfied:

a) The polynomial f is irreducible and has a positive leading coefficient.

b) There exists a x ∈ Z such that f(x) ∈ Z.

c) The set

{f(x) | x ∈ Z, f(x) ∈ Z}

has a greatest common divisor equal to 1.

3. Let t, r, q ∈ Q[X] be non-zero polynomials, k ∈ N and D ∈ Z be square-free.
The triples (t, r, q) parameterize a family of elliptic curves with embedding
degree k and discriminant D if the following conditions are satisfied:

a) There exists a p ∈ Q[X] representing primes and d ∈ N such that q = pd.

b) The polynomial r is irreducible, integer-valued and has a positive leading
coefficient.

c) The polynomials r, q and t satisfy

r | q + 1− t and r |Φk(t− 1).

d) The equation

Dy2 = 4q(x)− t(x)2

has infinitely many solutions (x, y) ∈ Z2.

An elliptic curve E defined over Fq(x) with Frobenius trace t(x) for some x ∈ Z
is a curve in the family (t, r, q).

Example 6.3 shows two examples of parameterized families. In the following
sections we will focus on a specific family, namely the family of Barreto-Naehrig
curves.

Example 6.3. 1. For k = 10 and D ≡ 43 mod 120 or D ≡ 67 mod 120 there is
family by Freeman [Fre06] given by

t = 10X2 + 5X + 3,

r = 25X4 + 25X3 + 15X2 + 5X + 1, and

q = 25X4 + 25X3 + 25X2 + 10X + 3.

59

6. Pairing-friendly Elliptic Curves

2. For k = 6 and almost arbitrary D there is a family found by Scott and Barreto
[SB04] using

t = −4X2 + 4X + 2,

r = 16X4 − 32X3 + 12X2 + 4X + 1, and

q = 4X5 − 8X4 + 3X3 − 3X2 + 17
4
X + 1.

6.2. Barreto-Naehrig Curves

Barreto and Naehrig described their method to construct pairing-friendly elliptic
curves over a prime field Fp in 2006 [BN06]. Barreto-Naehrig curves are a family
obtained from applying the CM method to obtain curves with embedding degree 12
and this family is described by the following polynomials:

q = 36X4 + 36X3 + 24X2 + 6X + 1 ∈ Z[X]

r = 36X4 + 36X3 + 18X2 + 6X + 1 ∈ Z[X]

t = 6X2 + 1 ∈ Z[X]

Note that the polynomials satisfy r = q + 1− t.

Definition 6.4. Let x ∈ Z be such that q(x) ∈ P and r(x) ∈ P. An elliptic curve
E defined over Fq(x) is called Barreto-Naehrig curve if

1. it of the form Y 2 = X3 + b, and

2. satisfies
∣∣E(Fq(x))

∣∣ = r(x).

We will refer to the parameter x ∈ Z as Barreto-Naehrig parameter.
From the definition it is immediately clear that for Barreto-Naehrig curves E the

group of Fq(x)-rational points always has prime order. Barreto and Naehrig proved
that such curves exist and are efficiently constructible:

Theorem 6.5. Barreto-Naehrig curves exists and have embedding degree 12. Fur-
thermore, there exists an efficient algorithm to construct a Barreto-Naehrig curve.

Proof. For a proof we refer to [BN06, Theorem 1]

The algorithm to construct Barreto-Naehrig curves is very simple and consists of
two steps:

1. It starts with a large enough x ∈ Z such that q(x) has the desired bit length
and then increments x until an x is found where q(x) and r(x) or q(−x) and
r(−x) are prime.

2. Once an x is selected, the algorithm finds a suitable b by testing whether b+ 1
is a quadratic residue modulo p. For each suitable b, it is checked whether the
point (1,

√
b+ 1) has order r(x).

60

6. Pairing-friendly Elliptic Curves

Algorithm 5 Constructing a curve of prime order with k = 12 [BN06, Algorithm
1]

Input: approximate desired size m of the curve oder (in bits)
Output: parameters p, n, b, y such that the curve Y 2 = X3 + b has order n over Fp

and the point P = (1, y) is a generator of the curve
Compute the smallest x ≈ 2m/4 such that dlog2 q(−x)e = m.
loop

p← q(−x)
n← r(−x)
if p and n are prime then

break
end if
p← q(x)
n← r(x)
if p and n are prime then

break
end if
x← x+ 1

end loop
b← 0
repeat

repeat
b← b+ 1

until b+ 1 is a quadratic residue modulo p
Compute y such that y2 ≡ b+ 1 mod p
P ← (1, y).

until nP = O
return p, n, b, y

61

6. Pairing-friendly Elliptic Curves

The full algorithm can be found in Algorithm 5. Example 6.6 gives an example of
Barreto-Naehrig curve constructed from a given parameter.

Example 6.6. A Barreto-Naehrig curve with a bit length of 256 bits is given by

x = 6953557824660308035

and we obtain

p = 841648556436234656105880183355355967775 · 1038+

30301461415811439712641988306731283611

n = 841648556436234656105880183355355967772 · 1038+

40189662890443868617734158020217916261

t = 290111798525367571094907830286513367351.

Both p and n are prime. A possible choice of b is 3, since 3 + 1 = 4 is a quadratic
residue mod p. So we have the Barreto-Naehrig curve

E : Y 2 = X3 + 3 defined over Fp

and E(Fp) has order n. Using a small b like 3 allows the efficient implementation of
operations involving b. For example the multiplication with b = 3 when doubling a
point can be replaced by a left-shift and an addition.

6.3. Twists of Barreto-Naehrig Curves

Since Barreto-Naehrig curves have the form Y 2 = X3 + b with a non-zero b, the j-
invariant of these curves is always 0. From Table 3.1 we know that the only possible
twist degrees are 3 and 6. In fact, for Barreto-Naehrig curves there always exists a
twist of degree 6. The construction of the twist is based on the following lemma:

Lemma 6.7. If p ≡ 1 mod 6, then there exists a ζ ∈ F×p2 such that X6 − ζ is
irreducible over Fp2 [X].

Proof. For a proof we refer to [BN06, Lemma 1].

Now let E : Y 2 = X3 + b defined over Fp be a Barreto-Naehrig curve with order
n = |E(Fp)|. Due to the choice of the prime, the conditions of this lemma are alway
fulfilled. Now any ζ ∈ Fp2 provided by this lemma can be used to construct Fp12 as
Fp2 [X]/(X6 − ζ)Fp2 [X]. The sextic twist is then obtained as either

E ′ : Y 2 = X3 + b
ζ

defined over Fp2

or

E ′ : Y 2 = X3 + b
ζ5 defined over Fp2 .

62

6. Pairing-friendly Elliptic Curves

The desired order of the twist is |E ′(Fp2)| = n(2p− n) and one of the two possible
twists has this order. So it needs to be check which twist has the desired order. To
obtain ζ one can choose λ ∈ Fp and µ ∈ Fp2 such that λ is a non-cube and µ is a
non-square and then set ζ = 1

λ2µ3 .
The isomorphism between E ′ and E is given by

ψ :

{
E ′(Fp2) → E(Fp)
(x, y) 7→ (z2x, z3y)

,

where z ∈ Fp12 is a root of X6 − ζ ∈ Fp2 . Since this isomorphism induces a group
isomorphism E ′(Fp2)[n] → G2, instead of working in G2 ⊂ E(Fp12) it is possible to
work with points on the twist which only require Fp2-arithmetic instead of Fp12-
arithmetic.

Example 6.8. We continue from Example 6.6. We construct Fp2 as Fp[i] with i2+1 =
0. We choose ζ ′ = 1 + i and set ζ = 1

ζ′
. The desired sextic twist of E is then given

by

E ′ : Y 2 = X3 + 3(1 + i) defined over Fp2 .

6.4. A Subfamily of Barreto-Naehrig Curves with

an Explicit Description of Twist parameters

Although Barreto and Naehrig noted the existence of the sextic twist, Algorithm 5
only considers the Barreto-Naehrig curve but not the twist. Pereira et al. [PSNB10]
later described another method to construct Barreto-Naehrig curves which has the
benefit that also generators of sextic twists are known. We will give a short overview
of this method.

We define the following subfamily of Barreto-Naehrig curves:

Definition 6.9. A Barreto-Naehrig curve E : Y 2 = X3 + b over Fp is called friendly
if

1. p ≡ 3 mod 4, and

2. there exist c, d ∈ F×p such that either b = c4 + d6 or b = c6 + 4d4.

Friendly Barreto-Naehrig curves have nice properties that make it easy to describe
multiple parameters in terms of c and d. Since p ≡ 3 mod 4, −1 is a quadratic non-
residue modulo p and we can represent Fp2 as Fp[i]/(i2 + 1). To derive the other
properties, we need the following lemmas:

Lemma 6.10. Let ζ ∈ F×pe and b = NFpe/Fp(ζ) ∈ Fp. If the elliptic curve E : Y 2 =
X3 + b has order n = |E(Fp)| with 2 -n and 3 -n, then ζ is neither a square nor a
cube in Fpe.

Proof. For a proof we refer to [PSNB10, Lemma 2].

63

6. Pairing-friendly Elliptic Curves

Lemma 6.11. Let p ∈ P with p ≡ 1 mod 3 and ζ ∈ Fp2 with b = NFp2/Fp(ζ) ∈ Fp.
Then b

ζ5 is a cube.

Proof. For a proof we refer to [PSNB10, Lemma 3].

Recall that one way to choose ζ is to find λ ∈ Fp and µ ∈ Fp2 such that λ is
a non-cube and µ is a non-square and then set ζ = 1

λ2µ3 . Lemma 6.10 makes it
possible to find ζ without first finding non-cubes and non-squares in Fp respectively
Fp2 .

After finding ζ it is still necessary to check whether ζ or ζ5 gives the correct
twist by checking its order. Lemma 6.11 ensures that ζ already gives the correct
twist, so checking the order becomes unnecessary. The following theorem now puts
everything together:

Theorem 6.12. Let E : Y 2 = X3+b be a Barreto-Naehrig curve with b = NFp2/Fp(ζ)

for some ζ ∈ Fp2. Let E ′ : Y 2 = X3 + ζ be defined over Fp2. Then E ′ is a sextic
twist of E and the order of E(Fp) divides the order of E ′(Fp2).

Proof. For a proof we refer to [PSNB10, Theorem 1].

The parameters c and d of a friendly Barreto-Naehrig curve provide ζ ∈ Fp2 with
b = NFp2/Fp(ζ) for free. It is given by

ζ =

{
c2 + d3i, if b = c4 + d6

c3 + 2d2i, if b = c6 + 4d4
.

From Theorem 6.12 we obtain the sextic twist E ′ as

E ′ : Y 2 = X3 + ζ.

A generator P of E(Fp) can be easily obtained by solving the curve equation with
−d2 respectively −c2 as x-coordinate. We obtain

P =

{
(−d2, c2), if b = c4 + d6

(−c2, 2d2), if b = c6 + 4d4
.

Similarly we can find a generator of E ′(Fp2)[n] as hP ′ where h = 2p− n and

P ′ =

{
(−di, c), if b = c4 + d6

(−c, d(1− i)), if b = c6 + 4d4
.

Algorithm 6 now merges the idea of Algorithm 5 with the concept of friendly
Barreto-Naehrig curves. Example 6.13 gives an example of a friendly Barreto-
Naehrig curve.

64

6. Pairing-friendly Elliptic Curves

Algorithm 6 Constructing a curve of prime order with k = 12

Input: approximate desired size m of the curve oder (in bits)
Output: parameters p, n, b, P, ζ, P ′ such that the curve E : Y 2 = X3 + b has order
n over Fp, the point P is a generator of the curve, E ′ : Y 2 = X3 + ζ defined over
Fp2 is the twist of E and P ′ the generator of the order n subgroup.
Compute the smallest x ≈ 2m/4 such that dlog2 q(−x)e = m.
loop

p← q(−x)
n← r(−x)
if p and n are prime then

break
end if
p← q(x)
n← r(x)
if p and n are prime then

break
end if
x← x+ 1

end loop
for (c, d) ∈ F2

p do
b← c4 + d6

P ← (−d2, c2)
if nP = O then

ζ ← c2 + d3i
P ′ ← (−di, c)
return p, n, b, P, ζ, P ′

end if
b← c6 + 4d4

P ← (−c2, 2d2)
if nP = O then

ζ ← c3 + 2d2i
P ′ ← (−c, d(1− i))
return p, n, b, P, ζ, P ′

end if
end for

65

6. Pairing-friendly Elliptic Curves

Example 6.13. We now look at a Barreto-Naehrig curve with bit length of 254. We
take

x = −4647714815446351873

and obtain

p = 167981087310158322849408041422317339098 · 1038+

89187121439069848933715426072753864723

n = 167981087310158322849408041422317339097 · 1038+

59579603404752749028378864165570215949

t = 129607518034317099905336561907183648775.

We can find b = 2 of the form b = c4 + d6 where c = 1 and d = 1. So we have
ζ = c2 + d3i = 1 + i and the sextic twist defined over Fp2 is given by

E ′ : Y 2 = X3 + 1− i.

6.5. Optimal Ate Pairing on Barreto-Naehrig

Curves

For pairing-friendly families Vercauteren proposed a method to derive q-adic com-
positions to obtain optimal bilinear pairings. We will demonstrate this method by
applying it to Barreto-Naehrig curves.

Since we have r |Φk(q) and in view of the condition in Theorem 5.24, it suffices
to consider powers qi for i = 0, . . . , φ(k) − 1. From Theorem 5.24 we obtain the
necessary condition that the absolute values of the coefficients ci may not exceed

r
1

φ(k) . Such small ci can be obtained in general by finding short vectors in the
φ(k)-dimension lattice spanned by

L =


r 0 0 . . . 0
−q 1 0 . . . 0
−q2 0 1 . . . 0

...
...

. . .

−qφ(k)−1 0 . . . 0 1

 .

The volume of L is r, so there exists a short vector in L that satisfies

‖V ‖∞ ≤ r
1

φ(k)

by Minkowski’s theorem [Min10]. By this observation, any pairing-friendly fam-
ily satisfies the necessary condition for the existence of an optimal pairing. Ver-
cauteren’s method tries to find short vectors in L where only one coefficient ci is

66

6. Pairing-friendly Elliptic Curves

of size r
1

φ(k) . If such a vector can be found it is possible to construct an optimal
pairing.

For Barreto-Naehrig curves the shortest vectors in the lattice L for the Euclidean
norm are given by

(x+ 1, x, x,−2x), and (2x, x+ 1,−x, x).

Both vectors give possibilities for optimal Ate pairings. However, we can look for
short vectors with a minimal number of coefficients of size x and obtain

W = (6x+ 2, 1,−1, 1).

We will use this vector for the optimal Ate pairing on Barreto-Naehrig curves:

Definition 6.14. For x ∈ Z parameterizing a Barreto-Naehrig curve, the optimal
Ate pairing is defined as

aW :

{
G1 × G2 → µr

(P,Q) 7→ a(6x+2,1,−1,1)(P,Q)
.

This choice allows us to rewrite the optimal Ate pairing in the following way and
eliminate all but one Miller function:

aW (P,Q) =
(
f6x+2,Q(P) · f q1,Q(P) · f q

2

−1,Q(P) · f q
3

1,Q(P)
) qk−1

r ·(
`Q3,−Q2(P) · `−Q2+Q3,−Q1(P) · `Q1−Q2+Q3,(6x+2)Q(P)

) qk−1
r

where Qi = Qqi . Since we have f1,Q = 1 and f−1,Q satisfies

f−1,Q =
νQ
f1,Q

,

we obtain

aW (P,Q) =
(
f6x+2,Q(P) · νq

2

Q (P) · `Q3,−Q2(P)
)qk−1

·(
`−Q2+Q3,−Q1(P) · `Q1−Q2+Q3,(6x+2)Q(P)

) qk−1
r .

We will see in Section 7.4 we can also eliminate νQ from the computation.

6.6. Hashing to Barreto-Naehrig Curves

Hashing to an elliptic curve group E is required in many elliptic curve-based cryp-
tography protocols. They involve hash functions H : {0, 1}∗ → E(Fp) that map
arbitrary values to points on elliptic curves.

Various methods have been proposed to create hash functions. The first generic
construction for hashing to elliptic curves is called “try-and-increment” and was

67

6. Pairing-friendly Elliptic Curves

Algorithm 7 “Try-and-increment” algorithm for an elliptic curve E : Y 2 = f(X)
over Fp with security parameter k and a hash function h to Fp
Input: message M
Output: H ∈ E(Fp)

for c = 0, . . . , k do
x← h(Mc)
if f(x) is a quadratic residue in Fp then

return
(
x,
√
f(x)

)
end if

end for

introduced by Boneh, Lynn and Shacham [BLS01]. It is based on a hash function
h to the base field of the elliptic curve. Basically, one takes the message m and
concatenates it with a counter c. If the digest values h(mc) is the x-coordinate of
a point on the elliptic curve, H(m) is set to the point. Otherwise, c is incremented
until a point is found. Algorithm 7 gives a sketch of the algorithm.

Although it can be shown that this construction is secure provided the counter
size is large enough, it has the drawback that it may take multiple iterations to find
a point on the curve. Since the length of the computation depends on the input,
side-channel attacks are possible.

Starting with the work of Icart [Ica09], constant-time methods have been pro-
posed [BCI+09, FT10, KLR10]. However, none of efficient methods are suitable for
Barreto-Naehrig curves. For example, some involve taking various cube roots and
thus require p ≡ 2 mod 3, which makes them unusable for Barreto-Naehrig curves.

Shallue and van de Woestijne [SvdW06] presented a general encoding function in
2006. Fouque and Tibouchi [FT12] then showed, that by specializing this construc-
tion to Barreto-Naehrig curves, it is possible to obtain an encoding function that
can be used to implement a hash function securely and efficiently.

Let E : Y 2 = X3 + b be a Barreto-Naehrig curve defined over Fp. Set f = X3 + b
and define the algebraic threefold V by the equation

V : Y 2 = f(X1)f(X2)f(X3).

If (x1, x2, x3, y) ∈ V is a Fp-rational point, then one of the xi is the x-coordinate of
a point in E(Fp). Now we only need to find a map φ : F×p → V and can use it to
hash onto the Barreto-Naehrig curve. For a given t ∈ F×p and f(t) = (x1, x2, x3, y),
the smallest index i ∈ {1, 2, 3} such that f(xi) is a square then determines the point
on the curve E.

To obtain φ, we let t ∈ F×p and define

w =

√
−3t

1 + b+ t2
.

68

6. Pairing-friendly Elliptic Curves

Using w, the potential x-coordinates can be computed as

x1 =
−1 +

√
−3

2
− tw

x2 = −1− x1 and

x3 = 1 +
1

w2
.

From these three definites we can compute y and have a map F×p → V .
Algorithm 8 gives the full algorithm to obtain the Shallue-van de Woestijne en-

coding. Note that this algorithms also includes blinding to prevent side-channel
attacks.

Algorithm 8 Shallue-van de Woestijne encoding to a Barreto-Naehrig curve E :
Y 2 = X3 + b over Fp
Input: t ∈ F×p
Output: H ∈ E(Fp)
w ←

√
−3t

1+b+t2

x1 ← −1+
√
−3

2
− tw

x2 ← −1− x1

x3 ← 1 + 1
w2

Pick random r1, r2, r3 ∈ F×p .
α← χp(r

2
1(x3

1 + b))
β ← χp(r

2
2(x3

2 + b))
i← ((α− 1)β mod 3) + 1

return
(
xi, χp(r

2
3t)
√
x3
i + b

)
From the algorithm it can be seen that no step relies on the fact that the base

field is a prime field. Thus the algorithm can be adopted to work over Fq for a prime
power q as long as there is an efficient implementation to compute square roots in
Fq. Also, an efficient implementation of the quadratic character of Fq is required.
So the algorithm is suitable for hashing to both G1 and G2.

69

Part III.

Implementation of Pairings

70

7. Techniques to Speed up Pairing
Computations

Many of the operations involved in the evaluation of a pairing are considerably more
expansive than arithmetic on the prime field and group operations on an elliptic
curve defined over a prime field. This chapter describes various state-of-the-art
techniques to improve the performance of a pairing evaluation. The discussion of
this techniques is based on [AKL+10, BDM+10, Sco07, Kar10, BKLS02, SBC+08].

7.1. Towered Extension Fields and Finite Field

Arithmetic

The arithmetic in the full extension field is more expensive than in any of its proper
subfields. Hence the performance of a pairing evaluation heavily depends on the
complexity of the associated extension field arithmetic. This section describes tower-
friendly fields which allow a nice construction using binomials. We will also look at
the Frobenius automorphism for degree 12 extensions and at compressed squaring
algorithms for the cyclotomic subgroup.

Let p be a prime and k ∈ N. To implement the arithmetic in Fpk we can always use
a representation of the form Fp[X]/fFp[X] for some monic irreducible polynomial
f of degree k. However, when considering the particular nature of the finite field
extension that we have seen so far, it is possible to construct Fpk as a tower of field
extension:

Fp

Fpk1 = Fp[X]/f1Fp[X]

Fpki = Fpki−1 [X]/fkiFpki−1 [X]

Fpk = Fpkn−1 [X]/fn1Fpkn−1 [X]

where k = k1 · · · kn−1 and the polynomials fi are of the form fi = Xki − βi with
suitable βi ∈ Fpki−1 . Of course, a construction like this using monic irreducible
polynomials is always possible, but in the general case it might not be possible to

71

7. Techniques to Speed up Pairing Computations

find fis that are binomials. However, when considering friendly Barreto-Naehrig
curves Theorem 6.12 or more general Theorem 7.1 ensure the existence of fi that
are binomials. We will refer to fields that allow such a construction tower-friendly
fields.

Theorem 7.1. If p ≡ 1 mod 12, k = 2i3j for some i, j ∈ N and β ∈ Fp is neither
a square nor a cube, then Xk − β is irreducible over Fp.

So if k has this form, we can construct Fpk using a binomial of degree k or we can
simply construct by adjoining a square or a cube root of such a β to Fp and then
continue by adjoining cube or square roots of the previous root until the desired
extension degree has been reached. Example 7.2 demonstrates the construction of
extension fields as a tower of extensions.

Example 7.2. We consider a prime p coming from a friendly Barreto-Naehrig curve
and let k = 223. We have already seen that we can obtain Fp2 from Fp by adjoining
a square root of −1, i.e. Fp2 = Fp[i] with i2 + 1 = 0.

Recall that from a friendly Barreto-Naehrig curve we obtain a ζ ∈ Fp2 for free
that is neither a square nor a cube. So it is possible to construct Fp12 from Fp2

directly as degree six extension using X6 − ζ or by first adjoining a square root of
ζ and then a cubic root respectively the other way around:

Fp

Fp2 = Fp[i]

Fp6 =

Fp2 [T]/(T 3 − ζ)Fp2 [T]

Fp4 =

Fp2 [S]/(S2 − ζ)Fp2 [S]

Fp12 = Fp2 [U]/(U6 − ζ)Fp2 [U] '
Fp4 [V]/(V 3 − ζ)Fp4 [V] '
Fp6 [W]/(W 2 − ζ)Fp6 [W]

Note that in this construction it is very easy to switch between the three rep-
resentations of Fp12 without the need to perform any computations. We have the
following relations

a0 + a1U + a2U
2 + a3U

3 + a4U
4 + a5U

5 ↔
(a0 + a3S) + (a1 + a4S)V + (a2 + a5S)V 2 ↔
(a0 + a2T + a4T

2) + (a1 + a3T + a5T
2)W

for all a0, . . . , a5 ∈ Fp2 .

72

7. Techniques to Speed up Pairing Computations

Since tower-friendly fields and extensions of degree 2i3j for some i, j ∈ N allow
the representation by only using degree 2 and degree 3 extensions, it is possible to
implement higher degree extension fields simply by implementing degree 2 and de-
gree 3 extensions. While the implementation of the addition is straightforward, the
choice of algorithms used to perform multiplications has been discussed extensively
in [BDM+10, AKL+10, Sco07, BS09, DÓSD06]. Instead of discussing the implemen-
tation of the basic arithmetic any further, we will now focus on the implementation
of the Frobenius isomorphism in Fp12 and squaring in the cyclotomic subgroup of
F×p12 since they play an important role in the final exponentiation of the pairing
evaluation.

7.2. Frobenius isomorphism in Fp12
Raising elements of f ∈ Fp12 to a p-th power can always be replaced by an application
of the Frobenius automorphism. We will demonstrate how compute the Frobenius
automorphism without computing p-th powers.

We start with elements in Fp2 = Fp(α). In quadratic extension fields raising to a
p-th power comes essentially for free. So let f = g + hα ∈ Fp2 , then we have

fp = gp + hpαp = g + hαp.

The value αp can be pre-computed, but if α’s minimal polynomial is of the form
X2 − β ∈ Fp[X], then we have αp = −α and simply obtain

fp = g − hα.

Now we assume that we have a representation of Fp12 as

Fp12 ' Fp6 [U]/(U2 − u)Fp6 [U] and Fp12 ' Fp2 [W]/(W 6 − w)Fp2 [W].

As seen in the Section 7.1, we can represent any element f = g+hU ∈ Fp12 with g =
g0 +g1u+g2u

2, h = h0 +h1u+h2u
2 ∈ Fp6 where gi, hi ∈ Fp2 for all i = 1, 2, 3. But we

can also represent the same element as g = g0 +h0W+g1W
2 +h1W

3 +g2W
4 +h2W

5.
For fp we now obtain

fp = (g0 + h0W + g1W
2 + h1W

3 + g2W
4 + h2W

5)p

= g0 + h0W
p + g1W

2p + h1W
3p + g2W

4p + h2W
5p

= g0 + h0γ1,1W + g1γ1,2W
2 + h1γ1,3W

3 + γ1,4W
4 + h2γ1,5W

5

by using the identity W p = w(p−1)/6W and by writing (W i)p = γ1,iW
i with γ1,i =

wi(p−1)/6. This equation has a computational cost of 5 multiplications in Fp and 5
conjugations in Fp2 . The values γ1,i, . . . , γ1,5 need to be computed only once and

can be reused. Similarly, we can derive formulas for fp
2

and fp
3

using constants
γ2,i = γ1,iγ1,i and γ3,i = γ1,iγ2,i for i = 1, . . . , 5.

Algorithm 9 demonstrates the computation of the Frobenius automorphism using
this formula.

73

7. Techniques to Speed up Pairing Computations

Algorithm 9 Computation of the Frobenius automorphism in Fp12

Input: f ∈ Fp12 where Fp12 ' Fp6 [U]/(U2 − u)Fp6 [U] and Fp12 ' Fp2 [W]/(W 6 −
w)Fp2 [W], i ∈ {1, 2, 3}, and pre-computed γ1,j = uj(p−1)/6, γ2,j = γ1,jγ1,j, and
γ3,j = γ1,jγ2,j for j = 1, . . . , 5.

Output: fp
i ∈ Fp12

if i = 2 then
t1 ← g0

t2 ← h0

t3 ← g1

t4 ← h1

t5 ← g2

t6 ← h2

else
t1 ← g0

t2 ← h0

t3 ← g1

t4 ← h1

t5 ← g2

t6 ← h2

end if
t2 ← t2γi,1
t3 ← t3γi,2
t4 ← t4γi,3
t5 ← t5γi,4
t6 ← t6γi,5
c0 ← t1 + t3u+ t5u

2

c1 ← t2 + t4u+ t6u
2

return c0 + c1U

74

7. Techniques to Speed up Pairing Computations

7.3. Cyclotomic subgroups

Cyclotomic subgroups are subgroups of the multiplicative group of a finite field
with an order coming from a cyclotomic polynomial. These subgroups allows one to
implement fast squaring algorithms and thus faster exponentiations algorithms.

Definition 7.3. Let Φk be the k-th cyclotomic polynomial and let q be a prime
power. The order Φk(q) cyclotomic subgroup of Fqk is defined as

GΦk(q) =
{
x ∈ F×

qk
| xΦk(q) = 1

}
.

We will discuss the squaring and multiplication formulas from Karabina [Kar10]
which are based on compressed representation of elements contained in the cyclo-
tomic subgroup of order Φ6(q) = q2 − q + 1. This subgroup is the most interesting
cyclotomic subgroup with respect to the final exponentiation for bilinear pairings
on Barreto-Naehrig curves.

Let q be a prime power with q ≡ 1 mod 6. We assume that we have Fq2 = Fq(w)
with w2 = c for some sextic non-residue c ∈ Fq and Fq6 = Fq2(σ) where σ3 = w.
Every element g ∈ Fq6 can then be represented as

g = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ2

for some g0, . . . , g5 ∈ Fq. However, for g ∈ GΦ6(q), we only need 4 Fq elements to
represent it instead of the 6 Fq elements. This reduced representation of elements in
the cyclotomic subgroup allows the implementation of a faster squaring algorithm.

We first define the compression and decompression of elements contained inGΦk(q).

Definition 7.4. Let q be a prime power with q ≡ 1 mod 6 and Fq2 = Fq(w) with
w2 = c for some sextic non-residue c ∈ Fq and Fq6 = Fq2(σ) where σ3 = w.

1. Let g = (g0 + g1w) + (g2 + g3)wσ+ (g4 + g5w)σ2 ∈ GΦ6(q) \ {1}. We define the
compression function C as

C(g) = (g2, g3, g4, g5).

2. For (g2, g3, g4, g5) ∈ F4
q the decompression function D is defined as

D((g2, g3, g4, g5)) = (g0 + g1w) + (g2 + g3w)σ + (g4 + g5w)σ2

where {
g1 =

g2
5c+3g2

4−2g3

4g2
, g0 = (2g2

1 + g2g5 − 3g3g4)c+ 1, if g2 6= 0

g1 = 2g4g5

g3
, g0 = (2g2

1 − 3g3g4)c+ 1, if g2 = 0
.

Note that g2 = 0 and g3 = 0 can not appear at the same time as this would imply
that g = 1. The next theorem ensures that the compression and decompression
function are well-defined.

75

7. Techniques to Speed up Pairing Computations

Theorem 7.5. Let q, C and D be as in Definition 7.4. Then

1. D is well-defined for all C(g) with g ∈ GΦ6(q) \ {1}, and

2. D(C(g)) = g for all g ∈ GΦ6(q) \ {1}.

Proof. For a proof we refer to [Kar10, Theorem 3.1].

This theorem ensures that every element of the cyclotomic subgroup of order
Φ6(q) is uniquely determined by its image under C. Karabina used the compressed
representation to derive a squaring formula. The next theorem shows how the
squaring formula looks like and ensures its correctness.

Theorem 7.6. Let q, C, D, c, w and σ be as in Definition 7.4. Let g, h ∈ GΨ6(q) be
such that h = g2 and C(g) = (g2, g3, g4, g5). Then

C(g2) = (h2, h3, h4, h5)

where

h2 = 2(g2 + 3cB4,5),

h3 = 3(A4,5 − (c+ 1)B4,5)− 2g3,

h4 = 3(A2,3 − (c+ 1)B2,3)− 2g4,

h5 = 2(g5 + 3B2,3),

Ai,j = (gi + gj)(gi + cgj),

Bi,j = gigj

and

h = D((h2, h3, h4, h5)).

Proof. For a proof we refer to [Kar10, Theorem 3.2].

From this squaring formula we can derive an exponentiation algorithm easily. Let
e = (er−1, . . . , e0)2 with er−1 = 1 be the exponent and g ∈ GΦ6(q) \ {1}. Then we
can compute ge in the following way:

ge =
r−1∏
i=0

g2i = ge0
r−1∏

i=1,ei=1

D
(
C
(
g2i
))

.

Note that the C
(
g2i
)

can be computed by repeated squaring without the need to

decompress the intermediate values. Each decompression requires one Fq inversion,
but this can be reduced to only one inversion in total by using Montgomery’s si-
multaneous inversion trick [Har08]. Let (gi,2, gi,3, gi,4, gi,5) = C(g2i). For i 6= 0 with
ei = 1 we set

xi = g2
i,5c+ 3g2

i,4 − 2gi,3, (7.1)

yi = 4gi,2,

gi,0 = (2g2
i,1 + gi,2gi,5 − 3gi,3gi,4)c+ 1

76

7. Techniques to Speed up Pairing Computations

if g2 6= 0 and

xi = 2gi,4gi,5, (7.2)

yi = gi,3,

gi,0 = (2g2
i,1 − 3gi,3gi,4)c+ 1

if g2 = 0. Whenever we are interested in the decompressed value of C(g2i) we can
compute xi

yi
to obtain gi,1. Then we have

D(C(g2i)) = (gi,0 + gi,1w) + (gi,2, gi,3w)σ + (g4 + g5w)σ2.

We end up with a cost that is dominated by 4(r − 1) Fq multiplications and n Fq6

multiplications. Algorithm 10 shows the complete algorithm to compute powers of
any non-trivial element in the cyclotomic subgroup.

Algorithm 10 Exponentiation using compressed squaring

Input: g ∈ GΦ6(q) \ {1}, e = (er−1, . . . , e0) with er = 1.
Output: ge

for i = 1, . . . r − 1 do
Compute C(g2i) from C(g2i−1

) using Theorem 7.6.
if ei = 1 then

Compute xi, yi and gi,0 from C(g2i) using (7.1) respectively (7.2) and store
xi, yi, gi,0, gi,2, . . . , gi,5.

end if
end for
Compute gi,1 = xi

yi
for all i with ei = 1 simultaneously.

return ge0
∏r−1

i=1,ei=1 ((gi,0 + gi,1w) + (gi,2, gi,3w)σ + (g4 + g5w)σ2)

Another useful property of the cyclotomic subgroup is, that the inversion can be
replaced by a conjugation. If x ∈ GΦ6(q), then we have

x−1 = xq
6

since Φ6(q) divides q6 + 1 and thus

xxq
6

= xq
6+1 = 1.

7.4. Denominator Elimination

Denominator elimination is an important technique to reduce the amount of fac-
tors that need to be computed during the evaluation of the Tate pairing. It also
applies to any pairing that is derived from the Tate pairing and uses the same final
exponentiation. The technique is based on work by Barreto, Kim, Lynn and Scott
[BKLS02] and also Galbraith, Harrison and Soldera [GHS02].

77

7. Techniques to Speed up Pairing Computations

Let E be an elliptic curve defined over Fq. Let r |E(Fq) and k be the embedding
degree with respect to r. Since we consider the Tate pairing, we may assume k > 1.
Recall that if we want evaluate the Tate pairing for two points P ∈ E(Fq)[r] and
Q ∈ E(Fqk)[r], we need to calculate

fr,P (DQ)(qk−1)/r

where DQ is a divisor equivalent to (D)− (O) which has disjoint support to (fr,P).
Corollary 4.20 ensures that DQ = (R) − (S) for two points R, S ∈ E(Fqk). So we
can compute the Tate pairing as

fr,P (DQ)(qk−1)/r =

(
fr,P (R)

fr,P (S)

)(qk−1)/r

.

This computation involves an expensive division in Fqk . The first optimization gets
rid of this division and is based on the following theorem:

Theorem 7.7. Let E be an elliptic curve defined over Fq. Let r |E(Fq) and assume
that k, the embedding degree with respect to r, is larger than 1. Let P ∈ E(Fq)[r]
and Q ∈ E(Fqk)[r] and DQ ∼ (D)− (O) be a divisor with disjoint support to (fr,P).
If P and Q are linearly independent, then

fr,P (DQ)(qk−1)/r = fr,P (Q)(qk−1)/r

Proof. For a proof we refer to [BKLS02, Theorem 1].

First of all this result makes it unnecessary to find a divisor that is equivalent to
(Q) − (O) having disjoint support to (fr,P). It also ensures that we only need to
evaluate fr,P at one point instead of two points. Hence it saves us from performing
a costly division in Fqk .

Example 7.8. We use the same values as in Example 5.22. The following table
shows the evaluation of Tate pairing using Miller’s algorithm, but the updates are
computed using Q instead of DQ.

i ri R update `
ν

update at Q f
(45, 23) 1

3 0 (12, 16) y+33x+43
x+35

6u3 + 19u2 + 36u+ 33 6u3 + 19u2 + 36u+ 33

2 0 (27, 14) y+2x+7
x+20

39u3 + 8u2 + 20u+ 18 11u3 + 17u2 + 24u+ 4

1 0 (18, 31) y+42x+27
x+29

18u3 + 32u2 + 41u+ 30 22u3 + 34u2 + 5u+ 10

0 1 (45, 24) y+9x+42
x+2

21u3 + 26u2 + 25u+ 20 8u3 + 22u2 + 5u+ 27

O x+ 2 31u2 + 31 32u3 + 17u2 + 43u+ 12

Note that fr,P (Q) differs from fr,P (DQ) computed in Example 5.22. However, the
final exponentiation maps both values to the same element in µ17:

fr,P (Q)
47k−1

r = (32u3 + 17u2 + 43u+ 12)287040 = 33u3 + 43u2 + 45u+ 39

78

7. Techniques to Speed up Pairing Computations

In Miller’s algorithm the update always involves an evaluation of a line running
through R and −R for some intermediate point R and then dividing by this value.
But this division can also be removed using the following observations.

Observe that q − 1 | qk−1
r

whenever k > 1. Since if otherwise r | q − 1, then k = 1
(see [BKLS02, Lemma 1]). This allows us to write the final exponent as

qk − 1

r
= (q − 1)c

for some c ∈ N, which gives

fr,P (Q)(qk−1)/r =
(
fr,P (Q)(q−1)

)c
.

Now recall that raising elements of Fq to the q − 1-th power always gives 1. Thus
we can freely multiply fr,P (Q) with any element of Fq, since they will all be mapped
to 1 by the final exponentiation.

First assume that E is a supersingular curve with k = 2. In this case the x-
coordinate of Q is defined over Fq. Also note that the vertical lines appearing in
the denominators of Miller’s algorithm only depend on P ∈ E(Fq)[r], and so they
are defined over Fq. These lines also only take the x-coordinate into account, so
the value when evaluated at Q is still contained in Fq. Hence the vertical lines only
contribute factors in Fq which are eliminated by the final exponentiation, so we can
entirely omit them without changing the value of the pairing.

For ordinary curves with k > 2, the x-coordinate of Q will no longer be in the base
field. But when employing a twist of E, we can perform the same trick. We need

the following result that generalizes the observation that q − 1 | qk−1
r

which follows
directly from Proposition 3.9:

Lemma 7.9. Let e, k ∈ N with k ≥ 2 such that e < k and e | k, then

qe − 1 | q
k − 1

r
.

So if the twist has degree d, then we set e = k
d
. The x-coordinate of Q is then

contained in the proper subfield Fqe of Fqk . Thus the vertical line only contributes

factors in Fqe . But since qe − 1 | qk−1
r

, we can write the final exponent as

qk − 1

r
= (qe − 1)c

and obtain

fr,P (Q)(qk−1)/r =
(
fr,P (Q)(qe−1)

)c
.

So we can again ignore all contributions from the vertical line and simply drop it
from Miller’s algorithm.

Example 7.10. We use the same values as in Example 5.22 and Example 7.8. The
following table shows the evaluation of Tate pairing using Miller’s algorithm with
denominator elimination.

79

7. Techniques to Speed up Pairing Computations

i ri R update ` update at Q f
(45, 23) 1

3 0 (12, 16) y + 33x+ 43 35u3 + 36u2 + 11u+ 13 35u3 + 36u2 + 11u+ 13
2 0 (27, 14) y + 2x+ 7 35u3 + 15u2 + 11u+ 18 44u3 + 34u2 + 3u+ 44
1 0 (18, 31) y + 42x+ 27 35u3 + 33u2 + 11u+ 23 5u3 + 24u2 + 21u+ 24
0 1 (45, 24) y + 9x+ 42 35u3 + 44u2 + 11u+ 21 21u3 + 36u2 + 9u+ 25

O x+ 2 31u2 + 31 9u3 + 10u2 + 32u+ 36

As before, the final exponentiation maps the computed value to the same pairing
value as before:

fr,P (Q)
47k−1

r = (9u3 + 10u2 + 32u+ 36)287040 = 33u3 + 43u2 + 45u+ 39

After applying these optimizations to Miller’s algorithm, it is often referred to as
BKLS-GHS version of Miller’s algorithm. Algorithm 11 lists this version of Miller’s
algorithm. Example 7.11 shows how the same trick can be used to remove the last
occurrence of the vertical line function from the optimal Ate pairing for Barreto-
Naehrig curves.

Algorithm 11 BKLS-GHS version Miller’s algorithm for the Tate pairing

Input: P ∈ G1, Q ∈ G2 (Type 3) and r = (rn−1, . . . , r0)2 with rn−1 = 1.
Output: fr,P (Q)(qk−1)/r

R← P .
f ← 1.
for i = n− 2, . . . , 0 do

Compute the line function `R,R.
R← 2R.
f ← f 2 · `R,R(Q).
if ri = 1 then

Compute the line function `R,P .
R← R + P .
f ← f · `R,P (Q).

end if
end for
f ← f (qk−1)/r

return f

Example 7.11. Recall that we have

aW (P,Q) =
(
f6x+2,Q(P) · νq

2

Q (P) · `Q3,−Q2(P)
)qk−1

·(
`−Q2+Q3,−Q1(P) · `Q1−Q2+Q3,(6x+2)Q(P)

) qk−1
r .

80

7. Techniques to Speed up Pairing Computations

with Qi = Qqi for the Optimal Ate pairing for Barreto-Naehrig curves with Barreto-

Naehrig parameter x ∈ Z. Since Q is a point on the sextic twist, νq
2

Q has coefficients

in Fp2 . By Lemma 7.9 we have p2 − 1 | p12−1
r

and thus obtain

νq
2

Q (P)
qk−1

r =
(
νq

2

Q (P)q
2−1
)c

= 1c = 1

for c ∈ N such that c(p2 − 1) = p12−1
r

.

7.5. Curve Arithmetic in Miller’s algorithm

In this section we will discuss methods to optimize the curve arithmetic in Miller’s
algorithm. We will present the formulas derived by Aranha et al. [AKL+10].

Similar to the previous section, we want to get rid of as many inversions as possible.
Recall from Section 3.1, that when using affine coordinates to represent curve points
calculating the slope always involves an inversion. However, when using projective
coordinates, this inversion can be avoided, since the denominator can be eliminated.
Even better results can be achieved when using Jacobian coordinates. We will apply
the same trick to compute the line function. Furthermore, since the addition of two
points implicitly involves the computation of the line function, we will derive explicit
formulas to compute the line function and the sum of the points at the same time.

We will start with formulas for points in Jacobian coordinates since they are
often used to implement efficient curve arithmetic. Let E be a Barreto-Naehrig
curve defined over Fp and let T = (X1 : Y1 : Z1), R = (X2 : Y2 : Z2) ∈ E be
two points in Jacobian coordinates. Formulas for the sum can be derived similar as
detailed in Section 3.1. When T 6= R, we obtain for T +R = (X3 : Y3 : Z3)

ν = Y2Z
3
1 − Y1

λ = X2Z
2
1 −X1

X3 = ν2 − 2X1λ2− λ3

Y3 = θ(3X1λ
2 − ν2 + λ3)

Z3 = Z1λ

The associated line intersecting E in T and R can then simply be computed as

` : Z3Y − νX + (νX2 − Y2Z3)

If T = R, then the formulas can be derived in the same way and become

X3 =
9X4

1

4
− 2X1Y

2
1

Y3 =
3X2

1

2
(X1Y

2
1 −X3)− Y 4

1

Z3 = Y1Z1

81

7. Techniques to Speed up Pairing Computations

and for the line function we obtain

` : Z3Z
2
1Y −

3X2
1Z

2
1X

2
+

3X3
1

2
− Y 2

1 .

Castello et al. [CLN10, Section 9] proposed to use projective coordinates to per-
form the curve arithmetic entirely on the twist. When using projective coordinates,
it is possible to remove the inversion incurred by the group isomorphism since the
factors vanish in the final exponentiation.

Now let E ′ : Y 2 = X3 +b′ ∈ Fp2 be the twist of E ′. We use a similar description of
Fp12 to the one in Section 7.2: Fp12 ' Fp6 [w]/(w2−v)Fp6 [w] and Fp12 ' Fp2 [X]/(X6−
ζ)Fp2 [X].

Then the addition formulas can be derived as

ν = Y2Z
3
1 − Y1

λ = X2Z
2
1 −X1

X3 = ν2 − 2X1λ2− λ3

Y3 = θ(3X1λ
2 − ν2 + λ3)

Z3 = Z1λ

and the line function becomes

` : −λY − νXv2 + ζ(νX2 − λY2)vw.

For the doubling formulas we obtain

X3 =
X1Y1

2
(Y 2

1 − 9b′Z2
1)

Y3 =

(
1

2
(Y 2

1 + 9b′Z2
1)

)
Z3 = 2Y 3

1 Z1

and

` : −2Y1Z1Y vw + 3X2
1Xv

2 + ζ(3b′Z2
1 − Y 2

1)

Algorithms 12 and 13 demonstrate the algorithms implementing these formulas.

7.6. Final Exponentiation

So far we have only looked at optimizations that apply to Miller’s algorithm. For
larger field sizes, the cost of the final exponentiation also increases and becomes
the bottleneck of the pairing evaluation. Around the 128-bit security level the
cost of the final exponentiation overtakes the cost of Miller’s algorithm. So for
increasing security levels optimizing the final exponentiation as it is the most time-
consuming part of the pairing computation. In this section we will discuss Scott et
al.’s technique to compute the final exponentiation [SBC+08].

82

7. Techniques to Speed up Pairing Computations

Algorithm 12 Simultaneous point addition and line function evaluation in projec-
tive coordinates

Input: T = (X1 : Y1 : Z1), R = (X2 : Y2 : Z2) ∈ E ′(Fp2) with T 6= R and
P = (xP , yP) ∈ E(Fp)

Output: T +R = (X3 : Y3 : Z3) and the line ` ∈ Fp12 running through T and R
t1 ← X1 − Z1X2

t2 ← Y1 − Z1Y2

t3 ← t21
X3 ← t3X1

t3 ← t1t3
t4 ← t3 + t22Z1 − 2X3

X3 ← X3 − t4
Y3 ← t2X3 − t3Y1

X3 ← t1t4
Z3 ← t3Z1

l0,2 ← −t2xP
l0,0 ← ζ(t2X2 − t1Y2)
l1,1 ← −t1yP
return T +R = (X3 : Y3 : Z3) and ` = (l0, l1)

Algorithm 13 Simultaneous point doubling and line function evaluation in projec-
tive coordinates

Input: T = (X1 : Y1 : Z1) ∈ E ′(Fp2) and P = (xP , yP) ∈ E(Fp)
Output: 2T = (X3 : Y3 : Z3) and the tangent line ` ∈ Fp12 to T
t0 ← Z2

1

t1 ← Y 2
1

t2 ← 3bt0
t3 ← 3t2
l0,2 ← 3X2

1

X3 ← (t1−t3)X1Y1

2

T0 ←
(
t1+t3

2

)2

t3 ← (Y1 + Z1)2 − (t0 + t1)
Y3 ← T0 − 3t22
Z3 ← t1t3
l0,0 ← ζt2t1
l0,2 ← l0,2xP
l1,1 ← −t3yP
return 2T = (X3 : Y3 : Z3) and ` = (l0, l1)

83

7. Techniques to Speed up Pairing Computations

We assume that the embedding degree k is even and let d = k
2
. We start by

splitting the final exponent into three components:

qk − 1

r
=
(
qd − 1

)(qd + 1

Φk(q)

)
Φk(q)

r
.

Exponentiating by the first two factors is the easy part of the final exponentiation.
They only involve raising elements of Fqk by powers of q and some inversions. But
raising elements in Fqk to a power of q can be done by applying the Frobenius
isomorphism and comes almost for free. Raising to the third factor is the hard part,
as it does not reduce to such a simple form. A straightforward idea to improve
raising by the third factor is to express Φk(q)

r
as a sum of powers of q:

Φk(q)

r
=

n∑
i=0

λiq
i.

So raising m ∈ Fqk to Φk(q)
r

would then become

m
Φk(q)

r =
n∏
i=0

(
mqi
)λi

Again the mqi come almost for free by using the Frobenius isomorphism and the
hard part becomes exponentiating by the λi.

Example 7.12. We consider a Barreto-Naehrig curve. Recall that q = 36X4+36X3+
24X2 + 6X + 1 ∈ Z[X] and r = 36X4 + 36X3 + 18X2 + 6X + 1 ∈ Z[X]. We can
write the final exponent as

q12 − 1

r
=
(
q6 − 1

)(q6 + 1

q4 − p2 + 1

)
q4 − q2 + 1

r

=
(
q6 − 1

) (
q2 + 1

) q4 − q2 + 1

r
.

From this factorization it is clear that after raising by the easy part, the hard part
can be computed in the cyclotomic subgroup of order Φ6(q2). The hard part can be
further expressed in base p in the following way:

q4 − q2 + 1

r
= λ3q

3 + λ2q
2 + λ1q + λ0

where the polynomials λ0, . . . , λ3 are given by

λ3 = 1 ∈ Z[X],

λ2 = 6X2 + 1 ∈ Z[X],

λ1 = −36X3 − 18X2 − 12X + 1 ∈ Z[X], and

λ0 = −36X3 − 30X2 − 18X − 2 ∈ Z[X].

84

7. Techniques to Speed up Pairing Computations

Scott et al.’s technique now goes a step further and tries to find an optimal
way to rearrange the factors in the q-adic representation to end up with a minimal
number of multiplications and hard exponentiations. Although the technique works
for all families, we will focus our discussion on Barreto-Naehrig curves. As seen in
Example 7.12 we can write the hard part of the final exponentiation as

q4 − q2 + 1

r
= λ3q

3 + λ2q
2 + λ1q + λ0

with

λ3 = 1 ∈ Z[X],

λ2 = 6X2 + 1 ∈ Z[X],

λ1 = −36X3 − 18X2 − 12X + 1 ∈ Z[X], and

λ0 = −36X3 − 30X2 − 18X − 2 ∈ Z[X].

We now fix a Barreto-Naehrig parameter x ∈ Z and let p = q(x). For a unitary
m ∈ Fp12 we can now rewrite the hard part as

(
mpmp2

mp3
)
·
(

1

m

)2

·
((
mx2

)p)6

·
((

1

mx

)p)12

·(
1

mx (mx2)
p

)18

·
(

1

mx2

)30

·
(

1

mx3 (mx3)
p

)36

.

The individual parts inside the parenthesis can be computed as mx2
= (mx)x and

mx3
= (mx2

)x. If x is chosen in such a way that it has low Hamming weight,
then a minimal number of multiplications are required when computing these values
with a square-and-multiply algorithm or the compressed exponentiation algorithm
for GΦ6(p2). Raising by p can again be replaced by an application of the Frobenius
isomorphism. Since m is unity, all the inversions can be replaced by conjugations.
So we end up with an expression of the form

y0y
2
1y

6
2y

12
3 y

18
4 y

30
5 y

36
6 .

Scott et al. applied an algorithm by Olivos [Oli81] to minimize the number of re-
quired multiplications to evaluate this expression. We need the following definition:

Definition 7.13. A finite sequence a0, a1, . . . , ar ∈ N0 is called an addition chain
if a0 = 1 and for every i 6= 0 there exist elements in the list with indices j < i and
k < i such that ai = aj + ak.

First we need to find an addition sequence which is an addition chain that includes
within in its elements the integers occurring as exponents. For our case, it is not
hard to see that the optimal addition sequence is

(1, 2, 3, 6, 12, 18, 30, 36).

85

7. Techniques to Speed up Pairing Computations

Only 3 does not occur as exponent. Olivos’ algorithm now turns this addition
sequence into a vectorial addition chain:

(1, 0, 0, 0, 0, 0, 0)

(0, 1, 0, 0, 0, 0, 0)

(0, 0, 1, 0, 0, 0, 0)

(0, 0, 0, 1, 0, 0, 0)

(0, 0, 0, 0, 1, 0, 0)

(0, 0, 0, 0, 0, 1, 0)

(0, 0, 0, 0, 0, 0, 1)

(2, 0, 0, 0, 0, 0, 0)

(2, 0, 1, 0, 0, 0, 0)

(2, 1, 1, 0, 0, 0, 0)

(0, 1, 1, 0, 0, 0, 0)

(2, 2, 1, 1, 0, 0, 0)

(2, 1, 1, 0, 1, 0, 0)

(4, 4, 2, 2, 0, 0, 0)

(6, 5, 3, 2, 1, 0, 0)

(12, 10, 6, 4, 2, 0, 0)

(12, 10, 6, 5, 2, 1, 0)

(12, 10, 6, 4, 2, 0, 1)

(24, 20, 12, 8, 4, 2, 0)

(36, 30, 18, 12, 6, 2, 1)

This vertical addition chain can now be used to derive an algorithm which only
requires 9 multiplications and 4 squaring computations to compute the hard part
from y0, . . . , y6. The algorithm is given in Algorithm 14.

86

7. Techniques to Speed up Pairing Computations

Algorithm 14 Scott et al.’s method to compute the final exponentiation

Input: y0, . . . , y6 ∈ Fp12 .
Output: y0y

2
1y

6
2y

12
3 y

18
4 y

30
5 y

36
6

T0 ← y2
6

T0 ← T0y4

T0 ← T0y5

T1 ← y3y5

T1 ← T1T0

T0 ← T0y2

T1 ← T 2
1

T1 ← T1T0

T1 ← T 2
1

T0 ← T1y1

T0 ← T 2
0

T0 ← T0T1

return T0

87

8. Implementation in ECCelerate

The IAIK ECCelerate™ [HR15] library for the Java™ platform is a library providing
protocols based on elliptic curve cryptography. The implemented protocols include

• Elliptic Curve Digital Signature Algorithm (ECDSA),

• Elliptic Curve Diffie Hellman (ECDH),

• Elliptic Curve Integrated Encryption Scheme (ECIES), and optionally

• Elliptic Curve Menezes-Qu-Vanstone protocol for authenticated key agreement
(ECMQV).

Since version 3.0, support for Type 2 and Type 3 bilinear pairings on Barreto-
Naehrig curves has been added. The Optimal Ate pairing as defined in Defini-
tion 6.14 is implemented using the techniques described in Chapter 7:

• Denominator elimination (Section 7.4) is applied wherever possible and the
BKLS-GHS version of Miller’s algorithm (Algorithm 11) is used to evaluate
the Optimal Ate pairing. Also, the non-adjacent form representation of the
order is used to further reduce the number of point additions and line function
evaluations [EEAA13].

• The elliptic curve operations in Miller’s algorithm are all performed on the
twist. Point addition respectively point doubling and the line function com-
putation are performed simultaneously (Algorithms 12 and 13).

• The final exponentiation is implemented using Scott et al.’s technique for the
hard part of the final exponentiation (Algorithm 14). Furthermore the expo-
nentiation algorithm using compressed squarings for elements of the cyclotomic
subgroup is used to improve the performance of the final exponentiation (Al-
gorithm 10). Also, the Frobenius automorphism is evaluated using explicit
formulas involving only conjugations and multiplications without any expo-
nentiations (Algorithm 9).

The construction detailed in Section 5.6 is used to build an efficient Type 2 pairing
on top of the Optimal Ate pairing implementation and to provide efficient arithmetic
in G2.

Beside the pairing evaluation, the implementation also features the following use-
ful methods:

• Efficient hashing of messages to points on both G1 and G2 is implemented
using Shallue-van de Woestijne encoding (Algorithm 8).

88

8. Implementation in ECCelerate

• Methods to generate parameters for both Barreto-Naehrig curves and friendly
Barreto-Naehrig curves are provided (Algorithms 5 and 6).

There exist other implementations of bilinear pairings which are mainly imple-
mented in the C and C++ programming languages. These libraries include

• the RELIC toolkit [AG14],

• the PBC library [Lyn13], and

• ate-pairing library [MT14].

Implementations for the Java™ platform include BNPairings [Per12], an implemen-
tation of the Optimal Ate pairing for Barreto-Naehrig curves in Java™. The imple-
mentations of the RELIC toolkit, ate-pairing and BNPairings focus on a fixed set
of Barreto-Naehrig parameters and have hard-coded values for specific pre-selected
curves. While IAIK ECCelerate™ also supports these particular curves, it also en-
ables the investigation of other Barreto-Naehrig curves by implementing Algorithms
5 and 6 and providing methods to generate parameters for suitable elliptic curves.

Methods for hashing of messages to points are also implemented in BNPairings and
the RELIC toolkit. While BNPairings features Shallue-van de Woestijne encoding,
it only provides hashing to G1. Hashing to G2 is not provided at all. The RELIC
toolkit provides hashing to both G1 and G2, but relies on the “try-and-increment”-
method (Algorithm 7). To the best of our knowledge, IAIK ECCelerate™ is the only
library also supporting efficient and secure hashing to G2.

Tables 8.1 and Table 8.2 contain a comparison of the two pure Java™ implementa-
tions. The benchmarks presented in these tables have been performed using Java™
8 on a Intel® Core™ i7-4790 CPU with 16 GiB RAM running Ubuntu 15.04. The
Barreto-Naehrig curves defined in BNPairings have been used in the benchmarks.

Tables 8.1 contains a comparison of the number of pairing evaluations per second
that can be achieved using IAIK ECCelerate™ and BNPairings. The improvement
that can be seen in this benchmark is largely based on improved implementations
of finite fields and the elliptic curve arithmetic in Miller’s algorithm.

When multiple pairings evaluations are performed for a fixed point in G2, it
is possible to compute multiple pairings all at once by storing respectively pre-
computing the line functions involved in Miller’s algorithm. IAIK ECCelerate™
implements the possibility to evaluate multiple pairings of this kind at the same
time. This approach also allows the evaluation of the line functions and the final
exponentiation to be parallelized. Table 8.2 shows the improvement that can be
obtained per pairing when evaluating multiple pairings at the same time. The
data in this table also highlights the importance of an efficient implementation of
finite field arithmetic and in particular of the final exponentiation. In this case, all
the elliptic curve arithmetic is performed only once and the performance is mainly
affected by the evaluation of the line functions at the points in G1, the multiplication
of the intermediate values and the final exponentiation.

89

8. Implementation in ECCelerate

Bit length ECCelerate BNPairings improvement
254 154.316± 1.421 ops/s 122.847± 4.510 ops/s 25.62%
256 132.836± 2.711 ops/s 111.372± 1.981 ops/s 19.27%
408 59.280± 0.437 ops/s 46.450± 0.599 ops/s 27.62%
512 38.536± 0.187 ops/s 31.498± 1.301 ops/s 23.34%

Table 8.1.: Pairing evaluations per second for two randomly chosen points using
IAIK ECCelerate™ and BNPairings

Bit length ECCelerate BNPairings improvement
254 178.200± 1.682 ops/s 124.767± 4.459 ops/s 42.83%
256 153.259± 1.999 ops/s 111.150± 1.852 ops/s 37.89%
408 67.897± 0.682 ops/s 46.474± 0.527 ops/s 46.10%
512 44.593± 0.276 ops/s 31.475± 1.298 ops/s 41.67%

Table 8.2.: Pairing evaluations per second for a random point in G1 and a fixed point
in G2 using IAIK ECCelerate™ and BNPairings

90

Part IV.

Conclusion

91

9. Conclusion

In this thesis we discussed the construction and efficient implementation of bilinear
pairings on elliptic curves.

Part I covered the preliminaries. It reviewed some concepts from algebra and
algebraic geometry and gave a short overview of elliptic curves and their properties.

Part II focused on the construction of bilinear pairings on elliptic curves and was
divided in to three parts: divisors, bilinear pairings and pairing-friendly curves. At
first, divisors were introduced as they are an essential building block in the con-
struction of pairings. We also discussed the unique connection between divisors and
points that is special to elliptic curves. The focus then switched to the definition
of pairings and presented the definitions of the Weil, Tate and Ate pairings. After
the first definitions, Miller’s algorithm was presented and we argued why such an
algorithm is necessary to make bilinear pairings a feasible primitive. Since Miller’s
algorithm allows first optimizations by reducing the number of iterations, we pre-
sented an optimality conjecture which is believed to give a lower bound for the
number iterations required to evaluate pairings on elliptic curves. Together with
this optimality conjecture, we also outlined the construction of Optimal Ate pair-
ings to achieve the conjectured lower bound. The final part discussed the family of
Barreto-Naehrig curves. The structure of this family and algorithms for parameter
finding were discussed. We also detailed the Optimal Ate pairing on Barreto-Naehrig
curves where we made use of the curves twist.

Part III was concerned with the efficient implementation of the finite field and
elliptic curve arithmetic involved in the computation of bilinear pairings. We started
with the description of tower-friendly fields which turned out to be very beneficial to
derive algorithms to compute the Frobenius automorphism in extension fields. For
the final exponentiation we also discussed the cyclotomic subgroup which enables
the implementation of faster squaring and exponentiation algorithms. Then we
considered techniques to remove unnecessary factors that appear in evaluation of
pairings and were mainly focused on removing undesirable inversions. The last
optimization technique targets the hard part of the final exponentiation.

Part II and III together demonstrate how the polynomial time algorithm used
to evaluate pairings can be further optimized by using the special structure of the
chosen elliptic curve family and properties of the pairing itself. These performance
improvements are made possible by the existence of curve twists and efficiently
computable endomorphisms as well as the properties of the cyclotomic subgroup in
extension fields.

Finally, we also presented the implementation of the Optimal Ate pairing on
Barreto-Naehrig curves in the IAIK ECCelerate™ library in Part III. We com-
pared it to other existing pure Java™ implementations and demonstrated that IAIK

92

9. Conclusion

ECCelerate™ performs around 25 % up to 46 % better per pairing evaluation. IAIK
ECCelerate™ is also the only library providing efficient Type 2 pairings, efficient and
secure hashing to both the Barreto-Naehrig curve and its twist as well as algorithms
for finding friendly Barreto-Naehrig curves.

The pairing libraries fully implemented in Java™ all use generic multi-precision
integer implementations to perform the finite field arithmetic. It would be interesting
to see whether switching to a fixed-width big integer implementation as used by
libraries implemented in other languages provides any performance gains. Also, this
switch would allow for some level of protection against side-channel attacks, since
the generic multi-precision integer implementations complete operations as early as
possible and may leak the length of the involved values.

93

Appendices

94

List of Symbols

(f) the divisor of a function f

[L : K] degree of the field extension L over K

aTr the anti trace map on an elliptic curve

C field or complex numbers

|S| the cardinality of a set S

char(K) characteristic of a field K

χp quadratic character over Fp

Deg(D) degree of a divisor D

deg(f) degree of a polynomial f

∆(E) discriminant of the elliptic curve E

Div(E) divisor group of an elliptic curve E

Div0(E) the subgroup of degree-zero divisors

ε(D) the effective part of a divisor D

Fq finite field of q elements

〈g〉 group generated by the element g(
a
p

)
Legendre symbol of a ∈ Z and p ∈ P

An(K) affine space of dimension n over the field K

Pn(K) projective space of dimension n over the field K

NL/K field norm of L over K

µr(K) r-th roots of unity of a field K

N set of natural numbers

N0 set of natural numbers and 0

K algebraic closure of a field K

95

x conjugate of a x ∈ Fq

ordP (f) the order of a function f over an elliptic curve E at point P ∈ E(K)

φ Euler’s totient function

Φn the n-th cyclotomic polynomial

πq Frobenius map of Fq

Pic0(E) the divisor class group of E

Prin(E) the subgroup of principal divisors

Q field of rational numbers

R field or real number

supp(D) support of a divisor D

Tr the trace map on an elliptic curve

Z ring of integers

A ↪→ B a map A→ B that is injective

a‖b a strictly divides b, i.e. a divides b but a2 does not divide b

aλ (reduced) Ate pairing

GΦk(q) order Φk(q) cyclotomic subgroup of Fqk

j(E) j-invariant of the elliptic curve E

R/qR quotient ring of R modulo q

R• set of all non-zero elements of a ring R

tr (reduced) Tate pairing of order r

wr Weil pairing of order r

96

Bibliography

[ABLR14] Diego F. Aranha, Paulo S. L. M. Barreto, Patrick Longa, and Jeffer-
son E. Ricardini. The realm of the pairings. In Tanja Lange, Kristin
Lauter, and Petr Lisonek, editors, SAC 2013: 20th Annual Interna-
tional Workshop on Selected Areas in Cryptography, volume 8282 of
Lecture Notes in Computer Science, pages 3–25, Burnaby, BC, Canada,
August 14–16, 2014. Springer, Heidelberg, Germany.

[AFG+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev,
and Miyako Ohkubo. Structure-preserving signatures and commitments
to group elements. In Tal Rabin, editor, Advances in Cryptology –
CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science,
pages 209–236, Santa Barbara, CA, USA, August 15–19, 2010. Springer,
Heidelberg, Germany.

[AG14] Diego F. Aranha and Conrado P. L. Gouvêa. RELIC toolkit version
0.4.0, 2014. https://github.com/relic-toolkit/relic.

[AKL+10] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebo-
tys, and Julio López. Faster explicit formulas for computing pairings
over ordinary curves. Cryptology ePrint Archive, Report 2010/526,
2010. http://eprint.iacr.org/2010/526.

[ALNR09] Christophe Arene, Tanja Lange, Michael Naehrig, and Christophe
Ritzenthaler. Faster computation of the tate pairing. Cryptology ePrint
Archive, Report 2009/155, 2009. http://eprint.iacr.org/2009/155.

[AM93] A. O. L. Atkin and F. Morain. Elliptic curves and primality proving.
Math. Comp, 61:29–68, 1993.

[AR12] Gora Adj and Francisco Rodŕıguez-Henŕıquez. Square root computation
over even extension fields. Cryptology ePrint Archive, Report 2012/685,
2012. http://eprint.iacr.org/2012/685.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In Matthew Franklin, editor, Advances in Cryptology – CRYPTO 2004,
volume 3152 of Lecture Notes in Computer Science, pages 41–55, Santa
Barbara, CA, USA, August 15–19, 2004. Springer, Heidelberg, Germany.

[BCI+09] Eric Brier, Jean-Sebastien Coron, Thomas Icart, David Madore, Hugues
Randriam, and Mehdi Tibouchi. Efficient indifferentiable hashing into

97

https://github.com/relic-toolkit/relic
http://eprint.iacr.org/2010/526
http://eprint.iacr.org/2009/155
http://eprint.iacr.org/2012/685

Bibliography

ordinary elliptic curves. Cryptology ePrint Archive, Report 2009/340,
2009. http://eprint.iacr.org/2009/340.

[BDM+10] Jean-Luc Beuchat, Jorge Enrique González Dı́az, Shigeo Mitsunari, Eiji
Okamoto, Francisco Rodŕıguez-Henŕıquez, and Tadanori Teruya. High-
speed software implementation of the optimal ate pairing over Barreto-
Naehrig curves. Cryptology ePrint Archive, Report 2010/354, 2010.
http://eprint.iacr.org/2010/354.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from
the Weil pairing. In Joe Kilian, editor, Advances in Cryptology –
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 213–229, Santa Barbara, CA, USA, August 19–23, 2001. Springer,
Heidelberg, Germany.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In Eli Biham,
editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of
Lecture Notes in Computer Science, pages 416–432, Warsaw, Poland,
May 4–8, 2003. Springer, Heidelberg, Germany.

[BGÓS04] Paulo S. L. M. Barreto, Steven Galbraith, Colm Ó hÉigeartaigh, and
Michael Scott. Efficient pairing computation on supersingular abelian
varieties. Cryptology ePrint Archive, Report 2004/375, 2004. http:

//eprint.iacr.org/2004/375.

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification
for modular exponentiation and digital signatures. Cryptology ePrint
Archive, Report 1998/007, 1998. http://eprint.iacr.org/1998/007.

[BKLS02] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott.
Efficient algorithms for pairing-based cryptosystems. In Moti Yung,
editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 354–368, Santa Barbara, CA, USA,
August 18–22, 2002. Springer, Heidelberg, Germany.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
Weil pairing. In Colin Boyd, editor, Advances in Cryptology – ASI-
ACRYPT 2001, volume 2248 of Lecture Notes in Computer Science,
pages 514–532, Gold Coast, Australia, December 9–13, 2001. Springer,
Heidelberg, Germany.

[BLS02] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing
elliptic curves with prescribed embedding degrees. Cryptology ePrint
Archive, Report 2002/088, 2002. http://eprint.iacr.org/2002/088.

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic
curves of prime order. In Bart Preneel and Stafford Tavares, editors,

98

http://eprint.iacr.org/2009/340
http://eprint.iacr.org/2010/354
http://eprint.iacr.org/2004/375
http://eprint.iacr.org/2004/375
http://eprint.iacr.org/1998/007
http://eprint.iacr.org/2002/088

Bibliography

SAC 2005: 12th Annual International Workshop on Selected Areas in
Cryptography, volume 3897 of Lecture Notes in Computer Science, pages
319–331, Kingston, Ontario, Canada, August 11–12, 2006. Springer,
Heidelberg, Germany.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind
signatures based on the gap-Diffie-Hellman-group signature scheme. In
Yvo Desmedt, editor, PKC 2003: 6th International Workshop on Theory
and Practice in Public Key Cryptography, volume 2567 of Lecture Notes
in Computer Science, pages 31–46, Miami, USA, January 6–8, 2003.
Springer, Heidelberg, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In V. Ashby, editor, ACM
CCS 93: 1st Conference on Computer and Communications Security,
pages 62–73, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

[BS09] Naomi Benger and Michael Scott. Constructing tower extensions for
the implementation of pairing-based cryptography. Cryptology ePrint
Archive, Report 2009/556, 2009. http://eprint.iacr.org/2009/556.

[BSS99] I.F. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography.
Lecture note series. Cambridge University Press, 1999.

[CCS06] L. Chen, Z. Cheng, and N.P. Smart. Identity-based key agreement pro-
tocols from pairings. Cryptology ePrint Archive, Report 2006/199, 2006.
http://eprint.iacr.org/2006/199.

[CHKM09] Sanjit Chatterjee, Darrel Hankerson, Edward Knapp, and Alfred
Menezes. Comparing two pairing-based aggregate signature schemes.
Cryptology ePrint Archive, Report 2009/060, 2009. http://eprint.

iacr.org/2009/060.

[CHP07] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen.
Batch verification of short signatures. Cryptology ePrint Archive, Re-
port 2007/172, 2007. http://eprint.iacr.org/2007/172.

[CLN10] Craig Costello, Tanja Lange, and Michael Naehrig. Faster pairing com-
putations on curves with high-degree twists. In Phong Q. Nguyen and
David Pointcheval, editors, PKC 2010: 13th International Conference
on Theory and Practice of Public Key Cryptography, volume 6056 of Lec-
ture Notes in Computer Science, pages 224–242, Paris, France, May 26–
28, 2010. Springer, Heidelberg, Germany.

[CM09] Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols em-
ploying asymmetric pairings – the role of ψ revisited. Cryptology ePrint
Archive, Report 2009/480, 2009. http://eprint.iacr.org/2009/480.

99

http://eprint.iacr.org/2009/556
http://eprint.iacr.org/2006/199
http://eprint.iacr.org/2009/060
http://eprint.iacr.org/2009/060
http://eprint.iacr.org/2007/172
http://eprint.iacr.org/2009/480

Bibliography

[Cos12] Craig Costello. Pairings for beginners, 2012. http://craigcostello.

com.au/pairings/PairingsForBeginners.pdf.

[DÓSD06] Augusto Jun Devegili, Colm Ó hÉigeartaigh, Michael Scott, and Ri-
cardo Dahab. Multiplication and squaring on pairing-friendly fields.
Cryptology ePrint Archive, Report 2006/471, 2006. http://eprint.

iacr.org/2006/471.

[DSD07] Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. Implementing
cryptographic pairings over Barreto-Naehrig curves. Cryptology ePrint
Archive, Report 2007/390, 2007. http://eprint.iacr.org/2007/390.

[EEAA13] Siham Ezzouak, Mohammed El Amrani, and Abdelmalek Azizi. Im-
proving miller’s algorithm using the naf and the window naf. In Vincent
Gramoli and Rachid Guerraoui, editors, Networked Systems, volume
7853 of Lecture Notes in Computer Science, pages 279–283. Springer
Berlin Heidelberg, 2013.

[Eng13] Andreas Enge. Bilinear pairings on elliptic curves. ArXiv e-prints,
January 2013. http://arxiv.org/abs/1301.5520.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical
round-optimal blind signatures in the standard model. In Rosario Gen-
naro and Matthew J. B. Robshaw, editors, Advances in Cryptology –
CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer
Science, pages 233–253, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

[FKR12] Laura Fuentes-Castañeda, Edward Knapp, and Francisco Rodŕıguez-
Henŕıquez. Faster hashing to G2. In Ali Miri and Serge Vaudenay,
editors, SAC 2011: 18th Annual International Workshop on Selected
Areas in Cryptography, volume 7118 of Lecture Notes in Computer Sci-
ence, pages 412–430, Toronto, Ontario, Canada, August 11–12, 2012.
Springer, Heidelberg, Germany.

[FR94] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility
and the discrete logarithm in the divisor class group of curves. Mathe-
matics of Computation, 62(206):pp. 865–874, 1994.

[Fre06] David Freeman. Constructing pairing-friendly elliptic curves with em-
bedding degree 10. Cryptology ePrint Archive, Report 2006/026, 2006.
http://eprint.iacr.org/2006/026.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-
friendly elliptic curves. Journal of Cryptology, 23(2):224–280, April
2010.

100

http://craigcostello.com.au/pairings/PairingsForBeginners.pdf
http://craigcostello.com.au/pairings/PairingsForBeginners.pdf
http://eprint.iacr.org/2006/471
http://eprint.iacr.org/2006/471
http://eprint.iacr.org/2007/390
http://arxiv.org/abs/1301.5520
http://eprint.iacr.org/2006/026

Bibliography

[FT10] Pierre-Alain Fouque and Mehdi Tibouchi. Deterministic encoding and
hashing to odd hyperelliptic curves. In Marc Joye, Atsuko Miyaji, and
Akira Otsuka, editors, PAIRING 2010: 4th International Conference on
Pairing-based Cryptography, volume 6487 of Lecture Notes in Computer
Science, pages 265–277, Yamanaka Hot Spring, Japan, December 13–15,
2010. Springer, Heidelberg, Germany.

[FT12] Pierre-Alain Fouque and Mehdi Tibouchi. Indifferentiable hashing to
Barreto-Naehrig curves. In Alejandro Hevia and Gregory Neven, edi-
tors, Progress in Cryptology - LATINCRYPT 2012: 2nd International
Conference on Cryptology and Information Security in Latin America,
volume 7533 of Lecture Notes in Computer Science, pages 1–17, Santi-
ago, Chile, October 7–10, 2012. Springer, Heidelberg, Germany.

[Gal05] Steven D. Galbraith. Pairings. In Advances in elliptic curve cryptogra-
phy, London Mathematical Society Lecture Note Series, pages 183–213.
Cambridge University Press, 2005.

[GHS02] Steven D. Galbraith, Keith Harrison, and David Soldera. Implementing
the Tate pairing. In Algorithmic number theory, pages 324–337. Springer
Berlin Heidelberg, 2002.

[GLS09] Steven D. Galbraith, Xibin Lin, and Michael Scott. Endomorphisms for
faster elliptic curve cryptography on a large class of curves. In Antoine
Joux, editor, Advances in Cryptology – EUROCRYPT 2009, volume
5479 of Lecture Notes in Computer Science, pages 518–535, Cologne,
Germany, April 26–30, 2009. Springer, Heidelberg, Germany.

[GPS06] R. Granger, D. Page, and N.P. Smart. High security pairing-based cryp-
tography revisited. Cryptology ePrint Archive, Report 2006/059, 2006.
http://eprint.iacr.org/2006/059.

[GS09] Robert Granger and Michael Scott. Faster squaring in the cyclotomic
subgroup of sixth degree extensions. Cryptology ePrint Archive, Report
2009/565, 2009. http://eprint.iacr.org/2009/565.

[Har08] David G. Harris. Simultaneous field divisions: an extension of mont-
gomery’s trick. Cryptology ePrint Archive, Report 2008/199, 2008.
http://eprint.iacr.org/2008/199.

[HPS08] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An Introduction
to Mathematical Cryptography. Undergraduate Texts in Mathematics.
Springer, 2008.

[HR15] Christian Hanser and Sebastian Ramacher. IAIK ECCelerate™ ver-
sion 3.0, 2015. https://jce.iaik.tugraz.at/sic/Products/Core_

Crypto_Toolkits/ECCelerate.

101

http://eprint.iacr.org/2006/059
http://eprint.iacr.org/2009/565
http://eprint.iacr.org/2008/199
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate
https://jce.iaik.tugraz.at/sic/Products/Core_Crypto_Toolkits/ECCelerate

Bibliography

[HSV06] F. Hess, N.P. Smart, and F. Vercauteren. The eta pairing revisited.
Cryptology ePrint Archive, Report 2006/110, 2006. http://eprint.

iacr.org/2006/110.

[Hun03] Thomas W. Hungerford. Algebra. Graduate Texts in Mathematics.
Springer New York, 2003.

[Ica09] Thomas Icart. How to hash into elliptic curves. Cryptology ePrint
Archive, Report 2009/226, 2009. http://eprint.iacr.org/2009/226.

[Jou00] Antoine Joux. A one round protocol for tripartite diffie-hellman. In
Proceedings of the 4th International Symposium on Algorithmic Number
Theory, ANTS-IV, pages 385–394, London, UK, UK, 2000. Springer-
Verlag.

[Kar10] Koray Karabina. Squaring in cyclotomic subgroups. Cryptology ePrint
Archive, Report 2010/542, 2010. http://eprint.iacr.org/2010/542.

[KKM08] Ann Hibner Koblitz, Neal Koblitz, and Alfred Menezes. Elliptic curve
cryptography: The serpentine course of a paradigm shift. Cryptology
ePrint Archive, Report 2008/390, 2008. http://eprint.iacr.org/

2008/390.

[KLR10] Jean-Gabriel Kammerer, Reynald Lercier, and Guénaël Renault. Encod-
ing points on hyperelliptic curves over finite fields in deterministic poly-
nomial time. In Marc Joye, Atsuko Miyaji, and Akira Otsuka, editors,
PAIRING 2010: 4th International Conference on Pairing-based Cryp-
tography, volume 6487 of Lecture Notes in Computer Science, pages 278–
297, Yamanaka Hot Spring, Japan, December 13–15, 2010. Springer,
Heidelberg, Germany.

[KM05] Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high
security levels. Cryptology ePrint Archive, Report 2005/076, 2005.
http://eprint.iacr.org/2005/076.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computa-
tion, 48(177):203–209, January 1987.

[KP05] Bo Gyeong Kang and Je Hong Park. On the relationship between
squared pairings and plain pairings. Cryptology ePrint Archive, Report
2005/112, 2005. http://eprint.iacr.org/2005/112.

[Lan87] Serge Lang. Elliptic Functions. Graduate texts in mathematics.
Springer, 1987.

[Lan02] Serge Lang. Algebra. Graduate Texts in Mathematics. Springer New
York, 2002.

102

http://eprint.iacr.org/2006/110
http://eprint.iacr.org/2006/110
http://eprint.iacr.org/2009/226
http://eprint.iacr.org/2010/542
http://eprint.iacr.org/2008/390
http://eprint.iacr.org/2008/390
http://eprint.iacr.org/2005/076
http://eprint.iacr.org/2005/112

Bibliography

[Lic69] Stephen Lichtenbaum. Duality theorems for curves over p-adic fields.
Inventiones mathematicae, 7(2):120–136, 1969.

[Lyn13] Ben Lynn. PBC library version 0.5.14, 2013. https://crypto.

stanford.edu/pbc/.

[Men05] Alfred Menezes. An introduction to pairing-based cryptography. De-
partment of Combinatorics and Optimization, 2005.

[Mil86a] Victor S. Miller. Short programs for functions on curves. In IBM Thomas
J. Watson Resarch Center, 1986. unpublished.

[Mil86b] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C.
Williams, editor, Advances in Cryptology – CRYPTO’85, volume 218 of
Lecture Notes in Computer Science, pages 417–426, Santa Barbara, CA,
USA, August 18–22, 1986. Springer, Heidelberg, Germany.

[Mil04] Victor S. Miller. The Weil pairing, and its efficient calculation. Journal
of Cryptology, 17(4):235–261, September 2004.

[Min10] Hermann Minkowski. Geometrie der Zahlen. Number v. 1 in Geometrie
der Zahlen. B.G. Teubner, 1910.

[MNT01] A. Miyaji, M. Nakabayashi, and S. Takano. New Explicit Conditions of
Elliptic Curve Traces for FR-Reduction, 2001.

[MT14] Shigeo Mitsunari and Tadanori Teruya. ate-pairing version 2014-06-15,
2014. https://github.com/herumi/ate-pairing.

[MVO91] Alfred Menezes, Scott A. Vanstone, and Tatsuaki Okamoto. Reducing
elliptic curve logarithms to logarithms in a finite field. In 23rd Annual
ACM Symposium on Theory of Computing, pages 80–89, New Orleans,
Louisiana, USA, May 6–8, 1991. ACM Press.

[Oli81] Jorge Olivos. On vectorial addition chains. Journal of Algorithms,
2(1):13–21, 1981.

[Per12] Geovandro C.F.F. Pereira. BNPairings version 1.2, 2012. https://

code.google.com/p/bnpairings/.

[PSNB10] Geovandro C. C. F. Pereira, Marcos A. Simpĺıcio Jr., Michael Naehrig,
and Paulo S. L. M. Barreto. A family of implementation-friendly BN
elliptic curves. Cryptology ePrint Archive, Report 2010/429, 2010.
http://eprint.iacr.org/2010/429.

[SB04] Michael Scott and Paulo S.L.M Barreto. Generating more MNT elliptic
curves. Cryptology ePrint Archive, Report 2004/058, 2004. http://

eprint.iacr.org/2004/058.

103

https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/
https://github.com/herumi/ate-pairing
https://code.google.com/p/bnpairings/
https://code.google.com/p/bnpairings/
http://eprint.iacr.org/2010/429
http://eprint.iacr.org/2004/058
http://eprint.iacr.org/2004/058

Bibliography

[SBC+08] Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez
Perez, and Ezekiel J. Kachisa. On the final exponentiation for calcu-
lating pairings on ordinary elliptic curves. Cryptology ePrint Archive,
Report 2008/490, 2008. http://eprint.iacr.org/2008/490.

[SBC+09] Michael Scott, Naomi Benger, Manuel Charlemagne, Luis J. Dominguez
Perez, and Ezekiel J. Kachisa. Fast hashing to g2 on pairing-friendly
curves. In Hovav Shacham and Brent Waters, editors, PAIRING 2009:
3rd International Conference on Pairing-based Cryptography, volume
5671 of Lecture Notes in Computer Science, pages 102–113, Palo Alto,
CA, USA, August 12–14, 2009. Springer, Heidelberg, Germany.

[Sco07] Michael Scott. Implementing cryptographic pairings. Lecture Notes in
Computer Science, 4575:177, 2007.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In
G. R. Blakley and David Chaum, editors, Advances in Cryptology –
CRYPTO’84, volume 196 of Lecture Notes in Computer Science, pages
47–53, Santa Barbara, CA, USA, August 19–23, 1984. Springer, Heidel-
berg, Germany.

[Sil09] Jospeh H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts
in Mathematics. Springer, 2009.

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems
based on pairing. In SCIS 2000, Okinawa, Japan, January 2000.

[Sti09] Henning Stichtenoth. Algebraic Function Fields and Codes. Graduate
Texts in Mathematics. Springer, 2009.

[SvdW06] Andrew Shallue and Christiaan E. van de Woestijne. Construction of
rational points on elliptic curves over finite fields. In Proceedings of the
7th International Conference on Algorithmic Number Theory, ANTS’06,
pages 510–524, Berlin, Heidelberg, 2006. Springer-Verlag.

[Tat58] John Tate. WC-groups over p-adic fields. Séminaire Bourbaki, 4:265–
277, 1956-1958.

[Tat63] John Tate. Duality theorems in Galois cohomology over number fields.
Proc. Int. Congr. Math. 1962, 288-295 (1963)., 1963.

[Tib12] Mehdi Tibouchi. A note on hashing to bn curves. In SCIS 2012,
Kanazawa, Japan, January 2012.

[Ver08] F. Vercauteren. Optimal pairings. Cryptology ePrint Archive, Report
2008/096, 2008. http://eprint.iacr.org/2008/096.

[Was08] Lawrence C. Washington. Elliptic Curves - Number Theory and Cryp-
tography. Chapman & Hall/CRC, 2nd edition, 2008.

104

http://eprint.iacr.org/2008/490
http://eprint.iacr.org/2008/096

Bibliography

[Wei40] André Weil. Sur les fonctions algébriques à corps de constantes fini. Les
Comptes rendus de l’Académie des sciences, pages 592–594, 1940.

[WP06] André Weimerskirch and Christof Paar. Generalizations of the karat-
suba algorithm for efficient implementations. Cryptology ePrint Archive,
Report 2006/224, 2006. http://eprint.iacr.org/2006/224.

105

http://eprint.iacr.org/2006/224

	Introduction
	Outline

	Introduction to Elliptic Curves
	Preliminaries
	Group Theory
	Ring Theory
	Field Theory
	Affine and Projective Space
	Algebraic Geometry

	Elliptic Curves
	Group Law
	Curve Invariants and Isomorphisms
	Elliptic Curves in Short Weierstrass Form
	Torsion Subgroups
	Frobenius Endomorphism
	Twists
	Elliptic Curve Cryptography

	Bilinear Pairings
	Divisors
	The Divisor Class Group
	A Corollary to the Riemann-Roch Theorem
	Weil Reciprocity

	Bilinear Pairings
	Bilinear Maps and Pairings
	Pairing-based Cryptography
	Weil, Tate and Ate Pairing
	Weil Pairing
	Tate Pairing
	Ate Pairing

	Miller's Algorithm
	Optimal Pairings
	Building Type 2 from Type 3 Pairings
	Application of Bilinear Pairings
	MOV Algorithm
	BLS Signature Scheme

	Pairing-friendly Elliptic Curves
	Constructing Ordinary Pairing-Friendly Curves
	Barreto-Naehrig Curves
	Twists of Barreto-Naehrig Curves
	A Subfamily of Barreto-Naehrig Curves with an Explicit Description of Twist parameters
	Optimal Ate Pairing on Barreto-Naehrig Curves
	Hashing to Barreto-Naehrig Curves

	Implementation of Pairings
	Techniques to Speed up Pairing Computations
	Towered Extension Fields and Finite Field Arithmetic
	Frobenius isomorphism in Fp12
	Cyclotomic subgroups
	Denominator Elimination
	Curve Arithmetic in Miller's algorithm
	Final Exponentiation

	Implementation in ECCelerate

	Conclusion
	Conclusion
	Bibliography

