
Walter Unterpirker, BSc

Anatomical Landmark Localization for
an Automatic Multi-Factorial Age

Assessment System

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Telematics

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. DI. Dr.techn. Horst Bischof

Institute for Computer Graphics and Vision, University of Technology, Graz

Advisor

DI. Dr.techn. Martin Urschler

Ludwig Boltzmann Institute for Clinical Forensic Imaging, Graz

Graz, Austria, September 2015





Abstract

Anatomical landmark localization in medical images has gained an increasing research

interest in the last years. One reason is that many subsequent medical image-processing

algorithms benefit from an accurate and reliable preceding automatic localization step.

One important application which is considered in this work, is the automated biological

age assessment of humans. This is based on the ossification and mineralization process

of various anatomical structures. For this thesis, these structures are acquired by non-

invasive and ionizing radiation free magnetic resonance imaging. A first step towards such

an automated age assessment system is to locate the age-relevant anatomical structures.

In this work, Random Regression Forests (RRFs) are explored in more detail to locate

structures at hand-bones, wisdom teeth and clavicle bones. Firstly, a geodesic weighting

scheme for hand-bone localization is proposed. This is based on the underlying idea

that closer and simultaneously less shape-varying structures to an anatomical landmark

contribute more to an accurate localization. In a second contribution, the appearance of

landmarks are directly incorporated into the RRF framework. Thus allowing to increase

the confidence of a correct landmark estimation. Due to strongly varying appearance and

shapes within medical images a final contribution investigates the idea of using restricted

image information around landmarks. Subsequently, the anatomical variations at the

landmarks themselves are explored in more detail by the RRF .

Keywords. Random Forest, Hough Forest, Landmark Localization, Third Molars, Wis-

dom Teeth, Clavicle, Hand-Bones, Automatic Age Assessment, Biological Age Assessment,

Machine Learning
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Kurzfassung

Lokalisierung von anatomischen Strukturen in medizinischen Bildern hat in den letzten

Jahren stark an Forschungsinteresse zugenommen. Ein Grund dafür ist, dass viele nach-

folgende medizinische Bildverarbeitungsalgorithmen von einer genauen und zuverlässigen

automatischen Lokalisierung als Initialisierungsschritt profitieren. Eine wichtige Anwen-

dung, welche in dieser Arbeit als Motivation dient, ist die automatische Altersschätzung

von Menschen. Diese basiert auf den Ossifikations- und Mineralisierungsprozessen ver-

schiedener anatomischen Strukturen, welche zum Beispiel durch nicht-invasive und nicht-

ionisierende Methoden wie die Magnetresonanztomographie aufgenommen werden. Ein

erster Schritt in Richtung solch eines Systems zur automatischen Altersschätzung ist das

Lokalisieren von diesen altersrelevanten Strukturen.

In dieser Arbeit werden Random Regression Forests (RRF) für die Lokalisierung von

Hand-Knochen, Weisheitszähnen und Schlüsselbeinknochen untersucht. An erster Stelle

wird ein geodätisches Gewichtungsschema für die Hand-Knochen Lokalisierung vorgestellt.

Weiters werden zwei Methoden untersucht, wie das Aussehen einer zu lokalisierenden

anatomischen Struktur direkt in das RRF System eingebettet werden kann. Darausfolgend

sollen die zu lokalisierenden Strukturen mit einer höheren Genauigkeit gefunden werden.
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Most living beings retrieve visual information via the visual cortex system. This in-

formation is immediately processed after the acquisition to make a decision, based on a

complex construction of neurons and synapses. Nowadays, mostly computers are used

to process information which is gathered from cameras and other sensor technologies.

Especially in medical imaging, modalities like Magnetic Resonance (MR), Computed To-

mography (CT), Positron Emission Tomography (PET), ultrasound imaging, etc. are

often used to acquire images from inner body parts and have gained a lot of research

interest [26]. This medical information is important and helpful, since it can be used

to recognize anomalies and diseases. Further, surgical interventions can be planned in a

more sophisticated way. However, handling all this information is tedious and complex.

Therefore, the field of computerized Medical Image Processing (MIP) has gained a lot of

research interest in the last decades.

MIP is the process of analyzing and (pre-)processing any kind of medical images for

the reason of supporting medical experts by providing important information and tools for

a specific kind of problem. For instance, with a content based image retrieval system [53],

information can be pre-filtered to retain only the important one, thus reducing the com-

plexity of the data. In addition to the retrieval system, a computer-assisted diagnosis or

visualization system can be used to visualize the before retrieved important information

in a clear and convenient way. For instance, with a head-mounted display [14], a medical

expert can be supported by providing additional information to a patient during a surgi-

cal intervention. A different sub-area of MIP is described within this thesis, namely the

1
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2 Chapter 1. Introduction

automatic localization of anatomical landmarks.

1.1 Landmark Localization and Applications

Landmarks are notice- and recognizable features which occur frequently at a specific posi-

tion within images [59]. For example, this can be a remarkable position within a photo of

a landscape or an unique, re-occurring pattern in noise. Further specializing these features

to medical applications leads to the focus of this work, namely medical landmarks. They

can be seen as certain locations at structures of interest within the human body. Examples

are wisdom teeth (also known as third molars), finger tips, points at highest curvature of

clavicles, hand-bone joints, organs, knees, etc. Such landmarks have often been manually

located by medical experts which is highly cost- and labor-intensive. Moreover, manu-

ally searching for such landmarks in a huge amount of datasets can lead to errors due to

negligence caused by monotony and other factors like tiredness.

In the last years, the need of a reliable landmark localization system has become very

high since landmarks are often used as a preceding step for further (automatic) processing

algorithms. For instance, in the field of image registration [5, 37, 42], it is necessary that

landmarks are always recognized at the same positions within images, showing the same

object. Based on the landmarks, one use of image registration is to re-align and fuse all

the information of the same object of images from different modalities, thus allowing to

combine information from different perspectives [51]. Further, distorted images which are

taken over time can be registered to see temporal changes of the brain [69]. Localization of

landmarks can also be used to eliminate the need for a manual seed point selection in image

segmentation algorithms [26, 36], or to generate point and intensity distribution models

of shapes and objects, e.g. by active shape [8] or active appearance models [7]. Further,

landmarking is often used in object recognition, detection and regression challenges. For

example in cephalometric image analysis [48], certain positions at the head or skull are

localized. These landmarks can then be used for treatment planning systems [16, 41].

As shown in all these examples, landmark localization is an essential first step for

many different subsequent image algorithms. This thesis is focused on a fully automated

anatomical landmark localization approach for an automatic age assessment system by

extending the approaches in [24, 25] and investigating them more deeply.

1.2 Age Assessment

Anatomical landmark localization is an important initialization step for an automatic age

assessment system and a worth-while goal to research on. For that, first certain anatomical

points must be located and afterwards surrounding structures must be analyzed since they

contain information about the age. This process is illustrated in Fig. 1.1. Examples for

such anatomical locations are third molars, hand-bones or joints between them, clavicles,
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1.2. Age Assessment 3

knees, etc. An estimated age is also known as biological age and is often compared

to the chronological age in clinical medicine for different purposes. Some examples are

determining growth disorders due to prenatal issues or genetic defects [32], estimation of

final heights of young children [32, 72], etc.

Anatomical Landmark

Localization Framework

Age Assessment based on Structures 

around Located Landmarks

Biological Age
e.g. 16.3 years

Figure 1.1: Overview of a fully automated multi-factorial age assessment system.

Beside the clinical applications age assessment is also a crucial part in legal medicine,

e.g. in sports [50, 75] or when dealing with young asylum seekers [38]. Some persons

who escape from their countries due to war or other reasons are not able to identify them-

selves with passports or identification documents. For that reason, the Ludwig Boltzmann

Institute for Clinical Forensic Imaging in Graz performs research on a fully automatic

multi-factorial age assessment system using non-invasive and ionizing free MR data. MR

imaging is used since people are not exposed to ionizing radiation, which is the case in
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4 Chapter 1. Introduction

the often used x-ray imaging. Previous and ongoing research of age assessment has been

done by the study group on forensic age diagnostics (AGFAD) [64]. They suggest several

approaches to assess the age from humans using several parts of the body without having

the need for a chronological age [62, 63]. For instance, these parts can be clavicle, teeth

or hand. Basically, these structures are exposed to a certain process during maturation.

For example, bones underly an ossification process starting from the birth until up to a

certain age when the development finishes. A similar behavior is also known for teeth

which is based on mineralization, i.e. mineralization of third molars. These processes are

described in the next sections in more detail.

1.2.1 Hands

Hands and wrist-bones are often used for age assessment, since the ossification process

can be seen very clearly over the time. In 21 tubular and 8 carpal bones in the wrist, the

process lets the bones start growing from birth on up to 19 years [32]. Figure 1.2 illustrates

on the right a sketch of the main characteristics of the ossification process in long elongated

bones, e.g. at fingers or at clavicle bones. While such bones are maturing they consist

of diaphysis, metaphysis and ephiphysis whereby metaphysis and epiphysis are separated

through a growth plate. During the maturation process, epiphysis and diaphysis start

growing accordingly to the ossification process.

Figure 1.2: Ossification process of elongated bones (Source [32]).

This ossification process is proceeding in the primary and secondary ossification cen-
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1.2. Age Assessment 5

ter [32]. While the primary ossification center exists also for non-elongated bones like the

flat carpals, the secondary ossification center only exists in the cartilage at the ends of

longitudinal bones. The diaphysis starts growing from the primary ossification center, as

illustrated in Fig. 1.2 on the left. The epiphysis on the other hand appears and grows up

to a certain age due to the secondary center, see Fig. 1.2 on the right. Over time bones

get larger and some of them will coalesce with other bones.

However, not all bones start and complete this ossification process at the same age.

Therefore, a short overview for hand bone growth based on the six different stages accord-

ing to [32] will be discussed now:

• Stage 1: Up to an age of around 14 months (males) and 10 months (females), age

assessment is primarily done by looking at two carpals, namely hamate and capitate

and the radius bone. See Fig. 1.3 (a).

• Stage 2: Then, up to 2 years of age for female and 3 years for male the ossification

of the epiphysis of four different bones can be used, i.e. of the distal, middle and

proximal phalanges and some metacarpals. See Fig. 1.3 (b).

• Stage 3: In the pre-puberty age, up to 7 and 9 years for female and male respectively,

the ossification of the epiphysis at the distal, middle and proximal phalanges bones,

is very strong. See Fig. 1.3 (c).

• Stage 4: Further, analyzing the epiphysis of distal and middle phalanges can be done

up to an age of 13 years (female) and 14 years (male). See Fig. 1.3 (d).

• Stage 5: In the late puberty, bones begin to fuse, i.e. the distal phalanges,

metacarpals, proximal phalanges and middle phalanges. See Fig. 1.3 (e).

• Stage 6: After that, fusion of the ulna and radius from females and males up to 17

and 19 years shows differences. See Fig. 1.3 (f).

With hand-bones it is feasible to distinguish biological ages of human up to approx-

imately 18 years. However, many countries apply laws which are based on three age

thresholds, namely 14, 18 or 21 years [20]. Hence other bones have to be considered to

estimate ages above 18 years, i.e. clavicles.

1.2.2 Clavicles

The clavicle bones are among the last bones finishing ossification. This makes them a

good additional source for age assessment [43, 62]. According to the research in [66], five

stages can be used to differentiate roughly between different age groups (see Fig. 1.4 for

an overview):

• Stage 1: No ossification process is ongoing and therefore the ossification center has

not been ossified.
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6 Chapter 1. Introduction

Figure 1.3: Overview of different ossification stages of hand-bones (Source [32]). Stages 1-3 in
(a-c) and stages 4-6 in (d-f).

• Stage 2: Ossification starts at the ossification center but no ossification can be seen

in the epiphyseal cartilage.

• Stage 3: Partly ossification of the epiphyseal cartilage.

• Stage 4: Full ossification of the epiphyseal cartilage, but scars between cartilage and

clavicle are still visible.

• Stage 5: No scars are visible since the epiphyseal cartilage coalesces together with

the clavicle.

Combining bones of hands and clavicles leads to a powerful age assessment from which

ages up to more than 21 years can be distinguished. However, to achieve a reliable and
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1.2. Age Assessment 7

Figure 1.4: Overview of different ossification stages of clavicles (Source [64]).

accurate age assessment, other anatomical structures can be used to support the accuracy

of the prediction, i.e. third molars.

1.2.3 Third Molars

Mineralization stages of third molars can be taken to support the age assessment accuracy

up to about 20 years [54]. Similar as in the previous examples for hands and clavicles,

formation stages of teeth have been described in previous literature. For instance, third

molars can be grouped into eight stages (Demirjian) as described next according to [15]

and [45]:

• Stage A: Mineralization started but mineralized points have not been fused yet. See

Fig. 1.5 (a).

• Stage B: Fusion of the calcified points started, illustrated in Fig. 1.5 (b).

• Stage C: Ongoing process of the dentinal deposit, formation of the crown started

and first appearance of a curved pulp chamber. See Fig. 1.5 (c).

• Stage D: The cementoenamel-junction is reached by the crown and a trapezoidal

shape of the pulp chamber can be seen, depicted in Fig. 1.5 (d).

• Stage E: The crown is smaller than the root lengths and the radicular-bifurcation is

ongoing which can be seen in Fig. 1.5 (e).
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8 Chapter 1. Introduction

• Stage F: Crown reaches the same length as roots which have funnel-shaped ends,

illustrated in Fig. 1.5 (f).

• Stage G: Canals of the root are parallel with still opened apical root end. See

Fig. 1.5 (g).

• Stage H: Closed root apex, as illustrated in Fig. 1.5 (h).

Figure 1.5: Overview of different Demirjian mineralization stages of molars (Source [15]).

1.2.4 Age Assessment

Having defined stages and regions from where the age can be assessed, methods to estimate

the age from a radiographic image will be discussed. Most of the existing methods rely

basically on atlas matching. There, an object without known age is compared to a set of

objects with associated ages. The most similar match in terms of appearance and shape

between objects with unknown and known ages, results in an age prediction. For hand

and clavicle bones, atlas matching can be done either using the whole object, e.g. images

of the hand, or by taking only subparts of the objects, e.g. single bones or structures

as previously discussed. Comparing the whole object at once is also referred to as the

method of Greulich-Pyle [35], whereas the latter is done by Tanner-Whitehouse [71]. With

Greulich-Pyle method an age from a whole hand can be determined directly. In contrast to

this the Tanner-Whitehouse method assigns a score to each single structure, i.e. each bone

or each tooth. Afterwards, the scores are combined to retrieve a final age assessment. This

scoring method has been adopted in [15], such that it can be used also for teeth. However,

until now the most research is focused on using x-ray images. Only a few publications

exist which involve MR techniques to assess the age [22, 23, 70, 73, 75].

Still one question remains: Can the skeletal development and regarding age from dif-

ferent ethnical groups be compared? Many studies are currently considering this question

and compare the differences of cultures. For example see [55, 63, 65].

For each of the age assessment applications mentioned above, the localization and

comparison based on some methods is up to now mostly done manually by medical experts

which have to spend a lot of time doing that for all the different bones and organs. A

further challenge of manually estimating age is that the assessed age among medical experts
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1.3. Contribution 9

themselves vary (inter-observer variability) and also the estimation of the same image may

vary over time by the same expert (intra-observer variability). Therefore and due to the

use in legal and clinical medicine it would be of great benefit to have a fully automatic

age assessment system. Such a system could take as input an image of the necessary

age assessment structures, i.e. scans of hands, clavicles and teeth/head and as result an

assessed age. An important first step for such a system is the localization of anatomical

points at the organs and bones.

1.3 Contribution

This work focuses on extending and investigating more deeply the Random Regression For-

est (RRF) landmark localization algorithm of [25]. Therefore, a geodesic distance measure

for the weighting approach of [25] for MR hand images is introduced. This geodesic dis-

tance measure lets less varying anatomical structures and simultaneously structures closer

to a landmark contribute more to the correct prediction of that landmark. Further, two

different feature and voxel-selection strategies are developed which incorporate more di-

rectly the appearance at landmarks. For instance, long-distance on-landmark features are

introduced to capture the image information at the landmarks directly. This approach

use the whole image information whereas in a second method only closer structures to a

landmark are used to train an RRF .

These approaches are evaluated on three medical datasets which are acquired from

young people within an age range of about 13 to 24 years. These are 3D MR volumes

of the head to localize third molars, upper part of the chest for localization of landmarks

at the sternal extremity of the clavicle bones and left hand volumes to localize hand and

wrist bones. These datasets will be discussed in more detail later on in chapter 5.

1.4 Outline

Chapter 2 shows a short overview of different related research on landmark localization,

starting with general landmark localization methods based on mathematical descriptions

up to machine learning techniques which have been strongly researched over the last years.

In chapter 3, an introduction of the Random Forest (RF) framework developed in [3] is

shown. This algorithm has seen a lot of research interest in the last decades due to its

simple structure and rather easy adaption to different datasets. In chapter 4, an RRF

framework is developed to locate point landmarks built upon the basics of chapter 3. A

novel vote-weighting method for the projected 2D MR hand images is introduced based on

the variation of fingers. Chapter 5 discusses technical details of the proposed MR datasets

which are evaluated in chapter 6. There, the advantages and disadvantages of the novel

ideas for the given datasets are shown and discussed by some experiments. A conclusion

and an outlook of future research directions are presented in chapter 7.
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Localization of landmarks in general is a difficult task, both manually and automati-

cally. In the beginning of Medical Image Processing (MIP), anatomical points were often

manually selected for further processing which is time consuming. Therefore, several com-

puterized (semi-)automatic approaches for landmark localization have been developed.

Such algorithms can be used to process a huge amount of data within a short time. Fur-

ther, many algorithms need a reliable landmark localization approach as a pre-processing

step, e.g. for registration [61], segmentation [49], etc. However, the great variety and

change in shape, contrast, color, modalities and other properties make it difficult to de-

velop such an algorithm.

In this chapter a short overview of the most important research in the field of medical

image feature extraction and landmark localization is given. Firstly, approaches which

work with basic algorithms like corner detectors based on gradients and other processing

pipelines, is discussed. Afterwards, landmarking based on registration algorithms is shown.

Further, methods based on generative modeling and discriminative learning are going to

be discussed. Finally, an overview of combinations of the methods is given, to demonstrate

how well such approaches can work together.

11
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12 Chapter 2. Localization

2.1 Localization based on Low Level Descriptions

Mathematical descriptions have been developed to automate the process of feature point

extraction [59]. Many of them make use of image gradients or other mathematical opera-

tors and depend directly on the distribution of intensities in images. Further, geometrical

descriptions like curvature extrema, saddle points, crossing of lines and much more have

been researched. Algorithms based on such models, may need post- or pre-interaction or

refinement steps from a human operator to achieve reliable landmark localizations.

The authors in [58] describe a few corner detection methods for automatically locating

landmarks in 3D volumes. For instance, image gradients and Hessian matrices are used to

locate certain points in human brain Magnetic Resonance (MR) volumes. A 3D differential

corner detector which is one of these methods described in [58] is used as a landmark local-

ization step in a semi-automatic image registration approach in [60]. The corner detector

basically finds high variations of intensities. Due to noise and similar structures with high

intensity variations this approach leads to multiple false-positive landmark candidates. To

filter these candidates and to find a final correct landmark candidate, a human-computer

interaction is performed in three steps. First of all, the user selects a region of interest

in which next to it the corner detector is applied. At the end the user selects the best

landmark candidates for the further image registration process. This results in a decrease

of error made by the corner detector and therefore in better registration results. How-

ever, the cost of processing interruptions due to the semi-automatic approach is high. In

general such mathematical corner detection methods often rely strongly on local appear-

ance information. Little changes in local appearances may result in high variations of the

results. The main benefit of such basic corner detectors are their fast computation time.

Therefore, such algorithms are still used frequently.

Another more domain specific feature extraction method for age assessment is pre-

sented in [56]. In their work, they have given a radiograph database consisting of wrist

images from left hands. As a first step these images are pre-processed by first correcting

the orientation. Afterwards, the images are thresholded according to the background to

achieve a better and easier distinction between foreground (hand) and background. After

the preprocessing step, the image is binarized in an automatic way. This results in low

values at air or background and high values at phalanges or bones. From these binarized

images, first finger tips and then whole fingers are detected. Further processing using an

interest region detector yields to an extraction of the metaphyseal and epiphyseal regions

within the fingers which can be used to assess an age.

However, such approaches are very specific and cannot be applied easily to more general

datasets. Therefore, the need for approaches such as statistical shape models, image

registration methods or machine learning algorithms, has become very high. Although

such algorithms may also need some manual initialization process, they are more general

in their behavior.
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2.2. Registration based Localization 13

2.2 Registration based Localization

One higher level approach for organ localization or segmentation is image registration, i.e.

atlas based methods [57, 68]. An atlas is a database consisting of one or more given fixed

images with associated labels, e.g. single points or bigger objects like organs. Localization

can be achieved by deforming a new unseen (moving) image with unknown position of

landmarks to match one or several fixed images with known landmark coordinates. This

deformation can be done by different registration algorithms [82].

Such a registration algorithm is a powerful method for localization, but the challenges

lie in variations of shape and appearance in images, i.e. fingers in hand images. Handling

this big variation can be done by different approaches as listed next:

• Linear or rigid registration

• Non-linear, elastic or non-rigid registration

Linear registration is a deformation type which matches the moving image to the fixed

image globally, e.g. by translation, rotation or scale of the whole object. For example,

a whole hand will be registered as it is but single fingers stay at the relative position

to each other. Non-linear registration on the opposite, warps also finer variations. For

instance individual fingers are deformed to match other poses. This yields to more precise

results but needs computationally expensive algorithms. In general, many of those image

registration algorithms consist of following steps, in which each single step is already a

difficult challenge to solve [82]:

1. Initial feature detection in moving and fixed image

2. Feature matching between moving and fixed image

3. Model estimation: One wants to find a transformation T such that a fixed image F

matches best to a moving image M . This is done by optimizing a fitting measure or

cost-function C:

Tbest = argmin
T

C(F,M) (2.1)

4. Transformation and re-sampling of the moving image

Having found a transformation Tbest, landmark or organ positions can be transformed

with the same transformation from the fixed to the moving image coordinate frame. This

results in a final landmark prediction. Robustness of such atlas based object or landmark

localization can further be improved by matching a moving image to multiple fixed atlas

images or vice-versa [40]. In such an approach a final landmark or organ prediction can

be found by combining the multiple received landmark predictions. For instance, the

combination can depend on the transformation-costs.
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14 Chapter 2. Localization

A slightly different approach of registration based landmark localization is proposed

in [27]. Two types of 3D anatomical point landmarks are extracted, namely curvature

extrema and saddle structures from the human head. The algorithm is based on registering

self-designed 3D deformable models to a normal intensity based image. The models consist

of a parametric form of an ellipsoid and a hyperboloid. In an optimization task the model

fitting has been formulated using an edge based fitting procedure with respect to the model

parameters (rotation, scale and translation). As initialization a semi-automatic approach

and an ellipsoid as initial object is used for the models.

2.3 Localization based on Generative and Discriminative

Models

Another way of defining the feature point detector and landmark localization task is

described in this section. For instance, the probability that a landmark or point is located

at a certain position l in an image I, is p(l|I) [47]. Several ways exist to calculate p(l|I):

1. Discriminative type - Classification or Regression: p(l|I) is either directly estimated

or regressed by multiple predictions

2. Generative type: p(l|I) is generated from previous data: p(l|I) ∝ p(I|l)

Ad 1 - Classification: Using the discriminative classification type for landmark or

object localization, a classifier is trained to differentiate between classes in an image,

i.e. the probability p(l|I) can be directly estimated. Applying such a classifier onto a

whole new image yields to a pixel-wise labeling of the image, e.g. binary or multi-class

classification or segmentation task. Another way how such a classification task can be seen

is to learn a function that maximizes the probability for correct classification or vice-versa,

minimizes the misclassification probability [81]. Training of such a classifier to retrieve a

good labeling or localization can be a difficult task. For example, training-samples used

for training have to be carefully defined for each class.

Ad 1 - Regression: Instead of directly estimating the probability p(l|I) it is also pos-

sible to aggregate votes from many landmark predictions. This is done by using the whole

or a subset of the image information. For instance, each pixel in an image votes to a

probable landmark position for a class. The position which retrieves the most votes can

be used as a landmark estimation.

Predicting a certain position can be done by using the information from the whole

image (global context information), i.e. anatomical structures from the whole image are

able to vote to a landmark. On the other hand this can also be done by using only

local information from certain sub-regions of the image (local context information), i.e.

anatomical structures within a certain range around a landmark are allowed to predict a
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position [24]. Each of these methods has benefits and drawbacks. For instance, using the

whole image information can yield to an inaccurate localization result. Pixels and struc-

tures farther away from a landmark position may have no knowledge about the variations

of the landmark to where they vote. Further, using local image information can lead to

multiple landmark predictions if similar repeating patterns occur.

Beside the contextual information another differentiation can be done by marginal-

space learning approaches [44, 77, 78]. They were recently researched in addition to the

common full-space learning approaches. The main difference between these two approaches

is either that all (non-)linear transformations in the images are learned at once or the

search-space is constrained and iteratively more parameters are added. For example, first

search for best translation and afterwards search iteratively for other parameters, e.g.

rotation, scale, etc.

Ad 2 - Generative Models: Landmark prediction using generative models can be done

by creating a model based on the statistics of the distribution of already given landmarks

from training-images, e.g. shape or appearance models [7, 8]. A learned model can be

fitted to new images of the same type by varying parameters such that a criterion is

minimized. If the learned shape with known landmarks is correctly fitted to the new

image, the landmark positions can directly be read and used for predictions of the new

image. However, generative models like Active Shape Model (ASM), Statistical Shape

Model (SSM) or also Markov Random Field (MRF) are more-often used to refine an

already given landmark prediction from other models, e.g. discriminative models.

2.3.1 Localization based on Statistical and Active Shape Models

A generative landmark prediction model based on SSM can be built by first generating a

mathematical model. This model describes shape variations between images of the same

type, e.g. the movement of fingers or the variations within brains over several people.

Therefore, the following steps have to be performed:

1. Remove Similarity Transformation: The landmarks of the shapes of the different

training images must be aligned into a common coordinate frame, e.g. using Pro-

crustes analysis [34].

2. Model the distribution which results in a parameterized model:

x = x̂+ P b (2.2)

where x̂ is the mean shape, P are eigenvectors and b are the shape model parameters.

For instance after applying a Principal Component Analysis (PCA) to the data, each

eigenvector reflects a certain variation in the training data, e.g. movement of the

thumb. The first eigenvector in P controls the largest variations in the training
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16 Chapter 2. Localization

data, whereas the last eigenvector controls the smallest variations. To reduce the

model complexity, small variations are often dismissed by taking only a subset t of

all the eigenvectors:

xappr ≈ x̂+ Pt bt (2.3)

The next part is to create an algorithm which varies the modeled point distribution model

to fit it to new shapes, i.e. by an ASM . Therefore, following steps have to be performed:

1. Set the previously generated SSM to an initial position Xi (i = 0 at initialization).

2. Search near the previously found or initial position Xi for best new local matches

for each data-point in the model. Some examples how this can be done are discussed

in the following examples of this section.

3. Update the SSM parameters to the newly found best local matches.

4. Repeat previous two steps, until a task-dependent cost function converges.

One of the main challenges of using an ASM is the initialization process and defining a

good convergence criterion. If the initialization is too inaccurate the ASM may converge

into a wrong local minimum and therefore in a wrong shape position. Furthermore, if

a new shape is not covered by the combination of the training data, it is unlikely that

the trained model matches to the new shape. Especially this challenge occurs in medical

imaging since it is difficult to create and get a big and good training set.

Further improvements have been developed by incorporating also the change of ap-

pearance over training data. This leads to the Active Appearance Model (AAM) [7] in

which additionally to the shape the intensity variations are modeled.

2.3.1.1 Example: Cephalometric Image Analysis

One medical application in which ASMs are used is cephalometric analysis which deals

with the measurement of the head. In [39] relationships between points on major structures

in head images have been modeled. To build the SSM , points are manually annotated

by experts which can be seen in Fig. 2.1. Each of the training datasets are then aligned

accordingly to the annotations using Procrustes analysis. Afterwards, a PCA is applied to

all points of the shape to model the main shape distribution in a lower dimensional space

by retaining all large variations.

Having built the SSM , an ASM approach is used to fit the model to new images.

Therefore, first the learned mean shape is overlaid to the new image. Afterwards, a

local search around each point of the initial SSM is performed to find the next local

match which fits best. This is done by finding the strongest edge in the vicinity of each

modeled data-point and then calculating the direction vectors to this edge. These vectors

are combined with the PCA which yields to a new temporary fitted shape model. This
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2.3. Localization based on Generative and Discriminative Models 17

procedure is iteratively applied until a convergence criterion is reached and a final fitted

shape is retrieved. See Fig. 2.2 for the initialization of the shape on the left hand side and

results after matching the shape model on the right hand side. However, the matching of

such a model depends strongly on the initialization of the mean shape, the local search

around the shape points and on the variation of the new target image. If one of these

steps fails or the new image has a high unusual variation the shape model will converge

to a false position and further processing algorithms may fail.

Figure 2.1: Cephalometric shape template to build an ASM (Source [39]).

Figure 2.2: Cephalometric shape matching of the previously modeled shape to an unseen image
(left) and results after the matching algorithm (right) (Source [39]).
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18 Chapter 2. Localization

2.3.1.2 Example: Anatomical Hand Landmarking with Top-Down Patch Re-

gression

In [18], statistics of landmarks in hands are incorporated into a landmark localization

algorithm which is based on the appearance of images. The algorithm basically consists

of a training and testing part.

Training: During the training part a so called regression codebook is generated. This

codebook consists of squared sized image patches randomly placed inside a certain range

around landmark positions to capture the local appearance. Such patches are generated

at different image scales s0 to sn which results into multiple codebooks, one for each

landmark l and scale s. During patch extraction relative distances from the patch center

to all landmark positions which are captured by this patch are stored in the codebook. For

example, at scale s0 (the whole image) all landmarks are captured whereas at the highest

scale sn only one landmark is visible. See Fig. 2.3 for an illustration of the codebook

generation. This leads to high dimensional codebooks which are reduced by PCA by

keeping 90 % of the variance. Since only the appearance around landmarks within a

certain range is used it is necessary to capture the global landmark configuration of the

hands. This is done by a point distribution model and a lossless PCA model.

Figure 2.3: Multilevel patch codebook generation example for a single landmark (red): Overview
along different scales (Source [18]).

Testing: To find the learned landmarks the image is first analyzed at lowest scale s0
which corresponds to the whole image. Since no landmarks are known at scale s0, for

each landmark a patch is extracted around the center of the image. Each extracted patch

is projected to the PCA space. Afterwards, the generated codebook is searched at the
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actual scale for the most similar patch using a nearest neighbor search algorithm. The

patch comparison is done for each extracted patch of each landmark. This results in

multiple landmark predictions for one landmark from different patches. Therefore, a final

landmark prediction is generated by calculating the median landmark position from all

found predictions. This procedure is done recursively over all scales which results into

finer landmark predictions when increasing the search-scale. An overview of the codebook

search can be seen in Fig. 2.4. Since similar structures in the hand appear multiple times

at different locations, landmarks can converge to wrong positions. Therefore, the learned

statistical model is used to regularize landmark candidates at scales s0 to sn−3. Since at

lower scales a single landmark is detected, solely the local appearance information is used.

Figure 2.4: Localization of three landmarks (red, blue and green) in a new unseen image using
a multilevel patch codebook (Source [18]).

2.3.2 Localization using Markov Random Fields

Another possibility to incorporate the shape information are MRF . In recent landmark

localization literature, they are often put on the top of a local appearance based landmark

localization. There, they are used as a discrete optimization task to regularize multi-

ple found candidate positions. In principle, an MRF formulation consists of nodes and

undirected edges between the nodes, i.e. an undirected graph. For instance, in terms of

landmark regularization, nodes correspond to landmark positions and edges to a connec-

tion between two nodes. For each node and each edge potentials or weights are assigned

which depend on the performed task. In an optimization task the best combination of all

node potentials and edge potentials is searched. However, MRF are complex and compu-

tationally costly to solve if the undirected graph contains too many edges and nodes. On
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the other hand, by carefully defining which connections are modeled, an MRF can be a

powerful regularization tool. Next, some examples which use MRFs will be discussed.

2.3.2.1 Example: Anatomical Hand Landmarking using Local Appearance

and Markov Random Field Regularization

Local symmetry interest point and Harris corner detectors are used in [17] to retrieve hand

and vertebrae landmark candidate locations. To explore the symmetry attributes in med-

ical hands or vertebrae images, a gradient vector flow field is applied to a gray value image

which is used for a symmetry detector. This yields to local responses at strong symmetry

based appearances, as illustrated in Fig. 2.5. To find the best landmark configurations,

an MRF is used. As edge information for the MRF , the edge length between nodes and

relative angles between edges are used. To incorporate also the retrieved quality of land-

mark candidates, node potentials are modeled by some measurement between model and

target point descriptors.

Figure 2.5: Detector responses from the local symmetry based detector (Source [18]).

2.3.3 Localization based on Discriminative Models

Recently, discriminative approaches like Random Forest (RF) [3], boosting [28], etc. have

seen a lot of research interest. They are well suited for object classification, localization
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and regression tasks which is shown in some examples in this section.

Boosting: In boosting algorithms [28], many weak decision rules are combined such that

they form a very strong and accurate one. Training samples are used within a training

process which consists of several rounds. In each round, a weak learner or hypothesis is

generated according to the training samples at this round. These weak learners are further

weighted according to a certain error they make. This error is calculated w.r.t. the used

distribution of training samples. Generating and combining many of these weak learners

yields to a very strong machine learning framework.

Random Forests: In this work another learning technique called RF is used which was

originally described in the seminal work of [3]. During training, random sub-samples of

the training data are used to train several randomized trees. A tree consists of split, leaf

and root split nodes. At each root and split node, the random sub-sampled training data

reaching this node is split into a left and right subset according to a feature-test and a

threshold. Such a feature-test consists of several parameters which are determined within

a node optimization task, e.g. by optimization of a measure based on the information

gain. The best combination of parameters is stored in the root or split node and is

applied to the data reaching the node. This yields to a feature-response of the data

which can be thresholded, thus splitting up the training data into two subsets. The node

optimization task is iteratively applied in each split node until one or multiple pre-defined

stopping criteria are reached. Examples are a maximal tree depth or a minimum number of

training-samples within a node. At this point, a leaf node is created in which a prediction

model based on the training data is stored. During a testing stage, new data is pushed

through the trained RF and the randomly trained decision trees. According to the stored

feature-tests and thresholds, they end up in leaf nodes. The previously stored predictions

are accumulated from the leaf nodes which lead to a prediction for the testing data.

2.3.3.1 Example: Boosting for Regression Tasks

In [79], an image based boosting algorithm formulated as a regression task is used for

three difficult challenges, i.e. localization, age estimation from face images and detection.

The boosting approach generates weak learners which analyze and keep only relevant local

appearance information in multiple rounds. In each round, a weak learner is weighted by

a factor such that a loss-function is minimized. After multiple rounds, one single strong

learning framework is created to handle the large variations in the used datasets. The loss

function objective of [79] is further optimized in [80] and more sophisticated weak learners

are developed using an image based boosting ridge regression algorithm.
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2.3.3.2 Example: Tooth Detection using Random Forest Classification

In [6] the authors make use of classification RF to automatically detect dental landmarks

in 3D Cone Beam Computed Tomography (CBCT) volumes. An example volume is illus-

trated in Fig. 2.6. They observed that the dental landmarks are roughly located at the

same absolute position in their volumes. This prior knowledge is used to train and apply

an RF classifier only at this pre-calculated region, which is illustrated in Fig. 2.7.

Figure 2.6: Head volumes for dental landmark localization from different field of views
(Source [6]). Left: axial, middle: sagittal and right coronal view.

Figure 2.7: Absolute search position constraint for dental landmark detection in [6] (Source [6]).

To train the RF classifier, positive training samples within a certain range around a

given landmark position are chosen, i.e. voxels inside a range smaller than 2 mm around

a landmark. Voxels which are farther away than 4 mm from landmarks are labeled as

negative training instances. Afterwards, an RF is trained with these labels. To generate

a weak learner in split nodes, they have used gradient and intensity features based on a

random number and position of neighboring voxels around a currently processed voxel.

Localization of teeth in a new unseen image I is done by classifying all voxels within the
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previously specified restricted area where the teeth probably lie. This is done by pushing

these voxels through the forest, which end up in several leaf nodes. From these leaf nodes,

the learned probabilities to which class a voxel v belongs is read out. Averaging over all

predictions from each tree per voxel, yields then to a final result, i.e. to which class/tooth

c a voxel v belongs to: p(c|I, v). However, such probabilities must be thresholded to get

only responses at teeth locations which is a quite difficult challenge. Averaging over all

positions of the final remaining responses, leads to a final landmark position.

The authors compared their RF method with a boosting framework and retrieved bet-

ter results in average, minimal and maximal Euclidean distance using the RF approach.

However, choosing a region as positive instances in the training process yields to an im-

precise localization of the teeth, due to defining multiple positive landmark candidates for

one landmark.

2.3.3.3 Example: Organ and Vertebrae Localization using Random Forest

Classification

An RF classification approach for center localization of organs is proposed in [11]. For each

voxel a label is assigned to the training data which yields to a multi-class RF approach,

i.e. labels for heart, left eye, left kidney, etc. This is done similar as in [6], by using

voxels in a small range around ground truth annotation as positive samples and farther

away voxels as negative/background instances. Further, different labels are used for the

positive samples from different organs. To capture the whole image information, context-

rich long-distance Haar-like features relative to a voxels position are used. For instance,

one or two cuboid boxes with a random size and placed at a random distance relative to

a training voxels position are used to create feature responses for training voxels. This is

done by calculating the mean intensity or gradient values of voxels which lie inside such a

random cuboid feature box.

Locating organs in a new unseen image is done by pushing each voxel of the image

through the RF . This results in voxel-wise probabilities for a certain class which are

thresholded. Afterwards, remaining voxel positions for a class are averaged which yields

to a final landmark prediction for a certain organ. With such a classification task, also

the presence of an organ can be detected. For their dataset this is helpful since images

are cropped at different positions, thus a various number of organs occur in the images.

An RF classification approach is also used for vertebrae localization in pathological

spine Computed Tomography (CT) scans in [33] by additionally developing a sparse to

dense labeling approach.

2.3.3.4 Example: Random Forest Regression for Organ Localization

The same authors of [11] circumvent the problem of voxel-wise labeling organs by using

an RF regression approach in [9]. Firstly, bounding boxes around different organs are

created, each of them aligned on the axis [X,Y, Z] as illustrated in Fig. 2.8 (a). Borders of
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the bounding boxes of one organ are treated as a continuous 6-dimensional vector which

depicts the absolute position in a volume. During training, all voxels from a volume

are then pushed through trees in which split nodes are optimized according to the same

features as in [11]. Basically, voxels with similar local appearance are grouped by features

and a variance minimizing information gain criterion, until they end up in leaf nodes.

According to positions of voxels reaching the same leaf, continuous relative distances to

all bounding box borders are stored in the leaf nodes.

When testing a new unseen volume, voxels are pushed through the trained RF which

end up in leaf nodes. All relative distances to the bounding boxes of all organs over all

trees are read out and an average bounding box position for each organ is calculated. A

schematic overview of the voting of two voxels v1 and v2 to the bounding boxes, can be

seen in Fig. 2.8 (b-c).

(a) (b) (c)

Figure 2.8: Bounding boxes around an organ (a) and example voting from voxels v1 and v2 to
the axis aligned bounding boxes (b and c) (Source [9]).

However, since organs vary a lot in their shape and mostly have no cuboid shape,

bounding boxes for organ localization lead only to a rough detection. Further, also organs

which are absent, will be located with this approach.

2.3.3.5 Example: Point Landmark Localization using a Two-Step Random

Regression Forest Framework

The authors of [25] improved the previous bounding-box approach of [9] by two ideas.

Localizing single point landmarks at hand-bones in 3D MR volumes and additionally

training and applying a second Random Regression Forest (RRF) to get more accurate

results, as illustrated in Fig. 2.9.

The first RRF uses context-rich and long-distance features, similar as in [9]. These fea-

tures are combined with a variance minimizing information gain criterion to group similar

voxels in their appearance and position in the volume. From voxels vi = [v{x,i}, v{y,i}, v{z,i}]
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which reach the same leaf nodes, relative distances dc(v) = lc−vi to each landmark posi-

tion lc = [l{x,c}, l{y,c}, l{z,c}] per class c are calculated. These relative distances are stored

in the leaf nodes as continuous histograms. During the testing part, histograms from leaf

nodes in which testing voxels end up are used to retrieve a final landmark estimate by

accumulating over all predictions.

In a first RRF , the authors use voxels from a whole volume to estimate all land-

marks. Since voxels may only vote very uncertain to a landmark farther away, they added

a weighting term which penalizes long distance votes. To improve on the localization

performance, a more locally second RRF is trained restricted to voxels from estimated

landmark positions from the first RRF .

Figure 2.9: Overview of the RRF approach for localizing hand-bone point landmarks
(Source [25]).

However, although they achieve good localization results in precision of accuracy, two

challenges occur: a) estimated landmarks switch between locations with similar shape,

which is due to an inaccurate first RRF and b), voxels farther away are not able to

capture the information to where they vote. Because of the latter it can happen that the

first forest predicts landmarks in background/air locations. A locally trained second RRF

can therefore easily converge to completely meaningless wrong landmark positions or can

even switch to similar but false landmark locations.

2.4 Combining Localization Approaches

As previously shown, several approaches are developed for landmark or bounding box

localization tasks, all of them with benefits and drawbacks. Researchers also try to combine

the benefits of multiple approaches to handle the drawbacks of each one. In this chapter

a few of such combinations will be discussed using some examples.
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2.4.1 Example: Automatic Teeth Detection and Classification with

Shape Models and Support Vector Machine

In [21], a teeth detection and classification pipeline is developed as depicted in Fig. 2.10.

Firstly, the maxillary bone is segmented by a combination of automatic bone thresholding

and an SSM . See Fig. 2.10(a-c) (yellow segmentation and contour lines). Having retrieved

the position of the maxillary bone, a predefined teeth region model is placed on the bottom

of this segmentation. This teeth region model is partitioned by 15 separation planes by

iteratively solving a cost function, see Fig. 2.10(c). At the end, each subregion should

consist of one or no tooth which is classified by a Support Vector Machine (SVM) [74].

By placing such a separated subregion to the teeth, it is feasible to label and extract each

tooth.

Figure 2.10: Image processing pipeline for tooth classification and detection (Source [21]).

2.4.2 Example: Kidney Localization and Segmentation based on Ran-

dom Forests and Deformable Models

In [13], bounding boxes around kidneys are detected by a similar approach as in [11].

Additionally, a second step is added in which for each kidney one local forest is trained

as a refinement step for centering the bounding boxes more precisely, as illustrated in

Fig. 2.11.

After kidney bounding boxes are located, an RF classifier is trained to assign to each

voxel in the bounding boxes a probability of kidney appearance. These probabilities are

then used for a template deformation algorithm similar as in [52], to segment the kidneys

based on elliptical shape deformations.

2.4.3 Example: Shape Model Matching using Random Forest Regres-

sion

In [47], a multi-step regression RRF combined with an SSM as regularization step is used

to locate landmarks for different datasets.
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Figure 2.11: Kidney localization: (a) rough bounding box localization, (b) bounding box center
refinement step, and (c) results of rough (red) and refined (green) bounding box localizations
(Source [13]).

To locate one landmark, a single RRF is trained similar to Hough-Forests

(HFs) [29, 30]. The main contribution of HFs is that multiple extracted image patches

from the whole image votes for a probable object localization. For instance, different

parts of one object votes for the center of the whole object in the image. The summation

of all votes of all extracted small image patches are accumulated in a Hough image in

which the maxima indicates the most probable position of an object. Further, in the

original HF work two information gain criteria are used for splitting image patches

after node optimization. One information gain consists of the purity of class-labels, i.e.

split among foreground classes and background class. The second information gain

splits among different uncertainties of relative localizations between data-points and

landmarks.

The information gain used in [47] tries to group similar feature patches according to

their appearance and relative distances to landmarks. Testing a new unseen image, patches

are randomly selected from the images and pushed through the forest which end up in

certain leaf nodes. The landmark predictions stored in the leaf nodes are then accumulated

in a 2D histogram. An example for facial landmark localization is illustrated in Fig. 2.12.

However, the locally trained forest can yield to multiple responses for the same land-

mark in the whole image, as illustrated in Fig. 2.13. Therefore, a point distribution model

is incorporated as a refinement step, i.e. SSM . The algorithm is described next for hand

radiographs, which is similar to the proposed hand datasets in chapter 5 in this work:

1. Locate points at the palm (four) and at each base at the fingers (five), using the HF .
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2. Initialize the pose of a previously generated statistical model, based on the nine

located hand points.

3. Apply another trained HF for each landmark to voxels around the landmarks of the

initialized shape.

4. Fit the initialized model to the newly found responses, by using an iterative con-

strained local model matching [12].

Figure 2.12: Exemplary HFs results: 2D image histogram on the left (all landmark predictions
overlaid) and the according 17-point model on the right (Source [47]).

To show the generality of this RF -SSM combination, they evaluated the same ap-

proach, to locate points in cephalometric images [48] and to segment the proximal femure

in radiographs of the pelvic [49].

2.4.4 Example: Localization of Anatomical Objects using Random

Forests and Discrete Optimization

Another interesting idea is presented in [19]. A multi-step random forest approach is

performed, followed by an MRF discrete optimization step as a regularization part to

handle multiple landmark candidates for one landmark.

Firstly, an RF classifier with extremely randomized trees [31] is trained, using voxels in

a small range around each landmark. Therefore, these voxels are labeled according to the

landmark which should be classified, i.e. [1, 2, ..., L]. Additionally, random background

voxels with different label L + 1 are added. Since such a classifier yields to inaccurate

localization results, one RRF per each landmark is trained as a local refinement step

using voxels in a small range around the landmark.

After training, landmarks are obtained by classifying voxels with the RF which results

in L+ 1 probability maps, one for each class (incl. background class). These probability

maps are thresholded. Afterwards, the voxels at the positions from the remaining high

probabilities are sent through the RRF according their associated class from the classifi-

cation forest. Thus a more accurate localization is retrieved. Since the classifier and the
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Figure 2.13: Example of multi-responses from the HF . A HF is trained on local appearance of
one finger tip. Applying this forest to the whole image results in multiple responses at each finger
tip due to similar local structures.

regressor are trained very locally, multiple responses occurred on similar locations which

are regularized by an MRF .

For this reason, first a non-maxima suppression is performed which yields to one or

multiple landmark candidate positions per each landmark. Next, an MRF is used as a dis-

crete optimizer which tries to find the optimal configuration over all landmark candidates

by minimizing a cost-function C:

C(M) =
∑
∀l∈L
P(l,M(l)) +

∑
∀e∈E

G(e,M(e)) (2.4)

Therefore, a graph topology, unary terms P and binary terms G are modeled. The

graph topology models the dependencies between landmarks. For instance, landmarks

which are near to each other might be more associated than landmarks placed farther

away to each other. On the other hand, the unary term contains the confidence of a

landmark candidate position, i.e. the probability obtained from the HF . Binary terms G
are used to model the weights among the graph topology. In [19] an automatic approach

is developed which derived a topology as depicted in Fig. 2.14.

2.5 Conclusion

Many approaches for landmark localization have been developed. Methods which work on

interest point detectors or mathematical and geometrical descriptions seem to be fast, but

often result in many false positive predictions which have to be post-processed by heuristic
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Figure 2.14: Automatically derived MRF graph topology (Source [19]).

methods. However, dealing with a huge number of false positives, the computation time

may be increased drastically.

Next, more sophisticated methods which work on whole images have been developed,

i.e. image registration methods. These methods are often used in medical images to

register scans of different image modalities but can also be used for landmark localization.

However, for matching a moving image to a fixed image, the appearance and shape of

the moving image has to be similar to the fixed image. If the difference is too large, the

warping process of image registration may fail. Also a good initialization is an important

key to achieve a reliable registration result, but is challenging. This must be done manually

or by some alternative methods.

In recent years, approaches which incorporate knowledge about previously seen training

images are often used, like boosting or RF . One aim of such algorithms is to learn, which

features or characteristics can be used to locate landmarks correctly. However, the lack of

data in medical images makes it challenging to cover all different variations in pose and

appearance. To support such machine-learning algorithms, different statistical models are

often used as a regularization step to improve the accuracy, i.e. SSM or MRF .
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In the last decades, machine learning methods have seen a lot of research interest since

they can be rather easily adapted to different challenges. One of these machine-learning

algorithms are Random Forests (RFs) [3]. As listed in the previous literature review, RFs

have been successfully applied to different landmark localization challenges.

An RF builds up on simpler structures, i.e. decision trees. Decision trees are inspired

by Classification and Regression Trees (CARTs) of [4] in which the authors developed the

concepts of supervised decision trees and their applications in regression and classification

tasks. For example, the aim of a classification task is to assign an input variable a discrete

label, e.g. binary and multi-class categorization. Regression on the other hand is used to

predict a continuous output variable for a given input, e.g. a probability or a distance.

For these tasks the input variables on which is learned have an associated label. This is

known as supervised learning. In contrast to supervised learning, other learning techniques

like semi-supervised or unsupervised learning exist in which given input variables do not

necessarily have an associated known label. However, this work is based on supervised

learning using RFs.

Therefore, a short overview of building a supervised RF is given in the next sections

based on the work and structure in [10] and [24]. Firstly, the basic idea of decision trees

is introduced followed by adding randomization techniques and ensembles of trees which

lead to RFs. Finally, this knowledge is used to build a more sophisticated point landmark

localization task with Random Regression Forests (RRFs) in chapter 4.

31
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3.1 Decision Trees

A decision tree is the basic element of an RF . It is structured as a binary graph illustrated

in Fig. 3.1 in which progressively simple feature-tests are used to solve a highly complex

problem. These feature-tests are generated and stored starting at a root node in one

decision tree. Applying the feature-tests to the incoming input variables which are also

called data-points from the complex problem yield to feature-responses for each of the data-

points. According to a binary decision from the feature-test the responses are thresholded,

thus splitting up the incoming data-points into a left and right sub-set which are forwarded

to a left or right child node. Applying iteratively several feature-tests in split nodes along

a path through the decision tree, small subsets of data-points end up in different leaf nodes

in which an estimation is stored, i.e. a leaf prediction model based on the associated labels

to the data-points.

Figure 3.1: Basic binary decision tree structure (Source [10]).

3.1.1 Example

As an example in Fig. 3.2 a decision tree is built to decide whether a picture is taken in

an outdoor or an indoor place [10]. Therefore, several simpler questions (feature-tests) are

applied iteratively at the root and several split nodes to solve the complex one. According

to the responses from the feature-tests, the complex question is forwarded either to a

left or right child node. Applying iteratively several feature-tests leads to an increase in

confidence of a correct answer. After a few depth levels the complex problem reaches a

leaf node in which an answer is stored according to previously learned similar problems

during the training process.
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Figure 3.2: Example of solving the highly complex question: ”Is the picture acquired indoor or
outdoor” using a hand-crafted decision tree (Source [10]).

3.1.2 Training

The training process consists of creating feature-tests in root- and split nodes which splits

training data-points also called training samples along the depth of the decision tree. At a

certain depth or at a defined stopping criterion, training samples reach leaf nodes according

to the previously applied feature-tests. There, a final prediction from the labeled training

samples is stored. For instance in Fig. 3.2, in the leaf nodes a class c which belongs to

indoor or outdoor place is stored. Creating feature-tests can be done manually as depicted

in the example in Fig. 3.2.

However, since decision trees are mostly used in highly complex problems, feature-tests

can be generated automatically using a set of training samples and associated prediction-

labels. This training-set is denoted as S and consists of several data-points or training

samples v with a varying number of features. Examples for such features in computer

vision applications are pixel color, position of a pixel or the gradient value of it.
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For each root- and split node several feature-tests h(v,Φ) with split-parameters Φ

from a parameter set G are generated. The split-parameters consist of a feature-response

function fr(v,θ), feature-parameters θ used in fr and a threshold τ . For each feature-

response function a response for a data-point is calculated. According to the thresholded

τ the data-points are split into a left and right subset according to following formulation:

h(v,Φ) = [τ < fr(v,θ)] (3.1)

In each split node j one best feature-test with its split-parameters is chosen which best

splits up the incoming set Sj of data-points. These parameters are obtained using following

node optimization formulation in which an information gain measure is optimized:

Φj = {θj , fr, τj} = argmax
Φj ∈ G

I(Sj ,Φj) (3.2)

Since in each split node a different subset of all training samples arrive, different best

split-parameters are learned in each node. This splitting procedure is iteratively applied

along all split nodes in all depth levels of a tree. After reaching a certain stopping criterion

instead of a split node, a leaf node is created. Typical examples for such stopping criteria

are a maximum depth of a tree or a minimum number of training samples within a split

node. At such a leaf node, a prediction p(·|v) from the labeled data-points which reach this

leaf node can be stored and used in a testing-stage. The structure of the label · depends

on the type of the task, e.g. classification (discrete, class c) or regression (continuous,

multivariate variable y).

3.1.3 Testing

Predicting an unknown label for a new testing-set from the same type as the training-set

is done by pushing testing data-points v from the testing-set S through the hierarchically

trained tree. Starting from the root node and further in each split node j the previously

learned best feature-tests h(v,Φj) are applied to the data-points reaching that node ac-

cording to equation 3.1. Thus each data-point is sent either to the left or to the right

sub-tree. At a certain depth a data-point reaches a leaf node from which the previously

stored prediction model p(·|v) can be used for a prediction. Since one prediction might

be very uncertain a final prediction can be made by combining all the predictions from all

data-points, e.g. by summation of all predictions.

3.2 Random Decision Trees

To improve the generalization and the computational performance of decision trees, ran-

domness can be injected during the node optimization task. This is done by using a

subset Gj of the whole parameter set G for a split node j, also known as randomized node

optimization [10]:
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Φj = {θj , fr, τ} = argmax
Φj ∈ Gj

I(Sj ,Φj) (3.3)

3.3 Random Forests: Ensemble of Random Decision Trees

A tree which is trained on all given training data-points is likely to be over-trained thus the

tree might lead to over-fitting. As a consequence the learned model does not generalize

well to new data. A countermeasure against this behavior is bootstrap-aggregating or

shortly bagging [2]. With this approach multiple random decision trees are trained, each

with a random subset of the data which helps to decrease the variance and correlation

among the trees. The remaining step is the task of combining several leaf-prediction

models pt(·|v) from the different learned trees t. This can be done by several approaches,

e.g. averaging over all leaf prediction models, taking the median result or multiplying all

results according to some normalization factor. This ensemble technique is called RFs.

3.4 Conclusion

This chapter has discussed the principles of supervised RFs, that are decision trees, ran-

domized node optimization and ensembles of multiple random decision trees. In the next

chapter 4 these basics are further developed to a point localization method. Therefore, an

RRF is used to predict continuous distances to obtain landmark positions based on the

appearance information from images.
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In this chapter Random Forests (RFs) are adapted to supervised Random Regression

Forests (RRFs) which predict continuous outputs. First the basics of RRFs are discussed.

Afterwards a continuous formulation for anatomical point localization is developed based

on the prior works of [10] and [24]. Further, novel ideas to improve the localization

performance are introduced, i.e. a novel type of vote weighting and a novel feature-

generation approach.

4.1 Random Regression Forests

RRFs are used to predict non-linear continuous models p(y|v), i.e. a continuous multi-

variate output y which depends on the multi-variate input-variables also called data-points

v. RRFs are ensembles of multiple random regression trees. Each regression tree estimates

a complex non-linear model by combining several simpler models, i.e. linear predictions

models [9]. An example of the training and testing stage of an RRF is illustrated in

Fig. 4.1. For the training-stage input training data-points v (x-coordinates) and associated

continuous outputs y (y-coordinates; black dots) are given, illustrated in Fig. 4.1(a). An

RRF is used to describe their distribution by ensembles of simple linear models in the

node optimization tasks. Figures 4.1(b-d) illustrate how the RRF predicts the continuous

outputs of the training data-points over several depths. Ensembles of simpler models are

fitted through the training data-points describing their distribution better with increasing

depth. Afterwards, this trained RRF can be used to predict a continuous output variable
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for a new input data-point. For instance in Fig. 4.1(a), an unknown y-coordinate should

be predicted for a new given input x-coordinate (red dot).

Figure 4.1: An illustration of how simpler models are combined to solve a non-linear regression
problem using RRFs. (a) shows training data-points (x-coordinates) with associated continuous
outputs (y-coordinates) which are marked as black dots. The non-linear model is approximated
by simpler models with increasing depth in (b-d). The aim of creating this prediction model is to
estimate a y-coordinate from a new unseen testing data-point at a certain x-coordinate (red dot in
(a)). Results from the estimation of the red dot y-coordinate over depth can be seen along (b-d).

4.2 Localization of Anatomical Landmarks

By defining the non-linear prediction models as continuous distances, RRFs can be used

to locate anatomical point landmarks using image voxels as data-points, as illustrated in

Fig. 4.2. Therefore, the distances are defined as the relative distance between a voxel

v = v{x,y,z} and a landmark position l = l{x,y,z} in each axis separately, similar as in [24]:

d = v − l (4.1)

During training an RRF , voxels from multiple training volumes with similar local

appearance and distance to a landmark should be grouped together. This is done by

splitting the voxels into left and right subsets in each split-node according to good feature-

tests. The feature-tests are based on the local appearance information around the position

of voxels. Thus similar voxels from the whole training set end up in the same leaf nodes

in which the relative distances d are stored.

In a testing stage voxels from a testing volume of the same type as the training volumes

are pushed through the trained forest. Thus they end up in different leaf-nodes according to

the learned feature-tests. The previously stored relative distances can be used to estimate

a landmark based on the absolute position of the voxel. This can be seen as letting a voxel

vote for an absolute position based on the relative distance voting vector.
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Figure 4.2: Illustration of sample voxels (yellow points) which vote for anatomical point-
landmarks (red circles).

4.2.1 Training

To train the point localization RRF , t random subsets of all voxels are selected from

training volumes. With these subsets t regression trees are trained, thus reducing the

correlation between them. Two types of voxel-selection are explored in this work, namely

global and local voxel selection around landmarks. The idea behind the global scheme

is that voxels from anywhere in the image are used to predict a landmark position. On

the other hand using the local voxel selection scheme only voxels within a certain range

around a landmark are used to train a forest. Thus they explore the structure near to the

landmarks in more detail than the global approach.

Having selected subsets of voxels as training data-points, multiple regression trees are

trained independently and in parallel which is a huge benefit of RFs. As explained in

chapter 3, in each split node a best feature-test (or split-function) is learned according to

the randomized node optimization task.

4.2.1.1 Randomized Split Node Optimization

In the split node optimization task an incoming data-point set S consisting of voxels v

from images is split into a left and right subset. The idea behind this splitting for landmark

localization is that dissimilar voxels are split up and similar voxels are forwarded to the
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same child nodes. The similarities of voxels are explored by their local appearance which

is captured using appearance based features. These features are later explained in more

detail. Voxels which are located at roughly the same distance and direction from a certain

landmark are likely to have the same local appearance.

This work explores two different feature-generation approaches based on geometrical

feature-parameters θ. Firstly, completely randomized features are used which depend on

the local appearance information around the position of voxels similar as in [9, 11, 25].

Further, a novel feature-generation approach which creates features at the landmark po-

sitions is introduced, thus capturing the appearance at locations to where voxels vote.

Random feature generation: Haar-like features are used within the feature response

function fr to describe a voxels occurrence within a volume, similar as in [9, 11, 24].

Therefore, one (b = 0) or two (b = 1) random boxes are created randomly relative to a

voxels position. Afterwards, for each box the mean intensity value of all voxels from the

image captured by the box is calculated. If two boxes are used the difference between the

two mean values is used. This approach is described by equation 4.2.

fr(v,θ) =
1

Q1

∑
q∈Q1

I(q + v)− b · 1

Q2

∑
q∈Q2

I(q + v) (4.2)

The boxes Q1 and Q2 are generated randomly within a maximum range p = p{x,y,z}
relative to a voxels position. Further, the geometry of a box is created randomly, i.e. a

random side-length up to maximum size of s = s{x,y,z} in each dimension. q denotes a

position inside a box Q and I(x) the intensity at a certain position x.

On-landmark feature generation: As described above the displacement distances p

are traditionally chosen randomly inside a certain range to capture the local appearance

information. A novel idea which is investigated in this work is to capture the appearance in-

formation directly at landmarks. For instance, instead of generating the feature-responses

only locally around the voxels v, they are also placed to where the voxels vote to. Thus,

knowledge about the appearance information of landmarks is directly incorporated during

training. This idea is further referred to as On-Landmark Feature Generation (OLFG)

whereas the random approach is denoted as Random Feature Generation (RFG). An illus-

tration of the differences between the RFG and the OLFG method is depicted in Fig. 4.3.

To model these new features, the distance p is fixed to a relative distance between a ran-

dom voxel vR within a split-node to the landmark on which the RRF is actually trained.

Next, the random boxes are created relatively to this probable landmark position. Ac-

cording to this idea voxels which have the landmark at the same relative distance as the

voxel vR should be grouped together.

As not every feature-parameter θ and threshold τ is good for splitting the voxels

in a split-node, the best combination of these two parameters is obtained in the node

optimization task as described next.
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Figure 4.3: Illustration of the difference between the two feature generation methods. On the
left: Standard RFG around a voxel (yellow point) which votes to a landmark (red dot). Only the
local appearance is captured to describe the voxels position within a volume. On the right: OLFG
approach to capture the information a voxel votes for.

Selecting the best features: In a root- or split-node j, a pool of feature-parameters

θj and for each of them several thresholds τ are randomly generated. According to equa-

tion 3.1 an incoming set of voxels Sj is split into a left and right subset SLj and SRj . Due

to equation 3.3, a best combination of feature-parameters and thresholds is chosen and

stored using following information gain measure I for regression objectives [10, 24]:

I(Sj ,θj , fr, τ) = H(Sj)−
∑

c∈[L,R]

|Scj |
|Sj |
H(Scj ) (4.3)

|Sj | denotes the number of voxels in a set Sj . The information gain measure I is based on

the Shannon entropy H and is calculated on the incoming and split sets Sj , SLj and SRj :

H(S) =
∑
v∈S

log (|Σ(v)|) (4.4)

The covariance matrix Σ models the certainty of landmark estimations from voxels in a

set S to a landmark. In other words, since the information gain is maximized according to

equation 3.3 voxels within a split-node are split up such that the entropies H(S{L,R}) for

the subsets SLj and SRj are minimized. For instance, the more voxels in a set S estimate
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the landmark at a similar position, the lower is the entropy.

An example for the similarity grouping based on features of voxels along the depth can

be seen in the y-histograms hy in Fig. 4.4. In the root-node in Fig. 4.4(a) two completely

contrary dy coordinates exist due to the different voxel positions in the volume, dy,{1,2}
and dy,3. The illustrated RRF tries to find best split features to describe these two

rather different positions. Some examples are depicted with the green boxes with size s

at a certain relative distance p to the voxels position. Having found best feature-tests to

describe their local appearance and therefore their local position, the two voxels at the

bottom are forwarded to the same child node on the right. The voxel which is located

at the upper half in the volume is forwarded to the left child node, thus grouping similar

voxels. The results of splitting are illustrated in Fig. 4.4(b-c).

4.2.1.2 Leaf Prediction Model

Voxels v which fall into the same leaf node lt in a tree t are likely to have the same

local appearance and are located roughly at the same relative position to a landmark

within a volume. Therefore, the relative distances d of equation 4.1 from all these voxels

to the landmark are stored in a prediction model in the leaf nodes. Similar as in [24]

this prediction model consists of three 1D distance histograms h{x,y,z}(lt(v)) in which all

relative distances are stored in each axis separately. Some 2D example histograms are

illustrated in Fig. 4.4.

4.2.2 Testing

The aim to train RRFs is that they can be used to predict landmarks in new medical

volumes. Therefore, voxels v ∈ S from a set of pixels S from a testing volume are

pushed through the previously trained trees t ∈ T . The learned splitting features in root-

and split-nodes are applied to the voxels, thus forwarding them either to left or right

child-nodes until a certain leaf node is reached. For each voxel and for each tree relative

distance histograms h{x,y,z}(lt(v)) are retrieved. A final landmark prediction is computed

by combining these histograms which can be done by several methods. In this work the

histogram aggregation which was successfully applied in [24] is compared to [47] in which

each voxel votes directly into an image space accumulator using a 3D histogram.

4.2.2.1 Histogram Accumulation

The histogram accumulation type proceeds as follows [24]:

H{x,y,z} =
1

T
· 1∑

v∈S w(v)

∑
t ∈ T

∑
v ∈ S

w(v) · h{x,y,z}(lt(v)) (4.5)

The histograms h{x,y,z}(lt(v)) are accumulated for each axis independently and result in

three final separated 1D histograms H{x,y,z} for a landmark. A final landmark prediction
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Figure 4.4: Illustration of sample voxels (yellow squares) which are trained to locate anatomical
point-landmarks (red circles). (a) shows one training image and selected voxels (left), a zoomed
view to the voting vectors and generated Haar-like feature-parameters used for the splitting. On
the right, distances d between the voxels and the landmark are illustrated in two 1D histograms,
one for each axis. According to the variance minimizing information gain measure in the split-
node optimization, voxels from the bottom and from the top, are split since this leads to the
best variance minimization in the histograms. (b) and (c) depict leaf nodes and the stored one
dimensional distance histograms which models the distances from all voxels in that leaf node to
the landmark position.
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can be made by finding the maximum in each axis of H{x,y,z}. In [24], additionally a

weighting factor w was added which weights a vote from a voxel during testing. This

weighting factor is discussed later in more detail.

4.2.2.2 Image Space Accumulation

For each voxel a probable landmark position is retrieved by finding the maxima values

directly in h{x,y,z}. This single prediction is used to vote for the best position in a 3D

histogram also called image space accumulator. If all voxels have voted for a certain

position the maximum within the image space accumulator is searched which indicates

the most probable landmark position. In this work the maxima values of h{x,y,z} are

used since they showed the best results for the point-voting scheme in [24]. Several other

approaches exist to retrieve this single prediction, e.g. using the median values of h{x,y,z},

calculating the mean value positions, etc. Similar as in the histogram accumulation type,

votes to the image space accumulator can be weighted with a certain weight w(v) which

is discussed in the next section.

4.3 Vote Weighting Approaches

4.3.1 Euclidean Distance

In [24] votes from voxels v to a landmark l are weighted according to their relative Eu-

clidean distance d, i.e. the length of the voting vector as follows:

w(v) = exp(−α · ||d||) (4.6)

α is a tuning parameter which controls the strength of the weighting term. For instance

voxels which vote to a landmark far away are weighted less than voxels voting for a near

landmark if α becomes larger. This approach shows promising improvements in [24] in

contrast to equally weighting all votes (α = 0).

However, voxels which vote with a higher weight to near landmarks can also be a

disadvantage. Think of a data-point v which votes from one finger tip to another one

in hand volumes as illustrated in Fig. 4.5 on the left. Fingers are varying the most

as observed in [24]. Thus these votes might be very uncertain for this dataset but an

Euclidean weighting term would emphasize votes from such data-points. Therefore, a novel

distance measure for hand images which makes use of underlying structures is introduced,

i.e. replacing the Euclidean distance with a geodesic metric as depicted in Fig. 4.5 on

the right. This geodesic metric is based on the idea of [46]. There, the authors assume

that the shortest path between two points according to the geodesic distance contains

rich information about the underlying structures between these two points. For instance,

the geodesic distances between points of the same organ are very small whereas points

between different organs have a larger distance since different tissues have to be passed.
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Figure 4.5: Illustration of the vote weighting approaches using an Euclidean distance of [24]
(left) and a geodesic distance (right). Left: A voxel v1 far away from the landmark l is lower
weighted with w1 than a voxel v2 closer to the prediction of the landmark. Note that v2 has
more influence than v1 to the landmark prediction. Right: The weighting factor depends on the
underlying structures of the voting-vector, i.e. voting weight-vectors cannot jump between fingers
and have to follow a certain path. Therefore, v2 has lower influence to the prediction as v1.

4.3.2 Geodesic Distance

In contrast to the Euclidean distance which is the distance between a voxels position and

the position to where it votes, the geodesic metric needs a more sophisticated method to be

calculated. Assume that foreground and background segmentations are given additionally

to the 2D Magnetic Resonance (MR) images. Foreground segmentations indicate the inner

part of the hand whereas background indicates the background of an image. For each voxel

position a geodesic distance map to any other voxel position is calculated to get a distance

between a testing voxel and the position to where it votes. This is done by using an

approximation of the geodesic distance metric based on the sequential algorithm in [1]. In

the next two subsections a detailed overview of how this geodesic distance calculation is

achieved, is given.
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4.3.2.1 Distance transformation

To calculate the distance transformation, a forward and backward mask have to be defined

which are illustrated in Fig. 4.6. These masks are applied to an image consisting of one

feature pixel with initial value zero and non-feature pixels with initial values of ∞ at

the beginning [1]. An example of an image from which the distance transformation is

calculated is illustrated in Fig. 4.7(a).

The distance computation starts by overlaying the forward mask pixel-wise with the

center of the mask from left to right and from top to bottom of the image in a first

forward iteration. The value of each distance in the mask (0, a, b and c) is added to the

pixel value of the image below them. The actual processed pixel in the image is then

replaced by the minimum of these four sums. Afterwards, a backward iteration using the

background-mask is applied from right to left and bottom to top to the binary image.

bb c

a 0

(a) Fwd. mask

a

bb c

0

(b) Bwd. mask

Figure 4.6: Forward and backward masks for the distance transformation.

(a) Binary image (b) Forward iteration (c) Backward iteration

Figure 4.7: Computation of the distance transformation using the mask-values a = b = c = 1. -
are indicating initial values of ∞ and ∗ indicates the start feature pixel (Source [1]).

This distance transformation has to be applied several times iteratively in case of more

complex images, i.e. the hand images. The toy example in Fig. 4.8(a) illustrates what

happens if the distance transform is solely applied once to the foreground-pixels, marked

as one yellow feature pixel and gray squares. If the distance transform is only applied once,
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some distances are not assigned to a few foreground-pixels as depicted in Fig. 4.8(b-c).

Therefore, the distance transform must be at least applied a second time to cover also the

missing foreground-pixels, as illustrated in Fig. 4.8(d).

(a) Binary image
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(e) Backward iteration 2

Figure 4.8: Toy example which shows the distance transformation applied multiple iterations.

The next two steps describe how this distance transformation is applied to retrieve

geodesic distance maps from the 2D hand images. Two different cases exist, based on

whether a voxel which votes to a landmark is located inside the foreground-segmentation

or inside the background-segmentation.

4.3.2.2 Creating Geodesic Distances Maps of Voxels Inside the Foreground

Segmentation

From a position of a testing voxel v which is located inside the foreground-segmentation a

two-step approach is used to calculate the distance to any other voxel. First, the distance

transformation is applied to all voxels within the foreground-segmentation several times

using the position of v as the starting feature position. Therefore, the values a, b and c are

set to the voxel spacing sx,y of the images as follows: a = sx, c = sy and b =
√
s2x + s2y .

This results in a distance map within the foreground segmentation as illustrated in

Fig. 4.9(a). The blue cross indicates the starting feature position. Dark values indicate

a low distance to the starting position. The brighter the values become, the larger is the

distance to the starting position.

Next, the distances within the background segmentation are calculated based on the

geodesic distance values at the border of foreground distance map. To punish a path
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through the background, a weight β for the masks is introduced as follows: a = β · sx,

c = β ·sy and b =
√

(β · sx)2 + (β · sy)2 . A final distance map is illustrated in Fig. 4.9(b).

Figure 4.9: Illustration the geodesic distance map creation starting from the point at the finger
tip. Dark values indicate a low distance to the starting position. The brighter the values become,
the larger is the distance to the starting position.

4.3.2.3 Creating Geodesic Distances Maps of Voxels Inside the Background

Segmentation

In contrast to step described above, three steps have to be performed if a testing voxel

votes from the background-segmentation to a certain position. The first and second step

are similar as the previously described one, but conversely calculated, i.e. first creating the

distances for the background and then for the foreground segmentation. An illustration

of this step is depicted in Fig. 4.10(a-b).

Using only these two steps leads to large distances in the background far away from

the starting position as illustrated as white areas in Fig. 4.10(b). To allow paths going

through the hand, a third step is performed which re-calculates all possible background-

segmentation distances again based on the distances of the borders of the foreground-

segmentation. As a final background-distance map the pixelwise minimum of either the

first or the second background distance map are used. Note the differences between

Fig. 4.10(b) and Fig. 4.10(c) in the area on the bottom right.
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Figure 4.10: Illustration the geodesic distance map creation starting from the point at the blue-
cross outside the hand. The pixelwise minimum of (a) or (c) is used to create the final distance
map, shown in (c).

4.3.3 Weighting

During testing, first the distance maps for all voxels are created. Afterwards, the distance

d is read out at the position of a probable landmark position where a voxels votes for.

This distance d is applied to equation 4.6 which results in a weighting for the vote of a

voxel.

4.4 Conclusion

This chapter has shown how RRFs can be used for anatomical point localization tasks. The

regression model, objective functions and feature generation methods have been developed

accordingly and a histogram method for storing landmark predictions in leaf-nodes has

been introduced. In addition, a novel vote weighting distance measure based on a geodesic

metric has been proposed with the underlying idea, that votes should be weighted accord-

ing to a path through the underlying structures. Further, the drawback of long-distance

votes in terms of having no knowledge to which a certain voxel votes has been encountered

by means of a new feature generation method. In chapter 6, these ideas are evaluated and

compared to previous methods on the set of studied datasets described in chapter 5.
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Three different types of datasets were provided by the Ludwig Boltzmann Institute

for Clinical Forensic Imaging. This data is part of an ongoing volunteer study collecting

Magnetic Resonance (MR) image scans of male Caucasian subjects with known age be-

tween 13 and 24 years. The dataset consists of 3D MR volumes of the head to localize

third molars, upper part of the chest for localization of the clavicle bone and left hand

volumes to localize bone joints. Anatomical points were annotated by medical experts.

5.1 3D MR Head Volumes for Third Molar Localization

(MRTM)

276 MR volumes showing one half of the head with two annotations in the center of the

third molars are given. In some subjects one or even all of the third molars are missing.

Therefore, the annotation was placed on an estimated molar position by a medical expert.

Challenges in this dataset vary from different volume cropping due to strong translations,

varying structures within the head and brain and global rotations. Furthermore artifacts

and noise appear frequently due to metallic objects like braces and scanner artifacts.

Each of the MR volumes was acquired by a Proton-Density Weighted Turbo Spin Echo

Sequence (PD-TSE). The voxel size per dimension of the volumes varies little around the

mean value of 0.59 × 0.59 × 1 mm per voxel with a size of around 208 × 256 × 28 voxels.

Figure 5.1 illustrates extracted 2D slices from 3D MR volumes acquired from 13 and 20

year old volunteers. Yellow dots mark the points of interest which should be automatically
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located using Random Regression Forest (RRF). This dataset is further referred to as 3D

MR Third Molar (MRTM) dataset.

(a) 13 years (b) 20 years

Figure 5.1: Example 2D slices from the 3D MR head volumes showing 2 yellow marked point-
landmarks at third molars.

5.2 3D MR Upper Chest Volumes for Clavicle Localization

(MRC)

Landmark localization at the clavicles was performed on 28 MR volumes from the upper

chest. Examples are illustrated in Fig. 5.2. The acquisition of the volumes was performed

using a spacing of 0.89 × 0.89 × 0.99 mm per voxel and 168 × 192 × 44 voxels in

x, y and z dimension. Landmarks were placed on the top, middle and bottom location

at the sternal extremity of each clavicle in each volume. This results in 6 landmarks for

each 3D volume. Each clavicle has a strong variation in rotation, intensities and shape

which makes this small dataset challenging to process. Further, the continuous movement

of volunteers due to breathing led to changes in translation and rotation of the inner parts

in the chest. This dataset is further referred to as 3D MR Clavicle (MRC) dataset.
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(a) 13 years (b) 20 years

Figure 5.2: Example 2D slices from the 3D MR upper chest volumes with 6 yellow marked
point-landmarks.

5.3 3D MR Left Hand Volumes for Hand-Bone Localization

(MRH)

Left hand MR volumes to locate landmarks placed between hand and on wrist bones were

acquired from 60 volunteers. Examples are illustrated in Fig. 5.3. This dataset with an

average size of around 288 × 512 × 72 voxels per volume was acquired with a voxel

spacing of 0.47 × 0.47 × 0.9 mm per voxel. A hand is located roughly at the center of the

acquired volume. The challenges for this dataset are the strong variations of fingers since

they are the most flexible part of the hand. The volunteers vary them during acquisition

although a heavy weight is placed on the hands to reduce this movement. This might be

due to inconvenient positions during the whole scan process which lasts approximately

10-15 minutes. The 3D MR Hand (3D-MRH) dataset is also projected along one axis to

get a 2D MR Hand (2D-MRH) dataset of size 288 × 512 × 1 voxels. This dataset is

used for evaluations with the geodesic distance metric. Further, foreground (hand) and

background (no-hand) segmentations are made by a threshold based approach which is

refined manually to split fingers which have been grown together.
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(a) (b)

(c) 13 years (d) 19 years

Figure 5.3: (a) shows 28 annotations on a projected 2D MR image whereas (b) illustrates these
annotations on a 3D bone segmentation of a left-hand volume (Source [24]). Some example 2D
slices from the 3D MR left hand volumes are depicted in (c) and (d).
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In this chapter, the ideas of chapter 4 are evaluated, namely the geodesic distance

metric, the on-landmark feature generation method and the use of restricted image infor-

mation for training. In more detail, following evaluations are made:

1. In section 6.1, the vote weighting approach using the geodesic distance metric

(Geodesic Distance Vote Weighting (GDVW)) is compared to the Euclidean dis-

tance metric (Euclidean Distance Vote Weighting (EDVW)) of [24]. This evaluation

is performed on the 2D MR Hand (2D-MRH) dataset.

2. In a second evaluation, the On-Landmark Feature Generation (OLFG) approach is

investigated in section 6.2 and compared to the traditional Random Feature Gener-

ation (RFG) method. The idea of the OLFG approach is originally introduced for

the 3D MR Hand (3D-MRH) data. However, it is also studied for the other 3D MR

Third Molar (MRTM) and 3D MR Clavicle (MRC) datasets.

3. In a third evaluation in section 6.3, forests are trained for all 3D Magnetic Resonance

(MR) datasets using only voxels in a small range around the landmark positions, i.e.

similar to Hough-Forest (HF) [29, 30] but including also long-distance features as will

be explained later on. This approach is further referred to as Globally-Constrained

Hough-Forest (GCHF). This experiment is distinct from to the second evaluation

of section 6.2 in which voxels from the whole image are used to train a Random

Regression Forest (RRF). Another reason to experiment with this approach is the

55
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smaller anatomical variation near to a landmark. Structures farther away might vary

stronger in rotation and translation related on the landmark position. Therefore they

can predict the landmark only very roughly. Further, appearance variations at these

remote like structures might also negatively influence a landmark prediction.

All the evaluations are quantitatively comparing the Euclidean distance between the

found and annotated landmark position in mean ± standard deviation in millimeter. Fur-

ther, the number of estimated landmark positions greater than a threshold are noted as

outliers in percent and the absolute number in braces.

The evaluations of the 3D-MRH and MRTM datasets are done using a three-fold

cross-validation setup. For all the parameter optimizations one run of the three-fold

crossvalidation setup is performed. For the MRC dataset a leave-three-out cross-validation

is performed due to the small number of data. The parameter optimization is performed

using four runs of the cross-validation. For all evaluations, per each split node 100 features

and 10 random thresholds for each feature are generated within the node optimization task.

6.1 Geodesic Distance Evaluation

The evaluation of the GDVW approach is performed on the 2D-MRH dataset. First, the

two parameters α and β are optimized. Based on the best parameter setup the tree depth

and number of trees are evaluated. Afterwards, landmarks are localized on all images in

a three-fold cross-validation. The results are compared to the EDVW approach of [24].

6.1.1 Parameter Optimization of α and β

In the EDVW approach of [24] the parameter α controls how strong votes from pixels to

a landmark are weighted according to their voting-distance. For instance a pixel which

votes to a landmark far away has a smaller weight compared to a pixel which votes to

a closer landmark. In the GDVW method, α is a tuning parameter which controls the

overall influence of the votes. β on the other hand controls the weighting of the distances

between neighboring background pixels. α and β are evaluated empirically within the

following range:

• α: 0.05 up to 0.30 in 0.05 steps

• β: 0.5 up to 3.5 in 0.5 steps, depending on a certain α value

The parameters depicted in Tab. 6.1 are used to train the RRF which is afterwards used

to optimize α and β.

Results and Discussion:

The results for the GDVW parameter optimization can be seen in Tab. 6.2. Note that

the α parameter favors a value of 0.05 since the errors in mean and standard deviation are
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Parameter Value

Number of trees 8
Maximal depth 15

Maximal feature size 25 mm
Maximal feature distance 35 mm

Table 6.1: RRF parameter setup for GDVW α and β optimizations.

β
0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.05 3.1± 2.3 2.8± 1.9 2.7± 1.9 2.7± 1.9 2.6 ± 1.8 2.7± 1.8 2.7± 1.8
0.10 2.9± 2.2 2.8± 2.3 2.7± 2.3 2.7± 2.3 2.7± 2.2 2.7± 2.2 2.7± 2.3

α 0.15 3.1± 2.5 2.9± 2.6 2.8± 2.4 2.9± 2.5 2.8± 2.4 2.8± 2.5 2.9± 2.5
0.20 3.2± 2.6 3.0± 2.6 3.0± 2.6 3.1± 3.2 3.1± 3.0 3.1± 2.7 3.2± 3.2
0.25 3.6± 4.0 3.4± 3.9 3.5± 4.4 3.1± 3.6 3.3± 3.7 3.5± 4.5 3.6± 5.1
0.30 3.8± 3.9 3.5± 4.0 3.6± 5.0 3.6± 5.0 3.5± 4.4 3.4± 4.4 3.6± 5.0

Table 6.2: Results of varying α and β values for the GDVW parameter optimization.

α
0.00 0.05 0.10 0.15 0.20 0.25 0.30

5.7± 5.0 2.7 ± 1.9 2.7± 2.3 2.8± 2.4 3.0± 2.6 3.1± 2.7 3.3± 3.3

Table 6.3: Results of varying α values for the EDVW parameter optimization which is later on
compared to the GDVW approach.

almost the smallest among different β values. The more α increases, the higher the error

in mean and standard-deviation becomes in almost every α-β combination. This is due

to more noisy estimations since the localization results depend on less pixels the higher α

becomes. On the other hand, the errors at α = 0.05 and β between 0.5 up to 2.5 decrease.

An extended β evaluation for α = 0.05 is illustrated in Fig. 6.1. It seems that large β

values greater than around 2.5 do only have small influence to the localization performance

which might be due to saturation. Votes to landmarks from background pixels become

negligible if β increases. Therefore, the parameter combination of α = 0.05 and β = 2.5

has been chosen as optimal. Note that α = 0 is evaluated in Tab. 6.3 since with this setup

no weighting scheme is used at all, i.e. all votes are weighted equally.

Results of the parameter optimization for the EDVW method is illustrated in Tab. 6.3.

An α value of 0.05 seems to be promising for further evaluations. Higher values lead to

noisy estimations since the prediction belongs to less voxels the higher α becomes as

also observed in [24]. Note that the highest errors are retrieved using no weighting term

(α = 0). It seems that pixels which vote to a landmark farther away have a negative

influence on the overall localization performance of the RRF , as also observed in [24].
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Figure 6.1: Extended results of varying β values with fixed α = 0.05 for the GDVW parameter
optimization.

6.1.2 Evaluation of Tree Depth and Number of Trees

In this section the tree-depth and the number of trees are evaluated to find a good param-

eter setup for a cross-validation. An RRF with a varying depth up to 20 using a constant

number of eight trees is evaluated to retrieve the best depth. To evaluate the best number

of trees, an RRF up to 10 trees is evaluated in steps of two using a depth of 20.

Results and Discussion:

Figure 6.2(a) shows results for the depth evaluation. It seems that the deeper trees are,

the better is the localization performance. Further, no over-fitting can be observed. The

mean and standard deviation errors decrease fast at the beginning and change only little at

higher depths. Due to these results for all other experiments a depth of 20 is used. Larger

depths are neglected since training time and memory consumption increase exponentially

the deeper the trees are trained.

Increasing the number of trees on the other hand seems to have only small influence on

localization performance as opposed to tree-depth. This is illustrated in Fig. 6.2(b) and

might be the case because the average prediction of multiple pixels is used. Therefore,

eight trees per forests are chosen for further experiments since the error at RRFs with

more than eight trees stays approximately the same.

6.1.3 Cross-Validation

To evaluate the whole 2D-MRH dataset, a three-fold cross validation is performed using

the previously optimized RRF parameters. Following experiments are made:

1. Comparing RRFs with the EDVW and GDVW approach

2. Comparison between the histogram accumulation and the image space accumulation
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Figure 6.2: Results of tree depth and number of trees parameter optimization for the GDVW
evaluation.

6.1.3.1 Euclidean Distance vs. Geodesic Distance

Figure 6.3(b) and Tab. 6.4 show results comparing EDVW and GDVW . The y-axis of

Fig. 6.3(b) depicts the percentage of landmark estimations (normalized between zero and

one) which are located within the Euclidean error in millimeter on the x-axis. Both

methods seem to be equally good and only differ in minor deviations. A qualitative

comparison of these two approaches is illustrated in Fig. 6.4. Investigations show that the

largest outliers are 14 mm away from the correct annotation in both approaches, which is

a good result and may be handled by a second more locally RRF as done in [24].

Type Error # Outlier ≥ 10 mm

GDVW 1.95± 1.48 0.18 % (3/1680)
EDVW 1.92± 1.44 0.12 % (2/1680)

Table 6.4: Results of comparing the EDVW to the GDVW approach.

The results lead to the conclusion that votes from fingers to landmarks on other fin-

gers and votes to landmarks farther away do not contribute much to the localization

performance. This assumption is based on the results of both approaches (EDVW and

GDVW ):

• Impact of EDVW : Assume that the locations on finger tips should be predicted

using only voxels from hand-palm. Pixels which are described by local appearance

at the palm of the hand cannot cover the strong variations at fingers precisely. On

the other hand, pixels near to a predicted landmark have a stronger influence than
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pixels farther away. This behavior is observed and tackled by the EDVW approach

in [24]. However, in most images the fingers are close to each other. Therefore, votes

from fingers which vote to landmarks on another finger have a high contribution to

the prediction due to the EDVW method. By using the GDVW method, such votes

between different fingers have a lower contribution as described next.

• Impact of GDVW : The GDVW approach does not lead to any improvements

compared to EDVW , but it also has no disadvantages. Pixels from one finger which

vote to landmarks on a different finger seem to have a low influence to the localization

performance since it makes no difference to weight them good (EDVW approach;

see before) or worse (GDVW method). This might be due to the strong variation

of fingers. Another aspect is that the features, which are generated locally around

pixels, already incorporate the variation at the fingers. The same is true for those

pixels which are located at the landmarks. This might explain that votes from pixels

at fingers which vote to another finger can be neglected.
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(b) Distance measure comparison

Figure 6.3: Results of comparing the histogram to the image-space accumulation in (a), and the
EDVW to the GDVW approach in (b).

6.1.3.2 Histogram vs. Image Space Accumulation

Results of comparing the histogram with the image space accumulators using the optimized

GDVW approach are depicted in Tab. 6.5 and Fig. 6.3(a). The image space accumulation

seems to be as good as the histogram accumulation for this dataset. This might be

because of the large depth during training and due to the small amount of data from the

2D dataset. In general, the larger the depth, the less voxels reach the same leaf nodes.
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(a) EDVW (b) GDVW

Figure 6.4: Qualitative comparison of the EDVW and the GDVW vote weighting approaches.

Thus the stored distance histograms h{x,y,z} in the leaf nodes become very peaky and have

a small variation.

Type Error

GDVW Histogram 1.93± 1.45
GDVW Image Space 1.95± 1.48

Table 6.5: Results of comparing the histogram to the image-space accumulation approach using
GDVW .

6.1.4 Conclusion

Overall it can be said, that the GDVW approach has no benefits but also no drawbacks

compared to the EDVW method of [24] in terms of localization accuracy and precision.

The only drawback is that for GDVW , fore- and background segmentations have to be

generated. However, this is a clear drawback since generating segmentations is in general

a difficult task. Therefore, this approach is not further adapted to the 3D-MRH dataset.
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6.2 On-Landmark Feature Generation using Whole Image

Information

In this section, the OLFG method is compared to RFG approach on all 3D datasets. The

training process of an RRF is modified such that starting from a certain depth dstart,

the forest generates 50% random (RFG) and 50% on-landmark features (OLFG) of the

maximum allowed number of features in each split-node. Further, for all the evaluations

the weighting term of [24] is used since it showed promising results for hand-datasets.

Therefore, dstart and α for the weighting term are optimized for each dataset separately

to gain the best parameter-setup.

6.2.1 Hand Dataset

First the 3D hand volumes are evaluated using the parameters as listed in Tab. 6.6. The

OLFG approach is introduced starting at a depth of dstart = 10 according to the results

of the evaluation in Fig. 6.5. Since it is the same dataset as in [24] and further similar

behavior is observed in chapter 6.1, the number of trees, the maximum depth and α are

chosen to be similar as in [24].

Parameter Value

Number of trees 8
Maximal depth 16

Maximal feature size 25 mm
Maximal feature distance 35 mm

Maximal feature size on landmarks 10 mm

α 0.1
OLFG starting depth dstart 10

Table 6.6: RRF parameter setup for the 3D-MRH dataset.

6.2.1.1 Results and Discussion

A three-fold cross-validation based on the optimized parameters shows the results in

Tab. 6.7 and Fig. 6.6. The OLFG method shows the best result of 3.49 ± 2.93 in mean

and on the number of outliers compared to the RFG approach. The standard-deviation

shows only minor and negligible differences. In Tab. 6.8, a detailed analysis is depicted

on which parts of the hand the RRF makes the most errors. These results show that the

improvements of the accuracy come from each part of the hand, i.e. the mean-error can

be improved at more stable structures like the radius, ulna, carpometacarpals as well as

at the stronger varying interphalangeal joints (along fingers) and finger-tips .
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Figure 6.5: Optimization results of the OLFG starting depth dstart for the 3D-MRH dataset.

Type Error # Outlier ≥ 10 mm

RFG 3.85± 2.88 3.45 % (58/1680)
OLFG 3.49± 2.93 2.80 % (47/1680)

Table 6.7: Results of comparing the RFG to the OLFG approach for the 3D-MRH dataset.
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Figure 6.6: Results of comparing the histogram and the image-space accumulation approaches
in (a), and the RFG to the OLFG approach in (b) for the 3D-MRH dataset.

On the other hand, the precision of the OLFG approach which is modeled by the

standard-deviation is only for the interphalangeal joints more worse than the RFG method.

One possible explanation for this behavior is that these similar looking landmarks are very

close to each other. Therefore, the forest might be very uncertain if it captures the correct
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Type RUC MC PJ FT

RFG 3.09± 1.75 (1) 2.97± 1.76 (3) 4.02± 2.72 (15) 5.43± 4.17 (39)
OLFG 2.61± 1.47 (2) 2.64± 1.73 (2) 3.90± 3.03 (16) 4.89± 4.14 (27)

Table 6.8: Detailed results of RUC (radius, ulna and carpometacarpal), MC (metacarpal), PJ
(interphalangeal joints) and FT (finger-tips) for 3D hand- and wrist-bone localization (Number of
outliers are depicted within the braces).

landmark position with the OLFG method or a false one which looks similar.

A qualitative comparison between the OLFG and the RFG approach is depicted in

Fig. 6.7. There, the errors between the estimated and the annotated position are plotted

into one hand-image. The results of the novel OLFG approach are slightly more concen-

trated to a landmarks position than the results of the RFG method. Further, in Fig. 6.8(b)

an example is illustrated for which both RRF approaches lead to wrong localization re-

sults. This is due to the training-data which does not contain such strong shape variations.

One shape example which frequently appear in the data is depicted in Fig. 6.8(a).

(a) RFG (b) OLFG

Figure 6.7: Qualitative comparison of the random and the on-landmark feature generation ap-
proach for the 3D-MRH dataset.

Another interesting observation is depicted in Fig. 6.5. It seems the later the OLFG is

introduced during training, the better the localization performance in mean and standard
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(a) Typical shape of most images (b) Testing image with strongly
varying shape

Figure 6.8: In (a) a typical image is illustrated which appear frequently in the 3D-MRH dataset.
In (b) localization results for a testing-image with strong variations at the fingers is depicted.

deviation becomes. One reason for this behavior is that at low depths the voxels have

not been located themselves within the image very precisely. At low depths, the long-

distance on-landmark features will be generated for the most voxels outside the volumes

which makes only little sense. At higher depths, the RRF first groups the voxels from

the images based on their local appearance. Thus grouping them into small sub-groups of

voxels which are located near to each other. The on-landmark features for voxels of these

sub-groups might be generated more-often at the landmark positions.

Another comparison is done between the histogram and image-space voting scheme

which can be seen from Fig. 6.6(a). The image-space voting scheme seems to be favorable

to the histogram voting scheme. The summation of the errors during the histogram

accumulation lowers the localization performance since it is the main difference between

these two approaches.

Since the results do not show a huge improvement on the 3D-MRH dataset, a small

experiment on the 2D-MRH dataset is performed. The same parameter settings as for the

optimized geodesic distance comparison in section 6.1 are used to train an RRF . Results

are depicted in Fig. 6.9 and Tab. 6.9 and show that the OLFG approach improves the

results a lot. The error in precision and accuracy and further the number of outliers can
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be decreased significantly. This leads to the assumption that for the 3D-MRH dataset

the localization task is much more challenging than for the 2D-MRH datasets. This is a

legitimate assumption due to the reduced dimensionality the forest has to deal with. It

could be that for the 3D-MRH dataset, RRF with a much higher depth must be trained

which is only partly possible due to the huge memory consumption. A qualitative com-

parison for the 2D-MRH dataset between the OLFG and the RFG approach is depicted

in Fig. 6.10. Similar as for the 3D-MRH dataset, the results are concentrated more to

the correct landmark position with the OLFG approach. Due to the good results on the

2D-MRH dataset, one future-work might be to investigate on localizing using projected

images first and then add the remaining third dimension.

Type Error # Outlier ≥ 10 mm

2D RFG 1.92± 1.44 0.12 % (2/1680)
2D OLFG 1.19± 0.97 0.06 % (1/1680)

Table 6.9: Results of comparing the RFG to the OLFG approach for projected 2D hand- and
wrist-bone localization.
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Figure 6.9: Graphical results of comparing the RFG to the OLFG approach for 2D-MRH dataset.

6.2.1.2 Conclusion

Overall it can be said that the OLFG approach can be used to improve on accuracy and

to decrease the number of outliers for the 3D MR hand dataset. Especially these two

errors are important for a multi-forest approach, i.e. of [24, 25]. The less outliers and the

more accurate a first RRF is, the more probable a second RRF converges to the correct

landmarks.
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(a) RFG (b) OLFG

Figure 6.10: Qualitative comparison of the RFG and the OLFG approach for the 2D-MRH
dataset.

6.2.2 Tooth Dataset

The MRTM dataset is evaluated using the parameters according to Tab. 6.10. The α

parameter is tuned according to results illustrated in Fig. 6.11(a). It can be seen that an

α of 0.1 is optimal in sense of mean and standard deviation. The starting depth dstart
seems to have no influence on the localization performance for the OLFG approach as

depicted in Fig. 6.11(b). Therefore and due to the results of the 3D-MRH evaluation,

dstart = 10 is chosen for a three-fold cross-validation which is evaluated next. Further, the

depth and the number of trees behave similar to the 2D-MRH dataset as illustrated in

Fig. 6.12(a-b).

6.2.2.1 Results and Discussion

From Fig. 6.13(b) and Tab. 6.11 no significant difference between the RFG and OLFG

approach can be seen. See also Fig. 6.14 for qualitative comparisons. The results show

that the OLFG method do not help to improve the localization performance which might

be due to several reasons. One reason might be that third molars at which the landmarks

are placed are very small and difficult to capture with the OLFG method. This is due to

the strongly varying shape and appearance information in the volumes. For instance, in
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Figure 6.11: Results of parameter optimization of the weight voting α parameter in (a). Results
of the OLFG starting depth dstart parameter optimization for third molar localization in (b).
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(b) Tree evaluation

Figure 6.12: Results of tree depth and number of trees parameter optimization for third molar
localization.
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Parameter Value

Number of trees 8
Maximal depth 16

Maximal feature size 15 mm
Maximal feature distance: 20 mm

Maximal feature size on landmarks 8 mm

α 0.1
OLFG starting depth dstart 10

Table 6.10: RRF parameter setup for 3D third molar localization.

the 3D-MRH dataset most structures where the landmarks are placed are clearer visible

and distinguishable than in the MRTM dataset.

Type Error # Outlier ≥ 7 mm

RFG 5.06± 3.01 20.47 % (113/552)
OLFG 5.07± 3.09 19.38 %(107/552)

Table 6.11: Results of comparing the RFG to the OLFG approach for third molar localization.
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Figure 6.13: Results of comparing the histogram and the image-space accumulation approaches
in (a), and the RFG to the OLFG approach in (b) for third molar localization.

Deeper investigations of what the RRF learns, deliver some important observations as

described next. One behavior is that the RRF tends to learn and most accurately localize

landmarks based on the shape of the head, i.e. nose, chin, etc. In a few cases of occluding

shapes due to strong translations of the head during MR acquisition or due to artifacts

caused by braces, the RRF votes for locations which are far away from annotations. A next
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(a) RFG (b) OLFG

Figure 6.14: Qualitative comparison of the random and the on-landmark feature generation
approach for the MRTM dataset.

observation is that from locations at soft-tissues like the brain, the forest votes inaccurately

to a landmark position. This might be due to the strong variations. However, the RRF

using the voxels from the whole volume tends to vote for the correct position to the right

of the second molar, if a third molar is missing. All these observations might indicate that

the RRF does not learn that much from the structures at the tooth region which is the

most stable part in these volumes. This assumption is strengthened by the experiments

and better results in chapter 6.3 in which only voxels within a certain range around the

landmarks are used to train an RRF .

According to Fig. 6.13(a) the image-space voting scheme is better suited for this dataset

than the histogram voting scheme, similar as in the hand-dataset. The accumulation of

all variations in the distance histograms seems to negatively influence the localization

performance.

6.2.2.2 Conclusion

It seems that the OLFG method has no or a small negative influence to the localization

for this dataset. This might be because of the strong variations in shape of the volumes

and also due to difficult to capture appearance of the tiny third molars.

6.2.3 Clavicle Dataset

The OLFG method is also applied to the new MRC dataset which actually consists only

of a few annotated volumes at the end-date of this thesis. This makes them a challenging

datasets since they contain only very few data to learn from. In contrast to the 3D-MRH
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and MRTM datasets, the clavicles are evaluated using a leave-three-out cross-validation,

i.e. training on (N-3) of the N volumes and testing on the remaining three in multiple

iterations. The parameter setup is depicted in Tab 6.12 based on optimization of α and

dstart depicted in Fig. 6.15(a-b). The number of trees and the tree depth have not been

evaluated empirically since this dataset is actually not discriminative enough.

Parameter Value

Number of trees 8
Maximal depth 16

Maximal feature size 20 mm
Maximal feature distance 30 mm

Maximal feature size on landmarks 10 mm

α 0.1
OLFG starting depth dstart 10

Table 6.12: RRF parameter setup for 3D clavicle localization.
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Figure 6.15: Results of parameter optimization of the weight voting α parameter in (a). Results
of the OLFG starting depth dstart parameter optimization for clavicle localization in (b).

6.2.3.1 Results and Discussion

From Fig. 6.16(b) and Tab. 6.13 it can be seen that this dataset is one of the most

challenging ones due to the large errors. The main reasons are the small amount of data

available and the low resolution of the MR acquisition.
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Type Error # Outlier ≥ 10 mm

RFG 5.59± 2.93 8.33 % (14/168)
OLFG 5.93± 3.16 11.31 % (19/168)

Table 6.13: Results of comparing the RFG to the OLFG approach for clavicle localization.
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Figure 6.16: Results of comparing the histogram and the image-space accumulation approaches
in (a), and the RFG to the OLFG approach in (b) for clavicle localization.

As also can be seen, the OLFG approach cannot help to improve the results of the RFG

method which is illustrated qualitatively in Fig. 6.17. It is difficult to give a reason for

that behavior due to the small dataset. The most probable assumption is, that based on

the small amount of training data the strong variations at the landmarks are not captured

sufficiently enough. The elongated clavicles tend to have a rotation within each volume

and the appearance in size vary at the sternal extremities on which the landmarks are

placed.

However, the OLFG method might help to improve the localization result if more data

is available. The landmarks are placed on relatively clear structures similar to the hand

images. On the other hand, this improvement might be very small since it has also shown

only minor improvements on the 3D MR hands.

6.2.4 On-Landmark Feature Generation Conclusion

In this section, the OLFG approach is compared to the RFG method. In case of the

3D-MRH and 2D-MRH datasets, the OLFG method seems to improve on the overall

localization performance. Regarding to the results of the MRTM and MRC dataset, no

improvement has been found. Especially for the MRC dataset it is difficult to say which
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(a) RFG (b) OLFG

Figure 6.17: Qualitative comparison of the RFG and the OLFG approach for the MRC dataset.

parameters of the forest lead to the worse localization performance. For the MRTM

dataset the OLFG approach seems not to improve the localization performance but also

not to worsen them drastically. As observed during this thesis, the forests tend to learn

strongly from the shape, i.e. the mouth, chin, nose, etc. Therefore the question raises

what happens if only voxels within a certain range of a landmark are used for training.

For instance, learning how the third molars and their neighboring teeth looks like in more

detail. This may lead to improve the localization performance since the forest concentrates

only on this information during training. This idea is evaluated within the next section.
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6.3 Training RRFs using Restricted Image Information

The previous section 6.2 makes use of the whole image information, i.e. all voxels are used

to train an RRF to predict a certain landmark position. In this section an approach is

investigated which uses only voxels within a certain region around landmarks to train an

RRF , i.e. an HF . Thus learning and covering more of the structures at the landmarks

themselves. Therefore, also more local random features are used. However, since this leads

to multiple landmark candidates for one landmark prediction, also more global information

is incorporated during training which is later explained in more detail. This novel approach

is further referred to as GCHF .

A first simple experiment on the MRTM dataset shows what happens if voxels from

the whole images and only from a small region around landmarks are used for training.

6.3.1 Toy Example

In this experiment, a decreasing subset of voxels within a certain range around the land-

marks are used to train an RRF while leaving each other forest parameter unchanged.

Since the landmarks can vary in their position, all voxels from the volumes are used to

predict the landmarks during testing. Results of this experiment can be seen in Fig. 6.18(a-

b). Voxels have been chosen within a radius of 80, 40, 20, 10 and 5 millimeter around

the landmarks. Note that 80 millimeters cover almost the entire volume. Further, the

image-space accumulation and the histogram accumulation is compared.

As illustrated in Fig. 6.18(a), decreasing the range from 80 to 10 mm improves the

localization performance significantly. At a range of 5 mm the standard-deviation becomes

little higher which might be due to the small amount of voxels used for training, i.e. the

HF has to few information to learn from. However, the error only decreases for the

image-space accumulation scheme. Using the histogram accumulation approach, the error

increases as depicted in Fig. 6.18(b).

This behavior can be explained with the 2D toy example illustrated in Fig. 6.19. As-

sume that two voxels vote for position (x1, y1) and three other voxels to three different

positions (x2, y2), (x2, y3), (x2, y4). The histogram accumulation approach sums up

the axes independently which yield to the histograms hx and hy. Afterwards, these two

histograms are searched for the maximum which results in the landmark estimation at

position (x2, y1) although no voxel has voted for this position. This behavior occurs if

multiple landmark candidates at various positions are located by an HF which is trained

by a few voxels around a landmark. This drawback is circumvented by the image-space ac-

cumulation approach since voxels vote directly into the 2D/3D accumulator, as illustrated

with the red and black dots in Fig. 6.19.

In the next sections, the proposed 3D datasets are evaluated using voxels around

landmarks for training. During testing, the image-space accumulator and all voxels from

a volume are used to predict landmarks.
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(b) Histogram accumulation

Figure 6.18: Localization results for restricting the range of voxel selection around landmarks.
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Figure 6.19: Toy example which illustrates the drawback of the histogram accumulation scheme
over the image-space accumulation.

6.3.2 Tooth Dataset

This section evaluates the MRTM dataset using the parameter setup depicted in Tab. 6.14.

The voxel selection range of 10 mm has been chosen since it showed a good performance

in the results of Fig. 6.18(a).

During the evaluation of experiments it was shown, that an HF which is trained using

only very small and local features locates the last molar which is visible during testing.

For instance, if a third molar is missing the HF always switches to the neighboring second

molar to the left. Therefore, in addition to the local small features, long-range features

are introduced which start at a certain depth during training, i.e. the GCHF generates

50 % local and 50 % long-range features. This approach is further referred to as GCHF .
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Parameter Value

Number of trees 8
Maximal depth 18

Voxel selection range ± 10 mm

Maximal size of local features 7 mm
Maximal distance of local features 10 mm

Maximal size of long-distance features 20 mm
Maximal distance of long-distance features 30 mm

Starting depth of long-distance features (see Tab. 6.15) 5

Table 6.14: RRF parameter setup for third molar localization using GCHF .

Starting depth Error # Outlier ≥ 10 mm

HF 2.65± 3.02 6.52 %
0 2.97± 3.54 3.80 %
5 2.67 ± 2.25 3.26 %
10 2.67± 2.61 4.35 %
15 2.60± 2.72 5.43 %

Table 6.15: Results of parameter optimization for introducing long-distance features starting at
certain depths for third molar localization.

The results of the starting-depth evaluation are illustrated in Tab. 6.15 which shows the

best results with long-range features starting at a depth of five. Note the smaller number

of outliers which is due to the long-range features. Next, a three-fold cross-validation is

performed to test each volume.

6.3.2.1 Results and Discussion

Localizing third molars using particular selected voxels around the landmark yields to a

localization error of 2.92 ± 2.49 mm in mean and standard deviation, as illustrated in

Fig. 6.20 and Tab. 6.16. To make a comparison with the RRF which use the whole image

information the results from section 6.2.2 are added. They are marked as RRF whereas

the results from this approach are noted as GCHF . Note also that the parameters have

slightly changed. However, as shown in the introducing example, the most influence is due

to the restricted range of voxels used for training.

Type Error # Outlier ≥ 7 mm

GCHF 2.92± 2.49 6.88 % (38/552)
RRF 5.06± 3.01 20.47 % (113/552)

Table 6.16: Results of the local GCHF approach for third molar localization. The local approach
is compared to the best global RRF approach.

It can be seen that using voxels near a landmark results in a significant improvement of
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Figure 6.20: Results of the GCHF approach for third molar localization. The local approach is
compared to the best global RRF approach.

Forest type Visible teeth 2 1 0

GCHF
Error 2.7± 2.2 3.9± 3.2 6.1± 2.7

# Outlier 4.3 % (20/470) 17.7 % (11/62) 35 % (7/20)

RRF
Error 5.1± 3.2 4.8± 2.0 4.1± 1.5

# Outlier 21.5 % (101/470) 17.7 % (11/62) 5 % (1/20)

Table 6.17: Detailed results for the teeth localization approaches using the GCHF and global
RRF . Outliers are denoted as landmark estimations which are farther than 7 mm away from the
annotation of the medical expert.

the localization performance in accuracy and precision. This strengthens the assumption

and conclusion from section 6.2.2, that the varying structures within the head tend to vote

imprecisely and inaccurately to landmarks and therefore destroys the overall localization

performance although the Euclidean weighting term is used.

Investigating the results from the local RRF from Tab. 6.17 in more detail shows that

the worst results come from missing third molars. Deeper investigations of the outliers

with errors larger than 7 mm show that 13 of 18 outliers (7+11) switch to the neighboring

second molars or are pulled towards them. The remaining few outliers are the top third

molars. They are located to the right of the second molars but are predicted above the

possible estimated position from the medical expert. This might be due to growing top

third molars which are located at this position in the training-sets. As can be seen, the

forest is able to predict 33 of 51 (62/2+20) missing teeth within a range of 7 mm.

The outliers from the volumes which contain all third molars are mainly due to two

reasons. First, 12 of the 20 outliers have just started growing and therefore are in an early

development stage. A possible explanation which is observed is that the data contains only

few of such young staged third molars. The remaining outliers are caused by third molars
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which are rotated up to 90 degrees or have a strong unnatural translation or appearance.

Comparing the results from Tab. 6.17 of the more local GCHF and the global RRF

which use the whole image information yields to more conclusions. The results from the

global RRFs is worse if all teeth are visible within the volumes. This is mainly due to the

reasons mentioned in section 6.2.2. However, it seems that some outliers in which all teeth

or one tooth is missing can be fixed by the global approach but at the cost of reduced

accuracy. This is since the global RRF does not emphasize the tooth region as much as

the more local approach.

See also Fig. 6.21 for a qualitatively comparison between the global RRF and the local

GCHF approach. Note that the results of the GCHF approach are more precise than the

RRF approach.

(a) RRF (b) GCHF

Figure 6.21: Qualitative comparison of the global RRF and the local GCHF approach for the
MRTM dataset.

6.3.2.2 Conclusion

Constraining the area from where voxels are selected for training seems to have a huge

positive influence for the MRTM dataset. The precision and accuracy can be significantly

improved by using the more fixed and lower varying structures at the tooth region. How-

ever, since still landmark predictions often switch to neighboring second molars some kind

of subsequent image processing has to be performed to get rid of the remaining outliers

for a reliable fully automated age assessment system.
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6.3.3 Hand Dataset

Hand volumes contain multiple similar structures, e.g. finger tips. Therefore, it is the

most challenging dataset in terms of switching of landmarks to wrong positions. To locate

hand landmarks, an HF is trained using local features, i.e. the range has been chosen to

cover roughly the width of a finger. To incorporate also some global shape information, at

a certain depth long-range features are generated in addition to the local ones. Therefore,

the setup depicted in Tab. 6.18 is used to train a GCHF .

Parameter Value

Number of trees 8
Maximal depth 18

Voxel selection range 9 mm

Maximal size of local features 3 mm
Maximal distance of local features 10 mm

Maximal size of long-distance features 30 mm
Maximal distance of long-distance features 50 mm

Starting depth of long-distance features (see Fig. 6.22) 5

Table 6.18: RRF parameter setup for hand- and wrist-bone localization using GCHF .
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Figure 6.22: Results of parameter optimization for introducing long-distance features starting at
certain depths for hand- and wrist-bone localization.

6.3.3.1 Results and Discussion

The results for the hand are depicted in Fig. 6.23 and Tab. 6.19. Additionally, the results

from section 6.2.1 denoted as RRF are compared to the new results, although again the

parameters have slightly changed.

From Fig. 6.23 it can be seen, that the local GCHF approach is by far better than the
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Figure 6.23: Results of the local GCHF approach for hand- and wrist-bone localization. Addi-
tionally, a Markov Random Field (MRF) is applied to the responses of the GCHF approach. All
results are compared to the best global RRF approach.

Type Error # Outlier ≥ 10 mm

GCHF 2.91± 8.63 4.94 % (83/1680)
RRF 3.49± 2.93 2.80 % (47/1680)

GCHF + MRF 1.23± 0.86 0.06 % (1/1680)

Table 6.19: Results of the local GCHF approach for hand- and wrist-bone localization. Addi-
tionally, an MRF is applied to the responses of the local approach. All results are compared to
the best global RRF approach.

global RRF approach up to a localization percentage of around 95 % which is mainly due

to the restricted number of voxels. For instance 95 % of all the landmarks are correctly

located using the local approach. However, the remaining estimations are located at similar

looking positions with the image which limits the overall localization performance of the

GCHF approach. Therefore, the global approach might be preferable since it locates each

landmark within a smaller error than the local approach. In this case, a more local second

forest on the top of the global RRF approach can help to improve further in precision

and accuracy which is shown in [24]. For instance the author of [24] was able to predict

the anatomical landmarks for this dataset up to an error of 1.4 ± 1.5 mm with only six

outliers greater than 10 mm.

Since the GCHF is trained on more local image information of landmarks, it yields to

multiple landmark predictions for each landmark. Therefore a non-maxima suppression

is applied to the response images from the GCHF with a window-size of 12 mm which is

roughly the width of a finger. From the non-maxima suppression, the 10 highest responses

for each landmark are chosen to be possible landmark candidates. Since one of these

landmark candidates belongs to the correct position, a generative model is used to find

the best overall landmark configuration. Therefore an MRF is built and used to model
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connections between certain landmarks. This discrete optimization model is developed

and discussed in appendix C. The results which are retrieved from the MRF on top of the

local GCHF are denoted as GCHF+MRF .

It can be seen that the overall performance drastically improves, which is due to fixing

almost each outlier from the local GCHF . However, still one landmark estimation shows an

error greater than 10 mm. This outlier is illustrated in Fig. 6.24. Due to an unnaturally

bent little finger, the GCHF does not result in a response at this particular position.

Therefore, also the MRF results in a wrong localization.

Figure 6.24: Landmark on the little finger for which no response exists from the RRF .

A qualitative comparison between the global RRF and the local GCHF+MRF ap-

proach is depicted in Fig. 6.25.

6.3.3.2 Conclusion

The local GCHF seems to work for the 3D-MRH dataset in a restricted way. The precision

and accuracy can only improve for around 95 % of all landmarks. However, since all these

landmarks are globally constrained, a generative model can be used to improve on the

remaining outliers. This is done by using an MRF which results in superior results.

6.3.4 Clavicle Dataset

Clavicle volumes have a quite clear and almost unique structure at the landmark positions.

However, the strong variation and the small dataset are the main challenges. A GCHF is

trained using the parameters depicted in Tab. 6.20.
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(a) RRF (b) GCHF+MRF

Figure 6.25: Qualitative comparison of the global RRF and the local GCHF+MRF approach
for the 3D-MRH dataset.

Parameter Value

Number of trees 8
Maximal depth: 18

Voxel selection range: ± 10 mm

Maximal size of local features: 8 mm
Maximal distance of local features: 20 mm

Maximal size of long-distance features: 20 mm
Maximal distance of long-distance features: 40 mm

Starting depth of long-distance features (see Tab. 6.21): 5

Table 6.20: RRF parameter setup for clavicle localization using GCHF .

Starting depth Error # Outlier ≥ 10 mm

HF 4.25± 2.45 3.57 %
0 4.50± 2.44 5.36 %
5 4.10 ± 2.35 1.79 %
10 3.96± 2.40 2.38 %
15 5.82± 9.94 7.74 %

Table 6.21: Results of parameter optimization for introducing long-distance features starting at
certain depths for clavicle localization.
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6.3.4.1 Results and Discussion

A leave-three-out cross-validation results in the errors depicted in Fig. 6.26 and Tab. 6.22.

It can be seen that the error and the number of outliers decrease if only local information

is used. The remaining three outliers are all predicted near to the landmark and do not

converge to other positions like in the last two datasets. Further, the results illustrate the

impact of the low number of training-data due to the weak localization performance as

also depicted qualitatively in Fig. 6.27. This might be also due to the low resolution of

the MR volumes of around one millimeter voxel-size in each dimension.

Type Error # Outlier ≥ 10 mm

GCHF 4.10± 2.35 1.79 % (3/168)
RRF 5.59± 2.93 8.33 % (14/168)

Table 6.22: Results of the local GCHF approach for clavicle localization are compared to the
best global RRF approach.
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Figure 6.26: Results of the local GCHF approach for clavicle localization are compared to the
best global RRF approach.

However, since the experiments of the last two dataset show significant improvements,

this behavior is expected also for this dataset as soon as more annotated data is available.

6.3.4.2 Conclusion

Since this dataset contains too few data to locate landmarks, it is difficult to give any

clear conclusions. The GCHF approach in this section works for the other two datasets

quite well and therefore it is also assumable that increasing the number of training data

leads to a strong improvement on the localization results for this dataset. However, one

parameter which may prevent to reach an accuracy and precision of one or two millimeter

is the low resolution of the volumes, as depicted in chapter 5.
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(a) RRF (b) GCHF

Figure 6.27: Qualitative comparison of the global RRF and the local GCHF approach for the
MRC dataset.
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7.1 Conclusion

The Ludwig Boltzmann Institute for Clinical Forensic Imaging in Graz performs research

on human age assessment based on the non-invasive and ionizing radiation free Magnetic

Resonance (MR) technique. Therefore, MR volumes of left hands, third molars and clav-

icles can be used. Since it takes a long time to analyze them manually, a worth-while

goal is to develop an automatic age assessment system. This work focuses on part of such

a system, namely the automatic localization of anatomical landmarks which are placed

at structures from which the age can be determined. Therefore, the Random Regression

Forest (RRF) framework based on the work of [24] has been investigated more deeply.

Firstly, a geodesic metric for the vote-weighting approach for the 2D MR Hand (2D-

MRH) dataset has been developed. This approach is based on the idea that votes from

voxels should be weighted based on the underlying structures between the voxels position

and to the position to where it votes. The results led to the conclusion, that long-distance

votes and votes from fingers to landmarks on other fingers only have a small influence to

an overall reliable localization result. This conclusion is also strengthened by the third

experiment of the Globally-Constrained Hough-Forests (GCHFs).

Second, a novel feature-generation approach has been introduced which analyzes sur-

rounding structures to which a voxel votes to, i.e. the On-Landmark Feature Generation

(OLFG) method. This approach is investigated since in related methods the voxels have

no knowledge to where they vote. The OLFG shows better results for the 3D MR Hand

(3D-MRH) and 2D-MRH datasets compared to an RRF with only randomly trained fea-
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tures. For the 3D MR Third Molar (MRTM) dataset no improvements have been found,

most likely due to strong anatomical variations in the medical images and the small molars.

A third contribution of this work is the research on using more local information

around landmarks to train a GCHF which shows promising results. Using the whole im-

age information to train an RRF seems to yield to inaccurate and imprecise localizations.

However, since the GCHF is locally trained, it results in multiple landmark candidates

which led to wrong landmark predictions. Therefore, global information is incorporated

with long-range features instead of directly using the whole image information. Never-

theless, this still yields to a few wrong landmark localizations especially for the 3D-MRH

dataset which in most cases are fixed with a Markov Random Field (MRF).

In general, one has to think carefully about when to use local or global approaches. This

is mainly based on the underlying dataset. In the work of [24] the biggest vulnerability is

the first global RRF localization step to locate landmarks in the 3D-MRH dataset. If this

step fails, a second more local RRF is hardly able to refine this localization to the correct

position. On the other hand, also the GCHF predicts landmarks at wrong positions. But

since the GCHF yields to multiple landmark candidates, regularization steps which model

the global landmark configuration can be used to find a final good solution. Therefore and

due to the results, a locally trained approach incorporating also global information with

an additional regularization step might be the better option for the 3D-MRH dataset in

future. For the MRTM dataset the GCHF is preferable over a global RRF approach. Due

to strong varying shapes and appearances in the dataset a global RRF leads to imprecise

results. It seems to be better that the RRF concentrates more directly at the structures

at third molars and their neighborhood. For the 3D MR Clavicle (MRC) dataset it is

difficult to say which approach might be better due to the small amount of data given.

But since the results of the GCHF approach for the 3D-MRH and the MRTM datasets

are promising, it is likely that the GCHF also improves on results at the MRC dataset

compared to a global RRF approach.

Altogether and as an outcome of the results, the more locally trained RRF methods

seem to be better suited for a practically relevant usage. Investigating them in more detail

and incorporating other techniques for fixing the global landmark configuration may be

the better option to go.

7.2 Outlook

During this work, several new topics were raised which might be worth to look into in more

detail. For instance, results on the 2D-MRH dataset using the whole image information

showed a superior localization performance. Therefore, estimating a landmark first in 2D

images and afterwards in the third dimension, might lead to improved results. Also the

idea of using local surrounding structures of landmarks for training seems to be promising

for further research. Especially, the incorporation of more global information to the local

surround structures seems to be favorable over using only local image information.
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to predict landmarks up to an error of 3.55± 2.62 mm in mean and standard deviation in

a challenging 3D MRI dataset.
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In this appendix, an MRF algorithm is developed to regularize multiple landmark

candidate positions retrieved from the GCHF approach. The MRF is only used and

specialized for hand volumes since there multiple false positive landmarks are located.

An MRF is an undirected graph containing nodes and modeled edges between some

or all of them. Each edge and each node has to be modeled. This consists of generating

a connected graph structure between several nodes, calculating weights for each edge

and assigning weights to each node. The modeling can be done either manually which

is done in this work or automatically as done for example in [19]. Having defined the

graph and weights, a new over-determined configuration of nodes can be solved by using

the MRF to find the best overall configuration based on the built model. For this work

following formulation is used to retrieve a final landmark configuration from multiple

possible retrieved landmark candidates:

C(M) =
∑
∀l∈L
P(Ml) +

∑
∀e∈E

G(Mn,i,Mn,j) (C.1)

Unary terms P model the node confidence value according to the matches Ml, i.e. node

weights. Contrary to the unary terms, binary terms G define the strength of the relation-

ship between two nodes or matches Mn,i and Mn,j , i.e. edge weights.
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C.1 Graph Topology

A manual graph topology as depicted in Fig. C.1 was used to address the challenge of

finding the best overall landmark configuration for the 3D-MRH dataset.
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Figure C.1: Hand-crafted MRF graph topology.

C.2 Node Weights P

All nodes are weighted according to the responses from the GCHF , normalized between

0 and 1. Further, maximal 10 landmark candidates per each landmark are used.
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C.3 Edge Weights G

Edges between two nodes Mn,i and Mn,j at position ci and cj are weighted according to

a statistical distribution built from the training-data. Therefore, first distances between

all nodes shown in Fig. C.1 are calculated in terms of mean Euclidean distance µ and

standard-deviation σ. Afterwards, a Gaussian distribution is used to model the edge

weights based on the statistics as followed:

p(Mn,i,Mn,j) = exp

(
−1

2
·
(
µ− ||ci − cj ||

σ

)2
)

(C.2)

In general, all connections are modeled by setting the edge weights to G(Mn,a,Mn,b) =

p(Mn,i,Mn,j). However, taking only the distances between two nodes into account, inter-

changes between nodes can happen since no direction conditions are modeled until yet.

Therefore, a hard-sorting in x- and y-coordinates is incorporated using following condi-

tions:

• X-Sorting between nodes along x-coordinates ci,x with i in one of following sets:

[1, 2, 3], [5, 6, 7], [9, 10, 11] and [13, 14, 15], according to Fig. C.1:

G(Mn,a,Mn,b) =

{
p(Mn,i,Mn,j) if ci+1,x + 4mm ≤ ci,x
0 else

• Y-Sorting of nodes along y-coordinates ci,y with i in one of following sets: [1, 5, 9],

[2, 6, 10], [3, 7, 11] and [4, 8, 12] according to Fig. C.1:

G(Mn,a,Mn,b) =

{
p(Mn,i,Mn,j) if ci+4,y ≤ ci,y
0 else

• Y-Sorting of nodes along y-coordinates of the thumb ci,y with i in: [17, 18] according

to Fig. C.1:

G(Mn,a,Mn,b) =

{
p(Mn,i,Mn,j) if ci+1,y ≤ ci,y
0 else

C.4 Solving Markov Random Fields

To find the best overall configuration of the modeled graph structure, the Maximum A

Posteriori (MAP) estimation is calculated which is equivalent to maximize the energy:

C∗ = argmax
M

C(M) = argmax
M

(∑
∀l∈L
P(Ml) +

∑
∀e∈E

G(Mn,a,Mn,b)

)
(C.3)
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However, in general the exact solution or inference of MAP is NP-hard. Therefore,

several approximations exist but may converge in local minima. In this work a sum-

product message passing also known as belief propagation [76] is used to solve the graph

within the framework of [67]1.

The belief propagation algorithm iteratively passes so called messages between con-

nected nodes over edges. At first, all messages are initialized to 1, resembling a totally

uninformative message. From a node n1 a message is passed to a connected node n2 in

which this message is updated by the knowledge of n2 and the edge information between

these two nodes. Thus the message from n1 to n2 is updated. Afterwards this message

is propagated to another connected node n3 of n2. Note that a message from n1 which

is updated by the knowledge of n2 is not back propagated to n1. Applying this message

passing algorithm to all connected nodes, an overall best approximated configuration can

be found which can lead to the global optimum in some cases.

1http://www.cs.ubc.ca/~schmidtm/Software/UGM.html (online; last accessed on September 29, 2015)

http://www.cs.ubc.ca/~schmidtm/Software/UGM.html
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