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1 Introduction

The reduction of fuel consumption and thus CO2 emission of vehicles is an important topic
from the environmental point of view. For this reason, for instance the European Union
and California enforce regulations to limit the CO2 emission of vehicles since several years.
In addition, customers increasingly request vehicles with low fuel consumption due to en-
vironmental reasons and increasing costs for fuel.
Therefore, fuel consumption and emissions of vehicles have to be minimized while the
driving performance should stay at a high level. This can be achieved by optimizing
the various subsystems of a vehicle, like the engine and the transmission. As there are
many interdependent parameters to be considered, mathematical optimization is a pow-
erful methodology to achieve the optimization targets within a short development time.
This saves the effort of testing real vehicles and thus the resulting development costs.

“Optimization” means to find the best solution for a problem, such that defined constraints
are satisfied. There are several ways to find an optimum. The least successful one is to
guess a solution, as this way in general fails.
The best way would be to use an algorithm, which computes the exact optimum. For most
practical optimization problems this is not possible due to unacceptable high computa-
tional effort. To overcome this obstacle, one applies heuristic approaches which often lead
to very good, not yet optimal solutions.

The Genetic Algorithms, which are used in this thesis, are special meta-heuristics to find
solutions close to the global optimum of a function with constraints, which have to be sat-
isfied. In general, the result will not be the exact optimum in meta-heuristics, because the
algorithm cannot guarantee, whether there exists a solution closer to the global optimum
than the found solution. Another drawback is, that there exists no provable quality of the
solution.
For example a provable quality for an algorithm, which attacks minimization problems
containing only positive objective values, could be, that the solution of the algorithm is at
most the optimal solution times a quality factor, which is greater than one. Compared to
such approximation algorithms with provable quality, meta-heuristics are in general easier
to develop, because there is no provable quality necessary. Due to the lack of such a proof,
the solution of the algorithm can be quite far away from the optimal solution.
For more information about approximation algorithms and heuristics refer to Gonzalez
[28].

A member of the class of Genetic Algorithms is the Non-dominated Sorting Genetic Algo-
rithm II. This algorithm was implemented by Scheucher [55] in the optimization software
AVL Design Explorer. The limitation of the implementation is, that the algorithm can
handle only optimization problems containing continuous design variables. As the opti-
mization problems performed with AVL Design Explorer need to consider integer design
variables as well, it is necessary to extend the implemented algorithm to handle integer
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and mixed integer optimization problems within this thesis. To verify these extensions,
optimization instances are generated using the vehicle simulation software AVL CRUISE.
The obtained results with the extended mixed-integer genetic algorithm are promising and
it can be concluded that it pays off to use integer variables where they are natural within
the model.

1.1 Outline

The introduction to this thesis is done in Section 1 and the basic notions like single and
multi-objective optimization problems from optimization theory, which are needed in the
thesis, are introduced in Section 2. The genetic algorithms Non-dominated Sorting Ge-
netic Algorithm I and II and a number of different crossover and mutation operators are
presented in Section 3. Section 4 outlines the simulation software AVL CRUISE and the
optimization software AVL Design Explorer. Section 5 deals with the implementation of
the mixed-integer version of the Non-dominated Sorting Genetic Algorithm II within the
framework of the AVL Design Explorer. Section 6 reports about the computational ex-
periments which are performed with the new extended implementation. The test models
and test instances used in these experiments are created with the simulation software AVL
CRUISE. Finally, Section 7 concludes the thesis with a short summary.
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2 Preliminaries about Optimization

Problems and Algorithms

The basic notions from optimization theory that are needed in this thesis are introduced
in this section. For further explanations, problem definitions, and algorithms in addition
to the following subsections refer to Rao [51].

2.1 Optimization Problems with a Single Objective Function

This thesis mainly deals with optimization problems in the multi objective case with more
than one objective function. Nevertheless, the special case of a single objective function is
discussed in this section.
The problem consists of one objective function f and a set X of feasible solutions in the
single objective case. Without loss of generality, the goal of the optimization problem is
assumed to minimize the objective function f . This leads to the following generic problem.

Definition 2.1 (Generic Single Objective Optimization Problem)
The optimization problem

(GP ) min
x

f(x)

s.t. x ∈ X

is referred to as generic single objective optimization problem (GP).
x is called the vector of decision or design variables.

It is assumed that the set X of feasible solutions is given by a set of inequality and equality
constraints. This results in the following standard form for single objective optimization
problems.

Definition 2.2 (Single objective optimization program in standard form)
The optimization problem

(SOP ) min
x

f(x)

s.t. gj(x) ≥ 0, j = 1, . . . , ks

hi(x) = 0, i = 1, . . . , ke

xl ≤ x ≤ xu

is referred to as single objective optimization program in standard form (SOP).
The functions f , gj, j = 1, . . . , ks, and hi, i = 1, . . . , ke are given functions from R

n to R

and xl ∈ R
n and xu ∈ R

n are given lower and upper bound vectors for the design variable
vector x.

The standard form of Definition 2.2 can be assumed without loss of generality for the
following reason.

3



Note 2.1
A maximization problem can be transformed into minimization by multiplying the objec-
tive function by (−1). Likewise, inequalities of the type gj(x) ≤ 0 can be turned into
−gj(x) ≥ 0.

The ke equality constraints could be removed from the problem because two inequality con-
straints can replace one equality constraint:

hi(x) = 0 ⇔
{

hi(x) ≤ 0 and
hi(x) ≥ 0

This transformation is, however, not recommendable in practice.

The following definitions are standard for optimization problems.

Definition 2.3 (Feasibility)
A vector x ∈ X is called feasible solution. If x /∈ X, it is referred to as infeasible.
An optimization problem with X = ∅ is called infeasible, otherwise feasible.

The only way to convert an infeasible into a feasible problem is to modify one or more
constraints to avoid the conflict between them.

Some of the feasible solutions in X can be better than others. This leads to the following
definitions of optimality:

Definition 2.4 (Global Optimum)
A solution vector x1 ∈ X is a (global) minimum for the generic single objective opti-
mization problem, if

f(x1) ≤ f(x) ∀x ∈ X

Definition 2.5 (Local Optimum)
A solution vector x1 ∈ X is a local minimum for the generic single objective optimization
program, when there is no feasible solution x2 ∈ X in an ε-neighborhood Bε(x

1) of x1 such
that f(x2) < f(x1).
An open ball Bε(p) with the center p ∈ R

n and radius ε ∈ R is defined as

Bε(p) = {x ∈ X : d(x, p) < ε}

where d(x, p) is the distance between the point x ∈ X and the center p of the ball.

Definition 2.6 (Local Search)
In local search algorithms a neighborhood relation for the solutions in X has to be
defined. The algorithm starts with an often randomly chosen candidate of X which is
iteratively replaced by one of its neighbors. A solution for the next iteration will be chosen
by taking the best solution in the neighborhood if it is better than the current one. The
algorithm terminates, when there does not exist a better solution in the current neighborhood
(the algorithm terminates at a local minimum) or after a predefined number of iterations.

4



In some cases the obtained local minimum can by chance be the global one, but in general
this kind of algorithm gets stuck in a local minimum.

Regarding Definition 2.2 sometimes the first two sets of constraints, the inequality and
the equality constraints, are ignored and it is only dealt with the bounds xl ≤ x ≤ xu.
Accordingly the following can be defined.

Definition 2.7 (Design Space)
The set Xd = {x ∈ R

n : xl ≤ x ≤ xu} is called design space.
The set X of all feasible solutions from Xd is also referred to as feasible design space.

Note that in this thesis the feasible design space X consists of the following set of solutions.

X = {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . , ks,

hi(x) = 0, i = 1, . . . , ke,

xl ≤ x ≤ xu}

In the standard form (Definition 2.2) only the case of continuous variables was discussed.
Some practical applications, however, require some or all of the design variables to take
integer values. Thus, depending on the nature of the involved variables, one distinguishes
the following classes of optimization problems.

Definition 2.8
The three different classes of optimization problems related to the required types of the
design variables are the following:

• In continuous optimization problems all design variables are continuous.

• In (pure) integer optimization problems all design variables are required to be inte-
gers.

• In mixed integer optimization problems some design variables are continuous and
others are required to be integers.

In this thesis the focus is on solving mixed integer optimization problems.

2.2 Optimization Problems with Multiple Objective Functions

In many practical applications there does not exist a single objective function to be opti-
mized but several criteria that need to be taken into account.
For this reason, a multi-objective optimization problem can be derived from the single
objective problem SOP in Definition 2.2 by replacing the single objective function by a
vector of m objective functions

F (x) = [f1(x), f2(x), . . . , fm(x)]
T
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where each fi(x) is a function from R
n to R. This results in an objective function F (x)

from R
n to R

m.

Definition 2.9 (Multi-objective Optimization Program in Standard Form)
The optimization problem

(MOP ) “ min
x

” F (x)

s.t. gj(x) ≥ 0, j = 1, . . . , ks

hi(x) = 0, i = 1, . . . , ke

xl ≤ x ≤ xu

is referred to as standard form for multi-objective optimization problems (MOP).
Let again X denote the feasible design space as used in the single objective case. The
meaning of “ min” will be explained below.

Constraints and bounds stay as they are in the single objective case. They are independent
of the number of objective functions.

Definition 2.10 (Objective Function Vector)
The objective (function) vector of x1 ∈ X in the single objective case is the objective
value f(x1). In a multi-objective optimization problem the objective function vector of x1

is given by F (x1) = [f1(x
1), f2(x

1), . . . , fm(x
1)]T .

In most cases there will not exist a single solution that is optimal for each of them objective
functions. This conflict is referred to as objective conflict by Eschenauer [20]. Due to
this conflict a new concept of optimality is needed for the multi-objective case. In other
words the minimum “ min ” in Definition 2.9 has to be defined.
The following definitions of Pareto-optimal points and a Pareto set (refer to Pareto [48])
is one possibility how to define “ min ”.

Definition 2.11 (Pareto Optimality)
The objective vector F (x1) = [f1(x

1), . . . , fm(x
1)]T of a solution x1 ∈ X is a Pareto-

optimal point (a Pareto-optimal objective vector) for the problem MOP, when there is
no vector x2 ∈ X with the following properties:

• fi(x
2) ≤ fi(x

1) for all i = 1, . . . ,m.

• There exists at least one j ∈ {1, . . . ,m} with fj(x
2) < fj(x

1).

The set of all solutions with Pareto-optimal objective vectors is called the Pareto set.

Along the lines of the definition of the Pareto set for the best solutions, also a classification
of all other solutions can be obtained. These solutions can be classified regarding mutual
domination or non-domination. By means of the following approach, the solutions can be
split up into sets from the set of the best to the set of the worst solutions.
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Definition 2.12 (Non-domination)
When x1 ∈ X and x2 ∈ X are two solutions of problem MOP, then x1 dominates x2, in
symbols x1 ≻ x2, when the following properties hold:

1. fi(x
1) ≤ fi(x

2) for all i = 1, . . . ,m.

2. There exists at least one j ∈ {1, . . . ,m} with fj(x
1) < fj(x

2).

A solution x1 ∈ X is non-dominated, when no solution x2 ∈ X dominates x1. This set
of non-dominated solutions is equivalent to the Pareto set.

Two solutions x1 ∈ X and x2 ∈ X of an optimization problem have one of the following
relations to each other:

• x1 ≻ x2, x1 dominates x2.

• x2 ≻ x1, x2 dominates x1.

• x1 and x2 are not comparable according to non-domination.

In the Genetic Algorithms introduced in Section 3 the idea of non-domination is used for
the fitness assignment of the individuals. For the descriptions of these genetic multicriteria
algorithms also the following definition of the “Pareto set” of a subset of X is needed.

Definition 2.13
For a subset A ⊂ X the solutions x ∈ A which are not dominated by any other solution in
A are called A-efficient solutions.

Some examples for the size of Pareto sets are presented in the following.
The Pareto set of an optimization problem can be empty. That means that for each solution
x1 ∈ X there exists another solution x2 ∈ X such that x2 dominates x1. One example for
such a problem is given by Göpfert and Nehse [29]:

Example 2.1
The Pareto set of the optimization problem with the objective function F (x) = [x1, x2]

T

and the following feasible design space X is empty:

X = {(x1, x2) ∈ R
2 : −1 ≤x1 ≤ 1,

−
√

−x2
1 + 1 <x2 ≤ 0, if − 1 ≤ x1 ≤ 0,

−
√

−x2
1 + 1 ≤x2 ≤ 0, if 0 < x1 ≤ 1}

This example can be easily changed to one with a non-empty Pareto set by appending an
additional constraint and slightly modifying two others:
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Example 2.2
The Pareto set of the new optimization problem with the objective function F (x) = [x1, x2]

T

and the following feasible design space X includes the two points (0,-1) and (-1,0):

X = {(x1, x2) ∈ R
2 : −1 ≤x1 ≤ 1,

x2 = 0, if x1 = −1,

−
√

−x2
1 + 1 <x2 ≤ 0, if − 1 < x1 < 0,

−
√

−x2
1 + 1 ≤x2 ≤ 0, if 0 ≤ x1 ≤ 1}

For a general theorem, whether the Pareto set of a specific optimization problem is non-
empty, the definition of semi-continuous functions is needed (refer to Ehrgott [18]):

Definition 2.14 (Semi-continuous)
A function F from R

n to R
m is Rm

≥0-semi-continuous if

F−1(y − R
m
≥0) = {x ∈ R

n : y − F (x) ∈ R
m
≥0}

is closed for all y ∈ R
m
≥0 where

R
m
≥0 = {y ∈ R

m : yi ≥ 0, ∀ i = 1, . . . ,m}

Theorem 2.1 (Hartley [31])
When the feasible design space ∅ 6= X ⊂ R

n of problem MOP is compact and F is R
m
≥0-

semi-continuous, then there exists a non-empty Pareto set.

Another important fact is that the Pareto set possibly consists of an exponential number
of feasible solutions. The following optimization problem is an example for a problem with
such a Pareto set (refer to Ehrgott [18]).

Example 2.3
min
x

[x,−x]T

s.t. xi ≤ 1, i = 1, . . . , n

−xi ≤ 1, i = 1, . . . , n

The feasible design space of this problem is X = [0, 1]n. One can see that all of the 2n

extreme points of the feasible design space are included in the Pareto set.

Due to the possibility for very large Pareto sets it is in general not possible to compute
the whole set within polynomial time.
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2.3 Exact Optimization Algorithms and Heuristics

The most ambitious goal for an optimization algorithm is to provide an exact optimal
solution for all instances within a reasonable short time. For many practical applications
the demand for efficient exact optimization algorithms is too high.
One way out of this dilemma is to be content with solutions that are reasonable good
in most cases, but not necessarily optimal and possibly quite far away from the optimal
solution. A class of algorithms with these properties is called heuristic.

For complex problems it is often not easy to develop problem specific heuristics. Such
situations are the typical area of applications for so-called meta-heuristics like the Genetic
Algorithms introduced in Section 2.5.

Definition 2.15 (Meta-heuristic)
Meta-heuristics are not problem specific heuristic algorithms and can be applied to a
huge number of problem classes.

Most meta-heuristics include some stochastic part. Typically the idea behind using ran-
domness is to overcome local optima because in general global and local optima do not
coincide. Exceptions for that are linear problems, where each constraint and the objective
function are linear. A more general class of optimization problems, where the local opti-
mum coincides with the global optimum are convex optimization problems (refer to Boyd
and Vandenberghe [5]), where all occurring functions (objective functions and constraints)
are convex.

Definition 2.16 (Convex Functions)
A function f(x) from R

n to R is called convex, when the following is satisfied for all pairs
of points (x1, x2) ∈ R

n × R
n and for all α ∈ [0, 1]:

f(α · x1 + (1− α) · x2) ≤ α · f(x1) + (1− α) · f(x2)

A function is called strictly convex if

f(α · x1 + (1− α) · x2) < α · f(x1) + (1− α) · f(x2)

A convex optimization problem has only one local minimum, which is coincidental the
global optimum.

For optimization problems without this property, global optimization algorithms are needed.
A well known global optimization algorithm for integer optimization problems is the Branch
and Bound algorithm (refer to Land and Doig [39]). For more information about global
optimization algorithms refer to Horst and Tuy [35].

Due to the in general different local and global optima outside the class of linear or convex
optimization problems it becomes important to be able to escape from a local optimum in
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which classical local search algorithms easily get stuck.

Prominent meta-heuristics are the following:

• Simulated Annealing (Kirkpatrick et al. [37])

• Tabu Search (Glover [24])

• Genetic Algorithms (Holland [34] and Deb [7])

• Other types of Evolutionary Algorithms (Dréo et al. [17])

• Ant Colony Algorithms (Dorigo et al. [15])

Genetic Algorithms play a special role in this thesis and are thus described in more detail
in Section 2.5. A wide range of exact global optimization algorithms and further meta-
heuristics were described by Pardalos and Romeijn [47] and Dréo et al. [17].

Due to the fact that a meta-heuristic does not know whether the true optimal solution
has been found, a meta-heuristic needs stopping conditions. Two examples for stopping
conditions are:

• Stop after a given maximum number of iterations.

• Stop after no or a too small improvement of the solutions in the last few iterations.

As mentioned before, due to these stopping conditions there is no reliability that the
resulting solutions are close to the true optimal vectors when the algorithm terminates.

2.4 Approaches to Multi-objective Optimization Problems

There exist different approaches how to attack multi-objective optimization problems, refer
to Ehrgott [18]. Approaches which do not treat multi-objective optimization problems as
true multi-objective problems are briefly dealt with in this section. These approaches
either turn the problem into a single objective one, like in the Weighted Sum Method
and the ε-Constrained Method, or prescribe an order on the objective functions, as done
in the Lexicographic Approach. Methods where multiple objective functions are turned
into a single objective one are called scalarization methods. A second example for non-
scalarization methods besides the Lexicographic Approach which is shown in this section
is the Max-ordering optimization.
Approaches, where the multi-objective optimization problem keeps its multiple objectives,
are introduced in Section 2.4.5 and 2.5.
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2.4.1 Weighted Sum Method

A scalarization approach is the Weighted Sum Method, where each single objective
function fi(x) is multiplied by a weighting factor εi. These terms are summed up leading
to a single objective function f(x).

f(x) = ε1 · f1(x) + · · ·+ εm · fm(x)

The weighting factors have to satisfy:

m
∑

i=1

εi = 1

A drawback of this method is that the resulting solution depends on the choice of the
weights {ε1, . . . , εm} (refer to Srinivas and Deb [59]). Another disadvantage of this ap-
proach is that the result consists of only one solution, while in multi-objective settings the
decision maker usually prefers to be able to choose from a set of alternatives.
The advantage of such scalarization methods is the possibility to use the same algorithms
as for single objective optimization problems.

2.4.2 ε-Constraint Method

The ε-Constraint Method designed by Haimes et al. [30] is another scalarization method.
In this approach one of the objective functions stays as objective function and all the others
become constraints. Let fα be the chosen objective function that remains. Then the ε-
constraint method considers the following problem.

min
x

fα(x)

s.t. fl(x) ≤ εl, l = 1, . . . , α− 1, α + 1, . . . ,m

x ∈ X

where εl ∈ R, l = 1, . . . ,m, and the original bounds of the problem are not changed by
this approach. The obtained solution of course depends on the choice of ε = {ε1, . . . , εm}
and on α.

2.4.3 Lexicographic Approach

The idea behind the Lexicographic Approach (Ehrgott [18]) to multi-objective opti-
mization problems is to sort the objective functions with respect to their importance and
then to apply the classical concept of lexicographic optimality.

Definition 2.17 (Lexicographic Order)
A vector a ∈ R

n is lexicographically smaller than b ∈ R
n, a <lex b, when a 6= b and

ak < bk with k = min{i : ai 6= bi, i ∈ {1, . . . , n}}.
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Definition 2.18 (Lexicographic Optimality)
A solution vector x1 ∈ X of a multi-objective optimization problem is lexicographically
optimal if F (x1) <lex F (x2) for all feasible solutions x2 ∈ X \ {x1} with F (x1) 6= F (x2).

Applying this approach, a multi-objective optimization problem can be attacked by com-
puting the optimal solutions of the single objective problems beginning with the most
important one, i.e. the one with the most important objective function. The feasible de-
sign space for the subsequent optimization problems consists of the optimal solutions of
the current one. This is done until only one solution is left in the feasible design space
for the subsequent objective function or when all functions were considered. The second
stopping condition results in a set of lexicographically optimal solutions.

Algorithm 1 Lexicographic Optimization [18]

X1 = X
for all k = 1, . . . ,m do
Solve the single objective optimization problem min

x∈Xk

fk(x)

if min
x∈Xk

fk(x) results in one optimal solution x1 then

STOP, x1 is the optimal solution of the instance.
if min

x∈Xk

fk(x) is unbounded then

STOP, the whole problem is unbounded.
if k == m then
STOP, {x̂ ∈ Xm|fm(x̂) = min

x∈Xm

fm(x)} is the set of lexicographically optimal

solutions.
Xk+1 = {x̂ ∈ Xk|fk(x̂) = min

x∈Xk

fk(x)}

In the algorithm, Xk ⊂ X is the feasible design space for the function fk(x) composed of
all solutions of Xk−1 which are optimal according to fk−1(x).
For the lexicographic optimization no ε has to be chosen as in the methods before, but it
is often not possible to sort the objective functions according to their importance.

2.4.4 Max-ordering Optimization

Max-ordering is another non-scalarization method (refer to Ehrgott [18]). In this ap-
proach one considers the following optimization problem:

min
x

max
k∈{1,...,m}

fk(x)

s.t. x ∈ X

That means that the optimal solutions are the solutions where the maximum objective
value over all single objective functions is minimal.
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2.4.5 True Multi-objective Optimization Algorithms

There exist also algorithms for multi-objective optimization problems which are really
multi-objective ones. The goal of these algorithms is to treat the objectives as true mul-
tiple objectives. Examples are the meta-heuristics introduced in section 2.3. Important
meta-heuristics, especially in this thesis, are Genetic Algorithms as described in Section
2.5.

Besides meta-heuristics there exist also deterministic algorithms for the computation of
solutions of the Pareto set. Most of these algorithms work only for special cases of opti-
mization algorithms. Some examples are:

• Multi-objective linear optimization: Multicriteria Simplex Algorithm (Ehrgott [18]).

• Multi-objective integer optimization: Several approaches (Ehrgott [18], Pardalos and
Romeijn [47]).

• Multi-objective knapsack problem: Branch and bound (Ehrgott [18]).

For additional examples refer to Ehrgott [18]. Furthermore, in Shukla and Deb [58] and
Giesy [23] some general approaches to solve multi-objective optimization problems are
presented.

2.5 Genetic Algorithms

The main ideas behind Genetic Algorithms are briefly described in this section as they
play a major role in this thesis. Genetic Algorithms go back to Holland [34] and form a
subclass of evolutionary algorithms (Dréo et al. [17]). Evolutionary algorithms got their
name from imitating the evolutionary principles of nature by recombining and mutating
solutions to get new, maybe better ones. Other Evolutionary Algorithms are for example
Evolution Strategy, Evolutionary Programming, and Genetic Programming. For details
regarding these methods refer to Deb [7].

There exists a variety of different Genetic Algorithms. What they all have in common are
that one deals with populations of individuals, which change in each generation, and a
fitness value assigned to each individual. The fitness of an individual is computed with a
fitness function.

In Genetic Algorithms several solutions (individuals) are computed in each optimization
step (generation) instead of only one solution as in many classical optimization algorithms.
This means that the output of the algorithm is also a population of solutions from which
one can choose an appropriate one, typically one of the solutions with the best fitness
value.

A generic Genetic Algorithm handles one population of solutions in each generation. A
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fitness value is assigned to all of the individuals of the current population. The population
of the subsequent generation is computed by crossover and mutation of the individuals
with the best fitness values. The crossover and mutation algorithms, which are part of each
evolutionary algorithm, are used for the recombination of solutions to have a possibility
for better individuals in the subsequent generation. A crossover algorithm recombines two
or more solutions to a new one which is mutated afterwards using a mutation algorithm.
For more information regarding recombination algorithms refer to Section 3.3.

Algorithm 2 Generic Genetic Algorithm [7]

g = 0
Generate the initial population P0

Assign fitness values to the individuals of P0

while Stopping conditions are not met do
Choose fittest individuals of current generation for recombination
Perform crossover
Perform mutation
Choose individuals for the new generation Pg+1 from Pg and the recombined ones
Assign fitness values to the individuals of Pg+1

g = g + 1

The stopping conditions typically involve a maximum number of generations. There exist a
lot of possible additional conditions like having found a solution which satisfies a minimum
criterion or the computation time reached a maximum amount of time.
The generation counter in the algorithm is g and Pg is the population in generation g.

In Section 3.1 and Section 3.2 two Genetic Algorithms are described in more detail, namely
the Non-dominated Sorting Genetic Algorithms I and II.

14



3 Non-dominated Sorting Genetic Algorithms

The main part of this section is devoted to introducing the Non-dominated Sorting Genetic
Algorithms I and II. Furthermore, some possible hybridizations of a Genetic Algorithm
with other optimization algorithms are described. At the end of the section some classes
of crossover and mutation operators for Genetic Algorithms to solve mixed integer opti-
mization problems are presented.
This section focuses on the theory of the used algorithms and operators. For details about
the implementation and which of the operators and algorithms were chosen in the practical
experiments refer to Section 5.2.

Rosenberg [52] suggested to use genetic search for a multi-objective optimization problem
in 1967. In 1984 Schaffer [54] was the first who developed a multi-objective Genetic Algo-
rithm, the Vector Evaluated Genetic Algorithm (VEGA). The problem of VEGA is that
after a lot of iterations the individuals converge towards some solutions of the Pareto set.
The objective vectors of these solutions can be in a specific region so there is no diversity
in the solutions.

Goldberg [25] suggested to use the idea of non-domination and Pareto-optimality to avoid
the convergence problem of VEGA. One of a few algorithms which are based on Goldberg’s
idea [25], the Non-dominated Sorting Genetic Algorithm I, is presented in Section 3.1. An-
other algorithm of this type is for instance MOGA (Multi-objective Genetic Algorithm),
designed by Fonseca and Fleming [22].

3.1 Non-dominated Sorting Genetic Algorithm I

The Non-dominated Sorting Genetic Algorithm (NSGA) will be presented in this
section. This algorithm is referred to as the Non-dominated Sorting Genetic Algorithm
I (NSGA-I) in this thesis for better distinction from the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) which is presented in Section 3.2.

Srinivas and Deb [59] developed a Genetic Algorithm with non-dominated sorting to obtain
a set of different solutions with objective vectors that are hopefully close to the Pareto-
optimal points. Their algorithm is referred to as Non-dominated Sorting Genetic Algo-
rithm I. In contrast to the algorithms introduced in Section 2.4 there is no dependence on
weighting factors or sorting by the designer in this algorithm.

3.1.1 Non-dominated Sorting

Non-dominated sorting was developed to rank all found solutions from good to bad ones.
The fitness assignment where each individual gets a fitness value, which is used for the
selection of the best individuals for the subsequent population, is based on these ranks.
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For the non-dominated sorting part there exist several possible approaches. The sorting
algorithm step of the NSGA-I is based on a simple, but slow approach as presented below.
For more examples refer to Deb [7] and Section 3.2.1.

The non-dominated sorting algorithm classifies the N solutions of a population P into
the sets {F1, . . . , Fr}. Each Fi is a set of solutions which do not dominate each other.
This is achieved by first computing the set F1 of P -efficient solutions. After that, in Fj

the P ′-efficient solutions, where P ′ is the population P without the solutions in the sets
F1, . . . , Fj−1 are stored.

Algorithm 3 non-dominated sort(P ) [7]

i = 1
P ′ = P
while P ′ 6= ∅ do
Fi = ∅
d = 1
for all x1 ∈ P ′ do
for all x2 ∈ P ′ \ {x1} do
if x2 ≻ x1 then // x2 dominates x1

d = 0
break

if d == 1 then // no solution in P ′ dominates x1

Fi = Fi ∪ {x1}
P ′ = P ′ \ Fi

i = i+ 1

In this algorithm d will be set to 0 if an individual x2 dominates the current individual
x1, and will be set to 1, if x1 is non-dominated. P is the current population and P ′ is
the population P reduced by the elements in the resulting sets of the iterations before.
The algorithm returns F = {F1, . . . , Fr}, where each individual in the set Fj dominates
all elements in the sets Fj+1, . . . , Fr and all solutions in Fj are dominated by the elements
in F1, . . . , Fj−1. Furthermore, no individual in Fj dominates any of the others in the same
set.

For the test whether x1 is dominated by x2, each of the m objective functions has to be
checked and the two for-loops need O(N2) steps where N is the number of solutions in
population P . Due to the fact that the while-loop has to be called up to N times (when
there exists only one element in each set Fi), the overall complexity for the non-dominated
sorting algorithm non-dominated sort(P ) is O(m ·N3).
A non-dominated sorting algorithm with a time complexity O(m · N2) will be presented
in Section 3.2.1.
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3.1.2 Fitness Assignment and Sharing

After the classification of the solutions into the sets F1, . . . , Fr, the individuals with objec-
tive vectors nearest to the Pareto-optimal points among the solutions in P are located in
F1. These elements will get the highest fitness value. The elements in Fi will get a smaller
fitness value than those in Fi−1 and a higher one than the individuals in Fi+1.

Another goal is to ensure higher fitness values for individuals in less crowded regions. The
idea behind this is to attract the search procedure to these areas in order not to lose valu-
able candidates for good solutions. For this reason, the sharing function method (refer
to Goldberg and Richardson [27]), where the distance to the other solutions is taken into
account, is used for the fitness assignment.

For each pair of solutions x1 ∈ Fi and x2 ∈ Fi, x
1 6= x2, the normalized Euclidean distance

d(x1, x2) between x1 and x2 is computed as follows.

d(x1, x2) =

√

√

√

√

n
∑

i=1

(

x1
i − x2

i

xu
i − xl

i

)2

Using this distance calculation a sharing function value between the individuals x1 and x2

is calculated as follows:

S(d(x1, x2)) =

{

1−
(

d(x1,x2)
σshare

)2

, if d(x1, x2) < σshare

0, otherwise

Here σshare is the so-called sharing parameter.
Assume that k < N good solution candidates are desired where N is the size of the
population P . Deb and Goldberg [12] have suggested to compute the sharing parameter
σshare as follows:

σshare =
0.5
n
√
k

The last ingredient needed for the formulation of the fitness value assignment algorithm is
the niche count c(x1) which is obtained as sum of the sharing function values between the
solution x1 ∈ Fi and all other solutions in the same set:

c(x1) =
∑

x∈Fi

S(d(x1, x))

Now the algorithm for the fitness value assignment to the individuals of population P in
the algorithm NSGA-I can be formulated. To each solution x1 ∈ Fj a shared fitness value
G(x1) is assigned using this algorithm. The shared fitness value of x1 is computed as the
fraction of a value which is slightly smaller than the minimum shared fitness value of the
solutions in Fj−1 and the niche count c(x1):
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Algorithm 4 fitness assignment(P, F ) [7]

Compute σshare

Choose small ε > 0
Gmin = N + ε
for all j = 1 . . . r do
for all x1 ∈ Fj do
Fitness: G′(x1) = Gmin − ε
c(x1) =

∑

x∈Fj

S(d(x1, x))

Shared fitness: G(x1) = G′(x1)
c(x1)

Gmin = min
x1∈Fj

G(x1)

After performing this routine each solution x1 ∈ P got its fitness value G(x1) assigned.
These fitness values are used for the selection of the best individuals with the proportionate
selection algorithm presented in the following section.

3.1.3 Proportionate Selection

After assigning a fitness value to each individual, individuals for the computation of the
subsequent population are selected based on these fitness values. The selected solutions
should be the best solutions of the population one generation before. In the case of the
Non-dominated Sorting Genetic Algorithm I, a proportionate selection operator (Deb [7]
and Goldberg and Deb [26]) is used, where each solution x1 is selected with a probability
according to its shared fitness value.

A multiset U of N individuals chosen from population P is created using the proportionate
selection algorithm. The solutions stored in U will be used to compute new solutions to
form the population of the next generation.
To choose N good solutions for U , a probability value w(x1) is computed for each solution
x1 ∈ P , depending on the shared fitness value of x1. For each of the N elements in U
solution x1 ∈ P is chosen with probability w(x1).

Since this selection of individuals is done randomly, a solution with a high fitness value
might end up several times in U whereas a solution with a low fitness value might not be
in U at all. Due to the different number of copies in U the recombination is done with
individuals with higher fitness more likely than with those with lower fitness.
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Algorithm 5 proportionate selection(P ) [7],[26]

U = ∅
S =

∑

x1∈P

G(x1)

for all x1 ∈ P do
w(x1) = G(x1)

S
// A probability for each individual

while |U | < N do
Choose a random x2 ∈ P according to the probabilities w(x1), x1 ∈ P
U = U ∪ {x2}

|U | is the number of elements in U . The random selection in the while-loop can be done
for instance by computing N values {W1, . . . ,WN} in the interval [0, 1]. The value Wj is
the sum of the previously calculated probabilities w(x1), . . . , w(xj). After that a random
number z between 0 and 1 is generated. If z ∈ [0,W1], x

1 will be the randomly chosen
individual. Otherwise, if z ∈ (Wj,Wj+1], j ∈ {1, . . . , N − 1}, the obtained solution will be
xj+1. WN equals one according to the construction of Wj.

Algorithm 6 random element(P ) [7]

Fix the order of the individuals: P = {x1, . . . , xN}
for all j = 1, . . . , N do

Wj =
j
∑

i=1

w(xi)

Generate random number z ∈ [0, 1]
if z ∈ [0,W1] then
STOP, return x1 as the randomly chosen solutions

for all j = 1, . . . , N − 1 do
if z ∈ (Wj,Wj+1] then
STOP, return xj+1 as the randomly chosen solutions

3.1.4 Main Algorithm

All subroutines needed for the Non-dominated Sorting Genetic Algorithm I were introduced
in the previous sections. Finally all these components will be put together to obtain the
NSGA-I algorithm.

The starting population P0 is randomly chosen. The population Pg of generation g is
sorted by the non-dominated sorting algorithm (Algorithm 3). According to the resulting
sets F1, . . . , Fr the fitness is assigned (Algorithm 4) to each solution of the population.
Algorithm 5 chooses and stores the solutions for the recombination process in U . The last
step is the recombination with crossover and mutation algorithms (refer to Section 3.3).
The recombination is applied to U to get the population Pg+1 for the subsequent generation
g + 1.
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Algorithm 7 Non-dominated Sorting Genetic Algorithm I [59]

Generate random start population P0

while g ≤ gmax do
F = non-dominated sort(Pg) // F = {F1, . . . , Fr}
fitness assignment(P, F )
U = proportionate selection(Pg)
Pg+1 = new population(U)
g = g + 1

The Non-dominated Sorting Genetic Algorithm I has a time complexity of O(m · N3)
for each iteration of the algorithm due to the routine non-dominated sort(P ) which has
a higher complexity than any other component of the algorithm. The Non-dominated
Sorting Genetic Algorithm II, a successor of the NSGA-I algorithm, with an improved
time complexity of O(m ·N2) per iteration will be presented in the next section.

3.2 Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was designed by Deb et al.
[13].

Deb et al. [13] designed the NSGA-II algorithm due to the following reasons:

• The non-dominated sorting algorithm of NSGA-I has a high time complexity (O(m ·
N3)).

• Elitism, as used in NSGA-II, can speed up evolutionary algorithms (refer to Zitzler
et al. [65]).

• The sharing parameter σshare needed in NSGA-I is difficult to specify.

Elitism means that the best individuals of the previous generation are copied in the
subsequent population such that good solutions do not get lost. This means that not
all solutions of the new generation are recombinations of individuals. An elitist Genetic
Algorithm chooses the best individuals among the individuals from the current generation
and from the recombined solutions.

To avoid the sharing parameter, the Crowded Comparison Operator is used in the algorithm
NSGA-II. For more details regarding this algorithm refer to Section 3.2.3.

3.2.1 Fast Non-dominated Sorting Algorithm

The Fast Non-dominated Sorting Algorithm is an improvement of the sorting algo-
rithm used in the first version of the Non-dominated Sorting Genetic Algorithm (NSGA-I,
refer to Section 3.1, Srinivas and Deb [59], and Deb [7]).
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The time complexity of the Fast Non-dominated Sorting Algorithm is O(m ·N2) compared
to O(m · N3) of the sorting algorithm used in the NSGA-I. The space complexity of the
new faster algorithm increases, however, from O(N) to O(N2).

In the new algorithm for each solution x1 of the current population P the number of solu-
tions dominating x1 and the set of solutions dominated by x1 are stored. For this reason,
the needed storage space increases, but the time complexity decreases.

The Fast Non-dominated Sorting Algorithm for a population P can be formulated as fol-
lows:

Algorithm 8 fast non-dominated sort(P ) [13]

for all x1 ∈ P do
for all x2 ∈ P do
if x1 ≻ x2 then // x1 dominates x2

S(x1) = S(x1) ∪ {x2}
else if x2 ≻ x1 then // x2 dominates x1

n(x1) = n(x1) + 1
if n(x1) == 0 then // no solution dominates x1

F1 = F1 ∪ {x1}
i = 1
while Fi 6= ∅ do
H = ∅
for all x1 ∈ Fi do
for all x2 ∈ S(x1) do
n(x2) = n(x2)− 1
if n(x2) == 0 then
H = H ∪ {x2}

i = i+ 1
Fi = H

n(x1) is the number of solutions dominating x1 and S(x1) is the set of solutions in P dom-
inated by x1.
The set Fi is the i-th set according to the non-dominated sorting algorithm. The first set
F1 is the set of solutions not dominated by any other solution in population P , Fj+1 is the
set of solutions not dominated by any other solution besides the elements in {F1, . . . , Fj}.
When x1 ∈ P is an element of Fj, then the non-dominated rank r(x1) of solution x1 equals
to j.

The double for-loop for the computation of S(x1) and n(x1), for all x1 ∈ P , has a compu-
tational complexity of O(m ·N2) and the second part, the computation of the sets Fi, has
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a complexity of O(N2).
This results in O(m·N2) for the overall time complexity of the Fast Non-dominated Sorting
Algorithm.

3.2.2 Crowding Distance

After sorting the solutions according to non-domination, the elements in the same set Fi

do not dominate each other. For this reason, a comparison operator is needed to decide,
which of the solutions are favored.
To that end, Deb et al. [13] have estimated the density of the solutions by using the
crowding distance. This distance is used such that solutions in less crowded regions are
favored. The crowding distance of solutions situated in such regions will be greater than
elsewhere.

Definition 3.1 (Crowding Distance)
The crowding distance dc(x

1) of a point (a solution) x1 ∈ P to its neighbors with respect
to each of the objectives is a measure for the size of the largest cuboid containing x1 and
no other solution of the population.

The calculation of the crowding distance for each point x1 in a set H ⊂ R
n is done as

follows. The routine sort(H, j) sorts the points in H according to their objective values
with respect to the j-th objective function fj(x). This is done for each function. So a point
gets two neighbors with respect to each objective function. The crowding distance of x1 is
computed by summing up the differences between the objective values of the left and the
right neighbors with respect to each of the objective functions.

Algorithm 9 crowding distance(H) [13]

k = |H|
for all i = 1, . . . , k do
H[i]dist = 0

for all j: fj objective do
H = sort(H, j) // sort H with respect to the objective values
H[1]dist = H[k]dist = ∞ // Solutions at the boundary are always favored
for all i = 2, . . . , (k − 1) do
H[i]dist = H[i]dist + (H[i+ 1].j −H[i− 1].j)

H[i] is the i-th element in H and H[i].j is the value of objective fj of the i-th element
in H. The resulting value H[i]dist is the crowding distance of the current i-th element in
H. The crowding distances dc(x

l), l = 1, . . . , k, are the distances H[i]dist as computed by
this algorithm. The set H is one of the sets Fi generated by the non-dominated sorting
algorithm in the Non-dominated Sorting Genetic Algorithm II.

The computational complexity depends mainly on the complexity of the sorting algorithm
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(O(k·log(k)) for sorting k elements). This results in an overall complexity ofO(m·k·log(k))
when the set H has k elements. The factor m results from the loop over all objective
functions.

3.2.3 Crowded Comparison Operator

Using the non-dominated rank and the crowding distance for each solution in the popula-
tion, the crowded comparison operator (Deb et al. [13]) for comparing two solutions
x1 ∈ X and x2 ∈ X can be defined:

Definition 3.2 (Crowded comparison operator ≥c)

x1 ≥c x
2 ⇐⇒ ((r(x1) < r(x2)) or ((r(x1) = r(x2)) and (dc(x

1) > dc(x
2))))

This means that lower rank is preferred and when both solutions have the same rank, the
greater crowding distance is the favored one.

3.2.4 Main Algorithm

Finally the non-dominated sorting Genetic Algorithm NSGA-II is formulated in this sec-
tion. To that end, an operator for the selection of good individuals for the recombination
to new ones is defined.

Definition 3.3 (Binary Tournament Selection)
Selecting a solution x2 ∈ X from the elements in P with the binary tournament selec-
tion means to do the following:

1. Choose (randomly) two solutions of P .

2. x2 is the “better” of these two solutions.

The “better” solution could be the one with the better objective value in a chosen objective
function, the greater solution with respect to the Crowded Comparison Operator (refer to
Section 3.2.3) or the solution with smaller rank.

In the following algorithm Pg and Qg represent the parent population P and the child
population Q in generation g ∈ {0, . . . , gmax}. The first parent population P0 is created
randomly and the first child population Q0 is computed by binary tournament selection
according to the rank of the solutions, mutation, and crossover from P0. The algorithm can
be performed with an arbitrary crossover and mutation operator. Crossover and mutation
methods are used to recombine two selected individuals to new ones. Some examples for
such operators are given in Section 3.3 and in Deb [7].
The populations Pg and Qg both have size N and sort(Pg,≥c) sorts the solutions in Pg

according to the crowded comparison operator.
The following algorithm results:
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Algorithm 10 Non-dominated Sorting Genetic Algorithm II [13]

g = 0
while g ≤ gmax do
Rg = Pg ∪Qg

F = fast non-dominated sort(Rg) // F = {F1, . . . , Fr}
i = 1
while |Pg+1| < N do
crowding distance(Fi)
Pg+1 = Pg+1 ∪ Fi

i = i+ 1
sort(Pg+1,≥c) // Sort Pg+1 with respect to the crowded comparison operator
Pg+1 = Pg+1[1 . . . N ] // Take the first N elements of Pg+1

Qg+1 = new population(Pg+1)
g = g + 1

Rg is the combined population with size 2 ·N . In the algorithm the populations Pg and Qg

are joined to the population Rg. The new Pg+1 consists of the first sets in F = {F1, . . . , Fr}
until Pg+1 has at least N elements. The resulting Pg+1 with at least N elements is sorted
with respect to the crowded comparison operator. After sorting, the new population Pg+1

consists of the first N elements of this set. That means that from the last added set only
the elements with the greatest crowding distance are included in the new population Pg+1.
The new child population Qg+1 is computed with the binary tournament selection approach
according to the Crowded Comparison Operator, mutation, and crossover from Pg+1.

The routine fast non-dominated sort(Rg) has a computational complexity of O(m·N2). As
seen in the sections before, all the other parts of the algorithm have a smaller complexity.
This implies that the overall time complexity of the algorithm for one iteration (for one
generation) is O(m ·N2).

3.2.5 Controlled Approach

A variant of the Non-dominated Sorting Genetic Algorithm II is the Controlled NSGA-II
(refer to Deb and Goel [11]). In this variant the selection of the solutions from the sets in
F , computed by the non-dominated sorting algorithm, is modified.

In the controlled approach, not the first sets in F , but solutions from more sets are chosen.
This is done by restricting the number of solutions which are taken from each set Fj. For
this purpose a geometric distribution is used. The maximum number of solutions taken
from Fj, nj , is computed from nj−1 using a user defined reduction parameter α < 1. Due
to this parameter the maximum number of chosen solutions decreases for higher j. Two
consecutive maximum numbers of solutions have the following relationship:

nj = α · nj−1
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In this approach, as in the common NSGA-II, the combined population R is computed and
sorted according to non-domination with the resulting set of sets F = {F1, . . . , Fr}.
The maximum number of solutions taken from set Fj is calculated as follows:

nj = N · 1− α

1− αr
· αj−1

When nj is greater than the number of solutions in Fj, all elements of Fj are chosen and
the difference nj − |Fj| is added to nj+1. Otherwise, when nj is smaller than the number
of solutions in Fj the solutions are chosen according to tournament selection using the
crowded comparison operator.
This process is stopped when there are N solutions in the new population. When the
number of chosen solutions is smaller than N after considering the last set Fr, the missing
solutions are chosen from the remaining ones starting in the first sets, stopping when the
new population consists of N solutions.

According to Deb and Goel [11] the controlled approach increases diversity. High diversity
is often a goal because otherwise the obtained solutions could get stuck in a specific region
and thus possibly better solutions in other regions are not considered.

3.3 Recombination

The selection operator chooses good solutions, but does not produce new solutions, so
recreation operators are needed. In the case of Genetic Algorithms this work is done by
recombination operators which combine selected solutions to new ones. Most algorithms
use two more or less randomly chosen solutions for the recombination. These parent
individuals generate a new child solution which is mutated afterwards.
This principle of combining two parents and mutating the resulting child is an imitation
of the recombination process in nature, where a child is a crossover of its father and its
mother with some additional mutation.

In the following sections crossover and mutation operators as they can be used in Genetic
Algorithms or other evolutionary algorithms are described.

3.3.1 Crossover

The crossover operator generates a new child solution by combining two parent individu-
als. Often only a few solutions of the new population are recombined by crossover, because
crossover is only performed with a given probability, the crossover probability. Otherwise,
when there is no crossover, only one of the parent solutions is copied and maybe mutated
for the new population. There exist several possible crossover operators to create the off-
spring (refer to Deb [7]).
Some examples for crossover operators handling continuous design variables are given be-
low. In the following, x1

i and x2
i for i ∈ {1, . . . , n} denote the design variables of the parent
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solutions x1 ∈ R
n and x2 ∈ R

n. The resultant children are y1 ∈ R
n and y2 ∈ R

n, when the
operator generates two children, or y1, when there exists only one offspring.

The crossover operators presented below are only suitable for optimization problems with
continuous design variables. For crossover operators for integer or mixed integer optimiza-
tion algorithms refer to Section 3.5.1.

- One-point Crossover

In the One-point Crossover a random integer w ∈ {1, . . . , n} is chosen as the index where
left of it the child gets the design variable values of one parent and on the right of the
index of the other one.

Algorithm 11 one point X(x1, x2)

Choose w ∈ {1, . . . , n} randomly
for all i = 1, . . . , w do
y1i = x1

i

y2i = x2
i

for all i = w + 1, . . . , n do
y1i = x2

i

y2i = x1
i

This One-point Crossover can be extended to an S-point Crossover where S random indices
{i1, . . . , iS} are chosen. Additionally, i0 is set to 0 and iS+1 is set to N . The first child gets
the values of parent one in the segments from ij−1 to ij when j ∈ {1, . . . , S+1} is odd and
of parent two when j is even. For the second child it is the other way around.
As per Deb [7] the One-point Crossover operator is not very successful in generating chil-
dren with good objective vectors.

- Blend Crossover, BLX

Assuming x1
i < x2

i , the child value y1i is computed with the Blend Crossover as a random
number out of the interval

[x1
i − β · (x2

i − x1
i ), x

2
i + β · (x2

i − x1
i )]

where β is the BLX parameter. As per Eshelman and Schaffer [21] β = 0.5 is a recom-
mendable choice for β.
The child value can be computed with the BLX operator using

y1i = (1− γi) · x1
i + γi · x2

i

where γi = (1 + 2β) · ui − β. Here ui is a random number between 0 and 1.
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From the formula above the following can be concluded:

(y1i − x1
i ) = γi · (x2

i − x1
i )

Obviously there is a direct dependence between the difference of the parents and the
difference of one parent and the offspring. This is a useful property because when the
optimum is close to the current solutions, the differences between the solutions will get
small and the child solution should also be not far away.

During the first iterations of the algorithm, when the optimal solution is far away in general,
the differences between a parent and the child will be higher. Due to the dependence above,
the BLX operator uses a wider search space during the first generations because at this
time also the parents are not very close to each other due to their more or less random
distribution.

- Unfair Average Crossover

Nomura and Miyoshi [46] presented the Unfair Average Crossover operator where the value
of one parent is more important for the child than the value of the other. Two children of
the two parents are computed as follows:

y1i =

{

(1 + α) · x1
i − α · x2

i , for i = 1, . . . , j
−α · x1

i + (1 + α) · x2
i , for i = j + 1, . . . , n

y2i =

{

(1− α) · x1
i + α · x2

i , for i = 1, . . . , j
α · x1

i + (1− α) · x1
i , for i = j + 1, . . . , n

In the formulas the parameter j is a random integer between 1 and n and the parameter
α is chosen from the interval [0, 0.5].
Since with the Unfair Average Crossover the child is more influenced by one of its parents,
the mean of the population changes. As per Deb [7], the change of the mean of the
population in the direction of one parent would be hard to motivate, even if this parent
were the better of these two solutions.

Beyer and Deb [3] postulate that the following two properties should hold after using a
crossover operator:

1. The mean of the population should not change.

2. The higher the generation number is, the higher the variance of the population should
be.

For more information regarding the two postulated properties refer to Beyer and Deb [3].
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- Simulated Binary Crossover, SBX

Another crossover operator is the Simulated Binary Crossover operator (SBX, refer to Deb
and Agrawal [8] and Deb and Agrawal [9]).
In the routine associated with this operator, as above x1

i and x2
i are the values of the i-th

design variable of the parent solutions x1 ∈ R
n and x2 ∈ R

n, and y1i is the value of the
child’s i-th design variable. The value ηC is a distribution index. When ηC is high, the
child value will be not as far away from the parents than when ηC is low (“near-parent”
solution).

The SBX operator is applied, when a random number between 0 and 1, generated by
randomperc(), is smaller than or equal to a given crossover probability. Otherwise the
child solution is equal to one of the parent solutions. The number of design variables is n.

In the algorithm, at first a random number z between zero and one is generated. The
value βs is derived by Deb and Agrawal [8] such that the area under the curve from 0 to
βs of a certain probability function equals to z. The probability function is chosen by Deb
and Agrawal [8] such that the the Simulated Binary Crossover has a similar search power
as the Single-point Crossover operator (refer to Section 3.5) for integer design variables.
For more information about the SBX operator refer to Deb and Agrawal [8] and Deb and
Beyer [10].

Checking the upper and the lower bounds as done in this routine is needed in each of the
presented crossover operators because if the bounds were not satisfied, the solution would
be infeasible. Now the algorithm of the SBX operator can be formulated.
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Algorithm 12 SBX(x1, x2) [9]

if randomperc() ≤ crossoverProbability then // random value
for all i = 1, . . . , n do // for all design variables
if randomperc() > 0.5 then
y1i = x2

i

else
if |x1

i − x2
i | == 0 then

y1i = x1
i

else
if x1

i < x2
i then

x1 = x1
i , x2 = x2

i

else
x1 = x2

i , x2 = x1
i // x1 < x2

xl = xl
i

xu = xu
i // Bounds of the design variable i

z = randomperc()

β = 1 +
(

2 · x1−xl

x2−x1

)

α = 2− β−(ηC+1)

βs =

{

(z · α)
1

ηC+1 if z ≤ 1
α

(

1
2−z·α

)
1

ηC+1 otherwise

c1 =
1
2
· (x1 + x2 − βs · (x2 − x1))

β = 1 +
(

2 · xu−x2

x2−x1

)

α = 2− β−(ηC+1)

βs =

{

(z · α)
1

ηC+1 if z ≤ 1
α

(

1
2−z·α

)
1

ηC+1 otherwise

c2 =
1
2
· (x1 + x2 + βs · (x2 − x1))

if c1 < xl then c1 = xl

if c2 < xl then c2 = xl

if c1 > xu then c1 = xu

if c2 > xu then c2 = xu

if randomperc() ≤ 0.5 then
y1i = c2

else
y1i = c1

else
for all i = 1, . . . , n do // Take parent1 as a child
y1i = x1

i
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3.3.2 Mutation

After computing a child solution with a crossover operator, this solution is going to be
mutated. The mutation operator is like the crossover operator responsible for searching for
new solutions which should be better than the solutions in the current generation. Since
both, crossover and mutation, have randomness included, this cannot be ensured.
When the used crossover operator produces two children, one of these has to be chosen.
The design variables of the parent are xi and of the child yi with i ∈ {1, . . . , n}.

There exist many different mutation operators, some are described in Deb [7]. For example,
the following operators can be used for the mutation of continuous design variables in a
Genetic Algorithm. For mutation operators for mixed integer or integer optimization
problems refer to Section 3.5.2.

Similarly to the crossover probability there is also a mutation probability. For this reason,
not all solutions of the new generation are modified by a mutation operator. So there are
four possibilities for a solution of the new population:

• No recombination has been done.

• Only the crossover operator was used.

• Only the mutation operator was used.

• Both, crossover and mutation, were performed.

In the cases when mutation is not performed, the result of the crossover operator is used
as the new solution. This can be a crossover of two parents or a copy of one of the parents.
In the following paragraphs several mutation operators are presented.

- Random Mutation Operators

The Random Mutation I is a simple method, where the child yi is chosen randomly from
the interval [xl

i, x
u
i ] (refer to Michalewicz [42]):

yi = xl
i + ui · (xu

i − xl
i)

ui is a continuous random number between 0 and 1 and xl
i and xu

i are the lower and the
upper bound of the design variable xi. In contrast to the other mutation operators listed
in this thesis, the child is completely independent of the parent solution in this method.
This mutation operator is equivalent to the creation of the initial generation where each
solution is randomly chosen within the bounds of the different design variables.

As per Deb [7] there exists another random mutation operator. In the Random Mutation
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II the child is not independent of the parent solution. In this operator the new solution is
chosen randomly within an interval around the parent solution:

yi = xi + (ri − 0.5) ·∆i

In this formula ∆i is the predefined length of the interval where xi is in the center and the
new solution yi is a random number within this interval. The parameter ri is a random
number between 0 and 1. In contrast to the Random Mutation I the bounds have to be
checked after this calculation because xi can be close to its bounds such that the randomly
chosen value is outside the bounds.

- Non-uniform Mutation

Other than in the Random Mutation I, the probability to be closer to the parent solution
in the Non-uniform Mutation is higher than to be far away. An increasing number of
generations results in an increasing probability to be nearby the parent, whereas in the
Random Mutation II the interval, from which the random child value is chosen, is always
as big as in the first generation. In the Random Mutation I the probability is the same for
a solution nearby the parent individual or far away.
Michalewicz [42] proposed to use the following formula:

yi = xi + τ · (xu
i − xl

i) · (1− r
(1− g

gmax
)
b

i )

gmax is the maximal number of generations and ri is a random number between 0 and 1.
The parameter τ is one of the values -1 or 1, each with a probability of 50%. Michalewicz
[42] proposes to set paramter b equal to five.

- Normally Distributed Mutation

In the Normally Distributed Mutation operator (refer to Deb [7]) a Gaussian probability
distribution with mean 0 is used:

yi = xi +N(0, σi)

The parameter σi is fixed by the user or can be adapted for each generation.
The same mutation operator is used in the evolutionary algorithm Evolution Strategy, for
more information regarding this strategy refer to Deb [7].

- Parameter-based Mutation Operator

The mutation operator which was implemented for the Genetic Algorithm for continuous
design variables is a parameter-based mutation which is shown in the following (refer to
Deb and Agrawal [9]).
A given mutation probability has to be greater than a randomly chosen number between
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0 and 1 (generated by randomperc()), otherwise no mutation for the value of this design
variable is performed. The parameter ηM is a predefined mutation parameter.

Algorithm 13 mutation(p)

for all i = 1, . . . , n do // for all design variables
if randomperc() ≤ mutationProbability then
x = xi // Value of the i-th design variable
xl = xl

i

xu = xu
i

δ1 =
x−xl

xu−xl

δ2 =
xu−x
xu−xl

a = randomperc() // Random number a ∈ [0, 1]
w = 1

ηM+1

if a ≤ 0.5 then
z = 1− δ1
v = 2 · a+ (1− 2 · a) · (zηM+1)
δs = vw − 1

else
z = 1− δ2
v = 2 · (1− a) + (a− 0.5) · (zηM+1)
δs = vw − 1

x = x+ δs · (xu − xl)
if x < xl then x = xl

if x > xu then x = xu

yi = x

In this routine xi, i ∈ {1, . . . , n} are the values of the design variables of the parent solution,
and xl

i and xu
i are the lower and upper bounds. The resulting solution is yi.

- Particle Swarm Mutation

A mutation operator based on the Particle Swarm Optimization is introduced in Section
3.4.1.

3.4 Hybrid Genetic Algorithms

Combining a Genetic Algorithm with other local or global optimization algorithms can
improve both the quality of the solution and the efficiency to find it. For studies regarding
the improvement using a Genetic Algorithm in combination with local optimization refer
to Deb et al. [14], Bilchev and Parmee [4], and Krasnogor and Smith [38].
It can be an advantage to search for the best local solution in the current region around
a solution found by the Genetic Algorithm (GA) by using a local optimization algorithm,
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because a GA can rapidly find the region of the optimal solution, but for this kind of
algorithm it is hard to find the exact optimal solution.

In the following sections, some possible hybridizations of a Genetic Algorithm with other
(global or local) optimization algorithms are presented. For more possibilities how to
combine Genetic Algorithms with other algorithms refer to the review of El-Mihoub et al.
[19].

3.4.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) developed by Kennedy and Eberhart [36] is also a
population based optimization algorithm like the Genetic Algorithms, i.e., populations
change to new, hopefully better ones to compute the best solution.

Hassan et al. [32] compared a Genetic Algorithm with a particle swarm optimization algo-
rithm using statistical tests. In these tests the PSO seemed to have a better computational
efficiency than Genetic Algorithms. As per Hassan et al. [32] the difference between the
efficiency of PSO and GA is highly dependent on the instances solved.

In the Particle Swarm Optimization algorithm, a generation consists of a number of par-
ticles. Each particle is one particular solution of the optimization problem.
The i-th particle pg+1

i of the subsequent generation g + 1 is computed using the values of
the design variables of three different particles:

• The particle pi of generation g.

• The best known solution for the current particle pi.

• The best known solution for any particle.

The calculation of the velocity (change pattern) of the i-th particle to compute the gener-
ation g + 1 is according to dos Santos Coelho [16]

vg+1
i = ω · vgi + c1 · r1 · (bi − pgi ) + c2 · r2 · (b− pgi )

The i-th particle of generation g+1 is calculated as the sum of the value of the particle in
generation g and its velocity:

pg+1
i = pgi + vg+1

i

In a generation with N particles where each particle consists of n design variables denote
vgi ∈ R

n the velocity and pgi ∈ R
n the position in the search space of the i-th particle in

generation g. The currently best solution for the particle pi is bi and the best solution of
all particles is stored in b. c1 and c2, the cognitive and the social learning rate (Shi and
Eberhart [57]), are predefined positive constants and r1 and r2 are random values between
0 and 1.
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Example values for c1 and c2 are c1 = c2 = 2 from Shi and Eberhart [57] and c1 = c2 = 2.05
used by dos Santos Coelho [16].
ω ∈ [0, 1] is called the inertia weight. According to Shi and Eberhart [57] a large inertia
weight has a trend towards global optimization whereas a small ω has a trend towards
local optimization.
Shi and Eberhart [57] propose to start with a high ω and decrease ω linearly in each
optimization step until a given small end value is reached. That means that the value of
ω for the current generation g is calculated as follows:

ωg = (ω0 − ωgmax
) · gmax − g

gmax

+ ωgmax

In this formula, ω0 is the value for ω in generation 0 and ωgmax
the value for ω in the last

generation.
Experiments of Shi and Eberhart [57] showed that a value of 0.9 for ω0 and a value of 0.4
for ωgmax

are good choices.

Now the PSO algorithm reads:

Algorithm 14 Particle Swarm Optimization [36]

for all i = 1, . . . , N do // N is the number of particles
Compute random initial particle pi
bi = pi
if f(pi) < f(b) then
b = pi

Initialize randomly the particle’s velocity vi
while Termination criterion is not met do
for all i = 1, . . . , N do
Choose r1, r2 ∈ [0, 1] randomly
Calculate new velocity vi = ω · vi + c1 · r1 · (bi − pi) + c2 · r2 · (b− pi)
Calculate new particle pi = pi + vi
if f(pi) < f(bi) then
bi = pi
if f(bi) < f(b) then
b = bi

After termination of the algorithm, b is the best known solution. The initial particles have
large influence on the process of updating the velocity, so the initial generation is very
important.

Two possibilities how to combine a Genetic Algorithm as introduced in Section 2.5 and
the Particle Swarm Optimization algorithm are mentioned below.
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Sequential Hybridization

Because of the influence of the initial particles one possibility for a hybrid Genetic Algo-
rithm with Particle Swarm Optimization is to use a Genetic Algorithm for computing the
initial generation for the Particle Swarm Optimization algorithm. Using this approach the
initial generation is no longer a random one, but the computational effort for the initial
generation computed by a Genetic Algorithm is much higher.
This sequential hybridization of a Genetic Algorithm was tested for a reactive power opti-
mization problem by Lu et al. [40].

Parallel Hybridization - Mutation Operator

Besides the sequential hybridization it is also possible to use parallel hybridization where
parts of the Particle Swarm Optimization Algorithm are used for instance in the recom-
bination part of the Genetic Algorithms as described in Zhang et al. [64]. A mutation
operator based on the formula of the Particle Swarm Optimization Algorithm as given
above is presented in this section.

In the new mutation operator the formulas of the Particle Swarm Optimization are slightly
modified for their use for the mutation operator. The new mutated child is calculated with
the following formula:

pnewi = ω · pi + c1 · r1 · (pui − pi) + c2 · r2 · (b− pi)

In the formula pui is the upper bound vector of the i-th particle and b is the individual with
the best objective vector from the previous generation. ω, c1 and c2 are positive constants
and r1 and r2 are two random numbers between 0 and 1 as defined before.
Bai and Gan [2] recommended the values c1 and c2 to be set to 1.49445. The inertia weight
ω is proposed to be set to 0.7298.

3.4.2 Adaptive Local Search

Genetic Algorithms are quite good as global optimization goals are concerned, but there
is no local optimization included. Therefore it can be an advantage to combine a GA
with local search methods. Yun [63] tested hybrid Genetic Algorithms with two different
adaptive local search schemes.

The local search method is applied after the mutation step to compute the local optimal
solution before the insertion of the individual in the new generation. This method is only
started when the local search scheme after the previous iteration of the Genetic Algorithm
decides that the local search is needed. Two different possibilities how to decide whether
the search technique is started or not are shown below.
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Local Search Technique - Hill Climbing Method

In the Hill Climbing Method (refer to Russell and Norvig [53]), N random individuals are
computed in the neighborhood of the given individual. Among all of these individuals the
one with the best objective value is chosen.

Yun [63] presented two local search schemes to decide whether a local search technique
like the Hill Climbing Method is called or not. In the following two paragraphs these local
search schemes will be described.

Local Search Scheme 1

One possibility for making the decision whether the local search is called, is to compute
the ratio V (g) for the current generation g using v(g), the average objective value of all
solutions in generation g:

V (g) =
v(g)

v(g − 1)

The iterative hill climbing method is called if V (g) > 1 (because minimum problems are
considered), otherwise only the Genetic Algorithm is performed. This means that the local
search is used when there has been no improvement of the average objective values within
the last two generations.

Local Search Scheme 2

One problem of Genetic Algorithms is that when the individuals converge to the optimum,
they are getting more and more similar to each other. To avoid this the following local
search scheme can be used to increase the diversity.

At the beginning of the algorithm, the similarity coefficients SCi,j are calculated for each
pair (xi,xj) of individuals as follows

SCi,j =

n
∑

k=1

δ(xi
k, x

j
k)

n

where

δ(xi
k, x

j
k) =

{

1 if |xi
k − xj

k| ≤ α
0 otherwise

xi
k denotes the value of the k-th design variable of individual xi and α (e.g. α = 0.5) is a

constant to decide how similar two individuals are.

The value SC which is used for the decision whether local optimization is performed or
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not is the average value of all SCi,j:

SC =

N
∑

i=1

N
∑

j=i+1

SCi,j

s

In this formula is s = N ·(N−1)
2

the number of similarity coefficients SCi,j which have to be
calculated.
The average similarity coefficient is a number between 0 and 1. When it is near to 1, there
is a high similarity and the local search method will be performed.
For the decision whether the similarity coefficient is regarded as near to 1 there has to be
a given threshold β, e.g. β = 0.9. When SC is greater than β, the local search is called,
otherwise not.

3.5 Recombination in Mixed Integer Genetic Algorithms

In the previous sections only continuous design variables were taken into account. The
main step for handling integer and mixed integer optimization problems with Genetic
Algorithms is to modify the recombination operators such that they are able to handle
integer design variables too.
The operators presented in the following sections are used when integer design variables
are going to be recombined. When a continuous design variable is recombined in a mixed
integer problem, the same operators as in the continuous optimization algorithm are used.
It can be an advantage to choose different crossover and/or mutation probabilities for
integer and continuous variables.

Some of the operators in the following sections need a rounding operator to transform the
continuous output of the function into an integer variable. This can be done for instance
with one of these two methods:

• Round off to the nearest integer.

• Round up or down with a probability of 50%.

The risk to get equal values is much smaller using the second method because the same
continuous values are possibly rounded to different integers.

3.5.1 Integer Crossover

Some possible crossover operators for integer design variables are presented in this section.
Only a few crossover operators listed below do not need a rounding operator afterwards.

- Simulated Binary Crossover for Integers

The Simulated Binary Crossover (SBX, Algorithm 12) uses continuous design variables.
It is also possible to handle integer variables with this operator by computing an integer
from the continuous solution with rounding.
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- S-point Crossover

When the S-point Crossover is applied to two parent solutions, S random indices of the
design variables are chosen. Between these indices the values of parent one and parent two
are chosen alternately. This means for example that from the first variable to index one
the values of parent one are taken, then for the next variables to index two the values from
parent two etc. In this routine no rounding function is needed because the values of the
parents have to be integers.

- Scattered Crossover

In the Scattered Crossover a random binary array with the number of design variables n
as length is generated. Then for each design variable the value of parent one is taken,
when there is a 0 in the array at that position, otherwise the value of parent two is chosen.
This operator is a generalization of the S-point Crossover operator from above. The binary
array ensures that the values of the child solution is taken randomly of parent one or parent
two. When this method is used, there is no rounding function needed with the same reason
as when using the S-point Crossover.

- Arithmetic Crossover

The Arithmetic Crossover operator is another crossover operator for continuous design
variables where a rounding operator is needed to handle integer or mixed integer optimiza-
tion problems. The value of the child’s design variable y1i is calculated by the following
formula:

y1i = a · x1
i + (1− a) · x2

i

a is a continuous random number between 0 and 1 and x1
i and x2

i are the values of the i-th
design variable of the parents x1 and x2.

- Blend Crossover, BLX

The Blend Crossover operator of Section 3.3 can be used for integer or mixed integer
optimization problems by using a rounding operator after calculating the design variable
of the child solution with the original continuous operator.

- Unfair Average Crossover

The Unfair Average Crossover (refer to Section 3.3), originally designed for continuous
design variables, can be used for problems with integer design variables when the results
are rounded.

3.5.2 Integer Mutation

After the crossover operator the mutation operator has also to be modified for integer
optimization. Some possibilities are presented below. Most of the operators are continuous
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mutation operators where the solution is rounded by a rounding operator like the two
mentioned at the beginning of Section 3.5.

- Parameter-based Mutation Operator

For the mutation it is also possible to use the existing Parameter-based Mutation Operator
as described in Section 3.3 and to round the solution afterwards.

- Random Change Mutation

The Random Change Mutation can be used without a rounding function. When the design
variable is going to be mutated according to the mutation probability, the new value is
chosen randomly out of the possible values for this integer variable. The possible values
are all integer values between the lower and the upper bound of this variable.

- Particle Swarm Mutation

As described in Section 3.4.1 a modified formula of the Particle Swarm Optimization can
be used in the recombination step. For an integer mutation the result of the mutation
operator based on PSO has to be rounded. This mutation operator combined with a
rounding operator was used by dos Santos Coelho [16].

- Non-uniform Mutation

The Non-uniform Mutation Operator, as shown in Section 3.3, can be used for integer
variables when the solution of the operator is rounded for example with one of the two
rounding operators as listed at the beginning of this subsection.

- Normally Distributed Mutation

For using the normally distributed mutation operator for integer variables the result of the
formula in Section 3.3 has to be rounded.
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4 A brief introduction to AVL Design Explorer and

AVL CRUISE

The aim of this thesis is to extend an optimization package implemented in the optimiza-
tion software AVL Design Explorer such that integer and mixed integer multi-objective
optimization problems can be handled.
First, AVL Design Explorer is briefly introduced at the beginning of this section. After-
wards, the vehicle simulation software AVL CRUISE is described. AVL CRUISE is called
by the AVL Design Explorer for the computation of the objective values to generate the
results which are shown in Section 6. Calling AVL CRUISE for each objective function
evaluation causes the duration of one simulation in AVL CRUISE to be the main factor
for the running time of the AVL Design Explorer.

4.1 Optimization Software AVL Design Explorer

AVL Design Explorer [1] is a software to run a Design of Experiments (DoE) or an
Optimization algorithm. The objective values are computed by simulation programs of
AVL. One example for such a simulation program is the vehicle simulation software AVL
CRUISE, which will be introduced in Section 4.2. This software is also used as objective
function evaluator for generating the results in Section 6.

The two components of the AVL Design Explorer, Optimization and Design of Experi-
ments, respectively, and their associated algorithms will be briefly introduced in the fol-
lowing section. For more details refer to the AVL Design Explorer User Guide [1].

4.1.1 Optimization

The focus in this thesis is put on the optimization part of the AVL Design Explorer.
Optimization enables the user to possibly increase the quality of a model, previously defined
for instance in AVL CRUISE. The procedure is started by defining the parameters of the
model which are used as design variables for the optimization problem. After that, the
AVL Design Explorer is started. The AVL Design Explorer calls the simulation software
AVL CRUISE to evaluate the objective functions. AVL CRUISE runs a simulation for
each individual of the current population which has not been considered in any population
before to obtain the corresponding objective value.

When using AVL CRUISE, the selectable objective functions in AVL Design Explorer differ
with the calculation tasks which are activated in the basis model for the optimization.
Some examples for possible calculation tasks are described in Section 4.2. Each selected
objective function can independently be defined to be minimized or maximized. A target
which has to be reached by an objective function can also be specified. The user chooses
the optimization algorithm and provides values for the size of the population and for the
number of generations. By multiplying these two numbers and adding the number of

40



individuals in the two initial populations the number of simulation runs is calculated.

When the user chooses to perform optimization, one of the following three optimization
algorithms can be selected regardless of whether a single or a multi-objective optimization
problem is considered.

• NLPQL (Nonlinear Programming Quadratic Linesearch) (refer to Schittkowski [56]).

• Nelder-Mead (refer to Nelder and Mead [45]).

• Genetic Algorithm as introduced in Section 3.2.

When more than one objective function is selected, these three algorithms can be used as
single objective optimization algorithms by applying the ε-Constraint or the Weighted Sum
approach as described in Section 2.4.2 and Section 2.4.1. The only possibility to optimize
without scalarization is to select the Genetic Algorithm. By using the Genetic Algorithm
it is possible to choose between the two scalarization approaches and true multi-objective
optimization.
In any case the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used when the
Genetic Algorithm is selected, regardless of whether scalarization is chosen or not. The
algorithm NSGA-II is described in Section 3.2 and its implementation in Section 5.1.

4.1.2 Design of Experiments

The other component provided by the AVL Design Explorer is Design of Experiments
(DoE). DoE can be used to analyze the influence of the selected design variables on the
output values of the simulated model or to search for a good starting point for an opti-
mization process which can be performed afterwards. When using Design of Experiments
a number of different design points is generated and the output of the called simulation
software is analyzed.

Note 4.1 In the theory of Design of Experiments a design variable is called a factor and
the value of a factor is referred to as a level.

AVL Design Explorer provides the following algorithms which can be chosen for the Design
of Experiments.

• Full Factorial Design:

– The Full Factorial Design discretizes the interval between the bounds of the
factors in equally spaced levels. Commonly two levels are used, where all vertices
of the design space (a hypercube) are evaluated (refer to Moen et al. [43]).

• Orthogonal Array:
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– The approach Orthogonal Array is a fractional factorial design. The number of
designs of the Full Factorial Design is reduced such that the number of eval-
uations decreases. This reduces the amount of time needed for the DoE but
also some information is lost due to the lower number of designs. For more
information about Orthogonal Arrays refer to Hedayat et al. [33].

• Latin Hypercube:

– The design space of each factor is uniformly divided to get s levels. A column
in a table is assigned to each factor and the entries of this column are a random
permutation of the s levels. The design points, which are evaluated for the DoE,
are the rows of the table (refer to Press et al. [50]).

• Sobol Sequence:

– In this method the idea of quasirandom Sobol sequences is used for the genera-
tion of the design points (refer to Press et al. [50]).

For time expensive simulations surrogate models can be used which try to imitate the
original simulation. The two selectable regression methodologies to create surrogate models
are Support Vector Machines (refer to Press et al. [50]) and Relevance Vector Machines
(refer to Tipping [60]).

4.2 Vehicle Simulation Software AVL CRUISE

The vehicle simulation software AVL CRUISE [6] is briefly introduced in this section. For
detailed information regarding AVL CRUISE refer to Pfau [49] and the AVL CRUISE User
Guide [6].

Considering the behavior of engines or even whole vehicles using simulation software is
very important in the automotive industry. Without such software, companies would
have to build much more prototypes of their products resulting in an extension of the
construction process. The simulation software AVL CRUISE is one of those programs
which simulate vehicle dynamics to calculate fuel consumption, emissions, and driving
performance. Besides the simulation of cars it is also possible to simulate motorcycles or
trucks using AVL CRUISE. In addition to cars including a conventional combustion engine,
there exists the possibility to generate models of hybrid and electric vehicles.

The generation of a model, some possible calculation tasks, and the selectable calculation
modes are presented in the following paragraphs.

- Simulation Model

A user builds up a simulation model in AVL CRUISE like a real vehicle including different
modules like tire, brake, engine, clutch, and many more. A schematic representation of a
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vehicle as build up in AVL CRUISE is shown in Figure 4.1. This figure shows a manual
car with front-wheel drive. For a detailed explanation refer to Section 6.1.1.
Between the modules forces and signals can operate. Almost any connection between the
modules is possible, some connections are even necessary for an authentic model. An
example is the gas pedal in the cockpit which has to be connected to the load signal of the
engine.
Each module is constructed with defining data and some input and output variables. These
are transferred from and to other modules via connections between them.

Figure 4.1: Schematic representation of an AVL
CRUISE Model - Manual Front-Wheel

Drive

Besides the modules in Figure 4.1 which are included in most of the vehicles there exist also
components for user defined functions written in C or Fortran. In addition, interfaces can
be included in a model to call external programs like MATLAB [41] during a calculation.
Such external programs can be used for the definition of control sequences and modules
by the user without the necessity of a new compilation of AVL CRUISE.

- Calculation Tasks
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After creating a simulation model the required calculation tasks have to be chosen. Seven
calculation tasks for the simulation of a vehicle are possible, for instance Cycle Run for
the determination of fuel consumption and emissions and Full Load Acceleration for the
calculation of the acceleration behavior. Different tasks result in different output values
and curves.

In the task Cycle Run the emissions and the fuel consumption of a vehicle are computed
according to a specific vehicle velocity profile. This profile is given as a table of the
desired velocity for the vehicle model over time. Standardized driving cycles can be used
to compare the emissions and the fuel consumption of vehicles for instance in Europe. The
comparability of emissions is used for the definition of emission standards like the current
standard Euro 5 (refer to [62]) which has to be reached for new cars which are sold in the
European Union.

Driving cycles which are used for testing the modifications in AVL Design Explorer are
UDC (Urban Driving Cycle) and NEDC (New European Driving Cycle). NEDC consists
of four consecutive UDCs and an additional fifth part where higher vehicle velocity and a
higher gear are desired. For detailed information to both driving cycles refer to the council
directive of the European Union [61].
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Figure 4.2: New European Driving Cycle

Euro 5 is in force for the approval of vehicles from September 1st, 2009 and for the regis-
tration and sale of new cars from January 1st, 2011. The successor is Euro 6 which will
be in force from September 1st, 2014 for the approval and from September 1st, 2015 for
registration and sale of new cars. These standards are defined using the NEDC. For more
details refer to the regulations of the European Union [62].

The second calculation task, mentioned in this thesis, is Full Load Acceleration. Three
subtasks exist for this task:

• Maximum Acceleration in all Gears:

– For each gear, acceleration and velocity are calculated at full throttle.

• Shifting Gears from Standstill:

– The acceleration from standstill to the maximal possible velocity is calculated
using this task.

• Elasticity:
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– The acceleration for instance from 60 km/h to 120 km/h is calculated with or
without gear shifting. In addition, the acceleration between two engine speeds
without shifting can be calculated.

For more information about these tasks and other selectable tasks refer to Pfau [49] and
the AVL CRUISE User Guide [6].

- Calculation Modes

A user can choose one of the following calculation techniques for each of the selected
calculation tasks.

• Stationary:

– The result values for the model are calculated for each engine speed of the vehicle
assuming that no acceleration of the vehicle affects the behavior of the model.
Stationary means that velocity is taken into account for the calculation, but no
acceleration.

• Quasi-stationary:

– The result values for the model are calculated similarly as in the stationary
computation, but a fixed value for the acceleration of the vehicle is allowed.
Other than in the Stationary calculation, time points can be defined for which
the calculation has to be performed. This enables for example the calculation
of the task Cycle Run.

• Simulation:

– The behavior of the vehicle model is simulated including a driver which controls
the velocity and the acceleration of the vehicle. A module named Driver acts
as this controller.

Due to the more restricted calculation of the Stationary and the Quasi-stationary mode,
using a fixed vehicle acceleration, the calculation time for the Simulation mode is much
higher than for the other ones.

The choice of the calculation technique depends on the chosen task, the required results,
and the desired time for the calculation. For instance, the previously mentioned tasks Full
Load Acceleration and Cycle Run can be calculated either with quasi-stationary or simula-
tion whereas the task Constant Drive can only be calculated with stationary computation.
The task Constant Drive computes emissions and fuel consumption while driving with con-
stant speed so there is no acceleration of the vehicle which has to be taken into account.
Additionally, the maximum achievable velocity can be obtained when the calculation task
Constant Drive is activated.
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5 Implementation

This section is devoted to the implementation part of the thesis. At the beginning the
implementation of the Genetic Algorithm for optimization problems with continuous design
variables is described. Afterwards, the changes in the code to enable the AVL Design
Explorer to handle integer design variables, which was the goal of this thesis, are presented.

5.1 Optimization with Continuous Design Variables

Parts of the source code of the AVL Design Explorer, mainly regarding the Genetic Algo-
rithm for single and multi-objective optimization problems, are described in this section.
Prior to this thesis only the continuous optimization algorithm Non-dominated Sorting
Genetic Algorithm II (NSGA-II, refer to Section 3.2 and Deb et al. [13]) was included in
the AVL Design Explorer.
Besides this algorithm the AVL Design Explorer provides other optimization algorithms
and the possibility to do Design of Experiments. For more details regarding the optimiza-
tion software AVL Design Explorer refer to section 4.1 and to the AVL Design Explorer
User Guide [1].

Since AVL Design Explorer is implemented in Python, the main part for handling the op-
timization is programmed in Python. The optimization algorithms, which are called from
the Python routines, are implemented in Python, C++, and Fortran, depending on the
algorithm.

As shown in Figure 5.1, the NSGA-II for continuous design variables consists of three
steps, where the first one is the same for all optimization algorithms. This structure was
not changed during the modifications for the handling of integer and mixed integer opti-
mization problems. The three steps are:

1. A Python Script manages the communication between the optimization routines
and one of AVL’s simulation programs, for instance AVL CRUISE.

2. The Optimization Interface translates the input data of the current optimization
instance, defined by the Python script, into a C++ data structure.

3. The Optimization Routine NSGA-II (Section 3.2) is implemented in the C++
library MOMHLib++ [44] (Multiple Objective Metaheuristics Library in C++).
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Input data from a simulation
software to optimize

Python Script

Input for optimization problem
in Python data structure

Optimization Interface

Input for optimization problem
in C++ data structure

Optimization Routine

Optimized input for a
simulation software

Figure 5.1: The main steps of the program using the
NSGA-II and its information flow

The second and the third step are different for the Nelder-Mead method and the Nonlin-
ear Programming Quadratic Linesearch (NLPQL). For the Nelder-Mead method only the
Python Script is needed because it is implemented directly in Python. The input data for
the NLPQL is parsed to C++ using the Optimization Interface, but a Fortran routine and
no C++ library is called to perform optimization.

These three main parts of the program are described in detail in the following subsections,
mainly regarding the implementation of the Non-dominated Sorting Genetic Algorithm II
for optimization problems with continuous design variables.

5.1.1 Python Script

The base file to run the optimization process in the AVL Design Explorer is the Python
file Optimization Plan.py, where the different algorithms are called and the optimization
problem is defined. This file is mainly an interface to the different optimization algorithms.
The equivalent file for Design of Experiments is the Python file DOE Plan.py.

The main class of Optimization Plan.py is Optplan. This is the base class for the derived
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classes for all single and multi-objective optimization algorithms implemented in the AVL
Design Explorer (refer to Section 4.1):

• NSGA-II: class Opt_GENETIC(Optplan)

• NLPQL: class Opt_NLPQL(Optplan)

• Nelder-Mead method: class Opt_Simplex(Optplan)

These derived classes include similar methods which differ according to the different pur-
poses for the three optimization algorithms.

Some important methods of the base class and the derived classes are listed below. The
methods of the base class and the class implementing Nelder-Mead which are not in the
following list are mainly used for the evaluation of the results.

• class Optplan:

– In setProblemDefinition the optimization problem with its design variables,
constraints, and objectives is defined. setProblem, which is implemented in
the wrapper to C++, is called to set up the C++ optimization instance, when
NSGA-II or NLPQL is the selected optimization algorithm.

– The method runOptimization calls setProblemDefinition. In addition, the
C++ wrapper is called by runOptimization to perform the optimization when
NLPQL or NSGA-II is the required algorithm.

• class Opt_GENETIC(Optplan):

– In setMethodParameters the parameters for the Genetic Algorithm are set,
for instance mutation and crossover probability and the maximum number of
generations.

– In runOptimizationAlgorithm, called by runOptimization in Optplan, the
optimization algorithm of the C++ library is called by a wrapper.

• class Opt_NLPQL(Optplan):

– In setMethodParameters the parameters for the NLPQL are set, for instance
the maximum number of iterations and the desired final accuracy.

– In runOptimizationAlgorithm, called by runOptimization of the base class,
the Fortran routine of the NLPQL optimization algorithm is called by a C++
wrapper.

• class Opt_Simplex(Optplan):

– In setMethodParameters the parameters for Nelder-Mead are set, for instance
the maximum number of iterations and two tolerance parameters.
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– This class has its own method runOptimization which handles the call of the
optimization algorithm because Nelder-Mead is implemented directly in this
class without calling an external library.

– In runOptimizationAlgorithm, called by runOptimization, the optimization
is performed.

From these Python classes, methods in C++ and a Fortran routine are called by a C++
wrapper. For this purpose the C++ wrapper MOMH wrapper.cpp is described in the
following subsection.

5.1.2 Optimization Interface

In MOMH wrapper.cpp the instance of an optimization problem, defined by the Python
script, is parsed into a C++ data structure and the desired optimization algorithm is
called. This can be either the Non-dominated Sorting Genetic Algorithm II in C++ or
the Nonlinear Programming Quadratic Linesearch in Fortran. The focus here is on the
NSGA-II.
Important methods in MOMH wrapper.cpp, called by Optimization Plan.py, are the fol-
lowing:

• set_Problem parses common parameters of the NLPQL or NSGA-II instance coming
from Python to C++ parameters and calls the C++ method setProblem to set up
the C++ instance. Examples for such parameters are:

– Number of design variables: int iNumDV

– Lower bounds: vector<double> dLowerB

– Upper bounds: vector<double> dUpperB

– Objective types: vector<int> iObjType

(these can be either a minimum, maximum, or a target value)

– Constraint types: vector<int> iConstrType

(0: equality, 1: inequality (lower bound only), 2: inequality (upper bound only))

• set_ParameterGA parses the specific parameters for NSGA-II and calls the C++
method setParameterGA to set the parameters in the C++ instance. Examples for
the NSGA-II specific parameters are:

– Mutation probability: double dMutationProbability

– Crossover probability: double dCrossoverProbability

– Number of generations: int iNumGeneration

– Size of the populations: int iNumPopulation

– Reduction parameter: double dPopulationGeometricalFactor

(for the controlled approach as described in Section 3.2.5)
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• In set_ParameterNLPQL the parameters for the NLPQL algorithm are parsed and
the method setParameterNLPQL is called to set the C++ parameters for NLPQL.

• The method run_Algorithm differs, when the value typeAlgorithm is set to 0 or 1:

– NSGA-II will be called if typeAlgorithm equals 0, otherwise NLPQL will be
the desired algorithm.

∗ If NSGA-II is the desired algorithm, Run() will be called which is imple-
mented in the C++ file constrainednsgaiic.cpp.

∗ To perform NLPQL optimization, nlpql_optimize is called. This method
is a Fortran routine, implemented by Scheucher [55] in nlpql optimize.f90.

– set_ParameterGA and set_ParameterNLPQL are also called according to the
value typeAlgorithm.

The methods above set all parameters and build up the complete instance of the optimiza-
tion problem.

5.1.3 Optimization Routine

The optimization is performed in the third step. When NSGA-II is the used optimization
algorithm, the desired algorithm is implemented, as described by Deb et al. [13] and Deb
[7], in the C++ file constrainednsgaiic.cpp. A brief overview of the implemented algorithm
(for more details refer to Section 3.2) is presented below.

Besides the main C++ file there exists another major file for the algorithm. The recombi-
nation, using crossover and mutation operators, is implemented in newsolution.cpp. This
is also the file containing the main modifications of the Genetic Algorithm for handling
integer design variables.
The implementation of the NSGA-II in the file constrainednsgaiic.cpp is described in the
following.

During the optimization process, the three different populations P , Q, and R for each
generation are handled using the following variables in the code:

• The parent population P with size m_iPopulationSize.

• The child population Q with size m_iPopulationSize.

• The merged population R: parent|child with size m_iDoubledPopulationSize.

After starting the optimization process the initial population P is generated as a set of
m_iPopulationSize random solutions.
By means of the Fast Non-dominated Sorting Algorithm as described in Section 3.2.1 and
implemented in tmotool.cpp, P is divided into the set of sets iF. The resultant iF is used
for the fitness value assignment to each individual in P using the non-dominated rank.
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The child population Q of the initial generation consists of individuals where each is com-
puted by the recombination of two solutions. Each of these two solutions is one with
minimum non-dominated rank of two randomly chosen solutions in P. This selection op-
erator is called binary tournament selection (refer to Section 3.2.4) and is implemented in
tmotool.cpp.

• To perform recombination, crossover and/or mutation is used (Section 3.3) depending
on the crossover and mutation probabilities. The routines of the crossover and the
mutation operators are implemented in newsolution.cpp.

The following steps are executed until a stopping criterion like the maximum number of
generations is reached:

1. After merging P and Q to one population R, this double population is sorted according
to non-domination resulting in the set of sets iF. The first set in iF is the set of the
R-efficient solutions.

2. According to iF each solution in R gets a fitness value, the non-dominated rank.
In addition, for each solution in R the crowding distance is calculated as shown in
Section 3.2.2.

• Recall 5.1 The crowding distance is a measure for the largest region around a
solution without any other solution.

3. The parent population P for the subsequent generation consists of half of the solutions
in R. These solutions are chosen by the controlled approach as described in Section
3.2.5 using the predefined reduction parameter.

4. From this parent population P, a child population Q is computed. For this reason,
two solutions of P are recombined to one solution for Q. Each of these two solutions
is selected by choosing randomly two individuals of P and taking the maximum with
respect to the crowded comparison operator (binary tournament selection).

• Recall 5.2 When the crowded comparison operator is used, then a solution is
better, when its non-dominated rank (fitness) is smaller or if it has the same
rank and a bigger crowding distance (refer to Section 3.2.3).

5. Stop, when the maximum number of generations is reached.

5.2 Optimization with Continuous and Integer Design Variables

The modifications in the source code of the AVL Design Explorer to enable optimization
of integer design variables using a Genetic Algorithm are presented in this section.
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For enabling the Genetic Algorithm NSGA-II to handle integer and mixed integer op-
timization, operators for the recombination of integer variables are necessary. For this
reason, some of the mutation and crossover operators which are presented in Section 3.5
are implemented in the file newsolution.cpp. The recombination operators of the NSGA-II
for optimization problems with continuous design variables are also implemented in this
C++ file.

The implemented operators for crossover and mutation are listed below. For details about
these methods refer to Section 3.3 and Section 3.5

Implemented crossover operators:

• Simulated Binary Crossover

• Scattered Crossover

• Arithmetic Crossover

Implemented mutation operators:

• Parameter-based Mutation

• Random Change Mutation

• Particle Swarm Mutation

The desired operator is determined by four integer variables which have to be set equal to
the corresponding number:

• croAlgInt chooses the crossover operator for integer design variables.

• croAlgCont chooses the crossover operator for continuous design variables.

• muAlgInt chooses the mutation operator for integer design variables.

• muAlgCont chooses the mutation operator for continuous design variables.

Due to the results of the tests which are shown in Section 6 the crossover operator Scat-
tered Crossover is chosen as the default crossover operator for the integer design variables.
Initial test runs also showed that the Parameter-based Mutation operator is the best choice
of these three as the mutation operator for the integer design variables. The continuous
design variables are still handled by the operators Simulated Binary Crossover and the
Parameter-based Mutation.

Simulated Binary Crossover and the Parameter-based Mutation were implemented for con-
tinuous design variables prior to this thesis. Only a rounding function had to be added
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to use them also for integer design variables. The following rounding functions are im-
plemented and one of those is used according to an integer variable which has to be set
directly in the code:

• Round up and down with a probability of 50%, when roundAlg equals 0.

• Round off to the nearest integer, when roundAlg equals 1.

These rounding functions are used both for modifying the operators that have been im-
plemented for the continuous case as well as in the Arithmetic Crossover and the Particle
Swarm Mutation Operator, when the current design variable has to be an integer. The
Scattered Crossover does not need a rounding function because the elements of the parents
are already integers and the random numbers in the Random Change Mutation are chosen
from the integer values between the bounds, so there is no rounding function necessary.

For the modification and the extension of the code some additional methods are necessary:

• double Round includes the two rounding functions which are called according to the
value of roundAlg.

• double Omega is necessary for the Particle Swarm Optimization Mutation Operator.

• double CheckBounds calls the selected rounding operator of Round, if necessary, and
checks, whether the bounds of all design variables are satisfied. If a bound is not
satisfied, the variable will be set to its violated bound. The bound of an integer
variable can be continuous such that this design variable is not feasible, when it is
set to one of its bounds. For this reason, an integer design variable which is set to
its bound is rounded. When the violated bound is the upper bound, the variable is
rounded down, otherwise it is rounded up.

For the Particle Swarm Optimization Mutation Operator a solution stored in the variable
pBest is introduced in constrainednsgaiic.cpp. This solution is randomly chosen out of the
individuals with the best fitness value of the generation before. pBest is an additional
transfer parameter to the recombination method in newsolution.cpp.

The first part of the implementation was the transfer of the necessary information about
the type of the design variables from AVL CRUISE to newsolution.cpp. This is necessary
before starting with the implementation of the recombination operators. For the transfer
of the information an additional property pType, which is equal to one of the types int and
float, is introduced for all parameters in Python. In the implementation of NSGA-II and
the C++ wrapper, an additional binary array dvType of size iNumDV is introduced. Each
entry of this array is either 0 or 1, depending on whether the corresponding design variable
is continuous or required to be an integer. For the array dvType the C++ wrapper has to
be extended to parse the types of the design variables to C++ and the array is added to
the method bool setProblem as an additional transfer parameter.
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Another part of the implementation work is the correction of the outputs of the AVL
Design Explorer. The target is that an integer looks like an integer without a comma in
the output files. For this reason, in the parts of the code where outputs are written, an
additional if condition according to the property pType or the boolean array dvType is
included.

For one output file another array intParList has to be included in the Python part.
intParList stores the names of all integer design variables. This is necessary in a part
of the code where only the name and the value of the design variable, which is currently
written into a file, is accessible. The additional array intParList is needed because the
variables are in general stored as doubles and not as integers. The conversion to integer
values is done, if necessary.
The visual output, which is directly shown in the AVL Design Explorer, is not modified to
integers by now, only the output into files.
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6 Computational Experiments

The goal of this section is to apply the algorithms, which have been implemented in this
thesis, to instances of mixed-integer multi-objective optimization problems, which arise in
the context of optimizing vehicle models at AVL. The basic test models are described in
Section 6.1. The following three sections present the obtained results.

6.1 AVL CRUISE Models

In the following the two basic test models, namely the Manual Front-wheel Drive (Section
6.1.1) and the Range Extender (Section 6.1.2) will be described.

6.1.1 Basic Test Model - Manual Front-wheel Drive

In most of the tests performed, a variation of the standard model Man FWD (Manual
Front-wheel Drive), which is distributed with AVL CRUISE, is used. This standard model
has the following schematic representation in the AVL CRUISE user interface version
v2011:

Figure 6.1: Schematic representation of the AVL
CRUISE Model Man FWD - Manual

Front-wheel Drive
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Via the connections which are drawn between the modules in Figure 6.1 forces are trans-
ported. The signal transportation, i.e. input and output values of the modules, can be
seen by clicking on the small colored arrows which are attached to the lower left and the
upper right corner of each module in the AVL CRUISE user interface.
The arrow on the lower left corner of the module corresponds to the input and the one
on the upper right to the output values. For an example refer to the module Gear Box
in Figure 6.2. The desired gear is the input value coming from the module Cockpit and
the output value of the module Gear Box is the current gear which is transferred to the
module Cockpit.

(a) Input: desired gear from Cockpit (b) Output: current gear to Cockpit

Figure 6.2: Examples for an input and an output
signal of the Gear Box

After the brief overview of the transfer of signals and forces via connections in a model,
different parts of the model, which represent specific parts of a car, are described.
The values of the variables used in this model are shown in the third column of the ta-
bles below. The descriptions of the variables in the second column are taken from the
AVL CRUISE User Guide [6] and the variable names match with the names used in AVL
CRUISE. Additionally, the unit of the variable is provided in the fourth column.

- Vehicle:

One of the main components of all models in AVL CRUISE is the module Vehicle. It
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contains the general information like the volume of the gas tank or the weight of the
vehicle.

Variable Name Description Value Unit

Gas Tank Volume Fuel tank volume of the vehicle. 0.075 [m3]

Distance from Hitch to
Front Axle

The hitch is the coupling point for
the trailer.

3300 [mm]

Wheel Base Distance between the front and
the rear axle.

2650 [mm]

Height of Support Point
at Bench Test

Height of the point where the ve-
hicle is fixed to the wall while driv-
ing on a chassis dynamometer.

100 [mm]

Curb Weight Weight of the empty vehicle. 1450 [kg]

Gross Weight Maximum admissible weight. 1930 [kg]

Frontal Area Cross section area of the vehicle. 1.88 [m2]

Drag Coefficient Factor of the air resistance, de-
pending on the shape of the ve-
hicle.

0.32 [-]

Lift Coefficient Front Axle Considers the influence of the ve-
hicle velocity on the front wheel
loads.

0.032 [-]

Lift Coefficient Rear Axle Considers the influence of the ve-
hicle velocity on the rear wheel
loads.

0.01 [-]

Tire Inflation Pressure
Front Axle

2.0 [bar]

Tire Inflation Pressure
Rear Axle

2.2 [bar]

- Tire:

The number of tires (or wheels) depends on the kind of the vehicle (motorcycle, car, . . . ),
which is modeled. The standard model Man FWD is a car, so there exist four tires which
link the vehicle to the road. Each of these four wheels could have different defining data.
In the test model Man FWD all wheels are identical.
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Variable Name Description Value Unit

Static Rolling Radius The radius of the loaded, not mov-
ing vehicle.

305 [mm]

Dynamic Rolling Radius Distance between the center of the
wheel and the road surface for the
loaded, moving vehicle.

312 [mm]

Inertia Moment 0.51 [kg m2]

- Brake:

The number of brakes coincides in general with the number of tires. It is possible to choose
between drum or disc brakes. The four brakes in the test model are disc brakes.
As for the tires it is possible to define all brakes using different data. In contrast to the
tires, there is a difference between the data of the two front and the two rear brakes, which
is shown in the table below.

Variable Name Description Value Unit

Inertia Moment front The inertia moments of the front
and the rear brakes.

0.02 [kg m2]

Inertia Moment rear 0.015 [kg m2]

Brake Piston Surface front The areas of the hydraulic
cylinders.

1800 [mm2]

Brake Piston Surface rear 1500 [mm2]

Effective Friction Radius
front

The radius where the braking
force applies.

130 [mm]

Effective Friction Radius
rear

110 [mm]

Friction Coefficient front Friction coefficient between brake
drum and the brake shoes.

0.25 [-]

Friction Coefficient rear 0.25 [-]

Efficiency front Considers the effects of the
conversion of the hydraulic into
the mechanical part of the brake.

0.99 [-]

Efficiency rear 0.99 [-]
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- Combustion Engine:

For the module Combustion Engine it is possible to choose between a diesel and a gaso-
line engine. The engine is defined by characteristic curves, defining for instance the fuel
consumption and the emissions, and a number of other variables.

The curves are not shown in this work, only the description of the variables is provided.

Variable Name Description Value Unit

Engine Type Engine Type is one of diesel and
gasoline.

Gasoline [-]

Engine Displacement Displacement of all cylinders to-
gether.

2478 [cm3]

Number of Cylinders 6 [-]

Number of Strokes 4 [-]

Idle Speed Idle Speed can also be defined as
a function of engine temperature.

750 [1/min]

Maximum Speed The maximum reachable engine
speed.

6000 [1/min]

Inertia Moment Contains all parts of the engine,
e.g. crankshaft and flywheel.

0.134 [kg m2]

Fuel Density 0.76 [kg/l]

- Clutch:

When a change of the current gear is necessary, the module Clutch disconnects the engine
and the drive train. After the procedure of changing the gear, the clutch reconnects the
engine and the drive train.
The component Driver controls the clutch via the module Cockpit.

Variable Name Description Value Unit

Inertia Moment In The inertia moment at the drive
side.

0.01 [kg m2]
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Inertia Moment Out The inertia moment at the power
take-off side.

0.01 [kg m2]

Maximum Transferable
Torque

Between drive and power take-off
side.

350 [Nm]

- Gear Box:

The module Gear Box is defined by a table which contains a row for each gear, including
the idle gear (gear 0) and all forward gears. The idle gear has always transmission ratio
1.0.

A variant of a gear box with five gears is part of this model, but any number of gears
can be chosen. It is possible to use an automatic or a manual gear box. In the manual
variant which is used in the standard model, the component Driver, which is described
below, shifts the gears. An additional module Gear Box Control or Gear Box Program
controls the gear shifting of an automatic model. The module Gear Box of the manual
model Man FWD, which is used in this work, uses the values listed in the table below.

The Inertia Moments In and Out, which are the inertia moments at the drive side and at
the power take-off side, are the same for each gear in this model.
It is possible to define the transmission ratios of the gears in two ways. Either the value of
the ratio is inserted directly or the number of teeth input and output can be chosen. Then
the transmission ratio is calculated by

Transmission Ratio =
Number of Teeth Out

Number of Teeth In
(1)

where Out and In abbreviate Output and Input.
When only the transmission ratio is defined, the numbers of teeth are chosen by AVL
CRUISE such that the given transmission ratio and the ratio of the two chosen numbers
coincide. This is eased by slightly correcting the transmission ratio to keep the numbers
of teeth under a certain bound.

Gear
[-]

Transmission
Ratio [-]

Number of
Teeth In [-]

Number of
Teeth Out [-]

Inertia
Moment In

[kg m2]

Inertia
Moment

Out [kg m2]

0 1.00 10 10 0.0015 0.005

1 3.62 50 181 0.0015 0.005

2 2.22 50 111 0.0015 0.005
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3 1.51 100 151 0.0015 0.005

4 1.08 25 27 0.0015 0.005

5 0.85 20 17 0.0015 0.005

- Final Drive:

The module Final Drive is a Single Ratio Transmission (SRT), which is a gear step with a
fixed transmission ratio.

Variable Name Description Value Unit

Inertia Moment In The inertia moment at the drive
side.

0.008 [kg m2]

Inertia Moment Out The inertia moment at the power
take-off side.

0.015 [kg m2]

Transmission Ratio Define the transmission ratio
either as a value or by the
numbers of teeth in and out using
Formula (1).

3.0 [-]

Number of Teeth In 10 [-]

Number of Teeth Out 30 [-]

- Differential:

Due to the module Differential inner and outer wheels rotate with different speed during
cornering. This is necessary because the inner wheels have to cover less distance than
the outer ones. Additionally, wheels at different axles can rotate with different speed in a
vehicle with four-wheel drive.

Variable Name Description Value Unit

Differential Lock In an unlocked differential the
two power take-off torques are the
same and the speeds can be differ-
ent.

unlocked [-]
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Torque Split Factor Factor one means, that there is
the same torque on both outgoing
sides.

1.0 [-]

Inertia Moment In The inertia moment at the drive
side.

0.015 [kg m2]

Inertia Moment Out 1 The inertia moments at the
power take-off sides.

0.015 [kg m2]

Inertia Moment Out 2 0.015 [kg m2]

In addition to the modules above, there are also controls and special modules included in
the model. These are presented below.

- Cockpit:

The module Cockpit is the link between the component Driver and the vehicle. Connections
of this module to other ones are only transferring signals and no forces. Examples for these
signals are the vehicle velocity and the vehicle acceleration, which are sent to the component
Driver.

Variable Name Description Value Unit

Shift Mode The Shift Mode is either manual
or automatic.

manual [-]

Number of Gears Forward These variables define the
numbers of gears.

5 [-]

Number of Gears Reverse 1 [-]

Maximum Brake Force The maximum brake pedal force. 100 [N]

- Anti Slip Control (ASC):

The module Anti Slip Control checks, whether the force, which should be transmitted by
all wheels, does not exceed the maximum transmittable force. This module is not used for
calculations in this model. If it were used for the calculation, the load signal or the clutch
release would be changed when the force, which has to be transmitted, is higher than the
maximum transmittable force.
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- Monitor:

The module Monitor enables AVL CRUISE to show results while the calculation is running.
The user can specify data, he wants to see during the calculation, such as for instance:

Variable Unit

Vehicle Acceleration [m/s2]

Vehicle Velocity [km/h]

Engine Speed [1/min]

Engine Load Signal [-]

There exist also components which are not contained in Figure 6.1 but are parts of the
Calculation Tasks (for an introduction to AVL CRUISE and its Calculation Tasks refer to
Section 4.2).
One of such additional components is the Driver which has been mentioned in the descrip-
tion of the modules above several times.

- Driver:

The component Driver imitates a human driver. A good imitation is achieved by input
data for different purposes:

• Shifting behavior

• Starting behavior

• Driving behavior

For the starting and the driving behavior the user can define data in the expert mode, but
by default this is done by AVL CRUISE using default values.

The Shifting behavior can be chosen to be according to vehicle velocity, engine speed or
engine speed in the next gear. In the standard model, which is used for the generation of
the results, the shifting is done in the task Cycle Run “according to profile”. This means,
that the desired gear for each time step of the driving cycle is given by the cycle.
In the task Constant Drive, which is used for obtaining the maximum velocity, the shifting
is done according to velocity. The following table is used for the shifting process according
to velocity:
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Gear [-] Upshifting [km/h] Downshifting [km/h]

1 25.744 23.0

2 40.225 38.0

3 64.360 60.0

4 74.014 70.0

This table defines at which vehicle velocity the driver has to shift up to the next gear and
at which velocity back down to this gear.

The Starting behavior and the Driving behavior are set to the default values in the
standard model.

6.1.2 Model of a Hybrid Vehicle - Range Extender

The second test model is a Range Extender which is also distributed with AVL CRUISE
[6]. Figure 6.3 shows the schematic representation of this model in the AVL CRUISE user
interface version v2011. A Range Extender is a plug-in hybrid electric vehicle (PHEV). In
contrast to hybrid vehicles it is also possible to recharge the battery using a plug to an
external power source. The plug-in hybrid concept combines the advantages of a hybrid and
an electric vehicle. When the battery charge decreases, the combustion engine recharges
the battery, so it is possible to drive long distances with a Range Extender.

In addition, for short distances the emissions (especially when using renewable energy to
recharge the battery) are less than when driving a car which contains only a conventional
combustion engine. The operating costs also decrease due to lower energy costs. On the
other side, the acquisition costs are higher than when buying a conventional vehicle.
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Figure 6.3: Schematic representation of the AVL
CRUISE Model of a Range Extender

The modules which are used to build the model of the Range Extender are presented in
the following paragraphs. The descriptions are taken from the AVL CRUISE User Guide
[6].
The following modules are also included in the first test model Man FWD. For more details
about these modules refer to Section 6.1.1.

- Vehicle:

The module Vehicle of the Range Extender defines an electric vehicle without a gas tank.
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Variable Name Description Value Unit

Gas Tank Volume Fuel tank volume of the vehicle. 0.0 [m3]

Distance from Hitch to
Front Axle

The hitch is the coupling point
for the trailer.

2467 [mm]

Wheel Base Distance between the front and
the rear axle.

2467 [mm]

Height of Support Point
at Bench Test

Height of the point where the
vehicle is fixed to the wall while
driving on a chassis dynamome-
ter.

500 [mm]

Curb Weight Weight of the empty vehicle. 1200 [kg]

Gross Weight Maximum admissible weight. 1580 [kg]

Frontal Area Cross section area of the vehi-
cle.

1.97 [m2]

Tire Inflation Pressure
Front Axle

2.4 [bar]

Tire Inflation Pressure
Rear Axle

2.4 [bar]

Resistance Function: The driving resistance is com-
puted by a function without a
reference vehicle.

Constant Part 143.06 [N]

Linear Part 0.0
[

N
km/h

]

Square Part 0.03399
[

N
(km/h)2

]

- Tire:

The Range Extender model models a car, so there exist four tires containing identical data
which link the vehicle to the road.

Variable Name Description Value Unit

Static Rolling Radius The radius of the loaded, not
moving vehicle.

287 [mm]
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Dynamic Rolling Radius Distance between the center of
the wheel and the road surface
for the loaded, moving vehicle.

301 [mm]

Inertia Moment 0.1431 [kg m2]

- Brake:

The four brakes in the Range Extender are disc brakes.
Analogous to the model Man FWD there is a difference between the data of the two front
and the two rear brakes, which is shown in the table below.

Variable Name Description Value Unit

Inertia Moment front The inertia moments of the
front and the rear brakes.

0.02 [kg m2]

Inertia Moment rear 0.015 [kg m2]

Brake Piston Surface
front

The areas of the hydraulic
cylinders.

1800 [mm2]

Brake Piston Surface rear 1500 [mm2]

Effective Friction Radius
front

The radius where the braking
force applies.

130 [mm]

Effective Friction Radius
rear

110 [mm]

Friction Coefficient front Friction coefficient between
brake drum and the brake
shoes.

0.25 [-]

Friction Coefficient rear 0.25 [-]

Efficiency front Considers the effects of the
conversion of the hydraulic
into the mechanical part of the
brake.

0.99 [-]

Efficiency rear 0.99 [-]

- Combustion Engine:

The Range Extender uses the conventional combustion engine for recharging the battery.
For the module Combustion Engine it is possible to choose between a diesel and a gasoline
engine.
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Variable Name Description Value Unit

Engine Type Engine Type is one of diesel
and gasoline.

Gasoline [-]

Engine Displacement Displacement of all cylinders
together.

2000 [cm3]

Number of Cylinders 4 [-]

Number of Strokes 4 [-]

Idle Speed Idle Speed can also be defined
as a function of engine temper-
ature.

800 [1/min]

Maximum Speed The maximum achievable en-
gine speed.

6000 [1/min]

Inertia Moment Contains all parts of the engine,
e.g. crankshaft and flywheel.

0.134 [kg m2]

Fuel Density 0.76 [kg/l]

- Final Drive:

The module Final Drive is a Single Ratio Transmission (SRT), which is a gear step with a
fixed transmission ratio.

Variable Name Description Value Unit

Inertia Moment In The inertia moment on drive
side.

0.01 [kg m2]

Inertia Moment Out The inertia moment on power
take-off side.

0.015 [kg m2]

Transmission Ratio Define the Transmission Ratio
either as a value or by the
numbers of teeth in and out
using Formula (1).

3.737 [-]

Number of Teeth In 19 [-]

Number of Teeth Out 71 [-]

Efficiency 0.96 [-]
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- Differential:

Due to the module Differential inner and outer wheels rotate with different speed during
cornering.

Variable Name Description Value Unit

Differential Lock In an unlocked differential the
two power take-off torques are
the same and the speeds can be
different.

unlocked [-]

Torque Split Factor Factor one means, that there is
the same torque on both outgo-
ing sides.

1.0 [-]

Inertia Moment In The inertia moment on drive
side.

0.015 [kg m2]

Inertia Moment Out 1 The inertia moments at the
power take-off sides.

0.015 [kg m2]

Inertia Moment Out 2 0.015 [kg m2]

Efficiency 0.96 [-]

- Cockpit:

The module Cockpit is the link between the component Driver and the vehicle.

Variable Name Description Value Unit

Shift Mode The Shift Mode is either man-
ual or automatic.

manual [-]

Number of Gears Forward These variables define the
numbers of gears.

1 [-]

Number of Gears Reverse 1 [-]

Maximum Brake Force Maximum brake pedal force. 100 [N]

- Anti Slip Control (ASC):

The module Anti Slip Control of the Range Extender is not used for calculations.
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- Monitor:

The module Monitor enables AVL CRUISE to show results while the calculation is running.
The user can specify data, he wants to see during the calculation, such as for instance:

Variable Unit

Velocity [km/h]

SOC [%]

Engine Speed [1/min]

SOC is the current state of charge of the battery, given as a percentage of the maximum
charge, which is defined in the module Battery H.
The following modules are only part of the model Range Extender.

- Battery H:

The Range Extender contains a NiMH (Nickel-metal Hydride) battery. Battery H is the
module, which simulates the battery for the hybrid model. For example, the number of
battery cells and the maximum charge of the battery are defined in this module.

Variable Name Description Value Unit

Maximum Charge Maximum charge of each cell. 10.0 [Ah]

Initial Charge Charge of the cell at the begin-
ning of the calculation defined
as a percentage of the maxi-
mum charge.

60.0 [%]

Nominal Voltage This voltage depends on the
used material.

7.2 [V]

Maximum Voltage 9.0 [V]

Minimum Voltage 6.0 [V]

Number of Cells per
Cell-Row

40 [-]

Number of Cell-Rows 2 [-]

Internal Resistance
Charge

Internal resistance of a cell in
charge mode.

0.0197 [Ohm]

Internal Resistance
Discharge

Internal resistance of a cell in
discharge mode.

0.0269 [Ohm]
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- Generator:

The module Generator is simulated by an electric machine. This electric machine supplies
the battery with current by means of the module Combustion Engine when a recharge of
the battery is necessary.

Variable Name Description Value Unit

Type of Machine An asynchronous motor (ASM)
and a permanent magnetic syn-
chronous motor (PSM) are se-
lectable.

ASM [-]

Nominal Voltage The nominal voltage has to be
the same as in the onboard net-
work.

320.0 [V]

Inertia Moment The inertia moment of the gen-
erator.

0.0001 [kg m2]

Maximum Speed The maximum angular velocity
the electric machine can run at.

10000.0 [1/min]

Drag Torque at Maximum
Speed

0.0 [Nm]

Initial Temperature Temperature at the start of the
calculation.

20.0 [C]

- eDrive:

The module eDrive is also simulated by an electric machine. In contrast to the module
Generator, the module eDrive does not recharge the battery, but it uses the current of the
battery to move the vehicle. The variables in this module are set to the same values as the
variables of the generator, but the module eDrive contains additional characteristic maps
which are not shown in this thesis.

- Electrical System:
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The module Electrical System is an electric consumer. This is represented by Ohmic
resistors in the onboard network. These resistors simulate the loss of electric current. An
electric consumer can for instance be the air conditioning in a vehicle.

Variable Name Description Value Unit

Nominal Voltage This defines the voltage in the
onboard network.

320.0 [V]

Threshold Value 0.5 [-]

Direction Positive direction means that
the switch is turned on, if and
only if the input is above the
threshold value.

positive [-]

Reference Absolute means that the resis-
tance is switched on and off ac-
cording to the switch.

absolute [-]

Exceeding Value Range Admissible means that the re-
sistance will be extrapolated if
the engine speed is outside the
defined range.

admissible [-]

- PID Control:

The module PID Control (Proportional-Integral-Derivative Control) computes the load
signal for the engine from the two input values desired engine speed and actual engine
speed.

Variable Name Description Value Unit

Proportional Parameter 20.0 [-]

Integral Parameter 0.0002 [1/s]

Derivative Parameter 0.0025 [s]

Output Value Limitation:
The output value (load signal)
can be between 0.0 and 1.0.Minimum 0.0 [-]

Maximum 1.0 [-]
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- Constants:

Some constants are defined in this module which are used during the simulation. The state
of charge (SOC) is given as a percentage of the maximum charge which is defined in the
module Battery H:

Variable Name Value Unit

Maximum Brake Pressure 50 [bar]

SOC Min 50 [%]

SOC Max 60 [%]

- Functions:

The following C-functions are used in the Range Extender model:

Function Name Description

eBrake & mBrake Unit Conversion of eDrive Torque to
Brake Pressure.

eDrive Control System Transition from driving to
braking.

Extended Range Control Starting and shutting down
engine and charging the battery.

- Driver:

The component Driver of the Range Extender is the same as the one defined in Section
6.1.1 for Man FWD.

6.2 Test Problem 1: Optimization of Gear Ratios

The first test problem concerns optimizing the gear ratios. The underlying test model
Man FWD has been introduced in Section 6.1.1. The optimization of the gear ratios is
chosen as the first test problem, because it is possible to optimize the gear ratios using
the previously existing continuous optimization algorithm and thus to compare the results
of the continuous approach to the results of the modified algorithm, which optimizes the
integer version of this problem.
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To optimize the gear ratios is a realistic example for an integer optimization problem
because the optimization of the transmission ratio can result in an infeasible or very costly
number of teeth. For this reason, it is better to optimize the teeth numbers directly and
to apply an optimization routine that can deal with integer variables.

As shown in Section 6.1.1, the module Gear Box is defined by a table with one row for each
gear. The design variables are the transmission ratios of the gears without the idle gear.
There is no possibility to use a variable, which is stored in tables in AVL CRUISE modules
as a design variable. For this reason, the following modification of the standard model
of Figure 6.1 is done, as shown by the schematic representation of the modified model in
Figure 6.4.

The module Gear Box, which contains the data for the five different forward gears and the
idle gear, is divided into five separate boxes. Each of these boxes is defined by data in a
table which consists of two rows. The first row contains the data of the idle gear and the
second one the data of the gear which is defined in this box. The boxes are activated by
switches which choose the box of the currently desired gear. The information of the desired
gear is an input information for each of the five switches coming from the module Cockpit.
The current gear is transferred from the function Actual Gear back to the module Cockpit.
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Figure 6.4: Schematic representation of the modified
AVL CRUISE Model

6.2.1 Optimization Instance

The separation into five different boxes is done such that after each box an additional
Single Ratio Transmission (SRT) can be placed. The Single Ratio Transmissions have a
transmission ratio as a single variable and the numbers of teeth as two single variables
without a table in the module definition. So it is possible to use the variables of the SRT
as design variables.

The transmission ratios of the SRTs are the base values for the design variables in the
optimization problem and thus set to 1.0. The base value can be defined as the continuous
transmission ratio or as a pair of two numbers of teeth in the integer version. In the
continuous version, the continuous variable is the design variable for this gear. When the
integer version is chosen, the number of teeth output is the used design variable. The
continuous transmission ratio is computed internally by AVL CRUISE using the numbers
of teeth via Formula (1).

Due to this calculation the base values for the numbers of teeth have to be the same for
input and output in each module Single Ratio Transmission such that the transmission
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ratio equals to one.

By making use of the construction, which uses the modules Gear Box and Single Ratio
Transmission for each gear, the gear ratio of each gear is the product of the transmission
ratios in both modules. This means, that the transmission ratio in the SRT is a percentage
for the change of the ratio in the module Gear Box.

The two considered objective functions of the first test problem are:

• Minimal Fuel Consumption

• Minimal CO2 Emission

In addition to tests with these two objective functions, a number of test runs have also
been performed with the Maximum Velocity as a third objective function. The reason for
the third objective function is, that a too small gear ratio for the fifth gear can decrease
the maximum velocity (refer to Pfau [49]). When this objective function is added, the
constraints, that the resulting gear ratios have to decrease with higher gears, have to be
included into the problem. This is necessary because otherwise the gear ratio of the fifth
gear can be set to a higher value than the gear ratios of the lower gears.

As mentioned above, there are different design variables in the integer and the contin-
uous case, the numbers of teeth output and the transmission ratios of the Single Ratio
Transmissions of the gears one to five.

The following table contains the lower and the upper bounds of the design variables of the
integer optimization problem, the numbers of teeth of the factors for the gear ratios of gear
one to gear five:

Variable Name Lower Bound Base Value Upper Bound Unit

NoT1out 300 600 720 [-]

NoT2out 300 600 720 [-]

NoT3out 300 600 720 [-]

NoT4out 300 600 720 [-]

NoT5out 300 600 720 [-]

A base value of 600 is chosen to get results, which are similar to the results of the continuous
optimization problem. If a smaller base value were used, there would exist fewer possible
obtainable values for the optimization algorithm.
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The lower and the upper bounds of the design variables of the continuous optimization
problem, the factors for the gear ratios of gear one to gear five, are shown in the following
table:

Variable Name Lower Bound Base Value Upper Bound Unit

TR1 0.5 1.0 1.2 [-]

TR2 0.5 1.0 1.2 [-]

TR3 0.5 1.0 1.2 [-]

TR4 0.5 1.0 1.2 [-]

TR5 0.5 1.0 1.2 [-]

For the calculation of the lower and the upper bounds in the tables above, 50% and 120%
of the base values are used.

There is no constraint used in this instance with two objective functions, even though the
constraints, that the gear ratios should decrease for a higher gear, would be necessary.
These constraints would not change anything on the results because the obtained solutions
satisfy the constraints anyway. An exception for this is the optimization problem with the
maximization of the Maximum Velocity as a third objective function. In this case these
constraints have to be included in the problem definition because otherwise the ratio for
the fifth gear could be higher than the one of the fourth gear to achieve a higher maximum
velocity.

As mentioned at the beginning of this section the goal of using this example is the com-
parison of results obtained with continuous optimization with ones computed by integer
optimization. In addition to the comparison of continuous and integer optimization, differ-
ent crossover operators are considered for the integer optimization in relation to the results
of the continuous optimization. The results are shown in the following section.
The mutation and crossover operators are selected from the ones in Section 5.2 according
to initial test runs.

6.2.2 Results

For the comparison between the continuous and integer optimization the best obtainable
solution for the continuous variant is computed. This is done by running the algorithm
for 150 generations with populations of size 80. Including the two start populations this
results in 12160 design points. Some of them are duplicates, but the majority differs from
each other. In the integer variant of the problem there are more duplicates due to the finite
number of values.
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The following figures show the values of the objective functions CO2 Emission and Fuel
Consumption over the factor for the gear ratio of the gears two and three as these are
the most interesting ones. In the chosen Urban Driving Cycle (UDC), gear four and five
are never used and gear one is rarely used because UDC simulates a drive in a city with
a maximum vehicle velocity of 50 km/h. The pictures of the objective functions Fuel
Consumption and CO2 Emission are similar because in general the two values are related
to each other.
The bounds of the design variables are set to 0.5 for the lower bound and 1.2 for the upper
bound.
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Each point in Figure 6.5 and Figure 6.6 shows the objective function value of one design
point calculated using AVL CRUISE. Due to the smaller difference between the maximum
and the minimum value of the Fuel Consumption there are much less different points in
Figure 6.6 which shows the Fuel Consumption over the values of the design variables.

The values of the objective functions Fuel Consumption and CO2 Emission before and
after the optimization of the gear ratios using the continuous optimization algorithm as
described above are shown in the following table:

Fuel Consumption
[l/100km]

CO2 Emission
[g/km]

Before 11.61 278.32

After 11.14 266.91

As one can see the optimization of the gear ratios results in a reduction of about 4.05 percent
of the Fuel Consumption and a reduction of about 4.01 percent of the CO2 Emission.

During a run with the optimization routine with the AVL Design Explorer, the continuous
design variables TR2 and TR3 converge to 0.883 and 0.556. This convergence can be seen in
the pictures in Figure 6.7, where the design variables over the increasing number of design
points are shown. These design points are the first 5000 of the 12160 computed points due
to the 150 generations with populations of size 80. The design points are numbered with
a RunID. In the following pictures the region between design points with RunID 5000 to
12160 would look similar to the region between 3000 and 5000 so it is not shown.
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Almost the same result figures can be observed for the integer optimization problem. For
Figure 6.8 and Figure 6.9 the crossover operator Scattered Crossover is chosen.
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ratios using integer optimization

For additional tests a third objective function and constraints are added to the problem.
The third objective function is the maximum achievable vehicle velocity. For obtaining
the maximum velocity, also the fifth gear is important, which results in the necessity of
constraints. These constraints assure as described above, that the transmission ratios for
increasing gears decrease. The convergence of the number of teeth output of the factor
for gear three for this expanded problem differs to the convergence of the ratio before the
expansion of the problem as shown in Figure 6.9b. An additional test run with 8000 data
points results in a similar picture. This is a consequence of the third objective function
which restrains the number of teeth from converging to a specific value.
However, the resulting numbers of teeth of the best solutions for both gears coincide with
the values without the third objective function and the constraints.

Data points with an unsatisfied constraint are deleted in the pictures in Figure 6.9. The
best obtainable solution for the three objective functions is computed by 70 generations
with a population size of 50 such that 3600 design points are generated. This number
decreases due to the deletion of the design points with an unsatisfied constraint for the
pictures in Figure 6.9.
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Figure 6.9: Convergence of the factors for the gear
ratios with Maximum Velocity as a third

objective function

The optimization of the model including the maximization of the Maximum Obtainable
Velocity results in similar objective values as for the case with only two objective functions.
The minimum Fuel Consumptions coincide and the CO2 Emission (266.93 g/km instead of
266.91 g/km without the third objective function) is close to the best value. Additionally,
the resulting maximum velocity is only 0.71 km/h smaller than without the optimization.

Fuel Consumption
[l/100km]

CO2 Emission
[g/km]

Maximum Velocity
[km/h]

Before 11.61 278.32 233.50

After 11.14 266.93 232.79

This best obtained solution with three objective functions has the following gear ratios for
the gears one to five:

Gear [-] Gear Ratio [-]

1 3.8975

2 1.9610

3 0.8406

4 0.5904
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5 0.4350

The numbers of teeth for the gears two and three converge to the same values when using
two objective functions (Figure 6.8) and when using three objective functions (Figure 6.9).
For gear two the number of teeth converges to 530 (factor for the gear ratio of about 0.883)
and for gear three to 334 (factor for the gear ratio of about 0.557). These values are similar
to the ones from the continuous results above but due to the integer variables, it is not
possible to reach the same optimal solution as in the continuous case.

The results above are all computed with the lower bound of 50% of the basis values for
the transmission ratios of the different gears. This is done because if a lower bound of 80%
were chosen, the optimal value for the factor for the gear ratio of gear three would be its
lower bound.
For this reason, the optimal value is easy to find, because each time, when the value of the
design variable is less than the lower bound, it is set to the lower bound and the optimal
value is found. For a better comparison with the figures above, the transmission ratios
and not the numbers of teeth are shown in the following figures, although the results are
generated by integer optimization.

 270

 275

 280

 285

 290

 0.8  0.85  0.9  0.95  1  1.05  1.1  1.15  1.2

C
O

2 
[g

/k
m

]

[%]

CO2 vs Ratio 2

(a) Factor for the gear ratio of gear 2

 270

 275

 280

 285

 290

 0.8  0.85  0.9  0.95  1  1.05  1.1  1.15  1.2

C
O

2 
[g

/k
m

]

[%]

CO2 vs Ratio 3

(b) Factor for the gear ratio of gear 3

Figure 6.10: Lower bounds for the design variables:
80% of the basis values

Again, each point in Figure 6.10 is an objective function value of a design point. To
illustrate the problem of a lower bound of 80% only the CO2 Emission is chosen because
the pictures showing the Fuel Consumption look similar.

The following pictures in Figure 6.11 show the results of a number of optimizations which
are numbered with Result Numbers. These are computed with lower bounds of 80% of the
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base values. The differences between the best result for the CO2 Emission using continuous
optimization and 16 integer optimization runs are presented in Figure 6.11. The results 2
to 16 are generated using 20 generations of populations of size 10 (220 design points), result
1 is computed with 150 generations and a population size of 80 (12160 design points).
The range of the y-axis is chosen for a better comparability of Figure 6.11, Figure 6.12,
and Figure 6.14.
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Figure 6.11: Comparison Integer and Continuous with
lower bound of 80% of the base values

The absolute and the relative difference of the CO2 Emission between the best solution
computed with continuous optimization and 16 results using integer optimization are shown
in Figure 6.11. Due to the fact, that good results can be found easily, the differences are
less than 0.1 g/km CO2 Emission, which is only a difference of at most 0.4%.

The gear ratios for the relevant gears one, two, and three are a result of one of the optimal
solutions computed by 12160 design points:

The following table shows the resulting gear ratios for result number 1 in Figure 6.11 above
with lower bounds of 80%. The used crossover operator is Scattered Crossover.

Gear [-] Gear Ratio [-]

1 3.9135

2 1.9617

3 1.2080
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The following table shows resulting transmission ratios for result number 1 in Figure
6.12a below with lower bounds of 50%. The used crossover operator is Simulated Binary
Crossover.

Gear [-] Gear Ratio [-]

1 3.9096

2 1.9610

3 0.8406

The following table shows the original gear ratios which are used in the standard model
Man FWD (refer to Section 6.1.1):

Gear [-] Gear Ratio [-]

1 3.6200

2 2.2200

3 1.5100

In addition to the comparison between integer and continuous optimization, two different
crossover operators for the integer optimization are also compared. The two crossover
operators are the Simulated Binary Crossover (SBX) for continuous optimization using a
rounding function and the Scattered Crossover. These operators are chosen from the ones
shown in Section 5.2 due to initial test runs.
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For the pictures in Figure 6.12 the differences between the best obtained CO2 Emission
of the continuous optimization problem and some solutions of the integer optimization
problem are computed. Figure 6.12a shows 16 results using Simulated Binary Crossover
and rounding for the integer optimization problem. Figure 6.12b shows 11 results computed
using Scattered Crossover for the integer optimization problem.

6.3 Test Problem 2: Optimization of the Engine and Final Drive

The optimization of the engine and final drive is also done using a modified version of the
standard model Man FWD, which is introduced in Section 6.1.1.
Besides single variables like the gear ratios in the last section, whole components can also
be used as values for an integer design variable. In the second test problem four engines
with different engine displacements are defined.
The New European Driving Cycle NEDC is used and the applied simulation mode is Quasi-
stationary, for more information about NEDC and Quasi-stationary refer to Section 4.2.
Besides the three additional engines in the background of the schematic representation of
the model in Figure 6.13, there are no changes to the standard model Man FWD.

Figure 6.13: Schematic representation of the AVL
CRUISE Model for component variation

For a detailed description of the modules in Figure 6.13 refer to Section 6.1.1.
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6.3.1 Optimization Instance

The first design variable in this optimization instance can choose one out of four engines
with different engine displacements:

1. 1478 cm3

2. 3478 cm3

3. 1878 cm3 Turbo

4. 2478 cm3

This means, that the variable has four possible values and according to this value the corre-
sponding engine is activated and the objective functions are computed using the simulation
software AVL CRUISE.

Additionally, the transmission ratio in the module Final Drive is chosen as a continuous
design variable. For this design variable the lower bound 1.5 and the upper bound 4.5 are
used. Due to this continuous design variable, a mixed integer optimization problem has to
be solved.

6.3.2 Results

Figure 6.14 shows the differences of the resulting CO2 Emissions of the optimization in-
stance, which is presented above, and the best solution obtained by an optimization using
150 generations with populations of size 80, which results in 12160 design points.
The best obtained value for the design variable transmission ratio in this optimization
instance is about 1.669. Since the smallest engine displacement results in general in the
lowest Fuel Consumption and CO2 Emission the first engine with 1478 cm3 is selected by
the AVL Design Explorer in all optimization runs. The resulting best objective values for
Fuel Consumption and CO2 Emission are the following:

Fuel Consumption
[l/100km]

CO2 Emission
[g/km]

4.92 118.01

Since the complete engine is changed, a comparison with the Fuel Consumption and the
CO2 Emission before starting the optimization is not meaningful.

The results in Figure 6.14a are computed by using the crossover operator Simulated Binary
Crossover for integer and continuous design variables. For the results in Figure 6.14b the
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SBX is used for the continuous and the Scattered Crossover is used for the integer design
variables.
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Figure 6.14: Comparison Integer and Continuous with
lower bound of 50% of the base values

In the comparison of these results, the Simulated Binary Crossover is better than the
operator Scattered Crossover. For results of the optimization of the gear ratios in Section
6.2 the Scattered Crossover is better as one can see in Figure 6.12.

Additionally, the optimization of the engine and the final drive is done as a pure integer
optimization problem, which would be the better way to solve this optimization problem
due to the reasons mentioned in the sections before. For the purpose of integer optimization
the number of teeth output of the module Final Drive is chosen as the second design
variable with a base value of 300, a lower bound of 150, and an upper bound of 450, which
is equivalent to the base value and the bounds in the continuous variant. The following
objective function values result for the pure integer problem using Scattered Crossover as
crossover operator for three test runs using 20 generations with populations of size 10 (220
design points):

Fuel Consumption
[l/100km]

CO2 Emission
[g/km]

4.93 118.03

This table shows small differences to the best obtained solution, which is shown above.
These small differences of 0.01 l/100 km Fuel Consumption and 0.02 g/km CO2 Emission
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results from less possible values, which are possible for the number of teeth, so the best
value can be found easier than in the continuous optimization. Considering the results of
the pure integer optimization problem, Scattered Crossover for the integer design variables
is a good choice.

6.4 Test Problem 3: Optimization of PID Control and Final
Drive

The third test problem concerns the optimization of the parameters of the modules PID
Control and Final Drive. The underlying model is the Range Extender model considered
in Section 6.1.2.
The design variables of the optimization problems considered in Sections 6.2 and 6.3 are
mainly the transmission ratios which are mechanical parameters. Changing the values of
these parameters results in new parts which have to be manufactured. This means, that
also costs and availability of these parts have to be taken into account. The advantage of
using control parameters like the parameters of the module PID Control as design variables
is, that this sort of problems does not arise.

6.4.1 Optimization Problem

The design variables of the third test problem are the continuous variables Proportional
and Derivative Parameter from the module PID Control and the integer variable Number
of Teeth Output from the module Final Drive:

Variable Name Lower Bound Upper Bound Unit

Proportional Parameter 10.0 30.0 [-]

Derivative Parameter 0.00125 0.00375 [s]

Number of Teeth Output 50 92 [-]

Since the Fuel Consumption and the Emission would decrease significantly if the initial
battery charge were much higher than the battery charge after the computation, a con-
straint is added to the problem. This constraint is only satisfied, when the difference of the
battery charge after the computation and the initial charge is at least -0.01, which implies
that the state of charge does not decrease too much.

Delta SOC ≥ −0.01

Due to the possibility to define the final drive with the transmission ratio, this optimization
problem could also be solved as a continuous optimization problem. The same arguments
as for the case of the optimization of the gear ratios in Section 6.2 show, that choosing the
number of teeth output as a variable has to be preferred over the continuous approach.
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In contrast to the previous two test problems, the calculation mode Simulation instead
of Quasi-stationary and the New European Driving Cycle (NEDC) instead of the Urban
Driving Cycle are used. The NEDC consists of four consecutive UDCs and an additional
part with higher velocity. For more information about the NEDC and the calculation mode
Simulation refer to Section 4.2.

6.4.2 Results

The following table shows the reduction of the Fuel Consumption and the CO2 Emission
in the best obtained solution compared to the Fuel Consumption and the CO2 Emission
using the design variable values of the model Range Extender.

Fuel Consumption
[l/100km]

CO2 Emission
[g/km]

Before 3.81 91.26

After 2.96 70.82

This is a reduction of about 22.3 percent of Fuel Consumption and of about 22.4 percent
of CO2 Emission.

The following table shows the values of the design variable values, which are used in the
standard model Range Extender:

Variable Name Value Unit

Proportional Parameter 20.0 [-]

Derivative Parameter 0.0025 [s]

Number of Teeth Output 71 [-]

The values suggested by the results of the optimization approach are shown in the table
below:

Variable Name Value Unit

Proportional Parameter 12.435179 [-]

Derivative Parameter 0.002742 [s]

Number of Teeth Output 68 [-]
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In Figure 6.15 the differences of the objective values of test runs using 10 generations
with populations of size 10 (120 design points) to the best obtained objective values are
shown. Using these pictures, the two crossover operators Simulated Binary Crossover with
rounding and Scattered Crossover for the integer design variables are compared. These
two operators are chosen according to initial test runs. The crossover operator for the
continuous design variables is always chosen to be the Simulated Binary Crossover.
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Figure 6.15: Absolute differences to the best obtained
solution

The results of Simulated Binary Crossover and Scattered Crossover for the integer design
variables are similar to each other. The Scattered Crossover operator performs slightly
better since there is a smaller maximum difference to the best obtained solution and also
a smaller minimum difference.
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7 Conclusion

The need for optimization algorithms and efficient implementations will further increase in
the automotive industry in the upcoming years. One of the reasons for this is the increasing
demand to reduce CO2 emission. While most of the design variables in optimization
problems arising in the automotive industry are continuous variables, in some cases also
the need for integer variables occurs (for example the number of teeth in Section 6.2).
The goal of this thesis has been to extend the genetic algorithm for multicriteria optimiza-
tion within the AVL Design Explorer to the integer and mixed-integer case. For this reason,
mutation and crossover operators for handling integer design variables were added to the
implemented genetic algorithm Non-dominated Sorting Genetic Algorithm II. These mod-
ifications were tested using test instances based on models of vehicles, which are created
by AVL CRUISE.

It can be seen from the computational experiences that the version of the Non-dominated
Sorting Genetic Algorithm II which uses the Scattered Crossover for the integer design
variables behaves better than the version which uses the Simulated Binary Crossover with
a rounding function. The Simulated Binary Crossover remains for the continuous variables,
since test runs with alternative crossover operators did not result in better objective values.
Additionally, for one test model (gear ratios, Section 6.2) a comparison between the results
of the integer model and a pure continuous model has been undertaken. This comparison
showed similar result quality for both variants of the optimization problem. Nevertheless,
the integer variant of the problem is the preferred one since the optimal solution for the
continuous optimization problem could result in gear ratios with an infeasible or costly
number of teeth.
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