
Johannes Anderwald

tagstore: A Mobile Tagging Application
with Synchronization

Master’s Thesis

Graz University of Technology

Institute for Softwaretechnology
Head: Univ.-Prof.Dipl-Ing.Dr.techn. Wolfgang Slany

Supervisor: Dipl-Ing. Karl Voit

Graz, October 2012

This document was written with TEX Maker, is set in Palatino, compiled
with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
marked all material which has been quoted either literally or by content
from the used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-
fasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommene Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Zusammenfassung

In den letzten Jahren wurden viele Tagging Systeme entwickelt. Diese Sys-
teme erlauben es, Schlüsselwörter einer Ressource zuzuordnen und diese
anhand der Schlüsselwörter wiederzufinden. An der Technischen Univer-
sität Graz wurde am Institut für Softwaretechnologie eine Forschungssoft-
ware namens tagstore entwickelt, die dieses Konzept nützt um Dateien
zu klassifizieren. Im Rahmen dieser Masterarbeit wurde ein Prototyp für
die mobile Plattform Android entwickelt. Die Masterarbeit beschreibt den
entwickelten Prototypen. Zusätzlich wurde eine Analyse von existierenden
Synchronisationssystemen durchgeführt. Ein Schwerpunkt der Analyse lag
in den Cloud Computing Systemen. Des Weiteren wurde ein Algorith-
mus entwickelt, der die Dateien und assoziierten Schlüsselwörter mit der
tagstore Software synchronisiert. Abschliessend wurde das implementierte
Synchronisationssystem mit anderen tagstore Alternativen verglichen und
es wurde gezeigt, dass das Synchronizationssystem für Benutzer einsatzbar
ist.

iv

Abstract

In the last few years, many tagging systems were developed. These systems
allow keywords to be assigned to a specific resource and reacquire the re-
source by the keywords used. At the Institute for Software Technology at
Graz University of Technology, a research software called tagstore was de-
veloped, which uses this concept to associate files with tags. In the context
of this master thesis, a prototype for the mobile platform Android was de-
veloped. This thesis describes this developed prototype. Further, existing
synchronization systems were analyzed. The main focus of this analysis
was on cloud computing systems. In addition, an algorithm was imple-
mented, which allows to synchronize files and keywords with the tagstore
research software. The final chapter evaluates the implemented synchro-
nization system with other tagstore alternatives and demonstrates that the
synchronization system is deployable for users.

v

Contents

1 Introduction 1
1.1 Introduction to tagstore . 3

1.1.1 Operation of tagstore 7

1.1.2 Store Format of tagstore 8

1.1.3 Configuration File Format of tagstore 9

1.2 Aspects for a Mobile Tagging Application 9

1.2.1 Graphical User Interface Aspects 10

1.2.2 Mobile Environment Aspects 10

1.2.3 User Input Aspects . 11

1.2.4 Mobile Phone Platforms Aspects 11

1.2.5 Software Portability Aspects 13

1.2.6 Android Platform Aspects 13

1.3 Android tagstore . 15

1.3.1 Differences of Android tagstore 15

1.3.2 Navigation in Android tagstore 18

1.3.3 Android Configuration Settings 21

1.3.4 Android Tagging of Files 23

2 Synchronization Systems 26
2.1 Characteristics of Synchronization Systems 26

2.2 Online Synchronization Systems 28

2.2.1 Network File Systems 28

2.2.2 Distributed File Systems 28

2.3 Offline Synchronization Systems 30

2.3.1 Rsync . 30

2.3.2 Unison File Synchronizer 32

2.3.3 Syxaw File Synchronization Middleware 33

vi

Contents

2.4 Cloud-based Synchronization Systems 34

2.4.1 Cloud Storage System Benefits 35

2.4.2 Cloud Storage Usage Pattern 36

2.4.3 Cloud Storage Security Requirements 37

2.4.4 Cloud Storage Interfaces 38

2.4.5 Cloud Storage Providers 39

3 tagstore Synchronization 44
3.1 Synchronization Platforms . 44

3.2 Synchronization Requirements 45

3.2.1 Synchronization Algorithm Requirements 45

3.2.2 Communication Channel Requirements 46

3.2.3 tagstore Synchronization Requirements 47

3.3 Synchronization Algorithm Conflicts 48

3.3.1 File Conflict Classes . 48

3.3.2 Meta-data Conflict Classes 49

3.4 tagstore Synchronization Algorithm 50

3.4.1 Synchronization Algorithm 50

3.4.2 Synchronization Store File 53

3.4.3 Synchronization Algorithm Modes 54

3.4.4 Synchronization Back-ends 54

3.4.5 Synchronization Conflict Handling 58

3.4.6 Synchronization Serialization 59

3.4.7 Synchronization Limitations of tagstore 60

4 Synchronization Evaluation 62
4.1 TaggedFrog . 62

4.2 Tabbles . 64

4.3 Taggtool . 65

4.3.1 Taggtool Desktop . 65

4.3.2 Taggtool Business Server 67

4.4 Evaluation Summary . 68

5 Conclusion 70

Bibliography 72

vii

List of Tables

1.1 Gartner Research Report . 12

3.1 Synchronization platform factors 44

4.1 Evalution of tagstore . 69

viii

List of Figures

ix

Listings

1.1 Folder Hierarchy of tagstore . 7

1.2 Sample Log File . 8

1.3 Folder Hierarchy of Android tagstore 17

1.4 Sample Android Store Format 25

3.1 tagstore Synchronization Algorithm 51

x

1 Introduction

In the last few decades, mobile phones received an enormous amount of
improvements. Besides the miniaturization of the phones, advancements
in the area of network, battery, chip and display technology have helped
to establish a new computing platform. The phone is no longer a device,
which is used solely to make calls, but is a mobile computing platform.
This has led to the coining of the term “smart phone”. The first smart
phone, developed in a joint venture by International Business Machines
(ibm) and Bell-South, was named Simon Personal Communicator.2 Besides
the common telephone features at that time, it used a touch screen for text
input. Consequently, this enforced a paradigm change concerning the oper-
ation of the mobile phone, as the users were accustomed to press physical
buttons. Today smart phones have become a powerful computing device.
Smart phones are not only equipped with several gigabytes of personal
storage and several hundreds megabytes of memory, they are also driven
by a fast processor. As a result, common user tasks such as e-mail, browsing
the web, or word processing can be deployed with a smart phone. How-
ever, smart phones are normally not equipped with a file browser, which
helps organizing personal files stored on the mobile phone. Although users
can download a decent file manager from an application store for their mo-
bile platform, it does not solve the problem of fragmentation of personal
files. Currently, mobile applications store user files in a preset folder. This
folder is not only different for each application, but also is unchangeable.
As a result, the personal files are fragmented in the file system. In order to
solve this problem, a mobile application has been developed. The mobile
application helps the users to organize their personal files. The mobile ap-
plication lets the users associate one or multiple tags with a file. The tags
can be chosen arbitrary. The file can be accessed by selecting the associated

2Wikipedia, 2012b

1

1 Introduction

tags. However, another problem exists when the users want to synchro-
nize the personal files with another computer. In general, synchronization
software’s main focus is to keep user files updated. However, preserving
the meta-data of the user files in a synchronized state is not accomplished.
The effect is the associated tags are lost during the synchronization. This
problem has been addressed by the development of an algorithm, which
deals with the synchronization of files and their associated tags. The syn-
chronization algorithm is implemented in two independent systems, which
allow users to synchronize their files and tags seamlessly.

The master thesis is organized in four chapters. In the first chapter the
tagstore research software is presented as well as the Android tagstore. In
the following chapter synchronization systems are analyzed. In the third
chapter the synchronization algorithm is described in full detail. Finally,
in the fourth chapter alternative tagstore systems are compared to tagging
functionality as well as to synchronization capabilities.

2

1 Introduction

1.1 Introduction to tagstore

In the last few years many collaborative tagging systems have been devel-
oped. The first website, which used this concept, was the website Del.icio.us3

in the year 2003. It allowed users to attach tags to bookmarks. This new
technique was quickly adopted by many other websites to explicitly de-
scribe content. The content was no longer limited to bookmarks, but ex-
tended to videos, images, or articles, for example YouTube4, Flickr5 or Blog-
ger6. Today the area of research focuses on the usage of tagging systems for
personal data management. In general, most users structure their personal
files in a folder hierarchy, where each folder contains files associated with
a specific topic. However, a problem arises when a file belongs to different
projects. For this problem there exist two intuitive solutions, which are not
satisfying. The first solution is that the users copy the file in one location
and references it from the other locations. The disadvantage appears, when
the file is being renamed or moved to another location. As a result, the
link becomes invalid. The other solution is to copy the file to all required
locations, but this creates a merge problem when those files get edited si-
multaneously. In order to deal with these problems, a research software is
developed at the Institute for Software Technology (ist) at Graz University
of Technology. The research software called tagstore (Voit, 2012) is built on
the concept of tagging. Users associate a file with one or several tags. The
files can then be navigated by using the tags. The research software builds
a folder structure called TagTree (Voit, Andrews, and Slany, 2011) in the file
system. This TagTree creates for each permutation of the associated tags a
corresponding folder path, where each folder represents a tag. The con-
tents of a folder are links to the associated files. On the Microsoft Windows
platform the links are constructed by using so called shortcut files. These
shortcut files are recognized by the file extension lnk. On other platforms,
symbolic links are utilized to achieve that feature. Since tagstore uses fold-
ers in a file system to implement the TagTree, it is file browser independent.
Hence, it does not depend on the operating system’s file browser applica-

3http://Del.icio.us
4http://www.youtube.com
5http://www.flickr.com
6http://www.blogger.com

3

http://Del.icio.us
http://www.youtube.com
http://www.flickr.com
http://www.blogger.com

1 Introduction

tion programming interface (api) to construct the same user experience.
Thus the compatibility for different file browsers on multiple platforms is
ensured.

The development of tagstore started in June 2010. It is developed in the
programming language Python. The Python programming language was
founded by Guido van Rossum arround 1990 (Lutz, 2001). The language
supports the object programming model as well as some features from the
functional programming model. The syntax of Python is clear and intuitive.
In addition, it has a large set of libraries for common tasks, which facili-
tate software development. Furthermore, applications written in Python
are interpreted. Fortunately, there exist an interpreter for the most popular
platforms such as Microsoft Windows, Mac OS X or Unix-compatible envi-
ronments. Since tagstore is an application with a gui, which runs on many
different operating system platforms, it also requires a cross platform gui

framework to deal with architectural differences. This is achieved by using
the Qt framework.7 The Qt framework is more than a gui framework. It
also supports network sockets, threads, sql databases and much more. In
order to use this framework in Python, it needs a set of Python wrappers.
For that purpose the PyQt8 library, developed by Riverbank Computing
Limited, is used. Currently, tagstore uses PyQt4, which supports Qt 4. As
a result, tagstore can be run on many different operating systems, which is
one of the major application requirements.

The tagstore application can be divided into two components: the tagging
component and the tagstore manager. The tagging component is responsi-
ble for the tagging of the files. It also creates TagTrees and proposes tags
when a new file is created in the tagstore’s storage folder. The latter compo-
nent copes with the task of creating new tagstores and removing tagstores.
In addition, the tagstore manager supports the following features, which
can be controlled for each tagstore individually:

• The manager provides four different modes, which influence the con-
struction of the TagTrees. The first mode is the unrestricted mode. In
this mode every tag can be used. In the second mode it is the opposite.

7http://www.qt-project.org/ last visited on 4/1/2012

8http://www.riverbankcomputing.co.uk/software/pyqt/intro last visited on
4/1/2012

4

http://www.qt-project.org/
http://www.riverbankcomputing.co.uk/software/pyqt/intro

1 Introduction

The manager lets the users construct a tag vocabulary. The vocabu-
lary is stored in the file vocabulary.txt inside the .tagstore folder.
Each tag of the vocabulary is separated by a new line. The manager
imposes no rules on the composition of the tag vocabulary. Once the
vocabulary is created, the system restricts the users to choose tags
from the vocabulary. In general, this technique is also referred to as
controlled vocabulary. Controlled vocabularies provide a means for
organizing information in a consistent way. Furthermore, it can aid
information retrieval (ANSI/NISO, 2005, Section 5.1).
The third mode is an extension of the first mode. When this mode is
used, two TagTrees are constructed. The vocabulary of both TagTrees
is unrestricted. The first TagTree is made up of tags, which describe
the contents. The second TagTree consists of tags, which categorize
the contents. The fourth mode is a combination of the first and second
mode. Analogous to the third mode two TagTrees are constructed.
However, one TagTree uses controlled vocabulary whereas the other
TagTree can be composed of user-defined tags. Currently, this is the
default mode when a new tagstore is created.
• The date function can automatically assign a file a date tag, which fa-

cilitates file retrieval. The manager lets the users choose between two
date formats. In the first format the date tag includes year and month
separated by a hyphen. The second date format also includes the day
when the file was originally tagged. The date function is optional and
can be turned off in the tagstore manager.
• The expiry function lets the users assign a special crafted tag, which

the tagstore system recognizes as a date tag. When enabled, the tag-
store system checks if the current system date has moved beyond the
assigned date tag. In that case, the file is moved into a folder, where
all expired files are stored. In order to distinguish between date tags
and expiry tags, the system prefixes expiry tags with custom prefix.
The custom prefix can be configured in the tagstore manager. The
default prefix is exp. Again, this feature is entirely optional.
• The re-tag feature allows the users to re-associate a file. In this pro-

cess, all former tags are removed and the new chosen tags are asso-
ciated. The re-tag feature can either be accessed within the tagstore
manager in the Re-Tagging tab or by launching tagstore retag.py

with the Python interpreter.

5

1 Introduction

• The tagstore manager lets the users rename a tag. This benefits the
usability as the users do not need to re-tag each file separately. After
a new tag has been entered, the relevant TagTree is being updated
with the new tag name.
• The synchronization function enables users to synchronize different

tagstores. It also supports different synchronization modes. In the
Chapter 3 this feature is explained in greater detail.

As already stated, the tagstore manager lets the users create, modify, and
delete a store. Although tagstore provides an elegant solution to adminis-
ter unrelated files, there are applications, which require a disjunction. For
example private files and work related files. Therefore, it is reasonable to
separately store those files. Given that tagstore manager supports multiple
tagstores, it is advised to create a separate tagstore.

Before the users are able to deploy the tagstore for the management of
their files, it is required to create a first tagstore. This task is accomplished
by using the tagstore manager. The manager can be started by launching
tagstore manager.py with the python interpreter. The tagstore manager
lets the users choose a root folder of the tagstore. After the folder has
been selected it creates five sub folders. These folders are called .tagstore,
categories, descriptions, expired items and storage. Except the first
folder, all other folder names are language dependent. Therefore, the tag-
store manager creates a different folder structure, when the operating sys-
tem’s locale is set to another language. At the moment tagstore only sup-
ports English and German localization. If there is no localization available,
tagstore falls back to English.

In Listing 1.1 the folder structure is shown. The .tagstore folder con-
tains configuration files, which are specific to a tagstore. The description

folder holds TagTree of description tags, whereas the categories stores the
TagTree of the class tags. The expired items folder stores the items which
have been moved into it as the expiry function triggered. The storage

stores the user files of tagstore.

6

1 Introduction

1 t a g s t o r e root f o l d e r \
2 |−− . t a g s t o r e
3 |−− c a t e g o r i e s
4 |−− d e s c r i p t i o n s
5 |−− expired i tems
6 |−− s torage

Listing 1.1: This listing shows the folder hierarchy, which is build when a new tagstore
is created. It constructs five folders, which have different purposes. The .tag-
store folder contains the configuration files of the tagstore. The categories folder
stores the TagTree of the class tags, when tagstore operates in the third or
fourth mode. The descriptions folder saves the TagTree of the description tags.
Moreover the expired items holds the files, which were moved, when the as-
signed expiration date was triggered. The storage folder keeps the unordered
files of the tagstore.

1.1.1 Operation of tagstore

The tagstore tagging component is started by launching tagstore.py with
the Python interpreter in the tagstore installation folder. The tagging com-
ponent then enumerates all available tagstores by analyzing the main tag-
store configuration file. The file named tagstore.cfg is stored in the folder
tsresources/conf of the tagstore installation folder. The tagstore configu-
ration file uses the ini file format. The tagstores are listed in the stores
section. Afterwards, it initializes each tagstore and starts monitoring the
storage folder for file changes. A file change is detected when a file is cre-
ated, renamed or deleted. In the event of a new file, the tagging dialog is
launched. This dialog requests the users to enter tags for the new file. It
is a requirement that at least one tag must be entered. After the tags have
been entered, the corresponding TagTree is created. Finally, the file is then
accessible from the TagTree with the chosen tags. When a file is deleted,
tagstore removes all created shortcut files or symbolic links. At the same
time no longer used tags are also removed from the TagTree. Furthermore
tagstore supports detecting a file has been renamed. As soon as this event
is detected, tagstore updates the relevant shortcut files or symbolic links.

The tagging component displays the tagging dialog when a new file is
created. Figure 1.1.1 demonstrates the tagging dialog. The dialog shows

7

1 Introduction

Figure 1.1: A screenshot of the tagging dialog of tagstore. The window bar displays the
name of the tagstore, which is test1. On the left side tagstore proposes a few
tags. The tags were chosen based on the file extension, already used tags, and
standard tags of tagstore. Users can select these tags by clicking on them. On
the right side is a list box, which is designed for files. These files are called
pending files, because they have not been tagged yet. There is currently only one
file named master.pdf. The text field is used to type tags. It is a requirement
that tags need to be separated by a colon. Once the users have finished entering
tags, the users can initiate building the TagTrees by hitting the Tag! button. It
is also possible to delay this by using the Postpone button.

a set of tags on the left side, which are proposed by tagstore. Users can
select these tags by clicking on them. Users can also enter own defined
tags in the text field. It is a requirement that each tag is separated by a
colon. However, it is not required to immediately enter tags as the users
can be busy with more important tasks. The tagstore software stores a list
of already tagged files in the file store.tgs. When tagstore is started, it
enumerates all files in the storage folder. By excluding the file entries from
the store.tgs, tagstore has a list of files, which have not been tagged yet.
If that list is non-empty, tagstore displays the tagging dialog immediately
after application start-up. Hence, it is safe to dismiss the tagging dialog.

1.1.2 Store Format of tagstore

The information of a tagstore is saved in a file named store.tgs which
resides in the .tagstore folder. The file format follows the conventions of
the ini format. The ini format is a standard for configuration files. The file

8

1 Introduction

format consists of two sections which may contain several keys and their
associated values. A new section is defined with an opening square bracket,
the section name, and the closing square bracket. A section ends when the
next section is defined or the end of the file is reached. In addition, the
section definition must start on a new line. Other keys, values, and sections
are not allowed on the same line. In general, a key value pair is delimited
by the equal sign. In addition special characters of the key name must be
escaped using rfc 2396

9.

Furthermore, the key value may be escaped using double quotes. The first
section is the settings section. It contains one supported key config format,
which defines the configuration format. The value should be set to “1”. The
second section called files holds the the available files and their associated
tags as well as the time stamps.

1 [s e t t i n g s]
2 conf ig format =1

3

4 [f i l e s]
5 example−short−chapter . tex \ tags =” t e s t , manual , t u t o r i a l ”
6 example−short−chapter . tex \ timestamp=2012−03−29 1 5 : 1 8 : 3 5

7 example−short−chapter . tex \ category =2012−03

Listing 1.2: This is a sample log file obtained from a tagstore. The file stores the file names
and used tags. In this listing the tags test, manual and tutorial were used with
the file example-short-chapter.tex. The entry also contains a time stamp,
which stores the date when the file was tagged. The category key contains the
class tags of the entry.

Listing 1.2 demonstrates a file with the name example-short-chapter.tex.
This file was associated with the tags test, manual, and tutorial. The date
stamp key indicates when the file was tagged. If a file is re-tagged, this
time stamp gets also updated. Finally, the category key stores the defined
class tags of the file.

9http://www.ietf.org/rfc/rfc2396.txt last visited on 8/29/2012

9

http://www.ietf.org/rfc/rfc2396.txt

1 Introduction

1.1.3 Configuration File Format of tagstore

Each tagstore stores configuration settings in the file store.cfg inside
.tagstore folder. The configuration format also uses the ini file format.
The configuration settings control the tagstore mode10 and date stamp
format. These configuration settings can be manipulated in the tagstore
manager. Furthermore, the configuration settings store a key called an-
droid store, which determines the type of the tagstore.11 The value can either
be “0” or “1”.

1.2 Aspects for a Mobile Tagging Application

An application, which is developed for mobile devices, differs in many
aspects from the personal computer platform. In this section the different
aspects are presented. The first sub-section illustrates the gui aspects of mo-
bile phones. Afterwards, the mobile environment aspects are presented. In
the third sub-section the user input characteristics are presented. Later, the
major mobile phone operating systems are inspected regarding their mar-
ket share. In the fourth sub-section software portability aspects are shown.
Finally, the chosen mobile phone platform is analyzed.

1.2.1 Graphical User Interface Aspects

Mobile devices have – due to their limited physical appearance – a small
screen. As a result, an application can not display all user interface ele-
ments on the screen at the same time because the elements would overlap.
Therefore, elements must be properly aligned to achieve an operable user
interface. In general, this is achieved by dividing the user interface into sev-
eral sections called screens. The screens can be navigated by performing a
gesture, which the operating system recognizes. Another important aspect
is the screen resolution since mobile devices not only differ in respect to

10The tagstore modes are elaborated in Section 1.1.
11See Section 1.3

10

1 Introduction

their screen size but also screen resolution. Finally, the screen orientation
also needs to be considered.

1.2.2 Mobile Environment Aspects

Mobile applications are influenced by their hosts hardware capabilities.
The first important factor is the speed of the central processing unit (cpu).
Although modern mobile phones certainly provide the computing power
to host a mobile tagging application, the impact for a less developed mobile
device is not to be underestimated. Furthermore, cpu intensive applications
have a negative influence on the battery consumption. In addition, it can
shorten the battery life cycle.

The variable available amount of random access memory (ram) per mobile
phone type can influence the deployment. The mobile phone operating
system sometimes needs to kill applications due to memory requirements.
Therefore, applications which are deployed on hosts with sufficient amount
of ram, have a higher chance to run uninterrupted.

Mobile phones are dependent on the network accessibility and capability.
Since mobile devices do not persist on a fixed location, the device is not
assured to have network access. In addition, the network connection can
suffer from frequent disconnection or low bandwidth. It may also be the
case that the network connection is disabled by phone settings. This sce-
nario typically appears during the usage of foreign global system for mo-
bile communication (gsm) networks. Since roaming fees accumulate, the
default behavior is to disable Internet access of GSM.

1.2.3 User Input Aspects

Nowadays mobile phones use a touch screen to receive an input from the
users. The touch screen is also responsible for entering a text, which is
achieved by providing a screen keyboard. However, a device may also pro-
vide a hardware keyboard. In general, phone manufacturers abstain from

11

1 Introduction

it because it increases the device‘s weight and complexity. In order to fa-
cilitate text input, the mobile phone’s operating system provides several
methods, which lighten the text entering process. The first technique is
the automatic completion approach, which targets the entering of words.
As soon as a word is started to be typed, the operating system searches a
dictionary. If there is a match, then the match is proposed to the users. An-
other supporting technology is to add the current word to the dictionary.
That way the next time this word is started to be entered, the operating sys-
tem can propose it. Finally, the integrated correction support of misspelled
word assists the user’s input process.

1.2.4 Mobile Phone Platforms Aspects

It is required that tagstore should run on the most popular mobile phone
operating system. At the time of writing there are three major platforms.
The most popular platform is developed by the Open Handset Alliance,
which is a group of technology and mobile companies led by Google. The
platform is referred to as the Android platform. The second important plat-
form is the iOS manufactured by Apple. The sole product of this platform
is the iPhone. Finally for completeness, the Symbian OS developed by the
Symbian Foundation must also be mentioned. In February 2011, Nokia
announced as the only remaining active developer in the Symbian Foun-
dation, to abandon the development of Symbian OS based devices. Instead
Nokia intends to use Microsoft’s phone operating system in the future.

Table 1.1 shows the research report from Gartner titled Forecast: Mobile Com-
munications Devices by Open Operating System, Worldwide, 2008-2015. The re-
port released in April 2011, forecasts the Android platform to have a market
share in the smart phone operating system area of 49.2 per cent. In addi-
tion, the analysis estimates Symbian share in the smart phone operating
area will be irrelevant. Furthermore, the report highlights two differenti-
ating trends. On one hand Gartner sees a big growth of market share for
Microsoft based phones, on the other hand the iOS market growth is de-
clining.12

12http://www.gartner.com/it/page.jsp?id=1622614 last visited on 3/3/2012

12

http://www.gartner.com/it/page.jsp?id=1622614

1 Introduction

OS 2010 2011 2012 2015

Symbian 37.6 % 19.2 % 5.2 % 0.1 %
Android 22.7 % 38.5 % 49.2 % 48.8%

iOS 15.7 % 19.4 % 18.9 % 17.2 %
Microsoft 4.2 % 5.6 % 10.8 % 19.5 %

Other 3.8 % 3.9 % 3.4 % 19.5 %

Table 1.1: The Gartner research report forecasts the market share of smart phone operat-
ing systems. It says that the Android platform will nearly have half of world-
wide smart phone operating system market share by the end of the year 2012. It
also predicts Microsoft’s phone operating system a large growth of sold smart
phone units.

The Android platform is becoming the leading mobile device platform.
This claim is emphasized by Andy Rubin, who is the Senior Vice President
of Mobile at Google. In his profile on the social network platform Google+,
he states that more 850,000 Android devices are activated per day.13 As a
result, the Android platform was chosen as the main target for the mobile
tagstore.

1.2.5 Software Portability Aspects

In the previous section, the Android platform has been chosen as the main
target for the mobile tagstore version. Since the other mobile phone plat-
forms differ in many ways from the Android platform, it is not easy to pre-
serve software portability. However, there are frameworks available, which
allows a set of applications to run on multiple mobile phone platforms. In
general, the application developers construct a web application, which is
bundled with the framework. The framework provides library functions,
which can be accessed by using a browser language such as JavaScript. By
using the JavaScript language, access to the mobile phone’s hardware is
provided. The developers only need to bundle the web application with

13https://plus.google.com/u/0/112599748506977857728/posts/Btey7rJBaLF last
visited on 3/3/2012

13

https://plus.google.com/u/0/112599748506977857728/posts/Btey7rJBaLF

1 Introduction

the target platform framework version. In short, the frameworks allow de-
velopers to build applications, which run on multiple platforms by using
Web technologies such as html, css, and JavaScript. A comparison of cross
platform mobile frameworks is listed on the Mashable’s website.14

The Android tagstore is not using these frameworks. The first reason is
obviously the speed penalty, which is introduced by adding another soft-
ware layer. The next disadvantage is the user interface. Web applications do
not provide the original look and feel of native Android applications. Fi-
nally, the frameworks do not provide an api to observe folders for changes.
However, this functionality is essential for a mobile tagstore.

1.2.6 Android Platform Aspects

The Android platform is based on Java technology. Java is a programming
language, which was invented by James Gosling at Sun Microsystems. Sun
Microssystems was later acquired by Oracle Corporation. Like Python, it
supports the object oriented programming model. In addition, the syntax
is similar to the programming languages c and c++. Java programs are
compiled with the Java compiler into an intermediate code called byte code.
This byte code is then interpreted by the Java vm and finally executed.
On the Android platform the Dalvik vm is used. However, Dalvik vm is
different from the Java vm. In general, the Dalvik vm was designed for
embedded systems, which have limited disk space and memory.

The Java vm is a stack-based machine where as the Dalvik vm is using
registers. In a stack-based machine the operation code and operands are
fetched from the stack. In contrast to a stack-based machine, a register ma-
chine fetches the operation code and operands directly from virtual regis-
ters. These virtual registers can be mapped to physical processor registers,
which in turn can accelerate the execution speed.15 A study on the analysis
of different vm architectures shows that register based vms require 47 %

14http://mashable.com/2010/08/11/cross-platform-mobile-development-tools/

last visited on 5/31/2012

15http://www.fhnw.ch/technik/imvs/publikationen/artikel-2009/

einblick-in-die-dalvik-virtual-machine last visited on 5/31/2012

14

http://mashable.com/2010/08/11/cross-platform-mobile-development-tools/
http://www.fhnw.ch/technik/imvs/publikationen/artikel-2009/einblick-in-die-dalvik-virtual-machine
http://www.fhnw.ch/technik/imvs/publikationen/artikel-2009/einblick-in-die-dalvik-virtual-machine

1 Introduction

less instructions than stack-based machines. Although the register code is
25% larger than the corresponding stack code, the increased cost due to
fetching more vm code involves only 1.07% extra real machine load per vm

instruction. All in all the register based machine requires 32.3% less time
to execute standard benchmarks.16

Before an Android application can be executed by the Dalvik vm, it needs
to be converted into an instruction set which is understood by Dalvik.
This conversion task is performed by the dex tool, which is included in
the Android software development kit (sdk). This tool uses the generated
byte code from the Java compiler to produce a so called dex file. Typically,
multiple class files are converted into one dex file. The advantage of that
conversion is that uncompressed dex files are a few percent smaller than
compressed Java archives due to the elimination of duplicate strings. Fur-
thermore, byte order and other optimizations can be applied to reduce file
size. Afterwards an application package file (apk) is constructed from the
the generated dex file together with application resources, manifest, assets,
and certificates. The apk file format is based on the jar file format, which
uses the zip archive format as a container.17

1.3 Android tagstore

The Android tagstore is presented in this section. In this section there are
four sub-sections. In the first sub-section, the differences between the An-
droid and desktop tagstore are elaborated. Afterwards, the navigation in
the Android tagstore is explained. In the third sub-section, the configura-
tion settings are highlighted. Finally, the tagging dialog of Android tagstore
is presented.

The original tagstore implementation is written in the Python program-
ming language. In order to differentiate the implementation between An-
droid and Python, the tagstore developed in Python is referred to as the

16http://static.usenix.org/events/vee05/full_papers/p153-yunhe.pdf last vis-
ited on 5/31/2012

17http://en.wikipedia.org/wiki/Dalvik_(software) last visited on 5/31/2012

15

http://static.usenix.org/events/vee05/full_papers/p153-yunhe.pdf
http://en.wikipedia.org/wiki/Dalvik_(software)

1 Introduction

desktop tagstore. In addition, the Android tagstore is sometimes also la-
beled as the mobile tagstore.

1.3.1 Differences of Android tagstore

The Android tagstore needs to break with a concept, which the desktop
tagstore has introduced. The desktop tagstore creates folders in the file
systems for the tags and uses shortcut files for the files. There is a number
of reasons why this concept needs to be adapted. First of all, Android is
a Linux based environment. Hence, only the symbolic link mechanism is
available. However, the Android platform uses Microsoft’s fat32 file sys-
tem for the external storage media. Unfortunately this file system does not
support symbolic links.18 As a result, symbolic links can also not be used.
Though it is technically feasible to change to a file system with symbolic
link support such as ext2, the amount of work is unacceptable. In addition,
the majority of users would be excluded from trying tagstore. Another dis-
advantage is the requirement of needing a file browser to navigate in the
TagTrees. Currently, Android phones are not shipped with a file browser.
Although users can install a decent file browser from an Android appli-
cation store, it is another inconvenience. As a consequence, the Android
tagstore restrains from creating folder structure for the TagTrees in the file
system. However, it provides the ability to browse the TagTrees in a virtual
view, which is accessible within Android tagstore. Currently, the Android
tagstore only supports visualization of one TagTree. The mobile tagstore
supports two alternating view modes called tag cloud view and icon view. In
the tag cloud view mode, tagstore displays the tag names and file names
as text in a freely arranged way. Complemental, the icon view shows an
icon above the text. This view resembles the visualization of folder hier-
archies in graphical file system browsers. Due to the fact that many users
are accustomed to this visualization type, it is the standard view when the
mobile tagstore is installed.

The next difference to the desktop tagstore is the way files are stored. In the
desktop tagstore, all files are stored in the myfilenamestorage folder. Due

18http://msdn.microsoft.com/en-us/library/windows/desktop/ee681827%28v=

vs.85%29.aspx last visited on 4/16/2012

16

 http://msdn.microsoft.com/en-us/library/windows/desktop/ee681827%28v=vs.85%29.aspx
 http://msdn.microsoft.com/en-us/library/windows/desktop/ee681827%28v=vs.85%29.aspx

1 Introduction

to the requirements of the Android platform, the Android tagstore needs to
break with that concept. The reason behind that change is the way Android
applications store user files. As already stated, there is no standard where
Android applications should store user files. As a consequence, user files
are saved in many different folders in the file system. In order to deal with
this fact, the Android tagstore provides the ability to observe any folder
in the external storage file system for file changes. A file change in this
context is the creation, or deletion of a file. When a new file is created,
tagstore informs the users to associate the file with tags. Once the file has
been tagged, it is accessible with the used tags in the virtual view. On
the other hand as soon as a tagged file is removed, all associated tags are
removed. However, an associated tag is not removed entirely from tagstore.
A tag is only removed if its usage count becomes zero. If that tag is still
associated with another file, only its usage count is decremented. When the
usage count eventually becomes zero, the tag is also removed.

Since the Android tagstore supports observing multiple folders, the ques-
tion arises how to deal with files having the same name but residing in
different folders. Although it is feasible to support multiple files with the
same name, tagstore requires a file to have a unique name. The first reason
is that those file names may have the same tags attached. As a result, users
need to check each file if it is the desired file. Another disadvantage ap-
pears when the tagstore is being synchronized. When the synchronization
task is about to synchronize a file with no unique name, it has several can-
didates available. The synchronization task may choose the first, last, or all
of them depending on the synchronization method. Furthermore, one file
may have been edited since the last synchronization. The synchronization
process has no information whether the modified file should be updated.
Consequently supporting this feature creates many problems and increases
the complexity of the synchronization. Thus tagstore abstains from this
feature. However, the situation may still happen when Android tagstore
observes multiple folders. The Android tagstore then offers four possibil-
ities. The tagged file can be renamed or ignored. Ignored means in that
context that the file is removed from the tagstore. The new file can also be
either renamed or ignored. Ignoring the new file denotes that the tagged
file remains in the tagstore.

The Android tagstore supports controlled vocabulary. As already stated, it

17

1 Introduction

1 root of e x t e r n a l s torage \
2 |−− t a g s t o r e \
3 |−−−− . t a g s t o r e
4 |−−−− s torage

Listing 1.3: The folder hierarchy of the Android tagstore is created when the Android
tagstore is initialized for the first time. It creates the folder tagstore and sub-
folders .tagstore and storage. The first sub-folder stores the configuration
files whereas the second sub-folder stores files, which were added during the
synchronization.

requires the vocabulary.txt to be put into folder .tagstore. Furthermore,
it must be enabled in the Configuration Settings screen. Unfortunately, the
Android tagstore does not support the capability to manage a controlled
vocabulary. The reason is primarily that typing in a smart phone is an ex-
pensive task. Therefore, it is not encouraged by the tagstore application.
The recommended process is to edit the file while the mobile phone’s stor-
age is mounted as a mass storage device by usb.

The Android tagstore does not support the expiry feature of the desktop
tagstore. The expiry function brings no benefit as it requires an external file
browser. As a result, it is not supported in the Android tagstore.

When Android tagstore is initialized for the first time, it creates a folder
named tagstore in the root of external storage file system. Inside that
folder the folders .tagstore and storage are created. In addition, the An-
droid tagstore creates the tagstore configuration file and the tagstore store
file. The storage folder is used for new files, which have been added during
a tagstore synchronization. Listing 1.3 shows the created folder hierarchy.
In comparison to the desktop tagstore, the folders descriptions and categories
are missing. Since Android tagstore realizes the TagTree in a virtual view,
there is no need to create the folders in a file system. The Android tagstore
uses a database for storing the relations between the files and tags. The
primary reason is speed. However, the Android tagstore stores a backup of
the database in the tagstore store format.19 The file is updated every time
a change in the Android tagstore occurs.

19See Section 1.1.2

18

1 Introduction

1.3.2 Navigation in Android tagstore

In the Android tagstore, navigation is performed in a virtual view. In the
virtual view, there are two types of items, namely tags and files. The
start view displays all used tags. In general, navigation is performed by
clicking on the item. The Android tagstore supports two types of hand
gestures. A short click on an item performs the default action for that item.
This is also referred to as a touch gesture. In the case the item is a tag,
the contents of the view is cleared. Later, all tags and files associated with
it are collected and displayed. If the item is a file, then tagstore launches
the default application registered to handle that file. Furthermore, a long
press gesture on an item opens a menu. Depending on the item type, a
specific menu is opened. For a tag item, there are three operations available
such as rename, statistics and delete. The statistics menu opens a screen
when it is selected. That screen shows the number of files, which have been
tagged with that tag and the number of tags which have been used together
with that tag. The menu for a file is similar. However, more options are
available. Despite the standard operations rename and delete, it supports
the operations share, re-tag and open as. The operation share invokes a menu,
which lists all registered applications, which are interested in that specific
content type. Once an application is selected, the selected file is explicitly
made available to that application. Furthermore, the retag option lets the
users associate new tags to that file. By using this method, a file can be re-
associated with new tags. Finally, the option open as displays another menu,
which asks the users how that file is supposed to be interpreted. Available
choices are text, audio, video or image. Once the selection has been made,
the standard application registered for that content type is started to handle
that file. However, there can also be multiple applications registered for that
content type. In that case the users need to select the desired application
from a list.

The screen size of a phone is spare. Therefore, elements must be carefully
chosen not to occupy too much of the available space. The tagstore appli-
cation abstains from displaying a window title in the navigation screen.
Furthermore, tagstore uses the available hardware buttons like menu and
back button to provide additional functionality. If the Android phone does
not provide hardware buttons, then the Android system automatically pro-

19

1 Introduction

vides onscreen buttons. The menu button displays a menu, which has three
available choices. The first choice shows the configuration screen, which is
elaborated in the Section 1.3.3. The second choice opens the synchroniza-
tion screen, which is explained in Section 3.4. The last option displays a
screen, which provides information about tagstore. The back button is used
to navigate backward in the TagTree. For example the current TagTree is
made of the tags cartoon and test. After the back button is pressed, the test
tag is removed from the TagTree. The view now gets cleared and refilled
with the contents of the changed TagTree.

The Android tagstore visualizes the TagTree in a virtual view. When the
users navigate in the TagTree, it is essential to know the current contents
of the TagTree. The first approach is to provide an area of screen, which
displays all tags in a text field. Although this solution solves the problem
of knowing the quantity of the TagTree, it is not sufficient for all users
needs. In a scenario, the TagTree contains three tags named cartoon, test
and foo. In order to display all tags and files entirely related to the tag
foo, the users need to navigate back to the initial screen and select the foo
tag. The Android tagstore solves this usability problem by providing so-
called navigation buttons. Each navigation button represents an item of the
TagTree. Once a navigation button is activated, all other items are removed
from the TagTree and the view is updated.

Icon View

Figure 1.3.2 demonstrates the start screen of the icon view. This screen
shows all tags, which have been associated with one or several files. In this
figure two items are displayed. Each item represents a tag, which is shown
by the green tag in the image. The items are named cartoon and test.

Figure 1.3.2 displays another screenshot of the icon view. The TagTree con-
tains the cartoon tag. The view was generated by touching the cartoon

tag. In the upper corner a button with the tag cartoon is shown. This button
represents a navigation button. In this figure the file cartoon.jpg is the
tagged file.

20

1 Introduction

Figure 1.2: This screenshot displays the start screen of the icon view. It displays two items
called cartoon and test. Each item represents a tag, which has been associated
with one or several files.

21

1 Introduction

Figure 1.3: This screenshot displays the icon view. The TagTree contains the tag cartoon.
The contents of the TagTree is displayed by the navigation button. The naviga-
tion button is placed above the icon view. There is one file named cartoon.jpg,
which is associated with the tag cartoon.

22

1 Introduction

Tag Cloud View

Tag clouds were first deployed by Jim Flanagan’s Search Referral Zeitgeist,
which visualized web site referrals.20 Tag clouds present text in a freely
arranged way. In this context text is a tag or a file name.

In comparison to the icon view, the tag cloud view only shows the tag name
or the file name. Therefore, it requires special measures to improve the user
experience. Rivadeneira et al. describe several features and evaluate their
performance corresponding the tag cloud navigation. The tag cloud view
of tagstore uses several methods to enhance the user experience.

The first method targets the distinction of the importance of tags. In order
to recognize important tags rapidly, tagstore renders the tags differently
depending on their importance. The importance is measured on the mag-
nitude, how often a tag has been associated with a file. First, the minimum
and maximum tag usage from the entire tag collection is determined. Next
the largest font size is assigned to the most important tag. The font size is
then decreased proportional to the tag usage for less important tags.

The second method works similarly to the former method. However, the
importance of the tag is highlighted by using different colours. The tag
with the highest usage is displayed in white. Less used tags are drawn
in orange, dark orange and brown. In the Figure 1.3.2 this technique is
demonstrated.

Finally, the file names are drawn in the colour blue, which helps the users
to distinguish tags and file names. In addition, the font size of the file name
is dynamically adjusted to fit the screen size requirements. As a result, files
which are composed of a long name are drawn in a smaller font size. This
effect is visible in Figure 1.3.2. In addition, the navigation button is visible
in the top of the virtual view.

20http://web.archive.org/web/20020906055006/http://jimfl.tensegrity.net/

zeitgeist/ last visited on 9/25/2012

23

http://web.archive.org/web/20020906055006/http://jimfl.tensegrity.net/zeitgeist/
http://web.archive.org/web/20020906055006/http://jimfl.tensegrity.net/zeitgeist/

1 Introduction

Figure 1.4: This screenshot shows the start screen of tag cloud view. It illustrates two tags
called test and cartoon. The tag test is used with more files than the other tag.
Therefore, it is drawn in the colour white, which emphasizes higher impor-
tance. In addition, the increased font size helps the users to recognize the tag’s
importance.

24

1 Introduction

Figure 1.5: This screenshot shows the tag cloud view. The TagTree is made up of the tag
test. This screen has been accessed by clicking on the test tag in the start screen.
In general, all file names are painted in the color blue. Due to the excess length
of some file names, the font size is reduced. An example is A Mobile Blogging

Solution Masterarbeit.pdf. In addition, there is a tag visible called cartoon.
This tag has been added to the file cartoon.jpg to illustrate the visualization
when multiple tags are associated with a file.

25

1 Introduction

1.3.3 Android Configuration Settings

The Android tagstore’s configuration screen is accessed by using the menu
button and choosing the Configuration item. Figure 1.3.3 shows this screen.
The Android tagstore supports five configuration options. The options deal
with application settings as well as with user interface preferences. The first
configuration option is called Folders. The setting is used to select folders,
which are observed for file changes. A screen is shown, which displays the
current monitored folders. Per default the storage folder inside the tagstore

folder is observed. In addition, the users can insert additional paths by
clicking on the Add Folder button. On the opposite, folders are removed by
hitting on the remove button which is displayed next to the folder path.
Due to the spare size of the screen, the remove button is displayed as a
pictogram. In general, all observed paths can also be removed again. This
also has an effect on the files in the tagstore. In general, all files, which
have not yet been tagged, are put into a so called pending file queue. When
an observed path is removed, all descending files in the pending file queue
are also removed. However, files which already have been tagged, are not
removed. In that way users have an easy method to stop and resume ob-
serving a folder for file changes.

The next configuration option named List View controls the user interface
appearance. Principally the option lets the users choose, whether the icon
view or the tag cloud view should be used for displaying the tagstore.
In addition, there are two more sub options available when the icon view
is active. The first sub option defines the maximum number of tags or
files which are displayed per row. The available range is between one and
four. The reason for limiting the number of items is the limited screen
space. The other sub option influence the sorting order of the tags in the
icon view. There are two modes available, labeled alphabetic and popular.
Whereas the first mode sorts the tags alphabetically, the latter operates on
the tag importance. The tag importance is measured by the number of files,
the tag is associated with. In other words, the most frequently used tag, is
the most important tag. The most important tag is displayed in the view
first followed by less significant tags. Nevertheless, it is possible that two
tags achieve the same importance. In that situation the tag, which has been
created first, is displayed first.

26

1 Introduction

(a) This screenshot shows the top of
the configuration screen. It displays
the available configuration items
such as Folders, List View and No-
tification. These items influence the
tagstore behaviour in many ways.

(b) This screenshot shows the bot-
tom of the configuration screen
when the users navigate down-
wards. It displays additional config-
uration items labeled Controlled Vo-
cabulary, Database and Synchroniza-
tion.

Figure 1.6: Configuration Screen

27

1 Introduction

The configuration item referred to as Synchronization controls the synchro-
nization settings. The Android tagstore supports three synchronization
methods. Their functioning is fully explained in Section 3.4.3.

The tagstore application sometimes needs to inform the users that an event
happened or an intermediate task was completed. The Android platform
provides two independent mechanism to accomplish this functionality. In
the first mechanism labeled toast, informal messages can be displayed in
the application. In addition, the messages automatically hide after a de-
fined period of time. The drawback is that the application must be currently
focused. As a result, this mechanism is only used when the tagstore appli-
cation is active. The other mechanism circumvents the restriction by using
the system’s status bar to display information. In that way applications
can inform the users of new activity. The tagstore application uses both
mechanism. The toast mechanism is used for events, which were triggered
actively by the users while interacting with the tagstore. A example is the
completion of the synchronization task. The system’s status bar mechanism
is solely used for informing the users that a new file has arrived in one of
the observed folders. This behaviour can be deactivated by unchecking the
setting. Once deactivated, tagstore stops informing the users of new file
events.

In the previous section, the advantages of the controlled vocabulary have
already been elaborated. The Android version of tagstore also supports the
controlled vocabulary. Once enabled, the controlled vocabulary affects how
tags are used. The setting requires all tags, which are assigned eventually,
to originate from the quantity of the controlled vocabulary. This also ap-
plies to files, which get re-tagged by the users.

The database configuration option is intended to reset the tagstore to fac-
tory settings. As a result the tagstore is set to the initial empty condi-
tion and all used tags are removed. In addition, the pending file queue is
cleared. In order to prevent unintended resets of the tagstore, the Android
tagstore displays a confirmation screen before the action is performed.
Needless to say, no user files are touched. However, all stored folders are
also removed from the database. Therefore, watched folders need to be
re-added after database reset.

28

1 Introduction

1.3.4 Android Tagging of Files

The Android tagstore shows the tagging screen, when a new file is created
in one of the observed folders in the file system. The tagging screen is dis-
played by performing a swipe gesture.21 Figure 1.3.4 displays a screenshot,
which illustrates the tagging screen. In the top of the tagging screen, the full
file system path of the new file is shown. The file is named mynewfile.txt

and is stored in the storage folder of Android tagstore. The file can also
be opened by clicking on it. Furthermore, additional operations are pro-
vided by performing a long press gesture. These operations are elaborated
in Section 1.3.2. In the middle of the screen, there is a text field. This text
field can be used to type tags. Each tag needs to be separated by a colon.
Furthermore, there are buttons displayed above the text field. Each button
represents a tag. The tag is inserted into the text field by clicking on it.
Afterwards, the button is updated with a new tag, which has not yet been
used. If there are no more used tags, then the button is hidden.

The tagging process is invoked as soon as the users have pressed the Tag
me! button. It is assumed that the contents of the text field consists of one
or more tags each separated by a comma. The first task of this process is to
split the contents of the text field into a list of tags, where each comma sepa-
rates a tag. Afterwards, each tag is checked if it is allowed. In the Microsoft
Windows family there are certain names reserved for system usage.22 In
order to ensure compatibility with these os, those keywords are also re-
stricted. Currently, these reserved keywords are com1, com2, com3, com4,

com5, com6, com7, com8, com9, lpt1, lpt2, lpt3, lpt4, lpt5, lpt6,

lpt7, lpt8, lpt9, con, nul, prn. Furthermore, tagstore also prevents
the usage of following characters in a tag. These are “\”, “/”, “?”, “<”,
“>”, “:”, “*”, “|” and “””.

If tagstore detects an invalid tag, the initiated tagging task is stopped and
the users are informed by a toast message of an error. Otherwise after all
tags have been validated successfully, the database is updated with the new

21http://developer.android.com/design/patterns/gestures.html last visited on
10/8/2012

22http://blogs.msdn.com/b/oldnewthing/archive/2003/10/22/55388.aspx last
visited on 4/16/2012

29

http://developer.android.com/design/patterns/gestures.html
http://blogs.msdn.com/b/oldnewthing/archive/2003/10/22/55388.aspx

1 Introduction

Figure 1.7: This screenshot displays the tagging screen of Android tagstore. It is displayed
when tagstore detects a new file in one of the observed folders. In the top of
the figure, the full path of the file is displayed. The users can open the file by
performing a short click on the item. Other operations are performed by doing
a long click – see Section 1.3.2 for more details. There are two tags available for
use, namely cartoon and test. These are inserted into the text field by clicking
on their buttons

30

1 Introduction

1 [s e t t i n g s]
2 conf ig format =1

3

4 [f i l e s]
5 t a g s t o r e%5Cstorage%5Ccartoon . jpg \ tags =” t e s t , cartoon , android ”
6 t a g s t o r e%5Cstorage%5Ccartoon . jpg \ timestamp=2012−04−16 1 3 : 3 9 : 4 6

Listing 1.4: The Android store format is very similar to the desktop tagstore store format.
The Android store is saved in the store.tgs, which is stored in the .tagstore

folder. However, the Android tagstore supports observing multiple folders in
the file systems. Therefore, the Android store format needs to store the relative
file system path from the root of the external storage. In addition, the path
separator needs to be escaped due to requirements of the desktop tagstore.
This Android sample store file contains one file, which is stored in the storage

folder of the Android tagstore. The file cartoon.jpg has been associated with
the tags test, cartoon, and cartoon.

file and tags. Later, a new log file entry is created in the file store.tgs.
Finally, the screen is dismissed and the TagTree is refreshed when there are
no further pending files. Otherwise the tagging screen is reloaded with the
next pending file.

The file format is elaborated in the section 1.1.2. Although the Android
tagstore intends to use the same file format, there is a difference in the log
format. As already stated the Android tagstore allows the users to observe
any folder for file changes. Unfortunately, this feature introduces a problem
when the files and tags of a tagstore are examined. In the desktop version
of tagstore, the files reside inside the storage folder. Therefore, the An-
droid tagstore needs to provide the path to the file in the log file. In Listing
1.4 there is a sample file log entry with file cartoon.jpg. The file was as-
sociated with the tags test, cartoon, and android. In addition, the relative file
system path from the root folder of the external storage is prepended to the
file name. Furthermore, the path separator is being escaped. In the Android
platform the path separator is represented as a forward slash (“/”). Due to
a restriction of the Python run-time, the path separator needs to be a back
slash (“\”). Otherwise the run-time interprets the following character as a
special character, which leads to undefined behaviour.

31

2 Synchronization Systems

In the previous chapter the tagstore research software as well as the An-
droid tagstore were presented. In order to synchronize files between the
Android and desktop tagstore, it requires a synchronization system. In this
chapter established synchronization systems are analyzed. First, character-
istics of synchronization systems are elaborated. Based on these charac-
teristics, existing synchronization systems are grouped. Furthermore, the
weaknesses and strengths of the synchronization systems are examined.

2.1 Characteristics of Synchronization Systems

Synchronization systems can be distinguished by several different factors.
There are four characteristics, which allow to distinguish synchronization
systems (Schütt, 2002, Section 2.1). First of all synchronization systems can
be distinguished by the their method of communication. Furthermore, syn-
chronization systems can be distinguished by the point in time, when syn-
chronization is performed. The next characteristic is the role of repositories.
Finally, synchronization systems can be grouped by their understood file
contents.

Synchronization systems have several options, how information exchange
can be performed. Information exchange can either be sent to all systems
residing in the same network, a group of systems in the same network,
or to one system only. Schütt refers to these communication methods as
Broadcasting, Multicasting, and Unicasting.

Concerning the point in time when synchronization is performed, there are
two types. The types are named online synchronization and offline synchro-
nization. Schütt defines online synchronization as:

32

2 Synchronization Systems

Online synchronization means that changes to a file are instantly
propagated to all repositories. Therefore it is required that a
steady communication channel between repositories consists (Schütt,
2002, Section 2.1.2).

Online synchronization systems need to propagate changes to all repos-
itories. Schütt remarks that this requires on a tight integration with the
underlying operating system core because such modification is only per-
mitted with administrator rights. The integration is required in order to
serialize file changes and to prevent file corruptions. Furthermore, Schütt
mentions that online synchronization systems are typically implemented
as a file system. Hence, access from user point of view is simple. Offline
synchronization systems are not required to have a steady communication
channel. Instead synchronization is triggered by the users or at a scheduled
time. Once the synchronization has been completed, the repositories have
the same contents.

Synchronization systems can be distinguished by the roles of the participat-
ing repositories. In general, there are systems which only support content
changes at one repository. That repository is also named as the Master.
Repositories, which are only allowed to adopt these changes, are named
Slave. However, there are also synchronization systems which are capa-
ble of content changes at any repository. These are called Multi-Master

synchronization systems.

In synchronization systems an event called conflict may occur. A conflict is
an exception during the synchronization process. The exception is caused
by situations, which the synchronization system can not handle. A sam-
ple conflict is the case, when a file is modified in both repositories. Syn-
chronization systems can deal in many different ways with this event. If
the file content is understood, the synchronization system can attempt to
merge the file. If not supported, users need to resolve the conflicts man-
ually. Alternatively users can define a policy, which is applied in conflict
situations. An example policy is to ignore conflicted files, or to overwrite
the file descending from the remote repository. However, such policies are
not recommended as it is prone to errors. Hence, users should decide in
conflict situations.

33

2 Synchronization Systems

2.2 Online Synchronization Systems

Online synchronization systems use a steady network connection to access
files. As already stated online synchronization systems are implemented as
file systems. Online synchronization systems typically use a server system,
which stores the files. The files in the server system construct a reposi-
tory. Clients only embed the files in a virtual repository. As the files are
physically stored at the server system, it does not need file synchronization
(Schütt, 2002, Section 2.2.1). In the this section, network file systems and
distributed file systems are elaborated.

2.2.1 Network File Systems

Network file systems use a server system to provide network access. Such
systems appear like a network hard disk but are accessed in the same man-
ner as local hard disks. Examples for a network file system are the Net-
work File System (nfs) and Server Message Block (smb). The advantages
of network file systems are the simplified access and the elimination of
file conflicts. File conflicts are not possible as there is only a single copy
of a file, which resides at the server. However, some network file systems
are implemented in star network topology. This requires all file accesses to
be centralized on the server. Therefore, the server becomes a Single Point
of Failure (spof). In the event of a server downtime the repository cannot
be accessed. Furthermore, such systems do not scale (Schütt, 2002, Sec-
tion 2.2.1).

2.2.2 Distributed File Systems

Distributed file systems (dfs) are network file systems of a new generation.
Levy and Silberschatz (1990) define a distributed file system as:

A DFS is a file system, whose clients, servers, and storage de-
vices are dispersed among the machines of a distributed system.

34

2 Synchronization Systems

In a convential network file system, there is one server and many clients.
However, in a dfs, data can be stored on several servers. This technique
is also referred to as replication. Replication can enhance performance and
reliability (Bzoch and Safarik, 2011). Another technology of dfs is the so
called transparency. Clients should access files on a dfs in the same way as
local files. Furthermore, clients should be unaware that the accessed files
are distributed. Another aspect of dfs is the scalability. In a dfs additional
servers can be added at any time, which increases the storage capabili-
ties.

Examples of distributed file systems are the Hadoop Distributed File Sys-
tem (hdfs), Google File System (gfs), Moosefs, Andrew File System (afs),
Coda file system, and Lustre file system. A performance study of hdfs,
Moosefs, and Lustre has been conducted by Bai and H. Wu. Andrea Arpaci-
Dusseau (2012) analyzed the afs. The successor of afs is the Coda file sys-
tem. It is presented by Satyanarayanan et al. (1990).

The hdfs is part of Apache Hadoop, which is an open-source framework
for reliable, scalable, distributed computing.23 The Apache Hadoop project
also contains MapReduce, which is a framework for processing large data
sets in-parallel on large clusters in reliable, fault-tolerant manner.24

Microsoft provides a technology to arrange several smb shares into one dis-
tributed file system. The technology named Distributed File System (dfs)
lets files, which are distributed across multiple servers, appear to the users
as if they reside in one place on the network. In addition, the File Replica-
tion Service (frs) provides replication for files between servers (Microsoft
Technet, 2005). Replication has also been brought to the nfs in version
4.25

23http://hadoop.apache.org/ last visited on 9/29/2012

24http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html last visited on
9/29/2012

25Shepler et al., 2003

35

http://hadoop.apache.org/
http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html

2 Synchronization Systems

2.3 Offline Synchronization Systems

Offline synchronization systems are used in scenarios where a steady net-
work connection is not feasible due to insufficient network reliability or
network infrastructure. In addition, costs accumulated by steady network
operation can require an offline synchronization system.

In this chapter a few offline synchronization systems are investigated. The
first system explained is Rsync, which was developed by Andrew Tridgell
and Paul Mackerras (Wikipedia, 2012a). Afterwards the Unison File Syn-
chronizer, which is built upon Rsync, is analyzed.

2.3.1 Rsync

One of the first popular systems is Rsync. Based on the characteristics in
Section 2.1, Rsync is a Master-Slave synchronization system. As a result
Rsync does not synchronize repositories but duplicates the state of a source
repository to a target repository. In general, this technique is also called
mirroring.

Rsync is a system which supports mirroring of files and nested folders.
Mirroring of local data as well as remote data is supported. In addition,
Rsync can act as a Linux daemon. RSync uses an efficient algorithm to
minimize data transfer. Rsync aims to minimize data transfer by imple-
menting a delta-encoding algorithm. Delta-encoding algorithms are used
to find the minimum difference between two files.

The Rsync algorithm is performed in five steps (A. Tridgell, 1999). There
are two computer systems, named A and B, which are linked by a slow
communication link. System A constructs list of files and directories, con-
taining file names, ownership, permissions, size, and modification time.
This list is then transmitted to system B, which sorts the list lexicographi-
cally by the paths. Afterwards, each file is inspected if it is candidate for an
update. In general, files are excluded, when modification time and size are
equal. However, Rsync can be configured to calculate a check sum for each
file. This check sum is then used as a comparison for the equality of files
instead of modification time and size. In principle this approach provides

36

2 Synchronization Systems

a more robust method for checking equality of files. Unfortunately, it slows
down the mirroring process. Finally once a file in system B has been found,
which differs from system A, the following steps are applied:

1. The system B divides the file into non-overlapping fixed size blocks
of size k. The last block can be shorter. The size k is calculated for each
file individually.

2. The system B generates two check-sums for each block. A weak check-
sum called rolling check-sum and a stronger check-sum. Since pro-
tocol version 30 (release 3.0.0), the hash sum algorithm md5 has re-
placed the older and broken md4.

3. The system B transmits the calculated check-sums to system A.
4. System A also divides the file into non overlapping fixed size blocks.

However, it also computes the rolling check-sum at each byte offset.
When the rolling check-sum is matched to a block received from sys-
tem B, the stronger check-sum is used to determine if the blocks are
equal.

5. System A sends a list of instructions how to reconstruct the file to
system B. The instructions can include references to received blocks
or new data blocks. New data blocks are only sent when the check-
sum of this block is not found.26

a(k, l) = (
l

∑
i=k

Xi) mod M (2.1)

b(k, l) = (
l

∑
i=k

(l − i + 1)Xi) mod M (2.2)

s(k, l) = a(k, l) + b(k, l) ∗ 216 (2.3)

The rolling checksum is computed by using the result of the first two for-
mulas. Formula 2.1 calculates the sum of the byte values of the current
block modulo M, which is defined as 216. Formula 2.2 calculates the sum
of the products of the byte values with the offset l − i + 1 of the current

26Andrew Tridgell, 2012

37

2 Synchronization Systems

block modulo M. Formula 2.3 defines the rolling check sum using the re-
sults of the previous formulas.

The Rsync algorithm uses rolling check-sum to find similar blocks. As al-
ready stated the rolling check-sum is computed for each byte offset. In
order to save processing power, a property of the rolling check-sum is ex-
ploited. The rolling check-sum allows to re-use the previously computed
check-sum at offset i to compute the new check-sum at offset i + 1.

Although Rsync can save unnecessary data transfer, there are cases where
the transfer of the complete file is more efficient. The first case appears
when the target file differs a lot from the source file. In this case Rsync
will not find many matching blocks. Furthermore, the efficiency of Rsync
algorithm depends on a carefully chosen block size. On one hand reducing
the block size increases the data transfer, while the files are analyzed. On
the other hand large block sizes reduces data transfer but also increases the
chances of not finding a matching block. The performance gain of Rsync
compared to full transferred files also depends on the available network
bandwidth. As RSync is designed for low speed and high latency networks,
the performance gain is reduced when faster networks are used. A study
has shown that the deployment of Rsync becomes a disadvantage in com-
parison to full transferred files when the network operates at 100 MBits
speed (Schütt, 2002, Section 3.2).

2.3.2 Unison File Synchronizer

Unison is an offline synchronization system. The software is supported on
many popular operating systems such as Linux, Mac OS X, Solaris, and
Microsoft Windows. Unison is written in the OCaml programming lan-
guage, which extends the Caml language with object oriented capabilities.
Unison uses the RSync algorithm for efficient file transfer. However, Uni-
son operates differently than RSync. RSync is used to mirror a repository,
whereas Unison is able to detect file conflicts and let users handle them.
A conflict happens when a file is modified in both repositories at the same
time. RSync lets the users correct conflicts by choosing the appropriate

38

2 Synchronization Systems

Figure 2.1: This figure shows the output of Unison file synchronizer during a synchroniza-
tion of two local folders

modified file. Furthermore, Unison performs a two way synchronization.
Updates are propagated in both repositories instead of only one.

Unison collects the meta data of files and stores them in an internal Unison
file archive format. The file format stores the file name, file path and last
modification time. The archive is kept in the .unison folder, which is a sub
folder of an user’s home directory. The file’s meta-data is created on the
first run of Unison. After each subsequent run any changed meta-data is
updated as well as the meta-data of new files is appended.

2.3.3 Syxaw File Synchronization Middleware

Syxaw is a file synchronization middleware, which was developed in the
Fuego Core series at the Helsinki Institute for Information Technology
(hiit).27 The Syxaw’s name derrives from Synchronizer with xml-awareness.

27Lindholm, Kangasharju, and Tarkoma, 2009

39

2 Synchronization Systems

Syxaw is designed for resource limited devices such as mobile phones and
personal digital assistents.

Syxaw supports a delta-encoding algorithm to minimize bandwidth during
updates. Alike as Rsync, it can compress data to reduce bandwidth usage.
In addition, Syxaw supports separate synchronization of metadata.

Syxaw performs synchronization of repositories by implementing a syn-
chronization server. The synchronization server accepts incoming connec-
tions which use the Syxaw client protocol. This protocol uses the http as
the transport protocol and uses the standard get and put http operations
for file transfer.

Syxaw implements an xml reconciler. The reconciler uses the algorithm
described in (Lindholm, 2004). Syxaw is integrated in Dessy, which is a
desktop search and synchronization framework (Lagerspetz, Tarkoma, and
Lindholm, 2010).

2.4 Cloud-based Synchronization Systems

Cloud-based synchronization system are cloud storage systems. Cloud stor-
age is an application of the cloud computing model. The National Institute
of Standards and Technology (nist) defines cloud computing as:

Cloud computing is a model for enabling ubiquitous, conve-
nient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, ap-
plications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction.28

Cloud storage is a system of distributed data centers, which utilize cloud
computing technologies like virtualization and offer an interface for storing

28http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf last vis-
ited on 6/8/2012

40

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

2 Synchronization Systems

large sets of data.29 This model is also referred to as Storage as a Service
(saas). Cloud storage uses the iaas service model of the cloud computing
model to achieve the storage model. Furthermore, cloud storage systems
may also use distributed file systems for their storage infrastructure. An
example is Amazon. Amazon uses the Apache Hadoop framework in the
Amazon Elastic Compute Cloud (ec2) and Amazon Simple Storage Service
(s3).

Cloud storage systems use a cloud master-replica synchronization approach
(Uppoor, Flouris, and Bilas, 2010). These systems provide a master replica.
The master replica is stored as a central copy in the cloud storage system.
The users synchronize their replica with the master replica. In addition,
users can also transfer changes to the master replica.

This section is divided into five sub-sections. The first sub-section elabo-
rates the benefits of cloud storage systems. In the following sub-section,
the usage patterns of cloud storage systems are described. In the third
sub-section the security and privacy aspects of cloud storage systems are
inspected. In the fourth sub-section the cloud storage access methods are
explained. Finally, a selection of cloud storage providers is presented.

2.4.1 Cloud Storage System Benefits

The advantage of cloud storage systems is the accessibility of data at any-
time and anywhere. There are five key benefits of cloud storage systems
(J. Wu et al., 2010). These are ease of management, cost effectiveness, lower
impact outages and upgrades, disaster preparedness, and simplified plan-
ning.

The first benefit is the ease of management. Software, data, and hardware
are maintained in a simpler method in a cloud storage model than in a
conventional it infrastructure because this task is left to the providers of the
cloud storage. In addition, network administration tasks such as enlarging
storage space, can be performed with a web browser by using the cloud
storage web administration interface.

29http://www.sit.fraunhofer.de/content/dam/sit/en/studies/

Cloud-Storage-Security_a4.pdf last visited on 6/12/2012

41

http://www.sit.fraunhofer.de/content/dam/sit/en/studies/Cloud-Storage-Security_a4.pdf
http://www.sit.fraunhofer.de/content/dam/sit/en/studies/Cloud-Storage-Security_a4.pdf

2 Synchronization Systems

The next benefit listed is the cost effectiveness. Since cloud storage enables
the elimination of expensive systems and the necessary people involved to
maintain it, it helps to reduce costs. These savings often exceed the cloud
storage fees. In addition the high availability provided by cloud storage
systems is unmatched. Furthermore the economies of scale achieved by
cloud storage systems are only matched by very large organizations.

Data redundancy is another advantage of cloud storage systems. In general
cloud storage providers achieve a high level of redundancy. As a result
cloud storage systems provide a high availability, which eliminates service
interruptions during network maintenance measures.

The next advantage displays during the occurrence of a disaster. Cloud
storage systems need to have highly developed data redundancy policies
and data recovery processes as their business model relies on availability
and accessibility of the stored data. Therefore, these systems are highly
trained for such an event.

The last benefit is titled simplified planning. Since cloud storage systems
provide the feature of easy and instant capacity upgrades, it relieves plan-
ning for it managers. The managers are no longer required to provide
a detailed capacity plan. However, additional capacities can be acquired
instantly and be released at any given time. This eliminates unnecessary
acquisition costs or operational costs.30

2.4.2 Cloud Storage Usage Pattern

Nowadays the usage of cloud storage systems is not reserved for compa-
nies for storing mission critical data. Instead it is also used by individuals
for a lot of different purposes. In a study four individual use cases were
described for choosing a cloud storage system. The use cases are named
backup, restore, synchronize, and share (Borgmann et al., 2012, Section 2.1).

The backup use case performs a duplication of local data in the cloud sys-
tem. The reason is to have another backup of the data, which is important

30http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5565955&tag=1 last
visited on 6/12/2012

42

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5565955&tag=1

2 Synchronization Systems

in the event of a hardware failure. In addition, the chance of theft or van-
dalism affecting the hardware is a good reason for using cloud storage
systems.

The next use case is restore. As already stated cloud storage systems achieve
a higher accessibility than conventional backup solutions. Moreover, cloud
storage providers also provide the option to backup a file multiple times
to increase durability. However, this durability improvement is typically
connected with expenses. In addition, each changed file of users in the
cloud storage system is also archived. Therefore, it is possible to restore
user files to a previous version. This feature is efficient in fighting data
corruption or other events which require a previous version of a file.

The synchronization use case gets important when multiple devices are used
to access data. Users want to access the most recent version of a file regard-
less of the device involved, which can be a desktop, laptop, tablet, or a
smart phone. In order to synchronize their files, users need to use a pro-
prietary software of the cloud manufacturer. Typically, the software auto-
matically detects changes and performs the appropriate changes. On the
one hand if a local file is out of date, the software updates it to the latest
version, on the other hand if the local file is newer than the latest version,
the file in the cloud storage system is updated. However, it is possible that
a file is edited by multiple persons at the same time. In that event the cloud
storage software must notify the users of a possible conflict.

The last use case is share. This use case is important when a file needs to be
shared with a group of people. Cloud storage providers need to provide
facilities which comply with the share intent. Furthermore, the cloud man-
ufacturers need to provide a mechanism to remove access from selected
persons or everybody.

2.4.3 Cloud Storage Security Requirements

The security of cloud storage is a highly discussed matter as cloud storage
systems are gaining increased popularity. There are five security require-
ments (Borgmann et al., 2012, Section 4).

43

2 Synchronization Systems

The first requirement called registration appears during the sign-up of a
new user. Users are required to provide an email address when registering.
If the email is not verified by the cloud provider, it is possible to launch
an incrimination attack. The attacker A registers as a new user with the
email address of user B. Next the attacker attaches illegal content on cloud
storage account of user B and in turn notifies the authorities (Borgmann
et al., 2012, Section 4.1).

The next requirement is the transport security. When files are transmitted
to or received from the cloud storage service provider, it is necessary to
apply encryption to prevent eavesdropping attacks. The current industry
standard for transport encryption is ssl/tls (Borgmann et al., 2012, Sec-
tion 4.2).

The requirement labeled encryption has another security impact. Files saved
in the cloud storage need to be encrypted. The prime reason is to prevent
the cloud storage provider staff to access the files. In addition, the legal
situation must be considered. Cloud storage providers based in the United
States need to comply with the USA Patriot Act Justice, 2001. This act was
signed into law in 2001 by the former president George W. Bush after the
terror attacks of September 11th. The act allows authorities to gain access
to data, even if the data is physically stored in a data center outside United
States territory (Borgmann et al., 2012, Section 4.3).

The fourth requirement is named sharing. Files which are shared among
a group of users can be accessed by the proprietary software or a web
interface. In the latter case the generated url by the cloud storage provider
needs to be obfuscated when no login credentials are required. Otherwise
attackers are able to guess the url, which grants them access. Thus the url

needs not to include information about the users, files, or folder structures.
In addition, the cloud storage provider needs to make sure that search
engines do not index user files (Borgmann et al., 2012, Section 4.4).

The last requirement is called deduplication. Cloud storage providers are re-
quired to store millions of user files. Many of these files are just a duplicate
of another, for example audio, image, or video. Thus it makes sense to only
save one example of these duplicated files. The software of cloud storage
providers therefore checks if a certain file is already existing in the storage

44

2 Synchronization Systems

cloud. If the file is already present, then the file is not uploaded. As a re-
sult bandwidth and storage are saved. However, this approach yields to a
problem. An attacker can create an account and place the file into a folder,
which is monitored by cloud storage software. If the file is not uploaded,
then the attacker knows that this file is already present in the cloud. Al-
though the attacker does not know which user has uploaded the file, the
attacker knows that at least one user has uploaded the file (Borgmann et
al., 2012, Section 4.5).

2.4.4 Cloud Storage Interfaces

Cloud storage providers need to provide a set of interfaces to let the users
access their data. Typically, cloud storage providers manufacture a propri-
etary software for the users. Ideally, the software supports all the use cases,
which have been elaborated in Section 2.4.2. In addition, cloud storage
providers may also grant access to the files by providing a web interface.
This access method is popular when the client software is not supported
on the user’s platform. In addition, security restriction policies may also
prevent the usage of the software client.

Cloud storage providers may also present an api to give third party devel-
opers a method to use their services in their products. The advantage is
the creation of a biotope of new services around the cloud storage service.
A successful example is the cloud storage provider Dropbox. Many addi-
tional services have been developed for Dropbox.31 In general cloud storage
providers expose access by using web services, which use the http as the
transfer protocol. The data can be encoded by using the Simple Object Ac-
cess Protocol (soap)32 or by using the REpresentational State Transfer (rest)
protocol which utilizes restful web services (Fielding, 2000). Nowadays the
rest protocol has become more popular than soap.33 The first reason is that
restful services are easier to develop. In addition, the web service does not

31http://thenextweb.com/apps/2011/04/15/the-top-10-best-dropbox-services-addons-and-hacks/

last visited on 6/14/2012

32http://www.w3.org/TR/2003/REC-soap12-part1-20030624/ last visited on
6/14/2012

33http://www.oreillynet.com/pub/wlg/3005 last visited on 6/14/2012

45

http://thenextweb.com/apps/2011/04/15/the-top-10-best-dropbox-services-addons-and-hacks/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.oreillynet.com/pub/wlg/3005

2 Synchronization Systems

need to maintain the session state for each connected user as all informa-
tion is passed in the requests. As a result, multiple servers can be used to
handle user requests as each request contains the full session state. Further-
more, it eliminates the requirement of a proprietary client software as any
arbitrary web browser can be used to access the web service (Rittinghouse,
2009, Section 7.5.4).

2.4.5 Cloud Storage Providers

In this section a selection of commercial cloud storage providers is pre-
sented. The providers are evaluated in regards to online storage capabili-
ties, platform availability, and platform restrictions. In addition the avail-
able cloud storage interfaces of each provider are examined.

Dropbox

Dropbox is a cloud storage provider, which was founded in 2007 by Drew
Houston and Arash Ferdowsi. It offers three types of storage models. The
basic model includes 2GB of free storage and a maximum of 16GB exten-
sion for referred clients. The pro model offers 100GB, 200GB, or 500GB at a
monthly / yearly fee. Finally the model labeled Teams is intended for com-
panies. It offers 1TB storage with 5 included user accounts and is priced
per year. Additional users can be added with an extra charge. Further-
more, Dropbox offers phone support and Active Directory integration for
Microsoft Windows Servers.

Dropbox supports file versioning. In the basic model file changes such as
modification and deletions are saved for thirty days. Afterwards a file
cannot be recovered. However, Dropbox provides unlimited file history
for Dropbox pro model customers as well as Dropbox team model cus-
tomers.

In October 2011 Dropbox reached the 50 million user mark. The client soft-
ware of Dropbox is developed for many platforms, such as Microsoft Win-
dows, Mac OS X, Linux, Android, iOS and BlackBerry OS. Figure 2.4.5
shows the Android client. Users can also manage their account by using a

46

2 Synchronization Systems

web browser. The Dropbox client and server back-end are written in Python
programming language except for the iOS and Android platform due to
memory constraints.

Dropbox uses the Amazon Simple Storage Service (s3) for hosting of the
user files. In addition, it uses Amazon’s Elastic Cloud Compute (ec2) when
transferring files to the cloud (Wang et al., 2012). As Amazon is a host
based in the United States, the USA Patriot Act can be used to give author-
ities access to user files. However, Dropbox recently signed the Safe-Harbor
agreement.34 The agreement requires the signer to follow seven principles
and must be renewed every twelve months. The compliance with these
principles is overseen by the Federal Trade Commission (ftc). In March
2011 the ftc demonstrated by charging Google Inc. that the compliance of
the agreement is important.35

Dropbox uses the deduplication technology to save storage and bandwidth.
Dropbox uses the sha-256 hash algorithm to identify duplicate files. In ad-
dition the hash algorithm is used to detect file changes. The client software
then uploads the new file to the cloud storage service automatically. How-
ever, it is inefficient to upload the whole new file when only a few parts
have been changed. The Dropbox client overcomes this problem by creat-
ing multiple hash sums of a file. Each analyzed file is split into chunks of
4096 KB.36 Next, the hash sums of the chunks are calculated and compared
with the last hash sum. Finally, only altered chunks are uploaded. Cur-
rently Dropbox is the only provider, which is capable of uploading partial
changed files (Axel Kossel, 2012).

As Dropbox is becoming a big player in the cloud storage, it has received
attention of security researchers, which revealed several security flaws.37

A flaw which was caused by a faulty deduplication scheme was revealed
in April 2011. The open source developer Wladimir van der Laan released
Dropship, which enabled Dropbox users to remotely copy other users files

34https://www.dropbox.com/help/238 last visited on 6/15/2012

35http://www.ftc.gov/opa/2011/03/google.shtm last visited on 6/15/2012

36http://blog.fosketts.net/2011/07/11/dropbox-data-format-deduplication/

last visited on 6/18/2012

37http://dereknewton.com/2011/04/dropbox-authentication-static-host-ids/

last visited on 6/18/2012

47

https://www.dropbox.com/help/238
http://www.ftc.gov/opa/2011/03/google.shtm
http://blog.fosketts.net/2011/07/11/dropbox-data-format-deduplication/
http://dereknewton.com/2011/04/dropbox-authentication-static-host-ids/

2 Synchronization Systems

Figure 2.2: This screenshot shows the proprietary Dropbox client running on the Android
platform. It displays six folders and one pdf file. The folder Anderwald DA is a
shared folder. Dropbox signals this with a pictogram.

48

2 Synchronization Systems

provided that hash sum is known. The file automatically appeared in the
Dropbox folder after Dropship made the Dropbox’s server believe a user
wanted to upload this file. The tool was recognized by Dropbox as an op-
portunity to distribute copyrighted material. As a result, Dropbox changed
the deduplication scheme making Dropship obsolete. Dropbox now uses
single user deduplication (Borgmann et al., 2012, Section 8.4). However,
Dropbox has an open flaw regarding the security requirement during reg-
istration. Since email addresses are not verified during registration, an at-
tacker can launch an incrimination attack.38

Dropbox allows third party developers to integrate Dropbox into their
products. Dropbox provides an official sdk for multiple platforms (iOS, OS
X, Android) and programming languages (Python, Ruby, Java). For other
platforms, developers can directly use the underlying rest api. However,
Dropbox generates an unique key and secret for each application. That
key and secret are used during authentication. A key and secret can be
obtained by registering the application at the Dropbox developer site39.
Dropbox uses the oauth protocol for authentication and authorization. In
addition, Dropbox provides the opportunity to revoke oauth access to-
kens by using the web interface. This feature is important in the case a
smart phone gets lost or stolen. Furthermore, Dropbox provides two differ-
ent modes for third party applications. In the first mode named App folder
applications only have read-write access to a specific folder and related
sub-folders residing in the Apps folder. In this connection the Dropbox syn-
chronization back-end uses the folder tagstore. In the other mode called
Full Dropbox applications have full access to all folders residing in Drop-
box. As this method enlarges the security risks by malicious applications,
Dropbox grants only full access in exceptional cases during approval phase
for a wide release.

SkyDrive

SkyDrive is a cloud storage service run by Microsoft. In contrary to Drop-
box which uses the Amazon S3 as a storage back-end, SkyDrive is entirely

38See Section 2.4.3
39https://www.dropbox.com/developers/apps last visited on 9/29/2012

49

https://www.dropbox.com/developers/apps

2 Synchronization Systems

Figure 2.3: Screenshot of SkyDrive client running on the Android platform.

operated by Microsoft. It provides 7GB of free storage and 25GB for long-
term users. In addition, it provides 20GB, 50GB, and 100GB storage up-
grades for business clients. SkyDrive is available for Microsoft Windows
and Mac OS X. In addition, Microsoft released a client for Windows Phone,
Android and iOS. Figure 2.4.5 shows the Android SkyDrive client. Further-
more, Microsoft also provides a sdk for developers. In opposition to Drop-
box, SkyDrive does not oppose any security restrictions for third party ap-
plications. As soon as user has been logged in, every application has access
to all files and folders. SkyDrive uses the oauth protocol like Dropbox.

SkyDrive is part of Windows Live, which is a family of combined services.
It provides online services as well as software applications. A remarkable
feature of SkyDrive is the ability of editing documents in a web browser.
SkyDrive supports Word, Excel, PowerPoint, and OneNote document for-
mats. Moreover, file versioning is supported for these document formats.
Unfortunately, file versioning is not supported for other file types. Further-
more, SkyDrive supports audio and video streaming. However, it requires
the Silverlight plugin on the Microsoft Windows platform.

As already stated Microsoft Windows has a few restrictions regarding the
file names. These restrictions are also applied to SkyDrive. No files contain-
ing reserved characters or reserved names can be uploaded to SkyDrive or
be created by utilizing the web interface.

50

2 Synchronization Systems

Google Drive

Google Drive is a new storage service run by Google. The service was
launched on April 24 2012. Google uses their distributed data center in-
frastructure as a storage back-end. In addition, Google uses the distributed
file system Google File System (gfs). The file system is elaborated by Ghe-
mawat, Gobioff, and Leung.

In general the service provides 5GB of free storage. For users who require
a lot of storage, there are storage extension available starting from 25GB
up to 16TB at a monthly fee.40 Google Drive also supports the editing doc-
uments in a web browser. Besides the Microsoft office document formats,
it also supports viewing Adobe Portable Document (pdf), Scalable Vector
Graphics (svg), archive formats (zip, rar), and more.41

Google Drive is available for multiple platforms. At time of writing the
platforms Microsoft Windows, Mac OS X, iOS, and Android are supported.
Figure 2.4.5 shows a screen shot of the Android client.

Google Drive does not oppose any file name restrictions. Furthermore all
characters are supported. However, this brings up problems in Microsoft
Windows as there are reserved file names and characters as already stated
in Section 1.3.4. In order to deal with this limitation, the Microsoft Windows
Google Drive client converts reserved characters to underscores.

40http://support.google.com/picasa/bin/answer.py?hl=en&answer=39567 last
visited on 6/19/2012

41http://support.google.com/docs/bin/answer.py?hl=en&answer=1738646 last
visited on 6/18/2012

51

http://support.google.com/picasa/bin/answer.py?hl=en&answer=39567
http://support.google.com/docs/bin/answer.py?hl=en&answer=1738646

2 Synchronization Systems

Figure 2.4: Google Drive client running on the Android platform.

52

3 tagstore Synchronization

In the last chapter file synchronization systems were represented. In or-
der to synchronize files and associated tags, it requires a decent algorithm.
The algorithm must also fit the requirements of tagstore. Furthermore, the
special needs of the Android platform extends the requirements. In this
chapter, the characteristics and needs of the platform are investigated. Af-
terwards, the requirements of a synchronization algorithm are analyzed. In
addition, the synchronization algorithm is inspected concerning the border
cases. Finally, the synchronization algorithm is presented in detail.

3.1 Synchronization Platforms

The synchronization algorithm must take the platform requirements of the
Android and desktop tagstore into account. Table 3.1 presents a list of fac-
tors, which describe the properties of these platforms.

Property Android Desktop
Storage capability 32GB SDHC / 2TB SDXC several TBs

Network connection slow, variable bandwidth fast
frequent disconnects steady connection

Usage behavior read / inspect files read / modify files
Platform Android(Linux based) Linux, Windows, Mac OS X

Table 3.1: The table lists the most important factors, which influence the design of the
synchronization algorithm.

In contrast to the personal computing platform the Android platform’s
storage is very limited. Android devices provide storage extension with

53

3 tagstore Synchronization

memory cards of type sdhc or sdxc cards. Currently the maximum stor-
age size is 128 GByte.42 Furthermore, the network connection is not as
reliable as the personal computing platform, which mostly connects on
broadband Internet connection. In addition, the usage behavior also differs
between these platforms. Editing documents is an expensive task due to
the small screen size and keyboard. As a result, it is assumed that smart
phone users generally only view documents. However, as the trend goes to
larger screens, the possibility is kept as a requirement for the future.43

3.2 Synchronization Requirements

In Section 3.1 the special characteristics of the platforms have been pre-
sented. Based on these characteristics requirements have been derived. In
general there are requirements for the synchronization algorithm as well as
the underlying communication channel. Furthermore, the tagstore software
also incorporates additional needs for the synchronization system.

3.2.1 Synchronization Algorithm Requirements

In order to design a decent synchronization algorithm, the functional re-
quirements must be considered. The following list presents a selection of
requirements, which should be supported by the synchronization algo-
rithm.

• The synchronization algorithm should be designed to enable a quick
synchronization of user files. The resulting synchronization tool should
operate seamlessly and require as less user input as possible.
• The synchronization algorithm should perform a two way synchro-

nization. Changes should be propagated in both repositories.

42http://hothardware.com/News/SanDisk-Introduces-Worlds-Largest-SDXC-Memory-Cards/

last visited on 7/9/2012

43http://www.strategyanalytics.com/default.aspx?mod=

reportabstractviewer&a0=7194 last visited on 7/9/2012

54

http://hothardware.com/News/SanDisk-Introduces-Worlds-Largest-SDXC-Memory-Cards/
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=7194
http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=7194

3 tagstore Synchronization

• The synchronization algorithm should be able to detect conflicts. Con-
flicted files should not be modified or deleted, until the users have
made the appropriate decision.
• The synchronization algorithm needs to provide a mechanism to ig-

nore files. These files are not included during the synchronization. An
example deployment is revealed when android and desktop tagstore
are synchronized. The desktop tagstore contains files, which consume
too much space or are not needed for the Android tagstore.
• The synchronization algorithm should be able to detect new used

tags. These tags should then be automatically assigned during the
synchronization.
• The synchronization algorithm should detect deleted files. Since disk

space is limited for Android devices, deleted files should not be re-
stored after the synchronization has been completed.

3.2.2 Communication Channel Requirements

The communication channel is responsible for transferring files. Therefore,
it is important to have a reliable communication channel. The following list
shows the most important requirements of a communication channel.

• The communication channel must establish a communication link
within a short period of time. If it fails to establish a link, it can retry
immediately.
• The communication channel can be established at any given time and

remains active until the synchronization has been completed or the
synchronization process is abandoned.
• The communication channel must detect incomplete or corrupted

transfers. Furthermore, it must ensure the integrity of the transferred
files.
• The communication channel must ensure security. All data transfers

need to be performed securely. If the communication channel is es-
tablished outside a lan, then the data must be protected by applying
transport encryption.

55

3 tagstore Synchronization

3.2.3 tagstore Synchronization Requirements

The tagstore system is a software, which brings up specialized require-
ments for a synchronization system. The synchronization system needs
to adopt to these requirements. The following list presents these require-
ments.

• The synchronization system should be able to synchronize two tag-
stores. The synchronization system should update files during this
process. Furthermore, it should also add new tags to the correspond-
ing TagTrees automatically without any user interaction.
• The synchronization system needs to support Android and desktop

tagstores. Android tagstores need special treatment as they are stored
on mobile phones, which are not always connected to a pc. Since the
desktop tagstore system interprets inaccessible tagstores as a serious
error condition, Android tagstores need to be handled specially.
• The synchronization system must provide a gui. The gui lets the users

select the tagstores from a list.
• The synchronization system should be able to synchronize any arbi-

trary pair of tagstores. It should not make a difference if both tag-
stores have already been synchronized. Furthermore, all types of tag-
store should be sync-able such as Android or desktop tagstore.
• The synchronization system needs a mechanism to signal an in-progress

synchronization. This mechanism is needed to detain tagstore from
interfering with the synchronization system.
• The synchronization system should provide two different synchro-

nization modes. These modes are called full-sync and tag-sync. In
the first mode all files are synchronized. In the other mode only files
are synced, which are tagged with a special tag. That tag must be
adjustable and changeable at any time. However, changes to this tag
during a synchronization process must not have an effect.
• The synchronization system must preserve the file attributes such as

creation date, modification date, and access date when a file is being
synchronized. The file attributes are necessary for conflict detection.

56

3 tagstore Synchronization

3.3 Synchronization Algorithm Conflicts

File synchronization algorithms need to be carefully designed to match
the requirements raised by their environment. In Section 3.2 these require-
ments have been elaborated. However, it needs a detailed inspection on the
border cases. As already stated a synchronization system has to recognize
and deal with exceptional cases, which are also known as conflicts. These
conflicts have a big influence on the design of synchronization algorithms.
In this section a list of conflicts is described.

3.3.1 File Conflict Classes

The first file conflict class is referred to as the create conflict. Such a conflict
happens when a file is being added to both repositories before a synchro-
nization is performed. The synchronization system has no way of knowing
which file should have preference.

A very common conflict case is the write conflict. This conflict case ap-
pears when a file is modified in both repositories upon synchronization. In
general, synchronization systems need to understand the file contents to
resolve this conflict.

The next conflict case is the delete conflict. When a file is deleted in one
repository, the synchronization system has three options. The first option
is to restore the deleted file. The next opportunity is to delete the file also
in the other repository as well. The latter option is to ignore the deleted file
and do nothing.

The rename conflict is a special case for synchronization systems. As the
name implies a file is renamed. This brings up problems as the synchro-
nization system detects a deleted file as well as a new file. Synchronization
systems are dealing differently with this conflict. Ideally, synchronization
systems can detect such events and handle them appropriately. One possi-
ble solution is to cache the meta-data of files and compare them with new
files. Alternatively the synchronization system can compute the hash sums
of the files. However, both approaches are not error resistant. As a result,
many synchronization systems do not handle the rename conflict.

57

3 tagstore Synchronization

The delete-write conflict is an extension of the delete conflict. It appears
when a file is deleted in one repository and modified in the other reposi-
tory. Synchronization systems have the same options as in the delete con-
flict.

3.3.2 Meta-data Conflict Classes

The meta-data of the files need to be preserved during synchronization.
Meta-data consist of file modification date, file access date, file creation
date and the tags. Regarding the file date a synchronization system has two
choices during the update of a file. The synchronization system can either
use the time stamp of the replacement file, or it uses the time stamp of the
synchronization initiation. However, tags construct new conflict classes.

The associated tags in the tagstore deliver a different set of conflicts. The
conflicts resemble file conflict classes elaborated in the previous section.
However, their cause is different. Typically, a file is associated with one or
more tags. The first conflict arises when a tag is removed in one repository
upon synchronization. The synchronization system may now either restore
the tag or remove the tag in the other repository. This conflict is referred to
as the delete-tag conflict.

As already stated a rename conflict is a special conflict for a synchroniza-
tion system. Likewise, a rename-tag conflict needs to be handled carefully.
The synchronization system can either re-assign the removed tag or ignore
the removed tag. In general, users do not expect the renamed tag to be
restored.

Tags are associated with a file. If all tags of a file are detected to have
changed during the synchronization, the file content has changed. The syn-
chronization system recognizes this situation as a semantic-tag conflict. In
such case the users need to decide which file and tags should be kept.

58

3 tagstore Synchronization

3.4 tagstore Synchronization Algorithm

Synchronization of the Android and desktop tagstores is a challenging task
due to platform differences and requirements. In this section the devel-
oped synchronization algorithm is explained. The synchronization operat-
ing modes, platforms, and back-ends are elaborated. Finally, the limitations
of the synchronization algorithm are highlighted.

3.4.1 Synchronization Algorithm

The synchronization algorithm synchronizes two tagstores including their
files and associated tags. The file list of the tagstores is retrieved by access-
ing store.tgs in the folder .tagstore. Depending on the operating mode,
all files or a selection of these files are used during synchronization. The
differences and consequences are highlighted in Section 3.4.3.

The synchronization algorithm performs a two-way synchronization. This
means all changes of both tagstores are propagated to the other tagstore.
The synchronization algorithm performs the following steps:

1. The synchronization system collects a list la of files from tagstore A
depending on the operating mode.

2. The synchronization system tries to synchronize the file fn of tagstore
A with the other tagstore B.

3. The synchronization algorithm notes any conflicts appeared during
the synchronization of file f and continues to synchronize the next
file fn+1.

4. After all files have been processed of tagstore A, the files of tagstore
B are collected in list lb and steps 2-4 are repeated.

5. After all files have been processed, conflict processing is triggered. If
there are no conflicts then the synchronization is complete. Else-wise
the synchronization system prompts the users to resolve the conflicts
manually.

In Listing 3.1 the detailed synchronization algorithm is displayed. The syn-
chronization algorithm is performed on a list of files, which is derived from

59

3 tagstore Synchronization

1 f o r each f i l e fi in l i s t l of tsource
2

3 i f ∃ttarget(fi) then
4 i f tsource(fi) ≡ ttarget(fi) then
5 sync new tags
6 e l s e i f 6 ∃syncdate(tsource(fi)) then
7 con f lict(fi)
8 e l s e i f not modified(tsource(fi)) then
9 sync new tags

10 e l s e i f not modified(ttarget(fi)) then
11 sync f i l e and new tags
12 e l s e i f tags(tsource(fi)) ≡ tags(ttarget(fi)) then
13 con f lict(fi)
14 e l s e
15 con f lict(fi)
16

17 e l s e
18 i f ∃syncdate(ttarget(fi)) then
19 i f m o d i f i e d a f t e r s y n c (tsource(f i))
20 con f lict(fi)
21 e l s e
22 skip f i l e
23 e l s e i f 6 ∃sync f older(ttarget(fi)) then
24 sync new f i l e and tags
25 e l s e i f tsource(fi)) ≡ sync f older(ttarget(fi)) then
26 sync a l l tags
27 e l s e
28 con f lict(fi)

Listing 3.1: This listing shows the synchronization algorithm of tagstore.

60

3 tagstore Synchronization

one of the tagstores. This tagstore is referred to as the source tagstore. The
tagstore, whose files and tags are updated is labeled as the target tagstore.

The algorithm starts to check if the target tagstore also stores a file with the
same file name. If the target tagstore does have such a file, there are multi-
ple choices available. If the files are identical, only new tags from the source
tagstore are synchronized to the target tagstore. If the files are not equal,
the algorithm checks if that file has already been synchronized once. This
verification is performed by obtaining the synchronization date from the
synchronization store file with the syncdate function. The synchronization
store file is elaborated in Section 3.4.2. If it fails to fetch a synchroniza-
tion date, the algorithm detects a create conflict. The conflict is explained in
Section 3.3.1.

In Line 8 the algorithm tests if a file from source tagstore has been modified.
This operation is performed with the modified function. Alike if the file has
not been modified, only new tags are synchronized. Otherwise the file from
the target tagstore is probed for modification (Line 10). If the algorithm
detects no modification, then the file of the target tagstore is updated and
new tags of the source tagstore are added.

In Line 12 the algorithm checks if the tags of the source tagstore and target
tagstore are equal. At this point the algorithm has already established that
the files have been modified in both tagstores since the last synchronization.
If all associated tags are the same, a write conflict is active. Otherwise the
algorithm handles it as a semantic conflict.

The synchronization algorithm handles delete conflicts. This is achieved
with the help of the synchronization store file. In Line 18 the algorithm
tries to obtain a synchronization date from the synchronization store file.
Since the file was already synchronized once, a synchronization date can
be recovered. Afterwards, the algorithm tests if the file was modified since
the last synchronization date. In case the file was modified, a delete-write
conflict is raised. Otherwise the algorithm ignores the file and continues
with the next file.

The synchronization algorithm needs to handle the special requirements
of the Android tagstore. As a reminder, the Android tagstore requires that

61

3 tagstore Synchronization

unique file names although it supports observing multiple folders. Further-
more, it supports excluding files from the tagstore. Therein lies the prob-
lem, if the files are excluded from the Android tagstore and are stored in
the default synchronization folder of the Android tagstore.44 During syn-
chronization new files are stored in the default synchronization folder. If
there is already a file with the same name, the files would be replaced. In
order to circumvent this problem, the synchronization algorithm explicitly
checks for files with the same name in Line 23 with the function sync folder.
If there is no such file, the file and tags are synchronized. On the contrary
if the file exists, it is checked if it is equal to the file of the source tagstore.
In this case all tags of the file from the source tagstore are added. Finally,
if if the files remain different, a write conflict is raised.

3.4.2 Synchronization Store File

The synchronization algorithm uses a so-called synchronization store file for a
variety of purposes. The file format uses the ini file format like the tagstore
store file.45

The synchronization store file is created upon each synchronization. If the
file does not yet exist, an empty store file is constructed. If it already exists,
it is opened. The synchronization store file is stored in the .tagstore folder
of the actively synchronized tagstore. In order to support synchronization
with more than one tagstore, the file name of the synchronization store
file is defined with pattern. The pattern is set as <target tagstore name

>sync.tgs.

The synchronization store file saves files and tags during synchronization.
By using the synchronization store file many conflict types can be detected.
From the file conflict class the create, delete and delete-write conflict can be
detected. Write conflicts can be identified by saving the file modification
date or hash sum of the file. Furthermore, meta-data conflicts can also be
detected. However, the synchronization algorithm only identifies and pro-
cesses semantic-tag conflicts.

44See Section 1.3
45See Section 1.1.2

62

3 tagstore Synchronization

Figure 3.1: This screenshot displays the tagstore manager synchronization setting tab. The
special tag is set to android. This tag is used in tag-sync synchronization mode.

3.4.3 Synchronization Algorithm Modes

The synchronization algorithm supports two modes as already listed in
the requirements. In the full-sync mode, all files are included in the file
list for the synchronization algorithm. This operating mode is intended for
synchronizing two desktop tagstores.

The other mode named tag-sync is designed for synchronizing a desktop
tagstore with an Android tagstore. When this mode is used, the TagTrees
are only updated in the desktop tagstore. In addition, this mode only syn-
chronizes files, which have been used with a special tag. This tag can be
customized in the tagstore manager in the tab Sync Settings. Figure 3.4.3
displays the setting. The special tag is set to “android” by default.

63

3 tagstore Synchronization

3.4.4 Synchronization Back-ends

The synchronization algorithm is implemented in two independent sys-
tems. In the first system it is integrated into the desktop tagstore. In the
other system, it is integrated into the Android tagstore application. The
Android tagstore supports two synchronization back-ends. The first back-
end implements a cloud based synchronization using the Dropbox storage
service. The second back-end supports synchronization with an network
share using the smb protocol.

Desktop tagstore Synchronization Back-end

The Desktop tagstore synchronization back-end is integrated in the desk-
top tagstore research software. It is also written in the Python program-
ming language and can be launched with the Python interpreter by run-
ning tagstore sync.py. The synchronizer supports four command line op-
tions, which facilitates custom synchronization deployments. Figure 3.4.4
displays the available command line options.

The synchronizer allows the users to select a tagstore for synchronizing
from the command line. This can be executed by providing the parameters
-s and -t and appending the absolute or relative path of the tagstore. The
command line refers to the parameters as first tagstore and second tag-
store. As the synchronization algorithm performs a two-way sync, the first
tagstore and second tagstore are synchronized equivalent. Furthermore,
the synchronizer supports starting the synchronization automatically. The
users can trigger the synchronization by providing the parameter -a. How-
ever, it is required that the first and second tagstore parameters are pro-
vided.

Figure 3.4.4 displays the initial screen of the synchronizer. When the users
provided the first or second tagstore parameter, the gui only displays the
desired tagstore in the corresponding list. However, the Android tagstore
is a special case. Since Android tagstores are accessible as an usb mass stor-
age device, the corresponding path can change. But it is a requirement that

64

3 tagstore Synchronization

Figure 3.2: This screenshot displays the command line of the desktop tagstore synchro-
nization back-end. It is invoked by launching the Python interpreter with the
tagstore sync.py and the parameter –help.

Figure 3.3: This screenshot displays the start-up screen of the synchronizer. It has two lists,
which enable the users to select the desired tagstores for syncing.

65

3 tagstore Synchronization

all tagstores listed in the stores section are valid.46 As a workaround the
Android storage path is stored as a value in the tagstore’s main configu-
ration file. The key is named android store path and must point to the root
folder of an Android tagstore. If the path is valid, the synchronizer system
shows the tagstore “Android” in the tagstore list.

The desktop tagstore synchronizer detects the appropriate synchroniza-
tion mode. Before the synchronization is started, the synchronizer checks
whether the tagstore is an Android or a desktop tagstore. Each tagstore
stores its configuration in the file store.cfg in the folder .tagstore. The
key android store defines the tagstore type. If one of the tagstores has a
non zero value for that key, then the tag-sync mode is used. Otherwise the
full-sync mode is chosen.

The tag-sync mode requires additional processing. The Android tagstore
uses a database for speed instead of the store.tgs. After a synchronization,
the Android’s store.tgs is updated but the changes are not yet applied in
the database. Gladly the Android tagstore supports adding these changes
with a synchronization screen. The screen can be accessed with the menu
key and selecting the Sync button. Figure 3.4.4 shows a sample screen. The
figure also demonstrates the last time stamp of the synchronization.

Figure 3.4.4 displays the screen after a successful synchronization. In that
figure the tagstores test1 and test2 have been synchronized. In addition, the
figure shows the completion time stamp of the synchronization.

Dropbox Synchronization Back-end

The Android tagstore implements synchronization with a tagstore, which
is hosted inside a Dropbox account. In this way users can synchronize files
on the fly without needing to connect their phone to a PC.

The implementation the Dropbox’s Android sdk version 1.5.1, which is
directly available at the Dropbox’s developer site.47 The Dropbox synchro-

46See Section 1.1.1
47http://www.dropbox.com/developers last visited on 9/5/2012

66

http://www.dropbox.com/developers

3 tagstore Synchronization

Figure 3.4: This screenshot shows the screen when the Android tagstore has applied the
synchronization changes after a tag-sync using an usb type sync.

67

3 tagstore Synchronization

Figure 3.5: This screenshot displays the screen after the tagstores named test1 and test2
have been successfully synced. It also shows the time when the synchronization
has been completed.

nization settings can be accessed from the Android Configuration Settings
screen when the synchronization type is set to Sync via Dropbox.

The Android Dropbox sdk provides many classes, which facilitate dealing
with the Dropbox web service. It provides functionality for uploading or
downloading files and querying meta-data of files. In addition, the sdk

provides support for authentication and authorization, which is handled
with the oauth protocol.

Dropbox requires third party applications to be authorized by the users.
Otherwise malicious applications can access users Dropbox’s files. The au-
thentication is performed either in a web browser accessing the authentica-
tion url, or by using the installed Dropbox application. Figure 3.4.4 shows
a screenshot of the Android Dropbox client’s authentication screen.

After the users have confirmed access, the synchronization back-end re-
ceives an access token. This token is then stored and used for later au-
thentication requests. Figure 3.4.4 shows a screenshot after the users have
granted the synchronization back-end access. The Authenticate button is
disabled as the access was already granted. The Unlink button performs
the opposite of the Authenticate button. It closes the link to the Dropbox
service and deletes the access token. As a result, users need to grant ac-
cess to the synchronization back-end before the Dropbox service can be
accessed.

68

3 tagstore Synchronization

Figure 3.6: This screenshot displays the authentication screen of Dropbox, when a third
party application wants to authenticate. If Dropbox is not installed on the An-
droid phone, then a web browser is used to handle the oauth authentication.

69

3 tagstore Synchronization

Figure 3.7: This screenshot displays the Dropbox settings screen when Dropbox is used
for synchronizing. The screen provides three button named Authenticate, Un-
link, and Select tagstore. The first button requests users to grant authentication
access. Currently the user has already granted access already authenticated.
Therefore the button has been disabled. The second button lets the user re-
move the granted authentication for the synchronization back-end of tagstore.
The third button allows the user to select a tagstore. The tagstore must reside
in the Dropbox folder Apps/tagstore.

70

3 tagstore Synchronization

After the users have granted access to Android tagstore, the users need to
configure a synchronization tagstore. The Dropbox synchronization sup-
ports synchronization with multiple tagstores. However, only one tagstore
can be synchronized at the same time. The tagstore can be selected in the
Dropbox Settings screen by using the Select tagstore button. It then starts to
search for tagstores because it has no information in which folder a tagstore
resides. In the first step the synchronization back-end performs a query to
retrieve all folders residing in the App/tagstore folder. Each folder is then
examined if it has a file store.tgs in the sub-folder .tagstore. All folders
having this file are added to the list of tagstores. This list is presented to
the users to select a tagstore for synchronization. Figure 3.4.4 shows this
dialog, where one tagstore named store1 was found.

As soon as the users have granted access to Android tagstore and have
configured a synchronization tagstore, they are able to synchronize with
the configured tagstore. The synchronization is initiated by using the menu
key and selecting the sync button.

SMB Synchronization Back-end

The Android tagstore supports synchronization with a smb share. The
synchronization back-end uses the JCIFS library.48 The library is an open
source implementation of the cifs/smb network protocol in Java. The back-
end uses the JCIFS library in version 1.3.17. The size of the Android tagstore
application increases by 178 KB.

The SMB setting dialog can be accessed when the synchronization type is
to Sync via SMB. The synchronization type can be altered in the synchro-
nization configuration option of the configuration screen. Furthermore, the
smb setting screen provides the same options as the Dropbox setting screen.
Therefore, the screen has the same graphical layout as the Dropbox setting
screen, which is presented in Figure 3.4.4.

The SMB synchronization back-end requires access credentials in order to
access a smb share. The credentials can be entered in the smb configuration
screen by displaying the smb settings dialog. Figure 3.4.4 visualizes this

48http://jcifs.samba.org last visited on 9/10/2012

71

http://jcifs.samba.org

3 tagstore Synchronization

Figure 3.8: This screenshot displays the tagstore selection screen when users want to set
up a synchronization tagstore. The screen enumerates all available tagstores in
the Apps/tagstore folder. The enumerated tagstores are then presented to the
users.

72

3 tagstore Synchronization

dialog. The back-end requires the user name, password, server address
and share name to be entered. The settings are verified as soon as the
connect button is pressed. The back-end then attempts to connect to the
SMB share. If the connection succeeds, its settings are saved and the screen
is dismissed.

As soon as the synchronization back-end has established a connection, a
synchronization tagstore needs to be selected. Similary to the Dropbox syn-
chronization back-end, it can be accessed with the Select tagstore button.

The algorithm for enumerating the tagstores follows the same design pat-
tern as in the Dropbox synchronization back-end. The algorithm enumer-
ates all files and folders in the configured share path.

After the synchronization tagstore has been selected, users are ready to
start to synchronization. The synchronization can be invoked by using the
menu key and using the sync button.

3.4.5 Synchronization Conflict Handling

The synchronization algorithm detects file conflicts and meta-data conflicts.
The conflict handling is left entirely to the users. The conflict resolution is
handled by displaying a gui dialog. The dialog lets the users choose if the
file of the one tagstore should be replaced by the file of the other tagstore.
Figure 3.4.5 shows two sub-figures. The left sub-figure shows the desktop
tagstore synchronizer, whereas the right sub-figure displays the Android
tagstore synchronizer.

As the synchronization algorithm processes the file list of each tagstore
independently, conflicts will be reported each run. As a result, some conflict
types will be listed twice. Therefore, the synchronization system checks
before the conflict is handled, if the conflict has already been resolved by
the users.

73

3 tagstore Synchronization

Figure 3.9: This screenshot displays the smb configuration screen. The screen is displayed
when the users have activated the Sync via SMB option in the synchronization
configuration type and is about to connect to a server. In order to connect
to a smb share, user name, password, server address and the share name are
required. If the connection succeeds, then the access credentials are saved and
restored when the screen is invoked again.

74

3 tagstore Synchronization

(a) This screenshot shows the
screen of the desktop tagstore
synchronizer when a conflict is
handled. The synchronizer lets the
users choose if the file from one
tagstore should replace the file
from another tagstore.

(b) This screenshot shows the
screen of the Android tagstore
when a write conflict needs to be
resolved. The dialog is presented
when a conflict is found during
the synchronization. The users can
either replace the file or resolve the
conflict later.

Figure 3.10: Android / desktop Synchronization Conflict

75

3 tagstore Synchronization

3.4.6 Synchronization Serialization

The synchronization system needs to ensure that accesses to the store.tgs

are performed serialized. Otherwise corruptions can occur when the syn-
chronization system and the tagstore application modify it simultaneously.
In addition, the synchronization system needs to detect if another synchro-
nization system is already active. Furthermore, the synchronization sys-
tem also needs to verify that tagstore is not observing file changes in the
storage folder. The reason is that tagstore will display the tagging dialog
when a new file is stored although the synchronization system has already
added these tags.

As the tagstore application and synchronization application are not run-
ning in the same process, it needs inter-process communication (ipc) to
exchange information. A well established solution is to use a so-called lock
file. The file is stored in known location and has a fixed name. The file con-
tains the process identification number of the synchronization process.

The lock file solves the synchronization problems elaborated above. The
synchronization system and the tagstore application are able to detect if a
synchronization system is active. The examination is performed by reading
the process identification number and testing if the process is still alive.
If the process is still running, then the synchronization system does not
start the synchronization and the tagstore application ignores file changes.
If the process identification number is invalid, the lock file is removed and
the synchronization is initiated.

Figure 3.4.6 displays the stand-alone synchronization tool and the Android
synchronization back-end. In both figures the corresponding synchroniza-
tion system has detected that another synchronization system is active and
modifying the selected tagstores. Users need to defer the synchronization
until the other synchronization system is finished.

The lock file is a solution for synchronizing access to tagstores. However,
the model needs to be adopted when synchronization is performed net-
worked. The Android tagstore supports networked synchronization by us-
ing a smb share or the Dropbox storage service. When the synchroniza-
tion is executed networked, the synchronization system only has access

76

3 tagstore Synchronization

(a) This screenshot shows the desk-
top tagstore synchronizer, which
detected that another synchronizer
is running and modifying the de-
sired tagstores.

(b) This figure shows the android
tagstore Synchronization Serializa-
tion. It detected that another syn-
chronization system is running and
modifying the desired tagstore,
which is configured in the SMB Set-
tings screen or the Dropbox Settings
screen.

Figure 3.11: Android / Desktop Tagstore Synchronization Serialization

77

3 tagstore Synchronization

to files. Therein lies the problem that manifests when the lock file is cre-
ated. The Android tagstore synchronizer can not provide a process iden-
tification number as there is no synchronization process running at the
target system. In order to overcome this limitation the Android synchro-
nizer stores the identifier android in the lock file. The tagstore application
and the stand-alone synchronization tool now have a method to detect net-
worked synchronization processes. Unfortunately, this approach brings a
disadvantage concerning a hanging Android synchronization system. The
Android synchronization system can possibly at sometime hang due net-
work reliability. As a result, the Android synchronization system and the
stand-alone synchronization tool are blocked on retry attempt. Therefore,
it is necessary to manually delete the lock file in the storage directory of
the corresponding tagstore.

3.4.7 Synchronization Limitations of tagstore

The tagstore synchronization does have a few limitations. First of all it
does not support synchronization of folders. Folders are not supported in
the Android tagstore as it requires an external file browser.

Another limitation is the rename support. The tagstore synchronization
system uses the tagstore store files when performing the synchronization.
Since these files are updated when a file is renamed, it contains no informa-
tion on renamed files. If a file exists in both tagstores and is renamed in one
tagstore, it is synchronized with the new name in the other tagstore. As a
result, renamed files appear duplicated in the other synchronized tagstore.
The same limitation also applies to tags but in a different context.

The Android network-based synchronization implementation has a restric-
tions concerning the TagTrees. The desktop tagstore uses file system folders
and links to implement the TagTree. As already stated on Microsoft Win-
dows family it uses shortcuts whereas on Linux it uses symbolic links.
However, the Android synchronization implementation has no knowledge
whether the remote tagstore is hosted on Linux, Mac OS X, or Microsoft
based. In addition, the Android framework provides no facilities for creat-
ing symbolic links or shortcut files. As a result, the TagTree in the remote

78

3 tagstore Synchronization

tagstore is not updated. As a workaround users can synchronize that tag-
store with another tagstore using full-sync mode. In this mode the TagTree
are rebuild during the synchronization.

79

4 Synchronization Evaluation

There are many systems, which provide a similar functionality as tagstore.
These tagstore alternatives have been investigated (Binder, 2012). However,
these systems provide less support for synchronization. In this chapter a
selection of tagstore alternatives is examined. The alternatives are investi-
gated concerning their workings, visualization, and synchronization capa-
bilities.

4.1 TaggedFrog

The first alternative presented is TaggedFrog. TaggedFrog is developed by
Andrei Marukovich. It is available from the author’s web site.49 The ap-
plication is distributed as free-ware and requires the .net 2.0 framework.
Currently, the latest version is 1.1. Furthermore, the application is closed
source. However, TaggedFrog provides an api for plugins. At present there
are two plugins available with source code in the download section of
TaggedFrog. The first plugin called croak lets users preview audio files.
The other plugin labeled meta is a tag extractor. It can extract tags from the
file name and from Windows meta-information.

TaggedFrog supports tagging of files and urls. However, TaggedFrog has a
different method of performing the tagging process. Unlike tagstore it does
not monitor a defined folder for file changes. Instead users are required
to initiate the tagging process. This can either be performed by dragging
the file into the application window, or by using a menu in the Windows
Explorer.

49http://lunarfrog.com/taggedfrog/ last visited on 9/10/2012

80

http://lunarfrog.com/taggedfrog/

4 Synchronization Evaluation

Figure 4.1: This figure shows the TaggedFrog startup screen. On the right side there is a
list of tags, which have been used to associate files.

TaggedFrog uses a database for storing files and tags. Furthermore, it presents
the tags in a tag cloud view within the application. Figure 4.1 demonstrates
the view.

TaggedFrog supports importing and exporting files with their associated
tags. TaggedFrog uses the comma-separated values (csv) style file format.
Values are delimited by a semicolon. Each file entry begins on a new line
with a value named local, followed by the complete path of the file. The
tags are appended after the path. Each tag is separated by a semicolon.
Furthermore, TaggedFrog also exports urls. Each url entry starts with a
value url, followed by the actual url, and ends with the used tags.

local;C:\store1\storage\Syxaw Middleware.pdf;pdf;syxaw;synchronizer

local;C:\store1\storage\sync.log;sync;log;2012-09

This is a sample file, which was exported by TaggedFrog. It contains two
entries. The first entry is the file Syxaw Middleware.pdf, which is associ-

81

4 Synchronization Evaluation

ated with the tags pdf, syxaw, and synchronizer. The other entry is the file
sync.log, which is associated with sync, log, and the date 2012-09.

As already mentioned, TaggedFrog supports importing of csv files. Tagged-
Frog imports files and tags in an additive method. New files and their used
tags are added automatically. New tags for existing files are joined with ex-
isting tags. Identical to the tagstore synchronization, TaggedFrog does not
delete tags, which have been removed in the imported files. As expected
deleted entries are not removed during the import.

TaggedFrog does not support synchronization of files. In order to provide
a similar functionality as the tagstore synchronizer, it needs an external
synchronization back-end. The synchronization back-end can either be an
online synchronization system like smb, or an offline synchronization sys-
tem. The Unison file synchronizer can be used for that purpose, provided
that the file paths are extracted from the csv. However, TaggedFrog im-
ports files with an absolute path. Therefore, the files must be mirrored in
the same path in the target system.

The proposed synchronization system has several drawbacks. First, the
synchronization system only performs an one-way sync of the meta-data.
As a result, users need to perform the import and export process at both
TaggedFrog systems. The next disadvantage displays when an offline syn-
chronization system is used. The offline synchronization system requires
to understand the csv format. Furthermore, it must be started manually.

4.2 Tabbles

Tabbles is a commercial tag based file management software.50 According
to its online manual, the name stands for “tag-bubble”.51

Tabbles supports tagging of files, folders, and urls. Tabbles stores the rela-
tionship between files, folders, urls, and associated tags in a database. The
tags are displayed in a virtual view of the application.

50http://tabbles.net/ last visited on 9/11/2012

51http://http://tabbles.net/wiki/index.php/Tabbles_Manual_%28EN%29 last vis-
ited on 9/11/2012

82

http://tabbles.net/
http://http://tabbles.net/wiki/index.php/Tabbles_Manual_%28EN%29

4 Synchronization Evaluation

Figure 4.2: This figure shows the tabble named java. It has one file
connector-filesystem.jar. On the left side, there is a list of tabbles.
The tabbles labeled java, temp, test have been created by the users. The other
tabbles were set by the Tabbles application.

83

4 Synchronization Evaluation

A tag is called a tabble. Figure 4.2 displays the tabble named java. That
tabble contains one file connector-filesystem.jar. On the left side there
are three lists shown. The list named Favorites stores the important folders
or tabbles. The next list displays local hard disk drives and network drives,
which can be navigated into. The last list referred to as Workspace shows
predefined tabbles and tabbles created by the users.

Tabbles supports importing and exporting of the database in an xml file,
which is embedded in a zip file. Furthermore, Tabbles supports sharing of
the database. The database is shared by configuring a target folder and
executing the Synchronize now button. Tabbles then exports the current
database. After it has completed, it imports databases, which have been
shared by other users. It is also possible to share a single tabble. Thereby
the xml file only contains the shared tabble.

Tabbles does not support file synchronization. Though this functionality
can be performed by an online synchronization system, offline synchro-
nization systems are an additional option, though the xml schema is un-
documented.

In comparison to TaggedFrog, Tabbles only performs an one-way meta-
data synchronization as well. Indeed, the synchronization of the meta-data
is simplified by using the share feature. In combination with an online
synchronization system, it is a solution for synchronizing meta-data in a
networked system.

4.3 Taggtool

Taggtool is a commercial file management software.52 The stand-alone client
is referred to as Taggtool Desktop and the server is called Taggtool Business
Server. Taggtool is available as shareware and can be tried for 30 days.
Taggtool supports tagging of files, folders, and bookmarks. Currently, only
an installer for the Microsoft platform exists.

52http://www.taggtool.com/ last visited on 9/13/2012

84

http://www.taggtool.com/

4 Synchronization Evaluation

The Taggtool client and server are written in Java. Therefore, it requires
Java runtime, which is bundled with the application installer. However, the
Java runtime is placed in a sub folder inside the Taggtool installation folder.
As there is no Java update functionality provided, users manually need to
update their Java runtime, which is a requirement due to security flaws.

The following sub-sections describe the Taggtool Desktop application and
the Taggtool Business Server. In addition, the different operating modes are
explained.

4.3.1 Taggtool Desktop

Taggtool Desktop allows tagging of files from different work flows. Files
can be tagged by using a context menu from the Windows Explorer. Fur-
thermore, files can also be tagged by using a built-in file browser of Taggtool
Desktop. In addition, users can select hard disk volumes or folders, which
are monitored. These files are listed under the Fresh Files tab.

Taggtool Desktop does not provide a virtual TagTree for browsing the tag
hierarchy. Instead it provides a search interface. Files can be searched by
their tags, a modification date range, or content type filter. Figure 4.3.1
displays the search screen of Taggtool.

Taggtool Desktop uses a database for storing files and their associated
tags. Taggtool Desktop uses the relational database Apache Derby53 of the
Apache Software Foundation. Apache Derby is an open source software
and distributed under the Apache License 2.0 version.

Taggtool Desktop supports backing up of tagged files. The files are packed
inside a zip archive in an user defined folder. In addition, the archive is
named with the current date stamp. Since files can be distributed on differ-
ent drives, Taggtool Desktop stores all files with their full path and drive
letter.

Taggtool Desktop does not remove deleted files from the database. There-
fore, deleted files must be removed manually by the users. However, Taggtool

53http://db.apache.org/derby/ last visited on 9/14/2012

85

http://db.apache.org/derby/

4 Synchronization Evaluation

Figure 4.3: This figure shows the search screen of Taggtool Desktop. The screen supports
searching of files by their used tags, modification date range, or a content type
filter. The figure shows the search result for the tag synchronizer. The file Syxaw

Middleware.pdf was found.

Desktop provides a method to manage moved files. Users can provide a
folder or volume path, which contains the moved files. When a file in that
location is found with the same name, Taggtool Desktop updates the path
of the file. Figure 4.3.1 displays this dialog. In contrast to removed files,
Taggtool Desktop detects renamed files and automatically updates the ref-
erences. However, it requires that Taggtool Desktop is running while the
file is renamed.

"OBJECTTYPEID","PATH","VOLUMELABEL","FILE","CSVTAGS","RATING","DESCRIPTION","ALIAS"

"0","C:\test1\storage","SYS(C:)","Syxaw Middleware.pdf","synchronizer,syxaw","0","",""

"0","C:\test1\storage","SYS(C:)","cartoon.jpg","cartoon,jpg","0","",""

This is a sample file, which was exported by Taggtool Desktop. Taggtool
Desktop supports importing and exporting the database in a csv style for-
mat. The first line declares the export fields. The first field called OBJECT-
TYPEID defines the type of the entry. Files use the identifier “0”, whereas
bookmarks have the identifier “2”. The next field defines the path, followed

86

4 Synchronization Evaluation

Figure 4.4: This figure shows the synchronize database screen of Taggtool Desktop. The
figure shows that one file was detected to be missing. The dialog lets the users
provide a folder or volume path to search for the moved file.

87

4 Synchronization Evaluation

by the volume label. The field labeled FILE contains the name of the file or
the url of the bookmark. The other fields are self-explanatory. The sample
file contains two entries. The first entry is the file Syxaw Middleware.pdf,
which is associated with the tags pdf, syxaw, and synchronizer. The other
entry is the file cartoon.jpg which is associated with the tags cartoon and
jpg.

As already stated Taggtool Desktop supports tagging of bookmarks. Book-
marks can be tagged with the Tag a web site button. Furthermore, Taggtool
Desktop can import bookmarks from a Del.icio.us54 account. In order to
import bookmarks, Taggtool Desktop needs the user name and password.
Del.icio.us uses http authentication and passes the results in json format.
Taggtool notifies the users with a dialog saying that the import is com-
plete.

Taggtool Desktop provides the ability to backup the files. However, this is
no sufficient solution for file synchronization. Therefore, it requires again
an online synchronization system like smb network protocol. In terms of
meta-data synchronization, only an one-way synchronization is performed.

4.3.2 Taggtool Business Server

The Taggtool Business Server is intended for multi-user environments in-
side a lan. Taggtool Desktop supports connecting to the Taggtool Business
Server. By connecting to Taggtool Business Server, all Taggtool Desktop
users have access to the same database.

Taggtool Business Server is deployed as a service in Microsoft Windows.
The application installer configures the service to start automatically dur-
ing system boot. The service supports tcp/ip connections and accepts re-
quests on port port 1527. Taggtool Business Server uses the Distributed Re-
lational Database Architecture (drda) protocol for encapsulating sql com-
mands and responses. The current standard is released in version 5 (The
Open Group, 2012).

54http://delicious.com last visited on 9/14/2012

88

http://delicious.com

4 Synchronization Evaluation

When Taggtool Desktop is connected to the Taggtool Business Server, it
requires tagged files to be in a smb share. The reason is that all users need
to be able to access the file, which is not possible otherwise.

Since Tagtool Desktop users all access the same database, the meta-data is
always updated for all users. In addition, Taggtool Desktop relies on the
smb network file system, which eliminates the file synchronization prob-
lem. Although in fact the Taggtool software truly does not perform syn-
chronization, it achieves a similar functionality as the tagstore synchro-
nization system. However, it must be stressed Taggtool software is cur-
rently available on Microsoft Windows platforms. Furthermore, it provides
no support for mobile clients. Finally, it only works for users residing in
the same lan.

4.4 Evaluation Summary

In this chapter a selection of tagstore alternatives is represented. Table 4.1
summarizes characteristics of tagstore and its alternatives. Full support for
a given category is displayed with the character (“x”), minimal support is
shown with (“*”), and no support with a blank.

There are three main categories. The category Tagging presents features of
the corresponding application. The ability to tag files, folders, and urls
are displayed. In addition, the TagTrees category determines, whether the
TagTree is visualized.

The category Synchronization deals with the synchronization abilities. The
sub-category SMB Sync determines if synchronization is supported with a
smb share. The Cloud Sync sub-category shows the ability to synchronize
with a cloud storage provider such as Dropbox.

The category Platform shows the availability of the application on the corre-
sponding operating system. The pc platforms Windows, Mac OS X, Linux
as well as the mobile platform Android are shown.

Table 4.1 shows a comparison of tagstore and its alternatives. The features
of the mobile tagstore and desktop tagstore are combined. However, it is

89

4 Synchronization Evaluation

Tagging Synchronization Platform

Systems Fi
le

s

Fo
ld

er
s

U
R

Ls

Ta
gT

re
es

SM
B

Sy
nc

C
lo

ud
Sy

nc

M
et

a-
da

ta

W
in

do
w

s

M
ac

O
S

X

Li
nu

x

A
nd

ro
id

TaggedFrog x x x x * x x
Tabbles x x x * x x

Taggtool Desktop x x x * x x * *
Taggtool Business Server x x x x x x * *

mobile & desktop tagstore x x x x x x x x x x

Table 4.1: Comparison of tagstore characteristics concerning tagging support, synchro-
nization features, and platform availability. Full support for a given category
is displayed with the character (“x”), minimal support is shown with (“*”), and
no support with a blank.

important to note that tagging of folders is not supported on the mobile
tagstore as it requires an external file browser.

As already stated, Taggtool Desktop and Taggtool Business Server are writ-
ten in Java programming language. Since Java is supported on all popular
platforms, the Taggtool Desktop and the Business Server application have
been successfully run in XUbuntu 12.04.1 using OpenJDK 1.6.0.24. How-
ever, as Taggtool Desktop targets Microsoft Windows, the functionality is
reduced. Therefore users of Linux and Mac OS X need to wait for official
support of their platform.

The mobile and desktop tagstore perform well in the area of tagging sup-
port as well as platform availability. In addition, the synchronization im-
plementation provides capabilities to synchronize files and associated tags.
Furthermore, the synchronization can be performed networked. Users now
have a method to manage and synchronize personal files on the Android
platform in combination with the desktop tagstore research software.

90

5 Conclusion

“Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.”

(Winston Churchill)

This master thesis analyzed the requirements and platform aspects for a
mobile tagging application. It also described the mobile tagging applica-
tion, which was developed during this master thesis. In addition, a syn-
chronization algorithm was implemented in two independent systems.

Another focus of the master thesis laid on the synchronization of files
and associated meta-data. The characteristics of synchronization systems
as well as the different types synchronization systems were elaborated. Af-
terwards, the requirements of a synchronization system for a mobile tag-
store were gathered. Derived from the requirements, a synchronization al-
gorithm was designed. Later the developed synchronization algorithm was
described in detail. Finally, the tagstore synchronization system was evalu-
ated with other tagstore alternatives and its strengths and weaknesses were
highlighted.

The mobile tagstore is a prototype for managing personal files on a mo-
bile phone. In addition, the implemented synchronization system helps to
synchronize personal files on the fly. However, it is important to note that
the mobile tagstore is reduced version of the desktop tagstore due to elab-
orated platform requirements and characteristics.

The mobile tagstore can be extended by providing a decent tag recom-
mender, which extracts tags from the file name, meta-data, or file content.
The recommended tags are then displayed when a new file is tagged or a
file is re-tagged. Another useful improvement is the ability to tag folders,

91

5 Conclusion

which is already supported in the desktop tagstore. Concerning a syn-
chronization back-end for another network file system such as nfs or a
distributed file system like afs can improve the mobile tagstore usability.
Furthermore, the synchronization algorithm can be improved. The algo-
rithm currently only processes files. Synchronization of tagged folders is
eligible.

92

Bibliography

Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau (2012). Operating Systems:
Three Easy Pieces. Arpaci-Dusseau Books. url: http : / / www . lulu .

com/shop/remzi- arpaci- dusseau- and- andrea- arpaci- dusseau/

operating-systems-three-easy-pieces/paperback/product-20340734.

html (visited on 09/24/2012) (cit. on p. 29).
ANSI/NISO (2005). Guidelines for the Construction, Format, and Management

of Monolingual Controlled Vocabularies. Tech. rep. Z39.19-2005. Bethesda,
MD, USA. (Visited on 08/07/2012) (cit. on p. 5).

Axel Kossel Markus Stöbe, Ragni Zlotos (June 2012). “Aktuelle Daten im-
mer parat mit Dropbox & Co.” In: c’t 13, pp. 78–83. url: http://www.
heise.de/artikel-archiv/ct/12/13/083/ (cit. on p. 41).

Bai, Songlin and Hao Wu (Oct. 2011). “The Performance Study on Several
Distributed File Systems.” In: Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), 2011 International Conference on, pp. 226

–229. doi: 10.1109/CyberC.2011.45 (cit. on p. 29).
Binder, Gerulf (2012). Marktübersicht von Tagging-Werkzeugen und Vergleich

mit tagstore. Tech. rep. Graz, Austria: Graz University of Technology
(cit. on p. 62).

Borgmann, Moritz et al. (2012). On the Security of Cloud Storage Services.
Tech. rep. (cit. on pp. 36–38, 41).

Bzoch, P. and J. Safarik (Sept. 2011). “Security and reliability of distributed
file systems.” In: Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS), 2011 IEEE 6th International Conference on. Vol. 2, pp. 764

–769. doi: 10.1109/IDAACS.2011.6072873 (cit. on p. 29).
Fielding, Roy Thomas (2000). “Architectural styles and the design of network-

based software architectures.” PhD thesis. isbn: 0-599-87118-0 (cit. on
p. 39).

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung (2003). The Google
File System (cit. on p. 43).

93

http://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces/paperback/product-20340734.html
http://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces/paperback/product-20340734.html
http://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces/paperback/product-20340734.html
http://www.lulu.com/shop/remzi-arpaci-dusseau-and-andrea-arpaci-dusseau/operating-systems-three-easy-pieces/paperback/product-20340734.html
http://www.heise.de/artikel-archiv/ct/12/13/083/
http://www.heise.de/artikel-archiv/ct/12/13/083/
http://dx.doi.org/10.1109/CyberC.2011.45
http://dx.doi.org/10.1109/IDAACS.2011.6072873

Bibliography

Justice, Department of (2001). USA Patriot Act. url: http://www.gpo.gov/
fdsys/pkg/PLAW- 107publ56/pdf/PLAW- 107publ56.pdf (visited on
08/07/2012) (cit. on p. 38).

Lagerspetz, Eemil, Sasu Tarkoma, and Tancred Lindholm (2010). “Dessy:
Search and Synchronization on the Move.” In: Eleventh International
Conference on Mobile Data Management, MDM 2010, Kanas City, Mis-
souri, USA, 23-26 May 2010. Ed. by Takahiro Hara et al. IEEE Com-
puter Society, pp. 215–217. isbn: 978-0-7695-4048-1. doi: http://doi.
ieeecomputersociety.org/10.1109/MDM.2010.18 (cit. on p. 33).

Levy, Eliezer and Abraham Silberschatz (1990). “Distributed File Systems:
Concepts and Examples.” In: ACM Comput. Surv. 22.4, pp. 321–374. url:
http://dblp.uni-trier.de/db/journals/csur/csur22.html#LevyS90

(cit. on p. 28).
Lindholm, Tancred (2004). “A three-way merge for XML documents.” In:

Proceedings of the 2004 ACM symposium on Document engineering. DocEng
’04. Milwaukee, Wisconsin, USA: ACM, pp. 1–10. isbn: 1-58113-938-1.
doi: 10.1145/1030397.1030399. url: http://doi.acm.org/10.1145/
1030397.1030399 (cit. on p. 33).

Lindholm, Tancred, Jaakko Kangasharju, and Sasu Tarkoma (Dec. 11, 2009).
“Syxaw: Data Synchronization Middleware for the Mobile Web.” In:
MONET 14.5, pp. 661–676. url: http://dblp.uni- trier.de/db/
journals/monet/monet14.html#LindholmKT09 (cit. on p. 33).

Lutz, M. (2001). Programming Python. O’Reilly Series. O’Reilly. isbn: 9780596000851.
url: http://books.google.at/books?id=37_AJDlEytEC (visited on
07/26/2012) (cit. on p. 4).

Microsoft Technet (2005). Distributed File System overview: Remote File Sys-
tems; File and Storage Services. url: http://technet.microsoft.com/en-
us/library/cc738688\%28v=ws.10\%29.aspx (visited on 09/17/2012)
(cit. on p. 29).

Rittinghouse, J. (2009). Cloud Computing: Implementation, Management, and
Security. Taylor & Francis. isbn: 9781439806807. url: http://books.
google.at/books?id=YRIeASgVUJoC (cit. on p. 39).

Rivadeneira, A. W. et al. (2007). “Getting our head in the clouds: toward
evaluation studies of tagclouds.” In: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems. CHI ’07. San Jose, Califor-
nia, USA: ACM, pp. 995–998. isbn: 978-1-59593-593-9. doi: 10.1145/

94

http://www.gpo.gov/fdsys/pkg/PLAW-107publ56/pdf/PLAW-107publ56.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-107publ56/pdf/PLAW-107publ56.pdf
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MDM.2010.18
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MDM.2010.18
http://dblp.uni-trier.de/db/journals/csur/csur22.html#LevyS90
http://dx.doi.org/10.1145/1030397.1030399
http://doi.acm.org/10.1145/1030397.1030399
http://doi.acm.org/10.1145/1030397.1030399
http://dblp.uni-trier.de/db/journals/monet/monet14.html#LindholmKT09
http://dblp.uni-trier.de/db/journals/monet/monet14.html#LindholmKT09
http://books.google.at/books?id=37_AJDlEytEC
http://technet.microsoft.com/en-us/library/cc738688\%28v=ws.10\%29.aspx
http://technet.microsoft.com/en-us/library/cc738688\%28v=ws.10\%29.aspx
http://books.google.at/books?id=YRIeASgVUJoC
http://books.google.at/books?id=YRIeASgVUJoC
http://dx.doi.org/10.1145/1240624.1240775
http://dx.doi.org/10.1145/1240624.1240775
http://dx.doi.org/10.1145/1240624.1240775

Bibliography

1240624 . 1240775. url: http : / / doi . acm . org / 10 . 1145 / 1240624 .

1240775 (cit. on p. 20).
Satyanarayanan, M. et al. (Apr. 1990). “Coda: a highly available file system

for a distributed workstation environment.” In: Computers, IEEE Trans-
actions on 39.4, pp. 447 –459. issn: 0018-9340. doi: 10.1109/12.54838
(cit. on p. 29).

Schütt, Thorsten (2002). “Synchronisation von verteilten Verzeichnisstruk-
turen.” MA thesis. url: http://opus4.kobv.de/opus4-zib/files/
1007/SchuettDiplom.pdf (visited on 07/30/2012) (cit. on pp. 26–28,
32).

Shepler, S. et al. (2003). Network File System (NFS) version 4 Protocol. United
States. url: http://www.networksorcery.com/enp/rfc/rfc3530.txt
(visited on 09/25/2012) (cit. on p. 29).

The Open Group (2012). Distributed Relational Database Architecture stan-
dard. url: https://collaboration.opengroup.org/dbiop/ (visited
on 09/17/2012) (cit. on p. 67).

Tridgell, A. (1999). Efficient Algorithms for Sorting and Synchronization. Aus-
tralian National University. url: http://books.google.at/books?id=
YH3btwAACAAJ (cit. on p. 30).

Tridgell, Andrew (2012). The rsync algorithm. url: http://rsync.samba.
org/tech_report/node2.html (visited on 08/01/2012) (cit. on p. 31).

Uppoor, S., M.D. Flouris, and A. Bilas (Sept. 2010). “Cloud-based syn-
chronization of distributed file system hierarchies.” In: Cluster Comput-
ing Workshops and Posters (CLUSTER WORKSHOPS), 2010 IEEE Interna-
tional Conference on, pp. 1 –4. doi: 10.1109/CLUSTERWKSP.2010.5613087
(cit. on p. 34).

Voit, Karl (May 2012). tagstore — Project home page. url: http://tagstore.
org (visited on 05/10/2012) (cit. on p. 3).

Voit, Karl, Keith Andrews, and Wolfgang Slany (Nov. 2011). “TagTree: Stor-
ing and Re-finding Files Using Tags.” In: Proc. 7th Conference of the
Austrian Computer Society Workgroup: Human-Computer Interaction (Usab
2011). Vol. 7058. LNCS. Graz, Austria: Springer, pp. 471–481. isbn: 3642253636.
doi: 10.1007/978-3-642-25364-5_33 (cit. on p. 3).

Wang, Haiyang et al. (2012). “On the impact of virtualization on Dropbox-
like cloud file storage/synchronization services.” In: Proceedings of the
2012 IEEE 20th International Workshop on Quality of Service. IWQoS ’12.

95

http://dx.doi.org/10.1145/1240624.1240775
http://dx.doi.org/10.1145/1240624.1240775
http://dx.doi.org/10.1145/1240624.1240775
http://doi.acm.org/10.1145/1240624.1240775
http://doi.acm.org/10.1145/1240624.1240775
http://dx.doi.org/10.1109/12.54838
http://opus4.kobv.de/opus4-zib/files/1007/SchuettDiplom.pdf
http://opus4.kobv.de/opus4-zib/files/1007/SchuettDiplom.pdf
http://www.networksorcery.com/enp/rfc/rfc3530.txt
https://collaboration.opengroup.org/dbiop/
http://books.google.at/books?id=YH3btwAACAAJ
http://books.google.at/books?id=YH3btwAACAAJ
http://rsync.samba.org/tech_report/node2.html
http://rsync.samba.org/tech_report/node2.html
http://dx.doi.org/10.1109/CLUSTERWKSP.2010.5613087
http://tagstore.org
http://tagstore.org
http://dx.doi.org/10.1007/978-3-642-25364-5_33

Bibliography

Coimbra, Portugal: IEEE Press, 11:1–11:9. isbn: 978-1-4673-1298-1. url:
http://dl.acm.org/citation.cfm?id=2330748.2330759 (cit. on p. 40).

Wikipedia (2012a). Rsync. url: http://en.wikipedia.org/wiki/Rsync
(visited on 08/01/2012) (cit. on p. 30).

Wikipedia (2012b). Smartphone. url: http://en.wikipedia.org/wiki/
Smartphone (visited on 08/01/2012) (cit. on p. 1).

Wu, Jiyi et al. (2010). “Cloud Storage as the Infrastructure of Cloud Com-
puting.” In: Proceedings of the 2010 International Conference on Intelligent
Computing and Cognitive Informatics. ICICCI ’10. Washington, DC, USA:
IEEE Computer Society, pp. 380–383. isbn: 978-0-7695-4014-6. doi: 10.
1109/ICICCI.2010.119. url: http://dx.doi.org/10.1109/ICICCI.
2010.119 (cit. on p. 35).

Zhang, Jiaran et al. (Dec. 2011). “HadoopRsync.” In: Cloud and Service Com-
puting (CSC), 2011 International Conference on, pp. 166 –173. doi: 10.
1109/CSC.2011.6138515.

96

http://dl.acm.org/citation.cfm?id=2330748.2330759
http://en.wikipedia.org/wiki/Rsync
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/Smartphone
http://dx.doi.org/10.1109/ICICCI.2010.119
http://dx.doi.org/10.1109/ICICCI.2010.119
http://dx.doi.org/10.1109/ICICCI.2010.119
http://dx.doi.org/10.1109/ICICCI.2010.119
http://dx.doi.org/10.1109/CSC.2011.6138515
http://dx.doi.org/10.1109/CSC.2011.6138515

