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Abstract

Historically cryptography was primarily used by military and intelligence organizations.
Nowadays, however, as security related topics are increasingly familiar front page news, the
public’s demand for security grows substantially. In particular, the rapid evolution of mo-
bile and wireless technologies and their omnipresent usage raises a serious issue. How is it
possible to provide security objectives as confidentiality, integrity, and authenticity despite
the significantly less computational power and bandwidth available on these devices. Espe-
cially cryptographic objectives provided by common asymmetric cryptographic primitives
fail to meet these requirements. In constrained environments, elliptic curve cryptography
is most suitable, as for its underlying hard problem, the elliptic curve discrete logarithm
problem, no sub-exponential time algorithm has been found. Thus it provides a higher
cryptographic security per bit, which leads to smaller key sizes, ciphertexts, and signatures
compared to RSA and El-Gamal systems. This is one reason, why since its introduction
in 1985, by Neal Koblitz and Victor Miller, elliptic curve cryptography has gained broad
acceptance in the industry and the academic community. Nowadays, it is considered as a
new standard for public key cryptography. Estimations concerning the size of the parame-
ters for elliptic curve cryptography to provide proper security to date vary. The prevalence
of elliptic curve cryptosystems increases the demand of practically verifying if the security
estimations hold. In order to further encourage investigations in this matter, we attack
a 113-bit binary ECDLP on a Koblitz curve using a parallelized version of Pollard’s rho
algorithm implemented on FPGAs. The arithmetic of the underlying 113-bit binary field
has been improved extensively. Basis transformations of binary field elements are applied
to exploit the benefits of polynomial and normal basis representations. We report having
solved ECC2K-112, which is a new binary ECDLP record, within 46 days using only 19
FGPA boards. The design is based on a fully autonomous, cyclic, self-sufficient Pollard’s
rho iteration function performing up to 291 million iterations per second. The piplined
design maximizes the hardware utilization by keeping all 223 pipline stages permanently
active. Together with a small generic serial interface the design consumes 57% of all avail-
able slices on a Virtex-6 XC6VLX240T FPGA. The results gathered provide influential
estimations concerning the security of various key lengths for elliptic curve cryptography.

Keywords: Elliptic Curve Cryptography, Elliptic Curve Discrete Logarithm Problem,
Field-Programmable Gate Array
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Kurzfassung

Historisch gesehen wurde Kryptographie hauptsächlich von Militär- und Geheimdien-
storganisationen verwendet. Heutzutage jedoch werden sicherheitsrelevante Themen im-
mer öfter medial aufbereitet, wodurch das öffentliche Interesse für Sicherheit beträchtlich
wächst. Insbesondere die rasante Entwicklung von mobilen Geräten und von drahtlosen
Technologien und deren omnipräsente Verwendung, wirft ein ernstzunehmendes Problem
auf. Wie ist es möglich die Sicherheitsziele Vertraulichkeit, Integrität und Authentizität
trotz deutlich weniger Rechenleistung und Bandbreite auf diesen Geräten zu Verfügung zu
stellen. Vor allem die kryptographischen Ziele, die mit Hilfe von asymmetrische Kryptogra-
phie erreicht werden, erfüllen diese Anforderungen nicht. Elliptische-Kurven-Kryptographie
ist vor allem in solchen eingeschränkten Umgebungen sehr gut geeignet, da es für das
zugrunde liegende Problem des diskreten Logarithmus in elliptischen Kurven keine subex-
ponentiellen Algorithmen gibt. Deswegen bietet Elliptische-Kurven-Kryptographie eine
höhere Sicherheit per Bit, was im Vergleich zu RSA und El-Gamal Systemen zu kleineren
Schlüsselgrößen, Chiffretexten und Signaturen führt. Das ist ein Grund, warum seit der
Einführung im Jahre 1985 von Neal Kobitz und Victor Miller, die Elliptische-Kurven-
Kryptographie auf eine breite Akzeptanz in der Industrie und in der akademischen Gemein-
schaft stößt. Heute wird Elliptische-Kurven-Kryptographie als ein neuer Standard für
öffentliche Schlüsselsysteme betrachtet. Schätzungen über die Größe der Parameter für
Elliptische-Kurven-Kryptographie, um zum jetzigen Zeitpunkt zweckmäßige Sicherheit
zu gewährleisten, variieren. Die weite Verbreitung von Elliptische-Kurven-Kryptographie
erhöht die Nachfrage praktisch zu überprüfen, ob die Sicherheitsabschätzungen stimmen.
Um weitere Untersuchungen in dieser Sache zu fördern, versuchen wir den diskreten
Logarithmus einer 113-bit Koblitz Binärkörperkurve mit einer parallelisierten Variante
von Pollards rho Algorithmus, realisiert auf Feld programmierbaren Gatter-Anordnungen,
zu lösen. Die Arithmetik des zugrunde liegenden 113-bit Binärkörpers wurde umfassend
verbessert. Basistransformationen von Binärkörperelementen werden verwendet, um die
Vorteile von Polynomial- und Normalbasisdarstellung auszunutzen. Wir verkünden ECC2K-
112 mit 19 FPGA Karten in 46 Tagen gelöst zu haben, was ein neuer Rekord für das Lösen
von diskreten Logarithmen in elliptischen Kurven auf Binärkörpern ist. Das Design basiert
auf einer völlig autonomen, zyklischen, selbstversorgenden Pollard-rho-Iterationsfunktion,
mit bis zu 291 Millionen Iterationen pro Sekunde. Das Design maximiert die Auslas-
tung der Hardware indem alle 223 Piplinestufen ständig aktiv sind. Zusammen mit einer
kleinen generischen seriellen Schnittstelle, braucht das Design 57% der Logikressourcen ein-
er Virtex-6 XC6VLX240T FPGA. Die Ergebnisse liefern wichtige Abschätzungen im Bezug
auf die Sicherheit von verschiedenen Schlüssellängen für Elliptische-Kurven-Kryptographie.

Stichwörter: Elliptische-Kurven-Kryptography, Problem des diskreten Logarithmus in
elliptischen Kurven, Feld programmierbare Gatter-Anordnung
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Chapter 1

Introduction

Not least because of the current NSA spying scandal, the public’s interest in cryptog-
raphy constantly grows. Thus, nowadays, cryptography gets even more ubiquitous and
indispensable than ever. Especially a tremendous number of mobile devices and even tiny
hardware devices as Radio Frequency Identification (RFID) tags or smart cards demand
security. However, these devices are very limited in computational power and storage
capacity. Elliptic Curve Cryptography (ECC) is an asymmetric cipher that meets these
requirements. Since its introduction in 1985, by Neal Koblitz [43] and Victor Miller [55],
the interest in ECC has constantly grown. ECC is a strong competitor to the well estab-
lished RSA [68] and El-Gamal systems [24]. It is an asymmetric cipher, which provides and
offers useful functionalities as digital signatures or key exchange mechanisms. Opposed
to RSA and El-Gamal systems, ECC requires significantly shorter key sizes, ciphertexts,
and signatures to offer the same level of security. In general, to date ECC offers the
most security per bit of all current asymmetric cryptography schemes. This is because,
in contrast to RSA and El-Gamal systems, no sub-exponential time algorithms for ECC’s
underlying hard problem, the Elliptic Curve Discrete Logarithm Problem (ECDLP), exist.

In daily life the arising question is, how big should the parameters of an elliptic curve
cryptosystem be in order to avoid practical attacks. Parameters too large waste com-
putational power, time, and space, parameters too small pose a security thread. There
exist several estimations concerning the size of the parameters for ECC. In order to offer
security to date the estimations vary. Lenstra and Verheul [45] specify a minimal key
size of 154 bits, the European Network of Excellence in Cryptology II (ECRYPT II) [7]
160 bits, and the National Institute of Standards and Technology (NIST) [10] 224 bits.
To encourage further investigations in this matter Certicom Corp [15] published a list of
ECDLP challenges to be solved in order to practically evaluate the estimations. To date,
the 109-bit binary and prime field challenges [16, 17] are the biggest challenges that have
been solved. Apart from the Certicom challenges, Harley et al. [34] solved an ECDLP on
a 109-bit Koblitz curve, and Bos et al. [13] even solved an ECDLP on a 112-bit prime
field curve. There even exist efforts to solve the 131-bit challenge [8], however to date no
results have been published.

There are many approaches trying to solve the ECDLP, some of them are software based
solutions running on clusters of Graphics Processing Units (GPUs) [8] or Central Pro-
cessing Units (CPUs) [8], some are Field Programmable Gate Array (FPGA) based de-
signs [8, 13, 25, 32, 39, 49, 53]. However, since the 112-bit challenge was solved in 2012 [13]
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CHAPTER 1. INTRODUCTION 2

no further results have been reported. These previous attacks were all carried out using
Pollard’s rho algorithm, which is the fastest known algorithm for solving ECDLPs. De-
pending on the elliptic curve’s group order n, the solution is expected to be obtained
after

√
πn/2 iterations of Pollard’s rho iteration function. For Koblitz curves, a special

subset of binary elliptic curves, the expected number of iterations can be reduced by a
factor of m, m being the size of the underlying binary field. Koblitz curves are of great
practical importance because for these curves a faster algorithm for elliptic curve point
multiplications exist, which utilizes the Frobenius automorphism to avoid computational
expensive point doublings. In order to further asses the practical security estimations of
elliptic curve cryptosystems, we attack a 113-bit ECDLP on an Koblitz curve using a par-
allelized version of Pollard’s rho algorithm. We are expected to obtain the solution after
approximately 8.5 ⋅ 1015 iterations. A state of the art CPU (Core-i7 i7-3537U [36]) needs
0.78 ms for a point addition, the most expensive part of a Pollard’s rho iteration function
when written in C. That means, the solution to a 113-bit binary ECDLP would be found
after about 210,000 years. All the more we want to stress, that to obtain the solution to
a 113-bit binary ECDLP , it of utmost importance to design hardware and/or software of
high performance. Keep in mind, that some years ago, in the year 2000, a 113-bit binary
curve, namely sect113r1 [66], was standardized by Certicom.

Our Contribution. In this thesis, we present a high throughput FPGA design, ECC-
Breaker, used for solving the ECDLP on binary curves. The attack on the ECDLP
is conducted using a parallelized version of Pollard’s rho algorithm. The solution to a
pseudo-randomly generated 113-bit ECDLP was found within 46 days with 18 instances
of ECC-Breaker implemented on Xilinx’ ML605 [89] development boards. They come
with a Virtex-6 XC6VLX240T FPGA. On this FPGA, ECC-Breaker achieves a maximal
synthesizeable frequency of 291 MHz and uses 57% of its slices. ECC-Breaker is a cyclic,
fully independent, completely piplined, and autonomous implementation of a Pollard’s rho
iteration function. Its 223 pipline stages are fed by a serial interface. Although carefully
optimized for the 113-bit binary Koblitz curve, ECC-Breaker can also be used for break-
ing larger curves with some minor changes. The results gathered during this work are
relevant for security estimations of ECC, as it shows how much effort in terms of time
and money has to be invested to break an elliptic curve cryptosystem. Having broken a
113-bit binary elliptic curve, we estimate that even larger elliptic curves such as the 131
bit binary challenge are computationally feasible. Our results should be considered when
selecting parameter size for elliptic curves, especially when limited computational power
could mislead to questionable decisions. Apart from the results regarding the ECDLP,
the ECC-Breaker provides important insights for high speed ECC hardware. The design
is capable of performing up to 291 million elliptic curve operations per second.

Outline. This thesis is structured as follows. Chapter 2 gives an introduction to cryp-
tography. It summarizes its history and its main principles. It emphasizes the differences
between asymmetric and symmetric cryptography. We revisit some mathematical foun-
dations needed for understanding ECC in Chapter 3, especially the underlying algebraic
structures, ECC relies on. In Chapter 4, we describe how ECC works. We distinguish
between prime field and binary field curves, we highlight Koblitz curves, and show known
generic attacks applicable for solving ECDLPs. We focus on Pollard’s rho attack, which is
known to be the most powerful attack. The contribution of our work, the ECC-Breaker
hardware design is described in Chapter 5. We show what previously has been achieved
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regarding solving ECDLPs, present the strategies and goals we realized with our hardware
design, and describe ECC-Breaker’s architecture in detail. Moreover, we picture how we
conducted our attempt to establish a new binary ECDLP record. It is concluded with
detailed results of ECC-Breaker and its impacts regarding further ECDLP challenges. We
summarize the thesis and risk taking a look into the future in Chapter 6.



Chapter 2

Cryptography

Cryptography comes from the greek words kryptos and graphein, which together mean
secret writing (cf. [47]). The wish to encrypt something is almost as old as human history.
Technical studies about cryptography are one of the oldest we have records of (cf. [20]).
The history of cryptography starts in ancient Egypt in the 3rd millennium BC (cf. [21]).
Back then it was forbidden to say and write the names of various Gods in public. In
addition, the priests believed that it was their task to keep the God’s secret lore. This
was achieved by the use of hieroglyphs, different from those known to the public (cf. [82]).
Such ciphers are called substitution ciphers.

Also the ancient Greeks are said to have known of ciphers. The Spartans used the scy-
tale transposition cipher to hide information [20]. Transposition is a permutation of the
plaintext. Although it was already mentioned in the 7th century BC by Archilochus,
Plutarch [62] (50 - 120 AD) was the first to describe how the scytale is operated (cf. [42]).
A scytale is a stick of wood, around which a paper is wound. To encrypt a message one
starts to write, but instead of writing one letter next to each other, one has to write one
letter beneath each other. Plutarch was convinced only someone with the same scytale
or a wooden stick alike in length and thickness could discover the continuity of the message.

The Caesar cipher named after Julius Caesar, who used it in private correspondence,
is a widely known substitution cipher. This means each letter is replaced with another.
Caesar substituted, according to Suetonius [80], D for A and so on. Thus he performed a
shift of three.

Another famous example in the rich history of Cryptography is the ADFGX [40] and
ADFGVX cipher (an improvement to the ADFGX cipher) used by the Germans on the
Western Front during World War I. It is based on substitution and transposition and
was invented by Fritz Nebel. The first step is the substitution step, which is performed
with the aid of a Polybius square. The Polybius square was originally used for the Greek
alphabet. Each letter is represented by its coordinates within a square grid. The Ger-
mans replaced the coordinates with the letters A, D, F, G, and X. As such grids can only
contain a square number of letters, one has to round down the number of letters to the
next lowest square number by combining letters. The German, for instance, combined I
and J. Additionally they started to fill the square with a code word. The remain of the
square is filled with the remaining letters. Table 2.1 contains an example. Using this table
“polybius” is transformed into “AGDAGAAFDXFGXAGX”.

4



CHAPTER 2. CRYPTOGRAPHY 5

Table 2.1: Polybius square used by the ADFGX cipher with the codeword “cryptography”.
A D F G X

A C R Y P T
D O G A H B
F D E F I K
G L M N Q S
X U V W X Z

A second code word is used for the transposition step. This second code word forms a
matrix with the substituted text. The code word written on the top of a matrix. Each
letter of this code word is assigned to a number(e.g., in alphabetical order) and then the
substituted text is writtten in this matrix line by line. The final text is produced line by
line by rearranging each letter according to the numbers assigned to the code word. Dur-
ing the German “Frühjahresoffensive” the French Georges Painvin succeeded in breaking
ADFGX, which enabled the French to locate the German army. This advantage is believed
to be the reason why the Germans never occupied Paris and marks the watershed of this
war [85]. The stated examples are counted to first of three epochs in cryptography. It is
characterized by the use of pens, papers, or simple mechanical devices. Although there
are still examples of unsolved ciphers (Beale-Chiffre [74]) the epoch of pen and paper
cryptography came to an end because of the mentioned devastating experience in the first
World War.

The next epoch of cryptography is characterized by the use of special machines built
for encrypting and decrypting. Although there are many other examples, most famous is
probably the ENIGMA. It was invented by the German electrical engineer Arthur Scher-
bius [3] in 1918. The earliest models in 1920 were commercial models. In the mid-1920s
the machine stroke the German military’s eye. The ENIGMA reminds of an ordinary
type writer. Its heart are three wheels. Each wheel contains on both sides 26 electrical
contacts for the 26 letters of the German alphabet. These contacts are paired irregularly.
After each keystroke the wheels are turned by a rotor. The key consists of the order
of the wheels, the initial position of the rotors, the position of the alphabet relative to
the rotor wiring, and how the electrical contacts (plugs) are connected. The number of
possible configurations has been calculated to be around 10114 (cf. [54]). That is why the
ENIGMA cipher is considered to be unbreakable. However the way ENIGMA was actually
built raised some inherent problems. The machine’s greatest weakness though, was the
way it was used. Without the operating shortcomings ENIGMA would, almost certainly,
not have been broken [18].

During the Cold War, cryptography became more and more a secret science, as gov-
ernments classified all information concerning cryptography confidential. Only with the
advent of computers in 1970s, the public’s need for cryptography raised and so it became
a public area of research. This marks the beginning of the third epoch of cryptogra-
phy. To set a standard for en- and decrypting IBM and the National Security Agency
(NSA) introduced the Data Encryption Standard [27] (DES) in 1976. Although in 2001
a new standard, the Advanced Encryption Standard [65] (AES), was published, the DES
is still used, especially a modified improved version, the Triple-DES [27]. Another signif-
icant progress in cryptography happened in 1976. Until then it was always necessary to
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exchange the key or the code word over a secure channel. Whitfield Diffie and Martin
Hellman proposed an algorithm that allowed two parties to securely agree on a key over
an insecure channel. Even if someone eavesdrop all the communication between the two
parties, it is not be possible to reconstruct the key.

2.1 What is Cryptography?

World War I and the advent of computers significantly changed the meaning of cryptog-
raphy. Until then, cryptography was effectively synonymous with encryption. Encryption
is the transformation of information in a readable state to apparent nonsense. The re
transformation is called decryption. The secret was the technique to decode the message.
Everybody who knows the technique, including unwanted persons, can decrypt the mes-
sage. This kind of strategy is called security by obscurity.

Modern cryptography, or cryptography as we know it, became rapidly more complex.
Nowadays, it is an intersection between the various fields of mathematics, computer sci-
ence, and electrical engineering. Probably the most important person in this context is
Claude Shannon, often referred to as the “father of mathematical cryptography”. It was
his paper “Communication Theory of Secrecy System” [73], which constituted a new age
of cryptography. Instead of keeping the techniques to decrypt a message secret, he intro-
duced the concept of cryptography, which bases its security on mathematical problems.
Shannon coined the phrases of theoretical secrecy (nowadays unconditional security) and
practical secrecy (computational security). If an encryption systems is said to be uncon-
ditionally secure, it means that even if an adversary has unconditional resources (e.g.,
time, computational power...), the cryptosystem will not be broken. On the other hand,
a computational secure system can be broken. However, it is assumed that an adversary
does not have the required resources to do so. An example, the only example there is, for
an unconditionally secure cipher is the one-time pad (OTP). In this encryption technique
the plaintext is paired with a random and secret key, which is at least as long as the plain-
text. If the key is truly random and never reused the ciphertext is impossible to break.
However, the OTP is rather impractical. How to exchange the key? Where to store the
key? And additionally, we need a new key every time we encrypt something!

In modern cryptography, the security of a cryptosystem (the hardness of breaking it)
is specified in the amount of operations that have to be executed in order to break the
cryptosystem. The amount of operations usually is given as a power of two or specified in
bits. But what does, for instance, a 64-bit security level mean in practice? It means that
in order to break such a cryptosystem, 264 steps are required. There is a small story to
get an idea of this kind of numbers narrated by Rudolf Taschner [78]: Once upon a time
in India there was a wealthy and happy maharaja. But one day his wife died and nobody
could cheer him up, until an old man came and taught the maharaja chess. This game
fascinated him so much, he forgot about his wife. In order to thank the old man, the
maharaja granted the old man a wish. He wished that the maharaja would start with one
rice grain on the first field on the chessboard, on the second field there should be twice
as much as on the first, on the third twice as much as on the second and so on. At first
the maharaja was incensed by this apparent littleness. However by no later than the 20th
field, the maharaja acknowledged to himself that he had underestimated the wish, because
his servants already counted over one million rice grains. Altogether it would have been
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18,446,744,073,709,551,615 rice grains, 264 − 1, about the same size as 40,000 pyramids of
Cheops. And even with a single field more on the chessboard, the amount would almost
double. This story should just show figuratively, that compared to the 64-bit security level
the 128-bit security level is not only twice as secure, but 18,446,744,073,709,551,616 times
more secure.

2.1.1 Goals and Terminology

By encryption we mean the transformation of a plaintext into a ciphertext. To perform the
inverse transformation, the decryption, one needs to know the secret key. Cryptography’s
purpose is the protection of information. According to This is achieved by the following
four main goals (cf. [52]):

• Confidentiality means preventing the disclosure of information to adversaries, or
in general unauthorized individuals or systems. This is the most obvious purpose of
a cryptosystem and is achieved by encrypting the information.

• Integrity proves the accuracy and consistency of information or data over its entire
life cycle. Integrity prevents unauthorized third persons to modify the data in an
unauthorized or undetected manner. Typically hash functions offer this service.

• Authenticity ensures the genuineness of data and transactions. It also validates the
identity of involved parties. This property is often incorporated by digital signatures.

• Non-repudiation implies that no party of a transaction can deny this transaction.
It ensures that one party has received the transaction and the other party has sent
the transaction.

There are two types of cryptography used to accomplish these objectives.

• Symmetric Cryptography is also referred to as symmetric-key, single-key, or
secret-key cryptography. Symmetric cryptography is characterized by the usage of
a single cryptographic key. The keys for encryption and decryption are identical or
can be derived from one another. The secret key must be shared between all parties
involved.

• Asymmetric Cryptography is also called asymmetric-key or public-key cryptog-
raphy. Asymmetric cryptography is based on two keys, a public key and a private
key. The two keys are somehow mathematically linked. The public key may be
distributed, however the private key must be kept secretly. In general, the public
key is used to encrypt plaintext, the private key to decrypt the resulting ciphertext.

2.2 Symmetric vs. Asymmetric Cryptography

Symmetric cryptography mainly provides one single cryptographic feature, namely confi-
dentiality. Not until the 1970s with the advent of asymmetric cryptography all theoretical
purposes of cryptography can be realized. Until the discovery of digital signatures and
hash functions, it was believed that confidentiality and authenticity were intrinsically
linked (cf. [52]). However, it is essential to distinguish these two properties. Confidential-
ity gives no evidence about the identity of the the involved parties or the origin of the
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encrypted data. This is not only useful, but essential in many different settings. For exam-
ple, how to prove who signed a contract, if both parties are able to sign with the same key?

Moreover asymmetric cryptography addresses several inherent issues of symmetric cryp-
tography:

• Key Distribution Problem. In many settings, symmetric is used to enable con-
fidential communication over an insecure channel. The arising question is how to
distribute the key. The insecure channel obviously cannot be used, otherwise an
adversary gets hold of the key. The secret key can only be transmitted over an se-
cure channel. Though, in general such secure channels hardly exist. In asymmetric
cryptography the public key used to encrypt data can be transmitted over insecure
channels. Only with the private key mathematically paired to the public key one
can decrypt the ciphertext. A further issue of symmetric cryptography is that every
unique pair of parties must have a unique key. However, this scales quadratic with
the number of people. In a system with n people, there are n(n−1)/2 keys involved.
Public-key cryptography inherently avoids this issue.

• Trust Problem. In symmetric key cryptography all involved parties have the same
possibilities, as they all posses the same key. However, sometimes it is important
to verify the originator of the message. In asymmetric cryptography this can be
achieved, as there are different keys for encryption and decryption. If the private
key is used to encrypt a message, the ciphertext is linked to the owner of the private
key.

Asymmetric cryptography relies on a trapdoor function, which is easy to compute in one
direction, yet believed or proven to be difficult in the opposite direction. Ideally would
be a one-way trapdoor function, a function which cannot be inverted. However it is an
unsolved problem in theoretical computer science if such functions even exist. Today, the
three most prominent trapdoor functions which are of practical use, are based on the
following problems:

• Integer-Factorization Problem. Integer factorization or prime factorization is
the decomposition of an integer into its prime factors.

• Discrete Logarithm Problem. The Discrete Logarithm Problem (DLP) is the
problem of computing the discrete logarithm in finite fields. Given a prime p , a
generator α, an element β ∈ Z∗p find x ∈ Z∗p such that αx ≡ β mod p.

• Elliptic Curve Discrete Logarithm Problem. The Elliptic Curve Discrete Log-
arithm Problem (ECDLP) is a generalization of the DLP. More on this problem can
be found in Section 4.2

In comparison to symmetric-key cryptography, public-key cryptography requires very long
keys. To support this claim, have a look at Table 2.2.
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Table 2.2: Key sizes for different encryption algorithms for various security levels.
Security level in bits

Algorithm Family required key/group size in bits
80 128 192 256

Symmetric 80 128 192 256

Integer factorization 1,024 3072 7,680 15,360
DLP key 160 256 192 512

group 1024 3,072 7,680 15,360
ECDLP 160 256 384 512



Chapter 3

Mathematical Background

In this section, we want to revisit some mathematical basics, as fundamentals of abstract
algebra, in particular groups, rings, and fields, which are essential for understanding ECC.
This is also important to establish a common language and formalism. We refer to Han-
kerson et al. [33] and Cohen et al. [19] for references, further details, and some neglected
proofs.

3.1 Groups

Definition 3.1. Given a set S, an operation or composition law ○ of S into itself, ○ is a
mapping from the Cartesian product S ○ S to S.

Definition 3.2. A group is a set of elements G together with an composition law ○ such
that

• The composition law is associative, that is for all a, b, c ∈ G we have a○(b○c) = (a○b)○c.

• ○ has a unit element e ∈ G such that for all a ∈ G we have a ○ e = e ○ a = a.

• For every a ∈ G there exists an inverse element a−1 such that a ○ a−1 = e.

• The group G is commutative (or abelian) if a ○ b = b ○ a for all a, b ∈ G.

The unit element of a group G is necessarily always unique, as well as the inverse of an
element. If G is commutative, the inverse of a is usually denoted by −a.

Definition 3.3. The order of an element ord(a) of a group (G, ○) is the smallest positive
integer k such that

ak = a ○ a ○ a... ○ a = e. (3.1)

Definition 3.4. A group is cyclic if there is α ∈ G such that ord(α) = ∣G∣. α is then called
a generator of G. The group G is called finite if the group’s order is finite. Then it holds
for every a ∈ G that

• a∣G∣ = e.

• ord(a) divides ∣G∣.

10
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Definition 3.5. A subgroup is a subset of a cyclic group G that is a group itself. Every
element a ∈ G with ord(a) = s is the primitive element of a cyclic subgroup H with s
elements. The subgroup H itself is associative and commutative, has the same neutral
element e as G, and for every element a ∈H there is an a−1 ∈H.

If a subgroup is of prime order (or cardinality) q it should be noted that there can be
multiple generators. For subgroups with a prime group cardinality q it holds that all
elements other than e have order q. In general for a group G each element a ∈ G generates
some subgroup H. Another important property follows Lagrange’s theorem.

Theorem 3.1. (Lagrange’s theorem) If H is a subgroup of G than ∣H ∣ divides ∣G∣. For
every integer k that divides the order n of a finite group G with the generator α there
exists exactly one subgroup H of G of order k. The generator of this subgroup H is αn/k.
The elements of H are exactly the elements a ∈ G that satisfy ak = 1 in G.

3.2 Rings

Definition 3.6. A set together with two composition laws × and + is a ring R if

• (R,+) is a commutative group.

• × is associative and has a unit element 1. The unit element of (R,+) is different, it
is 0.

• × is distributive over +, that means for all a, b, c ∈ R, a(b+ c) = ab+ ac and (b+ c)a =
ba + ca.

A ring R is commutative if its composition law × is commutative.

Definition 3.7. Given two ring (R,+,×) and (R′,⊕,⊗) a homomorphism ψ is an appli-
cation from R to R′ such that for all a, b ∈ R

• ψ(a + b) = ψ(a)⊕ ψ(b).

• ψ(a × b) = ψ(a)⊗ ψ(b).

• ψ(1) = 1.

Definition 3.8. Given a ring R, let there be a natural homomorphism ψ from R to Z:

ψ(n) = {
1 + 1 + ... + 1 n times if n ≥ 0

−(1 + 1 + ... + 1) −n times if n < 0.
(3.2)

If R is finite, ψ(n) in Equation 3.2 must be zero for some n. The kernel of ψ, denoted
ker(ψ(n)), is specified to contain this/these element(s). If the kernel is the group of
multiples of n (nZ), we call n the characteristic of R, denoted by char(R).

Definition 3.9. An element a ∈ R, R being a Ring, is called invertible if for some b it
holds that ab = ba = 1. The inverse of a is denoted by a−1. The set of invertible elements
is a multiplicative group, denoted by R∗.
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3.3 Fields

Definition 3.10. A field F is a commutative ring and all its nonzero elements are invert-
ible.

Let us summarize the definition of a field:

Definition 3.11. A set of elements is called a field F if

• The elements of F form an additive group with the composition law + and the neutral
element 0.

• The elements of F ∖ {0} form an multiplicative group with the composition law ×

(or ⋅) and the neutral element 1.

• The distributive law holds, see Definition 3.6.

A field F is called finite if the set F is finite. The two operations are addition + and
multiplication ×. Subtraction of elements is done by adding the negative. The negative of
an element a is denoted by −a and is the unique element in the field F such that a+(−a) = 0.
Similarly, division is defined as multiplication with the inverse element. The inverse of an
element b is denoted b−1 and is a unique element in F such that b ⋅ b−1 = 1. The order of
an field F is its number of elements.

Theorem 3.2. A field F of order q exists if and only if q is a prime power, q = pm for some
positive integer m. If m = 1 then F is called a prime field, for m ≥ 2 F is called extension
field. p is called the characteristic of F.

Fields of order q are denoted by Fq. For every q there exists only one unique field Fq, only
the labeling of the elements may differ. That means that all fields Fq are isomorphic to
each other.

3.3.1 Prime fields

A prime field or Galois field with a prime number of elements Fp is defined as the integer
ring Zp. Zp is the set of integers {0,1, ..., p−1}. The multiplicative and additive invertibility
of all nonzero elements is a property all fields share, as stated in Section 3.3. p is called
the modulus of the prime field Fp. The unique integer remainder r is defined as follows:

r = a mod p = a − ⌊a/p⌋. (3.3)

The operation of determining r is called reduction modulo p.

3.3.2 Binary Fields

Definition 3.12. A binary field F2 or GF(2) is also called Galois Field. It contains two
elements, 0 and 1, the additive and the multiplicative, respectively, unity.

A binary field may be considered as a prime field of order two with p = 2. The arithmetic
in binary fields can be implemented using Boolean algebra. Addition is a logical XOR,
multiplication a logical AND. This property makes binary fields of particular interest.
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3.3.3 Binary Extension Fields

Definition 3.13. Given two fields L and K, we call L an extension field of K if there
exists a field homomorphism (Definition 3.7 is also applicable to fields) from K into L.
We say L/K is a field extension of L over K.

Definition 3.14. Let L be a field extension over K. L/K can be viewed as K-dimensional
vector space. The degree of an extension is the dimension of L/K.

A Binary extension field is an extension of the binary field. We denote these fields F2m ,
m being the degree of extension. It contains q = 2m elements. Every element consists of a
sequence of m coefficients ai ∈ F2. There exist different ways to represent these elements.
Relevant for our purposes are the polynomial (or canonical or standard) basis and the
normal basis.

3.3.4 Polynomial Basis

In the polynomial basis, the elements are represented as polynomials in F2m of degree
less than m. The polynomial basis is {1, α,α2, ..., αm−1}, where α is a root of a primitive
irreducible polynomial of degree m over F2m . Every element can uniquely be expressed
as a polynomial in α over F2m of degree less than m. Every element A(α) ∈ F2m is thus
represented as:

A(α) = am−1α
m−1

+ am−2α
m−2

+ ... + a1α + a0. (3.4)

The binary vector a = (am−1, am−2, ..., a1, a0) is associated with the field elements. The
irreducible polynomial is the equivalent to the prime p in prime fields. Irreducible means
that the polynomial cannot be factored into a product of polynomials with degree less
than m.

Addition is performed as a polynomial addition with coefficient arithmetic performed
modulo 2. Let A(α),B(α) ∈ F2m .

C(α) = A(α) +B(α) =
m−1

∑
i=0

ciα
i, ci ≡ ai + bi mod 2. (3.5)

Example 3.1. Let A(α) = α4 + α3 + α + 1,B(α) = α4 + α2 + 1 ∈ F25 . We want to compute
C(α) = A(α) +B(α).

A(α) = α4 + α3 + α + 1
B(α) = α4 + α2 + 1

C(α) = 2α4 + α3 + α2 + α1 + 2
C(α) = α3 + α2 + α1

Given A(α),B(α) ∈ F2m and an irreducible polynomial f(α), polynomial multiplication
is defined as

C(α) ≡ A(α) ⋅B(α) mod f(α). (3.6)
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a0

a0

a1a2an an−1 an−2

0a1a2 000an−200 an−1an

Figure 3.1: The squaring operation in binary fields when using polynomial representation.

Example 3.2. Let A(α) = α3+α2+1,B(α) = α3+1 ∈ F25 with f(α) = α5+α4+α3+α2+1.
We want to calculate C(α) = A(α) ⋅B(α) mod f(α). We begin by computing

D(α) = A(α) ⋅B(α) = α6
+ α5

+ α3
+ α2. (3.7)

Modular reduction modulo f(α) can be done by individually reducing the partial terms of
D(α). Terms with an exponent smaller than 5 are already reduced. Thus, we only have
to perform the reduction for α5 and α6. We start with α5:

f(α) = α5 + α4 + α3 + α2 + 1
α5 = f(α) + α4 + α3 + α + 1
α5 ≡ α4 + α3 + α + 1 modf(α).

(3.8)

If we multiply α5 by α we get α6. The term α5 in the resulting product has just been
reduced, so it is replaced with the result of Equation 3.8.

α6 = (α5) + (α3 + α2 + α)
α6 ≡ (α4 + α3 + α + 1) + (α3 + α2 + α) modf(α)
α6 ≡ α4 + α3 + 1 modf(α).

(3.9)

The final result is obtained with the results of Equation 3.8 and Equation 3.9.

C(α) ≡D(α) modf(α)
C(α) ≡ α modf(α).

(3.10)

The squaring operation can be achieved by multiplying the value with itself. Due to the
fact that the coefficient arithmetic is performed modulo 2 in binary extension fields, all
odd powers vanish in the result and only even powers remain. Thus, the result always
follows a simple pattern: Insert zeros between each coefficient of the original value, as
shown in Figure 3.1. The reduction is performed afterwards.

3.3.5 Normal Basis

This section gives a short introduction to normal bases. A more detailed description would
be beyond scope of this work. We refer to Gao and Lenstra [30], Lidl [48], and Mullin et
al. [58] for details.

A normal basis is of form {β,β2, ..., β2
m−1

} and is said to be generated by the normal

element β ∈ F2m . So A(β) ∈ F2m is represented in the normal basis as

A(β) = am−1β
2m−1

+ am−2β
2m−2

+ ... + a1β
2
+ a0β.



CHAPTER 3. MATHEMATICAL BACKGROUND 15

An important property of a normal basis F2m is

β2
m

= β. (3.11)

A Multiplication in normal basis is, compared to polynomial basis, more complex. Multi-
plying two elements A(β),B(β) ∈ F2m results in a third element C(β) ∈ F2m and is defined
via m multiplication matrices λ(k) ∈ F2 as

ck =
m−1

∑
i

m−1

∑
j

λ
(k)
ij aibj . (3.12)

The space and time costs of this multiplication are related to the number of nonzero coef-
ficients in its multiplication matrices. Mulin et al. [58] showed, that this number is at least
2m−1 for F2m . These bases are called optimal normal bases (ONB). There exist two types
of ONBs, type 1 and type 2. Type 1 exists for composite integers m, type 2 for prime
ones. They are related to Gauss periods and where specified by Gao and Lenstra [30]. For
security reasons only prime extension degrees (so ONB type 2) are relevant for ECC.

A Squaring in normal basis representation is because of Equation 3.11 a simple rotate
left operation:

A(α) = am−1α
2m−1 + am−2α

2m−2 +...+ a1α
2 + a0α

A2(α) = am−2α
2m−1 + am−3α

2m−2 +...+ a0α
2 + am−1α .

(3.13)

3.3.6 Basis Transformation

The efficiency of finite field arithmetic depends on how the elements are represented. The
most resource consuming field operation is multiplication. The best space complexity re-
sults for type 2 ONB multipliers were achieved by Sunar et al. [77]. They need m2 and
3m(m−1)/2 AND respectively, XOR gates for an m-bit multiplier. This is the lower bound
for normal basis multiplication. In comparison, the well known Karatsuba algorithm for
polynomial basis multiplication has a space complexity of O(nlog23). However, squaring
can be achieved in normal basis by means of a simple cyclic shift. In polynomial basis a
modular reduction is required after each squaring.

Thus, if we perform a basis transformation, we can benefit from both representations.
Recall that finite fields with the same number of elements are isomorphic to one another.
Hence, there always exists a unique mapping between elements in different bases. A field
element in polynomial basis a(α) = a0α

0 +a1α
1 + ...+am1α

m−1 can be converted to an ele-

ment in normal basis a′(β) = a′0β
20 +a1β

21 +am−1β
2m−1 by a conversion matrix C. In order

to perform the inverse transformation this matrix C has to be invertible. The existence of
such an inverse C−1 depends on the irreducible polynomial. The matrix C is constructed
in the following way: calculate β,β2, β4, ..., β2

m−1
mod f(α) in polynomial basis and fill

each row with one result, see Equation 3.14.

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β modf(α)
β2 modf(α)
. . . . . .

β2
m−1

modf(α)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c11 ⋅ α
m−1 c12 ⋅ α

m−2 . . . c1(m−1) ⋅ 1

c21 ⋅ α
m−1 c22 ⋅ α

m−2 . . . c2(m−1) ⋅ 1

⋮ ⋮ ⋱ ⋮

c(m−1)1 ⋅ α
m−1 c(m−1)2 ⋅ α

m−2 . . . c(m−1)(m−1) ⋅ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.14)
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3.4 Multiplicative Inverse

Recall that the multiplicative inverse of a nonzero element a in a finite field Fp is denoted
a−1 and satisfies aa−1 ≡ 1 mod p. An efficient way to perform an inversion in finite fields
is to apply the extended Euclidian algorithm (EEA), which is based on the Euclidian
algorithm. The Euclidian algorithm solves the problem of computing the greatest common
divisor (gcd) by reducing the problem of finding the gcd of two numbers recursively to
finding the gcd of two smaller numbers, see Algorithm 3.1.

Algorithm 3.1 The Euclidian algorithm to find the gcd of two given numbers.

Input: a, b
Output: gcd(a, b)
1: function Euclid(a, b)
2: if b = 0 then
3: return a
4: else
5: return Euclid(a, a mod b)
6: end if
7: end function

8: return Euclid(a, b)

The EEA computes a linear combination of the form

gcd(a, b) = d = sa + tb. (3.15)

The idea behind this algorithm is to execute the standard algorithm and in every iteration
the remainder is expressed as a linear combination of the inputs. In order to compute an
inverse a−1 mod p, apply the EEA, see Algorithm 3.2, with the inputs a, p. If the resulting
gcd d is equal to one, the integer a is invertible. In case of prime fields the gcd for all
elements, expect zero, is 1. a−1 can be derived from Equation 3.15:

d = 1 = sa + tp ≡ sa mod p. (3.16)

According to Definition 3.9 we have the inverse given as

1 = sa = a−1a mod p. (3.17)

Besides the EEA, there exists another way to perform inversion in finite fields. It is based
on Fermat’s little theorem, which states that given a prime q and an integer a

aq ≡ a mod q. (3.18)

If a and q are coprime to each other it follows that

aq−1 ≡ 1 mod q. (3.19)

To calculate the inversion we divide Equation 3.19 by a and get

aq−2 ≡ a−1 mod q. (3.20)
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Algorithm 3.2 The extended Euclidian algorithm to find the multiplicative inverse.

Input: a, b
Output: The gcd of a and b in the form gcd(a, b) = d = sa + tb
1: function extended Euclid(a, b)
2: if b = 0 then
3: return (a,1,0)
4: end if
5: (d, u, v) ← extended Euclid(b, a mod b)
6: (s, t) ← (v, u − ⌊a/b⌋v)
7: return (d, s, t)
8: end function

9: return extended Euclid(a, b)

Expanding this technique to binary fields where q = 2m the inversion is defined as

a2
m
−2

≡ a−1 over F2m . (3.21)

However, the computational effort to perform an inversion according to Equation 3.21 is
rather big. To calculate the 2m − 2th power several multiplication and squaring operation
have to be performed. Especially the multiplications are complex. Itoh and Tsuji [38]
introduced an algorithm to minimize the number of multiplications. It is based on the
following three observations. Let a ∈ F2m then

a2
m
−2

= (a2
m−1

−1
)
2. (3.22)

Let i be even then
a2

i
−1

= (a2
i/2
−1

)
2i/2

⋅ a2
i/2
−1 (3.23)

and
a2

i+1
−1

= (a2
i
−1

)
2
⋅ a. (3.24)

Itoh and Tusji’s algorithm only needs ⌈ld(m)⌉ multiplication and m squaring operations.
An example can be found in Section 5.5.4.

3.5 Modular Arithemic

Modular arithmetic is essential, in particular to perform computations in prime fields. A
modular addition can simply be achieved by adding the two summands and subtracting
the modulus if the sum is greater than the modulus. However, modular multiplication is
much more complex. The hard part is not the multiplication, but the modular reduction.
One can simply perform the modular reduction as defined in Equation 3.3. However, this
implies a division, and division are in general harder than multiplications. This is why
there exist special reduction algorithms, as the Montgomery reduction algorithm [56].

Montgomery Multiplication

The Montgomery multiplication is a combination of a multiprecision multiplication algo-
rithm with the Montgomery reduction algorithm. It trades the computational expensive
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trial divisions required by the reduction step for additional multiplications. Essentially
this is achieved by changing the reduction modulo p to an reduction modulo R, with R > p
and gcd(R,p) = 1. In general, R is chosen to be a power of two, to simplify the reduction
modulo R. A further parameter, namely p′, is computed using the extended euclidian al-
gorithm: RR−1 + pp′ = 1. To perform a multiplication, the factors have to be transformed
into the Montgomery domain, which is done by multiplying them with R, as showed in
Equation 3.25

ã = aR mod p (3.25)

Equation 3.26 shows how to transform integers from the Montgomery domain to the
normal domain.

a = ãR−1 mod p (3.26)

The actual Montgomery multiplication is shown in Equation 3.27.

d = ãb̃ = abR2

u = ((dp′ mod R)p + d)/R

c̃ = {
u if u < n

u − n else

(3.27)

The product dp′ is reduced modulo R, which means that only the ld(R) least significant
bits have to be calculated. The division by R in Equation 3.27 means, that only the ld(R)

most significant bits of (dp′ mod R)p + d) are required to be computed. In order to avoid
the expensive transformation to the Montgomery domain and back to the normal domain,
it is reasonable to stay in the Montgomery domain if possible.



Chapter 4

Elliptic Curve Cryptography

The history of elliptic curves has its roots around the 2nd or 3rd century in ancient
Alexandria. In Diophantus of Alexandria’s Arithmetica [35] elliptic curves have their
mathematical debut. Diophantus posed the following question: Given a number a, find x
and y such that

y(a − y) = x3 − x. (4.1)

Diophantus solved the problem for a = 6 by transforming Equation 4.1 to have only a cubic
and quadratic term by substituting x = ky − 1 and choosing k = 3. He obtained x = 17/9
and y = 26/27. A modern interpretation of Diophantus’ solution is done in the following
way: Construct the tangent line at the point (0,−1) and get the point (17/9,26/27) where
the tangent re-intersects the curve.
Diophantus himself had no idea about analytic geometry or about elliptic curves. But
the mathematical problem he posed marks the beginning of elliptic curve cryptography.
(cf. [14]).

Leonardo of Pisa, better known as Fibonacci [26], encountered a problem from arabic
manuscripts of roughly the 8th century, namely to find rational numbers x such that both
x2 + 5 and x2 − 5 are rational squares. Fibonacci found x = 41/6. He defined a positive
integer n to be a congruent number if u2−n, u2, and u2+n are all nonzero squares for some
rational number u. Also the product of these three numbers is a nonzero rational square
v2. What Fibonacci probably did not know is that - in modern terminology - he generated
points on an elliptic curve: (u2, v) is a point on the elliptic curve En ∶ y

2 = x3−n2x (cf. [67]).

After this first two appearances of elliptic curves and diophantine equations (polynomial
equations with two or more unknowns, where only integer solutions are studied) disap-
peared until Fermat and Euler concerned themselves with them. Fermat’s famous last
theorem [22] originated in Fermat’s studies about Diophantus’ work.

In the 1670s, Newton [59] was the first to explain the mysteries behind Dophantus’ prob-
lem. He pointed out, that Diophantus was actually intersecting a cubic curve with a line.
He followed, that in general such an intersection consists of three points, unless the line is
a tangent, then two points are the same.

Gauss’ work [31] gave number theory a new direction, thus elliptic cures again were lost
sight of. In the beginning of the 20th century elliptic curves reappeared. Mordell [57] and

19
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Weil [83] proved Poincarés assumption, that the group of rational points on an elliptic
curve is generated by a finite number of points. In the 1980s Lenstra [46] showed that
elliptic curves could be used for factoring integers. This fact inspired Neal Koblitz [43]
and Victor Miller [55] to independently propose a cryptographic system based on elliptic
curves in 1985. In the late 1990’s elliptic curves started to grow commercial and industrial
acceptance.

This chapter contains an overview on elliptic curves. Relevant properties and defini-
tions in general are given in Section 4.1. Beginning with Section 4.1.1 we mainly focus on
elliptic curves over binary fields.

4.1 Arithmetic on Elliptic Curves

Elliptic curves are used in many cryptographic applications. One reason can be found in
their fast group law and because no sub exponential attacks are known. The group law is
based on arithmetic involving the points on an elliptic curve. Arithmetic on elliptic curves
is defined in terms of arithmetic operations on an underlying field, e.g., a prime field or a
binary extension field.

In this section we summarize the main properties. For references, further details, and
some neglected proofs we refer to Hankerson et al. [33] and Cohen et al. [19] .

Definition 4.1. An elliptic curve E over a field K is denoted by E/K or E(K) and is
defined by the Weierstrass equation

E ∶ y2 + a1xy + a3y = x
3
+ a2x

2
+ a4x + a6 (4.2)

with a1, ..., a6 ∈K.

Definition 4.2. E as defined in Equation 4.2 is said to be nonsingular or smooth if for
each point (x1, y1), the partial derivatives 2y1+a1x1+a3 and 3x21+2a2x1+a4−a1y1 do not
become zero simultaneously. This means that for every point only one distinct tangent
line exists. This property can also be expressed using the discriminant ∆ of an curve E

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6 (4.3)

with
d2 = a21 + 4a2

d4 = 2a4 + a1a3

d6 = a23 + 4a6

d8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a

2
4.

A pair of elements (x, y), x, y ∈K, is called a point, if it satisfies the equation of the curve.

The Weierstrass Equation 4.2 can be simplified considerably by an transformation called
admissible change of variables. The admissible change of variables transforms an elliptic
curve to another isomorphic (a bijective homomorphic) curve. For u, r, s, t ∈ K, u ≠ 0 the
admissible change of variables is defined is defined as

(x, y)→ (u2x + r, u3y + u2sx + t). (4.4)
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Figure 4.1: Point addition on an elliptic curve.

The admissible change of variables applied to curves over a field K with char(K) = 2
transforms Equation 4.2 to

y2 + xy = x3 + ax2 + b. (4.5)

For the sake of completeness, for fields K with a characteristic not equal to two or three
(e.g., prime fields), the transformation results into the following equation

y2 = x3 + ax + b. (4.6)

Let E be an elliptic curve defined over a field K. The set of points E(K) forms an abelian
group with ∞ serving as its identity. The group operation is called addition of points
and is defined by the chord-and-tangent rule. Let P = (x1, y1),Q = (x2, y2) be two points
on an elliptic curve E over K. That means both pairs (x1, y1), (x2, y2) ∈ K satisfy the
equation E. The group operation addition applied to P and Q results in a third point
R = (x3, y3) with R = P +Q and is constructed as follows: Draw a line from P to Q. The
line intersects the curve at a point. Reflecting this point about the x-axis results in R.
This point addition rule is depicted in Figure 4.1. Note that the intermediate point T is
the negative of R : −R.

−4 −2 2 4
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2

R
T

S = 2R

x

y

Figure 4.2: Point doubling on an elliptic curve.
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Figure 4.3: The elliptic curve E ∶ y2 = x3 − x + 9 over F31.

Point doubling is a special case of a point addition. It is the addition of a point R(x1, x2)
with itself, resulting in a point S = (x3, y3) with S = R +R = 2 ⋅R. The double of a point
is constructed as follows: Draw the tangent line at P . The intersection (there is only one
intersection) is depicted as T in Figure 4.2. Reflecting this point about the x-axis gives
the point S = 2R = R +R. The intersection T is the negative of S : −S.

Figure 4.2 and Figure 4.1 show elliptic curves over R. An elliptic curve over a finite field is
not reminiscent of an curve anymore: Figure 4.3 shows the elliptic curve E ∶ y2 = x3 +x+9
(the same as in Figure 4.2 and Figure 4.1) over a prime field, namely F31. All the arith-
metic is therefore done over F31. Elliptic curves over binary fields F2m cannot be plotted
properly, one would need an m-dimensional plot.

4.1.1 Group Law

To form a group, several rules need to be considered, as stated in Section 3.1. In the
following the group law for an elliptic curve E over a binary extension field F2m is sum-
marized:

1. Identity: The point at infinity ∞. P +∞ = P for all P ∈ E(F2m).

2. Negatives: The negative of point P = (x, y) ∈ E(F2m) is denoted −P = (x,x + y). −P
is indeed a point on the elliptic curve. Note that −P + P =∞.

3. Addition: Adding two points P = (x1, y1),Q = (x2, y2) ∈ E(F2m), whereas P ≠ Q
results in a third point R = (x3, y3) ∈ E(F2m), where

x3 = λ2 + λ + x1 + x2 + a
y3 = λ(x1 + x3) + x3 + y1

(4.7)

with λ = y1+y2
x1+x2

.

4. Doubling: Adding a point P = (x, y) ∈ E(F2m) to itself, where P ≠ −P is called point
doubling and results in a point R = (x3, y3) ∈ E(F2m), where

x3 = λ2 + λ + a
y3 = x21 + λx3 + x3

(4.8)
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with λ = x1
y1
x1

.

4.1.2 Group Order and Group Structure

The group order is the number of points of an elliptic curve E(Fq). It is called the order
of E over Fq and is denoted by #E(Fq).

Theorem 4.1. Let E be an elliptic curve defined over Fq. Then Hasse’s theorem proves
that

q + 1 − 2
√
q ≤ #E(Fq) ≤ p + 1 + 2

√
q. (4.9)

The group order depends on the elliptic curve’s parameters a and b. For every prime field,
there exists at least one elliptic curve having a prime order. However, curves over binary
extension fields never have a prime group order. Their group order can be factored into
several terms. These terms are referred to as cofactor h and suborder n. The suborder n
is defined to be prime, so the remaining factors can be found as the cofactor. The cofactor
is at least two and always a multiple of two.

Example 4.1. Let E(F31) ∶ y
2 = x3 − x + 9 as shown in Figure 4.3. According to Hasse’s

Theorem 4.1, 21 ≤ #E(Fq) ≤ 44. Start with P = (0,1) and compute the points 2P = P +P ,
3P = 2P + P until [i]P = P for some i > 0.

P = = (0,3)
2P = P + P = (25,29)
3P = P + 2P = (11,24)
. . .

36P = ∞

37P = P + 36P = (0,3) = P.

(4.10)

Equation 4.10 shows, that the point P (0,3) has order 37. Actually these are all the points
on this curve E. However not every point’s order is equal to the group order. For instance
if we start with P (0,18) we get

P = = (0,18)
2P = ∞

3P = P + 2P = (0,18) = P.
(4.11)

Example 4.2. We also want to give an example using a binary extension field. Let
E(F23) ∶ y

2+xy = x3+x2+x. F23 is defined by the irreducible (or characteristic) polynomial
α3 + α + 1. According to Hasse’s Theorem 4.1, 4 ≤ #E(Fq) ≤ 15. We start by P (α2 + α +
1, α2 + α + 1) and get

P = ( α2 + α + 1 , α2 + α + 1)
2P = ( α2 + 1 , α2 + 1)
3P = ( α + 1 , 0)
3P = ( α + 1 , α + 1)
4P = ( α2 + 1 , 0)
5P = ( α2 + α + 1 , 0)
6P = ∞

7P = ( α2 + α + 1 , α2 + α + 1) = P.

(4.12)

Actually the order of E(F23) is 14. But this particular point’s order is only 7.
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4.1.3 Scalar Multiplication

Let E(Fq) be an elliptic curve defined over Fq. Given an integer n ∈ N ∖ {0} a scalar
multiplication or point multiplication denotes the n-fold addition of a point P to itself.
We denote the scalar by [n]. The scalar multiplication is then given as

[n]P = P + P + . . . + P
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

= Q. (4.13)

By analogy with the square-and-multiply algorithm to compute an integer exponentiation
more quickly, the double-and-add algorithm can be used to calculate the elliptic point
scalar multiplication. Algorithm 4.1 shows how the point multiplication with an integer n
can be done in at most ld(n) point additions and point doublings instead of n additions.

Algorithm 4.1 Double-and-add algorithm for computing elliptic curve point multiplica-
tion.

Input: P,n with n = ∑
ld(n)
i=0 ni2

i

Output: R = [n]P
1: R ← 0
2: for i from 0 to ld(n) − 1 do
3: if ni = 1 then
4: R ← R + P
5: end if
6: P ← P + P
7: end for

4.1.4 Koblitz Curves

Koblitz curves or sometimes referred to as Anomalous Binary Curves (ABCs) are a spe-
cial subset of elliptic curves defined over a binary field. This special subset of curves is
applicable to an automorphism, called Frobenius automorphism. An automorphism is an
isomorphism from an mathematical object or structure to itself. Koblitz curves have only
a limited subset of possible parameters. They are defined as follows

EABC ∶ y2 + xy = x3 + a2x + 1, with a2 = 0 or 1. (4.14)

For these curves a characteristic polynomial of the Frobenius automorphism exists,

χ(λ) = λ2 − µλ + 2 ≡ 0 mod n (4.15)

with µ = (−1)1−a2 .

The Frobenius automorphism itself is defined as

Φ(P (x, y)) = P (x2, y2) = [λ]P (x, y) (4.16)

with lambda from Equation 4.15. The automorphism is defined to map the point at in-
finity P =∞ to itself.
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We call the Frobenius automorphism an automorphism of size m as it can be applied
up to m − 1 times resulting in m different points (the original point P included):

Φ(P ) = λP ≠ P
Φ2(P ) = [λ2]P ≠ P
Φ3(P ) = [λ3]P ≠ P

. . .
Φm−1(P ) = [λm−1]P ≠ P
Φm(P ) = [λm]P = P.

(4.17)

It follows from Equation 4.15 that point doublings can be replaced by point additions
involving the Frobenius automorphism:

2P = µΦ(P ) −Φ2
(P ). (4.18)

This property results in an efficient scalar multiplication method involving computations
with the Frobenius automorphism and makes Koblitz curves of special interest for im-
plementations. The Frobenius automorphism exists for every Koblitz curve. However,
Koblitz curves have only the single free parameter a2, see Equation 4.1.4. Thus for each
prime extension degree m there exist only two different curves. We can compute their
group order and check of how many subgroups the group order is composed of. For se-
curity reasons stated in Section 4.2, only curves with a small cofactor h being 2 or 4 can
be used for security sensitive applications. Therefore we cannot generate a Koblitz curve
applicable for cryptographic uses for each extension degee m.

4.1.5 Negation Map

The negation map is another automorphism. However, the size of the automorphism is
only two. It holds for some λneg that

Ψ(P ) = −P = λnegP. (4.19)

4.2 The Elliptic Curve Discrete Logarithm Problem

The Elliptic Curve Discrete Logarithm Problem (ECDLP) is the foundation of elliptic
curve cryptography. The security of all cryptographic protocols based on elliptic curves
rely on the intractability of the ECDLP.

Definition 4.3. Let E be an elliptic curve defined over Fq, P a point on E with order
n, and Q a multiple of P , denoted Q ∈ ⟨P ⟩. The ECDLP is the problem of finding the
integer k ∈ [0, n − 1] such that Q = [k]P . The integer k is the discrete logarithm of Q to
the base P , denoted k = logP Q.

Given the two points P and Q, an attacker has to calculate the integer k. The naive,
straight forward approach, the exhaustive search, would be to calculate every scalar mul-
tiplication (1P,2P,3P...) until the result equals Q. The average runtime of this attack
is O(n). So to prevent this kind of attack one has to chose n big enough to make it
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computationally infeasible.

However, there exist algorithms to solve the ECDLP faster. The best known algorithms
have a running time of O(

√
n). There exists no proof that no faster algorithm can be

found to solve the ECDLP; there is no theoretical proof of the intractability of the ECDLP.
In the following subsection we outline some algorithms to solve the ECDLP.

4.2.1 Baby-Step Giant-Step

Shank’s Baby-Step Giant-Step [72] method is one approach to solve the ECDLP. It is
based on a decomposition of k into

[k]P = [iη + j]P = Q. (4.20)

A good choice for η = ⌈
√
n⌉. As k ∈ [0, n − 1] it follows that iη + j < n, which means that

i, j ∈ [0, η − 1]. The algorithm tries to find a pair that satisfies

[j]P = Q − [iη]P. (4.21)

The left side of Equation 4.21 correspond to the baby steps, the right side to the giant
steps. At first all possible baby steps have to be calculated and stored sorted into a table.
Then all giant steps are calculated until a match is encountered. From this match the
discrete Logarithm k can be reconstructed. From the bounds for i and j, it is possible to
derive an expected running time of O(

√
n). However, the algorithm is not applicable to

curves with a large group order n because of its storage requirements of O(
√
n).

4.2.2 Pohlig-Hellman

The Pohlig-Hellman algorithm [63] is based on the decomposition of the group order into
smaller subgroups. Factorize

n = pe11 p
e2
2 . . . pezz (4.22)

with pi being prime factors and ei its powers.

The Pohlig-Hellman algorithm solves the system of congruences

k ≡ k1 mod pe11
k ≡ k2 mod pe22
k ≡ . . .
k ≡ kz mod pezz .

(4.23)

Finding the ECDLP is now as hard as finding the ECDLP in the largest subgroup of prime
order and can therefore reduce the hardness of solving the ECDLP if the group order is a
composite integer. An obvious countermeasure is to chose the group order to be of prime
order or to be divisible by a larger prime.

4.2.3 Isomorphism Attacks

The mathematics behind Weil and Tate paring attack and a Weil descent attack is quite
sophisticated. Basically, these attacks try to reduce the problem of solving an ECDLP to
the problem of solving a DLP, for which faster algorithms are known. This can be done
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if there exists an isomorphism between the group of elliptic points ⟨P ⟩ and a group G.
Let P ∈ Fq have prime order n and G be another group with order n. Thus ⟨P ⟩ and G
have order n and are both cyclic, which means they are isomorphic. So one tries to find
an isomorphism

Ψ ∶ ⟨P ⟩→ G, (4.24)

to reduce the ECDLP in ⟨P ⟩ to an DLP in G. The difficulty lies in finding such an iso-
morphism.

An attack, the Araki-Satoh-Semaev-Smart [70, 71, 75] attack, on so called prime-field-
anomalous curves exploits the isomorphism between E(Fp) and the additive cyclic group
F+, which exists if #E(Fp) = p. In F+ the DLP can be found using the EEA described in
Section 3.3.1.

The Weil and Tate pairing attacks [28, 51] are based on the following observation. Let
P ∈ Fq have prime order n and gcd(n, q) = 1. k is the smallest integer such that

qk ≡ 1 mod n. (4.25)

There exists a multiplicative group F∗
qk

with a subgroup G of order n. Solving a DLP in
these subgroup leads to the solution of the ECDLP in Fq. In order to avoid these attacks
one needs to make sure that the base point’s order n does not fulfill Equation 4.25 for
small values of k. For group orders n ≥ 2160 it suffices to check for k ≤ 20 (cf. [33]).

The Weil descent attack is properly the mathematically most complex attack. It is appli-
cable to elliptic curves over binary field F2m . If m is composite, the ECDLP in E(F2m)

can be reduced to a DLP of a curve with a larger genus defined over a subfield E(F2l)

with l being an integer divisor of m.

4.2.4 Pollard’s Rho Attack

J. M. Pollard [64] introduced in 1975 a novel factorization method. His algorithm allowed
to find a prime factor p in

√
p steps as opposed to p steps with trial division. This

factorization method is based on Floyd’s cycle-finding algorithm and the fact, that random
collisions are far more likely than a specific collision. Applied to the ECDLP, the algorithm
finds two pairs of integers (c1, d1) and (c2, d2) such that:

c1P + d1Q = c2P + d2Q. (4.26)

So we can compute the discrete logarithm k to the base P of Q as follows:

(c1 − c2)P = (d2 − d1)Q = (d2 − d1)kP. (4.27)

k = (c1 − c2)(d2 − d1)
−1 mod n. (4.28)

According to the birthday paradox we encounter such a collision after approximately
√

πn
2

steps. The naive approach is to store the calculated points and the pairs of integers in
a table until a point is obtained for the second time. This however requires storage for
averagely

√
πn
2 points and integers. The beauty of Pollard’s rho attack is the negligible

storage requirements and roughly the same execution time as the naive approach. The
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idea behind this attack is to define an iterating function f ∶ ⟨P ⟩ → ⟨P ⟩ given X ∈ ⟨P ⟩

and c1, d1 ∈ [0, n − 1] with X = c1P + d1Q. This iteration function should easily compute
f(X) = X̄ and c2, d2 ∈ [0, n−1] with X̄ = c2P +d2Q. f should also have the characteristics
of a random function. It is common to partition ⟨P ⟩ in to L branches S1, S2, ...., SL by
assigning a point X to a branch according to its x-coordinate’s least significant bits repre-
senting an integer j. So this partition function is H(X) = j if X ∈ Sj . Let aj , bj ∈ [0, n − 1]
for 0 ≤ j < L. Finally we can define our iterating function f as follows:

f(X) =X + ajP + bjQ where j =H(X). (4.29)

If X = cP + dQ, it follows that f(X) = X̄ = c̄P + d̄Q where c̄ = c + aj and d̄ = d + bj . Any
starting point X0 determines a sequence of points where Xi+1 = f(Xi). Eventually the
sequence will collide and cycle forever, since the set ⟨P ⟩ is finite. The collision can be
found using Floyd’s cycle-finding algorithm: Compute pairs (Xi,X2i) until Xi = X2i. We
only have to store the current and the next pair.

Pollard’s Rho attack as described above can easily be parallelized as shown by van Oorschot
and Wiener [81]. The idea is to let every instance calculate points according to Equa-
tion 4.29. The parallelized Pollard’s rho algorithm can be structured into three parts.
An initialization part, a server part, and a client part. During the initialization part, M
starting points for each client, and L points and integers of the iterating function f for all
M clients are calculated. Each client selects one starting point and calculates subsequent
points according to Equation 4.29. Note that during the initialization, the sum of ajP+bjQ
were already calculated, so the client does not have to perform a point multiplication. If a
client encounters a distinguished point, it sends the point and the integer pair to a server.
A point is called distinguished, if for instance the leading t bits of the point’s x-coordinate
are zero or its Hamming weights is smaller than t. The server stores the received points
in a data structure. Once the server receives a point twice and the integers c and d differ,
the server calculates the scalar k. The pseudo code for the initialization, client, and server
part is found in Algorithm 4.2, 4.3, and 4.4, respectively. Note that the possibility of
failure in Algorithm 4.4 is negligible.

Algorithm 4.2 Initialization part of the parallelized Pollard’s rho algorithm for the
ECDLP.
Input: P ∈ F2m of prime order n, Q ∈ ⟨P ⟩.
Output: Starting points Xs = cs + ds and triples Rj = aPj +Qbj .
1: Select the number L of branches.
2: Specify the number M of clients.
3: Select a partition function H.
4: Select distinguishing property for points in ⟨P ⟩, e.g. number t of leading zeros.
5: for all s from 0 to M − 1 do
6: Select random cs, ds ∈ [0, n − 1].
7: Xs ← csP + dsQ
8: end for
9: for all j from 0 to L − 1 do

10: Select random aj , bj ∈ [0, n − 1].
11: Rj ← ajP + bjQ
12: end for
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Algorithm 4.3 Client part of the parallelized Pollard’s rho algorithm for the ECDLP.

Input: Rj ,X ∈ F2m of prime order n; aj , bj ∈ [0, n − 1].
Output: Distinguished triple X = cP + dQ.
1: loop until finished
2: j ←H(X)

3: X ←X +Rj
4: c← c + aj mod n
5: d← d + bj mod n
6: if X is distinguished then
7: send X, c, d to the server.
8: end if
9: end loop

Algorithm 4.4 Server part of the parallelized Pollard’s rho algorithm for the ECDLP.

Input: Distinguished point X ∈ F2m of prime order n and corresponding integers c, d ∈

[0, n − 1].
Output: The discrete logarithm k = logP Q.
1: loop until finished
2: Receive distinguished triple (X, c1, d1).
3: if X already in data structure then
4: Load triple with point (X, c2, d2) from data structure.
5: if d1 = d2 then
6: return Discard triple
7: end if
8: k = (c1 − c2)(d2 − d1)

−1 mod n
9: return k

10: else
11: store triple (X, c1, d1).
12: end if
13: end loop
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Pollard’s Rho Algorithm using Automorphisms

The iteration function described in Section 4.2.4 is called Teske’s r-adding walk [79].
However there exist several iteration functions, which are not only defined on the points
in ⟨P ⟩ but on the equivalence classes defined by automorphisms. Given an automorphism
Υ ∶ ⟨P ⟩→ ⟨P ⟩ of order w we have equivalence classes denoted by [R]. Such an equivalence
class is defined as

[R] = R,Υ (R), Υ 2
(R), ..., Υw−1(R). (4.30)

Let κ ∈ [0, n − 1] be an integer such that

Υ (P ) = κP. (4.31)

So if we have Xi = [ci]P + [di]Q we can compute

Υ l(Xi) = X̃i =
˜[ci]P + ˜[di]Q (4.32)

with c̃i = ciκ
l mod n and d̃i = diκ

l mod n.

If the w equivalence classes are of approximately equal size the search space can be re-
duced from n to n/w. This holds for the Frobenius automorphism, an automorphism of
size m and the negation map, an automorphism of size two. So a properly selected it-
eration function can speed up the attack by a factor of

√
2m compared to the standard

algorithm. In Section 5.3 we compare several iterations functions exploiting the Frobenius
automorphism and the negation map.



Chapter 5

Solving the ECDLP

In order to compare different cryptosystems we use the concept of a security level specified
in bits. However, this kind of comparison only allows a rough estimate. It only specifies
the amount of iterations needed to break such a cryptosystem, but does not consider the
expenses of a single iteration. The arising question is, how big should the parameters of an
elliptic curve cryptosystem should be in order to avoid practical attacks. Parameters too
large waste computational power, time, and space, parameters too small pose a security
threat. A trade off between security and performance cannot be avoided. There exist sev-
eral estimations concerning the size of the parameters for ECC. In order to offer security
to date the estimations vary. Lenstra and Verheul [44] specify a minimal key size of 154
bits, the European Network of Excellence in Cryptology II (ECRYPT II) [23] 160 bits, and
the National Institute of Standards and Technology (NIST) [9] 224 bits. To estimate the
real effort of breaking a cryptosystem based on elliptic curves, Certicom [15] published a
list of challenges. This list contains several different parameter settings for different curves.

In this chapter we outline previous attacks, summarize our design decisions, present our
hardware design, the ECC-Breaker, in detail, and conclude with the results.

5.1 Previous Work

There exist three different types of challenges, which have to be distinguished: Curves over
prime fields (ECCp), curves over binary fields (ECC2), and curves over binary field, where
a Frobenius automorphism can be used (ECC2K). A challenge is denoted “ECCX-n” with
n being the group order. For instance, a 113-bit Koblitz curve is an elliptic curve de-
fined over a binary field defined by an irreducible polynomial with 113-bits. However, the
group order of this curve is 112 bits (meaning 2111 ≤ n < 2112) (see Section 4.1.2), so it
is denoted ECC2K-112. Several challenges are official challenges published by Certicom,
namely ECC2-109, ECC2K-108, ECC2-131, ECC2K-130, ECC2K-162, ECC2-193, and
ECCp-109.

To attack a large curve, Pollard’s rho algorithm is the algorithm of choice. It can be
parallelized easily and efficiently and all instances can computee independently from each
other. The computational effort of this attack is measured in repeated executions of its
iteration function. Recall from Section 4.2.4 that on average the solution is found after√
πn/2 iterations. A negation map speeds up the attack by a factor of

√
2, a Frobenius

31
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automorphism by a factor of
√
m. These mechanisms are described in Section 5.3. All the

following attacks we mention use Pollard’s rho algorithm.

Until now, the hardest solved Certicom challenges are the 109-bit prime challenge (ECCp-
109) and the 109-bit challenge for binary fields (ECC2-109). ECCp-109 was solved by
Monico et al. [16] using about 10,000 PCs for 549 days in 2002. The ECC2-109 challenge
was also also solved by Monico et al. [17] using about 2,600 PCs for around 510 days in
2004. Apart from the Certicom challenges, Harley et al. [34] solved an ECDLP on a 109-
bit Koblitz curve (ECC2K-108). The mentioned attacks were running on general purpose
CPU’s, sometimes with public participation. ECCp-112 was solved by Bos et al. [13] in
2012. Bos et al. used PlayStation 3’s [76] Cell CPUs. Each PlayStation 3 performs 42 ⋅106

Iterations Per Second (IPS). Other than the mentioned, there exist several approaches to
solve ECDLPs with dedicated hardware. Most notably is the work of Fan et al. [25]. The
proposed architecture targets Certicom’s ECC2K-130 challenge for Koblitz curves and
performs 111 ⋅106 IPS using Spartan-3 FPGAs [90]. An attempt to break ECC2K-130 was
also started by Bailey et al. [8]. Besides implementations for Nvidia’s GTX 295 graphics
cards [60], Intel’s Core 2 Extreme CPUs [37], they developed also a Spartan-3 architec-
ture with 33.67 ⋅ 106 IPS throughput. Dormale et al. [53] target ECC2-112, ECC2-131,
and ECC2-163 using Spartan-3 FPGAs performing up to 20 ⋅ 106 IPS. An architecture for
ECCp-131 is contributed by Gueneysu et al [32], whose Spartan-3 architecture performs
about 173 ⋅103 IPS. An Virtex-5 [91] architecture for ECC-112 by Judge et al. [39] executes
2.87 ⋅ 106 IPS, Mane et al.’s [49] architecture, which uses the same platform and attacks
the same challenge, performs 660 ⋅ 103 IPS.

It is fairly difficult to compare different architectures targeting different curves. Nonethe-
less, Table 5.1 should give an overview about all mentioned architectures. Many of those
designs are just proofs of concept and were never really used to solve an ECDLP. Some
designs rely on additional hardware (e.g., PCs), which perform some of the arithmetic.
The single design that really solved an ECDLP is the design by Bos et al. [13]. Possible
ways to speed up Pollard’s rho attack is the use of the Frobenius automorphism (denoted
F in the table) and the negation map (N). The number of iterations takes implemented
speedups into account. The throughput is given in IPS.

Table 5.1: Overview of previous attacks.

Ref. Curve Speed ups Iterations Hardware Throughput Runtime

[25] ECC2K-130 F 3 ⋅ 1018 Spartan 3 111 ⋅ 106 579 y
[8] ECC2K-130 F & N 2 ⋅ 1018 C2E Q6850 22 ⋅ 106 2853 y
[8] ECC2K-130 F & N 2 ⋅ 1018 GTX 295 25 ⋅ 106 2550 y
[8] ECC2K-130 F & N 2 ⋅ 1018 PS3 28 ⋅ 106 2315 y
[53] ECC2-112 - 90 ⋅ 1015 Spartan 3 20 ⋅ 106 143 y
[53] ECC2-131 - 46 ⋅ 1018 Spartan 3 2 ⋅ 106 733 ⋅ 103 y
[53] ECC2-163 - 3 ⋅ 1024 Spartan 3 9 ⋅ 106 11 ⋅ 109 y
[32] ECCp-131 - 49 ⋅ 1024 Spartan 3 173 ⋅ 103 7 ⋅ 106 y
[49] ECCp-112 - 90 ⋅ 1015 Virtex 5 660 ⋅ 103 4 ⋅ 103 y
[39] ECCp-112 - 90 ⋅ 1015 Virtex 5 3 ⋅ 106 998 y
[13] ECCp-112 - 90 ⋅ 1015 PS3 42 ⋅ 106 65 y
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5.2 Goals & Strategies

Our goal is to establish a new binary ECDLP record. The largest solved binary ECDLP
instance was ECC2-109, an ECDLP on a 109-bit binary curve. There is even an attempt
to break ECC2K-130 [8], a 131-bit Koblitz curve. However, although the attack started
in 2009, to date no results have been published.

To establish a new record we must beat ECC2-109. For security reasons stated in Sec-
tion 4.2 the extension degree m should be of prime order. The primes following 109 are
113, 127, and 131. For the 127- and 131-bit challenges one would need to execute 12 ⋅ 1018

and 46 ⋅1018 iterations. The 113-bit binary curve is expected to be broken in 90 ⋅1015 itera-
tions, thus it is about 128 times easier than the 127-bit challenge. Exploiting the Frobenius
automorphism can reduce the number of iterations by a factor of

√
m. Though, as stated

in Section 4.1.4, we cannot generate secure Koblitz curves for each prime extension degree
m, and unfortunately, for m = 127 this is the case. However, as it happens for m being
113 there exists a secure Koblitz curve. If we exploit the Frobenius automorphism, we
can solve a 113-bit ECDLP in approximately 8 ⋅ 1015 iterations. Although ECC2K-112
is in terms of computational effort easier than ECC2-127 or ECC2K-130, by breaking
ECC2K-112 we provide important estimations regarding the computational complexity of
ECC2-127, ECC2K-130, and ECC2-131.

Having chosen to target ECC2K-112, one of the next decisions we had to make, was
whether we go for a general-purpose hardware approach (e.g. x86-CPUs) and use a huge
amount of clients to solve the ECDLP, as Harley et al. [34] or Monico et al. [17] did, or if
we go for a special-purpose hardware approach. In terms of throughput a special purpose
hardware approach is vastly superior to a general-purpose hardware approach, however
the amount of work involved in developing a special-purpose hardware is fairly big.

Nevertheless, we decided to develop a novel hardware architecture for a Field Programmable
Gate Array (FPGA). FPGAs are programmable logic. An FPGA consists of so-called
slices. A slice itself contains Look Up Tables (LUTs) to realize logic and register (regs)
to store values. Additionally, FPGAs commonly offer block RAM, used for storing larger
amounts of data, and DSP -slices, which can be used to efficiently perform integer arith-
metic.

In comparison to many previous designs (see Section 5.1), we decided to use a state-
of-the-art FPGA instead of a low-cost FPGA, as many previous works did by choosing
the Spartan-3. The ML605 development board [89] with a Virtex-6 XC6VLX240T [89]
(henceforth referred to as Virtex-6 only) seems to be the optimal choice. It is commonly
available and it provides a fairly large amount of slices and additional DSP-slices. Our
task is to perfectly parallelize the iteration function, to completely pipline it, such that
in each clock cycle one result is calculated. We want to maximize the performance of a
Pollard’s rho iteration function on this particular board.

Such an iteration function basically consists of an elliptic curve point addition and some
prime field arithmetic to keep track of the scalars of the linear combination X = [c]P+[d]Q.
A point addition consists of two field multiplications, a field inversion and several field
additions and field squarings. We refer to Section 4.1.1 for details. The field additions
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are neglectable, the field squarings are also of low complexity, the field inversion itself is
based on field squarings and field multiplications. The most complex part of an elliptic
curve point addition is the field multiplication. Therefore, focusing development effort on
evaluating several field multipliers in terms of size pays off. The results of this evaluation
can be found in Section 5.5.5. The next crucial decision is which iteration function to use.
The success of an attack relies on a properly selected iteration function. The selection
process is described in Section 5.3.

Moreover, it is important to determine how the actual attack should be conducted. De-
spite the computational power of a Virtex-6 FPGA, an attempt to solve a 113-bit ECDLP
requires several of those FPGAs calculating several days. It is crucial that these FPGAs
are independent from each other to avoid a single point of failure. The results of the
FPGAs have to be stored in a central database. We decided to go for a client-sever model:
a sever is used to store the points and clients are devoted to calculate the points. These
clients communicate with the FPGAs over a serial interface. They initialize the FPGAs,
collect the calculated points and send them to the server. The detailed setup can be found
in Section 5.4.

5.3 Selecting the Iteration Function

Prior to the actual hardware design, a proper iteration function has to be selected. This
is a decision of great significancy, as the iterations function’s performance is a upper
bound for the overall performance. Recall from Section 4.2.4, that an iteration function
f ∶ ⟨P ⟩ → ⟨P ⟩ takes a linear combination of P and Q, namely X = [c]P + [d]Q with
c, d ∈ [0, n − 1] and computes a point X ′ = [c′]P + [d′]Q with c′, d′ ∈ [0, n − 1]. f should
be easily computable and should have the characteristics of a random function. A proper
iteration function determines the performance and success of Pollard’s rho algorithm.

Teske’s r-adding walk [79] is a close-to-optimum choice for the iteration function. It
is based on a partition of the elliptic curve group into r distinct subsets {S1, S2, ..., Sr}
of roughly equal size. Depending on which subset Sj a point X is assigned to, the it-
eration functions computes X ′ = X + [cj]P + [dj]Q with cj , dj ∈ [0, n − 1]. For short we
write Rj = [cj]P + [dj]Q. The pseudo code for this iteration function can be found in
Section 4.2.4.

A speedup of
√

2 can be achieved by using the negation map, an automorphism of size two.
After each iteration either Xi or −Xi is selected depending on which point has a smaller
y-coordinate when represented as an integer. The disadvantage of using the negation map
is the possibility of trapping the iteration function in a loop. Cycles within this loop are
called fruitless cycles. Suppose that Xi, Xi+1 and Xi+2 belong to the same set Sj and we
select both times the negative point. Then Xi+1 = −(Xi+Rj) and Xi+2 = −(Xi+1+Rj) =Xi.
In order to avoid the occurrence of such loops, we have to apply additional techniques, as
for instance described by Wiener and Zuccherato [84].

The Frobenius automorphism for Koblitz curves has not only size two, but size m, which
allows the attack to be further sped up by a factor of

√
m. Wiener and Zuccherato [84]

propose to calculate all points Φl(Xi + Rj) ∀ l ∈ [0,m − 1], and continue with the point
which has the smallest x-coordinate when represented as an integer. Another iteration
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function is introduced by Gallant et al. [29]. It is based on a labeling function L, which
maps the equivalence classes defined by the Frobenius automorphism to a set of represen-
tatives. The iteration function uses this map and is defined as Xi+1 = Xi + Φ

l(Xi), where
l = hashm(L(Xi)).

Table 5.2 shows an overview about the mentioned iteration functions. Expected and
measured iterations are given for ECC2K-40. Measured iterations are given as average
value, calculated from 100 iterations of Pollard’s rho algorithm. For our experiments l in
Gallant et al ’s method is the Hamming weight calculated in normal basis. For our hard-
ware design, we use Wiener and Zuccherato’s [84] iteration functions, as our experiments
render it superior.

Note, that the negation map was not considered, because we do not use it in our de-
sign for the following reason. Given L branches the probability to encounter a fruitless
cycles is given by 1/(2mL). Let L be 1024. It follows that we encounter a fruitless cycle
with a probability greater than 99% after about 1,000,000 iterations. This is far too likely
to neglect. The mentioned technique to avoid fruitless cycles described by Wiener and
Zuccherato [84] checks which branches the input point and the resulting point belongs
to. If they belong to the same branch j, the result is discarded and the input point is
considered to belong to the branch j + 1 in the next iteration. This is repeated until the
branches of the input point and the resulting point differ. This technique reduces the
occurrence of fruitless cycles significantly, however does not avoid them completely. This
can only be achieved with a loop detection, which requires considerably more control flow
logic. Especially in a piplined hardware design, this is very impractical to implement.

To keep track of the integer scalars in Teske’s r-adding walk we refer to Algorithm 4.3.
When using Wiener and Zuccherato’s iteration function the integer update is more com-
plex. In addition to Teske’s iteration function all points in the equivalence class of the
point resulting from the addition are calculated. From these points, the point which has
the smallest x-coordinate when represented as an integer is selected. This has the same
effect as calculating all m points {X, [λ]X, [λ2]X, ..., [λm−1]X} and selecting the small-
est. The integer scalar has additionally to be multiplied by λl, when selecting [λl]X.
Consequently the update functions are given as

ci+1 = (ci + aj) ⋅ λ
l mod n

di+1 = (di + bj) ⋅ λ
l mod n .

(5.1)

Instead of performing the prime field multiplication from Equation 5.1, we can use an
alternate representation of the scalars ci and di to avoid this multiplication as shown by

Table 5.2: Number of iterations for different iteration functions.

Reference Iteration function f Expected Measured
iterations iterations

Teske [79] Xi+1 =Xi +Rj 929 ⋅ 103 906 ⋅ 103

Wiener and Zuccherato [84] Xi+1 = min
0≤l<m

{Φl(Xi +Rj} 145 ⋅ 103 149 ⋅ 103

Gallant et al. [29] Xi+1 =Xi +Φ
l(Xi) 145 ⋅ 103 205 ⋅ 103
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Wiener and Zuccherato [84]. We rewrite

ci = λ
viwi, (5.2)

and keep track of vi and wi. The update functions for wi and vi are given as

vi+1 = vi + j mod m
wi+1 = wi + λ

−viaj mod n .
(5.3)

The use of a precalculated table of all values λ−viaj (these are m values per branch,
summing up to 2mL values for all branches aj and bj) reduces the computational effort to
two additions, one modulo n (as in Equation 5.1) and one modulo m. The same principle
can be applied to the second integer scalar di.

5.4 Overall Setup

A simple model to independently distribute the workload over several clients is needed. It
should be possible to add new FPGAs to an existing client without affecting the running
ones, or to even add a whole new client. We decided to transmit the triples collected by the
clients via an SFTP channel to our sever. The server receives these triples and adds them
to a MySQL [61] database. A schematic overview about this setup is depicted in Figure 5.1.

Depending on the number of leading zeros t of the point’s x-coordinate when represented
as an integer or its Hamming weight being less than t, we encounter a distinguished point
after approximately 2t iterations. The choice of t is a crucial part. A distinguishing prop-
erty too small leads to huge storage requirements, a property too high leads a higher time
overhead to detect a collision. We chose t to be 30, resulting in about 8 ⋅106 distinguished
triples.

The clients communicate with the FPGAs via the serial interface (RS232). The client
and server software is written in JAVA. Figure 5.2 shows a schematic class diagram of
the software. The software consists of several threads running in parallel. On the client
side there is the Sender and the RS232Communicator. These two threads communicate
through a FIFO. The RS232Communicator communicates with the FPGA. It opens a
serial connection and initializes the FPGA. Once the FPGA is started the thread period-
ically checks for available triples. These triples are verified for correctness by the JAVA
software and then added to the common FIFO. The Sender thread idles until a certain
amount of triples has been collected. Then these triples are serialized and sent via SFTP
to a server. The server itself runs a Receiver thread. The thread periodically checks for
received triples and then adds these triples to its database.

5.5 FPGA Architecture

In this section, we focus on the hardware architecture of a single FGPA. The main goal
was to maximize the throughput per area. The design principle is a completely utilized
hardware. This can be achieved with a single, unrolled, and fully piplined iteration func-
tion. The FPGA’s registers can be used to realize pipline stages. A fully piplined hardware
design produces one result each clock cycle. It follows that in each pipline stage one triple
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is processed. Thus, the number of pipline stages equals the number of triples processed
per instance. There do not exist any idle pipline stages, which means the hardware is
really 100% utilized, except for the interface. This approach is preferable to many smaller
hardware instances packed into one FPGA, mainly because a high utilization can not be
achieved otherwise.

It should be noted that the hardware is carefully optimized for the 113-bit Koblitz curve.
However, the underlying architecture and many modules are generic and can be used for
attacking other curves as well.

5.5.1 Top Level Architecture

There are two modules, an interface and the ECC-Breaker module. The interface module
consists of an RS232 Interface and an Interface for the ECC-Breaker module. The
RS232 interface converts the data transmitted over the serial port to a 32-bit address
and 32-bit data or vice versa. The interface module for the ECC-Breaker is used to fill the
pipline stages of the ECC-Breaker module and to read out the distinguished triples from it.
It can store a triple used as input (TripleIn) and a triple read from the Distinguished

Triple Storage (TripleOut). This is schematically depicted in Figure 5.3 and Figure 5.4,
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Figure 5.2: Class diagram of JAVA software.

respectively.

We built two different ECC-Breaker modules exploiting the Frobenius automorphism.
Both realize Wiener and Zuccherato’s iteration function described in Section 5.3. How-
ever, one calculates the scalars as stated in Equation 5.1, and the other one uses Equa-
tion 5.3 and its required table. To distinguish them we denote them ECC-Breaker V1 and
ECC-Breaker V2. The reason we built V1 was that our FPGA, the ML605, comes with
DSP-slices. These DSP-slices contain several 18 × 18-bit integer multipliers, which can
be clocked with up to about 600 MHz. Using these small multipliers we can built a big
one, which consumes hardly any LUTs. In addition, we can demonstrate the efficiency
of a prime field multiplication using this device. The reason to incorporate Wiener and
Zuccherato’s trick was that many FPGA’s do not offer enough DSP-slices but still enough
other resources to fit the remaining design.

Both versions realize a completely autonomous, circular, self-sufficient iteration function.
The pipline is fed using the TripleIn register of the interface until each pipline stage
is active. Distinguished triples are automatically added to the Distinguished Triple

Storage, a FIFO containing up to 128 triples. When all pipline stages are initialized the
interface can read the distinguished triples from this storage.

ECC-Breaker V1

Figure 5.3 shows ECC-Breaker V1. The multiplexer is used to either add a new triple or to
continue with the previous result. By default the previous triple is used to feed the pipline.

The Branching Table contains 1024 branches, which easily fit into the block RAM of the
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ML605. The branch number equals the 10 least significant bits of the point’s x-coordinate
when represented as an integer. The Point Addition module is fed with the point Xi

and the output of the Branching Table. The result Si = Xi + Rj is then forwarded to
the Point Automorphism module, which calculates the smallest Φ(Sl), with l ∈ [0,m− 1].
The integer l is used as input for the Lambda Table.

The integers ci and di are added to the integers aj and bj , respectively, which are outputs
from the Branching Table. The Fp Multiplication module then multiplies the sum
with λl, which comes as output from the Lambda Table. The Lambda Table containing
all the powers of λ is also stored in the block RAM.

The Delay FIFOs are needed to synchronize the piplines for the point Xi and the integers
ci and di. We use the Montgomery domain to represent prime field elements. Hence, the
Fp Multiplication module performs a Montgomery multiplication. The PC connected
to the FPGA via a serial port transforms the integers from the Montgomery domain back
to the normal domain.

We want to remark, that curves without Frobenius automorphism can also be attacked us-
ing ECC-Breaker V1 by discarding the Point Automorphism and the Fp Multipication
module. We denote this configuration ECC-Breaker Plain.

ECC-Breaker V2

ECC-Breaker V2 is depcited in Figure 5.4. It is built from the same modules as V1. How-
ever, this version needs to keep track of four integers vci, vdi,wci,wdi. The LambdaMul

Table contains the table of all precalculated λlaj and λlbj for all l ∈ [0,m − 1] and all
branches aj and bj . The block RAM offers enough space to use 64 different branches. Still
sufficient according to Teske [79], who showed that 20 branches are enough so that the
iteration function acts as a pseudo random function.
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The Distinguished Triple Storage contains the distinguished point X and the inte-
gers vc and wc as well as vd and wd. The integers c = λvcwc and d = λvdwd satisfying
X = [c]P+[d]Q are not calculated by this hardware design. The client, to which the FPGA
is connected to, performs the calculation. As this only needs to be done for distinguished
points, the computational effort is negligible even for low cost CPUs.

5.5.2 Point Addition Module

The heart of ECC-Breaker is the Point Addition module. It performs the main task of
our iteration function. The module takes 5 inputs, the summands’ coordinates P1 = (x1, y1)
and P2 = (x2, y2), as well as the elliptic curve constant a. The module is generic and can be
used for all Koblitz curves. As the elliptic curve constant b is not a part of this point addi-
tion formula, the module is not applicable for generic elliptic curves based on binary fields.
This module performs the point addition and produces the sum’s coordinates R = (x3, y3).
It does not handle special cases of points being equivalent or inverse to each other, or the
point at infinity. However, the likelihood of these occurrences is negligible.

The module is depicted schematically in Figure 5.5. It implements Equation 4.7 stated in
Section 4.1.1. The symbols represent F2m addition, multiplication, inversion, and squar-
ing, respectively. The figure does not contain FIFO modules which are required as buffers
to keep all pipline stages active. The module takes 184 cycles to compute the result. The
F2m inverter consumes most of these cycles and is in terms of area the module’s largest
building block, as it takes 83% of the overall slices needed by this module. The F2m in-
verter itself consists of eight F2m multipliers and 112 F2m squarers. Within the inverter,
the eight F2m multipliers need the largest share of slices, namely 69%. The F2m adders
and the dedicated F2m squarer hardly contribute to the size of the module and delay of
the point addition.

It is not possible to get rid of the costly inversion (8 field multipliers and 112 field squarers)
during the point addition even though there exist point addition formulas using projective
coordinates to avoid the costly inversion. However Pollard’s rho attack is only applicable
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Figure 5.5: Simplified architecture of the point addition module.

when using affine coordinates (cf. [53]).

5.5.3 Point Automorphism Module

The point automorphism module contributes for a
√
m-fold speedup compared to an at-

tack which does not exploit the Frobenius automorphism. The speedup is achieved by
uniquely mapping all of the m points of each equivalence class to a certain point in this
equivalence class. It is common to use the point with the smallest x-coordinate when
represented as an integer. However, every unique mapping is valid. We denote the single
point of an equivalence class that all other points are mapped to asautomorphed point.

A module, which does m squarings and m comparisons as efficiently as possible is re-
quired to implement this automorphism. We built two of those modules: one does all the
calculations in polynomial basis, the other one performs a basis transformation to normal
basis and calculates the automorphism in normal basis. To distinguish them we call them
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Point Automorphism PB and Point Automorphism NB, respectively.

For optimization, both modules only compare the t = 70 most significant bits. The prob-
ability that this limitation results in a wrong result of the comparison is negligible. If
we perform mi = m

√
πn
2m comparisons using this limitation, the probability for even once

selecting the greater value is only 1 − (1 − 2−t)mi = 0.00081.

Point Automorphism PB

Figure 5.6 shows an overview of the Point Automrphism PB module. It consists of m
Comparator Stages, one of which is depicted in Figure 5.7. The first stage is fed twice
with the input point’s x and y coordinate The x- and y-coordinate of one of the two input
coordinates is squared, resulting in x2 and y2. The squares are immediately forwarded
to the output. Depending whether x or x2 is smaller, x or x2 is forwarded as xs. The
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Figure 5.7: Schematic view of an Comparator Stage.

result of this comparison also determines whether y or y2 becomes ys. This is repeated m
times with the previous results as inputs until in the last iterations the coordinates of the
smallest point (henceforth referred to as automorphed point) is found. This module also
computes an index l which reveals how often the initial values x and y have to be squared
to get the automorphed point S = (x2

l
, y2

l
). This index is needed for the integer update

function, more precisely for the Fp multiplication.

Point Automorphism NB

The second automorphism module, namely the Point Automorphism NB module, relies
on a basis transformation. An overview of this module is shown in Figure 5.8. It starts by
transforming the point’s coordinates into the normal basis. This is done by multiplying
each coordinate with a transformation matrix C, with all elements ci,j ∈ F2. The matrix
is generated as shown in Section 3.3.6. The matrix multiplication is realized as a network
of XOR operations. The number of XOR operations is given by the number of nonzero
elements in this matrix. The m squares of x in normal basis can be computed in a single
cycle, as each square is only a cyclic shift by one of the previous results. The Comparator

Tree computes the smallest of all these squares and the index l, denoting the number of
squaring operations needed to get the smallest value. The Barrel Rotate module is an
efficient module to perform variable cyclic shifts needed to compute y2

l
. It is implemented

as a sequence of multiplexers. A barrel rotator performing cyclic shifts of up to m bit needs
ld(m) layers of multiplexers per bit. The first sequence of these multiplexers realizes a
cyclic shift by one, the second a cyclic shift by two, the third a cyclic shift by four, and so
on. The results of the Point Automorphism NB module are generated by retransforming

x2
l

and y2
l

to polynomial basis.
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To get a picture of how the Comparator Tree is implemented, Figure 5.9 shows such
a tree for four inputs. This tree consists of three building blocks, each of these blocks has
four inputs: two squared x-coordinates and two integers denoting the squares’ powers. A
comparator compares the squares and forwards the smaller square and the power belong-
ing to it.

The Barrel Rotate module replaces the m F2m Squarer needed to compute y2
l

in poly-
nomial basis. Therefore we do not need any F2m Squarer. A further advantage is the
significantly reduced number of pipline stages using the Comparator Tree compared to
the pipline of m Comparator Stages.

Not unexpectedly, the Point Automorphism NB module is considerably more efficient
in terms of size. Compared to the Point Automorphism PB module it needs 3.4 times
less registers and 2.5 times less LUTs. The biggest part of the Point Automorphism NB

module is the Comparator Tree, which makes up for about 75 % of the module’s slices.
Compared to that, the basis transformation is fairly cheap.
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Figure 5.9: Comparator tree for 4 inputs.

5.5.4 F2m Inversion Module

The data path of inversion modules based on EEA (see Algorithm 3.2) is not deterministic,
thus it is hard to implement in a pipelined hardware. Therefore, the inversion is computed
using Fermat’s little theorem, described in Section 3.4. Itoh and Tsuji’s [38] exponentiation
trick, see also Section 3.4, reduces the number of needed multiplications to eight the
number of squarings to 112, for m = 113.
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Figure 5.10: Schematic view of the inversion module.

Equation 5.4 shows how this exponentiation trick can be used to calculate the inverse
in F2m with m = 113. In Figure 5.10 the module implementing Equation 5.4 to compute
the inverse is depicted.

5.5.5 F2m Multiplication Module

The area footprint of our ECC-Breaker design is majorly influenced by the F2m multipli-
ers. To reduce the impact, we evaluated several polynomial basis F2m multipliers on our
target FPGA in terms of size. The results (post-synthesis) of our evaluation can be found
in Table 5.3. LUTs are given as absolute values and in percent relative to the available
numbers of LUTs on a Virtex-6 FPGA.

A 113-bit digit parallel multiplier is the most straight-forward design. Each bit of the
second factor is multiplied (logical ADD) with all the bits of the first multiplicand, shifted
according to its position, and then added (logical XOR) to the result.

A Mastrovito multiplier [50] represents the multiplication as a matrix-vector product.
The reduction step is performed implicitly, as the matrix is generated depending on the
irreducible polynomial. Unfortunately, this approach does not seem to be applicable for
our purposes, as this multiplier achieved the worst results.

Table 5.3: Comparison of different polynomial basis F2m multipliers including reduction
on a Virtex-6 FPGA.

Multiplier LUTs

Bit Parallel 5,505 3.7%
Mastrovito [50] 8,774 5.8%
BBE [11] 4,409 2.9%
Binary Karatsuba [69] 3,757 2.5%
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Bernstein’s Batch Binary Edwards (BBE) multiplier [11] needs the smallest amount of
bit operations for a 113-bit multiplication. It is based on Toom and Karatsuba recursions.
The code containing all bit operations is available at [12].

The multiplier we finally used in our hardware is a slightly modified version of the bi-
nary Karatsuba algorithm described by Rodrıguez-Henrıquez and Koç [69]. It is based
on the Karatsuba multiplier, which originally was found by Karatsuba and Ofman [41].
Their algorithm allows to reduce the product of two large 2k-bit polynomials to the sum
of three smaller 2k/2-bit multiplications. This step can be applied recursively and reduce
the number of single-digit multiplications to at most 3klog2 3 on overall. In practice it
is usually more efficient to truncate the recursion at some point and compute the re-
maining multiplications using an other technique. However, the Karatsuba algorithm
wastes several arithmetic operations when multiplying polynomials with arbitrary length
m = 2k + d, because then it is necessary to consider the polynomials as 2k+1-bit polyno-
mials. Rodrıguez-Henrıquez and Koç [69] introduced an algorithm, which prevents these
unnecessary arithmetic operations. They pointed out that depending on m, it is more
efficient to use a classical bit parallel multiplication for some partial results.

Algorithm 5.1 shows how we applied Rodrıguez-Henrıquez and Koç’s [69] idea to per-
form an m = 113-bit multiplication. The following reduction step is not depicted. See
Section 5.5.6 for this step. KS64 and KS32 denote 64-bit and 32-bit, respectively, bi-
nary Karatsuba multipliers. The Karatsuba multipliers are truncated at 16 bits and the
remaining bits are calculated using a classical bit parallel multiplication.
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Algorithm 5.1 Calculate c = a × b, with a, b being m-bit binary polynomials.

Input: a, b
Output: c = a × b
1: mab1 ← KS64(a[112..64]⊕ a[63..0], b[112..64]⊕ b[63..0])
2: cl1 ← KS64(a[63..0], b[63..0])
3: cl2 ← KS32(a[95..64], b[95..64])
4: cl3 ← a[111..96] × b[111..96]
5: mab2 ← KS32(a[95..64]⊕ a[111..96], b[95..64]⊕ b[111..96])

6: ma3 ← b[112] × a[111..96]
7: mb3 ← a[112] × b[111..96]
8: m3 ←ma3 ⊕mb3

9: c3[32]← a[112] × b[112]
10: c3[30..0]← cl3
11: c3[31..16]← c3[31..16]⊕m3

12: m2 ←mab2 ⊕ cl2 ⊕ c3
13: c2[62..0]← cl2
14: c2[97..64]← c3
15: c2[94..32]← c2[94..32]⊕m2

16: m1 ←mab1 ⊕ cl1 ⊕ c2
17: c[126..0]← cl1
18: c[225..128]← c2
19: c[190..64]← c[190..64]⊕m1

5.5.6 F2m Squaring (Reduction) Module

Squaring in normal basis is free. However, as we use the polynomial basis in the point
addition module there is the need to compute several squarings in polynomial basis. The
squaring module mainly consists of the reduction modulo the irreducible polynomial. For-
tunately, it is not necessary to implement a generic reduction algorithm, as the irreducible
polynomial as a fixed constant. The costs of the reduction depend on the number of the
reduction polynomial’s nonzero coefficients. Let u be the number of nonzero coefficients,
then the reduction step consists of 2(u − 1) m-bit additions.

Figure 5.11 shows schematically how to reduce a 2m = 226-bit value using the reduction
polynomial f(α) = α113 +α5 +α3 +α2 + 1. Note that the offsets in Figure 5.11 correspond
to the nonzero elements of the irreducible polynomial f(α).

5.5.7 Fp Addition Module

The Fp Addition module is needed for updating the scalars. The addition is performed
modulo the group order n. The module exploits the fact that both inputs are smaller than
n. Thus their sum is smaller than 2n. Either the sum is already smaller than n (therefore
reduced modulo n) or it is sufficient to subtract the modulus n once in order to reduce the
sum. Figure 5.12 schematically shows the module. It consists of two ⌈ld(n)⌉-bit integer
adders. These integer adders are realized as a chain of smaller adders to reduce the carry
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Figure 5.11: Schematic view of the reduction step.

propagation’s length.

5.5.8 Fp Multiplication Module

ECC-Breaker V1 also contains two Fp Multiplication modules. The modules conduct
a Montgomery multiplication as described in Section 3.5. Each module consists of two
full-sized and a half-sized ⌈ld(n)⌉-bit integer multipliers, which results are summed up.
The partial products are calculated using the dedicated FPGA DSP-slices, which come
with several 18 × 18-bit MAC units. The module carefully aligns the partial products to
fully exploit the DSP-slices’ potential.

5.6 Results

This section discusses the implementations. At first numbers are provided for our hardware
design, the ECC-Breaker, followed with a generalization of ECC-Breaker to different FP-
GAs and targeting other curves, and concluded with the results of our conducted attempt
so solve a 113-bit binary ECDLP. The results are generated using Xilinx ISE 14.4 [87].

5.6.1 ECC-Breaker

ECC-Breaker is the outcome of an collaborative development which started in March 2013.
In a first approach a, compared to the ECC-Breaker, relatively small hardware design (a
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Figure 5.12: Prime field addition module.

core) was developed. Each core is capable of autonomously executing an iteration func-
tion and generating distinguished triples. About 30 instances of this core fit on a Virtex-6
FPGA. ECC2-83 was successfully solved within four days on average using a single Virtex-
6 FPGA with 30 instances. Thereby, a major problem using this approach emerged, a
very low hardware utilization. Altogether these 30 instances clocked at 60 MHz have only
a throughput of about 10 ⋅ 106 IPS. This initial design helped us to identify the crucial
parts and bottlenecks of a Pollard’s rho implementation, and pointed out significant opti-
mization potential.

The development of ECC-Breaker itself took about one person year. Starting from au-
tumn 2013, we iteratively and continuously optimized the ECC-Breaker in terms of speed,
area, and power optimization, never loosing sight of our main goal, namely maximizing
the throughput per area. To optimize the performance on the target platform, the Virtex-
6 FPGA, DSP-slices and block RAM are used whenever possible. Table 5.4 shows the
post place-and-route device utilization of all ECC-Breaker versions on a Virtex-6. As the

Table 5.4: Post place-and-route device utilization of ECC-Breaker V1, ECC-Breaker V2,
and ECC-Breaker Plain on a Virtex 6 XC6VLX240T FPGA.

XC6VLX240T ECC-Breaker V1 ECC-Breaker V2 ECC-Breaker Plain

Property avail used % used % used %

Regs 301,404 80,902 26 68,873 22 53,291 17
LUTs 150,720 82,344 54 70,628 46 52,463 34
Slices 37,680 22,734 60 21,647 57 16,696 44
DSP-Slices 768 290 37 0 0 0 0
Block RAM 416 49 12 143 34 43 10
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Point Automorphism NB module proved superior to the Point Automorphism PB module
all data is generated using this module.

The versions with Point Automorphism module are only 30% respectively 36% large than
ECC-Breaker Plain, but are about 11 times more efficient. The results further render
ECC-Breaker V2 advantageous to ECC-Breaker V1, only at the expense of block RAM.
ECC-Breaker V1 uses 1024 branches that consume 12% of the available block RAMs.
ECC-Breaker V2 has only 64 branches, which use 34% of the available block RAM re-
sources. The absolute difference of 20% between ECC-Breaker V1 and ECC-Breaker

Plain originates from the Lambda Table. Further, the table shows that ECC-Breaker

V2 consumes slightly fewer slices than ECC-Breaker V1. This is because, although the Fp
multipliers are carefully designed to utilize the DSP-Slices, they still need some LUTs.

We also practically evaluated some designs on a Spartan-6 LX150T development kit [6]
from Avnet. Table 5.5 shows the results for ECC-Breaker V2 and ECC-Breaker Plain

on this FPGA. ECC-Breaker V1 does not properly fit on this FPGA, and therefore no
informative results can be given. The design gets mapped successfully, however the router
is stretched to its limits, as the design only achieves unacceptable timings. This is due
to the Fp multipliers, which exceed the FPGA’s resources of DSP-slices and therefore
are mapped into LUTs. ECC-Breaker V2 needs only 24% more slices than ECC-Breaker

Plain by providing an
√
m-fold speedup. The block RAM resources though, are almost

completely utilized by 64 branches, mostly by the LambdaMul Table.

In Table 5.6 the post place-and-route results are summarized. Prices for development
boards are taken from www.avnet.com [1] and do not contain taxes. The throughput
is given per FPGA. ECC-Breaker Plain is capable of performing 200 ⋅ 106 IPS per in-
stance, summing up to 400 ⋅ 106 IPS per Virtex-6 FPGA. All designs have successfully
been validated on real hardware. The table shows that ECC-Breaker V2 is about 21%
faster than ECC-Breaker V1. This is due to the reduced routing effort, caused by the
removal of the Fp multipliers. V2 trades a 113-bit prime field multiplication with a 7-bit
prime field addition. The additional control flow logic does not have significant impact.
On the Spartan-6 both designs achieve the same throughput, which further emphasizes
the usage of the point automorphism module. Considering IPS per $ the Spartan-6 is even
slightly superior to the Virtex 6 for the ECC-Breaker V2 design. However, when using
the ECC-Breaker Plain the Virtex 6 is about 50% more cost-effective than the Spartan
6. This is mainly due to the device utilization. The higher the device utilization, the more

Table 5.5: Post place-and-route device utilization of ECC-Breaker V2 on a Spartan-6
XC6SLX150T FPGA.

XC6SLX150T ECC-Breaker V2 ECC-Breaker Plain

Property avail used % used %

Regs 184,304 69,152 37 53,520 29
LUTs 91,152 67,315 73 48,885 53
Slices 23,038 20,563 89 16,664 72
DSP-Slices 180 0 0 0 0
Block RAM 268 246 92 56 21
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cost-effective is the design. But keep in mind, financial expenses hardly ever scale linearly
with throughput.

In order to estimate the costs of the modules in detail, Table 5.7 shows the device utiliza-
tion summary. The table shows post-map results. They are not exact but should suffice to
give an overview. Place-and-route values cannot be used, because the router performs op-
timization across all hierarchies, therefore the data is not available anymore after routing.
The results are given for ECC-Breaker V1 on a Virtex-6 FPGA only, because the propor-
tionalities stay about the same for all FPGAs and ECC-Breaker versions. In addition it
shows the impact of the Fp Multiplication modules to the overall system. Slices are
given as percentage of the overall system. Registers, LUTs, DSP-slices, and block RAMs
are absolute values. Registers and LUTs which are missing when adding up submodules
are used for the control path logic in the parent modules. The table further reveals that
the F2m inversion is with 64% of all slices the most slice consuming building block. Within
the F2m inversion module the F2m multipliers have the major impact on size. These multi-
plier together with the two F2m multipliers used during point addition need about 55% of
all slices. This emphasizes the importance of carefully choosing the F2m multiplier. The
size of the Point Automorphism module is mainly influenced by the Comparator Tree.
Compared to that the basis transformation is almost negligible. 32 of 59 block RAMs are
used for Delay FIFOs, only 7 for the Distinigushed Triple Storage, and 13 for the
Branching Table.

In summary, ECC-Breaker V2 is the most efficient design in terms of IPS per slice and
IPS per $.

5.6.2 ECC-Breaker on different FPGAs

In addition to the results presented previously, the hardware design ECC-Breaker V2 was
also evaluated on several different currently available state-of-the-art FPGAs. Although
we optimized our design for a Virtex-6, the resulting VHDL-code is portable. In order
to make a comparison as fair as possible the estimated maximal frequency post-synthesis
is compared, because post place-and-route values are majorly influenced by configuration
settings of the mapper and router and depend on the FPGA series. Slices are given as
post place-route values. The optimizations done during routing can have a big impact on
the slice utilization.

Xilinx latest FPGAs are divided into three series, one targeting low cost applications

Table 5.6: Post place-and-route Results of several different ECC-Breaker versions.

Design FPGA Series Part Number Price Slices Instances Throughput
[$] [%] [106 IPS]

V1 Virtex 6 XC6VLX240T 2,495 60 1 165
V2 Virtex 6 XC6VLX240T 2,495 57 1 200
V2 Spartan 6 XC6SLX150T 995 89 1 100
Plain Virtex 6 XC6VLX240T 2,495 79 2 400
Plain Spartan 6 XC6SLX150T 995 72 1 100
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Table 5.7: Device utilization summary for ECC-Breaker V1 on a Virtex-6.

Entity Instances Slices Registers LUTs BRAM DSP

Interface 1 100% 80,899 82,344 52 290
ECC-Breaker 1 100% 80,730 82,127 52 290
Branches 1 0% 0 0 13 0
Point Addition 1 77% 57,195 80,611 20 0
F2m Multiplication 2 11% 7,926 8343 0 0
F2m Inverse 1 64% 47,095 46,023 0 0
F2m Multiplication 8 44% 31,704 32,736 0 0
F2m Squarer 112 20% 15,391 13,287 0 0

Delay FIFOs 5 2% 702 243 20 0
Lambda Table 1 0% 0 0 4 0
Point Automorphism 1 17% 15,194 21,876 0 0
Comparator Tree 1 14% 13,241 16,846 0 0
Barrel Rotate 1 1% 768 795 0 0
PB->NB 1 1% 226 1,990 0 0
NB->PB 1 1% 226 2,002 0 0
Delay FIFOs 1 1 702 243 0 0

Fp Multiplication 2 2% 4,066 2,078 0 290
Fp Addition 2 1% 1,406 1,219 0 0
Delay FIFOs 4 2% 1,363 162 8 0
Distinguished Tripe Storage 1 1% 471 104 7 0

(Artix-7 series [86]), one high performance designs (Virtex-7 series [92]), and one tries
to offer the best cost effectiveness (Kintex-7 series [88]). The results of ECC-Breaker V2

on these FPGAs are shown in Table 5.8. The prices are again taken for development
boards from www.avnet.com [1] and do not contain taxes Fortunately, the results show
that the ECC-Breaker design is ideally suited for the latest Xilinx FPGAs. The best
results in terms of cost effectiveness are achieved for the Kintex-7 FPGA, as this FPGA
offers enough slices for two instances of the design. Unfortunately, the amount of slices on
a Virtex-7 FPGA is just under the required amount for three instances, which makes this
FPGA impractical in terms of cost effectiveness. Except for the Virtex-7 FPGA the more
recent Xilinx FPGAs offer a higher price-performance ratio compared to older ones.

5.6.3 Expected Runtime for larger curves

The gathered results are promising and present an opportunity for attacking larger elliptic
curves. Table 5.9 show runtime estimations for ECDLPs of higher order. These are best

Table 5.8: Results of ECC-Breaker V2 on several different FPGAs.

FPGA Series Part Number Price Frequency Slices
[$] [MHz] [%]

Virtex-6 XC6VLX240T 2,495 291 57
Spartan-6 XC6SLX150T 995 161 89
Artix-7 XC7A200T 999 293 66
Kintex-7 XC7K325T 1,695 372 43
Virtex-7 XC7VX485T 3,495 372 34
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case estimations, as they are calculated using post synthesis data and assume some FPGAs
to implement multiple instances. One setup (18 Virtex-6 FPGAs) was verified in practice
and is able to solve an ECDLP on ECC2K-112 within 19 days. 256 Spartan-6 FPGAs,
as offered by SciEngines RIVYERA’s S6-LX150 FPGA cluster [2], even only need 2 days,
and only 36 days for an ECC2-112 challenge. The Certicom ECC2K-130 challenge is
estimated to be solved using two of these clusters within 401 days. However, a Kintex-
7 cluster of 256 FPGAs is cheaper and needs approximately only 174 days. Assuming
almost an astronomical financial budget, even the Certicom ECC2-131 challenge is within
reach. The currently standardized curves ECC2K-162 and ECC2-163 are to date not
under thread, not even when attacked by certain agencies having incredible resources.

5.6.4 Solution to the posed ECDLP

We are proud to present having broken ECC2K-112. To date (May 2014) this is the largest
solved binary ECDLP. The attack was conducted using up to 19 FPGAs (18 Virtex-6 and
1 Spartan-6) calculating for 46 days. At the starting time ECC-Breaker V2 was still under
development, so the Virtex-6 FPGAs were running at 165 MHz with the ECC-Breaker V1

design, and the Spartan-6 FPGA was added later to the cluster running at 80 MHz with
ECC-Breaker V2.

The FPGAs were connected to three different PCs. Three FGPAs (2 Virtex-6 and 1
Spartan-6) were connected to the first client, the other two clients were connected to up
to eight Virtex-6 FPGAs each. The attack was started on 03/04/2014, the matching triple
was found on 04/19/2014. Altogether the database contained 6,064,260 triples, which are
about 2 million fewer than expected. Figure 5.13 shows the database’s growth over time.
The growth rate’s variation is due to the fluctuating amount of FPGAs used. All 19 FP-
GAs together calculated about 250,000 distinguished triples per day, which means that the
challenge would have been solved within 24 days, if we constantly had used all resources.

The matching triples and the resulting scalar can be found in Table 5.10.

Table 5.9: Best-case runtime and cost estimations for different challenges and FPGAs.

FPGA Challenge Inst- Through- FPGAs Costs Iterations Run-
ances put time

[106 IPS] [103 $] [1015] [days]

Virtex-6 ECC2K-112 1 291 18 45 8.496 19
Spartan-6 ECC2K-112 1 161 256 255 8.496 2

Virtex-6 ECC2-112 1 291 18 45 90,3 200
Spartan-6 ECC2-112 1 161 256 255 90.3 25

Spartan-6 ECC2K-130 2 161 512 510 2,857 401
Kintex-7 ECC2K-130 2 744 256 434 2,857 174

Kintex-7 ECC2-131 2 744 1,000 1,695 46,239 719
Kintex-7 ECC2K-162 2 744 100,000 169,500 237 ⋅ 106 37 ⋅ 103

Kintex-7 ECC2-163 2 744 100,000 169,500 3,030 ⋅ 106 471 ⋅ 103
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Figure 5.13: Growth of the database containing distinguished triples.

Table 5.10: Matching Triple and calculated solution to the posed 113-bit binary ECDLP.

Parameter Value

R.x 0x0000000052c1d359e3d293da92097

R.y 0x1f3504dd1deb743fe03e451972dc7

c1 0x053f3f42abc6b0149bc75b0e90551

d1 0x084613bfcdae50d1b760cf6d6129b

c2 0x030bfb2cafee83dd35ee9132be301

d2 0x0b022d4b25c4f3c3d277017cfd075

k 0x0276c233740d817000b80478fde46



Chapter 6

Conclusions

Having spent over one year development time, we accomplished what we were looking
for. A new record. More precisely, a new binary ECDLP record on a 113-bit Koblitz
curve. This is the result of a long process, started by studying Pollard’s rho attack. We
closely examined different iteration functions in order to choose the most efficient one for
implementing in hardware. We evaluated many different iteration functions using a C ref-
erence implementation. The mathematical foundation of these iteration functions is fairly
complex and required a deep understanding of basic algebraic structures. Not carefully
enough implemented improvements, sometimes even lead to incorrect results.

Once we had decided which iteration function to use, we had to find a target platform.
We use an FPGA based design. Compared to many previous work, we use a state-of-the-
art FPGA, a Virtex-6, and emphasize the advantages of this decision. The crucial part
of a hardware implementation of Pollard’s rho algorithm is the finite-field multiplier. We
evaluated several multipliers and carefully modified a binary Karatsuba multiplier to meet
our requirements of maximal throughput per area.

The resulting hardware design, the ECC-Breaker, is a fully autonomous, cyclic, piplined
iteration function, producing one result each cycle. Except for the RS232 interface, which
is used for communication, the hardware design approaches the FPGA’s full capacity, even
exceeded it. We encountered power problems, when running the design at the maximal
achievable post place-and-route frequency. Sudden sporadic emergency switch-offs of the
power controller, resulted from an average current of about 12 Ampere at the internal
power supply. Although the FPGA board’s power supply is designed to support current
flows of up to 20 Ampere at the internal power supply, the only way to solve this issue
was to reduce the power consumption. This was done by using the normal basis represen-
tation of binary polynomials in the automorphism module, which performs 224 squaring
operations each cycle. As squarings are free in normal basis representation, we could sig-
nificantly reduce the current flow to about 5 Ampere.

A further hard lesson we had to learn, was in regards to the maximum achievable frequency.
As the ECC-Breaker design is rather complex, the estimated post-synthesis frequency can-
not be achieved by the place-and-route step. Adding new pipline stages always increased
the estimated maximum frequency, however sometimes the additional required register
have lead to the opposite effect on the post place-and-route frequency. Additionally the
tools used for implementing the design in real hardware offer a tremendous amount of

56
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configuration possibilities, we still potentially have not exhausted. Nevertheless, we were
able to successfully route a design with 200 MHz, which is 69% of the estimated maximum
frequency.

When we tried to implement the first version of ECC-Breaker on different FPGAs, we
realized that many FPGAs do not offer enough DSP-slices for two 112-bit prime field
multipliers. We worked around this issue, by modifying our iteration function to avoid the
prime field multiplication by a using additional adders. This modification allowed us to
implement the design on smaller FPGAs, as the Spartan-6 and even enabled better results
on our target FPGA, the Virtex-6.

The actual attack of ECC2K-112 was started in March 2014, and provided the solution in
April 2014. The attack was conducted using up to 18 Virtex-6 FPGAs and 1 Spartan-6
FPGA, resulting in a combined throughput of about 3 billion iterations per second. Be-
sides the new record, the results, both theoretical and practical, are of high value regarding
security estimations of current and future elliptic curve standards. ECC-Breaker can be
modified by minor changes to attack ECDLPs of higher order. Our estimations show
that Certicom’s ECC2K-130 is definitely computationally feasible using more instances of
ECC-Breaker.



Appendix A

Parameter

This section summarizes the parameters of the curve we solved an ECDLP on, namely the
parameters of a 113-bit Koblitz curve. The curve and its parameters are generated using
Sage [4]. Table A.1 contains the generated parameters. All countermeasures to avoid
attacks described in Section 4.2 are taken into account. We choose ECC2K-112 to really
provide a solution to an ECDLP within a few days and thereby prove the functionality
and power of our hardware design.

In order to prove that an ECDLP was solved for real and the answer was not known
in advance, we used Sage to comprehensibly, pseudo-randomly generate two points. List-
ing A.1 contains the Sage-code used for this purpose. The functions polyvec to str and
int to poly are used to generate human readable strings of 113-bit polynomials alterna-
tively to do it the other way around. The points are generated using a SHA256 [5] digest.
The x-coordinate is directly derived from the digest, the y-coordinate is calculated by
solving the elliptic curve equation.

Table A.1: Curve parameters of targeted 113-bit elliptic curve.
Property Value

challenge name ECC2K-112

m 113

irreducible polynomial x113 + x5 + x3 + x2 + 1
irreducible polynomial 0x2000000000000000000000000002d

elliptic curve E y2 + xy = x3 + x2 + 1
order n 0xfffffffffffffffdbf91af6dea73

ld(n) 112

cofactor h 2

base Point P.x 0x0a27644cfced9667d2084f8be061c

base Point P.y 0x0d5acd887d5585dd75c5d07165699

public Point Q.x 0x189037f88aed8e32400b16d2b1a6e

public Point Q.x 0x00e4718fb1e9f50f845ff162ff59c

scalar k = logQP 0x0276c233740d817000b80478fde46
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Listing A.1: Sage code used to pseudo-randomly generate point targets.

1 def polyvec_to_str(x):

2 string = ""

3 for i in range(0,len(x)):

4 string = string + str(x[len(x) - i - 1])

5 return hex(Integer(string , base =2))

6

7 def int_to_poly(s):

8 poly = K.gen()

9 poly = 0;

10 for i in range (0, len(s.bits())):

11 if i < 113:

12 if s.bits()[i] == 1 :

13 poly = poly + x^i

14 return poly;

15

16 FF = sage.rings.finite_rings.finite_field_ext_pari. ⤦

Ç FiniteField_ext_pari;

17 K = FF(2^113 ,’x’, 0x2000000000000000000000000002D.bits());

18 x = K.gen()

19 E = EllipticCurve(K, [1,1,0,0,1])

20 cofactor = (factor(E.order ()))[0][0]

21

22 import hashlib

23 points = 0

24 for i in range (0,10):

25 H = hashlib.sha256(str(i))

26 PX = int_to_poly(Integer(H.hexdigest (), base =16))

27 PY = PolynomialRing(K, ’PY’).gen()

28 ROOTS = (PY^2+PX*PY+PX ^3+1*PX ^2+1).roots()

29 if len(ROOTS) > 0:

30 PY = ROOTS [0][0]

31 P = E([PX, PY])

32 P = P * cofactor

33 print ’x: ’ + polyvec_to_str(P[0]. _vector_ ())

34 print ’y: ’ + polyvec_to_str(P[1]. _vector_ ())

35 print ’\n’

36 points = points + 1

37 if points == 2:

38 print ’points successfully generated ’

39 break



Appendix B

Abbreviations

ABC Anomalous Binary Curves
AES Advanced Encryption Standard
ASIC Application-Specific Integrated Circuit
BBE Batch Binary Edwards
CPU Central Processing Unit
DES Data Encryption Standard
DLP Discrete Logarithm Problem
ECC Elliptic Curve Cryptography
ECDLP Elliptic Curve Discrete Logarithm Problem
ECRYPT II European Network of Excellence in Cryptology II
EEA Extended Euclidian Algorithm
FPGA Field Programmable Gate Array
gcd Greatest Common Divisor
GPU Graphics Processing Unit
IPS Instructions Per Second
LUT Look-Up-Table
NB Normal Basis
NIST National Institute of Standards and Technology
NSA National Security Agency
ONB Optimal Normal Basis
OTP One-Time-Pad
PB Polynomial Basis
RFID Ratio Frequency Identification
Reg Register
VHDL Very high speed integrated circuit Hardware Description Language
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L. Granboulan, T. Güneysu, J. Hermans, T. Lange, A. Lenstra, C. Mitchell,
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