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Hybrid Gaussian Mixture Models

Abstract (English)

Gaussian mixture models are used in many applications to capture the underlying distribution
of the given data. Gaussian mixture models are usually learned according to the generative
paradigm, for instance in a maximum likelihood sense, such that the available data is described
well by the model. Nevertheless, when generatively learned models are used to perform classi-
fication, the resulting classification errors are in practice typically higher than the classification
errors of discriminatively trained models. Recent work presented several ways to learn Gaussian
mixture models discriminatively to solve this problem. However, none of these approaches takes
the likelihood into account. Consequently, the likelihood is typically small and the probabilistic
interpretation of the model suffers. A good probabilistic interpretation of the model enables
classification of data with missing features in a mathematical sound way whereas discrimina-
tive models often rely on heuristics such as imputation techniques. In this thesis we present a
hybrid generative-discriminative approach to learn Gaussian mixture models. This is achieved
by optimizing an objective that trades off between a generative likelihood term and a discrimi-
native margin term. We show the classification performance on synthetic and real world data.
We demonstrate the capabilities of hybrid Gaussian mixture models when classifying data with
missing features and show how unlabeled data can be used to improve the accuracy of the clas-
sifier, i.e. semi-supervised learning. The resulting models improve the performance of purely
generatively learned Gaussian mixture models and achieve a high accuracy in the presence of
missing data. The hybrid model is compared to support vector machines and other state of the
art Gaussian mixture model classifiers.

Keywords: Machine Learning, Gaussian Mixture Models, Semi-supervised Learning, Missing
Features, Hybrid Generative-Discriminative Learning
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Hybrid Gaussian Mixture Models

Abstract (German)

Gaußsche Mischverteilungen werden in vielen Anwendungsgebieten eingesetzt um die zugrun-
deliegende Verteilung der gegebenen Daten zu modellieren. Üblicherweise werden Gaußsche
Mischverteilungen nach dem generativen Prinzip gelernt, wie etwa der Maximum-Likelihood-
Methode, sodass die zugrundeliegenden Daten durch das Modell möglichst gut beschrieben wer-
den. Da die Fehlerraten von generativen Modellen bei Klassifikationsanwendungen in der Praxis
typischerweise höher sind als jene von diskriminativen Modellen, wurden in einigen Arbeiten
Möglichkeiten präsentiert, um Gaußsche Mischverteilung auch diskriminativ zu lernen. Keine
der bisherigen Ansätze berücksichtigt jedoch, dass die vorhandenen Daten unter dem Modell
eine hohe Likelihood aufweisen, sodass die Interpretation als Wahrscheinlichkeitsmodell verloren
geht. Eine gute Interpretation als Wahrscheinlichkeitsmodell ermöglicht es allerdings, Daten mit
fehlenden Merkmalen auf natürliche Weise mit mathematischen Methoden zu klassifizieren, wo-
hingegen sich diskriminative Techniken weitestgehend auf Heuristiken wie Merkmalsimputation
stützen müssen. In dieser Arbeit stellen wir einen hybriden diskriminativen-generativen Ansatz
vor, um Gaußsche Mischverteilungen zu lernen. Dies wird durch Optimierung einer Zielfunk-
tion, die zwischen einem generativen Likelihood-Kriterium und einem diskriminativen Margin-
Kriterium abwägt, erreicht. Wir zeigen die Klassifikationsleistung auf echten und künstlichen
Daten. Wir demonstrieren die Fähigkeiten von hybriden Gaußschen Mischverteilungen beim
Klassifizieren von Daten mit fehlenden Merkmalen. Weiters zeigen wir, wie Daten, von denen
man die Klassenzugehörigkeit nicht kennt, die Genauigkeit des Klassifikators verbessern können,
sprich halbüberwachtes Lernen. Wir verbessern die Fehlerraten von rein generativen Gaußschen
Mischverteilungen und erzielen gleichzeitig eine hohe Genauigkeit, wenn die zu klassifizierenden
Daten fehlende Merkmale enthalten. Das hybride Modell wird mit Stützvektormaschinen und
anderen Klassifikatoren, die auf Gaußschen Mischverteilungen basieren, verglichen.

Schlüsselwörter: Maschinelles Lernen, Gaußsche Mischverteilungen, Halbüberwachtes Lernen,
Fehlende Merkmale, Hybrides Generatives-Diskriminatives Lernen
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Hybrid Gaussian Mixture Models

1
Introduction

Many technical systems involve decision making procedures where for some given input x an out-
put y needs to be computed. The number of applications and problems which have to deal with
decision making is huge and we will give some motivating examples here. In health care, doctors
can be assisted by a system that predicts whether a patient suffers from a particular disease
or not, provided that some measurements from a medical examination are available. Nowadays
it is common that the postal service distributes the deliveries by automatically analyzing their
destination address. This process involves handwritten character recognition systems where the
goal is to decide the correct letter or digit which is depicted on a digital image. The rapidly
evolving field of speech processing is concerned with computing the spoken words for some audio
signal. E-mail clients typically provide a spam detection system where new mails are classified
as spam or non-spam messages.

To formalize the notion of decision making, we introduce a function f which maps the input
x ∈ X to an output y ∈ Y. The spaces X and Y vary for each application and can be as diverse
as the examples described above. In the medical example the input might be seen as a vector
of values, one for each possible measurement. Since typically not every possible measurement is
necessary in order to make a reliable diagnosis, some values of this vector could also be missing.
The output could be a binary value indicating whether the patient is sick or not, or might just
as well be a categorical value indicating the particular disease. In the character recognition
task the input can be represented by a matrix of pixel values while the output is a categorical
value representing the detected character. In speech processing the input could be a variable
length vector containing sound frequencies whereas the output can be phonemes, words or even
sentences. In case of the spam application the function f is used to map a whole document to
a binary vector indicating whether it is spam or not.

The question is now how to implement a function f that is capable of making the desired de-
cisions. The field of machine learning is mainly concerned with automatically finding structures
and dependencies in a set of given data. Especially its subfield of supervised learning provides a
large set of tools that can be used to construct the function f . The idea of supervised learning
is simple: Given a set of data examples {(x1,y1), . . . , (xN ,yN )} representing input values xn

and corresponding output values yn of the specific applications, the goal is to infer a function
f that maps the inputs to the outputs. The term learning stems from the interpretation of the
construction of f as learning the dependencies of inputs and outputs from some given real world
examples. A supervised learning procedure typically starts with the acquisition of input and
corresponding output values which are then used to learn or train the function f . It is espe-
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1 Introduction

cially the acquisition of the output values, that usually incorporates human expertise and which
is typically time-consuming or expensive to perform. The ultimate goal is that the function
generalizes well, i.e. its accuracy in predicting the outputs for previously unseen data is high.

The function f is often constructed by first building a model that describes the given data.
This model is subsequently used to compute the function f . Since the models are usually
determined by a set of parameters θ, the problem of learning the model is often cast as an
optimization problem. The goal is to find some parameters θ such that the corresponding
model fits the data well. There are basically two important paradigms that are used to fit a
model to some given data. On the one hand, generative learning is concerned with modeling
the underlying joint probability distribution p (x,y) that has generated the data examples at
hand. Using Bayes’ theorem, the function f then outputs the value y with the highest posterior
probability, i.e.

f(x) = argmax
y∈Y

p (y|x) = argmax
y∈Y

p (x|y) p (y)
p (x)

. (1.1)

On the other hand, discriminative learning models the output posterior probability p (y|x)
directly rather than indirectly via the joint probability. There are aspects that favor each of the
two approaches. Generative learning can usually be performed cheaper in terms of computation
time and memory requirements than discriminative learning. Furthermore, given that certain
assumptions hold, in the generative approach the joint probability provides a mathematical
sound way to deal with missing values in the data. For instance, in the medical example
above, a missing value could be a measurement that has not been conducted in order to make a
diagnosis. However, this does not mean that this value does not exist. It merely means that we
do not know it. Discriminative learning strategies usually have to rely on heuristics to cope with
missing data. The advantage of discriminative learning is that the resulting functions usually
provide a high accuracy since they operate on the output criterion directly.

1.1 Aim and Contributions

The aim of this thesis is to combine the ideas of generative and discriminative strategies into
a hybrid approach to get the best of both worlds [1]. Specifically, we incorporate the ideas
developed in support vector machines (SVMs) to learn a joint distribution p (x,y) in a hybrid
way. A SVM is a discriminative strategy, that can be used to compute binary outputs. Loosely
speaking, SVMs try to separate the data with different output values by a hyperplane, such that
the data examples are in some sense far away from this hyperplane. Hence, they fall into the
category of large margin techniques. Large margin techniques have been adapted to generative
strategies by the concept of the probabilistic margin. Recent work has shown how to use this
techniques to learn probabilistic graphical models in a hybrid generative-discriminative way [2].

In this thesis we apply this approach to Gaussian mixture models (GMMs). We will show
how to learn a function f with GMMs for real-valued fixed-length input values x and categorical
output values y. In recent years, different approaches to learn GMMs discriminatively have been
proposed. However, none of these techniques takes the likelihood into account. We show how
to learn GMMs by simultaneously optimizing the likelihood and the margin of the data. The
goal is to improve the classification performance of purely generatively learned models and to
be competitive with state of the art algorithms such as SVMs. Furthermore, we aim to achieve
good results in the presence of missing data in the inputs as well as in the outputs. Missing data
is essentially the motivation for learning a model in a hybrid generative-discriminative way.

We conduct experiments on both synthetic and real world data. The experiments on synthetic
data are used to illustrate several properties of hybrid GMMs whereas real world data is used for
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1.2 Outline of the Thesis

comparisons with other classifiers. We show classification experiments on real world data where
we randomly removed different amounts of missing features. We show that, if the parameters
of the model are carefully tuned, the performance of hybrid GMMs increases for data with
and without missing features compared to the generative solution. Furthermore, we show how
unlabeled data can be used to improve the performance of the classifier, i.e. semi-supervised
learning.

1.2 Outline of the Thesis

In Chapter 2 we explain the necessary background and review the related work. This includes
elementary topics of supervised and unsupervised learning and the generative and discriminative
paradigm for learning classifiers. We show important properties of GMMs and how to learn its
parameters. Since the aim of this thesis is to train a model that can handle missing features,
we give a short introduction to the theory of missing data. The chapter concludes with general
numerical optimization techniques that we use to optimize the hybrid objective.

Chapter 3 shows how to apply large margin techniques to learn GMMs in a hybrid generative-
discriminative way. We derive the hybrid objective from soft-margin SVMs and demonstrate how
learning hybrid GMMs can be cast as a smooth unconstrained optimization problem. We show
how to handle missing features and present an approach to perform semi-supervised learning.
We provide detailed interpretations of several model parameters.

In Chapter 4 we present results of several experiments on real world and synthetic data. We
classify data with and without missing features and demonstrate how unlabeled data can be
used to improve the performance of hybrid GMMs. The model is compared to other GMM
classifiers and SVMs.

Chapter 5 concludes the thesis and gives possible directions for future work.
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2
Background and Related Work

In this chapter we present the necessary background needed in the subsequent chapters. Section
2.1 starts with a short introduction to the relevant topics of supervised and unsupervised learn-
ing. Section 2.2 describes the generative and discriminative paradigm for training models where
each comes with its own advantages. Section 2.3 introduces GMMs, the model that we will use
to make decisions. Since the goal of this thesis is to build a model that is capable of dealing
with missing data, Section 2.4 gives a brief introduction to the theory of missing data. Section
2.5 concludes the chapter with numerical optimization techniques relevant for this thesis.

2.1 Supervised and Unsupervised Learning

The field of machine learning can be divided into three categories:

◦ Supervised learning

◦ Unsupervised learning

◦ Reinforcement learning

The first two categories are relevant for this thesis and will be explained in more detail in this
section. The goal of supervised learning is to model the dependencies of given input and output
values, i.e. one aims to infer a function f from some given input-output combinations. Many
problems arising in practice, as already mentioned in Chapter 1, can be cast as a supervised
learning problem. After introducing the necessary terminology, we explain several concepts of
supervised learning by the problem of fitting a polynomial to some given data. We illustrate the
problem of overfitting and show common ways to avoid it. Overfitting is a problem common to
many supervised algorithms which, loosely speaking, occurs when we model the given data too
accurate. The section ends with a brief discussion about unsupervised techniques which aim to
find different kinds of structures in the given data. Unsupervised techniques are often used in
conjunction with supervised techniques.

2.1.1 Supervised learning

Given a set of N data examples {(x1,y1), . . . , (xN ,yN )} with xn ∈ X and yn ∈ Y, the goal
of supervised learning is to construct a decision function f : X 7→ Y that maps the inputs xn

– 5 –



2 Background and Related Work

to the corresponding outputs yn. Although the spaces X and Y can be of any possible kind,
we will restrict ourselves in this thesis to real valued vector inputs, i.e. X = RD, and real or
categorical scalar outputs, i.e. Y = R or Y = {1, . . . , C}. The inputs are sometimes called
feature vectors and each of their entries is called a feature. The output values are called target
values or labels. Hence, the data in supervised learning is also called labeled data. If the outputs
are real valued, the task of constructing the function f is called a regression problem. In case
of categorical output values, it is called a classification problem and the function f is called a
classifier. In case of a classification problem, the output values are also called classes. To make
a clear distinction between regression and classification problems, we write the output values of
classification problems as c rather than y. Since the goal of this thesis is to build a classifier,
most of the discussions will be restricted to classification problems.

The process of constructing the function f from some given data examples is also called learn-
ing or training due to its similarity to the learning process of humans. In case of a classification
task, one can think of the function f as dividing the space X into C distinct decision regions and
data points are predicted according to the region they fall into. Note that the decision region of
a class does not need to be connected. Since in practice the decision function is typically used
to predict the target values of previously unseen inputs, an important property to consider is
that the function f generalizes well. To formalize the notion of generalization, we assume that
the data is generated according to a joint distribution p (x, y). Furthermore, we assume that
there is a loss or error function l(y, ŷ) that quantifies the quality of the prediction ŷ if the true
target value is y. Then the generalization error or expected loss of a function f is given by

l(f) =

∫

X

∫

Y
p (x, y) l(y, f(x)) dy dx. (2.1)

A function is said to have a high generalization performance if the expected loss is small. The
loss function can differ from application to application. A typical choice for classification is the
zero-one loss function that incurs a loss of one for incorrectly classified examples and zero loss
for correctly classified examples. In this case the generalization error reduces to the probability
of misclassification which we simply refer to as the classification error. In a medical application
it would be much worse to classify a person as healthy if it is sick than vice versa. In such cases
the particular type of misclassification must be weighted accordingly. In regression tasks the so
called squared loss is a common loss function which simply outputs the square of the difference
of the target value y and the prediction y′, i.e.

l(y, y′) = (y − y′)2. (2.2)

This discussion shows that it is not only important to predict the targets well for the data that is
used to construct f , but also to achieve a high performance on previously unseen data. Since the
true underlying distribution is usually not known, the generalization performance is typically
estimated using a separate held-out data set that is not used during the training process. Hence,
there are some distinctions between the available data to be made. The data which is directly
used to learn the function f is called the training set. A distinct test set is then used to estimate
the generalization error in (2.1). There exists yet another type of data that is used during the
training process. Many learning algorithms involve the choice of one or more hyperparameters
which govern the complexity of a model. An appropriate choice for these hyperparameters is
crucial in order to achieve a good generalization performance. These parameters usually need
to be hand tuned and it is most often not possible to give optimal values for them. To find
hyperparameters that result in a good generalization performance, a separate validation set is
used. The function f is constructed for a set of different values of these hyperparameters and
the one with the best performance on the validation set is selected.

At this point one might ask why there is a distinction between the validation and the test set
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2.1 Supervised and Unsupervised Learning

to be made and why the estimated performance on the validation set is not a valid approximation
to the generalization error. The answer is quite simple. When choosing a function that achieves
the best performance on the validation set, the hyperparameters, and therefore the model, are
implicitly tuned to the validation set. The resulting performance would be an optimistic estimate
of the true loss. It is therefore necessary to assess the true performance using a separate test
set.

2.1.2 Fitting a polynomial to given data

We want to explain several concepts with a simple regression task based on an example from [3].
Assume that we are given data examples {(x1, y1), . . . , (xN , yN )} with xn ∈ R and yn ∈ R and
we want to find a function f such that f(xn) ≈ yn for all n. The first choice one has to make
is to decide which family of functions should be used to model the data. We postulate that our
data was generated by a polynomial with some added noise. Thus, the function f will be of the
form

fθ(x) =
D∑

d=0

θdx
d. (2.3)

Even if the data was not really generated by a polynomial, they often provide a good approx-
imation to many problems that are encountered in practice. Since a polynomial of order D
is entirely defined by a weight vector θ ∈ RD+1, we can associate each vector in RD+1 with
a polynomial. We denote the corresponding function by fθ. In this case the weight vector θ
are called the parameters and RD+1 is the parameter space. The goal is now to find a vector
θ ∈ RD+1 such that the corresponding function fθ fits to the observed training data and further-
more generalizes well. The task of fitting the training data is usually achieved by formulating
an objective function that takes the parameters θ as input and outputs a numerical value that
describes how well the polynomial fits the data. By using the squared loss function (2.2), we
obtain the mean squared error function

lMSE(θ) =
1

N

N∑

n=1

(fθ(xn)− yn)
2. (2.4)

The problem of finding a function f is now reduced to finding parameters which minimize this
loss function. There is an important point in this task: How does one choose the order of
the polynomial D? There is no general answer to this question. It is known that N data
points can be fit exactly by a (N−1)-order polynomial, i.e. there exists a θ ∈ RN−1 such
that lMSE(θ) = 0. Figure 2.1(b) shows why choosing the order of the polynomial too large
is generally not preferable. The data points lie exactly on the polynomial but, intuitively, the
function does not appear to be very natural and the generalization performance of this model
is most certainly poor. Hence, the fact that lower order polynomials are a special case of
higher order polynomials is not exploited automatically and restrictions must be made by hand.
From our previous discussion we can interpret the order of the polynomial as a hyperparameter
which needs to be tuned using a validation set. One simple but effective way to attain a good
generalization performance is to learn a model for several different polynomial orders and choose
the one with the best validation performance.

Figure 2.1(d) shows the validation performance for functions with different polynomial orders
D. The graph is reminiscent of a bathtub function with high validation errors for small and
higher polynomial orders and smaller errors for intermediate polynomial orders. The regime of
higher errors due to too small polynomial orders is called underfitting since the model is too
simple to model the data well. On the other side of the bathtub we have to deal with overfitting.
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Figure 2.1: Different plots of the polynomial example. (a) shows the training data and the function that
was used to generate the data. The blue and the green lines in (b) show an overfitting and an
underfitting function respectively. (c) shows the function with the least validation error in blue
next to the true function in red. The training and the validation errors are shown in (d) for
different values of D. The validation set comprises 50 separate examples.

In this case the model is so expressive that it also fits the inherent noise in the data. Thus, it
is desired to find a model somewhere in between that performs well.

2.1.3 Avoiding overfitting

It turns out that overfitting is usually the greater problem. Overfitting occurs especially when
the model class is complex while at the same time training data is rare. The complexity of a
model roughly corresponds to the number of parameters. However, in some cases a model is
also said to be complex if the parameters take on large values. Models with many parameters
are typically more expressive than models with only a few parameters, meaning that they are
capable of representing structures that simpler models cannot. However, in the case of limited
training data it is often better to stick to a less expressive model.

A natural way to measure the complexity of a polynomial is its order. This measure alone
would imply that all polynomials of the same order are equally complex. By taking a closer
look at the weights of an overfitting polynomial, it can be observed that the magnitudes of
its weights are typically much larger than the magnitudes of the parameters of non-overfitting
models. Consequently it is often desired to compute a model with small parameter values. The
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Figure 2.2: Regression using a polynomial of order 10 with weight regularization. The blue line in (a) shows
the polynomial for the λ which resulted in the best validation error. The red line is the true
function. The training and the validation errors for different values of λ are show in (b).

norm of the weight vector appears to be another good complexity measure. This discussion
leads to another common way to avoid overfitting. A loss function is extended with a so called
regularization term that penalizes larger parameter values and, therefore, the complexity of the
model. The regularized loss function for the regression example is given by

lREG(θ) =
1

N

N∑

n=1

(fθ(xn)− yn)
2 + λ‖θ‖22. (2.5)

The variable λ can be seen as a trade-off hyperparameter between the data fit and the complexity
of the model. With λ = 0 the mean squared error formulation is recovered. As λ goes to infinity
one obtains the simplest possible model, namely the zero function. It seems now that we have
added another hyperparameter that needs to be tuned, but the regularization term enables
us to optimize over a class of models containing rather complicated functions. We can fix a
polynomial order that would clearly be too large for the given amount of data examples and the
result will still be simple, provided that λ takes on a reasonable value for the given problem.
Therefore λ remains the only hyperparameter left to tune. Regularization techniques are used
in combination with a wide range of different models in order to help reducing their complexity.

Many models use more than one hyperparameter. In the case of a single hyperparameter
one chooses several values and evaluates the model for each of them. In case of two or more
hyperparameters one chooses several values for each hyperparameter and typically performs this
step exhaustively for each parameter combination. This procedure is also known as grid search.
Since the number of combinations to evaluate grows exponentially in the number of hyperpa-
rameters, it is important to incorporate as few hyperparameters as possible when devising new
models. A strategy that has proven useful in practice is to use logarithmically spaced values
for the hyperparameters such as {2i}i∈I for some integer interval I. Another good technique is
to start with a coarser grid and to subsequently refine the search around parameter values that
seem promising. For some models and applications a random search over the hyperparameter
space can outperform grid search [4]. Bergstra et al. [5] have also shown how previously searched
hyperparameters can be used in order to systematically determine configurations to try next.
This is especially useful if the number of hyperparameters is large where grid search becomes
intractable.

In any reasonable setting, machine learning algorithms achieve better performance the more
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data there is available. In practice it is often the case that labeled data is in some sense difficult
or expensive to obtain. As a consequence, the amount of data at hand is small. The classical
approach now tells us to divide the data into three different sets where each has its own purpose
when learning a model and estimating its performance. If data is scarce, it could happen that
every possible partition into these sets has severe drawbacks. If the number of training data
is high, the accuracy of the estimated performance can be very poor. On the other side, if
the performance should be measured precisely, the learning process will suffer from a small
training set. The solution to this problem is called cross validation. The idea is to divide the
available data in many ways into a training and a test set. For each of these partitions the
algorithm is run on the training set and the performance is assessed with the test set. The true
error is then estimated to be the average of the individual performances. There is plenty of
freedom to partition the data and the most widely used strategy is called k-fold cross validation.
This approach divides the data into k equally sized partitions. Each partition is then used
exactly once as test set while all the others are used as training set. The accuracy of the
estimated performance usually grows with the number of partitions. The special case of k = N
is called leave-one-out cross validation. The drawback of this procedure is that it is typically
very time-consuming. In practice a single training run can already take a long time, rendering
k-fold cross validation infeasible for larger values of k. If cross validation is used for selecting
hyperparameters, it is common to train the model using the best parameters again on the whole
data set.

Another method to avoid overfitting is called early stopping. Many algorithms in machine
learning operate in iterations. For instance most of the optimization algorithms such as gradient
descent are iterative procedures. When plotting the performance of the training and validation
set against the number of iterations, the result often looks as in Figure 2.3. On the one hand,
the performance on the training set is always decreasing since it is incorporated in the objective
function that is minimized.1 On the other hand, the validation error decreases at the beginning
until it reaches a minimum. Afterwards it starts to increase again at which point the model
starts to overfit. Since the goal is to achieve a good classifier rather than solving the optimization
problem optimally, it is often not necessary to continue and one can stop the iterative procedure
and return the model that produced the highest validation performance so far. Of course this
approach would fail if the validation error would drop again after the algorithm was stopped.
Hence, it is not easy to say when it is safe to stop computation. There are many ways to perform
early stopping. A very simple and effective heuristic is to stop if the validation performance has
not increased for a fixed number of iterations. Prechelt [6] describes other ways to implement
early stopping, including the concept of generalization loss. Let the validation error in iteration
t be lva(t). Then the generalization loss in iteration t is defined as

gl(t) =
lva(t)

mint′∈{1,...,t} lva(t′)
− 1. (2.6)

The generalization loss describes how much the validation performance of the current solution
degraded from the best validation performance so far. Early stopping can then be applied if the
generalization loss exceeds a fixed prespecified value.

One drawback of early stopping is that it becomes difficult to reason about how much the
quality of a solution stems from the problem formulation or the early stopping heuristic. From
a theoretic viewpoint, it is often desired to find the hyperparameters which resulted in the
best model. Early stopping should also not be combined with cross validation. The number of
iterations at which early stopping is performed can vary for each partition. Thus, the found
hyperparameters can not be justified to be appropriate for the particular problem.

1 Depending on the specific task, it can happen that the error occasionally increases for some iterations. Nev-
ertheless, the training error should always decrease in the long term.
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Figure 2.3: A characteristic behavior of the training and the validation error over the number of iterations.
While the training error tends to decrease over all iterations, the validation error only drops at
the beginning and starts to increase again. It is often not likely that the validation error would
decrease again. The plot was generated using hybrid generative-discriminative GMMs on the
MNIST data set which was reduced to 50 dimensions with PCA. For details see Section 4.3.1.

2.1.4 Unsupervised learning

Another main field of machine learning is unsupervised learning. In unsupervised learning one
has only given a data set {x1, . . . ,xN} without corresponding target values. Hence the data
in unsupervised learning is also called unlabeled data. Unlike in supervised learning, where one
seeks to find a mapping from the data vectors to their target values, the goal of unsupervised
learning cannot be so easily identified. Loosely speaking, one tries to find some kind of structures
within the given data. In the following we consider instances of unsupervised learning relevant
to this thesis, i.e. clustering, density estimation and dimensionality reduction.

An important unsupervised application is clustering. A cluster is a subset of the given data
that is in some sense similar. An obvious way to define similarity is by using a distance metric
such as the Euclidean distance. The task is then to partition the data into several clusters
such that the distances between examples from the same clusters are in some sense small. The
number of clusters k is usually chosen by hand. In cases where the data can be visualized, i.e.
when the dimension is low, the number of the clusters can often be estimated by inspection from
a plot. In larger dimensions the choice of the number of clusters is often highly nontrivial.

Another important unsupervised task is density estimation. It is assumed that the given data
was drawn from an underlying probability distribution which one aims to find. Many probability
distribution are described by some parameters θ. For instance a Gaussian distribution can be
identified using its mean µ and its covariance matrix Σ, i.e. θ = (µ,Σ). The problem of finding
the underlying distribution is often cast as an optimization problem where one seeks to find the
parameters that optimize an objective which describes how well the corresponding distribution
fits the data. This approach will be discussed in more detail in Section 2.2.

Many tasks involve high dimensional data and it is often a useful step to reduce the num-
ber of features to ease the problem or simply gain more insights into the data. The field of
dimensionality reduction is also considered an unsupervised task. It is often desired to perform
dimensionality reduction such that as much variability in the data as possible is preserved. Prin-
cipal component analysis (PCA) is a widely used tool to achieve this. The idea of PCA is as
follows: Assume that the original space has D dimensions. First one tries to find the direction
in the data with the highest variance. In the following steps the direction with the highest
variance constrained to be orthogonal to all directions found so far is computed. The result is
a set of D orthogonal vectors called the principal components. The data is then reduced by
projecting the original data onto the space spanned by the first D̃ dimensions. It turns out that
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Figure 2.4: Illustration of PCA on a simple example. (a) shows the original data together with the two
directions found by PCA. (b) shows the same data projected onto the first principal component.

this problem can be solved by performing an eigendecomposition of the empirical covariance
matrix of the data. The resulting eigenvalues describe the variability in the direction of the
corresponding eigenvector. Assume that the eigenvalues are ordered, i.e. λ1 ≥ . . . ≥ λD. The
original data can now be projected onto the space spanned by the first D̃ principal components.
Given a reasonable amount of principal components D̃, which may in practice be much smaller
than the original number of dimensions D, the projected data will only differ slightly from the
original data. The amount of preserved variability in the projected data set by using the first
D̃ principal components can be quantified by

∑D̃
d=1 λd∑D
d=1 λd

. (2.7)

(2.7) simply computes the fraction of variability in the first D̃ principal components. If the re-
tained variability is high, say more than 95%, this can be interpreted to mean that the original
data lies close to a D̃-dimensional subspace. This approach is very useful since in many applica-
tions the number of parameters to estimate significantly grows with the number of dimensions
in the data. Consequently, PCA can often be used as a preprocessing step to speed up training
and even increase the performance of classifiers. Furthermore, learning algorithms can become
less prone to overfitting due to the reduced amount of parameters to estimate.

2.2 Generative and Discriminative Models

The generative and the discriminative paradigm provide the foundation for many supervised al-
gorithms. On the one hand, generative strategies aim to model the underlying joint distribution
p (x, c) of the data and the classes to infer a classifier using Bayes’ rule. On the other hand, dis-
criminative strategies try to model the class posterior probability p (c|x). Discriminative models
tackle the classification criterion directly and thus typically achieve a better classification perfor-
mance than generative algorithms, especially when the model does not represent the underlying
distribution well. However, there are certain aspects that also favor the generative paradigm
when performing classification. This section provides an overview of common generative and
discriminative strategies. In Chapter 3 we show how to learn a hybrid generative-discriminative
classifier.
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2.2.1 The Bayes classifier

Probability theory provides natural ways for designing classifiers. As mentioned in Section
2.1, one typically assumes that the data is drawn from an underlying fixed and unknown joint
distribution p (x, c) of the data and the class. Using Bayes’ rule, the class posterior probability
of class c for a given data example x is given by

p (c|x) = p (x|c) p (c)
p (x)

=
p (x, c)

p (x)
. (2.8)

Since the true underlying distribution p (x, c) is usually not known, one typically sticks to a
parameterized approximation p (x, c|θ) thereof. It is then straightforward to build the Bayes
classifier which outputs the class with the largest posterior probability, i.e.

fθ(x) = argmax
c∈C

p (c|x,θ) = argmax
c∈C

p (x, c|θ) . (2.9)

Generative models try to estimate the true underlying joint distribution p (x, c) of the data and
the labels and make their predictions according to (2.9). Note that the denominator p (x) is
not relevant for classification, since it is independent of the class c. It can be shown that the
best results in terms of the expected loss (2.1) with respect to a zero-one error function are
achieved when the true underlying distribution p (x, c) is used to classify according to (2.9).
There are two main problems that arise in practice: First, we often do not know a model class
which contains the true underlying distribution. In this case, one has to select a model class
that can at least approximate the true distribution reasonably well. Second, even if a model
class containing the true distribution is known, the problem of estimating its true parameters
can be difficult when data is rare.

Using the product rule, the distribution p (x, c) can be factorized as p (x|c) p (c), i.e. the joint
distribution can be represented by a prior probability p (c) over the classes and a class conditional
distribution p (x|c) for each class. We will assume that each class conditional distribution can be
parametrized by a vector θc ∈ Θc and that the parameters for each class are pairwise disjoint,
i.e. θc ∩ θc′ = ∅ for c 6= c′. The parameters of the whole joint distribution are denoted as
θ = (π1, . . . , πC ,θ1, . . . ,θC) where p (c|θ) = πc. The parameter space is denoted as Θ. The
class conditional distribution of class c is written as p (x|θc).

2.2.2 ML estimatation

A common way to fit a model to a given data set is by computing the maximum likelihood
(ML) estimate of its parameters. Hereby one seeks for parameters θML that maximize the joint
probability of the data and the corresponding class labels. If the samples are assumed to be
independently and identically distributed, the ML estimator is given by

θML = argmax
θ∈Θ

p (x1, . . . ,xN , c1, . . . , cN |θ) = argmax
θ∈Θ

N∏

n=1

p (xn, cn|θ) . (2.10)

By taking the logarithm of (2.10) the product is turned into a sum, making the problem easier
to handle. The resulting objective is called the log-likelihood function. Note that the maxima
are not changed, since the logarithm is a strictly monotonically increasing function. Hence, the
ML estimator in terms of the log-likelihood function can be written as

θML = argmax
θ∈Θ

N∑

n=1

log p (xn, cn|θ). (2.11)
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Using the product rule of probability, the log-likelihood function can also be written as

θML = argmax
θ∈Θ

C∑

c=1

Nc πcn +
N∑

n=1

log p (xn|θcn), (2.12)

where Nc denotes the number of examples of class c. By introducing a Lagrangian multiplier
for the sum-to-one constraint of the class priors and by setting the derivative of this function
to zero, it turns out that the optimal class priors πc are given by the fraction of examples that
belong to this class, i.e.

πc,ML =
Nc

N
. (2.13)

We refer to (2.13) as the empirical prior. Equation (2.12) shows that the log-likelihood objective
decomposes into a sum of terms which only contain the parameters of a single model. Therefore,
the optimal parameters can be found by optimizing the parameters of each class conditional
distribution separately without taking examples from other classes into account. Furthermore,
if the log-likelihood objective is concave for each class, the log-likelihood objective of the full
joint distribution will also be concave. The tractability of optimization problems often stems
from the fact that the corresponding objective function is concave or convex [7].

The ML solution usually approximates the true underlying distribution more accurately as
the number of available training data increases. Given that the true underlying distribution is
in the chosen model class, one can show that the ML solution converges under mild assumptions
to the true distribution as the number of data examples goes to infinity [8].2 On the other side,
if data is rare, ML often produces poor results. Figure 2.5(a) illustrates ML estimation in case
of a Gaussian distribution.

2.2.3 MAP estimation and the posterior predictive distribution

Another widely used approach to learn a distribution for some given data is known as maximum
a-posteriori (MAP) estimation. Here the key idea is to assume that the model parameters are
random variables which are distributed according to a prior distribution p (θ). The goal is then
to find parameters with maximal posterior probability after observing the data. Hence, the
MAP solution is given by

θMAP = argmax
θ∈Θ

p (θ|x1, . . . ,xN ) = argmax
θ∈Θ

p (x1, . . . ,xN |θ) p (θ) . (2.14)

Using this approach, it is possible to incorporate prior knowledge about the model parameters in
the density estimation procedure. Especially in the case of limited data MAP estimation usually
outperforms the ML solution. Hence, MAP estimation can be seen as a way to regularize ML
in order to avoid overfitting [8].

Nevertheless, like the ML estimate, the MAP solution is also only a point estimate which can
result in poor performance if the posterior mode is not in a high density region of the posterior
distribution. This scenario is depicted in Figure 2.5(b). The solution to this problem is referred
to as the posterior predictive distribution where the target value is computed as the class with
the highest probability given the data, i.e.

f(x) = argmax
c∈C

p (c|x1, . . . ,xN ) . (2.15)

2 It suffices that the parameters of a probabilistic model are identifiable such that the convergence statement
holds. Informally speaking, identifiability of the parameters means that different parameters result in different
distributions.
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Figure 2.5: (a) illustrates the ML principle with a Gaussian. ML estimation tries to find the model for
which the product of the red bars is maximized. (b) shows a possible posterior distribution for
the parameter θ. The MAP estimator would be the peak on the left whereas the true parameter
is much more likely to lie in the high density region on the right.

The parameters θ are then incorporated and integrated out again. The posterior predictive
distribution can then be rewritten as

f(x) = argmax
c∈C

∫

Θ
p (c|θ) p (θ|x1, . . . ,xN ) dθ. (2.16)

A useful interpretation of this method is that all possible parameters are used to classify an
example and the results are weighted according to their posterior probability. The drawback
of this method is the integration over the whole parameter space, which can not always be
computed analytically.

2.2.4 Discriminative learning and MCL estimation

In many practical cases the use of a generative model is restricted to perform classification.
A famous quote of Vapnik states that one should never solve a more general problem as an
intermediate step than the problem one really intends to solve [9]. When classifying examples
according to the class with the maximum posterior probability, the problem of modeling the
full joint distribution of the data and the class is clearly a more general one. The field of
discriminative learning is concerned with modeling the class posterior p (c|x) directly.
A widely used discriminative training criterion is calledmaximum conditional likelihood (MCL).

This technique is similar to ML estimation. The goal is to find the parameters which result in
the highest posterior probability of the true classes. Note that this approach directly operates
on the prediction criterion. Assuming that the data examples are independently and identically
distributed, the MCL estimator is given by

θMCL = argmax
θ∈Θ

p (c1, . . . , cN |x1, . . . ,xN ,θ) = argmax
θ∈Θ

N∏

n=1

p (cn|xn,θ). (2.17)

Taking the logarithm again simplifies the objective:

θMCL = argmax
θ∈Θ

N∑

n=1

log p (cn|xn,θ). (2.18)
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Using Bayes’ rule and properties of the logarithm yields

θMCL = argmax
θ∈Θ

N∑

n=1

log
p (xn|θcn)πcn∑
c′∈C p (xn|θc′)πc′

(2.19)

= argmax
θ∈Θ

N∑

n=1

(
log p (xn|θcn) + log πcn − log

∑

c′∈C
p (xn|θc′)πc′

)
. (2.20)

The difference to the joint log-likelihood function lies in the denominator of (2.19), which is
simply p (x|θ). It is exactly this term which ties all the model parameters together and prevents
us from optimizing each model separately as in the ML approach. From a different viewpoint this
behavior becomes immediately apparent. Assume that the parameters of a single class model
are changed in such a way that the posterior probability of the corresponding class for a certain
training example increases. Due to the sum-to-one constraint of the class posteriors, there must
be at least one other class for which the posterior probability of this example drops. Thus,
changing the parameters of a single class model also affects the objective values for examples
of other classes. The objective is in general not concave and globally optimal solutions can
less frequently be guaranteed than in the ML approach. Methods which solve this problem are
usually more involved. For example in [10] GMMs have been trained according to the MCL
criterion using the extended Baum-Welch algorithm.

2.2.5 Large margin learning

Another frequently used discriminative criterion is large margin learning which became partic-
ularly important in the context of support vector machines (SVMs) [11]. Assume that a given
data set with two classes is linearly separable, i.e. there exists a hyperplane such that the ex-
amples of the two classes lie on different sides. Such a hyperplane can be seen as the decision
boundary that is used to perform classification by checking on which side of the hyperplane
a given example lies. In most scenarios this hyperplane is not unique and there is plenty of
freedom in how to choose it. SVMs aim to maximize the margin of the hyperplane which is
defined as the shortest distance between the decision boundary and any of the points in the data
set. The set of support vectors, which are those data points that define the margin, typically
contain only a fraction of the original data set. It can be shown that these points determine the
whole model and all the other points have effectively no impact on the choice of the parameters.
This task can be cast as a convex optimization problem for which efficient algorithms exist.

However, there are several problems that arise in practice. SVMs are inherently designed to
solve binary classification tasks. As a consequence, generalizations for multiclass problems are
not straightforward. The one-versus-all classifier trains a SVM for each class where all examples
of this class are separated from all other examples. The predicted class is the one for which the
data point lies the farthest away from the corresponding hyperplane. On the other side, the
one-versus-one classifier learns a SVM for each pair of classes. The output is computed as the
class that was predicted most often when using all the pairwise SVMs. Crammer and Singer
[12] proposed a way to learn multiclass SVMs directly rather than solving multiple independent
SVMs.

Since the hyperplane is solely defined by the support vectors, the model is prone to bad
results due to outliers in the set of support vectors. Furthermore, linear separable data is rarely
encountered in practice. One solution to these problems is to introduce a non-negative slack
variable for each example. These slacks measure how much a point lies on the wrong side of the
hyperplane. The sum of these slacks can be seen as a measure of data misclassification. The
convex optimization problem is then relaxed to allow data points to lie on the wrong side of the
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hyperplane. However, these data points increase the penalization term represented by the sum
of all slack variables in the objective. This technique is called soft-margin SVMs.3

SVMs can also be used to construct non-linear decision boundaries using the so called kernel
trick. A kernel function is used to implicitly transform the data into a higher dimensional feature
space in which a separating hyperplane exists. This way the induced decision boundary in the
original feature space becomes non-linear. The technical details and illustrations of SVMs are
given in Section 3.1.1.

The technique of margin based learning has also been adopted to probabilistic models. The
probabilistic margin of a data example x of class c is defined as

δc (x) =
p (c|x)

maxc′ 6=c p (c′|x)
. (2.21)

A data example is correctly classified if δc(x) is larger than one. A probabilistic model can
be learned in a discriminative way by maximizing the margin of the data set. Since all the
classes are considered in the definition of the probabilistic margin, the multiclass case is handled
more naturally than by usual SVMs. This is similar to the way SVMs have been generalized to
the multiclass case by Crammer and Singer [12]. The margin criterion has been used to train
probabilistic graphical models [2, 13] and GMMs [10] in a discriminative way. In principle, this
approach can be extended to any generative model.

2.2.6 Discussion

Discriminative classifiers usually outperform generative models substantially. However, Ng and
Jordan [14] have shown that generative models can yield better results in the regime of rare
data. In particular, they have shown that in the case of a generative naive Bayes model and
its discriminative analogon logistic regression, the asymptotic classification error with respect
to the number of training examples of the generative model is higher than in the discriminative
approach. Nevertheless, the generative model achieves its asymptotic performance much faster
such that it might be preferable in case of a small data set. On the other side, generative models
provide other benefits such as their natural ability to deal with missing data as we will see in
Section 2.4. The aim of this thesis is to get the best of both worlds, a discriminative classifier
with a generative interpretation. In Chapter 3 we will show how the probabilistic margin can be
used to learn GMMs in a hybrid generative-discriminative way by incorporating both a likelihood
term and a weighted large-margin term in the objective.

2.3 Gaussian Mixture Models

Gaussian mixture models (GMMs), as a superposition of several weighted Gaussian distributions,
provide a powerful way to model the data in many applications. However, the common way to
fit probabilistic models, namely ML estimation, comes with several difficulties that do not occur
when using only a single Gaussian distribution. We present the EM algorithm, the common way
to compute ML parameters for GMMs, and demonstrate its correctness. Furthermore, we show
techniques to avoid the inherent shortcomings of ML estimation applied go GMMs.

3 The classical SVM, where no data example is allowed to be misclassified, is therefore also known as hard
margin SVM.
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Figure 2.6: Illustration of how the covariance matrix influences the contours of a Gaussian distribution. (a)
depicts the contours of a diagonal covariance matrix with equal entries, i.e. Σ = σI where I
is the identity matrix. In this case the contours are ball-shaped. (b) shows the contours of a
general diagonal covariance matrix. The contours are ellipsoidal and axis-aligned. (c) depicts the
contours of a general full covariance matrix. The contours are ellipsoidal but not axis-aligned.

2.3.1 The Gaussian distribution

The data encountered in numerous applications is distributed according to a Gaussian or can
at least be approximated by it. The density of a Gaussian in RD, which is defined by its mean
µ ∈ RD and its symmetric positive semidefinite covariance matrix Σ ∈ RD×D, is given by

N (x|µ,Σ) =
1√

(2π)D detΣ
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
. (2.22)

The unique ML parameters of the Gaussian distribution are given by

µML =
1

N

N∑

n=1

xn, (2.23)

and

ΣML =
1

N

N∑

n=1

(xn − µML) (xn − µML)
T . (2.24)

The parameter µML is the empirical sample mean and ΣML is the empirical covariance matrix
or scatter matrix. The density of a Gaussian has an elliptic shape around the mean which is
determined by the covariance matrix. The shapes for different types of covariance matrices are
depicted in Figure 2.6. The term inside the exponential function is related to the Mahalanobis
distance with respect to the covariance matrix Σ, which is given by

d(x,x′) =
√

(x− x′)TΣ−1(x− x′). (2.25)

The Mahalanobis distance is a metric which takes the variability of the data into account. If the
two data examples x and x′ vary in a direction of high variability, their Mahalanobis distance
will still be somewhat small.
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2.3.2 Mixture models

The Gaussian is a unimodal distribution, and the assumption that the given data is also dis-
tributed according to a unimodal distribution might be too strong for many applications, espe-
cially when the data lies in distinct clusters. Mixture models provide a richer class of distributions
to overcome shortcomings such as the unimodality assumption of the Gaussian. A mixture model
is basically a superposition of several weighted densities which are called components. We denote
the number of components by K. We assume that each component can be parametrized by a
parameter vector θk where k is the component index. The parameter vectors of each component
are assumed to be pairwise disjoint, i.e. θk ∩ θk′ = ∅ for k 6= k′. Furthermore, each component
is assigned a mixture weight or component prior αk. The component priors of a mixture model
are constrained to be non-negative and sum up to one. The density of a mixture model is then
defined as

p (x|θ) =
K∑

k=1

αkp (x|θk). (2.26)

Given that all the components are valid, i.e. their densities are non-negative and integrate to one,
and that all the component priors are non-negative and sum up to one, it is straightforward to
show that the resulting density is also valid. In the following we will only consider a special kind
of mixture model, namely the Gaussian mixture model (GMM), which is obtained by assuming
that every component density is a Gaussian. The GMM is a powerful model since it can be used
to approximate any distribution, given enough components [8]. The parameters of a GMM can
be collected in a vector θ = (α1, . . . , αK ,θ1, . . . ,θK) with θk = (µk,Σk). Its density is defined
as

p (x|θ) =
K∑

k=1

αkN (x|µk,Σk). (2.27)

2.3.3 ML estimation applied to GMMs

It appears now natural to fit GMMs according to the ML principle. However, there are several
difficulties that arise in doing so as we will explain below. The log-likelihood function of a
general mixture model is given by

p (x1, . . . ,xN |θ) =
N∑

n=1

log
K∑

k=1

αkp (xn|k). (2.28)

Unfortunately, this function is in general no longer concave, even if the components belong to the
exponential family [3].4 The reason for this is the sum inside the logarithm. The logarithm does
not act on the exponential function directly which makes the log-likelihood function complicated
and possibly highly multimodal. As a consequence, there exist in general no closed form solutions
to the ML problem and globally optimal solutions in iterative procedures cannot be guaranteed.
One can still use general gradient based optimization algorithms and try to solve the problem
approximately to obtain reasonable locally optimal parameters.

A problem that comes with GMMs are singularities [3]. Consider the case of a single Gaussian
whose mean falls exactly onto a data point. If the covariance matrix of this Gaussian goes to
zero, the probability goes to infinity on this point. However, the probability simultaneously tends

4 Distributions of the exponential family have the property that their log-likelihood function is concave. Many
important distributions, such as the Gaussian, the binomial or the gamma distribution, belong to this family.
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Figure 2.7: Illustration of two different GMMs. (a) shows the density of a GMM with three components
in one dimension. (b) shows the density of a GMM with three components in two dimensions
together with some data examples generated by it.

to zero on all other points. Since the data likelihood is a product of the individual probabilities,
it will go to zero rather than infinity. In the case of a GMM this behavior becomes a severe
problem. If a component collapses on a single data point, the contribution of this point to the
likelihood function becomes infinity. Unlike in the case of a single Gaussian, the other points
will have a non-zero contribution because of other components that have not collapsed. The
overall likelihood in this case would be infinity. Hence the ML problem is ill-posed. Instead of
globally optimizing the likelihood function one tries to find parameters that are locally optimal
and do not have singularities.

Another problem of GMMs is that the parameters are only allowed to take specific values.
Concretely, the component priors must be non-negative and sum to one and the covariance ma-
trices need to be positive semidefinite.5 Such constraints often make the optimization procedure
significantly harder.

Furthermore, mixture models inherently involve the choice of the number of components to be
used. Unless the data is low-dimensional and can be visualized, it is usually difficult to choose
the number of components. The number of components K can be seen as a hyperparameter
that needs to be tuned, for instance by choosing K to maximize the performance on a separate
validation set. It is worth noting that in the case of two or more components there will never
be unique globally optimal parameters for the ML problem. Since all components are equal,
interchanging the component parameters produces the same distribution.

2.3.4 The EM algorithm

There exists a special purpose algorithm, called the expectation maximization (EM) algorithm,
which can be used to compute ML parameters in the presence of latent variables. To elicit
the latent variable representation of mixture models, we have to view them from a different
perspective. Assume that we have an underlying joint distribution p (x, k) which is factorized
as p (x|k) p (k). Using the sum rule and writing p (k) as αk, we can immediately see that the
marginal distribution p (x) is given by (2.26). We call x the observed data, k the latent or hidden
data and (x, k) the complete data. It is best to think of each data example being generating by

5 The covariance matrix of a single Gaussian is also constrained to be positive semidefinite. However the closed-
form ML solution guarantees that the covariance matrix is positive semidefinite.
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a particular component. The responsible component for generating a data point is denoted by
the variable k.

In Section 2.2 we have described that a generative classifier tries to model the joint distribution
p (x, c) of the data and the class labels. Now suppose that the class labels c correspond to the
hidden variables k and that all the class conditional densities p (x|c) are Gaussians. In this case,
the marginal data distribution p (x) is exactly a GMM. Since we have established that this task
is tractable, we can conclude that optimizing the likelihood of a GMM is also easy, given that
we know the hidden variables. The second step of the EM algorithm makes use of this fact.

The following derivation of the EM algorithm and its correctness is based on [3]. To derive
the EM algorithm and its correctness, we introduce an auxiliary distribution q (k) and note that
the observed data log-likelihood can be written as

log p (x|θ) =
K∑

k=1

q (k) log p (x|θ) (2.29)

=
K∑

k=1

q (k) log
p (x, k|θ) q (k)
p (k|x,θ) q (k) (2.30)

=
K∑

k=1

q (k) log
q (k)

p (k|x,θ) +
K∑

k=1

q (k) log p (x, k|θ)−
K∑

k=1

q (k) log q (k) (2.31)

= KL (q||p) + Eq {log p (x, k|θ)}+H(q) . (2.32)

The first term is the Kullback-Leibler (KL) divergence6 between the auxiliary distribution q (k)
and the component posterior p (k|x,θ). The second term is the expected complete data log-
likelihood with respect to q and the last term is the entropy of q. Since the KL divergence
is always non-negative, we refer to the sum of the latter two terms as the lower bound of the
observed data log-likelihood.

The EM algorithm is an iterative procedure that alternates between two steps. Given a
parameter configuration θ, the first step, called the expectation step or E-step, seeks for a
distribution q (k) which minimizes the KL divergence term. Alternatively, one can think of
this step as maximizing the lower bound. This is achieved if q (k) is equal to the component
posteriors p (k|x,θ) in which case the KL divergence term vanishes. Using Bayes’ theorem, the
posterior probabilities can be computed as

p (k|x,θ) = p (x|k,θ) p (k)
∑K

k′=1 p (x|k′,θ) p (k′)
. (2.33)

The posterior probabilities can be seen as our belief of a certain data example being generated
by a particular component under the current model parameters.

The second step, called the maximization step or M-step, now holds this choice for the auxiliary
distribution q (k) fixed and optimizes the lower bound with respect to the parameters θ. It
suffices to optimize the expected complete data log-likelihood, since the entropy of q (k) is
independent of the parameters. The result of this optimization are new parameters θ′. Given
that the component densities are in the exponential family, optimizing this term is typically
much easier than optimizing the observed data log-likelihood. This is because the logarithm
acts directly on the complete data distribution. The tractability of this computation can also
be explained with the correspondence between GMMs and a generative model with known class
labels and Gaussian class conditional densities which we have established above. This step
simultaneously optimizes the observed data log-likelihood because of the equality which we have

6 The KL divergence can be seen as a measure of distance between two distributions. However, it is not a
symmetric function and therefore not a true metric.
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shown before. Unless we are already at a stationary point, the KL divergence term will become
positive after this step due to the change in the parameters. The increase in the observed data
log-likelihood will therefore even be larger than the increase in the lower bound. This shows
that the EM algorithm increases the observed data log-likelihood in each step. These two steps
are iterated until some convergence criterion is met. It is common to stop the EM algorithm if
the increase in the observed data log-likelihood falls below a given threshold or the norm of the
parameter change becomes small.

Since we have assumed that we are already given parameters θ which were used in the subse-
quent E-step and M-step respectively to compute new parameters θ′, the questions arises with
which parameters one should start. We emphasize here that the EM algorithm is only suited
to find locally optimal points rather than global solutions. Both the E-step and the M-step are
usually deterministic and hence the starting point is the only way to change the outcome of the
algorithm. It turns out that good initial values for the parameters are crucial in order to achieve
good model parameters. There are several different ways to accomplish this. A generic approach
in the case of GMMs is to initialize the component priors uniformly and the means by some
randomly chosen data points. The covariance matrices can be chosen to be identity matrices
or by the empirical covariance matrix of all data examples. Since a bad guess of the randomly
chosen data points can cause bad results, it is common to restart the procedure several times
with different initializations and choose the solution with the highest likelihood. This common
technique for iterative optimization procedures is called random restart. The EM algorithm for
maximizing the likelihood of a GMM is given by Algorithm 1.

Algorithm 1 The EM algorithm for maximizing the likelihood of GMMs

(1) Choose θ0
(2) E-step: Compute rn,k = p(xn|k,θ)p(k)∑K

k′=1 p(xn|k′,θ)p(k′)
∀n, k

(3) M-step: Compute





Nk =
∑N

n=1 rn,k

αk = Nk
N

µk = 1
Nk

∑N
n=1 rn,kxn

Σk = 1
Nk

∑N
n=1 rn,k(xn − µk)(xn − µk)

T

∀k

(4) If converged, return θ, else goto (2)

As described above the E-step computes the posterior probabilities of the components for all
data examples. We can see that the update formulas in the M-step have an intuitive interpre-
tation. The values Nk can be seen as the effective sample counts of the components. For the
component priors we simply compute the fraction of the effective sample counts belonging to
that component. The component means and the covariance matrices are computed similar to
the ML solution. However, each data example is weighted according to its current probability of
being generated by that particular component. The EM algorithm ensures that all parameters
take values that satisfy the constraints. Since the component posteriors sum up to one, it can
be shown that the effective sample counts Nk sum up to N . Therefore, the component priors
satisfy the non-negativity and the sum-to-one constraint. The covariance matrices are always
positive semidefinite since they are given by a sum of outer products. Furthermore, it turns out
that in practice the EM algorithm converges typically much faster than general gradient based
algorithms that do not make use of the special problem structure.

2.3.5 Avoiding problems of ML estimation

As mentioned in Section 2.1, many models tend to overfit if the number of parameters is high
compared to the amount of given data examples. Consider the case of a GMM with K compo-
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nents in a D-dimensional space. We need K component priors7, K D-dimensional vectors to
represent the means and K covariance matrices which are defined by n(n + 1)/2 parameters.
Especially if D is large, the number of parameters becomes huge, since it depends quadratically
on the number of dimensions. There exist several techniques which help reducing the number
of parameters at the cost of a less expressive model. Instead of using full covariance matrices,
one can simply use diagonal covariance matrices to get rid of the quadratic dependency on the
number of dimensions. Only D parameters are needed and it suffices that each of these val-
ues is non-negative in order to get a positive semidefinite matrix. In addition, non-negativity
constraints are much easier to handle than ensuring that a matrix is positive semidefinite. A
single Gaussian with a diagonal covariance matrix comes with the inherent assumption that all
features are independent from each other, i.e. it factorizes into a product of one-dimensional
Gaussians for each dimension. Note however that the distribution of a GMM is still given by
a sum over several such Gaussians which in general does not factorize into a product for each
dimension. As a result we are still able to capture dependencies between the variables. It is
just the number of components which needs to be increased in order to get an approximation
at similar quality as with full covariance matrices. The number of parameters can be decreased
further by introducing equality constraints on the diagonal elements. In this case, the covariance
matrices can be written as σkI. Another approach to reduce the number of parameters is by
using a shared covariance matrix for all components. This helps removing the dependency on
the number of components. It is also possible to combine both approaches.

The EM algorithm might produce models with ill-conditioned covariance matrices which are
either non-invertible or yield a singularity. This happens especially if the number of dimensions is
high compared to the amount of observed data examples or the number of components is chosen
too large. The EM algorithm can be extended to detect ill-conditioned covariance matrices and
simply remove the corresponding components and possibly replace them by a newly initialized
one. In some cases it suffices to use one of the techniques described above to reduce the number
of parameters. Another simple way is to add a small positive constant to the diagonal of the
covariance matrix after the M-step. In the case of diagonal covariance matrices, one can also
set a minimal value for the entries on the diagonal and assign these value to entries which drop
below it.

2.3.6 Discriminative GMMs

GMMs can also be learned in a discriminative way. Sha [15] learned GMMs with large margin
techniques using the Mahalanobis distance with respect to the covariance matrices. In the case
of a single Gaussian per class, he was able to formulate a convex semidefinite program to solve
this problem. In the case of more than one component per class, he computes ML solutions
for each GMM and assigns each data example a proxy label according to the most probable
component having generated it. This way, he was able to get rid of latent data and derive a
convex semidefinite program for multiple components as well.

As already mentioned, Pernkopf and Wohlmayr [10] proposed to train GMMs using the prob-
abilistic margin. However, they do not consider the likelihood at all which diminishes the
interpretation of the trained model as a good approximation of the underlying density. In this
thesis we incorporate the ideas developed in [2] where the objective trades off between a large
margin term and a likelihood term and thus maintains a better probabilistic interpretation.

7 Strictly speaking, K-1 parameters would suffice given the non-negativity and the sum-to-one constraints of the
component priors.
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2.4 Missing Data

Missing data is encountered in many fields. For instance, in health care a data vector could
comprise every possible measurements that can be made in the course of a medical examina-
tion. However, a doctor can often make a plausible diagnosis even if not all measurements
are available. Another example are sensor networks where typically some of the sensors fail to
produce measurements. In some cases the amount of observed data is actually rare compared
to unobserved data. Consider an online shopping system where users can rate products. The
available data can be represented as a matrix where one dimension corresponds to the users and
the other dimension corresponds to the products. Such a matrix is typically sparse since users
rate only a small fraction of the available products. A data vector can therefore be written as
x = (xo,xm) where xo refers to the observed values and xm refers to the missing values. These
examples already show that there is a need for algorithms and models which are able to cope
with missing data at both training and testing time.

On the other side, there is also the possibility that some of the target values are missing. Such
additional unlabeled data might seem to provide no gain at all. However, it turns out that there
exist algorithms which can make use of the unlabeled data, given that certain assumptions hold
in the underlying distribution. As we will see, there are numerous applications that can make
use of such techniques. Since these algorithms make use of both labeled and unlabeled data,
they belong to the field of semi-supervised learning.

2.4.1 Missing features

We start our discussion with the process that renders features hidden. In many cases the actual
values of the data can be responsible for making the data unobserved. Suppose we have some
sensors producing temperature values. It is more likely that they fail producing a value if the
temperature is very high or very low. We now introduce the response indicator vector r ∈ {0, 1}D
that determines which features are observed. To capture the process that makes data hidden, we
define a joint distribution p (x, r|ψ,θ) over the data and the response indicator. It is common to
factorize this distribution as p (r|x,ψ) p (x|θ). The first term is called the missing data model
and the second term is called the complete data model [16]. We assume that the missing data
model can be parametrized by a vector ψ. Little and Rubin [17] divided the types of the missing
data processes into three groups:

1. Themissing completely at random (MCAR) assumption is the strongest we can make about
the missing data model. It assumes that the underlying process that decides which features
are observed is independent from the actual values of the data, i.e. p (r|x,ψ) = p (r|ψ).

2. The missing at random (MAR) assumption is less restrictive than the MCAR assumption.
It assumes that the missing data model only depends on the observed data, i.e. p (r|x,ψ) =
p (r|xo,ψ). The MAR assumption can also be seen as imposing the constraint that the
probability of a particular missing data pattern must be equal for all possible values of the
unobserved features [16].

3. If neither of these assumptions hold, we refer to the not missing at random (NMAR)
regime.

The following calculations will show that the MAR assumption suffices in order that we can
ignore the missing data process when performing ML estimation. The log-likelihood function is
given by

log p (x1, . . . ,xN , r1, . . . , rN |θ) =
N∑

n=1

log

∫
p (xn, rn|ψ,θ) dxm

n . (2.34)
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Using the factorization from above and applying the definition of the MAR assumption yields

log p (x1, . . . ,xN , r1, . . . , rN |θ) =
N∑

n=1

log

∫
p (rn|xo

n,ψ) p (xn|θ) dxm
n (2.35)

=
N∑

n=1

log p (rn|xo
n,ψ) +

N∑

n=1

log p (xo
n|θ). (2.36)

Hence, we can essentially ignore the missing data process and simply maximize the likelihood.
If we know the true underlying distribution of some data, a similar reasoning shows that the
Bayesian classifier, which predicts according to the class with the highest posterior probability,
is also optimal and does not have to take care of the missing data process. This already reveals
an important feature of probabilistic classifiers: One only needs to integrate out the missing
data and then learn or classify according to the marginal distribution of the observed variables.

Nevertheless, there are many discriminative classifiers such as SVMs where missing data can-
not be handled merely with marginalization. Different ways to handle missing data have been
proposed for these algorithms. Case deletion simply discards data examples containing miss-
ing features. This method is typically not recommended since the available data might shrink
significantly. The discarded data often contains useful information that could help in learning
a better model. Furthermore, this method does not provide a way to handle missing data at
classification time. Therefore, it is only useful when all features are known when predicting
future examples. One of the most famous methods are imputation techniques where one tries
to find plausible values for the missing features and then ignore the fact that these values were
not given at first.

• Unconditional mean imputation computes the mean for all observed values of each feature
and simply replaces missing entries with it. This method is often not suited, since it
chooses the values for the hidden data without taking the observed values into account.

• Conditional mean imputation estimates the mean and the sample covariance matrix based
on the fully observed data examples which are then used to perform regression for the
missing values.

• K-nearest neighbor imputation stores the whole training set and computes the K nearest
data vectors of this set for new instances. These are then used to impute values according
to their mean or using a majority vote in case of categorical values. Nearest neighbor
techniques involve the computation of a distance metric. Note that the distance between
vectors with missing entries is not well defined. One typically considers only those features
which are observed for both vectors when computing the distance between them [18].

The imputation methods described so far generally only produce valid results if the MCAR
assumption is given. An advantage of generative models over the techniques described here is
that they produce valid results even if the weaker MAR assumption holds. This makes them
more suitable in different missing data applications.

Finally, we mention that the joint distribution p (x, r|θ,ψ) can just as well be factorized
into p (x|r,θ) p (r|ψ). This suggests that each pattern of missing features determines its own
distribution. If the number of different patterns in the data is small, one can learn a model
for each of these patterns. This has the advantage that for each pattern standard supervised
techniques can be applied.

2.4.2 Semi-supervised learning

The task of learning a classifier with partly missing labels leads to the emerging field of semi-
supervised learning. In addition to a set of data examples with known class labels there is
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also a set of unlabeled data. Given a set of labeled data {(xl
1, c1), . . . , (x

l
Nl
, cNl

)} and a set of
unlabeled data {xu

1 , . . . ,x
u
Nu

}, the goal of semi-supervised learning is to improve the performance
of a classifier which would use the labeled data alone and discard the unlabeled data.

There are numerous applications in which large amounts of unlabeled data are available but
the labeling process is difficult or expensive. For example, in the field of speech classification it
is cheap to record hours of speech while labeling this data is very time-consuming and requires
experts. Similarly, in a digit recognition task it is easy to produce image data but manually
labeling them is a time-consuming task. Hence, the number of unlabeled samples Nu is typically
much larger than the number of labeled samples Nl, i.e. Nu ≫ Nl.

The question is how the given unlabeled data can be used to improve the performance. For
semi-supervised algorithms to work, it is important that there exist certain structures in the
underlying data distribution. Chapelle et al. [19] describe three assumption out of which at least
one must hold in order to benefit from unlabeled data:

Semi-supervised smoothness assumption If two points are close in a high-density region it is
likely that their labels are also close.8 Note that the unlabeled data can help identifying
high-density regions.

Cluster assumption If points lie in the same cluster, they are likely to be of the same class. A
direct consequence of this assumption is that the decision boundaries are more likely to
lie in low-density regions. Hence, this is often referred to as the low density separation
assumption.

Manifold assumption The high-dimensional data lies on a low-dimensional manifold. It is often
easier to learn a model on this lower dimensional space.

We emphasize that these assumptions are not distinct and the latter two can more or less be
seen as a special case of the first. Nevertheless, the different assumptions have inspired dif-
ferent algorithms and the way how existing supervised or unsupervised algorithms have been
extended to make use of unlabeled data. Especially regularization techniques are based on these
assumptions which penalize solutions that do not conform with the particular assumption. The
semi-supervised regime lies between supervised and unsupervised learning. On the one hand,
semi-supervised algorithms build on supervised techniques and treat the unlabeled data as addi-
tional information about the marginal distribution p (x). On the other hand, the unsupervised
task of clustering can be extended to impose certain constraints on the resulting clusters based
on the information contained in the given class labels.

In the following we will present several algorithms to tackle the semi-supervised learning
problem. One of the most basic semi-supervised schemes, which can be used on top of many
supervised algorithms, is called self-learning [19]. The idea is to first learn a classifier using only
the labeled data points and then use this classifier to predict the classes for unlabeled points. It
is important that the supervised algorithm produces some kind of confidence score which tells us
how certain we can be about the predicted class. In the case of a generative classifier this score
would be the class posterior probability according to which the samples are predicted. Those
unlabeled points for which the most certain outputs can be made are subsequently assigned the
corresponding class labels and then included in the labeled data. This is iterated until either all
unlabeled data is labeled or some other stopping criterion is met. Sometimes it is also possible
to assign soft class labels to the unlabeled data and afterwards weight their impact accordingly.

SVMs have been extended to so called transductive SVMs which not only seek to maximize
the margin of the labeled data but also maximize the margin of the unlabeled data [20]. Here
unlabeled data is allowed to take any class label. It is just important that the points lie far away
from the decision boundary. Therefore, transductive SVMs are implementing the low-density
separation assumption, since they try to put the decision boundary into a region far away from

8 For classification problems the term ‘being close’ essentially means ‘being equal’.
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Figure 2.8: (a) shows a decision boundary that was trained using the labeled data alone. In (b) the same
data is extended with some unlabeled data. It seems now more natural that the decision boundary
lies in the low density region between the two clusters. Note that the decision boundary from the
left picture would cut directly through the high density region.

all given points.

The manifold assumption is utilized by graph based approaches. These approaches use the
given data to build a combinatorial graph, consisting of nodes and edges between these nodes, on
which different algorithms can then be applied. The data examples are represented by the nodes.
Edges with their corresponding weights typically represent some similarity measure between the
data examples whereas missing edges mean no similarity at all. This implicitly assumes that
adjacent nodes are more likely to be of the same class. Methods applied to the resulting graph
include minimum cut problems in binary classification tasks, where the points of one class are
assumed to be sources while the other points are treated as sinks [20]. Other frequently used
approaches are label propagation algorithms [19].

Generative classifiers which model the joint distribution p (x, c) can make naturally use of the
hidden data. The ML problem can be generalized to maximize the observed data log-likelihood
by maximizing

Nl∑

n=1

log p
(
xl
n, cn|θ

)
+

Nu∑

n=1

log p (xu
n|θ). (2.37)

The joint distribution can be interpreted as a mixture model with class variables that are only
hidden for the unlabeled data. One can then use the EM algorithm or general gradient based
algorithms to optimize the likelihood of this model.

It is important to understand that semi-supervised algorithms do not always provide an im-
provement in the performance of a classifier. It is rather the case that the use of unlabeled data
results in a degradation of the performance if the expected properties in the data distribution
are not fulfilled. For instance, when applying self-learning and unlabeled data is incorrectly
classified, it will lead to a wrong signal for the learning procedure. In [21] it is shown that
unlabeled data can degrade the performance of a generative classifier when the true underlying
distribution does not lie in the model space being optimized. In such cases one better sticks to
the labeled data only. A simple example of semi-supervised learning is shown in Figure 2.8.
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2.5 Numerical Optimization

This section introduces general first and second-order algorithms for minimization based on [22].
Numerical optimization is important in many fields of machine learning, since a common way to
train models is to optimize an objective that describes how well the model fits the data. We begin
our discussion with general first and second-order algorithms. These algorithms typically only
provide a search direction and do not tell us how far to move in the given direction. Line-search
algorithms formulate a one-dimensional optimization problem along the given search direction
in order to find a good step size. A good step size can be defined in several ways. We illustrate
the widely used Wolfe conditions and describe informally how to satisfy them.

2.5.1 General first and second-order algorithms

First-order algorithms have access to a black box which evaluates the function value and the
gradient at a given point. Second-order algorithms additionally have access to the Hessian. We
emphasize that in the case of non-convex objective functions any of the following algorithms is
generally only capable of finding locally optimal solutions and globally optimal solutions can
usually not be guaranteed. The simplest first-order algorithm is the method of gradient descent
which updates the current solution xt iteratively according to the rule

xt+1 = xt − ηt∇f(xt). (2.38)

The algorithm maintains a solution xt and moves from this point into the direction of the
steepest descent which is given by the negative gradient. The length of this step is determined
by a step size parameter ηt which may vary in every iteration. The advantage of the steepest
descent direction is that it is a descent direction for which a sufficiently small η exists such that
f(xt+1) < f(xt) holds, given that xt is not already a local minimum. This ensures that, with an
appropriate choice of the step size ηt, the function value can be reduced in every iteration. This
greedy strategy is not always efficient as illustrated in Figure 2.9(a). If the curvature along one
direction is much larger than the curvature along other directions, the steepest descent algorithm
may oscillate wildly and converge only slowly towards a local minimum. Second-order algorithms
make use of the Hessian which provides information about the curvature at the current point.
Recall that a twice differentiable function f can be approximated in the vicinity of xt by the
second-order Taylor polynomial g(x) which is given by

f(x) ≈ g(x) = f(xt) +∇f(xt)
T (x− xt) +

1

2
(x− xt)

T∇2f(xt)(x− xt). (2.39)

Newton’s method is a second-order algorithm which updates the current solution xt by ap-
proximating the function at xt using the second-order Taylor polynomial g(x) in (2.39) and
minimizing the approximation instead. The resulting update rule, which is simply obtained by
setting the derivative of g(x) to zero, is given by

xt+1 = xt −
[
∇2f(xt)

]−1∇f(xt). (2.40)

We refer to −
[
∇2f(xt)

]−1∇f(xt) as the Newton direction. Newton’s method, as stated in
(2.40), does not involve a step size parameter as in (2.38). Nevertheless, in practice the algorithm
is often extended to include a step size especially when combined with line search methods as
described later in this section. There is one issue that needs to be taken care of. Unlike in
the case of gradient descent, the Newton direction does not always provide a descent direction.
However, one can show that a descent direction is obtained if the Hessian ∇2f(xt) is positive
definite. If this is not the case, it is still possible to add sufficiently large values to the diagonal
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entries of the Hessian to make it positive definite in order to obtain a descent direction.

The drawback of first-order methods is that they typically converge much slower than second-
order methods. Second-order methods come with the disadvantage that they need to compute
the inverse of the Hessian which might be very time-consuming. Furthermore, the space required
to store the Hessian depends quadratically on the number of parameters to optimize. This
can be intractable if there are several tens of thousands variables to optimize. Quasi-Newton
methods are first-order algorithms that use the available information from previous iterations to
approximate the Hessian matrix at the current point. Instead of using the true Hessian ∇2f(x)
when approximating the function as in (2.39), quasi-Newton methods use an approximated
Hessian Bt. The idea is to compute the matrix Bt+1 such that the gradient of the corresponding
quadratic approximation equals the gradient of f at xt+1 and xt. The matrix Bt+1 is generally
not unique which gives rise to different quasi-Newton algorithms.

The BFGS quasi-Newton algorithm [22], named after its inventors Broyden, Fletcher, Gold-
farb and Shanno, arises by searching for the matrix Ht+1 = B

−1
t+1 that is symmetric and closest

to the previous approximation of the inverse Ht in terms of a weighted Frobenius norm. By
approximating the inverse directly, the costly operation of inverting a matrix as required in
Newton’s method is avoided. The unique matrix Ht+1 is given by the BFGS update formula

Ht+1 =

(
I − st · yTt

yTt · st

)
Ht

(
I − yt · sTt

yTt · st

)
+
st · sTt
yTt · st

, (2.41)

where we refer to st = xt+1 − xt as the difference in parameter space and to yt = ∇f(xt+1) −
∇f(xt) as the gradient difference. The new approximation of the inverse Hessian is computed
using the previous approximation Ht and the differences in gradient and parameter space from
the previous to the current iteration. It remains to chose an initial matrix H0. One can show
that the direction −Ht+1 ·∇f(xt+1) is a descent direction, given that the previous approximation
Ht is positive definite. Hence, an arbitrary positive definite matrix can be chosen for H0. A
common choice is the identity matrix for which the first iteration reduces to a simple gradient
descent step wheras the following steps can start to make use of the approximated Hessian.

Quasi-Newton algorithms, as stated above, avoid the problem of evaluating the Hessian an-
alytically and the effort of inverting it. Nevertheless, they do not solve the storage problem
which can still make this approach intractable for optimization problems with huge amounts of
variables. The solution to the memory problem is provied by limited memory variants of the
corresponding algorithms. Notice that in the BFGS algorithm the approximation of the inverse
Hessian Ht only depends on the initial approximation H0 and the differences in gradient and
parameter space up to the current iteration. Nocedal [23] came up with an algorithm that is
capable of expressing the product Ht · ∇f(xt), where Ht is computed according to the BFGS
algorithm, using only inner products. As a consequence, the approximated Hessian and its in-
verse do not need to be stored explicitly. The L-BFGS algorithm, as a limited memory variant
of the BFGS algorithm, only uses the last l iterations to compute this product. Hence, it suffices
to store only the last l differences in gradient and parameter space together with the (sparse)
initial matrix H0.

2.5.2 Line search

All algorithms explained so far update their current solution xt by moving into a descent direc-
tion. Nevertheless, the algorithms do not tell us how far we should move into the given direction.
Even in the case of Newton’s method, in which the choice of the step size is usually chosen to be
one, other choices might provide a higher decrease in function value. Especially if the second-
order Taylor polynomial is a poor approximation of the true function, a step size η 6= 1 might
prove useful. Line search methods are usually placed on top of direction finding algorithms in
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Figure 2.9: (a) shows the oscillating behavior of the gradient descent algorithm if the curvature differs sig-
nificantly in each direction. The black line shows how gradient descent progresses towards the
local minimum at the origin. (b) illustrates the Wolfe conditions. The dashed green line shows
the sufficient decrease condition. Points with a function value below this line conform the suffi-
cient decrease condition. The black dashed lines are tangents to the function where the curvature
condition is satisfied with equality. The red parts of the function satisfy both Wolfe conditions.

order to compute an appropriate step size. Given a point xt and a descent direction v, the goal
of line search methods is to find a positive step size η that minimizes the function f along the
line xt + ηv. This can be written as the one-dimensional optimization problem

minimize
η

φ(η) = f(xt + ηv)

s. t. η > 0. (2.42)

Optimizing φ globally is generally hard, since optimizing f globally is hard. Instead of searching
for a global minimizer of φ, one typically applies inexact line-search algorithms that aim to find
a step size η that conforms some predefined conditions rather than being globally or locally
optimal. One of the most common conditions used for line search methods are the Wolfe
conditions, which are given by the two inequalities

f(xt + ηv) ≤ f(xt) + c1η∇f(xt)
Tv (2.43)

and

∇f(xt + ηv)Tv ≥ c2∇f(xt)
Tv. (2.44)

The expression ∇f(xt)
Tv is the directional derivative along the search direction v at xt. c1

and c2 are constants in (0, 1). The right-hand side of (2.43) without the factor c1 is a linear
approximation to the one-dimensional problem at η = 0. The factor c1 ∈ (0, 1) decreases the
magnitude of the slope of the linear approximation such that there exists a sufficiently small η
that satisfies the condition. Since v is a descent direction, the expression ∇f(xt)

Tv is negative
and hence the right-hand side of (2.43) is always smaller than f(xt) for η > 0. Consequently,
any positive η satisfying (2.43) is guaranteed to decrease the function value. (2.43) is therefore
also known as the sufficient decrease condition.

The sufficient decrease condition alone does not prevent us from taking very small steps, since
any sufficiently small η satisfies it. Therefore, a second condition is needed to ensure larger steps.
Inequality (2.44) is called the curvature condition. The left-hand side of (2.44) is the derivative of
φ at η whereas the right-hand side is the derivative of φ at zero scaled by the factor c2. The factor
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c2 ∈ (0, 1) ensures that the magnitude of the slope of the one-dimensional problem decreases
proportionally to the slope at η = 0. The Wolfe conditions are depicted in Figure 2.9(b). It can
be shown that there exist step sizes for any continuously differentiable function, that is bounded
from below, which satisfy the Wolfe conditions. Furthermore, the Wolfe conditions can be used
to show that algorithms like gradient descent converge towards a stationary point where the
gradient vanishes when used in combination with line search algorithms [22].

The goal of inexact line search methods is now to find a step size that satisfies the Wolfe
conditions with as few function and gradient evaluations as possible. Line search methods
proceed by choosing an initial step size and checking the Wolfe conditions. If the conditions
are not satisfied, the gathered information of the function value and gradient at the previously
tried step sizes can be used to direct the choice of the next step size. A common way is
to approximate the one-dimensional line search function φ by fitting a second or third-order
polynomial to the function and derivative values obtained in the previous steps. The minimizer
of this approximation often provides a good choice for the next step size to try out. In addition,
by checking which conditions are violated one can conclude if the previous step size was chosen
too large or too small. This information can further guide the search for an appropriate step
size. In the best case the initial step size already conforms the Wolfe conditions. There exist
techniques to incorporate knowledge from previous iterations to find a proper step size [22].
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3
Hybrid Generative-Discriminative Gaussian

Mixture Models

In this thesis, we aim to learn a generative classifier discriminatively in order to achieve a high
classification performance, especially in the presence of missing data. We build a hybrid gener-
ative and discriminative classifier where each class conditional distribution p (x|θc) is modeled
with a GMM and examples are classified according to the class with the highest posterior prob-
ability. In Section 3.1 we show how the soft margin formulation of SVMs can be adapted to
learn a classifier simultaneously in a generative and discriminative way. In Section 3.2 we show
how to tackle the resulting optimization problem with general purpose optimization algorithms.
Section 3.3 presents how this model can be used in the presence of missing data.

3.1 Problem Formulation

The generative part of the learning procedure is based on ML estimation which is a fairly well
understood problem in the case of GMMs. The discriminative part is based on maximizing the
probabilistic margin. To this end, we adapt the techniques of the soft margin formulation for
SVMs to our needs. The basic ideas of SVMs were already introduced in Section 2.2. Here we
delve further into the technical details and briefly review how soft margin SVMs are trained. The
soft margin formulation is then adapted to state the hybrid generative-discriminative objective.
We illustrate difficulties of the hybrid objective that arise due to the large margin part and give
interpretations for the hyperparameters.

3.1.1 Linear SVMs

We start with the case of a linear separable set where one can find a hyperplane that has the
examples of both classes on different sides. The hyperplane, defined by the parameters (w, b),
is given by the equation x ·w + b = 0. The data set is given by {(x1, c1), . . . , (xN , cn)} where
xn ∈ RD and cn ∈ {−1, 1}. The decision rule of the classifier is then given by the sign of x·w+b.
The goal is to find the hyperplane with maximum margin to the data set, i.e. the closest points
are as far away as possible from the decision boundary. Using basic geometric properties, the
perpendicular distance of a point x to the hyperplane is given by (x ·w + b)/‖w‖. The choice
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of the class labels enables us to multiply this expression by c so that we can assume that it is
positive for correctly classified examples. The problem of maximizing the margin with respect
to the variables w and b can now be stated as

maximize
w,b

min
n

cn (w · xn + b)

‖w‖ . (3.1)

This expression is difficult to optimize. However, the parameters w and b are scale invariant so
that multiplication by any factor α does not change the solution, i.e.

cn ((αw) · xn + αb)

‖αw‖ =
cnα (w · xn + b)

α‖w‖ . (3.2)

We can use this degree of freedom to normalize the parameters in such a way that the support
vectors satisfy cn (w · xn + b) = 1. Since the distance of the support vectors is minimal among
the whole data set, all other points satisfy the constraint cn (w · xn + b) ≥ 1. The formulation
above can now be recast as the following constrained optimization problem

maximize
w,b

1

‖w‖
s. t. cn (w · xn + b) ≥ 1 ∀n (3.3)

or equivalently

minimize
w,b

‖w‖2

s. t. cn (w · xn + b) ≥ 1 ∀n. (3.4)

Note that this problem is convex and thus a global solution can be found. The points corre-
sponding to constraints satisfied with equality will be the support vectors. By minimizing ‖w‖2
it turns out that at least one point of each class will be a support vector. One can show that
the support vectors completely determine the model. This elegant convex formulation is also a
main reason why SVMs have achieved so much attention in the community.

Next we relax the problem to allow points to lie on the wrong side of the decision boundary.
This brings us to the notion of soft margin SVMs. We introduce for each data example xn a
slack variable ξn and recast the problem as

minimize
w,b,ξ

‖w‖2 + λ
N∑

n=1

ξn

s. t. cn (w · xn + b) ≥ 1− ξn ∀n. (3.5)

There always exists a feasible solution to this problem by making the slacks sufficiently large.
Nevertheless, points falling on the wrong side will cause a penalization according to how far
they are away from the decision boundary. Actually, even correctly classified examples cause
a penalization if they fall inside the region defined by the margin. It is easy to see that the
slack of an incorrectly classified example is larger than one. Hence, the sum of slacks can be
interpreted as an upper bound on the number of incorrectly classified examples. Therefore, the
newly introduced hyperparameter λ determines how much we want to classify the training data
exactly and how sensitive we deal with single data points lying close to the decision boundary.
If λ is large, the optimization procedure will seek for a hyperplane with as few incorrectly
classified examples as possible. Indeed, the hard-margin SVM formulation is recovered as λ goes
to infinity. When λ becomes smaller it can happen that a few points close to the boundary
may be ignored in the favor of producing a decision boundary with a larger margin for the
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Figure 3.1: (a) shows a hard margin SVM and (b) shows a soft margin SVM on the same data set. The
solid line shows the decision boundary and the dashed line shows the margin which is defined by
wTx+ b = ±1. The bold data examples are the support vectors. The hard margin SVM in this
example seems prone to the outliers whereas the decision boundary of the soft margin appears
more natural regarding the majority of the data examples.

remaining data points [24]. This might be a desired behavior since SVMs can overfit severely if
support vectors happen to be outliers. The sum of slacks can therefore be seen as a measure of
data misfit whereas the norm of the weight vector can be interpreted as a regularization term.
Similarly to the hard margin SVM, a soft margin SVM is completely determined by the support
vectors. However, every point falling inside the region defined by the margin is now a support
vector. The hard margin and the soft margin SVMs are illustrated in Figure 3.1.

The soft margin formulation of the SVM can be rewritten as the equivalent unconstrained
optimization problem

minimize
w,b

‖w‖2 + λ
N∑

n=1

h (1− cn (w · xn + b)) (3.6)

where h(t) is the hinge function which is given by

h(t) =

{
0 t ≤ 0

t t > 0
. (3.7)

Note that this is a convex problem due to the convexity of the hinge function and optimal
solutions can thus be guaranteed.

3.1.2 The hybrid generative-discriminative objective

We will now elaborate on this problem formulation in order to maximize generative models with
respect to the probabilistic margin. As already stated in Section 2.2.5, the probabilistic margin
of the n-th data example (xn, cn) is given by

δn =
p (cn|xn)

maxc 6=cn p (c|xn)
=

p (xn, cn)

maxc 6=cn p (xn, c)
. (3.8)
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By defining the probabilistic margin for the n-th example xn with respect to class c as

δn,c =
p (xn, cn)

p (xn, c)
, (3.9)

we can rewrite the probabilistic margin as

δn = min
c 6=cn

δn,c. (3.10)

Note that a data example is correctly classified if the probabilistic margin is larger than one.
These values are especially interesting in the logarithmic domain, since the generative part is
also based on the log-likelihood function. In addition, subtraction rather than division more
closely reflects the notion of a distance. Hence, we define

βn,c = log δn,c = log p (xn, cn)− log p (xn, c) (3.11)

βn = log δn = min
c 6=cn

[log p (xn, cn)− log p (xn, c)] = min
c 6=cn

βn,c. (3.12)

A data example (xn, cn) is correctly classified if βn > 0. We refer to the class c 6= cn that achieves
the minimum margin as the best competitor class. We are now able to adapt the soft margin
SVM formulation from above to state the hybrid generative-discriminative objective function,
i.e.

lhybrid(θ) = −
N∑

n=1

log p (xn, cn|θ)
︸ ︷︷ ︸
generative likelihood term

+ λ
N∑

n=1

h (γ − βn(θ))

︸ ︷︷ ︸
discriminative margin term

. (3.13)

We emphasize the dependence of the probabilistic margin on the parameters. Note the minus
sign in front of the likelihood term in order to optimize both objectives simultaneously by a
minimization problem. This objective is independent of the generative model being used and can
in fact be used with any other probabilistic model. In this thesis the class conditional densities
p (x|c) are all assumed to be GMMs. Thus, the parameters of the joint probability p (x, c|θ) are
parametrized by a vector θ = (π1, . . . , πc,θ1, . . . ,θc) where p (c|θ) = πc and θc = (αc,µc,Σc).
We denote the number of components of class c as Kc. αc = (αc,1, . . . , αc,Kc) contains the
component priors of class c. µc = (µc,1, . . . ,µc,Kc) and Σc = (Σc,1, . . . ,Σc,Kc) define the
mixture components of class c.

3.1.3 Interpretation and problems of the hybrid objective

The similarity to the soft-margin formulation from above becomes immediately apparent. The
log-likelihood function corresponds to the norm penalty on the weight vector w whereas the
large margin term corresponds to the slack penalty. Indeed, we can interpret the first term
as being a regularizer that ensures a probabilistic interpretation of the model while the second
term tries to model an accurate classifier. The parameter λ governs the trade-off between the
likelihood and the large margin term and hence controls the importance of the generative and
the discriminative part respectively. If λ = 0, the log-likelihood objective is recovered which
we can traditionally optimize with the EM algorithm described in Section 2.3.4. As λ goes to
infinity, we essentially neglect the likelihood and merely optimize the margin.

One obvious difference to the SVM formulation is due to the γ parameter in place of the
constant 1 from above. In the case of SVMs we saw that this constant arises due to the
particular normalization of the weight vector. When minimizing the norm of the weight vector
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w subject to the given constraints, it happens that the size of the margin is automatically one
unit in terms of the decision rule w · x + b. Samples where this value is greater than one will
not be penalized by the hinge function. However, in our scenario there is no such normalization
that allows us to use a fixed value. Instead, we have to introduce a hyperparameter γ which
we refer to as the desired margin. This causes examples with a lower probabilistic margin than
specified by γ to incur a loss. Similarly to the soft margin SVM, the large margin term can be
seen as a measure of data misfit and we can come up with an interpretation related to that of
SVMs. Data points which are assigned the wrong class incur at least a loss of γ. Hence, this sum
divided by γ can be seen as an upper bound on the number of incorrectly classified examples,
i.e.

∑N
n=1 h(γ − βn,c(θ))/γ.

Of course, since we are in the domain of large margin learning, a high margin is desired. How-
ever, we now demonstrate by an example that a very large margin can cause serious problems.
Suppose there are two data examples x1 = 1 and x2 = −1 of distinct classes. For each class we
have a single Gaussian defined by θc = (µc, σ

2
c ) with c ∈ {1, 2} and the class priors are equal,

i.e. π1 = π2. The probabilistic margin in terms of the parameters is then given by

β = log

1√
2πσ2

1

exp
(
− (x1−µ1)2

2σ2
1

)

1√
2πσ2

2

exp
(
− (x1−µ2)2

2σ2
2

) + log

1√
2πσ2

2

exp
(
− (x2−µ2)2

2σ2
2

)

1√
2πσ2

1

exp
(
− (x2−µ1)2

2σ2
1

) = 2

(
µ1

σ2
1

− µ2

σ2
2

)
. (3.14)

Given that µ1 > 0 and µ2 < 0, the margin can be made arbitrarily large by making the variances
σ2
1 and σ2

2 small. This would result in degenerated Gaussians that collapse onto a single point.
This problem can be solved by introducing a penalty on the trace of the inverse covariance
matrix as in [15]. Nevertheless, one can still make the margin arbitrarily large by increasing µ1

and decreasing µ2, even if the variances are not small. In this scenario, the means would be
far away from the data which is typically not a desired behavior. In either case, the decision
boundary of the resulting classifier might not change. However, the probabilistic interpretation
of the model could suffer severely. The problem of obtaining the highest possible margin is
therefore ill-posed.

This justifies why we aim to achieve a desired margin rather than making the margin as large
as possible. It turns out that tuning the parameter γ is crucial in order to achieve good results.
If γ is chosen too large, examples that are already classified correctly with high certainty in
terms of their class posterior probability might incur a loss. It is desired that only points close
to the decision boundary are penalized. This is usually achieved for lower values of γ. However
if γ is too small, the decision boundary might not get pushed away from the data examples.
Hence, one usually seeks for some intermediate value that achieves the highest classification
performance without severely degrading the likelihood. If the desired margin is carefully chosen
and it is mainly those data points near the decision boundary that are affected by the loss, the
optimization procedure will model the decision boundary well.

There is no general rule for how to chose the values of γ and λ. They rather need to be tuned
individually for each application. Experiments have shown (cf. Chapter 4) that increasing either
of the two parameters decreases the probabilistic interpretation of the model. It is often helpful to
observe how the log-likelihood of solutions changes for different parameters. If the log-likelihood
decreases drastically, one might think about decreasing any of the two values. Small changes
in the log-likelihood could indicate that the parameters are chosen too conservative and can be
increased instead.

Finally, we want to discuss the effects of the hinge function. The log-probabilistic margin of
data examples that do not fulfill the desired margin is penalized linearly. This means that there
is effectively no limit on the penalty of a single data example. It is especially outliers, which
appear far on the wrong side of the decision boundary, that incur a high loss. As a consequence,
such points are always considered in the large margin term and therefore influence the decision
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boundary. In many cases better results would be achieved if these examples were simply removed
from the data set. The problem arises because such outliers can lead the learning procedure into
the wrong direction, since correcting a single outlier might reduce the loss more than correcting
many examples that are only slightly on the wrong side of the decision boundary. On the other
hand, outliers which lie far on the right side of the decision boundary are naturally handled by
the hinge function, since they are not penalized at all.

Different solutions to the problem of outliers have been proposed. First, there is always the
possibility to preprocess the data in such a way that outliers are detected and removed by a
separate algorithm. A reduced set is then handed to the actual algorithm. For example, one
could estimate a density for the given data and remove those points that have a relatively low
probability compared to the rest of the data. Another possible way to handle outliers is to change
the algorithm such that outliers are implicitly handled. Sha [15] estimates ML parameters and
computes the penalty of each example using this model. The hinge function of each example is
then weighted according to the inverse of its penalty. The idea is that the reduction in the loss
of an outlier should be equal to that of a slightly misclassified example and that the learning
procedure tends to favor data points near the decision boundary. In the case of soft margin
SVMs, the hinge function can be replaced by other loss functions to reduce the effect of outliers.
In particular the ramp function, given by

rν(t) =





0 t ≤ 0

t 0 < t ≤ ν

ν ν < t

, (3.15)

can be used to reduce the impact of badly positioned examples [25].9 The ramp function
introduces a new hyperparameter ν which determines the maximum possible loss. Examples
which are further away will not incur an arbitrary high loss and, therefore, have less effect on
the learning procedure. Unfortunately, the ramp function is, unlike the hinge function, non-
convex. Nevertheless, our problem is non-convex anyway and we believe the positive aspects to
dominate.

3.2 Optimizing the Hybrid GMM Problem

In the previous section we derived the hybrid generative-discriminative objective for GMMs. In
this section we describe how this objective can be optimized. By substituting the definition of
the log-probabilistic margin in (3.13), the hybrid objective is given by

lhybrid(θ) = −
N∑

n=1

log p (xn, cn|θ) + λ
N∑

n=1

h

(
max
c 6=cn

(γ − p (xn, cn|θ) + p (xn, c|θ))
)
. (3.16)

Many general gradient based algorithms, such as gradient descent, require the given function
to be smooth, i.e. the gradient exists everywhere and is continuous. Especially convergence
properties of many algorithms depend on the smoothness of the function. However, the objective
given in (3.16) is clearly not differentiable due to the non-differentiability of the hinge and the
maximum function. After demonstrating how the hybrid objective (3.16) can be translated into
a smooth objective, we present ways to incorporate the constraints imposed on the parameters
in the objective in order to arrive at an unconstrained optimization problem. We show the
gradient of the smoothed hybrid objective and give detailed interpretations thereof. Finally, we
propose methods to optimize the smooth hybrid objective.

9 In fact, this helps reducing the number of support vectors. This effectively reduces the complexity of the
model, since SVMs are defined by the support vectors.
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Figure 3.2: (a) shows the soft-hinge function for ǫ = 1. The blue part is from the original hinge function
and the red part is the quadratic part used to smooth the kink of the hinge function. (b) shows
the derivative of the soft-hinge function.

3.2.1 Smoothing the hybrid objective

As a first step to make the hybrid objective amenable to optimization algorithms, we introduce
smooth versions of the hinge and the maximum function. The hinge function is non-smooth at
the kink at zero where the function starts to grow linearly. We can smooth the function by fitting
a small quadratic piece around the non-differentiable part. We refer to the smoothed version
as the soft-hinge function. This function is parametrized by ǫ which determines how large the
area will be that is affected by the quadratic part. The soft-hinge function with parameter ǫ is
defined by

hǫ(t) =





0 t < −ǫ

t t > ǫ
(t+ǫ)2

4ǫ otherwise

(3.17)

and its derivative is given by

h′ǫ(t) =





0 t < −ǫ

1 t > ǫ
(t+ǫ)
2ǫ otherwise

. (3.18)

The soft-hinge function and its derivative are illustrated in Figure 3.2. Outside the interval
[−ǫ, ǫ] the soft-hinge function equals the original hinge function. Inside this interval a piece of a
parabola is used to smooth the kink. As the parameter ǫ goes to zero the original hinge function
is recovered. The derivative of the hinge function is zero for t < 0 and one for t > 1 and it does
not exist for t = 0. The soft-hinge function linearly interpolates between zero and one in the
interval [−ǫ, ǫ]. Note that the ramp function (3.15) can be smoothed similarly.

The next part of the hybrid objective that needs to be smoothed is the maximum function.
We approximate the maximum function with the soft-max variant used in [2], which is defined
by

smax
t1,...,tL

=
1

η
log

L∑

i=1

exp (ηti). (3.19)
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Figure 3.3: (b) shows the contours of the soft-max function for η = 1 in two dimension. (b) shows the
contours of the maximum function. The soft-max function approximates the maximum function
well in regions where t1 differs significantly from t2. There is a small discrepancy at t1 ≈ t2
which is the part of the maximum function that needs to be smoothed.

The partial derivative of the soft-max function with respect to tj is given by

∂ smaxt1,...,tL
∂tj

=
exp (ηtj)∑L
i=1 exp (ηti)

. (3.20)

The parameter η > 0 governs the smoothness of the soft-max function. As η goes to infinity, the
common maximum function is recovered. For negative values of η the function approximates
the minimum function. The idea of the soft-max function is as follows: The arguments are
scaled with a positive value and put into the exponential function. This causes the gap between
individual values to be increased by orders of magnitudes. The following summation will then
be affected mostly by the largest term. Taking the logarithm and normalizing with the inverse
of η recovers an approximation of the largest value. There is also an intuitive meaning for the
gradient of the soft-max function. In the case of the common maximum function, one can think
of a zero-one vector where the largest entry is indicated by a one while all other entries are
zero. The gradient of the soft-max function can then be seen as an approximation to this vector.
Clearly all entries are non-negative and sum up to one. The largest argument will also produce
the largest value in the corresponding entry of this vector. The same reasoning why the soft-
max function approximates the maximum function applies to why the gradient approximates the
zero-one vector representation. Actually, if the gap between the largest and the second largest
value is high enough, the entry of the largest value will be close to one whereas all other entries
will be close to zero. Figure 3.3 shows the contours of the soft-max and the maximum function
respectively.

Using smoothed approximations leads to a smoothed hybrid objective function given by

l̃hybrid(θ) = −
N∑

n=1

log p (xn, cn|θ) + λ
N∑

n=1

hǫ

(
smax
c 6=cn

(γ − p (xn, cn|θ) + p (xn, c|θ))
)
. (3.21)

3.2.2 Incorporating the constraints into the objective

Recall that the parameters are subject to several constraints. On the one hand, the component
priors of each class need to be non-negative and sum up to one. On the other hand, the covariance
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matrices need to be positive semidefinite. We will now demonstrate how this constraints can be
avoided by reformulating the objective function. To handle the non-negativity and sum-to-one
constraints, we introduce a new unconstrained vector z = (z1, . . . , zK) for each set of component
priors α = (α1, . . . , αK). Each component prior αk can then be expressed as a function of z by

αk(z) =
exp (zk)∑K

k′=1 exp (zk′)
. (3.22)

The new values αk satisfy the non-negativity and sum-to-one constraints due to the non-
negativity of the exponential. A disadvantage of this method is that the newly introduced
variables zk are not unique. Adding an arbitrary constant to the values of zk for k = 1, . . . ,K
does not change the resulting values of αk. Nevertheless, this is no problem when searching for
good model parameters.

To handle the constraints on the covariance matrices we first restrict ourselves to diagonal
covariance matrices. The constraints for positive semidefiniteness are then simplified to non-
negativity constraints on the entries on the diagonal. Since it is common to fix a small positive
minimal value for the entries on the diagonal, we present a way how constraints of the more
general form σ ≥ ζ can be integrated into the objective function. Again, we introduce for each
diagonal entry σ a new variable z. The variable σ can be expressed as a function of z by

σ(z) = ζ + exp (z) . (3.23)

Again, the non-negativity of the exponential shows that the constraint σ ≥ ζ is satisfied by every
z. Using these reformulations, it is possible to optimize the hybrid objective with algorithms for
unconstrained optimization problems. Experiments have shown (cf. Chapter 4) that working
with the unconstrained problem outperforms constrained optimization techniques in terms of
needed time and achieved objective function value.

3.2.3 Interpretation of the gradient

We now investigate the gradient of the hybrid objective to gain further insights into the problem.
Most optimization procedures are guided by the gradient of the given objective. The derivation
of the gradient can be found in Appendix A and we will only state the results here. Notice that
the log-likelihood and the large margin part of the hybrid objective are composed as a sum over
all data examples. Since the gradient is a linear operator, we can compute it for each example
(xn, cn) separately and the overall result will be the sum of the individual gradients.

Likelihood term

We begin with the gradient of the log-likelihood term. By assuming that the parameters of
each class conditional likelihood p (x|θc) are pairwise disjoint, i.e. θc ∩ θc′ = ∅ for c 6= c′, it is
straightforward to show that the gradient of the log-likelihood term with respect to αc,k, µc,k and
Σc,k is zero if c 6= cn. Hence, we assume for now that c = cn. The gradient of the log-likelihood
regarding the data example (xn, cn) is then given by

∂ log p (xn, cn|θ)
∂αc,k

= p (k|c,xn,θ)
1

αc,k
(3.24)

∂ log p (xn, cn|θ)
∂µc,k

= p (k|c,xn,θ)Σ
−1
c,k (xn − µc,k) (3.25)

∂ log p (xn, cn|θ)
∂Σc,k

= p (k|c,xn,θ)
1

2

(
Σ−1

c,k (xn − µc,k) (xn − µc,k)
T Σ−1

c,k −Σ−1
c,k

)
(3.26)
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Figure 3.4: Illustration of the gradient of the Mahalanobis distance with respect to the mean. The negative
gradient is perpendicular to the contour line of the Mahalanobis distance and points into the
direction of steepest descent rather than towards the data example x. Notice that the direction
of the gradient is mostly governed by the direction of least variability.

with

p (k|c,xn,θ) =
αc,kN (xn|µc,k,Σc,k)∑Kc

k′=1 αc,k′N
(
xn|µc,k′ ,Σc,k′

) . (3.27)

Note that the term p (k|c,xn,θ) is common to all expressions. This term is the probability
of component k having generated data example xn with the current parameters by only con-
sidering the components of class c. It is intuitive to think that the gradient is computed for
each component and the results are weighted according to the probability of the component
being responsible for that example. Therefore, components with a low posterior probability are
effectively neglected when computing the gradient of the corresponding example. The gradient
can best be interpreted by thinking about what happens during a gradient descent step where
we move into the direction of the negative gradient.10 The component priors are increased by
the inverse of their current value. If αc,k is large, the inverse of αc,k will be small and its value
will only be slightly increased. If we ignore the weighting with the component posteriors, this
would enforce all the component priors to become equal, since large values are increased more
than small values. These values are then weighted with the component posteriors. In practice
the component posteriors often have most of its mass on one or only a few components such
that it is only the most probable components which are affected by a single example.

The mean is updated according to the vector s = Σ−1
c,k (xn − µc,k). s points into the direction

of the negative gradient of the Mahalanobis distance with covariance matrix Σc,k. The effect
of the gradient with respect to the mean is best illustrated in case of a diagonal covariance
matrix, since the inverse of a diagonal matrix is obtained by simply inverting each element
on the diagonal. If the covariance matrix is the identity matrix, the negative gradient points
simply into the direction of the data example. This would cause the mean to move directly
towards the data example. In case of a general diagonal covariance matrix each dimension is
weighted differently. This behavior stems from the Mahalanobis distance where a discrepancy
in dimensions of high variability is penalized less than in dimensions where the variance is small.
Hence, the correction of the mean value in dimensions of low variability has more impact on the
Mahalanobis distance than in dimensions of high variability. In case of a full covariance matrix
the effect is similar. Here the multiplication with the inverse covariance matrix also accounts
for the correlations between the dimensions. Figure 3.4 illustrates the negative gradient with

10 Note that we are optimizing the negative log-likelihood and thus the negative gradient is already given in
Equations (3.24), (3.25) and (3.26).
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respect to the mean.

The gradient with respect to the covariance matrix is governed by two terms. Notice that the
first term can be written as ssT where s is the vector that governs the update of the mean. As
we have seen, the vector s is related to the Mahalanobis distance with respect to the covariance
matrix. Hence, the further a data example is away from the mean in terms of the Mahalanobis
distance, the larger the covariance matrix will be after the update step. The second term Σ−1

c,k

arises due to the normalizing constant of the Gaussian. The normalizing constant of a Gaussian
becomes larger as the variance becomes smaller. Hence, this term always causes the variance to
decrease. However, the normalizing constant can not be made arbitrarily large since otherwise
the Mahalanobis distance will grow simultaneously. Therefore, one seeks for a tradeoff between
both terms. Only in case the term ssT vanishes, which happens if the mean lies exactly on the
data point, the variance can be made arbitrarily small. This would result in a singularity as
discussed in Section 2.3.3.

Large margin term

The gradient of the large margin term with respect to the model parameters θc of class c is
given by

∂ hǫ
(
smaxc′ 6=cn(γ − βn,c′)

)

∂θc
= h′ǫ

(
smax
c′ 6=cn

(
γ − βn,c′

))
·





exp(−ηβn,c)∑
c′ 6=cn

exp(−ηβn,c′)
∂

∂θc
log p (xn|θc) c 6= cn

− ∂
∂θc

log p (xn|θcn) c = cn

(3.28)

The gradient involves the multiplication with the derivative of the soft-hinge function (3.18).
Recall that the derivative of the soft-hinge h′ǫ is zero for values smaller than epsilon, one for
values larger than epsilon and linearly interpolates between zero and one for intermediate values.
This causes data examples whose margin is larger than γ + ǫ to not influence the gradient at
all. This is a desired behavior, since this is reminiscent of SVMs where only the support vectors
determine the decision boundary while all other data examples are effectively neglected. We
have to distinguish now between two cases. On the one hand, if the gradient is computed with
respect to the true class cn, the result equals the gradient of the negative log-likelihood. On
the other hand, if the gradient is computed with respect to some other class c 6= cn, the result
differs in sign and involves an additional factor due to the partial derivative of the soft-max
function. This additional factor weights the gradient of each class according to the probabilistic
margin. It is useful to consider the case where η goes to infinity so that only the weight of
the best competitor class is one and all other weights are zero. The gradient with respect
to the best competitor class is then computed by evaluating the gradient of the log-likelihood
function for the best competitor class. As a consequence, the gradient of the large margin term
causes the parameters of the true class to move towards the ML solution and simultaneously the
parameters of the best competitor class to move away from the ML parameters of the true class.
For instance, this would cause the component means to be attracted by examples of the true
class while at the same time the means tend to move away from data examples of other classes.
For moderate values of η not only the parameters of the best competitor class are affected. The
parameters of other classes are affected as well and the results are weighted accordingly.

3.2.4 Optimization procedure

We propose to optimize the smoothed hybrid generative-discriminative objective function with
general purpose optimization algorithms described in Section 2.5. ML solutions, computed with
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the EM algorithm, turned out to provide good initial solutions for iterative procedures. Recall
that the ML objective is recovered in the case of λ = 0. If the generative-discriminative trade-
off parameter λ is only slightly increased we can also expect optimal solutions to change only
slightly. This also justifies intuitively why ML parameter might be a good starting point.

We suggest to use the BFGS algorithm. The number of parameters to optimize is given by

C +
C∑

c=1

Kc + 2Kc ·D. (3.29)

For applications with hundreds of features and many classes, the number of components can
become large even for moderate numbers of components per class. Hence, we suggest to use
the limited memory variant L-BFGS when storing the approximated inverse Hessian explicitly
becomes intractable. If the techniques described in Section 3.2.2 are used to make the problem
unconstrained, it is straightforward to compute the gradient with respect to the newly introduced
variables z using the chain rule.

3.3 Hybrid GMMs and Missing Data

As a generative model, GMMs are naturally capable of dealing with missing data. In this section
we present how to deal with missing features and missing labels using GMMs.

3.3.1 GMMs and missing features

As discussed in Section 2.4, the MAR property in the given data suffices that marginalization
over the missing features is the valid operation to perform both ML estimation and classification
according to the class with the highest posterior probability. Let x = (xo,xm) where xo denotes
the observed features and xm denotes the missing features. Given a Gaussian distribution with
parameters

µ =

(
µo

µm

)
, Σ =

(
Σoo Σom

Σmo Σmm

)
, (3.30)

where superscript o denotes the parameters corresponding to the observed features and super-
script m denotes the parameters corresponding to the missing features and the covariance matrix
Σ is decomposed into blocks. Then the marginal distribution over the observed features is also
a Gaussian distribution defined by the parameters µo and Σoo [3]. In other words, marginal-
ization over the missing features is simply performed by taking those entries of the mean that
coincide with the observed features and removing those columns and rows of the covariance
matrix corresponding to the missing features. Using the linearity of the integral operator, it is
now straightforward to integrate out the missing features of a GMM. The marginal distribution
of a GMM is given by

∫ K∑

k=1

αkN (x|µk,Σk)dx
m =

K∑

k=1

αk

∫
N (x|µk,Σk) dx

m (3.31)

=
K∑

k=1

αkN (xo|µo
k,Σ

oo
k ). (3.32)

Given that the MAR condition holds, data examples with missing features can thus be classified
by simply ignoring the missing features. To estimate ML parameters for a GMM, the EM
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algorithm can be extended to handle missing features [26] or general optimization algorithms
can be used to optimize the marginal likelihood directly.

3.3.2 Semi-supervised learning with hybrid GMMs

The semi-supervised learning problem with GMMs is more involved. Of course, there is always
the possibility to use general semi-supervised techniques, like self-learning, which are indepen-
dent of the underlying supervised algorithm. In the case of a generative model one can also
optimize both the joint likelihood p (x, c) of the labeled data and the marginal distribution
p (x) of the unlabeled data. Using the sum-rule of probability, the log-likelihood function of the
marginal distribution of a data example x is given by

log p (x|θ) = log
C∑

c=1

p (x|θc)πc. (3.33)

The gradient of the log-likelihood with respect to the parameter θc of class c are given by

∂ log p (x|θ)
∂θc

= p (c|x,θ) ∂ log p (x|θc)
∂θc

. (3.34)

Details about the calculation of the gradient are provided in Appendix A. This is an intuitive
result, since it equals the gradient of the log-likelihood function in case of known class labels
with an additional weight according to the class posterior probability. These weights can also
be seen as probabilistic labels of the unlabeled data. If the model with the current parameters is
very certain about the class of an unlabeled data example and its class posterior probability is
close to one, this example is effectively treated as being labeled with that class. We now extend
the hybrid objective to include a term for the marginal distributions over the unlabeled data in
the likelihood term. Given a set of labeled data {(xl

1, c1), . . . , (x
l
Nl
, cNl

)} and a set of unlabeled
data {xu

1 , . . . ,x
u
Nu

}, we define the semi-supervised hybrid objective as

lssl(θ) = −
Nl∑

n=1

log p
(
xl
n, cn|θ

)
−

Nu∑

n=1

log p (xu
n|θ) + λ

Nl∑

n=1

h (γ − βn(θ)). (3.35)

This objective uses the unlabeled data as additional information about the underlying marginal
distribution p (x), but does not incorporate it in the large margin term. The reason why the
unlabeled data is excluded from the large margin term is that if predictions on unlabeled data are
made with poor precision, the unlabeled data will have a negative impact on the performance,
similar as in self-learning. Of course, this effect might also happen by optimizing the marginal
likelihood alone. However, since the large margin term is mainly responsible for achieving a
good classification performance, we expect this effect to be even worse. Hence, we stick to this
more conservative strategy of using the unlabeled data only in the likelihood term. This semi-
supervised learning strategy has therefore more of a generative than a discriminative character.
The labeled data is best seen as points in the feature space where the decision boundary gets
pushed away while at the same time the log-likelihood over both the labeled and unlabeled data
is used to regularize the model parameters.

It might also be useful to introduce another trade-off parameter that governs the influence of
the log-likelihood term of the unlabeled data to mitigate the possible negative effect of unlabeled
data examples [27]. Especially in the case of pure ML estimation, if the number of unlabeled
data examples Nu exceeds the number of labeled data examples Nl by orders of magnitudes,
the influence of the labeled data becomes weak and the parameters are solely determined by the
unlabeled data. However, the trade-off parameter for the generative and discriminative part λ

– 45 –



3 Hybrid Generative-Discriminative Gaussian Mixture Models

implicitly tunes the importance of the labeled data and experiments (cf. Chapter 4) support the
fact that there is no need for another trade-off parameter. This is especially important to reduce
the computational effort needed to perform grid search on the hyperparameter space, since the
number of training runs to perform grows exponentially in the number of hyperparameters.

We suggest to use the same techniques for optimization as described in Section 3.2.4. When
computing the initial solution for the quasi-Newton algorithm we propose to use the labeled
data only. The experiments in Chapter 4 show that objective (3.35) is capable of improving the
performance of a purely supervised model.
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4
Experiments

This chapter shows experiments with the hybrid GMM classifier on both synthetic and real world
data. We start in Section 4.1 with a brief overview about how we carried out the experiments.
Section 4.2 shows experiments conducted on synthetic data. We focus on two-dimensional data
in order to visualize the capabilities of the model. Furthermore, these examples are intended to
demonstrate how the hyperparameters affect the resulting classifier. In Section 4.3 we present
the results obtained on real world data and compare them with other state of the art classifiers.
Section 4.4 presents results in the presence of missing data. We restrict ourselves to missing
features at classification time and missing labels at training time.

4.1 Setup

This section describes the setup for the experiments in the subsequent sections. All optimization
algorithms concerning the hybrid generative-discriminative GMM classifier are implemented in
Matlab. Function and gradient evaluation was the most time-consuming part and has therefore
additionally been implemented in C. We used the Matlab function fmincon to optimize the
smoothed hybrid objective and existing implementations for the comparison models. SVMs
were computed with libSVM [28] and the maximum margin (MM) and MCL optimized GMMs
were computed with the available Matlab code from Pernkopf [10].

We optimize the smoothed hybrid objective with the BFGS quasi-Newton algorithm. For the
larger data sets MNIST, TIMIT and USPS we use the limited memory variant L-BFGS due to the
high amount of parameters to optimize. In these cases, the inverse Hessian is approximated with
the 10 latest update steps. The algorithm stops if a stationary solution, where the largest entry
of the gradient is sufficiently small, has been found. Depending on whether such a stationary
solution can be computed in a decent amount of time, we stopped the optimization algorithm
prematurely. For larger data sets we apply early stopping if the performance on a separate
validation set does not increase for a fixed number of iterations. Furthermore, early stopping
is performed if the generalization loss in (2.6) exceeds a prespecified value. In any case, the
optimization procedure stops if a fixed number of maximum iterations has been reached. ML
parameters, computed with the EM algorithm, serve as the initial parameters for the iterative
quasi-Newton algorithm. For semi-supervised learning we computed the initial solution with
the EM algorithm on the labeled data only. At least 10 random restarts are performed when
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computing the initial solution with the EM algorithm. The class prior probabilities πc are not
modified during the optimization procedure. The class priors are either chosen to be uniform
or to be the empirical prior given by (2.13). Furthermore, we restrict ourselves to diagonal
covariance matrices such that the Gaussian density factorizes into a product of one-dimensional
Gaussians.

The hybrid objective is determined by a number of hyperparameters. The numbers of compo-
nents per class K1, . . . ,KC , the generative-discriminative trade-off parameter λ and the desired
margin γ are determined with grid search. We restrict the number of components for each class
to be equal, i.e. Kc = Kc′ for c 6= c′. Thus, we refer to the number of componets per class as
K without the subscript indicating the corresponding class. Otherwise, the number of combi-
nations to try would grow exponentially in the number of classes. The soft-hinge parameter ǫ
is set to 0.1 and the soft-max parameter η is set to 10. We fixed a minimum positive value for
the diagonal entries on the covariance matrix. This value was chosen by hand for each data
set and we did not tune it for each application. Nevertheless, we observed that the model was
on some sets sensitive to the choice of this value. When incorporating this value as constraints
for each diagonal entry of the covariance matrices into the objective function, we observed dif-
ficulties with the Matlab function fmincon when these values were close to the minimal value.
Hence, we transformed the constrained optimization problem into an unconstrained problem
as described in 3.2.2. For the TIMIT data set we additionally tried some values for the ramp
function parameter ν.

4.2 Experiments on Synthetic Data

In this section we demonstrate the behavior of the hybrid GMM classifier on synthetic data. We
restrict ourselves to two-dimensional data in order to illustrate the classifier graphically.

4.2.1 Illustration of the hyperparameters

The first example, depicted in Figure 4.1, demonstrates how the hyperparameters λ and γ
influence the classifier. The data comprises examples of two classes which are shown as red
and blue points respectively. A GMM with two components has been learned for each class.
The decision boundary is depicted as bold black line. Furthermore, the red and the blue line
correspond to points which satisfy the desired margin with equality. Red points falling below the
red line and blue points falling above the blue line violate the desired margin and are therefore
penalized in the large margin term of the hybrid objective.

Figures 4.1(a), 4.1(b) and 4.1(c) show how the decision boundary and the desired margin
change for different values of λ and fixed γ = 1. Figure 4.1(a) shows the pure generative
solution for λ = 0 which is computed with the EM algorithm. Especially some of the blue
points close to the decision boundary are misclassified with the ML solution. In Figure 4.1(b)
some of the blue points are corrected at the cost of a single red misclassified example with a
moderate value of λ. By increasing λ, more weight is put on achieving the desired margin for
all data examples. Figure 4.1(c) shows the decision boundary for a high value of λ. Notice that
all data examples are correctly classified and the desired margin is satisfied with equality by
many data examples. The distance between the desired margin and the decision boundary has
decreased drastically in order to achieve this. This is a sign that the probabilistic interpretation
of the model has degraded since this happens if the entries in the covariance matrices decrease
or the component means move away from the decision boundary. This shows that the model
is sensitive to examples close to the decision boundary and that overfitting due to outliers can
occur if λ is too large and γ is too small.
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Figure 4.1: Illustration of how the hyperparameters λ and γ affect the model. Details are shown in the text.

Figures 4.1(d), 4.1(e) and 4.1(f) demonstrate how the decision boundary varies for different
choices of the desired margin γ and fixed λ = 1. Figure 4.1(d) shows the decision boundary and
the desired margin lines for a small γ. In this case, only points close to the decision boundary
influence the large margin term. Figures 4.1(e) and 4.1(f) show the classifiers for an intermediate
and a large value of γ respectively. The number of examples not satisfying the desired margin
grows significantly and the decision boundary is determined by many data points rather than
only a few examples close to it. This causes the decision boundary to be much smoother which
is in many cases a good way to avoid overfitting and bad results due to outliers.

However, the relatively small choice of λ = 1 in Figure 4.1(f) results in many misclassified
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Figure 4.2: Illustration of why choosing the desired margin λ too small might not push the decision boundary
away from the data examples. Details are shown in the text.

examples. Figure 4.1(g) shows how the situation can be improved by a larger value of λ. The
number of misclassified examples decreases and, unlike in Figure 4.1(c), single points have less
impact on the decision boundary due to the high value of γ. On the other side, setting both λ
and γ to a higher value typically harms the probabilistic interpretation of the model. This is
illustrated in 4.1(h) and 4.1(i). The contours show the value of the class posterior probability
p (c|x,θ) for c = 1. In the dark red and dark blue regions the classifier is confident about the
true class of the inputs. In the brighter regions the classifier becomes less confident and in the
yellow and green regions the class posterior probabilities are almost equal for both classes. In
a binary classification task the decision boundary are those points for which the class posterior
probability is 0.5. In the ML solution the class posterior probability usually changes smoothly
for points close to the decision boundary as shown in Figure 4.1(h). If the values of λ and γ are
too high, the probabilistic interpretation of the model could suffer severely. This results in the
class posterior probability to change almost instantly to either zero or one when moving slightly
away from the decision boundary.

4.2.2 Ring example

The next example, shown in Figure 4.2, illustrates that a too small value for the desired margin γ
might not push the decision boundary away from the data examples. We generated a set of blue
points which are surrounded by a set of red points. For each class we learned a single Gaussian.
A single Gaussian is an appropriate model for the blue points but it would clearly need some
more components to model the ring shaped set of red points. However, for this illustration
we do not seek to model the data well. The ML solution, depicted in 4.2(a), corresponds to a
ball-shaped Gaussian for each of the two classes with almost identical means. The covariance
matrix for the blue points contains smaller entries than the covariance matrix for the red points.
The ML solution classifies every red point correctly but misclassifies some of the blue points.
In Figure 4.2(b) γ is chosen too small. All of the red points satisfy the desired margin and
only a small fraction of the blue points are reached by the desired margin line. In this case, the
resulting decision boundary for a high value of λ gets only slightly pushed away from the blue
points and the red points have no impact at all. If the desired margin is chosen such that blue
and red points fall inside the margin region, the decision boundary is placed in between the two
sets. This is shown in 4.2(c). The resulting decision boundary in between the two classes is
probably better suited for classification tasks.
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Figure 4.3: Illustration of the spiral example. Details are shown in the text.

4.2.3 Spiral example

The next example is inspired by an example from Pernkopf and Wohlmayr [10]. We generated
500 blue and 500 red points. The examples of each class are arranged in a spiral shape. The
data set is depicted in 4.3(a). We choose the number of components for each class to be seven by
inspection of the data set. Figure 4.3(b) shows the contours of the density for ML parameters.
The means are shown as black crosses. The contribution of each component can easily be seen.
The seven components roughly suffice to cover the whole spiral. Notice that all components
are axis-aligned due to the restriction to diagonal covariance matrices. The class posterior
probability and the decision boundary of the ML parameters are shown in Figure 4.3(c). We
can see that the decision boundary is rectilinear due to the rectilinear contours of the class
conditional densities and hence the approximation of the spiral is poor.

We tried several values for λ and γ and the best results in terms of training error are shown
in Figure 4.3(d). These results were obtained for a low value of γ and a high value of λ. Such
a parameter configuration focuses on modeling data points close to the decision boundary well.
Since there are many data points close to the boundary, the risk of overfitting is relatively
small. We can immediately see that the decision boundary fits now better to the data and the
curved spiral shape has been recovered. On the other side, the red and the blue regions in
the middle of the spiral, where we are quite sure about the true class label, have turned into
green and yellow regions, were the class posterior probabilities do not suggest a high confidence
when predicting the true class. Also the contours of the class conditional density for the red
points, shown in Figure 4.3(e), have changed significantly. They do not cover the data points as
accurate as the ML solution before. However, the probabilistic interpretation of this model is
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Figure 4.4: Illustration of how labeled data can help improving the decision boundary of a classifier. Details
are shown in the text.

partly maintained. This can be seen by comparing the log-likelihood values of the ML solution
and the hybrid solution. The negative log-likelihood has increased only slightly. Figure 4.3(f)
shows the class posterior probability and the decision region for a high value of both λ and γ. In
this case, the probabilistic interpretation has degraded severely which is indicated by the large
increase in negative log-likelihood compared to the ML solution.

These examples show that no general rule about the optimal choice of the hyperparameters
can be made and they rather need to be tuned separately for each application.

4.2.4 Semi-supervised learning example

The last example in this section illustrates the semi-supervised learning capabilities of the model.
We generated two sets of points, red points on the left and blue points on the right with a clear
gap in between. Then we removed the labels of the majority of the points such that only a
small cluster of each color remains. We learned a single Gaussian for each class. The decision
boundary and the contours of the class conditional densities of the ML solution learned on the
labeled data alone are depicted in Figure 4.4(a). Clearly the decision boundary cuts through
high density regions and the probability of the unlabeled data under this model is certainly poor.
Figure 4.4(b) shows the results for λ = 1 and γ = 1 when also taking the unlabeled data into
account. The decision boundary now lies in the low density region in between the two clusters.
Furthermore, the contours of the class conditional densities also span the unlabeled data. The
margin term, which is solely affected by the labeled data, prevents the class conditional densities
from fitting unlabeled data from the other cluster.

4.3 Experiments on Real World Data

In this section we demonstrate the capabilities of the hybrid generative-discriminative GMM
classifier on real world data. We start with a short description of the data sets being used.
Furthermore, we explain which preprocessing steps have been applied to each of them. After
introducing the detailed setup of the optimization procedure, we finally present the results. We
compare the hybrid GMM classifier with ML optimized GMMs, MCL optimized GMMs, MM
optimized GMMs and SVMs with linear and radial basis function (RBF) kernels. All GMM
classifiers are restricted to diagonal covariance matrices.
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4.3.1 Description of the data sets

We analyzed the performance of the classifiers on several different data sets.

MNIST

The MNIST data set is a commonly used data set for handwritten digit recognition [29]. Each
data example is a 28× 28 grayscale image. By treating each pixel as a feature, we can represent
an image as a vector in R784. There are 10 classes, each corresponding to a particular digit. The
data is split into 60000 training examples and 10000 test examples. We trained the models on
the first 50000 examples of the training set and used the remaining 10000 examples as validation
set for grid search. We conducted experiments with two different preprocessing steps:11

1. We removed those features that contained constant values over each of the 50000 training
examples. This step affected mostly pixels located on the boundary and reduced the
number of dimensions to 717. For SVMs, we additionally normalized the data by dividing
each feature by 255. This normalization is a common preprocessing step on the MNIST
data set and was used to decrease the training time of SVMs. We emphasize that this step
was not necessary for the GMM classifiers.

2. We applied PCA to reduce the number of dimensions to 50. This step was performed
in order to reduce the number of parameters substantially and to speed up the training
process. The number of dimensions was chosen arbitrarily and not tuned by any means.
The preserved variability of the PCA reduction according to (2.7) is 82.5%. For SVM
training, the PCA features were additionally normalized to have zero mean and a standard
deviation of one to speed up the training process. Again, this normalization was not
necessary for the different GMM classifiers. In the remainder, we refer to the PCA reduced
MNIST data set as MNIST50.

We evaluate the number of components K ∈ {20, . . . , 25} on MNIST and K ∈ {20, . . . , 28} on
MNIST50. Due to the reduced number of parameters to estimate on MNIST50, we were able
to investigate more components per class in the same time. The number of examples per class
varies only slightly so that the empirical prior is close to uniform. Thus we selected a uniform
distribution for the class prior probabilities πc.

USPS

The USPS data set is another data set used for handwritten digit recognition [30]. The digits
were extracted from the zip codes of mail envelopes. Each data example is a 16× 16 grayscale
image and can thus be represented as a vector in R256. Except for SVM training, where the
data is normalized to have zero mean and a standard deviation of one, no preprocessing steps
were performed. The data consists of 8000 training examples and 3000 test examples. We split
the training data into 7000 training examples and 1000 validation examples for hyperparameter
optimization. We tried the number of components K ∈ {20, . . . , 25} on the USPS data set.
The distribution of the target values is even and thus the empirical prior is equal to a uniform
distribution.

TIMIT

The TIMIT data set is used for speech classification [31]. Each example consists of 92 features
and represents a phonetic segment which is classified to one of 39 phonemes. The data is split

11 All preprocessing steps were computed solely with the training data. Validation and test data are then
preprocessed according to the transformations obtained on the training set.
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into 140173 training examples, 50735 validation examples (test) and 7211 test examples (core
test). The training process is very demanding due to the large size of the training set, the large
amount of classes and the high dimensionality. Hence, we evaluated the relatively small set
of K ∈ {20, . . . , 24}. Again, for SVM training we normalized the data to have zero mean and
a standard deviation of one. The number of examples per class varies heavily and hence we
chose the empirical prior for the class prior probabilities πc. Using a uniform prior considerably
degraded the classification error.

UCI

The UCI Machine Learning Repository [32] is a large collection of data sets for different machine
learning tasks. We normalized each of these data sets to have zero mean and a standard deviation
of one for all classifiers. Due to the relatively small UCI data sets, we performed 10-fold cross
validation on each of them. We selected the following three data sets for our experiments:

• The Iris data set contains three classes of different iris flowers. There are four features
and 50 examples of each class. Hence, we chose a uniform class prior. We evaluated the
set K ∈ {1, . . . , 10} for the number of components per class. Since this data set does not
contain a separate test set, the recorded error values are computed as the mean of the
validation errors over the 10 cross validation runs.

• The Breast Cancer Wisconsin (Diagnostic) data set is a binary classification task where
the feature vectors are classified to either benign or malignant. The data consists of 30
features. There are 212 examples of the first class and 357 examples belonging to the
second class. Thus, we computed the empirical prior for the class priors πc. We evaluated
the set K ∈ {1, . . . , 8} for the number of components per class. Again, the recorded
classification errors are computed as the mean of the validations errors of the 10 cross
validation runs.

• The Image Segmentation data set is used to classify a pixel of an image to one of 7 classes.
The classes are brickface, sky, foliage, cement, window, path and grass. Each example is
represented as a feature vector with 19 entries12 which is computed over a 3 × 3 region
of the image. There are 30 instances of each class as training examples and 300 instances
of each class as test examples. Hence, we selected a uniform class prior. We evaluated
the set K ∈ {1, . . . , 6} for the number of components per class. After obtaining the
hyperparameters with 10-fold cross validation, the models were learned again with these
parameters on the whole training set.

4.3.2 Optimization setup

The hyperparameters leading to the best results in terms of classification error were obtained
by grid search. The hyperparameters were optimized on the following grids:

• GMM ML: K individual (see above)

• GMM Hybrid: K individual (see above), λ ∈ {20, . . . , 210}, γ ∈ {0.1, 2−2, . . . , 26}
• GMM MCL: K individual (see above)

• GMM MM: K individual (see above), λ ∈ {10−3, . . . , 104}
• SVM Linear:13 λ ∈ {2−10, . . . , 210}
• SVM RBF: λ ∈ {2−10, . . . , 210}, γ ∈ {2−10, . . . , 210}

12 There are effectively 18 features since one feature is constant over all examples.
13 The parameter λ corresponds to the parameter C in libSVM.
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(a)

(b)

Figure 4.5: (a) depicts examples of the MNIST data set. (b) shows examples of the USPS data set.

The number of components K influences the number of model parameters and consequently the
time needed for optimization. Furthermore, plausible values for K are related to the size of the
available training data. If the number of training examples is high, one can typically also select
larger values for K without severely overfitting the data. Hence, the set for values of K is chosen
individually for each data set.

We used the following setup for the optimization procedures. On MNIST, MNIST50, USPS
and TIMIT we perform a maximum number of 5000 iterations of the quasi-Newton L-BFGS
algorithm. We applied the limited memory variant of the BFGS algorithm using the 10 latest
update steps due to the high amount of variables to optimize.14 After 1000 iterations, we check in
each iteration if early stopping can be applied. Early stopping is performed if the best validation
error found so far did not decrease in the latest 250 iterations or the generalization loss (2.6)
exceeds 0.1. We select the parameters which resulted in the best validation performance over all
iterations. At least 10 random restarts were performed when computing the ML GMMs. The
same ML parameters were used as initial solution for each of the GMM classifiers.

The numbers of training examples in the UCI data sets are much smaller than on the other
data sets. Thus, we performed 10-fold cross validation to optimize the hyperparameters. We
performed a maximum of 10000 iterations for each run and stopped prematurely if the largest
entry of the gradient became sufficiently small. As mentioned in Section 2.1.3, early stopping
is not applicable in conjunction with cross validation. For each run of the cross validation
procedure, we computed ML parameters of the training partition with the EM algorithm using
10 random restarts. The ML solution then served as initial parameter configuration for the
BFGS quasi-Newton algorithm. The number of parameters enabled us to stick to the full BFGS
algorithm, rather than its memory limited variant L-BFGS. Except the Image Segmentation
data set, where we are given a separate test set, the test error was computed by the mean of
the validation errors over the 10 cross validation runs.

For the MCL optimized GMMs we computed 1000 iterations on every data set. For the MM
optimized GMMs we computed 500 iterations. We did not use early stopping for these models
and used the parameters after the full number of iterations. The initial parameters are the same
ML solutions as in the hybrid GMMs and we also did not change the class priors πc.

4.3.3 Results

We first illustrate several characteristics of the hybrid GMM classifier on the MNIST50 data set.
Figure 4.6 shows how the negative log-likelihood, the margin and the classification error change

14 For the TIMIT data set, in the case of a single Gaussian per class, we would need to optimize more than 7000
parameters. Computing an approximation of the full inverse Hessian matrix becomes intractable even for small
values of K.
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Figure 4.6: Illustration of how the trade-off parameter λ influences (a) the negative log-likelihood (NLogL),
(b) the margin and (c) the classification error (CE). The plots were computed on the MNIST50
data set with 16 components per class and desired margin γ = 8. Each model was optimized for
5000 iterations without early stopping
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Figure 4.7: Illustration of how (a) the negative log-likelihood (NLogL), (b) the margin and (c) the classifica-
tion error (CE) change over the number of iterations. The plots were computed on the MNIST50
data set with 16 components per class, generative-discriminative trade-off λ = 64 and desired
margin γ = 8.

for different values of the trade-off parameter λ and a fixed desired margin γ. The probabilistic
interpretation of a generative model can be quantified by its likelihood per sample. Figure
4.6(a) shows how the negative log-likelihood per example increases as λ increases. The negative
log-likelihood of models for small values of λ hardly differs from that of the ML solution. At
about λ = 1, we can see that the negative log-likelihood starts to increase drastically. Figure
4.6(b) shows how the margin decreases as λ becomes larger. The margin decreases consistently
on the training set as λ increases. However, for the validation set the margin only decreases
for smaller values of λ and increases again for larger values of λ, which is typically a sign
of overfitting. It is therefore usually some intermediate value of λ, that results in the best
generalization performance. Note the similarity of the margin per example in Figure 4.6(b) to
the classification error in Figure 4.6(c).

Next we show how the same characteristics of the model change over the number of iterations
of a single quasi-Newton optimization run. Recall that we start from the ML solution. Figure
4.7 shows the behavior on the MNIST50 data set for a fixed λ and a fixed γ. Figure 4.7(a)
shows how the negative log-likelihood increases over the number of iterations. Figure 4.7(b)
and Figure 4.7(c) illustrate that the margin and the classification error on the training set drop
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consistently. However, the margin and the classification error on the validation set drop only at
the beginning and start to increase again after a few iterations. This is a clear sign of overfitting
which can be solved with the early stopping heuristic. It is remarkable that the values in these
plots change severely at the beginning and then change only slightly in the remainder. While
this can be a typical behavior in many applications, we cannot rule out that the classification
error on the validation set will drop in later iterations. In our experiments we often observed
that the validation error decreased after more than 1000 iterations.

Table 4.1 shows the results for different classifiers on the data sets described in Section 4.3.1.
The hyperparameters which resulted in the best performance are shown in Table B.9. The
performance of the hybrid GMM classifier increases the performance of ML GMMs substantially.
Furthermore, we outperform MCL optimized GMMs and achieve a comparable performance to
the MM optimized models from Pernkopf. We had difficulties with the implementation of MM
optimized GMMs and were not able to compute results for the smaller data sets Iris, Breast
Cancer and Image Segmentation. We believe that the results for MM optimized GMMs on
MNIST are pessimistic and better results would be achieved if more iterations had been used.

SVMs with linear kernel and the hybrid GMM classifier perform evenly over all data sets,
while SVMs with RBF kernel outperform the hybrid GMM classifier consistently. However, the
number of parameters of SVMs are consistently larger than the number of parameters of GMMs
as shown in Table 4.2. Furthermore, training and classification of SVMs on data sets with many
classes, such as the TIMIT data set, takes a long time. We observed differences in classification
time by a factor of 1000 for SVMs with RBF kernel and the hybrid GMM classifier on the TIMIT
data set. libSVM builds the multiclass classifier according to the one-vs-one strategy and thus
needs to solve a large amount of independent binary classification tasks.

dataset GMM ML GMM Hyb. GMM CL GMM MM SVM Lin. SVM RBF

MNIST 13.94 6.56 7.28 7.88 5.38 1.61
MNIST50 4.32 3.20 3.45 2.88 6.37 1.62
USPS 7.77 4.87 6.00 5.13 4.63 1.97
TIMIT 30.02 22.19 24.06 23.63 26.06 20.30

Iris 2.67 2.00 4.00 / 2.00 2.00

Breast 4.39 2.05 3.00 / 2.10 1.75

Segment. 13.00 10.14 9.43 / 7.90 8.14

Table 4.1: Classification errors (%) of different classifiers on the data sets described in Section 4.3.1.

dataset GMM ML GMM Hyb. GMM CL GMM MM SVM Lin. SVM RBF

MNIST 459210 114810 114810 114810 7292403 7978709
MNIST50 129290 129290 64650 129290 493561 892689
USPS 82090 10270 20530 20530 583741 797383
TIMIT 115479 115479 14469 115479 7036396 7756620

Table 4.2: Numer of parameters used for the best models. The parameters of the GMM classifiers are the
class prior probabilities πc, the component priors αc,k, the component means µc,k and the diagonal
component covariance matrices Σc,k. The parameters of SVMs are the number of support vectors
multiplied by the number of features, the non-zero weights α of the support vectors and the offsets
ρ (terminology according to libSVM).

For the TIMIT data set we also replaced the soft-hinge function (3.17) by a smoothed ver-
sion of the ramp function (3.15). Due to the increased computation effort caused by the
additional hyperparameter ν, we evaluated only the reduced grid for the component priors
K ∈ {1, 2}, the generative-discriminative trade-off λ ∈ {20, . . . , 210} and the desired mar-
gin γ ∈ {0.1, 2−2, . . . , 26}. For each of these combinations we used the maximum loss values
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ν ∈ {γ + 21, . . . , γ + 24}. The classification performance of the ramp function compared to the
hinge function increased in 82 out of 220 parameter configurations for at least one choice of the
parameter ν. Using the ramp function, the classification error decreased by up to 0.4%. We
observed an increase in likelihood in 60 out of the 82 cases where the classification performance
improved. The performance increased only for hyperparameter configurations with λ ≥ 22 and
γ ≤ 23. This shows that the ramp function can improve the classification performance and the
probabilistic interpretation of the model. We were not able to improve the best models learned
with the hinge function on the TIMIT data set since these models have a high desired margin
γ.

4.4 Experiments with Missing Data

This section presents the results of the hybrid GMM classifier in the presence of missing data.
We performed experiments with missing features at classification time and with missing labels
at training time, i.e. semi-supervised learning.

4.4.1 Results with missing features at classification time

We conducted our experiments for classification with missing features on the MNIST, MNIST50,
USPS and TIMIT data sets. The training set and the validation set contained no missing
features. We selected the number of components for the GMM classifiers to be the number
for which the ML solution achieved the smallest validation error. The remaining parameters of
the GMM classifiers and SVMs were obtained by optimizing the performance on the separate
held-out validation set.

We chose the number for all GMM classifiers to be equal in order to obtain fair results. For
instance, the best hybrid GMM on the USPS data set was obtained with only two components
per class whereas the pure generative solution performed best with 16 components. Without
missing features hybrid GMMs clearly outperformed the ML solution, but on the other side, the
hybrid model with only two components performed poorly in the presence of missing features.

For the GMM classifiers we marginalized out the missing features as described in Section 3.3.1.
For SVMs we performed unconditional mean imputation and 3-nearest neighbor imputation. We
conducted experiments for different numbers of missing features. LetD be the number of features
and p ∈ [0, 1] be the percentage of missing features for an experiment. For our experiments we
removed randomly round(D · p) features of each example of the test set.

Figure 4.8 shows the classification errors of the different classifiers. The detailed classification
errors of this experiments are shown in Appendix B. We observe a similar behavior as Peharz et
al. [2]: The ML GMM has a relatively high error when no features are missing but its performance
stays approximately constant up to 50% missing features. Except for the TIMIT data set, also
the performance of hybrid GMMs stays almost constant up to 50% missing features. The hybrid
model outperforms the ML solution up to 30% missing features on all data sets. For more than
50% missing features the hybrid model achieves similar error rates as the generative solution on
MNIST50 and USPS and it outperforms the generative solution on MNIST. The test error of
hybrid GMMs on TIMIT increases faster for smaller amounts of missing features and thus the
performance for 50% missing features or more is poor.

Over all data sets hybrid GMMs performed even compared to MCL and MM optimized GMMs
in the presence of missing data. We observed that the best models, obtained by minimizing the
validation error, typically have a relatively high generative-discriminative trade-off parameter λ
or a high desired margin γ. As we have shown earlier, large values for any of these two parameters
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Figure 4.8: Illustration of the performance of several classifiers for different amounts of missing features on
(a) MNIST, (b) MNIST50, (c) USPS and (d) TIMIT.

harms the probabilistic interpretation of the model and the classification performance in the
presence of missing features. However, the large values for these parameters are not surprising,
since the optimization criterion was to achieve a high validation performance and the validation
set does not contain any missing features. We therefore propose to choose an optimization
criterion that resembles the task one intends to solve, such as optimizing the performance on a
validation set that itself contains missing features.

Furthermore, we see that the unconditional mean imputation strategy achieves only poor
results, while 3-nearest neighbor imputation achieves a high performance for SVMs with both
linear and RBF kernel over the whole range of missing features. We believe this behavior to stem
from the way we remove the features from the test set, i.e. uniform at random which conforms the
MCAR assumption. Imputation techniques are typically only valid if the MCAR assumption
is given. Hence, the high performance can be attributed to the imputation technique rather
than the SVM classifier. Figure 4.9 illustrates 3-nearest neighbor imputation on the MNIST
data set. The image in Figure 4.9(a) shows a test example depicting the digit three with 80%
missing features. The imputed image in Figure 4.9(e) recovers the original digit accurately. The
imputed image is a blend of three training images out of which two are of the correct class. If
there are many missing features this is almost the same as classifying a training image. Since
the training set was used to train the models and the error on the training set is typically small,
the performance is high.
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(a) (b) (c) (d) (e)

Figure 4.9: Illustration of 3-nearest neighbor imputation on the MNIST data set. (a) shows a test example
depicting the digit three with 80% missing features. The missing features are shown in red. (b),
(c) and (d) show the nearest, second nearest and third nearest neighbors of (a) from the training
set. The imputed image is shown in (e).
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Figure 4.10: Illustration of the influence of lambda on the classification error (CE) in the presence of missing
features. (a) shows results for K = 2 and γ = 2 for different values of λ on the USPS data set.
(b) shows results for K = 4 and γ = 32 for different values of λ on the TIMIT data set.

Figure 4.10 illustrates the influence of lambda on the performance on data with missing
features. The detailed classification errors are shown in Appendix B. The classification error
of the generative solution (λ = 0) is high for fewer missing features but it becomes smaller
compared to higher values of λ for more missing features. Nevertheless, this does not imply that
the generative solution is always the best for many missing features. For instance, the relatively
small choice of λ = 1 outperforms the ML solution over the whole range of missing features but
its performance in case of less missing features is worse compared to larger values of λ.

4.4.2 Results for semi-supervised learning

We evaluated the hybrid GMM classifier on the MNIST50 data set with partly missing la-
bels. We optimized the hyperparameters on a validation set with grid search for the values
K ∈ {20, . . . , 27}, λ = {20, . . . , 210} and γ ∈ {0.1, 2−2, . . . , 26}. We additionally evaluated the
performance of SVMs with linear and RBF kernel on the labeled data only. Unfortunately, we
were not able to find available software packages that could handle this semi-supervised problem
for comparison.

The results are shown in Figure 4.11. Figure 4.11(a) shows that the model is capable of
improving the classification performance if additional unlabeled data is given. Especially if
only a few labeled examples are given, the performance improves significantly. In case of 500
labeled examples and 49500 unlabeled examples, the classification error drops by more than 4.5%
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Figure 4.11: Illustration of the classification error (CE) on the MNIST50 data set with semi-supervised
learning. In (a) we vary the ratio of labeled and unlabeled data for a total amount of 50000
data examples, i.e. Nl +Nu = 50000. The plot shows values for Nl ∈ {500, 1000, 2500, 5000,
10000, 25000, 50000}. (b) shows the classification error for a fixed number of labeled examples
Nl = 5000 and a varying number of unlabeled examples Nu ∈ {0, 5000, 10000, 20000, 40000,
45000}.

compared to hybrid the model, which was trained using the labeled data alone. In this case, we
also outperform the SVM with RBF kernel that was trained with the labeled data only. The
detailed classification errors of this experiment are shown in Table B.7 and the hyperparameters
which result in the best performance are shown in Table B.10.

A similar experiment is depicted in Figure 4.11(b). Here the number of labeled data is fixed
to Nl = 5000 while the amount of unlabeled data varies. We can see that the classifier tends
to improve as the amount of unlabeled data grows. However, we also observe an increase in
classification error for Nu = 10000 compared to Nu = 5000. This is an example that addi-
tional unlabeled data does not always improve the performance of a classifier. The detailed
classification errors of this experiment are shown in Table B.8 in the appendix.
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5
Conclusion

5.1 Summary

While classical ML and MAP optimized GMMs are usually not competitive in real world classifi-
cation tasks, some discriminative strategies have been developed in the past in order to achieve a
higher classification performance with GMMs [10,15]. However, none of these approaches takes
the likelihood into account and the probabilistic interpretation of the resulting classifier often
only stems from the ML model serving as initial solution for subsequent optimization procedures.
In this thesis we have shown how to learn GMMs in a hybrid generative-discriminative way in
order to close this gap. We accomplished this task by formulating an objective that trades off
between a likelihood term and a large margin term.

We demonstrated the capabilities of hybrid GMMs on synthetic data. Furthermore, we com-
pared our model on real world data with the following classifiers: ML optimized GMMs, MCL
optimized GMMs, MM optimized GMMs and SVMs with linear and RBF kernel. In the case of
no missing data our model is competitive with MM optimized GMMs and linear SVMs and out-
performs the other GMM classifiers. SVMs with RBF kernel achieved the best results. However,
we have shown that SVMs need substantially more parameters than GMMs.

The goal of this thesis was to construct a classifier that is capable of dealing with missing
data. We evaluated the performance of hybrid GMMs when classifying in the presence of missing
features. In case of at most 30% missing features, hybrid GMMs outperformed generative
GMMs. The classification error of the ML solution stays approximately constant for up to 50%
and achieves a good performance for more than 50% missing features. Our model performed
even compared to MCL and MM optimized GMMs. Hybrid GMMs performed poorly on the
TIMIT data set in the presence of missing data. This happens because the hyperparameters are
optimized on a validation set without missing features and thus the model tends to get more of
a discriminative character. We have shown that tuning the hyperparameters carefully can result
in a performance increase compared to the ML solution for both few and many missing features.
We applied unconditional mean imputation and 3-nearest neighbor imputation for linear SVMs
and SVMs with RBF kernel. While mean imputation provided the worst results, 3-nearest
neighbor imputation performed best on all data sets. We believe the superior performance of
the 3-nearest neighbor imputation heuristic to stem from the way we removed the features in
our experiments. The features were removed according to the MCAR assumption.
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We also conducted experiments with missing labels on the MNIST50 data set. We were able
to increase the performance of the classifier by using additional unlabeled data. We compared
the hybrid model to SVMs with linear and RBF kernel that only used the labeled data. In
case of only a few labeled data examples, where a pure supervised classifier performs poorly, we
were able to increase the performance substantially. In particular, on the MNIST50 data set
with only 500 labeled data examples and 49500 unlabeled data examples we achieved a better
performance than a SVM with RBF kernel which was learned on the labeled data alone. We
have shown that more unlabeled data typically results in a higher performance gain. However,
we also observed that additional unlabeled data can degrade the performance.

5.2 Future Work

Hybrid generative-discriminative GMMs are competitive with other state of the art GMM clas-
sifiers if there are no missing features. The likelihood term of the hybrid objective is used to
regularize the model parameters. Nevertheless, when optimizing the classification performance
on a separate validation set without missing features, the best results are typically obtained with
hyperparameters that favor the discriminative character of the model. This results in a poor
performance in case the number of missing features becomes large. If the amount of missing
features is high, we believe that optimizing hyperparameters using a validation set that also
contains missing features, results in a higher performance. Furthermore, future work should
evaluate the performance of hybrid GMMs if the stronger MAR or NMAR assumptions hold.
Although we provided the theoretical foundations of how to learn GMM in the presence of
missing features, we leave experiments of this scenario for future studies.

The hybrid generative-discriminative objective is a non-convex and possibly highly multimodal
function. As typical for such functions, the problem of getting stuck in bad local optima could
prevent the model from achieving a high performance. More than 10 random restarts were
performed when computing the initial ML solution with the EM algorithm. However, we did
not investigate how different initial solutions when optimizing the hybrid objective might change
the quality of the classifier. Future work should address this issue.

In our experiments we optimized three different hyperparameters, namely the number of
components per class K, the generative-discriminative trade-off parameter λ and the desired
margin γ. Therefore, we imposed the restriction that the number of components of all classes
are equal. However, the number of components can typically be chosen larger the more data
there is available. If the numbers of examples per class differ substantially, this restriction could
become a problem. Future work should address heuristics for choosing different component
numbers per class. Furthermore, since the number of hyperparameters without this restriction
would be exponential in the number of classes, techniques to search the hyperparameter space
more systematically than grid search could be promising.

Another restriction we have made is the restriction to diagonal covariance matrices. Although
GMMs can model dependencies among the features using the superposition of the components,
some applications might be more naturally solved by using full covariance matrices instead of
diagonal covariances.
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A
Derivation of the Gradient

A.1 Gradient of the Hybrid Discriminative-Generative Objective

In this section we derive the gradient of the hybrid generative-discriminative objective for GMMs.
Recall that the smoothed hybrid generative-discriminative objective is given by

l̃hybrid(θ) = −
N∑

n=1

[log p (xn|θcn) + log πcn ] + λ

N∑

n=1

hǫ

(
smax
c 6=cn

(γ − βn,c(θ))

)
. (A.1)

To increase readability, we will restate the meaning of several expressions here. βn,c denotes the
log-probabilistic margin of the n-th example with respect to class c which is defined as

βn,c(θ) = log p (xn, cn|θ)− log p (xn, c|θ). (A.2)

The soft-hinge function hǫ is defined as

hǫ(t) =





0 t < −ǫ

t t > ǫ
(t+ǫ)2

4ǫ otherwise

(A.3)

and its derivative is given by

h′ǫ(t) =





0 t < −ǫ

1 t > ǫ
(t+ǫ)
2ǫ otherwise

. (A.4)

The soft-max function smax is defined as

smax
t1,...,tL

=
1

η
log

L∑

i=1

exp (ηti) (A.5)
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and its partial derivative with respect to tj is given by

∂ smaxt1,...,tL
∂tj

=
exp (ηtj)∑L
i=1 exp (ηti)

. (A.6)

The following rules of vector and matrix differentiation will aid in computing the gradient:

∂aTx

∂x
= a (A.7)

∂xTSx

∂x
= 2Sx (A.8)

∂ detS

∂S
= S−1 detS (A.9)

∂aTS−1a

∂S
= −S−1aaTS−1, (A.10)

where x and a are vectors in RD and S is a symmetric square matrix in RD×D. Equations
(A.7) and (A.8) can be verified by element-wise differentiation. Equations (A.9) and (A.10) are
provided in [33]. We start with the gradient of the density of the Gaussian distribution with
respect to their mean and their symmetric positive semidefinite covariance matrix. Recall that
the Gaussian is defined as

N (x|µ,Σ) =
1√

(2π)D detΣ
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
. (A.11)

The gradient with respect to µ is given by

∂N (x|µ,Σ)

∂µ
= N (x|µ,Σ)

∂

∂µ

(
−1

2
xTΣ−1x+ xTΣ−1µ− 1

2
µTΣ−1µ

)
(A.12)

= N (x|µ,Σ)Σ−1 (x− µ) . (A.13)

In order to compute the gradient with respect to the covariance matrix Σ, we start with two
auxiliary calculations. Using (A.9) the gradient of the normalizing factor is given by

∂

∂Σ

(detΣ)−1/2

√
(2π)D

=
−1

2 (detΣ)−3/2Σ−1 detΣ√
(2π)D

= −1

2

1√
(2π)D detΣ

Σ−1. (A.14)

Using (A.10), the gradient of the term inside the exponential is given by

∂

∂Σ

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
=

1

2
Σ−1 (x− µ) (x− µ)T Σ−1. (A.15)

With these two results and the product rule, the gradient with respect to the covariance matrix
is given by

∂N (x|µ,Σ)

∂Σ
= N (x|µ,Σ)

1

2

(
Σ−1 (x− µ) (x− µ)T Σ−1 −Σ−1

)
. (A.16)

Next we will calculate the gradient of the log-likelihood function for GMMs. Recall that the
density of a GMM with K components, defined by the parameters θ = (α1, . . . , αK ,θ1, . . . ,θK)
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where θk = (µk,Σk), is given by

N (x|θ) =
K∑

k=1

αkN (x|µk,Σk). (A.17)

Using the results (A.13) and (A.16), the gradient of the log-likelihood for GMMs with respect
to the individual parameters are given by

∂ log p (x|θ)
∂αk

=
N (x|µk,Σk)∑K

k′=1 αk′N (x|µk′ ,Σk′)
=

αkN (x|µk,Σk)∑K
k′=1 αk′N (x|µk′ ,Σk′)

1

αk
(A.18)

∂ log p (x|θ)
∂µk

=
αk∑K

k′=1 αk′N (x|µk′ ,Σk′)

∂N (x|µk,Σk)

∂µk
(A.19)

=
αkN (x|µk,Σk)∑K

k′=1 αk′N (x|µk′ ,Σk′)
Σ−1

k (x− µk) (A.20)

∂ log p (x|θ)
∂Σk

=
αk∑K

k′=1 αk′N (x|µk′ ,Σk′)

∂N (x|µk,Σk)

∂Σk
(A.21)

=
αkN (x|µk,Σk)∑K

k′=1 αk′N (x|µk′ ,Σk′)

1

2

(
Σ−1

k (x− µk) (x− µk)
T Σ−1

k −Σ−1
k

)
. (A.22)

Notice the common term at the beginning of each of these expression. We refer to this term as
the component posterior probability p (k|x,θ) which expresses the probability that component k
is responsibly for generating data example x. We can now turn to calculating the gradient of the
hybrid objective with respect to parameters of the class conditional densities θ1, . . . ,θC . Note
that both parts, the log-likelihood and the large margin term, consist of a sum over all examples.
Since differentiation is linear, the gradient can be computed for each example separately and
the overall result is obtained as the sum of the individual gradients. Thus, to keep the notation
uncluttered, we only consider the gradient with respect to a single example (xn, cn) rather than
the whole data set {(x1, c1), . . . , (xN , cN )}. We start with the gradient of the log-likelihood
term. Note that the class priors πc are independent of the class model parameters θ1, . . . ,θC
and can therefore be neglected. The log-likelihood function decomposes into a sum of terms,
each depending only on the parameters of a single class. Each example therefore only influences
the gradient of the parameters of the corresponding class. Hence, to compute the gradient with
respect to a particular class, it suffices to compute the gradient using (A.18), (A.20) and (A.22)
for all examples of that class and sum up the results.

Next we compute the gradient of the large margin term. Here the soft-max function ties all
the classes together and it is no longer possible to calculate the gradient for each class separately.

∂

∂θc
hǫ

(
smax
c′ 6=cn

(
γ − βn,c′

))
= h′ǫ

(
smax
c′ 6=cn

(
γ − βn,c′

)) ∂

∂θc
smax
c′ 6=cn

(
γ − βn,c′

)
(A.23)

= h′ǫ

(
smax
c′ 6=cn

(
γ − βn,c′

)) ∑

c′ 6=cn

∂ smaxc′′ 6=cn

∂(γ − βn,c′)
· ∂(γ − βn,c′)

∂θc
(A.24)

= h′ǫ

(
smax
c′ 6=cn

(
γ − βn,c′

)) ∑

c′ 6=cn

exp
(
−ηβn,c′

)
∑

c′′ 6=cn
exp

(
−ηβn,c′′

) · ∂(γ − βn,c′)

∂θc
(A.25)
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The gradient of the last term is given by

∂(γ − βn,c′)

∂θc
=

∂

∂θc

(
γ − log p (xn|θcn)− log p (cn) + log p (xn|θc′) + log p

(
c′
))

(A.26)

=





− ∂
∂θc

log p (xn|θcn) c = cn

∂
∂θc

log p (xn|θc′) c = c′

0 otherwise

. (A.27)

If we take the derivative with respect to the parameters of the true class, i.e. c = cn, the partial
derivative (A.27) is independent of the summation index c′ and we can pull it out of the sum
in (A.25). The sum itself is one, since summing over all the partial derivatives of the soft-max
function always equals one. If we take the derivative with respect to some other class c 6= cn,
the terms for all classes except c′ = c vanish. The gradient of the large margin term for example
(xn, cn) with respect to the parameters θc is therefore given by

h′ǫ

(
smax
c′ 6=cn

(
γ − βn,c′

))
·





exp(−ηβn,c)∑
c′ 6=cn

exp(−ηβn,c′)
∂

∂θc
log p (xn|θc) c 6= cn

− ∂
∂θc

log p (xn|θcn) c = cn

. (A.28)

Detailed interpretations of these results are given in Section 3.2.3.

A.2 Gradient of the Marginal Distribution

In this section we show how to calculate the gradient of the marginal distribution p (x|θ) which
is needed to optimize the semi-supervised hybrid objective. Using the sum-rule of probability
the marginal distribution of the data example x is given by

p (x|θ) =
C∑

c=1

p (x|θc)πc. (A.29)

The gradient of the marginal log-likelihood with respect to the parameter θc of class c are then
given by

∂ log p (x|θ)
∂θc

=
πc

p (x|θ)
∂p (x|θc)

∂θc
. (A.30)

By multiplying the numerator and the denominator by p (x|θc) we obtain

∂ log p (x|θ)
∂θc

= p (c|x,θ) 1

p (x|θc)
∂p (x|θc)

∂θc
. (A.31)

We recognize this expression as the gradient of the log-likelihood function of the data example
as if it is labeled with class c weighted with the class posterior probability of class c. Hence, we
can rewrite this expression as

∂ log p (x|θ)
∂θc

= p (c|x,θ) ∂ log p (x|θc)
∂θc

. (A.32)

The gradient of the marginal log-likelihood is further discussed in Section 3.3.2.
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B
Supplementary Tables

The following tables contain the classification errors of several figures in Section 4.4 and the
best hyperparameters of different experiments. Tables B.1, B.2, B.3 and B.4 contain the data
shown in Figure 4.8. Mean imputation and 3-nearest neighbor imputation are indicated by (M)
and (3NN) respectively. Tables B.5 and B.6 contain the data shown in Figure 4.10. Tables B.7
and B.8 contain the data shown in Figure 4.11. Table B.9 and Table B.10 contain the best
hyperparameters corresponding to Table 4.1 and Figure 4.11(a) respectively.

classifier 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

GMM ML 13.94 13.69 14.00 13.84 13.90 13.99 14.48 15.44 17.83 23.73
GMM Hybrid 6.73 7.17 7.38 7.77 8.56 9.44 10.80 12.65 16.50 24.82
GMM MCL 8.10 8.25 8.68 8.72 9.08 8.98 9.84 11.38 14.46 22.02
GMM MM 8.49 8.81 8.81 9.35 9.60 9.95 11.08 12.43 14.80 23.36

SVM Lin. (M) 5.38 6.01 7.41 11.26 18.76 28.68 39.77 53.47 68.39 78.31

SVM Lin. (3NN) 5.38 4.95 4.56 4.51 4.42 4.69 4.90 5.46 7.48 14.03

SVM RBF (M) 1.61 2.05 3.79 12.67 26.80 43.60 64.04 82.87 89.76 90.26

SVM RBF (3NN) 1.61 1.69 1.95 2.07 2.55 3.02 3.68 4.29 6.54 13.78

Table B.1: Classification errors (%) of several classifiers for different numbers of missing features on MNIST
(see Figure 4.8(a)).

classifier 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

GMM ML 4.32 4.79 5.15 5.63 6.68 8.62 12.31 19.33 33.60 58.17
GMM Hybrid 3.20 3.75 4.44 5.16 6.49 8.94 12.89 20.06 34.80 58.57
GMM MCL 3.75 4.16 4.66 5.36 6.77 9.06 12.87 20.07 34.24 58.09
GMM MM 2.88 3.55 4.64 6.19 8.58 12.06 17.13 24.99 39.16 60.61

SVM Lin. (M) 6.37 15.60 23.84 33.26 42.08 50.35 59.03 66.79 74.14 82.39

SVM Lin. (3NN) 6.37 6.24 6.26 6.58 7.02 8.09 12.25 20.54 38.40 68.68

SVM RBF (M) 1.62 2.94 5.78 11.56 19.94 31.52 45.10 57.51 70.15 80.65

SVM RBF (3NN) 1.62 1.86 2.03 2.78 3.87 5.54 9.76 18.07 36.80 65.81

Table B.2: Classification errors (%) of several classifiers for different numbers of missing features on
MNIST50 (see Figure 4.8(b)).
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classifier 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

GMM ML 7.77 7.77 7.73 7.10 8.87 7.93 8.40 9.20 11.77 19.87
GMM Hybrid 4.87 4.83 5.30 5.77 5.67 6.13 7.27 8.17 12.50 20.90
GMM MCL 7.10 6.93 7.03 6.80 7.90 7.43 7.77 8.97 11.57 19.70
GMM MM 4.70 4.70 5.53 5.87 6.40 7.50 7.63 8.80 11.03 19.10

SVM Lin. (M) 4.63 5.00 5.60 7.73 12.27 21.30 37.63 57.17 72.60 84.07

SVM Lin. (3NN) 4.63 4.50 4.00 3.87 4.67 5.23 6.07 7.78 11.20 20.17

SVM RBF (M) 1.97 2.37 3.17 7.80 18.17 31.97 50.10 68.70 80.47 88.60

SVM RBF (3NN) 1.97 2.13 2.27 2.77 3.27 3.87 5.43 6.67 10.73 19.37

Table B.3: Classification errors (%) of several classifiers for different numbers of missing features on USPS
(see Figure 4.8(c)).

classifier 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

GMM ML 30.02 30.47 30.99 31.73 32.20 34.00 35.36 38.93 45.87 59.10
GMM Hybrid 22.19 24.57 27.58 30.19 33.71 38.33 44.06 50.46 58.38 69.28
GMM MCL 28.53 30.31 32.67 35.32 37.94 41.95 46.12 50.91 57.95 66.80
GMM MM 23.63 24.67 25.78 27.32 29.48 32.17 35.58 41.21 49.42 62.77

SVM Lin. (M) 26.06 31.29 37.78 43.96 50.96 57.79 64.47 70.49 77.87 85.22

SVM Lin. (3NN) 26.06 26.89 28.96 30.30 32.27 36.06 39.44 44.79 53.52 67.66

SVM RBF (M) 20.30 25.21 30.47 37.28 46.58 56.87 67.51 76.40 85.59 91.26

SVM RBF (3NN) 20.30 21.54 22.95 25.48 27.92 32.03 36.44 43.70 53.10 68.63

Table B.4: Classification errors (%) of several classifiers for different numbers of missing features on TIMIT
(see Figure 4.8(d)).

λ 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

0 12.27 12.10 12.73 12.73 13.07 13.93 14.90 15.70 19.20 28.23

10−1 11.83 11.67 12.23 12.37 12.90 13.53 14.43 15.53 19.00 28.17

100 9.87 10.00 10.33 11.10 11.03 11.73 13.37 13.93 17.87 27.93

101 7.93 8.17 8.37 9.23 9.53 10.57 12.60 13.83 19.83 30.47

102 7.57 7.70 9.03 9.47 9.97 12.37 15.47 16.90 23.20 34.90

103 6.93 7.33 7.97 9.20 9.63 11.30 14.60 17.40 23.93 36.93

104 6.30 6.60 8.13 9.97 12.17 15.73 20.33 23.93 33.60 49.93

Table B.5: Classification errors (%) for different values of λ and different numbers of missing features on
USPS with fixed K = 2 and γ = 2 of hybrid GMMs (see Figure 4.10(a)).

λ 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

0 35.15 35.47 36.08 36.03 37.39 39.12 39.98 43.53 49.12 60.62

10−1 32.31 32.91 33.23 34.00 35.07 37.17 38.93 42.57 48.69 60.39

100 27.32 27.99 28.26 30.08 31.15 32.81 36.65 40.72 48.63 61.07

101 23.62 25.09 27.24 29.18 31.80 35.54 40.58 46.75 54.72 66.09

102 23.09 26.38 31.44 35.57 41.92 47.58 53.63 61.71 70.43 78.14

103 23.31 34.86 45.42 53.64 60.85 67.58 72.99 78.03 84.70 88.79

104 23.49 40.30 52.59 60.52 67.58 73.79 79.07 81.83 86.51 89.27

Table B.6: Classification errors (%) for different values of λ and different numbers of missing features on
TIMIT with fixed K = 4 and γ = 32 of hybrid GMMs (see Figure 4.10(b)).
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classifier 500 1000 2500 5000 10000 25000 50000

GMM Hybrid (SV) 18.67 14.01 9.22 6.88 5.17 4.01 3.20

GMM Hybird (SSL) 13.94 10.61 7.14 5.29 4.48 3.72 3.20

SVM Linear (SV) 18.69 13.14 9.63 8.31 7.64 7.00 6.37

SVM RBF (SV) 14.38 9.40 6.01 4.22 3.02 2.01 1.62

Table B.7: Classification errors (%) of several classifiers for different numbers of labeled data examples Nl.
The supervised (SV) classifiers used only the labeled data examples. The semi-supervised classifier
(SSL) additionally used the remaining 50000 − Nl data examples as unlabeled data (see Figure
4.11(a)).

Nu 0 5000 10000 20000 40000 45000

CE 6.88 6.47 6.73 5.84 5.69 5.29

Table B.8: Classification errors (%) of semi-supervised hybrid GMMs for different numbers of unlabeled data
Nu with a fixed amount of 5000 labeled data examples (see Figure 4.11(b)).

dataset GMM ML GMM Hybrid GMM MCL GMM MM

MNIST K = 32 K = 8, λ = 29, γ = 26 K = 8 K = 8, λ = 10−2

MNIST50 K = 128 K = 128, λ = 20, γ = 25 K = 64 K = 128, λ = 10−2

USPS K = 16 K = 2, λ = 210, γ = 26 K = 4 K = 4, λ = 10−2

TIMIT K = 16 K = 16, λ = 25, γ = 25 K = 2 K = 16, λ = 10−2

Iris K = 4 K = 4, λ = 20, γ = 0.1 K = 3 /

Breast K = 4 K = 1, λ = 25, γ = 26 K = 6 /

Segment. K = 3 K = 1, λ = 25, γ = 26 K = 4 /

dataset SVM Linear SVM RBF

MNIST λ = 2−4 λ = 24, γ = 2−6

MNIST50 λ = 2−1 λ = 21, γ = 2−5

USPS λ = 2−8 λ = 22, γ = 2−8

TIMIT λ = 2−4 λ = 22, γ = 2−7

Iris λ = 2−1 λ = 20, γ = 2−3

Breast λ = 2−3 λ = 23, γ = 2−6

Segment. λ = 24 λ = 29, γ = 2−7

Table B.9: The hyperparameters which achieved the best classification performance without missing features
(see Table 4.1).

Nl Hybrid GMM (SV) Hybrid GMM (SSL) SVM Linear SVM RBF

500 K = 2, λ = 20, γ = 26 K = 2, λ = 27, γ = 24 λ = 2−6 λ = 21, γ = 2−6

1000 K = 2, λ = 20, γ = 25 K = 2, λ = 26, γ = 24 λ = 2−5 λ = 21, γ = 2−6

2500 K = 4, λ = 20, γ = 25 K = 16, λ = 24, γ = 25 λ = 2−4 λ = 22, γ = 2−6

5000 K = 16, λ = 20, γ = 25 K = 64, λ = 22, γ = 25 λ = 2−3 λ = 22, γ = 2−6

10000 K = 32, λ = 20, γ = 25 K = 64, λ = 21, γ = 25 λ = 2−4 λ = 22, γ = 2−5

25000 K = 32, λ = 20, γ = 24 K = 32, λ = 22, γ = 24 λ = 2−1 λ = 23, γ = 2−5

50000 K = 128, λ = 20, γ = 25 / λ = 2−1 λ = 21, γ = 2−5

Table B.10: The hyperparameters which achieved the best classification performance in the experiment for
semi-supervised learning (see Figure 4.11(a)).
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C
List of Acronyms

EM expectation maximization

GMM Gaussian mixture model

KL Kullback-Leibler

MAP maximum a-posteriori

MAR missing at random

MCAR missing completely at random

MCL maximum conditional likelihood

ML maximum likelihood

MM maximum margin

NMAR not missing at random

PCA principal component analysis

RBF radial basis function

SVM support vector machine
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